]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
953bc88fdce51fc123a4e5feb300ac2fd8692a5b
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55 #include "psymtab.h"
56 #include "solist.h"
57
58 /* Prototypes for local functions */
59
60 static void objfile_alloc_data (struct objfile *objfile);
61 static void objfile_free_data (struct objfile *objfile);
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *current_objfile; /* For symbol file being read in */
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 struct objfile_pspace_info
70 {
71 int objfiles_changed_p;
72 struct obj_section **sections;
73 int num_sections;
74 };
75
76 /* Per-program-space data key. */
77 static const struct program_space_data *objfiles_pspace_data;
78
79 static void
80 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
81 {
82 struct objfile_pspace_info *info;
83
84 info = program_space_data (pspace, objfiles_pspace_data);
85 if (info != NULL)
86 {
87 xfree (info->sections);
88 xfree (info);
89 }
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XZALLOC (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 /* Records whether any objfiles appeared or disappeared since we last updated
111 address to obj section map. */
112
113 /* Locate all mappable sections of a BFD file.
114 objfile_p_char is a char * to get it through
115 bfd_map_over_sections; we cast it back to its proper type. */
116
117 /* Called via bfd_map_over_sections to build up the section table that
118 the objfile references. The objfile contains pointers to the start
119 of the table (objfile->sections) and to the first location after
120 the end of the table (objfile->sections_end). */
121
122 static void
123 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
124 void *objfile_p_char)
125 {
126 struct objfile *objfile = (struct objfile *) objfile_p_char;
127 struct obj_section section;
128 flagword aflag;
129
130 aflag = bfd_get_section_flags (abfd, asect);
131
132 if (!(aflag & SEC_ALLOC))
133 return;
134
135 if (0 == bfd_section_size (abfd, asect))
136 return;
137 section.objfile = objfile;
138 section.the_bfd_section = asect;
139 section.ovly_mapped = 0;
140 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
141 objfile->sections_end
142 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
143 }
144
145 /* Builds a section table for OBJFILE.
146 Returns 0 if OK, 1 on error (in which case bfd_error contains the
147 error).
148
149 Note that while we are building the table, which goes into the
150 psymbol obstack, we hijack the sections_end pointer to instead hold
151 a count of the number of sections. When bfd_map_over_sections
152 returns, this count is used to compute the pointer to the end of
153 the sections table, which then overwrites the count.
154
155 Also note that the OFFSET and OVLY_MAPPED in each table entry
156 are initialized to zero.
157
158 Also note that if anything else writes to the psymbol obstack while
159 we are building the table, we're pretty much hosed. */
160
161 int
162 build_objfile_section_table (struct objfile *objfile)
163 {
164 /* objfile->sections can be already set when reading a mapped symbol
165 file. I believe that we do need to rebuild the section table in
166 this case (we rebuild other things derived from the bfd), but we
167 can't free the old one (it's in the objfile_obstack). So we just
168 waste some memory. */
169
170 objfile->sections_end = 0;
171 bfd_map_over_sections (objfile->obfd,
172 add_to_objfile_sections, (void *) objfile);
173 objfile->sections = obstack_finish (&objfile->objfile_obstack);
174 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
175 return (0);
176 }
177
178 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
179 allocate a new objfile struct, fill it in as best we can, link it
180 into the list of all known objfiles, and return a pointer to the
181 new objfile struct.
182
183 The FLAGS word contains various bits (OBJF_*) that can be taken as
184 requests for specific operations. Other bits like OBJF_SHARED are
185 simply copied through to the new objfile flags member. */
186
187 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
188 by jv-lang.c, to create an artificial objfile used to hold
189 information about dynamically-loaded Java classes. Unfortunately,
190 that branch of this function doesn't get tested very frequently, so
191 it's prone to breakage. (E.g. at one time the name was set to NULL
192 in that situation, which broke a loop over all names in the dynamic
193 library loader.) If you change this function, please try to leave
194 things in a consistent state even if abfd is NULL. */
195
196 struct objfile *
197 allocate_objfile (bfd *abfd, int flags)
198 {
199 struct objfile *objfile;
200
201 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
202 objfile->psymbol_cache = bcache_xmalloc ();
203 objfile->macro_cache = bcache_xmalloc ();
204 objfile->filename_cache = bcache_xmalloc ();
205 /* We could use obstack_specify_allocation here instead, but
206 gdb_obstack.h specifies the alloc/dealloc functions. */
207 obstack_init (&objfile->objfile_obstack);
208 terminate_minimal_symbol_table (objfile);
209
210 objfile_alloc_data (objfile);
211
212 /* Update the per-objfile information that comes from the bfd, ensuring
213 that any data that is reference is saved in the per-objfile data
214 region. */
215
216 objfile->obfd = gdb_bfd_ref (abfd);
217 if (objfile->name != NULL)
218 {
219 xfree (objfile->name);
220 }
221 if (abfd != NULL)
222 {
223 /* Look up the gdbarch associated with the BFD. */
224 objfile->gdbarch = gdbarch_from_bfd (abfd);
225
226 objfile->name = xstrdup (bfd_get_filename (abfd));
227 objfile->mtime = bfd_get_mtime (abfd);
228
229 /* Build section table. */
230
231 if (build_objfile_section_table (objfile))
232 {
233 error (_("Can't find the file sections in `%s': %s"),
234 objfile->name, bfd_errmsg (bfd_get_error ()));
235 }
236 }
237 else
238 {
239 objfile->name = xstrdup ("<<anonymous objfile>>");
240 }
241
242 objfile->pspace = current_program_space;
243
244 /* Initialize the section indexes for this objfile, so that we can
245 later detect if they are used w/o being properly assigned to. */
246
247 objfile->sect_index_text = -1;
248 objfile->sect_index_data = -1;
249 objfile->sect_index_bss = -1;
250 objfile->sect_index_rodata = -1;
251
252 /* We don't yet have a C++-specific namespace symtab. */
253
254 objfile->cp_namespace_symtab = NULL;
255
256 /* Add this file onto the tail of the linked list of other such files. */
257
258 objfile->next = NULL;
259 if (object_files == NULL)
260 object_files = objfile;
261 else
262 {
263 struct objfile *last_one;
264
265 for (last_one = object_files;
266 last_one->next;
267 last_one = last_one->next);
268 last_one->next = objfile;
269 }
270
271 /* Save passed in flag bits. */
272 objfile->flags |= flags;
273
274 /* Rebuild section map next time we need it. */
275 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
276
277 return objfile;
278 }
279
280 /* Retrieve the gdbarch associated with OBJFILE. */
281 struct gdbarch *
282 get_objfile_arch (struct objfile *objfile)
283 {
284 return objfile->gdbarch;
285 }
286
287 /* Initialize entry point information for this objfile. */
288
289 void
290 init_entry_point_info (struct objfile *objfile)
291 {
292 /* Save startup file's range of PC addresses to help blockframe.c
293 decide where the bottom of the stack is. */
294
295 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
296 {
297 /* Executable file -- record its entry point so we'll recognize
298 the startup file because it contains the entry point. */
299 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
300 objfile->ei.entry_point_p = 1;
301 }
302 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
303 && bfd_get_start_address (objfile->obfd) != 0)
304 {
305 /* Some shared libraries may have entry points set and be
306 runnable. There's no clear way to indicate this, so just check
307 for values other than zero. */
308 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
309 objfile->ei.entry_point_p = 1;
310 }
311 else
312 {
313 /* Examination of non-executable.o files. Short-circuit this stuff. */
314 objfile->ei.entry_point_p = 0;
315 }
316 }
317
318 /* If there is a valid and known entry point, function fills *ENTRY_P with it
319 and returns non-zero; otherwise it returns zero. */
320
321 int
322 entry_point_address_query (CORE_ADDR *entry_p)
323 {
324 struct gdbarch *gdbarch;
325 CORE_ADDR entry_point;
326
327 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
328 return 0;
329
330 gdbarch = get_objfile_arch (symfile_objfile);
331
332 entry_point = symfile_objfile->ei.entry_point;
333
334 /* Make certain that the address points at real code, and not a
335 function descriptor. */
336 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
337 &current_target);
338
339 /* Remove any ISA markers, so that this matches entries in the
340 symbol table. */
341 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
342
343 *entry_p = entry_point;
344 return 1;
345 }
346
347 /* Get current entry point address. Call error if it is not known. */
348
349 CORE_ADDR
350 entry_point_address (void)
351 {
352 CORE_ADDR retval;
353
354 if (!entry_point_address_query (&retval))
355 error (_("Entry point address is not known."));
356
357 return retval;
358 }
359
360 /* Create the terminating entry of OBJFILE's minimal symbol table.
361 If OBJFILE->msymbols is zero, allocate a single entry from
362 OBJFILE->objfile_obstack; otherwise, just initialize
363 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
364 void
365 terminate_minimal_symbol_table (struct objfile *objfile)
366 {
367 if (! objfile->msymbols)
368 objfile->msymbols = ((struct minimal_symbol *)
369 obstack_alloc (&objfile->objfile_obstack,
370 sizeof (objfile->msymbols[0])));
371
372 {
373 struct minimal_symbol *m
374 = &objfile->msymbols[objfile->minimal_symbol_count];
375
376 memset (m, 0, sizeof (*m));
377 /* Don't rely on these enumeration values being 0's. */
378 MSYMBOL_TYPE (m) = mst_unknown;
379 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
380 }
381 }
382
383 /* Iterator on PARENT and every separate debug objfile of PARENT.
384 The usage pattern is:
385 for (objfile = parent;
386 objfile;
387 objfile = objfile_separate_debug_iterate (parent, objfile))
388 ...
389 */
390
391 struct objfile *
392 objfile_separate_debug_iterate (const struct objfile *parent,
393 const struct objfile *objfile)
394 {
395 struct objfile *res;
396
397 /* If any, return the first child. */
398 res = objfile->separate_debug_objfile;
399 if (res)
400 return res;
401
402 /* Common case where there is no separate debug objfile. */
403 if (objfile == parent)
404 return NULL;
405
406 /* Return the brother if any. Note that we don't iterate on brothers of
407 the parents. */
408 res = objfile->separate_debug_objfile_link;
409 if (res)
410 return res;
411
412 for (res = objfile->separate_debug_objfile_backlink;
413 res != parent;
414 res = res->separate_debug_objfile_backlink)
415 {
416 gdb_assert (res != NULL);
417 if (res->separate_debug_objfile_link)
418 return res->separate_debug_objfile_link;
419 }
420 return NULL;
421 }
422
423 /* Put one object file before a specified on in the global list.
424 This can be used to make sure an object file is destroyed before
425 another when using ALL_OBJFILES_SAFE to free all objfiles. */
426 void
427 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
428 {
429 struct objfile **objp;
430
431 unlink_objfile (objfile);
432
433 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
434 {
435 if (*objp == before_this)
436 {
437 objfile->next = *objp;
438 *objp = objfile;
439 return;
440 }
441 }
442
443 internal_error (__FILE__, __LINE__,
444 _("put_objfile_before: before objfile not in list"));
445 }
446
447 /* Put OBJFILE at the front of the list. */
448
449 void
450 objfile_to_front (struct objfile *objfile)
451 {
452 struct objfile **objp;
453 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
454 {
455 if (*objp == objfile)
456 {
457 /* Unhook it from where it is. */
458 *objp = objfile->next;
459 /* Put it in the front. */
460 objfile->next = object_files;
461 object_files = objfile;
462 break;
463 }
464 }
465 }
466
467 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
468 list.
469
470 It is not a bug, or error, to call this function if OBJFILE is not known
471 to be in the current list. This is done in the case of mapped objfiles,
472 for example, just to ensure that the mapped objfile doesn't appear twice
473 in the list. Since the list is threaded, linking in a mapped objfile
474 twice would create a circular list.
475
476 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
477 unlinking it, just to ensure that we have completely severed any linkages
478 between the OBJFILE and the list. */
479
480 void
481 unlink_objfile (struct objfile *objfile)
482 {
483 struct objfile **objpp;
484
485 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
486 {
487 if (*objpp == objfile)
488 {
489 *objpp = (*objpp)->next;
490 objfile->next = NULL;
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 _("unlink_objfile: objfile already unlinked"));
497 }
498
499 /* Add OBJFILE as a separate debug objfile of PARENT. */
500
501 void
502 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
503 {
504 gdb_assert (objfile && parent);
505
506 /* Must not be already in a list. */
507 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
508 gdb_assert (objfile->separate_debug_objfile_link == NULL);
509
510 objfile->separate_debug_objfile_backlink = parent;
511 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
512 parent->separate_debug_objfile = objfile;
513
514 /* Put the separate debug object before the normal one, this is so that
515 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
516 put_objfile_before (objfile, parent);
517 }
518
519 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
520 itself. */
521
522 void
523 free_objfile_separate_debug (struct objfile *objfile)
524 {
525 struct objfile *child;
526
527 for (child = objfile->separate_debug_objfile; child;)
528 {
529 struct objfile *next_child = child->separate_debug_objfile_link;
530 free_objfile (child);
531 child = next_child;
532 }
533 }
534
535 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
536 that as much as possible is allocated on the objfile_obstack
537 so that the memory can be efficiently freed.
538
539 Things which we do NOT free because they are not in malloc'd memory
540 or not in memory specific to the objfile include:
541
542 objfile -> sf
543
544 FIXME: If the objfile is using reusable symbol information (via mmalloc),
545 then we need to take into account the fact that more than one process
546 may be using the symbol information at the same time (when mmalloc is
547 extended to support cooperative locking). When more than one process
548 is using the mapped symbol info, we need to be more careful about when
549 we free objects in the reusable area. */
550
551 void
552 free_objfile (struct objfile *objfile)
553 {
554 /* Free all separate debug objfiles. */
555 free_objfile_separate_debug (objfile);
556
557 if (objfile->separate_debug_objfile_backlink)
558 {
559 /* We freed the separate debug file, make sure the base objfile
560 doesn't reference it. */
561 struct objfile *child;
562
563 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
564
565 if (child == objfile)
566 {
567 /* OBJFILE is the first child. */
568 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
569 objfile->separate_debug_objfile_link;
570 }
571 else
572 {
573 /* Find OBJFILE in the list. */
574 while (1)
575 {
576 if (child->separate_debug_objfile_link == objfile)
577 {
578 child->separate_debug_objfile_link =
579 objfile->separate_debug_objfile_link;
580 break;
581 }
582 child = child->separate_debug_objfile_link;
583 gdb_assert (child);
584 }
585 }
586 }
587
588 /* Remove any references to this objfile in the global value
589 lists. */
590 preserve_values (objfile);
591
592 /* First do any symbol file specific actions required when we are
593 finished with a particular symbol file. Note that if the objfile
594 is using reusable symbol information (via mmalloc) then each of
595 these routines is responsible for doing the correct thing, either
596 freeing things which are valid only during this particular gdb
597 execution, or leaving them to be reused during the next one. */
598
599 if (objfile->sf != NULL)
600 {
601 (*objfile->sf->sym_finish) (objfile);
602 }
603
604 /* Discard any data modules have associated with the objfile. */
605 objfile_free_data (objfile);
606
607 gdb_bfd_unref (objfile->obfd);
608
609 /* Remove it from the chain of all objfiles. */
610
611 unlink_objfile (objfile);
612
613 if (objfile == symfile_objfile)
614 symfile_objfile = NULL;
615
616 if (objfile == rt_common_objfile)
617 rt_common_objfile = NULL;
618
619 /* Before the symbol table code was redone to make it easier to
620 selectively load and remove information particular to a specific
621 linkage unit, gdb used to do these things whenever the monolithic
622 symbol table was blown away. How much still needs to be done
623 is unknown, but we play it safe for now and keep each action until
624 it is shown to be no longer needed. */
625
626 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
627 for example), so we need to call this here. */
628 clear_pc_function_cache ();
629
630 /* Clear globals which might have pointed into a removed objfile.
631 FIXME: It's not clear which of these are supposed to persist
632 between expressions and which ought to be reset each time. */
633 expression_context_block = NULL;
634 innermost_block = NULL;
635
636 /* Check to see if the current_source_symtab belongs to this objfile,
637 and if so, call clear_current_source_symtab_and_line. */
638
639 {
640 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
641 struct symtab *s;
642
643 ALL_OBJFILE_SYMTABS (objfile, s)
644 {
645 if (s == cursal.symtab)
646 clear_current_source_symtab_and_line ();
647 }
648 }
649
650 /* The last thing we do is free the objfile struct itself. */
651
652 if (objfile->name != NULL)
653 {
654 xfree (objfile->name);
655 }
656 if (objfile->global_psymbols.list)
657 xfree (objfile->global_psymbols.list);
658 if (objfile->static_psymbols.list)
659 xfree (objfile->static_psymbols.list);
660 /* Free the obstacks for non-reusable objfiles */
661 bcache_xfree (objfile->psymbol_cache);
662 bcache_xfree (objfile->macro_cache);
663 bcache_xfree (objfile->filename_cache);
664 if (objfile->demangled_names_hash)
665 htab_delete (objfile->demangled_names_hash);
666 obstack_free (&objfile->objfile_obstack, 0);
667
668 /* Rebuild section map next time we need it. */
669 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
670
671 xfree (objfile);
672 }
673
674 static void
675 do_free_objfile_cleanup (void *obj)
676 {
677 free_objfile (obj);
678 }
679
680 struct cleanup *
681 make_cleanup_free_objfile (struct objfile *obj)
682 {
683 return make_cleanup (do_free_objfile_cleanup, obj);
684 }
685
686 /* Free all the object files at once and clean up their users. */
687
688 void
689 free_all_objfiles (void)
690 {
691 struct objfile *objfile, *temp;
692 struct so_list *so;
693
694 /* Any objfile referencewould become stale. */
695 for (so = master_so_list (); so; so = so->next)
696 gdb_assert (so->objfile == NULL);
697
698 ALL_OBJFILES_SAFE (objfile, temp)
699 {
700 free_objfile (objfile);
701 }
702 clear_symtab_users ();
703 }
704 \f
705 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
706 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
707 Return non-zero iff any change happened. */
708
709 static int
710 objfile_relocate1 (struct objfile *objfile,
711 struct section_offsets *new_offsets)
712 {
713 struct obj_section *s;
714 struct section_offsets *delta =
715 ((struct section_offsets *)
716 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
717
718 int i;
719 int something_changed = 0;
720
721 for (i = 0; i < objfile->num_sections; ++i)
722 {
723 delta->offsets[i] =
724 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
725 if (ANOFFSET (delta, i) != 0)
726 something_changed = 1;
727 }
728 if (!something_changed)
729 return 0;
730
731 /* OK, get all the symtabs. */
732 {
733 struct symtab *s;
734
735 ALL_OBJFILE_SYMTABS (objfile, s)
736 {
737 struct linetable *l;
738 struct blockvector *bv;
739 int i;
740
741 /* First the line table. */
742 l = LINETABLE (s);
743 if (l)
744 {
745 for (i = 0; i < l->nitems; ++i)
746 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
747 }
748
749 /* Don't relocate a shared blockvector more than once. */
750 if (!s->primary)
751 continue;
752
753 bv = BLOCKVECTOR (s);
754 if (BLOCKVECTOR_MAP (bv))
755 addrmap_relocate (BLOCKVECTOR_MAP (bv),
756 ANOFFSET (delta, s->block_line_section));
757
758 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
759 {
760 struct block *b;
761 struct symbol *sym;
762 struct dict_iterator iter;
763
764 b = BLOCKVECTOR_BLOCK (bv, i);
765 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
766 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
767
768 ALL_BLOCK_SYMBOLS (b, iter, sym)
769 {
770 fixup_symbol_section (sym, objfile);
771
772 /* The RS6000 code from which this was taken skipped
773 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
774 But I'm leaving out that test, on the theory that
775 they can't possibly pass the tests below. */
776 if ((SYMBOL_CLASS (sym) == LOC_LABEL
777 || SYMBOL_CLASS (sym) == LOC_STATIC)
778 && SYMBOL_SECTION (sym) >= 0)
779 {
780 SYMBOL_VALUE_ADDRESS (sym) +=
781 ANOFFSET (delta, SYMBOL_SECTION (sym));
782 }
783 }
784 }
785 }
786 }
787
788 if (objfile->psymtabs_addrmap)
789 addrmap_relocate (objfile->psymtabs_addrmap,
790 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
791
792 if (objfile->sf)
793 objfile->sf->qf->relocate (objfile, new_offsets, delta);
794
795 {
796 struct minimal_symbol *msym;
797
798 ALL_OBJFILE_MSYMBOLS (objfile, msym)
799 if (SYMBOL_SECTION (msym) >= 0)
800 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
801 }
802 /* Relocating different sections by different amounts may cause the symbols
803 to be out of order. */
804 msymbols_sort (objfile);
805
806 if (objfile->ei.entry_point_p)
807 {
808 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
809 only as a fallback. */
810 struct obj_section *s;
811 s = find_pc_section (objfile->ei.entry_point);
812 if (s)
813 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
814 else
815 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
816 }
817
818 {
819 int i;
820
821 for (i = 0; i < objfile->num_sections; ++i)
822 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
823 }
824
825 /* Rebuild section map next time we need it. */
826 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
827
828 /* Update the table in exec_ops, used to read memory. */
829 ALL_OBJFILE_OSECTIONS (objfile, s)
830 {
831 int idx = s->the_bfd_section->index;
832
833 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
834 obj_section_addr (s));
835 }
836
837 /* Data changed. */
838 return 1;
839 }
840
841 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
842 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
843
844 The number and ordering of sections does differ between the two objfiles.
845 Only their names match. Also the file offsets will differ (objfile being
846 possibly prelinked but separate_debug_objfile is probably not prelinked) but
847 the in-memory absolute address as specified by NEW_OFFSETS must match both
848 files. */
849
850 void
851 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
852 {
853 struct objfile *debug_objfile;
854 int changed = 0;
855
856 changed |= objfile_relocate1 (objfile, new_offsets);
857
858 for (debug_objfile = objfile->separate_debug_objfile;
859 debug_objfile;
860 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
861 {
862 struct section_addr_info *objfile_addrs;
863 struct section_offsets *new_debug_offsets;
864 struct cleanup *my_cleanups;
865
866 objfile_addrs = build_section_addr_info_from_objfile (objfile);
867 my_cleanups = make_cleanup (xfree, objfile_addrs);
868
869 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
870 relative ones must be already created according to debug_objfile. */
871
872 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
873
874 gdb_assert (debug_objfile->num_sections
875 == bfd_count_sections (debug_objfile->obfd));
876 new_debug_offsets =
877 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
878 make_cleanup (xfree, new_debug_offsets);
879 relative_addr_info_to_section_offsets (new_debug_offsets,
880 debug_objfile->num_sections,
881 objfile_addrs);
882
883 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
884
885 do_cleanups (my_cleanups);
886 }
887
888 /* Relocate breakpoints as necessary, after things are relocated. */
889 if (changed)
890 breakpoint_re_set ();
891 }
892 \f
893 /* Return non-zero if OBJFILE has partial symbols. */
894
895 int
896 objfile_has_partial_symbols (struct objfile *objfile)
897 {
898 return objfile->sf ? objfile->sf->qf->has_symbols (objfile) : 0;
899 }
900
901 /* Return non-zero if OBJFILE has full symbols. */
902
903 int
904 objfile_has_full_symbols (struct objfile *objfile)
905 {
906 return objfile->symtabs != NULL;
907 }
908
909 /* Return non-zero if OBJFILE has full or partial symbols, either directly
910 or through a separate debug file. */
911
912 int
913 objfile_has_symbols (struct objfile *objfile)
914 {
915 struct objfile *o;
916
917 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
918 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
919 return 1;
920 return 0;
921 }
922
923
924 /* Many places in gdb want to test just to see if we have any partial
925 symbols available. This function returns zero if none are currently
926 available, nonzero otherwise. */
927
928 int
929 have_partial_symbols (void)
930 {
931 struct objfile *ofp;
932
933 ALL_OBJFILES (ofp)
934 {
935 if (objfile_has_partial_symbols (ofp))
936 return 1;
937 }
938 return 0;
939 }
940
941 /* Many places in gdb want to test just to see if we have any full
942 symbols available. This function returns zero if none are currently
943 available, nonzero otherwise. */
944
945 int
946 have_full_symbols (void)
947 {
948 struct objfile *ofp;
949
950 ALL_OBJFILES (ofp)
951 {
952 if (objfile_has_full_symbols (ofp))
953 return 1;
954 }
955 return 0;
956 }
957
958
959 /* This operations deletes all objfile entries that represent solibs that
960 weren't explicitly loaded by the user, via e.g., the add-symbol-file
961 command.
962 */
963 void
964 objfile_purge_solibs (void)
965 {
966 struct objfile *objf;
967 struct objfile *temp;
968
969 ALL_OBJFILES_SAFE (objf, temp)
970 {
971 /* We assume that the solib package has been purged already, or will
972 be soon.
973 */
974 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
975 free_objfile (objf);
976 }
977 }
978
979
980 /* Many places in gdb want to test just to see if we have any minimal
981 symbols available. This function returns zero if none are currently
982 available, nonzero otherwise. */
983
984 int
985 have_minimal_symbols (void)
986 {
987 struct objfile *ofp;
988
989 ALL_OBJFILES (ofp)
990 {
991 if (ofp->minimal_symbol_count > 0)
992 {
993 return 1;
994 }
995 }
996 return 0;
997 }
998
999 /* Qsort comparison function. */
1000
1001 static int
1002 qsort_cmp (const void *a, const void *b)
1003 {
1004 const struct obj_section *sect1 = *(const struct obj_section **) a;
1005 const struct obj_section *sect2 = *(const struct obj_section **) b;
1006 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1007 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1008
1009 if (sect1_addr < sect2_addr)
1010 return -1;
1011 else if (sect1_addr > sect2_addr)
1012 return 1;
1013 else
1014 {
1015 /* Sections are at the same address. This could happen if
1016 A) we have an objfile and a separate debuginfo.
1017 B) we are confused, and have added sections without proper relocation,
1018 or something like that. */
1019
1020 const struct objfile *const objfile1 = sect1->objfile;
1021 const struct objfile *const objfile2 = sect2->objfile;
1022
1023 if (objfile1->separate_debug_objfile == objfile2
1024 || objfile2->separate_debug_objfile == objfile1)
1025 {
1026 /* Case A. The ordering doesn't matter: separate debuginfo files
1027 will be filtered out later. */
1028
1029 return 0;
1030 }
1031
1032 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1033 triage. This section could be slow (since we iterate over all
1034 objfiles in each call to qsort_cmp), but this shouldn't happen
1035 very often (GDB is already in a confused state; one hopes this
1036 doesn't happen at all). If you discover that significant time is
1037 spent in the loops below, do 'set complaints 100' and examine the
1038 resulting complaints. */
1039
1040 if (objfile1 == objfile2)
1041 {
1042 /* Both sections came from the same objfile. We are really confused.
1043 Sort on sequence order of sections within the objfile. */
1044
1045 const struct obj_section *osect;
1046
1047 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1048 if (osect == sect1)
1049 return -1;
1050 else if (osect == sect2)
1051 return 1;
1052
1053 /* We should have found one of the sections before getting here. */
1054 gdb_assert (0);
1055 }
1056 else
1057 {
1058 /* Sort on sequence number of the objfile in the chain. */
1059
1060 const struct objfile *objfile;
1061
1062 ALL_OBJFILES (objfile)
1063 if (objfile == objfile1)
1064 return -1;
1065 else if (objfile == objfile2)
1066 return 1;
1067
1068 /* We should have found one of the objfiles before getting here. */
1069 gdb_assert (0);
1070 }
1071 }
1072
1073 /* Unreachable. */
1074 gdb_assert (0);
1075 return 0;
1076 }
1077
1078 /* Select "better" obj_section to keep. We prefer the one that came from
1079 the real object, rather than the one from separate debuginfo.
1080 Most of the time the two sections are exactly identical, but with
1081 prelinking the .rel.dyn section in the real object may have different
1082 size. */
1083
1084 static struct obj_section *
1085 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1086 {
1087 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1088 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1089 || (b->objfile->separate_debug_objfile == a->objfile));
1090 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1091 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1092
1093 if (a->objfile->separate_debug_objfile != NULL)
1094 return a;
1095 return b;
1096 }
1097
1098 /* Return 1 if SECTION should be inserted into the section map.
1099 We want to insert only non-overlay and non-TLS section. */
1100
1101 static int
1102 insert_section_p (const struct bfd *abfd,
1103 const struct bfd_section *section)
1104 {
1105 const bfd_vma lma = bfd_section_lma (abfd, section);
1106
1107 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1108 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1109 /* This is an overlay section. IN_MEMORY check is needed to avoid
1110 discarding sections from the "system supplied DSO" (aka vdso)
1111 on some Linux systems (e.g. Fedora 11). */
1112 return 0;
1113 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1114 /* This is a TLS section. */
1115 return 0;
1116
1117 return 1;
1118 }
1119
1120 /* Filter out overlapping sections where one section came from the real
1121 objfile, and the other from a separate debuginfo file.
1122 Return the size of table after redundant sections have been eliminated. */
1123
1124 static int
1125 filter_debuginfo_sections (struct obj_section **map, int map_size)
1126 {
1127 int i, j;
1128
1129 for (i = 0, j = 0; i < map_size - 1; i++)
1130 {
1131 struct obj_section *const sect1 = map[i];
1132 struct obj_section *const sect2 = map[i + 1];
1133 const struct objfile *const objfile1 = sect1->objfile;
1134 const struct objfile *const objfile2 = sect2->objfile;
1135 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1136 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1137
1138 if (sect1_addr == sect2_addr
1139 && (objfile1->separate_debug_objfile == objfile2
1140 || objfile2->separate_debug_objfile == objfile1))
1141 {
1142 map[j++] = preferred_obj_section (sect1, sect2);
1143 ++i;
1144 }
1145 else
1146 map[j++] = sect1;
1147 }
1148
1149 if (i < map_size)
1150 {
1151 gdb_assert (i == map_size - 1);
1152 map[j++] = map[i];
1153 }
1154
1155 /* The map should not have shrunk to less than half the original size. */
1156 gdb_assert (map_size / 2 <= j);
1157
1158 return j;
1159 }
1160
1161 /* Filter out overlapping sections, issuing a warning if any are found.
1162 Overlapping sections could really be overlay sections which we didn't
1163 classify as such in insert_section_p, or we could be dealing with a
1164 corrupt binary. */
1165
1166 static int
1167 filter_overlapping_sections (struct obj_section **map, int map_size)
1168 {
1169 int i, j;
1170
1171 for (i = 0, j = 0; i < map_size - 1; )
1172 {
1173 int k;
1174
1175 map[j++] = map[i];
1176 for (k = i + 1; k < map_size; k++)
1177 {
1178 struct obj_section *const sect1 = map[i];
1179 struct obj_section *const sect2 = map[k];
1180 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1181 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1182 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1183
1184 gdb_assert (sect1_addr <= sect2_addr);
1185
1186 if (sect1_endaddr <= sect2_addr)
1187 break;
1188 else
1189 {
1190 /* We have an overlap. Report it. */
1191
1192 struct objfile *const objf1 = sect1->objfile;
1193 struct objfile *const objf2 = sect2->objfile;
1194
1195 const struct bfd *const abfd1 = objf1->obfd;
1196 const struct bfd *const abfd2 = objf2->obfd;
1197
1198 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1199 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1200
1201 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1202
1203 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1204
1205 complaint (&symfile_complaints,
1206 _("unexpected overlap between:\n"
1207 " (A) section `%s' from `%s' [%s, %s)\n"
1208 " (B) section `%s' from `%s' [%s, %s).\n"
1209 "Will ignore section B"),
1210 bfd_section_name (abfd1, bfds1), objf1->name,
1211 paddress (gdbarch, sect1_addr),
1212 paddress (gdbarch, sect1_endaddr),
1213 bfd_section_name (abfd2, bfds2), objf2->name,
1214 paddress (gdbarch, sect2_addr),
1215 paddress (gdbarch, sect2_endaddr));
1216 }
1217 }
1218 i = k;
1219 }
1220
1221 if (i < map_size)
1222 {
1223 gdb_assert (i == map_size - 1);
1224 map[j++] = map[i];
1225 }
1226
1227 return j;
1228 }
1229
1230
1231 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1232 TLS, overlay and overlapping sections. */
1233
1234 static void
1235 update_section_map (struct program_space *pspace,
1236 struct obj_section ***pmap, int *pmap_size)
1237 {
1238 int alloc_size, map_size, i;
1239 struct obj_section *s, **map;
1240 struct objfile *objfile;
1241
1242 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1243
1244 map = *pmap;
1245 xfree (map);
1246
1247 alloc_size = 0;
1248 ALL_PSPACE_OBJFILES (pspace, objfile)
1249 ALL_OBJFILE_OSECTIONS (objfile, s)
1250 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1251 alloc_size += 1;
1252
1253 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1254 if (alloc_size == 0)
1255 {
1256 *pmap = NULL;
1257 *pmap_size = 0;
1258 return;
1259 }
1260
1261 map = xmalloc (alloc_size * sizeof (*map));
1262
1263 i = 0;
1264 ALL_PSPACE_OBJFILES (pspace, objfile)
1265 ALL_OBJFILE_OSECTIONS (objfile, s)
1266 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1267 map[i++] = s;
1268
1269 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1270 map_size = filter_debuginfo_sections(map, alloc_size);
1271 map_size = filter_overlapping_sections(map, map_size);
1272
1273 if (map_size < alloc_size)
1274 /* Some sections were eliminated. Trim excess space. */
1275 map = xrealloc (map, map_size * sizeof (*map));
1276 else
1277 gdb_assert (alloc_size == map_size);
1278
1279 *pmap = map;
1280 *pmap_size = map_size;
1281 }
1282
1283 /* Bsearch comparison function. */
1284
1285 static int
1286 bsearch_cmp (const void *key, const void *elt)
1287 {
1288 const CORE_ADDR pc = *(CORE_ADDR *) key;
1289 const struct obj_section *section = *(const struct obj_section **) elt;
1290
1291 if (pc < obj_section_addr (section))
1292 return -1;
1293 if (pc < obj_section_endaddr (section))
1294 return 0;
1295 return 1;
1296 }
1297
1298 /* Returns a section whose range includes PC or NULL if none found. */
1299
1300 struct obj_section *
1301 find_pc_section (CORE_ADDR pc)
1302 {
1303 struct objfile_pspace_info *pspace_info;
1304 struct obj_section *s, **sp;
1305
1306 /* Check for mapped overlay section first. */
1307 s = find_pc_mapped_section (pc);
1308 if (s)
1309 return s;
1310
1311 pspace_info = get_objfile_pspace_data (current_program_space);
1312 if (pspace_info->objfiles_changed_p != 0)
1313 {
1314 update_section_map (current_program_space,
1315 &pspace_info->sections,
1316 &pspace_info->num_sections);
1317
1318 /* Don't need updates to section map until objfiles are added,
1319 removed or relocated. */
1320 pspace_info->objfiles_changed_p = 0;
1321 }
1322
1323 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1324 bsearch be non-NULL. */
1325 if (pspace_info->sections == NULL)
1326 {
1327 gdb_assert (pspace_info->num_sections == 0);
1328 return NULL;
1329 }
1330
1331 sp = (struct obj_section **) bsearch (&pc,
1332 pspace_info->sections,
1333 pspace_info->num_sections,
1334 sizeof (*pspace_info->sections),
1335 bsearch_cmp);
1336 if (sp != NULL)
1337 return *sp;
1338 return NULL;
1339 }
1340
1341
1342 /* In SVR4, we recognize a trampoline by it's section name.
1343 That is, if the pc is in a section named ".plt" then we are in
1344 a trampoline. */
1345
1346 int
1347 in_plt_section (CORE_ADDR pc, char *name)
1348 {
1349 struct obj_section *s;
1350 int retval = 0;
1351
1352 s = find_pc_section (pc);
1353
1354 retval = (s != NULL
1355 && s->the_bfd_section->name != NULL
1356 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1357 return (retval);
1358 }
1359 \f
1360
1361 /* Keep a registry of per-objfile data-pointers required by other GDB
1362 modules. */
1363
1364 struct objfile_data
1365 {
1366 unsigned index;
1367 void (*save) (struct objfile *, void *);
1368 void (*free) (struct objfile *, void *);
1369 };
1370
1371 struct objfile_data_registration
1372 {
1373 struct objfile_data *data;
1374 struct objfile_data_registration *next;
1375 };
1376
1377 struct objfile_data_registry
1378 {
1379 struct objfile_data_registration *registrations;
1380 unsigned num_registrations;
1381 };
1382
1383 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1384
1385 const struct objfile_data *
1386 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1387 void (*free) (struct objfile *, void *))
1388 {
1389 struct objfile_data_registration **curr;
1390
1391 /* Append new registration. */
1392 for (curr = &objfile_data_registry.registrations;
1393 *curr != NULL; curr = &(*curr)->next);
1394
1395 *curr = XMALLOC (struct objfile_data_registration);
1396 (*curr)->next = NULL;
1397 (*curr)->data = XMALLOC (struct objfile_data);
1398 (*curr)->data->index = objfile_data_registry.num_registrations++;
1399 (*curr)->data->save = save;
1400 (*curr)->data->free = free;
1401
1402 return (*curr)->data;
1403 }
1404
1405 const struct objfile_data *
1406 register_objfile_data (void)
1407 {
1408 return register_objfile_data_with_cleanup (NULL, NULL);
1409 }
1410
1411 static void
1412 objfile_alloc_data (struct objfile *objfile)
1413 {
1414 gdb_assert (objfile->data == NULL);
1415 objfile->num_data = objfile_data_registry.num_registrations;
1416 objfile->data = XCALLOC (objfile->num_data, void *);
1417 }
1418
1419 static void
1420 objfile_free_data (struct objfile *objfile)
1421 {
1422 gdb_assert (objfile->data != NULL);
1423 clear_objfile_data (objfile);
1424 xfree (objfile->data);
1425 objfile->data = NULL;
1426 }
1427
1428 void
1429 clear_objfile_data (struct objfile *objfile)
1430 {
1431 struct objfile_data_registration *registration;
1432 int i;
1433
1434 gdb_assert (objfile->data != NULL);
1435
1436 /* Process all the save handlers. */
1437
1438 for (registration = objfile_data_registry.registrations, i = 0;
1439 i < objfile->num_data;
1440 registration = registration->next, i++)
1441 if (objfile->data[i] != NULL && registration->data->save != NULL)
1442 registration->data->save (objfile, objfile->data[i]);
1443
1444 /* Now process all the free handlers. */
1445
1446 for (registration = objfile_data_registry.registrations, i = 0;
1447 i < objfile->num_data;
1448 registration = registration->next, i++)
1449 if (objfile->data[i] != NULL && registration->data->free != NULL)
1450 registration->data->free (objfile, objfile->data[i]);
1451
1452 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1453 }
1454
1455 void
1456 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1457 void *value)
1458 {
1459 gdb_assert (data->index < objfile->num_data);
1460 objfile->data[data->index] = value;
1461 }
1462
1463 void *
1464 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1465 {
1466 gdb_assert (data->index < objfile->num_data);
1467 return objfile->data[data->index];
1468 }
1469
1470 /* Set objfiles_changed_p so section map will be rebuilt next time it
1471 is used. Called by reread_symbols. */
1472
1473 void
1474 objfiles_changed (void)
1475 {
1476 /* Rebuild section map next time we need it. */
1477 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1478 }
1479
1480 /* Close ABFD, and warn if that fails. */
1481
1482 int
1483 gdb_bfd_close_or_warn (struct bfd *abfd)
1484 {
1485 int ret;
1486 char *name = bfd_get_filename (abfd);
1487
1488 ret = bfd_close (abfd);
1489
1490 if (!ret)
1491 warning (_("cannot close \"%s\": %s"),
1492 name, bfd_errmsg (bfd_get_error ()));
1493
1494 return ret;
1495 }
1496
1497 /* Add reference to ABFD. Returns ABFD. */
1498 struct bfd *
1499 gdb_bfd_ref (struct bfd *abfd)
1500 {
1501 int *p_refcount;
1502
1503 if (abfd == NULL)
1504 return NULL;
1505
1506 p_refcount = bfd_usrdata (abfd);
1507
1508 if (p_refcount != NULL)
1509 {
1510 *p_refcount += 1;
1511 return abfd;
1512 }
1513
1514 p_refcount = xmalloc (sizeof (*p_refcount));
1515 *p_refcount = 1;
1516 bfd_usrdata (abfd) = p_refcount;
1517
1518 return abfd;
1519 }
1520
1521 /* Unreference and possibly close ABFD. */
1522 void
1523 gdb_bfd_unref (struct bfd *abfd)
1524 {
1525 int *p_refcount;
1526 char *name;
1527
1528 if (abfd == NULL)
1529 return;
1530
1531 p_refcount = bfd_usrdata (abfd);
1532
1533 /* Valid range for p_refcount: a pointer to int counter, which has a
1534 value of 1 (single owner) or 2 (shared). */
1535 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1536
1537 *p_refcount -= 1;
1538 if (*p_refcount > 0)
1539 return;
1540
1541 xfree (p_refcount);
1542 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1543
1544 name = bfd_get_filename (abfd);
1545 gdb_bfd_close_or_warn (abfd);
1546 xfree (name);
1547 }
1548
1549 /* Provide a prototype to silence -Wmissing-prototypes. */
1550 extern initialize_file_ftype _initialize_objfiles;
1551
1552 void
1553 _initialize_objfiles (void)
1554 {
1555 objfiles_pspace_data
1556 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1557 }