]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
* top.c, utils.c, main.c: Replace error_pre_print with two
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Externally visible variables that are owned by this module.
53 See declarations in objfile.h for more info. */
54
55 struct objfile *object_files; /* Linked list of all objfiles */
56 struct objfile *current_objfile; /* For symbol file being read in */
57 struct objfile *symfile_objfile; /* Main symbol table loaded from */
58 struct objfile *rt_common_objfile; /* For runtime common symbols */
59
60 int mapped_symbol_files; /* Try to use mapped symbol files */
61
62 /* Locate all mappable sections of a BFD file.
63 objfile_p_char is a char * to get it through
64 bfd_map_over_sections; we cast it back to its proper type. */
65
66 static void
67 add_to_objfile_sections (abfd, asect, objfile_p_char)
68 bfd *abfd;
69 sec_ptr asect;
70 PTR objfile_p_char;
71 {
72 struct objfile *objfile = (struct objfile *) objfile_p_char;
73 struct obj_section section;
74 flagword aflag;
75
76 aflag = bfd_get_section_flags (abfd, asect);
77 if (!(aflag & SEC_ALLOC))
78 return;
79 if (0 == bfd_section_size (abfd, asect))
80 return;
81 section.offset = 0;
82 section.objfile = objfile;
83 section.the_bfd_section = asect;
84 section.addr = bfd_section_vma (abfd, asect);
85 section.endaddr = section.addr + bfd_section_size (abfd, asect);
86 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
87 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
88 }
89
90 /* Builds a section table for OBJFILE.
91 Returns 0 if OK, 1 on error (in which case bfd_error contains the
92 error). */
93
94 int
95 build_objfile_section_table (objfile)
96 struct objfile *objfile;
97 {
98 /* objfile->sections can be already set when reading a mapped symbol
99 file. I believe that we do need to rebuild the section table in
100 this case (we rebuild other things derived from the bfd), but we
101 can't free the old one (it's in the psymbol_obstack). So we just
102 waste some memory. */
103
104 objfile->sections_end = 0;
105 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
106 objfile->sections = (struct obj_section *)
107 obstack_finish (&objfile->psymbol_obstack);
108 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
109 return(0);
110 }
111
112 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
113 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
114 struct, fill it in as best we can, link it into the list of all known
115 objfiles, and return a pointer to the new objfile struct. */
116
117 struct objfile *
118 allocate_objfile (abfd, mapped)
119 bfd *abfd;
120 int mapped;
121 {
122 struct objfile *objfile = NULL;
123 struct objfile *last_one = NULL;
124
125 mapped |= mapped_symbol_files;
126
127 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
128 {
129
130 /* If we can support mapped symbol files, try to open/reopen the
131 mapped file that corresponds to the file from which we wish to
132 read symbols. If the objfile is to be mapped, we must malloc
133 the structure itself using the mmap version, and arrange that
134 all memory allocation for the objfile uses the mmap routines.
135 If we are reusing an existing mapped file, from which we get
136 our objfile pointer, we have to make sure that we update the
137 pointers to the alloc/free functions in the obstack, in case
138 these functions have moved within the current gdb. */
139
140 int fd;
141
142 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
143 mapped);
144 if (fd >= 0)
145 {
146 CORE_ADDR mapto;
147 PTR md;
148
149 if (((mapto = map_to_address ()) == 0) ||
150 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
151 {
152 close (fd);
153 }
154 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
155 {
156 /* Update memory corruption handler function addresses. */
157 init_malloc (md);
158 objfile -> md = md;
159 objfile -> mmfd = fd;
160 /* Update pointers to functions to *our* copies */
161 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
162 obstack_freefun (&objfile -> psymbol_obstack, mfree);
163 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
164 obstack_freefun (&objfile -> symbol_obstack, mfree);
165 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
166 obstack_freefun (&objfile -> type_obstack, mfree);
167 /* If already in objfile list, unlink it. */
168 unlink_objfile (objfile);
169 /* Forget things specific to a particular gdb, may have changed. */
170 objfile -> sf = NULL;
171 }
172 else
173 {
174
175 /* Set up to detect internal memory corruption. MUST be
176 done before the first malloc. See comments in
177 init_malloc() and mmcheck(). */
178
179 init_malloc (md);
180
181 objfile = (struct objfile *)
182 xmmalloc (md, sizeof (struct objfile));
183 memset (objfile, 0, sizeof (struct objfile));
184 objfile -> md = md;
185 objfile -> mmfd = fd;
186 objfile -> flags |= OBJF_MAPPED;
187 mmalloc_setkey (objfile -> md, 0, objfile);
188 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
189 0, 0, xmmalloc, mfree,
190 objfile -> md);
191 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 }
198 }
199
200 if (mapped && (objfile == NULL))
201 {
202 warning ("symbol table for '%s' will not be mapped",
203 bfd_get_filename (abfd));
204 }
205 }
206 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
207
208 if (mapped)
209 {
210 warning ("this version of gdb does not support mapped symbol tables.");
211
212 /* Turn off the global flag so we don't try to do mapped symbol tables
213 any more, which shuts up gdb unless the user specifically gives the
214 "mapped" keyword again. */
215
216 mapped_symbol_files = 0;
217 }
218
219 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
220
221 /* If we don't support mapped symbol files, didn't ask for the file to be
222 mapped, or failed to open the mapped file for some reason, then revert
223 back to an unmapped objfile. */
224
225 if (objfile == NULL)
226 {
227 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
228 memset (objfile, 0, sizeof (struct objfile));
229 objfile -> md = NULL;
230 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
231 free);
232 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
233 free);
234 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
235 free);
236 }
237
238 /* Update the per-objfile information that comes from the bfd, ensuring
239 that any data that is reference is saved in the per-objfile data
240 region. */
241
242 objfile -> obfd = abfd;
243 if (objfile -> name != NULL)
244 {
245 mfree (objfile -> md, objfile -> name);
246 }
247 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
248 objfile -> mtime = bfd_get_mtime (abfd);
249
250 /* Build section table. */
251
252 if (build_objfile_section_table (objfile))
253 {
254 error ("Can't find the file sections in `%s': %s",
255 objfile -> name, bfd_errmsg (bfd_get_error ()));
256 }
257
258 /* Add this file onto the tail of the linked list of other such files. */
259
260 objfile -> next = NULL;
261 if (object_files == NULL)
262 object_files = objfile;
263 else
264 {
265 for (last_one = object_files;
266 last_one -> next;
267 last_one = last_one -> next);
268 last_one -> next = objfile;
269 }
270 return (objfile);
271 }
272
273 /* Put OBJFILE at the front of the list. */
274
275 void
276 objfile_to_front (objfile)
277 struct objfile *objfile;
278 {
279 struct objfile **objp;
280 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
281 {
282 if (*objp == objfile)
283 {
284 /* Unhook it from where it is. */
285 *objp = objfile->next;
286 /* Put it in the front. */
287 objfile->next = object_files;
288 object_files = objfile;
289 break;
290 }
291 }
292 }
293
294 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
295 list.
296
297 It is not a bug, or error, to call this function if OBJFILE is not known
298 to be in the current list. This is done in the case of mapped objfiles,
299 for example, just to ensure that the mapped objfile doesn't appear twice
300 in the list. Since the list is threaded, linking in a mapped objfile
301 twice would create a circular list.
302
303 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
304 unlinking it, just to ensure that we have completely severed any linkages
305 between the OBJFILE and the list. */
306
307 void
308 unlink_objfile (objfile)
309 struct objfile *objfile;
310 {
311 struct objfile** objpp;
312
313 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
314 {
315 if (*objpp == objfile)
316 {
317 *objpp = (*objpp) -> next;
318 objfile -> next = NULL;
319 break;
320 }
321 }
322 }
323
324
325 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
326 that as much as possible is allocated on the symbol_obstack and
327 psymbol_obstack, so that the memory can be efficiently freed.
328
329 Things which we do NOT free because they are not in malloc'd memory
330 or not in memory specific to the objfile include:
331
332 objfile -> sf
333
334 FIXME: If the objfile is using reusable symbol information (via mmalloc),
335 then we need to take into account the fact that more than one process
336 may be using the symbol information at the same time (when mmalloc is
337 extended to support cooperative locking). When more than one process
338 is using the mapped symbol info, we need to be more careful about when
339 we free objects in the reusable area. */
340
341 void
342 free_objfile (objfile)
343 struct objfile *objfile;
344 {
345 /* First do any symbol file specific actions required when we are
346 finished with a particular symbol file. Note that if the objfile
347 is using reusable symbol information (via mmalloc) then each of
348 these routines is responsible for doing the correct thing, either
349 freeing things which are valid only during this particular gdb
350 execution, or leaving them to be reused during the next one. */
351
352 if (objfile -> sf != NULL)
353 {
354 (*objfile -> sf -> sym_finish) (objfile);
355 }
356
357 /* We always close the bfd. */
358
359 if (objfile -> obfd != NULL)
360 {
361 char *name = bfd_get_filename (objfile->obfd);
362 if (!bfd_close (objfile -> obfd))
363 warning ("cannot close \"%s\": %s",
364 name, bfd_errmsg (bfd_get_error ()));
365 free (name);
366 }
367
368 /* Remove it from the chain of all objfiles. */
369
370 unlink_objfile (objfile);
371
372 /* If we are going to free the runtime common objfile, mark it
373 as unallocated. */
374
375 if (objfile == rt_common_objfile)
376 rt_common_objfile = NULL;
377
378 /* Before the symbol table code was redone to make it easier to
379 selectively load and remove information particular to a specific
380 linkage unit, gdb used to do these things whenever the monolithic
381 symbol table was blown away. How much still needs to be done
382 is unknown, but we play it safe for now and keep each action until
383 it is shown to be no longer needed. */
384
385 #if defined (CLEAR_SOLIB)
386 CLEAR_SOLIB ();
387 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
388 the to_sections for a core file might refer to those bfd's. So
389 detach any core file. */
390 {
391 struct target_ops *t = find_core_target ();
392 if (t != NULL)
393 (t->to_detach) (NULL, 0);
394 }
395 #endif
396 /* I *think* all our callers call clear_symtab_users. If so, no need
397 to call this here. */
398 clear_pc_function_cache ();
399
400 /* The last thing we do is free the objfile struct itself for the
401 non-reusable case, or detach from the mapped file for the reusable
402 case. Note that the mmalloc_detach or the mfree is the last thing
403 we can do with this objfile. */
404
405 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
406
407 if (objfile -> flags & OBJF_MAPPED)
408 {
409 /* Remember the fd so we can close it. We can't close it before
410 doing the detach, and after the detach the objfile is gone. */
411 int mmfd;
412
413 mmfd = objfile -> mmfd;
414 mmalloc_detach (objfile -> md);
415 objfile = NULL;
416 close (mmfd);
417 }
418
419 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
420
421 /* If we still have an objfile, then either we don't support reusable
422 objfiles or this one was not reusable. So free it normally. */
423
424 if (objfile != NULL)
425 {
426 if (objfile -> name != NULL)
427 {
428 mfree (objfile -> md, objfile -> name);
429 }
430 if (objfile->global_psymbols.list)
431 mfree (objfile->md, objfile->global_psymbols.list);
432 if (objfile->static_psymbols.list)
433 mfree (objfile->md, objfile->static_psymbols.list);
434 /* Free the obstacks for non-reusable objfiles */
435 obstack_free (&objfile -> psymbol_obstack, 0);
436 obstack_free (&objfile -> symbol_obstack, 0);
437 obstack_free (&objfile -> type_obstack, 0);
438 mfree (objfile -> md, objfile);
439 objfile = NULL;
440 }
441 }
442
443
444 /* Free all the object files at once and clean up their users. */
445
446 void
447 free_all_objfiles ()
448 {
449 struct objfile *objfile, *temp;
450
451 ALL_OBJFILES_SAFE (objfile, temp)
452 {
453 free_objfile (objfile);
454 }
455 clear_symtab_users ();
456 }
457 \f
458 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
459 entries in new_offsets. */
460 void
461 objfile_relocate (objfile, new_offsets)
462 struct objfile *objfile;
463 struct section_offsets *new_offsets;
464 {
465 struct section_offsets *delta = (struct section_offsets *) alloca
466 (sizeof (struct section_offsets)
467 + objfile->num_sections * sizeof (delta->offsets));
468
469 {
470 int i;
471 int something_changed = 0;
472 for (i = 0; i < objfile->num_sections; ++i)
473 {
474 ANOFFSET (delta, i) =
475 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
476 if (ANOFFSET (delta, i) != 0)
477 something_changed = 1;
478 }
479 if (!something_changed)
480 return;
481 }
482
483 /* OK, get all the symtabs. */
484 {
485 struct symtab *s;
486
487 ALL_OBJFILE_SYMTABS (objfile, s)
488 {
489 struct linetable *l;
490 struct blockvector *bv;
491 int i;
492
493 /* First the line table. */
494 l = LINETABLE (s);
495 if (l)
496 {
497 for (i = 0; i < l->nitems; ++i)
498 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
499 }
500
501 /* Don't relocate a shared blockvector more than once. */
502 if (!s->primary)
503 continue;
504
505 bv = BLOCKVECTOR (s);
506 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
507 {
508 struct block *b;
509 int j;
510
511 b = BLOCKVECTOR_BLOCK (bv, i);
512 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
513 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
514
515 for (j = 0; j < BLOCK_NSYMS (b); ++j)
516 {
517 struct symbol *sym = BLOCK_SYM (b, j);
518 /* The RS6000 code from which this was taken skipped
519 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
520 But I'm leaving out that test, on the theory that
521 they can't possibly pass the tests below. */
522 if ((SYMBOL_CLASS (sym) == LOC_LABEL
523 || SYMBOL_CLASS (sym) == LOC_STATIC)
524 && SYMBOL_SECTION (sym) >= 0)
525 {
526 SYMBOL_VALUE_ADDRESS (sym) +=
527 ANOFFSET (delta, SYMBOL_SECTION (sym));
528 }
529 #ifdef MIPS_EFI_SYMBOL_NAME
530 /* Relocate Extra Function Info for ecoff. */
531
532 else
533 if (SYMBOL_CLASS (sym) == LOC_CONST
534 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
535 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
536 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
537 #endif
538 }
539 }
540 }
541 }
542
543 {
544 struct partial_symtab *p;
545
546 ALL_OBJFILE_PSYMTABS (objfile, p)
547 {
548 /* FIXME: specific to symbol readers which use gdb-stabs.h.
549 We can only get away with it since objfile_relocate is only
550 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
551 targets. */
552 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
553 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
554 }
555 }
556
557 {
558 struct partial_symbol *psym;
559
560 for (psym = objfile->global_psymbols.list;
561 psym < objfile->global_psymbols.next;
562 psym++)
563 if (SYMBOL_SECTION (psym) >= 0)
564 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
565 for (psym = objfile->static_psymbols.list;
566 psym < objfile->static_psymbols.next;
567 psym++)
568 if (SYMBOL_SECTION (psym) >= 0)
569 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
570 }
571
572 {
573 struct minimal_symbol *msym;
574 ALL_OBJFILE_MSYMBOLS (objfile, msym)
575 if (SYMBOL_SECTION (msym) >= 0)
576 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
577 }
578 /* Relocating different sections by different amounts may cause the symbols
579 to be out of order. */
580 msymbols_sort (objfile);
581
582 {
583 int i;
584 for (i = 0; i < objfile->num_sections; ++i)
585 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
586 }
587
588 {
589 struct obj_section *s;
590 bfd *abfd;
591
592 abfd = objfile->obfd;
593
594 for (s = objfile->sections;
595 s < objfile->sections_end; ++s)
596 {
597 flagword flags;
598
599 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
600
601 if (flags & SEC_CODE)
602 {
603 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
604 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
605 }
606 else if (flags & (SEC_DATA | SEC_LOAD))
607 {
608 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
609 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
610 }
611 else if (flags & SEC_ALLOC)
612 {
613 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
614 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
615 }
616 }
617 }
618
619 if (objfile->ei.entry_point != ~0)
620 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
621
622 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
623 {
624 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
625 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
626 }
627
628 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
629 {
630 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
631 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
632 }
633
634 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
635 {
636 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
637 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
638 }
639 }
640 \f
641 /* Many places in gdb want to test just to see if we have any partial
642 symbols available. This function returns zero if none are currently
643 available, nonzero otherwise. */
644
645 int
646 have_partial_symbols ()
647 {
648 struct objfile *ofp;
649
650 ALL_OBJFILES (ofp)
651 {
652 if (ofp -> psymtabs != NULL)
653 {
654 return 1;
655 }
656 }
657 return 0;
658 }
659
660 /* Many places in gdb want to test just to see if we have any full
661 symbols available. This function returns zero if none are currently
662 available, nonzero otherwise. */
663
664 int
665 have_full_symbols ()
666 {
667 struct objfile *ofp;
668
669 ALL_OBJFILES (ofp)
670 {
671 if (ofp -> symtabs != NULL)
672 {
673 return 1;
674 }
675 }
676 return 0;
677 }
678
679 /* Many places in gdb want to test just to see if we have any minimal
680 symbols available. This function returns zero if none are currently
681 available, nonzero otherwise. */
682
683 int
684 have_minimal_symbols ()
685 {
686 struct objfile *ofp;
687
688 ALL_OBJFILES (ofp)
689 {
690 if (ofp -> msymbols != NULL)
691 {
692 return 1;
693 }
694 }
695 return 0;
696 }
697
698 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
699
700 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
701 of the corresponding symbol file in MTIME, try to open an existing file
702 with the name SYMSFILENAME and verify it is more recent than the base
703 file by checking it's timestamp against MTIME.
704
705 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
706
707 If SYMSFILENAME does exist, but is out of date, we check to see if the
708 user has specified creation of a mapped file. If so, we don't issue
709 any warning message because we will be creating a new mapped file anyway,
710 overwriting the old one. If not, then we issue a warning message so that
711 the user will know why we aren't using this existing mapped symbol file.
712 In either case, we return -1.
713
714 If SYMSFILENAME does exist and is not out of date, but can't be opened for
715 some reason, then prints an appropriate system error message and returns -1.
716
717 Otherwise, returns the open file descriptor. */
718
719 static int
720 open_existing_mapped_file (symsfilename, mtime, mapped)
721 char *symsfilename;
722 long mtime;
723 int mapped;
724 {
725 int fd = -1;
726 struct stat sbuf;
727
728 if (stat (symsfilename, &sbuf) == 0)
729 {
730 if (sbuf.st_mtime < mtime)
731 {
732 if (!mapped)
733 {
734 warning ("mapped symbol file `%s' is out of date, ignored it",
735 symsfilename);
736 }
737 }
738 else if ((fd = open (symsfilename, O_RDWR)) < 0)
739 {
740 if (error_pre_print)
741 {
742 printf_unfiltered (error_pre_print);
743 }
744 print_sys_errmsg (symsfilename, errno);
745 }
746 }
747 return (fd);
748 }
749
750 /* Look for a mapped symbol file that corresponds to FILENAME and is more
751 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
752 use a mapped symbol file for this file, so create a new one if one does
753 not currently exist.
754
755 If found, then return an open file descriptor for the file, otherwise
756 return -1.
757
758 This routine is responsible for implementing the policy that generates
759 the name of the mapped symbol file from the name of a file containing
760 symbols that gdb would like to read. Currently this policy is to append
761 ".syms" to the name of the file.
762
763 This routine is also responsible for implementing the policy that
764 determines where the mapped symbol file is found (the search path).
765 This policy is that when reading an existing mapped file, a file of
766 the correct name in the current directory takes precedence over a
767 file of the correct name in the same directory as the symbol file.
768 When creating a new mapped file, it is always created in the current
769 directory. This helps to minimize the chances of a user unknowingly
770 creating big mapped files in places like /bin and /usr/local/bin, and
771 allows a local copy to override a manually installed global copy (in
772 /bin for example). */
773
774 static int
775 open_mapped_file (filename, mtime, mapped)
776 char *filename;
777 long mtime;
778 int mapped;
779 {
780 int fd;
781 char *symsfilename;
782
783 /* First try to open an existing file in the current directory, and
784 then try the directory where the symbol file is located. */
785
786 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
787 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
788 {
789 free (symsfilename);
790 symsfilename = concat (filename, ".syms", (char *) NULL);
791 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
792 }
793
794 /* If we don't have an open file by now, then either the file does not
795 already exist, or the base file has changed since it was created. In
796 either case, if the user has specified use of a mapped file, then
797 create a new mapped file, truncating any existing one. If we can't
798 create one, print a system error message saying why we can't.
799
800 By default the file is rw for everyone, with the user's umask taking
801 care of turning off the permissions the user wants off. */
802
803 if ((fd < 0) && mapped)
804 {
805 free (symsfilename);
806 symsfilename = concat ("./", basename (filename), ".syms",
807 (char *) NULL);
808 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
809 {
810 if (error_pre_print)
811 {
812 printf_unfiltered (error_pre_print);
813 }
814 print_sys_errmsg (symsfilename, errno);
815 }
816 }
817
818 free (symsfilename);
819 return (fd);
820 }
821
822 /* Return the base address at which we would like the next objfile's
823 mapped data to start.
824
825 For now, we use the kludge that the configuration specifies a base
826 address to which it is safe to map the first mmalloc heap, and an
827 increment to add to this address for each successive heap. There are
828 a lot of issues to deal with here to make this work reasonably, including:
829
830 Avoid memory collisions with existing mapped address spaces
831
832 Reclaim address spaces when their mmalloc heaps are unmapped
833
834 When mmalloc heaps are shared between processes they have to be
835 mapped at the same addresses in each
836
837 Once created, a mmalloc heap that is to be mapped back in must be
838 mapped at the original address. I.E. each objfile will expect to
839 be remapped at it's original address. This becomes a problem if
840 the desired address is already in use.
841
842 etc, etc, etc.
843
844 */
845
846
847 static CORE_ADDR
848 map_to_address ()
849 {
850
851 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
852
853 static CORE_ADDR next = MMAP_BASE_ADDRESS;
854 CORE_ADDR mapto = next;
855
856 next += MMAP_INCREMENT;
857 return (mapto);
858
859 #else
860
861 return (0);
862
863 #endif
864
865 }
866
867 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
868
869 /* Returns a section whose range includes PC or NULL if none found. */
870
871 struct obj_section *
872 find_pc_section(pc)
873 CORE_ADDR pc;
874 {
875 struct obj_section *s;
876 struct objfile *objfile;
877
878 ALL_OBJFILES (objfile)
879 for (s = objfile->sections; s < objfile->sections_end; ++s)
880 if (s->addr <= pc
881 && pc < s->endaddr)
882 return(s);
883
884 return(NULL);
885 }
886
887 /* In SVR4, we recognize a trampoline by it's section name.
888 That is, if the pc is in a section named ".plt" then we are in
889 a trampoline. */
890
891 int
892 in_plt_section(pc, name)
893 CORE_ADDR pc;
894 char *name;
895 {
896 struct obj_section *s;
897 int retval = 0;
898
899 s = find_pc_section(pc);
900
901 retval = (s != NULL
902 && s->the_bfd_section->name != NULL
903 && STREQ (s->the_bfd_section->name, ".plt"));
904 return(retval);
905 }