]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-nat.c
* target.h (struct regcache): Add forward declaration.
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "target.h"
31 #include "linux-nat.h"
32
33 #include <stdint.h>
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <signal.h>
37 #include <sys/user.h>
38 #include <sys/ioctl.h>
39 #include "gdb_wait.h"
40 #include <fcntl.h>
41 #include <sys/procfs.h>
42 #include <sys/ptrace.h>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47
48 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
49 configure time check. Some older glibc's (for instance 2.2.1)
50 don't have a specific powerpc version of ptrace.h, and fall back on
51 a generic one. In such cases, sys/ptrace.h defines
52 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
53 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
54 PTRACE_SETVRREGS to be. This also makes a configury check pretty
55 much useless. */
56
57 /* These definitions should really come from the glibc header files,
58 but Glibc doesn't know about the vrregs yet. */
59 #ifndef PTRACE_GETVRREGS
60 #define PTRACE_GETVRREGS 18
61 #define PTRACE_SETVRREGS 19
62 #endif
63
64
65 /* Similarly for the ptrace requests for getting / setting the SPE
66 registers (ev0 -- ev31, acc, and spefscr). See the description of
67 gdb_evrregset_t for details. */
68 #ifndef PTRACE_GETEVRREGS
69 #define PTRACE_GETEVRREGS 20
70 #define PTRACE_SETEVRREGS 21
71 #endif
72
73 /* Similarly for the hardware watchpoint support. */
74 #ifndef PTRACE_GET_DEBUGREG
75 #define PTRACE_GET_DEBUGREG 25
76 #endif
77 #ifndef PTRACE_SET_DEBUGREG
78 #define PTRACE_SET_DEBUGREG 26
79 #endif
80 #ifndef PTRACE_GETSIGINFO
81 #define PTRACE_GETSIGINFO 0x4202
82 #endif
83
84 /* This oddity is because the Linux kernel defines elf_vrregset_t as
85 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
86 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
87 the vrsave as an extra 4 bytes at the end. I opted for creating a
88 flat array of chars, so that it is easier to manipulate for gdb.
89
90 There are 32 vector registers 16 bytes longs, plus a VSCR register
91 which is only 4 bytes long, but is fetched as a 16 bytes
92 quantity. Up to here we have the elf_vrregset_t structure.
93 Appended to this there is space for the VRSAVE register: 4 bytes.
94 Even though this vrsave register is not included in the regset
95 typedef, it is handled by the ptrace requests.
96
97 Note that GNU/Linux doesn't support little endian PPC hardware,
98 therefore the offset at which the real value of the VSCR register
99 is located will be always 12 bytes.
100
101 The layout is like this (where x is the actual value of the vscr reg): */
102
103 /* *INDENT-OFF* */
104 /*
105 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
106 <-------> <-------><-------><->
107 VR0 VR31 VSCR VRSAVE
108 */
109 /* *INDENT-ON* */
110
111 #define SIZEOF_VRREGS 33*16+4
112
113 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
114
115
116 /* On PPC processors that support the the Signal Processing Extension
117 (SPE) APU, the general-purpose registers are 64 bits long.
118 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
119 ptrace calls only access the lower half of each register, to allow
120 them to behave the same way they do on non-SPE systems. There's a
121 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
122 read and write the top halves of all the general-purpose registers
123 at once, along with some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long. It has unnamed raw registers that hold the upper halves
127 of the gprs, and the the full 64-bit SIMD views of the registers,
128 'ev0' -- 'ev31', are pseudo-registers that splice the top and
129 bottom halves together.
130
131 This is the structure filled in by PTRACE_GETEVRREGS and written to
132 the inferior's registers by PTRACE_SETEVRREGS. */
133 struct gdb_evrregset_t
134 {
135 unsigned long evr[32];
136 unsigned long long acc;
137 unsigned long spefscr;
138 };
139
140
141 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
142 PTRACE_SETVRREGS requests, for reading and writing the Altivec
143 registers. Zero if we've tried one of them and gotten an
144 error. */
145 int have_ptrace_getvrregs = 1;
146
147 static CORE_ADDR last_stopped_data_address = 0;
148
149 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
150 PTRACE_SETEVRREGS requests, for reading and writing the SPE
151 registers. Zero if we've tried one of them and gotten an
152 error. */
153 int have_ptrace_getsetevrregs = 1;
154
155 /* *INDENT-OFF* */
156 /* registers layout, as presented by the ptrace interface:
157 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
158 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
159 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
160 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
161 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
162 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
163 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
164 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
165 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
166 /* *INDENT_ON * */
167
168 static int
169 ppc_register_u_addr (int regno)
170 {
171 int u_addr = -1;
172 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
173 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
174 interface, and not the wordsize of the program's ABI. */
175 int wordsize = sizeof (long);
176
177 /* General purpose registers occupy 1 slot each in the buffer */
178 if (regno >= tdep->ppc_gp0_regnum
179 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
180 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
181
182 /* Floating point regs: eight bytes each in both 32- and 64-bit
183 ptrace interfaces. Thus, two slots each in 32-bit interface, one
184 slot each in 64-bit interface. */
185 if (tdep->ppc_fp0_regnum >= 0
186 && regno >= tdep->ppc_fp0_regnum
187 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
188 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
189
190 /* UISA special purpose registers: 1 slot each */
191 if (regno == PC_REGNUM)
192 u_addr = PT_NIP * wordsize;
193 if (regno == tdep->ppc_lr_regnum)
194 u_addr = PT_LNK * wordsize;
195 if (regno == tdep->ppc_cr_regnum)
196 u_addr = PT_CCR * wordsize;
197 if (regno == tdep->ppc_xer_regnum)
198 u_addr = PT_XER * wordsize;
199 if (regno == tdep->ppc_ctr_regnum)
200 u_addr = PT_CTR * wordsize;
201 #ifdef PT_MQ
202 if (regno == tdep->ppc_mq_regnum)
203 u_addr = PT_MQ * wordsize;
204 #endif
205 if (regno == tdep->ppc_ps_regnum)
206 u_addr = PT_MSR * wordsize;
207 if (tdep->ppc_fpscr_regnum >= 0
208 && regno == tdep->ppc_fpscr_regnum)
209 {
210 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
211 kernel headers incorrectly contained the 32-bit definition of
212 PT_FPSCR. For the 32-bit definition, floating-point
213 registers occupy two 32-bit "slots", and the FPSCR lives in
214 the secondhalf of such a slot-pair (hence +1). For 64-bit,
215 the FPSCR instead occupies the full 64-bit 2-word-slot and
216 hence no adjustment is necessary. Hack around this. */
217 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
218 u_addr = (48 + 32) * wordsize;
219 else
220 u_addr = PT_FPSCR * wordsize;
221 }
222 return u_addr;
223 }
224
225 /* The Linux kernel ptrace interface for AltiVec registers uses the
226 registers set mechanism, as opposed to the interface for all the
227 other registers, that stores/fetches each register individually. */
228 static void
229 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
230 {
231 int ret;
232 int offset = 0;
233 gdb_vrregset_t regs;
234 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
235 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
236
237 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
238 if (ret < 0)
239 {
240 if (errno == EIO)
241 {
242 have_ptrace_getvrregs = 0;
243 return;
244 }
245 perror_with_name (_("Unable to fetch AltiVec register"));
246 }
247
248 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
249 long on the hardware. We deal only with the lower 4 bytes of the
250 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
251 there is no need to define an offset for it. */
252 if (regno == (tdep->ppc_vrsave_regnum - 1))
253 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
254
255 regcache_raw_supply (regcache, regno,
256 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
257 }
258
259 /* Fetch the top 32 bits of TID's general-purpose registers and the
260 SPE-specific registers, and place the results in EVRREGSET. If we
261 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
262 zeros.
263
264 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
265 PTRACE_SETEVRREGS requests are supported is isolated here, and in
266 set_spe_registers. */
267 static void
268 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
269 {
270 if (have_ptrace_getsetevrregs)
271 {
272 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
273 return;
274 else
275 {
276 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
277 we just return zeros. */
278 if (errno == EIO)
279 have_ptrace_getsetevrregs = 0;
280 else
281 /* Anything else needs to be reported. */
282 perror_with_name (_("Unable to fetch SPE registers"));
283 }
284 }
285
286 memset (evrregset, 0, sizeof (*evrregset));
287 }
288
289 /* Supply values from TID for SPE-specific raw registers: the upper
290 halves of the GPRs, the accumulator, and the spefscr. REGNO must
291 be the number of an upper half register, acc, spefscr, or -1 to
292 supply the values of all registers. */
293 static void
294 fetch_spe_register (struct regcache *regcache, int tid, int regno)
295 {
296 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
297 struct gdb_evrregset_t evrregs;
298
299 gdb_assert (sizeof (evrregs.evr[0])
300 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
301 gdb_assert (sizeof (evrregs.acc)
302 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
303 gdb_assert (sizeof (evrregs.spefscr)
304 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
305
306 get_spe_registers (tid, &evrregs);
307
308 if (regno == -1)
309 {
310 int i;
311
312 for (i = 0; i < ppc_num_gprs; i++)
313 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
314 &evrregs.evr[i]);
315 }
316 else if (tdep->ppc_ev0_upper_regnum <= regno
317 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
318 regcache_raw_supply (regcache, regno,
319 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
320
321 if (regno == -1
322 || regno == tdep->ppc_acc_regnum)
323 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
324
325 if (regno == -1
326 || regno == tdep->ppc_spefscr_regnum)
327 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
328 &evrregs.spefscr);
329 }
330
331 static void
332 fetch_register (struct regcache *regcache, int tid, int regno)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
335 /* This isn't really an address. But ptrace thinks of it as one. */
336 CORE_ADDR regaddr = ppc_register_u_addr (regno);
337 int bytes_transferred;
338 unsigned int offset; /* Offset of registers within the u area. */
339 char buf[MAX_REGISTER_SIZE];
340
341 if (altivec_register_p (regno))
342 {
343 /* If this is the first time through, or if it is not the first
344 time through, and we have comfirmed that there is kernel
345 support for such a ptrace request, then go and fetch the
346 register. */
347 if (have_ptrace_getvrregs)
348 {
349 fetch_altivec_register (regcache, tid, regno);
350 return;
351 }
352 /* If we have discovered that there is no ptrace support for
353 AltiVec registers, fall through and return zeroes, because
354 regaddr will be -1 in this case. */
355 }
356 else if (spe_register_p (regno))
357 {
358 fetch_spe_register (regcache, tid, regno);
359 return;
360 }
361
362 if (regaddr == -1)
363 {
364 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
365 regcache_raw_supply (regcache, regno, buf);
366 return;
367 }
368
369 /* Read the raw register using sizeof(long) sized chunks. On a
370 32-bit platform, 64-bit floating-point registers will require two
371 transfers. */
372 for (bytes_transferred = 0;
373 bytes_transferred < register_size (current_gdbarch, regno);
374 bytes_transferred += sizeof (long))
375 {
376 errno = 0;
377 *(long *) &buf[bytes_transferred]
378 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
379 regaddr += sizeof (long);
380 if (errno != 0)
381 {
382 char message[128];
383 sprintf (message, "reading register %s (#%d)",
384 REGISTER_NAME (regno), regno);
385 perror_with_name (message);
386 }
387 }
388
389 /* Now supply the register. Keep in mind that the regcache's idea
390 of the register's size may not be a multiple of sizeof
391 (long). */
392 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
393 {
394 /* Little-endian values are always found at the left end of the
395 bytes transferred. */
396 regcache_raw_supply (regcache, regno, buf);
397 }
398 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
399 {
400 /* Big-endian values are found at the right end of the bytes
401 transferred. */
402 size_t padding = (bytes_transferred
403 - register_size (current_gdbarch, regno));
404 regcache_raw_supply (regcache, regno, buf + padding);
405 }
406 else
407 internal_error (__FILE__, __LINE__,
408 _("fetch_register: unexpected byte order: %d"),
409 gdbarch_byte_order (current_gdbarch));
410 }
411
412 static void
413 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
414 {
415 int i;
416 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
417 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
418 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
419 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
420
421 for (i = 0; i < num_of_vrregs; i++)
422 {
423 /* The last 2 registers of this set are only 32 bit long, not
424 128. However an offset is necessary only for VSCR because it
425 occupies a whole vector, while VRSAVE occupies a full 4 bytes
426 slot. */
427 if (i == (num_of_vrregs - 2))
428 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
429 *vrregsetp + i * vrregsize + offset);
430 else
431 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
432 *vrregsetp + i * vrregsize);
433 }
434 }
435
436 static void
437 fetch_altivec_registers (struct regcache *regcache, int tid)
438 {
439 int ret;
440 gdb_vrregset_t regs;
441
442 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
443 if (ret < 0)
444 {
445 if (errno == EIO)
446 {
447 have_ptrace_getvrregs = 0;
448 return;
449 }
450 perror_with_name (_("Unable to fetch AltiVec registers"));
451 }
452 supply_vrregset (regcache, &regs);
453 }
454
455 static void
456 fetch_ppc_registers (struct regcache *regcache, int tid)
457 {
458 int i;
459 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
460
461 for (i = 0; i < ppc_num_gprs; i++)
462 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
463 if (tdep->ppc_fp0_regnum >= 0)
464 for (i = 0; i < ppc_num_fprs; i++)
465 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
466 fetch_register (regcache, tid, PC_REGNUM);
467 if (tdep->ppc_ps_regnum != -1)
468 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
469 if (tdep->ppc_cr_regnum != -1)
470 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
471 if (tdep->ppc_lr_regnum != -1)
472 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
473 if (tdep->ppc_ctr_regnum != -1)
474 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
475 if (tdep->ppc_xer_regnum != -1)
476 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
477 if (tdep->ppc_mq_regnum != -1)
478 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
479 if (tdep->ppc_fpscr_regnum != -1)
480 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
481 if (have_ptrace_getvrregs)
482 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
483 fetch_altivec_registers (regcache, tid);
484 if (tdep->ppc_ev0_upper_regnum >= 0)
485 fetch_spe_register (regcache, tid, -1);
486 }
487
488 /* Fetch registers from the child process. Fetch all registers if
489 regno == -1, otherwise fetch all general registers or all floating
490 point registers depending upon the value of regno. */
491 static void
492 ppc_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
493 {
494 /* Overload thread id onto process id */
495 int tid = TIDGET (inferior_ptid);
496
497 /* No thread id, just use process id */
498 if (tid == 0)
499 tid = PIDGET (inferior_ptid);
500
501 if (regno == -1)
502 fetch_ppc_registers (regcache, tid);
503 else
504 fetch_register (regcache, tid, regno);
505 }
506
507 /* Store one register. */
508 static void
509 store_altivec_register (const struct regcache *regcache, int tid, int regno)
510 {
511 int ret;
512 int offset = 0;
513 gdb_vrregset_t regs;
514 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
515 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
516
517 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
518 if (ret < 0)
519 {
520 if (errno == EIO)
521 {
522 have_ptrace_getvrregs = 0;
523 return;
524 }
525 perror_with_name (_("Unable to fetch AltiVec register"));
526 }
527
528 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
529 long on the hardware. */
530 if (regno == (tdep->ppc_vrsave_regnum - 1))
531 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
532
533 regcache_raw_collect (regcache, regno,
534 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
535
536 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
537 if (ret < 0)
538 perror_with_name (_("Unable to store AltiVec register"));
539 }
540
541 /* Assuming TID referrs to an SPE process, set the top halves of TID's
542 general-purpose registers and its SPE-specific registers to the
543 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
544 nothing.
545
546 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
547 PTRACE_SETEVRREGS requests are supported is isolated here, and in
548 get_spe_registers. */
549 static void
550 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
551 {
552 if (have_ptrace_getsetevrregs)
553 {
554 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
555 return;
556 else
557 {
558 /* EIO means that the PTRACE_SETEVRREGS request isn't
559 supported; we fail silently, and don't try the call
560 again. */
561 if (errno == EIO)
562 have_ptrace_getsetevrregs = 0;
563 else
564 /* Anything else needs to be reported. */
565 perror_with_name (_("Unable to set SPE registers"));
566 }
567 }
568 }
569
570 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
571 If REGNO is -1, write the values of all the SPE-specific
572 registers. */
573 static void
574 store_spe_register (const struct regcache *regcache, int tid, int regno)
575 {
576 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
577 struct gdb_evrregset_t evrregs;
578
579 gdb_assert (sizeof (evrregs.evr[0])
580 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
581 gdb_assert (sizeof (evrregs.acc)
582 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
583 gdb_assert (sizeof (evrregs.spefscr)
584 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
585
586 if (regno == -1)
587 /* Since we're going to write out every register, the code below
588 should store to every field of evrregs; if that doesn't happen,
589 make it obvious by initializing it with suspicious values. */
590 memset (&evrregs, 42, sizeof (evrregs));
591 else
592 /* We can only read and write the entire EVR register set at a
593 time, so to write just a single register, we do a
594 read-modify-write maneuver. */
595 get_spe_registers (tid, &evrregs);
596
597 if (regno == -1)
598 {
599 int i;
600
601 for (i = 0; i < ppc_num_gprs; i++)
602 regcache_raw_collect (regcache,
603 tdep->ppc_ev0_upper_regnum + i,
604 &evrregs.evr[i]);
605 }
606 else if (tdep->ppc_ev0_upper_regnum <= regno
607 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
608 regcache_raw_collect (regcache, regno,
609 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
610
611 if (regno == -1
612 || regno == tdep->ppc_acc_regnum)
613 regcache_raw_collect (regcache,
614 tdep->ppc_acc_regnum,
615 &evrregs.acc);
616
617 if (regno == -1
618 || regno == tdep->ppc_spefscr_regnum)
619 regcache_raw_collect (regcache,
620 tdep->ppc_spefscr_regnum,
621 &evrregs.spefscr);
622
623 /* Write back the modified register set. */
624 set_spe_registers (tid, &evrregs);
625 }
626
627 static void
628 store_register (const struct regcache *regcache, int tid, int regno)
629 {
630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
631 /* This isn't really an address. But ptrace thinks of it as one. */
632 CORE_ADDR regaddr = ppc_register_u_addr (regno);
633 int i;
634 size_t bytes_to_transfer;
635 char buf[MAX_REGISTER_SIZE];
636
637 if (altivec_register_p (regno))
638 {
639 store_altivec_register (regcache, tid, regno);
640 return;
641 }
642 else if (spe_register_p (regno))
643 {
644 store_spe_register (regcache, tid, regno);
645 return;
646 }
647
648 if (regaddr == -1)
649 return;
650
651 /* First collect the register. Keep in mind that the regcache's
652 idea of the register's size may not be a multiple of sizeof
653 (long). */
654 memset (buf, 0, sizeof buf);
655 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
656 sizeof (long));
657 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
658 {
659 /* Little-endian values always sit at the left end of the buffer. */
660 regcache_raw_collect (regcache, regno, buf);
661 }
662 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
663 {
664 /* Big-endian values sit at the right end of the buffer. */
665 size_t padding = (bytes_to_transfer
666 - register_size (current_gdbarch, regno));
667 regcache_raw_collect (regcache, regno, buf + padding);
668 }
669
670 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
671 {
672 errno = 0;
673 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
674 *(long *) &buf[i]);
675 regaddr += sizeof (long);
676
677 if (errno == EIO
678 && regno == tdep->ppc_fpscr_regnum)
679 {
680 /* Some older kernel versions don't allow fpscr to be written. */
681 continue;
682 }
683
684 if (errno != 0)
685 {
686 char message[128];
687 sprintf (message, "writing register %s (#%d)",
688 REGISTER_NAME (regno), regno);
689 perror_with_name (message);
690 }
691 }
692 }
693
694 static void
695 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
696 {
697 int i;
698 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
699 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
700 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
701 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
702
703 for (i = 0; i < num_of_vrregs; i++)
704 {
705 /* The last 2 registers of this set are only 32 bit long, not
706 128, but only VSCR is fetched as a 16 bytes quantity. */
707 if (i == (num_of_vrregs - 2))
708 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
709 *vrregsetp + i * vrregsize + offset);
710 else
711 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
712 *vrregsetp + i * vrregsize);
713 }
714 }
715
716 static void
717 store_altivec_registers (const struct regcache *regcache, int tid)
718 {
719 int ret;
720 gdb_vrregset_t regs;
721
722 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
723 if (ret < 0)
724 {
725 if (errno == EIO)
726 {
727 have_ptrace_getvrregs = 0;
728 return;
729 }
730 perror_with_name (_("Couldn't get AltiVec registers"));
731 }
732
733 fill_vrregset (regcache, &regs);
734
735 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
736 perror_with_name (_("Couldn't write AltiVec registers"));
737 }
738
739 static void
740 store_ppc_registers (const struct regcache *regcache, int tid)
741 {
742 int i;
743 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
744
745 for (i = 0; i < ppc_num_gprs; i++)
746 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
747 if (tdep->ppc_fp0_regnum >= 0)
748 for (i = 0; i < ppc_num_fprs; i++)
749 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
750 store_register (regcache, tid, PC_REGNUM);
751 if (tdep->ppc_ps_regnum != -1)
752 store_register (regcache, tid, tdep->ppc_ps_regnum);
753 if (tdep->ppc_cr_regnum != -1)
754 store_register (regcache, tid, tdep->ppc_cr_regnum);
755 if (tdep->ppc_lr_regnum != -1)
756 store_register (regcache, tid, tdep->ppc_lr_regnum);
757 if (tdep->ppc_ctr_regnum != -1)
758 store_register (regcache, tid, tdep->ppc_ctr_regnum);
759 if (tdep->ppc_xer_regnum != -1)
760 store_register (regcache, tid, tdep->ppc_xer_regnum);
761 if (tdep->ppc_mq_regnum != -1)
762 store_register (regcache, tid, tdep->ppc_mq_regnum);
763 if (tdep->ppc_fpscr_regnum != -1)
764 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
765 if (have_ptrace_getvrregs)
766 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
767 store_altivec_registers (regcache, tid);
768 if (tdep->ppc_ev0_upper_regnum >= 0)
769 store_spe_register (regcache, tid, -1);
770 }
771
772 static int
773 ppc_linux_check_watch_resources (int type, int cnt, int ot)
774 {
775 int tid;
776 ptid_t ptid = inferior_ptid;
777
778 /* DABR (data address breakpoint register) is optional for PPC variants.
779 Some variants have one DABR, others have none. So CNT can't be larger
780 than 1. */
781 if (cnt > 1)
782 return 0;
783
784 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
785 the target has DABR. If either answer is no, the ptrace call will
786 return -1. Fail in that case. */
787 tid = TIDGET (ptid);
788 if (tid == 0)
789 tid = PIDGET (ptid);
790
791 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
792 return 0;
793 return 1;
794 }
795
796 static int
797 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
798 {
799 /* Handle sub-8-byte quantities. */
800 if (len <= 0)
801 return 0;
802
803 /* addr+len must fall in the 8 byte watchable region. */
804 if ((addr + len) > (addr & ~7) + 8)
805 return 0;
806
807 return 1;
808 }
809
810 /* Set a watchpoint of type TYPE at address ADDR. */
811 static int
812 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
813 {
814 int tid;
815 long dabr_value;
816 ptid_t ptid = inferior_ptid;
817
818 dabr_value = addr & ~7;
819 switch (rw)
820 {
821 case hw_read:
822 /* Set read and translate bits. */
823 dabr_value |= 5;
824 break;
825 case hw_write:
826 /* Set write and translate bits. */
827 dabr_value |= 6;
828 break;
829 case hw_access:
830 /* Set read, write and translate bits. */
831 dabr_value |= 7;
832 break;
833 }
834
835 tid = TIDGET (ptid);
836 if (tid == 0)
837 tid = PIDGET (ptid);
838
839 return ptrace (PTRACE_SET_DEBUGREG, tid, 0, dabr_value);
840 }
841
842 static int
843 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
844 {
845 int tid;
846 ptid_t ptid = inferior_ptid;
847
848 tid = TIDGET (ptid);
849 if (tid == 0)
850 tid = PIDGET (ptid);
851
852 return ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0);
853 }
854
855 static int
856 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
857 {
858 if (last_stopped_data_address)
859 {
860 *addr_p = last_stopped_data_address;
861 last_stopped_data_address = 0;
862 return 1;
863 }
864 return 0;
865 }
866
867 static int
868 ppc_linux_stopped_by_watchpoint (void)
869 {
870 int tid;
871 struct siginfo siginfo;
872 ptid_t ptid = inferior_ptid;
873 CORE_ADDR *addr_p;
874
875 tid = TIDGET(ptid);
876 if (tid == 0)
877 tid = PIDGET (ptid);
878
879 errno = 0;
880 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_TYPE_ARG3) 0, &siginfo);
881
882 if (errno != 0 || siginfo.si_signo != SIGTRAP ||
883 (siginfo.si_code & 0xffff) != 0x0004)
884 return 0;
885
886 last_stopped_data_address = (uintptr_t) siginfo.si_addr;
887 return 1;
888 }
889
890 static void
891 ppc_linux_store_inferior_registers (struct regcache *regcache, int regno)
892 {
893 /* Overload thread id onto process id */
894 int tid = TIDGET (inferior_ptid);
895
896 /* No thread id, just use process id */
897 if (tid == 0)
898 tid = PIDGET (inferior_ptid);
899
900 if (regno >= 0)
901 store_register (regcache, tid, regno);
902 else
903 store_ppc_registers (regcache, tid);
904 }
905
906 void
907 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
908 {
909 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
910 interface, and not the wordsize of the program's ABI. */
911 int wordsize = sizeof (long);
912 ppc_linux_supply_gregset (regcache, -1, gregsetp,
913 sizeof (gdb_gregset_t), wordsize);
914 }
915
916 static void
917 right_fill_reg (const struct regcache *regcache, int regnum, void *reg)
918 {
919 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
920 interface, and not the wordsize of the program's ABI. */
921 int wordsize = sizeof (long);
922 /* Right fill the register. */
923 regcache_raw_collect (regcache, regnum,
924 ((bfd_byte *) reg
925 + wordsize
926 - register_size (current_gdbarch, regnum)));
927 }
928
929 void
930 fill_gregset (const struct regcache *regcache,
931 gdb_gregset_t *gregsetp, int regno)
932 {
933 int regi;
934 elf_greg_t *regp = (elf_greg_t *) gregsetp;
935 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
936 const int elf_ngreg = 48;
937
938
939 /* Start with zeros. */
940 memset (regp, 0, elf_ngreg * sizeof (*regp));
941
942 for (regi = 0; regi < ppc_num_gprs; regi++)
943 {
944 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
945 right_fill_reg (regcache, tdep->ppc_gp0_regnum + regi,
946 (regp + PT_R0 + regi));
947 }
948
949 if ((regno == -1) || regno == PC_REGNUM)
950 right_fill_reg (regcache, PC_REGNUM, regp + PT_NIP);
951 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
952 right_fill_reg (regcache, tdep->ppc_lr_regnum, regp + PT_LNK);
953 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
954 regcache_raw_collect (regcache, tdep->ppc_cr_regnum,
955 regp + PT_CCR);
956 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
957 regcache_raw_collect (regcache, tdep->ppc_xer_regnum,
958 regp + PT_XER);
959 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
960 right_fill_reg (regcache, tdep->ppc_ctr_regnum, regp + PT_CTR);
961 #ifdef PT_MQ
962 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
963 && (tdep->ppc_mq_regnum != -1))
964 right_fill_reg (regcache, tdep->ppc_mq_regnum, regp + PT_MQ);
965 #endif
966 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
967 right_fill_reg (regcache, tdep->ppc_ps_regnum, regp + PT_MSR);
968 }
969
970 void
971 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
972 {
973 ppc_linux_supply_fpregset (NULL, regcache, -1, fpregsetp,
974 sizeof (gdb_fpregset_t));
975 }
976
977 /* Given a pointer to a floating point register set in /proc format
978 (fpregset_t *), update the register specified by REGNO from gdb's
979 idea of the current floating point register set. If REGNO is -1,
980 update them all. */
981 void
982 fill_fpregset (const struct regcache *regcache,
983 gdb_fpregset_t *fpregsetp, int regno)
984 {
985 int regi;
986 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
987 bfd_byte *fpp = (void *) fpregsetp;
988
989 if (ppc_floating_point_unit_p (current_gdbarch))
990 {
991 for (regi = 0; regi < ppc_num_fprs; regi++)
992 {
993 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
994 regcache_raw_collect (regcache, tdep->ppc_fp0_regnum + regi,
995 fpp + 8 * regi);
996 }
997 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
998 right_fill_reg (regcache, tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
999 }
1000 }
1001
1002 void _initialize_ppc_linux_nat (void);
1003
1004 void
1005 _initialize_ppc_linux_nat (void)
1006 {
1007 struct target_ops *t;
1008
1009 /* Fill in the generic GNU/Linux methods. */
1010 t = linux_target ();
1011
1012 /* Add our register access methods. */
1013 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
1014 t->to_store_registers = ppc_linux_store_inferior_registers;
1015
1016 /* Add our watchpoint methods. */
1017 t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
1018 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
1019 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
1020 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
1021 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
1022 t->to_stopped_data_address = ppc_linux_stopped_data_address;
1023
1024 /* Register the target. */
1025 linux_nat_add_target (t);
1026 }