]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-tdep.c
2004-02-09 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "osabi.h"
35
36 #include "solib-svr4.h"
37 #include "ppc-tdep.h"
38
39 /* The following instructions are used in the signal trampoline code
40 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
41 0x7777 but now uses the sigreturn syscalls. We check for both. */
42 #define INSTR_LI_R0_0x6666 0x38006666
43 #define INSTR_LI_R0_0x7777 0x38007777
44 #define INSTR_LI_R0_NR_sigreturn 0x38000077
45 #define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
46
47 #define INSTR_SC 0x44000002
48
49 /* Since the *-tdep.c files are platform independent (i.e, they may be
50 used to build cross platform debuggers), we can't include system
51 headers. Therefore, details concerning the sigcontext structure
52 must be painstakingly rerecorded. What's worse, if these details
53 ever change in the header files, they'll have to be changed here
54 as well. */
55
56 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
57 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
58
59 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
60 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
61
62 /* From <asm/sigcontext.h>,
63 offsetof(struct sigcontext_struct, handler) == 0x14 */
64 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
65
66 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
67 #define PPC_LINUX_PT_R0 0
68 #define PPC_LINUX_PT_R1 1
69 #define PPC_LINUX_PT_R2 2
70 #define PPC_LINUX_PT_R3 3
71 #define PPC_LINUX_PT_R4 4
72 #define PPC_LINUX_PT_R5 5
73 #define PPC_LINUX_PT_R6 6
74 #define PPC_LINUX_PT_R7 7
75 #define PPC_LINUX_PT_R8 8
76 #define PPC_LINUX_PT_R9 9
77 #define PPC_LINUX_PT_R10 10
78 #define PPC_LINUX_PT_R11 11
79 #define PPC_LINUX_PT_R12 12
80 #define PPC_LINUX_PT_R13 13
81 #define PPC_LINUX_PT_R14 14
82 #define PPC_LINUX_PT_R15 15
83 #define PPC_LINUX_PT_R16 16
84 #define PPC_LINUX_PT_R17 17
85 #define PPC_LINUX_PT_R18 18
86 #define PPC_LINUX_PT_R19 19
87 #define PPC_LINUX_PT_R20 20
88 #define PPC_LINUX_PT_R21 21
89 #define PPC_LINUX_PT_R22 22
90 #define PPC_LINUX_PT_R23 23
91 #define PPC_LINUX_PT_R24 24
92 #define PPC_LINUX_PT_R25 25
93 #define PPC_LINUX_PT_R26 26
94 #define PPC_LINUX_PT_R27 27
95 #define PPC_LINUX_PT_R28 28
96 #define PPC_LINUX_PT_R29 29
97 #define PPC_LINUX_PT_R30 30
98 #define PPC_LINUX_PT_R31 31
99 #define PPC_LINUX_PT_NIP 32
100 #define PPC_LINUX_PT_MSR 33
101 #define PPC_LINUX_PT_CTR 35
102 #define PPC_LINUX_PT_LNK 36
103 #define PPC_LINUX_PT_XER 37
104 #define PPC_LINUX_PT_CCR 38
105 #define PPC_LINUX_PT_MQ 39
106 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
107 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
108 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
109
110 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
111
112 /* Determine if pc is in a signal trampoline...
113
114 Ha! That's not what this does at all. wait_for_inferior in
115 infrun.c calls PC_IN_SIGTRAMP in order to detect entry into a
116 signal trampoline just after delivery of a signal. But on
117 GNU/Linux, signal trampolines are used for the return path only.
118 The kernel sets things up so that the signal handler is called
119 directly.
120
121 If we use in_sigtramp2() in place of in_sigtramp() (see below)
122 we'll (often) end up with stop_pc in the trampoline and prev_pc in
123 the (now exited) handler. The code there will cause a temporary
124 breakpoint to be set on prev_pc which is not very likely to get hit
125 again.
126
127 If this is confusing, think of it this way... the code in
128 wait_for_inferior() needs to be able to detect entry into a signal
129 trampoline just after a signal is delivered, not after the handler
130 has been run.
131
132 So, we define in_sigtramp() below to return 1 if the following is
133 true:
134
135 1) The previous frame is a real signal trampoline.
136
137 - and -
138
139 2) pc is at the first or second instruction of the corresponding
140 handler.
141
142 Why the second instruction? It seems that wait_for_inferior()
143 never sees the first instruction when single stepping. When a
144 signal is delivered while stepping, the next instruction that
145 would've been stepped over isn't, instead a signal is delivered and
146 the first instruction of the handler is stepped over instead. That
147 puts us on the second instruction. (I added the test for the
148 first instruction long after the fact, just in case the observed
149 behavior is ever fixed.)
150
151 PC_IN_SIGTRAMP is called from blockframe.c as well in order to set
152 the frame's type (if a SIGTRAMP_FRAME). Because of our strange
153 definition of in_sigtramp below, we can't rely on the frame's type
154 getting set correctly from within blockframe.c. This is why we
155 take pains to set it in init_extra_frame_info().
156
157 NOTE: cagney/2002-11-10: I suspect the real problem here is that
158 the get_prev_frame() only initializes the frame's type after the
159 call to INIT_FRAME_INFO. get_prev_frame() should be fixed, this
160 code shouldn't be working its way around a bug :-(. */
161
162 int
163 ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
164 {
165 CORE_ADDR lr;
166 CORE_ADDR sp;
167 CORE_ADDR tramp_sp;
168 char buf[4];
169 CORE_ADDR handler;
170
171 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
172 if (!ppc_linux_at_sigtramp_return_path (lr))
173 return 0;
174
175 sp = read_register (SP_REGNUM);
176
177 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
178 return 0;
179
180 tramp_sp = extract_unsigned_integer (buf, 4);
181
182 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
183 sizeof (buf)) != 0)
184 return 0;
185
186 handler = extract_unsigned_integer (buf, 4);
187
188 return (pc == handler || pc == handler + 4);
189 }
190
191 static int
192 insn_is_sigreturn (unsigned long pcinsn)
193 {
194 switch(pcinsn)
195 {
196 case INSTR_LI_R0_0x6666:
197 case INSTR_LI_R0_0x7777:
198 case INSTR_LI_R0_NR_sigreturn:
199 case INSTR_LI_R0_NR_rt_sigreturn:
200 return 1;
201 default:
202 return 0;
203 }
204 }
205
206 /*
207 * The signal handler trampoline is on the stack and consists of exactly
208 * two instructions. The easiest and most accurate way of determining
209 * whether the pc is in one of these trampolines is by inspecting the
210 * instructions. It'd be faster though if we could find a way to do this
211 * via some simple address comparisons.
212 */
213 static int
214 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
215 {
216 char buf[12];
217 unsigned long pcinsn;
218 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
219 return 0;
220
221 /* extract the instruction at the pc */
222 pcinsn = extract_unsigned_integer (buf + 4, 4);
223
224 return (
225 (insn_is_sigreturn (pcinsn)
226 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
227 ||
228 (pcinsn == INSTR_SC
229 && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
230 }
231
232 static CORE_ADDR
233 ppc_linux_skip_trampoline_code (CORE_ADDR pc)
234 {
235 char buf[4];
236 struct obj_section *sect;
237 struct objfile *objfile;
238 unsigned long insn;
239 CORE_ADDR plt_start = 0;
240 CORE_ADDR symtab = 0;
241 CORE_ADDR strtab = 0;
242 int num_slots = -1;
243 int reloc_index = -1;
244 CORE_ADDR plt_table;
245 CORE_ADDR reloc;
246 CORE_ADDR sym;
247 long symidx;
248 char symname[1024];
249 struct minimal_symbol *msymbol;
250
251 /* Find the section pc is in; return if not in .plt */
252 sect = find_pc_section (pc);
253 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
254 return 0;
255
256 objfile = sect->objfile;
257
258 /* Pick up the instruction at pc. It had better be of the
259 form
260 li r11, IDX
261
262 where IDX is an index into the plt_table. */
263
264 if (target_read_memory (pc, buf, 4) != 0)
265 return 0;
266 insn = extract_unsigned_integer (buf, 4);
267
268 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
269 return 0;
270
271 reloc_index = (insn << 16) >> 16;
272
273 /* Find the objfile that pc is in and obtain the information
274 necessary for finding the symbol name. */
275 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
276 {
277 const char *secname = sect->the_bfd_section->name;
278 if (strcmp (secname, ".plt") == 0)
279 plt_start = sect->addr;
280 else if (strcmp (secname, ".rela.plt") == 0)
281 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
282 else if (strcmp (secname, ".dynsym") == 0)
283 symtab = sect->addr;
284 else if (strcmp (secname, ".dynstr") == 0)
285 strtab = sect->addr;
286 }
287
288 /* Make sure we have all the information we need. */
289 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
290 return 0;
291
292 /* Compute the value of the plt table */
293 plt_table = plt_start + 72 + 8 * num_slots;
294
295 /* Get address of the relocation entry (Elf32_Rela) */
296 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
297 return 0;
298 reloc = extract_unsigned_integer (buf, 4);
299
300 sect = find_pc_section (reloc);
301 if (!sect)
302 return 0;
303
304 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
305 return reloc;
306
307 /* Now get the r_info field which is the relocation type and symbol
308 index. */
309 if (target_read_memory (reloc + 4, buf, 4) != 0)
310 return 0;
311 symidx = extract_unsigned_integer (buf, 4);
312
313 /* Shift out the relocation type leaving just the symbol index */
314 /* symidx = ELF32_R_SYM(symidx); */
315 symidx = symidx >> 8;
316
317 /* compute the address of the symbol */
318 sym = symtab + symidx * 4;
319
320 /* Fetch the string table index */
321 if (target_read_memory (sym, buf, 4) != 0)
322 return 0;
323 symidx = extract_unsigned_integer (buf, 4);
324
325 /* Fetch the string; we don't know how long it is. Is it possible
326 that the following will fail because we're trying to fetch too
327 much? */
328 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
329 return 0;
330
331 /* This might not work right if we have multiple symbols with the
332 same name; the only way to really get it right is to perform
333 the same sort of lookup as the dynamic linker. */
334 msymbol = lookup_minimal_symbol_text (symname, NULL);
335 if (!msymbol)
336 return 0;
337
338 return SYMBOL_VALUE_ADDRESS (msymbol);
339 }
340
341 /* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
342 signal handler details are different, so we'll handle those here
343 and call the rs6000 version to do the rest. */
344 CORE_ADDR
345 ppc_linux_frame_saved_pc (struct frame_info *fi)
346 {
347 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
348 {
349 CORE_ADDR regs_addr =
350 read_memory_integer (get_frame_base (fi)
351 + PPC_LINUX_REGS_PTR_OFFSET, 4);
352 /* return the NIP in the regs array */
353 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
354 }
355 else if (get_next_frame (fi)
356 && (get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
357 {
358 CORE_ADDR regs_addr =
359 read_memory_integer (get_frame_base (get_next_frame (fi))
360 + PPC_LINUX_REGS_PTR_OFFSET, 4);
361 /* return LNK in the regs array */
362 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
363 }
364 else
365 return rs6000_frame_saved_pc (fi);
366 }
367
368 void
369 ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
370 {
371 rs6000_init_extra_frame_info (fromleaf, fi);
372
373 if (get_next_frame (fi) != 0)
374 {
375 /* We're called from get_prev_frame_info; check to see if
376 this is a signal frame by looking to see if the pc points
377 at trampoline code */
378 if (ppc_linux_at_sigtramp_return_path (get_frame_pc (fi)))
379 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
380 else
381 /* FIXME: cagney/2002-11-10: Is this double bogus? What
382 happens if the frame has previously been marked as a dummy? */
383 deprecated_set_frame_type (fi, NORMAL_FRAME);
384 }
385 }
386
387 int
388 ppc_linux_frameless_function_invocation (struct frame_info *fi)
389 {
390 /* We'll find the wrong thing if we let
391 rs6000_frameless_function_invocation () search for a signal trampoline */
392 if (ppc_linux_at_sigtramp_return_path (get_frame_pc (fi)))
393 return 0;
394 else
395 return rs6000_frameless_function_invocation (fi);
396 }
397
398 void
399 ppc_linux_frame_init_saved_regs (struct frame_info *fi)
400 {
401 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
402 {
403 CORE_ADDR regs_addr;
404 int i;
405 if (deprecated_get_frame_saved_regs (fi))
406 return;
407
408 frame_saved_regs_zalloc (fi);
409
410 regs_addr =
411 read_memory_integer (get_frame_base (fi)
412 + PPC_LINUX_REGS_PTR_OFFSET, 4);
413 deprecated_get_frame_saved_regs (fi)[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
414 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_ps_regnum] =
415 regs_addr + 4 * PPC_LINUX_PT_MSR;
416 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
417 regs_addr + 4 * PPC_LINUX_PT_CCR;
418 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
419 regs_addr + 4 * PPC_LINUX_PT_LNK;
420 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum] =
421 regs_addr + 4 * PPC_LINUX_PT_CTR;
422 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_xer_regnum] =
423 regs_addr + 4 * PPC_LINUX_PT_XER;
424 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_mq_regnum] =
425 regs_addr + 4 * PPC_LINUX_PT_MQ;
426 for (i = 0; i < 32; i++)
427 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + i] =
428 regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
429 for (i = 0; i < 32; i++)
430 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
431 }
432 else
433 rs6000_frame_init_saved_regs (fi);
434 }
435
436 CORE_ADDR
437 ppc_linux_frame_chain (struct frame_info *thisframe)
438 {
439 /* Kernel properly constructs the frame chain for the handler */
440 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
441 return read_memory_integer (get_frame_base (thisframe), 4);
442 else
443 return rs6000_frame_chain (thisframe);
444 }
445
446 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
447 in much the same fashion as memory_remove_breakpoint in mem-break.c,
448 but is careful not to write back the previous contents if the code
449 in question has changed in between inserting the breakpoint and
450 removing it.
451
452 Here is the problem that we're trying to solve...
453
454 Once upon a time, before introducing this function to remove
455 breakpoints from the inferior, setting a breakpoint on a shared
456 library function prior to running the program would not work
457 properly. In order to understand the problem, it is first
458 necessary to understand a little bit about dynamic linking on
459 this platform.
460
461 A call to a shared library function is accomplished via a bl
462 (branch-and-link) instruction whose branch target is an entry
463 in the procedure linkage table (PLT). The PLT in the object
464 file is uninitialized. To gdb, prior to running the program, the
465 entries in the PLT are all zeros.
466
467 Once the program starts running, the shared libraries are loaded
468 and the procedure linkage table is initialized, but the entries in
469 the table are not (necessarily) resolved. Once a function is
470 actually called, the code in the PLT is hit and the function is
471 resolved. In order to better illustrate this, an example is in
472 order; the following example is from the gdb testsuite.
473
474 We start the program shmain.
475
476 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
477 [...]
478
479 We place two breakpoints, one on shr1 and the other on main.
480
481 (gdb) b shr1
482 Breakpoint 1 at 0x100409d4
483 (gdb) b main
484 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
485
486 Examine the instruction (and the immediatly following instruction)
487 upon which the breakpoint was placed. Note that the PLT entry
488 for shr1 contains zeros.
489
490 (gdb) x/2i 0x100409d4
491 0x100409d4 <shr1>: .long 0x0
492 0x100409d8 <shr1+4>: .long 0x0
493
494 Now run 'til main.
495
496 (gdb) r
497 Starting program: gdb.base/shmain
498 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
499
500 Breakpoint 2, main ()
501 at gdb.base/shmain.c:44
502 44 g = 1;
503
504 Examine the PLT again. Note that the loading of the shared
505 library has initialized the PLT to code which loads a constant
506 (which I think is an index into the GOT) into r11 and then
507 branchs a short distance to the code which actually does the
508 resolving.
509
510 (gdb) x/2i 0x100409d4
511 0x100409d4 <shr1>: li r11,4
512 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
513 (gdb) c
514 Continuing.
515
516 Breakpoint 1, shr1 (x=1)
517 at gdb.base/shr1.c:19
518 19 l = 1;
519
520 Now we've hit the breakpoint at shr1. (The breakpoint was
521 reset from the PLT entry to the actual shr1 function after the
522 shared library was loaded.) Note that the PLT entry has been
523 resolved to contain a branch that takes us directly to shr1.
524 (The real one, not the PLT entry.)
525
526 (gdb) x/2i 0x100409d4
527 0x100409d4 <shr1>: b 0xffaf76c <shr1>
528 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
529
530 The thing to note here is that the PLT entry for shr1 has been
531 changed twice.
532
533 Now the problem should be obvious. GDB places a breakpoint (a
534 trap instruction) on the zero value of the PLT entry for shr1.
535 Later on, after the shared library had been loaded and the PLT
536 initialized, GDB gets a signal indicating this fact and attempts
537 (as it always does when it stops) to remove all the breakpoints.
538
539 The breakpoint removal was causing the former contents (a zero
540 word) to be written back to the now initialized PLT entry thus
541 destroying a portion of the initialization that had occurred only a
542 short time ago. When execution continued, the zero word would be
543 executed as an instruction an an illegal instruction trap was
544 generated instead. (0 is not a legal instruction.)
545
546 The fix for this problem was fairly straightforward. The function
547 memory_remove_breakpoint from mem-break.c was copied to this file,
548 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
549 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
550 function.
551
552 The differences between ppc_linux_memory_remove_breakpoint () and
553 memory_remove_breakpoint () are minor. All that the former does
554 that the latter does not is check to make sure that the breakpoint
555 location actually contains a breakpoint (trap instruction) prior
556 to attempting to write back the old contents. If it does contain
557 a trap instruction, we allow the old contents to be written back.
558 Otherwise, we silently do nothing.
559
560 The big question is whether memory_remove_breakpoint () should be
561 changed to have the same functionality. The downside is that more
562 traffic is generated for remote targets since we'll have an extra
563 fetch of a memory word each time a breakpoint is removed.
564
565 For the time being, we'll leave this self-modifying-code-friendly
566 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
567 else in the event that some other platform has similar needs with
568 regard to removing breakpoints in some potentially self modifying
569 code. */
570 int
571 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
572 {
573 const unsigned char *bp;
574 int val;
575 int bplen;
576 char old_contents[BREAKPOINT_MAX];
577
578 /* Determine appropriate breakpoint contents and size for this address. */
579 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
580 if (bp == NULL)
581 error ("Software breakpoints not implemented for this target.");
582
583 val = target_read_memory (addr, old_contents, bplen);
584
585 /* If our breakpoint is no longer at the address, this means that the
586 program modified the code on us, so it is wrong to put back the
587 old value */
588 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
589 val = target_write_memory (addr, contents_cache, bplen);
590
591 return val;
592 }
593
594 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
595 than the 32 bit SYSV R4 ABI structure return convention - all
596 structures, no matter their size, are put in memory. Vectors,
597 which were added later, do get returned in a register though. */
598
599 static enum return_value_convention
600 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
601 struct regcache *regcache, void *readbuf,
602 const void *writebuf)
603 {
604 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
605 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
606 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
607 && TYPE_VECTOR (valtype)))
608 return RETURN_VALUE_STRUCT_CONVENTION;
609 else
610 return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
611 writebuf);
612 }
613
614 /* Fetch (and possibly build) an appropriate link_map_offsets
615 structure for GNU/Linux PPC targets using the struct offsets
616 defined in link.h (but without actual reference to that file).
617
618 This makes it possible to access GNU/Linux PPC shared libraries
619 from a GDB that was not built on an GNU/Linux PPC host (for cross
620 debugging). */
621
622 struct link_map_offsets *
623 ppc_linux_svr4_fetch_link_map_offsets (void)
624 {
625 static struct link_map_offsets lmo;
626 static struct link_map_offsets *lmp = NULL;
627
628 if (lmp == NULL)
629 {
630 lmp = &lmo;
631
632 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
633 this is all we need. */
634 lmo.r_map_offset = 4;
635 lmo.r_map_size = 4;
636
637 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
638 this is all we need. */
639 lmo.l_addr_offset = 0;
640 lmo.l_addr_size = 4;
641
642 lmo.l_name_offset = 4;
643 lmo.l_name_size = 4;
644
645 lmo.l_next_offset = 12;
646 lmo.l_next_size = 4;
647
648 lmo.l_prev_offset = 16;
649 lmo.l_prev_size = 4;
650 }
651
652 return lmp;
653 }
654
655
656 /* Macros for matching instructions. Note that, since all the
657 operands are masked off before they're or-ed into the instruction,
658 you can use -1 to make masks. */
659
660 #define insn_d(opcd, rts, ra, d) \
661 ((((opcd) & 0x3f) << 26) \
662 | (((rts) & 0x1f) << 21) \
663 | (((ra) & 0x1f) << 16) \
664 | ((d) & 0xffff))
665
666 #define insn_ds(opcd, rts, ra, d, xo) \
667 ((((opcd) & 0x3f) << 26) \
668 | (((rts) & 0x1f) << 21) \
669 | (((ra) & 0x1f) << 16) \
670 | ((d) & 0xfffc) \
671 | ((xo) & 0x3))
672
673 #define insn_xfx(opcd, rts, spr, xo) \
674 ((((opcd) & 0x3f) << 26) \
675 | (((rts) & 0x1f) << 21) \
676 | (((spr) & 0x1f) << 16) \
677 | (((spr) & 0x3e0) << 6) \
678 | (((xo) & 0x3ff) << 1))
679
680 /* Read a PPC instruction from memory. PPC instructions are always
681 big-endian, no matter what endianness the program is running in, so
682 we can't use read_memory_integer or one of its friends here. */
683 static unsigned int
684 read_insn (CORE_ADDR pc)
685 {
686 unsigned char buf[4];
687
688 read_memory (pc, buf, 4);
689 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
690 }
691
692
693 /* An instruction to match. */
694 struct insn_pattern
695 {
696 unsigned int mask; /* mask the insn with this... */
697 unsigned int data; /* ...and see if it matches this. */
698 int optional; /* If non-zero, this insn may be absent. */
699 };
700
701 /* Return non-zero if the instructions at PC match the series
702 described in PATTERN, or zero otherwise. PATTERN is an array of
703 'struct insn_pattern' objects, terminated by an entry whose mask is
704 zero.
705
706 When the match is successful, fill INSN[i] with what PATTERN[i]
707 matched. If PATTERN[i] is optional, and the instruction wasn't
708 present, set INSN[i] to 0 (which is not a valid PPC instruction).
709 INSN should have as many elements as PATTERN. Note that, if
710 PATTERN contains optional instructions which aren't present in
711 memory, then INSN will have holes, so INSN[i] isn't necessarily the
712 i'th instruction in memory. */
713 static int
714 insns_match_pattern (CORE_ADDR pc,
715 struct insn_pattern *pattern,
716 unsigned int *insn)
717 {
718 int i;
719
720 for (i = 0; pattern[i].mask; i++)
721 {
722 insn[i] = read_insn (pc);
723 if ((insn[i] & pattern[i].mask) == pattern[i].data)
724 pc += 4;
725 else if (pattern[i].optional)
726 insn[i] = 0;
727 else
728 return 0;
729 }
730
731 return 1;
732 }
733
734
735 /* Return the 'd' field of the d-form instruction INSN, properly
736 sign-extended. */
737 static CORE_ADDR
738 insn_d_field (unsigned int insn)
739 {
740 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
741 }
742
743
744 /* Return the 'ds' field of the ds-form instruction INSN, with the two
745 zero bits concatenated at the right, and properly
746 sign-extended. */
747 static CORE_ADDR
748 insn_ds_field (unsigned int insn)
749 {
750 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
751 }
752
753
754 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
755 descriptor, return the descriptor's entry point. */
756 static CORE_ADDR
757 ppc64_desc_entry_point (CORE_ADDR desc)
758 {
759 /* The first word of the descriptor is the entry point. */
760 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
761 }
762
763
764 /* Pattern for the standard linkage function. These are built by
765 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
766 zero. */
767 static struct insn_pattern ppc64_standard_linkage[] =
768 {
769 /* addis r12, r2, <any> */
770 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
771
772 /* std r2, 40(r1) */
773 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
774
775 /* ld r11, <any>(r12) */
776 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
777
778 /* addis r12, r12, 1 <optional> */
779 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
780
781 /* ld r2, <any>(r12) */
782 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
783
784 /* addis r12, r12, 1 <optional> */
785 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
786
787 /* mtctr r11 */
788 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
789 0 },
790
791 /* ld r11, <any>(r12) */
792 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
793
794 /* bctr */
795 { -1, 0x4e800420, 0 },
796
797 { 0, 0, 0 }
798 };
799 #define PPC64_STANDARD_LINKAGE_LEN \
800 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
801
802
803 /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
804 calls a "solib trampoline". */
805 static int
806 ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
807 {
808 /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
809
810 It's not specifically solib call trampolines that are the issue.
811 Any call from one function to another function that uses a
812 different TOC requires a trampoline, to save the caller's TOC
813 pointer and then load the callee's TOC. An executable or shared
814 library may have more than one TOC, so even intra-object calls
815 may require a trampoline. Since executable and shared libraries
816 will all have their own distinct TOCs, every inter-object call is
817 also an inter-TOC call, and requires a trampoline --- so "solib
818 call trampolines" are just a special case.
819
820 The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
821 "linkage functions". Since they need to be near the functions
822 that call them, they all appear in .text, not in any special
823 section. The .plt section just contains an array of function
824 descriptors, from which the linkage functions load the callee's
825 entry point, TOC value, and environment pointer. So
826 in_plt_section is useless. The linkage functions don't have any
827 special linker symbols to name them, either.
828
829 The only way I can see to recognize them is to actually look at
830 their code. They're generated by ppc_build_one_stub and some
831 other functions in bfd/elf64-ppc.c, so that should show us all
832 the instruction sequences we need to recognize. */
833 unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
834
835 return insns_match_pattern (pc, ppc64_standard_linkage, insn);
836 }
837
838
839 /* When the dynamic linker is doing lazy symbol resolution, the first
840 call to a function in another object will go like this:
841
842 - The user's function calls the linkage function:
843
844 100007c4: 4b ff fc d5 bl 10000498
845 100007c8: e8 41 00 28 ld r2,40(r1)
846
847 - The linkage function loads the entry point (and other stuff) from
848 the function descriptor in the PLT, and jumps to it:
849
850 10000498: 3d 82 00 00 addis r12,r2,0
851 1000049c: f8 41 00 28 std r2,40(r1)
852 100004a0: e9 6c 80 98 ld r11,-32616(r12)
853 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
854 100004a8: 7d 69 03 a6 mtctr r11
855 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
856 100004b0: 4e 80 04 20 bctr
857
858 - But since this is the first time that PLT entry has been used, it
859 sends control to its glink entry. That loads the number of the
860 PLT entry and jumps to the common glink0 code:
861
862 10000c98: 38 00 00 00 li r0,0
863 10000c9c: 4b ff ff dc b 10000c78
864
865 - The common glink0 code then transfers control to the dynamic
866 linker's fixup code:
867
868 10000c78: e8 41 00 28 ld r2,40(r1)
869 10000c7c: 3d 82 00 00 addis r12,r2,0
870 10000c80: e9 6c 80 80 ld r11,-32640(r12)
871 10000c84: e8 4c 80 88 ld r2,-32632(r12)
872 10000c88: 7d 69 03 a6 mtctr r11
873 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
874 10000c90: 4e 80 04 20 bctr
875
876 Eventually, this code will figure out how to skip all of this,
877 including the dynamic linker. At the moment, we just get through
878 the linkage function. */
879
880 /* If the current thread is about to execute a series of instructions
881 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
882 from that pattern match, return the code address to which the
883 standard linkage function will send them. (This doesn't deal with
884 dynamic linker lazy symbol resolution stubs.) */
885 static CORE_ADDR
886 ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
887 {
888 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
889
890 /* The address of the function descriptor this linkage function
891 references. */
892 CORE_ADDR desc
893 = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
894 + (insn_d_field (insn[0]) << 16)
895 + insn_ds_field (insn[2]));
896
897 /* The first word of the descriptor is the entry point. Return that. */
898 return ppc64_desc_entry_point (desc);
899 }
900
901
902 /* Given that we've begun executing a call trampoline at PC, return
903 the entry point of the function the trampoline will go to. */
904 static CORE_ADDR
905 ppc64_skip_trampoline_code (CORE_ADDR pc)
906 {
907 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
908
909 if (insns_match_pattern (pc, ppc64_standard_linkage,
910 ppc64_standard_linkage_insn))
911 return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
912 else
913 return 0;
914 }
915
916
917 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
918 GNU/Linux.
919
920 Usually a function pointer's representation is simply the address
921 of the function. On GNU/Linux on the 64-bit PowerPC however, a
922 function pointer is represented by a pointer to a TOC entry. This
923 TOC entry contains three words, the first word is the address of
924 the function, the second word is the TOC pointer (r2), and the
925 third word is the static chain value. Throughout GDB it is
926 currently assumed that a function pointer contains the address of
927 the function, which is not easy to fix. In addition, the
928 conversion of a function address to a function pointer would
929 require allocation of a TOC entry in the inferior's memory space,
930 with all its drawbacks. To be able to call C++ virtual methods in
931 the inferior (which are called via function pointers),
932 find_function_addr uses this function to get the function address
933 from a function pointer. */
934
935 /* If ADDR points at what is clearly a function descriptor, transform
936 it into the address of the corresponding function. Be
937 conservative, otherwize GDB will do the transformation on any
938 random addresses such as occures when there is no symbol table. */
939
940 static CORE_ADDR
941 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
942 CORE_ADDR addr,
943 struct target_ops *targ)
944 {
945 struct section_table *s = target_section_by_addr (targ, addr);
946
947 /* Check if ADDR points to a function descriptor. */
948 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
949 return get_target_memory_unsigned (targ, addr, 8);
950
951 return addr;
952 }
953
954
955 enum {
956 ELF_NGREG = 48,
957 ELF_NFPREG = 33,
958 ELF_NVRREG = 33
959 };
960
961 enum {
962 ELF_GREGSET_SIZE = (ELF_NGREG * 4),
963 ELF_FPREGSET_SIZE = (ELF_NFPREG * 8)
964 };
965
966 void
967 ppc_linux_supply_gregset (char *buf)
968 {
969 int regi;
970 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
971
972 for (regi = 0; regi < 32; regi++)
973 supply_register (regi, buf + 4 * regi);
974
975 supply_register (PC_REGNUM, buf + 4 * PPC_LINUX_PT_NIP);
976 supply_register (tdep->ppc_lr_regnum, buf + 4 * PPC_LINUX_PT_LNK);
977 supply_register (tdep->ppc_cr_regnum, buf + 4 * PPC_LINUX_PT_CCR);
978 supply_register (tdep->ppc_xer_regnum, buf + 4 * PPC_LINUX_PT_XER);
979 supply_register (tdep->ppc_ctr_regnum, buf + 4 * PPC_LINUX_PT_CTR);
980 if (tdep->ppc_mq_regnum != -1)
981 supply_register (tdep->ppc_mq_regnum, buf + 4 * PPC_LINUX_PT_MQ);
982 supply_register (tdep->ppc_ps_regnum, buf + 4 * PPC_LINUX_PT_MSR);
983 }
984
985 void
986 ppc_linux_supply_fpregset (char *buf)
987 {
988 int regi;
989 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
990
991 for (regi = 0; regi < 32; regi++)
992 supply_register (FP0_REGNUM + regi, buf + 8 * regi);
993
994 /* The FPSCR is stored in the low order word of the last doubleword in the
995 fpregset. */
996 supply_register (tdep->ppc_fpscr_regnum, buf + 8 * 32 + 4);
997 }
998
999 /*
1000 Use a local version of this function to get the correct types for regsets.
1001 */
1002
1003 static void
1004 fetch_core_registers (char *core_reg_sect,
1005 unsigned core_reg_size,
1006 int which,
1007 CORE_ADDR reg_addr)
1008 {
1009 if (which == 0)
1010 {
1011 if (core_reg_size == ELF_GREGSET_SIZE)
1012 ppc_linux_supply_gregset (core_reg_sect);
1013 else
1014 warning ("wrong size gregset struct in core file");
1015 }
1016 else if (which == 2)
1017 {
1018 if (core_reg_size == ELF_FPREGSET_SIZE)
1019 ppc_linux_supply_fpregset (core_reg_sect);
1020 else
1021 warning ("wrong size fpregset struct in core file");
1022 }
1023 }
1024
1025 /* Register that we are able to handle ELF file formats using standard
1026 procfs "regset" structures. */
1027
1028 static struct core_fns ppc_linux_regset_core_fns =
1029 {
1030 bfd_target_elf_flavour, /* core_flavour */
1031 default_check_format, /* check_format */
1032 default_core_sniffer, /* core_sniffer */
1033 fetch_core_registers, /* core_read_registers */
1034 NULL /* next */
1035 };
1036
1037 static void
1038 ppc_linux_init_abi (struct gdbarch_info info,
1039 struct gdbarch *gdbarch)
1040 {
1041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1042
1043 if (tdep->wordsize == 4)
1044 {
1045 /* Until November 2001, gcc did not comply with the 32 bit SysV
1046 R4 ABI requirement that structures less than or equal to 8
1047 bytes should be returned in registers. Instead GCC was using
1048 the the AIX/PowerOpen ABI - everything returned in memory
1049 (well ignoring vectors that is). When this was corrected, it
1050 wasn't fixed for GNU/Linux native platform. Use the
1051 PowerOpen struct convention. */
1052 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1053
1054 /* Note: kevinb/2002-04-12: See note in rs6000_gdbarch_init regarding
1055 *_push_arguments(). The same remarks hold for the methods below. */
1056 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, ppc_linux_frameless_function_invocation);
1057 set_gdbarch_deprecated_frame_chain (gdbarch, ppc_linux_frame_chain);
1058 set_gdbarch_deprecated_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
1059
1060 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1061 ppc_linux_frame_init_saved_regs);
1062 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1063 ppc_linux_init_extra_frame_info);
1064
1065 set_gdbarch_memory_remove_breakpoint (gdbarch,
1066 ppc_linux_memory_remove_breakpoint);
1067 /* Shared library handling. */
1068 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1069 set_gdbarch_skip_trampoline_code (gdbarch,
1070 ppc_linux_skip_trampoline_code);
1071 set_solib_svr4_fetch_link_map_offsets
1072 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1073 }
1074
1075 if (tdep->wordsize == 8)
1076 {
1077 /* Handle PPC64 GNU/Linux function pointers (which are really
1078 function descriptors). */
1079 set_gdbarch_convert_from_func_ptr_addr
1080 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1081
1082 set_gdbarch_in_solib_call_trampoline
1083 (gdbarch, ppc64_in_solib_call_trampoline);
1084 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1085
1086 /* PPC64 malloc's entry-point is called ".malloc". */
1087 set_gdbarch_name_of_malloc (gdbarch, ".malloc");
1088 }
1089 }
1090
1091 void
1092 _initialize_ppc_linux_tdep (void)
1093 {
1094 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1095 64-bit PowerPC, and the older rs6k. */
1096 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1097 ppc_linux_init_abi);
1098 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1099 ppc_linux_init_abi);
1100 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1101 ppc_linux_init_abi);
1102 add_core_fns (&ppc_linux_regset_core_fns);
1103 }