]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-tdep.c
update copyright year range in GDB files
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observer.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "elf/ppc64.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52 #include "linux-record.h"
53 #include "record-full.h"
54 #include "infrun.h"
55
56 #include "stap-probe.h"
57 #include "ax.h"
58 #include "ax-gdb.h"
59 #include "cli/cli-utils.h"
60 #include "parser-defs.h"
61 #include "user-regs.h"
62 #include <ctype.h>
63 #include "elf-bfd.h" /* for elfcore_write_* */
64
65 #include "features/rs6000/powerpc-32l.c"
66 #include "features/rs6000/powerpc-altivec32l.c"
67 #include "features/rs6000/powerpc-cell32l.c"
68 #include "features/rs6000/powerpc-vsx32l.c"
69 #include "features/rs6000/powerpc-isa205-32l.c"
70 #include "features/rs6000/powerpc-isa205-altivec32l.c"
71 #include "features/rs6000/powerpc-isa205-vsx32l.c"
72 #include "features/rs6000/powerpc-64l.c"
73 #include "features/rs6000/powerpc-altivec64l.c"
74 #include "features/rs6000/powerpc-cell64l.c"
75 #include "features/rs6000/powerpc-vsx64l.c"
76 #include "features/rs6000/powerpc-isa205-64l.c"
77 #include "features/rs6000/powerpc-isa205-altivec64l.c"
78 #include "features/rs6000/powerpc-isa205-vsx64l.c"
79 #include "features/rs6000/powerpc-e500l.c"
80
81 /* Shared library operations for PowerPC-Linux. */
82 static struct target_so_ops powerpc_so_ops;
83
84 /* The syscall's XML filename for PPC and PPC64. */
85 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
86 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
87
88 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
89 in much the same fashion as memory_remove_breakpoint in mem-break.c,
90 but is careful not to write back the previous contents if the code
91 in question has changed in between inserting the breakpoint and
92 removing it.
93
94 Here is the problem that we're trying to solve...
95
96 Once upon a time, before introducing this function to remove
97 breakpoints from the inferior, setting a breakpoint on a shared
98 library function prior to running the program would not work
99 properly. In order to understand the problem, it is first
100 necessary to understand a little bit about dynamic linking on
101 this platform.
102
103 A call to a shared library function is accomplished via a bl
104 (branch-and-link) instruction whose branch target is an entry
105 in the procedure linkage table (PLT). The PLT in the object
106 file is uninitialized. To gdb, prior to running the program, the
107 entries in the PLT are all zeros.
108
109 Once the program starts running, the shared libraries are loaded
110 and the procedure linkage table is initialized, but the entries in
111 the table are not (necessarily) resolved. Once a function is
112 actually called, the code in the PLT is hit and the function is
113 resolved. In order to better illustrate this, an example is in
114 order; the following example is from the gdb testsuite.
115
116 We start the program shmain.
117
118 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
119 [...]
120
121 We place two breakpoints, one on shr1 and the other on main.
122
123 (gdb) b shr1
124 Breakpoint 1 at 0x100409d4
125 (gdb) b main
126 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
127
128 Examine the instruction (and the immediatly following instruction)
129 upon which the breakpoint was placed. Note that the PLT entry
130 for shr1 contains zeros.
131
132 (gdb) x/2i 0x100409d4
133 0x100409d4 <shr1>: .long 0x0
134 0x100409d8 <shr1+4>: .long 0x0
135
136 Now run 'til main.
137
138 (gdb) r
139 Starting program: gdb.base/shmain
140 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
141
142 Breakpoint 2, main ()
143 at gdb.base/shmain.c:44
144 44 g = 1;
145
146 Examine the PLT again. Note that the loading of the shared
147 library has initialized the PLT to code which loads a constant
148 (which I think is an index into the GOT) into r11 and then
149 branchs a short distance to the code which actually does the
150 resolving.
151
152 (gdb) x/2i 0x100409d4
153 0x100409d4 <shr1>: li r11,4
154 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
155 (gdb) c
156 Continuing.
157
158 Breakpoint 1, shr1 (x=1)
159 at gdb.base/shr1.c:19
160 19 l = 1;
161
162 Now we've hit the breakpoint at shr1. (The breakpoint was
163 reset from the PLT entry to the actual shr1 function after the
164 shared library was loaded.) Note that the PLT entry has been
165 resolved to contain a branch that takes us directly to shr1.
166 (The real one, not the PLT entry.)
167
168 (gdb) x/2i 0x100409d4
169 0x100409d4 <shr1>: b 0xffaf76c <shr1>
170 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
171
172 The thing to note here is that the PLT entry for shr1 has been
173 changed twice.
174
175 Now the problem should be obvious. GDB places a breakpoint (a
176 trap instruction) on the zero value of the PLT entry for shr1.
177 Later on, after the shared library had been loaded and the PLT
178 initialized, GDB gets a signal indicating this fact and attempts
179 (as it always does when it stops) to remove all the breakpoints.
180
181 The breakpoint removal was causing the former contents (a zero
182 word) to be written back to the now initialized PLT entry thus
183 destroying a portion of the initialization that had occurred only a
184 short time ago. When execution continued, the zero word would be
185 executed as an instruction an illegal instruction trap was
186 generated instead. (0 is not a legal instruction.)
187
188 The fix for this problem was fairly straightforward. The function
189 memory_remove_breakpoint from mem-break.c was copied to this file,
190 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
191 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
192 function.
193
194 The differences between ppc_linux_memory_remove_breakpoint () and
195 memory_remove_breakpoint () are minor. All that the former does
196 that the latter does not is check to make sure that the breakpoint
197 location actually contains a breakpoint (trap instruction) prior
198 to attempting to write back the old contents. If it does contain
199 a trap instruction, we allow the old contents to be written back.
200 Otherwise, we silently do nothing.
201
202 The big question is whether memory_remove_breakpoint () should be
203 changed to have the same functionality. The downside is that more
204 traffic is generated for remote targets since we'll have an extra
205 fetch of a memory word each time a breakpoint is removed.
206
207 For the time being, we'll leave this self-modifying-code-friendly
208 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
209 else in the event that some other platform has similar needs with
210 regard to removing breakpoints in some potentially self modifying
211 code. */
212 static int
213 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
214 struct bp_target_info *bp_tgt)
215 {
216 CORE_ADDR addr = bp_tgt->reqstd_address;
217 const unsigned char *bp;
218 int val;
219 int bplen;
220 gdb_byte old_contents[BREAKPOINT_MAX];
221 struct cleanup *cleanup;
222
223 /* Determine appropriate breakpoint contents and size for this address. */
224 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
225
226 /* Make sure we see the memory breakpoints. */
227 cleanup = make_show_memory_breakpoints_cleanup (1);
228 val = target_read_memory (addr, old_contents, bplen);
229
230 /* If our breakpoint is no longer at the address, this means that the
231 program modified the code on us, so it is wrong to put back the
232 old value. */
233 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
234 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
235
236 do_cleanups (cleanup);
237 return val;
238 }
239
240 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
241 than the 32 bit SYSV R4 ABI structure return convention - all
242 structures, no matter their size, are put in memory. Vectors,
243 which were added later, do get returned in a register though. */
244
245 static enum return_value_convention
246 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
247 struct type *valtype, struct regcache *regcache,
248 gdb_byte *readbuf, const gdb_byte *writebuf)
249 {
250 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
251 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
252 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
253 && TYPE_VECTOR (valtype)))
254 return RETURN_VALUE_STRUCT_CONVENTION;
255 else
256 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
257 readbuf, writebuf);
258 }
259
260 /* PLT stub in executable. */
261 static struct ppc_insn_pattern powerpc32_plt_stub[] =
262 {
263 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
264 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
265 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
266 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
267 { 0, 0, 0 }
268 };
269
270 /* PLT stub in shared library. */
271 static struct ppc_insn_pattern powerpc32_plt_stub_so[] =
272 {
273 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
274 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
275 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
276 { 0xffffffff, 0x60000000, 0 }, /* nop */
277 { 0, 0, 0 }
278 };
279 #define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub)
280
281 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
282 section. For secure PLT, stub is in .text and we need to check
283 instruction patterns. */
284
285 static int
286 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
287 {
288 struct bound_minimal_symbol sym;
289
290 /* Check whether PC is in the dynamic linker. This also checks
291 whether it is in the .plt section, used by non-PIC executables. */
292 if (svr4_in_dynsym_resolve_code (pc))
293 return 1;
294
295 /* Check if we are in the resolver. */
296 sym = lookup_minimal_symbol_by_pc (pc);
297 if (sym.minsym != NULL
298 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
299 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
300 "__glink_PLTresolve") == 0))
301 return 1;
302
303 return 0;
304 }
305
306 /* Follow PLT stub to actual routine.
307
308 When the execution direction is EXEC_REVERSE, scan backward to
309 check whether we are in the middle of a PLT stub. Currently,
310 we only look-behind at most 4 instructions (the max length of PLT
311 stub sequence. */
312
313 static CORE_ADDR
314 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
315 {
316 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN];
317 struct gdbarch *gdbarch = get_frame_arch (frame);
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
320 CORE_ADDR target = 0;
321 int scan_limit, i;
322
323 scan_limit = 1;
324 /* When reverse-debugging, scan backward to check whether we are
325 in the middle of trampoline code. */
326 if (execution_direction == EXEC_REVERSE)
327 scan_limit = 4; /* At more 4 instructions. */
328
329 for (i = 0; i < scan_limit; i++)
330 {
331 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
332 {
333 /* Insn pattern is
334 lis r11, xxxx
335 lwz r11, xxxx(r11)
336 Branch target is in r11. */
337
338 target = (ppc_insn_d_field (insnbuf[0]) << 16)
339 | ppc_insn_d_field (insnbuf[1]);
340 target = read_memory_unsigned_integer (target, 4, byte_order);
341 }
342 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so,
343 insnbuf))
344 {
345 /* Insn pattern is
346 lwz r11, xxxx(r30)
347 Branch target is in r11. */
348
349 target = get_frame_register_unsigned (frame,
350 tdep->ppc_gp0_regnum + 30)
351 + ppc_insn_d_field (insnbuf[0]);
352 target = read_memory_unsigned_integer (target, 4, byte_order);
353 }
354 else
355 {
356 /* Scan backward one more instructions if doesn't match. */
357 pc -= 4;
358 continue;
359 }
360
361 return target;
362 }
363
364 return 0;
365 }
366
367 /* Wrappers to handle Linux-only registers. */
368
369 static void
370 ppc_linux_supply_gregset (const struct regset *regset,
371 struct regcache *regcache,
372 int regnum, const void *gregs, size_t len)
373 {
374 const struct ppc_reg_offsets *offsets
375 = (const struct ppc_reg_offsets *) regset->regmap;
376
377 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
378
379 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
380 {
381 /* "orig_r3" is stored 2 slots after "pc". */
382 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
383 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
384 offsets->pc_offset + 2 * offsets->gpr_size,
385 offsets->gpr_size);
386
387 /* "trap" is stored 8 slots after "pc". */
388 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
389 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
390 offsets->pc_offset + 8 * offsets->gpr_size,
391 offsets->gpr_size);
392 }
393 }
394
395 static void
396 ppc_linux_collect_gregset (const struct regset *regset,
397 const struct regcache *regcache,
398 int regnum, void *gregs, size_t len)
399 {
400 const struct ppc_reg_offsets *offsets
401 = (const struct ppc_reg_offsets *) regset->regmap;
402
403 /* Clear areas in the linux gregset not written elsewhere. */
404 if (regnum == -1)
405 memset (gregs, 0, len);
406
407 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
408
409 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
410 {
411 /* "orig_r3" is stored 2 slots after "pc". */
412 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
413 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
414 offsets->pc_offset + 2 * offsets->gpr_size,
415 offsets->gpr_size);
416
417 /* "trap" is stored 8 slots after "pc". */
418 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
419 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
420 offsets->pc_offset + 8 * offsets->gpr_size,
421 offsets->gpr_size);
422 }
423 }
424
425 /* Regset descriptions. */
426 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
427 {
428 /* General-purpose registers. */
429 /* .r0_offset = */ 0,
430 /* .gpr_size = */ 4,
431 /* .xr_size = */ 4,
432 /* .pc_offset = */ 128,
433 /* .ps_offset = */ 132,
434 /* .cr_offset = */ 152,
435 /* .lr_offset = */ 144,
436 /* .ctr_offset = */ 140,
437 /* .xer_offset = */ 148,
438 /* .mq_offset = */ 156,
439
440 /* Floating-point registers. */
441 /* .f0_offset = */ 0,
442 /* .fpscr_offset = */ 256,
443 /* .fpscr_size = */ 8,
444
445 /* AltiVec registers. */
446 /* .vr0_offset = */ 0,
447 /* .vscr_offset = */ 512 + 12,
448 /* .vrsave_offset = */ 528
449 };
450
451 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
452 {
453 /* General-purpose registers. */
454 /* .r0_offset = */ 0,
455 /* .gpr_size = */ 8,
456 /* .xr_size = */ 8,
457 /* .pc_offset = */ 256,
458 /* .ps_offset = */ 264,
459 /* .cr_offset = */ 304,
460 /* .lr_offset = */ 288,
461 /* .ctr_offset = */ 280,
462 /* .xer_offset = */ 296,
463 /* .mq_offset = */ 312,
464
465 /* Floating-point registers. */
466 /* .f0_offset = */ 0,
467 /* .fpscr_offset = */ 256,
468 /* .fpscr_size = */ 8,
469
470 /* AltiVec registers. */
471 /* .vr0_offset = */ 0,
472 /* .vscr_offset = */ 512 + 12,
473 /* .vrsave_offset = */ 528
474 };
475
476 static const struct regset ppc32_linux_gregset = {
477 &ppc32_linux_reg_offsets,
478 ppc_linux_supply_gregset,
479 ppc_linux_collect_gregset
480 };
481
482 static const struct regset ppc64_linux_gregset = {
483 &ppc64_linux_reg_offsets,
484 ppc_linux_supply_gregset,
485 ppc_linux_collect_gregset
486 };
487
488 static const struct regset ppc32_linux_fpregset = {
489 &ppc32_linux_reg_offsets,
490 ppc_supply_fpregset,
491 ppc_collect_fpregset
492 };
493
494 static const struct regset ppc32_linux_vrregset = {
495 &ppc32_linux_reg_offsets,
496 ppc_supply_vrregset,
497 ppc_collect_vrregset
498 };
499
500 static const struct regset ppc32_linux_vsxregset = {
501 &ppc32_linux_reg_offsets,
502 ppc_supply_vsxregset,
503 ppc_collect_vsxregset
504 };
505
506 const struct regset *
507 ppc_linux_gregset (int wordsize)
508 {
509 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
510 }
511
512 const struct regset *
513 ppc_linux_fpregset (void)
514 {
515 return &ppc32_linux_fpregset;
516 }
517
518 /* Iterate over supported core file register note sections. */
519
520 static void
521 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
522 iterate_over_regset_sections_cb *cb,
523 void *cb_data,
524 const struct regcache *regcache)
525 {
526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
527 int have_altivec = tdep->ppc_vr0_regnum != -1;
528 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
529
530 if (tdep->wordsize == 4)
531 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
532 else
533 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
534
535 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
536
537 if (have_altivec)
538 cb (".reg-ppc-vmx", 544, &ppc32_linux_vrregset, "ppc Altivec", cb_data);
539
540 if (have_vsx)
541 cb (".reg-ppc-vsx", 256, &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
542 }
543
544 static void
545 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
546 struct trad_frame_cache *this_cache,
547 CORE_ADDR func, LONGEST offset,
548 int bias)
549 {
550 CORE_ADDR base;
551 CORE_ADDR regs;
552 CORE_ADDR gpregs;
553 CORE_ADDR fpregs;
554 int i;
555 struct gdbarch *gdbarch = get_frame_arch (this_frame);
556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
558
559 base = get_frame_register_unsigned (this_frame,
560 gdbarch_sp_regnum (gdbarch));
561 if (bias > 0 && get_frame_pc (this_frame) != func)
562 /* See below, some signal trampolines increment the stack as their
563 first instruction, need to compensate for that. */
564 base -= bias;
565
566 /* Find the address of the register buffer pointer. */
567 regs = base + offset;
568 /* Use that to find the address of the corresponding register
569 buffers. */
570 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
571 fpregs = gpregs + 48 * tdep->wordsize;
572
573 /* General purpose. */
574 for (i = 0; i < 32; i++)
575 {
576 int regnum = i + tdep->ppc_gp0_regnum;
577 trad_frame_set_reg_addr (this_cache,
578 regnum, gpregs + i * tdep->wordsize);
579 }
580 trad_frame_set_reg_addr (this_cache,
581 gdbarch_pc_regnum (gdbarch),
582 gpregs + 32 * tdep->wordsize);
583 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
584 gpregs + 35 * tdep->wordsize);
585 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
586 gpregs + 36 * tdep->wordsize);
587 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
588 gpregs + 37 * tdep->wordsize);
589 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
590 gpregs + 38 * tdep->wordsize);
591
592 if (ppc_linux_trap_reg_p (gdbarch))
593 {
594 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
595 gpregs + 34 * tdep->wordsize);
596 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
597 gpregs + 40 * tdep->wordsize);
598 }
599
600 if (ppc_floating_point_unit_p (gdbarch))
601 {
602 /* Floating point registers. */
603 for (i = 0; i < 32; i++)
604 {
605 int regnum = i + gdbarch_fp0_regnum (gdbarch);
606 trad_frame_set_reg_addr (this_cache, regnum,
607 fpregs + i * tdep->wordsize);
608 }
609 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
610 fpregs + 32 * tdep->wordsize);
611 }
612 trad_frame_set_id (this_cache, frame_id_build (base, func));
613 }
614
615 static void
616 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
617 struct frame_info *this_frame,
618 struct trad_frame_cache *this_cache,
619 CORE_ADDR func)
620 {
621 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
622 0xd0 /* Offset to ucontext_t. */
623 + 0x30 /* Offset to .reg. */,
624 0);
625 }
626
627 static void
628 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
629 struct frame_info *this_frame,
630 struct trad_frame_cache *this_cache,
631 CORE_ADDR func)
632 {
633 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
634 0x80 /* Offset to ucontext_t. */
635 + 0xe0 /* Offset to .reg. */,
636 128);
637 }
638
639 static void
640 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
641 struct frame_info *this_frame,
642 struct trad_frame_cache *this_cache,
643 CORE_ADDR func)
644 {
645 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
646 0x40 /* Offset to ucontext_t. */
647 + 0x1c /* Offset to .reg. */,
648 0);
649 }
650
651 static void
652 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
653 struct frame_info *this_frame,
654 struct trad_frame_cache *this_cache,
655 CORE_ADDR func)
656 {
657 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
658 0x80 /* Offset to struct sigcontext. */
659 + 0x38 /* Offset to .reg. */,
660 128);
661 }
662
663 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
664 SIGTRAMP_FRAME,
665 4,
666 {
667 { 0x380000ac, -1 }, /* li r0, 172 */
668 { 0x44000002, -1 }, /* sc */
669 { TRAMP_SENTINEL_INSN },
670 },
671 ppc32_linux_sigaction_cache_init
672 };
673 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
674 SIGTRAMP_FRAME,
675 4,
676 {
677 { 0x38210080, -1 }, /* addi r1,r1,128 */
678 { 0x380000ac, -1 }, /* li r0, 172 */
679 { 0x44000002, -1 }, /* sc */
680 { TRAMP_SENTINEL_INSN },
681 },
682 ppc64_linux_sigaction_cache_init
683 };
684 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
685 SIGTRAMP_FRAME,
686 4,
687 {
688 { 0x38000077, -1 }, /* li r0,119 */
689 { 0x44000002, -1 }, /* sc */
690 { TRAMP_SENTINEL_INSN },
691 },
692 ppc32_linux_sighandler_cache_init
693 };
694 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
695 SIGTRAMP_FRAME,
696 4,
697 {
698 { 0x38210080, -1 }, /* addi r1,r1,128 */
699 { 0x38000077, -1 }, /* li r0,119 */
700 { 0x44000002, -1 }, /* sc */
701 { TRAMP_SENTINEL_INSN },
702 },
703 ppc64_linux_sighandler_cache_init
704 };
705
706 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
707 int
708 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
709 {
710 /* If we do not have a target description with registers, then
711 the special registers will not be included in the register set. */
712 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
713 return 0;
714
715 /* If we do, then it is safe to check the size. */
716 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
717 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
718 }
719
720 /* Return the current system call's number present in the
721 r0 register. When the function fails, it returns -1. */
722 static LONGEST
723 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
724 ptid_t ptid)
725 {
726 struct regcache *regcache = get_thread_regcache (ptid);
727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 struct cleanup *cleanbuf;
730 /* The content of a register */
731 gdb_byte *buf;
732 /* The result */
733 LONGEST ret;
734
735 /* Make sure we're in a 32- or 64-bit machine */
736 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
737
738 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
739
740 cleanbuf = make_cleanup (xfree, buf);
741
742 /* Getting the system call number from the register.
743 When dealing with PowerPC architecture, this information
744 is stored at 0th register. */
745 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
746
747 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
748 do_cleanups (cleanbuf);
749
750 return ret;
751 }
752
753 /* PPC process record-replay */
754
755 static struct linux_record_tdep ppc_linux_record_tdep;
756 static struct linux_record_tdep ppc64_linux_record_tdep;
757
758 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
759 syscall ids into a canonical set of syscall ids used by process
760 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
761 Return -1 if this system call is not supported by process record.
762 Otherwise, return the syscall number for preocess reocrd of given
763 SYSCALL. */
764
765 static enum gdb_syscall
766 ppc_canonicalize_syscall (int syscall)
767 {
768 int result = -1;
769
770 if (syscall <= 165)
771 result = syscall;
772 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
773 result = syscall + 1;
774 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
775 result = syscall;
776 else if (syscall == 208) /* tkill */
777 result = gdb_sys_tkill;
778 else if (syscall >= 207 && syscall <= 220) /* gettid */
779 result = syscall + 224 - 207;
780 else if (syscall >= 234 && syscall <= 239) /* exit_group */
781 result = syscall + 252 - 234;
782 else if (syscall >= 240 && syscall <= 248) /* timer_create */
783 result = syscall += 259 - 240;
784 else if (syscall >= 250 && syscall <= 251) /* tgkill */
785 result = syscall + 270 - 250;
786 else if (syscall == 336)
787 result = gdb_sys_recv;
788 else if (syscall == 337)
789 result = gdb_sys_recvfrom;
790 else if (syscall == 342)
791 result = gdb_sys_recvmsg;
792
793 return (enum gdb_syscall) result;
794 }
795
796 /* Record registers which might be clobbered during system call.
797 Return 0 if successful. */
798
799 static int
800 ppc_linux_syscall_record (struct regcache *regcache)
801 {
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 ULONGEST scnum;
805 enum gdb_syscall syscall_gdb;
806 int ret;
807 int i;
808
809 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
810 syscall_gdb = ppc_canonicalize_syscall (scnum);
811
812 if (syscall_gdb < 0)
813 {
814 printf_unfiltered (_("Process record and replay target doesn't "
815 "support syscall number %d\n"), (int) scnum);
816 return 0;
817 }
818
819 if (syscall_gdb == gdb_sys_sigreturn
820 || syscall_gdb == gdb_sys_rt_sigreturn)
821 {
822 int i, j;
823 int regsets[] = { tdep->ppc_gp0_regnum,
824 tdep->ppc_fp0_regnum,
825 tdep->ppc_vr0_regnum,
826 tdep->ppc_vsr0_upper_regnum };
827
828 for (j = 0; j < 4; j++)
829 {
830 if (regsets[j] == -1)
831 continue;
832 for (i = 0; i < 32; i++)
833 {
834 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
835 return -1;
836 }
837 }
838
839 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
840 return -1;
841 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
842 return -1;
843 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
844 return -1;
845 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
846 return -1;
847
848 return 0;
849 }
850
851 if (tdep->wordsize == 8)
852 ret = record_linux_system_call (syscall_gdb, regcache,
853 &ppc64_linux_record_tdep);
854 else
855 ret = record_linux_system_call (syscall_gdb, regcache,
856 &ppc_linux_record_tdep);
857
858 if (ret != 0)
859 return ret;
860
861 /* Record registers clobbered during syscall. */
862 for (i = 3; i <= 12; i++)
863 {
864 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
865 return -1;
866 }
867 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
868 return -1;
869 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
870 return -1;
871 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
872 return -1;
873 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
874 return -1;
875
876 return 0;
877 }
878
879 /* Record registers which might be clobbered during signal handling.
880 Return 0 if successful. */
881
882 static int
883 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
884 enum gdb_signal signal)
885 {
886 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
887 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
888 arch/powerpc/include/asm/ptrace.h
889 for details. */
890 const int SIGNAL_FRAMESIZE = 128;
891 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
892 ULONGEST sp;
893 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
894 int i;
895
896 for (i = 3; i <= 12; i++)
897 {
898 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
899 return -1;
900 }
901
902 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
903 return -1;
904 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
905 return -1;
906 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
907 return -1;
908 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
909 return -1;
910 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
911 return -1;
912
913 /* Record the change in the stack.
914 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
915 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
916 sp -= SIGNAL_FRAMESIZE;
917 sp -= sizeof_rt_sigframe;
918
919 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
920 return -1;
921
922 if (record_full_arch_list_add_end ())
923 return -1;
924
925 return 0;
926 }
927
928 static void
929 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
930 {
931 struct gdbarch *gdbarch = get_regcache_arch (regcache);
932
933 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
934
935 /* Set special TRAP register to -1 to prevent the kernel from
936 messing with the PC we just installed, if we happen to be
937 within an interrupted system call that the kernel wants to
938 restart.
939
940 Note that after we return from the dummy call, the TRAP and
941 ORIG_R3 registers will be automatically restored, and the
942 kernel continues to restart the system call at this point. */
943 if (ppc_linux_trap_reg_p (gdbarch))
944 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
945 }
946
947 static int
948 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
949 {
950 return startswith (bfd_section_name (abfd, asect), "SPU/");
951 }
952
953 static const struct target_desc *
954 ppc_linux_core_read_description (struct gdbarch *gdbarch,
955 struct target_ops *target,
956 bfd *abfd)
957 {
958 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
959 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
960 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
961 asection *section = bfd_get_section_by_name (abfd, ".reg");
962 if (! section)
963 return NULL;
964
965 switch (bfd_section_size (abfd, section))
966 {
967 case 48 * 4:
968 if (cell)
969 return tdesc_powerpc_cell32l;
970 else if (vsx)
971 return tdesc_powerpc_vsx32l;
972 else if (altivec)
973 return tdesc_powerpc_altivec32l;
974 else
975 return tdesc_powerpc_32l;
976
977 case 48 * 8:
978 if (cell)
979 return tdesc_powerpc_cell64l;
980 else if (vsx)
981 return tdesc_powerpc_vsx64l;
982 else if (altivec)
983 return tdesc_powerpc_altivec64l;
984 else
985 return tdesc_powerpc_64l;
986
987 default:
988 return NULL;
989 }
990 }
991
992
993 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
994 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
995
996 static void
997 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
998 {
999 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1000
1001 /* If the symbol is marked as having a local entry point, set a target
1002 flag in the msymbol. We currently only support local entry point
1003 offsets of 8 bytes, which is the only entry point offset ever used
1004 by current compilers. If/when other offsets are ever used, we will
1005 have to use additional target flag bits to store them. */
1006 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1007 {
1008 default:
1009 break;
1010 case 8:
1011 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1012 break;
1013 }
1014 }
1015
1016 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1017 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1018
1019 static CORE_ADDR
1020 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1021 {
1022 struct bound_minimal_symbol fun;
1023 int local_entry_offset = 0;
1024
1025 fun = lookup_minimal_symbol_by_pc (pc);
1026 if (fun.minsym == NULL)
1027 return pc;
1028
1029 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1030 offset values are encoded. */
1031 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1032 local_entry_offset = 8;
1033
1034 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1035 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1036 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1037
1038 return pc;
1039 }
1040
1041 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1042 gdbarch.h. */
1043
1044 static int
1045 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1046 {
1047 return (*s == 'i' /* Literal number. */
1048 || (isdigit (*s) && s[1] == '('
1049 && isdigit (s[2])) /* Displacement. */
1050 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1051 || isdigit (*s)); /* Register value. */
1052 }
1053
1054 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1055 gdbarch.h. */
1056
1057 static int
1058 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1059 struct stap_parse_info *p)
1060 {
1061 if (isdigit (*p->arg))
1062 {
1063 /* This temporary pointer is needed because we have to do a lookahead.
1064 We could be dealing with a register displacement, and in such case
1065 we would not need to do anything. */
1066 const char *s = p->arg;
1067 char *regname;
1068 int len;
1069 struct stoken str;
1070
1071 while (isdigit (*s))
1072 ++s;
1073
1074 if (*s == '(')
1075 {
1076 /* It is a register displacement indeed. Returning 0 means we are
1077 deferring the treatment of this case to the generic parser. */
1078 return 0;
1079 }
1080
1081 len = s - p->arg;
1082 regname = (char *) alloca (len + 2);
1083 regname[0] = 'r';
1084
1085 strncpy (regname + 1, p->arg, len);
1086 ++len;
1087 regname[len] = '\0';
1088
1089 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1090 error (_("Invalid register name `%s' on expression `%s'."),
1091 regname, p->saved_arg);
1092
1093 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1094 str.ptr = regname;
1095 str.length = len;
1096 write_exp_string (&p->pstate, str);
1097 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1098
1099 p->arg = s;
1100 }
1101 else
1102 {
1103 /* All the other tokens should be handled correctly by the generic
1104 parser. */
1105 return 0;
1106 }
1107
1108 return 1;
1109 }
1110
1111 /* Cell/B.E. active SPE context tracking support. */
1112
1113 static struct objfile *spe_context_objfile = NULL;
1114 static CORE_ADDR spe_context_lm_addr = 0;
1115 static CORE_ADDR spe_context_offset = 0;
1116
1117 static ptid_t spe_context_cache_ptid;
1118 static CORE_ADDR spe_context_cache_address;
1119
1120 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1121 to track whether we've loaded a version of libspe2 (as static or dynamic
1122 library) that provides the __spe_current_active_context variable. */
1123 static void
1124 ppc_linux_spe_context_lookup (struct objfile *objfile)
1125 {
1126 struct bound_minimal_symbol sym;
1127
1128 if (!objfile)
1129 {
1130 spe_context_objfile = NULL;
1131 spe_context_lm_addr = 0;
1132 spe_context_offset = 0;
1133 spe_context_cache_ptid = minus_one_ptid;
1134 spe_context_cache_address = 0;
1135 return;
1136 }
1137
1138 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1139 if (sym.minsym)
1140 {
1141 spe_context_objfile = objfile;
1142 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1143 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1144 spe_context_cache_ptid = minus_one_ptid;
1145 spe_context_cache_address = 0;
1146 return;
1147 }
1148 }
1149
1150 static void
1151 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1152 {
1153 struct objfile *objfile;
1154
1155 ppc_linux_spe_context_lookup (NULL);
1156 ALL_OBJFILES (objfile)
1157 ppc_linux_spe_context_lookup (objfile);
1158 }
1159
1160 static void
1161 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1162 {
1163 if (strstr (so->so_original_name, "/libspe") != NULL)
1164 {
1165 solib_read_symbols (so, 0);
1166 ppc_linux_spe_context_lookup (so->objfile);
1167 }
1168 }
1169
1170 static void
1171 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1172 {
1173 if (so->objfile == spe_context_objfile)
1174 ppc_linux_spe_context_lookup (NULL);
1175 }
1176
1177 /* Retrieve contents of the N'th element in the current thread's
1178 linked SPE context list into ID and NPC. Return the address of
1179 said context element, or 0 if not found. */
1180 static CORE_ADDR
1181 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1182 int n, int *id, unsigned int *npc)
1183 {
1184 CORE_ADDR spe_context = 0;
1185 gdb_byte buf[16];
1186 int i;
1187
1188 /* Quick exit if we have not found __spe_current_active_context. */
1189 if (!spe_context_objfile)
1190 return 0;
1191
1192 /* Look up cached address of thread-local variable. */
1193 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1194 {
1195 struct target_ops *target = &current_target;
1196
1197 TRY
1198 {
1199 /* We do not call target_translate_tls_address here, because
1200 svr4_fetch_objfile_link_map may invalidate the frame chain,
1201 which must not do while inside a frame sniffer.
1202
1203 Instead, we have cached the lm_addr value, and use that to
1204 directly call the target's to_get_thread_local_address. */
1205 spe_context_cache_address
1206 = target->to_get_thread_local_address (target, inferior_ptid,
1207 spe_context_lm_addr,
1208 spe_context_offset);
1209 spe_context_cache_ptid = inferior_ptid;
1210 }
1211
1212 CATCH (ex, RETURN_MASK_ERROR)
1213 {
1214 return 0;
1215 }
1216 END_CATCH
1217 }
1218
1219 /* Read variable value. */
1220 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1221 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1222
1223 /* Cyle through to N'th linked list element. */
1224 for (i = 0; i < n && spe_context; i++)
1225 if (target_read_memory (spe_context + align_up (12, wordsize),
1226 buf, wordsize) == 0)
1227 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1228 else
1229 spe_context = 0;
1230
1231 /* Read current context. */
1232 if (spe_context
1233 && target_read_memory (spe_context, buf, 12) != 0)
1234 spe_context = 0;
1235
1236 /* Extract data elements. */
1237 if (spe_context)
1238 {
1239 if (id)
1240 *id = extract_signed_integer (buf, 4, byte_order);
1241 if (npc)
1242 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1243 }
1244
1245 return spe_context;
1246 }
1247
1248
1249 /* Cell/B.E. cross-architecture unwinder support. */
1250
1251 struct ppu2spu_cache
1252 {
1253 struct frame_id frame_id;
1254 struct regcache *regcache;
1255 };
1256
1257 static struct gdbarch *
1258 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1259 {
1260 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1261 return get_regcache_arch (cache->regcache);
1262 }
1263
1264 static void
1265 ppu2spu_this_id (struct frame_info *this_frame,
1266 void **this_cache, struct frame_id *this_id)
1267 {
1268 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1269 *this_id = cache->frame_id;
1270 }
1271
1272 static struct value *
1273 ppu2spu_prev_register (struct frame_info *this_frame,
1274 void **this_cache, int regnum)
1275 {
1276 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1277 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1278 gdb_byte *buf;
1279
1280 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1281
1282 if (regnum < gdbarch_num_regs (gdbarch))
1283 regcache_raw_read (cache->regcache, regnum, buf);
1284 else
1285 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1286
1287 return frame_unwind_got_bytes (this_frame, regnum, buf);
1288 }
1289
1290 struct ppu2spu_data
1291 {
1292 struct gdbarch *gdbarch;
1293 int id;
1294 unsigned int npc;
1295 gdb_byte gprs[128*16];
1296 };
1297
1298 static enum register_status
1299 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1300 {
1301 struct ppu2spu_data *data = (struct ppu2spu_data *) src;
1302 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1303
1304 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1305 memcpy (buf, data->gprs + 16*regnum, 16);
1306 else if (regnum == SPU_ID_REGNUM)
1307 store_unsigned_integer (buf, 4, byte_order, data->id);
1308 else if (regnum == SPU_PC_REGNUM)
1309 store_unsigned_integer (buf, 4, byte_order, data->npc);
1310 else
1311 return REG_UNAVAILABLE;
1312
1313 return REG_VALID;
1314 }
1315
1316 static int
1317 ppu2spu_sniffer (const struct frame_unwind *self,
1318 struct frame_info *this_frame, void **this_prologue_cache)
1319 {
1320 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1323 struct ppu2spu_data data;
1324 struct frame_info *fi;
1325 CORE_ADDR base, func, backchain, spe_context;
1326 gdb_byte buf[8];
1327 int n = 0;
1328
1329 /* Count the number of SPU contexts already in the frame chain. */
1330 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1331 if (get_frame_type (fi) == ARCH_FRAME
1332 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1333 n++;
1334
1335 base = get_frame_sp (this_frame);
1336 func = get_frame_pc (this_frame);
1337 if (target_read_memory (base, buf, tdep->wordsize))
1338 return 0;
1339 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1340
1341 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1342 n, &data.id, &data.npc);
1343 if (spe_context && base <= spe_context && spe_context < backchain)
1344 {
1345 char annex[32];
1346
1347 /* Find gdbarch for SPU. */
1348 struct gdbarch_info info;
1349 gdbarch_info_init (&info);
1350 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1351 info.byte_order = BFD_ENDIAN_BIG;
1352 info.osabi = GDB_OSABI_LINUX;
1353 info.tdep_info = &data.id;
1354 data.gdbarch = gdbarch_find_by_info (info);
1355 if (!data.gdbarch)
1356 return 0;
1357
1358 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1359 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1360 data.gprs, 0, sizeof data.gprs)
1361 == sizeof data.gprs)
1362 {
1363 struct ppu2spu_cache *cache
1364 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1365
1366 struct address_space *aspace = get_frame_address_space (this_frame);
1367 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1368 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1369 regcache_save (regcache, ppu2spu_unwind_register, &data);
1370 discard_cleanups (cleanups);
1371
1372 cache->frame_id = frame_id_build (base, func);
1373 cache->regcache = regcache;
1374 *this_prologue_cache = cache;
1375 return 1;
1376 }
1377 }
1378
1379 return 0;
1380 }
1381
1382 static void
1383 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1384 {
1385 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1386 regcache_xfree (cache->regcache);
1387 }
1388
1389 static const struct frame_unwind ppu2spu_unwind = {
1390 ARCH_FRAME,
1391 default_frame_unwind_stop_reason,
1392 ppu2spu_this_id,
1393 ppu2spu_prev_register,
1394 NULL,
1395 ppu2spu_sniffer,
1396 ppu2spu_dealloc_cache,
1397 ppu2spu_prev_arch,
1398 };
1399
1400 /* Initialize linux_record_tdep if not initialized yet.
1401 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1402 Sizes of data structures are initialized accordingly. */
1403
1404 static void
1405 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1406 int wordsize)
1407 {
1408 /* Simply return if it had been initialized. */
1409 if (record_tdep->size_pointer != 0)
1410 return;
1411
1412 /* These values are the size of the type that will be used in a system
1413 call. They are obtained from Linux Kernel source. */
1414
1415 if (wordsize == 8)
1416 {
1417 record_tdep->size_pointer = 8;
1418 record_tdep->size__old_kernel_stat = 32;
1419 record_tdep->size_tms = 32;
1420 record_tdep->size_loff_t = 8;
1421 record_tdep->size_flock = 32;
1422 record_tdep->size_oldold_utsname = 45;
1423 record_tdep->size_ustat = 32;
1424 record_tdep->size_old_sigaction = 32;
1425 record_tdep->size_old_sigset_t = 8;
1426 record_tdep->size_rlimit = 16;
1427 record_tdep->size_rusage = 144;
1428 record_tdep->size_timeval = 16;
1429 record_tdep->size_timezone = 8;
1430 record_tdep->size_old_gid_t = 4;
1431 record_tdep->size_old_uid_t = 4;
1432 record_tdep->size_fd_set = 128;
1433 record_tdep->size_old_dirent = 280;
1434 record_tdep->size_statfs = 120;
1435 record_tdep->size_statfs64 = 120;
1436 record_tdep->size_sockaddr = 16;
1437 record_tdep->size_int = 4;
1438 record_tdep->size_long = 8;
1439 record_tdep->size_ulong = 8;
1440 record_tdep->size_msghdr = 56;
1441 record_tdep->size_itimerval = 32;
1442 record_tdep->size_stat = 144;
1443 record_tdep->size_old_utsname = 325;
1444 record_tdep->size_sysinfo = 112;
1445 record_tdep->size_msqid_ds = 120;
1446 record_tdep->size_shmid_ds = 112;
1447 record_tdep->size_new_utsname = 390;
1448 record_tdep->size_timex = 208;
1449 record_tdep->size_mem_dqinfo = 24;
1450 record_tdep->size_if_dqblk = 72;
1451 record_tdep->size_fs_quota_stat = 80;
1452 record_tdep->size_timespec = 16;
1453 record_tdep->size_pollfd = 8;
1454 record_tdep->size_NFS_FHSIZE = 32;
1455 record_tdep->size_knfsd_fh = 132;
1456 record_tdep->size_TASK_COMM_LEN = 16;
1457 record_tdep->size_sigaction = 32;
1458 record_tdep->size_sigset_t = 8;
1459 record_tdep->size_siginfo_t = 128;
1460 record_tdep->size_cap_user_data_t = 8;
1461 record_tdep->size_stack_t = 24;
1462 record_tdep->size_off_t = 8;
1463 record_tdep->size_stat64 = 104;
1464 record_tdep->size_gid_t = 4;
1465 record_tdep->size_uid_t = 4;
1466 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1467 record_tdep->size_flock64 = 32;
1468 record_tdep->size_io_event = 32;
1469 record_tdep->size_iocb = 64;
1470 record_tdep->size_epoll_event = 16;
1471 record_tdep->size_itimerspec = 32;
1472 record_tdep->size_mq_attr = 64;
1473 record_tdep->size_termios = 44;
1474 record_tdep->size_pid_t = 4;
1475 record_tdep->size_winsize = 8;
1476 record_tdep->size_serial_struct = 72;
1477 record_tdep->size_serial_icounter_struct = 80;
1478 record_tdep->size_size_t = 8;
1479 record_tdep->size_iovec = 16;
1480 record_tdep->size_time_t = 8;
1481 }
1482 else if (wordsize == 4)
1483 {
1484 record_tdep->size_pointer = 4;
1485 record_tdep->size__old_kernel_stat = 32;
1486 record_tdep->size_tms = 16;
1487 record_tdep->size_loff_t = 8;
1488 record_tdep->size_flock = 16;
1489 record_tdep->size_oldold_utsname = 45;
1490 record_tdep->size_ustat = 20;
1491 record_tdep->size_old_sigaction = 16;
1492 record_tdep->size_old_sigset_t = 4;
1493 record_tdep->size_rlimit = 8;
1494 record_tdep->size_rusage = 72;
1495 record_tdep->size_timeval = 8;
1496 record_tdep->size_timezone = 8;
1497 record_tdep->size_old_gid_t = 4;
1498 record_tdep->size_old_uid_t = 4;
1499 record_tdep->size_fd_set = 128;
1500 record_tdep->size_old_dirent = 268;
1501 record_tdep->size_statfs = 64;
1502 record_tdep->size_statfs64 = 88;
1503 record_tdep->size_sockaddr = 16;
1504 record_tdep->size_int = 4;
1505 record_tdep->size_long = 4;
1506 record_tdep->size_ulong = 4;
1507 record_tdep->size_msghdr = 28;
1508 record_tdep->size_itimerval = 16;
1509 record_tdep->size_stat = 88;
1510 record_tdep->size_old_utsname = 325;
1511 record_tdep->size_sysinfo = 64;
1512 record_tdep->size_msqid_ds = 68;
1513 record_tdep->size_shmid_ds = 60;
1514 record_tdep->size_new_utsname = 390;
1515 record_tdep->size_timex = 128;
1516 record_tdep->size_mem_dqinfo = 24;
1517 record_tdep->size_if_dqblk = 72;
1518 record_tdep->size_fs_quota_stat = 80;
1519 record_tdep->size_timespec = 8;
1520 record_tdep->size_pollfd = 8;
1521 record_tdep->size_NFS_FHSIZE = 32;
1522 record_tdep->size_knfsd_fh = 132;
1523 record_tdep->size_TASK_COMM_LEN = 16;
1524 record_tdep->size_sigaction = 20;
1525 record_tdep->size_sigset_t = 8;
1526 record_tdep->size_siginfo_t = 128;
1527 record_tdep->size_cap_user_data_t = 4;
1528 record_tdep->size_stack_t = 12;
1529 record_tdep->size_off_t = 4;
1530 record_tdep->size_stat64 = 104;
1531 record_tdep->size_gid_t = 4;
1532 record_tdep->size_uid_t = 4;
1533 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1534 record_tdep->size_flock64 = 32;
1535 record_tdep->size_io_event = 32;
1536 record_tdep->size_iocb = 64;
1537 record_tdep->size_epoll_event = 16;
1538 record_tdep->size_itimerspec = 16;
1539 record_tdep->size_mq_attr = 32;
1540 record_tdep->size_termios = 44;
1541 record_tdep->size_pid_t = 4;
1542 record_tdep->size_winsize = 8;
1543 record_tdep->size_serial_struct = 60;
1544 record_tdep->size_serial_icounter_struct = 80;
1545 record_tdep->size_size_t = 4;
1546 record_tdep->size_iovec = 8;
1547 record_tdep->size_time_t = 4;
1548 }
1549 else
1550 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1551
1552 /* These values are the second argument of system call "sys_fcntl"
1553 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1554 record_tdep->fcntl_F_GETLK = 5;
1555 record_tdep->fcntl_F_GETLK64 = 12;
1556 record_tdep->fcntl_F_SETLK64 = 13;
1557 record_tdep->fcntl_F_SETLKW64 = 14;
1558
1559 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1560 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1561 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1562 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1563 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1564 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1565
1566 /* These values are the second argument of system call "sys_ioctl".
1567 They are obtained from Linux Kernel source.
1568 See arch/powerpc/include/uapi/asm/ioctls.h. */
1569 record_tdep->ioctl_TCGETS = 0x403c7413;
1570 record_tdep->ioctl_TCSETS = 0x803c7414;
1571 record_tdep->ioctl_TCSETSW = 0x803c7415;
1572 record_tdep->ioctl_TCSETSF = 0x803c7416;
1573 record_tdep->ioctl_TCGETA = 0x40147417;
1574 record_tdep->ioctl_TCSETA = 0x80147418;
1575 record_tdep->ioctl_TCSETAW = 0x80147419;
1576 record_tdep->ioctl_TCSETAF = 0x8014741c;
1577 record_tdep->ioctl_TCSBRK = 0x2000741d;
1578 record_tdep->ioctl_TCXONC = 0x2000741e;
1579 record_tdep->ioctl_TCFLSH = 0x2000741f;
1580 record_tdep->ioctl_TIOCEXCL = 0x540c;
1581 record_tdep->ioctl_TIOCNXCL = 0x540d;
1582 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1583 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1584 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1585 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1586 record_tdep->ioctl_TIOCSTI = 0x5412;
1587 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1588 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1589 record_tdep->ioctl_TIOCMGET = 0x5415;
1590 record_tdep->ioctl_TIOCMBIS = 0x5416;
1591 record_tdep->ioctl_TIOCMBIC = 0x5417;
1592 record_tdep->ioctl_TIOCMSET = 0x5418;
1593 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1594 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1595 record_tdep->ioctl_FIONREAD = 0x4004667f;
1596 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1597 record_tdep->ioctl_TIOCLINUX = 0x541c;
1598 record_tdep->ioctl_TIOCCONS = 0x541d;
1599 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1600 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1601 record_tdep->ioctl_TIOCPKT = 0x5420;
1602 record_tdep->ioctl_FIONBIO = 0x8004667e;
1603 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1604 record_tdep->ioctl_TIOCSETD = 0x5423;
1605 record_tdep->ioctl_TIOCGETD = 0x5424;
1606 record_tdep->ioctl_TCSBRKP = 0x5425;
1607 record_tdep->ioctl_TIOCSBRK = 0x5427;
1608 record_tdep->ioctl_TIOCCBRK = 0x5428;
1609 record_tdep->ioctl_TIOCGSID = 0x5429;
1610 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1611 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1612 record_tdep->ioctl_FIONCLEX = 0x20006602;
1613 record_tdep->ioctl_FIOCLEX = 0x20006601;
1614 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1615 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1616 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1617 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1618 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1619 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1620 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1621 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1622 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1623 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1624 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1625 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1626 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1627 }
1628
1629 /* Return a floating-point format for a floating-point variable of
1630 length LEN in bits. If non-NULL, NAME is the name of its type.
1631 If no suitable type is found, return NULL. */
1632
1633 const struct floatformat **
1634 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1635 const char *name, int len)
1636 {
1637 if (len == 128 && name)
1638 if (strcmp (name, "__float128") == 0
1639 || strcmp (name, "_Float128") == 0
1640 || strcmp (name, "_Float64x") == 0
1641 || strcmp (name, "complex _Float128") == 0
1642 || strcmp (name, "complex _Float64x") == 0)
1643 return floatformats_ia64_quad;
1644
1645 return default_floatformat_for_type (gdbarch, name, len);
1646 }
1647
1648 static void
1649 ppc_linux_init_abi (struct gdbarch_info info,
1650 struct gdbarch *gdbarch)
1651 {
1652 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1653 struct tdesc_arch_data *tdesc_data
1654 = (struct tdesc_arch_data *) info.tdep_info;
1655 static const char *const stap_integer_prefixes[] = { "i", NULL };
1656 static const char *const stap_register_indirection_prefixes[] = { "(",
1657 NULL };
1658 static const char *const stap_register_indirection_suffixes[] = { ")",
1659 NULL };
1660
1661 linux_init_abi (info, gdbarch);
1662
1663 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1664 128-bit, they are IBM long double, not IEEE quad long double as
1665 in the System V ABI PowerPC Processor Supplement. We can safely
1666 let them default to 128-bit, since the debug info will give the
1667 size of type actually used in each case. */
1668 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1669 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1670
1671 /* Support for floating-point data type variants. */
1672 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
1673
1674 /* Handle inferior calls during interrupted system calls. */
1675 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1676
1677 /* Get the syscall number from the arch's register. */
1678 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1679
1680 /* SystemTap functions. */
1681 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1682 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1683 stap_register_indirection_prefixes);
1684 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1685 stap_register_indirection_suffixes);
1686 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1687 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1688 set_gdbarch_stap_parse_special_token (gdbarch,
1689 ppc_stap_parse_special_token);
1690
1691 if (tdep->wordsize == 4)
1692 {
1693 /* Until November 2001, gcc did not comply with the 32 bit SysV
1694 R4 ABI requirement that structures less than or equal to 8
1695 bytes should be returned in registers. Instead GCC was using
1696 the AIX/PowerOpen ABI - everything returned in memory
1697 (well ignoring vectors that is). When this was corrected, it
1698 wasn't fixed for GNU/Linux native platform. Use the
1699 PowerOpen struct convention. */
1700 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1701
1702 set_gdbarch_memory_remove_breakpoint (gdbarch,
1703 ppc_linux_memory_remove_breakpoint);
1704
1705 /* Shared library handling. */
1706 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1707 set_solib_svr4_fetch_link_map_offsets
1708 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1709
1710 /* Setting the correct XML syscall filename. */
1711 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1712
1713 /* Trampolines. */
1714 tramp_frame_prepend_unwinder (gdbarch,
1715 &ppc32_linux_sigaction_tramp_frame);
1716 tramp_frame_prepend_unwinder (gdbarch,
1717 &ppc32_linux_sighandler_tramp_frame);
1718
1719 /* BFD target for core files. */
1720 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1721 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1722 else
1723 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1724
1725 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1726 {
1727 powerpc_so_ops = svr4_so_ops;
1728 /* Override dynamic resolve function. */
1729 powerpc_so_ops.in_dynsym_resolve_code =
1730 powerpc_linux_in_dynsym_resolve_code;
1731 }
1732 set_solib_ops (gdbarch, &powerpc_so_ops);
1733
1734 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1735 }
1736
1737 if (tdep->wordsize == 8)
1738 {
1739 if (tdep->elf_abi == POWERPC_ELF_V1)
1740 {
1741 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1742 function descriptors). */
1743 set_gdbarch_convert_from_func_ptr_addr
1744 (gdbarch, ppc64_convert_from_func_ptr_addr);
1745
1746 set_gdbarch_elf_make_msymbol_special
1747 (gdbarch, ppc64_elf_make_msymbol_special);
1748 }
1749 else
1750 {
1751 set_gdbarch_elf_make_msymbol_special
1752 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1753
1754 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1755 }
1756
1757 /* Shared library handling. */
1758 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1759 set_solib_svr4_fetch_link_map_offsets
1760 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1761
1762 /* Setting the correct XML syscall filename. */
1763 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1764
1765 /* Trampolines. */
1766 tramp_frame_prepend_unwinder (gdbarch,
1767 &ppc64_linux_sigaction_tramp_frame);
1768 tramp_frame_prepend_unwinder (gdbarch,
1769 &ppc64_linux_sighandler_tramp_frame);
1770
1771 /* BFD target for core files. */
1772 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1773 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1774 else
1775 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1776 }
1777
1778 /* PPC32 uses a different prpsinfo32 compared to most other Linux
1779 archs. */
1780 if (tdep->wordsize == 4)
1781 set_gdbarch_elfcore_write_linux_prpsinfo (gdbarch,
1782 elfcore_write_ppc_linux_prpsinfo32);
1783
1784 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1785 set_gdbarch_iterate_over_regset_sections (gdbarch,
1786 ppc_linux_iterate_over_regset_sections);
1787
1788 /* Enable TLS support. */
1789 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1790 svr4_fetch_objfile_link_map);
1791
1792 if (tdesc_data)
1793 {
1794 const struct tdesc_feature *feature;
1795
1796 /* If we have target-described registers, then we can safely
1797 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1798 (whether they are described or not). */
1799 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1800 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1801
1802 /* If they are present, then assign them to the reserved number. */
1803 feature = tdesc_find_feature (info.target_desc,
1804 "org.gnu.gdb.power.linux");
1805 if (feature != NULL)
1806 {
1807 tdesc_numbered_register (feature, tdesc_data,
1808 PPC_ORIG_R3_REGNUM, "orig_r3");
1809 tdesc_numbered_register (feature, tdesc_data,
1810 PPC_TRAP_REGNUM, "trap");
1811 }
1812 }
1813
1814 /* Enable Cell/B.E. if supported by the target. */
1815 if (tdesc_compatible_p (info.target_desc,
1816 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1817 {
1818 /* Cell/B.E. multi-architecture support. */
1819 set_spu_solib_ops (gdbarch);
1820
1821 /* Cell/B.E. cross-architecture unwinder support. */
1822 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1823 }
1824
1825 set_gdbarch_displaced_step_location (gdbarch,
1826 linux_displaced_step_location);
1827
1828 /* Support reverse debugging. */
1829 set_gdbarch_process_record (gdbarch, ppc_process_record);
1830 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1831 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1832
1833 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1834 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1835 }
1836
1837 /* Provide a prototype to silence -Wmissing-prototypes. */
1838 extern initialize_file_ftype _initialize_ppc_linux_tdep;
1839
1840 void
1841 _initialize_ppc_linux_tdep (void)
1842 {
1843 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1844 64-bit PowerPC, and the older rs6k. */
1845 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1846 ppc_linux_init_abi);
1847 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1848 ppc_linux_init_abi);
1849 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1850 ppc_linux_init_abi);
1851
1852 /* Attach to observers to track __spe_current_active_context. */
1853 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1854 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1855 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1856
1857 /* Initialize the Linux target descriptions. */
1858 initialize_tdesc_powerpc_32l ();
1859 initialize_tdesc_powerpc_altivec32l ();
1860 initialize_tdesc_powerpc_cell32l ();
1861 initialize_tdesc_powerpc_vsx32l ();
1862 initialize_tdesc_powerpc_isa205_32l ();
1863 initialize_tdesc_powerpc_isa205_altivec32l ();
1864 initialize_tdesc_powerpc_isa205_vsx32l ();
1865 initialize_tdesc_powerpc_64l ();
1866 initialize_tdesc_powerpc_altivec64l ();
1867 initialize_tdesc_powerpc_cell64l ();
1868 initialize_tdesc_powerpc_vsx64l ();
1869 initialize_tdesc_powerpc_isa205_64l ();
1870 initialize_tdesc_powerpc_isa205_altivec64l ();
1871 initialize_tdesc_powerpc_isa205_vsx64l ();
1872 initialize_tdesc_powerpc_e500l ();
1873 }