]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/p-exp.y
2003-05-14 Elena Zannoni <ezannoni@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / p-exp.y
1 /* YACC parser for Pascal expressions, for GDB.
2 Copyright 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file is derived from c-exp.y */
22
23 /* Parse a Pascal expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result.
31
32 Note that malloc's and realloc's in this file are transformed to
33 xmalloc and xrealloc respectively by the same sed command in the
34 makefile that remaps any other malloc/realloc inserted by the parser
35 generator. Doing this with #defines and trying to control the interaction
36 with include files (<malloc.h> and <stdlib.h> for example) just became
37 too messy, particularly when such includes can be inserted at random
38 times by the parser generator. */
39
40 /* Known bugs or limitations:
41 - pascal string operations are not supported at all.
42 - there are some problems with boolean types.
43 - Pascal type hexadecimal constants are not supported
44 because they conflict with the internal variables format.
45 Probably also lots of other problems, less well defined PM */
46 %{
47
48 #include "defs.h"
49 #include "gdb_string.h"
50 #include <ctype.h>
51 #include "expression.h"
52 #include "value.h"
53 #include "parser-defs.h"
54 #include "language.h"
55 #include "p-lang.h"
56 #include "bfd.h" /* Required by objfiles.h. */
57 #include "symfile.h" /* Required by objfiles.h. */
58 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
59 #include "block.h"
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
62 as well as gratuitiously global symbol names, so we can have multiple
63 yacc generated parsers in gdb. Note that these are only the variables
64 produced by yacc. If other parser generators (bison, byacc, etc) produce
65 additional global names that conflict at link time, then those parser
66 generators need to be fixed instead of adding those names to this list. */
67
68 #define yymaxdepth pascal_maxdepth
69 #define yyparse pascal_parse
70 #define yylex pascal_lex
71 #define yyerror pascal_error
72 #define yylval pascal_lval
73 #define yychar pascal_char
74 #define yydebug pascal_debug
75 #define yypact pascal_pact
76 #define yyr1 pascal_r1
77 #define yyr2 pascal_r2
78 #define yydef pascal_def
79 #define yychk pascal_chk
80 #define yypgo pascal_pgo
81 #define yyact pascal_act
82 #define yyexca pascal_exca
83 #define yyerrflag pascal_errflag
84 #define yynerrs pascal_nerrs
85 #define yyps pascal_ps
86 #define yypv pascal_pv
87 #define yys pascal_s
88 #define yy_yys pascal_yys
89 #define yystate pascal_state
90 #define yytmp pascal_tmp
91 #define yyv pascal_v
92 #define yy_yyv pascal_yyv
93 #define yyval pascal_val
94 #define yylloc pascal_lloc
95 #define yyreds pascal_reds /* With YYDEBUG defined */
96 #define yytoks pascal_toks /* With YYDEBUG defined */
97 #define yyname pascal_name /* With YYDEBUG defined */
98 #define yyrule pascal_rule /* With YYDEBUG defined */
99 #define yylhs pascal_yylhs
100 #define yylen pascal_yylen
101 #define yydefred pascal_yydefred
102 #define yydgoto pascal_yydgoto
103 #define yysindex pascal_yysindex
104 #define yyrindex pascal_yyrindex
105 #define yygindex pascal_yygindex
106 #define yytable pascal_yytable
107 #define yycheck pascal_yycheck
108
109 #ifndef YYDEBUG
110 #define YYDEBUG 1 /* Default to yydebug support */
111 #endif
112
113 #define YYFPRINTF parser_fprintf
114
115 int yyparse (void);
116
117 static int yylex (void);
118
119 void
120 yyerror (char *);
121
122 static char * uptok (char *, int);
123 %}
124
125 /* Although the yacc "value" of an expression is not used,
126 since the result is stored in the structure being created,
127 other node types do have values. */
128
129 %union
130 {
131 LONGEST lval;
132 struct {
133 LONGEST val;
134 struct type *type;
135 } typed_val_int;
136 struct {
137 DOUBLEST dval;
138 struct type *type;
139 } typed_val_float;
140 struct symbol *sym;
141 struct type *tval;
142 struct stoken sval;
143 struct ttype tsym;
144 struct symtoken ssym;
145 int voidval;
146 struct block *bval;
147 enum exp_opcode opcode;
148 struct internalvar *ivar;
149
150 struct type **tvec;
151 int *ivec;
152 }
153
154 %{
155 /* YYSTYPE gets defined by %union */
156 static int
157 parse_number (char *, int, int, YYSTYPE *);
158
159 static struct type *current_type;
160
161 static void push_current_type ();
162 static void pop_current_type ();
163 static int search_field;
164 %}
165
166 %type <voidval> exp exp1 type_exp start normal_start variable qualified_name
167 %type <tval> type typebase
168 /* %type <bval> block */
169
170 /* Fancy type parsing. */
171 %type <tval> ptype
172
173 %token <typed_val_int> INT
174 %token <typed_val_float> FLOAT
175
176 /* Both NAME and TYPENAME tokens represent symbols in the input,
177 and both convey their data as strings.
178 But a TYPENAME is a string that happens to be defined as a typedef
179 or builtin type name (such as int or char)
180 and a NAME is any other symbol.
181 Contexts where this distinction is not important can use the
182 nonterminal "name", which matches either NAME or TYPENAME. */
183
184 %token <sval> STRING
185 %token <sval> FIELDNAME
186 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
187 %token <tsym> TYPENAME
188 %type <sval> name
189 %type <ssym> name_not_typename
190
191 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
192 but which would parse as a valid number in the current input radix.
193 E.g. "c" when input_radix==16. Depending on the parse, it will be
194 turned into a name or into a number. */
195
196 %token <ssym> NAME_OR_INT
197
198 %token STRUCT CLASS SIZEOF COLONCOLON
199 %token ERROR
200
201 /* Special type cases, put in to allow the parser to distinguish different
202 legal basetypes. */
203
204 %token <voidval> VARIABLE
205
206
207 /* Object pascal */
208 %token THIS
209 %token <lval> TRUEKEYWORD FALSEKEYWORD
210
211 %left ','
212 %left ABOVE_COMMA
213 %right ASSIGN
214 %left NOT
215 %left OR
216 %left XOR
217 %left ANDAND
218 %left '=' NOTEQUAL
219 %left '<' '>' LEQ GEQ
220 %left LSH RSH DIV MOD
221 %left '@'
222 %left '+' '-'
223 %left '*' '/'
224 %right UNARY INCREMENT DECREMENT
225 %right ARROW '.' '[' '('
226 %left '^'
227 %token <ssym> BLOCKNAME
228 %type <bval> block
229 %left COLONCOLON
230
231 \f
232 %%
233
234 start : { current_type = NULL;
235 search_field = 0;
236 }
237 normal_start {}
238 ;
239
240 normal_start :
241 exp1
242 | type_exp
243 ;
244
245 type_exp: type
246 { write_exp_elt_opcode(OP_TYPE);
247 write_exp_elt_type($1);
248 write_exp_elt_opcode(OP_TYPE);
249 current_type = $1; } ;
250
251 /* Expressions, including the comma operator. */
252 exp1 : exp
253 | exp1 ',' exp
254 { write_exp_elt_opcode (BINOP_COMMA); }
255 ;
256
257 /* Expressions, not including the comma operator. */
258 exp : exp '^' %prec UNARY
259 { write_exp_elt_opcode (UNOP_IND);
260 if (current_type)
261 current_type = TYPE_TARGET_TYPE (current_type); }
262 ;
263
264 exp : '@' exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_ADDR);
266 if (current_type)
267 current_type = TYPE_POINTER_TYPE (current_type); }
268 ;
269
270 exp : '-' exp %prec UNARY
271 { write_exp_elt_opcode (UNOP_NEG); }
272 ;
273
274 exp : NOT exp %prec UNARY
275 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
276 ;
277
278 exp : INCREMENT '(' exp ')' %prec UNARY
279 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
280 ;
281
282 exp : DECREMENT '(' exp ')' %prec UNARY
283 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
284 ;
285
286 exp : exp '.' { search_field = 1; }
287 FIELDNAME
288 /* name */
289 { write_exp_elt_opcode (STRUCTOP_STRUCT);
290 write_exp_string ($4);
291 write_exp_elt_opcode (STRUCTOP_STRUCT);
292 search_field = 0;
293 if (current_type)
294 { while (TYPE_CODE (current_type) == TYPE_CODE_PTR)
295 current_type = TYPE_TARGET_TYPE (current_type);
296 current_type = lookup_struct_elt_type (
297 current_type, $4.ptr, 0); };
298 } ;
299 exp : exp '['
300 /* We need to save the current_type value */
301 { char *arrayname;
302 int arrayfieldindex;
303 arrayfieldindex = is_pascal_string_type (
304 current_type, NULL, NULL,
305 NULL, NULL, &arrayname);
306 if (arrayfieldindex)
307 {
308 struct stoken stringsval;
309 stringsval.ptr = alloca (strlen (arrayname) + 1);
310 stringsval.length = strlen (arrayname);
311 strcpy (stringsval.ptr, arrayname);
312 current_type = TYPE_FIELD_TYPE (current_type,
313 arrayfieldindex - 1);
314 write_exp_elt_opcode (STRUCTOP_STRUCT);
315 write_exp_string (stringsval);
316 write_exp_elt_opcode (STRUCTOP_STRUCT);
317 }
318 push_current_type (); }
319 exp1 ']'
320 { pop_current_type ();
321 write_exp_elt_opcode (BINOP_SUBSCRIPT);
322 if (current_type)
323 current_type = TYPE_TARGET_TYPE (current_type); }
324 ;
325
326 exp : exp '('
327 /* This is to save the value of arglist_len
328 being accumulated by an outer function call. */
329 { push_current_type ();
330 start_arglist (); }
331 arglist ')' %prec ARROW
332 { write_exp_elt_opcode (OP_FUNCALL);
333 write_exp_elt_longcst ((LONGEST) end_arglist ());
334 write_exp_elt_opcode (OP_FUNCALL);
335 pop_current_type (); }
336 ;
337
338 arglist :
339 | exp
340 { arglist_len = 1; }
341 | arglist ',' exp %prec ABOVE_COMMA
342 { arglist_len++; }
343 ;
344
345 exp : type '(' exp ')' %prec UNARY
346 { if (current_type)
347 {
348 /* Allow automatic dereference of classes. */
349 if ((TYPE_CODE (current_type) == TYPE_CODE_PTR)
350 && (TYPE_CODE (TYPE_TARGET_TYPE (current_type)) == TYPE_CODE_CLASS)
351 && (TYPE_CODE ($1) == TYPE_CODE_CLASS))
352 write_exp_elt_opcode (UNOP_IND);
353 }
354 write_exp_elt_opcode (UNOP_CAST);
355 write_exp_elt_type ($1);
356 write_exp_elt_opcode (UNOP_CAST);
357 current_type = $1; }
358 ;
359
360 exp : '(' exp1 ')'
361 { }
362 ;
363
364 /* Binary operators in order of decreasing precedence. */
365
366 exp : exp '*' exp
367 { write_exp_elt_opcode (BINOP_MUL); }
368 ;
369
370 exp : exp '/' exp
371 { write_exp_elt_opcode (BINOP_DIV); }
372 ;
373
374 exp : exp DIV exp
375 { write_exp_elt_opcode (BINOP_INTDIV); }
376 ;
377
378 exp : exp MOD exp
379 { write_exp_elt_opcode (BINOP_REM); }
380 ;
381
382 exp : exp '+' exp
383 { write_exp_elt_opcode (BINOP_ADD); }
384 ;
385
386 exp : exp '-' exp
387 { write_exp_elt_opcode (BINOP_SUB); }
388 ;
389
390 exp : exp LSH exp
391 { write_exp_elt_opcode (BINOP_LSH); }
392 ;
393
394 exp : exp RSH exp
395 { write_exp_elt_opcode (BINOP_RSH); }
396 ;
397
398 exp : exp '=' exp
399 { write_exp_elt_opcode (BINOP_EQUAL); }
400 ;
401
402 exp : exp NOTEQUAL exp
403 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
404 ;
405
406 exp : exp LEQ exp
407 { write_exp_elt_opcode (BINOP_LEQ); }
408 ;
409
410 exp : exp GEQ exp
411 { write_exp_elt_opcode (BINOP_GEQ); }
412 ;
413
414 exp : exp '<' exp
415 { write_exp_elt_opcode (BINOP_LESS); }
416 ;
417
418 exp : exp '>' exp
419 { write_exp_elt_opcode (BINOP_GTR); }
420 ;
421
422 exp : exp ANDAND exp
423 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
424 ;
425
426 exp : exp XOR exp
427 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
428 ;
429
430 exp : exp OR exp
431 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
432 ;
433
434 exp : exp ASSIGN exp
435 { write_exp_elt_opcode (BINOP_ASSIGN); }
436 ;
437
438 exp : TRUEKEYWORD
439 { write_exp_elt_opcode (OP_BOOL);
440 write_exp_elt_longcst ((LONGEST) $1);
441 write_exp_elt_opcode (OP_BOOL); }
442 ;
443
444 exp : FALSEKEYWORD
445 { write_exp_elt_opcode (OP_BOOL);
446 write_exp_elt_longcst ((LONGEST) $1);
447 write_exp_elt_opcode (OP_BOOL); }
448 ;
449
450 exp : INT
451 { write_exp_elt_opcode (OP_LONG);
452 write_exp_elt_type ($1.type);
453 write_exp_elt_longcst ((LONGEST)($1.val));
454 write_exp_elt_opcode (OP_LONG); }
455 ;
456
457 exp : NAME_OR_INT
458 { YYSTYPE val;
459 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
460 write_exp_elt_opcode (OP_LONG);
461 write_exp_elt_type (val.typed_val_int.type);
462 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
463 write_exp_elt_opcode (OP_LONG);
464 }
465 ;
466
467
468 exp : FLOAT
469 { write_exp_elt_opcode (OP_DOUBLE);
470 write_exp_elt_type ($1.type);
471 write_exp_elt_dblcst ($1.dval);
472 write_exp_elt_opcode (OP_DOUBLE); }
473 ;
474
475 exp : variable
476 ;
477
478 exp : VARIABLE
479 /* Already written by write_dollar_variable. */
480 ;
481
482 exp : SIZEOF '(' type ')' %prec UNARY
483 { write_exp_elt_opcode (OP_LONG);
484 write_exp_elt_type (builtin_type_int);
485 CHECK_TYPEDEF ($3);
486 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
487 write_exp_elt_opcode (OP_LONG); }
488 ;
489
490 exp : STRING
491 { /* C strings are converted into array constants with
492 an explicit null byte added at the end. Thus
493 the array upper bound is the string length.
494 There is no such thing in C as a completely empty
495 string. */
496 char *sp = $1.ptr; int count = $1.length;
497 while (count-- > 0)
498 {
499 write_exp_elt_opcode (OP_LONG);
500 write_exp_elt_type (builtin_type_char);
501 write_exp_elt_longcst ((LONGEST)(*sp++));
502 write_exp_elt_opcode (OP_LONG);
503 }
504 write_exp_elt_opcode (OP_LONG);
505 write_exp_elt_type (builtin_type_char);
506 write_exp_elt_longcst ((LONGEST)'\0');
507 write_exp_elt_opcode (OP_LONG);
508 write_exp_elt_opcode (OP_ARRAY);
509 write_exp_elt_longcst ((LONGEST) 0);
510 write_exp_elt_longcst ((LONGEST) ($1.length));
511 write_exp_elt_opcode (OP_ARRAY); }
512 ;
513
514 /* Object pascal */
515 exp : THIS
516 {
517 struct value * this_val;
518 struct type * this_type;
519 write_exp_elt_opcode (OP_THIS);
520 write_exp_elt_opcode (OP_THIS);
521 /* we need type of this */
522 this_val = value_of_this (0);
523 if (this_val)
524 this_type = this_val->type;
525 else
526 this_type = NULL;
527 if (this_type)
528 {
529 if (TYPE_CODE (this_type) == TYPE_CODE_PTR)
530 {
531 this_type = TYPE_TARGET_TYPE (this_type);
532 write_exp_elt_opcode (UNOP_IND);
533 }
534 }
535
536 current_type = this_type;
537 }
538 ;
539
540 /* end of object pascal. */
541
542 block : BLOCKNAME
543 {
544 if ($1.sym != 0)
545 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
546 else
547 {
548 struct symtab *tem =
549 lookup_symtab (copy_name ($1.stoken));
550 if (tem)
551 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
552 else
553 error ("No file or function \"%s\".",
554 copy_name ($1.stoken));
555 }
556 }
557 ;
558
559 block : block COLONCOLON name
560 { struct symbol *tem
561 = lookup_symbol (copy_name ($3), $1,
562 VAR_DOMAIN, (int *) NULL,
563 (struct symtab **) NULL);
564 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
565 error ("No function \"%s\" in specified context.",
566 copy_name ($3));
567 $$ = SYMBOL_BLOCK_VALUE (tem); }
568 ;
569
570 variable: block COLONCOLON name
571 { struct symbol *sym;
572 sym = lookup_symbol (copy_name ($3), $1,
573 VAR_DOMAIN, (int *) NULL,
574 (struct symtab **) NULL);
575 if (sym == 0)
576 error ("No symbol \"%s\" in specified context.",
577 copy_name ($3));
578
579 write_exp_elt_opcode (OP_VAR_VALUE);
580 /* block_found is set by lookup_symbol. */
581 write_exp_elt_block (block_found);
582 write_exp_elt_sym (sym);
583 write_exp_elt_opcode (OP_VAR_VALUE); }
584 ;
585
586 qualified_name: typebase COLONCOLON name
587 {
588 struct type *type = $1;
589 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
590 && TYPE_CODE (type) != TYPE_CODE_UNION)
591 error ("`%s' is not defined as an aggregate type.",
592 TYPE_NAME (type));
593
594 write_exp_elt_opcode (OP_SCOPE);
595 write_exp_elt_type (type);
596 write_exp_string ($3);
597 write_exp_elt_opcode (OP_SCOPE);
598 }
599 ;
600
601 variable: qualified_name
602 | COLONCOLON name
603 {
604 char *name = copy_name ($2);
605 struct symbol *sym;
606 struct minimal_symbol *msymbol;
607
608 sym =
609 lookup_symbol (name, (const struct block *) NULL,
610 VAR_DOMAIN, (int *) NULL,
611 (struct symtab **) NULL);
612 if (sym)
613 {
614 write_exp_elt_opcode (OP_VAR_VALUE);
615 write_exp_elt_block (NULL);
616 write_exp_elt_sym (sym);
617 write_exp_elt_opcode (OP_VAR_VALUE);
618 break;
619 }
620
621 msymbol = lookup_minimal_symbol (name, NULL, NULL);
622 if (msymbol != NULL)
623 {
624 write_exp_msymbol (msymbol,
625 lookup_function_type (builtin_type_int),
626 builtin_type_int);
627 }
628 else
629 if (!have_full_symbols () && !have_partial_symbols ())
630 error ("No symbol table is loaded. Use the \"file\" command.");
631 else
632 error ("No symbol \"%s\" in current context.", name);
633 }
634 ;
635
636 variable: name_not_typename
637 { struct symbol *sym = $1.sym;
638
639 if (sym)
640 {
641 if (symbol_read_needs_frame (sym))
642 {
643 if (innermost_block == 0 ||
644 contained_in (block_found,
645 innermost_block))
646 innermost_block = block_found;
647 }
648
649 write_exp_elt_opcode (OP_VAR_VALUE);
650 /* We want to use the selected frame, not
651 another more inner frame which happens to
652 be in the same block. */
653 write_exp_elt_block (NULL);
654 write_exp_elt_sym (sym);
655 write_exp_elt_opcode (OP_VAR_VALUE);
656 current_type = sym->type; }
657 else if ($1.is_a_field_of_this)
658 {
659 struct value * this_val;
660 struct type * this_type;
661 /* Object pascal: it hangs off of `this'. Must
662 not inadvertently convert from a method call
663 to data ref. */
664 if (innermost_block == 0 ||
665 contained_in (block_found, innermost_block))
666 innermost_block = block_found;
667 write_exp_elt_opcode (OP_THIS);
668 write_exp_elt_opcode (OP_THIS);
669 write_exp_elt_opcode (STRUCTOP_PTR);
670 write_exp_string ($1.stoken);
671 write_exp_elt_opcode (STRUCTOP_PTR);
672 /* we need type of this */
673 this_val = value_of_this (0);
674 if (this_val)
675 this_type = this_val->type;
676 else
677 this_type = NULL;
678 if (this_type)
679 current_type = lookup_struct_elt_type (
680 this_type,
681 copy_name ($1.stoken), 0);
682 else
683 current_type = NULL;
684 }
685 else
686 {
687 struct minimal_symbol *msymbol;
688 register char *arg = copy_name ($1.stoken);
689
690 msymbol =
691 lookup_minimal_symbol (arg, NULL, NULL);
692 if (msymbol != NULL)
693 {
694 write_exp_msymbol (msymbol,
695 lookup_function_type (builtin_type_int),
696 builtin_type_int);
697 }
698 else if (!have_full_symbols () && !have_partial_symbols ())
699 error ("No symbol table is loaded. Use the \"file\" command.");
700 else
701 error ("No symbol \"%s\" in current context.",
702 copy_name ($1.stoken));
703 }
704 }
705 ;
706
707
708 ptype : typebase
709 ;
710
711 /* We used to try to recognize more pointer to member types here, but
712 that didn't work (shift/reduce conflicts meant that these rules never
713 got executed). The problem is that
714 int (foo::bar::baz::bizzle)
715 is a function type but
716 int (foo::bar::baz::bizzle::*)
717 is a pointer to member type. Stroustrup loses again! */
718
719 type : ptype
720 | typebase COLONCOLON '*'
721 { $$ = lookup_member_type (builtin_type_int, $1); }
722 ;
723
724 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
725 : '^' typebase
726 { $$ = lookup_pointer_type ($2); }
727 | TYPENAME
728 { $$ = $1.type; }
729 | STRUCT name
730 { $$ = lookup_struct (copy_name ($2),
731 expression_context_block); }
732 | CLASS name
733 { $$ = lookup_struct (copy_name ($2),
734 expression_context_block); }
735 /* "const" and "volatile" are curently ignored. A type qualifier
736 after the type is handled in the ptype rule. I think these could
737 be too. */
738 ;
739
740 name : NAME { $$ = $1.stoken; }
741 | BLOCKNAME { $$ = $1.stoken; }
742 | TYPENAME { $$ = $1.stoken; }
743 | NAME_OR_INT { $$ = $1.stoken; }
744 ;
745
746 name_not_typename : NAME
747 | BLOCKNAME
748 /* These would be useful if name_not_typename was useful, but it is just
749 a fake for "variable", so these cause reduce/reduce conflicts because
750 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
751 =exp) or just an exp. If name_not_typename was ever used in an lvalue
752 context where only a name could occur, this might be useful.
753 | NAME_OR_INT
754 */
755 ;
756
757 %%
758
759 /* Take care of parsing a number (anything that starts with a digit).
760 Set yylval and return the token type; update lexptr.
761 LEN is the number of characters in it. */
762
763 /*** Needs some error checking for the float case ***/
764
765 static int
766 parse_number (p, len, parsed_float, putithere)
767 register char *p;
768 register int len;
769 int parsed_float;
770 YYSTYPE *putithere;
771 {
772 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
773 here, and we do kind of silly things like cast to unsigned. */
774 register LONGEST n = 0;
775 register LONGEST prevn = 0;
776 ULONGEST un;
777
778 register int i = 0;
779 register int c;
780 register int base = input_radix;
781 int unsigned_p = 0;
782
783 /* Number of "L" suffixes encountered. */
784 int long_p = 0;
785
786 /* We have found a "L" or "U" suffix. */
787 int found_suffix = 0;
788
789 ULONGEST high_bit;
790 struct type *signed_type;
791 struct type *unsigned_type;
792
793 if (parsed_float)
794 {
795 /* It's a float since it contains a point or an exponent. */
796 char c;
797 int num = 0; /* number of tokens scanned by scanf */
798 char saved_char = p[len];
799
800 p[len] = 0; /* null-terminate the token */
801 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
802 num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c);
803 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
804 num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c);
805 else
806 {
807 #ifdef SCANF_HAS_LONG_DOUBLE
808 num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c);
809 #else
810 /* Scan it into a double, then assign it to the long double.
811 This at least wins with values representable in the range
812 of doubles. */
813 double temp;
814 num = sscanf (p, "%lg%c", &temp,&c);
815 putithere->typed_val_float.dval = temp;
816 #endif
817 }
818 p[len] = saved_char; /* restore the input stream */
819 if (num != 1) /* check scanf found ONLY a float ... */
820 return ERROR;
821 /* See if it has `f' or `l' suffix (float or long double). */
822
823 c = tolower (p[len - 1]);
824
825 if (c == 'f')
826 putithere->typed_val_float.type = builtin_type_float;
827 else if (c == 'l')
828 putithere->typed_val_float.type = builtin_type_long_double;
829 else if (isdigit (c) || c == '.')
830 putithere->typed_val_float.type = builtin_type_double;
831 else
832 return ERROR;
833
834 return FLOAT;
835 }
836
837 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
838 if (p[0] == '0')
839 switch (p[1])
840 {
841 case 'x':
842 case 'X':
843 if (len >= 3)
844 {
845 p += 2;
846 base = 16;
847 len -= 2;
848 }
849 break;
850
851 case 't':
852 case 'T':
853 case 'd':
854 case 'D':
855 if (len >= 3)
856 {
857 p += 2;
858 base = 10;
859 len -= 2;
860 }
861 break;
862
863 default:
864 base = 8;
865 break;
866 }
867
868 while (len-- > 0)
869 {
870 c = *p++;
871 if (c >= 'A' && c <= 'Z')
872 c += 'a' - 'A';
873 if (c != 'l' && c != 'u')
874 n *= base;
875 if (c >= '0' && c <= '9')
876 {
877 if (found_suffix)
878 return ERROR;
879 n += i = c - '0';
880 }
881 else
882 {
883 if (base > 10 && c >= 'a' && c <= 'f')
884 {
885 if (found_suffix)
886 return ERROR;
887 n += i = c - 'a' + 10;
888 }
889 else if (c == 'l')
890 {
891 ++long_p;
892 found_suffix = 1;
893 }
894 else if (c == 'u')
895 {
896 unsigned_p = 1;
897 found_suffix = 1;
898 }
899 else
900 return ERROR; /* Char not a digit */
901 }
902 if (i >= base)
903 return ERROR; /* Invalid digit in this base */
904
905 /* Portably test for overflow (only works for nonzero values, so make
906 a second check for zero). FIXME: Can't we just make n and prevn
907 unsigned and avoid this? */
908 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
909 unsigned_p = 1; /* Try something unsigned */
910
911 /* Portably test for unsigned overflow.
912 FIXME: This check is wrong; for example it doesn't find overflow
913 on 0x123456789 when LONGEST is 32 bits. */
914 if (c != 'l' && c != 'u' && n != 0)
915 {
916 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
917 error ("Numeric constant too large.");
918 }
919 prevn = n;
920 }
921
922 /* An integer constant is an int, a long, or a long long. An L
923 suffix forces it to be long; an LL suffix forces it to be long
924 long. If not forced to a larger size, it gets the first type of
925 the above that it fits in. To figure out whether it fits, we
926 shift it right and see whether anything remains. Note that we
927 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
928 operation, because many compilers will warn about such a shift
929 (which always produces a zero result). Sometimes TARGET_INT_BIT
930 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
931 the case where it is we just always shift the value more than
932 once, with fewer bits each time. */
933
934 un = (ULONGEST)n >> 2;
935 if (long_p == 0
936 && (un >> (TARGET_INT_BIT - 2)) == 0)
937 {
938 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
939
940 /* A large decimal (not hex or octal) constant (between INT_MAX
941 and UINT_MAX) is a long or unsigned long, according to ANSI,
942 never an unsigned int, but this code treats it as unsigned
943 int. This probably should be fixed. GCC gives a warning on
944 such constants. */
945
946 unsigned_type = builtin_type_unsigned_int;
947 signed_type = builtin_type_int;
948 }
949 else if (long_p <= 1
950 && (un >> (TARGET_LONG_BIT - 2)) == 0)
951 {
952 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
953 unsigned_type = builtin_type_unsigned_long;
954 signed_type = builtin_type_long;
955 }
956 else
957 {
958 int shift;
959 if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT)
960 /* A long long does not fit in a LONGEST. */
961 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
962 else
963 shift = (TARGET_LONG_LONG_BIT - 1);
964 high_bit = (ULONGEST) 1 << shift;
965 unsigned_type = builtin_type_unsigned_long_long;
966 signed_type = builtin_type_long_long;
967 }
968
969 putithere->typed_val_int.val = n;
970
971 /* If the high bit of the worked out type is set then this number
972 has to be unsigned. */
973
974 if (unsigned_p || (n & high_bit))
975 {
976 putithere->typed_val_int.type = unsigned_type;
977 }
978 else
979 {
980 putithere->typed_val_int.type = signed_type;
981 }
982
983 return INT;
984 }
985
986
987 struct type_push
988 {
989 struct type *stored;
990 struct type_push *next;
991 };
992
993 static struct type_push *tp_top = NULL;
994
995 static void push_current_type ()
996 {
997 struct type_push *tpnew;
998 tpnew = (struct type_push *) malloc (sizeof (struct type_push));
999 tpnew->next = tp_top;
1000 tpnew->stored = current_type;
1001 current_type = NULL;
1002 tp_top = tpnew;
1003 }
1004
1005 static void pop_current_type ()
1006 {
1007 struct type_push *tp = tp_top;
1008 if (tp)
1009 {
1010 current_type = tp->stored;
1011 tp_top = tp->next;
1012 xfree (tp);
1013 }
1014 }
1015
1016 struct token
1017 {
1018 char *operator;
1019 int token;
1020 enum exp_opcode opcode;
1021 };
1022
1023 static const struct token tokentab3[] =
1024 {
1025 {"shr", RSH, BINOP_END},
1026 {"shl", LSH, BINOP_END},
1027 {"and", ANDAND, BINOP_END},
1028 {"div", DIV, BINOP_END},
1029 {"not", NOT, BINOP_END},
1030 {"mod", MOD, BINOP_END},
1031 {"inc", INCREMENT, BINOP_END},
1032 {"dec", DECREMENT, BINOP_END},
1033 {"xor", XOR, BINOP_END}
1034 };
1035
1036 static const struct token tokentab2[] =
1037 {
1038 {"or", OR, BINOP_END},
1039 {"<>", NOTEQUAL, BINOP_END},
1040 {"<=", LEQ, BINOP_END},
1041 {">=", GEQ, BINOP_END},
1042 {":=", ASSIGN, BINOP_END},
1043 {"::", COLONCOLON, BINOP_END} };
1044
1045 /* Allocate uppercased var */
1046 /* make an uppercased copy of tokstart */
1047 static char * uptok (tokstart, namelen)
1048 char *tokstart;
1049 int namelen;
1050 {
1051 int i;
1052 char *uptokstart = (char *)malloc(namelen+1);
1053 for (i = 0;i <= namelen;i++)
1054 {
1055 if ((tokstart[i]>='a' && tokstart[i]<='z'))
1056 uptokstart[i] = tokstart[i]-('a'-'A');
1057 else
1058 uptokstart[i] = tokstart[i];
1059 }
1060 uptokstart[namelen]='\0';
1061 return uptokstart;
1062 }
1063 /* Read one token, getting characters through lexptr. */
1064
1065
1066 static int
1067 yylex ()
1068 {
1069 int c;
1070 int namelen;
1071 unsigned int i;
1072 char *tokstart;
1073 char *uptokstart;
1074 char *tokptr;
1075 char *p;
1076 int explen, tempbufindex;
1077 static char *tempbuf;
1078 static int tempbufsize;
1079
1080 retry:
1081
1082 prev_lexptr = lexptr;
1083
1084 tokstart = lexptr;
1085 explen = strlen (lexptr);
1086 /* See if it is a special token of length 3. */
1087 if (explen > 2)
1088 for (i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++)
1089 if (strncasecmp (tokstart, tokentab3[i].operator, 3) == 0
1090 && (!isalpha (tokentab3[i].operator[0]) || explen == 3
1091 || (!isalpha (tokstart[3]) && !isdigit (tokstart[3]) && tokstart[3] != '_')))
1092 {
1093 lexptr += 3;
1094 yylval.opcode = tokentab3[i].opcode;
1095 return tokentab3[i].token;
1096 }
1097
1098 /* See if it is a special token of length 2. */
1099 if (explen > 1)
1100 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1101 if (strncasecmp (tokstart, tokentab2[i].operator, 2) == 0
1102 && (!isalpha (tokentab2[i].operator[0]) || explen == 2
1103 || (!isalpha (tokstart[2]) && !isdigit (tokstart[2]) && tokstart[2] != '_')))
1104 {
1105 lexptr += 2;
1106 yylval.opcode = tokentab2[i].opcode;
1107 return tokentab2[i].token;
1108 }
1109
1110 switch (c = *tokstart)
1111 {
1112 case 0:
1113 return 0;
1114
1115 case ' ':
1116 case '\t':
1117 case '\n':
1118 lexptr++;
1119 goto retry;
1120
1121 case '\'':
1122 /* We either have a character constant ('0' or '\177' for example)
1123 or we have a quoted symbol reference ('foo(int,int)' in object pascal
1124 for example). */
1125 lexptr++;
1126 c = *lexptr++;
1127 if (c == '\\')
1128 c = parse_escape (&lexptr);
1129 else if (c == '\'')
1130 error ("Empty character constant.");
1131
1132 yylval.typed_val_int.val = c;
1133 yylval.typed_val_int.type = builtin_type_char;
1134
1135 c = *lexptr++;
1136 if (c != '\'')
1137 {
1138 namelen = skip_quoted (tokstart) - tokstart;
1139 if (namelen > 2)
1140 {
1141 lexptr = tokstart + namelen;
1142 if (lexptr[-1] != '\'')
1143 error ("Unmatched single quote.");
1144 namelen -= 2;
1145 tokstart++;
1146 uptokstart = uptok(tokstart,namelen);
1147 goto tryname;
1148 }
1149 error ("Invalid character constant.");
1150 }
1151 return INT;
1152
1153 case '(':
1154 paren_depth++;
1155 lexptr++;
1156 return c;
1157
1158 case ')':
1159 if (paren_depth == 0)
1160 return 0;
1161 paren_depth--;
1162 lexptr++;
1163 return c;
1164
1165 case ',':
1166 if (comma_terminates && paren_depth == 0)
1167 return 0;
1168 lexptr++;
1169 return c;
1170
1171 case '.':
1172 /* Might be a floating point number. */
1173 if (lexptr[1] < '0' || lexptr[1] > '9')
1174 goto symbol; /* Nope, must be a symbol. */
1175 /* FALL THRU into number case. */
1176
1177 case '0':
1178 case '1':
1179 case '2':
1180 case '3':
1181 case '4':
1182 case '5':
1183 case '6':
1184 case '7':
1185 case '8':
1186 case '9':
1187 {
1188 /* It's a number. */
1189 int got_dot = 0, got_e = 0, toktype;
1190 register char *p = tokstart;
1191 int hex = input_radix > 10;
1192
1193 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1194 {
1195 p += 2;
1196 hex = 1;
1197 }
1198 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1199 {
1200 p += 2;
1201 hex = 0;
1202 }
1203
1204 for (;; ++p)
1205 {
1206 /* This test includes !hex because 'e' is a valid hex digit
1207 and thus does not indicate a floating point number when
1208 the radix is hex. */
1209 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1210 got_dot = got_e = 1;
1211 /* This test does not include !hex, because a '.' always indicates
1212 a decimal floating point number regardless of the radix. */
1213 else if (!got_dot && *p == '.')
1214 got_dot = 1;
1215 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1216 && (*p == '-' || *p == '+'))
1217 /* This is the sign of the exponent, not the end of the
1218 number. */
1219 continue;
1220 /* We will take any letters or digits. parse_number will
1221 complain if past the radix, or if L or U are not final. */
1222 else if ((*p < '0' || *p > '9')
1223 && ((*p < 'a' || *p > 'z')
1224 && (*p < 'A' || *p > 'Z')))
1225 break;
1226 }
1227 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1228 if (toktype == ERROR)
1229 {
1230 char *err_copy = (char *) alloca (p - tokstart + 1);
1231
1232 memcpy (err_copy, tokstart, p - tokstart);
1233 err_copy[p - tokstart] = 0;
1234 error ("Invalid number \"%s\".", err_copy);
1235 }
1236 lexptr = p;
1237 return toktype;
1238 }
1239
1240 case '+':
1241 case '-':
1242 case '*':
1243 case '/':
1244 case '|':
1245 case '&':
1246 case '^':
1247 case '~':
1248 case '!':
1249 case '@':
1250 case '<':
1251 case '>':
1252 case '[':
1253 case ']':
1254 case '?':
1255 case ':':
1256 case '=':
1257 case '{':
1258 case '}':
1259 symbol:
1260 lexptr++;
1261 return c;
1262
1263 case '"':
1264
1265 /* Build the gdb internal form of the input string in tempbuf,
1266 translating any standard C escape forms seen. Note that the
1267 buffer is null byte terminated *only* for the convenience of
1268 debugging gdb itself and printing the buffer contents when
1269 the buffer contains no embedded nulls. Gdb does not depend
1270 upon the buffer being null byte terminated, it uses the length
1271 string instead. This allows gdb to handle C strings (as well
1272 as strings in other languages) with embedded null bytes */
1273
1274 tokptr = ++tokstart;
1275 tempbufindex = 0;
1276
1277 do {
1278 /* Grow the static temp buffer if necessary, including allocating
1279 the first one on demand. */
1280 if (tempbufindex + 1 >= tempbufsize)
1281 {
1282 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1283 }
1284
1285 switch (*tokptr)
1286 {
1287 case '\0':
1288 case '"':
1289 /* Do nothing, loop will terminate. */
1290 break;
1291 case '\\':
1292 tokptr++;
1293 c = parse_escape (&tokptr);
1294 if (c == -1)
1295 {
1296 continue;
1297 }
1298 tempbuf[tempbufindex++] = c;
1299 break;
1300 default:
1301 tempbuf[tempbufindex++] = *tokptr++;
1302 break;
1303 }
1304 } while ((*tokptr != '"') && (*tokptr != '\0'));
1305 if (*tokptr++ != '"')
1306 {
1307 error ("Unterminated string in expression.");
1308 }
1309 tempbuf[tempbufindex] = '\0'; /* See note above */
1310 yylval.sval.ptr = tempbuf;
1311 yylval.sval.length = tempbufindex;
1312 lexptr = tokptr;
1313 return (STRING);
1314 }
1315
1316 if (!(c == '_' || c == '$'
1317 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1318 /* We must have come across a bad character (e.g. ';'). */
1319 error ("Invalid character '%c' in expression.", c);
1320
1321 /* It's a name. See how long it is. */
1322 namelen = 0;
1323 for (c = tokstart[namelen];
1324 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1325 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1326 {
1327 /* Template parameter lists are part of the name.
1328 FIXME: This mishandles `print $a<4&&$a>3'. */
1329 if (c == '<')
1330 {
1331 int i = namelen;
1332 int nesting_level = 1;
1333 while (tokstart[++i])
1334 {
1335 if (tokstart[i] == '<')
1336 nesting_level++;
1337 else if (tokstart[i] == '>')
1338 {
1339 if (--nesting_level == 0)
1340 break;
1341 }
1342 }
1343 if (tokstart[i] == '>')
1344 namelen = i;
1345 else
1346 break;
1347 }
1348
1349 /* do NOT uppercase internals because of registers !!! */
1350 c = tokstart[++namelen];
1351 }
1352
1353 uptokstart = uptok(tokstart,namelen);
1354
1355 /* The token "if" terminates the expression and is NOT
1356 removed from the input stream. */
1357 if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F')
1358 {
1359 return 0;
1360 }
1361
1362 lexptr += namelen;
1363
1364 tryname:
1365
1366 /* Catch specific keywords. Should be done with a data structure. */
1367 switch (namelen)
1368 {
1369 case 6:
1370 if (STREQ (uptokstart, "OBJECT"))
1371 return CLASS;
1372 if (STREQ (uptokstart, "RECORD"))
1373 return STRUCT;
1374 if (STREQ (uptokstart, "SIZEOF"))
1375 return SIZEOF;
1376 break;
1377 case 5:
1378 if (STREQ (uptokstart, "CLASS"))
1379 return CLASS;
1380 if (STREQ (uptokstart, "FALSE"))
1381 {
1382 yylval.lval = 0;
1383 return FALSEKEYWORD;
1384 }
1385 break;
1386 case 4:
1387 if (STREQ (uptokstart, "TRUE"))
1388 {
1389 yylval.lval = 1;
1390 return TRUEKEYWORD;
1391 }
1392 if (STREQ (uptokstart, "SELF"))
1393 {
1394 /* here we search for 'this' like
1395 inserted in FPC stabs debug info */
1396 static const char this_name[] = "this";
1397
1398 if (lookup_symbol (this_name, expression_context_block,
1399 VAR_DOMAIN, (int *) NULL,
1400 (struct symtab **) NULL))
1401 return THIS;
1402 }
1403 break;
1404 default:
1405 break;
1406 }
1407
1408 yylval.sval.ptr = tokstart;
1409 yylval.sval.length = namelen;
1410
1411 if (*tokstart == '$')
1412 {
1413 /* $ is the normal prefix for pascal hexadecimal values
1414 but this conflicts with the GDB use for debugger variables
1415 so in expression to enter hexadecimal values
1416 we still need to use C syntax with 0xff */
1417 write_dollar_variable (yylval.sval);
1418 return VARIABLE;
1419 }
1420
1421 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1422 functions or symtabs. If this is not so, then ...
1423 Use token-type TYPENAME for symbols that happen to be defined
1424 currently as names of types; NAME for other symbols.
1425 The caller is not constrained to care about the distinction. */
1426 {
1427 char *tmp = copy_name (yylval.sval);
1428 struct symbol *sym;
1429 int is_a_field_of_this = 0;
1430 int is_a_field = 0;
1431 int hextype;
1432
1433
1434 if (search_field && current_type)
1435 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1436 if (is_a_field)
1437 sym = NULL;
1438 else
1439 sym = lookup_symbol (tmp, expression_context_block,
1440 VAR_DOMAIN,
1441 &is_a_field_of_this,
1442 (struct symtab **) NULL);
1443 /* second chance uppercased (as Free Pascal does). */
1444 if (!sym && !is_a_field_of_this && !is_a_field)
1445 {
1446 for (i = 0; i <= namelen; i++)
1447 {
1448 if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
1449 tmp[i] -= ('a'-'A');
1450 }
1451 if (search_field && current_type)
1452 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1453 if (is_a_field)
1454 sym = NULL;
1455 else
1456 sym = lookup_symbol (tmp, expression_context_block,
1457 VAR_DOMAIN,
1458 &is_a_field_of_this,
1459 (struct symtab **) NULL);
1460 if (sym || is_a_field_of_this || is_a_field)
1461 for (i = 0; i <= namelen; i++)
1462 {
1463 if ((tokstart[i] >= 'a' && tokstart[i] <= 'z'))
1464 tokstart[i] -= ('a'-'A');
1465 }
1466 }
1467 /* Third chance Capitalized (as GPC does). */
1468 if (!sym && !is_a_field_of_this && !is_a_field)
1469 {
1470 for (i = 0; i <= namelen; i++)
1471 {
1472 if (i == 0)
1473 {
1474 if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
1475 tmp[i] -= ('a'-'A');
1476 }
1477 else
1478 if ((tmp[i] >= 'A' && tmp[i] <= 'Z'))
1479 tmp[i] -= ('A'-'a');
1480 }
1481 if (search_field && current_type)
1482 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1483 if (is_a_field)
1484 sym = NULL;
1485 else
1486 sym = lookup_symbol (tmp, expression_context_block,
1487 VAR_DOMAIN,
1488 &is_a_field_of_this,
1489 (struct symtab **) NULL);
1490 if (sym || is_a_field_of_this || is_a_field)
1491 for (i = 0; i <= namelen; i++)
1492 {
1493 if (i == 0)
1494 {
1495 if ((tokstart[i] >= 'a' && tokstart[i] <= 'z'))
1496 tokstart[i] -= ('a'-'A');
1497 }
1498 else
1499 if ((tokstart[i] >= 'A' && tokstart[i] <= 'Z'))
1500 tokstart[i] -= ('A'-'a');
1501 }
1502 }
1503
1504 if (is_a_field)
1505 {
1506 tempbuf = (char *) realloc (tempbuf, namelen + 1);
1507 strncpy (tempbuf, tokstart, namelen); tempbuf [namelen] = 0;
1508 yylval.sval.ptr = tempbuf;
1509 yylval.sval.length = namelen;
1510 return FIELDNAME;
1511 }
1512 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1513 no psymtabs (coff, xcoff, or some future change to blow away the
1514 psymtabs once once symbols are read). */
1515 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1516 lookup_symtab (tmp))
1517 {
1518 yylval.ssym.sym = sym;
1519 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1520 return BLOCKNAME;
1521 }
1522 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1523 {
1524 #if 1
1525 /* Despite the following flaw, we need to keep this code enabled.
1526 Because we can get called from check_stub_method, if we don't
1527 handle nested types then it screws many operations in any
1528 program which uses nested types. */
1529 /* In "A::x", if x is a member function of A and there happens
1530 to be a type (nested or not, since the stabs don't make that
1531 distinction) named x, then this code incorrectly thinks we
1532 are dealing with nested types rather than a member function. */
1533
1534 char *p;
1535 char *namestart;
1536 struct symbol *best_sym;
1537
1538 /* Look ahead to detect nested types. This probably should be
1539 done in the grammar, but trying seemed to introduce a lot
1540 of shift/reduce and reduce/reduce conflicts. It's possible
1541 that it could be done, though. Or perhaps a non-grammar, but
1542 less ad hoc, approach would work well. */
1543
1544 /* Since we do not currently have any way of distinguishing
1545 a nested type from a non-nested one (the stabs don't tell
1546 us whether a type is nested), we just ignore the
1547 containing type. */
1548
1549 p = lexptr;
1550 best_sym = sym;
1551 while (1)
1552 {
1553 /* Skip whitespace. */
1554 while (*p == ' ' || *p == '\t' || *p == '\n')
1555 ++p;
1556 if (*p == ':' && p[1] == ':')
1557 {
1558 /* Skip the `::'. */
1559 p += 2;
1560 /* Skip whitespace. */
1561 while (*p == ' ' || *p == '\t' || *p == '\n')
1562 ++p;
1563 namestart = p;
1564 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1565 || (*p >= 'a' && *p <= 'z')
1566 || (*p >= 'A' && *p <= 'Z'))
1567 ++p;
1568 if (p != namestart)
1569 {
1570 struct symbol *cur_sym;
1571 /* As big as the whole rest of the expression, which is
1572 at least big enough. */
1573 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1574 char *tmp1;
1575
1576 tmp1 = ncopy;
1577 memcpy (tmp1, tmp, strlen (tmp));
1578 tmp1 += strlen (tmp);
1579 memcpy (tmp1, "::", 2);
1580 tmp1 += 2;
1581 memcpy (tmp1, namestart, p - namestart);
1582 tmp1[p - namestart] = '\0';
1583 cur_sym = lookup_symbol (ncopy, expression_context_block,
1584 VAR_DOMAIN, (int *) NULL,
1585 (struct symtab **) NULL);
1586 if (cur_sym)
1587 {
1588 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1589 {
1590 best_sym = cur_sym;
1591 lexptr = p;
1592 }
1593 else
1594 break;
1595 }
1596 else
1597 break;
1598 }
1599 else
1600 break;
1601 }
1602 else
1603 break;
1604 }
1605
1606 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1607 #else /* not 0 */
1608 yylval.tsym.type = SYMBOL_TYPE (sym);
1609 #endif /* not 0 */
1610 return TYPENAME;
1611 }
1612 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1613 return TYPENAME;
1614
1615 /* Input names that aren't symbols but ARE valid hex numbers,
1616 when the input radix permits them, can be names or numbers
1617 depending on the parse. Note we support radixes > 16 here. */
1618 if (!sym &&
1619 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1620 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1621 {
1622 YYSTYPE newlval; /* Its value is ignored. */
1623 hextype = parse_number (tokstart, namelen, 0, &newlval);
1624 if (hextype == INT)
1625 {
1626 yylval.ssym.sym = sym;
1627 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1628 return NAME_OR_INT;
1629 }
1630 }
1631
1632 free(uptokstart);
1633 /* Any other kind of symbol */
1634 yylval.ssym.sym = sym;
1635 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1636 return NAME;
1637 }
1638 }
1639
1640 void
1641 yyerror (msg)
1642 char *msg;
1643 {
1644 if (prev_lexptr)
1645 lexptr = prev_lexptr;
1646
1647 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1648 }