]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-nat.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "target.h"
31 #include "linux-nat.h"
32
33 #include <stdint.h>
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <signal.h>
37 #include <sys/user.h>
38 #include <sys/ioctl.h>
39 #include "gdb_wait.h"
40 #include <fcntl.h>
41 #include <sys/procfs.h>
42 #include <sys/ptrace.h>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47
48 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
49 configure time check. Some older glibc's (for instance 2.2.1)
50 don't have a specific powerpc version of ptrace.h, and fall back on
51 a generic one. In such cases, sys/ptrace.h defines
52 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
53 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
54 PTRACE_SETVRREGS to be. This also makes a configury check pretty
55 much useless. */
56
57 /* These definitions should really come from the glibc header files,
58 but Glibc doesn't know about the vrregs yet. */
59 #ifndef PTRACE_GETVRREGS
60 #define PTRACE_GETVRREGS 18
61 #define PTRACE_SETVRREGS 19
62 #endif
63
64
65 /* Similarly for the ptrace requests for getting / setting the SPE
66 registers (ev0 -- ev31, acc, and spefscr). See the description of
67 gdb_evrregset_t for details. */
68 #ifndef PTRACE_GETEVRREGS
69 #define PTRACE_GETEVRREGS 20
70 #define PTRACE_SETEVRREGS 21
71 #endif
72
73 /* Similarly for the hardware watchpoint support. */
74 #ifndef PTRACE_GET_DEBUGREG
75 #define PTRACE_GET_DEBUGREG 25
76 #endif
77 #ifndef PTRACE_SET_DEBUGREG
78 #define PTRACE_SET_DEBUGREG 26
79 #endif
80 #ifndef PTRACE_GETSIGINFO
81 #define PTRACE_GETSIGINFO 0x4202
82 #endif
83
84 /* This oddity is because the Linux kernel defines elf_vrregset_t as
85 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
86 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
87 the vrsave as an extra 4 bytes at the end. I opted for creating a
88 flat array of chars, so that it is easier to manipulate for gdb.
89
90 There are 32 vector registers 16 bytes longs, plus a VSCR register
91 which is only 4 bytes long, but is fetched as a 16 bytes
92 quantity. Up to here we have the elf_vrregset_t structure.
93 Appended to this there is space for the VRSAVE register: 4 bytes.
94 Even though this vrsave register is not included in the regset
95 typedef, it is handled by the ptrace requests.
96
97 Note that GNU/Linux doesn't support little endian PPC hardware,
98 therefore the offset at which the real value of the VSCR register
99 is located will be always 12 bytes.
100
101 The layout is like this (where x is the actual value of the vscr reg): */
102
103 /* *INDENT-OFF* */
104 /*
105 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
106 <-------> <-------><-------><->
107 VR0 VR31 VSCR VRSAVE
108 */
109 /* *INDENT-ON* */
110
111 #define SIZEOF_VRREGS 33*16+4
112
113 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
114
115
116 /* On PPC processors that support the the Signal Processing Extension
117 (SPE) APU, the general-purpose registers are 64 bits long.
118 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
119 ptrace calls only access the lower half of each register, to allow
120 them to behave the same way they do on non-SPE systems. There's a
121 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
122 read and write the top halves of all the general-purpose registers
123 at once, along with some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long. It has unnamed raw registers that hold the upper halves
127 of the gprs, and the the full 64-bit SIMD views of the registers,
128 'ev0' -- 'ev31', are pseudo-registers that splice the top and
129 bottom halves together.
130
131 This is the structure filled in by PTRACE_GETEVRREGS and written to
132 the inferior's registers by PTRACE_SETEVRREGS. */
133 struct gdb_evrregset_t
134 {
135 unsigned long evr[32];
136 unsigned long long acc;
137 unsigned long spefscr;
138 };
139
140
141 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
142 PTRACE_SETVRREGS requests, for reading and writing the Altivec
143 registers. Zero if we've tried one of them and gotten an
144 error. */
145 int have_ptrace_getvrregs = 1;
146
147 static CORE_ADDR last_stopped_data_address = 0;
148
149 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
150 PTRACE_SETEVRREGS requests, for reading and writing the SPE
151 registers. Zero if we've tried one of them and gotten an
152 error. */
153 int have_ptrace_getsetevrregs = 1;
154
155 int
156 kernel_u_size (void)
157 {
158 return (sizeof (struct user));
159 }
160
161 /* *INDENT-OFF* */
162 /* registers layout, as presented by the ptrace interface:
163 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
164 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
165 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
166 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
167 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
168 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
169 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
170 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
171 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
172 /* *INDENT_ON * */
173
174 static int
175 ppc_register_u_addr (int regno)
176 {
177 int u_addr = -1;
178 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
179 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
180 interface, and not the wordsize of the program's ABI. */
181 int wordsize = sizeof (long);
182
183 /* General purpose registers occupy 1 slot each in the buffer */
184 if (regno >= tdep->ppc_gp0_regnum
185 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
186 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
187
188 /* Floating point regs: eight bytes each in both 32- and 64-bit
189 ptrace interfaces. Thus, two slots each in 32-bit interface, one
190 slot each in 64-bit interface. */
191 if (tdep->ppc_fp0_regnum >= 0
192 && regno >= tdep->ppc_fp0_regnum
193 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
194 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
195
196 /* UISA special purpose registers: 1 slot each */
197 if (regno == PC_REGNUM)
198 u_addr = PT_NIP * wordsize;
199 if (regno == tdep->ppc_lr_regnum)
200 u_addr = PT_LNK * wordsize;
201 if (regno == tdep->ppc_cr_regnum)
202 u_addr = PT_CCR * wordsize;
203 if (regno == tdep->ppc_xer_regnum)
204 u_addr = PT_XER * wordsize;
205 if (regno == tdep->ppc_ctr_regnum)
206 u_addr = PT_CTR * wordsize;
207 #ifdef PT_MQ
208 if (regno == tdep->ppc_mq_regnum)
209 u_addr = PT_MQ * wordsize;
210 #endif
211 if (regno == tdep->ppc_ps_regnum)
212 u_addr = PT_MSR * wordsize;
213 if (tdep->ppc_fpscr_regnum >= 0
214 && regno == tdep->ppc_fpscr_regnum)
215 {
216 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
217 kernel headers incorrectly contained the 32-bit definition of
218 PT_FPSCR. For the 32-bit definition, floating-point
219 registers occupy two 32-bit "slots", and the FPSCR lives in
220 the secondhalf of such a slot-pair (hence +1). For 64-bit,
221 the FPSCR instead occupies the full 64-bit 2-word-slot and
222 hence no adjustment is necessary. Hack around this. */
223 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
224 u_addr = (48 + 32) * wordsize;
225 else
226 u_addr = PT_FPSCR * wordsize;
227 }
228 return u_addr;
229 }
230
231 /* The Linux kernel ptrace interface for AltiVec registers uses the
232 registers set mechanism, as opposed to the interface for all the
233 other registers, that stores/fetches each register individually. */
234 static void
235 fetch_altivec_register (int tid, int regno)
236 {
237 int ret;
238 int offset = 0;
239 gdb_vrregset_t regs;
240 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
241 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
242
243 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
244 if (ret < 0)
245 {
246 if (errno == EIO)
247 {
248 have_ptrace_getvrregs = 0;
249 return;
250 }
251 perror_with_name (_("Unable to fetch AltiVec register"));
252 }
253
254 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
255 long on the hardware. We deal only with the lower 4 bytes of the
256 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
257 there is no need to define an offset for it. */
258 if (regno == (tdep->ppc_vrsave_regnum - 1))
259 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
260
261 regcache_raw_supply (current_regcache, regno,
262 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
263 }
264
265 /* Fetch the top 32 bits of TID's general-purpose registers and the
266 SPE-specific registers, and place the results in EVRREGSET. If we
267 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
268 zeros.
269
270 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
271 PTRACE_SETEVRREGS requests are supported is isolated here, and in
272 set_spe_registers. */
273 static void
274 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
275 {
276 if (have_ptrace_getsetevrregs)
277 {
278 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
279 return;
280 else
281 {
282 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
283 we just return zeros. */
284 if (errno == EIO)
285 have_ptrace_getsetevrregs = 0;
286 else
287 /* Anything else needs to be reported. */
288 perror_with_name (_("Unable to fetch SPE registers"));
289 }
290 }
291
292 memset (evrregset, 0, sizeof (*evrregset));
293 }
294
295 /* Supply values from TID for SPE-specific raw registers: the upper
296 halves of the GPRs, the accumulator, and the spefscr. REGNO must
297 be the number of an upper half register, acc, spefscr, or -1 to
298 supply the values of all registers. */
299 static void
300 fetch_spe_register (int tid, int regno)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303 struct gdb_evrregset_t evrregs;
304
305 gdb_assert (sizeof (evrregs.evr[0])
306 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
307 gdb_assert (sizeof (evrregs.acc)
308 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
309 gdb_assert (sizeof (evrregs.spefscr)
310 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
311
312 get_spe_registers (tid, &evrregs);
313
314 if (regno == -1)
315 {
316 int i;
317
318 for (i = 0; i < ppc_num_gprs; i++)
319 regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i,
320 &evrregs.evr[i]);
321 }
322 else if (tdep->ppc_ev0_upper_regnum <= regno
323 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
324 regcache_raw_supply (current_regcache, regno,
325 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
326
327 if (regno == -1
328 || regno == tdep->ppc_acc_regnum)
329 regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
330
331 if (regno == -1
332 || regno == tdep->ppc_spefscr_regnum)
333 regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
334 &evrregs.spefscr);
335 }
336
337 static void
338 fetch_register (int tid, int regno)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
341 /* This isn't really an address. But ptrace thinks of it as one. */
342 CORE_ADDR regaddr = ppc_register_u_addr (regno);
343 int bytes_transferred;
344 unsigned int offset; /* Offset of registers within the u area. */
345 char buf[MAX_REGISTER_SIZE];
346
347 if (altivec_register_p (regno))
348 {
349 /* If this is the first time through, or if it is not the first
350 time through, and we have comfirmed that there is kernel
351 support for such a ptrace request, then go and fetch the
352 register. */
353 if (have_ptrace_getvrregs)
354 {
355 fetch_altivec_register (tid, regno);
356 return;
357 }
358 /* If we have discovered that there is no ptrace support for
359 AltiVec registers, fall through and return zeroes, because
360 regaddr will be -1 in this case. */
361 }
362 else if (spe_register_p (regno))
363 {
364 fetch_spe_register (tid, regno);
365 return;
366 }
367
368 if (regaddr == -1)
369 {
370 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
371 regcache_raw_supply (current_regcache, regno, buf);
372 return;
373 }
374
375 /* Read the raw register using sizeof(long) sized chunks. On a
376 32-bit platform, 64-bit floating-point registers will require two
377 transfers. */
378 for (bytes_transferred = 0;
379 bytes_transferred < register_size (current_gdbarch, regno);
380 bytes_transferred += sizeof (long))
381 {
382 errno = 0;
383 *(long *) &buf[bytes_transferred]
384 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
385 regaddr += sizeof (long);
386 if (errno != 0)
387 {
388 char message[128];
389 sprintf (message, "reading register %s (#%d)",
390 REGISTER_NAME (regno), regno);
391 perror_with_name (message);
392 }
393 }
394
395 /* Now supply the register. Keep in mind that the regcache's idea
396 of the register's size may not be a multiple of sizeof
397 (long). */
398 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
399 {
400 /* Little-endian values are always found at the left end of the
401 bytes transferred. */
402 regcache_raw_supply (current_regcache, regno, buf);
403 }
404 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
405 {
406 /* Big-endian values are found at the right end of the bytes
407 transferred. */
408 size_t padding = (bytes_transferred
409 - register_size (current_gdbarch, regno));
410 regcache_raw_supply (current_regcache, regno, buf + padding);
411 }
412 else
413 internal_error (__FILE__, __LINE__,
414 _("fetch_register: unexpected byte order: %d"),
415 gdbarch_byte_order (current_gdbarch));
416 }
417
418 static void
419 supply_vrregset (gdb_vrregset_t *vrregsetp)
420 {
421 int i;
422 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
423 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
424 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
425 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
426
427 for (i = 0; i < num_of_vrregs; i++)
428 {
429 /* The last 2 registers of this set are only 32 bit long, not
430 128. However an offset is necessary only for VSCR because it
431 occupies a whole vector, while VRSAVE occupies a full 4 bytes
432 slot. */
433 if (i == (num_of_vrregs - 2))
434 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
435 *vrregsetp + i * vrregsize + offset);
436 else
437 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
438 *vrregsetp + i * vrregsize);
439 }
440 }
441
442 static void
443 fetch_altivec_registers (int tid)
444 {
445 int ret;
446 gdb_vrregset_t regs;
447
448 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
449 if (ret < 0)
450 {
451 if (errno == EIO)
452 {
453 have_ptrace_getvrregs = 0;
454 return;
455 }
456 perror_with_name (_("Unable to fetch AltiVec registers"));
457 }
458 supply_vrregset (&regs);
459 }
460
461 static void
462 fetch_ppc_registers (int tid)
463 {
464 int i;
465 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
466
467 for (i = 0; i < ppc_num_gprs; i++)
468 fetch_register (tid, tdep->ppc_gp0_regnum + i);
469 if (tdep->ppc_fp0_regnum >= 0)
470 for (i = 0; i < ppc_num_fprs; i++)
471 fetch_register (tid, tdep->ppc_fp0_regnum + i);
472 fetch_register (tid, PC_REGNUM);
473 if (tdep->ppc_ps_regnum != -1)
474 fetch_register (tid, tdep->ppc_ps_regnum);
475 if (tdep->ppc_cr_regnum != -1)
476 fetch_register (tid, tdep->ppc_cr_regnum);
477 if (tdep->ppc_lr_regnum != -1)
478 fetch_register (tid, tdep->ppc_lr_regnum);
479 if (tdep->ppc_ctr_regnum != -1)
480 fetch_register (tid, tdep->ppc_ctr_regnum);
481 if (tdep->ppc_xer_regnum != -1)
482 fetch_register (tid, tdep->ppc_xer_regnum);
483 if (tdep->ppc_mq_regnum != -1)
484 fetch_register (tid, tdep->ppc_mq_regnum);
485 if (tdep->ppc_fpscr_regnum != -1)
486 fetch_register (tid, tdep->ppc_fpscr_regnum);
487 if (have_ptrace_getvrregs)
488 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
489 fetch_altivec_registers (tid);
490 if (tdep->ppc_ev0_upper_regnum >= 0)
491 fetch_spe_register (tid, -1);
492 }
493
494 /* Fetch registers from the child process. Fetch all registers if
495 regno == -1, otherwise fetch all general registers or all floating
496 point registers depending upon the value of regno. */
497 static void
498 ppc_linux_fetch_inferior_registers (int regno)
499 {
500 /* Overload thread id onto process id */
501 int tid = TIDGET (inferior_ptid);
502
503 /* No thread id, just use process id */
504 if (tid == 0)
505 tid = PIDGET (inferior_ptid);
506
507 if (regno == -1)
508 fetch_ppc_registers (tid);
509 else
510 fetch_register (tid, regno);
511 }
512
513 /* Store one register. */
514 static void
515 store_altivec_register (int tid, int regno)
516 {
517 int ret;
518 int offset = 0;
519 gdb_vrregset_t regs;
520 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
521 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
522
523 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
524 if (ret < 0)
525 {
526 if (errno == EIO)
527 {
528 have_ptrace_getvrregs = 0;
529 return;
530 }
531 perror_with_name (_("Unable to fetch AltiVec register"));
532 }
533
534 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
535 long on the hardware. */
536 if (regno == (tdep->ppc_vrsave_regnum - 1))
537 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
538
539 regcache_raw_collect (current_regcache, regno,
540 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
541
542 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
543 if (ret < 0)
544 perror_with_name (_("Unable to store AltiVec register"));
545 }
546
547 /* Assuming TID referrs to an SPE process, set the top halves of TID's
548 general-purpose registers and its SPE-specific registers to the
549 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
550 nothing.
551
552 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
553 PTRACE_SETEVRREGS requests are supported is isolated here, and in
554 get_spe_registers. */
555 static void
556 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
557 {
558 if (have_ptrace_getsetevrregs)
559 {
560 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
561 return;
562 else
563 {
564 /* EIO means that the PTRACE_SETEVRREGS request isn't
565 supported; we fail silently, and don't try the call
566 again. */
567 if (errno == EIO)
568 have_ptrace_getsetevrregs = 0;
569 else
570 /* Anything else needs to be reported. */
571 perror_with_name (_("Unable to set SPE registers"));
572 }
573 }
574 }
575
576 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
577 If REGNO is -1, write the values of all the SPE-specific
578 registers. */
579 static void
580 store_spe_register (int tid, int regno)
581 {
582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
583 struct gdb_evrregset_t evrregs;
584
585 gdb_assert (sizeof (evrregs.evr[0])
586 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
587 gdb_assert (sizeof (evrregs.acc)
588 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
589 gdb_assert (sizeof (evrregs.spefscr)
590 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
591
592 if (regno == -1)
593 /* Since we're going to write out every register, the code below
594 should store to every field of evrregs; if that doesn't happen,
595 make it obvious by initializing it with suspicious values. */
596 memset (&evrregs, 42, sizeof (evrregs));
597 else
598 /* We can only read and write the entire EVR register set at a
599 time, so to write just a single register, we do a
600 read-modify-write maneuver. */
601 get_spe_registers (tid, &evrregs);
602
603 if (regno == -1)
604 {
605 int i;
606
607 for (i = 0; i < ppc_num_gprs; i++)
608 regcache_raw_collect (current_regcache,
609 tdep->ppc_ev0_upper_regnum + i,
610 &evrregs.evr[i]);
611 }
612 else if (tdep->ppc_ev0_upper_regnum <= regno
613 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
614 regcache_raw_collect (current_regcache, regno,
615 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
616
617 if (regno == -1
618 || regno == tdep->ppc_acc_regnum)
619 regcache_raw_collect (current_regcache,
620 tdep->ppc_acc_regnum,
621 &evrregs.acc);
622
623 if (regno == -1
624 || regno == tdep->ppc_spefscr_regnum)
625 regcache_raw_collect (current_regcache,
626 tdep->ppc_spefscr_regnum,
627 &evrregs.spefscr);
628
629 /* Write back the modified register set. */
630 set_spe_registers (tid, &evrregs);
631 }
632
633 static void
634 store_register (int tid, int regno)
635 {
636 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
637 /* This isn't really an address. But ptrace thinks of it as one. */
638 CORE_ADDR regaddr = ppc_register_u_addr (regno);
639 int i;
640 size_t bytes_to_transfer;
641 char buf[MAX_REGISTER_SIZE];
642
643 if (altivec_register_p (regno))
644 {
645 store_altivec_register (tid, regno);
646 return;
647 }
648 else if (spe_register_p (regno))
649 {
650 store_spe_register (tid, regno);
651 return;
652 }
653
654 if (regaddr == -1)
655 return;
656
657 /* First collect the register. Keep in mind that the regcache's
658 idea of the register's size may not be a multiple of sizeof
659 (long). */
660 memset (buf, 0, sizeof buf);
661 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
662 sizeof (long));
663 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
664 {
665 /* Little-endian values always sit at the left end of the buffer. */
666 regcache_raw_collect (current_regcache, regno, buf);
667 }
668 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
669 {
670 /* Big-endian values sit at the right end of the buffer. */
671 size_t padding = (bytes_to_transfer
672 - register_size (current_gdbarch, regno));
673 regcache_raw_collect (current_regcache, regno, buf + padding);
674 }
675
676 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
677 {
678 errno = 0;
679 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
680 *(long *) &buf[i]);
681 regaddr += sizeof (long);
682
683 if (errno == EIO
684 && regno == tdep->ppc_fpscr_regnum)
685 {
686 /* Some older kernel versions don't allow fpscr to be written. */
687 continue;
688 }
689
690 if (errno != 0)
691 {
692 char message[128];
693 sprintf (message, "writing register %s (#%d)",
694 REGISTER_NAME (regno), regno);
695 perror_with_name (message);
696 }
697 }
698 }
699
700 static void
701 fill_vrregset (gdb_vrregset_t *vrregsetp)
702 {
703 int i;
704 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
705 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
706 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
707 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
708
709 for (i = 0; i < num_of_vrregs; i++)
710 {
711 /* The last 2 registers of this set are only 32 bit long, not
712 128, but only VSCR is fetched as a 16 bytes quantity. */
713 if (i == (num_of_vrregs - 2))
714 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
715 *vrregsetp + i * vrregsize + offset);
716 else
717 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
718 *vrregsetp + i * vrregsize);
719 }
720 }
721
722 static void
723 store_altivec_registers (int tid)
724 {
725 int ret;
726 gdb_vrregset_t regs;
727
728 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
729 if (ret < 0)
730 {
731 if (errno == EIO)
732 {
733 have_ptrace_getvrregs = 0;
734 return;
735 }
736 perror_with_name (_("Couldn't get AltiVec registers"));
737 }
738
739 fill_vrregset (&regs);
740
741 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
742 perror_with_name (_("Couldn't write AltiVec registers"));
743 }
744
745 static void
746 store_ppc_registers (int tid)
747 {
748 int i;
749 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
750
751 for (i = 0; i < ppc_num_gprs; i++)
752 store_register (tid, tdep->ppc_gp0_regnum + i);
753 if (tdep->ppc_fp0_regnum >= 0)
754 for (i = 0; i < ppc_num_fprs; i++)
755 store_register (tid, tdep->ppc_fp0_regnum + i);
756 store_register (tid, PC_REGNUM);
757 if (tdep->ppc_ps_regnum != -1)
758 store_register (tid, tdep->ppc_ps_regnum);
759 if (tdep->ppc_cr_regnum != -1)
760 store_register (tid, tdep->ppc_cr_regnum);
761 if (tdep->ppc_lr_regnum != -1)
762 store_register (tid, tdep->ppc_lr_regnum);
763 if (tdep->ppc_ctr_regnum != -1)
764 store_register (tid, tdep->ppc_ctr_regnum);
765 if (tdep->ppc_xer_regnum != -1)
766 store_register (tid, tdep->ppc_xer_regnum);
767 if (tdep->ppc_mq_regnum != -1)
768 store_register (tid, tdep->ppc_mq_regnum);
769 if (tdep->ppc_fpscr_regnum != -1)
770 store_register (tid, tdep->ppc_fpscr_regnum);
771 if (have_ptrace_getvrregs)
772 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
773 store_altivec_registers (tid);
774 if (tdep->ppc_ev0_upper_regnum >= 0)
775 store_spe_register (tid, -1);
776 }
777
778 static int
779 ppc_linux_check_watch_resources (int type, int cnt, int ot)
780 {
781 int tid;
782 ptid_t ptid = inferior_ptid;
783
784 /* DABR (data address breakpoint register) is optional for PPC variants.
785 Some variants have one DABR, others have none. So CNT can't be larger
786 than 1. */
787 if (cnt > 1)
788 return 0;
789
790 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
791 the target has DABR. If either answer is no, the ptrace call will
792 return -1. Fail in that case. */
793 tid = TIDGET (ptid);
794 if (tid == 0)
795 tid = PIDGET (ptid);
796
797 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
798 return 0;
799 return 1;
800 }
801
802 static int
803 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
804 {
805 /* Handle sub-8-byte quantities. */
806 if (len <= 0)
807 return 0;
808
809 /* addr+len must fall in the 8 byte watchable region. */
810 if ((addr + len) > (addr & ~7) + 8)
811 return 0;
812
813 return 1;
814 }
815
816 /* Set a watchpoint of type TYPE at address ADDR. */
817 static int
818 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
819 {
820 int tid;
821 long dabr_value;
822 ptid_t ptid = inferior_ptid;
823
824 dabr_value = addr & ~7;
825 switch (rw)
826 {
827 case hw_read:
828 /* Set read and translate bits. */
829 dabr_value |= 5;
830 break;
831 case hw_write:
832 /* Set write and translate bits. */
833 dabr_value |= 6;
834 break;
835 case hw_access:
836 /* Set read, write and translate bits. */
837 dabr_value |= 7;
838 break;
839 }
840
841 tid = TIDGET (ptid);
842 if (tid == 0)
843 tid = PIDGET (ptid);
844
845 return ptrace (PTRACE_SET_DEBUGREG, tid, 0, dabr_value);
846 }
847
848 static int
849 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
850 {
851 int tid;
852 ptid_t ptid = inferior_ptid;
853
854 tid = TIDGET (ptid);
855 if (tid == 0)
856 tid = PIDGET (ptid);
857
858 return ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0);
859 }
860
861 static int
862 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
863 {
864 if (last_stopped_data_address)
865 {
866 *addr_p = last_stopped_data_address;
867 last_stopped_data_address = 0;
868 return 1;
869 }
870 return 0;
871 }
872
873 static int
874 ppc_linux_stopped_by_watchpoint (void)
875 {
876 int tid;
877 struct siginfo siginfo;
878 ptid_t ptid = inferior_ptid;
879 CORE_ADDR *addr_p;
880
881 tid = TIDGET(ptid);
882 if (tid == 0)
883 tid = PIDGET (ptid);
884
885 errno = 0;
886 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_TYPE_ARG3) 0, &siginfo);
887
888 if (errno != 0 || siginfo.si_signo != SIGTRAP ||
889 (siginfo.si_code & 0xffff) != 0x0004)
890 return 0;
891
892 last_stopped_data_address = (uintptr_t) siginfo.si_addr;
893 return 1;
894 }
895
896 static void
897 ppc_linux_store_inferior_registers (int regno)
898 {
899 /* Overload thread id onto process id */
900 int tid = TIDGET (inferior_ptid);
901
902 /* No thread id, just use process id */
903 if (tid == 0)
904 tid = PIDGET (inferior_ptid);
905
906 if (regno >= 0)
907 store_register (tid, regno);
908 else
909 store_ppc_registers (tid);
910 }
911
912 void
913 supply_gregset (gdb_gregset_t *gregsetp)
914 {
915 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
916 interface, and not the wordsize of the program's ABI. */
917 int wordsize = sizeof (long);
918 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
919 sizeof (gdb_gregset_t), wordsize);
920 }
921
922 static void
923 right_fill_reg (int regnum, void *reg)
924 {
925 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
926 interface, and not the wordsize of the program's ABI. */
927 int wordsize = sizeof (long);
928 /* Right fill the register. */
929 regcache_raw_collect (current_regcache, regnum,
930 ((bfd_byte *) reg
931 + wordsize
932 - register_size (current_gdbarch, regnum)));
933 }
934
935 void
936 fill_gregset (gdb_gregset_t *gregsetp, int regno)
937 {
938 int regi;
939 elf_greg_t *regp = (elf_greg_t *) gregsetp;
940 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
941 const int elf_ngreg = 48;
942
943
944 /* Start with zeros. */
945 memset (regp, 0, elf_ngreg * sizeof (*regp));
946
947 for (regi = 0; regi < ppc_num_gprs; regi++)
948 {
949 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
950 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
951 }
952
953 if ((regno == -1) || regno == PC_REGNUM)
954 right_fill_reg (PC_REGNUM, regp + PT_NIP);
955 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
956 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
957 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
958 regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum,
959 regp + PT_CCR);
960 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
961 regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum,
962 regp + PT_XER);
963 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
964 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
965 #ifdef PT_MQ
966 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
967 && (tdep->ppc_mq_regnum != -1))
968 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
969 #endif
970 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
971 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
972 }
973
974 void
975 supply_fpregset (gdb_fpregset_t * fpregsetp)
976 {
977 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
978 sizeof (gdb_fpregset_t));
979 }
980
981 /* Given a pointer to a floating point register set in /proc format
982 (fpregset_t *), update the register specified by REGNO from gdb's
983 idea of the current floating point register set. If REGNO is -1,
984 update them all. */
985 void
986 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
987 {
988 int regi;
989 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
990 bfd_byte *fpp = (void *) fpregsetp;
991
992 if (ppc_floating_point_unit_p (current_gdbarch))
993 {
994 for (regi = 0; regi < ppc_num_fprs; regi++)
995 {
996 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
997 regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi,
998 fpp + 8 * regi);
999 }
1000 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
1001 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
1002 }
1003 }
1004
1005 void _initialize_ppc_linux_nat (void);
1006
1007 void
1008 _initialize_ppc_linux_nat (void)
1009 {
1010 struct target_ops *t;
1011
1012 /* Fill in the generic GNU/Linux methods. */
1013 t = linux_target ();
1014
1015 /* Add our register access methods. */
1016 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
1017 t->to_store_registers = ppc_linux_store_inferior_registers;
1018
1019 /* Add our watchpoint methods. */
1020 t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
1021 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
1022 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
1023 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
1024 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
1025 t->to_stopped_data_address = ppc_linux_stopped_data_address;
1026
1027 /* Register the target. */
1028 linux_nat_add_target (t);
1029 }