]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
import gdb-19990422 snapshot
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 #include "breakpoint.h"
39
40 /* Prototypes for local functions */
41
42 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
43
44 static int
45 open_existing_mapped_file PARAMS ((char *, long, int));
46
47 static int
48 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
49
50 static PTR
51 map_to_file PARAMS ((int));
52
53 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
54
55 static void
56 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
57
58 /* Externally visible variables that are owned by this module.
59 See declarations in objfile.h for more info. */
60
61 struct objfile *object_files; /* Linked list of all objfiles */
62 struct objfile *current_objfile; /* For symbol file being read in */
63 struct objfile *symfile_objfile; /* Main symbol table loaded from */
64 struct objfile *rt_common_objfile; /* For runtime common symbols */
65
66 int mapped_symbol_files; /* Try to use mapped symbol files */
67
68 /* Locate all mappable sections of a BFD file.
69 objfile_p_char is a char * to get it through
70 bfd_map_over_sections; we cast it back to its proper type. */
71
72 #ifndef TARGET_KEEP_SECTION
73 #define TARGET_KEEP_SECTION(ASECT) 0
74 #endif
75
76 static void
77 add_to_objfile_sections (abfd, asect, objfile_p_char)
78 bfd *abfd;
79 sec_ptr asect;
80 PTR objfile_p_char;
81 {
82 struct objfile *objfile = (struct objfile *) objfile_p_char;
83 struct obj_section section;
84 flagword aflag;
85
86 aflag = bfd_get_section_flags (abfd, asect);
87
88 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION(asect)))
89 return;
90
91 if (0 == bfd_section_size (abfd, asect))
92 return;
93 section.offset = 0;
94 section.objfile = objfile;
95 section.the_bfd_section = asect;
96 section.ovly_mapped = 0;
97 section.addr = bfd_section_vma (abfd, asect);
98 section.endaddr = section.addr + bfd_section_size (abfd, asect);
99 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
100 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
101 }
102
103 /* Builds a section table for OBJFILE.
104 Returns 0 if OK, 1 on error (in which case bfd_error contains the
105 error). */
106
107 int
108 build_objfile_section_table (objfile)
109 struct objfile *objfile;
110 {
111 /* objfile->sections can be already set when reading a mapped symbol
112 file. I believe that we do need to rebuild the section table in
113 this case (we rebuild other things derived from the bfd), but we
114 can't free the old one (it's in the psymbol_obstack). So we just
115 waste some memory. */
116
117 objfile->sections_end = 0;
118 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
119 objfile->sections = (struct obj_section *)
120 obstack_finish (&objfile->psymbol_obstack);
121 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
122 return(0);
123 }
124
125 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
126 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
127 struct, fill it in as best we can, link it into the list of all known
128 objfiles, and return a pointer to the new objfile struct.
129
130 USER_LOADED is simply recorded in the objfile. This record offers a way for
131 run_command to remove old objfile entries which are no longer valid (i.e.,
132 are associated with an old inferior), but to preserve ones that the user
133 explicitly loaded via the add-symbol-file command.
134
135 IS_SOLIB is also simply recorded in the objfile. */
136
137 struct objfile *
138 allocate_objfile (abfd, mapped, user_loaded, is_solib)
139 bfd *abfd;
140 int mapped;
141 int user_loaded;
142 int is_solib;
143 {
144 struct objfile *objfile = NULL;
145 struct objfile *last_one = NULL;
146
147 mapped |= mapped_symbol_files;
148
149 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
150 if (abfd != NULL)
151 {
152
153 /* If we can support mapped symbol files, try to open/reopen the
154 mapped file that corresponds to the file from which we wish to
155 read symbols. If the objfile is to be mapped, we must malloc
156 the structure itself using the mmap version, and arrange that
157 all memory allocation for the objfile uses the mmap routines.
158 If we are reusing an existing mapped file, from which we get
159 our objfile pointer, we have to make sure that we update the
160 pointers to the alloc/free functions in the obstack, in case
161 these functions have moved within the current gdb. */
162
163 int fd;
164
165 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
166 mapped);
167 if (fd >= 0)
168 {
169 PTR md;
170
171 if ((md = map_to_file (fd)) == NULL)
172 {
173 close (fd);
174 }
175 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
176 {
177 /* Update memory corruption handler function addresses. */
178 init_malloc (md);
179 objfile -> md = md;
180 objfile -> mmfd = fd;
181 /* Update pointers to functions to *our* copies */
182 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
183 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
184 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
185 obstack_freefun (&objfile -> psymbol_obstack, mfree);
186 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
187 obstack_freefun (&objfile -> symbol_obstack, mfree);
188 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
189 obstack_freefun (&objfile -> type_obstack, mfree);
190 /* If already in objfile list, unlink it. */
191 unlink_objfile (objfile);
192 /* Forget things specific to a particular gdb, may have changed. */
193 objfile -> sf = NULL;
194 }
195 else
196 {
197
198 /* Set up to detect internal memory corruption. MUST be
199 done before the first malloc. See comments in
200 init_malloc() and mmcheck(). */
201
202 init_malloc (md);
203
204 objfile = (struct objfile *)
205 xmmalloc (md, sizeof (struct objfile));
206 memset (objfile, 0, sizeof (struct objfile));
207 objfile -> md = md;
208 objfile -> mmfd = fd;
209 objfile -> flags |= OBJF_MAPPED;
210 mmalloc_setkey (objfile -> md, 0, objfile);
211 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
212 0, 0, xmmalloc, mfree,
213 objfile -> md);
214 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
215 0, 0, xmmalloc, mfree,
216 objfile -> md);
217 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
218 0, 0, xmmalloc, mfree,
219 objfile -> md);
220 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
221 0, 0, xmmalloc, mfree,
222 objfile -> md);
223 }
224 }
225
226 if (mapped && (objfile == NULL))
227 {
228 warning ("symbol table for '%s' will not be mapped",
229 bfd_get_filename (abfd));
230 }
231 }
232 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
233
234 if (mapped)
235 {
236 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
237
238 /* Turn off the global flag so we don't try to do mapped symbol tables
239 any more, which shuts up gdb unless the user specifically gives the
240 "mapped" keyword again. */
241
242 mapped_symbol_files = 0;
243 }
244
245 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
246
247 /* If we don't support mapped symbol files, didn't ask for the file to be
248 mapped, or failed to open the mapped file for some reason, then revert
249 back to an unmapped objfile. */
250
251 if (objfile == NULL)
252 {
253 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
254 memset (objfile, 0, sizeof (struct objfile));
255 objfile -> md = NULL;
256 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
257 xmalloc, free);
258 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
259 free);
260 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
261 free);
262 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
263 free);
264 }
265
266 /* Update the per-objfile information that comes from the bfd, ensuring
267 that any data that is reference is saved in the per-objfile data
268 region. */
269
270 objfile -> obfd = abfd;
271 if (objfile -> name != NULL)
272 {
273 mfree (objfile -> md, objfile -> name);
274 }
275 if (abfd != NULL)
276 {
277 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
278 objfile -> mtime = bfd_get_mtime (abfd);
279
280 /* Build section table. */
281
282 if (build_objfile_section_table (objfile))
283 {
284 error ("Can't find the file sections in `%s': %s",
285 objfile -> name, bfd_errmsg (bfd_get_error ()));
286 }
287 }
288
289 /* Add this file onto the tail of the linked list of other such files. */
290
291 objfile -> next = NULL;
292 if (object_files == NULL)
293 object_files = objfile;
294 else
295 {
296 for (last_one = object_files;
297 last_one -> next;
298 last_one = last_one -> next);
299 last_one -> next = objfile;
300 }
301
302 /* Record whether this objfile was created because the user explicitly
303 caused it (e.g., used the add-symbol-file command).
304 */
305 objfile -> user_loaded = user_loaded;
306
307 /* Record whether this objfile definitely represents a solib. */
308 objfile -> is_solib = is_solib;
309
310 return (objfile);
311 }
312
313 /* Put OBJFILE at the front of the list. */
314
315 void
316 objfile_to_front (objfile)
317 struct objfile *objfile;
318 {
319 struct objfile **objp;
320 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
321 {
322 if (*objp == objfile)
323 {
324 /* Unhook it from where it is. */
325 *objp = objfile->next;
326 /* Put it in the front. */
327 objfile->next = object_files;
328 object_files = objfile;
329 break;
330 }
331 }
332 }
333
334 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
335 list.
336
337 It is not a bug, or error, to call this function if OBJFILE is not known
338 to be in the current list. This is done in the case of mapped objfiles,
339 for example, just to ensure that the mapped objfile doesn't appear twice
340 in the list. Since the list is threaded, linking in a mapped objfile
341 twice would create a circular list.
342
343 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
344 unlinking it, just to ensure that we have completely severed any linkages
345 between the OBJFILE and the list. */
346
347 void
348 unlink_objfile (objfile)
349 struct objfile *objfile;
350 {
351 struct objfile** objpp;
352
353 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
354 {
355 if (*objpp == objfile)
356 {
357 *objpp = (*objpp) -> next;
358 objfile -> next = NULL;
359 break;
360 }
361 }
362 }
363
364
365 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
366 that as much as possible is allocated on the symbol_obstack and
367 psymbol_obstack, so that the memory can be efficiently freed.
368
369 Things which we do NOT free because they are not in malloc'd memory
370 or not in memory specific to the objfile include:
371
372 objfile -> sf
373
374 FIXME: If the objfile is using reusable symbol information (via mmalloc),
375 then we need to take into account the fact that more than one process
376 may be using the symbol information at the same time (when mmalloc is
377 extended to support cooperative locking). When more than one process
378 is using the mapped symbol info, we need to be more careful about when
379 we free objects in the reusable area. */
380
381 void
382 free_objfile (objfile)
383 struct objfile *objfile;
384 {
385 /* First do any symbol file specific actions required when we are
386 finished with a particular symbol file. Note that if the objfile
387 is using reusable symbol information (via mmalloc) then each of
388 these routines is responsible for doing the correct thing, either
389 freeing things which are valid only during this particular gdb
390 execution, or leaving them to be reused during the next one. */
391
392 if (objfile -> sf != NULL)
393 {
394 (*objfile -> sf -> sym_finish) (objfile);
395 }
396
397 /* We always close the bfd. */
398
399 if (objfile -> obfd != NULL)
400 {
401 char *name = bfd_get_filename (objfile->obfd);
402 if (!bfd_close (objfile -> obfd))
403 warning ("cannot close \"%s\": %s",
404 name, bfd_errmsg (bfd_get_error ()));
405 free (name);
406 }
407
408 /* Remove it from the chain of all objfiles. */
409
410 unlink_objfile (objfile);
411
412 /* If we are going to free the runtime common objfile, mark it
413 as unallocated. */
414
415 if (objfile == rt_common_objfile)
416 rt_common_objfile = NULL;
417
418 /* Before the symbol table code was redone to make it easier to
419 selectively load and remove information particular to a specific
420 linkage unit, gdb used to do these things whenever the monolithic
421 symbol table was blown away. How much still needs to be done
422 is unknown, but we play it safe for now and keep each action until
423 it is shown to be no longer needed. */
424
425 #if defined (CLEAR_SOLIB)
426 CLEAR_SOLIB ();
427 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
428 the to_sections for a core file might refer to those bfd's. So
429 detach any core file. */
430 {
431 struct target_ops *t = find_core_target ();
432 if (t != NULL)
433 (t->to_detach) (NULL, 0);
434 }
435 #endif
436 /* I *think* all our callers call clear_symtab_users. If so, no need
437 to call this here. */
438 clear_pc_function_cache ();
439
440 /* The last thing we do is free the objfile struct itself for the
441 non-reusable case, or detach from the mapped file for the reusable
442 case. Note that the mmalloc_detach or the mfree is the last thing
443 we can do with this objfile. */
444
445 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
446
447 if (objfile -> flags & OBJF_MAPPED)
448 {
449 /* Remember the fd so we can close it. We can't close it before
450 doing the detach, and after the detach the objfile is gone. */
451 int mmfd;
452
453 mmfd = objfile -> mmfd;
454 mmalloc_detach (objfile -> md);
455 objfile = NULL;
456 close (mmfd);
457 }
458
459 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
460
461 /* If we still have an objfile, then either we don't support reusable
462 objfiles or this one was not reusable. So free it normally. */
463
464 if (objfile != NULL)
465 {
466 if (objfile -> name != NULL)
467 {
468 mfree (objfile -> md, objfile -> name);
469 }
470 if (objfile->global_psymbols.list)
471 mfree (objfile->md, objfile->global_psymbols.list);
472 if (objfile->static_psymbols.list)
473 mfree (objfile->md, objfile->static_psymbols.list);
474 /* Free the obstacks for non-reusable objfiles */
475 obstack_free (&objfile -> psymbol_cache.cache, 0);
476 obstack_free (&objfile -> psymbol_obstack, 0);
477 obstack_free (&objfile -> symbol_obstack, 0);
478 obstack_free (&objfile -> type_obstack, 0);
479 mfree (objfile -> md, objfile);
480 objfile = NULL;
481 }
482 }
483
484
485 /* Free all the object files at once and clean up their users. */
486
487 void
488 free_all_objfiles ()
489 {
490 struct objfile *objfile, *temp;
491
492 ALL_OBJFILES_SAFE (objfile, temp)
493 {
494 free_objfile (objfile);
495 }
496 clear_symtab_users ();
497 }
498 \f
499 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
500 entries in new_offsets. */
501 void
502 objfile_relocate (objfile, new_offsets)
503 struct objfile *objfile;
504 struct section_offsets *new_offsets;
505 {
506 struct section_offsets *delta = (struct section_offsets *)
507 alloca (sizeof (struct section_offsets)
508 + objfile->num_sections * sizeof (delta->offsets));
509
510 {
511 int i;
512 int something_changed = 0;
513 for (i = 0; i < objfile->num_sections; ++i)
514 {
515 ANOFFSET (delta, i) =
516 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
517 if (ANOFFSET (delta, i) != 0)
518 something_changed = 1;
519 }
520 if (!something_changed)
521 return;
522 }
523
524 /* OK, get all the symtabs. */
525 {
526 struct symtab *s;
527
528 ALL_OBJFILE_SYMTABS (objfile, s)
529 {
530 struct linetable *l;
531 struct blockvector *bv;
532 int i;
533
534 /* First the line table. */
535 l = LINETABLE (s);
536 if (l)
537 {
538 for (i = 0; i < l->nitems; ++i)
539 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
540 }
541
542 /* Don't relocate a shared blockvector more than once. */
543 if (!s->primary)
544 continue;
545
546 bv = BLOCKVECTOR (s);
547 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
548 {
549 struct block *b;
550 int j;
551
552 b = BLOCKVECTOR_BLOCK (bv, i);
553 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
554 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
555
556 for (j = 0; j < BLOCK_NSYMS (b); ++j)
557 {
558 struct symbol *sym = BLOCK_SYM (b, j);
559 /* The RS6000 code from which this was taken skipped
560 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
561 But I'm leaving out that test, on the theory that
562 they can't possibly pass the tests below. */
563 if ((SYMBOL_CLASS (sym) == LOC_LABEL
564 || SYMBOL_CLASS (sym) == LOC_STATIC
565 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
566 && SYMBOL_SECTION (sym) >= 0)
567 {
568 SYMBOL_VALUE_ADDRESS (sym) +=
569 ANOFFSET (delta, SYMBOL_SECTION (sym));
570 }
571 #ifdef MIPS_EFI_SYMBOL_NAME
572 /* Relocate Extra Function Info for ecoff. */
573
574 else
575 if (SYMBOL_CLASS (sym) == LOC_CONST
576 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
577 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
578 ecoff_relocate_efi (sym, ANOFFSET (delta,
579 s->block_line_section));
580 #endif
581 }
582 }
583 }
584 }
585
586 {
587 struct partial_symtab *p;
588
589 ALL_OBJFILE_PSYMTABS (objfile, p)
590 {
591 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
592 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
593 }
594 }
595
596 {
597 struct partial_symbol **psym;
598
599 for (psym = objfile->global_psymbols.list;
600 psym < objfile->global_psymbols.next;
601 psym++)
602 if (SYMBOL_SECTION (*psym) >= 0)
603 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
604 SYMBOL_SECTION (*psym));
605 for (psym = objfile->static_psymbols.list;
606 psym < objfile->static_psymbols.next;
607 psym++)
608 if (SYMBOL_SECTION (*psym) >= 0)
609 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
610 SYMBOL_SECTION (*psym));
611 }
612
613 {
614 struct minimal_symbol *msym;
615 ALL_OBJFILE_MSYMBOLS (objfile, msym)
616 if (SYMBOL_SECTION (msym) >= 0)
617 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
618 }
619 /* Relocating different sections by different amounts may cause the symbols
620 to be out of order. */
621 msymbols_sort (objfile);
622
623 {
624 int i;
625 for (i = 0; i < objfile->num_sections; ++i)
626 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
627 }
628
629 {
630 struct obj_section *s;
631 bfd *abfd;
632
633 abfd = objfile->obfd;
634
635 for (s = objfile->sections;
636 s < objfile->sections_end; ++s)
637 {
638 flagword flags;
639
640 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
641
642 if (flags & SEC_CODE)
643 {
644 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
645 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
646 }
647 else if (flags & (SEC_DATA | SEC_LOAD))
648 {
649 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
650 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
651 }
652 else if (flags & SEC_ALLOC)
653 {
654 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
655 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
656 }
657 }
658 }
659
660 if (objfile->ei.entry_point != ~(CORE_ADDR)0)
661 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
662
663 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
664 {
665 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
666 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
667 }
668
669 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
670 {
671 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
672 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
673 }
674
675 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
676 {
677 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
678 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
679 }
680
681 /* Relocate breakpoints as necessary, after things are relocated. */
682 breakpoint_re_set ();
683 }
684 \f
685 /* Many places in gdb want to test just to see if we have any partial
686 symbols available. This function returns zero if none are currently
687 available, nonzero otherwise. */
688
689 int
690 have_partial_symbols ()
691 {
692 struct objfile *ofp;
693
694 ALL_OBJFILES (ofp)
695 {
696 if (ofp -> psymtabs != NULL)
697 {
698 return 1;
699 }
700 }
701 return 0;
702 }
703
704 /* Many places in gdb want to test just to see if we have any full
705 symbols available. This function returns zero if none are currently
706 available, nonzero otherwise. */
707
708 int
709 have_full_symbols ()
710 {
711 struct objfile *ofp;
712
713 ALL_OBJFILES (ofp)
714 {
715 if (ofp -> symtabs != NULL)
716 {
717 return 1;
718 }
719 }
720 return 0;
721 }
722
723
724 /* This operations deletes all objfile entries that represent solibs that
725 weren't explicitly loaded by the user, via e.g., the add-symbol-file
726 command.
727 */
728 void
729 objfile_purge_solibs ()
730 {
731 struct objfile * objf;
732 struct objfile * temp;
733
734 ALL_OBJFILES_SAFE (objf, temp)
735 {
736 /* We assume that the solib package has been purged already, or will
737 be soon.
738 */
739 if (! objf->user_loaded && objf->is_solib)
740 free_objfile (objf);
741 }
742 }
743
744
745 /* Many places in gdb want to test just to see if we have any minimal
746 symbols available. This function returns zero if none are currently
747 available, nonzero otherwise. */
748
749 int
750 have_minimal_symbols ()
751 {
752 struct objfile *ofp;
753
754 ALL_OBJFILES (ofp)
755 {
756 if (ofp -> msymbols != NULL)
757 {
758 return 1;
759 }
760 }
761 return 0;
762 }
763
764 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
765
766 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
767 of the corresponding symbol file in MTIME, try to open an existing file
768 with the name SYMSFILENAME and verify it is more recent than the base
769 file by checking it's timestamp against MTIME.
770
771 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
772
773 If SYMSFILENAME does exist, but is out of date, we check to see if the
774 user has specified creation of a mapped file. If so, we don't issue
775 any warning message because we will be creating a new mapped file anyway,
776 overwriting the old one. If not, then we issue a warning message so that
777 the user will know why we aren't using this existing mapped symbol file.
778 In either case, we return -1.
779
780 If SYMSFILENAME does exist and is not out of date, but can't be opened for
781 some reason, then prints an appropriate system error message and returns -1.
782
783 Otherwise, returns the open file descriptor. */
784
785 static int
786 open_existing_mapped_file (symsfilename, mtime, mapped)
787 char *symsfilename;
788 long mtime;
789 int mapped;
790 {
791 int fd = -1;
792 struct stat sbuf;
793
794 if (stat (symsfilename, &sbuf) == 0)
795 {
796 if (sbuf.st_mtime < mtime)
797 {
798 if (!mapped)
799 {
800 warning ("mapped symbol file `%s' is out of date, ignored it",
801 symsfilename);
802 }
803 }
804 else if ((fd = open (symsfilename, O_RDWR)) < 0)
805 {
806 if (error_pre_print)
807 {
808 printf_unfiltered (error_pre_print);
809 }
810 print_sys_errmsg (symsfilename, errno);
811 }
812 }
813 return (fd);
814 }
815
816 /* Look for a mapped symbol file that corresponds to FILENAME and is more
817 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
818 use a mapped symbol file for this file, so create a new one if one does
819 not currently exist.
820
821 If found, then return an open file descriptor for the file, otherwise
822 return -1.
823
824 This routine is responsible for implementing the policy that generates
825 the name of the mapped symbol file from the name of a file containing
826 symbols that gdb would like to read. Currently this policy is to append
827 ".syms" to the name of the file.
828
829 This routine is also responsible for implementing the policy that
830 determines where the mapped symbol file is found (the search path).
831 This policy is that when reading an existing mapped file, a file of
832 the correct name in the current directory takes precedence over a
833 file of the correct name in the same directory as the symbol file.
834 When creating a new mapped file, it is always created in the current
835 directory. This helps to minimize the chances of a user unknowingly
836 creating big mapped files in places like /bin and /usr/local/bin, and
837 allows a local copy to override a manually installed global copy (in
838 /bin for example). */
839
840 static int
841 open_mapped_file (filename, mtime, mapped)
842 char *filename;
843 long mtime;
844 int mapped;
845 {
846 int fd;
847 char *symsfilename;
848
849 /* First try to open an existing file in the current directory, and
850 then try the directory where the symbol file is located. */
851
852 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
853 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
854 {
855 free (symsfilename);
856 symsfilename = concat (filename, ".syms", (char *) NULL);
857 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
858 }
859
860 /* If we don't have an open file by now, then either the file does not
861 already exist, or the base file has changed since it was created. In
862 either case, if the user has specified use of a mapped file, then
863 create a new mapped file, truncating any existing one. If we can't
864 create one, print a system error message saying why we can't.
865
866 By default the file is rw for everyone, with the user's umask taking
867 care of turning off the permissions the user wants off. */
868
869 if ((fd < 0) && mapped)
870 {
871 free (symsfilename);
872 symsfilename = concat ("./", basename (filename), ".syms",
873 (char *) NULL);
874 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
875 {
876 if (error_pre_print)
877 {
878 printf_unfiltered (error_pre_print);
879 }
880 print_sys_errmsg (symsfilename, errno);
881 }
882 }
883
884 free (symsfilename);
885 return (fd);
886 }
887
888 static PTR
889 map_to_file (fd)
890 int fd;
891 {
892 PTR md;
893 CORE_ADDR mapto;
894
895 md = mmalloc_attach (fd, (PTR) 0);
896 if (md != NULL)
897 {
898 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
899 md = mmalloc_detach (md);
900 if (md != NULL)
901 {
902 /* FIXME: should figure out why detach failed */
903 md = NULL;
904 }
905 else if (mapto != (CORE_ADDR) NULL)
906 {
907 /* This mapping file needs to be remapped at "mapto" */
908 md = mmalloc_attach (fd, (PTR) mapto);
909 }
910 else
911 {
912 /* This is a freshly created mapping file. */
913 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
914 if (mapto != 0)
915 {
916 /* To avoid reusing the freshly created mapping file, at the
917 address selected by mmap, we must truncate it before trying
918 to do an attach at the address we want. */
919 ftruncate (fd, 0);
920 md = mmalloc_attach (fd, (PTR) mapto);
921 if (md != NULL)
922 {
923 mmalloc_setkey (md, 1, (PTR) mapto);
924 }
925 }
926 }
927 }
928 return (md);
929 }
930
931 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
932
933 /* Returns a section whose range includes PC and SECTION,
934 or NULL if none found. Note the distinction between the return type,
935 struct obj_section (which is defined in gdb), and the input type
936 struct sec (which is a bfd-defined data type). The obj_section
937 contains a pointer to the bfd struct sec section. */
938
939 struct obj_section *
940 find_pc_sect_section (pc, section)
941 CORE_ADDR pc;
942 struct sec *section;
943 {
944 struct obj_section *s;
945 struct objfile *objfile;
946
947 ALL_OBJFILES (objfile)
948 for (s = objfile->sections; s < objfile->sections_end; ++s)
949 #if defined(HPUXHPPA)
950 if ((section == 0 || section == s->the_bfd_section) &&
951 s->addr <= pc && pc <= s->endaddr)
952 #else
953 if ((section == 0 || section == s->the_bfd_section) &&
954 s->addr <= pc && pc < s->endaddr)
955 #endif
956 return(s);
957
958 return(NULL);
959 }
960
961 /* Returns a section whose range includes PC or NULL if none found.
962 Backward compatibility, no section. */
963
964 struct obj_section *
965 find_pc_section(pc)
966 CORE_ADDR pc;
967 {
968 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
969 }
970
971
972 /* In SVR4, we recognize a trampoline by it's section name.
973 That is, if the pc is in a section named ".plt" then we are in
974 a trampoline. */
975
976 int
977 in_plt_section(pc, name)
978 CORE_ADDR pc;
979 char *name;
980 {
981 struct obj_section *s;
982 int retval = 0;
983
984 s = find_pc_section(pc);
985
986 retval = (s != NULL
987 && s->the_bfd_section->name != NULL
988 && STREQ (s->the_bfd_section->name, ".plt"));
989 return(retval);
990 }