]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-tdep.c
* aix-thread.c (supply_gprs64, fetch_regs_user_thread)
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "osabi.h"
35 #include "regset.h"
36 #include "solib-svr4.h"
37 #include "ppc-tdep.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40
41 /* The following instructions are used in the signal trampoline code
42 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
43 0x7777 but now uses the sigreturn syscalls. We check for both. */
44 #define INSTR_LI_R0_0x6666 0x38006666
45 #define INSTR_LI_R0_0x7777 0x38007777
46 #define INSTR_LI_R0_NR_sigreturn 0x38000077
47 #define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
48
49 #define INSTR_SC 0x44000002
50
51 /* Since the *-tdep.c files are platform independent (i.e, they may be
52 used to build cross platform debuggers), we can't include system
53 headers. Therefore, details concerning the sigcontext structure
54 must be painstakingly rerecorded. What's worse, if these details
55 ever change in the header files, they'll have to be changed here
56 as well. */
57
58 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
59 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
60
61 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
62 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
63
64 /* From <asm/sigcontext.h>,
65 offsetof(struct sigcontext_struct, handler) == 0x14 */
66 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
67
68 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
69 #define PPC_LINUX_PT_R0 0
70 #define PPC_LINUX_PT_R1 1
71 #define PPC_LINUX_PT_R2 2
72 #define PPC_LINUX_PT_R3 3
73 #define PPC_LINUX_PT_R4 4
74 #define PPC_LINUX_PT_R5 5
75 #define PPC_LINUX_PT_R6 6
76 #define PPC_LINUX_PT_R7 7
77 #define PPC_LINUX_PT_R8 8
78 #define PPC_LINUX_PT_R9 9
79 #define PPC_LINUX_PT_R10 10
80 #define PPC_LINUX_PT_R11 11
81 #define PPC_LINUX_PT_R12 12
82 #define PPC_LINUX_PT_R13 13
83 #define PPC_LINUX_PT_R14 14
84 #define PPC_LINUX_PT_R15 15
85 #define PPC_LINUX_PT_R16 16
86 #define PPC_LINUX_PT_R17 17
87 #define PPC_LINUX_PT_R18 18
88 #define PPC_LINUX_PT_R19 19
89 #define PPC_LINUX_PT_R20 20
90 #define PPC_LINUX_PT_R21 21
91 #define PPC_LINUX_PT_R22 22
92 #define PPC_LINUX_PT_R23 23
93 #define PPC_LINUX_PT_R24 24
94 #define PPC_LINUX_PT_R25 25
95 #define PPC_LINUX_PT_R26 26
96 #define PPC_LINUX_PT_R27 27
97 #define PPC_LINUX_PT_R28 28
98 #define PPC_LINUX_PT_R29 29
99 #define PPC_LINUX_PT_R30 30
100 #define PPC_LINUX_PT_R31 31
101 #define PPC_LINUX_PT_NIP 32
102 #define PPC_LINUX_PT_MSR 33
103 #define PPC_LINUX_PT_CTR 35
104 #define PPC_LINUX_PT_LNK 36
105 #define PPC_LINUX_PT_XER 37
106 #define PPC_LINUX_PT_CCR 38
107 #define PPC_LINUX_PT_MQ 39
108 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
109 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
110 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
111
112 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
113
114 /* Determine if pc is in a signal trampoline...
115
116 Ha! That's not what this does at all. wait_for_inferior in
117 infrun.c calls get_frame_type() in order to detect entry into a
118 signal trampoline just after delivery of a signal. But on
119 GNU/Linux, signal trampolines are used for the return path only.
120 The kernel sets things up so that the signal handler is called
121 directly.
122
123 If we use in_sigtramp2() in place of in_sigtramp() (see below)
124 we'll (often) end up with stop_pc in the trampoline and prev_pc in
125 the (now exited) handler. The code there will cause a temporary
126 breakpoint to be set on prev_pc which is not very likely to get hit
127 again.
128
129 If this is confusing, think of it this way... the code in
130 wait_for_inferior() needs to be able to detect entry into a signal
131 trampoline just after a signal is delivered, not after the handler
132 has been run.
133
134 So, we define in_sigtramp() below to return 1 if the following is
135 true:
136
137 1) The previous frame is a real signal trampoline.
138
139 - and -
140
141 2) pc is at the first or second instruction of the corresponding
142 handler.
143
144 Why the second instruction? It seems that wait_for_inferior()
145 never sees the first instruction when single stepping. When a
146 signal is delivered while stepping, the next instruction that
147 would've been stepped over isn't, instead a signal is delivered and
148 the first instruction of the handler is stepped over instead. That
149 puts us on the second instruction. (I added the test for the first
150 instruction long after the fact, just in case the observed behavior
151 is ever fixed.) */
152
153 int
154 ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
155 {
156 CORE_ADDR lr;
157 CORE_ADDR sp;
158 CORE_ADDR tramp_sp;
159 char buf[4];
160 CORE_ADDR handler;
161
162 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
163 if (!ppc_linux_at_sigtramp_return_path (lr))
164 return 0;
165
166 sp = read_register (SP_REGNUM);
167
168 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
169 return 0;
170
171 tramp_sp = extract_unsigned_integer (buf, 4);
172
173 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
174 sizeof (buf)) != 0)
175 return 0;
176
177 handler = extract_unsigned_integer (buf, 4);
178
179 return (pc == handler || pc == handler + 4);
180 }
181
182 static int
183 insn_is_sigreturn (unsigned long pcinsn)
184 {
185 switch(pcinsn)
186 {
187 case INSTR_LI_R0_0x6666:
188 case INSTR_LI_R0_0x7777:
189 case INSTR_LI_R0_NR_sigreturn:
190 case INSTR_LI_R0_NR_rt_sigreturn:
191 return 1;
192 default:
193 return 0;
194 }
195 }
196
197 /*
198 * The signal handler trampoline is on the stack and consists of exactly
199 * two instructions. The easiest and most accurate way of determining
200 * whether the pc is in one of these trampolines is by inspecting the
201 * instructions. It'd be faster though if we could find a way to do this
202 * via some simple address comparisons.
203 */
204 static int
205 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
206 {
207 char buf[12];
208 unsigned long pcinsn;
209 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
210 return 0;
211
212 /* extract the instruction at the pc */
213 pcinsn = extract_unsigned_integer (buf + 4, 4);
214
215 return (
216 (insn_is_sigreturn (pcinsn)
217 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
218 ||
219 (pcinsn == INSTR_SC
220 && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
221 }
222
223 static CORE_ADDR
224 ppc_linux_skip_trampoline_code (CORE_ADDR pc)
225 {
226 char buf[4];
227 struct obj_section *sect;
228 struct objfile *objfile;
229 unsigned long insn;
230 CORE_ADDR plt_start = 0;
231 CORE_ADDR symtab = 0;
232 CORE_ADDR strtab = 0;
233 int num_slots = -1;
234 int reloc_index = -1;
235 CORE_ADDR plt_table;
236 CORE_ADDR reloc;
237 CORE_ADDR sym;
238 long symidx;
239 char symname[1024];
240 struct minimal_symbol *msymbol;
241
242 /* Find the section pc is in; return if not in .plt */
243 sect = find_pc_section (pc);
244 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
245 return 0;
246
247 objfile = sect->objfile;
248
249 /* Pick up the instruction at pc. It had better be of the
250 form
251 li r11, IDX
252
253 where IDX is an index into the plt_table. */
254
255 if (target_read_memory (pc, buf, 4) != 0)
256 return 0;
257 insn = extract_unsigned_integer (buf, 4);
258
259 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
260 return 0;
261
262 reloc_index = (insn << 16) >> 16;
263
264 /* Find the objfile that pc is in and obtain the information
265 necessary for finding the symbol name. */
266 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
267 {
268 const char *secname = sect->the_bfd_section->name;
269 if (strcmp (secname, ".plt") == 0)
270 plt_start = sect->addr;
271 else if (strcmp (secname, ".rela.plt") == 0)
272 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
273 else if (strcmp (secname, ".dynsym") == 0)
274 symtab = sect->addr;
275 else if (strcmp (secname, ".dynstr") == 0)
276 strtab = sect->addr;
277 }
278
279 /* Make sure we have all the information we need. */
280 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
281 return 0;
282
283 /* Compute the value of the plt table */
284 plt_table = plt_start + 72 + 8 * num_slots;
285
286 /* Get address of the relocation entry (Elf32_Rela) */
287 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
288 return 0;
289 reloc = extract_unsigned_integer (buf, 4);
290
291 sect = find_pc_section (reloc);
292 if (!sect)
293 return 0;
294
295 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
296 return reloc;
297
298 /* Now get the r_info field which is the relocation type and symbol
299 index. */
300 if (target_read_memory (reloc + 4, buf, 4) != 0)
301 return 0;
302 symidx = extract_unsigned_integer (buf, 4);
303
304 /* Shift out the relocation type leaving just the symbol index */
305 /* symidx = ELF32_R_SYM(symidx); */
306 symidx = symidx >> 8;
307
308 /* compute the address of the symbol */
309 sym = symtab + symidx * 4;
310
311 /* Fetch the string table index */
312 if (target_read_memory (sym, buf, 4) != 0)
313 return 0;
314 symidx = extract_unsigned_integer (buf, 4);
315
316 /* Fetch the string; we don't know how long it is. Is it possible
317 that the following will fail because we're trying to fetch too
318 much? */
319 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
320 return 0;
321
322 /* This might not work right if we have multiple symbols with the
323 same name; the only way to really get it right is to perform
324 the same sort of lookup as the dynamic linker. */
325 msymbol = lookup_minimal_symbol_text (symname, NULL);
326 if (!msymbol)
327 return 0;
328
329 return SYMBOL_VALUE_ADDRESS (msymbol);
330 }
331
332 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
333 in much the same fashion as memory_remove_breakpoint in mem-break.c,
334 but is careful not to write back the previous contents if the code
335 in question has changed in between inserting the breakpoint and
336 removing it.
337
338 Here is the problem that we're trying to solve...
339
340 Once upon a time, before introducing this function to remove
341 breakpoints from the inferior, setting a breakpoint on a shared
342 library function prior to running the program would not work
343 properly. In order to understand the problem, it is first
344 necessary to understand a little bit about dynamic linking on
345 this platform.
346
347 A call to a shared library function is accomplished via a bl
348 (branch-and-link) instruction whose branch target is an entry
349 in the procedure linkage table (PLT). The PLT in the object
350 file is uninitialized. To gdb, prior to running the program, the
351 entries in the PLT are all zeros.
352
353 Once the program starts running, the shared libraries are loaded
354 and the procedure linkage table is initialized, but the entries in
355 the table are not (necessarily) resolved. Once a function is
356 actually called, the code in the PLT is hit and the function is
357 resolved. In order to better illustrate this, an example is in
358 order; the following example is from the gdb testsuite.
359
360 We start the program shmain.
361
362 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
363 [...]
364
365 We place two breakpoints, one on shr1 and the other on main.
366
367 (gdb) b shr1
368 Breakpoint 1 at 0x100409d4
369 (gdb) b main
370 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
371
372 Examine the instruction (and the immediatly following instruction)
373 upon which the breakpoint was placed. Note that the PLT entry
374 for shr1 contains zeros.
375
376 (gdb) x/2i 0x100409d4
377 0x100409d4 <shr1>: .long 0x0
378 0x100409d8 <shr1+4>: .long 0x0
379
380 Now run 'til main.
381
382 (gdb) r
383 Starting program: gdb.base/shmain
384 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
385
386 Breakpoint 2, main ()
387 at gdb.base/shmain.c:44
388 44 g = 1;
389
390 Examine the PLT again. Note that the loading of the shared
391 library has initialized the PLT to code which loads a constant
392 (which I think is an index into the GOT) into r11 and then
393 branchs a short distance to the code which actually does the
394 resolving.
395
396 (gdb) x/2i 0x100409d4
397 0x100409d4 <shr1>: li r11,4
398 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
399 (gdb) c
400 Continuing.
401
402 Breakpoint 1, shr1 (x=1)
403 at gdb.base/shr1.c:19
404 19 l = 1;
405
406 Now we've hit the breakpoint at shr1. (The breakpoint was
407 reset from the PLT entry to the actual shr1 function after the
408 shared library was loaded.) Note that the PLT entry has been
409 resolved to contain a branch that takes us directly to shr1.
410 (The real one, not the PLT entry.)
411
412 (gdb) x/2i 0x100409d4
413 0x100409d4 <shr1>: b 0xffaf76c <shr1>
414 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
415
416 The thing to note here is that the PLT entry for shr1 has been
417 changed twice.
418
419 Now the problem should be obvious. GDB places a breakpoint (a
420 trap instruction) on the zero value of the PLT entry for shr1.
421 Later on, after the shared library had been loaded and the PLT
422 initialized, GDB gets a signal indicating this fact and attempts
423 (as it always does when it stops) to remove all the breakpoints.
424
425 The breakpoint removal was causing the former contents (a zero
426 word) to be written back to the now initialized PLT entry thus
427 destroying a portion of the initialization that had occurred only a
428 short time ago. When execution continued, the zero word would be
429 executed as an instruction an an illegal instruction trap was
430 generated instead. (0 is not a legal instruction.)
431
432 The fix for this problem was fairly straightforward. The function
433 memory_remove_breakpoint from mem-break.c was copied to this file,
434 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
435 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
436 function.
437
438 The differences between ppc_linux_memory_remove_breakpoint () and
439 memory_remove_breakpoint () are minor. All that the former does
440 that the latter does not is check to make sure that the breakpoint
441 location actually contains a breakpoint (trap instruction) prior
442 to attempting to write back the old contents. If it does contain
443 a trap instruction, we allow the old contents to be written back.
444 Otherwise, we silently do nothing.
445
446 The big question is whether memory_remove_breakpoint () should be
447 changed to have the same functionality. The downside is that more
448 traffic is generated for remote targets since we'll have an extra
449 fetch of a memory word each time a breakpoint is removed.
450
451 For the time being, we'll leave this self-modifying-code-friendly
452 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
453 else in the event that some other platform has similar needs with
454 regard to removing breakpoints in some potentially self modifying
455 code. */
456 int
457 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
458 {
459 const unsigned char *bp;
460 int val;
461 int bplen;
462 char old_contents[BREAKPOINT_MAX];
463
464 /* Determine appropriate breakpoint contents and size for this address. */
465 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
466 if (bp == NULL)
467 error ("Software breakpoints not implemented for this target.");
468
469 val = target_read_memory (addr, old_contents, bplen);
470
471 /* If our breakpoint is no longer at the address, this means that the
472 program modified the code on us, so it is wrong to put back the
473 old value */
474 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
475 val = target_write_memory (addr, contents_cache, bplen);
476
477 return val;
478 }
479
480 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
481 than the 32 bit SYSV R4 ABI structure return convention - all
482 structures, no matter their size, are put in memory. Vectors,
483 which were added later, do get returned in a register though. */
484
485 static enum return_value_convention
486 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
487 struct regcache *regcache, void *readbuf,
488 const void *writebuf)
489 {
490 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
491 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
492 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
493 && TYPE_VECTOR (valtype)))
494 return RETURN_VALUE_STRUCT_CONVENTION;
495 else
496 return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
497 writebuf);
498 }
499
500 /* Fetch (and possibly build) an appropriate link_map_offsets
501 structure for GNU/Linux PPC targets using the struct offsets
502 defined in link.h (but without actual reference to that file).
503
504 This makes it possible to access GNU/Linux PPC shared libraries
505 from a GDB that was not built on an GNU/Linux PPC host (for cross
506 debugging). */
507
508 struct link_map_offsets *
509 ppc_linux_svr4_fetch_link_map_offsets (void)
510 {
511 static struct link_map_offsets lmo;
512 static struct link_map_offsets *lmp = NULL;
513
514 if (lmp == NULL)
515 {
516 lmp = &lmo;
517
518 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
519 this is all we need. */
520 lmo.r_map_offset = 4;
521 lmo.r_map_size = 4;
522
523 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
524 this is all we need. */
525 lmo.l_addr_offset = 0;
526 lmo.l_addr_size = 4;
527
528 lmo.l_name_offset = 4;
529 lmo.l_name_size = 4;
530
531 lmo.l_next_offset = 12;
532 lmo.l_next_size = 4;
533
534 lmo.l_prev_offset = 16;
535 lmo.l_prev_size = 4;
536 }
537
538 return lmp;
539 }
540
541
542 /* Macros for matching instructions. Note that, since all the
543 operands are masked off before they're or-ed into the instruction,
544 you can use -1 to make masks. */
545
546 #define insn_d(opcd, rts, ra, d) \
547 ((((opcd) & 0x3f) << 26) \
548 | (((rts) & 0x1f) << 21) \
549 | (((ra) & 0x1f) << 16) \
550 | ((d) & 0xffff))
551
552 #define insn_ds(opcd, rts, ra, d, xo) \
553 ((((opcd) & 0x3f) << 26) \
554 | (((rts) & 0x1f) << 21) \
555 | (((ra) & 0x1f) << 16) \
556 | ((d) & 0xfffc) \
557 | ((xo) & 0x3))
558
559 #define insn_xfx(opcd, rts, spr, xo) \
560 ((((opcd) & 0x3f) << 26) \
561 | (((rts) & 0x1f) << 21) \
562 | (((spr) & 0x1f) << 16) \
563 | (((spr) & 0x3e0) << 6) \
564 | (((xo) & 0x3ff) << 1))
565
566 /* Read a PPC instruction from memory. PPC instructions are always
567 big-endian, no matter what endianness the program is running in, so
568 we can't use read_memory_integer or one of its friends here. */
569 static unsigned int
570 read_insn (CORE_ADDR pc)
571 {
572 unsigned char buf[4];
573
574 read_memory (pc, buf, 4);
575 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
576 }
577
578
579 /* An instruction to match. */
580 struct insn_pattern
581 {
582 unsigned int mask; /* mask the insn with this... */
583 unsigned int data; /* ...and see if it matches this. */
584 int optional; /* If non-zero, this insn may be absent. */
585 };
586
587 /* Return non-zero if the instructions at PC match the series
588 described in PATTERN, or zero otherwise. PATTERN is an array of
589 'struct insn_pattern' objects, terminated by an entry whose mask is
590 zero.
591
592 When the match is successful, fill INSN[i] with what PATTERN[i]
593 matched. If PATTERN[i] is optional, and the instruction wasn't
594 present, set INSN[i] to 0 (which is not a valid PPC instruction).
595 INSN should have as many elements as PATTERN. Note that, if
596 PATTERN contains optional instructions which aren't present in
597 memory, then INSN will have holes, so INSN[i] isn't necessarily the
598 i'th instruction in memory. */
599 static int
600 insns_match_pattern (CORE_ADDR pc,
601 struct insn_pattern *pattern,
602 unsigned int *insn)
603 {
604 int i;
605
606 for (i = 0; pattern[i].mask; i++)
607 {
608 insn[i] = read_insn (pc);
609 if ((insn[i] & pattern[i].mask) == pattern[i].data)
610 pc += 4;
611 else if (pattern[i].optional)
612 insn[i] = 0;
613 else
614 return 0;
615 }
616
617 return 1;
618 }
619
620
621 /* Return the 'd' field of the d-form instruction INSN, properly
622 sign-extended. */
623 static CORE_ADDR
624 insn_d_field (unsigned int insn)
625 {
626 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
627 }
628
629
630 /* Return the 'ds' field of the ds-form instruction INSN, with the two
631 zero bits concatenated at the right, and properly
632 sign-extended. */
633 static CORE_ADDR
634 insn_ds_field (unsigned int insn)
635 {
636 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
637 }
638
639
640 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
641 descriptor, return the descriptor's entry point. */
642 static CORE_ADDR
643 ppc64_desc_entry_point (CORE_ADDR desc)
644 {
645 /* The first word of the descriptor is the entry point. */
646 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
647 }
648
649
650 /* Pattern for the standard linkage function. These are built by
651 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
652 zero. */
653 static struct insn_pattern ppc64_standard_linkage[] =
654 {
655 /* addis r12, r2, <any> */
656 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
657
658 /* std r2, 40(r1) */
659 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
660
661 /* ld r11, <any>(r12) */
662 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
663
664 /* addis r12, r12, 1 <optional> */
665 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
666
667 /* ld r2, <any>(r12) */
668 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
669
670 /* addis r12, r12, 1 <optional> */
671 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
672
673 /* mtctr r11 */
674 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
675 0 },
676
677 /* ld r11, <any>(r12) */
678 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
679
680 /* bctr */
681 { -1, 0x4e800420, 0 },
682
683 { 0, 0, 0 }
684 };
685 #define PPC64_STANDARD_LINKAGE_LEN \
686 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
687
688
689 /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
690 calls a "solib trampoline". */
691 static int
692 ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
693 {
694 /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
695
696 It's not specifically solib call trampolines that are the issue.
697 Any call from one function to another function that uses a
698 different TOC requires a trampoline, to save the caller's TOC
699 pointer and then load the callee's TOC. An executable or shared
700 library may have more than one TOC, so even intra-object calls
701 may require a trampoline. Since executable and shared libraries
702 will all have their own distinct TOCs, every inter-object call is
703 also an inter-TOC call, and requires a trampoline --- so "solib
704 call trampolines" are just a special case.
705
706 The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
707 "linkage functions". Since they need to be near the functions
708 that call them, they all appear in .text, not in any special
709 section. The .plt section just contains an array of function
710 descriptors, from which the linkage functions load the callee's
711 entry point, TOC value, and environment pointer. So
712 in_plt_section is useless. The linkage functions don't have any
713 special linker symbols to name them, either.
714
715 The only way I can see to recognize them is to actually look at
716 their code. They're generated by ppc_build_one_stub and some
717 other functions in bfd/elf64-ppc.c, so that should show us all
718 the instruction sequences we need to recognize. */
719 unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
720
721 return insns_match_pattern (pc, ppc64_standard_linkage, insn);
722 }
723
724
725 /* When the dynamic linker is doing lazy symbol resolution, the first
726 call to a function in another object will go like this:
727
728 - The user's function calls the linkage function:
729
730 100007c4: 4b ff fc d5 bl 10000498
731 100007c8: e8 41 00 28 ld r2,40(r1)
732
733 - The linkage function loads the entry point (and other stuff) from
734 the function descriptor in the PLT, and jumps to it:
735
736 10000498: 3d 82 00 00 addis r12,r2,0
737 1000049c: f8 41 00 28 std r2,40(r1)
738 100004a0: e9 6c 80 98 ld r11,-32616(r12)
739 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
740 100004a8: 7d 69 03 a6 mtctr r11
741 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
742 100004b0: 4e 80 04 20 bctr
743
744 - But since this is the first time that PLT entry has been used, it
745 sends control to its glink entry. That loads the number of the
746 PLT entry and jumps to the common glink0 code:
747
748 10000c98: 38 00 00 00 li r0,0
749 10000c9c: 4b ff ff dc b 10000c78
750
751 - The common glink0 code then transfers control to the dynamic
752 linker's fixup code:
753
754 10000c78: e8 41 00 28 ld r2,40(r1)
755 10000c7c: 3d 82 00 00 addis r12,r2,0
756 10000c80: e9 6c 80 80 ld r11,-32640(r12)
757 10000c84: e8 4c 80 88 ld r2,-32632(r12)
758 10000c88: 7d 69 03 a6 mtctr r11
759 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
760 10000c90: 4e 80 04 20 bctr
761
762 Eventually, this code will figure out how to skip all of this,
763 including the dynamic linker. At the moment, we just get through
764 the linkage function. */
765
766 /* If the current thread is about to execute a series of instructions
767 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
768 from that pattern match, return the code address to which the
769 standard linkage function will send them. (This doesn't deal with
770 dynamic linker lazy symbol resolution stubs.) */
771 static CORE_ADDR
772 ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
773 {
774 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
775
776 /* The address of the function descriptor this linkage function
777 references. */
778 CORE_ADDR desc
779 = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
780 + (insn_d_field (insn[0]) << 16)
781 + insn_ds_field (insn[2]));
782
783 /* The first word of the descriptor is the entry point. Return that. */
784 return ppc64_desc_entry_point (desc);
785 }
786
787
788 /* Given that we've begun executing a call trampoline at PC, return
789 the entry point of the function the trampoline will go to. */
790 static CORE_ADDR
791 ppc64_skip_trampoline_code (CORE_ADDR pc)
792 {
793 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
794
795 if (insns_match_pattern (pc, ppc64_standard_linkage,
796 ppc64_standard_linkage_insn))
797 return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
798 else
799 return 0;
800 }
801
802
803 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
804 GNU/Linux.
805
806 Usually a function pointer's representation is simply the address
807 of the function. On GNU/Linux on the 64-bit PowerPC however, a
808 function pointer is represented by a pointer to a TOC entry. This
809 TOC entry contains three words, the first word is the address of
810 the function, the second word is the TOC pointer (r2), and the
811 third word is the static chain value. Throughout GDB it is
812 currently assumed that a function pointer contains the address of
813 the function, which is not easy to fix. In addition, the
814 conversion of a function address to a function pointer would
815 require allocation of a TOC entry in the inferior's memory space,
816 with all its drawbacks. To be able to call C++ virtual methods in
817 the inferior (which are called via function pointers),
818 find_function_addr uses this function to get the function address
819 from a function pointer. */
820
821 /* If ADDR points at what is clearly a function descriptor, transform
822 it into the address of the corresponding function. Be
823 conservative, otherwize GDB will do the transformation on any
824 random addresses such as occures when there is no symbol table. */
825
826 static CORE_ADDR
827 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
828 CORE_ADDR addr,
829 struct target_ops *targ)
830 {
831 struct section_table *s = target_section_by_addr (targ, addr);
832
833 /* Check if ADDR points to a function descriptor. */
834 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
835 return get_target_memory_unsigned (targ, addr, 8);
836
837 return addr;
838 }
839
840 static void
841 right_supply_register (struct regcache *regcache, int wordsize, int regnum,
842 const bfd_byte *buf)
843 {
844 regcache_raw_supply (regcache, regnum,
845 (buf + wordsize
846 - register_size (current_gdbarch, regnum)));
847 }
848
849 /* Extract the register values found in the WORDSIZED ABI GREGSET,
850 storing their values in REGCACHE. Note that some are left-aligned,
851 while others are right aligned. */
852
853 void
854 ppc_linux_supply_gregset (struct regcache *regcache,
855 int regnum, const void *gregs, size_t size,
856 int wordsize)
857 {
858 int regi;
859 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
860 struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
861 const bfd_byte *buf = gregs;
862
863 for (regi = 0; regi < 32; regi++)
864 right_supply_register (regcache, wordsize,
865 regcache_tdep->ppc_gp0_regnum + regi,
866 buf + wordsize * regi);
867
868 right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch),
869 buf + wordsize * PPC_LINUX_PT_NIP);
870 right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum,
871 buf + wordsize * PPC_LINUX_PT_LNK);
872 regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum,
873 buf + wordsize * PPC_LINUX_PT_CCR);
874 regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum,
875 buf + wordsize * PPC_LINUX_PT_XER);
876 regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum,
877 buf + wordsize * PPC_LINUX_PT_CTR);
878 if (regcache_tdep->ppc_mq_regnum != -1)
879 right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum,
880 buf + wordsize * PPC_LINUX_PT_MQ);
881 right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum,
882 buf + wordsize * PPC_LINUX_PT_MSR);
883 }
884
885 static void
886 ppc32_linux_supply_gregset (const struct regset *regset,
887 struct regcache *regcache,
888 int regnum, const void *gregs, size_t size)
889 {
890 ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4);
891 }
892
893 static struct regset ppc32_linux_gregset = {
894 NULL, ppc32_linux_supply_gregset
895 };
896
897 struct ppc_linux_sigtramp_cache
898 {
899 CORE_ADDR base;
900 struct trad_frame_saved_reg *saved_regs;
901 };
902
903 static struct ppc_linux_sigtramp_cache *
904 ppc_linux_sigtramp_cache (struct frame_info *next_frame, void **this_cache)
905 {
906 CORE_ADDR regs;
907 CORE_ADDR gpregs;
908 CORE_ADDR fpregs;
909 int i;
910 struct ppc_linux_sigtramp_cache *cache;
911 struct gdbarch *gdbarch = get_frame_arch (next_frame);
912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913
914 if ((*this_cache) != NULL)
915 return (*this_cache);
916 cache = FRAME_OBSTACK_ZALLOC (struct ppc_linux_sigtramp_cache);
917 (*this_cache) = cache;
918 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
919
920 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
921
922 /* Find the register pointer, which gives the address of the
923 register buffers. */
924 if (tdep->wordsize == 4)
925 regs = (cache->base
926 + 0xd0 /* Offset to ucontext_t. */
927 + 0x30 /* Offset to .reg. */);
928 else
929 regs = (cache->base
930 + 0x80 /* Offset to ucontext_t. */
931 + 0xe0 /* Offset to .reg. */);
932 /* And the corresponding register buffers. */
933 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
934 fpregs = gpregs + 48 * tdep->wordsize;
935
936 /* General purpose. */
937 for (i = 0; i < 32; i++)
938 {
939 int regnum = i + tdep->ppc_gp0_regnum;
940 cache->saved_regs[regnum].addr = gpregs + i * tdep->wordsize;
941 }
942 cache->saved_regs[PC_REGNUM].addr = gpregs + 32 * tdep->wordsize;
943 cache->saved_regs[tdep->ppc_ctr_regnum].addr = gpregs + 35 * tdep->wordsize;
944 cache->saved_regs[tdep->ppc_lr_regnum].addr = gpregs + 36 * tdep->wordsize;
945 cache->saved_regs[tdep->ppc_xer_regnum].addr = gpregs + 37 * tdep->wordsize;
946 cache->saved_regs[tdep->ppc_cr_regnum].addr = gpregs + 38 * tdep->wordsize;
947
948 /* Floating point registers. */
949 if (ppc_floating_point_unit_p (gdbarch))
950 {
951 for (i = 0; i < ppc_num_fprs; i++)
952 {
953 int regnum = i + tdep->ppc_fp0_regnum;
954 cache->saved_regs[regnum].addr = fpregs + i * tdep->wordsize;
955 }
956 cache->saved_regs[tdep->ppc_fpscr_regnum].addr
957 = fpregs + 32 * tdep->wordsize;
958 }
959
960 return cache;
961 }
962
963 static void
964 ppc_linux_sigtramp_this_id (struct frame_info *next_frame, void **this_cache,
965 struct frame_id *this_id)
966 {
967 struct ppc_linux_sigtramp_cache *info
968 = ppc_linux_sigtramp_cache (next_frame, this_cache);
969 (*this_id) = frame_id_build (info->base, frame_pc_unwind (next_frame));
970 }
971
972 static void
973 ppc_linux_sigtramp_prev_register (struct frame_info *next_frame,
974 void **this_cache,
975 int regnum, int *optimizedp,
976 enum lval_type *lvalp, CORE_ADDR *addrp,
977 int *realnump, void *valuep)
978 {
979 struct ppc_linux_sigtramp_cache *info
980 = ppc_linux_sigtramp_cache (next_frame, this_cache);
981 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
982 optimizedp, lvalp, addrp, realnump, valuep);
983 }
984
985 static const struct frame_unwind ppc_linux_sigtramp_unwind =
986 {
987 SIGTRAMP_FRAME,
988 ppc_linux_sigtramp_this_id,
989 ppc_linux_sigtramp_prev_register
990 };
991
992 static const struct frame_unwind *
993 ppc_linux_sigtramp_sniffer (struct frame_info *next_frame)
994 {
995 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
996 if (frame_pc_unwind (next_frame)
997 > frame_unwind_register_unsigned (next_frame, SP_REGNUM))
998 /* Assume anything that is vaguely on the stack is a signal
999 trampoline. */
1000 return &ppc_linux_sigtramp_unwind;
1001 else
1002 return NULL;
1003 }
1004
1005 static void
1006 ppc64_linux_supply_gregset (const struct regset *regset,
1007 struct regcache * regcache,
1008 int regnum, const void *gregs, size_t size)
1009 {
1010 ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8);
1011 }
1012
1013 static struct regset ppc64_linux_gregset = {
1014 NULL, ppc64_linux_supply_gregset
1015 };
1016
1017 void
1018 ppc_linux_supply_fpregset (const struct regset *regset,
1019 struct regcache * regcache,
1020 int regnum, const void *fpset, size_t size)
1021 {
1022 int regi;
1023 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1024 struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
1025 const bfd_byte *buf = fpset;
1026
1027 if (! ppc_floating_point_unit_p (regcache_arch))
1028 return;
1029
1030 for (regi = 0; regi < ppc_num_fprs; regi++)
1031 regcache_raw_supply (regcache,
1032 regcache_tdep->ppc_fp0_regnum + regi,
1033 buf + 8 * regi);
1034
1035 /* The FPSCR is stored in the low order word of the last
1036 doubleword in the fpregset. */
1037 regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum,
1038 buf + 8 * 32 + 4);
1039 }
1040
1041 static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset };
1042
1043 static const struct regset *
1044 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
1045 const char *sect_name, size_t sect_size)
1046 {
1047 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
1048 if (strcmp (sect_name, ".reg") == 0)
1049 {
1050 if (tdep->wordsize == 4)
1051 return &ppc32_linux_gregset;
1052 else
1053 return &ppc64_linux_gregset;
1054 }
1055 if (strcmp (sect_name, ".reg2") == 0)
1056 return &ppc_linux_fpregset;
1057 return NULL;
1058 }
1059
1060 static void
1061 ppc_linux_init_abi (struct gdbarch_info info,
1062 struct gdbarch *gdbarch)
1063 {
1064 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1065
1066 if (tdep->wordsize == 4)
1067 {
1068 /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
1069 Supplement says that long doubles are sixteen bytes long.
1070 However, as one of the known warts of its ABI, PPC GNU/Linux
1071 uses eight-byte long doubles. GCC only recently got 128-bit
1072 long double support on PPC, so it may be changing soon. The
1073 Linux Standards Base says that programs that use 'long
1074 double' on PPC GNU/Linux are non-conformant. */
1075 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1076
1077 /* Until November 2001, gcc did not comply with the 32 bit SysV
1078 R4 ABI requirement that structures less than or equal to 8
1079 bytes should be returned in registers. Instead GCC was using
1080 the the AIX/PowerOpen ABI - everything returned in memory
1081 (well ignoring vectors that is). When this was corrected, it
1082 wasn't fixed for GNU/Linux native platform. Use the
1083 PowerOpen struct convention. */
1084 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1085
1086 set_gdbarch_memory_remove_breakpoint (gdbarch,
1087 ppc_linux_memory_remove_breakpoint);
1088
1089 /* Shared library handling. */
1090 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1091 set_gdbarch_skip_trampoline_code (gdbarch,
1092 ppc_linux_skip_trampoline_code);
1093 set_solib_svr4_fetch_link_map_offsets
1094 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1095 }
1096
1097 if (tdep->wordsize == 8)
1098 {
1099 /* Handle PPC64 GNU/Linux function pointers (which are really
1100 function descriptors). */
1101 set_gdbarch_convert_from_func_ptr_addr
1102 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1103
1104 set_gdbarch_in_solib_call_trampoline
1105 (gdbarch, ppc64_in_solib_call_trampoline);
1106 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1107
1108 /* PPC64 malloc's entry-point is called ".malloc". */
1109 set_gdbarch_name_of_malloc (gdbarch, ".malloc");
1110 }
1111 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1112 frame_unwind_append_sniffer (gdbarch, ppc_linux_sigtramp_sniffer);
1113 }
1114
1115 void
1116 _initialize_ppc_linux_tdep (void)
1117 {
1118 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1119 64-bit PowerPC, and the older rs6k. */
1120 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1121 ppc_linux_init_abi);
1122 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1123 ppc_linux_init_abi);
1124 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1125 ppc_linux_init_abi);
1126 }