]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/printcmd.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56 #include "safe-ctype.h"
57
58 /* Last specified output format. */
59
60 static char last_format = 0;
61
62 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
63
64 static char last_size = 'w';
65
66 /* Last specified count for the 'x' command. */
67
68 static int last_count;
69
70 /* Default address to examine next, and associated architecture. */
71
72 static struct gdbarch *next_gdbarch;
73 static CORE_ADDR next_address;
74
75 /* Number of delay instructions following current disassembled insn. */
76
77 static int branch_delay_insns;
78
79 /* Last address examined. */
80
81 static CORE_ADDR last_examine_address;
82
83 /* Contents of last address examined.
84 This is not valid past the end of the `x' command! */
85
86 static value_ref_ptr last_examine_value;
87
88 /* Largest offset between a symbolic value and an address, that will be
89 printed as `0x1234 <symbol+offset>'. */
90
91 static unsigned int max_symbolic_offset = UINT_MAX;
92 static void
93 show_max_symbolic_offset (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file,
97 _("The largest offset that will be "
98 "printed in <symbol+1234> form is %s.\n"),
99 value);
100 }
101
102 /* Append the source filename and linenumber of the symbol when
103 printing a symbolic value as `<symbol at filename:linenum>' if set. */
104 static bool print_symbol_filename = false;
105 static void
106 show_print_symbol_filename (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Printing of source filename and "
110 "line number with <symbol> is %s.\n"),
111 value);
112 }
113
114 /* Number of auto-display expression currently being displayed.
115 So that we can disable it if we get a signal within it.
116 -1 when not doing one. */
117
118 static int current_display_number;
119
120 /* Last allocated display number. */
121
122 static int display_number;
123
124 struct display
125 {
126 display (const char *exp_string_, expression_up &&exp_,
127 const struct format_data &format_, struct program_space *pspace_,
128 const struct block *block_)
129 : exp_string (exp_string_),
130 exp (std::move (exp_)),
131 number (++display_number),
132 format (format_),
133 pspace (pspace_),
134 block (block_),
135 enabled_p (true)
136 {
137 }
138
139 /* The expression as the user typed it. */
140 std::string exp_string;
141
142 /* Expression to be evaluated and displayed. */
143 expression_up exp;
144
145 /* Item number of this auto-display item. */
146 int number;
147
148 /* Display format specified. */
149 struct format_data format;
150
151 /* Program space associated with `block'. */
152 struct program_space *pspace;
153
154 /* Innermost block required by this expression when evaluated. */
155 const struct block *block;
156
157 /* Status of this display (enabled or disabled). */
158 bool enabled_p;
159 };
160
161 /* Expressions whose values should be displayed automatically each
162 time the program stops. */
163
164 static std::vector<std::unique_ptr<struct display>> all_displays;
165
166 /* Prototypes for local functions. */
167
168 static void do_one_display (struct display *);
169 \f
170
171 /* Decode a format specification. *STRING_PTR should point to it.
172 OFORMAT and OSIZE are used as defaults for the format and size
173 if none are given in the format specification.
174 If OSIZE is zero, then the size field of the returned value
175 should be set only if a size is explicitly specified by the
176 user.
177 The structure returned describes all the data
178 found in the specification. In addition, *STRING_PTR is advanced
179 past the specification and past all whitespace following it. */
180
181 static struct format_data
182 decode_format (const char **string_ptr, int oformat, int osize)
183 {
184 struct format_data val;
185 const char *p = *string_ptr;
186
187 val.format = '?';
188 val.size = '?';
189 val.count = 1;
190 val.raw = 0;
191
192 if (*p == '-')
193 {
194 val.count = -1;
195 p++;
196 }
197 if (*p >= '0' && *p <= '9')
198 val.count *= atoi (p);
199 while (*p >= '0' && *p <= '9')
200 p++;
201
202 /* Now process size or format letters that follow. */
203
204 while (1)
205 {
206 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
207 val.size = *p++;
208 else if (*p == 'r')
209 {
210 val.raw = 1;
211 p++;
212 }
213 else if (*p >= 'a' && *p <= 'z')
214 val.format = *p++;
215 else
216 break;
217 }
218
219 *string_ptr = skip_spaces (p);
220
221 /* Set defaults for format and size if not specified. */
222 if (val.format == '?')
223 {
224 if (val.size == '?')
225 {
226 /* Neither has been specified. */
227 val.format = oformat;
228 val.size = osize;
229 }
230 else
231 /* If a size is specified, any format makes a reasonable
232 default except 'i'. */
233 val.format = oformat == 'i' ? 'x' : oformat;
234 }
235 else if (val.size == '?')
236 switch (val.format)
237 {
238 case 'a':
239 /* Pick the appropriate size for an address. This is deferred
240 until do_examine when we know the actual architecture to use.
241 A special size value of 'a' is used to indicate this case. */
242 val.size = osize ? 'a' : osize;
243 break;
244 case 'f':
245 /* Floating point has to be word or giantword. */
246 if (osize == 'w' || osize == 'g')
247 val.size = osize;
248 else
249 /* Default it to giantword if the last used size is not
250 appropriate. */
251 val.size = osize ? 'g' : osize;
252 break;
253 case 'c':
254 /* Characters default to one byte. */
255 val.size = osize ? 'b' : osize;
256 break;
257 case 's':
258 /* Display strings with byte size chars unless explicitly
259 specified. */
260 val.size = '\0';
261 break;
262
263 default:
264 /* The default is the size most recently specified. */
265 val.size = osize;
266 }
267
268 return val;
269 }
270 \f
271 /* Print value VAL on stream according to OPTIONS.
272 Do not end with a newline.
273 SIZE is the letter for the size of datum being printed.
274 This is used to pad hex numbers so they line up. SIZE is 0
275 for print / output and set for examine. */
276
277 static void
278 print_formatted (struct value *val, int size,
279 const struct value_print_options *options,
280 struct ui_file *stream)
281 {
282 struct type *type = check_typedef (value_type (val));
283 int len = TYPE_LENGTH (type);
284
285 if (VALUE_LVAL (val) == lval_memory)
286 next_address = value_address (val) + len;
287
288 if (size)
289 {
290 switch (options->format)
291 {
292 case 's':
293 {
294 struct type *elttype = value_type (val);
295
296 next_address = (value_address (val)
297 + val_print_string (elttype, NULL,
298 value_address (val), -1,
299 stream, options) * len);
300 }
301 return;
302
303 case 'i':
304 /* We often wrap here if there are long symbolic names. */
305 wrap_here (" ");
306 next_address = (value_address (val)
307 + gdb_print_insn (get_type_arch (type),
308 value_address (val), stream,
309 &branch_delay_insns));
310 return;
311 }
312 }
313
314 if (options->format == 0 || options->format == 's'
315 || type->code () == TYPE_CODE_VOID
316 || type->code () == TYPE_CODE_REF
317 || type->code () == TYPE_CODE_ARRAY
318 || type->code () == TYPE_CODE_STRING
319 || type->code () == TYPE_CODE_STRUCT
320 || type->code () == TYPE_CODE_UNION
321 || type->code () == TYPE_CODE_NAMESPACE)
322 value_print (val, stream, options);
323 else
324 /* User specified format, so don't look to the type to tell us
325 what to do. */
326 value_print_scalar_formatted (val, options, size, stream);
327 }
328
329 /* Return builtin floating point type of same length as TYPE.
330 If no such type is found, return TYPE itself. */
331 static struct type *
332 float_type_from_length (struct type *type)
333 {
334 struct gdbarch *gdbarch = get_type_arch (type);
335 const struct builtin_type *builtin = builtin_type (gdbarch);
336
337 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
338 type = builtin->builtin_float;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
340 type = builtin->builtin_double;
341 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
342 type = builtin->builtin_long_double;
343
344 return type;
345 }
346
347 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
348 according to OPTIONS and SIZE on STREAM. Formats s and i are not
349 supported at this level. */
350
351 void
352 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
353 const struct value_print_options *options,
354 int size, struct ui_file *stream)
355 {
356 struct gdbarch *gdbarch = get_type_arch (type);
357 unsigned int len = TYPE_LENGTH (type);
358 enum bfd_endian byte_order = type_byte_order (type);
359
360 /* String printing should go through val_print_scalar_formatted. */
361 gdb_assert (options->format != 's');
362
363 /* If the value is a pointer, and pointers and addresses are not the
364 same, then at this point, the value's length (in target bytes) is
365 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
366 if (type->code () == TYPE_CODE_PTR)
367 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
368
369 /* If we are printing it as unsigned, truncate it in case it is actually
370 a negative signed value (e.g. "print/u (short)-1" should print 65535
371 (if shorts are 16 bits) instead of 4294967295). */
372 if (options->format != 'c'
373 && (options->format != 'd' || type->is_unsigned ()))
374 {
375 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
376 valaddr += TYPE_LENGTH (type) - len;
377 }
378
379 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
380 valid. */
381 const gdb_byte zero = 0;
382 if (len == 0)
383 {
384 len = 1;
385 valaddr = &zero;
386 }
387
388 if (size != 0 && (options->format == 'x' || options->format == 't'))
389 {
390 /* Truncate to fit. */
391 unsigned newlen;
392 switch (size)
393 {
394 case 'b':
395 newlen = 1;
396 break;
397 case 'h':
398 newlen = 2;
399 break;
400 case 'w':
401 newlen = 4;
402 break;
403 case 'g':
404 newlen = 8;
405 break;
406 default:
407 error (_("Undefined output size \"%c\"."), size);
408 }
409 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
410 valaddr += len - newlen;
411 len = newlen;
412 }
413
414 /* Historically gdb has printed floats by first casting them to a
415 long, and then printing the long. PR cli/16242 suggests changing
416 this to using C-style hex float format.
417
418 Biased range types and sub-word scalar types must also be handled
419 here; the value is correctly computed by unpack_long. */
420 gdb::byte_vector converted_bytes;
421 /* Some cases below will unpack the value again. In the biased
422 range case, we want to avoid this, so we store the unpacked value
423 here for possible use later. */
424 gdb::optional<LONGEST> val_long;
425 if (((type->code () == TYPE_CODE_FLT
426 || is_fixed_point_type (type))
427 && (options->format == 'o'
428 || options->format == 'x'
429 || options->format == 't'
430 || options->format == 'z'
431 || options->format == 'd'
432 || options->format == 'u'))
433 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
434 || type->bit_size_differs_p ())
435 {
436 val_long.emplace (unpack_long (type, valaddr));
437 converted_bytes.resize (TYPE_LENGTH (type));
438 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
439 byte_order, *val_long);
440 valaddr = converted_bytes.data ();
441 }
442
443 /* Printing a non-float type as 'f' will interpret the data as if it were
444 of a floating-point type of the same length, if that exists. Otherwise,
445 the data is printed as integer. */
446 char format = options->format;
447 if (format == 'f' && type->code () != TYPE_CODE_FLT)
448 {
449 type = float_type_from_length (type);
450 if (type->code () != TYPE_CODE_FLT)
451 format = 0;
452 }
453
454 switch (format)
455 {
456 case 'o':
457 print_octal_chars (stream, valaddr, len, byte_order);
458 break;
459 case 'd':
460 print_decimal_chars (stream, valaddr, len, true, byte_order);
461 break;
462 case 'u':
463 print_decimal_chars (stream, valaddr, len, false, byte_order);
464 break;
465 case 0:
466 if (type->code () != TYPE_CODE_FLT)
467 {
468 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
469 byte_order);
470 break;
471 }
472 /* FALLTHROUGH */
473 case 'f':
474 print_floating (valaddr, type, stream);
475 break;
476
477 case 't':
478 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
479 break;
480 case 'x':
481 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
482 break;
483 case 'z':
484 print_hex_chars (stream, valaddr, len, byte_order, true);
485 break;
486 case 'c':
487 {
488 struct value_print_options opts = *options;
489
490 if (!val_long.has_value ())
491 val_long.emplace (unpack_long (type, valaddr));
492
493 opts.format = 0;
494 if (type->is_unsigned ())
495 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
496 else
497 type = builtin_type (gdbarch)->builtin_true_char;
498
499 value_print (value_from_longest (type, *val_long), stream, &opts);
500 }
501 break;
502
503 case 'a':
504 {
505 if (!val_long.has_value ())
506 val_long.emplace (unpack_long (type, valaddr));
507 print_address (gdbarch, *val_long, stream);
508 }
509 break;
510
511 default:
512 error (_("Undefined output format \"%c\"."), format);
513 }
514 }
515
516 /* Specify default address for `x' command.
517 The `info lines' command uses this. */
518
519 void
520 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
521 {
522 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
523
524 next_gdbarch = gdbarch;
525 next_address = addr;
526
527 /* Make address available to the user as $_. */
528 set_internalvar (lookup_internalvar ("_"),
529 value_from_pointer (ptr_type, addr));
530 }
531
532 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
533 after LEADIN. Print nothing if no symbolic name is found nearby.
534 Optionally also print source file and line number, if available.
535 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
536 or to interpret it as a possible C++ name and convert it back to source
537 form. However note that DO_DEMANGLE can be overridden by the specific
538 settings of the demangle and asm_demangle variables. Returns
539 non-zero if anything was printed; zero otherwise. */
540
541 int
542 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
543 struct ui_file *stream,
544 int do_demangle, const char *leadin)
545 {
546 std::string name, filename;
547 int unmapped = 0;
548 int offset = 0;
549 int line = 0;
550
551 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
552 &offset, &filename, &line, &unmapped))
553 return 0;
554
555 fputs_filtered (leadin, stream);
556 if (unmapped)
557 fputs_filtered ("<*", stream);
558 else
559 fputs_filtered ("<", stream);
560 fputs_styled (name.c_str (), function_name_style.style (), stream);
561 if (offset != 0)
562 fprintf_filtered (stream, "%+d", offset);
563
564 /* Append source filename and line number if desired. Give specific
565 line # of this addr, if we have it; else line # of the nearest symbol. */
566 if (print_symbol_filename && !filename.empty ())
567 {
568 fputs_filtered (line == -1 ? " in " : " at ", stream);
569 fputs_styled (filename.c_str (), file_name_style.style (), stream);
570 if (line != -1)
571 fprintf_filtered (stream, ":%d", line);
572 }
573 if (unmapped)
574 fputs_filtered ("*>", stream);
575 else
576 fputs_filtered (">", stream);
577
578 return 1;
579 }
580
581 /* See valprint.h. */
582
583 int
584 build_address_symbolic (struct gdbarch *gdbarch,
585 CORE_ADDR addr, /* IN */
586 bool do_demangle, /* IN */
587 bool prefer_sym_over_minsym, /* IN */
588 std::string *name, /* OUT */
589 int *offset, /* OUT */
590 std::string *filename, /* OUT */
591 int *line, /* OUT */
592 int *unmapped) /* OUT */
593 {
594 struct bound_minimal_symbol msymbol;
595 struct symbol *symbol;
596 CORE_ADDR name_location = 0;
597 struct obj_section *section = NULL;
598 const char *name_temp = "";
599
600 /* Let's say it is mapped (not unmapped). */
601 *unmapped = 0;
602
603 /* Determine if the address is in an overlay, and whether it is
604 mapped. */
605 if (overlay_debugging)
606 {
607 section = find_pc_overlay (addr);
608 if (pc_in_unmapped_range (addr, section))
609 {
610 *unmapped = 1;
611 addr = overlay_mapped_address (addr, section);
612 }
613 }
614
615 /* Try to find the address in both the symbol table and the minsyms.
616 In most cases, we'll prefer to use the symbol instead of the
617 minsym. However, there are cases (see below) where we'll choose
618 to use the minsym instead. */
619
620 /* This is defective in the sense that it only finds text symbols. So
621 really this is kind of pointless--we should make sure that the
622 minimal symbols have everything we need (by changing that we could
623 save some memory, but for many debug format--ELF/DWARF or
624 anything/stabs--it would be inconvenient to eliminate those minimal
625 symbols anyway). */
626 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
627 symbol = find_pc_sect_function (addr, section);
628
629 if (symbol)
630 {
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 addr = gdbarch_addr_bits_remove (gdbarch, addr);
637
638 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
639 if (do_demangle || asm_demangle)
640 name_temp = symbol->print_name ();
641 else
642 name_temp = symbol->linkage_name ();
643 }
644
645 if (msymbol.minsym != NULL
646 && MSYMBOL_HAS_SIZE (msymbol.minsym)
647 && MSYMBOL_SIZE (msymbol.minsym) == 0
648 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
649 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
650 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
651 msymbol.minsym = NULL;
652
653 if (msymbol.minsym != NULL)
654 {
655 /* Use the minsym if no symbol is found.
656
657 Additionally, use the minsym instead of a (found) symbol if
658 the following conditions all hold:
659 1) The prefer_sym_over_minsym flag is false.
660 2) The minsym address is identical to that of the address under
661 consideration.
662 3) The symbol address is not identical to that of the address
663 under consideration. */
664 if (symbol == NULL ||
665 (!prefer_sym_over_minsym
666 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
667 && name_location != addr))
668 {
669 /* If this is a function (i.e. a code address), strip out any
670 non-address bits. For instance, display a pointer to the
671 first instruction of a Thumb function as <function>; the
672 second instruction will be <function+2>, even though the
673 pointer is <function+3>. This matches the ISA behavior. */
674 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
675 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
676 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
677 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
678 addr = gdbarch_addr_bits_remove (gdbarch, addr);
679
680 symbol = 0;
681 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
682 if (do_demangle || asm_demangle)
683 name_temp = msymbol.minsym->print_name ();
684 else
685 name_temp = msymbol.minsym->linkage_name ();
686 }
687 }
688 if (symbol == NULL && msymbol.minsym == NULL)
689 return 1;
690
691 /* If the nearest symbol is too far away, don't print anything symbolic. */
692
693 /* For when CORE_ADDR is larger than unsigned int, we do math in
694 CORE_ADDR. But when we detect unsigned wraparound in the
695 CORE_ADDR math, we ignore this test and print the offset,
696 because addr+max_symbolic_offset has wrapped through the end
697 of the address space back to the beginning, giving bogus comparison. */
698 if (addr > name_location + max_symbolic_offset
699 && name_location + max_symbolic_offset > name_location)
700 return 1;
701
702 *offset = (LONGEST) addr - name_location;
703
704 *name = name_temp;
705
706 if (print_symbol_filename)
707 {
708 struct symtab_and_line sal;
709
710 sal = find_pc_sect_line (addr, section, 0);
711
712 if (sal.symtab)
713 {
714 *filename = symtab_to_filename_for_display (sal.symtab);
715 *line = sal.line;
716 }
717 }
718 return 0;
719 }
720
721
722 /* Print address ADDR symbolically on STREAM.
723 First print it as a number. Then perhaps print
724 <SYMBOL + OFFSET> after the number. */
725
726 void
727 print_address (struct gdbarch *gdbarch,
728 CORE_ADDR addr, struct ui_file *stream)
729 {
730 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
731 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
732 }
733
734 /* Return a prefix for instruction address:
735 "=> " for current instruction, else " ". */
736
737 const char *
738 pc_prefix (CORE_ADDR addr)
739 {
740 if (has_stack_frames ())
741 {
742 struct frame_info *frame;
743 CORE_ADDR pc;
744
745 frame = get_selected_frame (NULL);
746 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
747 return "=> ";
748 }
749 return " ";
750 }
751
752 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
753 controls whether to print the symbolic name "raw" or demangled.
754 Return non-zero if anything was printed; zero otherwise. */
755
756 int
757 print_address_demangle (const struct value_print_options *opts,
758 struct gdbarch *gdbarch, CORE_ADDR addr,
759 struct ui_file *stream, int do_demangle)
760 {
761 if (opts->addressprint)
762 {
763 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
764 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
765 }
766 else
767 {
768 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
769 }
770 return 1;
771 }
772 \f
773
774 /* Find the address of the instruction that is INST_COUNT instructions before
775 the instruction at ADDR.
776 Since some architectures have variable-length instructions, we can't just
777 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
778 number information to locate the nearest known instruction boundary,
779 and disassemble forward from there. If we go out of the symbol range
780 during disassembling, we return the lowest address we've got so far and
781 set the number of instructions read to INST_READ. */
782
783 static CORE_ADDR
784 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
785 int inst_count, int *inst_read)
786 {
787 /* The vector PCS is used to store instruction addresses within
788 a pc range. */
789 CORE_ADDR loop_start, loop_end, p;
790 std::vector<CORE_ADDR> pcs;
791 struct symtab_and_line sal;
792
793 *inst_read = 0;
794 loop_start = loop_end = addr;
795
796 /* In each iteration of the outer loop, we get a pc range that ends before
797 LOOP_START, then we count and store every instruction address of the range
798 iterated in the loop.
799 If the number of instructions counted reaches INST_COUNT, return the
800 stored address that is located INST_COUNT instructions back from ADDR.
801 If INST_COUNT is not reached, we subtract the number of counted
802 instructions from INST_COUNT, and go to the next iteration. */
803 do
804 {
805 pcs.clear ();
806 sal = find_pc_sect_line (loop_start, NULL, 1);
807 if (sal.line <= 0)
808 {
809 /* We reach here when line info is not available. In this case,
810 we print a message and just exit the loop. The return value
811 is calculated after the loop. */
812 printf_filtered (_("No line number information available "
813 "for address "));
814 wrap_here (" ");
815 print_address (gdbarch, loop_start - 1, gdb_stdout);
816 printf_filtered ("\n");
817 break;
818 }
819
820 loop_end = loop_start;
821 loop_start = sal.pc;
822
823 /* This loop pushes instruction addresses in the range from
824 LOOP_START to LOOP_END. */
825 for (p = loop_start; p < loop_end;)
826 {
827 pcs.push_back (p);
828 p += gdb_insn_length (gdbarch, p);
829 }
830
831 inst_count -= pcs.size ();
832 *inst_read += pcs.size ();
833 }
834 while (inst_count > 0);
835
836 /* After the loop, the vector PCS has instruction addresses of the last
837 source line we processed, and INST_COUNT has a negative value.
838 We return the address at the index of -INST_COUNT in the vector for
839 the reason below.
840 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
841 Line X of File
842 0x4000
843 0x4001
844 0x4005
845 Line Y of File
846 0x4009
847 0x400c
848 => 0x400e
849 0x4011
850 find_instruction_backward is called with INST_COUNT = 4 and expected to
851 return 0x4001. When we reach here, INST_COUNT is set to -1 because
852 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
853 4001 is located at the index 1 of the last iterated line (= Line X),
854 which is simply calculated by -INST_COUNT.
855 The case when the length of PCS is 0 means that we reached an area for
856 which line info is not available. In such case, we return LOOP_START,
857 which was the lowest instruction address that had line info. */
858 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
859
860 /* INST_READ includes all instruction addresses in a pc range. Need to
861 exclude the beginning part up to the address we're returning. That
862 is, exclude {0x4000} in the example above. */
863 if (inst_count < 0)
864 *inst_read += inst_count;
865
866 return p;
867 }
868
869 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
870 placing the results in GDB's memory from MYADDR + LEN. Returns
871 a count of the bytes actually read. */
872
873 static int
874 read_memory_backward (struct gdbarch *gdbarch,
875 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
876 {
877 int errcode;
878 int nread; /* Number of bytes actually read. */
879
880 /* First try a complete read. */
881 errcode = target_read_memory (memaddr, myaddr, len);
882 if (errcode == 0)
883 {
884 /* Got it all. */
885 nread = len;
886 }
887 else
888 {
889 /* Loop, reading one byte at a time until we get as much as we can. */
890 memaddr += len;
891 myaddr += len;
892 for (nread = 0; nread < len; ++nread)
893 {
894 errcode = target_read_memory (--memaddr, --myaddr, 1);
895 if (errcode != 0)
896 {
897 /* The read was unsuccessful, so exit the loop. */
898 printf_filtered (_("Cannot access memory at address %s\n"),
899 paddress (gdbarch, memaddr));
900 break;
901 }
902 }
903 }
904 return nread;
905 }
906
907 /* Returns true if X (which is LEN bytes wide) is the number zero. */
908
909 static int
910 integer_is_zero (const gdb_byte *x, int len)
911 {
912 int i = 0;
913
914 while (i < len && x[i] == 0)
915 ++i;
916 return (i == len);
917 }
918
919 /* Find the start address of a string in which ADDR is included.
920 Basically we search for '\0' and return the next address,
921 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
922 we stop searching and return the address to print characters as many as
923 PRINT_MAX from the string. */
924
925 static CORE_ADDR
926 find_string_backward (struct gdbarch *gdbarch,
927 CORE_ADDR addr, int count, int char_size,
928 const struct value_print_options *options,
929 int *strings_counted)
930 {
931 const int chunk_size = 0x20;
932 int read_error = 0;
933 int chars_read = 0;
934 int chars_to_read = chunk_size;
935 int chars_counted = 0;
936 int count_original = count;
937 CORE_ADDR string_start_addr = addr;
938
939 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
940 gdb::byte_vector buffer (chars_to_read * char_size);
941 while (count > 0 && read_error == 0)
942 {
943 int i;
944
945 addr -= chars_to_read * char_size;
946 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
947 chars_to_read * char_size);
948 chars_read /= char_size;
949 read_error = (chars_read == chars_to_read) ? 0 : 1;
950 /* Searching for '\0' from the end of buffer in backward direction. */
951 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
952 {
953 int offset = (chars_to_read - i - 1) * char_size;
954
955 if (integer_is_zero (&buffer[offset], char_size)
956 || chars_counted == options->print_max)
957 {
958 /* Found '\0' or reached print_max. As OFFSET is the offset to
959 '\0', we add CHAR_SIZE to return the start address of
960 a string. */
961 --count;
962 string_start_addr = addr + offset + char_size;
963 chars_counted = 0;
964 }
965 }
966 }
967
968 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
969 *strings_counted = count_original - count;
970
971 if (read_error != 0)
972 {
973 /* In error case, STRING_START_ADDR is pointing to the string that
974 was last successfully loaded. Rewind the partially loaded string. */
975 string_start_addr -= chars_counted * char_size;
976 }
977
978 return string_start_addr;
979 }
980
981 /* Examine data at address ADDR in format FMT.
982 Fetch it from memory and print on gdb_stdout. */
983
984 static void
985 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
986 {
987 char format = 0;
988 char size;
989 int count = 1;
990 struct type *val_type = NULL;
991 int i;
992 int maxelts;
993 struct value_print_options opts;
994 int need_to_update_next_address = 0;
995 CORE_ADDR addr_rewound = 0;
996
997 format = fmt.format;
998 size = fmt.size;
999 count = fmt.count;
1000 next_gdbarch = gdbarch;
1001 next_address = addr;
1002
1003 /* Instruction format implies fetch single bytes
1004 regardless of the specified size.
1005 The case of strings is handled in decode_format, only explicit
1006 size operator are not changed to 'b'. */
1007 if (format == 'i')
1008 size = 'b';
1009
1010 if (size == 'a')
1011 {
1012 /* Pick the appropriate size for an address. */
1013 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1014 size = 'g';
1015 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1016 size = 'w';
1017 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1018 size = 'h';
1019 else
1020 /* Bad value for gdbarch_ptr_bit. */
1021 internal_error (__FILE__, __LINE__,
1022 _("failed internal consistency check"));
1023 }
1024
1025 if (size == 'b')
1026 val_type = builtin_type (next_gdbarch)->builtin_int8;
1027 else if (size == 'h')
1028 val_type = builtin_type (next_gdbarch)->builtin_int16;
1029 else if (size == 'w')
1030 val_type = builtin_type (next_gdbarch)->builtin_int32;
1031 else if (size == 'g')
1032 val_type = builtin_type (next_gdbarch)->builtin_int64;
1033
1034 if (format == 's')
1035 {
1036 struct type *char_type = NULL;
1037
1038 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1039 if type is not found. */
1040 if (size == 'h')
1041 char_type = builtin_type (next_gdbarch)->builtin_char16;
1042 else if (size == 'w')
1043 char_type = builtin_type (next_gdbarch)->builtin_char32;
1044 if (char_type)
1045 val_type = char_type;
1046 else
1047 {
1048 if (size != '\0' && size != 'b')
1049 warning (_("Unable to display strings with "
1050 "size '%c', using 'b' instead."), size);
1051 size = 'b';
1052 val_type = builtin_type (next_gdbarch)->builtin_int8;
1053 }
1054 }
1055
1056 maxelts = 8;
1057 if (size == 'w')
1058 maxelts = 4;
1059 if (size == 'g')
1060 maxelts = 2;
1061 if (format == 's' || format == 'i')
1062 maxelts = 1;
1063
1064 get_formatted_print_options (&opts, format);
1065
1066 if (count < 0)
1067 {
1068 /* This is the negative repeat count case.
1069 We rewind the address based on the given repeat count and format,
1070 then examine memory from there in forward direction. */
1071
1072 count = -count;
1073 if (format == 'i')
1074 {
1075 next_address = find_instruction_backward (gdbarch, addr, count,
1076 &count);
1077 }
1078 else if (format == 's')
1079 {
1080 next_address = find_string_backward (gdbarch, addr, count,
1081 TYPE_LENGTH (val_type),
1082 &opts, &count);
1083 }
1084 else
1085 {
1086 next_address = addr - count * TYPE_LENGTH (val_type);
1087 }
1088
1089 /* The following call to print_formatted updates next_address in every
1090 iteration. In backward case, we store the start address here
1091 and update next_address with it before exiting the function. */
1092 addr_rewound = (format == 's'
1093 ? next_address - TYPE_LENGTH (val_type)
1094 : next_address);
1095 need_to_update_next_address = 1;
1096 }
1097
1098 /* Print as many objects as specified in COUNT, at most maxelts per line,
1099 with the address of the next one at the start of each line. */
1100
1101 while (count > 0)
1102 {
1103 QUIT;
1104 if (format == 'i')
1105 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1106 print_address (next_gdbarch, next_address, gdb_stdout);
1107 printf_filtered (":");
1108 for (i = maxelts;
1109 i > 0 && count > 0;
1110 i--, count--)
1111 {
1112 printf_filtered ("\t");
1113 /* Note that print_formatted sets next_address for the next
1114 object. */
1115 last_examine_address = next_address;
1116
1117 /* The value to be displayed is not fetched greedily.
1118 Instead, to avoid the possibility of a fetched value not
1119 being used, its retrieval is delayed until the print code
1120 uses it. When examining an instruction stream, the
1121 disassembler will perform its own memory fetch using just
1122 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1123 the disassembler be modified so that LAST_EXAMINE_VALUE
1124 is left with the byte sequence from the last complete
1125 instruction fetched from memory? */
1126 last_examine_value
1127 = release_value (value_at_lazy (val_type, next_address));
1128
1129 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1130
1131 /* Display any branch delay slots following the final insn. */
1132 if (format == 'i' && count == 1)
1133 count += branch_delay_insns;
1134 }
1135 printf_filtered ("\n");
1136 }
1137
1138 if (need_to_update_next_address)
1139 next_address = addr_rewound;
1140 }
1141 \f
1142 static void
1143 validate_format (struct format_data fmt, const char *cmdname)
1144 {
1145 if (fmt.size != 0)
1146 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1147 if (fmt.count != 1)
1148 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1149 cmdname);
1150 if (fmt.format == 'i')
1151 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1152 fmt.format, cmdname);
1153 }
1154
1155 /* Parse print command format string into *OPTS and update *EXPP.
1156 CMDNAME should name the current command. */
1157
1158 void
1159 print_command_parse_format (const char **expp, const char *cmdname,
1160 value_print_options *opts)
1161 {
1162 const char *exp = *expp;
1163
1164 /* opts->raw value might already have been set by 'set print raw-values'
1165 or by using 'print -raw-values'.
1166 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1167 if (exp && *exp == '/')
1168 {
1169 format_data fmt;
1170
1171 exp++;
1172 fmt = decode_format (&exp, last_format, 0);
1173 validate_format (fmt, cmdname);
1174 last_format = fmt.format;
1175
1176 opts->format = fmt.format;
1177 opts->raw = opts->raw || fmt.raw;
1178 }
1179 else
1180 {
1181 opts->format = 0;
1182 }
1183
1184 *expp = exp;
1185 }
1186
1187 /* See valprint.h. */
1188
1189 void
1190 print_value (value *val, const value_print_options &opts)
1191 {
1192 int histindex = record_latest_value (val);
1193
1194 annotate_value_history_begin (histindex, value_type (val));
1195
1196 printf_filtered ("$%d = ", histindex);
1197
1198 annotate_value_history_value ();
1199
1200 print_formatted (val, 0, &opts, gdb_stdout);
1201 printf_filtered ("\n");
1202
1203 annotate_value_history_end ();
1204 }
1205
1206 /* Implementation of the "print" and "call" commands. */
1207
1208 static void
1209 print_command_1 (const char *args, int voidprint)
1210 {
1211 struct value *val;
1212 value_print_options print_opts;
1213
1214 get_user_print_options (&print_opts);
1215 /* Override global settings with explicit options, if any. */
1216 auto group = make_value_print_options_def_group (&print_opts);
1217 gdb::option::process_options
1218 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1219
1220 print_command_parse_format (&args, "print", &print_opts);
1221
1222 const char *exp = args;
1223
1224 if (exp != nullptr && *exp)
1225 {
1226 expression_up expr = parse_expression (exp);
1227 val = evaluate_expression (expr.get ());
1228 }
1229 else
1230 val = access_value_history (0);
1231
1232 if (voidprint || (val && value_type (val) &&
1233 value_type (val)->code () != TYPE_CODE_VOID))
1234 print_value (val, print_opts);
1235 }
1236
1237 /* Called from command completion function to skip over /FMT
1238 specifications, allowing the rest of the line to be completed. Returns
1239 true if the /FMT is at the end of the current line and there is nothing
1240 left to complete, otherwise false is returned.
1241
1242 In either case *ARGS can be updated to point after any part of /FMT that
1243 is present.
1244
1245 This function is designed so that trying to complete '/' will offer no
1246 completions, the user needs to insert the format specification
1247 themselves. Trying to complete '/FMT' (where FMT is any non-empty set
1248 of alpha-numeric characters) will cause readline to insert a single
1249 space, setting the user up to enter the expression. */
1250
1251 static bool
1252 skip_over_slash_fmt (completion_tracker &tracker, const char **args)
1253 {
1254 const char *text = *args;
1255
1256 if (text[0] == '/')
1257 {
1258 bool in_fmt;
1259 tracker.set_use_custom_word_point (true);
1260
1261 if (text[1] == '\0')
1262 {
1263 /* The user tried to complete after typing just the '/' character
1264 of the /FMT string. Step the completer past the '/', but we
1265 don't offer any completions. */
1266 in_fmt = true;
1267 ++text;
1268 }
1269 else
1270 {
1271 /* The user has typed some characters after the '/', we assume
1272 this is a complete /FMT string, first skip over it. */
1273 text = skip_to_space (text);
1274
1275 if (*text == '\0')
1276 {
1277 /* We're at the end of the input string. The user has typed
1278 '/FMT' and asked for a completion. Push an empty
1279 completion string, this will cause readline to insert a
1280 space so the user now has '/FMT '. */
1281 in_fmt = true;
1282 tracker.add_completion (make_unique_xstrdup (text));
1283 }
1284 else
1285 {
1286 /* The user has already typed things after the /FMT, skip the
1287 whitespace and return false. Whoever called this function
1288 should then try to complete what comes next. */
1289 in_fmt = false;
1290 text = skip_spaces (text);
1291 }
1292 }
1293
1294 tracker.advance_custom_word_point_by (text - *args);
1295 *args = text;
1296 return in_fmt;
1297 }
1298
1299 return false;
1300 }
1301
1302 /* See valprint.h. */
1303
1304 void
1305 print_command_completer (struct cmd_list_element *ignore,
1306 completion_tracker &tracker,
1307 const char *text, const char * /*word*/)
1308 {
1309 const auto group = make_value_print_options_def_group (nullptr);
1310 if (gdb::option::complete_options
1311 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1312 return;
1313
1314 if (skip_over_slash_fmt (tracker, &text))
1315 return;
1316
1317 const char *word = advance_to_expression_complete_word_point (tracker, text);
1318 expression_completer (ignore, tracker, text, word);
1319 }
1320
1321 static void
1322 print_command (const char *exp, int from_tty)
1323 {
1324 print_command_1 (exp, 1);
1325 }
1326
1327 /* Same as print, except it doesn't print void results. */
1328 static void
1329 call_command (const char *exp, int from_tty)
1330 {
1331 print_command_1 (exp, 0);
1332 }
1333
1334 /* Implementation of the "output" command. */
1335
1336 void
1337 output_command (const char *exp, int from_tty)
1338 {
1339 char format = 0;
1340 struct value *val;
1341 struct format_data fmt;
1342 struct value_print_options opts;
1343
1344 fmt.size = 0;
1345 fmt.raw = 0;
1346
1347 if (exp && *exp == '/')
1348 {
1349 exp++;
1350 fmt = decode_format (&exp, 0, 0);
1351 validate_format (fmt, "output");
1352 format = fmt.format;
1353 }
1354
1355 expression_up expr = parse_expression (exp);
1356
1357 val = evaluate_expression (expr.get ());
1358
1359 annotate_value_begin (value_type (val));
1360
1361 get_formatted_print_options (&opts, format);
1362 opts.raw = fmt.raw;
1363 print_formatted (val, fmt.size, &opts, gdb_stdout);
1364
1365 annotate_value_end ();
1366
1367 wrap_here ("");
1368 gdb_flush (gdb_stdout);
1369 }
1370
1371 static void
1372 set_command (const char *exp, int from_tty)
1373 {
1374 expression_up expr = parse_expression (exp);
1375
1376 if (expr->nelts >= 1)
1377 switch (expr->elts[0].opcode)
1378 {
1379 case UNOP_PREINCREMENT:
1380 case UNOP_POSTINCREMENT:
1381 case UNOP_PREDECREMENT:
1382 case UNOP_POSTDECREMENT:
1383 case BINOP_ASSIGN:
1384 case BINOP_ASSIGN_MODIFY:
1385 case BINOP_COMMA:
1386 break;
1387 default:
1388 warning
1389 (_("Expression is not an assignment (and might have no effect)"));
1390 }
1391
1392 evaluate_expression (expr.get ());
1393 }
1394
1395 static void
1396 info_symbol_command (const char *arg, int from_tty)
1397 {
1398 struct minimal_symbol *msymbol;
1399 struct obj_section *osect;
1400 CORE_ADDR addr, sect_addr;
1401 int matches = 0;
1402 unsigned int offset;
1403
1404 if (!arg)
1405 error_no_arg (_("address"));
1406
1407 addr = parse_and_eval_address (arg);
1408 for (objfile *objfile : current_program_space->objfiles ())
1409 ALL_OBJFILE_OSECTIONS (objfile, osect)
1410 {
1411 /* Only process each object file once, even if there's a separate
1412 debug file. */
1413 if (objfile->separate_debug_objfile_backlink)
1414 continue;
1415
1416 sect_addr = overlay_mapped_address (addr, osect);
1417
1418 if (obj_section_addr (osect) <= sect_addr
1419 && sect_addr < obj_section_endaddr (osect)
1420 && (msymbol
1421 = lookup_minimal_symbol_by_pc_section (sect_addr,
1422 osect).minsym))
1423 {
1424 const char *obj_name, *mapped, *sec_name, *msym_name;
1425 const char *loc_string;
1426
1427 matches = 1;
1428 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1429 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1430 sec_name = osect->the_bfd_section->name;
1431 msym_name = msymbol->print_name ();
1432
1433 /* Don't print the offset if it is zero.
1434 We assume there's no need to handle i18n of "sym + offset". */
1435 std::string string_holder;
1436 if (offset)
1437 {
1438 string_holder = string_printf ("%s + %u", msym_name, offset);
1439 loc_string = string_holder.c_str ();
1440 }
1441 else
1442 loc_string = msym_name;
1443
1444 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1445 obj_name = objfile_name (osect->objfile);
1446
1447 if (current_program_space->multi_objfile_p ())
1448 if (pc_in_unmapped_range (addr, osect))
1449 if (section_is_overlay (osect))
1450 printf_filtered (_("%s in load address range of "
1451 "%s overlay section %s of %s\n"),
1452 loc_string, mapped, sec_name, obj_name);
1453 else
1454 printf_filtered (_("%s in load address range of "
1455 "section %s of %s\n"),
1456 loc_string, sec_name, obj_name);
1457 else
1458 if (section_is_overlay (osect))
1459 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1460 loc_string, mapped, sec_name, obj_name);
1461 else
1462 printf_filtered (_("%s in section %s of %s\n"),
1463 loc_string, sec_name, obj_name);
1464 else
1465 if (pc_in_unmapped_range (addr, osect))
1466 if (section_is_overlay (osect))
1467 printf_filtered (_("%s in load address range of %s overlay "
1468 "section %s\n"),
1469 loc_string, mapped, sec_name);
1470 else
1471 printf_filtered
1472 (_("%s in load address range of section %s\n"),
1473 loc_string, sec_name);
1474 else
1475 if (section_is_overlay (osect))
1476 printf_filtered (_("%s in %s overlay section %s\n"),
1477 loc_string, mapped, sec_name);
1478 else
1479 printf_filtered (_("%s in section %s\n"),
1480 loc_string, sec_name);
1481 }
1482 }
1483 if (matches == 0)
1484 printf_filtered (_("No symbol matches %s.\n"), arg);
1485 }
1486
1487 static void
1488 info_address_command (const char *exp, int from_tty)
1489 {
1490 struct gdbarch *gdbarch;
1491 int regno;
1492 struct symbol *sym;
1493 struct bound_minimal_symbol msymbol;
1494 long val;
1495 struct obj_section *section;
1496 CORE_ADDR load_addr, context_pc = 0;
1497 struct field_of_this_result is_a_field_of_this;
1498
1499 if (exp == 0)
1500 error (_("Argument required."));
1501
1502 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1503 &is_a_field_of_this).symbol;
1504 if (sym == NULL)
1505 {
1506 if (is_a_field_of_this.type != NULL)
1507 {
1508 printf_filtered ("Symbol \"");
1509 fprintf_symbol_filtered (gdb_stdout, exp,
1510 current_language->la_language, DMGL_ANSI);
1511 printf_filtered ("\" is a field of the local class variable ");
1512 if (current_language->la_language == language_objc)
1513 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1514 else
1515 printf_filtered ("`this'\n");
1516 return;
1517 }
1518
1519 msymbol = lookup_bound_minimal_symbol (exp);
1520
1521 if (msymbol.minsym != NULL)
1522 {
1523 struct objfile *objfile = msymbol.objfile;
1524
1525 gdbarch = objfile->arch ();
1526 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1527
1528 printf_filtered ("Symbol \"");
1529 fprintf_symbol_filtered (gdb_stdout, exp,
1530 current_language->la_language, DMGL_ANSI);
1531 printf_filtered ("\" is at ");
1532 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1533 gdb_stdout);
1534 printf_filtered (" in a file compiled without debugging");
1535 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1536 if (section_is_overlay (section))
1537 {
1538 load_addr = overlay_unmapped_address (load_addr, section);
1539 printf_filtered (",\n -- loaded at ");
1540 fputs_styled (paddress (gdbarch, load_addr),
1541 address_style.style (),
1542 gdb_stdout);
1543 printf_filtered (" in overlay section %s",
1544 section->the_bfd_section->name);
1545 }
1546 printf_filtered (".\n");
1547 }
1548 else
1549 error (_("No symbol \"%s\" in current context."), exp);
1550 return;
1551 }
1552
1553 printf_filtered ("Symbol \"");
1554 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1555 current_language->la_language, DMGL_ANSI);
1556 printf_filtered ("\" is ");
1557 val = SYMBOL_VALUE (sym);
1558 if (SYMBOL_OBJFILE_OWNED (sym))
1559 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1560 else
1561 section = NULL;
1562 gdbarch = symbol_arch (sym);
1563
1564 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1565 {
1566 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1567 gdb_stdout);
1568 printf_filtered (".\n");
1569 return;
1570 }
1571
1572 switch (SYMBOL_CLASS (sym))
1573 {
1574 case LOC_CONST:
1575 case LOC_CONST_BYTES:
1576 printf_filtered ("constant");
1577 break;
1578
1579 case LOC_LABEL:
1580 printf_filtered ("a label at address ");
1581 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1582 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1583 gdb_stdout);
1584 if (section_is_overlay (section))
1585 {
1586 load_addr = overlay_unmapped_address (load_addr, section);
1587 printf_filtered (",\n -- loaded at ");
1588 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1589 gdb_stdout);
1590 printf_filtered (" in overlay section %s",
1591 section->the_bfd_section->name);
1592 }
1593 break;
1594
1595 case LOC_COMPUTED:
1596 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1597
1598 case LOC_REGISTER:
1599 /* GDBARCH is the architecture associated with the objfile the symbol
1600 is defined in; the target architecture may be different, and may
1601 provide additional registers. However, we do not know the target
1602 architecture at this point. We assume the objfile architecture
1603 will contain all the standard registers that occur in debug info
1604 in that objfile. */
1605 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1606
1607 if (SYMBOL_IS_ARGUMENT (sym))
1608 printf_filtered (_("an argument in register %s"),
1609 gdbarch_register_name (gdbarch, regno));
1610 else
1611 printf_filtered (_("a variable in register %s"),
1612 gdbarch_register_name (gdbarch, regno));
1613 break;
1614
1615 case LOC_STATIC:
1616 printf_filtered (_("static storage at address "));
1617 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1618 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1619 gdb_stdout);
1620 if (section_is_overlay (section))
1621 {
1622 load_addr = overlay_unmapped_address (load_addr, section);
1623 printf_filtered (_(",\n -- loaded at "));
1624 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1625 gdb_stdout);
1626 printf_filtered (_(" in overlay section %s"),
1627 section->the_bfd_section->name);
1628 }
1629 break;
1630
1631 case LOC_REGPARM_ADDR:
1632 /* Note comment at LOC_REGISTER. */
1633 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1634 printf_filtered (_("address of an argument in register %s"),
1635 gdbarch_register_name (gdbarch, regno));
1636 break;
1637
1638 case LOC_ARG:
1639 printf_filtered (_("an argument at offset %ld"), val);
1640 break;
1641
1642 case LOC_LOCAL:
1643 printf_filtered (_("a local variable at frame offset %ld"), val);
1644 break;
1645
1646 case LOC_REF_ARG:
1647 printf_filtered (_("a reference argument at offset %ld"), val);
1648 break;
1649
1650 case LOC_TYPEDEF:
1651 printf_filtered (_("a typedef"));
1652 break;
1653
1654 case LOC_BLOCK:
1655 printf_filtered (_("a function at address "));
1656 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1657 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1658 gdb_stdout);
1659 if (section_is_overlay (section))
1660 {
1661 load_addr = overlay_unmapped_address (load_addr, section);
1662 printf_filtered (_(",\n -- loaded at "));
1663 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1664 gdb_stdout);
1665 printf_filtered (_(" in overlay section %s"),
1666 section->the_bfd_section->name);
1667 }
1668 break;
1669
1670 case LOC_UNRESOLVED:
1671 {
1672 struct bound_minimal_symbol msym;
1673
1674 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1675 if (msym.minsym == NULL)
1676 printf_filtered ("unresolved");
1677 else
1678 {
1679 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1680
1681 if (section
1682 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1683 {
1684 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1685 printf_filtered (_("a thread-local variable at offset %s "
1686 "in the thread-local storage for `%s'"),
1687 paddress (gdbarch, load_addr),
1688 objfile_name (section->objfile));
1689 }
1690 else
1691 {
1692 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1693 printf_filtered (_("static storage at address "));
1694 fputs_styled (paddress (gdbarch, load_addr),
1695 address_style.style (), gdb_stdout);
1696 if (section_is_overlay (section))
1697 {
1698 load_addr = overlay_unmapped_address (load_addr, section);
1699 printf_filtered (_(",\n -- loaded at "));
1700 fputs_styled (paddress (gdbarch, load_addr),
1701 address_style.style (),
1702 gdb_stdout);
1703 printf_filtered (_(" in overlay section %s"),
1704 section->the_bfd_section->name);
1705 }
1706 }
1707 }
1708 }
1709 break;
1710
1711 case LOC_OPTIMIZED_OUT:
1712 printf_filtered (_("optimized out"));
1713 break;
1714
1715 default:
1716 printf_filtered (_("of unknown (botched) type"));
1717 break;
1718 }
1719 printf_filtered (".\n");
1720 }
1721 \f
1722
1723 static void
1724 x_command (const char *exp, int from_tty)
1725 {
1726 struct format_data fmt;
1727 struct value *val;
1728
1729 fmt.format = last_format ? last_format : 'x';
1730 fmt.size = last_size;
1731 fmt.count = 1;
1732 fmt.raw = 0;
1733
1734 /* If there is no expression and no format, use the most recent
1735 count. */
1736 if (exp == nullptr && last_count > 0)
1737 fmt.count = last_count;
1738
1739 if (exp && *exp == '/')
1740 {
1741 const char *tmp = exp + 1;
1742
1743 fmt = decode_format (&tmp, last_format, last_size);
1744 exp = (char *) tmp;
1745 }
1746
1747 last_count = fmt.count;
1748
1749 /* If we have an expression, evaluate it and use it as the address. */
1750
1751 if (exp != 0 && *exp != 0)
1752 {
1753 expression_up expr = parse_expression (exp);
1754 /* Cause expression not to be there any more if this command is
1755 repeated with Newline. But don't clobber a user-defined
1756 command's definition. */
1757 if (from_tty)
1758 set_repeat_arguments ("");
1759 val = evaluate_expression (expr.get ());
1760 if (TYPE_IS_REFERENCE (value_type (val)))
1761 val = coerce_ref (val);
1762 /* In rvalue contexts, such as this, functions are coerced into
1763 pointers to functions. This makes "x/i main" work. */
1764 if (value_type (val)->code () == TYPE_CODE_FUNC
1765 && VALUE_LVAL (val) == lval_memory)
1766 next_address = value_address (val);
1767 else
1768 next_address = value_as_address (val);
1769
1770 next_gdbarch = expr->gdbarch;
1771 }
1772
1773 if (!next_gdbarch)
1774 error_no_arg (_("starting display address"));
1775
1776 do_examine (fmt, next_gdbarch, next_address);
1777
1778 /* If the examine succeeds, we remember its size and format for next
1779 time. Set last_size to 'b' for strings. */
1780 if (fmt.format == 's')
1781 last_size = 'b';
1782 else
1783 last_size = fmt.size;
1784 last_format = fmt.format;
1785
1786 /* Set a couple of internal variables if appropriate. */
1787 if (last_examine_value != nullptr)
1788 {
1789 /* Make last address examined available to the user as $_. Use
1790 the correct pointer type. */
1791 struct type *pointer_type
1792 = lookup_pointer_type (value_type (last_examine_value.get ()));
1793 set_internalvar (lookup_internalvar ("_"),
1794 value_from_pointer (pointer_type,
1795 last_examine_address));
1796
1797 /* Make contents of last address examined available to the user
1798 as $__. If the last value has not been fetched from memory
1799 then don't fetch it now; instead mark it by voiding the $__
1800 variable. */
1801 if (value_lazy (last_examine_value.get ()))
1802 clear_internalvar (lookup_internalvar ("__"));
1803 else
1804 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1805 }
1806 }
1807
1808 /* Command completion for the 'display' and 'x' commands. */
1809
1810 static void
1811 display_and_x_command_completer (struct cmd_list_element *ignore,
1812 completion_tracker &tracker,
1813 const char *text, const char * /*word*/)
1814 {
1815 if (skip_over_slash_fmt (tracker, &text))
1816 return;
1817
1818 const char *word = advance_to_expression_complete_word_point (tracker, text);
1819 expression_completer (ignore, tracker, text, word);
1820 }
1821
1822 \f
1823
1824 /* Add an expression to the auto-display chain.
1825 Specify the expression. */
1826
1827 static void
1828 display_command (const char *arg, int from_tty)
1829 {
1830 struct format_data fmt;
1831 struct display *newobj;
1832 const char *exp = arg;
1833
1834 if (exp == 0)
1835 {
1836 do_displays ();
1837 return;
1838 }
1839
1840 if (*exp == '/')
1841 {
1842 exp++;
1843 fmt = decode_format (&exp, 0, 0);
1844 if (fmt.size && fmt.format == 0)
1845 fmt.format = 'x';
1846 if (fmt.format == 'i' || fmt.format == 's')
1847 fmt.size = 'b';
1848 }
1849 else
1850 {
1851 fmt.format = 0;
1852 fmt.size = 0;
1853 fmt.count = 0;
1854 fmt.raw = 0;
1855 }
1856
1857 innermost_block_tracker tracker;
1858 expression_up expr = parse_expression (exp, &tracker);
1859
1860 newobj = new display (exp, std::move (expr), fmt,
1861 current_program_space, tracker.block ());
1862 all_displays.emplace_back (newobj);
1863
1864 if (from_tty)
1865 do_one_display (newobj);
1866
1867 dont_repeat ();
1868 }
1869
1870 /* Clear out the display_chain. Done when new symtabs are loaded,
1871 since this invalidates the types stored in many expressions. */
1872
1873 void
1874 clear_displays ()
1875 {
1876 all_displays.clear ();
1877 }
1878
1879 /* Delete the auto-display DISPLAY. */
1880
1881 static void
1882 delete_display (struct display *display)
1883 {
1884 gdb_assert (display != NULL);
1885
1886 auto iter = std::find_if (all_displays.begin (),
1887 all_displays.end (),
1888 [=] (const std::unique_ptr<struct display> &item)
1889 {
1890 return item.get () == display;
1891 });
1892 gdb_assert (iter != all_displays.end ());
1893 all_displays.erase (iter);
1894 }
1895
1896 /* Call FUNCTION on each of the displays whose numbers are given in
1897 ARGS. DATA is passed unmodified to FUNCTION. */
1898
1899 static void
1900 map_display_numbers (const char *args,
1901 gdb::function_view<void (struct display *)> function)
1902 {
1903 int num;
1904
1905 if (args == NULL)
1906 error_no_arg (_("one or more display numbers"));
1907
1908 number_or_range_parser parser (args);
1909
1910 while (!parser.finished ())
1911 {
1912 const char *p = parser.cur_tok ();
1913
1914 num = parser.get_number ();
1915 if (num == 0)
1916 warning (_("bad display number at or near '%s'"), p);
1917 else
1918 {
1919 auto iter = std::find_if (all_displays.begin (),
1920 all_displays.end (),
1921 [=] (const std::unique_ptr<display> &item)
1922 {
1923 return item->number == num;
1924 });
1925 if (iter == all_displays.end ())
1926 printf_unfiltered (_("No display number %d.\n"), num);
1927 else
1928 function (iter->get ());
1929 }
1930 }
1931 }
1932
1933 /* "undisplay" command. */
1934
1935 static void
1936 undisplay_command (const char *args, int from_tty)
1937 {
1938 if (args == NULL)
1939 {
1940 if (query (_("Delete all auto-display expressions? ")))
1941 clear_displays ();
1942 dont_repeat ();
1943 return;
1944 }
1945
1946 map_display_numbers (args, delete_display);
1947 dont_repeat ();
1948 }
1949
1950 /* Display a single auto-display.
1951 Do nothing if the display cannot be printed in the current context,
1952 or if the display is disabled. */
1953
1954 static void
1955 do_one_display (struct display *d)
1956 {
1957 int within_current_scope;
1958
1959 if (!d->enabled_p)
1960 return;
1961
1962 /* The expression carries the architecture that was used at parse time.
1963 This is a problem if the expression depends on architecture features
1964 (e.g. register numbers), and the current architecture is now different.
1965 For example, a display statement like "display/i $pc" is expected to
1966 display the PC register of the current architecture, not the arch at
1967 the time the display command was given. Therefore, we re-parse the
1968 expression if the current architecture has changed. */
1969 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1970 {
1971 d->exp.reset ();
1972 d->block = NULL;
1973 }
1974
1975 if (d->exp == NULL)
1976 {
1977
1978 try
1979 {
1980 innermost_block_tracker tracker;
1981 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1982 d->block = tracker.block ();
1983 }
1984 catch (const gdb_exception &ex)
1985 {
1986 /* Can't re-parse the expression. Disable this display item. */
1987 d->enabled_p = false;
1988 warning (_("Unable to display \"%s\": %s"),
1989 d->exp_string.c_str (), ex.what ());
1990 return;
1991 }
1992 }
1993
1994 if (d->block)
1995 {
1996 if (d->pspace == current_program_space)
1997 within_current_scope = contained_in (get_selected_block (0), d->block,
1998 true);
1999 else
2000 within_current_scope = 0;
2001 }
2002 else
2003 within_current_scope = 1;
2004 if (!within_current_scope)
2005 return;
2006
2007 scoped_restore save_display_number
2008 = make_scoped_restore (&current_display_number, d->number);
2009
2010 annotate_display_begin ();
2011 printf_filtered ("%d", d->number);
2012 annotate_display_number_end ();
2013 printf_filtered (": ");
2014 if (d->format.size)
2015 {
2016
2017 annotate_display_format ();
2018
2019 printf_filtered ("x/");
2020 if (d->format.count != 1)
2021 printf_filtered ("%d", d->format.count);
2022 printf_filtered ("%c", d->format.format);
2023 if (d->format.format != 'i' && d->format.format != 's')
2024 printf_filtered ("%c", d->format.size);
2025 printf_filtered (" ");
2026
2027 annotate_display_expression ();
2028
2029 puts_filtered (d->exp_string.c_str ());
2030 annotate_display_expression_end ();
2031
2032 if (d->format.count != 1 || d->format.format == 'i')
2033 printf_filtered ("\n");
2034 else
2035 printf_filtered (" ");
2036
2037 annotate_display_value ();
2038
2039 try
2040 {
2041 struct value *val;
2042 CORE_ADDR addr;
2043
2044 val = evaluate_expression (d->exp.get ());
2045 addr = value_as_address (val);
2046 if (d->format.format == 'i')
2047 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2048 do_examine (d->format, d->exp->gdbarch, addr);
2049 }
2050 catch (const gdb_exception_error &ex)
2051 {
2052 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
2053 metadata_style.style ().ptr (), ex.what (),
2054 nullptr);
2055 }
2056 }
2057 else
2058 {
2059 struct value_print_options opts;
2060
2061 annotate_display_format ();
2062
2063 if (d->format.format)
2064 printf_filtered ("/%c ", d->format.format);
2065
2066 annotate_display_expression ();
2067
2068 puts_filtered (d->exp_string.c_str ());
2069 annotate_display_expression_end ();
2070
2071 printf_filtered (" = ");
2072
2073 annotate_display_expression ();
2074
2075 get_formatted_print_options (&opts, d->format.format);
2076 opts.raw = d->format.raw;
2077
2078 try
2079 {
2080 struct value *val;
2081
2082 val = evaluate_expression (d->exp.get ());
2083 print_formatted (val, d->format.size, &opts, gdb_stdout);
2084 }
2085 catch (const gdb_exception_error &ex)
2086 {
2087 fprintf_styled (gdb_stdout, metadata_style.style (),
2088 _("<error: %s>"), ex.what ());
2089 }
2090
2091 printf_filtered ("\n");
2092 }
2093
2094 annotate_display_end ();
2095
2096 gdb_flush (gdb_stdout);
2097 }
2098
2099 /* Display all of the values on the auto-display chain which can be
2100 evaluated in the current scope. */
2101
2102 void
2103 do_displays (void)
2104 {
2105 for (auto &d : all_displays)
2106 do_one_display (d.get ());
2107 }
2108
2109 /* Delete the auto-display which we were in the process of displaying.
2110 This is done when there is an error or a signal. */
2111
2112 void
2113 disable_display (int num)
2114 {
2115 for (auto &d : all_displays)
2116 if (d->number == num)
2117 {
2118 d->enabled_p = false;
2119 return;
2120 }
2121 printf_unfiltered (_("No display number %d.\n"), num);
2122 }
2123
2124 void
2125 disable_current_display (void)
2126 {
2127 if (current_display_number >= 0)
2128 {
2129 disable_display (current_display_number);
2130 fprintf_unfiltered (gdb_stderr,
2131 _("Disabling display %d to "
2132 "avoid infinite recursion.\n"),
2133 current_display_number);
2134 }
2135 current_display_number = -1;
2136 }
2137
2138 static void
2139 info_display_command (const char *ignore, int from_tty)
2140 {
2141 if (all_displays.empty ())
2142 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2143 else
2144 printf_filtered (_("Auto-display expressions now in effect:\n\
2145 Num Enb Expression\n"));
2146
2147 for (auto &d : all_displays)
2148 {
2149 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2150 if (d->format.size)
2151 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2152 d->format.format);
2153 else if (d->format.format)
2154 printf_filtered ("/%c ", d->format.format);
2155 puts_filtered (d->exp_string.c_str ());
2156 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2157 printf_filtered (_(" (cannot be evaluated in the current context)"));
2158 printf_filtered ("\n");
2159 }
2160 }
2161
2162 /* Implementation of both the "disable display" and "enable display"
2163 commands. ENABLE decides what to do. */
2164
2165 static void
2166 enable_disable_display_command (const char *args, int from_tty, bool enable)
2167 {
2168 if (args == NULL)
2169 {
2170 for (auto &d : all_displays)
2171 d->enabled_p = enable;
2172 return;
2173 }
2174
2175 map_display_numbers (args,
2176 [=] (struct display *d)
2177 {
2178 d->enabled_p = enable;
2179 });
2180 }
2181
2182 /* The "enable display" command. */
2183
2184 static void
2185 enable_display_command (const char *args, int from_tty)
2186 {
2187 enable_disable_display_command (args, from_tty, true);
2188 }
2189
2190 /* The "disable display" command. */
2191
2192 static void
2193 disable_display_command (const char *args, int from_tty)
2194 {
2195 enable_disable_display_command (args, from_tty, false);
2196 }
2197
2198 /* display_chain items point to blocks and expressions. Some expressions in
2199 turn may point to symbols.
2200 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2201 obstack_free'd when a shared library is unloaded.
2202 Clear pointers that are about to become dangling.
2203 Both .exp and .block fields will be restored next time we need to display
2204 an item by re-parsing .exp_string field in the new execution context. */
2205
2206 static void
2207 clear_dangling_display_expressions (struct objfile *objfile)
2208 {
2209 struct program_space *pspace;
2210
2211 /* With no symbol file we cannot have a block or expression from it. */
2212 if (objfile == NULL)
2213 return;
2214 pspace = objfile->pspace;
2215 if (objfile->separate_debug_objfile_backlink)
2216 {
2217 objfile = objfile->separate_debug_objfile_backlink;
2218 gdb_assert (objfile->pspace == pspace);
2219 }
2220
2221 for (auto &d : all_displays)
2222 {
2223 if (d->pspace != pspace)
2224 continue;
2225
2226 struct objfile *bl_objf = nullptr;
2227 if (d->block != nullptr)
2228 {
2229 bl_objf = block_objfile (d->block);
2230 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2231 bl_objf = bl_objf->separate_debug_objfile_backlink;
2232 }
2233
2234 if (bl_objf == objfile
2235 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2236 {
2237 d->exp.reset ();
2238 d->block = NULL;
2239 }
2240 }
2241 }
2242 \f
2243
2244 /* Print the value in stack frame FRAME of a variable specified by a
2245 struct symbol. NAME is the name to print; if NULL then VAR's print
2246 name will be used. STREAM is the ui_file on which to print the
2247 value. INDENT specifies the number of indent levels to print
2248 before printing the variable name.
2249
2250 This function invalidates FRAME. */
2251
2252 void
2253 print_variable_and_value (const char *name, struct symbol *var,
2254 struct frame_info *frame,
2255 struct ui_file *stream, int indent)
2256 {
2257
2258 if (!name)
2259 name = var->print_name ();
2260
2261 fprintf_filtered (stream, "%*s%ps = ", 2 * indent, "",
2262 styled_string (variable_name_style.style (), name));
2263
2264 try
2265 {
2266 struct value *val;
2267 struct value_print_options opts;
2268
2269 /* READ_VAR_VALUE needs a block in order to deal with non-local
2270 references (i.e. to handle nested functions). In this context, we
2271 print variables that are local to this frame, so we can avoid passing
2272 a block to it. */
2273 val = read_var_value (var, NULL, frame);
2274 get_user_print_options (&opts);
2275 opts.deref_ref = 1;
2276 common_val_print (val, stream, indent, &opts, current_language);
2277
2278 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2279 function. */
2280 frame = NULL;
2281 }
2282 catch (const gdb_exception_error &except)
2283 {
2284 fprintf_styled (stream, metadata_style.style (),
2285 "<error reading variable %s (%s)>", name,
2286 except.what ());
2287 }
2288
2289 fprintf_filtered (stream, "\n");
2290 }
2291
2292 /* Subroutine of ui_printf to simplify it.
2293 Print VALUE to STREAM using FORMAT.
2294 VALUE is a C-style string either on the target or
2295 in a GDB internal variable. */
2296
2297 static void
2298 printf_c_string (struct ui_file *stream, const char *format,
2299 struct value *value)
2300 {
2301 const gdb_byte *str;
2302
2303 if (value_type (value)->code () != TYPE_CODE_PTR
2304 && VALUE_LVAL (value) == lval_internalvar
2305 && c_is_string_type_p (value_type (value)))
2306 {
2307 size_t len = TYPE_LENGTH (value_type (value));
2308
2309 /* Copy the internal var value to TEM_STR and append a terminating null
2310 character. This protects against corrupted C-style strings that lack
2311 the terminating null char. It also allows Ada-style strings (not
2312 null terminated) to be printed without problems. */
2313 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2314
2315 memcpy (tem_str, value_contents (value), len);
2316 tem_str [len] = 0;
2317 str = tem_str;
2318 }
2319 else
2320 {
2321 CORE_ADDR tem = value_as_address (value);;
2322
2323 if (tem == 0)
2324 {
2325 DIAGNOSTIC_PUSH
2326 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2327 fprintf_filtered (stream, format, "(null)");
2328 DIAGNOSTIC_POP
2329 return;
2330 }
2331
2332 /* This is a %s argument. Find the length of the string. */
2333 size_t len;
2334
2335 for (len = 0;; len++)
2336 {
2337 gdb_byte c;
2338
2339 QUIT;
2340 read_memory (tem + len, &c, 1);
2341 if (c == 0)
2342 break;
2343 }
2344
2345 /* Copy the string contents into a string inside GDB. */
2346 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2347
2348 if (len != 0)
2349 read_memory (tem, tem_str, len);
2350 tem_str[len] = 0;
2351 str = tem_str;
2352 }
2353
2354 DIAGNOSTIC_PUSH
2355 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2356 fprintf_filtered (stream, format, (char *) str);
2357 DIAGNOSTIC_POP
2358 }
2359
2360 /* Subroutine of ui_printf to simplify it.
2361 Print VALUE to STREAM using FORMAT.
2362 VALUE is a wide C-style string on the target or
2363 in a GDB internal variable. */
2364
2365 static void
2366 printf_wide_c_string (struct ui_file *stream, const char *format,
2367 struct value *value)
2368 {
2369 const gdb_byte *str;
2370 size_t len;
2371 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2372 struct type *wctype = lookup_typename (current_language,
2373 "wchar_t", NULL, 0);
2374 int wcwidth = TYPE_LENGTH (wctype);
2375
2376 if (VALUE_LVAL (value) == lval_internalvar
2377 && c_is_string_type_p (value_type (value)))
2378 {
2379 str = value_contents (value);
2380 len = TYPE_LENGTH (value_type (value));
2381 }
2382 else
2383 {
2384 CORE_ADDR tem = value_as_address (value);
2385
2386 if (tem == 0)
2387 {
2388 DIAGNOSTIC_PUSH
2389 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2390 fprintf_filtered (stream, format, "(null)");
2391 DIAGNOSTIC_POP
2392 return;
2393 }
2394
2395 /* This is a %s argument. Find the length of the string. */
2396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2397 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2398
2399 for (len = 0;; len += wcwidth)
2400 {
2401 QUIT;
2402 read_memory (tem + len, buf, wcwidth);
2403 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2404 break;
2405 }
2406
2407 /* Copy the string contents into a string inside GDB. */
2408 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2409
2410 if (len != 0)
2411 read_memory (tem, tem_str, len);
2412 memset (&tem_str[len], 0, wcwidth);
2413 str = tem_str;
2414 }
2415
2416 auto_obstack output;
2417
2418 convert_between_encodings (target_wide_charset (gdbarch),
2419 host_charset (),
2420 str, len, wcwidth,
2421 &output, translit_char);
2422 obstack_grow_str0 (&output, "");
2423
2424 DIAGNOSTIC_PUSH
2425 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2426 fprintf_filtered (stream, format, obstack_base (&output));
2427 DIAGNOSTIC_POP
2428 }
2429
2430 /* Subroutine of ui_printf to simplify it.
2431 Print VALUE, a floating point value, to STREAM using FORMAT. */
2432
2433 static void
2434 printf_floating (struct ui_file *stream, const char *format,
2435 struct value *value, enum argclass argclass)
2436 {
2437 /* Parameter data. */
2438 struct type *param_type = value_type (value);
2439 struct gdbarch *gdbarch = get_type_arch (param_type);
2440
2441 /* Determine target type corresponding to the format string. */
2442 struct type *fmt_type;
2443 switch (argclass)
2444 {
2445 case double_arg:
2446 fmt_type = builtin_type (gdbarch)->builtin_double;
2447 break;
2448 case long_double_arg:
2449 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2450 break;
2451 case dec32float_arg:
2452 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2453 break;
2454 case dec64float_arg:
2455 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2456 break;
2457 case dec128float_arg:
2458 fmt_type = builtin_type (gdbarch)->builtin_declong;
2459 break;
2460 default:
2461 gdb_assert_not_reached ("unexpected argument class");
2462 }
2463
2464 /* To match the traditional GDB behavior, the conversion is
2465 done differently depending on the type of the parameter:
2466
2467 - if the parameter has floating-point type, it's value
2468 is converted to the target type;
2469
2470 - otherwise, if the parameter has a type that is of the
2471 same size as a built-in floating-point type, the value
2472 bytes are interpreted as if they were of that type, and
2473 then converted to the target type (this is not done for
2474 decimal floating-point argument classes);
2475
2476 - otherwise, if the source value has an integer value,
2477 it's value is converted to the target type;
2478
2479 - otherwise, an error is raised.
2480
2481 In either case, the result of the conversion is a byte buffer
2482 formatted in the target format for the target type. */
2483
2484 if (fmt_type->code () == TYPE_CODE_FLT)
2485 {
2486 param_type = float_type_from_length (param_type);
2487 if (param_type != value_type (value))
2488 value = value_from_contents (param_type, value_contents (value));
2489 }
2490
2491 value = value_cast (fmt_type, value);
2492
2493 /* Convert the value to a string and print it. */
2494 std::string str
2495 = target_float_to_string (value_contents (value), fmt_type, format);
2496 fputs_filtered (str.c_str (), stream);
2497 }
2498
2499 /* Subroutine of ui_printf to simplify it.
2500 Print VALUE, a target pointer, to STREAM using FORMAT. */
2501
2502 static void
2503 printf_pointer (struct ui_file *stream, const char *format,
2504 struct value *value)
2505 {
2506 /* We avoid the host's %p because pointers are too
2507 likely to be the wrong size. The only interesting
2508 modifier for %p is a width; extract that, and then
2509 handle %p as glibc would: %#x or a literal "(nil)". */
2510
2511 const char *p;
2512 char *fmt, *fmt_p;
2513 #ifdef PRINTF_HAS_LONG_LONG
2514 long long val = value_as_long (value);
2515 #else
2516 long val = value_as_long (value);
2517 #endif
2518
2519 fmt = (char *) alloca (strlen (format) + 5);
2520
2521 /* Copy up to the leading %. */
2522 p = format;
2523 fmt_p = fmt;
2524 while (*p)
2525 {
2526 int is_percent = (*p == '%');
2527
2528 *fmt_p++ = *p++;
2529 if (is_percent)
2530 {
2531 if (*p == '%')
2532 *fmt_p++ = *p++;
2533 else
2534 break;
2535 }
2536 }
2537
2538 if (val != 0)
2539 *fmt_p++ = '#';
2540
2541 /* Copy any width or flags. Only the "-" flag is valid for pointers
2542 -- see the format_pieces constructor. */
2543 while (*p == '-' || (*p >= '0' && *p < '9'))
2544 *fmt_p++ = *p++;
2545
2546 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2547 if (val != 0)
2548 {
2549 #ifdef PRINTF_HAS_LONG_LONG
2550 *fmt_p++ = 'l';
2551 #endif
2552 *fmt_p++ = 'l';
2553 *fmt_p++ = 'x';
2554 *fmt_p++ = '\0';
2555 DIAGNOSTIC_PUSH
2556 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2557 fprintf_filtered (stream, fmt, val);
2558 DIAGNOSTIC_POP
2559 }
2560 else
2561 {
2562 *fmt_p++ = 's';
2563 *fmt_p++ = '\0';
2564 DIAGNOSTIC_PUSH
2565 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2566 fprintf_filtered (stream, fmt, "(nil)");
2567 DIAGNOSTIC_POP
2568 }
2569 }
2570
2571 /* printf "printf format string" ARG to STREAM. */
2572
2573 static void
2574 ui_printf (const char *arg, struct ui_file *stream)
2575 {
2576 const char *s = arg;
2577 std::vector<struct value *> val_args;
2578
2579 if (s == 0)
2580 error_no_arg (_("format-control string and values to print"));
2581
2582 s = skip_spaces (s);
2583
2584 /* A format string should follow, enveloped in double quotes. */
2585 if (*s++ != '"')
2586 error (_("Bad format string, missing '\"'."));
2587
2588 format_pieces fpieces (&s);
2589
2590 if (*s++ != '"')
2591 error (_("Bad format string, non-terminated '\"'."));
2592
2593 s = skip_spaces (s);
2594
2595 if (*s != ',' && *s != 0)
2596 error (_("Invalid argument syntax"));
2597
2598 if (*s == ',')
2599 s++;
2600 s = skip_spaces (s);
2601
2602 {
2603 int nargs_wanted;
2604 int i;
2605 const char *current_substring;
2606
2607 nargs_wanted = 0;
2608 for (auto &&piece : fpieces)
2609 if (piece.argclass != literal_piece)
2610 ++nargs_wanted;
2611
2612 /* Now, parse all arguments and evaluate them.
2613 Store the VALUEs in VAL_ARGS. */
2614
2615 while (*s != '\0')
2616 {
2617 const char *s1;
2618
2619 s1 = s;
2620 val_args.push_back (parse_to_comma_and_eval (&s1));
2621
2622 s = s1;
2623 if (*s == ',')
2624 s++;
2625 }
2626
2627 if (val_args.size () != nargs_wanted)
2628 error (_("Wrong number of arguments for specified format-string"));
2629
2630 /* Now actually print them. */
2631 i = 0;
2632 for (auto &&piece : fpieces)
2633 {
2634 current_substring = piece.string;
2635 switch (piece.argclass)
2636 {
2637 case string_arg:
2638 printf_c_string (stream, current_substring, val_args[i]);
2639 break;
2640 case wide_string_arg:
2641 printf_wide_c_string (stream, current_substring, val_args[i]);
2642 break;
2643 case wide_char_arg:
2644 {
2645 struct gdbarch *gdbarch
2646 = get_type_arch (value_type (val_args[i]));
2647 struct type *wctype = lookup_typename (current_language,
2648 "wchar_t", NULL, 0);
2649 struct type *valtype;
2650 const gdb_byte *bytes;
2651
2652 valtype = value_type (val_args[i]);
2653 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2654 || valtype->code () != TYPE_CODE_INT)
2655 error (_("expected wchar_t argument for %%lc"));
2656
2657 bytes = value_contents (val_args[i]);
2658
2659 auto_obstack output;
2660
2661 convert_between_encodings (target_wide_charset (gdbarch),
2662 host_charset (),
2663 bytes, TYPE_LENGTH (valtype),
2664 TYPE_LENGTH (valtype),
2665 &output, translit_char);
2666 obstack_grow_str0 (&output, "");
2667
2668 DIAGNOSTIC_PUSH
2669 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2670 fprintf_filtered (stream, current_substring,
2671 obstack_base (&output));
2672 DIAGNOSTIC_POP
2673 }
2674 break;
2675 case long_long_arg:
2676 #ifdef PRINTF_HAS_LONG_LONG
2677 {
2678 long long val = value_as_long (val_args[i]);
2679
2680 DIAGNOSTIC_PUSH
2681 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2682 fprintf_filtered (stream, current_substring, val);
2683 DIAGNOSTIC_POP
2684 break;
2685 }
2686 #else
2687 error (_("long long not supported in printf"));
2688 #endif
2689 case int_arg:
2690 {
2691 int val = value_as_long (val_args[i]);
2692
2693 DIAGNOSTIC_PUSH
2694 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2695 fprintf_filtered (stream, current_substring, val);
2696 DIAGNOSTIC_POP
2697 break;
2698 }
2699 case long_arg:
2700 {
2701 long val = value_as_long (val_args[i]);
2702
2703 DIAGNOSTIC_PUSH
2704 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2705 fprintf_filtered (stream, current_substring, val);
2706 DIAGNOSTIC_POP
2707 break;
2708 }
2709 case size_t_arg:
2710 {
2711 size_t val = value_as_long (val_args[i]);
2712
2713 DIAGNOSTIC_PUSH
2714 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2715 fprintf_filtered (stream, current_substring, val);
2716 DIAGNOSTIC_POP
2717 break;
2718 }
2719 /* Handles floating-point values. */
2720 case double_arg:
2721 case long_double_arg:
2722 case dec32float_arg:
2723 case dec64float_arg:
2724 case dec128float_arg:
2725 printf_floating (stream, current_substring, val_args[i],
2726 piece.argclass);
2727 break;
2728 case ptr_arg:
2729 printf_pointer (stream, current_substring, val_args[i]);
2730 break;
2731 case literal_piece:
2732 /* Print a portion of the format string that has no
2733 directives. Note that this will not include any
2734 ordinary %-specs, but it might include "%%". That is
2735 why we use printf_filtered and not puts_filtered here.
2736 Also, we pass a dummy argument because some platforms
2737 have modified GCC to include -Wformat-security by
2738 default, which will warn here if there is no
2739 argument. */
2740 DIAGNOSTIC_PUSH
2741 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2742 fprintf_filtered (stream, current_substring, 0);
2743 DIAGNOSTIC_POP
2744 break;
2745 default:
2746 internal_error (__FILE__, __LINE__,
2747 _("failed internal consistency check"));
2748 }
2749 /* Maybe advance to the next argument. */
2750 if (piece.argclass != literal_piece)
2751 ++i;
2752 }
2753 }
2754 }
2755
2756 /* Implement the "printf" command. */
2757
2758 static void
2759 printf_command (const char *arg, int from_tty)
2760 {
2761 ui_printf (arg, gdb_stdout);
2762 reset_terminal_style (gdb_stdout);
2763 wrap_here ("");
2764 gdb_stdout->flush ();
2765 }
2766
2767 /* Implement the "eval" command. */
2768
2769 static void
2770 eval_command (const char *arg, int from_tty)
2771 {
2772 string_file stb;
2773
2774 ui_printf (arg, &stb);
2775
2776 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2777
2778 execute_command (expanded.c_str (), from_tty);
2779 }
2780
2781 void _initialize_printcmd ();
2782 void
2783 _initialize_printcmd ()
2784 {
2785 struct cmd_list_element *c;
2786
2787 current_display_number = -1;
2788
2789 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2790
2791 add_info ("address", info_address_command,
2792 _("Describe where symbol SYM is stored.\n\
2793 Usage: info address SYM"));
2794
2795 add_info ("symbol", info_symbol_command, _("\
2796 Describe what symbol is at location ADDR.\n\
2797 Usage: info symbol ADDR\n\
2798 Only for symbols with fixed locations (global or static scope)."));
2799
2800 c = add_com ("x", class_vars, x_command, _("\
2801 Examine memory: x/FMT ADDRESS.\n\
2802 ADDRESS is an expression for the memory address to examine.\n\
2803 FMT is a repeat count followed by a format letter and a size letter.\n\
2804 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2805 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2806 and z(hex, zero padded on the left).\n\
2807 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2808 The specified number of objects of the specified size are printed\n\
2809 according to the format. If a negative number is specified, memory is\n\
2810 examined backward from the address.\n\n\
2811 Defaults for format and size letters are those previously used.\n\
2812 Default count is 1. Default address is following last thing printed\n\
2813 with this command or \"print\"."));
2814 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2815
2816 add_info ("display", info_display_command, _("\
2817 Expressions to display when program stops, with code numbers.\n\
2818 Usage: info display"));
2819
2820 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2821 Cancel some expressions to be displayed when program stops.\n\
2822 Usage: undisplay [NUM]...\n\
2823 Arguments are the code numbers of the expressions to stop displaying.\n\
2824 No argument means cancel all automatic-display expressions.\n\
2825 \"delete display\" has the same effect as this command.\n\
2826 Do \"info display\" to see current list of code numbers."),
2827 &cmdlist);
2828
2829 c = add_com ("display", class_vars, display_command, _("\
2830 Print value of expression EXP each time the program stops.\n\
2831 Usage: display[/FMT] EXP\n\
2832 /FMT may be used before EXP as in the \"print\" command.\n\
2833 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2834 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2835 and examining is done as in the \"x\" command.\n\n\
2836 With no argument, display all currently requested auto-display expressions.\n\
2837 Use \"undisplay\" to cancel display requests previously made."));
2838 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2839
2840 add_cmd ("display", class_vars, enable_display_command, _("\
2841 Enable some expressions to be displayed when program stops.\n\
2842 Usage: enable display [NUM]...\n\
2843 Arguments are the code numbers of the expressions to resume displaying.\n\
2844 No argument means enable all automatic-display expressions.\n\
2845 Do \"info display\" to see current list of code numbers."), &enablelist);
2846
2847 add_cmd ("display", class_vars, disable_display_command, _("\
2848 Disable some expressions to be displayed when program stops.\n\
2849 Usage: disable display [NUM]...\n\
2850 Arguments are the code numbers of the expressions to stop displaying.\n\
2851 No argument means disable all automatic-display expressions.\n\
2852 Do \"info display\" to see current list of code numbers."), &disablelist);
2853
2854 add_cmd ("display", class_vars, undisplay_command, _("\
2855 Cancel some expressions to be displayed when program stops.\n\
2856 Usage: delete display [NUM]...\n\
2857 Arguments are the code numbers of the expressions to stop displaying.\n\
2858 No argument means cancel all automatic-display expressions.\n\
2859 Do \"info display\" to see current list of code numbers."), &deletelist);
2860
2861 add_com ("printf", class_vars, printf_command, _("\
2862 Formatted printing, like the C \"printf\" function.\n\
2863 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2864 This supports most C printf format specifications, like %s, %d, etc."));
2865
2866 add_com ("output", class_vars, output_command, _("\
2867 Like \"print\" but don't put in value history and don't print newline.\n\
2868 Usage: output EXP\n\
2869 This is useful in user-defined commands."));
2870
2871 add_prefix_cmd ("set", class_vars, set_command, _("\
2872 Evaluate expression EXP and assign result to variable VAR.\n\
2873 Usage: set VAR = EXP\n\
2874 This uses assignment syntax appropriate for the current language\n\
2875 (VAR = EXP or VAR := EXP for example).\n\
2876 VAR may be a debugger \"convenience\" variable (names starting\n\
2877 with $), a register (a few standard names starting with $), or an actual\n\
2878 variable in the program being debugged. EXP is any valid expression.\n\
2879 Use \"set variable\" for variables with names identical to set subcommands.\n\
2880 \n\
2881 With a subcommand, this command modifies parts of the gdb environment.\n\
2882 You can see these environment settings with the \"show\" command."),
2883 &setlist, "set ", 1, &cmdlist);
2884 if (dbx_commands)
2885 add_com ("assign", class_vars, set_command, _("\
2886 Evaluate expression EXP and assign result to variable VAR.\n\
2887 Usage: assign VAR = EXP\n\
2888 This uses assignment syntax appropriate for the current language\n\
2889 (VAR = EXP or VAR := EXP for example).\n\
2890 VAR may be a debugger \"convenience\" variable (names starting\n\
2891 with $), a register (a few standard names starting with $), or an actual\n\
2892 variable in the program being debugged. EXP is any valid expression.\n\
2893 Use \"set variable\" for variables with names identical to set subcommands.\n\
2894 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2895 You can see these environment settings with the \"show\" command."));
2896
2897 /* "call" is the same as "set", but handy for dbx users to call fns. */
2898 c = add_com ("call", class_vars, call_command, _("\
2899 Call a function in the program.\n\
2900 Usage: call EXP\n\
2901 The argument is the function name and arguments, in the notation of the\n\
2902 current working language. The result is printed and saved in the value\n\
2903 history, if it is not void."));
2904 set_cmd_completer_handle_brkchars (c, print_command_completer);
2905
2906 add_cmd ("variable", class_vars, set_command, _("\
2907 Evaluate expression EXP and assign result to variable VAR.\n\
2908 Usage: set variable VAR = EXP\n\
2909 This uses assignment syntax appropriate for the current language\n\
2910 (VAR = EXP or VAR := EXP for example).\n\
2911 VAR may be a debugger \"convenience\" variable (names starting\n\
2912 with $), a register (a few standard names starting with $), or an actual\n\
2913 variable in the program being debugged. EXP is any valid expression.\n\
2914 This may usually be abbreviated to simply \"set\"."),
2915 &setlist);
2916 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2917
2918 const auto print_opts = make_value_print_options_def_group (nullptr);
2919
2920 static const std::string print_help = gdb::option::build_help (_("\
2921 Print value of expression EXP.\n\
2922 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2923 \n\
2924 Options:\n\
2925 %OPTIONS%\n\
2926 \n\
2927 Note: because this command accepts arbitrary expressions, if you\n\
2928 specify any command option, you must use a double dash (\"--\")\n\
2929 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2930 \n\
2931 Variables accessible are those of the lexical environment of the selected\n\
2932 stack frame, plus all those whose scope is global or an entire file.\n\
2933 \n\
2934 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2935 $$NUM refers to NUM'th value back from the last one.\n\
2936 Names starting with $ refer to registers (with the values they would have\n\
2937 if the program were to return to the stack frame now selected, restoring\n\
2938 all registers saved by frames farther in) or else to debugger\n\
2939 \"convenience\" variables (any such name not a known register).\n\
2940 Use assignment expressions to give values to convenience variables.\n\
2941 \n\
2942 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2943 @ is a binary operator for treating consecutive data objects\n\
2944 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2945 element is FOO, whose second element is stored in the space following\n\
2946 where FOO is stored, etc. FOO must be an expression whose value\n\
2947 resides in memory.\n\
2948 \n\
2949 EXP may be preceded with /FMT, where FMT is a format letter\n\
2950 but no count or size letter (see \"x\" command)."),
2951 print_opts);
2952
2953 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2954 set_cmd_completer_handle_brkchars (c, print_command_completer);
2955 add_com_alias ("p", "print", class_vars, 1);
2956 add_com_alias ("inspect", "print", class_vars, 1);
2957
2958 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2959 &max_symbolic_offset, _("\
2960 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2961 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2962 Tell GDB to only display the symbolic form of an address if the\n\
2963 offset between the closest earlier symbol and the address is less than\n\
2964 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2965 to always print the symbolic form of an address if any symbol precedes\n\
2966 it. Zero is equivalent to \"unlimited\"."),
2967 NULL,
2968 show_max_symbolic_offset,
2969 &setprintlist, &showprintlist);
2970 add_setshow_boolean_cmd ("symbol-filename", no_class,
2971 &print_symbol_filename, _("\
2972 Set printing of source filename and line number with <SYMBOL>."), _("\
2973 Show printing of source filename and line number with <SYMBOL>."), NULL,
2974 NULL,
2975 show_print_symbol_filename,
2976 &setprintlist, &showprintlist);
2977
2978 add_com ("eval", no_class, eval_command, _("\
2979 Construct a GDB command and then evaluate it.\n\
2980 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2981 Convert the arguments to a string as \"printf\" would, but then\n\
2982 treat this string as a command line, and evaluate it."));
2983 }