]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-nat.c
2011-05-06 Sergio Durigan Junior <sergiodj@linux.vnet.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "observer.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbthread.h"
28 #include "gdbcore.h"
29 #include "regcache.h"
30 #include "gdb_assert.h"
31 #include "target.h"
32 #include "linux-nat.h"
33
34 #include <stdint.h>
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <sys/user.h>
39 #include <sys/ioctl.h>
40 #include "gdb_wait.h"
41 #include <fcntl.h>
42 #include <sys/procfs.h>
43 #include <sys/ptrace.h>
44
45 /* Prototypes for supply_gregset etc. */
46 #include "gregset.h"
47 #include "ppc-tdep.h"
48 #include "ppc-linux-tdep.h"
49
50 /* Required when using the AUXV. */
51 #include "elf/common.h"
52 #include "auxv.h"
53
54 /* This sometimes isn't defined. */
55 #ifndef PT_ORIG_R3
56 #define PT_ORIG_R3 34
57 #endif
58 #ifndef PT_TRAP
59 #define PT_TRAP 40
60 #endif
61
62 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
63 If they aren't, we can provide them ourselves (their values are fixed
64 because they are part of the kernel ABI). They are used in the AT_HWCAP
65 entry of the AUXV. */
66 #ifndef PPC_FEATURE_CELL
67 #define PPC_FEATURE_CELL 0x00010000
68 #endif
69 #ifndef PPC_FEATURE_BOOKE
70 #define PPC_FEATURE_BOOKE 0x00008000
71 #endif
72 #ifndef PPC_FEATURE_HAS_DFP
73 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
74 #endif
75
76 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
77 configure time check. Some older glibc's (for instance 2.2.1)
78 don't have a specific powerpc version of ptrace.h, and fall back on
79 a generic one. In such cases, sys/ptrace.h defines
80 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
81 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
82 PTRACE_SETVRREGS to be. This also makes a configury check pretty
83 much useless. */
84
85 /* These definitions should really come from the glibc header files,
86 but Glibc doesn't know about the vrregs yet. */
87 #ifndef PTRACE_GETVRREGS
88 #define PTRACE_GETVRREGS 18
89 #define PTRACE_SETVRREGS 19
90 #endif
91
92 /* PTRACE requests for POWER7 VSX registers. */
93 #ifndef PTRACE_GETVSXREGS
94 #define PTRACE_GETVSXREGS 27
95 #define PTRACE_SETVSXREGS 28
96 #endif
97
98 /* Similarly for the ptrace requests for getting / setting the SPE
99 registers (ev0 -- ev31, acc, and spefscr). See the description of
100 gdb_evrregset_t for details. */
101 #ifndef PTRACE_GETEVRREGS
102 #define PTRACE_GETEVRREGS 20
103 #define PTRACE_SETEVRREGS 21
104 #endif
105
106 /* Similarly for the hardware watchpoint support. These requests are used
107 when the BookE kernel interface is not available. */
108 #ifndef PTRACE_GET_DEBUGREG
109 #define PTRACE_GET_DEBUGREG 25
110 #endif
111 #ifndef PTRACE_SET_DEBUGREG
112 #define PTRACE_SET_DEBUGREG 26
113 #endif
114 #ifndef PTRACE_GETSIGINFO
115 #define PTRACE_GETSIGINFO 0x4202
116 #endif
117
118 /* These requests are used when the BookE kernel interface is available.
119 It exposes the additional debug features of BookE processors, such as
120 ranged breakpoints and watchpoints and hardware-accelerated condition
121 evaluation. */
122 #ifndef PPC_PTRACE_GETHWDBGINFO
123
124 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
125 interface is not present in ptrace.h, so we'll have to pretty much include
126 it all here so that the code at least compiles on older systems. */
127 #define PPC_PTRACE_GETHWDBGINFO 0x89
128 #define PPC_PTRACE_SETHWDEBUG 0x88
129 #define PPC_PTRACE_DELHWDEBUG 0x87
130
131 struct ppc_debug_info
132 {
133 uint32_t version; /* Only version 1 exists to date. */
134 uint32_t num_instruction_bps;
135 uint32_t num_data_bps;
136 uint32_t num_condition_regs;
137 uint32_t data_bp_alignment;
138 uint32_t sizeof_condition; /* size of the DVC register. */
139 uint64_t features;
140 };
141
142 /* Features will have bits indicating whether there is support for: */
143 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
144 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
145 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
146 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
147
148 struct ppc_hw_breakpoint
149 {
150 uint32_t version; /* currently, version must be 1 */
151 uint32_t trigger_type; /* only some combinations allowed */
152 uint32_t addr_mode; /* address match mode */
153 uint32_t condition_mode; /* break/watchpoint condition flags */
154 uint64_t addr; /* break/watchpoint address */
155 uint64_t addr2; /* range end or mask */
156 uint64_t condition_value; /* contents of the DVC register */
157 };
158
159 /* Trigger type. */
160 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
161 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
162 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
163 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
164
165 /* Address mode. */
166 #define PPC_BREAKPOINT_MODE_EXACT 0x0
167 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
168 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
169 #define PPC_BREAKPOINT_MODE_MASK 0x3
170
171 /* Condition mode. */
172 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
173 #define PPC_BREAKPOINT_CONDITION_AND 0x1
174 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
175 #define PPC_BREAKPOINT_CONDITION_OR 0x2
176 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
177 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
178 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
179 #define PPC_BREAKPOINT_CONDITION_BE(n) \
180 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
181 #endif /* PPC_PTRACE_GETHWDBGINFO */
182
183
184
185 /* Similarly for the general-purpose (gp0 -- gp31)
186 and floating-point registers (fp0 -- fp31). */
187 #ifndef PTRACE_GETREGS
188 #define PTRACE_GETREGS 12
189 #endif
190 #ifndef PTRACE_SETREGS
191 #define PTRACE_SETREGS 13
192 #endif
193 #ifndef PTRACE_GETFPREGS
194 #define PTRACE_GETFPREGS 14
195 #endif
196 #ifndef PTRACE_SETFPREGS
197 #define PTRACE_SETFPREGS 15
198 #endif
199
200 /* This oddity is because the Linux kernel defines elf_vrregset_t as
201 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
202 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
203 the vrsave as an extra 4 bytes at the end. I opted for creating a
204 flat array of chars, so that it is easier to manipulate for gdb.
205
206 There are 32 vector registers 16 bytes longs, plus a VSCR register
207 which is only 4 bytes long, but is fetched as a 16 bytes
208 quantity. Up to here we have the elf_vrregset_t structure.
209 Appended to this there is space for the VRSAVE register: 4 bytes.
210 Even though this vrsave register is not included in the regset
211 typedef, it is handled by the ptrace requests.
212
213 Note that GNU/Linux doesn't support little endian PPC hardware,
214 therefore the offset at which the real value of the VSCR register
215 is located will be always 12 bytes.
216
217 The layout is like this (where x is the actual value of the vscr reg): */
218
219 /* *INDENT-OFF* */
220 /*
221 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
222 <-------> <-------><-------><->
223 VR0 VR31 VSCR VRSAVE
224 */
225 /* *INDENT-ON* */
226
227 #define SIZEOF_VRREGS 33*16+4
228
229 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
230
231 /* This is the layout of the POWER7 VSX registers and the way they overlap
232 with the existing FPR and VMX registers.
233
234 VSR doubleword 0 VSR doubleword 1
235 ----------------------------------------------------------------
236 VSR[0] | FPR[0] | |
237 ----------------------------------------------------------------
238 VSR[1] | FPR[1] | |
239 ----------------------------------------------------------------
240 | ... | |
241 | ... | |
242 ----------------------------------------------------------------
243 VSR[30] | FPR[30] | |
244 ----------------------------------------------------------------
245 VSR[31] | FPR[31] | |
246 ----------------------------------------------------------------
247 VSR[32] | VR[0] |
248 ----------------------------------------------------------------
249 VSR[33] | VR[1] |
250 ----------------------------------------------------------------
251 | ... |
252 | ... |
253 ----------------------------------------------------------------
254 VSR[62] | VR[30] |
255 ----------------------------------------------------------------
256 VSR[63] | VR[31] |
257 ----------------------------------------------------------------
258
259 VSX has 64 128bit registers. The first 32 registers overlap with
260 the FP registers (doubleword 0) and hence extend them with additional
261 64 bits (doubleword 1). The other 32 regs overlap with the VMX
262 registers. */
263 #define SIZEOF_VSXREGS 32*8
264
265 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
266
267 /* On PPC processors that support the Signal Processing Extension
268 (SPE) APU, the general-purpose registers are 64 bits long.
269 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
270 ptrace calls only access the lower half of each register, to allow
271 them to behave the same way they do on non-SPE systems. There's a
272 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
273 read and write the top halves of all the general-purpose registers
274 at once, along with some SPE-specific registers.
275
276 GDB itself continues to claim the general-purpose registers are 32
277 bits long. It has unnamed raw registers that hold the upper halves
278 of the gprs, and the full 64-bit SIMD views of the registers,
279 'ev0' -- 'ev31', are pseudo-registers that splice the top and
280 bottom halves together.
281
282 This is the structure filled in by PTRACE_GETEVRREGS and written to
283 the inferior's registers by PTRACE_SETEVRREGS. */
284 struct gdb_evrregset_t
285 {
286 unsigned long evr[32];
287 unsigned long long acc;
288 unsigned long spefscr;
289 };
290
291 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
292 PTRACE_SETVSXREGS requests, for reading and writing the VSX
293 POWER7 registers 0 through 31. Zero if we've tried one of them and
294 gotten an error. Note that VSX registers 32 through 63 overlap
295 with VR registers 0 through 31. */
296 int have_ptrace_getsetvsxregs = 1;
297
298 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
299 PTRACE_SETVRREGS requests, for reading and writing the Altivec
300 registers. Zero if we've tried one of them and gotten an
301 error. */
302 int have_ptrace_getvrregs = 1;
303
304 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
305 PTRACE_SETEVRREGS requests, for reading and writing the SPE
306 registers. Zero if we've tried one of them and gotten an
307 error. */
308 int have_ptrace_getsetevrregs = 1;
309
310 /* Non-zero if our kernel may support the PTRACE_GETREGS and
311 PTRACE_SETREGS requests, for reading and writing the
312 general-purpose registers. Zero if we've tried one of
313 them and gotten an error. */
314 int have_ptrace_getsetregs = 1;
315
316 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
317 PTRACE_SETFPREGS requests, for reading and writing the
318 floating-pointers registers. Zero if we've tried one of
319 them and gotten an error. */
320 int have_ptrace_getsetfpregs = 1;
321
322 /* *INDENT-OFF* */
323 /* registers layout, as presented by the ptrace interface:
324 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
325 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
326 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
327 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
328 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
329 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
330 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
331 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
332 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
333 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
334 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
335 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
336 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
337 /* *INDENT_ON * */
338
339 static int
340 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
341 {
342 int u_addr = -1;
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
345 interface, and not the wordsize of the program's ABI. */
346 int wordsize = sizeof (long);
347
348 /* General purpose registers occupy 1 slot each in the buffer. */
349 if (regno >= tdep->ppc_gp0_regnum
350 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
351 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
352
353 /* Floating point regs: eight bytes each in both 32- and 64-bit
354 ptrace interfaces. Thus, two slots each in 32-bit interface, one
355 slot each in 64-bit interface. */
356 if (tdep->ppc_fp0_regnum >= 0
357 && regno >= tdep->ppc_fp0_regnum
358 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
359 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
360
361 /* UISA special purpose registers: 1 slot each. */
362 if (regno == gdbarch_pc_regnum (gdbarch))
363 u_addr = PT_NIP * wordsize;
364 if (regno == tdep->ppc_lr_regnum)
365 u_addr = PT_LNK * wordsize;
366 if (regno == tdep->ppc_cr_regnum)
367 u_addr = PT_CCR * wordsize;
368 if (regno == tdep->ppc_xer_regnum)
369 u_addr = PT_XER * wordsize;
370 if (regno == tdep->ppc_ctr_regnum)
371 u_addr = PT_CTR * wordsize;
372 #ifdef PT_MQ
373 if (regno == tdep->ppc_mq_regnum)
374 u_addr = PT_MQ * wordsize;
375 #endif
376 if (regno == tdep->ppc_ps_regnum)
377 u_addr = PT_MSR * wordsize;
378 if (regno == PPC_ORIG_R3_REGNUM)
379 u_addr = PT_ORIG_R3 * wordsize;
380 if (regno == PPC_TRAP_REGNUM)
381 u_addr = PT_TRAP * wordsize;
382 if (tdep->ppc_fpscr_regnum >= 0
383 && regno == tdep->ppc_fpscr_regnum)
384 {
385 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
386 kernel headers incorrectly contained the 32-bit definition of
387 PT_FPSCR. For the 32-bit definition, floating-point
388 registers occupy two 32-bit "slots", and the FPSCR lives in
389 the second half of such a slot-pair (hence +1). For 64-bit,
390 the FPSCR instead occupies the full 64-bit 2-word-slot and
391 hence no adjustment is necessary. Hack around this. */
392 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
393 u_addr = (48 + 32) * wordsize;
394 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
395 slot and not just its second word. The PT_FPSCR supplied when
396 GDB is compiled as a 32-bit app doesn't reflect this. */
397 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
398 && PT_FPSCR == (48 + 2*32 + 1))
399 u_addr = (48 + 2*32) * wordsize;
400 else
401 u_addr = PT_FPSCR * wordsize;
402 }
403 return u_addr;
404 }
405
406 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
407 registers set mechanism, as opposed to the interface for all the
408 other registers, that stores/fetches each register individually. */
409 static void
410 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
411 {
412 int ret;
413 gdb_vsxregset_t regs;
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
417
418 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
419 if (ret < 0)
420 {
421 if (errno == EIO)
422 {
423 have_ptrace_getsetvsxregs = 0;
424 return;
425 }
426 perror_with_name (_("Unable to fetch VSX register"));
427 }
428
429 regcache_raw_supply (regcache, regno,
430 regs + (regno - tdep->ppc_vsr0_upper_regnum)
431 * vsxregsize);
432 }
433
434 /* The Linux kernel ptrace interface for AltiVec registers uses the
435 registers set mechanism, as opposed to the interface for all the
436 other registers, that stores/fetches each register individually. */
437 static void
438 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
439 {
440 int ret;
441 int offset = 0;
442 gdb_vrregset_t regs;
443 struct gdbarch *gdbarch = get_regcache_arch (regcache);
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
446
447 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
448 if (ret < 0)
449 {
450 if (errno == EIO)
451 {
452 have_ptrace_getvrregs = 0;
453 return;
454 }
455 perror_with_name (_("Unable to fetch AltiVec register"));
456 }
457
458 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
459 long on the hardware. We deal only with the lower 4 bytes of the
460 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
461 there is no need to define an offset for it. */
462 if (regno == (tdep->ppc_vrsave_regnum - 1))
463 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
464
465 regcache_raw_supply (regcache, regno,
466 regs + (regno
467 - tdep->ppc_vr0_regnum) * vrregsize + offset);
468 }
469
470 /* Fetch the top 32 bits of TID's general-purpose registers and the
471 SPE-specific registers, and place the results in EVRREGSET. If we
472 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
473 zeros.
474
475 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
476 PTRACE_SETEVRREGS requests are supported is isolated here, and in
477 set_spe_registers. */
478 static void
479 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
480 {
481 if (have_ptrace_getsetevrregs)
482 {
483 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
484 return;
485 else
486 {
487 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
488 we just return zeros. */
489 if (errno == EIO)
490 have_ptrace_getsetevrregs = 0;
491 else
492 /* Anything else needs to be reported. */
493 perror_with_name (_("Unable to fetch SPE registers"));
494 }
495 }
496
497 memset (evrregset, 0, sizeof (*evrregset));
498 }
499
500 /* Supply values from TID for SPE-specific raw registers: the upper
501 halves of the GPRs, the accumulator, and the spefscr. REGNO must
502 be the number of an upper half register, acc, spefscr, or -1 to
503 supply the values of all registers. */
504 static void
505 fetch_spe_register (struct regcache *regcache, int tid, int regno)
506 {
507 struct gdbarch *gdbarch = get_regcache_arch (regcache);
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 struct gdb_evrregset_t evrregs;
510
511 gdb_assert (sizeof (evrregs.evr[0])
512 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
513 gdb_assert (sizeof (evrregs.acc)
514 == register_size (gdbarch, tdep->ppc_acc_regnum));
515 gdb_assert (sizeof (evrregs.spefscr)
516 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
517
518 get_spe_registers (tid, &evrregs);
519
520 if (regno == -1)
521 {
522 int i;
523
524 for (i = 0; i < ppc_num_gprs; i++)
525 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
526 &evrregs.evr[i]);
527 }
528 else if (tdep->ppc_ev0_upper_regnum <= regno
529 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
530 regcache_raw_supply (regcache, regno,
531 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
532
533 if (regno == -1
534 || regno == tdep->ppc_acc_regnum)
535 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
536
537 if (regno == -1
538 || regno == tdep->ppc_spefscr_regnum)
539 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
540 &evrregs.spefscr);
541 }
542
543 static void
544 fetch_register (struct regcache *regcache, int tid, int regno)
545 {
546 struct gdbarch *gdbarch = get_regcache_arch (regcache);
547 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
548 /* This isn't really an address. But ptrace thinks of it as one. */
549 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
550 int bytes_transferred;
551 unsigned int offset; /* Offset of registers within the u area. */
552 char buf[MAX_REGISTER_SIZE];
553
554 if (altivec_register_p (gdbarch, regno))
555 {
556 /* If this is the first time through, or if it is not the first
557 time through, and we have comfirmed that there is kernel
558 support for such a ptrace request, then go and fetch the
559 register. */
560 if (have_ptrace_getvrregs)
561 {
562 fetch_altivec_register (regcache, tid, regno);
563 return;
564 }
565 /* If we have discovered that there is no ptrace support for
566 AltiVec registers, fall through and return zeroes, because
567 regaddr will be -1 in this case. */
568 }
569 if (vsx_register_p (gdbarch, regno))
570 {
571 if (have_ptrace_getsetvsxregs)
572 {
573 fetch_vsx_register (regcache, tid, regno);
574 return;
575 }
576 }
577 else if (spe_register_p (gdbarch, regno))
578 {
579 fetch_spe_register (regcache, tid, regno);
580 return;
581 }
582
583 if (regaddr == -1)
584 {
585 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
586 regcache_raw_supply (regcache, regno, buf);
587 return;
588 }
589
590 /* Read the raw register using sizeof(long) sized chunks. On a
591 32-bit platform, 64-bit floating-point registers will require two
592 transfers. */
593 for (bytes_transferred = 0;
594 bytes_transferred < register_size (gdbarch, regno);
595 bytes_transferred += sizeof (long))
596 {
597 errno = 0;
598 *(long *) &buf[bytes_transferred]
599 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
600 regaddr += sizeof (long);
601 if (errno != 0)
602 {
603 char message[128];
604 sprintf (message, "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
606 perror_with_name (message);
607 }
608 }
609
610 /* Now supply the register. Keep in mind that the regcache's idea
611 of the register's size may not be a multiple of sizeof
612 (long). */
613 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
614 {
615 /* Little-endian values are always found at the left end of the
616 bytes transferred. */
617 regcache_raw_supply (regcache, regno, buf);
618 }
619 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
620 {
621 /* Big-endian values are found at the right end of the bytes
622 transferred. */
623 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
624 regcache_raw_supply (regcache, regno, buf + padding);
625 }
626 else
627 internal_error (__FILE__, __LINE__,
628 _("fetch_register: unexpected byte order: %d"),
629 gdbarch_byte_order (gdbarch));
630 }
631
632 static void
633 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
634 {
635 int i;
636 struct gdbarch *gdbarch = get_regcache_arch (regcache);
637 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
638 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
639
640 for (i = 0; i < ppc_num_vshrs; i++)
641 {
642 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
643 *vsxregsetp + i * vsxregsize);
644 }
645 }
646
647 static void
648 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
649 {
650 int i;
651 struct gdbarch *gdbarch = get_regcache_arch (regcache);
652 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
653 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
654 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
655 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
656
657 for (i = 0; i < num_of_vrregs; i++)
658 {
659 /* The last 2 registers of this set are only 32 bit long, not
660 128. However an offset is necessary only for VSCR because it
661 occupies a whole vector, while VRSAVE occupies a full 4 bytes
662 slot. */
663 if (i == (num_of_vrregs - 2))
664 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
665 *vrregsetp + i * vrregsize + offset);
666 else
667 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
668 *vrregsetp + i * vrregsize);
669 }
670 }
671
672 static void
673 fetch_vsx_registers (struct regcache *regcache, int tid)
674 {
675 int ret;
676 gdb_vsxregset_t regs;
677
678 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
679 if (ret < 0)
680 {
681 if (errno == EIO)
682 {
683 have_ptrace_getsetvsxregs = 0;
684 return;
685 }
686 perror_with_name (_("Unable to fetch VSX registers"));
687 }
688 supply_vsxregset (regcache, &regs);
689 }
690
691 static void
692 fetch_altivec_registers (struct regcache *regcache, int tid)
693 {
694 int ret;
695 gdb_vrregset_t regs;
696
697 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
698 if (ret < 0)
699 {
700 if (errno == EIO)
701 {
702 have_ptrace_getvrregs = 0;
703 return;
704 }
705 perror_with_name (_("Unable to fetch AltiVec registers"));
706 }
707 supply_vrregset (regcache, &regs);
708 }
709
710 /* This function actually issues the request to ptrace, telling
711 it to get all general-purpose registers and put them into the
712 specified regset.
713
714 If the ptrace request does not exist, this function returns 0
715 and properly sets the have_ptrace_* flag. If the request fails,
716 this function calls perror_with_name. Otherwise, if the request
717 succeeds, then the regcache gets filled and 1 is returned. */
718 static int
719 fetch_all_gp_regs (struct regcache *regcache, int tid)
720 {
721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
723 gdb_gregset_t gregset;
724
725 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
726 {
727 if (errno == EIO)
728 {
729 have_ptrace_getsetregs = 0;
730 return 0;
731 }
732 perror_with_name (_("Couldn't get general-purpose registers."));
733 }
734
735 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
736
737 return 1;
738 }
739
740 /* This is a wrapper for the fetch_all_gp_regs function. It is
741 responsible for verifying if this target has the ptrace request
742 that can be used to fetch all general-purpose registers at one
743 shot. If it doesn't, then we should fetch them using the
744 old-fashioned way, which is to iterate over the registers and
745 request them one by one. */
746 static void
747 fetch_gp_regs (struct regcache *regcache, int tid)
748 {
749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
751 int i;
752
753 if (have_ptrace_getsetregs)
754 if (fetch_all_gp_regs (regcache, tid))
755 return;
756
757 /* If we've hit this point, it doesn't really matter which
758 architecture we are using. We just need to read the
759 registers in the "old-fashioned way". */
760 for (i = 0; i < ppc_num_gprs; i++)
761 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
762 }
763
764 /* This function actually issues the request to ptrace, telling
765 it to get all floating-point registers and put them into the
766 specified regset.
767
768 If the ptrace request does not exist, this function returns 0
769 and properly sets the have_ptrace_* flag. If the request fails,
770 this function calls perror_with_name. Otherwise, if the request
771 succeeds, then the regcache gets filled and 1 is returned. */
772 static int
773 fetch_all_fp_regs (struct regcache *regcache, int tid)
774 {
775 gdb_fpregset_t fpregs;
776
777 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
778 {
779 if (errno == EIO)
780 {
781 have_ptrace_getsetfpregs = 0;
782 return 0;
783 }
784 perror_with_name (_("Couldn't get floating-point registers."));
785 }
786
787 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
788
789 return 1;
790 }
791
792 /* This is a wrapper for the fetch_all_fp_regs function. It is
793 responsible for verifying if this target has the ptrace request
794 that can be used to fetch all floating-point registers at one
795 shot. If it doesn't, then we should fetch them using the
796 old-fashioned way, which is to iterate over the registers and
797 request them one by one. */
798 static void
799 fetch_fp_regs (struct regcache *regcache, int tid)
800 {
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
803 int i;
804
805 if (have_ptrace_getsetfpregs)
806 if (fetch_all_fp_regs (regcache, tid))
807 return;
808
809 /* If we've hit this point, it doesn't really matter which
810 architecture we are using. We just need to read the
811 registers in the "old-fashioned way". */
812 for (i = 0; i < ppc_num_fprs; i++)
813 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
814 }
815
816 static void
817 fetch_ppc_registers (struct regcache *regcache, int tid)
818 {
819 int i;
820 struct gdbarch *gdbarch = get_regcache_arch (regcache);
821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
822
823 fetch_gp_regs (regcache, tid);
824 if (tdep->ppc_fp0_regnum >= 0)
825 fetch_fp_regs (regcache, tid);
826 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
827 if (tdep->ppc_ps_regnum != -1)
828 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
829 if (tdep->ppc_cr_regnum != -1)
830 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
831 if (tdep->ppc_lr_regnum != -1)
832 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
833 if (tdep->ppc_ctr_regnum != -1)
834 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
835 if (tdep->ppc_xer_regnum != -1)
836 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
837 if (tdep->ppc_mq_regnum != -1)
838 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
839 if (ppc_linux_trap_reg_p (gdbarch))
840 {
841 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
842 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
843 }
844 if (tdep->ppc_fpscr_regnum != -1)
845 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
846 if (have_ptrace_getvrregs)
847 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
848 fetch_altivec_registers (regcache, tid);
849 if (have_ptrace_getsetvsxregs)
850 if (tdep->ppc_vsr0_upper_regnum != -1)
851 fetch_vsx_registers (regcache, tid);
852 if (tdep->ppc_ev0_upper_regnum >= 0)
853 fetch_spe_register (regcache, tid, -1);
854 }
855
856 /* Fetch registers from the child process. Fetch all registers if
857 regno == -1, otherwise fetch all general registers or all floating
858 point registers depending upon the value of regno. */
859 static void
860 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
861 struct regcache *regcache, int regno)
862 {
863 /* Overload thread id onto process id. */
864 int tid = TIDGET (inferior_ptid);
865
866 /* No thread id, just use process id. */
867 if (tid == 0)
868 tid = PIDGET (inferior_ptid);
869
870 if (regno == -1)
871 fetch_ppc_registers (regcache, tid);
872 else
873 fetch_register (regcache, tid, regno);
874 }
875
876 /* Store one VSX register. */
877 static void
878 store_vsx_register (const struct regcache *regcache, int tid, int regno)
879 {
880 int ret;
881 gdb_vsxregset_t regs;
882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
884 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
885
886 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
887 if (ret < 0)
888 {
889 if (errno == EIO)
890 {
891 have_ptrace_getsetvsxregs = 0;
892 return;
893 }
894 perror_with_name (_("Unable to fetch VSX register"));
895 }
896
897 regcache_raw_collect (regcache, regno, regs +
898 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
899
900 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
901 if (ret < 0)
902 perror_with_name (_("Unable to store VSX register"));
903 }
904
905 /* Store one register. */
906 static void
907 store_altivec_register (const struct regcache *regcache, int tid, int regno)
908 {
909 int ret;
910 int offset = 0;
911 gdb_vrregset_t regs;
912 struct gdbarch *gdbarch = get_regcache_arch (regcache);
913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
914 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
915
916 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
917 if (ret < 0)
918 {
919 if (errno == EIO)
920 {
921 have_ptrace_getvrregs = 0;
922 return;
923 }
924 perror_with_name (_("Unable to fetch AltiVec register"));
925 }
926
927 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
928 long on the hardware. */
929 if (regno == (tdep->ppc_vrsave_regnum - 1))
930 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
931
932 regcache_raw_collect (regcache, regno,
933 regs + (regno
934 - tdep->ppc_vr0_regnum) * vrregsize + offset);
935
936 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
937 if (ret < 0)
938 perror_with_name (_("Unable to store AltiVec register"));
939 }
940
941 /* Assuming TID referrs to an SPE process, set the top halves of TID's
942 general-purpose registers and its SPE-specific registers to the
943 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
944 nothing.
945
946 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
947 PTRACE_SETEVRREGS requests are supported is isolated here, and in
948 get_spe_registers. */
949 static void
950 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
951 {
952 if (have_ptrace_getsetevrregs)
953 {
954 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
955 return;
956 else
957 {
958 /* EIO means that the PTRACE_SETEVRREGS request isn't
959 supported; we fail silently, and don't try the call
960 again. */
961 if (errno == EIO)
962 have_ptrace_getsetevrregs = 0;
963 else
964 /* Anything else needs to be reported. */
965 perror_with_name (_("Unable to set SPE registers"));
966 }
967 }
968 }
969
970 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
971 If REGNO is -1, write the values of all the SPE-specific
972 registers. */
973 static void
974 store_spe_register (const struct regcache *regcache, int tid, int regno)
975 {
976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
978 struct gdb_evrregset_t evrregs;
979
980 gdb_assert (sizeof (evrregs.evr[0])
981 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
982 gdb_assert (sizeof (evrregs.acc)
983 == register_size (gdbarch, tdep->ppc_acc_regnum));
984 gdb_assert (sizeof (evrregs.spefscr)
985 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
986
987 if (regno == -1)
988 /* Since we're going to write out every register, the code below
989 should store to every field of evrregs; if that doesn't happen,
990 make it obvious by initializing it with suspicious values. */
991 memset (&evrregs, 42, sizeof (evrregs));
992 else
993 /* We can only read and write the entire EVR register set at a
994 time, so to write just a single register, we do a
995 read-modify-write maneuver. */
996 get_spe_registers (tid, &evrregs);
997
998 if (regno == -1)
999 {
1000 int i;
1001
1002 for (i = 0; i < ppc_num_gprs; i++)
1003 regcache_raw_collect (regcache,
1004 tdep->ppc_ev0_upper_regnum + i,
1005 &evrregs.evr[i]);
1006 }
1007 else if (tdep->ppc_ev0_upper_regnum <= regno
1008 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1009 regcache_raw_collect (regcache, regno,
1010 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1011
1012 if (regno == -1
1013 || regno == tdep->ppc_acc_regnum)
1014 regcache_raw_collect (regcache,
1015 tdep->ppc_acc_regnum,
1016 &evrregs.acc);
1017
1018 if (regno == -1
1019 || regno == tdep->ppc_spefscr_regnum)
1020 regcache_raw_collect (regcache,
1021 tdep->ppc_spefscr_regnum,
1022 &evrregs.spefscr);
1023
1024 /* Write back the modified register set. */
1025 set_spe_registers (tid, &evrregs);
1026 }
1027
1028 static void
1029 store_register (const struct regcache *regcache, int tid, int regno)
1030 {
1031 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1033 /* This isn't really an address. But ptrace thinks of it as one. */
1034 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1035 int i;
1036 size_t bytes_to_transfer;
1037 char buf[MAX_REGISTER_SIZE];
1038
1039 if (altivec_register_p (gdbarch, regno))
1040 {
1041 store_altivec_register (regcache, tid, regno);
1042 return;
1043 }
1044 if (vsx_register_p (gdbarch, regno))
1045 {
1046 store_vsx_register (regcache, tid, regno);
1047 return;
1048 }
1049 else if (spe_register_p (gdbarch, regno))
1050 {
1051 store_spe_register (regcache, tid, regno);
1052 return;
1053 }
1054
1055 if (regaddr == -1)
1056 return;
1057
1058 /* First collect the register. Keep in mind that the regcache's
1059 idea of the register's size may not be a multiple of sizeof
1060 (long). */
1061 memset (buf, 0, sizeof buf);
1062 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1063 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1064 {
1065 /* Little-endian values always sit at the left end of the buffer. */
1066 regcache_raw_collect (regcache, regno, buf);
1067 }
1068 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1069 {
1070 /* Big-endian values sit at the right end of the buffer. */
1071 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1072 regcache_raw_collect (regcache, regno, buf + padding);
1073 }
1074
1075 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1076 {
1077 errno = 0;
1078 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
1079 *(long *) &buf[i]);
1080 regaddr += sizeof (long);
1081
1082 if (errno == EIO
1083 && (regno == tdep->ppc_fpscr_regnum
1084 || regno == PPC_ORIG_R3_REGNUM
1085 || regno == PPC_TRAP_REGNUM))
1086 {
1087 /* Some older kernel versions don't allow fpscr, orig_r3
1088 or trap to be written. */
1089 continue;
1090 }
1091
1092 if (errno != 0)
1093 {
1094 char message[128];
1095 sprintf (message, "writing register %s (#%d)",
1096 gdbarch_register_name (gdbarch, regno), regno);
1097 perror_with_name (message);
1098 }
1099 }
1100 }
1101
1102 static void
1103 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1104 {
1105 int i;
1106 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1108 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1109
1110 for (i = 0; i < ppc_num_vshrs; i++)
1111 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1112 *vsxregsetp + i * vsxregsize);
1113 }
1114
1115 static void
1116 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1117 {
1118 int i;
1119 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1122 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1123 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1124
1125 for (i = 0; i < num_of_vrregs; i++)
1126 {
1127 /* The last 2 registers of this set are only 32 bit long, not
1128 128, but only VSCR is fetched as a 16 bytes quantity. */
1129 if (i == (num_of_vrregs - 2))
1130 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1131 *vrregsetp + i * vrregsize + offset);
1132 else
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize);
1135 }
1136 }
1137
1138 static void
1139 store_vsx_registers (const struct regcache *regcache, int tid)
1140 {
1141 int ret;
1142 gdb_vsxregset_t regs;
1143
1144 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1145 if (ret < 0)
1146 {
1147 if (errno == EIO)
1148 {
1149 have_ptrace_getsetvsxregs = 0;
1150 return;
1151 }
1152 perror_with_name (_("Couldn't get VSX registers"));
1153 }
1154
1155 fill_vsxregset (regcache, &regs);
1156
1157 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1158 perror_with_name (_("Couldn't write VSX registers"));
1159 }
1160
1161 static void
1162 store_altivec_registers (const struct regcache *regcache, int tid)
1163 {
1164 int ret;
1165 gdb_vrregset_t regs;
1166
1167 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1168 if (ret < 0)
1169 {
1170 if (errno == EIO)
1171 {
1172 have_ptrace_getvrregs = 0;
1173 return;
1174 }
1175 perror_with_name (_("Couldn't get AltiVec registers"));
1176 }
1177
1178 fill_vrregset (regcache, &regs);
1179
1180 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1181 perror_with_name (_("Couldn't write AltiVec registers"));
1182 }
1183
1184 /* This function actually issues the request to ptrace, telling
1185 it to store all general-purpose registers present in the specified
1186 regset.
1187
1188 If the ptrace request does not exist, this function returns 0
1189 and properly sets the have_ptrace_* flag. If the request fails,
1190 this function calls perror_with_name. Otherwise, if the request
1191 succeeds, then the regcache is stored and 1 is returned. */
1192 static int
1193 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1194 {
1195 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1197 gdb_gregset_t gregset;
1198
1199 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1200 {
1201 if (errno == EIO)
1202 {
1203 have_ptrace_getsetregs = 0;
1204 return 0;
1205 }
1206 perror_with_name (_("Couldn't get general-purpose registers."));
1207 }
1208
1209 fill_gregset (regcache, &gregset, regno);
1210
1211 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1212 {
1213 if (errno == EIO)
1214 {
1215 have_ptrace_getsetregs = 0;
1216 return 0;
1217 }
1218 perror_with_name (_("Couldn't set general-purpose registers."));
1219 }
1220
1221 return 1;
1222 }
1223
1224 /* This is a wrapper for the store_all_gp_regs function. It is
1225 responsible for verifying if this target has the ptrace request
1226 that can be used to store all general-purpose registers at one
1227 shot. If it doesn't, then we should store them using the
1228 old-fashioned way, which is to iterate over the registers and
1229 store them one by one. */
1230 static void
1231 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1232 {
1233 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1235 int i;
1236
1237 if (have_ptrace_getsetregs)
1238 if (store_all_gp_regs (regcache, tid, regno))
1239 return;
1240
1241 /* If we hit this point, it doesn't really matter which
1242 architecture we are using. We just need to store the
1243 registers in the "old-fashioned way". */
1244 for (i = 0; i < ppc_num_gprs; i++)
1245 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1246 }
1247
1248 /* This function actually issues the request to ptrace, telling
1249 it to store all floating-point registers present in the specified
1250 regset.
1251
1252 If the ptrace request does not exist, this function returns 0
1253 and properly sets the have_ptrace_* flag. If the request fails,
1254 this function calls perror_with_name. Otherwise, if the request
1255 succeeds, then the regcache is stored and 1 is returned. */
1256 static int
1257 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1258 {
1259 gdb_fpregset_t fpregs;
1260
1261 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1262 {
1263 if (errno == EIO)
1264 {
1265 have_ptrace_getsetfpregs = 0;
1266 return 0;
1267 }
1268 perror_with_name (_("Couldn't get floating-point registers."));
1269 }
1270
1271 fill_fpregset (regcache, &fpregs, regno);
1272
1273 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1274 {
1275 if (errno == EIO)
1276 {
1277 have_ptrace_getsetfpregs = 0;
1278 return 0;
1279 }
1280 perror_with_name (_("Couldn't set floating-point registers."));
1281 }
1282
1283 return 1;
1284 }
1285
1286 /* This is a wrapper for the store_all_fp_regs function. It is
1287 responsible for verifying if this target has the ptrace request
1288 that can be used to store all floating-point registers at one
1289 shot. If it doesn't, then we should store them using the
1290 old-fashioned way, which is to iterate over the registers and
1291 store them one by one. */
1292 static void
1293 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1294 {
1295 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1297 int i;
1298
1299 if (have_ptrace_getsetfpregs)
1300 if (store_all_fp_regs (regcache, tid, regno))
1301 return;
1302
1303 /* If we hit this point, it doesn't really matter which
1304 architecture we are using. We just need to store the
1305 registers in the "old-fashioned way". */
1306 for (i = 0; i < ppc_num_fprs; i++)
1307 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1308 }
1309
1310 static void
1311 store_ppc_registers (const struct regcache *regcache, int tid)
1312 {
1313 int i;
1314 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1316
1317 store_gp_regs (regcache, tid, -1);
1318 if (tdep->ppc_fp0_regnum >= 0)
1319 store_fp_regs (regcache, tid, -1);
1320 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1321 if (tdep->ppc_ps_regnum != -1)
1322 store_register (regcache, tid, tdep->ppc_ps_regnum);
1323 if (tdep->ppc_cr_regnum != -1)
1324 store_register (regcache, tid, tdep->ppc_cr_regnum);
1325 if (tdep->ppc_lr_regnum != -1)
1326 store_register (regcache, tid, tdep->ppc_lr_regnum);
1327 if (tdep->ppc_ctr_regnum != -1)
1328 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1329 if (tdep->ppc_xer_regnum != -1)
1330 store_register (regcache, tid, tdep->ppc_xer_regnum);
1331 if (tdep->ppc_mq_regnum != -1)
1332 store_register (regcache, tid, tdep->ppc_mq_regnum);
1333 if (tdep->ppc_fpscr_regnum != -1)
1334 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1335 if (ppc_linux_trap_reg_p (gdbarch))
1336 {
1337 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1338 store_register (regcache, tid, PPC_TRAP_REGNUM);
1339 }
1340 if (have_ptrace_getvrregs)
1341 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1342 store_altivec_registers (regcache, tid);
1343 if (have_ptrace_getsetvsxregs)
1344 if (tdep->ppc_vsr0_upper_regnum != -1)
1345 store_vsx_registers (regcache, tid);
1346 if (tdep->ppc_ev0_upper_regnum >= 0)
1347 store_spe_register (regcache, tid, -1);
1348 }
1349
1350 /* Fetch the AT_HWCAP entry from the aux vector. */
1351 unsigned long ppc_linux_get_hwcap (void)
1352 {
1353 CORE_ADDR field;
1354
1355 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1356 return (unsigned long) field;
1357
1358 return 0;
1359 }
1360
1361 /* The cached DABR value, to install in new threads.
1362 This variable is used when we are dealing with non-BookE
1363 processors. */
1364 static long saved_dabr_value;
1365
1366 /* Global structure that will store information about the available
1367 features on this BookE processor. */
1368 static struct ppc_debug_info booke_debug_info;
1369
1370 /* Global variable that holds the maximum number of slots that the
1371 kernel will use. This is only used when the processor is BookE. */
1372 static size_t max_slots_number = 0;
1373
1374 struct hw_break_tuple
1375 {
1376 long slot;
1377 struct ppc_hw_breakpoint *hw_break;
1378 };
1379
1380 /* This is an internal VEC created to store information about *points inserted
1381 for each thread. This is used for BookE processors. */
1382 typedef struct thread_points
1383 {
1384 /* The TID to which this *point relates. */
1385 int tid;
1386 /* Information about the *point, such as its address, type, etc.
1387
1388 Each element inside this vector corresponds to a hardware
1389 breakpoint or watchpoint in the thread represented by TID. The maximum
1390 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1391 the tuple is NULL, then the position in the vector is free. */
1392 struct hw_break_tuple *hw_breaks;
1393 } *thread_points_p;
1394 DEF_VEC_P (thread_points_p);
1395
1396 VEC(thread_points_p) *ppc_threads = NULL;
1397
1398 /* The version of the kernel interface that we will use if the processor is
1399 BookE. */
1400 #define PPC_DEBUG_CURRENT_VERSION 1
1401
1402 /* Returns non-zero if we support the ptrace interface which enables
1403 booke debugging resources. */
1404 static int
1405 have_ptrace_booke_interface (void)
1406 {
1407 static int have_ptrace_booke_interface = -1;
1408
1409 if (have_ptrace_booke_interface == -1)
1410 {
1411 int tid;
1412
1413 tid = TIDGET (inferior_ptid);
1414 if (tid == 0)
1415 tid = PIDGET (inferior_ptid);
1416
1417 /* Check for kernel support for BOOKE debug registers. */
1418 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1419 {
1420 have_ptrace_booke_interface = 1;
1421 max_slots_number = booke_debug_info.num_instruction_bps
1422 + booke_debug_info.num_data_bps
1423 + booke_debug_info.num_condition_regs;
1424 }
1425 else
1426 {
1427 /* Old school interface and no BOOKE debug registers support. */
1428 have_ptrace_booke_interface = 0;
1429 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
1430 }
1431 }
1432
1433 return have_ptrace_booke_interface;
1434 }
1435
1436 static int
1437 ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
1438 {
1439 int total_hw_wp, total_hw_bp;
1440
1441 if (have_ptrace_booke_interface ())
1442 {
1443 /* For PPC BookE processors, the number of available hardware
1444 watchpoints and breakpoints is stored at the booke_debug_info
1445 struct. */
1446 total_hw_bp = booke_debug_info.num_instruction_bps;
1447 total_hw_wp = booke_debug_info.num_data_bps;
1448 }
1449 else
1450 {
1451 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1452 hardware breakpoints. */
1453 total_hw_bp = 0;
1454 total_hw_wp = 1;
1455 }
1456
1457 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1458 || type == bp_access_watchpoint || type == bp_watchpoint)
1459 {
1460 if (cnt > total_hw_wp)
1461 return -1;
1462 }
1463 else if (type == bp_hardware_breakpoint)
1464 {
1465 if (cnt > total_hw_bp)
1466 return -1;
1467 }
1468
1469 if (!have_ptrace_booke_interface ())
1470 {
1471 int tid;
1472 ptid_t ptid = inferior_ptid;
1473
1474 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1475 and whether the target has DABR. If either answer is no, the
1476 ptrace call will return -1. Fail in that case. */
1477 tid = TIDGET (ptid);
1478 if (tid == 0)
1479 tid = PIDGET (ptid);
1480
1481 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1482 return 0;
1483 }
1484
1485 return 1;
1486 }
1487
1488 static int
1489 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1490 {
1491 /* Handle sub-8-byte quantities. */
1492 if (len <= 0)
1493 return 0;
1494
1495 /* The new BookE ptrace interface tells if there are alignment restrictions
1496 for watchpoints in the processors. In that case, we use that information
1497 to determine the hardcoded watchable region for watchpoints. */
1498 if (have_ptrace_booke_interface ())
1499 {
1500 /* DAC-based processors (i.e., embedded processors), like the PowerPC 440
1501 have ranged watchpoints and can watch any access within an arbitrary
1502 memory region. This is useful to watch arrays and structs, for
1503 instance. It takes two hardware watchpoints though. */
1504 if (len > 1
1505 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)
1506 return 2;
1507 else if (booke_debug_info.data_bp_alignment
1508 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1509 + booke_debug_info.data_bp_alignment))
1510 return 0;
1511 }
1512 /* addr+len must fall in the 8 byte watchable region for DABR-based
1513 processors (i.e., server processors). Without the new BookE ptrace
1514 interface, DAC-based processors (i.e., embedded processors) will use
1515 addresses aligned to 4-bytes due to the way the read/write flags are
1516 passed in the old ptrace interface. */
1517 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1518 && (addr + len) > (addr & ~3) + 4)
1519 || (addr + len) > (addr & ~7) + 8)
1520 return 0;
1521
1522 return 1;
1523 }
1524
1525 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1526 static int
1527 booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1528 {
1529 return (a->trigger_type == b->trigger_type
1530 && a->addr_mode == b->addr_mode
1531 && a->condition_mode == b->condition_mode
1532 && a->addr == b->addr
1533 && a->addr2 == b->addr2
1534 && a->condition_value == b->condition_value);
1535 }
1536
1537 /* This function can be used to retrieve a thread_points by the TID of the
1538 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1539 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1540 provided TID will be created and returned. */
1541 static struct thread_points *
1542 booke_find_thread_points_by_tid (int tid, int alloc_new)
1543 {
1544 int i;
1545 struct thread_points *t;
1546
1547 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1548 if (t->tid == tid)
1549 return t;
1550
1551 t = NULL;
1552
1553 /* Do we need to allocate a new point_item
1554 if the wanted one does not exist? */
1555 if (alloc_new)
1556 {
1557 t = xmalloc (sizeof (struct thread_points));
1558 t->hw_breaks
1559 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1560 t->tid = tid;
1561 VEC_safe_push (thread_points_p, ppc_threads, t);
1562 }
1563
1564 return t;
1565 }
1566
1567 /* This function is a generic wrapper that is responsible for inserting a
1568 *point (i.e., calling `ptrace' in order to issue the request to the
1569 kernel) and registering it internally in GDB. */
1570 static void
1571 booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1572 {
1573 int i;
1574 long slot;
1575 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1576 struct hw_break_tuple *hw_breaks;
1577 struct cleanup *c = make_cleanup (xfree, p);
1578 struct thread_points *t;
1579 struct hw_break_tuple *tuple;
1580
1581 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1582
1583 errno = 0;
1584 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1585 if (slot < 0)
1586 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1587
1588 /* Everything went fine, so we have to register this *point. */
1589 t = booke_find_thread_points_by_tid (tid, 1);
1590 gdb_assert (t != NULL);
1591 hw_breaks = t->hw_breaks;
1592
1593 /* Find a free element in the hw_breaks vector. */
1594 for (i = 0; i < max_slots_number; i++)
1595 if (hw_breaks[i].hw_break == NULL)
1596 {
1597 hw_breaks[i].slot = slot;
1598 hw_breaks[i].hw_break = p;
1599 break;
1600 }
1601
1602 gdb_assert (i != max_slots_number);
1603
1604 discard_cleanups (c);
1605 }
1606
1607 /* This function is a generic wrapper that is responsible for removing a
1608 *point (i.e., calling `ptrace' in order to issue the request to the
1609 kernel), and unregistering it internally at GDB. */
1610 static void
1611 booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1612 {
1613 int i;
1614 struct hw_break_tuple *hw_breaks;
1615 struct thread_points *t;
1616
1617 t = booke_find_thread_points_by_tid (tid, 0);
1618 gdb_assert (t != NULL);
1619 hw_breaks = t->hw_breaks;
1620
1621 for (i = 0; i < max_slots_number; i++)
1622 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1623 break;
1624
1625 gdb_assert (i != max_slots_number);
1626
1627 /* We have to ignore ENOENT errors because the kernel implements hardware
1628 breakpoints/watchpoints as "one-shot", that is, they are automatically
1629 deleted when hit. */
1630 errno = 0;
1631 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1632 if (errno != ENOENT)
1633 perror_with_name (_("Unexpected error deleting "
1634 "breakpoint or watchpoint"));
1635
1636 xfree (hw_breaks[i].hw_break);
1637 hw_breaks[i].hw_break = NULL;
1638 }
1639
1640 /* Return the number of registers needed for a ranged breakpoint. */
1641
1642 static int
1643 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1644 {
1645 return ((have_ptrace_booke_interface ()
1646 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1647 2 : -1);
1648 }
1649
1650 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1651 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1652
1653 static int
1654 ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1655 struct bp_target_info *bp_tgt)
1656 {
1657 ptid_t ptid;
1658 struct lwp_info *lp;
1659 struct ppc_hw_breakpoint p;
1660
1661 if (!have_ptrace_booke_interface ())
1662 return -1;
1663
1664 p.version = PPC_DEBUG_CURRENT_VERSION;
1665 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1666 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1667 p.addr = (uint64_t) bp_tgt->placed_address;
1668 p.condition_value = 0;
1669
1670 if (bp_tgt->length)
1671 {
1672 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1673
1674 /* The breakpoint will trigger if the address of the instruction is
1675 within the defined range, as follows: p.addr <= address < p.addr2. */
1676 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1677 }
1678 else
1679 {
1680 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1681 p.addr2 = 0;
1682 }
1683
1684 ALL_LWPS (lp, ptid)
1685 booke_insert_point (&p, TIDGET (ptid));
1686
1687 return 0;
1688 }
1689
1690 static int
1691 ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1692 struct bp_target_info *bp_tgt)
1693 {
1694 ptid_t ptid;
1695 struct lwp_info *lp;
1696 struct ppc_hw_breakpoint p;
1697
1698 if (!have_ptrace_booke_interface ())
1699 return -1;
1700
1701 p.version = PPC_DEBUG_CURRENT_VERSION;
1702 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1703 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1704 p.addr = (uint64_t) bp_tgt->placed_address;
1705 p.condition_value = 0;
1706
1707 if (bp_tgt->length)
1708 {
1709 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1710
1711 /* The breakpoint will trigger if the address of the instruction is within
1712 the defined range, as follows: p.addr <= address < p.addr2. */
1713 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1714 }
1715 else
1716 {
1717 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1718 p.addr2 = 0;
1719 }
1720
1721 ALL_LWPS (lp, ptid)
1722 booke_remove_point (&p, TIDGET (ptid));
1723
1724 return 0;
1725 }
1726
1727 static int
1728 get_trigger_type (int rw)
1729 {
1730 int t;
1731
1732 if (rw == hw_read)
1733 t = PPC_BREAKPOINT_TRIGGER_READ;
1734 else if (rw == hw_write)
1735 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1736 else
1737 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1738
1739 return t;
1740 }
1741
1742 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1743 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1744 or hw_access for an access watchpoint. Returns 0 on success and throws
1745 an error on failure. */
1746
1747 static int
1748 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1749 CORE_ADDR mask, int rw)
1750 {
1751 ptid_t ptid;
1752 struct lwp_info *lp;
1753 struct ppc_hw_breakpoint p;
1754
1755 gdb_assert (have_ptrace_booke_interface ());
1756
1757 p.version = PPC_DEBUG_CURRENT_VERSION;
1758 p.trigger_type = get_trigger_type (rw);
1759 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1760 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1761 p.addr = addr;
1762 p.addr2 = mask;
1763 p.condition_value = 0;
1764
1765 ALL_LWPS (lp, ptid)
1766 booke_insert_point (&p, TIDGET (ptid));
1767
1768 return 0;
1769 }
1770
1771 /* Remove a masked watchpoint at ADDR with the mask MASK.
1772 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1773 or hw_access for an access watchpoint. Returns 0 on success and throws
1774 an error on failure. */
1775
1776 static int
1777 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1778 CORE_ADDR mask, int rw)
1779 {
1780 ptid_t ptid;
1781 struct lwp_info *lp;
1782 struct ppc_hw_breakpoint p;
1783
1784 gdb_assert (have_ptrace_booke_interface ());
1785
1786 p.version = PPC_DEBUG_CURRENT_VERSION;
1787 p.trigger_type = get_trigger_type (rw);
1788 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1789 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1790 p.addr = addr;
1791 p.addr2 = mask;
1792 p.condition_value = 0;
1793
1794 ALL_LWPS (lp, ptid)
1795 booke_remove_point (&p, TIDGET (ptid));
1796
1797 return 0;
1798 }
1799
1800 /* Check whether we have at least one free DVC register. */
1801 static int
1802 can_use_watchpoint_cond_accel (void)
1803 {
1804 struct thread_points *p;
1805 int tid = TIDGET (inferior_ptid);
1806 int cnt = booke_debug_info.num_condition_regs, i;
1807 CORE_ADDR tmp_value;
1808
1809 if (!have_ptrace_booke_interface () || cnt == 0)
1810 return 0;
1811
1812 p = booke_find_thread_points_by_tid (tid, 0);
1813
1814 if (p)
1815 {
1816 for (i = 0; i < max_slots_number; i++)
1817 if (p->hw_breaks[i].hw_break != NULL
1818 && (p->hw_breaks[i].hw_break->condition_mode
1819 != PPC_BREAKPOINT_CONDITION_NONE))
1820 cnt--;
1821
1822 /* There are no available slots now. */
1823 if (cnt <= 0)
1824 return 0;
1825 }
1826
1827 return 1;
1828 }
1829
1830 /* Calculate the enable bits and the contents of the Data Value Compare
1831 debug register present in BookE processors.
1832
1833 ADDR is the address to be watched, LEN is the length of watched data
1834 and DATA_VALUE is the value which will trigger the watchpoint.
1835 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1836 CONDITION_VALUE will hold the value which should be put in the
1837 DVC register. */
1838 static void
1839 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1840 uint32_t *condition_mode, uint64_t *condition_value)
1841 {
1842 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1843 rightmost_enabled_byte;
1844 CORE_ADDR addr_end_data, addr_end_dvc;
1845
1846 /* The DVC register compares bytes within fixed-length windows which
1847 are word-aligned, with length equal to that of the DVC register.
1848 We need to calculate where our watch region is relative to that
1849 window and enable comparison of the bytes which fall within it. */
1850
1851 align_offset = addr % booke_debug_info.sizeof_condition;
1852 addr_end_data = addr + len;
1853 addr_end_dvc = (addr - align_offset
1854 + booke_debug_info.sizeof_condition);
1855 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1856 addr_end_data - addr_end_dvc : 0;
1857 num_byte_enable = len - num_bytes_off_dvc;
1858 /* Here, bytes are numbered from right to left. */
1859 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1860 addr_end_dvc - addr_end_data : 0;
1861
1862 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1863 for (i = 0; i < num_byte_enable; i++)
1864 *condition_mode
1865 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1866
1867 /* Now we need to match the position within the DVC of the comparison
1868 value with where the watch region is relative to the window
1869 (i.e., the ALIGN_OFFSET). */
1870
1871 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1872 << rightmost_enabled_byte * 8);
1873 }
1874
1875 /* Return the number of memory locations that need to be accessed to
1876 evaluate the expression which generated the given value chain.
1877 Returns -1 if there's any register access involved, or if there are
1878 other kinds of values which are not acceptable in a condition
1879 expression (e.g., lval_computed or lval_internalvar). */
1880 static int
1881 num_memory_accesses (struct value *v)
1882 {
1883 int found_memory_cnt = 0;
1884 struct value *head = v;
1885
1886 /* The idea here is that evaluating an expression generates a series
1887 of values, one holding the value of every subexpression. (The
1888 expression a*b+c has five subexpressions: a, b, a*b, c, and
1889 a*b+c.) GDB's values hold almost enough information to establish
1890 the criteria given above --- they identify memory lvalues,
1891 register lvalues, computed values, etcetera. So we can evaluate
1892 the expression, and then scan the chain of values that leaves
1893 behind to determine the memory locations involved in the evaluation
1894 of an expression.
1895
1896 However, I don't think that the values returned by inferior
1897 function calls are special in any way. So this function may not
1898 notice that an expression contains an inferior function call.
1899 FIXME. */
1900
1901 for (; v; v = value_next (v))
1902 {
1903 /* Constants and values from the history are fine. */
1904 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1905 continue;
1906 else if (VALUE_LVAL (v) == lval_memory)
1907 {
1908 /* A lazy memory lvalue is one that GDB never needed to fetch;
1909 we either just used its address (e.g., `a' in `a.b') or
1910 we never needed it at all (e.g., `a' in `a,b'). */
1911 if (!value_lazy (v))
1912 found_memory_cnt++;
1913 }
1914 /* Other kinds of values are not fine. */
1915 else
1916 return -1;
1917 }
1918
1919 return found_memory_cnt;
1920 }
1921
1922 /* Verifies whether the expression COND can be implemented using the
1923 DVC (Data Value Compare) register in BookE processors. The expression
1924 must test the watch value for equality with a constant expression.
1925 If the function returns 1, DATA_VALUE will contain the constant against
1926 which the watch value should be compared and LEN will contain the size
1927 of the constant. */
1928 static int
1929 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1930 CORE_ADDR *data_value, int *len)
1931 {
1932 int pc = 1, num_accesses_left, num_accesses_right;
1933 struct value *left_val, *right_val, *left_chain, *right_chain;
1934
1935 if (cond->elts[0].opcode != BINOP_EQUAL)
1936 return 0;
1937
1938 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1939 num_accesses_left = num_memory_accesses (left_chain);
1940
1941 if (left_val == NULL || num_accesses_left < 0)
1942 {
1943 free_value_chain (left_chain);
1944
1945 return 0;
1946 }
1947
1948 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1949 num_accesses_right = num_memory_accesses (right_chain);
1950
1951 if (right_val == NULL || num_accesses_right < 0)
1952 {
1953 free_value_chain (left_chain);
1954 free_value_chain (right_chain);
1955
1956 return 0;
1957 }
1958
1959 if (num_accesses_left == 1 && num_accesses_right == 0
1960 && VALUE_LVAL (left_val) == lval_memory
1961 && value_address (left_val) == watch_addr)
1962 {
1963 *data_value = value_as_long (right_val);
1964
1965 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1966 the same type as the memory region referenced by LEFT_VAL. */
1967 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1968 }
1969 else if (num_accesses_left == 0 && num_accesses_right == 1
1970 && VALUE_LVAL (right_val) == lval_memory
1971 && value_address (right_val) == watch_addr)
1972 {
1973 *data_value = value_as_long (left_val);
1974
1975 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1976 the same type as the memory region referenced by RIGHT_VAL. */
1977 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1978 }
1979 else
1980 {
1981 free_value_chain (left_chain);
1982 free_value_chain (right_chain);
1983
1984 return 0;
1985 }
1986
1987 free_value_chain (left_chain);
1988 free_value_chain (right_chain);
1989
1990 return 1;
1991 }
1992
1993 /* Return non-zero if the target is capable of using hardware to evaluate
1994 the condition expression, thus only triggering the watchpoint when it is
1995 true. */
1996 static int
1997 ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
1998 struct expression *cond)
1999 {
2000 CORE_ADDR data_value;
2001
2002 return (have_ptrace_booke_interface ()
2003 && booke_debug_info.num_condition_regs > 0
2004 && check_condition (addr, cond, &data_value, &len));
2005 }
2006
2007 /* Set up P with the parameters necessary to request a watchpoint covering
2008 LEN bytes starting at ADDR and if possible with condition expression COND
2009 evaluated by hardware. INSERT tells if we are creating a request for
2010 inserting or removing the watchpoint. */
2011
2012 static void
2013 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2014 int len, int rw, struct expression *cond,
2015 int insert)
2016 {
2017 if (len == 1)
2018 {
2019 int use_condition;
2020 CORE_ADDR data_value;
2021
2022 use_condition = (insert? can_use_watchpoint_cond_accel ()
2023 : booke_debug_info.num_condition_regs > 0);
2024 if (cond && use_condition && check_condition (addr, cond,
2025 &data_value, &len))
2026 calculate_dvc (addr, len, data_value, &p->condition_mode,
2027 &p->condition_value);
2028 else
2029 {
2030 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2031 p->condition_value = 0;
2032 }
2033
2034 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2035 p->addr2 = 0;
2036 }
2037 else
2038 {
2039 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2040 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2041 p->condition_value = 0;
2042
2043 /* The watchpoint will trigger if the address of the memory access is
2044 within the defined range, as follows: p->addr <= address < p->addr2.
2045
2046 Note that the above sentence just documents how ptrace interprets
2047 its arguments; the watchpoint is set to watch the range defined by
2048 the user _inclusively_, as specified by the user interface. */
2049 p->addr2 = (uint64_t) addr + len;
2050 }
2051
2052 p->version = PPC_DEBUG_CURRENT_VERSION;
2053 p->trigger_type = get_trigger_type (rw);
2054 p->addr = (uint64_t) addr;
2055 }
2056
2057 static int
2058 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2059 struct expression *cond)
2060 {
2061 struct lwp_info *lp;
2062 ptid_t ptid;
2063 int ret = -1;
2064
2065 if (have_ptrace_booke_interface ())
2066 {
2067 struct ppc_hw_breakpoint p;
2068
2069 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2070
2071 ALL_LWPS (lp, ptid)
2072 booke_insert_point (&p, TIDGET (ptid));
2073
2074 ret = 0;
2075 }
2076 else
2077 {
2078 long dabr_value;
2079 long read_mode, write_mode;
2080
2081 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2082 {
2083 /* PowerPC 440 requires only the read/write flags to be passed
2084 to the kernel. */
2085 read_mode = 1;
2086 write_mode = 2;
2087 }
2088 else
2089 {
2090 /* PowerPC 970 and other DABR-based processors are required to pass
2091 the Breakpoint Translation bit together with the flags. */
2092 read_mode = 5;
2093 write_mode = 6;
2094 }
2095
2096 dabr_value = addr & ~(read_mode | write_mode);
2097 switch (rw)
2098 {
2099 case hw_read:
2100 /* Set read and translate bits. */
2101 dabr_value |= read_mode;
2102 break;
2103 case hw_write:
2104 /* Set write and translate bits. */
2105 dabr_value |= write_mode;
2106 break;
2107 case hw_access:
2108 /* Set read, write and translate bits. */
2109 dabr_value |= read_mode | write_mode;
2110 break;
2111 }
2112
2113 saved_dabr_value = dabr_value;
2114
2115 ALL_LWPS (lp, ptid)
2116 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0,
2117 saved_dabr_value) < 0)
2118 return -1;
2119
2120 ret = 0;
2121 }
2122
2123 return ret;
2124 }
2125
2126 static int
2127 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2128 struct expression *cond)
2129 {
2130 struct lwp_info *lp;
2131 ptid_t ptid;
2132 int ret = -1;
2133
2134 if (have_ptrace_booke_interface ())
2135 {
2136 struct ppc_hw_breakpoint p;
2137
2138 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2139
2140 ALL_LWPS (lp, ptid)
2141 booke_remove_point (&p, TIDGET (ptid));
2142
2143 ret = 0;
2144 }
2145 else
2146 {
2147 saved_dabr_value = 0;
2148 ALL_LWPS (lp, ptid)
2149 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0,
2150 saved_dabr_value) < 0)
2151 return -1;
2152
2153 ret = 0;
2154 }
2155
2156 return ret;
2157 }
2158
2159 static void
2160 ppc_linux_new_thread (ptid_t ptid)
2161 {
2162 int tid = TIDGET (ptid);
2163
2164 if (have_ptrace_booke_interface ())
2165 {
2166 int i;
2167 struct thread_points *p;
2168 struct hw_break_tuple *hw_breaks;
2169
2170 if (VEC_empty (thread_points_p, ppc_threads))
2171 return;
2172
2173 /* Get a list of breakpoints from any thread. */
2174 p = VEC_last (thread_points_p, ppc_threads);
2175 hw_breaks = p->hw_breaks;
2176
2177 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2178 for (i = 0; i < max_slots_number; i++)
2179 if (hw_breaks[i].hw_break)
2180 booke_insert_point (hw_breaks[i].hw_break, tid);
2181 }
2182 else
2183 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2184 }
2185
2186 static void
2187 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2188 {
2189 int i;
2190 int tid = TIDGET (tp->ptid);
2191 struct hw_break_tuple *hw_breaks;
2192 struct thread_points *t = NULL, *p;
2193
2194 if (!have_ptrace_booke_interface ())
2195 return;
2196
2197 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2198 if (p->tid == tid)
2199 {
2200 t = p;
2201 break;
2202 }
2203
2204 if (t == NULL)
2205 return;
2206
2207 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2208
2209 hw_breaks = t->hw_breaks;
2210
2211 for (i = 0; i < max_slots_number; i++)
2212 if (hw_breaks[i].hw_break)
2213 xfree (hw_breaks[i].hw_break);
2214
2215 xfree (t->hw_breaks);
2216 xfree (t);
2217 }
2218
2219 static int
2220 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2221 {
2222 struct siginfo *siginfo_p;
2223
2224 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
2225
2226 if (siginfo_p->si_signo != SIGTRAP
2227 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2228 return 0;
2229
2230 if (have_ptrace_booke_interface ())
2231 {
2232 int i;
2233 struct thread_points *t;
2234 struct hw_break_tuple *hw_breaks;
2235 /* The index (or slot) of the *point is passed in the si_errno field. */
2236 int slot = siginfo_p->si_errno;
2237
2238 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2239
2240 /* Find out if this *point is a hardware breakpoint.
2241 If so, we should return 0. */
2242 if (t)
2243 {
2244 hw_breaks = t->hw_breaks;
2245 for (i = 0; i < max_slots_number; i++)
2246 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2247 && hw_breaks[i].hw_break->trigger_type
2248 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2249 return 0;
2250 }
2251 }
2252
2253 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
2254 return 1;
2255 }
2256
2257 static int
2258 ppc_linux_stopped_by_watchpoint (void)
2259 {
2260 CORE_ADDR addr;
2261 return ppc_linux_stopped_data_address (&current_target, &addr);
2262 }
2263
2264 static int
2265 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2266 CORE_ADDR addr,
2267 CORE_ADDR start, int length)
2268 {
2269 int mask;
2270
2271 if (have_ptrace_booke_interface ()
2272 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2273 return start <= addr && start + length >= addr;
2274 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2275 mask = 3;
2276 else
2277 mask = 7;
2278
2279 addr &= ~mask;
2280
2281 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2282 return start <= addr + mask && start + length - 1 >= addr;
2283 }
2284
2285 /* Return the number of registers needed for a masked hardware watchpoint. */
2286
2287 static int
2288 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2289 CORE_ADDR addr, CORE_ADDR mask)
2290 {
2291 if (!have_ptrace_booke_interface ()
2292 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2293 return -1;
2294 else if ((mask & 0xC0000000) != 0xC0000000)
2295 {
2296 warning (_("The given mask covers kernel address space "
2297 "and cannot be used.\n"));
2298
2299 return -2;
2300 }
2301 else
2302 return 2;
2303 }
2304
2305 static void
2306 ppc_linux_store_inferior_registers (struct target_ops *ops,
2307 struct regcache *regcache, int regno)
2308 {
2309 /* Overload thread id onto process id. */
2310 int tid = TIDGET (inferior_ptid);
2311
2312 /* No thread id, just use process id. */
2313 if (tid == 0)
2314 tid = PIDGET (inferior_ptid);
2315
2316 if (regno >= 0)
2317 store_register (regcache, tid, regno);
2318 else
2319 store_ppc_registers (regcache, tid);
2320 }
2321
2322 /* Functions for transferring registers between a gregset_t or fpregset_t
2323 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2324 by the ptrace interface, not the current program's ABI. Eg. if a
2325 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2326 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2327
2328 void
2329 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2330 {
2331 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2332
2333 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2334 }
2335
2336 void
2337 fill_gregset (const struct regcache *regcache,
2338 gdb_gregset_t *gregsetp, int regno)
2339 {
2340 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2341
2342 if (regno == -1)
2343 memset (gregsetp, 0, sizeof (*gregsetp));
2344 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2345 }
2346
2347 void
2348 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2349 {
2350 const struct regset *regset = ppc_linux_fpregset ();
2351
2352 ppc_supply_fpregset (regset, regcache, -1,
2353 fpregsetp, sizeof (*fpregsetp));
2354 }
2355
2356 void
2357 fill_fpregset (const struct regcache *regcache,
2358 gdb_fpregset_t *fpregsetp, int regno)
2359 {
2360 const struct regset *regset = ppc_linux_fpregset ();
2361
2362 ppc_collect_fpregset (regset, regcache, regno,
2363 fpregsetp, sizeof (*fpregsetp));
2364 }
2365
2366 static int
2367 ppc_linux_target_wordsize (void)
2368 {
2369 int wordsize = 4;
2370
2371 /* Check for 64-bit inferior process. This is the case when the host is
2372 64-bit, and in addition the top bit of the MSR register is set. */
2373 #ifdef __powerpc64__
2374 long msr;
2375
2376 int tid = TIDGET (inferior_ptid);
2377 if (tid == 0)
2378 tid = PIDGET (inferior_ptid);
2379
2380 errno = 0;
2381 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2382 if (errno == 0 && msr < 0)
2383 wordsize = 8;
2384 #endif
2385
2386 return wordsize;
2387 }
2388
2389 static int
2390 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2391 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2392 {
2393 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2394 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
2395 gdb_byte *ptr = *readptr;
2396
2397 if (endptr == ptr)
2398 return 0;
2399
2400 if (endptr - ptr < sizeof_auxv_field * 2)
2401 return -1;
2402
2403 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2404 ptr += sizeof_auxv_field;
2405 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2406 ptr += sizeof_auxv_field;
2407
2408 *readptr = ptr;
2409 return 1;
2410 }
2411
2412 static const struct target_desc *
2413 ppc_linux_read_description (struct target_ops *ops)
2414 {
2415 int altivec = 0;
2416 int vsx = 0;
2417 int isa205 = 0;
2418 int cell = 0;
2419
2420 int tid = TIDGET (inferior_ptid);
2421 if (tid == 0)
2422 tid = PIDGET (inferior_ptid);
2423
2424 if (have_ptrace_getsetevrregs)
2425 {
2426 struct gdb_evrregset_t evrregset;
2427
2428 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2429 return tdesc_powerpc_e500l;
2430
2431 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2432 Anything else needs to be reported. */
2433 else if (errno != EIO)
2434 perror_with_name (_("Unable to fetch SPE registers"));
2435 }
2436
2437 if (have_ptrace_getsetvsxregs)
2438 {
2439 gdb_vsxregset_t vsxregset;
2440
2441 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2442 vsx = 1;
2443
2444 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2445 Anything else needs to be reported. */
2446 else if (errno != EIO)
2447 perror_with_name (_("Unable to fetch VSX registers"));
2448 }
2449
2450 if (have_ptrace_getvrregs)
2451 {
2452 gdb_vrregset_t vrregset;
2453
2454 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2455 altivec = 1;
2456
2457 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2458 Anything else needs to be reported. */
2459 else if (errno != EIO)
2460 perror_with_name (_("Unable to fetch AltiVec registers"));
2461 }
2462
2463 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2464 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2465 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2466 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2467 half of the register are for Decimal Floating Point, we check if that
2468 feature is available to decide the size of the FPSCR. */
2469 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2470 isa205 = 1;
2471
2472 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2473 cell = 1;
2474
2475 if (ppc_linux_target_wordsize () == 8)
2476 {
2477 if (cell)
2478 return tdesc_powerpc_cell64l;
2479 else if (vsx)
2480 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2481 else if (altivec)
2482 return isa205
2483 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2484
2485 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2486 }
2487
2488 if (cell)
2489 return tdesc_powerpc_cell32l;
2490 else if (vsx)
2491 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2492 else if (altivec)
2493 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2494
2495 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2496 }
2497
2498 void _initialize_ppc_linux_nat (void);
2499
2500 void
2501 _initialize_ppc_linux_nat (void)
2502 {
2503 struct target_ops *t;
2504
2505 /* Fill in the generic GNU/Linux methods. */
2506 t = linux_target ();
2507
2508 /* Add our register access methods. */
2509 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2510 t->to_store_registers = ppc_linux_store_inferior_registers;
2511
2512 /* Add our breakpoint/watchpoint methods. */
2513 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2514 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2515 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2516 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2517 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2518 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2519 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2520 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2521 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2522 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2523 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2524 t->to_can_accel_watchpoint_condition
2525 = ppc_linux_can_accel_watchpoint_condition;
2526 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2527 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2528
2529 t->to_read_description = ppc_linux_read_description;
2530 t->to_auxv_parse = ppc_linux_auxv_parse;
2531
2532 observer_attach_thread_exit (ppc_linux_thread_exit);
2533
2534 /* Register the target. */
2535 linux_nat_add_target (t);
2536 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2537 }