]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
* breakpoint.c:
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36 #include "mdebugread.h"
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48
49 /* Prototypes for local functions */
50
51 static void objfile_alloc_data (struct objfile *objfile);
52 static void objfile_free_data (struct objfile *objfile);
53
54 /* Externally visible variables that are owned by this module.
55 See declarations in objfile.h for more info. */
56
57 struct objfile *object_files; /* Linked list of all objfiles */
58 struct objfile *current_objfile; /* For symbol file being read in */
59 struct objfile *symfile_objfile; /* Main symbol table loaded from */
60 struct objfile *rt_common_objfile; /* For runtime common symbols */
61
62 /* Locate all mappable sections of a BFD file.
63 objfile_p_char is a char * to get it through
64 bfd_map_over_sections; we cast it back to its proper type. */
65
66 #ifndef TARGET_KEEP_SECTION
67 #define TARGET_KEEP_SECTION(ASECT) 0
68 #endif
69
70 /* Called via bfd_map_over_sections to build up the section table that
71 the objfile references. The objfile contains pointers to the start
72 of the table (objfile->sections) and to the first location after
73 the end of the table (objfile->sections_end). */
74
75 static void
76 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
77 void *objfile_p_char)
78 {
79 struct objfile *objfile = (struct objfile *) objfile_p_char;
80 struct obj_section section;
81 flagword aflag;
82
83 aflag = bfd_get_section_flags (abfd, asect);
84
85 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
86 return;
87
88 if (0 == bfd_section_size (abfd, asect))
89 return;
90 section.offset = 0;
91 section.objfile = objfile;
92 section.the_bfd_section = asect;
93 section.ovly_mapped = 0;
94 section.addr = bfd_section_vma (abfd, asect);
95 section.endaddr = section.addr + bfd_section_size (abfd, asect);
96 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
97 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
98 }
99
100 /* Builds a section table for OBJFILE.
101 Returns 0 if OK, 1 on error (in which case bfd_error contains the
102 error).
103
104 Note that while we are building the table, which goes into the
105 psymbol obstack, we hijack the sections_end pointer to instead hold
106 a count of the number of sections. When bfd_map_over_sections
107 returns, this count is used to compute the pointer to the end of
108 the sections table, which then overwrites the count.
109
110 Also note that the OFFSET and OVLY_MAPPED in each table entry
111 are initialized to zero.
112
113 Also note that if anything else writes to the psymbol obstack while
114 we are building the table, we're pretty much hosed. */
115
116 int
117 build_objfile_section_table (struct objfile *objfile)
118 {
119 /* objfile->sections can be already set when reading a mapped symbol
120 file. I believe that we do need to rebuild the section table in
121 this case (we rebuild other things derived from the bfd), but we
122 can't free the old one (it's in the objfile_obstack). So we just
123 waste some memory. */
124
125 objfile->sections_end = 0;
126 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
127 objfile->sections = (struct obj_section *)
128 obstack_finish (&objfile->objfile_obstack);
129 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
130 return (0);
131 }
132
133 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
134 allocate a new objfile struct, fill it in as best we can, link it
135 into the list of all known objfiles, and return a pointer to the
136 new objfile struct.
137
138 The FLAGS word contains various bits (OBJF_*) that can be taken as
139 requests for specific operations. Other bits like OBJF_SHARED are
140 simply copied through to the new objfile flags member. */
141
142 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
143 by jv-lang.c, to create an artificial objfile used to hold
144 information about dynamically-loaded Java classes. Unfortunately,
145 that branch of this function doesn't get tested very frequently, so
146 it's prone to breakage. (E.g. at one time the name was set to NULL
147 in that situation, which broke a loop over all names in the dynamic
148 library loader.) If you change this function, please try to leave
149 things in a consistent state even if abfd is NULL. */
150
151 struct objfile *
152 allocate_objfile (bfd *abfd, int flags)
153 {
154 struct objfile *objfile = NULL;
155 struct objfile *last_one = NULL;
156
157 /* If we don't support mapped symbol files, didn't ask for the file to be
158 mapped, or failed to open the mapped file for some reason, then revert
159 back to an unmapped objfile. */
160
161 if (objfile == NULL)
162 {
163 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
164 memset (objfile, 0, sizeof (struct objfile));
165 objfile->md = NULL;
166 objfile->psymbol_cache = bcache_xmalloc ();
167 objfile->macro_cache = bcache_xmalloc ();
168 /* We could use obstack_specify_allocation here instead, but
169 gdb_obstack.h specifies the alloc/dealloc functions. */
170 obstack_init (&objfile->objfile_obstack);
171 terminate_minimal_symbol_table (objfile);
172 }
173
174 objfile_alloc_data (objfile);
175
176 /* Update the per-objfile information that comes from the bfd, ensuring
177 that any data that is reference is saved in the per-objfile data
178 region. */
179
180 objfile->obfd = abfd;
181 if (objfile->name != NULL)
182 {
183 xfree (objfile->name);
184 }
185 if (abfd != NULL)
186 {
187 objfile->name = xstrdup (bfd_get_filename (abfd));
188 objfile->mtime = bfd_get_mtime (abfd);
189
190 /* Build section table. */
191
192 if (build_objfile_section_table (objfile))
193 {
194 error (_("Can't find the file sections in `%s': %s"),
195 objfile->name, bfd_errmsg (bfd_get_error ()));
196 }
197 }
198 else
199 {
200 objfile->name = xstrdup ("<<anonymous objfile>>");
201 }
202
203 /* Initialize the section indexes for this objfile, so that we can
204 later detect if they are used w/o being properly assigned to. */
205
206 objfile->sect_index_text = -1;
207 objfile->sect_index_data = -1;
208 objfile->sect_index_bss = -1;
209 objfile->sect_index_rodata = -1;
210
211 /* We don't yet have a C++-specific namespace symtab. */
212
213 objfile->cp_namespace_symtab = NULL;
214
215 /* Add this file onto the tail of the linked list of other such files. */
216
217 objfile->next = NULL;
218 if (object_files == NULL)
219 object_files = objfile;
220 else
221 {
222 for (last_one = object_files;
223 last_one->next;
224 last_one = last_one->next);
225 last_one->next = objfile;
226 }
227
228 /* Save passed in flag bits. */
229 objfile->flags |= flags;
230
231 return (objfile);
232 }
233
234 /* Initialize entry point information for this objfile. */
235
236 void
237 init_entry_point_info (struct objfile *objfile)
238 {
239 /* Save startup file's range of PC addresses to help blockframe.c
240 decide where the bottom of the stack is. */
241
242 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
243 {
244 /* Executable file -- record its entry point so we'll recognize
245 the startup file because it contains the entry point. */
246 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
247 }
248 else
249 {
250 /* Examination of non-executable.o files. Short-circuit this stuff. */
251 objfile->ei.entry_point = INVALID_ENTRY_POINT;
252 }
253 }
254
255 /* Get current entry point address. */
256
257 CORE_ADDR
258 entry_point_address (void)
259 {
260 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
261 }
262
263 /* Create the terminating entry of OBJFILE's minimal symbol table.
264 If OBJFILE->msymbols is zero, allocate a single entry from
265 OBJFILE->objfile_obstack; otherwise, just initialize
266 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
267 void
268 terminate_minimal_symbol_table (struct objfile *objfile)
269 {
270 if (! objfile->msymbols)
271 objfile->msymbols = ((struct minimal_symbol *)
272 obstack_alloc (&objfile->objfile_obstack,
273 sizeof (objfile->msymbols[0])));
274
275 {
276 struct minimal_symbol *m
277 = &objfile->msymbols[objfile->minimal_symbol_count];
278
279 memset (m, 0, sizeof (*m));
280 /* Don't rely on these enumeration values being 0's. */
281 MSYMBOL_TYPE (m) = mst_unknown;
282 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
283 }
284 }
285
286
287 /* Put one object file before a specified on in the global list.
288 This can be used to make sure an object file is destroyed before
289 another when using ALL_OBJFILES_SAFE to free all objfiles. */
290 void
291 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
292 {
293 struct objfile **objp;
294
295 unlink_objfile (objfile);
296
297 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
298 {
299 if (*objp == before_this)
300 {
301 objfile->next = *objp;
302 *objp = objfile;
303 return;
304 }
305 }
306
307 internal_error (__FILE__, __LINE__,
308 _("put_objfile_before: before objfile not in list"));
309 }
310
311 /* Put OBJFILE at the front of the list. */
312
313 void
314 objfile_to_front (struct objfile *objfile)
315 {
316 struct objfile **objp;
317 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
318 {
319 if (*objp == objfile)
320 {
321 /* Unhook it from where it is. */
322 *objp = objfile->next;
323 /* Put it in the front. */
324 objfile->next = object_files;
325 object_files = objfile;
326 break;
327 }
328 }
329 }
330
331 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
332 list.
333
334 It is not a bug, or error, to call this function if OBJFILE is not known
335 to be in the current list. This is done in the case of mapped objfiles,
336 for example, just to ensure that the mapped objfile doesn't appear twice
337 in the list. Since the list is threaded, linking in a mapped objfile
338 twice would create a circular list.
339
340 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
341 unlinking it, just to ensure that we have completely severed any linkages
342 between the OBJFILE and the list. */
343
344 void
345 unlink_objfile (struct objfile *objfile)
346 {
347 struct objfile **objpp;
348
349 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
350 {
351 if (*objpp == objfile)
352 {
353 *objpp = (*objpp)->next;
354 objfile->next = NULL;
355 return;
356 }
357 }
358
359 internal_error (__FILE__, __LINE__,
360 _("unlink_objfile: objfile already unlinked"));
361 }
362
363
364 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
365 that as much as possible is allocated on the objfile_obstack
366 so that the memory can be efficiently freed.
367
368 Things which we do NOT free because they are not in malloc'd memory
369 or not in memory specific to the objfile include:
370
371 objfile -> sf
372
373 FIXME: If the objfile is using reusable symbol information (via mmalloc),
374 then we need to take into account the fact that more than one process
375 may be using the symbol information at the same time (when mmalloc is
376 extended to support cooperative locking). When more than one process
377 is using the mapped symbol info, we need to be more careful about when
378 we free objects in the reusable area. */
379
380 void
381 free_objfile (struct objfile *objfile)
382 {
383 if (objfile->separate_debug_objfile)
384 {
385 free_objfile (objfile->separate_debug_objfile);
386 }
387
388 if (objfile->separate_debug_objfile_backlink)
389 {
390 /* We freed the separate debug file, make sure the base objfile
391 doesn't reference it. */
392 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
393 }
394
395 /* First do any symbol file specific actions required when we are
396 finished with a particular symbol file. Note that if the objfile
397 is using reusable symbol information (via mmalloc) then each of
398 these routines is responsible for doing the correct thing, either
399 freeing things which are valid only during this particular gdb
400 execution, or leaving them to be reused during the next one. */
401
402 if (objfile->sf != NULL)
403 {
404 (*objfile->sf->sym_finish) (objfile);
405 }
406
407 /* We always close the bfd. */
408
409 if (objfile->obfd != NULL)
410 {
411 char *name = bfd_get_filename (objfile->obfd);
412 if (!bfd_close (objfile->obfd))
413 warning (_("cannot close \"%s\": %s"),
414 name, bfd_errmsg (bfd_get_error ()));
415 xfree (name);
416 }
417
418 /* Remove it from the chain of all objfiles. */
419
420 unlink_objfile (objfile);
421
422 /* If we are going to free the runtime common objfile, mark it
423 as unallocated. */
424
425 if (objfile == rt_common_objfile)
426 rt_common_objfile = NULL;
427
428 /* Before the symbol table code was redone to make it easier to
429 selectively load and remove information particular to a specific
430 linkage unit, gdb used to do these things whenever the monolithic
431 symbol table was blown away. How much still needs to be done
432 is unknown, but we play it safe for now and keep each action until
433 it is shown to be no longer needed. */
434
435 /* I *think* all our callers call clear_symtab_users. If so, no need
436 to call this here. */
437 clear_pc_function_cache ();
438
439 /* The last thing we do is free the objfile struct itself. */
440
441 objfile_free_data (objfile);
442 if (objfile->name != NULL)
443 {
444 xfree (objfile->name);
445 }
446 if (objfile->global_psymbols.list)
447 xfree (objfile->global_psymbols.list);
448 if (objfile->static_psymbols.list)
449 xfree (objfile->static_psymbols.list);
450 /* Free the obstacks for non-reusable objfiles */
451 bcache_xfree (objfile->psymbol_cache);
452 bcache_xfree (objfile->macro_cache);
453 if (objfile->demangled_names_hash)
454 htab_delete (objfile->demangled_names_hash);
455 obstack_free (&objfile->objfile_obstack, 0);
456 xfree (objfile);
457 objfile = NULL;
458 }
459
460 static void
461 do_free_objfile_cleanup (void *obj)
462 {
463 free_objfile (obj);
464 }
465
466 struct cleanup *
467 make_cleanup_free_objfile (struct objfile *obj)
468 {
469 return make_cleanup (do_free_objfile_cleanup, obj);
470 }
471
472 /* Free all the object files at once and clean up their users. */
473
474 void
475 free_all_objfiles (void)
476 {
477 struct objfile *objfile, *temp;
478
479 ALL_OBJFILES_SAFE (objfile, temp)
480 {
481 free_objfile (objfile);
482 }
483 clear_symtab_users ();
484 }
485 \f
486 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
487 entries in new_offsets. */
488 void
489 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
490 {
491 struct section_offsets *delta =
492 ((struct section_offsets *)
493 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
494
495 {
496 int i;
497 int something_changed = 0;
498 for (i = 0; i < objfile->num_sections; ++i)
499 {
500 delta->offsets[i] =
501 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
502 if (ANOFFSET (delta, i) != 0)
503 something_changed = 1;
504 }
505 if (!something_changed)
506 return;
507 }
508
509 /* OK, get all the symtabs. */
510 {
511 struct symtab *s;
512
513 ALL_OBJFILE_SYMTABS (objfile, s)
514 {
515 struct linetable *l;
516 struct blockvector *bv;
517 int i;
518
519 /* First the line table. */
520 l = LINETABLE (s);
521 if (l)
522 {
523 for (i = 0; i < l->nitems; ++i)
524 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
525 }
526
527 /* Don't relocate a shared blockvector more than once. */
528 if (!s->primary)
529 continue;
530
531 bv = BLOCKVECTOR (s);
532 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
533 {
534 struct block *b;
535 struct symbol *sym;
536 struct dict_iterator iter;
537
538 b = BLOCKVECTOR_BLOCK (bv, i);
539 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
540 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
541
542 ALL_BLOCK_SYMBOLS (b, iter, sym)
543 {
544 fixup_symbol_section (sym, objfile);
545
546 /* The RS6000 code from which this was taken skipped
547 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
548 But I'm leaving out that test, on the theory that
549 they can't possibly pass the tests below. */
550 if ((SYMBOL_CLASS (sym) == LOC_LABEL
551 || SYMBOL_CLASS (sym) == LOC_STATIC
552 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
553 && SYMBOL_SECTION (sym) >= 0)
554 {
555 SYMBOL_VALUE_ADDRESS (sym) +=
556 ANOFFSET (delta, SYMBOL_SECTION (sym));
557 }
558 }
559 }
560 }
561 }
562
563 {
564 struct partial_symtab *p;
565
566 ALL_OBJFILE_PSYMTABS (objfile, p)
567 {
568 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
569 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
570 }
571 }
572
573 {
574 struct partial_symbol **psym;
575
576 for (psym = objfile->global_psymbols.list;
577 psym < objfile->global_psymbols.next;
578 psym++)
579 {
580 fixup_psymbol_section (*psym, objfile);
581 if (SYMBOL_SECTION (*psym) >= 0)
582 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
583 SYMBOL_SECTION (*psym));
584 }
585 for (psym = objfile->static_psymbols.list;
586 psym < objfile->static_psymbols.next;
587 psym++)
588 {
589 fixup_psymbol_section (*psym, objfile);
590 if (SYMBOL_SECTION (*psym) >= 0)
591 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
592 SYMBOL_SECTION (*psym));
593 }
594 }
595
596 {
597 struct minimal_symbol *msym;
598 ALL_OBJFILE_MSYMBOLS (objfile, msym)
599 if (SYMBOL_SECTION (msym) >= 0)
600 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
601 }
602 /* Relocating different sections by different amounts may cause the symbols
603 to be out of order. */
604 msymbols_sort (objfile);
605
606 {
607 int i;
608 for (i = 0; i < objfile->num_sections; ++i)
609 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
610 }
611
612 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
613 {
614 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
615 only as a fallback. */
616 struct obj_section *s;
617 s = find_pc_section (objfile->ei.entry_point);
618 if (s)
619 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
620 else
621 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
622 }
623
624 {
625 struct obj_section *s;
626 bfd *abfd;
627
628 abfd = objfile->obfd;
629
630 ALL_OBJFILE_OSECTIONS (objfile, s)
631 {
632 int idx = s->the_bfd_section->index;
633
634 s->addr += ANOFFSET (delta, idx);
635 s->endaddr += ANOFFSET (delta, idx);
636 }
637 }
638
639 /* Relocate breakpoints as necessary, after things are relocated. */
640 breakpoint_re_set ();
641 }
642 \f
643 /* Many places in gdb want to test just to see if we have any partial
644 symbols available. This function returns zero if none are currently
645 available, nonzero otherwise. */
646
647 int
648 have_partial_symbols (void)
649 {
650 struct objfile *ofp;
651
652 ALL_OBJFILES (ofp)
653 {
654 if (ofp->psymtabs != NULL)
655 {
656 return 1;
657 }
658 }
659 return 0;
660 }
661
662 /* Many places in gdb want to test just to see if we have any full
663 symbols available. This function returns zero if none are currently
664 available, nonzero otherwise. */
665
666 int
667 have_full_symbols (void)
668 {
669 struct objfile *ofp;
670
671 ALL_OBJFILES (ofp)
672 {
673 if (ofp->symtabs != NULL)
674 {
675 return 1;
676 }
677 }
678 return 0;
679 }
680
681
682 /* This operations deletes all objfile entries that represent solibs that
683 weren't explicitly loaded by the user, via e.g., the add-symbol-file
684 command.
685 */
686 void
687 objfile_purge_solibs (void)
688 {
689 struct objfile *objf;
690 struct objfile *temp;
691
692 ALL_OBJFILES_SAFE (objf, temp)
693 {
694 /* We assume that the solib package has been purged already, or will
695 be soon.
696 */
697 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
698 free_objfile (objf);
699 }
700 }
701
702
703 /* Many places in gdb want to test just to see if we have any minimal
704 symbols available. This function returns zero if none are currently
705 available, nonzero otherwise. */
706
707 int
708 have_minimal_symbols (void)
709 {
710 struct objfile *ofp;
711
712 ALL_OBJFILES (ofp)
713 {
714 if (ofp->minimal_symbol_count > 0)
715 {
716 return 1;
717 }
718 }
719 return 0;
720 }
721
722 /* Returns a section whose range includes PC and SECTION, or NULL if
723 none found. Note the distinction between the return type, struct
724 obj_section (which is defined in gdb), and the input type "struct
725 bfd_section" (which is a bfd-defined data type). The obj_section
726 contains a pointer to the "struct bfd_section". */
727
728 struct obj_section *
729 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
730 {
731 struct obj_section *s;
732 struct objfile *objfile;
733
734 ALL_OBJSECTIONS (objfile, s)
735 if ((section == 0 || section == s->the_bfd_section) &&
736 s->addr <= pc && pc < s->endaddr)
737 return (s);
738
739 return (NULL);
740 }
741
742 /* Returns a section whose range includes PC or NULL if none found.
743 Backward compatibility, no section. */
744
745 struct obj_section *
746 find_pc_section (CORE_ADDR pc)
747 {
748 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
749 }
750
751
752 /* In SVR4, we recognize a trampoline by it's section name.
753 That is, if the pc is in a section named ".plt" then we are in
754 a trampoline. */
755
756 int
757 in_plt_section (CORE_ADDR pc, char *name)
758 {
759 struct obj_section *s;
760 int retval = 0;
761
762 s = find_pc_section (pc);
763
764 retval = (s != NULL
765 && s->the_bfd_section->name != NULL
766 && strcmp (s->the_bfd_section->name, ".plt") == 0);
767 return (retval);
768 }
769
770 /* Return nonzero if NAME is in the import list of OBJFILE. Else
771 return zero. */
772
773 int
774 is_in_import_list (char *name, struct objfile *objfile)
775 {
776 int i;
777
778 if (!objfile || !name || !*name)
779 return 0;
780
781 for (i = 0; i < objfile->import_list_size; i++)
782 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
783 return 1;
784 return 0;
785 }
786 \f
787
788 /* Keep a registry of per-objfile data-pointers required by other GDB
789 modules. */
790
791 struct objfile_data
792 {
793 unsigned index;
794 };
795
796 struct objfile_data_registration
797 {
798 struct objfile_data *data;
799 struct objfile_data_registration *next;
800 };
801
802 struct objfile_data_registry
803 {
804 struct objfile_data_registration *registrations;
805 unsigned num_registrations;
806 };
807
808 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
809
810 const struct objfile_data *
811 register_objfile_data (void)
812 {
813 struct objfile_data_registration **curr;
814
815 /* Append new registration. */
816 for (curr = &objfile_data_registry.registrations;
817 *curr != NULL; curr = &(*curr)->next);
818
819 *curr = XMALLOC (struct objfile_data_registration);
820 (*curr)->next = NULL;
821 (*curr)->data = XMALLOC (struct objfile_data);
822 (*curr)->data->index = objfile_data_registry.num_registrations++;
823
824 return (*curr)->data;
825 }
826
827 static void
828 objfile_alloc_data (struct objfile *objfile)
829 {
830 gdb_assert (objfile->data == NULL);
831 objfile->num_data = objfile_data_registry.num_registrations;
832 objfile->data = XCALLOC (objfile->num_data, void *);
833 }
834
835 static void
836 objfile_free_data (struct objfile *objfile)
837 {
838 gdb_assert (objfile->data != NULL);
839 xfree (objfile->data);
840 objfile->data = NULL;
841 }
842
843 void
844 clear_objfile_data (struct objfile *objfile)
845 {
846 gdb_assert (objfile->data != NULL);
847 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
848 }
849
850 void
851 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
852 void *value)
853 {
854 gdb_assert (data->index < objfile->num_data);
855 objfile->data[data->index] = value;
856 }
857
858 void *
859 objfile_data (struct objfile *objfile, const struct objfile_data *data)
860 {
861 gdb_assert (data->index < objfile->num_data);
862 return objfile->data[data->index];
863 }