]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-tdep.c
gdb/linux-record: Fix sizes of sigaction and sigset_t
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observer.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "elf/ppc64.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52 #include "linux-record.h"
53 #include "record-full.h"
54 #include "infrun.h"
55
56 #include "stap-probe.h"
57 #include "ax.h"
58 #include "ax-gdb.h"
59 #include "cli/cli-utils.h"
60 #include "parser-defs.h"
61 #include "user-regs.h"
62 #include <ctype.h>
63 #include "elf-bfd.h" /* for elfcore_write_* */
64
65 #include "features/rs6000/powerpc-32l.c"
66 #include "features/rs6000/powerpc-altivec32l.c"
67 #include "features/rs6000/powerpc-cell32l.c"
68 #include "features/rs6000/powerpc-vsx32l.c"
69 #include "features/rs6000/powerpc-isa205-32l.c"
70 #include "features/rs6000/powerpc-isa205-altivec32l.c"
71 #include "features/rs6000/powerpc-isa205-vsx32l.c"
72 #include "features/rs6000/powerpc-64l.c"
73 #include "features/rs6000/powerpc-altivec64l.c"
74 #include "features/rs6000/powerpc-cell64l.c"
75 #include "features/rs6000/powerpc-vsx64l.c"
76 #include "features/rs6000/powerpc-isa205-64l.c"
77 #include "features/rs6000/powerpc-isa205-altivec64l.c"
78 #include "features/rs6000/powerpc-isa205-vsx64l.c"
79 #include "features/rs6000/powerpc-e500l.c"
80
81 /* Shared library operations for PowerPC-Linux. */
82 static struct target_so_ops powerpc_so_ops;
83
84 /* The syscall's XML filename for PPC and PPC64. */
85 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
86 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
87
88 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
89 in much the same fashion as memory_remove_breakpoint in mem-break.c,
90 but is careful not to write back the previous contents if the code
91 in question has changed in between inserting the breakpoint and
92 removing it.
93
94 Here is the problem that we're trying to solve...
95
96 Once upon a time, before introducing this function to remove
97 breakpoints from the inferior, setting a breakpoint on a shared
98 library function prior to running the program would not work
99 properly. In order to understand the problem, it is first
100 necessary to understand a little bit about dynamic linking on
101 this platform.
102
103 A call to a shared library function is accomplished via a bl
104 (branch-and-link) instruction whose branch target is an entry
105 in the procedure linkage table (PLT). The PLT in the object
106 file is uninitialized. To gdb, prior to running the program, the
107 entries in the PLT are all zeros.
108
109 Once the program starts running, the shared libraries are loaded
110 and the procedure linkage table is initialized, but the entries in
111 the table are not (necessarily) resolved. Once a function is
112 actually called, the code in the PLT is hit and the function is
113 resolved. In order to better illustrate this, an example is in
114 order; the following example is from the gdb testsuite.
115
116 We start the program shmain.
117
118 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
119 [...]
120
121 We place two breakpoints, one on shr1 and the other on main.
122
123 (gdb) b shr1
124 Breakpoint 1 at 0x100409d4
125 (gdb) b main
126 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
127
128 Examine the instruction (and the immediatly following instruction)
129 upon which the breakpoint was placed. Note that the PLT entry
130 for shr1 contains zeros.
131
132 (gdb) x/2i 0x100409d4
133 0x100409d4 <shr1>: .long 0x0
134 0x100409d8 <shr1+4>: .long 0x0
135
136 Now run 'til main.
137
138 (gdb) r
139 Starting program: gdb.base/shmain
140 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
141
142 Breakpoint 2, main ()
143 at gdb.base/shmain.c:44
144 44 g = 1;
145
146 Examine the PLT again. Note that the loading of the shared
147 library has initialized the PLT to code which loads a constant
148 (which I think is an index into the GOT) into r11 and then
149 branchs a short distance to the code which actually does the
150 resolving.
151
152 (gdb) x/2i 0x100409d4
153 0x100409d4 <shr1>: li r11,4
154 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
155 (gdb) c
156 Continuing.
157
158 Breakpoint 1, shr1 (x=1)
159 at gdb.base/shr1.c:19
160 19 l = 1;
161
162 Now we've hit the breakpoint at shr1. (The breakpoint was
163 reset from the PLT entry to the actual shr1 function after the
164 shared library was loaded.) Note that the PLT entry has been
165 resolved to contain a branch that takes us directly to shr1.
166 (The real one, not the PLT entry.)
167
168 (gdb) x/2i 0x100409d4
169 0x100409d4 <shr1>: b 0xffaf76c <shr1>
170 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
171
172 The thing to note here is that the PLT entry for shr1 has been
173 changed twice.
174
175 Now the problem should be obvious. GDB places a breakpoint (a
176 trap instruction) on the zero value of the PLT entry for shr1.
177 Later on, after the shared library had been loaded and the PLT
178 initialized, GDB gets a signal indicating this fact and attempts
179 (as it always does when it stops) to remove all the breakpoints.
180
181 The breakpoint removal was causing the former contents (a zero
182 word) to be written back to the now initialized PLT entry thus
183 destroying a portion of the initialization that had occurred only a
184 short time ago. When execution continued, the zero word would be
185 executed as an instruction an illegal instruction trap was
186 generated instead. (0 is not a legal instruction.)
187
188 The fix for this problem was fairly straightforward. The function
189 memory_remove_breakpoint from mem-break.c was copied to this file,
190 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
191 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
192 function.
193
194 The differences between ppc_linux_memory_remove_breakpoint () and
195 memory_remove_breakpoint () are minor. All that the former does
196 that the latter does not is check to make sure that the breakpoint
197 location actually contains a breakpoint (trap instruction) prior
198 to attempting to write back the old contents. If it does contain
199 a trap instruction, we allow the old contents to be written back.
200 Otherwise, we silently do nothing.
201
202 The big question is whether memory_remove_breakpoint () should be
203 changed to have the same functionality. The downside is that more
204 traffic is generated for remote targets since we'll have an extra
205 fetch of a memory word each time a breakpoint is removed.
206
207 For the time being, we'll leave this self-modifying-code-friendly
208 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
209 else in the event that some other platform has similar needs with
210 regard to removing breakpoints in some potentially self modifying
211 code. */
212 static int
213 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
214 struct bp_target_info *bp_tgt)
215 {
216 CORE_ADDR addr = bp_tgt->reqstd_address;
217 const unsigned char *bp;
218 int val;
219 int bplen;
220 gdb_byte old_contents[BREAKPOINT_MAX];
221 struct cleanup *cleanup;
222
223 /* Determine appropriate breakpoint contents and size for this address. */
224 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
225 if (bp == NULL)
226 error (_("Software breakpoints not implemented for this target."));
227
228 /* Make sure we see the memory breakpoints. */
229 cleanup = make_show_memory_breakpoints_cleanup (1);
230 val = target_read_memory (addr, old_contents, bplen);
231
232 /* If our breakpoint is no longer at the address, this means that the
233 program modified the code on us, so it is wrong to put back the
234 old value. */
235 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
236 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
237
238 do_cleanups (cleanup);
239 return val;
240 }
241
242 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
243 than the 32 bit SYSV R4 ABI structure return convention - all
244 structures, no matter their size, are put in memory. Vectors,
245 which were added later, do get returned in a register though. */
246
247 static enum return_value_convention
248 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
249 struct type *valtype, struct regcache *regcache,
250 gdb_byte *readbuf, const gdb_byte *writebuf)
251 {
252 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
253 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
254 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
255 && TYPE_VECTOR (valtype)))
256 return RETURN_VALUE_STRUCT_CONVENTION;
257 else
258 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
259 readbuf, writebuf);
260 }
261
262 /* PLT stub in executable. */
263 static struct ppc_insn_pattern powerpc32_plt_stub[] =
264 {
265 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
266 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
267 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
268 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
269 { 0, 0, 0 }
270 };
271
272 /* PLT stub in shared library. */
273 static struct ppc_insn_pattern powerpc32_plt_stub_so[] =
274 {
275 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
276 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
277 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
278 { 0xffffffff, 0x60000000, 0 }, /* nop */
279 { 0, 0, 0 }
280 };
281 #define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub)
282
283 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
284 section. For secure PLT, stub is in .text and we need to check
285 instruction patterns. */
286
287 static int
288 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
289 {
290 struct bound_minimal_symbol sym;
291
292 /* Check whether PC is in the dynamic linker. This also checks
293 whether it is in the .plt section, used by non-PIC executables. */
294 if (svr4_in_dynsym_resolve_code (pc))
295 return 1;
296
297 /* Check if we are in the resolver. */
298 sym = lookup_minimal_symbol_by_pc (pc);
299 if (sym.minsym != NULL
300 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
301 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
302 "__glink_PLTresolve") == 0))
303 return 1;
304
305 return 0;
306 }
307
308 /* Follow PLT stub to actual routine.
309
310 When the execution direction is EXEC_REVERSE, scan backward to
311 check whether we are in the middle of a PLT stub. Currently,
312 we only look-behind at most 4 instructions (the max length of PLT
313 stub sequence. */
314
315 static CORE_ADDR
316 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
317 {
318 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN];
319 struct gdbarch *gdbarch = get_frame_arch (frame);
320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322 CORE_ADDR target = 0;
323 int scan_limit, i;
324
325 scan_limit = 1;
326 /* When reverse-debugging, scan backward to check whether we are
327 in the middle of trampoline code. */
328 if (execution_direction == EXEC_REVERSE)
329 scan_limit = 4; /* At more 4 instructions. */
330
331 for (i = 0; i < scan_limit; i++)
332 {
333 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
334 {
335 /* Insn pattern is
336 lis r11, xxxx
337 lwz r11, xxxx(r11)
338 Branch target is in r11. */
339
340 target = (ppc_insn_d_field (insnbuf[0]) << 16)
341 | ppc_insn_d_field (insnbuf[1]);
342 target = read_memory_unsigned_integer (target, 4, byte_order);
343 }
344 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so,
345 insnbuf))
346 {
347 /* Insn pattern is
348 lwz r11, xxxx(r30)
349 Branch target is in r11. */
350
351 target = get_frame_register_unsigned (frame,
352 tdep->ppc_gp0_regnum + 30)
353 + ppc_insn_d_field (insnbuf[0]);
354 target = read_memory_unsigned_integer (target, 4, byte_order);
355 }
356 else
357 {
358 /* Scan backward one more instructions if doesn't match. */
359 pc -= 4;
360 continue;
361 }
362
363 return target;
364 }
365
366 return 0;
367 }
368
369 /* Wrappers to handle Linux-only registers. */
370
371 static void
372 ppc_linux_supply_gregset (const struct regset *regset,
373 struct regcache *regcache,
374 int regnum, const void *gregs, size_t len)
375 {
376 const struct ppc_reg_offsets *offsets
377 = (const struct ppc_reg_offsets *) regset->regmap;
378
379 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
380
381 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
382 {
383 /* "orig_r3" is stored 2 slots after "pc". */
384 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
385 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
386 offsets->pc_offset + 2 * offsets->gpr_size,
387 offsets->gpr_size);
388
389 /* "trap" is stored 8 slots after "pc". */
390 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
391 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
392 offsets->pc_offset + 8 * offsets->gpr_size,
393 offsets->gpr_size);
394 }
395 }
396
397 static void
398 ppc_linux_collect_gregset (const struct regset *regset,
399 const struct regcache *regcache,
400 int regnum, void *gregs, size_t len)
401 {
402 const struct ppc_reg_offsets *offsets
403 = (const struct ppc_reg_offsets *) regset->regmap;
404
405 /* Clear areas in the linux gregset not written elsewhere. */
406 if (regnum == -1)
407 memset (gregs, 0, len);
408
409 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
410
411 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
412 {
413 /* "orig_r3" is stored 2 slots after "pc". */
414 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
415 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
416 offsets->pc_offset + 2 * offsets->gpr_size,
417 offsets->gpr_size);
418
419 /* "trap" is stored 8 slots after "pc". */
420 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
421 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
422 offsets->pc_offset + 8 * offsets->gpr_size,
423 offsets->gpr_size);
424 }
425 }
426
427 /* Regset descriptions. */
428 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
429 {
430 /* General-purpose registers. */
431 /* .r0_offset = */ 0,
432 /* .gpr_size = */ 4,
433 /* .xr_size = */ 4,
434 /* .pc_offset = */ 128,
435 /* .ps_offset = */ 132,
436 /* .cr_offset = */ 152,
437 /* .lr_offset = */ 144,
438 /* .ctr_offset = */ 140,
439 /* .xer_offset = */ 148,
440 /* .mq_offset = */ 156,
441
442 /* Floating-point registers. */
443 /* .f0_offset = */ 0,
444 /* .fpscr_offset = */ 256,
445 /* .fpscr_size = */ 8,
446
447 /* AltiVec registers. */
448 /* .vr0_offset = */ 0,
449 /* .vscr_offset = */ 512 + 12,
450 /* .vrsave_offset = */ 528
451 };
452
453 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
454 {
455 /* General-purpose registers. */
456 /* .r0_offset = */ 0,
457 /* .gpr_size = */ 8,
458 /* .xr_size = */ 8,
459 /* .pc_offset = */ 256,
460 /* .ps_offset = */ 264,
461 /* .cr_offset = */ 304,
462 /* .lr_offset = */ 288,
463 /* .ctr_offset = */ 280,
464 /* .xer_offset = */ 296,
465 /* .mq_offset = */ 312,
466
467 /* Floating-point registers. */
468 /* .f0_offset = */ 0,
469 /* .fpscr_offset = */ 256,
470 /* .fpscr_size = */ 8,
471
472 /* AltiVec registers. */
473 /* .vr0_offset = */ 0,
474 /* .vscr_offset = */ 512 + 12,
475 /* .vrsave_offset = */ 528
476 };
477
478 static const struct regset ppc32_linux_gregset = {
479 &ppc32_linux_reg_offsets,
480 ppc_linux_supply_gregset,
481 ppc_linux_collect_gregset
482 };
483
484 static const struct regset ppc64_linux_gregset = {
485 &ppc64_linux_reg_offsets,
486 ppc_linux_supply_gregset,
487 ppc_linux_collect_gregset
488 };
489
490 static const struct regset ppc32_linux_fpregset = {
491 &ppc32_linux_reg_offsets,
492 ppc_supply_fpregset,
493 ppc_collect_fpregset
494 };
495
496 static const struct regset ppc32_linux_vrregset = {
497 &ppc32_linux_reg_offsets,
498 ppc_supply_vrregset,
499 ppc_collect_vrregset
500 };
501
502 static const struct regset ppc32_linux_vsxregset = {
503 &ppc32_linux_reg_offsets,
504 ppc_supply_vsxregset,
505 ppc_collect_vsxregset
506 };
507
508 const struct regset *
509 ppc_linux_gregset (int wordsize)
510 {
511 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
512 }
513
514 const struct regset *
515 ppc_linux_fpregset (void)
516 {
517 return &ppc32_linux_fpregset;
518 }
519
520 /* Iterate over supported core file register note sections. */
521
522 static void
523 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
524 iterate_over_regset_sections_cb *cb,
525 void *cb_data,
526 const struct regcache *regcache)
527 {
528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
529 int have_altivec = tdep->ppc_vr0_regnum != -1;
530 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
531
532 if (tdep->wordsize == 4)
533 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
534 else
535 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
536
537 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
538
539 if (have_altivec)
540 cb (".reg-ppc-vmx", 544, &ppc32_linux_vrregset, "ppc Altivec", cb_data);
541
542 if (have_vsx)
543 cb (".reg-ppc-vsx", 256, &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
544 }
545
546 static void
547 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
548 struct trad_frame_cache *this_cache,
549 CORE_ADDR func, LONGEST offset,
550 int bias)
551 {
552 CORE_ADDR base;
553 CORE_ADDR regs;
554 CORE_ADDR gpregs;
555 CORE_ADDR fpregs;
556 int i;
557 struct gdbarch *gdbarch = get_frame_arch (this_frame);
558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
560
561 base = get_frame_register_unsigned (this_frame,
562 gdbarch_sp_regnum (gdbarch));
563 if (bias > 0 && get_frame_pc (this_frame) != func)
564 /* See below, some signal trampolines increment the stack as their
565 first instruction, need to compensate for that. */
566 base -= bias;
567
568 /* Find the address of the register buffer pointer. */
569 regs = base + offset;
570 /* Use that to find the address of the corresponding register
571 buffers. */
572 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
573 fpregs = gpregs + 48 * tdep->wordsize;
574
575 /* General purpose. */
576 for (i = 0; i < 32; i++)
577 {
578 int regnum = i + tdep->ppc_gp0_regnum;
579 trad_frame_set_reg_addr (this_cache,
580 regnum, gpregs + i * tdep->wordsize);
581 }
582 trad_frame_set_reg_addr (this_cache,
583 gdbarch_pc_regnum (gdbarch),
584 gpregs + 32 * tdep->wordsize);
585 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
586 gpregs + 35 * tdep->wordsize);
587 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
588 gpregs + 36 * tdep->wordsize);
589 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
590 gpregs + 37 * tdep->wordsize);
591 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
592 gpregs + 38 * tdep->wordsize);
593
594 if (ppc_linux_trap_reg_p (gdbarch))
595 {
596 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
597 gpregs + 34 * tdep->wordsize);
598 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
599 gpregs + 40 * tdep->wordsize);
600 }
601
602 if (ppc_floating_point_unit_p (gdbarch))
603 {
604 /* Floating point registers. */
605 for (i = 0; i < 32; i++)
606 {
607 int regnum = i + gdbarch_fp0_regnum (gdbarch);
608 trad_frame_set_reg_addr (this_cache, regnum,
609 fpregs + i * tdep->wordsize);
610 }
611 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
612 fpregs + 32 * tdep->wordsize);
613 }
614 trad_frame_set_id (this_cache, frame_id_build (base, func));
615 }
616
617 static void
618 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
619 struct frame_info *this_frame,
620 struct trad_frame_cache *this_cache,
621 CORE_ADDR func)
622 {
623 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
624 0xd0 /* Offset to ucontext_t. */
625 + 0x30 /* Offset to .reg. */,
626 0);
627 }
628
629 static void
630 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
631 struct frame_info *this_frame,
632 struct trad_frame_cache *this_cache,
633 CORE_ADDR func)
634 {
635 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
636 0x80 /* Offset to ucontext_t. */
637 + 0xe0 /* Offset to .reg. */,
638 128);
639 }
640
641 static void
642 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
643 struct frame_info *this_frame,
644 struct trad_frame_cache *this_cache,
645 CORE_ADDR func)
646 {
647 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
648 0x40 /* Offset to ucontext_t. */
649 + 0x1c /* Offset to .reg. */,
650 0);
651 }
652
653 static void
654 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
655 struct frame_info *this_frame,
656 struct trad_frame_cache *this_cache,
657 CORE_ADDR func)
658 {
659 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
660 0x80 /* Offset to struct sigcontext. */
661 + 0x38 /* Offset to .reg. */,
662 128);
663 }
664
665 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
666 SIGTRAMP_FRAME,
667 4,
668 {
669 { 0x380000ac, -1 }, /* li r0, 172 */
670 { 0x44000002, -1 }, /* sc */
671 { TRAMP_SENTINEL_INSN },
672 },
673 ppc32_linux_sigaction_cache_init
674 };
675 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
676 SIGTRAMP_FRAME,
677 4,
678 {
679 { 0x38210080, -1 }, /* addi r1,r1,128 */
680 { 0x380000ac, -1 }, /* li r0, 172 */
681 { 0x44000002, -1 }, /* sc */
682 { TRAMP_SENTINEL_INSN },
683 },
684 ppc64_linux_sigaction_cache_init
685 };
686 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
687 SIGTRAMP_FRAME,
688 4,
689 {
690 { 0x38000077, -1 }, /* li r0,119 */
691 { 0x44000002, -1 }, /* sc */
692 { TRAMP_SENTINEL_INSN },
693 },
694 ppc32_linux_sighandler_cache_init
695 };
696 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
697 SIGTRAMP_FRAME,
698 4,
699 {
700 { 0x38210080, -1 }, /* addi r1,r1,128 */
701 { 0x38000077, -1 }, /* li r0,119 */
702 { 0x44000002, -1 }, /* sc */
703 { TRAMP_SENTINEL_INSN },
704 },
705 ppc64_linux_sighandler_cache_init
706 };
707
708 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
709 int
710 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
711 {
712 /* If we do not have a target description with registers, then
713 the special registers will not be included in the register set. */
714 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
715 return 0;
716
717 /* If we do, then it is safe to check the size. */
718 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
719 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
720 }
721
722 /* Return the current system call's number present in the
723 r0 register. When the function fails, it returns -1. */
724 static LONGEST
725 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
726 ptid_t ptid)
727 {
728 struct regcache *regcache = get_thread_regcache (ptid);
729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
730 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
731 struct cleanup *cleanbuf;
732 /* The content of a register */
733 gdb_byte *buf;
734 /* The result */
735 LONGEST ret;
736
737 /* Make sure we're in a 32- or 64-bit machine */
738 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
739
740 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
741
742 cleanbuf = make_cleanup (xfree, buf);
743
744 /* Getting the system call number from the register.
745 When dealing with PowerPC architecture, this information
746 is stored at 0th register. */
747 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
748
749 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
750 do_cleanups (cleanbuf);
751
752 return ret;
753 }
754
755 /* PPC process record-replay */
756
757 static struct linux_record_tdep ppc_linux_record_tdep;
758 static struct linux_record_tdep ppc64_linux_record_tdep;
759
760 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
761 syscall ids into a canonical set of syscall ids used by process
762 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
763 Return -1 if this system call is not supported by process record.
764 Otherwise, return the syscall number for preocess reocrd of given
765 SYSCALL. */
766
767 static enum gdb_syscall
768 ppc_canonicalize_syscall (int syscall)
769 {
770 int result = -1;
771
772 if (syscall <= 165)
773 result = syscall;
774 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
775 result = syscall + 1;
776 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
777 result = syscall;
778 else if (syscall == 208) /* tkill */
779 result = gdb_sys_tkill;
780 else if (syscall >= 207 && syscall <= 220) /* gettid */
781 result = syscall + 224 - 207;
782 else if (syscall >= 234 && syscall <= 239) /* exit_group */
783 result = syscall + 252 - 234;
784 else if (syscall >= 240 && syscall <= 248) /* timer_create */
785 result = syscall += 259 - 240;
786 else if (syscall >= 250 && syscall <= 251) /* tgkill */
787 result = syscall + 270 - 250;
788 else if (syscall == 336)
789 result = gdb_sys_recv;
790 else if (syscall == 337)
791 result = gdb_sys_recvfrom;
792 else if (syscall == 342)
793 result = gdb_sys_recvmsg;
794
795 return (enum gdb_syscall) result;
796 }
797
798 /* Record registers which might be clobbered during system call.
799 Return 0 if successful. */
800
801 static int
802 ppc_linux_syscall_record (struct regcache *regcache)
803 {
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
806 ULONGEST scnum;
807 enum gdb_syscall syscall_gdb;
808 int ret;
809 int i;
810
811 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
812 syscall_gdb = ppc_canonicalize_syscall (scnum);
813
814 if (syscall_gdb < 0)
815 {
816 printf_unfiltered (_("Process record and replay target doesn't "
817 "support syscall number %d\n"), (int) scnum);
818 return 0;
819 }
820
821 if (syscall_gdb == gdb_sys_sigreturn
822 || syscall_gdb == gdb_sys_rt_sigreturn)
823 {
824 int i, j;
825 int regsets[] = { tdep->ppc_gp0_regnum,
826 tdep->ppc_fp0_regnum,
827 tdep->ppc_vr0_regnum,
828 tdep->ppc_vsr0_upper_regnum };
829
830 for (j = 0; j < 4; j++)
831 {
832 if (regsets[j] == -1)
833 continue;
834 for (i = 0; i < 32; i++)
835 {
836 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
837 return -1;
838 }
839 }
840
841 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
842 return -1;
843 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
844 return -1;
845 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
846 return -1;
847 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
848 return -1;
849
850 return 0;
851 }
852
853 if (tdep->wordsize == 8)
854 ret = record_linux_system_call (syscall_gdb, regcache,
855 &ppc64_linux_record_tdep);
856 else
857 ret = record_linux_system_call (syscall_gdb, regcache,
858 &ppc_linux_record_tdep);
859
860 if (ret != 0)
861 return ret;
862
863 /* Record registers clobbered during syscall. */
864 for (i = 3; i <= 12; i++)
865 {
866 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
867 return -1;
868 }
869 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
870 return -1;
871 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
872 return -1;
873 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
874 return -1;
875 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
876 return -1;
877
878 return 0;
879 }
880
881 /* Record registers which might be clobbered during signal handling.
882 Return 0 if successful. */
883
884 static int
885 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
886 enum gdb_signal signal)
887 {
888 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
889 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
890 arch/powerpc/include/asm/ptrace.h
891 for details. */
892 const int SIGNAL_FRAMESIZE = 128;
893 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
894 ULONGEST sp;
895 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
896 int i;
897
898 for (i = 3; i <= 12; i++)
899 {
900 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
901 return -1;
902 }
903
904 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
905 return -1;
906 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
907 return -1;
908 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
909 return -1;
910 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
911 return -1;
912 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
913 return -1;
914
915 /* Record the change in the stack.
916 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
917 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
918 sp -= SIGNAL_FRAMESIZE;
919 sp -= sizeof_rt_sigframe;
920
921 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
922 return -1;
923
924 if (record_full_arch_list_add_end ())
925 return -1;
926
927 return 0;
928 }
929
930 static void
931 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
932 {
933 struct gdbarch *gdbarch = get_regcache_arch (regcache);
934
935 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
936
937 /* Set special TRAP register to -1 to prevent the kernel from
938 messing with the PC we just installed, if we happen to be
939 within an interrupted system call that the kernel wants to
940 restart.
941
942 Note that after we return from the dummy call, the TRAP and
943 ORIG_R3 registers will be automatically restored, and the
944 kernel continues to restart the system call at this point. */
945 if (ppc_linux_trap_reg_p (gdbarch))
946 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
947 }
948
949 static int
950 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
951 {
952 return startswith (bfd_section_name (abfd, asect), "SPU/");
953 }
954
955 static const struct target_desc *
956 ppc_linux_core_read_description (struct gdbarch *gdbarch,
957 struct target_ops *target,
958 bfd *abfd)
959 {
960 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
961 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
962 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
963 asection *section = bfd_get_section_by_name (abfd, ".reg");
964 if (! section)
965 return NULL;
966
967 switch (bfd_section_size (abfd, section))
968 {
969 case 48 * 4:
970 if (cell)
971 return tdesc_powerpc_cell32l;
972 else if (vsx)
973 return tdesc_powerpc_vsx32l;
974 else if (altivec)
975 return tdesc_powerpc_altivec32l;
976 else
977 return tdesc_powerpc_32l;
978
979 case 48 * 8:
980 if (cell)
981 return tdesc_powerpc_cell64l;
982 else if (vsx)
983 return tdesc_powerpc_vsx64l;
984 else if (altivec)
985 return tdesc_powerpc_altivec64l;
986 else
987 return tdesc_powerpc_64l;
988
989 default:
990 return NULL;
991 }
992 }
993
994
995 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
996 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
997
998 static void
999 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1000 {
1001 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1002
1003 /* If the symbol is marked as having a local entry point, set a target
1004 flag in the msymbol. We currently only support local entry point
1005 offsets of 8 bytes, which is the only entry point offset ever used
1006 by current compilers. If/when other offsets are ever used, we will
1007 have to use additional target flag bits to store them. */
1008 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1009 {
1010 default:
1011 break;
1012 case 8:
1013 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1014 break;
1015 }
1016 }
1017
1018 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1019 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1020
1021 static CORE_ADDR
1022 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1023 {
1024 struct bound_minimal_symbol fun;
1025 int local_entry_offset = 0;
1026
1027 fun = lookup_minimal_symbol_by_pc (pc);
1028 if (fun.minsym == NULL)
1029 return pc;
1030
1031 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1032 offset values are encoded. */
1033 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1034 local_entry_offset = 8;
1035
1036 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1037 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1038 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1039
1040 return pc;
1041 }
1042
1043 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1044 gdbarch.h. */
1045
1046 static int
1047 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1048 {
1049 return (*s == 'i' /* Literal number. */
1050 || (isdigit (*s) && s[1] == '('
1051 && isdigit (s[2])) /* Displacement. */
1052 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1053 || isdigit (*s)); /* Register value. */
1054 }
1055
1056 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1057 gdbarch.h. */
1058
1059 static int
1060 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1061 struct stap_parse_info *p)
1062 {
1063 if (isdigit (*p->arg))
1064 {
1065 /* This temporary pointer is needed because we have to do a lookahead.
1066 We could be dealing with a register displacement, and in such case
1067 we would not need to do anything. */
1068 const char *s = p->arg;
1069 char *regname;
1070 int len;
1071 struct stoken str;
1072
1073 while (isdigit (*s))
1074 ++s;
1075
1076 if (*s == '(')
1077 {
1078 /* It is a register displacement indeed. Returning 0 means we are
1079 deferring the treatment of this case to the generic parser. */
1080 return 0;
1081 }
1082
1083 len = s - p->arg;
1084 regname = (char *) alloca (len + 2);
1085 regname[0] = 'r';
1086
1087 strncpy (regname + 1, p->arg, len);
1088 ++len;
1089 regname[len] = '\0';
1090
1091 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1092 error (_("Invalid register name `%s' on expression `%s'."),
1093 regname, p->saved_arg);
1094
1095 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1096 str.ptr = regname;
1097 str.length = len;
1098 write_exp_string (&p->pstate, str);
1099 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1100
1101 p->arg = s;
1102 }
1103 else
1104 {
1105 /* All the other tokens should be handled correctly by the generic
1106 parser. */
1107 return 0;
1108 }
1109
1110 return 1;
1111 }
1112
1113 /* Cell/B.E. active SPE context tracking support. */
1114
1115 static struct objfile *spe_context_objfile = NULL;
1116 static CORE_ADDR spe_context_lm_addr = 0;
1117 static CORE_ADDR spe_context_offset = 0;
1118
1119 static ptid_t spe_context_cache_ptid;
1120 static CORE_ADDR spe_context_cache_address;
1121
1122 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1123 to track whether we've loaded a version of libspe2 (as static or dynamic
1124 library) that provides the __spe_current_active_context variable. */
1125 static void
1126 ppc_linux_spe_context_lookup (struct objfile *objfile)
1127 {
1128 struct bound_minimal_symbol sym;
1129
1130 if (!objfile)
1131 {
1132 spe_context_objfile = NULL;
1133 spe_context_lm_addr = 0;
1134 spe_context_offset = 0;
1135 spe_context_cache_ptid = minus_one_ptid;
1136 spe_context_cache_address = 0;
1137 return;
1138 }
1139
1140 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1141 if (sym.minsym)
1142 {
1143 spe_context_objfile = objfile;
1144 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1145 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1146 spe_context_cache_ptid = minus_one_ptid;
1147 spe_context_cache_address = 0;
1148 return;
1149 }
1150 }
1151
1152 static void
1153 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1154 {
1155 struct objfile *objfile;
1156
1157 ppc_linux_spe_context_lookup (NULL);
1158 ALL_OBJFILES (objfile)
1159 ppc_linux_spe_context_lookup (objfile);
1160 }
1161
1162 static void
1163 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1164 {
1165 if (strstr (so->so_original_name, "/libspe") != NULL)
1166 {
1167 solib_read_symbols (so, 0);
1168 ppc_linux_spe_context_lookup (so->objfile);
1169 }
1170 }
1171
1172 static void
1173 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1174 {
1175 if (so->objfile == spe_context_objfile)
1176 ppc_linux_spe_context_lookup (NULL);
1177 }
1178
1179 /* Retrieve contents of the N'th element in the current thread's
1180 linked SPE context list into ID and NPC. Return the address of
1181 said context element, or 0 if not found. */
1182 static CORE_ADDR
1183 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1184 int n, int *id, unsigned int *npc)
1185 {
1186 CORE_ADDR spe_context = 0;
1187 gdb_byte buf[16];
1188 int i;
1189
1190 /* Quick exit if we have not found __spe_current_active_context. */
1191 if (!spe_context_objfile)
1192 return 0;
1193
1194 /* Look up cached address of thread-local variable. */
1195 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1196 {
1197 struct target_ops *target = &current_target;
1198
1199 TRY
1200 {
1201 /* We do not call target_translate_tls_address here, because
1202 svr4_fetch_objfile_link_map may invalidate the frame chain,
1203 which must not do while inside a frame sniffer.
1204
1205 Instead, we have cached the lm_addr value, and use that to
1206 directly call the target's to_get_thread_local_address. */
1207 spe_context_cache_address
1208 = target->to_get_thread_local_address (target, inferior_ptid,
1209 spe_context_lm_addr,
1210 spe_context_offset);
1211 spe_context_cache_ptid = inferior_ptid;
1212 }
1213
1214 CATCH (ex, RETURN_MASK_ERROR)
1215 {
1216 return 0;
1217 }
1218 END_CATCH
1219 }
1220
1221 /* Read variable value. */
1222 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1223 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1224
1225 /* Cyle through to N'th linked list element. */
1226 for (i = 0; i < n && spe_context; i++)
1227 if (target_read_memory (spe_context + align_up (12, wordsize),
1228 buf, wordsize) == 0)
1229 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1230 else
1231 spe_context = 0;
1232
1233 /* Read current context. */
1234 if (spe_context
1235 && target_read_memory (spe_context, buf, 12) != 0)
1236 spe_context = 0;
1237
1238 /* Extract data elements. */
1239 if (spe_context)
1240 {
1241 if (id)
1242 *id = extract_signed_integer (buf, 4, byte_order);
1243 if (npc)
1244 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1245 }
1246
1247 return spe_context;
1248 }
1249
1250
1251 /* Cell/B.E. cross-architecture unwinder support. */
1252
1253 struct ppu2spu_cache
1254 {
1255 struct frame_id frame_id;
1256 struct regcache *regcache;
1257 };
1258
1259 static struct gdbarch *
1260 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1261 {
1262 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1263 return get_regcache_arch (cache->regcache);
1264 }
1265
1266 static void
1267 ppu2spu_this_id (struct frame_info *this_frame,
1268 void **this_cache, struct frame_id *this_id)
1269 {
1270 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1271 *this_id = cache->frame_id;
1272 }
1273
1274 static struct value *
1275 ppu2spu_prev_register (struct frame_info *this_frame,
1276 void **this_cache, int regnum)
1277 {
1278 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1279 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1280 gdb_byte *buf;
1281
1282 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1283
1284 if (regnum < gdbarch_num_regs (gdbarch))
1285 regcache_raw_read (cache->regcache, regnum, buf);
1286 else
1287 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1288
1289 return frame_unwind_got_bytes (this_frame, regnum, buf);
1290 }
1291
1292 struct ppu2spu_data
1293 {
1294 struct gdbarch *gdbarch;
1295 int id;
1296 unsigned int npc;
1297 gdb_byte gprs[128*16];
1298 };
1299
1300 static enum register_status
1301 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1302 {
1303 struct ppu2spu_data *data = (struct ppu2spu_data *) src;
1304 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1305
1306 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1307 memcpy (buf, data->gprs + 16*regnum, 16);
1308 else if (regnum == SPU_ID_REGNUM)
1309 store_unsigned_integer (buf, 4, byte_order, data->id);
1310 else if (regnum == SPU_PC_REGNUM)
1311 store_unsigned_integer (buf, 4, byte_order, data->npc);
1312 else
1313 return REG_UNAVAILABLE;
1314
1315 return REG_VALID;
1316 }
1317
1318 static int
1319 ppu2spu_sniffer (const struct frame_unwind *self,
1320 struct frame_info *this_frame, void **this_prologue_cache)
1321 {
1322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1325 struct ppu2spu_data data;
1326 struct frame_info *fi;
1327 CORE_ADDR base, func, backchain, spe_context;
1328 gdb_byte buf[8];
1329 int n = 0;
1330
1331 /* Count the number of SPU contexts already in the frame chain. */
1332 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1333 if (get_frame_type (fi) == ARCH_FRAME
1334 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1335 n++;
1336
1337 base = get_frame_sp (this_frame);
1338 func = get_frame_pc (this_frame);
1339 if (target_read_memory (base, buf, tdep->wordsize))
1340 return 0;
1341 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1342
1343 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1344 n, &data.id, &data.npc);
1345 if (spe_context && base <= spe_context && spe_context < backchain)
1346 {
1347 char annex[32];
1348
1349 /* Find gdbarch for SPU. */
1350 struct gdbarch_info info;
1351 gdbarch_info_init (&info);
1352 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1353 info.byte_order = BFD_ENDIAN_BIG;
1354 info.osabi = GDB_OSABI_LINUX;
1355 info.tdep_info = &data.id;
1356 data.gdbarch = gdbarch_find_by_info (info);
1357 if (!data.gdbarch)
1358 return 0;
1359
1360 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1361 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1362 data.gprs, 0, sizeof data.gprs)
1363 == sizeof data.gprs)
1364 {
1365 struct ppu2spu_cache *cache
1366 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1367
1368 struct address_space *aspace = get_frame_address_space (this_frame);
1369 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1370 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1371 regcache_save (regcache, ppu2spu_unwind_register, &data);
1372 discard_cleanups (cleanups);
1373
1374 cache->frame_id = frame_id_build (base, func);
1375 cache->regcache = regcache;
1376 *this_prologue_cache = cache;
1377 return 1;
1378 }
1379 }
1380
1381 return 0;
1382 }
1383
1384 static void
1385 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1386 {
1387 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1388 regcache_xfree (cache->regcache);
1389 }
1390
1391 static const struct frame_unwind ppu2spu_unwind = {
1392 ARCH_FRAME,
1393 default_frame_unwind_stop_reason,
1394 ppu2spu_this_id,
1395 ppu2spu_prev_register,
1396 NULL,
1397 ppu2spu_sniffer,
1398 ppu2spu_dealloc_cache,
1399 ppu2spu_prev_arch,
1400 };
1401
1402 /* Initialize linux_record_tdep if not initialized yet.
1403 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1404 Sizes of data structures are initialized accordingly. */
1405
1406 static void
1407 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1408 int wordsize)
1409 {
1410 /* Simply return if it had been initialized. */
1411 if (record_tdep->size_pointer != 0)
1412 return;
1413
1414 /* These values are the size of the type that will be used in a system
1415 call. They are obtained from Linux Kernel source. */
1416
1417 if (wordsize == 8)
1418 {
1419 record_tdep->size_pointer = 8;
1420 record_tdep->size__old_kernel_stat = 32;
1421 record_tdep->size_tms = 32;
1422 record_tdep->size_loff_t = 8;
1423 record_tdep->size_flock = 32;
1424 record_tdep->size_oldold_utsname = 45;
1425 record_tdep->size_ustat = 32;
1426 record_tdep->size_old_sigaction = 32;
1427 record_tdep->size_old_sigset_t = 8;
1428 record_tdep->size_rlimit = 16;
1429 record_tdep->size_rusage = 144;
1430 record_tdep->size_timeval = 16;
1431 record_tdep->size_timezone = 8;
1432 record_tdep->size_old_gid_t = 4;
1433 record_tdep->size_old_uid_t = 4;
1434 record_tdep->size_fd_set = 128;
1435 record_tdep->size_dirent = 280;
1436 record_tdep->size_dirent64 = 280;
1437 record_tdep->size_statfs = 120;
1438 record_tdep->size_statfs64 = 120;
1439 record_tdep->size_sockaddr = 16;
1440 record_tdep->size_int = 4;
1441 record_tdep->size_long = 8;
1442 record_tdep->size_ulong = 8;
1443 record_tdep->size_msghdr = 56;
1444 record_tdep->size_itimerval = 32;
1445 record_tdep->size_stat = 144;
1446 record_tdep->size_old_utsname = 325;
1447 record_tdep->size_sysinfo = 112;
1448 record_tdep->size_msqid_ds = 120;
1449 record_tdep->size_shmid_ds = 112;
1450 record_tdep->size_new_utsname = 390;
1451 record_tdep->size_timex = 208;
1452 record_tdep->size_mem_dqinfo = 24;
1453 record_tdep->size_if_dqblk = 72;
1454 record_tdep->size_fs_quota_stat = 80;
1455 record_tdep->size_timespec = 16;
1456 record_tdep->size_pollfd = 8;
1457 record_tdep->size_NFS_FHSIZE = 32;
1458 record_tdep->size_knfsd_fh = 132;
1459 record_tdep->size_TASK_COMM_LEN = 32;
1460 record_tdep->size_sigaction = 32;
1461 record_tdep->size_sigset_t = 8;
1462 record_tdep->size_siginfo_t = 128;
1463 record_tdep->size_cap_user_data_t = 8;
1464 record_tdep->size_stack_t = 24;
1465 record_tdep->size_off_t = 8;
1466 record_tdep->size_stat64 = 104;
1467 record_tdep->size_gid_t = 4;
1468 record_tdep->size_uid_t = 4;
1469 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1470 record_tdep->size_flock64 = 32;
1471 record_tdep->size_io_event = 32;
1472 record_tdep->size_iocb = 64;
1473 record_tdep->size_epoll_event = 16;
1474 record_tdep->size_itimerspec = 32;
1475 record_tdep->size_mq_attr = 64;
1476 record_tdep->size_termios = 44;
1477 record_tdep->size_pid_t = 4;
1478 record_tdep->size_winsize = 8;
1479 record_tdep->size_serial_struct = 72;
1480 record_tdep->size_serial_icounter_struct = 80;
1481 record_tdep->size_size_t = 8;
1482 record_tdep->size_iovec = 16;
1483 }
1484 else if (wordsize == 4)
1485 {
1486 record_tdep->size_pointer = 4;
1487 record_tdep->size__old_kernel_stat = 32;
1488 record_tdep->size_tms = 16;
1489 record_tdep->size_loff_t = 8;
1490 record_tdep->size_flock = 16;
1491 record_tdep->size_oldold_utsname = 45;
1492 record_tdep->size_ustat = 20;
1493 record_tdep->size_old_sigaction = 16;
1494 record_tdep->size_old_sigset_t = 4;
1495 record_tdep->size_rlimit = 8;
1496 record_tdep->size_rusage = 72;
1497 record_tdep->size_timeval = 8;
1498 record_tdep->size_timezone = 8;
1499 record_tdep->size_old_gid_t = 4;
1500 record_tdep->size_old_uid_t = 4;
1501 record_tdep->size_fd_set = 128;
1502 record_tdep->size_dirent = 268;
1503 record_tdep->size_dirent64 = 280;
1504 record_tdep->size_statfs = 64;
1505 record_tdep->size_statfs64 = 88;
1506 record_tdep->size_sockaddr = 16;
1507 record_tdep->size_int = 4;
1508 record_tdep->size_long = 4;
1509 record_tdep->size_ulong = 4;
1510 record_tdep->size_msghdr = 28;
1511 record_tdep->size_itimerval = 16;
1512 record_tdep->size_stat = 88;
1513 record_tdep->size_old_utsname = 325;
1514 record_tdep->size_sysinfo = 64;
1515 record_tdep->size_msqid_ds = 68;
1516 record_tdep->size_shmid_ds = 60;
1517 record_tdep->size_new_utsname = 390;
1518 record_tdep->size_timex = 128;
1519 record_tdep->size_mem_dqinfo = 24;
1520 record_tdep->size_if_dqblk = 72;
1521 record_tdep->size_fs_quota_stat = 80;
1522 record_tdep->size_timespec = 8;
1523 record_tdep->size_pollfd = 8;
1524 record_tdep->size_NFS_FHSIZE = 32;
1525 record_tdep->size_knfsd_fh = 132;
1526 record_tdep->size_TASK_COMM_LEN = 32;
1527 record_tdep->size_sigaction = 20;
1528 record_tdep->size_sigset_t = 8;
1529 record_tdep->size_siginfo_t = 128;
1530 record_tdep->size_cap_user_data_t = 4;
1531 record_tdep->size_stack_t = 12;
1532 record_tdep->size_off_t = 4;
1533 record_tdep->size_stat64 = 104;
1534 record_tdep->size_gid_t = 4;
1535 record_tdep->size_uid_t = 4;
1536 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1537 record_tdep->size_flock64 = 32;
1538 record_tdep->size_io_event = 32;
1539 record_tdep->size_iocb = 64;
1540 record_tdep->size_epoll_event = 16;
1541 record_tdep->size_itimerspec = 16;
1542 record_tdep->size_mq_attr = 32;
1543 record_tdep->size_termios = 44;
1544 record_tdep->size_pid_t = 4;
1545 record_tdep->size_winsize = 8;
1546 record_tdep->size_serial_struct = 60;
1547 record_tdep->size_serial_icounter_struct = 80;
1548 record_tdep->size_size_t = 4;
1549 record_tdep->size_iovec = 8;
1550 }
1551 else
1552 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1553
1554 /* These values are the second argument of system call "sys_fcntl"
1555 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1556 record_tdep->fcntl_F_GETLK = 5;
1557 record_tdep->fcntl_F_GETLK64 = 12;
1558 record_tdep->fcntl_F_SETLK64 = 13;
1559 record_tdep->fcntl_F_SETLKW64 = 14;
1560
1561 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1562 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1563 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1564 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1565 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1566 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1567
1568 /* These values are the second argument of system call "sys_ioctl".
1569 They are obtained from Linux Kernel source.
1570 See arch/powerpc/include/uapi/asm/ioctls.h. */
1571 record_tdep->ioctl_TCGETS = 0x403c7413;
1572 record_tdep->ioctl_TCSETS = 0x803c7414;
1573 record_tdep->ioctl_TCSETSW = 0x803c7415;
1574 record_tdep->ioctl_TCSETSF = 0x803c7416;
1575 record_tdep->ioctl_TCGETA = 0x40147417;
1576 record_tdep->ioctl_TCSETA = 0x80147418;
1577 record_tdep->ioctl_TCSETAW = 0x80147419;
1578 record_tdep->ioctl_TCSETAF = 0x8014741c;
1579 record_tdep->ioctl_TCSBRK = 0x2000741d;
1580 record_tdep->ioctl_TCXONC = 0x2000741e;
1581 record_tdep->ioctl_TCFLSH = 0x2000741f;
1582 record_tdep->ioctl_TIOCEXCL = 0x540c;
1583 record_tdep->ioctl_TIOCNXCL = 0x540d;
1584 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1585 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1586 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1587 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1588 record_tdep->ioctl_TIOCSTI = 0x5412;
1589 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1590 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1591 record_tdep->ioctl_TIOCMGET = 0x5415;
1592 record_tdep->ioctl_TIOCMBIS = 0x5416;
1593 record_tdep->ioctl_TIOCMBIC = 0x5417;
1594 record_tdep->ioctl_TIOCMSET = 0x5418;
1595 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1596 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1597 record_tdep->ioctl_FIONREAD = 0x4004667f;
1598 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1599 record_tdep->ioctl_TIOCLINUX = 0x541c;
1600 record_tdep->ioctl_TIOCCONS = 0x541d;
1601 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1602 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1603 record_tdep->ioctl_TIOCPKT = 0x5420;
1604 record_tdep->ioctl_FIONBIO = 0x8004667e;
1605 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1606 record_tdep->ioctl_TIOCSETD = 0x5423;
1607 record_tdep->ioctl_TIOCGETD = 0x5424;
1608 record_tdep->ioctl_TCSBRKP = 0x5425;
1609 record_tdep->ioctl_TIOCSBRK = 0x5427;
1610 record_tdep->ioctl_TIOCCBRK = 0x5428;
1611 record_tdep->ioctl_TIOCGSID = 0x5429;
1612 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1613 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1614 record_tdep->ioctl_FIONCLEX = 0x20006602;
1615 record_tdep->ioctl_FIOCLEX = 0x20006601;
1616 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1617 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1618 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1619 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1620 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1621 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1622 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1623 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1624 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1625 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1626 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1627 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1628 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1629 }
1630
1631 static void
1632 ppc_linux_init_abi (struct gdbarch_info info,
1633 struct gdbarch *gdbarch)
1634 {
1635 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1636 struct tdesc_arch_data *tdesc_data
1637 = (struct tdesc_arch_data *) info.tdep_info;
1638 static const char *const stap_integer_prefixes[] = { "i", NULL };
1639 static const char *const stap_register_indirection_prefixes[] = { "(",
1640 NULL };
1641 static const char *const stap_register_indirection_suffixes[] = { ")",
1642 NULL };
1643
1644 linux_init_abi (info, gdbarch);
1645
1646 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1647 128-bit, they are IBM long double, not IEEE quad long double as
1648 in the System V ABI PowerPC Processor Supplement. We can safely
1649 let them default to 128-bit, since the debug info will give the
1650 size of type actually used in each case. */
1651 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1652 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1653
1654 /* Handle inferior calls during interrupted system calls. */
1655 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1656
1657 /* Get the syscall number from the arch's register. */
1658 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1659
1660 /* SystemTap functions. */
1661 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1662 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1663 stap_register_indirection_prefixes);
1664 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1665 stap_register_indirection_suffixes);
1666 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1667 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1668 set_gdbarch_stap_parse_special_token (gdbarch,
1669 ppc_stap_parse_special_token);
1670
1671 if (tdep->wordsize == 4)
1672 {
1673 /* Until November 2001, gcc did not comply with the 32 bit SysV
1674 R4 ABI requirement that structures less than or equal to 8
1675 bytes should be returned in registers. Instead GCC was using
1676 the AIX/PowerOpen ABI - everything returned in memory
1677 (well ignoring vectors that is). When this was corrected, it
1678 wasn't fixed for GNU/Linux native platform. Use the
1679 PowerOpen struct convention. */
1680 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1681
1682 set_gdbarch_memory_remove_breakpoint (gdbarch,
1683 ppc_linux_memory_remove_breakpoint);
1684
1685 /* Shared library handling. */
1686 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1687 set_solib_svr4_fetch_link_map_offsets
1688 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1689
1690 /* Setting the correct XML syscall filename. */
1691 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1692
1693 /* Trampolines. */
1694 tramp_frame_prepend_unwinder (gdbarch,
1695 &ppc32_linux_sigaction_tramp_frame);
1696 tramp_frame_prepend_unwinder (gdbarch,
1697 &ppc32_linux_sighandler_tramp_frame);
1698
1699 /* BFD target for core files. */
1700 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1701 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1702 else
1703 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1704
1705 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1706 {
1707 powerpc_so_ops = svr4_so_ops;
1708 /* Override dynamic resolve function. */
1709 powerpc_so_ops.in_dynsym_resolve_code =
1710 powerpc_linux_in_dynsym_resolve_code;
1711 }
1712 set_solib_ops (gdbarch, &powerpc_so_ops);
1713
1714 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1715 }
1716
1717 if (tdep->wordsize == 8)
1718 {
1719 if (tdep->elf_abi == POWERPC_ELF_V1)
1720 {
1721 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1722 function descriptors). */
1723 set_gdbarch_convert_from_func_ptr_addr
1724 (gdbarch, ppc64_convert_from_func_ptr_addr);
1725
1726 set_gdbarch_elf_make_msymbol_special
1727 (gdbarch, ppc64_elf_make_msymbol_special);
1728 }
1729 else
1730 {
1731 set_gdbarch_elf_make_msymbol_special
1732 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1733
1734 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1735 }
1736
1737 /* Shared library handling. */
1738 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1739 set_solib_svr4_fetch_link_map_offsets
1740 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1741
1742 /* Setting the correct XML syscall filename. */
1743 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1744
1745 /* Trampolines. */
1746 tramp_frame_prepend_unwinder (gdbarch,
1747 &ppc64_linux_sigaction_tramp_frame);
1748 tramp_frame_prepend_unwinder (gdbarch,
1749 &ppc64_linux_sighandler_tramp_frame);
1750
1751 /* BFD target for core files. */
1752 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1753 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1754 else
1755 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1756 }
1757
1758 /* PPC32 uses a different prpsinfo32 compared to most other Linux
1759 archs. */
1760 if (tdep->wordsize == 4)
1761 set_gdbarch_elfcore_write_linux_prpsinfo (gdbarch,
1762 elfcore_write_ppc_linux_prpsinfo32);
1763
1764 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1765 set_gdbarch_iterate_over_regset_sections (gdbarch,
1766 ppc_linux_iterate_over_regset_sections);
1767
1768 /* Enable TLS support. */
1769 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1770 svr4_fetch_objfile_link_map);
1771
1772 if (tdesc_data)
1773 {
1774 const struct tdesc_feature *feature;
1775
1776 /* If we have target-described registers, then we can safely
1777 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1778 (whether they are described or not). */
1779 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1780 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1781
1782 /* If they are present, then assign them to the reserved number. */
1783 feature = tdesc_find_feature (info.target_desc,
1784 "org.gnu.gdb.power.linux");
1785 if (feature != NULL)
1786 {
1787 tdesc_numbered_register (feature, tdesc_data,
1788 PPC_ORIG_R3_REGNUM, "orig_r3");
1789 tdesc_numbered_register (feature, tdesc_data,
1790 PPC_TRAP_REGNUM, "trap");
1791 }
1792 }
1793
1794 /* Enable Cell/B.E. if supported by the target. */
1795 if (tdesc_compatible_p (info.target_desc,
1796 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1797 {
1798 /* Cell/B.E. multi-architecture support. */
1799 set_spu_solib_ops (gdbarch);
1800
1801 /* Cell/B.E. cross-architecture unwinder support. */
1802 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1803 }
1804
1805 set_gdbarch_displaced_step_location (gdbarch,
1806 linux_displaced_step_location);
1807
1808 /* Support reverse debugging. */
1809 set_gdbarch_process_record (gdbarch, ppc_process_record);
1810 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1811 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1812
1813 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1814 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1815 }
1816
1817 /* Provide a prototype to silence -Wmissing-prototypes. */
1818 extern initialize_file_ftype _initialize_ppc_linux_tdep;
1819
1820 void
1821 _initialize_ppc_linux_tdep (void)
1822 {
1823 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1824 64-bit PowerPC, and the older rs6k. */
1825 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1826 ppc_linux_init_abi);
1827 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1828 ppc_linux_init_abi);
1829 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1830 ppc_linux_init_abi);
1831
1832 /* Attach to observers to track __spe_current_active_context. */
1833 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1834 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1835 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1836
1837 /* Initialize the Linux target descriptions. */
1838 initialize_tdesc_powerpc_32l ();
1839 initialize_tdesc_powerpc_altivec32l ();
1840 initialize_tdesc_powerpc_cell32l ();
1841 initialize_tdesc_powerpc_vsx32l ();
1842 initialize_tdesc_powerpc_isa205_32l ();
1843 initialize_tdesc_powerpc_isa205_altivec32l ();
1844 initialize_tdesc_powerpc_isa205_vsx32l ();
1845 initialize_tdesc_powerpc_64l ();
1846 initialize_tdesc_powerpc_altivec64l ();
1847 initialize_tdesc_powerpc_cell64l ();
1848 initialize_tdesc_powerpc_vsx64l ();
1849 initialize_tdesc_powerpc_isa205_64l ();
1850 initialize_tdesc_powerpc_isa205_altivec64l ();
1851 initialize_tdesc_powerpc_isa205_vsx64l ();
1852 initialize_tdesc_powerpc_e500l ();
1853 }