]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "regcache.h"
32 #include "value.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "solib-svr4.h"
36 #include "solib-spu.h"
37 #include "solib.h"
38 #include "solist.h"
39 #include "ppc-tdep.h"
40 #include "ppc-linux-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observer.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "exceptions.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52
53 #include "features/rs6000/powerpc-32l.c"
54 #include "features/rs6000/powerpc-altivec32l.c"
55 #include "features/rs6000/powerpc-cell32l.c"
56 #include "features/rs6000/powerpc-vsx32l.c"
57 #include "features/rs6000/powerpc-isa205-32l.c"
58 #include "features/rs6000/powerpc-isa205-altivec32l.c"
59 #include "features/rs6000/powerpc-isa205-vsx32l.c"
60 #include "features/rs6000/powerpc-64l.c"
61 #include "features/rs6000/powerpc-altivec64l.c"
62 #include "features/rs6000/powerpc-cell64l.c"
63 #include "features/rs6000/powerpc-vsx64l.c"
64 #include "features/rs6000/powerpc-isa205-64l.c"
65 #include "features/rs6000/powerpc-isa205-altivec64l.c"
66 #include "features/rs6000/powerpc-isa205-vsx64l.c"
67 #include "features/rs6000/powerpc-e500l.c"
68
69 /* The syscall's XML filename for PPC and PPC64. */
70 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
71 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
72
73 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
74 in much the same fashion as memory_remove_breakpoint in mem-break.c,
75 but is careful not to write back the previous contents if the code
76 in question has changed in between inserting the breakpoint and
77 removing it.
78
79 Here is the problem that we're trying to solve...
80
81 Once upon a time, before introducing this function to remove
82 breakpoints from the inferior, setting a breakpoint on a shared
83 library function prior to running the program would not work
84 properly. In order to understand the problem, it is first
85 necessary to understand a little bit about dynamic linking on
86 this platform.
87
88 A call to a shared library function is accomplished via a bl
89 (branch-and-link) instruction whose branch target is an entry
90 in the procedure linkage table (PLT). The PLT in the object
91 file is uninitialized. To gdb, prior to running the program, the
92 entries in the PLT are all zeros.
93
94 Once the program starts running, the shared libraries are loaded
95 and the procedure linkage table is initialized, but the entries in
96 the table are not (necessarily) resolved. Once a function is
97 actually called, the code in the PLT is hit and the function is
98 resolved. In order to better illustrate this, an example is in
99 order; the following example is from the gdb testsuite.
100
101 We start the program shmain.
102
103 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
104 [...]
105
106 We place two breakpoints, one on shr1 and the other on main.
107
108 (gdb) b shr1
109 Breakpoint 1 at 0x100409d4
110 (gdb) b main
111 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
112
113 Examine the instruction (and the immediatly following instruction)
114 upon which the breakpoint was placed. Note that the PLT entry
115 for shr1 contains zeros.
116
117 (gdb) x/2i 0x100409d4
118 0x100409d4 <shr1>: .long 0x0
119 0x100409d8 <shr1+4>: .long 0x0
120
121 Now run 'til main.
122
123 (gdb) r
124 Starting program: gdb.base/shmain
125 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
126
127 Breakpoint 2, main ()
128 at gdb.base/shmain.c:44
129 44 g = 1;
130
131 Examine the PLT again. Note that the loading of the shared
132 library has initialized the PLT to code which loads a constant
133 (which I think is an index into the GOT) into r11 and then
134 branchs a short distance to the code which actually does the
135 resolving.
136
137 (gdb) x/2i 0x100409d4
138 0x100409d4 <shr1>: li r11,4
139 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
140 (gdb) c
141 Continuing.
142
143 Breakpoint 1, shr1 (x=1)
144 at gdb.base/shr1.c:19
145 19 l = 1;
146
147 Now we've hit the breakpoint at shr1. (The breakpoint was
148 reset from the PLT entry to the actual shr1 function after the
149 shared library was loaded.) Note that the PLT entry has been
150 resolved to contain a branch that takes us directly to shr1.
151 (The real one, not the PLT entry.)
152
153 (gdb) x/2i 0x100409d4
154 0x100409d4 <shr1>: b 0xffaf76c <shr1>
155 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
156
157 The thing to note here is that the PLT entry for shr1 has been
158 changed twice.
159
160 Now the problem should be obvious. GDB places a breakpoint (a
161 trap instruction) on the zero value of the PLT entry for shr1.
162 Later on, after the shared library had been loaded and the PLT
163 initialized, GDB gets a signal indicating this fact and attempts
164 (as it always does when it stops) to remove all the breakpoints.
165
166 The breakpoint removal was causing the former contents (a zero
167 word) to be written back to the now initialized PLT entry thus
168 destroying a portion of the initialization that had occurred only a
169 short time ago. When execution continued, the zero word would be
170 executed as an instruction an illegal instruction trap was
171 generated instead. (0 is not a legal instruction.)
172
173 The fix for this problem was fairly straightforward. The function
174 memory_remove_breakpoint from mem-break.c was copied to this file,
175 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
176 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
177 function.
178
179 The differences between ppc_linux_memory_remove_breakpoint () and
180 memory_remove_breakpoint () are minor. All that the former does
181 that the latter does not is check to make sure that the breakpoint
182 location actually contains a breakpoint (trap instruction) prior
183 to attempting to write back the old contents. If it does contain
184 a trap instruction, we allow the old contents to be written back.
185 Otherwise, we silently do nothing.
186
187 The big question is whether memory_remove_breakpoint () should be
188 changed to have the same functionality. The downside is that more
189 traffic is generated for remote targets since we'll have an extra
190 fetch of a memory word each time a breakpoint is removed.
191
192 For the time being, we'll leave this self-modifying-code-friendly
193 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
194 else in the event that some other platform has similar needs with
195 regard to removing breakpoints in some potentially self modifying
196 code. */
197 static int
198 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
199 struct bp_target_info *bp_tgt)
200 {
201 CORE_ADDR addr = bp_tgt->placed_address;
202 const unsigned char *bp;
203 int val;
204 int bplen;
205 gdb_byte old_contents[BREAKPOINT_MAX];
206 struct cleanup *cleanup;
207
208 /* Determine appropriate breakpoint contents and size for this address. */
209 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
210 if (bp == NULL)
211 error (_("Software breakpoints not implemented for this target."));
212
213 /* Make sure we see the memory breakpoints. */
214 cleanup = make_show_memory_breakpoints_cleanup (1);
215 val = target_read_memory (addr, old_contents, bplen);
216
217 /* If our breakpoint is no longer at the address, this means that the
218 program modified the code on us, so it is wrong to put back the
219 old value. */
220 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
221 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
222
223 do_cleanups (cleanup);
224 return val;
225 }
226
227 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
228 than the 32 bit SYSV R4 ABI structure return convention - all
229 structures, no matter their size, are put in memory. Vectors,
230 which were added later, do get returned in a register though. */
231
232 static enum return_value_convention
233 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
234 struct type *valtype, struct regcache *regcache,
235 gdb_byte *readbuf, const gdb_byte *writebuf)
236 {
237 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
238 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
239 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
240 && TYPE_VECTOR (valtype)))
241 return RETURN_VALUE_STRUCT_CONVENTION;
242 else
243 return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
244 readbuf, writebuf);
245 }
246
247 /* Macros for matching instructions. Note that, since all the
248 operands are masked off before they're or-ed into the instruction,
249 you can use -1 to make masks. */
250
251 #define insn_d(opcd, rts, ra, d) \
252 ((((opcd) & 0x3f) << 26) \
253 | (((rts) & 0x1f) << 21) \
254 | (((ra) & 0x1f) << 16) \
255 | ((d) & 0xffff))
256
257 #define insn_ds(opcd, rts, ra, d, xo) \
258 ((((opcd) & 0x3f) << 26) \
259 | (((rts) & 0x1f) << 21) \
260 | (((ra) & 0x1f) << 16) \
261 | ((d) & 0xfffc) \
262 | ((xo) & 0x3))
263
264 #define insn_xfx(opcd, rts, spr, xo) \
265 ((((opcd) & 0x3f) << 26) \
266 | (((rts) & 0x1f) << 21) \
267 | (((spr) & 0x1f) << 16) \
268 | (((spr) & 0x3e0) << 6) \
269 | (((xo) & 0x3ff) << 1))
270
271 /* Read a PPC instruction from memory. PPC instructions are always
272 big-endian, no matter what endianness the program is running in, so
273 we can't use read_memory_integer or one of its friends here. */
274 static unsigned int
275 read_insn (CORE_ADDR pc)
276 {
277 unsigned char buf[4];
278
279 read_memory (pc, buf, 4);
280 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
281 }
282
283
284 /* An instruction to match. */
285 struct insn_pattern
286 {
287 unsigned int mask; /* mask the insn with this... */
288 unsigned int data; /* ...and see if it matches this. */
289 int optional; /* If non-zero, this insn may be absent. */
290 };
291
292 /* Return non-zero if the instructions at PC match the series
293 described in PATTERN, or zero otherwise. PATTERN is an array of
294 'struct insn_pattern' objects, terminated by an entry whose mask is
295 zero.
296
297 When the match is successful, fill INSN[i] with what PATTERN[i]
298 matched. If PATTERN[i] is optional, and the instruction wasn't
299 present, set INSN[i] to 0 (which is not a valid PPC instruction).
300 INSN should have as many elements as PATTERN. Note that, if
301 PATTERN contains optional instructions which aren't present in
302 memory, then INSN will have holes, so INSN[i] isn't necessarily the
303 i'th instruction in memory. */
304 static int
305 insns_match_pattern (CORE_ADDR pc,
306 struct insn_pattern *pattern,
307 unsigned int *insn)
308 {
309 int i;
310
311 for (i = 0; pattern[i].mask; i++)
312 {
313 insn[i] = read_insn (pc);
314 if ((insn[i] & pattern[i].mask) == pattern[i].data)
315 pc += 4;
316 else if (pattern[i].optional)
317 insn[i] = 0;
318 else
319 return 0;
320 }
321
322 return 1;
323 }
324
325
326 /* Return the 'd' field of the d-form instruction INSN, properly
327 sign-extended. */
328 static CORE_ADDR
329 insn_d_field (unsigned int insn)
330 {
331 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
332 }
333
334
335 /* Return the 'ds' field of the ds-form instruction INSN, with the two
336 zero bits concatenated at the right, and properly
337 sign-extended. */
338 static CORE_ADDR
339 insn_ds_field (unsigned int insn)
340 {
341 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
342 }
343
344
345 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
346 descriptor, return the descriptor's entry point. */
347 static CORE_ADDR
348 ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
349 {
350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
351 /* The first word of the descriptor is the entry point. */
352 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
353 }
354
355
356 /* Pattern for the standard linkage function. These are built by
357 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
358 zero. */
359 static struct insn_pattern ppc64_standard_linkage1[] =
360 {
361 /* addis r12, r2, <any> */
362 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
363
364 /* std r2, 40(r1) */
365 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
366
367 /* ld r11, <any>(r12) */
368 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
369
370 /* addis r12, r12, 1 <optional> */
371 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
372
373 /* ld r2, <any>(r12) */
374 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
375
376 /* addis r12, r12, 1 <optional> */
377 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
378
379 /* mtctr r11 */
380 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
381
382 /* ld r11, <any>(r12) */
383 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
384
385 /* bctr */
386 { -1, 0x4e800420, 0 },
387
388 { 0, 0, 0 }
389 };
390 #define PPC64_STANDARD_LINKAGE1_LEN \
391 (sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
392
393 static struct insn_pattern ppc64_standard_linkage2[] =
394 {
395 /* addis r12, r2, <any> */
396 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
397
398 /* std r2, 40(r1) */
399 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
400
401 /* ld r11, <any>(r12) */
402 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
403
404 /* addi r12, r12, <any> <optional> */
405 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
406
407 /* mtctr r11 */
408 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
409
410 /* ld r2, <any>(r12) */
411 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
412
413 /* ld r11, <any>(r12) */
414 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
415
416 /* bctr */
417 { -1, 0x4e800420, 0 },
418
419 { 0, 0, 0 }
420 };
421 #define PPC64_STANDARD_LINKAGE2_LEN \
422 (sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
423
424 static struct insn_pattern ppc64_standard_linkage3[] =
425 {
426 /* std r2, 40(r1) */
427 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
428
429 /* ld r11, <any>(r2) */
430 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
431
432 /* addi r2, r2, <any> <optional> */
433 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
434
435 /* mtctr r11 */
436 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
437
438 /* ld r11, <any>(r2) */
439 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
440
441 /* ld r2, <any>(r2) */
442 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
443
444 /* bctr */
445 { -1, 0x4e800420, 0 },
446
447 { 0, 0, 0 }
448 };
449 #define PPC64_STANDARD_LINKAGE3_LEN \
450 (sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
451
452
453 /* When the dynamic linker is doing lazy symbol resolution, the first
454 call to a function in another object will go like this:
455
456 - The user's function calls the linkage function:
457
458 100007c4: 4b ff fc d5 bl 10000498
459 100007c8: e8 41 00 28 ld r2,40(r1)
460
461 - The linkage function loads the entry point (and other stuff) from
462 the function descriptor in the PLT, and jumps to it:
463
464 10000498: 3d 82 00 00 addis r12,r2,0
465 1000049c: f8 41 00 28 std r2,40(r1)
466 100004a0: e9 6c 80 98 ld r11,-32616(r12)
467 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
468 100004a8: 7d 69 03 a6 mtctr r11
469 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
470 100004b0: 4e 80 04 20 bctr
471
472 - But since this is the first time that PLT entry has been used, it
473 sends control to its glink entry. That loads the number of the
474 PLT entry and jumps to the common glink0 code:
475
476 10000c98: 38 00 00 00 li r0,0
477 10000c9c: 4b ff ff dc b 10000c78
478
479 - The common glink0 code then transfers control to the dynamic
480 linker's fixup code:
481
482 10000c78: e8 41 00 28 ld r2,40(r1)
483 10000c7c: 3d 82 00 00 addis r12,r2,0
484 10000c80: e9 6c 80 80 ld r11,-32640(r12)
485 10000c84: e8 4c 80 88 ld r2,-32632(r12)
486 10000c88: 7d 69 03 a6 mtctr r11
487 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
488 10000c90: 4e 80 04 20 bctr
489
490 Eventually, this code will figure out how to skip all of this,
491 including the dynamic linker. At the moment, we just get through
492 the linkage function. */
493
494 /* If the current thread is about to execute a series of instructions
495 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
496 from that pattern match, return the code address to which the
497 standard linkage function will send them. (This doesn't deal with
498 dynamic linker lazy symbol resolution stubs.) */
499 static CORE_ADDR
500 ppc64_standard_linkage1_target (struct frame_info *frame,
501 CORE_ADDR pc, unsigned int *insn)
502 {
503 struct gdbarch *gdbarch = get_frame_arch (frame);
504 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
505
506 /* The address of the function descriptor this linkage function
507 references. */
508 CORE_ADDR desc
509 = ((CORE_ADDR) get_frame_register_unsigned (frame,
510 tdep->ppc_gp0_regnum + 2)
511 + (insn_d_field (insn[0]) << 16)
512 + insn_ds_field (insn[2]));
513
514 /* The first word of the descriptor is the entry point. Return that. */
515 return ppc64_desc_entry_point (gdbarch, desc);
516 }
517
518 static struct core_regset_section ppc_linux_vsx_regset_sections[] =
519 {
520 { ".reg", 48 * 4, "general-purpose" },
521 { ".reg2", 264, "floating-point" },
522 { ".reg-ppc-vmx", 544, "ppc Altivec" },
523 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
524 { NULL, 0}
525 };
526
527 static struct core_regset_section ppc_linux_vmx_regset_sections[] =
528 {
529 { ".reg", 48 * 4, "general-purpose" },
530 { ".reg2", 264, "floating-point" },
531 { ".reg-ppc-vmx", 544, "ppc Altivec" },
532 { NULL, 0}
533 };
534
535 static struct core_regset_section ppc_linux_fp_regset_sections[] =
536 {
537 { ".reg", 48 * 4, "general-purpose" },
538 { ".reg2", 264, "floating-point" },
539 { NULL, 0}
540 };
541
542 static struct core_regset_section ppc64_linux_vsx_regset_sections[] =
543 {
544 { ".reg", 48 * 8, "general-purpose" },
545 { ".reg2", 264, "floating-point" },
546 { ".reg-ppc-vmx", 544, "ppc Altivec" },
547 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
548 { NULL, 0}
549 };
550
551 static struct core_regset_section ppc64_linux_vmx_regset_sections[] =
552 {
553 { ".reg", 48 * 8, "general-purpose" },
554 { ".reg2", 264, "floating-point" },
555 { ".reg-ppc-vmx", 544, "ppc Altivec" },
556 { NULL, 0}
557 };
558
559 static struct core_regset_section ppc64_linux_fp_regset_sections[] =
560 {
561 { ".reg", 48 * 8, "general-purpose" },
562 { ".reg2", 264, "floating-point" },
563 { NULL, 0}
564 };
565
566 static CORE_ADDR
567 ppc64_standard_linkage2_target (struct frame_info *frame,
568 CORE_ADDR pc, unsigned int *insn)
569 {
570 struct gdbarch *gdbarch = get_frame_arch (frame);
571 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
572
573 /* The address of the function descriptor this linkage function
574 references. */
575 CORE_ADDR desc
576 = ((CORE_ADDR) get_frame_register_unsigned (frame,
577 tdep->ppc_gp0_regnum + 2)
578 + (insn_d_field (insn[0]) << 16)
579 + insn_ds_field (insn[2]));
580
581 /* The first word of the descriptor is the entry point. Return that. */
582 return ppc64_desc_entry_point (gdbarch, desc);
583 }
584
585 static CORE_ADDR
586 ppc64_standard_linkage3_target (struct frame_info *frame,
587 CORE_ADDR pc, unsigned int *insn)
588 {
589 struct gdbarch *gdbarch = get_frame_arch (frame);
590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
591
592 /* The address of the function descriptor this linkage function
593 references. */
594 CORE_ADDR desc
595 = ((CORE_ADDR) get_frame_register_unsigned (frame,
596 tdep->ppc_gp0_regnum + 2)
597 + insn_ds_field (insn[1]));
598
599 /* The first word of the descriptor is the entry point. Return that. */
600 return ppc64_desc_entry_point (gdbarch, desc);
601 }
602
603
604 /* Given that we've begun executing a call trampoline at PC, return
605 the entry point of the function the trampoline will go to. */
606 static CORE_ADDR
607 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
608 {
609 unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
610 unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
611 unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
612 CORE_ADDR target;
613
614 if (insns_match_pattern (pc, ppc64_standard_linkage1,
615 ppc64_standard_linkage1_insn))
616 pc = ppc64_standard_linkage1_target (frame, pc,
617 ppc64_standard_linkage1_insn);
618 else if (insns_match_pattern (pc, ppc64_standard_linkage2,
619 ppc64_standard_linkage2_insn))
620 pc = ppc64_standard_linkage2_target (frame, pc,
621 ppc64_standard_linkage2_insn);
622 else if (insns_match_pattern (pc, ppc64_standard_linkage3,
623 ppc64_standard_linkage3_insn))
624 pc = ppc64_standard_linkage3_target (frame, pc,
625 ppc64_standard_linkage3_insn);
626 else
627 return 0;
628
629 /* The PLT descriptor will either point to the already resolved target
630 address, or else to a glink stub. As the latter carry synthetic @plt
631 symbols, find_solib_trampoline_target should be able to resolve them. */
632 target = find_solib_trampoline_target (frame, pc);
633 return target? target : pc;
634 }
635
636
637 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
638 GNU/Linux.
639
640 Usually a function pointer's representation is simply the address
641 of the function. On GNU/Linux on the PowerPC however, a function
642 pointer may be a pointer to a function descriptor.
643
644 For PPC64, a function descriptor is a TOC entry, in a data section,
645 which contains three words: the first word is the address of the
646 function, the second word is the TOC pointer (r2), and the third word
647 is the static chain value.
648
649 Throughout GDB it is currently assumed that a function pointer contains
650 the address of the function, which is not easy to fix. In addition, the
651 conversion of a function address to a function pointer would
652 require allocation of a TOC entry in the inferior's memory space,
653 with all its drawbacks. To be able to call C++ virtual methods in
654 the inferior (which are called via function pointers),
655 find_function_addr uses this function to get the function address
656 from a function pointer.
657
658 If ADDR points at what is clearly a function descriptor, transform
659 it into the address of the corresponding function, if needed. Be
660 conservative, otherwise GDB will do the transformation on any
661 random addresses such as occur when there is no symbol table. */
662
663 static CORE_ADDR
664 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
665 CORE_ADDR addr,
666 struct target_ops *targ)
667 {
668 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
669 struct target_section *s = target_section_by_addr (targ, addr);
670
671 /* Check if ADDR points to a function descriptor. */
672 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
673 {
674 /* There may be relocations that need to be applied to the .opd
675 section. Unfortunately, this function may be called at a time
676 where these relocations have not yet been performed -- this can
677 happen for example shortly after a library has been loaded with
678 dlopen, but ld.so has not yet applied the relocations.
679
680 To cope with both the case where the relocation has been applied,
681 and the case where it has not yet been applied, we do *not* read
682 the (maybe) relocated value from target memory, but we instead
683 read the non-relocated value from the BFD, and apply the relocation
684 offset manually.
685
686 This makes the assumption that all .opd entries are always relocated
687 by the same offset the section itself was relocated. This should
688 always be the case for GNU/Linux executables and shared libraries.
689 Note that other kind of object files (e.g. those added via
690 add-symbol-files) will currently never end up here anyway, as this
691 function accesses *target* sections only; only the main exec and
692 shared libraries are ever added to the target. */
693
694 gdb_byte buf[8];
695 int res;
696
697 res = bfd_get_section_contents (s->bfd, s->the_bfd_section,
698 &buf, addr - s->addr, 8);
699 if (res != 0)
700 return extract_unsigned_integer (buf, 8, byte_order)
701 - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
702 }
703
704 return addr;
705 }
706
707 /* Wrappers to handle Linux-only registers. */
708
709 static void
710 ppc_linux_supply_gregset (const struct regset *regset,
711 struct regcache *regcache,
712 int regnum, const void *gregs, size_t len)
713 {
714 const struct ppc_reg_offsets *offsets = regset->descr;
715
716 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
717
718 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
719 {
720 /* "orig_r3" is stored 2 slots after "pc". */
721 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
722 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
723 offsets->pc_offset + 2 * offsets->gpr_size,
724 offsets->gpr_size);
725
726 /* "trap" is stored 8 slots after "pc". */
727 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
728 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
729 offsets->pc_offset + 8 * offsets->gpr_size,
730 offsets->gpr_size);
731 }
732 }
733
734 static void
735 ppc_linux_collect_gregset (const struct regset *regset,
736 const struct regcache *regcache,
737 int regnum, void *gregs, size_t len)
738 {
739 const struct ppc_reg_offsets *offsets = regset->descr;
740
741 /* Clear areas in the linux gregset not written elsewhere. */
742 if (regnum == -1)
743 memset (gregs, 0, len);
744
745 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
746
747 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
748 {
749 /* "orig_r3" is stored 2 slots after "pc". */
750 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
751 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
752 offsets->pc_offset + 2 * offsets->gpr_size,
753 offsets->gpr_size);
754
755 /* "trap" is stored 8 slots after "pc". */
756 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
757 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
758 offsets->pc_offset + 8 * offsets->gpr_size,
759 offsets->gpr_size);
760 }
761 }
762
763 /* Regset descriptions. */
764 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
765 {
766 /* General-purpose registers. */
767 /* .r0_offset = */ 0,
768 /* .gpr_size = */ 4,
769 /* .xr_size = */ 4,
770 /* .pc_offset = */ 128,
771 /* .ps_offset = */ 132,
772 /* .cr_offset = */ 152,
773 /* .lr_offset = */ 144,
774 /* .ctr_offset = */ 140,
775 /* .xer_offset = */ 148,
776 /* .mq_offset = */ 156,
777
778 /* Floating-point registers. */
779 /* .f0_offset = */ 0,
780 /* .fpscr_offset = */ 256,
781 /* .fpscr_size = */ 8,
782
783 /* AltiVec registers. */
784 /* .vr0_offset = */ 0,
785 /* .vscr_offset = */ 512 + 12,
786 /* .vrsave_offset = */ 528
787 };
788
789 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
790 {
791 /* General-purpose registers. */
792 /* .r0_offset = */ 0,
793 /* .gpr_size = */ 8,
794 /* .xr_size = */ 8,
795 /* .pc_offset = */ 256,
796 /* .ps_offset = */ 264,
797 /* .cr_offset = */ 304,
798 /* .lr_offset = */ 288,
799 /* .ctr_offset = */ 280,
800 /* .xer_offset = */ 296,
801 /* .mq_offset = */ 312,
802
803 /* Floating-point registers. */
804 /* .f0_offset = */ 0,
805 /* .fpscr_offset = */ 256,
806 /* .fpscr_size = */ 8,
807
808 /* AltiVec registers. */
809 /* .vr0_offset = */ 0,
810 /* .vscr_offset = */ 512 + 12,
811 /* .vrsave_offset = */ 528
812 };
813
814 static const struct regset ppc32_linux_gregset = {
815 &ppc32_linux_reg_offsets,
816 ppc_linux_supply_gregset,
817 ppc_linux_collect_gregset,
818 NULL
819 };
820
821 static const struct regset ppc64_linux_gregset = {
822 &ppc64_linux_reg_offsets,
823 ppc_linux_supply_gregset,
824 ppc_linux_collect_gregset,
825 NULL
826 };
827
828 static const struct regset ppc32_linux_fpregset = {
829 &ppc32_linux_reg_offsets,
830 ppc_supply_fpregset,
831 ppc_collect_fpregset,
832 NULL
833 };
834
835 static const struct regset ppc32_linux_vrregset = {
836 &ppc32_linux_reg_offsets,
837 ppc_supply_vrregset,
838 ppc_collect_vrregset,
839 NULL
840 };
841
842 static const struct regset ppc32_linux_vsxregset = {
843 &ppc32_linux_reg_offsets,
844 ppc_supply_vsxregset,
845 ppc_collect_vsxregset,
846 NULL
847 };
848
849 const struct regset *
850 ppc_linux_gregset (int wordsize)
851 {
852 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
853 }
854
855 const struct regset *
856 ppc_linux_fpregset (void)
857 {
858 return &ppc32_linux_fpregset;
859 }
860
861 static const struct regset *
862 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
863 const char *sect_name, size_t sect_size)
864 {
865 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
866 if (strcmp (sect_name, ".reg") == 0)
867 {
868 if (tdep->wordsize == 4)
869 return &ppc32_linux_gregset;
870 else
871 return &ppc64_linux_gregset;
872 }
873 if (strcmp (sect_name, ".reg2") == 0)
874 return &ppc32_linux_fpregset;
875 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
876 return &ppc32_linux_vrregset;
877 if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
878 return &ppc32_linux_vsxregset;
879 return NULL;
880 }
881
882 static void
883 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
884 struct trad_frame_cache *this_cache,
885 CORE_ADDR func, LONGEST offset,
886 int bias)
887 {
888 CORE_ADDR base;
889 CORE_ADDR regs;
890 CORE_ADDR gpregs;
891 CORE_ADDR fpregs;
892 int i;
893 struct gdbarch *gdbarch = get_frame_arch (this_frame);
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896
897 base = get_frame_register_unsigned (this_frame,
898 gdbarch_sp_regnum (gdbarch));
899 if (bias > 0 && get_frame_pc (this_frame) != func)
900 /* See below, some signal trampolines increment the stack as their
901 first instruction, need to compensate for that. */
902 base -= bias;
903
904 /* Find the address of the register buffer pointer. */
905 regs = base + offset;
906 /* Use that to find the address of the corresponding register
907 buffers. */
908 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
909 fpregs = gpregs + 48 * tdep->wordsize;
910
911 /* General purpose. */
912 for (i = 0; i < 32; i++)
913 {
914 int regnum = i + tdep->ppc_gp0_regnum;
915 trad_frame_set_reg_addr (this_cache,
916 regnum, gpregs + i * tdep->wordsize);
917 }
918 trad_frame_set_reg_addr (this_cache,
919 gdbarch_pc_regnum (gdbarch),
920 gpregs + 32 * tdep->wordsize);
921 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
922 gpregs + 35 * tdep->wordsize);
923 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
924 gpregs + 36 * tdep->wordsize);
925 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
926 gpregs + 37 * tdep->wordsize);
927 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
928 gpregs + 38 * tdep->wordsize);
929
930 if (ppc_linux_trap_reg_p (gdbarch))
931 {
932 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
933 gpregs + 34 * tdep->wordsize);
934 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
935 gpregs + 40 * tdep->wordsize);
936 }
937
938 if (ppc_floating_point_unit_p (gdbarch))
939 {
940 /* Floating point registers. */
941 for (i = 0; i < 32; i++)
942 {
943 int regnum = i + gdbarch_fp0_regnum (gdbarch);
944 trad_frame_set_reg_addr (this_cache, regnum,
945 fpregs + i * tdep->wordsize);
946 }
947 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
948 fpregs + 32 * tdep->wordsize);
949 }
950 trad_frame_set_id (this_cache, frame_id_build (base, func));
951 }
952
953 static void
954 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
955 struct frame_info *this_frame,
956 struct trad_frame_cache *this_cache,
957 CORE_ADDR func)
958 {
959 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
960 0xd0 /* Offset to ucontext_t. */
961 + 0x30 /* Offset to .reg. */,
962 0);
963 }
964
965 static void
966 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
967 struct frame_info *this_frame,
968 struct trad_frame_cache *this_cache,
969 CORE_ADDR func)
970 {
971 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
972 0x80 /* Offset to ucontext_t. */
973 + 0xe0 /* Offset to .reg. */,
974 128);
975 }
976
977 static void
978 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
979 struct frame_info *this_frame,
980 struct trad_frame_cache *this_cache,
981 CORE_ADDR func)
982 {
983 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
984 0x40 /* Offset to ucontext_t. */
985 + 0x1c /* Offset to .reg. */,
986 0);
987 }
988
989 static void
990 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
991 struct frame_info *this_frame,
992 struct trad_frame_cache *this_cache,
993 CORE_ADDR func)
994 {
995 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
996 0x80 /* Offset to struct sigcontext. */
997 + 0x38 /* Offset to .reg. */,
998 128);
999 }
1000
1001 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
1002 SIGTRAMP_FRAME,
1003 4,
1004 {
1005 { 0x380000ac, -1 }, /* li r0, 172 */
1006 { 0x44000002, -1 }, /* sc */
1007 { TRAMP_SENTINEL_INSN },
1008 },
1009 ppc32_linux_sigaction_cache_init
1010 };
1011 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
1012 SIGTRAMP_FRAME,
1013 4,
1014 {
1015 { 0x38210080, -1 }, /* addi r1,r1,128 */
1016 { 0x380000ac, -1 }, /* li r0, 172 */
1017 { 0x44000002, -1 }, /* sc */
1018 { TRAMP_SENTINEL_INSN },
1019 },
1020 ppc64_linux_sigaction_cache_init
1021 };
1022 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
1023 SIGTRAMP_FRAME,
1024 4,
1025 {
1026 { 0x38000077, -1 }, /* li r0,119 */
1027 { 0x44000002, -1 }, /* sc */
1028 { TRAMP_SENTINEL_INSN },
1029 },
1030 ppc32_linux_sighandler_cache_init
1031 };
1032 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
1033 SIGTRAMP_FRAME,
1034 4,
1035 {
1036 { 0x38210080, -1 }, /* addi r1,r1,128 */
1037 { 0x38000077, -1 }, /* li r0,119 */
1038 { 0x44000002, -1 }, /* sc */
1039 { TRAMP_SENTINEL_INSN },
1040 },
1041 ppc64_linux_sighandler_cache_init
1042 };
1043
1044
1045 /* Address to use for displaced stepping. When debugging a stand-alone
1046 SPU executable, entry_point_address () will point to an SPU local-store
1047 address and is thus not usable as displaced stepping location. We use
1048 the auxiliary vector to determine the PowerPC-side entry point address
1049 instead. */
1050
1051 static CORE_ADDR ppc_linux_entry_point_addr = 0;
1052
1053 static void
1054 ppc_linux_inferior_created (struct target_ops *target, int from_tty)
1055 {
1056 ppc_linux_entry_point_addr = 0;
1057 }
1058
1059 static CORE_ADDR
1060 ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
1061 {
1062 if (ppc_linux_entry_point_addr == 0)
1063 {
1064 CORE_ADDR addr;
1065
1066 /* Determine entry point from target auxiliary vector. */
1067 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
1068 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
1069
1070 /* Make certain that the address points at real code, and not a
1071 function descriptor. */
1072 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
1073 &current_target);
1074
1075 /* Inferior calls also use the entry point as a breakpoint location.
1076 We don't want displaced stepping to interfere with those
1077 breakpoints, so leave space. */
1078 ppc_linux_entry_point_addr = addr + 3 * PPC_INSN_SIZE;
1079 }
1080
1081 return ppc_linux_entry_point_addr;
1082 }
1083
1084
1085 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
1086 int
1087 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
1088 {
1089 /* If we do not have a target description with registers, then
1090 the special registers will not be included in the register set. */
1091 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1092 return 0;
1093
1094 /* If we do, then it is safe to check the size. */
1095 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
1096 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
1097 }
1098
1099 /* Return the current system call's number present in the
1100 r0 register. When the function fails, it returns -1. */
1101 static LONGEST
1102 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
1103 ptid_t ptid)
1104 {
1105 struct regcache *regcache = get_thread_regcache (ptid);
1106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1108 struct cleanup *cleanbuf;
1109 /* The content of a register */
1110 gdb_byte *buf;
1111 /* The result */
1112 LONGEST ret;
1113
1114 /* Make sure we're in a 32- or 64-bit machine */
1115 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
1116
1117 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
1118
1119 cleanbuf = make_cleanup (xfree, buf);
1120
1121 /* Getting the system call number from the register.
1122 When dealing with PowerPC architecture, this information
1123 is stored at 0th register. */
1124 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
1125
1126 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
1127 do_cleanups (cleanbuf);
1128
1129 return ret;
1130 }
1131
1132 static void
1133 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1134 {
1135 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1136
1137 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1138
1139 /* Set special TRAP register to -1 to prevent the kernel from
1140 messing with the PC we just installed, if we happen to be
1141 within an interrupted system call that the kernel wants to
1142 restart.
1143
1144 Note that after we return from the dummy call, the TRAP and
1145 ORIG_R3 registers will be automatically restored, and the
1146 kernel continues to restart the system call at this point. */
1147 if (ppc_linux_trap_reg_p (gdbarch))
1148 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
1149 }
1150
1151 static int
1152 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
1153 {
1154 return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
1155 }
1156
1157 static const struct target_desc *
1158 ppc_linux_core_read_description (struct gdbarch *gdbarch,
1159 struct target_ops *target,
1160 bfd *abfd)
1161 {
1162 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
1163 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
1164 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
1165 asection *section = bfd_get_section_by_name (abfd, ".reg");
1166 if (! section)
1167 return NULL;
1168
1169 switch (bfd_section_size (abfd, section))
1170 {
1171 case 48 * 4:
1172 if (cell)
1173 return tdesc_powerpc_cell32l;
1174 else if (vsx)
1175 return tdesc_powerpc_vsx32l;
1176 else if (altivec)
1177 return tdesc_powerpc_altivec32l;
1178 else
1179 return tdesc_powerpc_32l;
1180
1181 case 48 * 8:
1182 if (cell)
1183 return tdesc_powerpc_cell64l;
1184 else if (vsx)
1185 return tdesc_powerpc_vsx64l;
1186 else if (altivec)
1187 return tdesc_powerpc_altivec64l;
1188 else
1189 return tdesc_powerpc_64l;
1190
1191 default:
1192 return NULL;
1193 }
1194 }
1195
1196
1197 /* Cell/B.E. active SPE context tracking support. */
1198
1199 static struct objfile *spe_context_objfile = NULL;
1200 static CORE_ADDR spe_context_lm_addr = 0;
1201 static CORE_ADDR spe_context_offset = 0;
1202
1203 static ptid_t spe_context_cache_ptid;
1204 static CORE_ADDR spe_context_cache_address;
1205
1206 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1207 to track whether we've loaded a version of libspe2 (as static or dynamic
1208 library) that provides the __spe_current_active_context variable. */
1209 static void
1210 ppc_linux_spe_context_lookup (struct objfile *objfile)
1211 {
1212 struct minimal_symbol *sym;
1213
1214 if (!objfile)
1215 {
1216 spe_context_objfile = NULL;
1217 spe_context_lm_addr = 0;
1218 spe_context_offset = 0;
1219 spe_context_cache_ptid = minus_one_ptid;
1220 spe_context_cache_address = 0;
1221 return;
1222 }
1223
1224 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1225 if (sym)
1226 {
1227 spe_context_objfile = objfile;
1228 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1229 spe_context_offset = SYMBOL_VALUE_ADDRESS (sym);
1230 spe_context_cache_ptid = minus_one_ptid;
1231 spe_context_cache_address = 0;
1232 return;
1233 }
1234 }
1235
1236 static void
1237 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1238 {
1239 struct objfile *objfile;
1240
1241 ppc_linux_spe_context_lookup (NULL);
1242 ALL_OBJFILES (objfile)
1243 ppc_linux_spe_context_lookup (objfile);
1244 }
1245
1246 static void
1247 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1248 {
1249 if (strstr (so->so_original_name, "/libspe") != NULL)
1250 {
1251 solib_read_symbols (so, 0);
1252 ppc_linux_spe_context_lookup (so->objfile);
1253 }
1254 }
1255
1256 static void
1257 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1258 {
1259 if (so->objfile == spe_context_objfile)
1260 ppc_linux_spe_context_lookup (NULL);
1261 }
1262
1263 /* Retrieve contents of the N'th element in the current thread's
1264 linked SPE context list into ID and NPC. Return the address of
1265 said context element, or 0 if not found. */
1266 static CORE_ADDR
1267 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1268 int n, int *id, unsigned int *npc)
1269 {
1270 CORE_ADDR spe_context = 0;
1271 gdb_byte buf[16];
1272 int i;
1273
1274 /* Quick exit if we have not found __spe_current_active_context. */
1275 if (!spe_context_objfile)
1276 return 0;
1277
1278 /* Look up cached address of thread-local variable. */
1279 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1280 {
1281 struct target_ops *target = &current_target;
1282 volatile struct gdb_exception ex;
1283
1284 while (target && !target->to_get_thread_local_address)
1285 target = find_target_beneath (target);
1286 if (!target)
1287 return 0;
1288
1289 TRY_CATCH (ex, RETURN_MASK_ERROR)
1290 {
1291 /* We do not call target_translate_tls_address here, because
1292 svr4_fetch_objfile_link_map may invalidate the frame chain,
1293 which must not do while inside a frame sniffer.
1294
1295 Instead, we have cached the lm_addr value, and use that to
1296 directly call the target's to_get_thread_local_address. */
1297 spe_context_cache_address
1298 = target->to_get_thread_local_address (target, inferior_ptid,
1299 spe_context_lm_addr,
1300 spe_context_offset);
1301 spe_context_cache_ptid = inferior_ptid;
1302 }
1303
1304 if (ex.reason < 0)
1305 return 0;
1306 }
1307
1308 /* Read variable value. */
1309 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1310 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1311
1312 /* Cyle through to N'th linked list element. */
1313 for (i = 0; i < n && spe_context; i++)
1314 if (target_read_memory (spe_context + align_up (12, wordsize),
1315 buf, wordsize) == 0)
1316 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1317 else
1318 spe_context = 0;
1319
1320 /* Read current context. */
1321 if (spe_context
1322 && target_read_memory (spe_context, buf, 12) != 0)
1323 spe_context = 0;
1324
1325 /* Extract data elements. */
1326 if (spe_context)
1327 {
1328 if (id)
1329 *id = extract_signed_integer (buf, 4, byte_order);
1330 if (npc)
1331 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1332 }
1333
1334 return spe_context;
1335 }
1336
1337
1338 /* Cell/B.E. cross-architecture unwinder support. */
1339
1340 struct ppu2spu_cache
1341 {
1342 struct frame_id frame_id;
1343 struct regcache *regcache;
1344 };
1345
1346 static struct gdbarch *
1347 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1348 {
1349 struct ppu2spu_cache *cache = *this_cache;
1350 return get_regcache_arch (cache->regcache);
1351 }
1352
1353 static void
1354 ppu2spu_this_id (struct frame_info *this_frame,
1355 void **this_cache, struct frame_id *this_id)
1356 {
1357 struct ppu2spu_cache *cache = *this_cache;
1358 *this_id = cache->frame_id;
1359 }
1360
1361 static struct value *
1362 ppu2spu_prev_register (struct frame_info *this_frame,
1363 void **this_cache, int regnum)
1364 {
1365 struct ppu2spu_cache *cache = *this_cache;
1366 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1367 gdb_byte *buf;
1368
1369 buf = alloca (register_size (gdbarch, regnum));
1370
1371 if (regnum < gdbarch_num_regs (gdbarch))
1372 regcache_raw_read (cache->regcache, regnum, buf);
1373 else
1374 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1375
1376 return frame_unwind_got_bytes (this_frame, regnum, buf);
1377 }
1378
1379 struct ppu2spu_data
1380 {
1381 struct gdbarch *gdbarch;
1382 int id;
1383 unsigned int npc;
1384 gdb_byte gprs[128*16];
1385 };
1386
1387 static int
1388 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1389 {
1390 struct ppu2spu_data *data = src;
1391 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1392
1393 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1394 memcpy (buf, data->gprs + 16*regnum, 16);
1395 else if (regnum == SPU_ID_REGNUM)
1396 store_unsigned_integer (buf, 4, byte_order, data->id);
1397 else if (regnum == SPU_PC_REGNUM)
1398 store_unsigned_integer (buf, 4, byte_order, data->npc);
1399 else
1400 return REG_UNAVAILABLE;
1401
1402 return REG_VALID;
1403 }
1404
1405 static int
1406 ppu2spu_sniffer (const struct frame_unwind *self,
1407 struct frame_info *this_frame, void **this_prologue_cache)
1408 {
1409 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1411 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1412 struct ppu2spu_data data;
1413 struct frame_info *fi;
1414 CORE_ADDR base, func, backchain, spe_context;
1415 gdb_byte buf[8];
1416 int n = 0;
1417
1418 /* Count the number of SPU contexts already in the frame chain. */
1419 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1420 if (get_frame_type (fi) == ARCH_FRAME
1421 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1422 n++;
1423
1424 base = get_frame_sp (this_frame);
1425 func = get_frame_pc (this_frame);
1426 if (target_read_memory (base, buf, tdep->wordsize))
1427 return 0;
1428 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1429
1430 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1431 n, &data.id, &data.npc);
1432 if (spe_context && base <= spe_context && spe_context < backchain)
1433 {
1434 char annex[32];
1435
1436 /* Find gdbarch for SPU. */
1437 struct gdbarch_info info;
1438 gdbarch_info_init (&info);
1439 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1440 info.byte_order = BFD_ENDIAN_BIG;
1441 info.osabi = GDB_OSABI_LINUX;
1442 info.tdep_info = (void *) &data.id;
1443 data.gdbarch = gdbarch_find_by_info (info);
1444 if (!data.gdbarch)
1445 return 0;
1446
1447 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1448 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1449 data.gprs, 0, sizeof data.gprs)
1450 == sizeof data.gprs)
1451 {
1452 struct ppu2spu_cache *cache
1453 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1454
1455 struct address_space *aspace = get_frame_address_space (this_frame);
1456 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1457 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1458 regcache_save (regcache, ppu2spu_unwind_register, &data);
1459 discard_cleanups (cleanups);
1460
1461 cache->frame_id = frame_id_build (base, func);
1462 cache->regcache = regcache;
1463 *this_prologue_cache = cache;
1464 return 1;
1465 }
1466 }
1467
1468 return 0;
1469 }
1470
1471 static void
1472 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1473 {
1474 struct ppu2spu_cache *cache = this_cache;
1475 regcache_xfree (cache->regcache);
1476 }
1477
1478 static const struct frame_unwind ppu2spu_unwind = {
1479 ARCH_FRAME,
1480 default_frame_unwind_stop_reason,
1481 ppu2spu_this_id,
1482 ppu2spu_prev_register,
1483 NULL,
1484 ppu2spu_sniffer,
1485 ppu2spu_dealloc_cache,
1486 ppu2spu_prev_arch,
1487 };
1488
1489
1490 static void
1491 ppc_linux_init_abi (struct gdbarch_info info,
1492 struct gdbarch *gdbarch)
1493 {
1494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1495 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1496
1497 linux_init_abi (info, gdbarch);
1498
1499 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1500 128-bit, they are IBM long double, not IEEE quad long double as
1501 in the System V ABI PowerPC Processor Supplement. We can safely
1502 let them default to 128-bit, since the debug info will give the
1503 size of type actually used in each case. */
1504 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1505 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1506
1507 /* Handle inferior calls during interrupted system calls. */
1508 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1509
1510 /* Get the syscall number from the arch's register. */
1511 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1512
1513 if (tdep->wordsize == 4)
1514 {
1515 /* Until November 2001, gcc did not comply with the 32 bit SysV
1516 R4 ABI requirement that structures less than or equal to 8
1517 bytes should be returned in registers. Instead GCC was using
1518 the AIX/PowerOpen ABI - everything returned in memory
1519 (well ignoring vectors that is). When this was corrected, it
1520 wasn't fixed for GNU/Linux native platform. Use the
1521 PowerOpen struct convention. */
1522 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1523
1524 set_gdbarch_memory_remove_breakpoint (gdbarch,
1525 ppc_linux_memory_remove_breakpoint);
1526
1527 /* Shared library handling. */
1528 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1529 set_solib_svr4_fetch_link_map_offsets
1530 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1531
1532 /* Setting the correct XML syscall filename. */
1533 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
1534
1535 /* Trampolines. */
1536 tramp_frame_prepend_unwinder (gdbarch,
1537 &ppc32_linux_sigaction_tramp_frame);
1538 tramp_frame_prepend_unwinder (gdbarch,
1539 &ppc32_linux_sighandler_tramp_frame);
1540
1541 /* BFD target for core files. */
1542 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1543 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1544 else
1545 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1546
1547 /* Supported register sections. */
1548 if (tdesc_find_feature (info.target_desc,
1549 "org.gnu.gdb.power.vsx"))
1550 set_gdbarch_core_regset_sections (gdbarch,
1551 ppc_linux_vsx_regset_sections);
1552 else if (tdesc_find_feature (info.target_desc,
1553 "org.gnu.gdb.power.altivec"))
1554 set_gdbarch_core_regset_sections (gdbarch,
1555 ppc_linux_vmx_regset_sections);
1556 else
1557 set_gdbarch_core_regset_sections (gdbarch,
1558 ppc_linux_fp_regset_sections);
1559 }
1560
1561 if (tdep->wordsize == 8)
1562 {
1563 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1564 function descriptors). */
1565 set_gdbarch_convert_from_func_ptr_addr
1566 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1567
1568 /* Shared library handling. */
1569 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1570 set_solib_svr4_fetch_link_map_offsets
1571 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1572
1573 /* Setting the correct XML syscall filename. */
1574 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
1575
1576 /* Trampolines. */
1577 tramp_frame_prepend_unwinder (gdbarch,
1578 &ppc64_linux_sigaction_tramp_frame);
1579 tramp_frame_prepend_unwinder (gdbarch,
1580 &ppc64_linux_sighandler_tramp_frame);
1581
1582 /* BFD target for core files. */
1583 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1584 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1585 else
1586 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1587
1588 /* Supported register sections. */
1589 if (tdesc_find_feature (info.target_desc,
1590 "org.gnu.gdb.power.vsx"))
1591 set_gdbarch_core_regset_sections (gdbarch,
1592 ppc64_linux_vsx_regset_sections);
1593 else if (tdesc_find_feature (info.target_desc,
1594 "org.gnu.gdb.power.altivec"))
1595 set_gdbarch_core_regset_sections (gdbarch,
1596 ppc64_linux_vmx_regset_sections);
1597 else
1598 set_gdbarch_core_regset_sections (gdbarch,
1599 ppc64_linux_fp_regset_sections);
1600 }
1601 set_gdbarch_regset_from_core_section (gdbarch,
1602 ppc_linux_regset_from_core_section);
1603 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1604
1605 /* Enable TLS support. */
1606 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1607 svr4_fetch_objfile_link_map);
1608
1609 if (tdesc_data)
1610 {
1611 const struct tdesc_feature *feature;
1612
1613 /* If we have target-described registers, then we can safely
1614 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1615 (whether they are described or not). */
1616 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1617 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1618
1619 /* If they are present, then assign them to the reserved number. */
1620 feature = tdesc_find_feature (info.target_desc,
1621 "org.gnu.gdb.power.linux");
1622 if (feature != NULL)
1623 {
1624 tdesc_numbered_register (feature, tdesc_data,
1625 PPC_ORIG_R3_REGNUM, "orig_r3");
1626 tdesc_numbered_register (feature, tdesc_data,
1627 PPC_TRAP_REGNUM, "trap");
1628 }
1629 }
1630
1631 /* Enable Cell/B.E. if supported by the target. */
1632 if (tdesc_compatible_p (info.target_desc,
1633 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1634 {
1635 /* Cell/B.E. multi-architecture support. */
1636 set_spu_solib_ops (gdbarch);
1637
1638 /* Cell/B.E. cross-architecture unwinder support. */
1639 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1640
1641 /* The default displaced_step_at_entry_point doesn't work for
1642 SPU stand-alone executables. */
1643 set_gdbarch_displaced_step_location (gdbarch,
1644 ppc_linux_displaced_step_location);
1645 }
1646 }
1647
1648 /* Provide a prototype to silence -Wmissing-prototypes. */
1649 extern initialize_file_ftype _initialize_ppc_linux_tdep;
1650
1651 void
1652 _initialize_ppc_linux_tdep (void)
1653 {
1654 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1655 64-bit PowerPC, and the older rs6k. */
1656 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1657 ppc_linux_init_abi);
1658 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1659 ppc_linux_init_abi);
1660 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1661 ppc_linux_init_abi);
1662
1663 /* Attach to inferior_created observer. */
1664 observer_attach_inferior_created (ppc_linux_inferior_created);
1665
1666 /* Attach to observers to track __spe_current_active_context. */
1667 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1668 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1669 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1670
1671 /* Initialize the Linux target descriptions. */
1672 initialize_tdesc_powerpc_32l ();
1673 initialize_tdesc_powerpc_altivec32l ();
1674 initialize_tdesc_powerpc_cell32l ();
1675 initialize_tdesc_powerpc_vsx32l ();
1676 initialize_tdesc_powerpc_isa205_32l ();
1677 initialize_tdesc_powerpc_isa205_altivec32l ();
1678 initialize_tdesc_powerpc_isa205_vsx32l ();
1679 initialize_tdesc_powerpc_64l ();
1680 initialize_tdesc_powerpc_altivec64l ();
1681 initialize_tdesc_powerpc_cell64l ();
1682 initialize_tdesc_powerpc_vsx64l ();
1683 initialize_tdesc_powerpc_isa205_64l ();
1684 initialize_tdesc_powerpc_isa205_altivec64l ();
1685 initialize_tdesc_powerpc_isa205_vsx64l ();
1686 initialize_tdesc_powerpc_e500l ();
1687 }