]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-nat.c
* aix-thread.c (pdc_read_regs, supply_gprs64, supply_fprs)
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int. */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58 configure time check. Some older glibc's (for instance 2.2.1)
59 don't have a specific powerpc version of ptrace.h, and fall back on
60 a generic one. In such cases, sys/ptrace.h defines
61 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63 PTRACE_SETVRREGS to be. This also makes a configury check pretty
64 much useless. */
65
66 /* These definitions should really come from the glibc header files,
67 but Glibc doesn't know about the vrregs yet. */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73 /* This oddity is because the Linux kernel defines elf_vrregset_t as
74 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
75 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
76 the vrsave as an extra 4 bytes at the end. I opted for creating a
77 flat array of chars, so that it is easier to manipulate for gdb.
78
79 There are 32 vector registers 16 bytes longs, plus a VSCR register
80 which is only 4 bytes long, but is fetched as a 16 bytes
81 quantity. Up to here we have the elf_vrregset_t structure.
82 Appended to this there is space for the VRSAVE register: 4 bytes.
83 Even though this vrsave register is not included in the regset
84 typedef, it is handled by the ptrace requests.
85
86 Note that GNU/Linux doesn't support little endian PPC hardware,
87 therefore the offset at which the real value of the VSCR register
88 is located will be always 12 bytes.
89
90 The layout is like this (where x is the actual value of the vscr reg): */
91
92 /* *INDENT-OFF* */
93 /*
94 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
95 <-------> <-------><-------><->
96 VR0 VR31 VSCR VRSAVE
97 */
98 /* *INDENT-ON* */
99
100 #define SIZEOF_VRREGS 33*16+4
101
102 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
103
104 /* For runtime check of ptrace support for VRREGS. */
105 int have_ptrace_getvrregs = 1;
106
107 int
108 kernel_u_size (void)
109 {
110 return (sizeof (struct user));
111 }
112
113 /* *INDENT-OFF* */
114 /* registers layout, as presented by the ptrace interface:
115 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
116 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
117 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
118 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
119 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
120 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
121 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
122 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
123 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
124 /* *INDENT_ON * */
125
126 static int
127 ppc_register_u_addr (int regno)
128 {
129 int u_addr = -1;
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
132 interface, and not the wordsize of the program's ABI. */
133 int wordsize = sizeof (PTRACE_XFER_TYPE);
134
135 /* General purpose registers occupy 1 slot each in the buffer */
136 if (regno >= tdep->ppc_gp0_regnum
137 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
138 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
139
140 /* Floating point regs: eight bytes each in both 32- and 64-bit
141 ptrace interfaces. Thus, two slots each in 32-bit interface, one
142 slot each in 64-bit interface. */
143 if (tdep->ppc_fp0_regnum >= 0
144 && regno >= tdep->ppc_fp0_regnum
145 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
146 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
147
148 /* UISA special purpose registers: 1 slot each */
149 if (regno == PC_REGNUM)
150 u_addr = PT_NIP * wordsize;
151 if (regno == tdep->ppc_lr_regnum)
152 u_addr = PT_LNK * wordsize;
153 if (regno == tdep->ppc_cr_regnum)
154 u_addr = PT_CCR * wordsize;
155 if (regno == tdep->ppc_xer_regnum)
156 u_addr = PT_XER * wordsize;
157 if (regno == tdep->ppc_ctr_regnum)
158 u_addr = PT_CTR * wordsize;
159 #ifdef PT_MQ
160 if (regno == tdep->ppc_mq_regnum)
161 u_addr = PT_MQ * wordsize;
162 #endif
163 if (regno == tdep->ppc_ps_regnum)
164 u_addr = PT_MSR * wordsize;
165 if (tdep->ppc_fpscr_regnum >= 0
166 && regno == tdep->ppc_fpscr_regnum)
167 u_addr = PT_FPSCR * wordsize;
168
169 return u_addr;
170 }
171
172 /* The Linux kernel ptrace interface for AltiVec registers uses the
173 registers set mechanism, as opposed to the interface for all the
174 other registers, that stores/fetches each register individually. */
175 static void
176 fetch_altivec_register (int tid, int regno)
177 {
178 int ret;
179 int offset = 0;
180 gdb_vrregset_t regs;
181 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
182 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
183
184 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
185 if (ret < 0)
186 {
187 if (errno == EIO)
188 {
189 have_ptrace_getvrregs = 0;
190 return;
191 }
192 perror_with_name ("Unable to fetch AltiVec register");
193 }
194
195 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
196 long on the hardware. We deal only with the lower 4 bytes of the
197 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
198 there is no need to define an offset for it. */
199 if (regno == (tdep->ppc_vrsave_regnum - 1))
200 offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
201
202 supply_register (regno,
203 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
204 }
205
206 static void
207 fetch_register (int tid, int regno)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
210 /* This isn't really an address. But ptrace thinks of it as one. */
211 char mess[128]; /* For messages */
212 int i;
213 unsigned int offset; /* Offset of registers within the u area. */
214 char buf[MAX_REGISTER_SIZE];
215 CORE_ADDR regaddr = ppc_register_u_addr (regno);
216
217 if (altivec_register_p (regno))
218 {
219 /* If this is the first time through, or if it is not the first
220 time through, and we have comfirmed that there is kernel
221 support for such a ptrace request, then go and fetch the
222 register. */
223 if (have_ptrace_getvrregs)
224 {
225 fetch_altivec_register (tid, regno);
226 return;
227 }
228 /* If we have discovered that there is no ptrace support for
229 AltiVec registers, fall through and return zeroes, because
230 regaddr will be -1 in this case. */
231 }
232
233 if (regaddr == -1)
234 {
235 memset (buf, '\0', DEPRECATED_REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
236 supply_register (regno, buf);
237 return;
238 }
239
240 /* If the current architecture has no floating-point registers, we
241 should never reach this point: ppc_register_u_addr should have
242 returned -1, and we should have caught that above. */
243 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
244
245 /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a
246 32-bit platform, 64-bit floating-point registers will require two
247 transfers. */
248 for (i = 0; i < DEPRECATED_REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
249 {
250 errno = 0;
251 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
252 (PTRACE_ARG3_TYPE) regaddr, 0);
253 regaddr += sizeof (PTRACE_XFER_TYPE);
254 if (errno != 0)
255 {
256 sprintf (mess, "reading register %s (#%d)",
257 REGISTER_NAME (regno), regno);
258 perror_with_name (mess);
259 }
260 }
261
262 /* Now supply the register. Be careful to map between ptrace's and
263 the current_regcache's idea of the current wordsize. */
264 if ((regno >= tdep->ppc_fp0_regnum
265 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
266 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
267 /* FPs are always 64 bits. Little endian values are always found
268 at the left-hand end of the register. */
269 regcache_raw_supply (current_regcache, regno, buf);
270 else
271 /* Big endian register, need to fetch the right-hand end. */
272 regcache_raw_supply (current_regcache, regno,
273 (buf + sizeof (PTRACE_XFER_TYPE)
274 - register_size (current_gdbarch, regno)));
275 }
276
277 static void
278 supply_vrregset (gdb_vrregset_t *vrregsetp)
279 {
280 int i;
281 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
282 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
283 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
284 int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
285
286 for (i = 0; i < num_of_vrregs; i++)
287 {
288 /* The last 2 registers of this set are only 32 bit long, not
289 128. However an offset is necessary only for VSCR because it
290 occupies a whole vector, while VRSAVE occupies a full 4 bytes
291 slot. */
292 if (i == (num_of_vrregs - 2))
293 supply_register (tdep->ppc_vr0_regnum + i,
294 *vrregsetp + i * vrregsize + offset);
295 else
296 supply_register (tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize);
297 }
298 }
299
300 static void
301 fetch_altivec_registers (int tid)
302 {
303 int ret;
304 gdb_vrregset_t regs;
305
306 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
307 if (ret < 0)
308 {
309 if (errno == EIO)
310 {
311 have_ptrace_getvrregs = 0;
312 return;
313 }
314 perror_with_name ("Unable to fetch AltiVec registers");
315 }
316 supply_vrregset (&regs);
317 }
318
319 static void
320 fetch_ppc_registers (int tid)
321 {
322 int i;
323 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
324
325 for (i = 0; i < ppc_num_gprs; i++)
326 fetch_register (tid, tdep->ppc_gp0_regnum + i);
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 fetch_register (tid, tdep->ppc_fp0_regnum + i);
330 fetch_register (tid, PC_REGNUM);
331 if (tdep->ppc_ps_regnum != -1)
332 fetch_register (tid, tdep->ppc_ps_regnum);
333 if (tdep->ppc_cr_regnum != -1)
334 fetch_register (tid, tdep->ppc_cr_regnum);
335 if (tdep->ppc_lr_regnum != -1)
336 fetch_register (tid, tdep->ppc_lr_regnum);
337 if (tdep->ppc_ctr_regnum != -1)
338 fetch_register (tid, tdep->ppc_ctr_regnum);
339 if (tdep->ppc_xer_regnum != -1)
340 fetch_register (tid, tdep->ppc_xer_regnum);
341 if (tdep->ppc_mq_regnum != -1)
342 fetch_register (tid, tdep->ppc_mq_regnum);
343 if (tdep->ppc_fpscr_regnum != -1)
344 fetch_register (tid, tdep->ppc_fpscr_regnum);
345 if (have_ptrace_getvrregs)
346 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
347 fetch_altivec_registers (tid);
348 }
349
350 /* Fetch registers from the child process. Fetch all registers if
351 regno == -1, otherwise fetch all general registers or all floating
352 point registers depending upon the value of regno. */
353 void
354 fetch_inferior_registers (int regno)
355 {
356 /* Overload thread id onto process id */
357 int tid = TIDGET (inferior_ptid);
358
359 /* No thread id, just use process id */
360 if (tid == 0)
361 tid = PIDGET (inferior_ptid);
362
363 if (regno == -1)
364 fetch_ppc_registers (tid);
365 else
366 fetch_register (tid, regno);
367 }
368
369 /* Store one register. */
370 static void
371 store_altivec_register (int tid, int regno)
372 {
373 int ret;
374 int offset = 0;
375 gdb_vrregset_t regs;
376 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
377 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
378
379 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
380 if (ret < 0)
381 {
382 if (errno == EIO)
383 {
384 have_ptrace_getvrregs = 0;
385 return;
386 }
387 perror_with_name ("Unable to fetch AltiVec register");
388 }
389
390 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
391 long on the hardware. */
392 if (regno == (tdep->ppc_vrsave_regnum - 1))
393 offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
394
395 regcache_collect (regno,
396 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
397
398 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
399 if (ret < 0)
400 perror_with_name ("Unable to store AltiVec register");
401 }
402
403 static void
404 store_register (int tid, int regno)
405 {
406 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
407 /* This isn't really an address. But ptrace thinks of it as one. */
408 CORE_ADDR regaddr = ppc_register_u_addr (regno);
409 char mess[128]; /* For messages */
410 int i;
411 unsigned int offset; /* Offset of registers within the u area. */
412 char buf[MAX_REGISTER_SIZE];
413
414 if (altivec_register_p (regno))
415 {
416 store_altivec_register (tid, regno);
417 return;
418 }
419
420 if (regaddr == -1)
421 return;
422
423 /* If the current architecture has no floating-point registers, we
424 should never reach this point: ppc_register_u_addr should have
425 returned -1, and we should have caught that above. */
426 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
427
428 /* First collect the register value from the regcache. Be careful
429 to to convert the regcache's wordsize into ptrace's wordsize. */
430 memset (buf, 0, sizeof buf);
431 if ((regno >= tdep->ppc_fp0_regnum
432 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
433 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
434 /* Floats are always 64-bit. Little endian registers are always
435 at the left-hand end of the register cache. */
436 regcache_raw_collect (current_regcache, regno, buf);
437 else
438 /* Big-endian registers belong at the right-hand end of the
439 buffer. */
440 regcache_raw_collect (current_regcache, regno,
441 (buf + sizeof (PTRACE_XFER_TYPE)
442 - register_size (current_gdbarch, regno)));
443
444 for (i = 0; i < DEPRECATED_REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
445 {
446 errno = 0;
447 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
448 *(PTRACE_XFER_TYPE *) & buf[i]);
449 regaddr += sizeof (PTRACE_XFER_TYPE);
450
451 if (errno == EIO
452 && regno == tdep->ppc_fpscr_regnum)
453 {
454 /* Some older kernel versions don't allow fpscr to be written. */
455 continue;
456 }
457
458 if (errno != 0)
459 {
460 sprintf (mess, "writing register %s (#%d)",
461 REGISTER_NAME (regno), regno);
462 perror_with_name (mess);
463 }
464 }
465 }
466
467 static void
468 fill_vrregset (gdb_vrregset_t *vrregsetp)
469 {
470 int i;
471 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
472 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
473 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
474 int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
475
476 for (i = 0; i < num_of_vrregs; i++)
477 {
478 /* The last 2 registers of this set are only 32 bit long, not
479 128, but only VSCR is fetched as a 16 bytes quantity. */
480 if (i == (num_of_vrregs - 2))
481 regcache_collect (tdep->ppc_vr0_regnum + i,
482 *vrregsetp + i * vrregsize + offset);
483 else
484 regcache_collect (tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize);
485 }
486 }
487
488 static void
489 store_altivec_registers (int tid)
490 {
491 int ret;
492 gdb_vrregset_t regs;
493
494 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
495 if (ret < 0)
496 {
497 if (errno == EIO)
498 {
499 have_ptrace_getvrregs = 0;
500 return;
501 }
502 perror_with_name ("Couldn't get AltiVec registers");
503 }
504
505 fill_vrregset (&regs);
506
507 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
508 perror_with_name ("Couldn't write AltiVec registers");
509 }
510
511 static void
512 store_ppc_registers (int tid)
513 {
514 int i;
515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
516
517 for (i = 0; i < ppc_num_gprs; i++)
518 store_register (tid, tdep->ppc_gp0_regnum + i);
519 if (tdep->ppc_fp0_regnum >= 0)
520 for (i = 0; i < ppc_num_fprs; i++)
521 store_register (tid, tdep->ppc_fp0_regnum + i);
522 store_register (tid, PC_REGNUM);
523 if (tdep->ppc_ps_regnum != -1)
524 store_register (tid, tdep->ppc_ps_regnum);
525 if (tdep->ppc_cr_regnum != -1)
526 store_register (tid, tdep->ppc_cr_regnum);
527 if (tdep->ppc_lr_regnum != -1)
528 store_register (tid, tdep->ppc_lr_regnum);
529 if (tdep->ppc_ctr_regnum != -1)
530 store_register (tid, tdep->ppc_ctr_regnum);
531 if (tdep->ppc_xer_regnum != -1)
532 store_register (tid, tdep->ppc_xer_regnum);
533 if (tdep->ppc_mq_regnum != -1)
534 store_register (tid, tdep->ppc_mq_regnum);
535 if (tdep->ppc_fpscr_regnum != -1)
536 store_register (tid, tdep->ppc_fpscr_regnum);
537 if (have_ptrace_getvrregs)
538 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
539 store_altivec_registers (tid);
540 }
541
542 void
543 store_inferior_registers (int regno)
544 {
545 /* Overload thread id onto process id */
546 int tid = TIDGET (inferior_ptid);
547
548 /* No thread id, just use process id */
549 if (tid == 0)
550 tid = PIDGET (inferior_ptid);
551
552 if (regno >= 0)
553 store_register (tid, regno);
554 else
555 store_ppc_registers (tid);
556 }
557
558 void
559 supply_gregset (gdb_gregset_t *gregsetp)
560 {
561 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
562 interface, and not the wordsize of the program's ABI. */
563 int wordsize = sizeof (PTRACE_XFER_TYPE);
564 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
565 sizeof (gdb_gregset_t), wordsize);
566 }
567
568 static void
569 right_fill_reg (int regnum, void *reg)
570 {
571 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
572 interface, and not the wordsize of the program's ABI. */
573 int wordsize = sizeof (PTRACE_XFER_TYPE);
574 /* Right fill the register. */
575 regcache_raw_collect (current_regcache, regnum,
576 ((bfd_byte *) reg
577 + wordsize
578 - register_size (current_gdbarch, regnum)));
579 }
580
581 void
582 fill_gregset (gdb_gregset_t *gregsetp, int regno)
583 {
584 int regi;
585 elf_greg_t *regp = (elf_greg_t *) gregsetp;
586 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
587 const int elf_ngreg = 48;
588
589
590 /* Start with zeros. */
591 memset (regp, 0, elf_ngreg * sizeof (*regp));
592
593 for (regi = 0; regi < ppc_num_gprs; regi++)
594 {
595 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
596 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
597 }
598
599 if ((regno == -1) || regno == PC_REGNUM)
600 right_fill_reg (PC_REGNUM, regp + PT_NIP);
601 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
602 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
603 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
604 regcache_collect (tdep->ppc_cr_regnum, regp + PT_CCR);
605 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
606 regcache_collect (tdep->ppc_xer_regnum, regp + PT_XER);
607 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
608 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
609 #ifdef PT_MQ
610 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
611 && (tdep->ppc_mq_regnum != -1))
612 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
613 #endif
614 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
615 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
616 }
617
618 void
619 supply_fpregset (gdb_fpregset_t * fpregsetp)
620 {
621 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
622 sizeof (gdb_fpregset_t));
623 }
624
625 /* Given a pointer to a floating point register set in /proc format
626 (fpregset_t *), update the register specified by REGNO from gdb's
627 idea of the current floating point register set. If REGNO is -1,
628 update them all. */
629 void
630 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
631 {
632 int regi;
633 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
634 bfd_byte *fpp = (void *) fpregsetp;
635
636 if (ppc_floating_point_unit_p (current_gdbarch))
637 {
638 for (regi = 0; regi < ppc_num_fprs; regi++)
639 {
640 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
641 regcache_collect (tdep->ppc_fp0_regnum + regi, fpp + 8 * regi);
642 }
643 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
644 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
645 }
646 }