]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-tdep.c
* ppc-linux-tdep.c (ppc32_linux_reg_offsets): Corrected
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "regcache.h"
32 #include "value.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "solib-svr4.h"
36 #include "ppc-tdep.h"
37 #include "trad-frame.h"
38 #include "frame-unwind.h"
39 #include "tramp-frame.h"
40
41 static CORE_ADDR
42 ppc_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
43 {
44 gdb_byte buf[4];
45 struct obj_section *sect;
46 struct objfile *objfile;
47 unsigned long insn;
48 CORE_ADDR plt_start = 0;
49 CORE_ADDR symtab = 0;
50 CORE_ADDR strtab = 0;
51 int num_slots = -1;
52 int reloc_index = -1;
53 CORE_ADDR plt_table;
54 CORE_ADDR reloc;
55 CORE_ADDR sym;
56 long symidx;
57 char symname[1024];
58 struct minimal_symbol *msymbol;
59
60 /* Find the section pc is in; return if not in .plt */
61 sect = find_pc_section (pc);
62 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
63 return 0;
64
65 objfile = sect->objfile;
66
67 /* Pick up the instruction at pc. It had better be of the
68 form
69 li r11, IDX
70
71 where IDX is an index into the plt_table. */
72
73 if (target_read_memory (pc, buf, 4) != 0)
74 return 0;
75 insn = extract_unsigned_integer (buf, 4);
76
77 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
78 return 0;
79
80 reloc_index = (insn << 16) >> 16;
81
82 /* Find the objfile that pc is in and obtain the information
83 necessary for finding the symbol name. */
84 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
85 {
86 const char *secname = sect->the_bfd_section->name;
87 if (strcmp (secname, ".plt") == 0)
88 plt_start = sect->addr;
89 else if (strcmp (secname, ".rela.plt") == 0)
90 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
91 else if (strcmp (secname, ".dynsym") == 0)
92 symtab = sect->addr;
93 else if (strcmp (secname, ".dynstr") == 0)
94 strtab = sect->addr;
95 }
96
97 /* Make sure we have all the information we need. */
98 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
99 return 0;
100
101 /* Compute the value of the plt table */
102 plt_table = plt_start + 72 + 8 * num_slots;
103
104 /* Get address of the relocation entry (Elf32_Rela) */
105 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
106 return 0;
107 reloc = extract_unsigned_integer (buf, 4);
108
109 sect = find_pc_section (reloc);
110 if (!sect)
111 return 0;
112
113 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
114 return reloc;
115
116 /* Now get the r_info field which is the relocation type and symbol
117 index. */
118 if (target_read_memory (reloc + 4, buf, 4) != 0)
119 return 0;
120 symidx = extract_unsigned_integer (buf, 4);
121
122 /* Shift out the relocation type leaving just the symbol index */
123 /* symidx = ELF32_R_SYM(symidx); */
124 symidx = symidx >> 8;
125
126 /* compute the address of the symbol */
127 sym = symtab + symidx * 4;
128
129 /* Fetch the string table index */
130 if (target_read_memory (sym, buf, 4) != 0)
131 return 0;
132 symidx = extract_unsigned_integer (buf, 4);
133
134 /* Fetch the string; we don't know how long it is. Is it possible
135 that the following will fail because we're trying to fetch too
136 much? */
137 if (target_read_memory (strtab + symidx, (gdb_byte *) symname,
138 sizeof (symname)) != 0)
139 return 0;
140
141 /* This might not work right if we have multiple symbols with the
142 same name; the only way to really get it right is to perform
143 the same sort of lookup as the dynamic linker. */
144 msymbol = lookup_minimal_symbol_text (symname, NULL);
145 if (!msymbol)
146 return 0;
147
148 return SYMBOL_VALUE_ADDRESS (msymbol);
149 }
150
151 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
152 in much the same fashion as memory_remove_breakpoint in mem-break.c,
153 but is careful not to write back the previous contents if the code
154 in question has changed in between inserting the breakpoint and
155 removing it.
156
157 Here is the problem that we're trying to solve...
158
159 Once upon a time, before introducing this function to remove
160 breakpoints from the inferior, setting a breakpoint on a shared
161 library function prior to running the program would not work
162 properly. In order to understand the problem, it is first
163 necessary to understand a little bit about dynamic linking on
164 this platform.
165
166 A call to a shared library function is accomplished via a bl
167 (branch-and-link) instruction whose branch target is an entry
168 in the procedure linkage table (PLT). The PLT in the object
169 file is uninitialized. To gdb, prior to running the program, the
170 entries in the PLT are all zeros.
171
172 Once the program starts running, the shared libraries are loaded
173 and the procedure linkage table is initialized, but the entries in
174 the table are not (necessarily) resolved. Once a function is
175 actually called, the code in the PLT is hit and the function is
176 resolved. In order to better illustrate this, an example is in
177 order; the following example is from the gdb testsuite.
178
179 We start the program shmain.
180
181 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
182 [...]
183
184 We place two breakpoints, one on shr1 and the other on main.
185
186 (gdb) b shr1
187 Breakpoint 1 at 0x100409d4
188 (gdb) b main
189 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
190
191 Examine the instruction (and the immediatly following instruction)
192 upon which the breakpoint was placed. Note that the PLT entry
193 for shr1 contains zeros.
194
195 (gdb) x/2i 0x100409d4
196 0x100409d4 <shr1>: .long 0x0
197 0x100409d8 <shr1+4>: .long 0x0
198
199 Now run 'til main.
200
201 (gdb) r
202 Starting program: gdb.base/shmain
203 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
204
205 Breakpoint 2, main ()
206 at gdb.base/shmain.c:44
207 44 g = 1;
208
209 Examine the PLT again. Note that the loading of the shared
210 library has initialized the PLT to code which loads a constant
211 (which I think is an index into the GOT) into r11 and then
212 branchs a short distance to the code which actually does the
213 resolving.
214
215 (gdb) x/2i 0x100409d4
216 0x100409d4 <shr1>: li r11,4
217 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
218 (gdb) c
219 Continuing.
220
221 Breakpoint 1, shr1 (x=1)
222 at gdb.base/shr1.c:19
223 19 l = 1;
224
225 Now we've hit the breakpoint at shr1. (The breakpoint was
226 reset from the PLT entry to the actual shr1 function after the
227 shared library was loaded.) Note that the PLT entry has been
228 resolved to contain a branch that takes us directly to shr1.
229 (The real one, not the PLT entry.)
230
231 (gdb) x/2i 0x100409d4
232 0x100409d4 <shr1>: b 0xffaf76c <shr1>
233 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
234
235 The thing to note here is that the PLT entry for shr1 has been
236 changed twice.
237
238 Now the problem should be obvious. GDB places a breakpoint (a
239 trap instruction) on the zero value of the PLT entry for shr1.
240 Later on, after the shared library had been loaded and the PLT
241 initialized, GDB gets a signal indicating this fact and attempts
242 (as it always does when it stops) to remove all the breakpoints.
243
244 The breakpoint removal was causing the former contents (a zero
245 word) to be written back to the now initialized PLT entry thus
246 destroying a portion of the initialization that had occurred only a
247 short time ago. When execution continued, the zero word would be
248 executed as an instruction an an illegal instruction trap was
249 generated instead. (0 is not a legal instruction.)
250
251 The fix for this problem was fairly straightforward. The function
252 memory_remove_breakpoint from mem-break.c was copied to this file,
253 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
254 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
255 function.
256
257 The differences between ppc_linux_memory_remove_breakpoint () and
258 memory_remove_breakpoint () are minor. All that the former does
259 that the latter does not is check to make sure that the breakpoint
260 location actually contains a breakpoint (trap instruction) prior
261 to attempting to write back the old contents. If it does contain
262 a trap instruction, we allow the old contents to be written back.
263 Otherwise, we silently do nothing.
264
265 The big question is whether memory_remove_breakpoint () should be
266 changed to have the same functionality. The downside is that more
267 traffic is generated for remote targets since we'll have an extra
268 fetch of a memory word each time a breakpoint is removed.
269
270 For the time being, we'll leave this self-modifying-code-friendly
271 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
272 else in the event that some other platform has similar needs with
273 regard to removing breakpoints in some potentially self modifying
274 code. */
275 int
276 ppc_linux_memory_remove_breakpoint (struct bp_target_info *bp_tgt)
277 {
278 CORE_ADDR addr = bp_tgt->placed_address;
279 const unsigned char *bp;
280 int val;
281 int bplen;
282 gdb_byte old_contents[BREAKPOINT_MAX];
283
284 /* Determine appropriate breakpoint contents and size for this address. */
285 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
286 if (bp == NULL)
287 error (_("Software breakpoints not implemented for this target."));
288
289 val = target_read_memory (addr, old_contents, bplen);
290
291 /* If our breakpoint is no longer at the address, this means that the
292 program modified the code on us, so it is wrong to put back the
293 old value */
294 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
295 val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
296
297 return val;
298 }
299
300 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
301 than the 32 bit SYSV R4 ABI structure return convention - all
302 structures, no matter their size, are put in memory. Vectors,
303 which were added later, do get returned in a register though. */
304
305 static enum return_value_convention
306 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
307 struct regcache *regcache, gdb_byte *readbuf,
308 const gdb_byte *writebuf)
309 {
310 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
311 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
312 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
313 && TYPE_VECTOR (valtype)))
314 return RETURN_VALUE_STRUCT_CONVENTION;
315 else
316 return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
317 writebuf);
318 }
319
320 /* Macros for matching instructions. Note that, since all the
321 operands are masked off before they're or-ed into the instruction,
322 you can use -1 to make masks. */
323
324 #define insn_d(opcd, rts, ra, d) \
325 ((((opcd) & 0x3f) << 26) \
326 | (((rts) & 0x1f) << 21) \
327 | (((ra) & 0x1f) << 16) \
328 | ((d) & 0xffff))
329
330 #define insn_ds(opcd, rts, ra, d, xo) \
331 ((((opcd) & 0x3f) << 26) \
332 | (((rts) & 0x1f) << 21) \
333 | (((ra) & 0x1f) << 16) \
334 | ((d) & 0xfffc) \
335 | ((xo) & 0x3))
336
337 #define insn_xfx(opcd, rts, spr, xo) \
338 ((((opcd) & 0x3f) << 26) \
339 | (((rts) & 0x1f) << 21) \
340 | (((spr) & 0x1f) << 16) \
341 | (((spr) & 0x3e0) << 6) \
342 | (((xo) & 0x3ff) << 1))
343
344 /* Read a PPC instruction from memory. PPC instructions are always
345 big-endian, no matter what endianness the program is running in, so
346 we can't use read_memory_integer or one of its friends here. */
347 static unsigned int
348 read_insn (CORE_ADDR pc)
349 {
350 unsigned char buf[4];
351
352 read_memory (pc, buf, 4);
353 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
354 }
355
356
357 /* An instruction to match. */
358 struct insn_pattern
359 {
360 unsigned int mask; /* mask the insn with this... */
361 unsigned int data; /* ...and see if it matches this. */
362 int optional; /* If non-zero, this insn may be absent. */
363 };
364
365 /* Return non-zero if the instructions at PC match the series
366 described in PATTERN, or zero otherwise. PATTERN is an array of
367 'struct insn_pattern' objects, terminated by an entry whose mask is
368 zero.
369
370 When the match is successful, fill INSN[i] with what PATTERN[i]
371 matched. If PATTERN[i] is optional, and the instruction wasn't
372 present, set INSN[i] to 0 (which is not a valid PPC instruction).
373 INSN should have as many elements as PATTERN. Note that, if
374 PATTERN contains optional instructions which aren't present in
375 memory, then INSN will have holes, so INSN[i] isn't necessarily the
376 i'th instruction in memory. */
377 static int
378 insns_match_pattern (CORE_ADDR pc,
379 struct insn_pattern *pattern,
380 unsigned int *insn)
381 {
382 int i;
383
384 for (i = 0; pattern[i].mask; i++)
385 {
386 insn[i] = read_insn (pc);
387 if ((insn[i] & pattern[i].mask) == pattern[i].data)
388 pc += 4;
389 else if (pattern[i].optional)
390 insn[i] = 0;
391 else
392 return 0;
393 }
394
395 return 1;
396 }
397
398
399 /* Return the 'd' field of the d-form instruction INSN, properly
400 sign-extended. */
401 static CORE_ADDR
402 insn_d_field (unsigned int insn)
403 {
404 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
405 }
406
407
408 /* Return the 'ds' field of the ds-form instruction INSN, with the two
409 zero bits concatenated at the right, and properly
410 sign-extended. */
411 static CORE_ADDR
412 insn_ds_field (unsigned int insn)
413 {
414 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
415 }
416
417
418 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
419 descriptor, return the descriptor's entry point. */
420 static CORE_ADDR
421 ppc64_desc_entry_point (CORE_ADDR desc)
422 {
423 /* The first word of the descriptor is the entry point. */
424 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
425 }
426
427
428 /* Pattern for the standard linkage function. These are built by
429 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
430 zero. */
431 static struct insn_pattern ppc64_standard_linkage[] =
432 {
433 /* addis r12, r2, <any> */
434 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
435
436 /* std r2, 40(r1) */
437 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
438
439 /* ld r11, <any>(r12) */
440 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
441
442 /* addis r12, r12, 1 <optional> */
443 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
444
445 /* ld r2, <any>(r12) */
446 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
447
448 /* addis r12, r12, 1 <optional> */
449 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
450
451 /* mtctr r11 */
452 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
453 0 },
454
455 /* ld r11, <any>(r12) */
456 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
457
458 /* bctr */
459 { -1, 0x4e800420, 0 },
460
461 { 0, 0, 0 }
462 };
463 #define PPC64_STANDARD_LINKAGE_LEN \
464 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
465
466 /* When the dynamic linker is doing lazy symbol resolution, the first
467 call to a function in another object will go like this:
468
469 - The user's function calls the linkage function:
470
471 100007c4: 4b ff fc d5 bl 10000498
472 100007c8: e8 41 00 28 ld r2,40(r1)
473
474 - The linkage function loads the entry point (and other stuff) from
475 the function descriptor in the PLT, and jumps to it:
476
477 10000498: 3d 82 00 00 addis r12,r2,0
478 1000049c: f8 41 00 28 std r2,40(r1)
479 100004a0: e9 6c 80 98 ld r11,-32616(r12)
480 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
481 100004a8: 7d 69 03 a6 mtctr r11
482 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
483 100004b0: 4e 80 04 20 bctr
484
485 - But since this is the first time that PLT entry has been used, it
486 sends control to its glink entry. That loads the number of the
487 PLT entry and jumps to the common glink0 code:
488
489 10000c98: 38 00 00 00 li r0,0
490 10000c9c: 4b ff ff dc b 10000c78
491
492 - The common glink0 code then transfers control to the dynamic
493 linker's fixup code:
494
495 10000c78: e8 41 00 28 ld r2,40(r1)
496 10000c7c: 3d 82 00 00 addis r12,r2,0
497 10000c80: e9 6c 80 80 ld r11,-32640(r12)
498 10000c84: e8 4c 80 88 ld r2,-32632(r12)
499 10000c88: 7d 69 03 a6 mtctr r11
500 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
501 10000c90: 4e 80 04 20 bctr
502
503 Eventually, this code will figure out how to skip all of this,
504 including the dynamic linker. At the moment, we just get through
505 the linkage function. */
506
507 /* If the current thread is about to execute a series of instructions
508 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
509 from that pattern match, return the code address to which the
510 standard linkage function will send them. (This doesn't deal with
511 dynamic linker lazy symbol resolution stubs.) */
512 static CORE_ADDR
513 ppc64_standard_linkage_target (struct frame_info *frame,
514 CORE_ADDR pc, unsigned int *insn)
515 {
516 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
517
518 /* The address of the function descriptor this linkage function
519 references. */
520 CORE_ADDR desc
521 = ((CORE_ADDR) get_frame_register_unsigned (frame,
522 tdep->ppc_gp0_regnum + 2)
523 + (insn_d_field (insn[0]) << 16)
524 + insn_ds_field (insn[2]));
525
526 /* The first word of the descriptor is the entry point. Return that. */
527 return ppc64_desc_entry_point (desc);
528 }
529
530
531 /* Given that we've begun executing a call trampoline at PC, return
532 the entry point of the function the trampoline will go to. */
533 static CORE_ADDR
534 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
535 {
536 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
537
538 if (insns_match_pattern (pc, ppc64_standard_linkage,
539 ppc64_standard_linkage_insn))
540 return ppc64_standard_linkage_target (frame, pc,
541 ppc64_standard_linkage_insn);
542 else
543 return 0;
544 }
545
546
547 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC
548 GNU/Linux.
549
550 Usually a function pointer's representation is simply the address
551 of the function. On GNU/Linux on the PowerPC however, a function
552 pointer may be a pointer to a function descriptor.
553
554 For PPC64, a function descriptor is a TOC entry, in a data section,
555 which contains three words: the first word is the address of the
556 function, the second word is the TOC pointer (r2), and the third word
557 is the static chain value.
558
559 For PPC32, there are two kinds of function pointers: non-secure and
560 secure. Non-secure function pointers point directly to the
561 function in a code section and thus need no translation. Secure
562 ones (from GCC's -msecure-plt option) are in a data section and
563 contain one word: the address of the function.
564
565 Throughout GDB it is currently assumed that a function pointer contains
566 the address of the function, which is not easy to fix. In addition, the
567 conversion of a function address to a function pointer would
568 require allocation of a TOC entry in the inferior's memory space,
569 with all its drawbacks. To be able to call C++ virtual methods in
570 the inferior (which are called via function pointers),
571 find_function_addr uses this function to get the function address
572 from a function pointer.
573
574 If ADDR points at what is clearly a function descriptor, transform
575 it into the address of the corresponding function, if needed. Be
576 conservative, otherwise GDB will do the transformation on any
577 random addresses such as occur when there is no symbol table. */
578
579 static CORE_ADDR
580 ppc_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
581 CORE_ADDR addr,
582 struct target_ops *targ)
583 {
584 struct gdbarch_tdep *tdep;
585 struct section_table *s = target_section_by_addr (targ, addr);
586 char *sect_name = NULL;
587
588 if (!s)
589 return addr;
590
591 tdep = gdbarch_tdep (gdbarch);
592
593 switch (tdep->wordsize)
594 {
595 case 4:
596 sect_name = ".plt";
597 break;
598 case 8:
599 sect_name = ".opd";
600 break;
601 default:
602 internal_error (__FILE__, __LINE__,
603 _("failed internal consistency check"));
604 }
605
606 /* Check if ADDR points to a function descriptor. */
607
608 /* NOTE: this depends on the coincidence that the address of a functions
609 entry point is contained in the first word of its function descriptor
610 for both PPC-64 and for PPC-32 with secure PLTs. */
611 if ((strcmp (s->the_bfd_section->name, sect_name) == 0)
612 && s->the_bfd_section->flags & SEC_DATA)
613 return get_target_memory_unsigned (targ, addr, tdep->wordsize);
614
615 return addr;
616 }
617
618 /* This wrapper clears areas in the linux gregset not written by
619 ppc_collect_gregset. */
620
621 static void
622 ppc_linux_collect_gregset (const struct regset *regset,
623 const struct regcache *regcache,
624 int regnum, void *gregs, size_t len)
625 {
626 if (regnum == -1)
627 memset (gregs, 0, len);
628 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
629 }
630
631 /* Regset descriptions. */
632 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
633 {
634 /* General-purpose registers. */
635 /* .r0_offset = */ 0,
636 /* .gpr_size = */ 4,
637 /* .xr_size = */ 4,
638 /* .pc_offset = */ 128,
639 /* .ps_offset = */ 132,
640 /* .cr_offset = */ 152,
641 /* .lr_offset = */ 144,
642 /* .ctr_offset = */ 140,
643 /* .xer_offset = */ 148,
644 /* .mq_offset = */ 156,
645
646 /* Floating-point registers. */
647 /* .f0_offset = */ 0,
648 /* .fpscr_offset = */ 256,
649 /* .fpscr_size = */ 8,
650
651 /* AltiVec registers. */
652 /* .vr0_offset = */ 0,
653 /* .vscr_offset = */ 512 + 12,
654 /* .vrsave_offset = */ 528
655 };
656
657 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
658 {
659 /* General-purpose registers. */
660 /* .r0_offset = */ 0,
661 /* .gpr_size = */ 8,
662 /* .xr_size = */ 8,
663 /* .pc_offset = */ 256,
664 /* .ps_offset = */ 264,
665 /* .cr_offset = */ 304,
666 /* .lr_offset = */ 288,
667 /* .ctr_offset = */ 280,
668 /* .xer_offset = */ 296,
669 /* .mq_offset = */ 312,
670
671 /* Floating-point registers. */
672 /* .f0_offset = */ 0,
673 /* .fpscr_offset = */ 256,
674 /* .fpscr_size = */ 8,
675
676 /* AltiVec registers. */
677 /* .vr0_offset = */ 0,
678 /* .vscr_offset = */ 512 + 12,
679 /* .vrsave_offset = */ 528
680 };
681
682 static const struct regset ppc32_linux_gregset = {
683 &ppc32_linux_reg_offsets,
684 ppc_supply_gregset,
685 ppc_linux_collect_gregset,
686 NULL
687 };
688
689 static const struct regset ppc64_linux_gregset = {
690 &ppc64_linux_reg_offsets,
691 ppc_supply_gregset,
692 ppc_linux_collect_gregset,
693 NULL
694 };
695
696 static const struct regset ppc32_linux_fpregset = {
697 &ppc32_linux_reg_offsets,
698 ppc_supply_fpregset,
699 ppc_collect_fpregset,
700 NULL
701 };
702
703 static const struct regset ppc32_linux_vrregset = {
704 &ppc32_linux_reg_offsets,
705 ppc_supply_vrregset,
706 ppc_collect_vrregset,
707 NULL
708 };
709
710 const struct regset *
711 ppc_linux_gregset (int wordsize)
712 {
713 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
714 }
715
716 const struct regset *
717 ppc_linux_fpregset (void)
718 {
719 return &ppc32_linux_fpregset;
720 }
721
722 static const struct regset *
723 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
724 const char *sect_name, size_t sect_size)
725 {
726 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
727 if (strcmp (sect_name, ".reg") == 0)
728 {
729 if (tdep->wordsize == 4)
730 return &ppc32_linux_gregset;
731 else
732 return &ppc64_linux_gregset;
733 }
734 if (strcmp (sect_name, ".reg2") == 0)
735 return &ppc32_linux_fpregset;
736 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
737 return &ppc32_linux_vrregset;
738 return NULL;
739 }
740
741 static void
742 ppc_linux_sigtramp_cache (struct frame_info *next_frame,
743 struct trad_frame_cache *this_cache,
744 CORE_ADDR func, LONGEST offset,
745 int bias)
746 {
747 CORE_ADDR base;
748 CORE_ADDR regs;
749 CORE_ADDR gpregs;
750 CORE_ADDR fpregs;
751 int i;
752 struct gdbarch *gdbarch = get_frame_arch (next_frame);
753 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
754
755 base = frame_unwind_register_unsigned (next_frame,
756 gdbarch_sp_regnum (current_gdbarch));
757 if (bias > 0 && frame_pc_unwind (next_frame) != func)
758 /* See below, some signal trampolines increment the stack as their
759 first instruction, need to compensate for that. */
760 base -= bias;
761
762 /* Find the address of the register buffer pointer. */
763 regs = base + offset;
764 /* Use that to find the address of the corresponding register
765 buffers. */
766 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
767 fpregs = gpregs + 48 * tdep->wordsize;
768
769 /* General purpose. */
770 for (i = 0; i < 32; i++)
771 {
772 int regnum = i + tdep->ppc_gp0_regnum;
773 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
774 }
775 trad_frame_set_reg_addr (this_cache,
776 gdbarch_pc_regnum (current_gdbarch),
777 gpregs + 32 * tdep->wordsize);
778 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
779 gpregs + 35 * tdep->wordsize);
780 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
781 gpregs + 36 * tdep->wordsize);
782 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
783 gpregs + 37 * tdep->wordsize);
784 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
785 gpregs + 38 * tdep->wordsize);
786
787 if (ppc_floating_point_unit_p (gdbarch))
788 {
789 /* Floating point registers. */
790 for (i = 0; i < 32; i++)
791 {
792 int regnum = i + gdbarch_fp0_regnum (current_gdbarch);
793 trad_frame_set_reg_addr (this_cache, regnum,
794 fpregs + i * tdep->wordsize);
795 }
796 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
797 fpregs + 32 * tdep->wordsize);
798 }
799 trad_frame_set_id (this_cache, frame_id_build (base, func));
800 }
801
802 static void
803 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
804 struct frame_info *next_frame,
805 struct trad_frame_cache *this_cache,
806 CORE_ADDR func)
807 {
808 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
809 0xd0 /* Offset to ucontext_t. */
810 + 0x30 /* Offset to .reg. */,
811 0);
812 }
813
814 static void
815 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
816 struct frame_info *next_frame,
817 struct trad_frame_cache *this_cache,
818 CORE_ADDR func)
819 {
820 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
821 0x80 /* Offset to ucontext_t. */
822 + 0xe0 /* Offset to .reg. */,
823 128);
824 }
825
826 static void
827 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
828 struct frame_info *next_frame,
829 struct trad_frame_cache *this_cache,
830 CORE_ADDR func)
831 {
832 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
833 0x40 /* Offset to ucontext_t. */
834 + 0x1c /* Offset to .reg. */,
835 0);
836 }
837
838 static void
839 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
840 struct frame_info *next_frame,
841 struct trad_frame_cache *this_cache,
842 CORE_ADDR func)
843 {
844 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
845 0x80 /* Offset to struct sigcontext. */
846 + 0x38 /* Offset to .reg. */,
847 128);
848 }
849
850 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
851 SIGTRAMP_FRAME,
852 4,
853 {
854 { 0x380000ac, -1 }, /* li r0, 172 */
855 { 0x44000002, -1 }, /* sc */
856 { TRAMP_SENTINEL_INSN },
857 },
858 ppc32_linux_sigaction_cache_init
859 };
860 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
861 SIGTRAMP_FRAME,
862 4,
863 {
864 { 0x38210080, -1 }, /* addi r1,r1,128 */
865 { 0x380000ac, -1 }, /* li r0, 172 */
866 { 0x44000002, -1 }, /* sc */
867 { TRAMP_SENTINEL_INSN },
868 },
869 ppc64_linux_sigaction_cache_init
870 };
871 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
872 SIGTRAMP_FRAME,
873 4,
874 {
875 { 0x38000077, -1 }, /* li r0,119 */
876 { 0x44000002, -1 }, /* sc */
877 { TRAMP_SENTINEL_INSN },
878 },
879 ppc32_linux_sighandler_cache_init
880 };
881 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
882 SIGTRAMP_FRAME,
883 4,
884 {
885 { 0x38210080, -1 }, /* addi r1,r1,128 */
886 { 0x38000077, -1 }, /* li r0,119 */
887 { 0x44000002, -1 }, /* sc */
888 { TRAMP_SENTINEL_INSN },
889 },
890 ppc64_linux_sighandler_cache_init
891 };
892
893 static void
894 ppc_linux_init_abi (struct gdbarch_info info,
895 struct gdbarch *gdbarch)
896 {
897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
898
899 /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
900 Supplement says that long doubles are sixteen bytes long.
901 However, as one of the known warts of its ABI, PPC GNU/Linux uses
902 eight-byte long doubles. GCC only recently got 128-bit long
903 double support on PPC, so it may be changing soon. The
904 Linux[sic] Standards Base says that programs that use 'long
905 double' on PPC GNU/Linux are non-conformant. */
906 /* NOTE: cagney/2005-01-25: True for both 32- and 64-bit. */
907 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
908
909 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
910 function descriptors) and 32-bit secure PLT entries. */
911 set_gdbarch_convert_from_func_ptr_addr
912 (gdbarch, ppc_linux_convert_from_func_ptr_addr);
913
914 if (tdep->wordsize == 4)
915 {
916 /* Until November 2001, gcc did not comply with the 32 bit SysV
917 R4 ABI requirement that structures less than or equal to 8
918 bytes should be returned in registers. Instead GCC was using
919 the the AIX/PowerOpen ABI - everything returned in memory
920 (well ignoring vectors that is). When this was corrected, it
921 wasn't fixed for GNU/Linux native platform. Use the
922 PowerOpen struct convention. */
923 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
924
925 set_gdbarch_memory_remove_breakpoint (gdbarch,
926 ppc_linux_memory_remove_breakpoint);
927
928 /* Shared library handling. */
929 set_gdbarch_skip_trampoline_code (gdbarch,
930 ppc_linux_skip_trampoline_code);
931 set_solib_svr4_fetch_link_map_offsets
932 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
933
934 /* Trampolines. */
935 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
936 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
937 }
938
939 if (tdep->wordsize == 8)
940 {
941 /* Shared library handling. */
942 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
943 set_solib_svr4_fetch_link_map_offsets
944 (gdbarch, svr4_lp64_fetch_link_map_offsets);
945
946 /* Trampolines. */
947 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
948 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
949 }
950 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
951
952 /* Enable TLS support. */
953 set_gdbarch_fetch_tls_load_module_address (gdbarch,
954 svr4_fetch_objfile_link_map);
955 }
956
957 void
958 _initialize_ppc_linux_tdep (void)
959 {
960 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
961 64-bit PowerPC, and the older rs6k. */
962 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
963 ppc_linux_init_abi);
964 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
965 ppc_linux_init_abi);
966 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
967 ppc_linux_init_abi);
968 }