]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-sysv-tdep.c
* arm-tdep.c (arm_print_float_info): Use register value from FRAME
[thirdparty/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
1 /* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
4 Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "regcache.h"
28 #include "value.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "ppc-tdep.h"
32 #include "target.h"
33 #include "objfiles.h"
34 #include "infcall.h"
35
36 /* Pass the arguments in either registers, or in the stack. Using the
37 ppc sysv ABI, the first eight words of the argument list (that might
38 be less than eight parameters if some parameters occupy more than one
39 word) are passed in r3..r10 registers. float and double parameters are
40 passed in fpr's, in addition to that. Rest of the parameters if any
41 are passed in user stack.
42
43 If the function is returning a structure, then the return address is passed
44 in r3, then the first 7 words of the parametes can be passed in registers,
45 starting from r4. */
46
47 CORE_ADDR
48 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
49 struct regcache *regcache, CORE_ADDR bp_addr,
50 int nargs, struct value **args, CORE_ADDR sp,
51 int struct_return, CORE_ADDR struct_addr)
52 {
53 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
54 ULONGEST saved_sp;
55 int argspace = 0; /* 0 is an initial wrong guess. */
56 int write_pass;
57
58 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &saved_sp);
59
60 /* Go through the argument list twice.
61
62 Pass 1: Figure out how much new stack space is required for
63 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
64 ABI doesn't reserve any extra space for parameters which are put
65 in registers, but does always push structures and then pass their
66 address.
67
68 Pass 2: Replay the same computation but this time also write the
69 values out to the target. */
70
71 for (write_pass = 0; write_pass < 2; write_pass++)
72 {
73 int argno;
74 /* Next available floating point register for float and double
75 arguments. */
76 int freg = 1;
77 /* Next available general register for non-float, non-vector
78 arguments. */
79 int greg = 3;
80 /* Next available vector register for vector arguments. */
81 int vreg = 2;
82 /* Arguments start above the "LR save word" and "Back chain". */
83 int argoffset = 2 * tdep->wordsize;
84 /* Structures start after the arguments. */
85 int structoffset = argoffset + argspace;
86
87 /* If the function is returning a `struct', then the first word
88 (which will be passed in r3) is used for struct return
89 address. In that case we should advance one word and start
90 from r4 register to copy parameters. */
91 if (struct_return)
92 {
93 if (write_pass)
94 regcache_cooked_write_signed (regcache,
95 tdep->ppc_gp0_regnum + greg,
96 struct_addr);
97 greg++;
98 }
99
100 for (argno = 0; argno < nargs; argno++)
101 {
102 struct value *arg = args[argno];
103 struct type *type = check_typedef (value_type (arg));
104 int len = TYPE_LENGTH (type);
105 const bfd_byte *val = value_contents (arg);
106
107 if (TYPE_CODE (type) == TYPE_CODE_FLT
108 && ppc_floating_point_unit_p (current_gdbarch) && len <= 8)
109 {
110 /* Floating point value converted to "double" then
111 passed in an FP register, when the registers run out,
112 8 byte aligned stack is used. */
113 if (freg <= 8)
114 {
115 if (write_pass)
116 {
117 /* Always store the floating point value using
118 the register's floating-point format. */
119 gdb_byte regval[MAX_REGISTER_SIZE];
120 struct type *regtype
121 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
122 convert_typed_floating (val, type, regval, regtype);
123 regcache_cooked_write (regcache,
124 tdep->ppc_fp0_regnum + freg,
125 regval);
126 }
127 freg++;
128 }
129 else
130 {
131 /* SysV ABI converts floats to doubles before
132 writing them to an 8 byte aligned stack location. */
133 argoffset = align_up (argoffset, 8);
134 if (write_pass)
135 {
136 char memval[8];
137 convert_typed_floating (val, type, memval,
138 builtin_type_ieee_double);
139 write_memory (sp + argoffset, val, len);
140 }
141 argoffset += 8;
142 }
143 }
144 else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
145 || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
146 {
147 /* "long long" or "double" passed in an odd/even
148 register pair with the low addressed word in the odd
149 register and the high addressed word in the even
150 register, or when the registers run out an 8 byte
151 aligned stack location. */
152 if (greg > 9)
153 {
154 /* Just in case GREG was 10. */
155 greg = 11;
156 argoffset = align_up (argoffset, 8);
157 if (write_pass)
158 write_memory (sp + argoffset, val, len);
159 argoffset += 8;
160 }
161 else if (tdep->wordsize == 8)
162 {
163 if (write_pass)
164 regcache_cooked_write (regcache,
165 tdep->ppc_gp0_regnum + greg, val);
166 greg += 1;
167 }
168 else
169 {
170 /* Must start on an odd register - r3/r4 etc. */
171 if ((greg & 1) == 0)
172 greg++;
173 if (write_pass)
174 {
175 regcache_cooked_write (regcache,
176 tdep->ppc_gp0_regnum + greg + 0,
177 val + 0);
178 regcache_cooked_write (regcache,
179 tdep->ppc_gp0_regnum + greg + 1,
180 val + 4);
181 }
182 greg += 2;
183 }
184 }
185 else if (len == 16
186 && TYPE_CODE (type) == TYPE_CODE_ARRAY
187 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
188 {
189 /* Vector parameter passed in an Altivec register, or
190 when that runs out, 16 byte aligned stack location. */
191 if (vreg <= 13)
192 {
193 if (write_pass)
194 regcache_cooked_write (regcache,
195 tdep->ppc_vr0_regnum + vreg, val);
196 vreg++;
197 }
198 else
199 {
200 argoffset = align_up (argoffset, 16);
201 if (write_pass)
202 write_memory (sp + argoffset, val, 16);
203 argoffset += 16;
204 }
205 }
206 else if (len == 8
207 && TYPE_CODE (type) == TYPE_CODE_ARRAY
208 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
209 {
210 /* Vector parameter passed in an e500 register, or when
211 that runs out, 8 byte aligned stack location. Note
212 that since e500 vector and general purpose registers
213 both map onto the same underlying register set, a
214 "greg" and not a "vreg" is consumed here. A cooked
215 write stores the value in the correct locations
216 within the raw register cache. */
217 if (greg <= 10)
218 {
219 if (write_pass)
220 regcache_cooked_write (regcache,
221 tdep->ppc_ev0_regnum + greg, val);
222 greg++;
223 }
224 else
225 {
226 argoffset = align_up (argoffset, 8);
227 if (write_pass)
228 write_memory (sp + argoffset, val, 8);
229 argoffset += 8;
230 }
231 }
232 else
233 {
234 /* Reduce the parameter down to something that fits in a
235 "word". */
236 gdb_byte word[MAX_REGISTER_SIZE];
237 memset (word, 0, MAX_REGISTER_SIZE);
238 if (len > tdep->wordsize
239 || TYPE_CODE (type) == TYPE_CODE_STRUCT
240 || TYPE_CODE (type) == TYPE_CODE_UNION)
241 {
242 /* Structs and large values are put on an 8 byte
243 aligned stack ... */
244 structoffset = align_up (structoffset, 8);
245 if (write_pass)
246 write_memory (sp + structoffset, val, len);
247 /* ... and then a "word" pointing to that address is
248 passed as the parameter. */
249 store_unsigned_integer (word, tdep->wordsize,
250 sp + structoffset);
251 structoffset += len;
252 }
253 else if (TYPE_CODE (type) == TYPE_CODE_INT)
254 /* Sign or zero extend the "int" into a "word". */
255 store_unsigned_integer (word, tdep->wordsize,
256 unpack_long (type, val));
257 else
258 /* Always goes in the low address. */
259 memcpy (word, val, len);
260 /* Store that "word" in a register, or on the stack.
261 The words have "4" byte alignment. */
262 if (greg <= 10)
263 {
264 if (write_pass)
265 regcache_cooked_write (regcache,
266 tdep->ppc_gp0_regnum + greg, word);
267 greg++;
268 }
269 else
270 {
271 argoffset = align_up (argoffset, tdep->wordsize);
272 if (write_pass)
273 write_memory (sp + argoffset, word, tdep->wordsize);
274 argoffset += tdep->wordsize;
275 }
276 }
277 }
278
279 /* Compute the actual stack space requirements. */
280 if (!write_pass)
281 {
282 /* Remember the amount of space needed by the arguments. */
283 argspace = argoffset;
284 /* Allocate space for both the arguments and the structures. */
285 sp -= (argoffset + structoffset);
286 /* Ensure that the stack is still 16 byte aligned. */
287 sp = align_down (sp, 16);
288 }
289
290 /* The psABI says that "A caller of a function that takes a
291 variable argument list shall set condition register bit 6 to
292 1 if it passes one or more arguments in the floating-point
293 registers. It is strongly recommended that the caller set the
294 bit to 0 otherwise..." Doing this for normal functions too
295 shouldn't hurt. */
296 if (write_pass)
297 {
298 ULONGEST cr;
299
300 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
301 if (freg > 1)
302 cr |= 0x02000000;
303 else
304 cr &= ~0x02000000;
305 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
306 }
307 }
308
309 /* Update %sp. */
310 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
311
312 /* Write the backchain (it occupies WORDSIZED bytes). */
313 write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
314
315 /* Point the inferior function call's return address at the dummy's
316 breakpoint. */
317 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
318
319 return sp;
320 }
321
322 /* Handle the return-value conventions specified by the SysV 32-bit
323 PowerPC ABI (including all the supplements):
324
325 no floating-point: floating-point values returned using 32-bit
326 general-purpose registers.
327
328 Altivec: 128-bit vectors returned using vector registers.
329
330 e500: 64-bit vectors returned using the full full 64 bit EV
331 register, floating-point values returned using 32-bit
332 general-purpose registers.
333
334 GCC (broken): Small struct values right (instead of left) aligned
335 when returned in general-purpose registers. */
336
337 static enum return_value_convention
338 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
339 struct regcache *regcache, void *readbuf,
340 const void *writebuf, int broken_gcc)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 gdb_assert (tdep->wordsize == 4);
344 if (TYPE_CODE (type) == TYPE_CODE_FLT
345 && TYPE_LENGTH (type) <= 8
346 && ppc_floating_point_unit_p (gdbarch))
347 {
348 if (readbuf)
349 {
350 /* Floats and doubles stored in "f1". Convert the value to
351 the required type. */
352 gdb_byte regval[MAX_REGISTER_SIZE];
353 struct type *regtype = register_type (gdbarch,
354 tdep->ppc_fp0_regnum + 1);
355 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
356 convert_typed_floating (regval, regtype, readbuf, type);
357 }
358 if (writebuf)
359 {
360 /* Floats and doubles stored in "f1". Convert the value to
361 the register's "double" type. */
362 gdb_byte regval[MAX_REGISTER_SIZE];
363 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
364 convert_typed_floating (writebuf, type, regval, regtype);
365 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
366 }
367 return RETURN_VALUE_REGISTER_CONVENTION;
368 }
369 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
370 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
371 {
372 if (readbuf)
373 {
374 /* A long long, or a double stored in the 32 bit r3/r4. */
375 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
376 (bfd_byte *) readbuf + 0);
377 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
378 (bfd_byte *) readbuf + 4);
379 }
380 if (writebuf)
381 {
382 /* A long long, or a double stored in the 32 bit r3/r4. */
383 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
384 (const bfd_byte *) writebuf + 0);
385 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
386 (const bfd_byte *) writebuf + 4);
387 }
388 return RETURN_VALUE_REGISTER_CONVENTION;
389 }
390 if (TYPE_CODE (type) == TYPE_CODE_INT
391 && TYPE_LENGTH (type) <= tdep->wordsize)
392 {
393 if (readbuf)
394 {
395 /* Some sort of integer stored in r3. Since TYPE isn't
396 bigger than the register, sign extension isn't a problem
397 - just do everything unsigned. */
398 ULONGEST regval;
399 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
400 &regval);
401 store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
402 }
403 if (writebuf)
404 {
405 /* Some sort of integer stored in r3. Use unpack_long since
406 that should handle any required sign extension. */
407 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
408 unpack_long (type, writebuf));
409 }
410 return RETURN_VALUE_REGISTER_CONVENTION;
411 }
412 if (TYPE_LENGTH (type) == 16
413 && TYPE_CODE (type) == TYPE_CODE_ARRAY
414 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
415 {
416 if (readbuf)
417 {
418 /* Altivec places the return value in "v2". */
419 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
420 }
421 if (writebuf)
422 {
423 /* Altivec places the return value in "v2". */
424 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
425 }
426 return RETURN_VALUE_REGISTER_CONVENTION;
427 }
428 if (TYPE_LENGTH (type) == 8
429 && TYPE_CODE (type) == TYPE_CODE_ARRAY
430 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
431 {
432 /* The e500 ABI places return values for the 64-bit DSP types
433 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
434 corresponds to the entire r3 value for e500, whereas GDB's r3
435 only corresponds to the least significant 32-bits. So place
436 the 64-bit DSP type's value in ev3. */
437 if (readbuf)
438 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
439 if (writebuf)
440 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
441 return RETURN_VALUE_REGISTER_CONVENTION;
442 }
443 if (broken_gcc && TYPE_LENGTH (type) <= 8)
444 {
445 /* GCC screwed up for structures or unions whose size is less
446 than or equal to 8 bytes.. Instead of left-aligning, it
447 right-aligns the data into the buffer formed by r3, r4. */
448 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
449 int len = TYPE_LENGTH (type);
450 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
451
452 if (readbuf)
453 {
454 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
455 regvals + 0 * tdep->wordsize);
456 if (len > tdep->wordsize)
457 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
458 regvals + 1 * tdep->wordsize);
459 memcpy (readbuf, regvals + offset, len);
460 }
461 if (writebuf)
462 {
463 memset (regvals, 0, sizeof regvals);
464 memcpy (regvals + offset, writebuf, len);
465 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
466 regvals + 0 * tdep->wordsize);
467 if (len > tdep->wordsize)
468 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
469 regvals + 1 * tdep->wordsize);
470 }
471
472 return RETURN_VALUE_REGISTER_CONVENTION;
473 }
474 if (TYPE_LENGTH (type) <= 8)
475 {
476 if (readbuf)
477 {
478 /* This matches SVr4 PPC, it does not match GCC. */
479 /* The value is right-padded to 8 bytes and then loaded, as
480 two "words", into r3/r4. */
481 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
482 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
483 regvals + 0 * tdep->wordsize);
484 if (TYPE_LENGTH (type) > tdep->wordsize)
485 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
486 regvals + 1 * tdep->wordsize);
487 memcpy (readbuf, regvals, TYPE_LENGTH (type));
488 }
489 if (writebuf)
490 {
491 /* This matches SVr4 PPC, it does not match GCC. */
492 /* The value is padded out to 8 bytes and then loaded, as
493 two "words" into r3/r4. */
494 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
495 memset (regvals, 0, sizeof regvals);
496 memcpy (regvals, writebuf, TYPE_LENGTH (type));
497 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
498 regvals + 0 * tdep->wordsize);
499 if (TYPE_LENGTH (type) > tdep->wordsize)
500 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
501 regvals + 1 * tdep->wordsize);
502 }
503 return RETURN_VALUE_REGISTER_CONVENTION;
504 }
505 return RETURN_VALUE_STRUCT_CONVENTION;
506 }
507
508 enum return_value_convention
509 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
510 struct regcache *regcache, gdb_byte *readbuf,
511 const gdb_byte *writebuf)
512 {
513 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
514 writebuf, 0);
515 }
516
517 enum return_value_convention
518 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
519 struct type *valtype,
520 struct regcache *regcache,
521 gdb_byte *readbuf, const gdb_byte *writebuf)
522 {
523 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
524 writebuf, 1);
525 }
526
527 /* The helper function for 64-bit SYSV push_dummy_call. Converts the
528 function's code address back into the function's descriptor
529 address.
530
531 Find a value for the TOC register. Every symbol should have both
532 ".FN" and "FN" in the minimal symbol table. "FN" points at the
533 FN's descriptor, while ".FN" points at the entry point (which
534 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
535 FN's descriptor address (while at the same time being careful to
536 find "FN" in the same object file as ".FN"). */
537
538 static int
539 convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
540 {
541 struct obj_section *dot_fn_section;
542 struct minimal_symbol *dot_fn;
543 struct minimal_symbol *fn;
544 CORE_ADDR toc;
545 /* Find the minimal symbol that corresponds to CODE_ADDR (should
546 have a name of the form ".FN"). */
547 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
548 if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
549 return 0;
550 /* Get the section that contains CODE_ADDR. Need this for the
551 "objfile" that it contains. */
552 dot_fn_section = find_pc_section (code_addr);
553 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
554 return 0;
555 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
556 address. Only look for the minimal symbol in ".FN"'s object file
557 - avoids problems when two object files (i.e., shared libraries)
558 contain a minimal symbol with the same name. */
559 fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
560 dot_fn_section->objfile);
561 if (fn == NULL)
562 return 0;
563 /* Found a descriptor. */
564 (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
565 return 1;
566 }
567
568 /* Pass the arguments in either registers, or in the stack. Using the
569 ppc 64 bit SysV ABI.
570
571 This implements a dumbed down version of the ABI. It always writes
572 values to memory, GPR and FPR, even when not necessary. Doing this
573 greatly simplifies the logic. */
574
575 CORE_ADDR
576 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
577 struct regcache *regcache, CORE_ADDR bp_addr,
578 int nargs, struct value **args, CORE_ADDR sp,
579 int struct_return, CORE_ADDR struct_addr)
580 {
581 CORE_ADDR func_addr = find_function_addr (function, NULL);
582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
583 ULONGEST back_chain;
584 /* See for-loop comment below. */
585 int write_pass;
586 /* Size of the Altivec's vector parameter region, the final value is
587 computed in the for-loop below. */
588 LONGEST vparam_size = 0;
589 /* Size of the general parameter region, the final value is computed
590 in the for-loop below. */
591 LONGEST gparam_size = 0;
592 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
593 calls to align_up(), align_down(), etc. because this makes it
594 easier to reuse this code (in a copy/paste sense) in the future,
595 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
596 at some point makes it easier to verify that this function is
597 correct without having to do a non-local analysis to figure out
598 the possible values of tdep->wordsize. */
599 gdb_assert (tdep->wordsize == 8);
600
601 /* By this stage in the proceedings, SP has been decremented by "red
602 zone size" + "struct return size". Fetch the stack-pointer from
603 before this and use that as the BACK_CHAIN. */
604 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &back_chain);
605
606 /* Go through the argument list twice.
607
608 Pass 1: Compute the function call's stack space and register
609 requirements.
610
611 Pass 2: Replay the same computation but this time also write the
612 values out to the target. */
613
614 for (write_pass = 0; write_pass < 2; write_pass++)
615 {
616 int argno;
617 /* Next available floating point register for float and double
618 arguments. */
619 int freg = 1;
620 /* Next available general register for non-vector (but possibly
621 float) arguments. */
622 int greg = 3;
623 /* Next available vector register for vector arguments. */
624 int vreg = 2;
625 /* The address, at which the next general purpose parameter
626 (integer, struct, float, ...) should be saved. */
627 CORE_ADDR gparam;
628 /* Address, at which the next Altivec vector parameter should be
629 saved. */
630 CORE_ADDR vparam;
631
632 if (!write_pass)
633 {
634 /* During the first pass, GPARAM and VPARAM are more like
635 offsets (start address zero) than addresses. That way
636 the accumulate the total stack space each region
637 requires. */
638 gparam = 0;
639 vparam = 0;
640 }
641 else
642 {
643 /* Decrement the stack pointer making space for the Altivec
644 and general on-stack parameters. Set vparam and gparam
645 to their corresponding regions. */
646 vparam = align_down (sp - vparam_size, 16);
647 gparam = align_down (vparam - gparam_size, 16);
648 /* Add in space for the TOC, link editor double word,
649 compiler double word, LR save area, CR save area. */
650 sp = align_down (gparam - 48, 16);
651 }
652
653 /* If the function is returning a `struct', then there is an
654 extra hidden parameter (which will be passed in r3)
655 containing the address of that struct.. In that case we
656 should advance one word and start from r4 register to copy
657 parameters. This also consumes one on-stack parameter slot. */
658 if (struct_return)
659 {
660 if (write_pass)
661 regcache_cooked_write_signed (regcache,
662 tdep->ppc_gp0_regnum + greg,
663 struct_addr);
664 greg++;
665 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
666 }
667
668 for (argno = 0; argno < nargs; argno++)
669 {
670 struct value *arg = args[argno];
671 struct type *type = check_typedef (value_type (arg));
672 const bfd_byte *val = value_contents (arg);
673 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
674 {
675 /* Floats and Doubles go in f1 .. f13. They also
676 consume a left aligned GREG,, and can end up in
677 memory. */
678 if (write_pass)
679 {
680 if (ppc_floating_point_unit_p (current_gdbarch)
681 && freg <= 13)
682 {
683 gdb_byte regval[MAX_REGISTER_SIZE];
684 struct type *regtype
685 = register_type (gdbarch, tdep->ppc_fp0_regnum);
686 convert_typed_floating (val, type, regval, regtype);
687 regcache_cooked_write (regcache,
688 tdep->ppc_fp0_regnum + freg,
689 regval);
690 }
691 if (greg <= 10)
692 {
693 /* The ABI states "Single precision floating
694 point values are mapped to the first word in
695 a single doubleword" and "... floating point
696 values mapped to the first eight doublewords
697 of the parameter save area are also passed in
698 general registers").
699
700 This code interprets that to mean: store it,
701 left aligned, in the general register. */
702 gdb_byte regval[MAX_REGISTER_SIZE];
703 memset (regval, 0, sizeof regval);
704 memcpy (regval, val, TYPE_LENGTH (type));
705 regcache_cooked_write (regcache,
706 tdep->ppc_gp0_regnum + greg,
707 regval);
708 }
709 write_memory (gparam, val, TYPE_LENGTH (type));
710 }
711 /* Always consume parameter stack space. */
712 freg++;
713 greg++;
714 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
715 }
716 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
717 && TYPE_CODE (type) == TYPE_CODE_ARRAY
718 && tdep->ppc_vr0_regnum >= 0)
719 {
720 /* In the Altivec ABI, vectors go in the vector
721 registers v2 .. v13, or when that runs out, a vector
722 annex which goes above all the normal parameters.
723 NOTE: cagney/2003-09-21: This is a guess based on the
724 PowerOpen Altivec ABI. */
725 if (vreg <= 13)
726 {
727 if (write_pass)
728 regcache_cooked_write (regcache,
729 tdep->ppc_vr0_regnum + vreg, val);
730 vreg++;
731 }
732 else
733 {
734 if (write_pass)
735 write_memory (vparam, val, TYPE_LENGTH (type));
736 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
737 }
738 }
739 else if ((TYPE_CODE (type) == TYPE_CODE_INT
740 || TYPE_CODE (type) == TYPE_CODE_ENUM
741 || TYPE_CODE (type) == TYPE_CODE_PTR)
742 && TYPE_LENGTH (type) <= 8)
743 {
744 /* Scalars and Pointers get sign[un]extended and go in
745 gpr3 .. gpr10. They can also end up in memory. */
746 if (write_pass)
747 {
748 /* Sign extend the value, then store it unsigned. */
749 ULONGEST word = unpack_long (type, val);
750 /* Convert any function code addresses into
751 descriptors. */
752 if (TYPE_CODE (type) == TYPE_CODE_PTR
753 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
754 {
755 CORE_ADDR desc = word;
756 convert_code_addr_to_desc_addr (word, &desc);
757 word = desc;
758 }
759 if (greg <= 10)
760 regcache_cooked_write_unsigned (regcache,
761 tdep->ppc_gp0_regnum +
762 greg, word);
763 write_memory_unsigned_integer (gparam, tdep->wordsize,
764 word);
765 }
766 greg++;
767 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
768 }
769 else
770 {
771 int byte;
772 for (byte = 0; byte < TYPE_LENGTH (type);
773 byte += tdep->wordsize)
774 {
775 if (write_pass && greg <= 10)
776 {
777 gdb_byte regval[MAX_REGISTER_SIZE];
778 int len = TYPE_LENGTH (type) - byte;
779 if (len > tdep->wordsize)
780 len = tdep->wordsize;
781 memset (regval, 0, sizeof regval);
782 /* WARNING: cagney/2003-09-21: As best I can
783 tell, the ABI specifies that the value should
784 be left aligned. Unfortunately, GCC doesn't
785 do this - it instead right aligns even sized
786 values and puts odd sized values on the
787 stack. Work around that by putting both a
788 left and right aligned value into the
789 register (hopefully no one notices :-^).
790 Arrrgh! */
791 /* Left aligned (8 byte values such as pointers
792 fill the buffer). */
793 memcpy (regval, val + byte, len);
794 /* Right aligned (but only if even). */
795 if (len == 1 || len == 2 || len == 4)
796 memcpy (regval + tdep->wordsize - len,
797 val + byte, len);
798 regcache_cooked_write (regcache, greg, regval);
799 }
800 greg++;
801 }
802 if (write_pass)
803 /* WARNING: cagney/2003-09-21: Strictly speaking, this
804 isn't necessary, unfortunately, GCC appears to get
805 "struct convention" parameter passing wrong putting
806 odd sized structures in memory instead of in a
807 register. Work around this by always writing the
808 value to memory. Fortunately, doing this
809 simplifies the code. */
810 write_memory (gparam, val, TYPE_LENGTH (type));
811 if (write_pass)
812 /* WARNING: cagney/2004-06-20: It appears that GCC
813 likes to put structures containing a single
814 floating-point member in an FP register instead of
815 general general purpose. */
816 /* Always consume parameter stack space. */
817 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
818 }
819 }
820
821 if (!write_pass)
822 {
823 /* Save the true region sizes ready for the second pass. */
824 vparam_size = vparam;
825 /* Make certain that the general parameter save area is at
826 least the minimum 8 registers (or doublewords) in size. */
827 if (greg < 8)
828 gparam_size = 8 * tdep->wordsize;
829 else
830 gparam_size = gparam;
831 }
832 }
833
834 /* Update %sp. */
835 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
836
837 /* Write the backchain (it occupies WORDSIZED bytes). */
838 write_memory_signed_integer (sp, tdep->wordsize, back_chain);
839
840 /* Point the inferior function call's return address at the dummy's
841 breakpoint. */
842 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
843
844 /* Use the func_addr to find the descriptor, and use that to find
845 the TOC. */
846 {
847 CORE_ADDR desc_addr;
848 if (convert_code_addr_to_desc_addr (func_addr, &desc_addr))
849 {
850 /* The TOC is the second double word in the descriptor. */
851 CORE_ADDR toc =
852 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
853 tdep->wordsize);
854 regcache_cooked_write_unsigned (regcache,
855 tdep->ppc_gp0_regnum + 2, toc);
856 }
857 }
858
859 return sp;
860 }
861
862
863 /* The 64 bit ABI retun value convention.
864
865 Return non-zero if the return-value is stored in a register, return
866 0 if the return-value is instead stored on the stack (a.k.a.,
867 struct return convention).
868
869 For a return-value stored in a register: when WRITEBUF is non-NULL,
870 copy the buffer to the corresponding register return-value location
871 location; when READBUF is non-NULL, fill the buffer from the
872 corresponding register return-value location. */
873 enum return_value_convention
874 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
875 struct regcache *regcache, gdb_byte *readbuf,
876 const gdb_byte *writebuf)
877 {
878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
879
880 /* This function exists to support a calling convention that
881 requires floating-point registers. It shouldn't be used on
882 processors that lack them. */
883 gdb_assert (ppc_floating_point_unit_p (gdbarch));
884
885 /* Floats and doubles in F1. */
886 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
887 {
888 gdb_byte regval[MAX_REGISTER_SIZE];
889 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
890 if (writebuf != NULL)
891 {
892 convert_typed_floating (writebuf, valtype, regval, regtype);
893 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
894 }
895 if (readbuf != NULL)
896 {
897 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
898 convert_typed_floating (regval, regtype, readbuf, valtype);
899 }
900 return RETURN_VALUE_REGISTER_CONVENTION;
901 }
902 /* Integers in r3. */
903 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
904 || TYPE_CODE (valtype) == TYPE_CODE_ENUM)
905 && TYPE_LENGTH (valtype) <= 8)
906 {
907 if (writebuf != NULL)
908 {
909 /* Be careful to sign extend the value. */
910 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
911 unpack_long (valtype, writebuf));
912 }
913 if (readbuf != NULL)
914 {
915 /* Extract the integer from r3. Since this is truncating the
916 value, there isn't a sign extension problem. */
917 ULONGEST regval;
918 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
919 &regval);
920 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
921 }
922 return RETURN_VALUE_REGISTER_CONVENTION;
923 }
924 /* All pointers live in r3. */
925 if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
926 {
927 /* All pointers live in r3. */
928 if (writebuf != NULL)
929 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
930 if (readbuf != NULL)
931 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
932 return RETURN_VALUE_REGISTER_CONVENTION;
933 }
934 /* Array type has more than one use. */
935 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
936 {
937 /* Small character arrays are returned, right justified, in r3. */
938 if (TYPE_LENGTH (valtype) <= 8
939 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
940 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
941 {
942 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
943 - TYPE_LENGTH (valtype));
944 if (writebuf != NULL)
945 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
946 offset, TYPE_LENGTH (valtype), writebuf);
947 if (readbuf != NULL)
948 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
949 offset, TYPE_LENGTH (valtype), readbuf);
950 return RETURN_VALUE_REGISTER_CONVENTION;
951 }
952 /* A VMX vector is returned in v2. */
953 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
954 && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
955 {
956 if (readbuf)
957 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
958 if (writebuf)
959 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
960 return RETURN_VALUE_REGISTER_CONVENTION;
961 }
962 }
963 /* Big floating point values get stored in adjacent floating
964 point registers, starting with F1. */
965 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
966 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
967 {
968 if (writebuf || readbuf != NULL)
969 {
970 int i;
971 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
972 {
973 if (writebuf != NULL)
974 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
975 (const bfd_byte *) writebuf + i * 8);
976 if (readbuf != NULL)
977 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
978 (bfd_byte *) readbuf + i * 8);
979 }
980 }
981 return RETURN_VALUE_REGISTER_CONVENTION;
982 }
983 /* Complex values get returned in f1:f2, need to convert. */
984 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
985 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
986 {
987 if (regcache != NULL)
988 {
989 int i;
990 for (i = 0; i < 2; i++)
991 {
992 gdb_byte regval[MAX_REGISTER_SIZE];
993 struct type *regtype =
994 register_type (current_gdbarch, tdep->ppc_fp0_regnum);
995 if (writebuf != NULL)
996 {
997 convert_typed_floating ((const bfd_byte *) writebuf +
998 i * (TYPE_LENGTH (valtype) / 2),
999 valtype, regval, regtype);
1000 regcache_cooked_write (regcache,
1001 tdep->ppc_fp0_regnum + 1 + i,
1002 regval);
1003 }
1004 if (readbuf != NULL)
1005 {
1006 regcache_cooked_read (regcache,
1007 tdep->ppc_fp0_regnum + 1 + i,
1008 regval);
1009 convert_typed_floating (regval, regtype,
1010 (bfd_byte *) readbuf +
1011 i * (TYPE_LENGTH (valtype) / 2),
1012 valtype);
1013 }
1014 }
1015 }
1016 return RETURN_VALUE_REGISTER_CONVENTION;
1017 }
1018 /* Big complex values get stored in f1:f4. */
1019 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
1020 {
1021 if (regcache != NULL)
1022 {
1023 int i;
1024 for (i = 0; i < 4; i++)
1025 {
1026 if (writebuf != NULL)
1027 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
1028 (const bfd_byte *) writebuf + i * 8);
1029 if (readbuf != NULL)
1030 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
1031 (bfd_byte *) readbuf + i * 8);
1032 }
1033 }
1034 return RETURN_VALUE_REGISTER_CONVENTION;
1035 }
1036 return RETURN_VALUE_STRUCT_CONVENTION;
1037 }
1038
1039 CORE_ADDR
1040 ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch,
1041 CORE_ADDR bpaddr)
1042 {
1043 /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at
1044 a function-descriptor while the corresponding minimal-symbol
1045 ".FN" should point at the entry point. Consequently, a command
1046 like "break FN" applied to an object file with only minimal
1047 symbols, will insert the breakpoint into the descriptor at "FN"
1048 and not the function at ".FN". Avoid this confusion by adjusting
1049 any attempt to set a descriptor breakpoint into a corresponding
1050 function breakpoint. Note that GDB warns the user when this
1051 adjustment is applied - that's ok as otherwise the user will have
1052 no way of knowing why their breakpoint at "FN" resulted in the
1053 program stopping at ".FN". */
1054 return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, &current_target);
1055 }