]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
See gdb ChangeLog entry with header:
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 /* FIXME: imported from mdebugread.c */
39
40 extern void ecoff_relocate_efi PARAMS ((struct symbol *, CORE_ADDR));
41
42 /* Prototypes for local functions */
43
44 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
45
46 static int
47 open_existing_mapped_file PARAMS ((char *, long, int));
48
49 static int
50 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
51
52 static PTR
53 map_to_file PARAMS ((int));
54
55 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
56
57 static void
58 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
59
60 /* Externally visible variables that are owned by this module.
61 See declarations in objfile.h for more info. */
62
63 struct objfile *object_files; /* Linked list of all objfiles */
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *symfile_objfile; /* Main symbol table loaded from */
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 int mapped_symbol_files; /* Try to use mapped symbol files */
69
70 /* Locate all mappable sections of a BFD file.
71 objfile_p_char is a char * to get it through
72 bfd_map_over_sections; we cast it back to its proper type. */
73
74 static void
75 add_to_objfile_sections (abfd, asect, objfile_p_char)
76 bfd *abfd;
77 sec_ptr asect;
78 PTR objfile_p_char;
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85 if (!(aflag & SEC_ALLOC))
86 return;
87 if (0 == bfd_section_size (abfd, asect))
88 return;
89 section.offset = 0;
90 section.objfile = objfile;
91 section.the_bfd_section = asect;
92 section.addr = bfd_section_vma (abfd, asect);
93 section.endaddr = section.addr + bfd_section_size (abfd, asect);
94 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
95 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
96 }
97
98 /* Builds a section table for OBJFILE.
99 Returns 0 if OK, 1 on error (in which case bfd_error contains the
100 error). */
101
102 int
103 build_objfile_section_table (objfile)
104 struct objfile *objfile;
105 {
106 /* objfile->sections can be already set when reading a mapped symbol
107 file. I believe that we do need to rebuild the section table in
108 this case (we rebuild other things derived from the bfd), but we
109 can't free the old one (it's in the psymbol_obstack). So we just
110 waste some memory. */
111
112 objfile->sections_end = 0;
113 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
114 objfile->sections = (struct obj_section *)
115 obstack_finish (&objfile->psymbol_obstack);
116 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
117 return(0);
118 }
119
120 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
121 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
122 struct, fill it in as best we can, link it into the list of all known
123 objfiles, and return a pointer to the new objfile struct. */
124
125 struct objfile *
126 allocate_objfile (abfd, mapped)
127 bfd *abfd;
128 int mapped;
129 {
130 struct objfile *objfile = NULL;
131 struct objfile *last_one = NULL;
132
133 mapped |= mapped_symbol_files;
134
135 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
136 {
137
138 /* If we can support mapped symbol files, try to open/reopen the
139 mapped file that corresponds to the file from which we wish to
140 read symbols. If the objfile is to be mapped, we must malloc
141 the structure itself using the mmap version, and arrange that
142 all memory allocation for the objfile uses the mmap routines.
143 If we are reusing an existing mapped file, from which we get
144 our objfile pointer, we have to make sure that we update the
145 pointers to the alloc/free functions in the obstack, in case
146 these functions have moved within the current gdb. */
147
148 int fd;
149
150 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
151 mapped);
152 if (fd >= 0)
153 {
154 PTR md;
155
156 if ((md = map_to_file (fd)) == NULL)
157 {
158 close (fd);
159 }
160 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
161 {
162 /* Update memory corruption handler function addresses. */
163 init_malloc (md);
164 objfile -> md = md;
165 objfile -> mmfd = fd;
166 /* Update pointers to functions to *our* copies */
167 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
168 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
169 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
170 obstack_freefun (&objfile -> psymbol_obstack, mfree);
171 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
172 obstack_freefun (&objfile -> symbol_obstack, mfree);
173 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
174 obstack_freefun (&objfile -> type_obstack, mfree);
175 /* If already in objfile list, unlink it. */
176 unlink_objfile (objfile);
177 /* Forget things specific to a particular gdb, may have changed. */
178 objfile -> sf = NULL;
179 }
180 else
181 {
182
183 /* Set up to detect internal memory corruption. MUST be
184 done before the first malloc. See comments in
185 init_malloc() and mmcheck(). */
186
187 init_malloc (md);
188
189 objfile = (struct objfile *)
190 xmmalloc (md, sizeof (struct objfile));
191 memset (objfile, 0, sizeof (struct objfile));
192 objfile -> md = md;
193 objfile -> mmfd = fd;
194 objfile -> flags |= OBJF_MAPPED;
195 mmalloc_setkey (objfile -> md, 0, objfile);
196 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
197 0, 0, xmmalloc, mfree,
198 objfile -> md);
199 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
200 0, 0, xmmalloc, mfree,
201 objfile -> md);
202 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
203 0, 0, xmmalloc, mfree,
204 objfile -> md);
205 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
206 0, 0, xmmalloc, mfree,
207 objfile -> md);
208 }
209 }
210
211 if (mapped && (objfile == NULL))
212 {
213 warning ("symbol table for '%s' will not be mapped",
214 bfd_get_filename (abfd));
215 }
216 }
217 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
218
219 if (mapped)
220 {
221 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
222
223 /* Turn off the global flag so we don't try to do mapped symbol tables
224 any more, which shuts up gdb unless the user specifically gives the
225 "mapped" keyword again. */
226
227 mapped_symbol_files = 0;
228 }
229
230 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
231
232 /* If we don't support mapped symbol files, didn't ask for the file to be
233 mapped, or failed to open the mapped file for some reason, then revert
234 back to an unmapped objfile. */
235
236 if (objfile == NULL)
237 {
238 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
239 memset (objfile, 0, sizeof (struct objfile));
240 objfile -> md = NULL;
241 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
242 xmalloc, free);
243 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
244 free);
245 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
246 free);
247 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
248 free);
249 }
250
251 /* Update the per-objfile information that comes from the bfd, ensuring
252 that any data that is reference is saved in the per-objfile data
253 region. */
254
255 objfile -> obfd = abfd;
256 if (objfile -> name != NULL)
257 {
258 mfree (objfile -> md, objfile -> name);
259 }
260 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
261 objfile -> mtime = bfd_get_mtime (abfd);
262
263 /* Build section table. */
264
265 if (build_objfile_section_table (objfile))
266 {
267 error ("Can't find the file sections in `%s': %s",
268 objfile -> name, bfd_errmsg (bfd_get_error ()));
269 }
270
271 /* Add this file onto the tail of the linked list of other such files. */
272
273 objfile -> next = NULL;
274 if (object_files == NULL)
275 object_files = objfile;
276 else
277 {
278 for (last_one = object_files;
279 last_one -> next;
280 last_one = last_one -> next);
281 last_one -> next = objfile;
282 }
283 return (objfile);
284 }
285
286 /* Put OBJFILE at the front of the list. */
287
288 void
289 objfile_to_front (objfile)
290 struct objfile *objfile;
291 {
292 struct objfile **objp;
293 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
294 {
295 if (*objp == objfile)
296 {
297 /* Unhook it from where it is. */
298 *objp = objfile->next;
299 /* Put it in the front. */
300 objfile->next = object_files;
301 object_files = objfile;
302 break;
303 }
304 }
305 }
306
307 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
308 list.
309
310 It is not a bug, or error, to call this function if OBJFILE is not known
311 to be in the current list. This is done in the case of mapped objfiles,
312 for example, just to ensure that the mapped objfile doesn't appear twice
313 in the list. Since the list is threaded, linking in a mapped objfile
314 twice would create a circular list.
315
316 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
317 unlinking it, just to ensure that we have completely severed any linkages
318 between the OBJFILE and the list. */
319
320 void
321 unlink_objfile (objfile)
322 struct objfile *objfile;
323 {
324 struct objfile** objpp;
325
326 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
327 {
328 if (*objpp == objfile)
329 {
330 *objpp = (*objpp) -> next;
331 objfile -> next = NULL;
332 break;
333 }
334 }
335 }
336
337
338 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
339 that as much as possible is allocated on the symbol_obstack and
340 psymbol_obstack, so that the memory can be efficiently freed.
341
342 Things which we do NOT free because they are not in malloc'd memory
343 or not in memory specific to the objfile include:
344
345 objfile -> sf
346
347 FIXME: If the objfile is using reusable symbol information (via mmalloc),
348 then we need to take into account the fact that more than one process
349 may be using the symbol information at the same time (when mmalloc is
350 extended to support cooperative locking). When more than one process
351 is using the mapped symbol info, we need to be more careful about when
352 we free objects in the reusable area. */
353
354 void
355 free_objfile (objfile)
356 struct objfile *objfile;
357 {
358 /* First do any symbol file specific actions required when we are
359 finished with a particular symbol file. Note that if the objfile
360 is using reusable symbol information (via mmalloc) then each of
361 these routines is responsible for doing the correct thing, either
362 freeing things which are valid only during this particular gdb
363 execution, or leaving them to be reused during the next one. */
364
365 if (objfile -> sf != NULL)
366 {
367 (*objfile -> sf -> sym_finish) (objfile);
368 }
369
370 /* We always close the bfd. */
371
372 if (objfile -> obfd != NULL)
373 {
374 char *name = bfd_get_filename (objfile->obfd);
375 if (!bfd_close (objfile -> obfd))
376 warning ("cannot close \"%s\": %s",
377 name, bfd_errmsg (bfd_get_error ()));
378 free (name);
379 }
380
381 /* Remove it from the chain of all objfiles. */
382
383 unlink_objfile (objfile);
384
385 /* If we are going to free the runtime common objfile, mark it
386 as unallocated. */
387
388 if (objfile == rt_common_objfile)
389 rt_common_objfile = NULL;
390
391 /* Before the symbol table code was redone to make it easier to
392 selectively load and remove information particular to a specific
393 linkage unit, gdb used to do these things whenever the monolithic
394 symbol table was blown away. How much still needs to be done
395 is unknown, but we play it safe for now and keep each action until
396 it is shown to be no longer needed. */
397
398 #if defined (CLEAR_SOLIB)
399 CLEAR_SOLIB ();
400 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
401 the to_sections for a core file might refer to those bfd's. So
402 detach any core file. */
403 {
404 struct target_ops *t = find_core_target ();
405 if (t != NULL)
406 (t->to_detach) (NULL, 0);
407 }
408 #endif
409 /* I *think* all our callers call clear_symtab_users. If so, no need
410 to call this here. */
411 clear_pc_function_cache ();
412
413 /* The last thing we do is free the objfile struct itself for the
414 non-reusable case, or detach from the mapped file for the reusable
415 case. Note that the mmalloc_detach or the mfree is the last thing
416 we can do with this objfile. */
417
418 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
419
420 if (objfile -> flags & OBJF_MAPPED)
421 {
422 /* Remember the fd so we can close it. We can't close it before
423 doing the detach, and after the detach the objfile is gone. */
424 int mmfd;
425
426 mmfd = objfile -> mmfd;
427 mmalloc_detach (objfile -> md);
428 objfile = NULL;
429 close (mmfd);
430 }
431
432 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
433
434 /* If we still have an objfile, then either we don't support reusable
435 objfiles or this one was not reusable. So free it normally. */
436
437 if (objfile != NULL)
438 {
439 if (objfile -> name != NULL)
440 {
441 mfree (objfile -> md, objfile -> name);
442 }
443 if (objfile->global_psymbols.list)
444 mfree (objfile->md, objfile->global_psymbols.list);
445 if (objfile->static_psymbols.list)
446 mfree (objfile->md, objfile->static_psymbols.list);
447 /* Free the obstacks for non-reusable objfiles */
448 obstack_free (&objfile -> psymbol_cache.cache, 0);
449 obstack_free (&objfile -> psymbol_obstack, 0);
450 obstack_free (&objfile -> symbol_obstack, 0);
451 obstack_free (&objfile -> type_obstack, 0);
452 mfree (objfile -> md, objfile);
453 objfile = NULL;
454 }
455 }
456
457
458 /* Free all the object files at once and clean up their users. */
459
460 void
461 free_all_objfiles ()
462 {
463 struct objfile *objfile, *temp;
464
465 ALL_OBJFILES_SAFE (objfile, temp)
466 {
467 free_objfile (objfile);
468 }
469 clear_symtab_users ();
470 }
471 \f
472 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
473 entries in new_offsets. */
474 void
475 objfile_relocate (objfile, new_offsets)
476 struct objfile *objfile;
477 struct section_offsets *new_offsets;
478 {
479 struct section_offsets *delta = (struct section_offsets *) alloca
480 (sizeof (struct section_offsets)
481 + objfile->num_sections * sizeof (delta->offsets));
482
483 {
484 int i;
485 int something_changed = 0;
486 for (i = 0; i < objfile->num_sections; ++i)
487 {
488 ANOFFSET (delta, i) =
489 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
490 if (ANOFFSET (delta, i) != 0)
491 something_changed = 1;
492 }
493 if (!something_changed)
494 return;
495 }
496
497 /* OK, get all the symtabs. */
498 {
499 struct symtab *s;
500
501 ALL_OBJFILE_SYMTABS (objfile, s)
502 {
503 struct linetable *l;
504 struct blockvector *bv;
505 int i;
506
507 /* First the line table. */
508 l = LINETABLE (s);
509 if (l)
510 {
511 for (i = 0; i < l->nitems; ++i)
512 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
513 }
514
515 /* Don't relocate a shared blockvector more than once. */
516 if (!s->primary)
517 continue;
518
519 bv = BLOCKVECTOR (s);
520 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
521 {
522 struct block *b;
523 int j;
524
525 b = BLOCKVECTOR_BLOCK (bv, i);
526 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
527 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
528
529 for (j = 0; j < BLOCK_NSYMS (b); ++j)
530 {
531 struct symbol *sym = BLOCK_SYM (b, j);
532 /* The RS6000 code from which this was taken skipped
533 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
534 But I'm leaving out that test, on the theory that
535 they can't possibly pass the tests below. */
536 if ((SYMBOL_CLASS (sym) == LOC_LABEL
537 || SYMBOL_CLASS (sym) == LOC_STATIC)
538 && SYMBOL_SECTION (sym) >= 0)
539 {
540 SYMBOL_VALUE_ADDRESS (sym) +=
541 ANOFFSET (delta, SYMBOL_SECTION (sym));
542 }
543 #ifdef MIPS_EFI_SYMBOL_NAME
544 /* Relocate Extra Function Info for ecoff. */
545
546 else
547 if (SYMBOL_CLASS (sym) == LOC_CONST
548 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
549 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
550 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
551 #endif
552 }
553 }
554 }
555 }
556
557 {
558 struct partial_symtab *p;
559
560 ALL_OBJFILE_PSYMTABS (objfile, p)
561 {
562 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
563 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
564 }
565 }
566
567 {
568 struct partial_symbol **psym;
569
570 for (psym = objfile->global_psymbols.list;
571 psym < objfile->global_psymbols.next;
572 psym++)
573 if (SYMBOL_SECTION (*psym) >= 0)
574 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
575 for (psym = objfile->static_psymbols.list;
576 psym < objfile->static_psymbols.next;
577 psym++)
578 if (SYMBOL_SECTION (*psym) >= 0)
579 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
580 }
581
582 {
583 struct minimal_symbol *msym;
584 ALL_OBJFILE_MSYMBOLS (objfile, msym)
585 if (SYMBOL_SECTION (msym) >= 0)
586 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
587 }
588 /* Relocating different sections by different amounts may cause the symbols
589 to be out of order. */
590 msymbols_sort (objfile);
591
592 {
593 int i;
594 for (i = 0; i < objfile->num_sections; ++i)
595 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
596 }
597
598 {
599 struct obj_section *s;
600 bfd *abfd;
601
602 abfd = objfile->obfd;
603
604 for (s = objfile->sections;
605 s < objfile->sections_end; ++s)
606 {
607 flagword flags;
608
609 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
610
611 if (flags & SEC_CODE)
612 {
613 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
614 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
615 }
616 else if (flags & (SEC_DATA | SEC_LOAD))
617 {
618 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
619 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
620 }
621 else if (flags & SEC_ALLOC)
622 {
623 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
624 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
625 }
626 }
627 }
628
629 if (objfile->ei.entry_point != ~0)
630 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
631
632 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
633 {
634 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
635 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
636 }
637
638 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
639 {
640 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
641 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
642 }
643
644 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
645 {
646 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
647 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
648 }
649 }
650 \f
651 /* Many places in gdb want to test just to see if we have any partial
652 symbols available. This function returns zero if none are currently
653 available, nonzero otherwise. */
654
655 int
656 have_partial_symbols ()
657 {
658 struct objfile *ofp;
659
660 ALL_OBJFILES (ofp)
661 {
662 if (ofp -> psymtabs != NULL)
663 {
664 return 1;
665 }
666 }
667 return 0;
668 }
669
670 /* Many places in gdb want to test just to see if we have any full
671 symbols available. This function returns zero if none are currently
672 available, nonzero otherwise. */
673
674 int
675 have_full_symbols ()
676 {
677 struct objfile *ofp;
678
679 ALL_OBJFILES (ofp)
680 {
681 if (ofp -> symtabs != NULL)
682 {
683 return 1;
684 }
685 }
686 return 0;
687 }
688
689 /* Many places in gdb want to test just to see if we have any minimal
690 symbols available. This function returns zero if none are currently
691 available, nonzero otherwise. */
692
693 int
694 have_minimal_symbols ()
695 {
696 struct objfile *ofp;
697
698 ALL_OBJFILES (ofp)
699 {
700 if (ofp -> msymbols != NULL)
701 {
702 return 1;
703 }
704 }
705 return 0;
706 }
707
708 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
709
710 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
711 of the corresponding symbol file in MTIME, try to open an existing file
712 with the name SYMSFILENAME and verify it is more recent than the base
713 file by checking it's timestamp against MTIME.
714
715 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
716
717 If SYMSFILENAME does exist, but is out of date, we check to see if the
718 user has specified creation of a mapped file. If so, we don't issue
719 any warning message because we will be creating a new mapped file anyway,
720 overwriting the old one. If not, then we issue a warning message so that
721 the user will know why we aren't using this existing mapped symbol file.
722 In either case, we return -1.
723
724 If SYMSFILENAME does exist and is not out of date, but can't be opened for
725 some reason, then prints an appropriate system error message and returns -1.
726
727 Otherwise, returns the open file descriptor. */
728
729 static int
730 open_existing_mapped_file (symsfilename, mtime, mapped)
731 char *symsfilename;
732 long mtime;
733 int mapped;
734 {
735 int fd = -1;
736 struct stat sbuf;
737
738 if (stat (symsfilename, &sbuf) == 0)
739 {
740 if (sbuf.st_mtime < mtime)
741 {
742 if (!mapped)
743 {
744 warning ("mapped symbol file `%s' is out of date, ignored it",
745 symsfilename);
746 }
747 }
748 else if ((fd = open (symsfilename, O_RDWR)) < 0)
749 {
750 if (error_pre_print)
751 {
752 printf_unfiltered (error_pre_print);
753 }
754 print_sys_errmsg (symsfilename, errno);
755 }
756 }
757 return (fd);
758 }
759
760 /* Look for a mapped symbol file that corresponds to FILENAME and is more
761 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
762 use a mapped symbol file for this file, so create a new one if one does
763 not currently exist.
764
765 If found, then return an open file descriptor for the file, otherwise
766 return -1.
767
768 This routine is responsible for implementing the policy that generates
769 the name of the mapped symbol file from the name of a file containing
770 symbols that gdb would like to read. Currently this policy is to append
771 ".syms" to the name of the file.
772
773 This routine is also responsible for implementing the policy that
774 determines where the mapped symbol file is found (the search path).
775 This policy is that when reading an existing mapped file, a file of
776 the correct name in the current directory takes precedence over a
777 file of the correct name in the same directory as the symbol file.
778 When creating a new mapped file, it is always created in the current
779 directory. This helps to minimize the chances of a user unknowingly
780 creating big mapped files in places like /bin and /usr/local/bin, and
781 allows a local copy to override a manually installed global copy (in
782 /bin for example). */
783
784 static int
785 open_mapped_file (filename, mtime, mapped)
786 char *filename;
787 long mtime;
788 int mapped;
789 {
790 int fd;
791 char *symsfilename;
792
793 /* First try to open an existing file in the current directory, and
794 then try the directory where the symbol file is located. */
795
796 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
797 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
798 {
799 free (symsfilename);
800 symsfilename = concat (filename, ".syms", (char *) NULL);
801 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
802 }
803
804 /* If we don't have an open file by now, then either the file does not
805 already exist, or the base file has changed since it was created. In
806 either case, if the user has specified use of a mapped file, then
807 create a new mapped file, truncating any existing one. If we can't
808 create one, print a system error message saying why we can't.
809
810 By default the file is rw for everyone, with the user's umask taking
811 care of turning off the permissions the user wants off. */
812
813 if ((fd < 0) && mapped)
814 {
815 free (symsfilename);
816 symsfilename = concat ("./", basename (filename), ".syms",
817 (char *) NULL);
818 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
819 {
820 if (error_pre_print)
821 {
822 printf_unfiltered (error_pre_print);
823 }
824 print_sys_errmsg (symsfilename, errno);
825 }
826 }
827
828 free (symsfilename);
829 return (fd);
830 }
831
832 static PTR
833 map_to_file (fd)
834 int fd;
835 {
836 PTR md;
837 CORE_ADDR mapto;
838
839 md = mmalloc_attach (fd, (PTR) 0);
840 if (md != NULL)
841 {
842 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
843 md = mmalloc_detach (md);
844 if (md != NULL)
845 {
846 /* FIXME: should figure out why detach failed */
847 md = NULL;
848 }
849 else if (mapto != (CORE_ADDR) NULL)
850 {
851 /* This mapping file needs to be remapped at "mapto" */
852 md = mmalloc_attach (fd, (PTR) mapto);
853 }
854 else
855 {
856 /* This is a freshly created mapping file. */
857 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
858 if (mapto != 0)
859 {
860 /* To avoid reusing the freshly created mapping file, at the
861 address selected by mmap, we must truncate it before trying
862 to do an attach at the address we want. */
863 ftruncate (fd, 0);
864 md = mmalloc_attach (fd, (PTR) mapto);
865 if (md != NULL)
866 {
867 mmalloc_setkey (md, 1, (PTR) mapto);
868 }
869 }
870 }
871 }
872 return (md);
873 }
874
875 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
876
877 /* Returns a section whose range includes PC or NULL if none found. */
878
879 struct obj_section *
880 find_pc_section(pc)
881 CORE_ADDR pc;
882 {
883 struct obj_section *s;
884 struct objfile *objfile;
885
886 ALL_OBJFILES (objfile)
887 for (s = objfile->sections; s < objfile->sections_end; ++s)
888 if (s->addr <= pc
889 && pc < s->endaddr)
890 return(s);
891
892 return(NULL);
893 }
894
895 /* In SVR4, we recognize a trampoline by it's section name.
896 That is, if the pc is in a section named ".plt" then we are in
897 a trampoline. */
898
899 int
900 in_plt_section(pc, name)
901 CORE_ADDR pc;
902 char *name;
903 {
904 struct obj_section *s;
905 int retval = 0;
906
907 s = find_pc_section(pc);
908
909 retval = (s != NULL
910 && s->the_bfd_section->name != NULL
911 && STREQ (s->the_bfd_section->name, ".plt"));
912 return(retval);
913 }