]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-nat.c
2013-07-15 Edjunior Barbosa Machado <emachado@linux.vnet.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "observer.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "target.h"
30 #include "linux-nat.h"
31
32 #include <stdint.h>
33 #include <sys/types.h>
34 #include <signal.h>
35 #include <sys/user.h>
36 #include <sys/ioctl.h>
37 #include "gdb_wait.h"
38 #include <fcntl.h>
39 #include <sys/procfs.h>
40 #include <sys/ptrace.h>
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44 #include "ppc-tdep.h"
45 #include "ppc-linux-tdep.h"
46
47 /* Required when using the AUXV. */
48 #include "elf/common.h"
49 #include "auxv.h"
50
51 /* This sometimes isn't defined. */
52 #ifndef PT_ORIG_R3
53 #define PT_ORIG_R3 34
54 #endif
55 #ifndef PT_TRAP
56 #define PT_TRAP 40
57 #endif
58
59 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
60 If they aren't, we can provide them ourselves (their values are fixed
61 because they are part of the kernel ABI). They are used in the AT_HWCAP
62 entry of the AUXV. */
63 #ifndef PPC_FEATURE_CELL
64 #define PPC_FEATURE_CELL 0x00010000
65 #endif
66 #ifndef PPC_FEATURE_BOOKE
67 #define PPC_FEATURE_BOOKE 0x00008000
68 #endif
69 #ifndef PPC_FEATURE_HAS_DFP
70 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
71 #endif
72
73 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
74 configure time check. Some older glibc's (for instance 2.2.1)
75 don't have a specific powerpc version of ptrace.h, and fall back on
76 a generic one. In such cases, sys/ptrace.h defines
77 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
78 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
79 PTRACE_SETVRREGS to be. This also makes a configury check pretty
80 much useless. */
81
82 /* These definitions should really come from the glibc header files,
83 but Glibc doesn't know about the vrregs yet. */
84 #ifndef PTRACE_GETVRREGS
85 #define PTRACE_GETVRREGS 18
86 #define PTRACE_SETVRREGS 19
87 #endif
88
89 /* PTRACE requests for POWER7 VSX registers. */
90 #ifndef PTRACE_GETVSXREGS
91 #define PTRACE_GETVSXREGS 27
92 #define PTRACE_SETVSXREGS 28
93 #endif
94
95 /* Similarly for the ptrace requests for getting / setting the SPE
96 registers (ev0 -- ev31, acc, and spefscr). See the description of
97 gdb_evrregset_t for details. */
98 #ifndef PTRACE_GETEVRREGS
99 #define PTRACE_GETEVRREGS 20
100 #define PTRACE_SETEVRREGS 21
101 #endif
102
103 /* Similarly for the hardware watchpoint support. These requests are used
104 when the PowerPC HWDEBUG ptrace interface is not available. */
105 #ifndef PTRACE_GET_DEBUGREG
106 #define PTRACE_GET_DEBUGREG 25
107 #endif
108 #ifndef PTRACE_SET_DEBUGREG
109 #define PTRACE_SET_DEBUGREG 26
110 #endif
111 #ifndef PTRACE_GETSIGINFO
112 #define PTRACE_GETSIGINFO 0x4202
113 #endif
114
115 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
116 available. It exposes the debug facilities of PowerPC processors, as well
117 as additional features of BookE processors, such as ranged breakpoints and
118 watchpoints and hardware-accelerated condition evaluation. */
119 #ifndef PPC_PTRACE_GETHWDBGINFO
120
121 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
122 ptrace interface is not present in ptrace.h, so we'll have to pretty much
123 include it all here so that the code at least compiles on older systems. */
124 #define PPC_PTRACE_GETHWDBGINFO 0x89
125 #define PPC_PTRACE_SETHWDEBUG 0x88
126 #define PPC_PTRACE_DELHWDEBUG 0x87
127
128 struct ppc_debug_info
129 {
130 uint32_t version; /* Only version 1 exists to date. */
131 uint32_t num_instruction_bps;
132 uint32_t num_data_bps;
133 uint32_t num_condition_regs;
134 uint32_t data_bp_alignment;
135 uint32_t sizeof_condition; /* size of the DVC register. */
136 uint64_t features;
137 };
138
139 /* Features will have bits indicating whether there is support for: */
140 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
141 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
142 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
143 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
144
145 struct ppc_hw_breakpoint
146 {
147 uint32_t version; /* currently, version must be 1 */
148 uint32_t trigger_type; /* only some combinations allowed */
149 uint32_t addr_mode; /* address match mode */
150 uint32_t condition_mode; /* break/watchpoint condition flags */
151 uint64_t addr; /* break/watchpoint address */
152 uint64_t addr2; /* range end or mask */
153 uint64_t condition_value; /* contents of the DVC register */
154 };
155
156 /* Trigger type. */
157 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
158 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
159 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
160 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
161
162 /* Address mode. */
163 #define PPC_BREAKPOINT_MODE_EXACT 0x0
164 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
165 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
166 #define PPC_BREAKPOINT_MODE_MASK 0x3
167
168 /* Condition mode. */
169 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
170 #define PPC_BREAKPOINT_CONDITION_AND 0x1
171 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
172 #define PPC_BREAKPOINT_CONDITION_OR 0x2
173 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
174 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
175 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
176 #define PPC_BREAKPOINT_CONDITION_BE(n) \
177 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
178 #endif /* PPC_PTRACE_GETHWDBGINFO */
179
180
181
182 /* Similarly for the general-purpose (gp0 -- gp31)
183 and floating-point registers (fp0 -- fp31). */
184 #ifndef PTRACE_GETREGS
185 #define PTRACE_GETREGS 12
186 #endif
187 #ifndef PTRACE_SETREGS
188 #define PTRACE_SETREGS 13
189 #endif
190 #ifndef PTRACE_GETFPREGS
191 #define PTRACE_GETFPREGS 14
192 #endif
193 #ifndef PTRACE_SETFPREGS
194 #define PTRACE_SETFPREGS 15
195 #endif
196
197 /* This oddity is because the Linux kernel defines elf_vrregset_t as
198 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
199 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
200 the vrsave as an extra 4 bytes at the end. I opted for creating a
201 flat array of chars, so that it is easier to manipulate for gdb.
202
203 There are 32 vector registers 16 bytes longs, plus a VSCR register
204 which is only 4 bytes long, but is fetched as a 16 bytes
205 quantity. Up to here we have the elf_vrregset_t structure.
206 Appended to this there is space for the VRSAVE register: 4 bytes.
207 Even though this vrsave register is not included in the regset
208 typedef, it is handled by the ptrace requests.
209
210 Note that GNU/Linux doesn't support little endian PPC hardware,
211 therefore the offset at which the real value of the VSCR register
212 is located will be always 12 bytes.
213
214 The layout is like this (where x is the actual value of the vscr reg): */
215
216 /* *INDENT-OFF* */
217 /*
218 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
219 <-------> <-------><-------><->
220 VR0 VR31 VSCR VRSAVE
221 */
222 /* *INDENT-ON* */
223
224 #define SIZEOF_VRREGS 33*16+4
225
226 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
227
228 /* This is the layout of the POWER7 VSX registers and the way they overlap
229 with the existing FPR and VMX registers.
230
231 VSR doubleword 0 VSR doubleword 1
232 ----------------------------------------------------------------
233 VSR[0] | FPR[0] | |
234 ----------------------------------------------------------------
235 VSR[1] | FPR[1] | |
236 ----------------------------------------------------------------
237 | ... | |
238 | ... | |
239 ----------------------------------------------------------------
240 VSR[30] | FPR[30] | |
241 ----------------------------------------------------------------
242 VSR[31] | FPR[31] | |
243 ----------------------------------------------------------------
244 VSR[32] | VR[0] |
245 ----------------------------------------------------------------
246 VSR[33] | VR[1] |
247 ----------------------------------------------------------------
248 | ... |
249 | ... |
250 ----------------------------------------------------------------
251 VSR[62] | VR[30] |
252 ----------------------------------------------------------------
253 VSR[63] | VR[31] |
254 ----------------------------------------------------------------
255
256 VSX has 64 128bit registers. The first 32 registers overlap with
257 the FP registers (doubleword 0) and hence extend them with additional
258 64 bits (doubleword 1). The other 32 regs overlap with the VMX
259 registers. */
260 #define SIZEOF_VSXREGS 32*8
261
262 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
263
264 /* On PPC processors that support the Signal Processing Extension
265 (SPE) APU, the general-purpose registers are 64 bits long.
266 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
267 ptrace calls only access the lower half of each register, to allow
268 them to behave the same way they do on non-SPE systems. There's a
269 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
270 read and write the top halves of all the general-purpose registers
271 at once, along with some SPE-specific registers.
272
273 GDB itself continues to claim the general-purpose registers are 32
274 bits long. It has unnamed raw registers that hold the upper halves
275 of the gprs, and the full 64-bit SIMD views of the registers,
276 'ev0' -- 'ev31', are pseudo-registers that splice the top and
277 bottom halves together.
278
279 This is the structure filled in by PTRACE_GETEVRREGS and written to
280 the inferior's registers by PTRACE_SETEVRREGS. */
281 struct gdb_evrregset_t
282 {
283 unsigned long evr[32];
284 unsigned long long acc;
285 unsigned long spefscr;
286 };
287
288 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
289 PTRACE_SETVSXREGS requests, for reading and writing the VSX
290 POWER7 registers 0 through 31. Zero if we've tried one of them and
291 gotten an error. Note that VSX registers 32 through 63 overlap
292 with VR registers 0 through 31. */
293 int have_ptrace_getsetvsxregs = 1;
294
295 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
296 PTRACE_SETVRREGS requests, for reading and writing the Altivec
297 registers. Zero if we've tried one of them and gotten an
298 error. */
299 int have_ptrace_getvrregs = 1;
300
301 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
302 PTRACE_SETEVRREGS requests, for reading and writing the SPE
303 registers. Zero if we've tried one of them and gotten an
304 error. */
305 int have_ptrace_getsetevrregs = 1;
306
307 /* Non-zero if our kernel may support the PTRACE_GETREGS and
308 PTRACE_SETREGS requests, for reading and writing the
309 general-purpose registers. Zero if we've tried one of
310 them and gotten an error. */
311 int have_ptrace_getsetregs = 1;
312
313 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
314 PTRACE_SETFPREGS requests, for reading and writing the
315 floating-pointers registers. Zero if we've tried one of
316 them and gotten an error. */
317 int have_ptrace_getsetfpregs = 1;
318
319 /* *INDENT-OFF* */
320 /* registers layout, as presented by the ptrace interface:
321 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
322 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
323 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
324 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
325 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
326 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
327 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
328 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
329 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
330 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
331 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
332 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
333 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
334 /* *INDENT_ON * */
335
336 static int
337 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
338 {
339 int u_addr = -1;
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
342 interface, and not the wordsize of the program's ABI. */
343 int wordsize = sizeof (long);
344
345 /* General purpose registers occupy 1 slot each in the buffer. */
346 if (regno >= tdep->ppc_gp0_regnum
347 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
348 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
349
350 /* Floating point regs: eight bytes each in both 32- and 64-bit
351 ptrace interfaces. Thus, two slots each in 32-bit interface, one
352 slot each in 64-bit interface. */
353 if (tdep->ppc_fp0_regnum >= 0
354 && regno >= tdep->ppc_fp0_regnum
355 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
356 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
357
358 /* UISA special purpose registers: 1 slot each. */
359 if (regno == gdbarch_pc_regnum (gdbarch))
360 u_addr = PT_NIP * wordsize;
361 if (regno == tdep->ppc_lr_regnum)
362 u_addr = PT_LNK * wordsize;
363 if (regno == tdep->ppc_cr_regnum)
364 u_addr = PT_CCR * wordsize;
365 if (regno == tdep->ppc_xer_regnum)
366 u_addr = PT_XER * wordsize;
367 if (regno == tdep->ppc_ctr_regnum)
368 u_addr = PT_CTR * wordsize;
369 #ifdef PT_MQ
370 if (regno == tdep->ppc_mq_regnum)
371 u_addr = PT_MQ * wordsize;
372 #endif
373 if (regno == tdep->ppc_ps_regnum)
374 u_addr = PT_MSR * wordsize;
375 if (regno == PPC_ORIG_R3_REGNUM)
376 u_addr = PT_ORIG_R3 * wordsize;
377 if (regno == PPC_TRAP_REGNUM)
378 u_addr = PT_TRAP * wordsize;
379 if (tdep->ppc_fpscr_regnum >= 0
380 && regno == tdep->ppc_fpscr_regnum)
381 {
382 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
383 kernel headers incorrectly contained the 32-bit definition of
384 PT_FPSCR. For the 32-bit definition, floating-point
385 registers occupy two 32-bit "slots", and the FPSCR lives in
386 the second half of such a slot-pair (hence +1). For 64-bit,
387 the FPSCR instead occupies the full 64-bit 2-word-slot and
388 hence no adjustment is necessary. Hack around this. */
389 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
390 u_addr = (48 + 32) * wordsize;
391 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
392 slot and not just its second word. The PT_FPSCR supplied when
393 GDB is compiled as a 32-bit app doesn't reflect this. */
394 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
395 && PT_FPSCR == (48 + 2*32 + 1))
396 u_addr = (48 + 2*32) * wordsize;
397 else
398 u_addr = PT_FPSCR * wordsize;
399 }
400 return u_addr;
401 }
402
403 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
404 registers set mechanism, as opposed to the interface for all the
405 other registers, that stores/fetches each register individually. */
406 static void
407 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
408 {
409 int ret;
410 gdb_vsxregset_t regs;
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
414
415 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
416 if (ret < 0)
417 {
418 if (errno == EIO)
419 {
420 have_ptrace_getsetvsxregs = 0;
421 return;
422 }
423 perror_with_name (_("Unable to fetch VSX register"));
424 }
425
426 regcache_raw_supply (regcache, regno,
427 regs + (regno - tdep->ppc_vsr0_upper_regnum)
428 * vsxregsize);
429 }
430
431 /* The Linux kernel ptrace interface for AltiVec registers uses the
432 registers set mechanism, as opposed to the interface for all the
433 other registers, that stores/fetches each register individually. */
434 static void
435 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
436 {
437 int ret;
438 int offset = 0;
439 gdb_vrregset_t regs;
440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
443
444 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
445 if (ret < 0)
446 {
447 if (errno == EIO)
448 {
449 have_ptrace_getvrregs = 0;
450 return;
451 }
452 perror_with_name (_("Unable to fetch AltiVec register"));
453 }
454
455 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
456 long on the hardware. We deal only with the lower 4 bytes of the
457 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
458 there is no need to define an offset for it. */
459 if (regno == (tdep->ppc_vrsave_regnum - 1))
460 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
461
462 regcache_raw_supply (regcache, regno,
463 regs + (regno
464 - tdep->ppc_vr0_regnum) * vrregsize + offset);
465 }
466
467 /* Fetch the top 32 bits of TID's general-purpose registers and the
468 SPE-specific registers, and place the results in EVRREGSET. If we
469 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
470 zeros.
471
472 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
473 PTRACE_SETEVRREGS requests are supported is isolated here, and in
474 set_spe_registers. */
475 static void
476 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
477 {
478 if (have_ptrace_getsetevrregs)
479 {
480 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
481 return;
482 else
483 {
484 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
485 we just return zeros. */
486 if (errno == EIO)
487 have_ptrace_getsetevrregs = 0;
488 else
489 /* Anything else needs to be reported. */
490 perror_with_name (_("Unable to fetch SPE registers"));
491 }
492 }
493
494 memset (evrregset, 0, sizeof (*evrregset));
495 }
496
497 /* Supply values from TID for SPE-specific raw registers: the upper
498 halves of the GPRs, the accumulator, and the spefscr. REGNO must
499 be the number of an upper half register, acc, spefscr, or -1 to
500 supply the values of all registers. */
501 static void
502 fetch_spe_register (struct regcache *regcache, int tid, int regno)
503 {
504 struct gdbarch *gdbarch = get_regcache_arch (regcache);
505 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
506 struct gdb_evrregset_t evrregs;
507
508 gdb_assert (sizeof (evrregs.evr[0])
509 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
510 gdb_assert (sizeof (evrregs.acc)
511 == register_size (gdbarch, tdep->ppc_acc_regnum));
512 gdb_assert (sizeof (evrregs.spefscr)
513 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
514
515 get_spe_registers (tid, &evrregs);
516
517 if (regno == -1)
518 {
519 int i;
520
521 for (i = 0; i < ppc_num_gprs; i++)
522 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
523 &evrregs.evr[i]);
524 }
525 else if (tdep->ppc_ev0_upper_regnum <= regno
526 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
527 regcache_raw_supply (regcache, regno,
528 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
529
530 if (regno == -1
531 || regno == tdep->ppc_acc_regnum)
532 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
533
534 if (regno == -1
535 || regno == tdep->ppc_spefscr_regnum)
536 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
537 &evrregs.spefscr);
538 }
539
540 static void
541 fetch_register (struct regcache *regcache, int tid, int regno)
542 {
543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
545 /* This isn't really an address. But ptrace thinks of it as one. */
546 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
547 int bytes_transferred;
548 unsigned int offset; /* Offset of registers within the u area. */
549 gdb_byte buf[MAX_REGISTER_SIZE];
550
551 if (altivec_register_p (gdbarch, regno))
552 {
553 /* If this is the first time through, or if it is not the first
554 time through, and we have comfirmed that there is kernel
555 support for such a ptrace request, then go and fetch the
556 register. */
557 if (have_ptrace_getvrregs)
558 {
559 fetch_altivec_register (regcache, tid, regno);
560 return;
561 }
562 /* If we have discovered that there is no ptrace support for
563 AltiVec registers, fall through and return zeroes, because
564 regaddr will be -1 in this case. */
565 }
566 if (vsx_register_p (gdbarch, regno))
567 {
568 if (have_ptrace_getsetvsxregs)
569 {
570 fetch_vsx_register (regcache, tid, regno);
571 return;
572 }
573 }
574 else if (spe_register_p (gdbarch, regno))
575 {
576 fetch_spe_register (regcache, tid, regno);
577 return;
578 }
579
580 if (regaddr == -1)
581 {
582 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
583 regcache_raw_supply (regcache, regno, buf);
584 return;
585 }
586
587 /* Read the raw register using sizeof(long) sized chunks. On a
588 32-bit platform, 64-bit floating-point registers will require two
589 transfers. */
590 for (bytes_transferred = 0;
591 bytes_transferred < register_size (gdbarch, regno);
592 bytes_transferred += sizeof (long))
593 {
594 long l;
595
596 errno = 0;
597 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
598 regaddr += sizeof (long);
599 if (errno != 0)
600 {
601 char message[128];
602 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
603 gdbarch_register_name (gdbarch, regno), regno);
604 perror_with_name (message);
605 }
606 memcpy (&buf[bytes_transferred], &l, sizeof (l));
607 }
608
609 /* Now supply the register. Keep in mind that the regcache's idea
610 of the register's size may not be a multiple of sizeof
611 (long). */
612 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
613 {
614 /* Little-endian values are always found at the left end of the
615 bytes transferred. */
616 regcache_raw_supply (regcache, regno, buf);
617 }
618 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
619 {
620 /* Big-endian values are found at the right end of the bytes
621 transferred. */
622 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
623 regcache_raw_supply (regcache, regno, buf + padding);
624 }
625 else
626 internal_error (__FILE__, __LINE__,
627 _("fetch_register: unexpected byte order: %d"),
628 gdbarch_byte_order (gdbarch));
629 }
630
631 static void
632 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
633 {
634 int i;
635 struct gdbarch *gdbarch = get_regcache_arch (regcache);
636 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
637 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
638
639 for (i = 0; i < ppc_num_vshrs; i++)
640 {
641 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
642 *vsxregsetp + i * vsxregsize);
643 }
644 }
645
646 static void
647 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
648 {
649 int i;
650 struct gdbarch *gdbarch = get_regcache_arch (regcache);
651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
652 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
653 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
654 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
655
656 for (i = 0; i < num_of_vrregs; i++)
657 {
658 /* The last 2 registers of this set are only 32 bit long, not
659 128. However an offset is necessary only for VSCR because it
660 occupies a whole vector, while VRSAVE occupies a full 4 bytes
661 slot. */
662 if (i == (num_of_vrregs - 2))
663 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
664 *vrregsetp + i * vrregsize + offset);
665 else
666 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
667 *vrregsetp + i * vrregsize);
668 }
669 }
670
671 static void
672 fetch_vsx_registers (struct regcache *regcache, int tid)
673 {
674 int ret;
675 gdb_vsxregset_t regs;
676
677 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
678 if (ret < 0)
679 {
680 if (errno == EIO)
681 {
682 have_ptrace_getsetvsxregs = 0;
683 return;
684 }
685 perror_with_name (_("Unable to fetch VSX registers"));
686 }
687 supply_vsxregset (regcache, &regs);
688 }
689
690 static void
691 fetch_altivec_registers (struct regcache *regcache, int tid)
692 {
693 int ret;
694 gdb_vrregset_t regs;
695
696 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
697 if (ret < 0)
698 {
699 if (errno == EIO)
700 {
701 have_ptrace_getvrregs = 0;
702 return;
703 }
704 perror_with_name (_("Unable to fetch AltiVec registers"));
705 }
706 supply_vrregset (regcache, &regs);
707 }
708
709 /* This function actually issues the request to ptrace, telling
710 it to get all general-purpose registers and put them into the
711 specified regset.
712
713 If the ptrace request does not exist, this function returns 0
714 and properly sets the have_ptrace_* flag. If the request fails,
715 this function calls perror_with_name. Otherwise, if the request
716 succeeds, then the regcache gets filled and 1 is returned. */
717 static int
718 fetch_all_gp_regs (struct regcache *regcache, int tid)
719 {
720 struct gdbarch *gdbarch = get_regcache_arch (regcache);
721 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
722 gdb_gregset_t gregset;
723
724 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
725 {
726 if (errno == EIO)
727 {
728 have_ptrace_getsetregs = 0;
729 return 0;
730 }
731 perror_with_name (_("Couldn't get general-purpose registers."));
732 }
733
734 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
735
736 return 1;
737 }
738
739 /* This is a wrapper for the fetch_all_gp_regs function. It is
740 responsible for verifying if this target has the ptrace request
741 that can be used to fetch all general-purpose registers at one
742 shot. If it doesn't, then we should fetch them using the
743 old-fashioned way, which is to iterate over the registers and
744 request them one by one. */
745 static void
746 fetch_gp_regs (struct regcache *regcache, int tid)
747 {
748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
750 int i;
751
752 if (have_ptrace_getsetregs)
753 if (fetch_all_gp_regs (regcache, tid))
754 return;
755
756 /* If we've hit this point, it doesn't really matter which
757 architecture we are using. We just need to read the
758 registers in the "old-fashioned way". */
759 for (i = 0; i < ppc_num_gprs; i++)
760 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
761 }
762
763 /* This function actually issues the request to ptrace, telling
764 it to get all floating-point registers and put them into the
765 specified regset.
766
767 If the ptrace request does not exist, this function returns 0
768 and properly sets the have_ptrace_* flag. If the request fails,
769 this function calls perror_with_name. Otherwise, if the request
770 succeeds, then the regcache gets filled and 1 is returned. */
771 static int
772 fetch_all_fp_regs (struct regcache *regcache, int tid)
773 {
774 gdb_fpregset_t fpregs;
775
776 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
777 {
778 if (errno == EIO)
779 {
780 have_ptrace_getsetfpregs = 0;
781 return 0;
782 }
783 perror_with_name (_("Couldn't get floating-point registers."));
784 }
785
786 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
787
788 return 1;
789 }
790
791 /* This is a wrapper for the fetch_all_fp_regs function. It is
792 responsible for verifying if this target has the ptrace request
793 that can be used to fetch all floating-point registers at one
794 shot. If it doesn't, then we should fetch them using the
795 old-fashioned way, which is to iterate over the registers and
796 request them one by one. */
797 static void
798 fetch_fp_regs (struct regcache *regcache, int tid)
799 {
800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
801 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
802 int i;
803
804 if (have_ptrace_getsetfpregs)
805 if (fetch_all_fp_regs (regcache, tid))
806 return;
807
808 /* If we've hit this point, it doesn't really matter which
809 architecture we are using. We just need to read the
810 registers in the "old-fashioned way". */
811 for (i = 0; i < ppc_num_fprs; i++)
812 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
813 }
814
815 static void
816 fetch_ppc_registers (struct regcache *regcache, int tid)
817 {
818 int i;
819 struct gdbarch *gdbarch = get_regcache_arch (regcache);
820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
821
822 fetch_gp_regs (regcache, tid);
823 if (tdep->ppc_fp0_regnum >= 0)
824 fetch_fp_regs (regcache, tid);
825 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
826 if (tdep->ppc_ps_regnum != -1)
827 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
828 if (tdep->ppc_cr_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
830 if (tdep->ppc_lr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
832 if (tdep->ppc_ctr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
834 if (tdep->ppc_xer_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
836 if (tdep->ppc_mq_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
838 if (ppc_linux_trap_reg_p (gdbarch))
839 {
840 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
841 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
842 }
843 if (tdep->ppc_fpscr_regnum != -1)
844 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
845 if (have_ptrace_getvrregs)
846 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
847 fetch_altivec_registers (regcache, tid);
848 if (have_ptrace_getsetvsxregs)
849 if (tdep->ppc_vsr0_upper_regnum != -1)
850 fetch_vsx_registers (regcache, tid);
851 if (tdep->ppc_ev0_upper_regnum >= 0)
852 fetch_spe_register (regcache, tid, -1);
853 }
854
855 /* Fetch registers from the child process. Fetch all registers if
856 regno == -1, otherwise fetch all general registers or all floating
857 point registers depending upon the value of regno. */
858 static void
859 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
860 struct regcache *regcache, int regno)
861 {
862 /* Overload thread id onto process id. */
863 int tid = TIDGET (inferior_ptid);
864
865 /* No thread id, just use process id. */
866 if (tid == 0)
867 tid = PIDGET (inferior_ptid);
868
869 if (regno == -1)
870 fetch_ppc_registers (regcache, tid);
871 else
872 fetch_register (regcache, tid, regno);
873 }
874
875 /* Store one VSX register. */
876 static void
877 store_vsx_register (const struct regcache *regcache, int tid, int regno)
878 {
879 int ret;
880 gdb_vsxregset_t regs;
881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
883 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
884
885 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
886 if (ret < 0)
887 {
888 if (errno == EIO)
889 {
890 have_ptrace_getsetvsxregs = 0;
891 return;
892 }
893 perror_with_name (_("Unable to fetch VSX register"));
894 }
895
896 regcache_raw_collect (regcache, regno, regs +
897 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
898
899 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
900 if (ret < 0)
901 perror_with_name (_("Unable to store VSX register"));
902 }
903
904 /* Store one register. */
905 static void
906 store_altivec_register (const struct regcache *regcache, int tid, int regno)
907 {
908 int ret;
909 int offset = 0;
910 gdb_vrregset_t regs;
911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
914
915 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
916 if (ret < 0)
917 {
918 if (errno == EIO)
919 {
920 have_ptrace_getvrregs = 0;
921 return;
922 }
923 perror_with_name (_("Unable to fetch AltiVec register"));
924 }
925
926 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
927 long on the hardware. */
928 if (regno == (tdep->ppc_vrsave_regnum - 1))
929 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
930
931 regcache_raw_collect (regcache, regno,
932 regs + (regno
933 - tdep->ppc_vr0_regnum) * vrregsize + offset);
934
935 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
936 if (ret < 0)
937 perror_with_name (_("Unable to store AltiVec register"));
938 }
939
940 /* Assuming TID referrs to an SPE process, set the top halves of TID's
941 general-purpose registers and its SPE-specific registers to the
942 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
943 nothing.
944
945 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
946 PTRACE_SETEVRREGS requests are supported is isolated here, and in
947 get_spe_registers. */
948 static void
949 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
950 {
951 if (have_ptrace_getsetevrregs)
952 {
953 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
954 return;
955 else
956 {
957 /* EIO means that the PTRACE_SETEVRREGS request isn't
958 supported; we fail silently, and don't try the call
959 again. */
960 if (errno == EIO)
961 have_ptrace_getsetevrregs = 0;
962 else
963 /* Anything else needs to be reported. */
964 perror_with_name (_("Unable to set SPE registers"));
965 }
966 }
967 }
968
969 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
970 If REGNO is -1, write the values of all the SPE-specific
971 registers. */
972 static void
973 store_spe_register (const struct regcache *regcache, int tid, int regno)
974 {
975 struct gdbarch *gdbarch = get_regcache_arch (regcache);
976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
977 struct gdb_evrregset_t evrregs;
978
979 gdb_assert (sizeof (evrregs.evr[0])
980 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
981 gdb_assert (sizeof (evrregs.acc)
982 == register_size (gdbarch, tdep->ppc_acc_regnum));
983 gdb_assert (sizeof (evrregs.spefscr)
984 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
985
986 if (regno == -1)
987 /* Since we're going to write out every register, the code below
988 should store to every field of evrregs; if that doesn't happen,
989 make it obvious by initializing it with suspicious values. */
990 memset (&evrregs, 42, sizeof (evrregs));
991 else
992 /* We can only read and write the entire EVR register set at a
993 time, so to write just a single register, we do a
994 read-modify-write maneuver. */
995 get_spe_registers (tid, &evrregs);
996
997 if (regno == -1)
998 {
999 int i;
1000
1001 for (i = 0; i < ppc_num_gprs; i++)
1002 regcache_raw_collect (regcache,
1003 tdep->ppc_ev0_upper_regnum + i,
1004 &evrregs.evr[i]);
1005 }
1006 else if (tdep->ppc_ev0_upper_regnum <= regno
1007 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1008 regcache_raw_collect (regcache, regno,
1009 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1010
1011 if (regno == -1
1012 || regno == tdep->ppc_acc_regnum)
1013 regcache_raw_collect (regcache,
1014 tdep->ppc_acc_regnum,
1015 &evrregs.acc);
1016
1017 if (regno == -1
1018 || regno == tdep->ppc_spefscr_regnum)
1019 regcache_raw_collect (regcache,
1020 tdep->ppc_spefscr_regnum,
1021 &evrregs.spefscr);
1022
1023 /* Write back the modified register set. */
1024 set_spe_registers (tid, &evrregs);
1025 }
1026
1027 static void
1028 store_register (const struct regcache *regcache, int tid, int regno)
1029 {
1030 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1032 /* This isn't really an address. But ptrace thinks of it as one. */
1033 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1034 int i;
1035 size_t bytes_to_transfer;
1036 gdb_byte buf[MAX_REGISTER_SIZE];
1037
1038 if (altivec_register_p (gdbarch, regno))
1039 {
1040 store_altivec_register (regcache, tid, regno);
1041 return;
1042 }
1043 if (vsx_register_p (gdbarch, regno))
1044 {
1045 store_vsx_register (regcache, tid, regno);
1046 return;
1047 }
1048 else if (spe_register_p (gdbarch, regno))
1049 {
1050 store_spe_register (regcache, tid, regno);
1051 return;
1052 }
1053
1054 if (regaddr == -1)
1055 return;
1056
1057 /* First collect the register. Keep in mind that the regcache's
1058 idea of the register's size may not be a multiple of sizeof
1059 (long). */
1060 memset (buf, 0, sizeof buf);
1061 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1062 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1063 {
1064 /* Little-endian values always sit at the left end of the buffer. */
1065 regcache_raw_collect (regcache, regno, buf);
1066 }
1067 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1068 {
1069 /* Big-endian values sit at the right end of the buffer. */
1070 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1071 regcache_raw_collect (regcache, regno, buf + padding);
1072 }
1073
1074 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1075 {
1076 long l;
1077
1078 memcpy (&l, &buf[i], sizeof (l));
1079 errno = 0;
1080 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1081 regaddr += sizeof (long);
1082
1083 if (errno == EIO
1084 && (regno == tdep->ppc_fpscr_regnum
1085 || regno == PPC_ORIG_R3_REGNUM
1086 || regno == PPC_TRAP_REGNUM))
1087 {
1088 /* Some older kernel versions don't allow fpscr, orig_r3
1089 or trap to be written. */
1090 continue;
1091 }
1092
1093 if (errno != 0)
1094 {
1095 char message[128];
1096 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1097 gdbarch_register_name (gdbarch, regno), regno);
1098 perror_with_name (message);
1099 }
1100 }
1101 }
1102
1103 static void
1104 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1105 {
1106 int i;
1107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1109 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1110
1111 for (i = 0; i < ppc_num_vshrs; i++)
1112 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1113 *vsxregsetp + i * vsxregsize);
1114 }
1115
1116 static void
1117 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1118 {
1119 int i;
1120 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1122 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1123 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1124 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1125
1126 for (i = 0; i < num_of_vrregs; i++)
1127 {
1128 /* The last 2 registers of this set are only 32 bit long, not
1129 128, but only VSCR is fetched as a 16 bytes quantity. */
1130 if (i == (num_of_vrregs - 2))
1131 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1132 *vrregsetp + i * vrregsize + offset);
1133 else
1134 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1135 *vrregsetp + i * vrregsize);
1136 }
1137 }
1138
1139 static void
1140 store_vsx_registers (const struct regcache *regcache, int tid)
1141 {
1142 int ret;
1143 gdb_vsxregset_t regs;
1144
1145 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1146 if (ret < 0)
1147 {
1148 if (errno == EIO)
1149 {
1150 have_ptrace_getsetvsxregs = 0;
1151 return;
1152 }
1153 perror_with_name (_("Couldn't get VSX registers"));
1154 }
1155
1156 fill_vsxregset (regcache, &regs);
1157
1158 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1159 perror_with_name (_("Couldn't write VSX registers"));
1160 }
1161
1162 static void
1163 store_altivec_registers (const struct regcache *regcache, int tid)
1164 {
1165 int ret;
1166 gdb_vrregset_t regs;
1167
1168 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1169 if (ret < 0)
1170 {
1171 if (errno == EIO)
1172 {
1173 have_ptrace_getvrregs = 0;
1174 return;
1175 }
1176 perror_with_name (_("Couldn't get AltiVec registers"));
1177 }
1178
1179 fill_vrregset (regcache, &regs);
1180
1181 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1182 perror_with_name (_("Couldn't write AltiVec registers"));
1183 }
1184
1185 /* This function actually issues the request to ptrace, telling
1186 it to store all general-purpose registers present in the specified
1187 regset.
1188
1189 If the ptrace request does not exist, this function returns 0
1190 and properly sets the have_ptrace_* flag. If the request fails,
1191 this function calls perror_with_name. Otherwise, if the request
1192 succeeds, then the regcache is stored and 1 is returned. */
1193 static int
1194 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1195 {
1196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1198 gdb_gregset_t gregset;
1199
1200 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1201 {
1202 if (errno == EIO)
1203 {
1204 have_ptrace_getsetregs = 0;
1205 return 0;
1206 }
1207 perror_with_name (_("Couldn't get general-purpose registers."));
1208 }
1209
1210 fill_gregset (regcache, &gregset, regno);
1211
1212 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1213 {
1214 if (errno == EIO)
1215 {
1216 have_ptrace_getsetregs = 0;
1217 return 0;
1218 }
1219 perror_with_name (_("Couldn't set general-purpose registers."));
1220 }
1221
1222 return 1;
1223 }
1224
1225 /* This is a wrapper for the store_all_gp_regs function. It is
1226 responsible for verifying if this target has the ptrace request
1227 that can be used to store all general-purpose registers at one
1228 shot. If it doesn't, then we should store them using the
1229 old-fashioned way, which is to iterate over the registers and
1230 store them one by one. */
1231 static void
1232 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1233 {
1234 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1236 int i;
1237
1238 if (have_ptrace_getsetregs)
1239 if (store_all_gp_regs (regcache, tid, regno))
1240 return;
1241
1242 /* If we hit this point, it doesn't really matter which
1243 architecture we are using. We just need to store the
1244 registers in the "old-fashioned way". */
1245 for (i = 0; i < ppc_num_gprs; i++)
1246 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1247 }
1248
1249 /* This function actually issues the request to ptrace, telling
1250 it to store all floating-point registers present in the specified
1251 regset.
1252
1253 If the ptrace request does not exist, this function returns 0
1254 and properly sets the have_ptrace_* flag. If the request fails,
1255 this function calls perror_with_name. Otherwise, if the request
1256 succeeds, then the regcache is stored and 1 is returned. */
1257 static int
1258 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1259 {
1260 gdb_fpregset_t fpregs;
1261
1262 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1263 {
1264 if (errno == EIO)
1265 {
1266 have_ptrace_getsetfpregs = 0;
1267 return 0;
1268 }
1269 perror_with_name (_("Couldn't get floating-point registers."));
1270 }
1271
1272 fill_fpregset (regcache, &fpregs, regno);
1273
1274 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1275 {
1276 if (errno == EIO)
1277 {
1278 have_ptrace_getsetfpregs = 0;
1279 return 0;
1280 }
1281 perror_with_name (_("Couldn't set floating-point registers."));
1282 }
1283
1284 return 1;
1285 }
1286
1287 /* This is a wrapper for the store_all_fp_regs function. It is
1288 responsible for verifying if this target has the ptrace request
1289 that can be used to store all floating-point registers at one
1290 shot. If it doesn't, then we should store them using the
1291 old-fashioned way, which is to iterate over the registers and
1292 store them one by one. */
1293 static void
1294 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1295 {
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1298 int i;
1299
1300 if (have_ptrace_getsetfpregs)
1301 if (store_all_fp_regs (regcache, tid, regno))
1302 return;
1303
1304 /* If we hit this point, it doesn't really matter which
1305 architecture we are using. We just need to store the
1306 registers in the "old-fashioned way". */
1307 for (i = 0; i < ppc_num_fprs; i++)
1308 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1309 }
1310
1311 static void
1312 store_ppc_registers (const struct regcache *regcache, int tid)
1313 {
1314 int i;
1315 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1317
1318 store_gp_regs (regcache, tid, -1);
1319 if (tdep->ppc_fp0_regnum >= 0)
1320 store_fp_regs (regcache, tid, -1);
1321 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1322 if (tdep->ppc_ps_regnum != -1)
1323 store_register (regcache, tid, tdep->ppc_ps_regnum);
1324 if (tdep->ppc_cr_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_cr_regnum);
1326 if (tdep->ppc_lr_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_lr_regnum);
1328 if (tdep->ppc_ctr_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1330 if (tdep->ppc_xer_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_xer_regnum);
1332 if (tdep->ppc_mq_regnum != -1)
1333 store_register (regcache, tid, tdep->ppc_mq_regnum);
1334 if (tdep->ppc_fpscr_regnum != -1)
1335 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1336 if (ppc_linux_trap_reg_p (gdbarch))
1337 {
1338 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1339 store_register (regcache, tid, PPC_TRAP_REGNUM);
1340 }
1341 if (have_ptrace_getvrregs)
1342 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1343 store_altivec_registers (regcache, tid);
1344 if (have_ptrace_getsetvsxregs)
1345 if (tdep->ppc_vsr0_upper_regnum != -1)
1346 store_vsx_registers (regcache, tid);
1347 if (tdep->ppc_ev0_upper_regnum >= 0)
1348 store_spe_register (regcache, tid, -1);
1349 }
1350
1351 /* Fetch the AT_HWCAP entry from the aux vector. */
1352 static unsigned long
1353 ppc_linux_get_hwcap (void)
1354 {
1355 CORE_ADDR field;
1356
1357 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1358 return (unsigned long) field;
1359
1360 return 0;
1361 }
1362
1363 /* The cached DABR value, to install in new threads.
1364 This variable is used when the PowerPC HWDEBUG ptrace
1365 interface is not available. */
1366 static long saved_dabr_value;
1367
1368 /* Global structure that will store information about the available
1369 features provided by the PowerPC HWDEBUG ptrace interface. */
1370 static struct ppc_debug_info hwdebug_info;
1371
1372 /* Global variable that holds the maximum number of slots that the
1373 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1374 is available. */
1375 static size_t max_slots_number = 0;
1376
1377 struct hw_break_tuple
1378 {
1379 long slot;
1380 struct ppc_hw_breakpoint *hw_break;
1381 };
1382
1383 /* This is an internal VEC created to store information about *points inserted
1384 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1385 available. */
1386 typedef struct thread_points
1387 {
1388 /* The TID to which this *point relates. */
1389 int tid;
1390 /* Information about the *point, such as its address, type, etc.
1391
1392 Each element inside this vector corresponds to a hardware
1393 breakpoint or watchpoint in the thread represented by TID. The maximum
1394 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1395 the tuple is NULL, then the position in the vector is free. */
1396 struct hw_break_tuple *hw_breaks;
1397 } *thread_points_p;
1398 DEF_VEC_P (thread_points_p);
1399
1400 VEC(thread_points_p) *ppc_threads = NULL;
1401
1402 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1403 available. */
1404 #define PPC_DEBUG_CURRENT_VERSION 1
1405
1406 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1407 static int
1408 have_ptrace_hwdebug_interface (void)
1409 {
1410 static int have_ptrace_hwdebug_interface = -1;
1411
1412 if (have_ptrace_hwdebug_interface == -1)
1413 {
1414 int tid;
1415
1416 tid = TIDGET (inferior_ptid);
1417 if (tid == 0)
1418 tid = PIDGET (inferior_ptid);
1419
1420 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1421 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1422 {
1423 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1424 provides any supported feature. */
1425 if (hwdebug_info.features != 0)
1426 {
1427 have_ptrace_hwdebug_interface = 1;
1428 max_slots_number = hwdebug_info.num_instruction_bps
1429 + hwdebug_info.num_data_bps
1430 + hwdebug_info.num_condition_regs;
1431 return have_ptrace_hwdebug_interface;
1432 }
1433 }
1434 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1435 have_ptrace_hwdebug_interface = 0;
1436 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1437 }
1438
1439 return have_ptrace_hwdebug_interface;
1440 }
1441
1442 static int
1443 ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
1444 {
1445 int total_hw_wp, total_hw_bp;
1446
1447 if (have_ptrace_hwdebug_interface ())
1448 {
1449 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1450 available hardware watchpoints and breakpoints is stored at the
1451 hwdebug_info struct. */
1452 total_hw_bp = hwdebug_info.num_instruction_bps;
1453 total_hw_wp = hwdebug_info.num_data_bps;
1454 }
1455 else
1456 {
1457 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1458 consider having 1 hardware watchpoint and no hardware breakpoints. */
1459 total_hw_bp = 0;
1460 total_hw_wp = 1;
1461 }
1462
1463 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1464 || type == bp_access_watchpoint || type == bp_watchpoint)
1465 {
1466 if (cnt + ot > total_hw_wp)
1467 return -1;
1468 }
1469 else if (type == bp_hardware_breakpoint)
1470 {
1471 if (cnt > total_hw_bp)
1472 return -1;
1473 }
1474
1475 if (!have_ptrace_hwdebug_interface ())
1476 {
1477 int tid;
1478 ptid_t ptid = inferior_ptid;
1479
1480 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1481 and whether the target has DABR. If either answer is no, the
1482 ptrace call will return -1. Fail in that case. */
1483 tid = TIDGET (ptid);
1484 if (tid == 0)
1485 tid = PIDGET (ptid);
1486
1487 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1488 return 0;
1489 }
1490
1491 return 1;
1492 }
1493
1494 static int
1495 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1496 {
1497 /* Handle sub-8-byte quantities. */
1498 if (len <= 0)
1499 return 0;
1500
1501 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1502 restrictions for watchpoints in the processors. In that case, we use that
1503 information to determine the hardcoded watchable region for
1504 watchpoints. */
1505 if (have_ptrace_hwdebug_interface ())
1506 {
1507 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1508 watchpoints and can watch any access within an arbitrary memory
1509 region. This is useful to watch arrays and structs, for instance. It
1510 takes two hardware watchpoints though. */
1511 if (len > 1
1512 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1513 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1514 return 2;
1515 /* Server processors provide one hardware watchpoint and addr+len should
1516 fall in the watchable region provided by the ptrace interface. */
1517 if (hwdebug_info.data_bp_alignment
1518 && (addr + len > (addr & ~(hwdebug_info.data_bp_alignment - 1))
1519 + hwdebug_info.data_bp_alignment))
1520 return 0;
1521 }
1522 /* addr+len must fall in the 8 byte watchable region for DABR-based
1523 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1524 ptrace interface, DAC-based processors (i.e., embedded processors) will
1525 use addresses aligned to 4-bytes due to the way the read/write flags are
1526 passed in the old ptrace interface. */
1527 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1528 && (addr + len) > (addr & ~3) + 4)
1529 || (addr + len) > (addr & ~7) + 8)
1530 return 0;
1531
1532 return 1;
1533 }
1534
1535 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1536 static int
1537 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1538 {
1539 return (a->trigger_type == b->trigger_type
1540 && a->addr_mode == b->addr_mode
1541 && a->condition_mode == b->condition_mode
1542 && a->addr == b->addr
1543 && a->addr2 == b->addr2
1544 && a->condition_value == b->condition_value);
1545 }
1546
1547 /* This function can be used to retrieve a thread_points by the TID of the
1548 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1549 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1550 provided TID will be created and returned. */
1551 static struct thread_points *
1552 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1553 {
1554 int i;
1555 struct thread_points *t;
1556
1557 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1558 if (t->tid == tid)
1559 return t;
1560
1561 t = NULL;
1562
1563 /* Do we need to allocate a new point_item
1564 if the wanted one does not exist? */
1565 if (alloc_new)
1566 {
1567 t = xmalloc (sizeof (struct thread_points));
1568 t->hw_breaks
1569 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1570 t->tid = tid;
1571 VEC_safe_push (thread_points_p, ppc_threads, t);
1572 }
1573
1574 return t;
1575 }
1576
1577 /* This function is a generic wrapper that is responsible for inserting a
1578 *point (i.e., calling `ptrace' in order to issue the request to the
1579 kernel) and registering it internally in GDB. */
1580 static void
1581 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1582 {
1583 int i;
1584 long slot;
1585 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1586 struct hw_break_tuple *hw_breaks;
1587 struct cleanup *c = make_cleanup (xfree, p);
1588 struct thread_points *t;
1589 struct hw_break_tuple *tuple;
1590
1591 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1592
1593 errno = 0;
1594 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1595 if (slot < 0)
1596 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1597
1598 /* Everything went fine, so we have to register this *point. */
1599 t = hwdebug_find_thread_points_by_tid (tid, 1);
1600 gdb_assert (t != NULL);
1601 hw_breaks = t->hw_breaks;
1602
1603 /* Find a free element in the hw_breaks vector. */
1604 for (i = 0; i < max_slots_number; i++)
1605 if (hw_breaks[i].hw_break == NULL)
1606 {
1607 hw_breaks[i].slot = slot;
1608 hw_breaks[i].hw_break = p;
1609 break;
1610 }
1611
1612 gdb_assert (i != max_slots_number);
1613
1614 discard_cleanups (c);
1615 }
1616
1617 /* This function is a generic wrapper that is responsible for removing a
1618 *point (i.e., calling `ptrace' in order to issue the request to the
1619 kernel), and unregistering it internally at GDB. */
1620 static void
1621 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1622 {
1623 int i;
1624 struct hw_break_tuple *hw_breaks;
1625 struct thread_points *t;
1626
1627 t = hwdebug_find_thread_points_by_tid (tid, 0);
1628 gdb_assert (t != NULL);
1629 hw_breaks = t->hw_breaks;
1630
1631 for (i = 0; i < max_slots_number; i++)
1632 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1633 break;
1634
1635 gdb_assert (i != max_slots_number);
1636
1637 /* We have to ignore ENOENT errors because the kernel implements hardware
1638 breakpoints/watchpoints as "one-shot", that is, they are automatically
1639 deleted when hit. */
1640 errno = 0;
1641 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1642 if (errno != ENOENT)
1643 perror_with_name (_("Unexpected error deleting "
1644 "breakpoint or watchpoint"));
1645
1646 xfree (hw_breaks[i].hw_break);
1647 hw_breaks[i].hw_break = NULL;
1648 }
1649
1650 /* Return the number of registers needed for a ranged breakpoint. */
1651
1652 static int
1653 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1654 {
1655 return ((have_ptrace_hwdebug_interface ()
1656 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1657 2 : -1);
1658 }
1659
1660 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1661 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1662
1663 static int
1664 ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1665 struct bp_target_info *bp_tgt)
1666 {
1667 struct lwp_info *lp;
1668 struct ppc_hw_breakpoint p;
1669
1670 if (!have_ptrace_hwdebug_interface ())
1671 return -1;
1672
1673 p.version = PPC_DEBUG_CURRENT_VERSION;
1674 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1675 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1676 p.addr = (uint64_t) bp_tgt->placed_address;
1677 p.condition_value = 0;
1678
1679 if (bp_tgt->length)
1680 {
1681 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1682
1683 /* The breakpoint will trigger if the address of the instruction is
1684 within the defined range, as follows: p.addr <= address < p.addr2. */
1685 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1686 }
1687 else
1688 {
1689 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1690 p.addr2 = 0;
1691 }
1692
1693 ALL_LWPS (lp)
1694 hwdebug_insert_point (&p, TIDGET (lp->ptid));
1695
1696 return 0;
1697 }
1698
1699 static int
1700 ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1701 struct bp_target_info *bp_tgt)
1702 {
1703 struct lwp_info *lp;
1704 struct ppc_hw_breakpoint p;
1705
1706 if (!have_ptrace_hwdebug_interface ())
1707 return -1;
1708
1709 p.version = PPC_DEBUG_CURRENT_VERSION;
1710 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1711 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1712 p.addr = (uint64_t) bp_tgt->placed_address;
1713 p.condition_value = 0;
1714
1715 if (bp_tgt->length)
1716 {
1717 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1718
1719 /* The breakpoint will trigger if the address of the instruction is within
1720 the defined range, as follows: p.addr <= address < p.addr2. */
1721 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1722 }
1723 else
1724 {
1725 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1726 p.addr2 = 0;
1727 }
1728
1729 ALL_LWPS (lp)
1730 hwdebug_remove_point (&p, TIDGET (lp->ptid));
1731
1732 return 0;
1733 }
1734
1735 static int
1736 get_trigger_type (int rw)
1737 {
1738 int t;
1739
1740 if (rw == hw_read)
1741 t = PPC_BREAKPOINT_TRIGGER_READ;
1742 else if (rw == hw_write)
1743 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1744 else
1745 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1746
1747 return t;
1748 }
1749
1750 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1751 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1752 or hw_access for an access watchpoint. Returns 0 on success and throws
1753 an error on failure. */
1754
1755 static int
1756 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1757 CORE_ADDR mask, int rw)
1758 {
1759 struct lwp_info *lp;
1760 struct ppc_hw_breakpoint p;
1761
1762 gdb_assert (have_ptrace_hwdebug_interface ());
1763
1764 p.version = PPC_DEBUG_CURRENT_VERSION;
1765 p.trigger_type = get_trigger_type (rw);
1766 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1767 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1768 p.addr = addr;
1769 p.addr2 = mask;
1770 p.condition_value = 0;
1771
1772 ALL_LWPS (lp)
1773 hwdebug_insert_point (&p, TIDGET (lp->ptid));
1774
1775 return 0;
1776 }
1777
1778 /* Remove a masked watchpoint at ADDR with the mask MASK.
1779 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1780 or hw_access for an access watchpoint. Returns 0 on success and throws
1781 an error on failure. */
1782
1783 static int
1784 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1785 CORE_ADDR mask, int rw)
1786 {
1787 struct lwp_info *lp;
1788 struct ppc_hw_breakpoint p;
1789
1790 gdb_assert (have_ptrace_hwdebug_interface ());
1791
1792 p.version = PPC_DEBUG_CURRENT_VERSION;
1793 p.trigger_type = get_trigger_type (rw);
1794 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1795 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1796 p.addr = addr;
1797 p.addr2 = mask;
1798 p.condition_value = 0;
1799
1800 ALL_LWPS (lp)
1801 hwdebug_remove_point (&p, TIDGET (lp->ptid));
1802
1803 return 0;
1804 }
1805
1806 /* Check whether we have at least one free DVC register. */
1807 static int
1808 can_use_watchpoint_cond_accel (void)
1809 {
1810 struct thread_points *p;
1811 int tid = TIDGET (inferior_ptid);
1812 int cnt = hwdebug_info.num_condition_regs, i;
1813 CORE_ADDR tmp_value;
1814
1815 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1816 return 0;
1817
1818 p = hwdebug_find_thread_points_by_tid (tid, 0);
1819
1820 if (p)
1821 {
1822 for (i = 0; i < max_slots_number; i++)
1823 if (p->hw_breaks[i].hw_break != NULL
1824 && (p->hw_breaks[i].hw_break->condition_mode
1825 != PPC_BREAKPOINT_CONDITION_NONE))
1826 cnt--;
1827
1828 /* There are no available slots now. */
1829 if (cnt <= 0)
1830 return 0;
1831 }
1832
1833 return 1;
1834 }
1835
1836 /* Calculate the enable bits and the contents of the Data Value Compare
1837 debug register present in BookE processors.
1838
1839 ADDR is the address to be watched, LEN is the length of watched data
1840 and DATA_VALUE is the value which will trigger the watchpoint.
1841 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1842 CONDITION_VALUE will hold the value which should be put in the
1843 DVC register. */
1844 static void
1845 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1846 uint32_t *condition_mode, uint64_t *condition_value)
1847 {
1848 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1849 rightmost_enabled_byte;
1850 CORE_ADDR addr_end_data, addr_end_dvc;
1851
1852 /* The DVC register compares bytes within fixed-length windows which
1853 are word-aligned, with length equal to that of the DVC register.
1854 We need to calculate where our watch region is relative to that
1855 window and enable comparison of the bytes which fall within it. */
1856
1857 align_offset = addr % hwdebug_info.sizeof_condition;
1858 addr_end_data = addr + len;
1859 addr_end_dvc = (addr - align_offset
1860 + hwdebug_info.sizeof_condition);
1861 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1862 addr_end_data - addr_end_dvc : 0;
1863 num_byte_enable = len - num_bytes_off_dvc;
1864 /* Here, bytes are numbered from right to left. */
1865 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1866 addr_end_dvc - addr_end_data : 0;
1867
1868 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1869 for (i = 0; i < num_byte_enable; i++)
1870 *condition_mode
1871 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1872
1873 /* Now we need to match the position within the DVC of the comparison
1874 value with where the watch region is relative to the window
1875 (i.e., the ALIGN_OFFSET). */
1876
1877 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1878 << rightmost_enabled_byte * 8);
1879 }
1880
1881 /* Return the number of memory locations that need to be accessed to
1882 evaluate the expression which generated the given value chain.
1883 Returns -1 if there's any register access involved, or if there are
1884 other kinds of values which are not acceptable in a condition
1885 expression (e.g., lval_computed or lval_internalvar). */
1886 static int
1887 num_memory_accesses (struct value *v)
1888 {
1889 int found_memory_cnt = 0;
1890 struct value *head = v;
1891
1892 /* The idea here is that evaluating an expression generates a series
1893 of values, one holding the value of every subexpression. (The
1894 expression a*b+c has five subexpressions: a, b, a*b, c, and
1895 a*b+c.) GDB's values hold almost enough information to establish
1896 the criteria given above --- they identify memory lvalues,
1897 register lvalues, computed values, etcetera. So we can evaluate
1898 the expression, and then scan the chain of values that leaves
1899 behind to determine the memory locations involved in the evaluation
1900 of an expression.
1901
1902 However, I don't think that the values returned by inferior
1903 function calls are special in any way. So this function may not
1904 notice that an expression contains an inferior function call.
1905 FIXME. */
1906
1907 for (; v; v = value_next (v))
1908 {
1909 /* Constants and values from the history are fine. */
1910 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1911 continue;
1912 else if (VALUE_LVAL (v) == lval_memory)
1913 {
1914 /* A lazy memory lvalue is one that GDB never needed to fetch;
1915 we either just used its address (e.g., `a' in `a.b') or
1916 we never needed it at all (e.g., `a' in `a,b'). */
1917 if (!value_lazy (v))
1918 found_memory_cnt++;
1919 }
1920 /* Other kinds of values are not fine. */
1921 else
1922 return -1;
1923 }
1924
1925 return found_memory_cnt;
1926 }
1927
1928 /* Verifies whether the expression COND can be implemented using the
1929 DVC (Data Value Compare) register in BookE processors. The expression
1930 must test the watch value for equality with a constant expression.
1931 If the function returns 1, DATA_VALUE will contain the constant against
1932 which the watch value should be compared and LEN will contain the size
1933 of the constant. */
1934 static int
1935 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1936 CORE_ADDR *data_value, int *len)
1937 {
1938 int pc = 1, num_accesses_left, num_accesses_right;
1939 struct value *left_val, *right_val, *left_chain, *right_chain;
1940
1941 if (cond->elts[0].opcode != BINOP_EQUAL)
1942 return 0;
1943
1944 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1945 num_accesses_left = num_memory_accesses (left_chain);
1946
1947 if (left_val == NULL || num_accesses_left < 0)
1948 {
1949 free_value_chain (left_chain);
1950
1951 return 0;
1952 }
1953
1954 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1955 num_accesses_right = num_memory_accesses (right_chain);
1956
1957 if (right_val == NULL || num_accesses_right < 0)
1958 {
1959 free_value_chain (left_chain);
1960 free_value_chain (right_chain);
1961
1962 return 0;
1963 }
1964
1965 if (num_accesses_left == 1 && num_accesses_right == 0
1966 && VALUE_LVAL (left_val) == lval_memory
1967 && value_address (left_val) == watch_addr)
1968 {
1969 *data_value = value_as_long (right_val);
1970
1971 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1972 the same type as the memory region referenced by LEFT_VAL. */
1973 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1974 }
1975 else if (num_accesses_left == 0 && num_accesses_right == 1
1976 && VALUE_LVAL (right_val) == lval_memory
1977 && value_address (right_val) == watch_addr)
1978 {
1979 *data_value = value_as_long (left_val);
1980
1981 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1982 the same type as the memory region referenced by RIGHT_VAL. */
1983 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1984 }
1985 else
1986 {
1987 free_value_chain (left_chain);
1988 free_value_chain (right_chain);
1989
1990 return 0;
1991 }
1992
1993 free_value_chain (left_chain);
1994 free_value_chain (right_chain);
1995
1996 return 1;
1997 }
1998
1999 /* Return non-zero if the target is capable of using hardware to evaluate
2000 the condition expression, thus only triggering the watchpoint when it is
2001 true. */
2002 static int
2003 ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2004 struct expression *cond)
2005 {
2006 CORE_ADDR data_value;
2007
2008 return (have_ptrace_hwdebug_interface ()
2009 && hwdebug_info.num_condition_regs > 0
2010 && check_condition (addr, cond, &data_value, &len));
2011 }
2012
2013 /* Set up P with the parameters necessary to request a watchpoint covering
2014 LEN bytes starting at ADDR and if possible with condition expression COND
2015 evaluated by hardware. INSERT tells if we are creating a request for
2016 inserting or removing the watchpoint. */
2017
2018 static void
2019 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2020 int len, int rw, struct expression *cond,
2021 int insert)
2022 {
2023 if (len == 1
2024 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2025 {
2026 int use_condition;
2027 CORE_ADDR data_value;
2028
2029 use_condition = (insert? can_use_watchpoint_cond_accel ()
2030 : hwdebug_info.num_condition_regs > 0);
2031 if (cond && use_condition && check_condition (addr, cond,
2032 &data_value, &len))
2033 calculate_dvc (addr, len, data_value, &p->condition_mode,
2034 &p->condition_value);
2035 else
2036 {
2037 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2038 p->condition_value = 0;
2039 }
2040
2041 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2042 p->addr2 = 0;
2043 }
2044 else
2045 {
2046 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2047 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2048 p->condition_value = 0;
2049
2050 /* The watchpoint will trigger if the address of the memory access is
2051 within the defined range, as follows: p->addr <= address < p->addr2.
2052
2053 Note that the above sentence just documents how ptrace interprets
2054 its arguments; the watchpoint is set to watch the range defined by
2055 the user _inclusively_, as specified by the user interface. */
2056 p->addr2 = (uint64_t) addr + len;
2057 }
2058
2059 p->version = PPC_DEBUG_CURRENT_VERSION;
2060 p->trigger_type = get_trigger_type (rw);
2061 p->addr = (uint64_t) addr;
2062 }
2063
2064 static int
2065 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2066 struct expression *cond)
2067 {
2068 struct lwp_info *lp;
2069 int ret = -1;
2070
2071 if (have_ptrace_hwdebug_interface ())
2072 {
2073 struct ppc_hw_breakpoint p;
2074
2075 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2076
2077 ALL_LWPS (lp)
2078 hwdebug_insert_point (&p, TIDGET (lp->ptid));
2079
2080 ret = 0;
2081 }
2082 else
2083 {
2084 long dabr_value;
2085 long read_mode, write_mode;
2086
2087 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2088 {
2089 /* PowerPC 440 requires only the read/write flags to be passed
2090 to the kernel. */
2091 read_mode = 1;
2092 write_mode = 2;
2093 }
2094 else
2095 {
2096 /* PowerPC 970 and other DABR-based processors are required to pass
2097 the Breakpoint Translation bit together with the flags. */
2098 read_mode = 5;
2099 write_mode = 6;
2100 }
2101
2102 dabr_value = addr & ~(read_mode | write_mode);
2103 switch (rw)
2104 {
2105 case hw_read:
2106 /* Set read and translate bits. */
2107 dabr_value |= read_mode;
2108 break;
2109 case hw_write:
2110 /* Set write and translate bits. */
2111 dabr_value |= write_mode;
2112 break;
2113 case hw_access:
2114 /* Set read, write and translate bits. */
2115 dabr_value |= read_mode | write_mode;
2116 break;
2117 }
2118
2119 saved_dabr_value = dabr_value;
2120
2121 ALL_LWPS (lp)
2122 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2123 saved_dabr_value) < 0)
2124 return -1;
2125
2126 ret = 0;
2127 }
2128
2129 return ret;
2130 }
2131
2132 static int
2133 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2134 struct expression *cond)
2135 {
2136 struct lwp_info *lp;
2137 int ret = -1;
2138
2139 if (have_ptrace_hwdebug_interface ())
2140 {
2141 struct ppc_hw_breakpoint p;
2142
2143 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2144
2145 ALL_LWPS (lp)
2146 hwdebug_remove_point (&p, TIDGET (lp->ptid));
2147
2148 ret = 0;
2149 }
2150 else
2151 {
2152 saved_dabr_value = 0;
2153 ALL_LWPS (lp)
2154 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2155 saved_dabr_value) < 0)
2156 return -1;
2157
2158 ret = 0;
2159 }
2160
2161 return ret;
2162 }
2163
2164 static void
2165 ppc_linux_new_thread (struct lwp_info *lp)
2166 {
2167 int tid = TIDGET (lp->ptid);
2168
2169 if (have_ptrace_hwdebug_interface ())
2170 {
2171 int i;
2172 struct thread_points *p;
2173 struct hw_break_tuple *hw_breaks;
2174
2175 if (VEC_empty (thread_points_p, ppc_threads))
2176 return;
2177
2178 /* Get a list of breakpoints from any thread. */
2179 p = VEC_last (thread_points_p, ppc_threads);
2180 hw_breaks = p->hw_breaks;
2181
2182 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2183 for (i = 0; i < max_slots_number; i++)
2184 if (hw_breaks[i].hw_break)
2185 {
2186 /* Older kernels did not make new threads inherit their parent
2187 thread's debug state, so we always clear the slot and replicate
2188 the debug state ourselves, ensuring compatibility with all
2189 kernels. */
2190
2191 /* The ppc debug resource accounting is done through "slots".
2192 Ask the kernel the deallocate this specific *point's slot. */
2193 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2194
2195 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2196 }
2197 }
2198 else
2199 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2200 }
2201
2202 static void
2203 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2204 {
2205 int i;
2206 int tid = TIDGET (tp->ptid);
2207 struct hw_break_tuple *hw_breaks;
2208 struct thread_points *t = NULL, *p;
2209
2210 if (!have_ptrace_hwdebug_interface ())
2211 return;
2212
2213 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2214 if (p->tid == tid)
2215 {
2216 t = p;
2217 break;
2218 }
2219
2220 if (t == NULL)
2221 return;
2222
2223 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2224
2225 hw_breaks = t->hw_breaks;
2226
2227 for (i = 0; i < max_slots_number; i++)
2228 if (hw_breaks[i].hw_break)
2229 xfree (hw_breaks[i].hw_break);
2230
2231 xfree (t->hw_breaks);
2232 xfree (t);
2233 }
2234
2235 static int
2236 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2237 {
2238 siginfo_t siginfo;
2239
2240 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2241 return 0;
2242
2243 if (siginfo.si_signo != SIGTRAP
2244 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2245 return 0;
2246
2247 if (have_ptrace_hwdebug_interface ())
2248 {
2249 int i;
2250 struct thread_points *t;
2251 struct hw_break_tuple *hw_breaks;
2252 /* The index (or slot) of the *point is passed in the si_errno field. */
2253 int slot = siginfo.si_errno;
2254
2255 t = hwdebug_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2256
2257 /* Find out if this *point is a hardware breakpoint.
2258 If so, we should return 0. */
2259 if (t)
2260 {
2261 hw_breaks = t->hw_breaks;
2262 for (i = 0; i < max_slots_number; i++)
2263 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2264 && hw_breaks[i].hw_break->trigger_type
2265 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2266 return 0;
2267 }
2268 }
2269
2270 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2271 return 1;
2272 }
2273
2274 static int
2275 ppc_linux_stopped_by_watchpoint (void)
2276 {
2277 CORE_ADDR addr;
2278 return ppc_linux_stopped_data_address (&current_target, &addr);
2279 }
2280
2281 static int
2282 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2283 CORE_ADDR addr,
2284 CORE_ADDR start, int length)
2285 {
2286 int mask;
2287
2288 if (have_ptrace_hwdebug_interface ()
2289 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2290 return start <= addr && start + length >= addr;
2291 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2292 mask = 3;
2293 else
2294 mask = 7;
2295
2296 addr &= ~mask;
2297
2298 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2299 return start <= addr + mask && start + length - 1 >= addr;
2300 }
2301
2302 /* Return the number of registers needed for a masked hardware watchpoint. */
2303
2304 static int
2305 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2306 CORE_ADDR addr, CORE_ADDR mask)
2307 {
2308 if (!have_ptrace_hwdebug_interface ()
2309 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2310 return -1;
2311 else if ((mask & 0xC0000000) != 0xC0000000)
2312 {
2313 warning (_("The given mask covers kernel address space "
2314 "and cannot be used.\n"));
2315
2316 return -2;
2317 }
2318 else
2319 return 2;
2320 }
2321
2322 static void
2323 ppc_linux_store_inferior_registers (struct target_ops *ops,
2324 struct regcache *regcache, int regno)
2325 {
2326 /* Overload thread id onto process id. */
2327 int tid = TIDGET (inferior_ptid);
2328
2329 /* No thread id, just use process id. */
2330 if (tid == 0)
2331 tid = PIDGET (inferior_ptid);
2332
2333 if (regno >= 0)
2334 store_register (regcache, tid, regno);
2335 else
2336 store_ppc_registers (regcache, tid);
2337 }
2338
2339 /* Functions for transferring registers between a gregset_t or fpregset_t
2340 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2341 by the ptrace interface, not the current program's ABI. Eg. if a
2342 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2343 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2344
2345 void
2346 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2347 {
2348 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2349
2350 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2351 }
2352
2353 void
2354 fill_gregset (const struct regcache *regcache,
2355 gdb_gregset_t *gregsetp, int regno)
2356 {
2357 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2358
2359 if (regno == -1)
2360 memset (gregsetp, 0, sizeof (*gregsetp));
2361 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2362 }
2363
2364 void
2365 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2366 {
2367 const struct regset *regset = ppc_linux_fpregset ();
2368
2369 ppc_supply_fpregset (regset, regcache, -1,
2370 fpregsetp, sizeof (*fpregsetp));
2371 }
2372
2373 void
2374 fill_fpregset (const struct regcache *regcache,
2375 gdb_fpregset_t *fpregsetp, int regno)
2376 {
2377 const struct regset *regset = ppc_linux_fpregset ();
2378
2379 ppc_collect_fpregset (regset, regcache, regno,
2380 fpregsetp, sizeof (*fpregsetp));
2381 }
2382
2383 static int
2384 ppc_linux_target_wordsize (void)
2385 {
2386 int wordsize = 4;
2387
2388 /* Check for 64-bit inferior process. This is the case when the host is
2389 64-bit, and in addition the top bit of the MSR register is set. */
2390 #ifdef __powerpc64__
2391 long msr;
2392
2393 int tid = TIDGET (inferior_ptid);
2394 if (tid == 0)
2395 tid = PIDGET (inferior_ptid);
2396
2397 errno = 0;
2398 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2399 if (errno == 0 && msr < 0)
2400 wordsize = 8;
2401 #endif
2402
2403 return wordsize;
2404 }
2405
2406 static int
2407 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2408 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2409 {
2410 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2411 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2412 gdb_byte *ptr = *readptr;
2413
2414 if (endptr == ptr)
2415 return 0;
2416
2417 if (endptr - ptr < sizeof_auxv_field * 2)
2418 return -1;
2419
2420 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2421 ptr += sizeof_auxv_field;
2422 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2423 ptr += sizeof_auxv_field;
2424
2425 *readptr = ptr;
2426 return 1;
2427 }
2428
2429 static const struct target_desc *
2430 ppc_linux_read_description (struct target_ops *ops)
2431 {
2432 int altivec = 0;
2433 int vsx = 0;
2434 int isa205 = 0;
2435 int cell = 0;
2436
2437 int tid = TIDGET (inferior_ptid);
2438 if (tid == 0)
2439 tid = PIDGET (inferior_ptid);
2440
2441 if (have_ptrace_getsetevrregs)
2442 {
2443 struct gdb_evrregset_t evrregset;
2444
2445 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2446 return tdesc_powerpc_e500l;
2447
2448 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2449 Anything else needs to be reported. */
2450 else if (errno != EIO)
2451 perror_with_name (_("Unable to fetch SPE registers"));
2452 }
2453
2454 if (have_ptrace_getsetvsxregs)
2455 {
2456 gdb_vsxregset_t vsxregset;
2457
2458 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2459 vsx = 1;
2460
2461 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2462 Anything else needs to be reported. */
2463 else if (errno != EIO)
2464 perror_with_name (_("Unable to fetch VSX registers"));
2465 }
2466
2467 if (have_ptrace_getvrregs)
2468 {
2469 gdb_vrregset_t vrregset;
2470
2471 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2472 altivec = 1;
2473
2474 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2475 Anything else needs to be reported. */
2476 else if (errno != EIO)
2477 perror_with_name (_("Unable to fetch AltiVec registers"));
2478 }
2479
2480 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2481 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2482 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2483 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2484 half of the register are for Decimal Floating Point, we check if that
2485 feature is available to decide the size of the FPSCR. */
2486 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2487 isa205 = 1;
2488
2489 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2490 cell = 1;
2491
2492 if (ppc_linux_target_wordsize () == 8)
2493 {
2494 if (cell)
2495 return tdesc_powerpc_cell64l;
2496 else if (vsx)
2497 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2498 else if (altivec)
2499 return isa205
2500 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2501
2502 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2503 }
2504
2505 if (cell)
2506 return tdesc_powerpc_cell32l;
2507 else if (vsx)
2508 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2509 else if (altivec)
2510 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2511
2512 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2513 }
2514
2515 void _initialize_ppc_linux_nat (void);
2516
2517 void
2518 _initialize_ppc_linux_nat (void)
2519 {
2520 struct target_ops *t;
2521
2522 /* Fill in the generic GNU/Linux methods. */
2523 t = linux_target ();
2524
2525 /* Add our register access methods. */
2526 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2527 t->to_store_registers = ppc_linux_store_inferior_registers;
2528
2529 /* Add our breakpoint/watchpoint methods. */
2530 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2531 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2532 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2533 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2534 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2535 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2536 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2537 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2538 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2539 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2540 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2541 t->to_can_accel_watchpoint_condition
2542 = ppc_linux_can_accel_watchpoint_condition;
2543 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2544 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2545
2546 t->to_read_description = ppc_linux_read_description;
2547 t->to_auxv_parse = ppc_linux_auxv_parse;
2548
2549 observer_attach_thread_exit (ppc_linux_thread_exit);
2550
2551 /* Register the target. */
2552 linux_nat_add_target (t);
2553 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2554 }