]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/p-exp.y
* p-exp.y (exp : SIZEOF '(' exp ')'): New rule.
[thirdparty/binutils-gdb.git] / gdb / p-exp.y
1 /* YACC parser for Pascal expressions, for GDB.
2 Copyright (C) 2000, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file is derived from c-exp.y */
21
22 /* Parse a Pascal expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 /* Known bugs or limitations:
40 - pascal string operations are not supported at all.
41 - there are some problems with boolean types.
42 - Pascal type hexadecimal constants are not supported
43 because they conflict with the internal variables format.
44 Probably also lots of other problems, less well defined PM */
45 %{
46
47 #include "defs.h"
48 #include "gdb_string.h"
49 #include <ctype.h>
50 #include "expression.h"
51 #include "value.h"
52 #include "parser-defs.h"
53 #include "language.h"
54 #include "p-lang.h"
55 #include "bfd.h" /* Required by objfiles.h. */
56 #include "symfile.h" /* Required by objfiles.h. */
57 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
58 #include "block.h"
59
60 #define parse_type builtin_type (parse_gdbarch)
61
62 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
63 as well as gratuitiously global symbol names, so we can have multiple
64 yacc generated parsers in gdb. Note that these are only the variables
65 produced by yacc. If other parser generators (bison, byacc, etc) produce
66 additional global names that conflict at link time, then those parser
67 generators need to be fixed instead of adding those names to this list. */
68
69 #define yymaxdepth pascal_maxdepth
70 #define yyparse pascal_parse
71 #define yylex pascal_lex
72 #define yyerror pascal_error
73 #define yylval pascal_lval
74 #define yychar pascal_char
75 #define yydebug pascal_debug
76 #define yypact pascal_pact
77 #define yyr1 pascal_r1
78 #define yyr2 pascal_r2
79 #define yydef pascal_def
80 #define yychk pascal_chk
81 #define yypgo pascal_pgo
82 #define yyact pascal_act
83 #define yyexca pascal_exca
84 #define yyerrflag pascal_errflag
85 #define yynerrs pascal_nerrs
86 #define yyps pascal_ps
87 #define yypv pascal_pv
88 #define yys pascal_s
89 #define yy_yys pascal_yys
90 #define yystate pascal_state
91 #define yytmp pascal_tmp
92 #define yyv pascal_v
93 #define yy_yyv pascal_yyv
94 #define yyval pascal_val
95 #define yylloc pascal_lloc
96 #define yyreds pascal_reds /* With YYDEBUG defined */
97 #define yytoks pascal_toks /* With YYDEBUG defined */
98 #define yyname pascal_name /* With YYDEBUG defined */
99 #define yyrule pascal_rule /* With YYDEBUG defined */
100 #define yylhs pascal_yylhs
101 #define yylen pascal_yylen
102 #define yydefred pascal_yydefred
103 #define yydgoto pascal_yydgoto
104 #define yysindex pascal_yysindex
105 #define yyrindex pascal_yyrindex
106 #define yygindex pascal_yygindex
107 #define yytable pascal_yytable
108 #define yycheck pascal_yycheck
109
110 #ifndef YYDEBUG
111 #define YYDEBUG 1 /* Default to yydebug support */
112 #endif
113
114 #define YYFPRINTF parser_fprintf
115
116 int yyparse (void);
117
118 static int yylex (void);
119
120 void
121 yyerror (char *);
122
123 static char * uptok (char *, int);
124 %}
125
126 /* Although the yacc "value" of an expression is not used,
127 since the result is stored in the structure being created,
128 other node types do have values. */
129
130 %union
131 {
132 LONGEST lval;
133 struct {
134 LONGEST val;
135 struct type *type;
136 } typed_val_int;
137 struct {
138 DOUBLEST dval;
139 struct type *type;
140 } typed_val_float;
141 struct symbol *sym;
142 struct type *tval;
143 struct stoken sval;
144 struct ttype tsym;
145 struct symtoken ssym;
146 int voidval;
147 struct block *bval;
148 enum exp_opcode opcode;
149 struct internalvar *ivar;
150
151 struct type **tvec;
152 int *ivec;
153 }
154
155 %{
156 /* YYSTYPE gets defined by %union */
157 static int
158 parse_number (char *, int, int, YYSTYPE *);
159
160 static struct type *current_type;
161 static int leftdiv_is_integer;
162 static void push_current_type (void);
163 static void pop_current_type (void);
164 static int search_field;
165 %}
166
167 %type <voidval> exp exp1 type_exp start normal_start variable qualified_name
168 %type <tval> type typebase
169 /* %type <bval> block */
170
171 /* Fancy type parsing. */
172 %type <tval> ptype
173
174 %token <typed_val_int> INT
175 %token <typed_val_float> FLOAT
176
177 /* Both NAME and TYPENAME tokens represent symbols in the input,
178 and both convey their data as strings.
179 But a TYPENAME is a string that happens to be defined as a typedef
180 or builtin type name (such as int or char)
181 and a NAME is any other symbol.
182 Contexts where this distinction is not important can use the
183 nonterminal "name", which matches either NAME or TYPENAME. */
184
185 %token <sval> STRING
186 %token <sval> FIELDNAME
187 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
188 %token <tsym> TYPENAME
189 %type <sval> name
190 %type <ssym> name_not_typename
191
192 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
193 but which would parse as a valid number in the current input radix.
194 E.g. "c" when input_radix==16. Depending on the parse, it will be
195 turned into a name or into a number. */
196
197 %token <ssym> NAME_OR_INT
198
199 %token STRUCT CLASS SIZEOF COLONCOLON
200 %token ERROR
201
202 /* Special type cases, put in to allow the parser to distinguish different
203 legal basetypes. */
204
205 %token <voidval> VARIABLE
206
207
208 /* Object pascal */
209 %token THIS
210 %token <lval> TRUEKEYWORD FALSEKEYWORD
211
212 %left ','
213 %left ABOVE_COMMA
214 %right ASSIGN
215 %left NOT
216 %left OR
217 %left XOR
218 %left ANDAND
219 %left '=' NOTEQUAL
220 %left '<' '>' LEQ GEQ
221 %left LSH RSH DIV MOD
222 %left '@'
223 %left '+' '-'
224 %left '*' '/'
225 %right UNARY INCREMENT DECREMENT
226 %right ARROW '.' '[' '('
227 %left '^'
228 %token <ssym> BLOCKNAME
229 %type <bval> block
230 %left COLONCOLON
231
232 \f
233 %%
234
235 start : { current_type = NULL;
236 search_field = 0;
237 leftdiv_is_integer = 0;
238 }
239 normal_start {}
240 ;
241
242 normal_start :
243 exp1
244 | type_exp
245 ;
246
247 type_exp: type
248 { write_exp_elt_opcode(OP_TYPE);
249 write_exp_elt_type($1);
250 write_exp_elt_opcode(OP_TYPE);
251 current_type = $1; } ;
252
253 /* Expressions, including the comma operator. */
254 exp1 : exp
255 | exp1 ',' exp
256 { write_exp_elt_opcode (BINOP_COMMA); }
257 ;
258
259 /* Expressions, not including the comma operator. */
260 exp : exp '^' %prec UNARY
261 { write_exp_elt_opcode (UNOP_IND);
262 if (current_type)
263 current_type = TYPE_TARGET_TYPE (current_type); }
264 ;
265
266 exp : '@' exp %prec UNARY
267 { write_exp_elt_opcode (UNOP_ADDR);
268 if (current_type)
269 current_type = TYPE_POINTER_TYPE (current_type); }
270 ;
271
272 exp : '-' exp %prec UNARY
273 { write_exp_elt_opcode (UNOP_NEG); }
274 ;
275
276 exp : NOT exp %prec UNARY
277 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
278 ;
279
280 exp : INCREMENT '(' exp ')' %prec UNARY
281 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
282 ;
283
284 exp : DECREMENT '(' exp ')' %prec UNARY
285 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
286 ;
287
288 exp : exp '.' { search_field = 1; }
289 FIELDNAME
290 /* name */
291 { write_exp_elt_opcode (STRUCTOP_STRUCT);
292 write_exp_string ($4);
293 write_exp_elt_opcode (STRUCTOP_STRUCT);
294 search_field = 0;
295 if (current_type)
296 { while (TYPE_CODE (current_type) == TYPE_CODE_PTR)
297 current_type = TYPE_TARGET_TYPE (current_type);
298 current_type = lookup_struct_elt_type (
299 current_type, $4.ptr, 0); };
300 } ;
301 exp : exp '['
302 /* We need to save the current_type value */
303 { char *arrayname;
304 int arrayfieldindex;
305 arrayfieldindex = is_pascal_string_type (
306 current_type, NULL, NULL,
307 NULL, NULL, &arrayname);
308 if (arrayfieldindex)
309 {
310 struct stoken stringsval;
311 stringsval.ptr = alloca (strlen (arrayname) + 1);
312 stringsval.length = strlen (arrayname);
313 strcpy (stringsval.ptr, arrayname);
314 current_type = TYPE_FIELD_TYPE (current_type,
315 arrayfieldindex - 1);
316 write_exp_elt_opcode (STRUCTOP_STRUCT);
317 write_exp_string (stringsval);
318 write_exp_elt_opcode (STRUCTOP_STRUCT);
319 }
320 push_current_type (); }
321 exp1 ']'
322 { pop_current_type ();
323 write_exp_elt_opcode (BINOP_SUBSCRIPT);
324 if (current_type)
325 current_type = TYPE_TARGET_TYPE (current_type); }
326 ;
327
328 exp : exp '('
329 /* This is to save the value of arglist_len
330 being accumulated by an outer function call. */
331 { push_current_type ();
332 start_arglist (); }
333 arglist ')' %prec ARROW
334 { write_exp_elt_opcode (OP_FUNCALL);
335 write_exp_elt_longcst ((LONGEST) end_arglist ());
336 write_exp_elt_opcode (OP_FUNCALL);
337 pop_current_type ();
338 if (current_type)
339 current_type = TYPE_TARGET_TYPE (current_type);
340 }
341 ;
342
343 arglist :
344 | exp
345 { arglist_len = 1; }
346 | arglist ',' exp %prec ABOVE_COMMA
347 { arglist_len++; }
348 ;
349
350 exp : type '(' exp ')' %prec UNARY
351 { if (current_type)
352 {
353 /* Allow automatic dereference of classes. */
354 if ((TYPE_CODE (current_type) == TYPE_CODE_PTR)
355 && (TYPE_CODE (TYPE_TARGET_TYPE (current_type)) == TYPE_CODE_CLASS)
356 && (TYPE_CODE ($1) == TYPE_CODE_CLASS))
357 write_exp_elt_opcode (UNOP_IND);
358 }
359 write_exp_elt_opcode (UNOP_CAST);
360 write_exp_elt_type ($1);
361 write_exp_elt_opcode (UNOP_CAST);
362 current_type = $1; }
363 ;
364
365 exp : '(' exp1 ')'
366 { }
367 ;
368
369 /* Binary operators in order of decreasing precedence. */
370
371 exp : exp '*' exp
372 { write_exp_elt_opcode (BINOP_MUL); }
373 ;
374
375 exp : exp '/' {
376 if (current_type && is_integral_type (current_type))
377 leftdiv_is_integer = 1;
378 }
379 exp
380 {
381 if (leftdiv_is_integer && current_type
382 && is_integral_type (current_type))
383 {
384 write_exp_elt_opcode (UNOP_CAST);
385 write_exp_elt_type (parse_type->builtin_long_double);
386 current_type = parse_type->builtin_long_double;
387 write_exp_elt_opcode (UNOP_CAST);
388 leftdiv_is_integer = 0;
389 }
390
391 write_exp_elt_opcode (BINOP_DIV);
392 }
393 ;
394
395 exp : exp DIV exp
396 { write_exp_elt_opcode (BINOP_INTDIV); }
397 ;
398
399 exp : exp MOD exp
400 { write_exp_elt_opcode (BINOP_REM); }
401 ;
402
403 exp : exp '+' exp
404 { write_exp_elt_opcode (BINOP_ADD); }
405 ;
406
407 exp : exp '-' exp
408 { write_exp_elt_opcode (BINOP_SUB); }
409 ;
410
411 exp : exp LSH exp
412 { write_exp_elt_opcode (BINOP_LSH); }
413 ;
414
415 exp : exp RSH exp
416 { write_exp_elt_opcode (BINOP_RSH); }
417 ;
418
419 exp : exp '=' exp
420 { write_exp_elt_opcode (BINOP_EQUAL);
421 current_type = parse_type->builtin_bool;
422 }
423 ;
424
425 exp : exp NOTEQUAL exp
426 { write_exp_elt_opcode (BINOP_NOTEQUAL);
427 current_type = parse_type->builtin_bool;
428 }
429 ;
430
431 exp : exp LEQ exp
432 { write_exp_elt_opcode (BINOP_LEQ);
433 current_type = parse_type->builtin_bool;
434 }
435 ;
436
437 exp : exp GEQ exp
438 { write_exp_elt_opcode (BINOP_GEQ);
439 current_type = parse_type->builtin_bool;
440 }
441 ;
442
443 exp : exp '<' exp
444 { write_exp_elt_opcode (BINOP_LESS);
445 current_type = parse_type->builtin_bool;
446 }
447 ;
448
449 exp : exp '>' exp
450 { write_exp_elt_opcode (BINOP_GTR);
451 current_type = parse_type->builtin_bool;
452 }
453 ;
454
455 exp : exp ANDAND exp
456 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
457 ;
458
459 exp : exp XOR exp
460 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
461 ;
462
463 exp : exp OR exp
464 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
465 ;
466
467 exp : exp ASSIGN exp
468 { write_exp_elt_opcode (BINOP_ASSIGN); }
469 ;
470
471 exp : TRUEKEYWORD
472 { write_exp_elt_opcode (OP_BOOL);
473 write_exp_elt_longcst ((LONGEST) $1);
474 current_type = parse_type->builtin_bool;
475 write_exp_elt_opcode (OP_BOOL); }
476 ;
477
478 exp : FALSEKEYWORD
479 { write_exp_elt_opcode (OP_BOOL);
480 write_exp_elt_longcst ((LONGEST) $1);
481 current_type = parse_type->builtin_bool;
482 write_exp_elt_opcode (OP_BOOL); }
483 ;
484
485 exp : INT
486 { write_exp_elt_opcode (OP_LONG);
487 write_exp_elt_type ($1.type);
488 current_type = $1.type;
489 write_exp_elt_longcst ((LONGEST)($1.val));
490 write_exp_elt_opcode (OP_LONG); }
491 ;
492
493 exp : NAME_OR_INT
494 { YYSTYPE val;
495 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
496 write_exp_elt_opcode (OP_LONG);
497 write_exp_elt_type (val.typed_val_int.type);
498 current_type = val.typed_val_int.type;
499 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
500 write_exp_elt_opcode (OP_LONG);
501 }
502 ;
503
504
505 exp : FLOAT
506 { write_exp_elt_opcode (OP_DOUBLE);
507 write_exp_elt_type ($1.type);
508 current_type = $1.type;
509 write_exp_elt_dblcst ($1.dval);
510 write_exp_elt_opcode (OP_DOUBLE); }
511 ;
512
513 exp : variable
514 ;
515
516 exp : VARIABLE
517 /* Already written by write_dollar_variable. */
518 ;
519
520 exp : SIZEOF '(' type ')' %prec UNARY
521 { write_exp_elt_opcode (OP_LONG);
522 write_exp_elt_type (parse_type->builtin_int);
523 CHECK_TYPEDEF ($3);
524 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
525 write_exp_elt_opcode (OP_LONG); }
526 ;
527
528 exp : SIZEOF '(' exp ')' %prec UNARY
529 { write_exp_elt_opcode (UNOP_SIZEOF); }
530
531 exp : STRING
532 { /* C strings are converted into array constants with
533 an explicit null byte added at the end. Thus
534 the array upper bound is the string length.
535 There is no such thing in C as a completely empty
536 string. */
537 char *sp = $1.ptr; int count = $1.length;
538 while (count-- > 0)
539 {
540 write_exp_elt_opcode (OP_LONG);
541 write_exp_elt_type (parse_type->builtin_char);
542 write_exp_elt_longcst ((LONGEST)(*sp++));
543 write_exp_elt_opcode (OP_LONG);
544 }
545 write_exp_elt_opcode (OP_LONG);
546 write_exp_elt_type (parse_type->builtin_char);
547 write_exp_elt_longcst ((LONGEST)'\0');
548 write_exp_elt_opcode (OP_LONG);
549 write_exp_elt_opcode (OP_ARRAY);
550 write_exp_elt_longcst ((LONGEST) 0);
551 write_exp_elt_longcst ((LONGEST) ($1.length));
552 write_exp_elt_opcode (OP_ARRAY); }
553 ;
554
555 /* Object pascal */
556 exp : THIS
557 {
558 struct value * this_val;
559 struct type * this_type;
560 write_exp_elt_opcode (OP_THIS);
561 write_exp_elt_opcode (OP_THIS);
562 /* we need type of this */
563 this_val = value_of_this (0);
564 if (this_val)
565 this_type = value_type (this_val);
566 else
567 this_type = NULL;
568 if (this_type)
569 {
570 if (TYPE_CODE (this_type) == TYPE_CODE_PTR)
571 {
572 this_type = TYPE_TARGET_TYPE (this_type);
573 write_exp_elt_opcode (UNOP_IND);
574 }
575 }
576
577 current_type = this_type;
578 }
579 ;
580
581 /* end of object pascal. */
582
583 block : BLOCKNAME
584 {
585 if ($1.sym != 0)
586 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
587 else
588 {
589 struct symtab *tem =
590 lookup_symtab (copy_name ($1.stoken));
591 if (tem)
592 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
593 else
594 error ("No file or function \"%s\".",
595 copy_name ($1.stoken));
596 }
597 }
598 ;
599
600 block : block COLONCOLON name
601 { struct symbol *tem
602 = lookup_symbol (copy_name ($3), $1,
603 VAR_DOMAIN, (int *) NULL);
604 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
605 error ("No function \"%s\" in specified context.",
606 copy_name ($3));
607 $$ = SYMBOL_BLOCK_VALUE (tem); }
608 ;
609
610 variable: block COLONCOLON name
611 { struct symbol *sym;
612 sym = lookup_symbol (copy_name ($3), $1,
613 VAR_DOMAIN, (int *) NULL);
614 if (sym == 0)
615 error ("No symbol \"%s\" in specified context.",
616 copy_name ($3));
617
618 write_exp_elt_opcode (OP_VAR_VALUE);
619 /* block_found is set by lookup_symbol. */
620 write_exp_elt_block (block_found);
621 write_exp_elt_sym (sym);
622 write_exp_elt_opcode (OP_VAR_VALUE); }
623 ;
624
625 qualified_name: typebase COLONCOLON name
626 {
627 struct type *type = $1;
628 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
629 && TYPE_CODE (type) != TYPE_CODE_UNION)
630 error ("`%s' is not defined as an aggregate type.",
631 TYPE_NAME (type));
632
633 write_exp_elt_opcode (OP_SCOPE);
634 write_exp_elt_type (type);
635 write_exp_string ($3);
636 write_exp_elt_opcode (OP_SCOPE);
637 }
638 ;
639
640 variable: qualified_name
641 | COLONCOLON name
642 {
643 char *name = copy_name ($2);
644 struct symbol *sym;
645 struct minimal_symbol *msymbol;
646
647 sym =
648 lookup_symbol (name, (const struct block *) NULL,
649 VAR_DOMAIN, (int *) NULL);
650 if (sym)
651 {
652 write_exp_elt_opcode (OP_VAR_VALUE);
653 write_exp_elt_block (NULL);
654 write_exp_elt_sym (sym);
655 write_exp_elt_opcode (OP_VAR_VALUE);
656 break;
657 }
658
659 msymbol = lookup_minimal_symbol (name, NULL, NULL);
660 if (msymbol != NULL)
661 write_exp_msymbol (msymbol);
662 else if (!have_full_symbols () && !have_partial_symbols ())
663 error ("No symbol table is loaded. Use the \"file\" command.");
664 else
665 error ("No symbol \"%s\" in current context.", name);
666 }
667 ;
668
669 variable: name_not_typename
670 { struct symbol *sym = $1.sym;
671
672 if (sym)
673 {
674 if (symbol_read_needs_frame (sym))
675 {
676 if (innermost_block == 0
677 || contained_in (block_found,
678 innermost_block))
679 innermost_block = block_found;
680 }
681
682 write_exp_elt_opcode (OP_VAR_VALUE);
683 /* We want to use the selected frame, not
684 another more inner frame which happens to
685 be in the same block. */
686 write_exp_elt_block (NULL);
687 write_exp_elt_sym (sym);
688 write_exp_elt_opcode (OP_VAR_VALUE);
689 current_type = sym->type; }
690 else if ($1.is_a_field_of_this)
691 {
692 struct value * this_val;
693 struct type * this_type;
694 /* Object pascal: it hangs off of `this'. Must
695 not inadvertently convert from a method call
696 to data ref. */
697 if (innermost_block == 0
698 || contained_in (block_found,
699 innermost_block))
700 innermost_block = block_found;
701 write_exp_elt_opcode (OP_THIS);
702 write_exp_elt_opcode (OP_THIS);
703 write_exp_elt_opcode (STRUCTOP_PTR);
704 write_exp_string ($1.stoken);
705 write_exp_elt_opcode (STRUCTOP_PTR);
706 /* we need type of this */
707 this_val = value_of_this (0);
708 if (this_val)
709 this_type = value_type (this_val);
710 else
711 this_type = NULL;
712 if (this_type)
713 current_type = lookup_struct_elt_type (
714 this_type,
715 copy_name ($1.stoken), 0);
716 else
717 current_type = NULL;
718 }
719 else
720 {
721 struct minimal_symbol *msymbol;
722 char *arg = copy_name ($1.stoken);
723
724 msymbol =
725 lookup_minimal_symbol (arg, NULL, NULL);
726 if (msymbol != NULL)
727 write_exp_msymbol (msymbol);
728 else if (!have_full_symbols () && !have_partial_symbols ())
729 error ("No symbol table is loaded. Use the \"file\" command.");
730 else
731 error ("No symbol \"%s\" in current context.",
732 copy_name ($1.stoken));
733 }
734 }
735 ;
736
737
738 ptype : typebase
739 ;
740
741 /* We used to try to recognize more pointer to member types here, but
742 that didn't work (shift/reduce conflicts meant that these rules never
743 got executed). The problem is that
744 int (foo::bar::baz::bizzle)
745 is a function type but
746 int (foo::bar::baz::bizzle::*)
747 is a pointer to member type. Stroustrup loses again! */
748
749 type : ptype
750 ;
751
752 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
753 : '^' typebase
754 { $$ = lookup_pointer_type ($2); }
755 | TYPENAME
756 { $$ = $1.type; }
757 | STRUCT name
758 { $$ = lookup_struct (copy_name ($2),
759 expression_context_block); }
760 | CLASS name
761 { $$ = lookup_struct (copy_name ($2),
762 expression_context_block); }
763 /* "const" and "volatile" are curently ignored. A type qualifier
764 after the type is handled in the ptype rule. I think these could
765 be too. */
766 ;
767
768 name : NAME { $$ = $1.stoken; }
769 | BLOCKNAME { $$ = $1.stoken; }
770 | TYPENAME { $$ = $1.stoken; }
771 | NAME_OR_INT { $$ = $1.stoken; }
772 ;
773
774 name_not_typename : NAME
775 | BLOCKNAME
776 /* These would be useful if name_not_typename was useful, but it is just
777 a fake for "variable", so these cause reduce/reduce conflicts because
778 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
779 =exp) or just an exp. If name_not_typename was ever used in an lvalue
780 context where only a name could occur, this might be useful.
781 | NAME_OR_INT
782 */
783 ;
784
785 %%
786
787 /* Take care of parsing a number (anything that starts with a digit).
788 Set yylval and return the token type; update lexptr.
789 LEN is the number of characters in it. */
790
791 /*** Needs some error checking for the float case ***/
792
793 static int
794 parse_number (p, len, parsed_float, putithere)
795 char *p;
796 int len;
797 int parsed_float;
798 YYSTYPE *putithere;
799 {
800 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
801 here, and we do kind of silly things like cast to unsigned. */
802 LONGEST n = 0;
803 LONGEST prevn = 0;
804 ULONGEST un;
805
806 int i = 0;
807 int c;
808 int base = input_radix;
809 int unsigned_p = 0;
810
811 /* Number of "L" suffixes encountered. */
812 int long_p = 0;
813
814 /* We have found a "L" or "U" suffix. */
815 int found_suffix = 0;
816
817 ULONGEST high_bit;
818 struct type *signed_type;
819 struct type *unsigned_type;
820
821 if (parsed_float)
822 {
823 /* It's a float since it contains a point or an exponent. */
824 char c;
825 int num = 0; /* number of tokens scanned by scanf */
826 char saved_char = p[len];
827
828 p[len] = 0; /* null-terminate the token */
829 num = sscanf (p, "%" DOUBLEST_SCAN_FORMAT "%c",
830 &putithere->typed_val_float.dval, &c);
831 p[len] = saved_char; /* restore the input stream */
832 if (num != 1) /* check scanf found ONLY a float ... */
833 return ERROR;
834 /* See if it has `f' or `l' suffix (float or long double). */
835
836 c = tolower (p[len - 1]);
837
838 if (c == 'f')
839 putithere->typed_val_float.type = parse_type->builtin_float;
840 else if (c == 'l')
841 putithere->typed_val_float.type = parse_type->builtin_long_double;
842 else if (isdigit (c) || c == '.')
843 putithere->typed_val_float.type = parse_type->builtin_double;
844 else
845 return ERROR;
846
847 return FLOAT;
848 }
849
850 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
851 if (p[0] == '0')
852 switch (p[1])
853 {
854 case 'x':
855 case 'X':
856 if (len >= 3)
857 {
858 p += 2;
859 base = 16;
860 len -= 2;
861 }
862 break;
863
864 case 't':
865 case 'T':
866 case 'd':
867 case 'D':
868 if (len >= 3)
869 {
870 p += 2;
871 base = 10;
872 len -= 2;
873 }
874 break;
875
876 default:
877 base = 8;
878 break;
879 }
880
881 while (len-- > 0)
882 {
883 c = *p++;
884 if (c >= 'A' && c <= 'Z')
885 c += 'a' - 'A';
886 if (c != 'l' && c != 'u')
887 n *= base;
888 if (c >= '0' && c <= '9')
889 {
890 if (found_suffix)
891 return ERROR;
892 n += i = c - '0';
893 }
894 else
895 {
896 if (base > 10 && c >= 'a' && c <= 'f')
897 {
898 if (found_suffix)
899 return ERROR;
900 n += i = c - 'a' + 10;
901 }
902 else if (c == 'l')
903 {
904 ++long_p;
905 found_suffix = 1;
906 }
907 else if (c == 'u')
908 {
909 unsigned_p = 1;
910 found_suffix = 1;
911 }
912 else
913 return ERROR; /* Char not a digit */
914 }
915 if (i >= base)
916 return ERROR; /* Invalid digit in this base */
917
918 /* Portably test for overflow (only works for nonzero values, so make
919 a second check for zero). FIXME: Can't we just make n and prevn
920 unsigned and avoid this? */
921 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
922 unsigned_p = 1; /* Try something unsigned */
923
924 /* Portably test for unsigned overflow.
925 FIXME: This check is wrong; for example it doesn't find overflow
926 on 0x123456789 when LONGEST is 32 bits. */
927 if (c != 'l' && c != 'u' && n != 0)
928 {
929 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
930 error ("Numeric constant too large.");
931 }
932 prevn = n;
933 }
934
935 /* An integer constant is an int, a long, or a long long. An L
936 suffix forces it to be long; an LL suffix forces it to be long
937 long. If not forced to a larger size, it gets the first type of
938 the above that it fits in. To figure out whether it fits, we
939 shift it right and see whether anything remains. Note that we
940 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
941 operation, because many compilers will warn about such a shift
942 (which always produces a zero result). Sometimes gdbarch_int_bit
943 or gdbarch_long_bit will be that big, sometimes not. To deal with
944 the case where it is we just always shift the value more than
945 once, with fewer bits each time. */
946
947 un = (ULONGEST)n >> 2;
948 if (long_p == 0
949 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
950 {
951 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
952
953 /* A large decimal (not hex or octal) constant (between INT_MAX
954 and UINT_MAX) is a long or unsigned long, according to ANSI,
955 never an unsigned int, but this code treats it as unsigned
956 int. This probably should be fixed. GCC gives a warning on
957 such constants. */
958
959 unsigned_type = parse_type->builtin_unsigned_int;
960 signed_type = parse_type->builtin_int;
961 }
962 else if (long_p <= 1
963 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
964 {
965 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
966 unsigned_type = parse_type->builtin_unsigned_long;
967 signed_type = parse_type->builtin_long;
968 }
969 else
970 {
971 int shift;
972 if (sizeof (ULONGEST) * HOST_CHAR_BIT
973 < gdbarch_long_long_bit (parse_gdbarch))
974 /* A long long does not fit in a LONGEST. */
975 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
976 else
977 shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
978 high_bit = (ULONGEST) 1 << shift;
979 unsigned_type = parse_type->builtin_unsigned_long_long;
980 signed_type = parse_type->builtin_long_long;
981 }
982
983 putithere->typed_val_int.val = n;
984
985 /* If the high bit of the worked out type is set then this number
986 has to be unsigned. */
987
988 if (unsigned_p || (n & high_bit))
989 {
990 putithere->typed_val_int.type = unsigned_type;
991 }
992 else
993 {
994 putithere->typed_val_int.type = signed_type;
995 }
996
997 return INT;
998 }
999
1000
1001 struct type_push
1002 {
1003 struct type *stored;
1004 struct type_push *next;
1005 };
1006
1007 static struct type_push *tp_top = NULL;
1008
1009 static void
1010 push_current_type (void)
1011 {
1012 struct type_push *tpnew;
1013 tpnew = (struct type_push *) malloc (sizeof (struct type_push));
1014 tpnew->next = tp_top;
1015 tpnew->stored = current_type;
1016 current_type = NULL;
1017 tp_top = tpnew;
1018 }
1019
1020 static void
1021 pop_current_type (void)
1022 {
1023 struct type_push *tp = tp_top;
1024 if (tp)
1025 {
1026 current_type = tp->stored;
1027 tp_top = tp->next;
1028 free (tp);
1029 }
1030 }
1031
1032 struct token
1033 {
1034 char *operator;
1035 int token;
1036 enum exp_opcode opcode;
1037 };
1038
1039 static const struct token tokentab3[] =
1040 {
1041 {"shr", RSH, BINOP_END},
1042 {"shl", LSH, BINOP_END},
1043 {"and", ANDAND, BINOP_END},
1044 {"div", DIV, BINOP_END},
1045 {"not", NOT, BINOP_END},
1046 {"mod", MOD, BINOP_END},
1047 {"inc", INCREMENT, BINOP_END},
1048 {"dec", DECREMENT, BINOP_END},
1049 {"xor", XOR, BINOP_END}
1050 };
1051
1052 static const struct token tokentab2[] =
1053 {
1054 {"or", OR, BINOP_END},
1055 {"<>", NOTEQUAL, BINOP_END},
1056 {"<=", LEQ, BINOP_END},
1057 {">=", GEQ, BINOP_END},
1058 {":=", ASSIGN, BINOP_END},
1059 {"::", COLONCOLON, BINOP_END} };
1060
1061 /* Allocate uppercased var */
1062 /* make an uppercased copy of tokstart */
1063 static char * uptok (tokstart, namelen)
1064 char *tokstart;
1065 int namelen;
1066 {
1067 int i;
1068 char *uptokstart = (char *)malloc(namelen+1);
1069 for (i = 0;i <= namelen;i++)
1070 {
1071 if ((tokstart[i]>='a' && tokstart[i]<='z'))
1072 uptokstart[i] = tokstart[i]-('a'-'A');
1073 else
1074 uptokstart[i] = tokstart[i];
1075 }
1076 uptokstart[namelen]='\0';
1077 return uptokstart;
1078 }
1079 /* Read one token, getting characters through lexptr. */
1080
1081
1082 static int
1083 yylex ()
1084 {
1085 int c;
1086 int namelen;
1087 unsigned int i;
1088 char *tokstart;
1089 char *uptokstart;
1090 char *tokptr;
1091 int explen, tempbufindex;
1092 static char *tempbuf;
1093 static int tempbufsize;
1094
1095 retry:
1096
1097 prev_lexptr = lexptr;
1098
1099 tokstart = lexptr;
1100 explen = strlen (lexptr);
1101 /* See if it is a special token of length 3. */
1102 if (explen > 2)
1103 for (i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++)
1104 if (strncasecmp (tokstart, tokentab3[i].operator, 3) == 0
1105 && (!isalpha (tokentab3[i].operator[0]) || explen == 3
1106 || (!isalpha (tokstart[3]) && !isdigit (tokstart[3]) && tokstart[3] != '_')))
1107 {
1108 lexptr += 3;
1109 yylval.opcode = tokentab3[i].opcode;
1110 return tokentab3[i].token;
1111 }
1112
1113 /* See if it is a special token of length 2. */
1114 if (explen > 1)
1115 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1116 if (strncasecmp (tokstart, tokentab2[i].operator, 2) == 0
1117 && (!isalpha (tokentab2[i].operator[0]) || explen == 2
1118 || (!isalpha (tokstart[2]) && !isdigit (tokstart[2]) && tokstart[2] != '_')))
1119 {
1120 lexptr += 2;
1121 yylval.opcode = tokentab2[i].opcode;
1122 return tokentab2[i].token;
1123 }
1124
1125 switch (c = *tokstart)
1126 {
1127 case 0:
1128 return 0;
1129
1130 case ' ':
1131 case '\t':
1132 case '\n':
1133 lexptr++;
1134 goto retry;
1135
1136 case '\'':
1137 /* We either have a character constant ('0' or '\177' for example)
1138 or we have a quoted symbol reference ('foo(int,int)' in object pascal
1139 for example). */
1140 lexptr++;
1141 c = *lexptr++;
1142 if (c == '\\')
1143 c = parse_escape (parse_gdbarch, &lexptr);
1144 else if (c == '\'')
1145 error ("Empty character constant.");
1146
1147 yylval.typed_val_int.val = c;
1148 yylval.typed_val_int.type = parse_type->builtin_char;
1149
1150 c = *lexptr++;
1151 if (c != '\'')
1152 {
1153 namelen = skip_quoted (tokstart) - tokstart;
1154 if (namelen > 2)
1155 {
1156 lexptr = tokstart + namelen;
1157 if (lexptr[-1] != '\'')
1158 error ("Unmatched single quote.");
1159 namelen -= 2;
1160 tokstart++;
1161 uptokstart = uptok(tokstart,namelen);
1162 goto tryname;
1163 }
1164 error ("Invalid character constant.");
1165 }
1166 return INT;
1167
1168 case '(':
1169 paren_depth++;
1170 lexptr++;
1171 return c;
1172
1173 case ')':
1174 if (paren_depth == 0)
1175 return 0;
1176 paren_depth--;
1177 lexptr++;
1178 return c;
1179
1180 case ',':
1181 if (comma_terminates && paren_depth == 0)
1182 return 0;
1183 lexptr++;
1184 return c;
1185
1186 case '.':
1187 /* Might be a floating point number. */
1188 if (lexptr[1] < '0' || lexptr[1] > '9')
1189 goto symbol; /* Nope, must be a symbol. */
1190 /* FALL THRU into number case. */
1191
1192 case '0':
1193 case '1':
1194 case '2':
1195 case '3':
1196 case '4':
1197 case '5':
1198 case '6':
1199 case '7':
1200 case '8':
1201 case '9':
1202 {
1203 /* It's a number. */
1204 int got_dot = 0, got_e = 0, toktype;
1205 char *p = tokstart;
1206 int hex = input_radix > 10;
1207
1208 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1209 {
1210 p += 2;
1211 hex = 1;
1212 }
1213 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1214 {
1215 p += 2;
1216 hex = 0;
1217 }
1218
1219 for (;; ++p)
1220 {
1221 /* This test includes !hex because 'e' is a valid hex digit
1222 and thus does not indicate a floating point number when
1223 the radix is hex. */
1224 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1225 got_dot = got_e = 1;
1226 /* This test does not include !hex, because a '.' always indicates
1227 a decimal floating point number regardless of the radix. */
1228 else if (!got_dot && *p == '.')
1229 got_dot = 1;
1230 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1231 && (*p == '-' || *p == '+'))
1232 /* This is the sign of the exponent, not the end of the
1233 number. */
1234 continue;
1235 /* We will take any letters or digits. parse_number will
1236 complain if past the radix, or if L or U are not final. */
1237 else if ((*p < '0' || *p > '9')
1238 && ((*p < 'a' || *p > 'z')
1239 && (*p < 'A' || *p > 'Z')))
1240 break;
1241 }
1242 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1243 if (toktype == ERROR)
1244 {
1245 char *err_copy = (char *) alloca (p - tokstart + 1);
1246
1247 memcpy (err_copy, tokstart, p - tokstart);
1248 err_copy[p - tokstart] = 0;
1249 error ("Invalid number \"%s\".", err_copy);
1250 }
1251 lexptr = p;
1252 return toktype;
1253 }
1254
1255 case '+':
1256 case '-':
1257 case '*':
1258 case '/':
1259 case '|':
1260 case '&':
1261 case '^':
1262 case '~':
1263 case '!':
1264 case '@':
1265 case '<':
1266 case '>':
1267 case '[':
1268 case ']':
1269 case '?':
1270 case ':':
1271 case '=':
1272 case '{':
1273 case '}':
1274 symbol:
1275 lexptr++;
1276 return c;
1277
1278 case '"':
1279
1280 /* Build the gdb internal form of the input string in tempbuf,
1281 translating any standard C escape forms seen. Note that the
1282 buffer is null byte terminated *only* for the convenience of
1283 debugging gdb itself and printing the buffer contents when
1284 the buffer contains no embedded nulls. Gdb does not depend
1285 upon the buffer being null byte terminated, it uses the length
1286 string instead. This allows gdb to handle C strings (as well
1287 as strings in other languages) with embedded null bytes */
1288
1289 tokptr = ++tokstart;
1290 tempbufindex = 0;
1291
1292 do {
1293 /* Grow the static temp buffer if necessary, including allocating
1294 the first one on demand. */
1295 if (tempbufindex + 1 >= tempbufsize)
1296 {
1297 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1298 }
1299
1300 switch (*tokptr)
1301 {
1302 case '\0':
1303 case '"':
1304 /* Do nothing, loop will terminate. */
1305 break;
1306 case '\\':
1307 tokptr++;
1308 c = parse_escape (parse_gdbarch, &tokptr);
1309 if (c == -1)
1310 {
1311 continue;
1312 }
1313 tempbuf[tempbufindex++] = c;
1314 break;
1315 default:
1316 tempbuf[tempbufindex++] = *tokptr++;
1317 break;
1318 }
1319 } while ((*tokptr != '"') && (*tokptr != '\0'));
1320 if (*tokptr++ != '"')
1321 {
1322 error ("Unterminated string in expression.");
1323 }
1324 tempbuf[tempbufindex] = '\0'; /* See note above */
1325 yylval.sval.ptr = tempbuf;
1326 yylval.sval.length = tempbufindex;
1327 lexptr = tokptr;
1328 return (STRING);
1329 }
1330
1331 if (!(c == '_' || c == '$'
1332 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1333 /* We must have come across a bad character (e.g. ';'). */
1334 error ("Invalid character '%c' in expression.", c);
1335
1336 /* It's a name. See how long it is. */
1337 namelen = 0;
1338 for (c = tokstart[namelen];
1339 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1340 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1341 {
1342 /* Template parameter lists are part of the name.
1343 FIXME: This mishandles `print $a<4&&$a>3'. */
1344 if (c == '<')
1345 {
1346 int i = namelen;
1347 int nesting_level = 1;
1348 while (tokstart[++i])
1349 {
1350 if (tokstart[i] == '<')
1351 nesting_level++;
1352 else if (tokstart[i] == '>')
1353 {
1354 if (--nesting_level == 0)
1355 break;
1356 }
1357 }
1358 if (tokstart[i] == '>')
1359 namelen = i;
1360 else
1361 break;
1362 }
1363
1364 /* do NOT uppercase internals because of registers !!! */
1365 c = tokstart[++namelen];
1366 }
1367
1368 uptokstart = uptok(tokstart,namelen);
1369
1370 /* The token "if" terminates the expression and is NOT
1371 removed from the input stream. */
1372 if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F')
1373 {
1374 free (uptokstart);
1375 return 0;
1376 }
1377
1378 lexptr += namelen;
1379
1380 tryname:
1381
1382 /* Catch specific keywords. Should be done with a data structure. */
1383 switch (namelen)
1384 {
1385 case 6:
1386 if (strcmp (uptokstart, "OBJECT") == 0)
1387 {
1388 free (uptokstart);
1389 return CLASS;
1390 }
1391 if (strcmp (uptokstart, "RECORD") == 0)
1392 {
1393 free (uptokstart);
1394 return STRUCT;
1395 }
1396 if (strcmp (uptokstart, "SIZEOF") == 0)
1397 {
1398 free (uptokstart);
1399 return SIZEOF;
1400 }
1401 break;
1402 case 5:
1403 if (strcmp (uptokstart, "CLASS") == 0)
1404 {
1405 free (uptokstart);
1406 return CLASS;
1407 }
1408 if (strcmp (uptokstart, "FALSE") == 0)
1409 {
1410 yylval.lval = 0;
1411 free (uptokstart);
1412 return FALSEKEYWORD;
1413 }
1414 break;
1415 case 4:
1416 if (strcmp (uptokstart, "TRUE") == 0)
1417 {
1418 yylval.lval = 1;
1419 free (uptokstart);
1420 return TRUEKEYWORD;
1421 }
1422 if (strcmp (uptokstart, "SELF") == 0)
1423 {
1424 /* here we search for 'this' like
1425 inserted in FPC stabs debug info */
1426 static const char this_name[] = "this";
1427
1428 if (lookup_symbol (this_name, expression_context_block,
1429 VAR_DOMAIN, (int *) NULL))
1430 {
1431 free (uptokstart);
1432 return THIS;
1433 }
1434 }
1435 break;
1436 default:
1437 break;
1438 }
1439
1440 yylval.sval.ptr = tokstart;
1441 yylval.sval.length = namelen;
1442
1443 if (*tokstart == '$')
1444 {
1445 /* $ is the normal prefix for pascal hexadecimal values
1446 but this conflicts with the GDB use for debugger variables
1447 so in expression to enter hexadecimal values
1448 we still need to use C syntax with 0xff */
1449 write_dollar_variable (yylval.sval);
1450 free (uptokstart);
1451 return VARIABLE;
1452 }
1453
1454 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1455 functions or symtabs. If this is not so, then ...
1456 Use token-type TYPENAME for symbols that happen to be defined
1457 currently as names of types; NAME for other symbols.
1458 The caller is not constrained to care about the distinction. */
1459 {
1460 char *tmp = copy_name (yylval.sval);
1461 struct symbol *sym;
1462 int is_a_field_of_this = 0;
1463 int is_a_field = 0;
1464 int hextype;
1465
1466
1467 if (search_field && current_type)
1468 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1469 if (is_a_field)
1470 sym = NULL;
1471 else
1472 sym = lookup_symbol (tmp, expression_context_block,
1473 VAR_DOMAIN, &is_a_field_of_this);
1474 /* second chance uppercased (as Free Pascal does). */
1475 if (!sym && !is_a_field_of_this && !is_a_field)
1476 {
1477 for (i = 0; i <= namelen; i++)
1478 {
1479 if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
1480 tmp[i] -= ('a'-'A');
1481 }
1482 if (search_field && current_type)
1483 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1484 if (is_a_field)
1485 sym = NULL;
1486 else
1487 sym = lookup_symbol (tmp, expression_context_block,
1488 VAR_DOMAIN, &is_a_field_of_this);
1489 if (sym || is_a_field_of_this || is_a_field)
1490 for (i = 0; i <= namelen; i++)
1491 {
1492 if ((tokstart[i] >= 'a' && tokstart[i] <= 'z'))
1493 tokstart[i] -= ('a'-'A');
1494 }
1495 }
1496 /* Third chance Capitalized (as GPC does). */
1497 if (!sym && !is_a_field_of_this && !is_a_field)
1498 {
1499 for (i = 0; i <= namelen; i++)
1500 {
1501 if (i == 0)
1502 {
1503 if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
1504 tmp[i] -= ('a'-'A');
1505 }
1506 else
1507 if ((tmp[i] >= 'A' && tmp[i] <= 'Z'))
1508 tmp[i] -= ('A'-'a');
1509 }
1510 if (search_field && current_type)
1511 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1512 if (is_a_field)
1513 sym = NULL;
1514 else
1515 sym = lookup_symbol (tmp, expression_context_block,
1516 VAR_DOMAIN, &is_a_field_of_this);
1517 if (sym || is_a_field_of_this || is_a_field)
1518 for (i = 0; i <= namelen; i++)
1519 {
1520 if (i == 0)
1521 {
1522 if ((tokstart[i] >= 'a' && tokstart[i] <= 'z'))
1523 tokstart[i] -= ('a'-'A');
1524 }
1525 else
1526 if ((tokstart[i] >= 'A' && tokstart[i] <= 'Z'))
1527 tokstart[i] -= ('A'-'a');
1528 }
1529 }
1530
1531 if (is_a_field)
1532 {
1533 tempbuf = (char *) realloc (tempbuf, namelen + 1);
1534 strncpy (tempbuf, tokstart, namelen); tempbuf [namelen] = 0;
1535 yylval.sval.ptr = tempbuf;
1536 yylval.sval.length = namelen;
1537 free (uptokstart);
1538 return FIELDNAME;
1539 }
1540 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1541 no psymtabs (coff, xcoff, or some future change to blow away the
1542 psymtabs once once symbols are read). */
1543 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1544 || lookup_symtab (tmp))
1545 {
1546 yylval.ssym.sym = sym;
1547 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1548 free (uptokstart);
1549 return BLOCKNAME;
1550 }
1551 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1552 {
1553 #if 1
1554 /* Despite the following flaw, we need to keep this code enabled.
1555 Because we can get called from check_stub_method, if we don't
1556 handle nested types then it screws many operations in any
1557 program which uses nested types. */
1558 /* In "A::x", if x is a member function of A and there happens
1559 to be a type (nested or not, since the stabs don't make that
1560 distinction) named x, then this code incorrectly thinks we
1561 are dealing with nested types rather than a member function. */
1562
1563 char *p;
1564 char *namestart;
1565 struct symbol *best_sym;
1566
1567 /* Look ahead to detect nested types. This probably should be
1568 done in the grammar, but trying seemed to introduce a lot
1569 of shift/reduce and reduce/reduce conflicts. It's possible
1570 that it could be done, though. Or perhaps a non-grammar, but
1571 less ad hoc, approach would work well. */
1572
1573 /* Since we do not currently have any way of distinguishing
1574 a nested type from a non-nested one (the stabs don't tell
1575 us whether a type is nested), we just ignore the
1576 containing type. */
1577
1578 p = lexptr;
1579 best_sym = sym;
1580 while (1)
1581 {
1582 /* Skip whitespace. */
1583 while (*p == ' ' || *p == '\t' || *p == '\n')
1584 ++p;
1585 if (*p == ':' && p[1] == ':')
1586 {
1587 /* Skip the `::'. */
1588 p += 2;
1589 /* Skip whitespace. */
1590 while (*p == ' ' || *p == '\t' || *p == '\n')
1591 ++p;
1592 namestart = p;
1593 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1594 || (*p >= 'a' && *p <= 'z')
1595 || (*p >= 'A' && *p <= 'Z'))
1596 ++p;
1597 if (p != namestart)
1598 {
1599 struct symbol *cur_sym;
1600 /* As big as the whole rest of the expression, which is
1601 at least big enough. */
1602 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1603 char *tmp1;
1604
1605 tmp1 = ncopy;
1606 memcpy (tmp1, tmp, strlen (tmp));
1607 tmp1 += strlen (tmp);
1608 memcpy (tmp1, "::", 2);
1609 tmp1 += 2;
1610 memcpy (tmp1, namestart, p - namestart);
1611 tmp1[p - namestart] = '\0';
1612 cur_sym = lookup_symbol (ncopy, expression_context_block,
1613 VAR_DOMAIN, (int *) NULL);
1614 if (cur_sym)
1615 {
1616 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1617 {
1618 best_sym = cur_sym;
1619 lexptr = p;
1620 }
1621 else
1622 break;
1623 }
1624 else
1625 break;
1626 }
1627 else
1628 break;
1629 }
1630 else
1631 break;
1632 }
1633
1634 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1635 #else /* not 0 */
1636 yylval.tsym.type = SYMBOL_TYPE (sym);
1637 #endif /* not 0 */
1638 free (uptokstart);
1639 return TYPENAME;
1640 }
1641 yylval.tsym.type
1642 = language_lookup_primitive_type_by_name (parse_language,
1643 parse_gdbarch, tmp);
1644 if (yylval.tsym.type != NULL)
1645 {
1646 free (uptokstart);
1647 return TYPENAME;
1648 }
1649
1650 /* Input names that aren't symbols but ARE valid hex numbers,
1651 when the input radix permits them, can be names or numbers
1652 depending on the parse. Note we support radixes > 16 here. */
1653 if (!sym
1654 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1655 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1656 {
1657 YYSTYPE newlval; /* Its value is ignored. */
1658 hextype = parse_number (tokstart, namelen, 0, &newlval);
1659 if (hextype == INT)
1660 {
1661 yylval.ssym.sym = sym;
1662 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1663 free (uptokstart);
1664 return NAME_OR_INT;
1665 }
1666 }
1667
1668 free(uptokstart);
1669 /* Any other kind of symbol */
1670 yylval.ssym.sym = sym;
1671 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1672 return NAME;
1673 }
1674 }
1675
1676 void
1677 yyerror (msg)
1678 char *msg;
1679 {
1680 if (prev_lexptr)
1681 lexptr = prev_lexptr;
1682
1683 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1684 }