]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/printcmd.c
Change all_objfiles adapter to be a method on program_space
[thirdparty/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "cli/cli-style.h"
50 #include "format.h"
51 #include "source.h"
52 #include "common/byte-vector.h"
53 #include "cli/cli-style.h"
54
55 /* Last specified output format. */
56
57 static char last_format = 0;
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Last specified count for the 'x' command. */
64
65 static int last_count;
66
67 /* Default address to examine next, and associated architecture. */
68
69 static struct gdbarch *next_gdbarch;
70 static CORE_ADDR next_address;
71
72 /* Number of delay instructions following current disassembled insn. */
73
74 static int branch_delay_insns;
75
76 /* Last address examined. */
77
78 static CORE_ADDR last_examine_address;
79
80 /* Contents of last address examined.
81 This is not valid past the end of the `x' command! */
82
83 static value_ref_ptr last_examine_value;
84
85 /* Largest offset between a symbolic value and an address, that will be
86 printed as `0x1234 <symbol+offset>'. */
87
88 static unsigned int max_symbolic_offset = UINT_MAX;
89 static void
90 show_max_symbolic_offset (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file,
94 _("The largest offset that will be "
95 "printed in <symbol+1234> form is %s.\n"),
96 value);
97 }
98
99 /* Append the source filename and linenumber of the symbol when
100 printing a symbolic value as `<symbol at filename:linenum>' if set. */
101 static int print_symbol_filename = 0;
102 static void
103 show_print_symbol_filename (struct ui_file *file, int from_tty,
104 struct cmd_list_element *c, const char *value)
105 {
106 fprintf_filtered (file, _("Printing of source filename and "
107 "line number with <symbol> is %s.\n"),
108 value);
109 }
110
111 /* Number of auto-display expression currently being displayed.
112 So that we can disable it if we get a signal within it.
113 -1 when not doing one. */
114
115 static int current_display_number;
116
117 struct display
118 {
119 /* Chain link to next auto-display item. */
120 struct display *next;
121
122 /* The expression as the user typed it. */
123 char *exp_string;
124
125 /* Expression to be evaluated and displayed. */
126 expression_up exp;
127
128 /* Item number of this auto-display item. */
129 int number;
130
131 /* Display format specified. */
132 struct format_data format;
133
134 /* Program space associated with `block'. */
135 struct program_space *pspace;
136
137 /* Innermost block required by this expression when evaluated. */
138 const struct block *block;
139
140 /* Status of this display (enabled or disabled). */
141 int enabled_p;
142 };
143
144 /* Chain of expressions whose values should be displayed
145 automatically each time the program stops. */
146
147 static struct display *display_chain;
148
149 static int display_number;
150
151 /* Walk the following statement or block through all displays.
152 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
153 display. */
154
155 #define ALL_DISPLAYS(B) \
156 for (B = display_chain; B; B = B->next)
157
158 #define ALL_DISPLAYS_SAFE(B,TMP) \
159 for (B = display_chain; \
160 B ? (TMP = B->next, 1): 0; \
161 B = TMP)
162
163 /* Prototypes for local functions. */
164
165 static void do_one_display (struct display *);
166 \f
167
168 /* Decode a format specification. *STRING_PTR should point to it.
169 OFORMAT and OSIZE are used as defaults for the format and size
170 if none are given in the format specification.
171 If OSIZE is zero, then the size field of the returned value
172 should be set only if a size is explicitly specified by the
173 user.
174 The structure returned describes all the data
175 found in the specification. In addition, *STRING_PTR is advanced
176 past the specification and past all whitespace following it. */
177
178 static struct format_data
179 decode_format (const char **string_ptr, int oformat, int osize)
180 {
181 struct format_data val;
182 const char *p = *string_ptr;
183
184 val.format = '?';
185 val.size = '?';
186 val.count = 1;
187 val.raw = 0;
188
189 if (*p == '-')
190 {
191 val.count = -1;
192 p++;
193 }
194 if (*p >= '0' && *p <= '9')
195 val.count *= atoi (p);
196 while (*p >= '0' && *p <= '9')
197 p++;
198
199 /* Now process size or format letters that follow. */
200
201 while (1)
202 {
203 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
204 val.size = *p++;
205 else if (*p == 'r')
206 {
207 val.raw = 1;
208 p++;
209 }
210 else if (*p >= 'a' && *p <= 'z')
211 val.format = *p++;
212 else
213 break;
214 }
215
216 *string_ptr = skip_spaces (p);
217
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
220 {
221 if (val.size == '?')
222 {
223 /* Neither has been specified. */
224 val.format = oformat;
225 val.size = osize;
226 }
227 else
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
231 }
232 else if (val.size == '?')
233 switch (val.format)
234 {
235 case 'a':
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
240 break;
241 case 'f':
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
244 val.size = osize;
245 else
246 /* Default it to giantword if the last used size is not
247 appropriate. */
248 val.size = osize ? 'g' : osize;
249 break;
250 case 'c':
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
253 break;
254 case 's':
255 /* Display strings with byte size chars unless explicitly
256 specified. */
257 val.size = '\0';
258 break;
259
260 default:
261 /* The default is the size most recently specified. */
262 val.size = osize;
263 }
264
265 return val;
266 }
267 \f
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
273
274 static void
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
278 {
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
281
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
284
285 if (size)
286 {
287 switch (options->format)
288 {
289 case 's':
290 {
291 struct type *elttype = value_type (val);
292
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
297 }
298 return;
299
300 case 'i':
301 /* We often wrap here if there are long symbolic names. */
302 wrap_here (" ");
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
307 return;
308 }
309 }
310
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
319 else
320 /* User specified format, so don't look to the type to tell us
321 what to do. */
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
324 val,
325 options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
379 {
380 /* Truncate to fit. */
381 unsigned newlen;
382 switch (size)
383 {
384 case 'b':
385 newlen = 1;
386 break;
387 case 'h':
388 newlen = 2;
389 break;
390 case 'w':
391 newlen = 4;
392 break;
393 case 'g':
394 newlen = 8;
395 break;
396 default:
397 error (_("Undefined output size \"%c\"."), size);
398 }
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
401 len = newlen;
402 }
403
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
415 {
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
421 }
422
423 /* Printing a non-float type as 'f' will interpret the data as if it were
424 of a floating-point type of the same length, if that exists. Otherwise,
425 the data is printed as integer. */
426 char format = options->format;
427 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
428 {
429 type = float_type_from_length (type);
430 if (TYPE_CODE (type) != TYPE_CODE_FLT)
431 format = 0;
432 }
433
434 switch (format)
435 {
436 case 'o':
437 print_octal_chars (stream, valaddr, len, byte_order);
438 break;
439 case 'd':
440 print_decimal_chars (stream, valaddr, len, true, byte_order);
441 break;
442 case 'u':
443 print_decimal_chars (stream, valaddr, len, false, byte_order);
444 break;
445 case 0:
446 if (TYPE_CODE (type) != TYPE_CODE_FLT)
447 {
448 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
449 byte_order);
450 break;
451 }
452 /* FALLTHROUGH */
453 case 'f':
454 print_floating (valaddr, type, stream);
455 break;
456
457 case 't':
458 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
459 break;
460 case 'x':
461 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
462 break;
463 case 'z':
464 print_hex_chars (stream, valaddr, len, byte_order, true);
465 break;
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 LONGEST val_long = unpack_long (type, valaddr);
471
472 opts.format = 0;
473 if (TYPE_UNSIGNED (type))
474 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
475 else
476 type = builtin_type (gdbarch)->builtin_true_char;
477
478 value_print (value_from_longest (type, val_long), stream, &opts);
479 }
480 break;
481
482 case 'a':
483 {
484 CORE_ADDR addr = unpack_pointer (type, valaddr);
485
486 print_address (gdbarch, addr, stream);
487 }
488 break;
489
490 default:
491 error (_("Undefined output format \"%c\"."), format);
492 }
493 }
494
495 /* Specify default address for `x' command.
496 The `info lines' command uses this. */
497
498 void
499 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
500 {
501 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
502
503 next_gdbarch = gdbarch;
504 next_address = addr;
505
506 /* Make address available to the user as $_. */
507 set_internalvar (lookup_internalvar ("_"),
508 value_from_pointer (ptr_type, addr));
509 }
510
511 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
512 after LEADIN. Print nothing if no symbolic name is found nearby.
513 Optionally also print source file and line number, if available.
514 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
515 or to interpret it as a possible C++ name and convert it back to source
516 form. However note that DO_DEMANGLE can be overridden by the specific
517 settings of the demangle and asm_demangle variables. Returns
518 non-zero if anything was printed; zero otherwise. */
519
520 int
521 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
522 struct ui_file *stream,
523 int do_demangle, const char *leadin)
524 {
525 std::string name, filename;
526 int unmapped = 0;
527 int offset = 0;
528 int line = 0;
529
530 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
531 &filename, &line, &unmapped))
532 return 0;
533
534 fputs_filtered (leadin, stream);
535 if (unmapped)
536 fputs_filtered ("<*", stream);
537 else
538 fputs_filtered ("<", stream);
539 fputs_styled (name.c_str (), function_name_style.style (), stream);
540 if (offset != 0)
541 fprintf_filtered (stream, "+%u", (unsigned int) offset);
542
543 /* Append source filename and line number if desired. Give specific
544 line # of this addr, if we have it; else line # of the nearest symbol. */
545 if (print_symbol_filename && !filename.empty ())
546 {
547 fputs_filtered (line == -1 ? " in " : " at ", stream);
548 fputs_styled (filename.c_str (), file_name_style.style (), stream);
549 if (line != -1)
550 fprintf_filtered (stream, ":%d", line);
551 }
552 if (unmapped)
553 fputs_filtered ("*>", stream);
554 else
555 fputs_filtered (">", stream);
556
557 return 1;
558 }
559
560 /* See valprint.h. */
561
562 int
563 build_address_symbolic (struct gdbarch *gdbarch,
564 CORE_ADDR addr, /* IN */
565 int do_demangle, /* IN */
566 std::string *name, /* OUT */
567 int *offset, /* OUT */
568 std::string *filename, /* OUT */
569 int *line, /* OUT */
570 int *unmapped) /* OUT */
571 {
572 struct bound_minimal_symbol msymbol;
573 struct symbol *symbol;
574 CORE_ADDR name_location = 0;
575 struct obj_section *section = NULL;
576 const char *name_temp = "";
577
578 /* Let's say it is mapped (not unmapped). */
579 *unmapped = 0;
580
581 /* Determine if the address is in an overlay, and whether it is
582 mapped. */
583 if (overlay_debugging)
584 {
585 section = find_pc_overlay (addr);
586 if (pc_in_unmapped_range (addr, section))
587 {
588 *unmapped = 1;
589 addr = overlay_mapped_address (addr, section);
590 }
591 }
592
593 /* First try to find the address in the symbol table, then
594 in the minsyms. Take the closest one. */
595
596 /* This is defective in the sense that it only finds text symbols. So
597 really this is kind of pointless--we should make sure that the
598 minimal symbols have everything we need (by changing that we could
599 save some memory, but for many debug format--ELF/DWARF or
600 anything/stabs--it would be inconvenient to eliminate those minimal
601 symbols anyway). */
602 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
603 symbol = find_pc_sect_function (addr, section);
604
605 if (symbol)
606 {
607 /* If this is a function (i.e. a code address), strip out any
608 non-address bits. For instance, display a pointer to the
609 first instruction of a Thumb function as <function>; the
610 second instruction will be <function+2>, even though the
611 pointer is <function+3>. This matches the ISA behavior. */
612 addr = gdbarch_addr_bits_remove (gdbarch, addr);
613
614 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
615 if (do_demangle || asm_demangle)
616 name_temp = SYMBOL_PRINT_NAME (symbol);
617 else
618 name_temp = SYMBOL_LINKAGE_NAME (symbol);
619 }
620
621 if (msymbol.minsym != NULL
622 && MSYMBOL_HAS_SIZE (msymbol.minsym)
623 && MSYMBOL_SIZE (msymbol.minsym) == 0
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
625 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
626 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
627 msymbol.minsym = NULL;
628
629 if (msymbol.minsym != NULL)
630 {
631 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
632 {
633 /* If this is a function (i.e. a code address), strip out any
634 non-address bits. For instance, display a pointer to the
635 first instruction of a Thumb function as <function>; the
636 second instruction will be <function+2>, even though the
637 pointer is <function+3>. This matches the ISA behavior. */
638 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
640 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
641 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
642 addr = gdbarch_addr_bits_remove (gdbarch, addr);
643
644 /* The msymbol is closer to the address than the symbol;
645 use the msymbol instead. */
646 symbol = 0;
647 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
648 if (do_demangle || asm_demangle)
649 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
650 else
651 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
652 }
653 }
654 if (symbol == NULL && msymbol.minsym == NULL)
655 return 1;
656
657 /* If the nearest symbol is too far away, don't print anything symbolic. */
658
659 /* For when CORE_ADDR is larger than unsigned int, we do math in
660 CORE_ADDR. But when we detect unsigned wraparound in the
661 CORE_ADDR math, we ignore this test and print the offset,
662 because addr+max_symbolic_offset has wrapped through the end
663 of the address space back to the beginning, giving bogus comparison. */
664 if (addr > name_location + max_symbolic_offset
665 && name_location + max_symbolic_offset > name_location)
666 return 1;
667
668 *offset = addr - name_location;
669
670 *name = name_temp;
671
672 if (print_symbol_filename)
673 {
674 struct symtab_and_line sal;
675
676 sal = find_pc_sect_line (addr, section, 0);
677
678 if (sal.symtab)
679 {
680 *filename = symtab_to_filename_for_display (sal.symtab);
681 *line = sal.line;
682 }
683 }
684 return 0;
685 }
686
687
688 /* Print address ADDR symbolically on STREAM.
689 First print it as a number. Then perhaps print
690 <SYMBOL + OFFSET> after the number. */
691
692 void
693 print_address (struct gdbarch *gdbarch,
694 CORE_ADDR addr, struct ui_file *stream)
695 {
696 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
697 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
698 }
699
700 /* Return a prefix for instruction address:
701 "=> " for current instruction, else " ". */
702
703 const char *
704 pc_prefix (CORE_ADDR addr)
705 {
706 if (has_stack_frames ())
707 {
708 struct frame_info *frame;
709 CORE_ADDR pc;
710
711 frame = get_selected_frame (NULL);
712 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
713 return "=> ";
714 }
715 return " ";
716 }
717
718 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
719 controls whether to print the symbolic name "raw" or demangled.
720 Return non-zero if anything was printed; zero otherwise. */
721
722 int
723 print_address_demangle (const struct value_print_options *opts,
724 struct gdbarch *gdbarch, CORE_ADDR addr,
725 struct ui_file *stream, int do_demangle)
726 {
727 if (opts->addressprint)
728 {
729 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
730 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
731 }
732 else
733 {
734 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
735 }
736 return 1;
737 }
738 \f
739
740 /* Find the address of the instruction that is INST_COUNT instructions before
741 the instruction at ADDR.
742 Since some architectures have variable-length instructions, we can't just
743 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
744 number information to locate the nearest known instruction boundary,
745 and disassemble forward from there. If we go out of the symbol range
746 during disassembling, we return the lowest address we've got so far and
747 set the number of instructions read to INST_READ. */
748
749 static CORE_ADDR
750 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
751 int inst_count, int *inst_read)
752 {
753 /* The vector PCS is used to store instruction addresses within
754 a pc range. */
755 CORE_ADDR loop_start, loop_end, p;
756 std::vector<CORE_ADDR> pcs;
757 struct symtab_and_line sal;
758
759 *inst_read = 0;
760 loop_start = loop_end = addr;
761
762 /* In each iteration of the outer loop, we get a pc range that ends before
763 LOOP_START, then we count and store every instruction address of the range
764 iterated in the loop.
765 If the number of instructions counted reaches INST_COUNT, return the
766 stored address that is located INST_COUNT instructions back from ADDR.
767 If INST_COUNT is not reached, we subtract the number of counted
768 instructions from INST_COUNT, and go to the next iteration. */
769 do
770 {
771 pcs.clear ();
772 sal = find_pc_sect_line (loop_start, NULL, 1);
773 if (sal.line <= 0)
774 {
775 /* We reach here when line info is not available. In this case,
776 we print a message and just exit the loop. The return value
777 is calculated after the loop. */
778 printf_filtered (_("No line number information available "
779 "for address "));
780 wrap_here (" ");
781 print_address (gdbarch, loop_start - 1, gdb_stdout);
782 printf_filtered ("\n");
783 break;
784 }
785
786 loop_end = loop_start;
787 loop_start = sal.pc;
788
789 /* This loop pushes instruction addresses in the range from
790 LOOP_START to LOOP_END. */
791 for (p = loop_start; p < loop_end;)
792 {
793 pcs.push_back (p);
794 p += gdb_insn_length (gdbarch, p);
795 }
796
797 inst_count -= pcs.size ();
798 *inst_read += pcs.size ();
799 }
800 while (inst_count > 0);
801
802 /* After the loop, the vector PCS has instruction addresses of the last
803 source line we processed, and INST_COUNT has a negative value.
804 We return the address at the index of -INST_COUNT in the vector for
805 the reason below.
806 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
807 Line X of File
808 0x4000
809 0x4001
810 0x4005
811 Line Y of File
812 0x4009
813 0x400c
814 => 0x400e
815 0x4011
816 find_instruction_backward is called with INST_COUNT = 4 and expected to
817 return 0x4001. When we reach here, INST_COUNT is set to -1 because
818 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
819 4001 is located at the index 1 of the last iterated line (= Line X),
820 which is simply calculated by -INST_COUNT.
821 The case when the length of PCS is 0 means that we reached an area for
822 which line info is not available. In such case, we return LOOP_START,
823 which was the lowest instruction address that had line info. */
824 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
825
826 /* INST_READ includes all instruction addresses in a pc range. Need to
827 exclude the beginning part up to the address we're returning. That
828 is, exclude {0x4000} in the example above. */
829 if (inst_count < 0)
830 *inst_read += inst_count;
831
832 return p;
833 }
834
835 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
836 placing the results in GDB's memory from MYADDR + LEN. Returns
837 a count of the bytes actually read. */
838
839 static int
840 read_memory_backward (struct gdbarch *gdbarch,
841 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
842 {
843 int errcode;
844 int nread; /* Number of bytes actually read. */
845
846 /* First try a complete read. */
847 errcode = target_read_memory (memaddr, myaddr, len);
848 if (errcode == 0)
849 {
850 /* Got it all. */
851 nread = len;
852 }
853 else
854 {
855 /* Loop, reading one byte at a time until we get as much as we can. */
856 memaddr += len;
857 myaddr += len;
858 for (nread = 0; nread < len; ++nread)
859 {
860 errcode = target_read_memory (--memaddr, --myaddr, 1);
861 if (errcode != 0)
862 {
863 /* The read was unsuccessful, so exit the loop. */
864 printf_filtered (_("Cannot access memory at address %s\n"),
865 paddress (gdbarch, memaddr));
866 break;
867 }
868 }
869 }
870 return nread;
871 }
872
873 /* Returns true if X (which is LEN bytes wide) is the number zero. */
874
875 static int
876 integer_is_zero (const gdb_byte *x, int len)
877 {
878 int i = 0;
879
880 while (i < len && x[i] == 0)
881 ++i;
882 return (i == len);
883 }
884
885 /* Find the start address of a string in which ADDR is included.
886 Basically we search for '\0' and return the next address,
887 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
888 we stop searching and return the address to print characters as many as
889 PRINT_MAX from the string. */
890
891 static CORE_ADDR
892 find_string_backward (struct gdbarch *gdbarch,
893 CORE_ADDR addr, int count, int char_size,
894 const struct value_print_options *options,
895 int *strings_counted)
896 {
897 const int chunk_size = 0x20;
898 int read_error = 0;
899 int chars_read = 0;
900 int chars_to_read = chunk_size;
901 int chars_counted = 0;
902 int count_original = count;
903 CORE_ADDR string_start_addr = addr;
904
905 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
906 gdb::byte_vector buffer (chars_to_read * char_size);
907 while (count > 0 && read_error == 0)
908 {
909 int i;
910
911 addr -= chars_to_read * char_size;
912 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
913 chars_to_read * char_size);
914 chars_read /= char_size;
915 read_error = (chars_read == chars_to_read) ? 0 : 1;
916 /* Searching for '\0' from the end of buffer in backward direction. */
917 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
918 {
919 int offset = (chars_to_read - i - 1) * char_size;
920
921 if (integer_is_zero (&buffer[offset], char_size)
922 || chars_counted == options->print_max)
923 {
924 /* Found '\0' or reached print_max. As OFFSET is the offset to
925 '\0', we add CHAR_SIZE to return the start address of
926 a string. */
927 --count;
928 string_start_addr = addr + offset + char_size;
929 chars_counted = 0;
930 }
931 }
932 }
933
934 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
935 *strings_counted = count_original - count;
936
937 if (read_error != 0)
938 {
939 /* In error case, STRING_START_ADDR is pointing to the string that
940 was last successfully loaded. Rewind the partially loaded string. */
941 string_start_addr -= chars_counted * char_size;
942 }
943
944 return string_start_addr;
945 }
946
947 /* Examine data at address ADDR in format FMT.
948 Fetch it from memory and print on gdb_stdout. */
949
950 static void
951 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
952 {
953 char format = 0;
954 char size;
955 int count = 1;
956 struct type *val_type = NULL;
957 int i;
958 int maxelts;
959 struct value_print_options opts;
960 int need_to_update_next_address = 0;
961 CORE_ADDR addr_rewound = 0;
962
963 format = fmt.format;
964 size = fmt.size;
965 count = fmt.count;
966 next_gdbarch = gdbarch;
967 next_address = addr;
968
969 /* Instruction format implies fetch single bytes
970 regardless of the specified size.
971 The case of strings is handled in decode_format, only explicit
972 size operator are not changed to 'b'. */
973 if (format == 'i')
974 size = 'b';
975
976 if (size == 'a')
977 {
978 /* Pick the appropriate size for an address. */
979 if (gdbarch_ptr_bit (next_gdbarch) == 64)
980 size = 'g';
981 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
982 size = 'w';
983 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
984 size = 'h';
985 else
986 /* Bad value for gdbarch_ptr_bit. */
987 internal_error (__FILE__, __LINE__,
988 _("failed internal consistency check"));
989 }
990
991 if (size == 'b')
992 val_type = builtin_type (next_gdbarch)->builtin_int8;
993 else if (size == 'h')
994 val_type = builtin_type (next_gdbarch)->builtin_int16;
995 else if (size == 'w')
996 val_type = builtin_type (next_gdbarch)->builtin_int32;
997 else if (size == 'g')
998 val_type = builtin_type (next_gdbarch)->builtin_int64;
999
1000 if (format == 's')
1001 {
1002 struct type *char_type = NULL;
1003
1004 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1005 if type is not found. */
1006 if (size == 'h')
1007 char_type = builtin_type (next_gdbarch)->builtin_char16;
1008 else if (size == 'w')
1009 char_type = builtin_type (next_gdbarch)->builtin_char32;
1010 if (char_type)
1011 val_type = char_type;
1012 else
1013 {
1014 if (size != '\0' && size != 'b')
1015 warning (_("Unable to display strings with "
1016 "size '%c', using 'b' instead."), size);
1017 size = 'b';
1018 val_type = builtin_type (next_gdbarch)->builtin_int8;
1019 }
1020 }
1021
1022 maxelts = 8;
1023 if (size == 'w')
1024 maxelts = 4;
1025 if (size == 'g')
1026 maxelts = 2;
1027 if (format == 's' || format == 'i')
1028 maxelts = 1;
1029
1030 get_formatted_print_options (&opts, format);
1031
1032 if (count < 0)
1033 {
1034 /* This is the negative repeat count case.
1035 We rewind the address based on the given repeat count and format,
1036 then examine memory from there in forward direction. */
1037
1038 count = -count;
1039 if (format == 'i')
1040 {
1041 next_address = find_instruction_backward (gdbarch, addr, count,
1042 &count);
1043 }
1044 else if (format == 's')
1045 {
1046 next_address = find_string_backward (gdbarch, addr, count,
1047 TYPE_LENGTH (val_type),
1048 &opts, &count);
1049 }
1050 else
1051 {
1052 next_address = addr - count * TYPE_LENGTH (val_type);
1053 }
1054
1055 /* The following call to print_formatted updates next_address in every
1056 iteration. In backward case, we store the start address here
1057 and update next_address with it before exiting the function. */
1058 addr_rewound = (format == 's'
1059 ? next_address - TYPE_LENGTH (val_type)
1060 : next_address);
1061 need_to_update_next_address = 1;
1062 }
1063
1064 /* Print as many objects as specified in COUNT, at most maxelts per line,
1065 with the address of the next one at the start of each line. */
1066
1067 while (count > 0)
1068 {
1069 QUIT;
1070 if (format == 'i')
1071 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1072 print_address (next_gdbarch, next_address, gdb_stdout);
1073 printf_filtered (":");
1074 for (i = maxelts;
1075 i > 0 && count > 0;
1076 i--, count--)
1077 {
1078 printf_filtered ("\t");
1079 /* Note that print_formatted sets next_address for the next
1080 object. */
1081 last_examine_address = next_address;
1082
1083 /* The value to be displayed is not fetched greedily.
1084 Instead, to avoid the possibility of a fetched value not
1085 being used, its retrieval is delayed until the print code
1086 uses it. When examining an instruction stream, the
1087 disassembler will perform its own memory fetch using just
1088 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1089 the disassembler be modified so that LAST_EXAMINE_VALUE
1090 is left with the byte sequence from the last complete
1091 instruction fetched from memory? */
1092 last_examine_value
1093 = release_value (value_at_lazy (val_type, next_address));
1094
1095 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1096
1097 /* Display any branch delay slots following the final insn. */
1098 if (format == 'i' && count == 1)
1099 count += branch_delay_insns;
1100 }
1101 printf_filtered ("\n");
1102 gdb_flush (gdb_stdout);
1103 }
1104
1105 if (need_to_update_next_address)
1106 next_address = addr_rewound;
1107 }
1108 \f
1109 static void
1110 validate_format (struct format_data fmt, const char *cmdname)
1111 {
1112 if (fmt.size != 0)
1113 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1114 if (fmt.count != 1)
1115 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1116 cmdname);
1117 if (fmt.format == 'i')
1118 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1119 fmt.format, cmdname);
1120 }
1121
1122 /* Parse print command format string into *FMTP and update *EXPP.
1123 CMDNAME should name the current command. */
1124
1125 void
1126 print_command_parse_format (const char **expp, const char *cmdname,
1127 struct format_data *fmtp)
1128 {
1129 const char *exp = *expp;
1130
1131 if (exp && *exp == '/')
1132 {
1133 exp++;
1134 *fmtp = decode_format (&exp, last_format, 0);
1135 validate_format (*fmtp, cmdname);
1136 last_format = fmtp->format;
1137 }
1138 else
1139 {
1140 fmtp->count = 1;
1141 fmtp->format = 0;
1142 fmtp->size = 0;
1143 fmtp->raw = 0;
1144 }
1145
1146 *expp = exp;
1147 }
1148
1149 /* Print VAL to console according to *FMTP, including recording it to
1150 the history. */
1151
1152 void
1153 print_value (struct value *val, const struct format_data *fmtp)
1154 {
1155 struct value_print_options opts;
1156 int histindex = record_latest_value (val);
1157
1158 annotate_value_history_begin (histindex, value_type (val));
1159
1160 printf_filtered ("$%d = ", histindex);
1161
1162 annotate_value_history_value ();
1163
1164 get_formatted_print_options (&opts, fmtp->format);
1165 opts.raw = fmtp->raw;
1166
1167 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1168 printf_filtered ("\n");
1169
1170 annotate_value_history_end ();
1171 }
1172
1173 /* Evaluate string EXP as an expression in the current language and
1174 print the resulting value. EXP may contain a format specifier as the
1175 first argument ("/x myvar" for example, to print myvar in hex). */
1176
1177 static void
1178 print_command_1 (const char *exp, int voidprint)
1179 {
1180 struct value *val;
1181 struct format_data fmt;
1182
1183 print_command_parse_format (&exp, "print", &fmt);
1184
1185 if (exp && *exp)
1186 {
1187 expression_up expr = parse_expression (exp);
1188 val = evaluate_expression (expr.get ());
1189 }
1190 else
1191 val = access_value_history (0);
1192
1193 if (voidprint || (val && value_type (val) &&
1194 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1195 print_value (val, &fmt);
1196 }
1197
1198 static void
1199 print_command (const char *exp, int from_tty)
1200 {
1201 print_command_1 (exp, 1);
1202 }
1203
1204 /* Same as print, except it doesn't print void results. */
1205 static void
1206 call_command (const char *exp, int from_tty)
1207 {
1208 print_command_1 (exp, 0);
1209 }
1210
1211 /* Implementation of the "output" command. */
1212
1213 void
1214 output_command (const char *exp, int from_tty)
1215 {
1216 char format = 0;
1217 struct value *val;
1218 struct format_data fmt;
1219 struct value_print_options opts;
1220
1221 fmt.size = 0;
1222 fmt.raw = 0;
1223
1224 if (exp && *exp == '/')
1225 {
1226 exp++;
1227 fmt = decode_format (&exp, 0, 0);
1228 validate_format (fmt, "output");
1229 format = fmt.format;
1230 }
1231
1232 expression_up expr = parse_expression (exp);
1233
1234 val = evaluate_expression (expr.get ());
1235
1236 annotate_value_begin (value_type (val));
1237
1238 get_formatted_print_options (&opts, format);
1239 opts.raw = fmt.raw;
1240 print_formatted (val, fmt.size, &opts, gdb_stdout);
1241
1242 annotate_value_end ();
1243
1244 wrap_here ("");
1245 gdb_flush (gdb_stdout);
1246 }
1247
1248 static void
1249 set_command (const char *exp, int from_tty)
1250 {
1251 expression_up expr = parse_expression (exp);
1252
1253 if (expr->nelts >= 1)
1254 switch (expr->elts[0].opcode)
1255 {
1256 case UNOP_PREINCREMENT:
1257 case UNOP_POSTINCREMENT:
1258 case UNOP_PREDECREMENT:
1259 case UNOP_POSTDECREMENT:
1260 case BINOP_ASSIGN:
1261 case BINOP_ASSIGN_MODIFY:
1262 case BINOP_COMMA:
1263 break;
1264 default:
1265 warning
1266 (_("Expression is not an assignment (and might have no effect)"));
1267 }
1268
1269 evaluate_expression (expr.get ());
1270 }
1271
1272 static void
1273 info_symbol_command (const char *arg, int from_tty)
1274 {
1275 struct minimal_symbol *msymbol;
1276 struct obj_section *osect;
1277 CORE_ADDR addr, sect_addr;
1278 int matches = 0;
1279 unsigned int offset;
1280
1281 if (!arg)
1282 error_no_arg (_("address"));
1283
1284 addr = parse_and_eval_address (arg);
1285 for (objfile *objfile : current_program_space->objfiles ())
1286 ALL_OBJFILE_OSECTIONS (objfile, osect)
1287 {
1288 /* Only process each object file once, even if there's a separate
1289 debug file. */
1290 if (objfile->separate_debug_objfile_backlink)
1291 continue;
1292
1293 sect_addr = overlay_mapped_address (addr, osect);
1294
1295 if (obj_section_addr (osect) <= sect_addr
1296 && sect_addr < obj_section_endaddr (osect)
1297 && (msymbol
1298 = lookup_minimal_symbol_by_pc_section (sect_addr,
1299 osect).minsym))
1300 {
1301 const char *obj_name, *mapped, *sec_name, *msym_name;
1302 const char *loc_string;
1303
1304 matches = 1;
1305 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1306 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1307 sec_name = osect->the_bfd_section->name;
1308 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1309
1310 /* Don't print the offset if it is zero.
1311 We assume there's no need to handle i18n of "sym + offset". */
1312 std::string string_holder;
1313 if (offset)
1314 {
1315 string_holder = string_printf ("%s + %u", msym_name, offset);
1316 loc_string = string_holder.c_str ();
1317 }
1318 else
1319 loc_string = msym_name;
1320
1321 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1322 obj_name = objfile_name (osect->objfile);
1323
1324 if (MULTI_OBJFILE_P ())
1325 if (pc_in_unmapped_range (addr, osect))
1326 if (section_is_overlay (osect))
1327 printf_filtered (_("%s in load address range of "
1328 "%s overlay section %s of %s\n"),
1329 loc_string, mapped, sec_name, obj_name);
1330 else
1331 printf_filtered (_("%s in load address range of "
1332 "section %s of %s\n"),
1333 loc_string, sec_name, obj_name);
1334 else
1335 if (section_is_overlay (osect))
1336 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1337 loc_string, mapped, sec_name, obj_name);
1338 else
1339 printf_filtered (_("%s in section %s of %s\n"),
1340 loc_string, sec_name, obj_name);
1341 else
1342 if (pc_in_unmapped_range (addr, osect))
1343 if (section_is_overlay (osect))
1344 printf_filtered (_("%s in load address range of %s overlay "
1345 "section %s\n"),
1346 loc_string, mapped, sec_name);
1347 else
1348 printf_filtered
1349 (_("%s in load address range of section %s\n"),
1350 loc_string, sec_name);
1351 else
1352 if (section_is_overlay (osect))
1353 printf_filtered (_("%s in %s overlay section %s\n"),
1354 loc_string, mapped, sec_name);
1355 else
1356 printf_filtered (_("%s in section %s\n"),
1357 loc_string, sec_name);
1358 }
1359 }
1360 if (matches == 0)
1361 printf_filtered (_("No symbol matches %s.\n"), arg);
1362 }
1363
1364 static void
1365 info_address_command (const char *exp, int from_tty)
1366 {
1367 struct gdbarch *gdbarch;
1368 int regno;
1369 struct symbol *sym;
1370 struct bound_minimal_symbol msymbol;
1371 long val;
1372 struct obj_section *section;
1373 CORE_ADDR load_addr, context_pc = 0;
1374 struct field_of_this_result is_a_field_of_this;
1375
1376 if (exp == 0)
1377 error (_("Argument required."));
1378
1379 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1380 &is_a_field_of_this).symbol;
1381 if (sym == NULL)
1382 {
1383 if (is_a_field_of_this.type != NULL)
1384 {
1385 printf_filtered ("Symbol \"");
1386 fprintf_symbol_filtered (gdb_stdout, exp,
1387 current_language->la_language, DMGL_ANSI);
1388 printf_filtered ("\" is a field of the local class variable ");
1389 if (current_language->la_language == language_objc)
1390 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1391 else
1392 printf_filtered ("`this'\n");
1393 return;
1394 }
1395
1396 msymbol = lookup_bound_minimal_symbol (exp);
1397
1398 if (msymbol.minsym != NULL)
1399 {
1400 struct objfile *objfile = msymbol.objfile;
1401
1402 gdbarch = get_objfile_arch (objfile);
1403 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1404
1405 printf_filtered ("Symbol \"");
1406 fprintf_symbol_filtered (gdb_stdout, exp,
1407 current_language->la_language, DMGL_ANSI);
1408 printf_filtered ("\" is at ");
1409 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1410 gdb_stdout);
1411 printf_filtered (" in a file compiled without debugging");
1412 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1413 if (section_is_overlay (section))
1414 {
1415 load_addr = overlay_unmapped_address (load_addr, section);
1416 printf_filtered (",\n -- loaded at ");
1417 fputs_styled (paddress (gdbarch, load_addr),
1418 address_style.style (),
1419 gdb_stdout);
1420 printf_filtered (" in overlay section %s",
1421 section->the_bfd_section->name);
1422 }
1423 printf_filtered (".\n");
1424 }
1425 else
1426 error (_("No symbol \"%s\" in current context."), exp);
1427 return;
1428 }
1429
1430 printf_filtered ("Symbol \"");
1431 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1432 current_language->la_language, DMGL_ANSI);
1433 printf_filtered ("\" is ");
1434 val = SYMBOL_VALUE (sym);
1435 if (SYMBOL_OBJFILE_OWNED (sym))
1436 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1437 else
1438 section = NULL;
1439 gdbarch = symbol_arch (sym);
1440
1441 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1442 {
1443 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1444 gdb_stdout);
1445 printf_filtered (".\n");
1446 return;
1447 }
1448
1449 switch (SYMBOL_CLASS (sym))
1450 {
1451 case LOC_CONST:
1452 case LOC_CONST_BYTES:
1453 printf_filtered ("constant");
1454 break;
1455
1456 case LOC_LABEL:
1457 printf_filtered ("a label at address ");
1458 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1459 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1460 gdb_stdout);
1461 if (section_is_overlay (section))
1462 {
1463 load_addr = overlay_unmapped_address (load_addr, section);
1464 printf_filtered (",\n -- loaded at ");
1465 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1466 gdb_stdout);
1467 printf_filtered (" in overlay section %s",
1468 section->the_bfd_section->name);
1469 }
1470 break;
1471
1472 case LOC_COMPUTED:
1473 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1474
1475 case LOC_REGISTER:
1476 /* GDBARCH is the architecture associated with the objfile the symbol
1477 is defined in; the target architecture may be different, and may
1478 provide additional registers. However, we do not know the target
1479 architecture at this point. We assume the objfile architecture
1480 will contain all the standard registers that occur in debug info
1481 in that objfile. */
1482 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1483
1484 if (SYMBOL_IS_ARGUMENT (sym))
1485 printf_filtered (_("an argument in register %s"),
1486 gdbarch_register_name (gdbarch, regno));
1487 else
1488 printf_filtered (_("a variable in register %s"),
1489 gdbarch_register_name (gdbarch, regno));
1490 break;
1491
1492 case LOC_STATIC:
1493 printf_filtered (_("static storage at address "));
1494 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1495 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1496 gdb_stdout);
1497 if (section_is_overlay (section))
1498 {
1499 load_addr = overlay_unmapped_address (load_addr, section);
1500 printf_filtered (_(",\n -- loaded at "));
1501 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1502 gdb_stdout);
1503 printf_filtered (_(" in overlay section %s"),
1504 section->the_bfd_section->name);
1505 }
1506 break;
1507
1508 case LOC_REGPARM_ADDR:
1509 /* Note comment at LOC_REGISTER. */
1510 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1511 printf_filtered (_("address of an argument in register %s"),
1512 gdbarch_register_name (gdbarch, regno));
1513 break;
1514
1515 case LOC_ARG:
1516 printf_filtered (_("an argument at offset %ld"), val);
1517 break;
1518
1519 case LOC_LOCAL:
1520 printf_filtered (_("a local variable at frame offset %ld"), val);
1521 break;
1522
1523 case LOC_REF_ARG:
1524 printf_filtered (_("a reference argument at offset %ld"), val);
1525 break;
1526
1527 case LOC_TYPEDEF:
1528 printf_filtered (_("a typedef"));
1529 break;
1530
1531 case LOC_BLOCK:
1532 printf_filtered (_("a function at address "));
1533 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1534 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1535 gdb_stdout);
1536 if (section_is_overlay (section))
1537 {
1538 load_addr = overlay_unmapped_address (load_addr, section);
1539 printf_filtered (_(",\n -- loaded at "));
1540 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1541 gdb_stdout);
1542 printf_filtered (_(" in overlay section %s"),
1543 section->the_bfd_section->name);
1544 }
1545 break;
1546
1547 case LOC_UNRESOLVED:
1548 {
1549 struct bound_minimal_symbol msym;
1550
1551 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1552 if (msym.minsym == NULL)
1553 printf_filtered ("unresolved");
1554 else
1555 {
1556 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1557
1558 if (section
1559 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1560 {
1561 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1562 printf_filtered (_("a thread-local variable at offset %s "
1563 "in the thread-local storage for `%s'"),
1564 paddress (gdbarch, load_addr),
1565 objfile_name (section->objfile));
1566 }
1567 else
1568 {
1569 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1570 printf_filtered (_("static storage at address "));
1571 fputs_styled (paddress (gdbarch, load_addr),
1572 address_style.style (), gdb_stdout);
1573 if (section_is_overlay (section))
1574 {
1575 load_addr = overlay_unmapped_address (load_addr, section);
1576 printf_filtered (_(",\n -- loaded at "));
1577 fputs_styled (paddress (gdbarch, load_addr),
1578 address_style.style (),
1579 gdb_stdout);
1580 printf_filtered (_(" in overlay section %s"),
1581 section->the_bfd_section->name);
1582 }
1583 }
1584 }
1585 }
1586 break;
1587
1588 case LOC_OPTIMIZED_OUT:
1589 printf_filtered (_("optimized out"));
1590 break;
1591
1592 default:
1593 printf_filtered (_("of unknown (botched) type"));
1594 break;
1595 }
1596 printf_filtered (".\n");
1597 }
1598 \f
1599
1600 static void
1601 x_command (const char *exp, int from_tty)
1602 {
1603 struct format_data fmt;
1604 struct value *val;
1605
1606 fmt.format = last_format ? last_format : 'x';
1607 fmt.size = last_size;
1608 fmt.count = 1;
1609 fmt.raw = 0;
1610
1611 /* If there is no expression and no format, use the most recent
1612 count. */
1613 if (exp == nullptr && last_count > 0)
1614 fmt.count = last_count;
1615
1616 if (exp && *exp == '/')
1617 {
1618 const char *tmp = exp + 1;
1619
1620 fmt = decode_format (&tmp, last_format, last_size);
1621 exp = (char *) tmp;
1622 }
1623
1624 last_count = fmt.count;
1625
1626 /* If we have an expression, evaluate it and use it as the address. */
1627
1628 if (exp != 0 && *exp != 0)
1629 {
1630 expression_up expr = parse_expression (exp);
1631 /* Cause expression not to be there any more if this command is
1632 repeated with Newline. But don't clobber a user-defined
1633 command's definition. */
1634 if (from_tty)
1635 set_repeat_arguments ("");
1636 val = evaluate_expression (expr.get ());
1637 if (TYPE_IS_REFERENCE (value_type (val)))
1638 val = coerce_ref (val);
1639 /* In rvalue contexts, such as this, functions are coerced into
1640 pointers to functions. This makes "x/i main" work. */
1641 if (/* last_format == 'i' && */
1642 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1643 && VALUE_LVAL (val) == lval_memory)
1644 next_address = value_address (val);
1645 else
1646 next_address = value_as_address (val);
1647
1648 next_gdbarch = expr->gdbarch;
1649 }
1650
1651 if (!next_gdbarch)
1652 error_no_arg (_("starting display address"));
1653
1654 do_examine (fmt, next_gdbarch, next_address);
1655
1656 /* If the examine succeeds, we remember its size and format for next
1657 time. Set last_size to 'b' for strings. */
1658 if (fmt.format == 's')
1659 last_size = 'b';
1660 else
1661 last_size = fmt.size;
1662 last_format = fmt.format;
1663
1664 /* Set a couple of internal variables if appropriate. */
1665 if (last_examine_value != nullptr)
1666 {
1667 /* Make last address examined available to the user as $_. Use
1668 the correct pointer type. */
1669 struct type *pointer_type
1670 = lookup_pointer_type (value_type (last_examine_value.get ()));
1671 set_internalvar (lookup_internalvar ("_"),
1672 value_from_pointer (pointer_type,
1673 last_examine_address));
1674
1675 /* Make contents of last address examined available to the user
1676 as $__. If the last value has not been fetched from memory
1677 then don't fetch it now; instead mark it by voiding the $__
1678 variable. */
1679 if (value_lazy (last_examine_value.get ()))
1680 clear_internalvar (lookup_internalvar ("__"));
1681 else
1682 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1683 }
1684 }
1685 \f
1686
1687 /* Add an expression to the auto-display chain.
1688 Specify the expression. */
1689
1690 static void
1691 display_command (const char *arg, int from_tty)
1692 {
1693 struct format_data fmt;
1694 struct display *newobj;
1695 const char *exp = arg;
1696
1697 if (exp == 0)
1698 {
1699 do_displays ();
1700 return;
1701 }
1702
1703 if (*exp == '/')
1704 {
1705 exp++;
1706 fmt = decode_format (&exp, 0, 0);
1707 if (fmt.size && fmt.format == 0)
1708 fmt.format = 'x';
1709 if (fmt.format == 'i' || fmt.format == 's')
1710 fmt.size = 'b';
1711 }
1712 else
1713 {
1714 fmt.format = 0;
1715 fmt.size = 0;
1716 fmt.count = 0;
1717 fmt.raw = 0;
1718 }
1719
1720 innermost_block.reset ();
1721 expression_up expr = parse_expression (exp);
1722
1723 newobj = new display ();
1724
1725 newobj->exp_string = xstrdup (exp);
1726 newobj->exp = std::move (expr);
1727 newobj->block = innermost_block.block ();
1728 newobj->pspace = current_program_space;
1729 newobj->number = ++display_number;
1730 newobj->format = fmt;
1731 newobj->enabled_p = 1;
1732 newobj->next = NULL;
1733
1734 if (display_chain == NULL)
1735 display_chain = newobj;
1736 else
1737 {
1738 struct display *last;
1739
1740 for (last = display_chain; last->next != NULL; last = last->next)
1741 ;
1742 last->next = newobj;
1743 }
1744
1745 if (from_tty)
1746 do_one_display (newobj);
1747
1748 dont_repeat ();
1749 }
1750
1751 static void
1752 free_display (struct display *d)
1753 {
1754 xfree (d->exp_string);
1755 delete d;
1756 }
1757
1758 /* Clear out the display_chain. Done when new symtabs are loaded,
1759 since this invalidates the types stored in many expressions. */
1760
1761 void
1762 clear_displays (void)
1763 {
1764 struct display *d;
1765
1766 while ((d = display_chain) != NULL)
1767 {
1768 display_chain = d->next;
1769 free_display (d);
1770 }
1771 }
1772
1773 /* Delete the auto-display DISPLAY. */
1774
1775 static void
1776 delete_display (struct display *display)
1777 {
1778 struct display *d;
1779
1780 gdb_assert (display != NULL);
1781
1782 if (display_chain == display)
1783 display_chain = display->next;
1784
1785 ALL_DISPLAYS (d)
1786 if (d->next == display)
1787 {
1788 d->next = display->next;
1789 break;
1790 }
1791
1792 free_display (display);
1793 }
1794
1795 /* Call FUNCTION on each of the displays whose numbers are given in
1796 ARGS. DATA is passed unmodified to FUNCTION. */
1797
1798 static void
1799 map_display_numbers (const char *args,
1800 void (*function) (struct display *,
1801 void *),
1802 void *data)
1803 {
1804 int num;
1805
1806 if (args == NULL)
1807 error_no_arg (_("one or more display numbers"));
1808
1809 number_or_range_parser parser (args);
1810
1811 while (!parser.finished ())
1812 {
1813 const char *p = parser.cur_tok ();
1814
1815 num = parser.get_number ();
1816 if (num == 0)
1817 warning (_("bad display number at or near '%s'"), p);
1818 else
1819 {
1820 struct display *d, *tmp;
1821
1822 ALL_DISPLAYS_SAFE (d, tmp)
1823 if (d->number == num)
1824 break;
1825 if (d == NULL)
1826 printf_unfiltered (_("No display number %d.\n"), num);
1827 else
1828 function (d, data);
1829 }
1830 }
1831 }
1832
1833 /* Callback for map_display_numbers, that deletes a display. */
1834
1835 static void
1836 do_delete_display (struct display *d, void *data)
1837 {
1838 delete_display (d);
1839 }
1840
1841 /* "undisplay" command. */
1842
1843 static void
1844 undisplay_command (const char *args, int from_tty)
1845 {
1846 if (args == NULL)
1847 {
1848 if (query (_("Delete all auto-display expressions? ")))
1849 clear_displays ();
1850 dont_repeat ();
1851 return;
1852 }
1853
1854 map_display_numbers (args, do_delete_display, NULL);
1855 dont_repeat ();
1856 }
1857
1858 /* Display a single auto-display.
1859 Do nothing if the display cannot be printed in the current context,
1860 or if the display is disabled. */
1861
1862 static void
1863 do_one_display (struct display *d)
1864 {
1865 int within_current_scope;
1866
1867 if (d->enabled_p == 0)
1868 return;
1869
1870 /* The expression carries the architecture that was used at parse time.
1871 This is a problem if the expression depends on architecture features
1872 (e.g. register numbers), and the current architecture is now different.
1873 For example, a display statement like "display/i $pc" is expected to
1874 display the PC register of the current architecture, not the arch at
1875 the time the display command was given. Therefore, we re-parse the
1876 expression if the current architecture has changed. */
1877 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1878 {
1879 d->exp.reset ();
1880 d->block = NULL;
1881 }
1882
1883 if (d->exp == NULL)
1884 {
1885
1886 TRY
1887 {
1888 innermost_block.reset ();
1889 d->exp = parse_expression (d->exp_string);
1890 d->block = innermost_block.block ();
1891 }
1892 CATCH (ex, RETURN_MASK_ALL)
1893 {
1894 /* Can't re-parse the expression. Disable this display item. */
1895 d->enabled_p = 0;
1896 warning (_("Unable to display \"%s\": %s"),
1897 d->exp_string, ex.message);
1898 return;
1899 }
1900 END_CATCH
1901 }
1902
1903 if (d->block)
1904 {
1905 if (d->pspace == current_program_space)
1906 within_current_scope = contained_in (get_selected_block (0), d->block);
1907 else
1908 within_current_scope = 0;
1909 }
1910 else
1911 within_current_scope = 1;
1912 if (!within_current_scope)
1913 return;
1914
1915 scoped_restore save_display_number
1916 = make_scoped_restore (&current_display_number, d->number);
1917
1918 annotate_display_begin ();
1919 printf_filtered ("%d", d->number);
1920 annotate_display_number_end ();
1921 printf_filtered (": ");
1922 if (d->format.size)
1923 {
1924
1925 annotate_display_format ();
1926
1927 printf_filtered ("x/");
1928 if (d->format.count != 1)
1929 printf_filtered ("%d", d->format.count);
1930 printf_filtered ("%c", d->format.format);
1931 if (d->format.format != 'i' && d->format.format != 's')
1932 printf_filtered ("%c", d->format.size);
1933 printf_filtered (" ");
1934
1935 annotate_display_expression ();
1936
1937 puts_filtered (d->exp_string);
1938 annotate_display_expression_end ();
1939
1940 if (d->format.count != 1 || d->format.format == 'i')
1941 printf_filtered ("\n");
1942 else
1943 printf_filtered (" ");
1944
1945 annotate_display_value ();
1946
1947 TRY
1948 {
1949 struct value *val;
1950 CORE_ADDR addr;
1951
1952 val = evaluate_expression (d->exp.get ());
1953 addr = value_as_address (val);
1954 if (d->format.format == 'i')
1955 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1956 do_examine (d->format, d->exp->gdbarch, addr);
1957 }
1958 CATCH (ex, RETURN_MASK_ERROR)
1959 {
1960 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1961 }
1962 END_CATCH
1963 }
1964 else
1965 {
1966 struct value_print_options opts;
1967
1968 annotate_display_format ();
1969
1970 if (d->format.format)
1971 printf_filtered ("/%c ", d->format.format);
1972
1973 annotate_display_expression ();
1974
1975 puts_filtered (d->exp_string);
1976 annotate_display_expression_end ();
1977
1978 printf_filtered (" = ");
1979
1980 annotate_display_expression ();
1981
1982 get_formatted_print_options (&opts, d->format.format);
1983 opts.raw = d->format.raw;
1984
1985 TRY
1986 {
1987 struct value *val;
1988
1989 val = evaluate_expression (d->exp.get ());
1990 print_formatted (val, d->format.size, &opts, gdb_stdout);
1991 }
1992 CATCH (ex, RETURN_MASK_ERROR)
1993 {
1994 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1995 }
1996 END_CATCH
1997
1998 printf_filtered ("\n");
1999 }
2000
2001 annotate_display_end ();
2002
2003 gdb_flush (gdb_stdout);
2004 }
2005
2006 /* Display all of the values on the auto-display chain which can be
2007 evaluated in the current scope. */
2008
2009 void
2010 do_displays (void)
2011 {
2012 struct display *d;
2013
2014 for (d = display_chain; d; d = d->next)
2015 do_one_display (d);
2016 }
2017
2018 /* Delete the auto-display which we were in the process of displaying.
2019 This is done when there is an error or a signal. */
2020
2021 void
2022 disable_display (int num)
2023 {
2024 struct display *d;
2025
2026 for (d = display_chain; d; d = d->next)
2027 if (d->number == num)
2028 {
2029 d->enabled_p = 0;
2030 return;
2031 }
2032 printf_unfiltered (_("No display number %d.\n"), num);
2033 }
2034
2035 void
2036 disable_current_display (void)
2037 {
2038 if (current_display_number >= 0)
2039 {
2040 disable_display (current_display_number);
2041 fprintf_unfiltered (gdb_stderr,
2042 _("Disabling display %d to "
2043 "avoid infinite recursion.\n"),
2044 current_display_number);
2045 }
2046 current_display_number = -1;
2047 }
2048
2049 static void
2050 info_display_command (const char *ignore, int from_tty)
2051 {
2052 struct display *d;
2053
2054 if (!display_chain)
2055 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2056 else
2057 printf_filtered (_("Auto-display expressions now in effect:\n\
2058 Num Enb Expression\n"));
2059
2060 for (d = display_chain; d; d = d->next)
2061 {
2062 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2063 if (d->format.size)
2064 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2065 d->format.format);
2066 else if (d->format.format)
2067 printf_filtered ("/%c ", d->format.format);
2068 puts_filtered (d->exp_string);
2069 if (d->block && !contained_in (get_selected_block (0), d->block))
2070 printf_filtered (_(" (cannot be evaluated in the current context)"));
2071 printf_filtered ("\n");
2072 gdb_flush (gdb_stdout);
2073 }
2074 }
2075
2076 /* Callback fo map_display_numbers, that enables or disables the
2077 passed in display D. */
2078
2079 static void
2080 do_enable_disable_display (struct display *d, void *data)
2081 {
2082 d->enabled_p = *(int *) data;
2083 }
2084
2085 /* Implamentation of both the "disable display" and "enable display"
2086 commands. ENABLE decides what to do. */
2087
2088 static void
2089 enable_disable_display_command (const char *args, int from_tty, int enable)
2090 {
2091 if (args == NULL)
2092 {
2093 struct display *d;
2094
2095 ALL_DISPLAYS (d)
2096 d->enabled_p = enable;
2097 return;
2098 }
2099
2100 map_display_numbers (args, do_enable_disable_display, &enable);
2101 }
2102
2103 /* The "enable display" command. */
2104
2105 static void
2106 enable_display_command (const char *args, int from_tty)
2107 {
2108 enable_disable_display_command (args, from_tty, 1);
2109 }
2110
2111 /* The "disable display" command. */
2112
2113 static void
2114 disable_display_command (const char *args, int from_tty)
2115 {
2116 enable_disable_display_command (args, from_tty, 0);
2117 }
2118
2119 /* display_chain items point to blocks and expressions. Some expressions in
2120 turn may point to symbols.
2121 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2122 obstack_free'd when a shared library is unloaded.
2123 Clear pointers that are about to become dangling.
2124 Both .exp and .block fields will be restored next time we need to display
2125 an item by re-parsing .exp_string field in the new execution context. */
2126
2127 static void
2128 clear_dangling_display_expressions (struct objfile *objfile)
2129 {
2130 struct display *d;
2131 struct program_space *pspace;
2132
2133 /* With no symbol file we cannot have a block or expression from it. */
2134 if (objfile == NULL)
2135 return;
2136 pspace = objfile->pspace;
2137 if (objfile->separate_debug_objfile_backlink)
2138 {
2139 objfile = objfile->separate_debug_objfile_backlink;
2140 gdb_assert (objfile->pspace == pspace);
2141 }
2142
2143 for (d = display_chain; d != NULL; d = d->next)
2144 {
2145 if (d->pspace != pspace)
2146 continue;
2147
2148 if (lookup_objfile_from_block (d->block) == objfile
2149 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2150 {
2151 d->exp.reset ();
2152 d->block = NULL;
2153 }
2154 }
2155 }
2156 \f
2157
2158 /* Print the value in stack frame FRAME of a variable specified by a
2159 struct symbol. NAME is the name to print; if NULL then VAR's print
2160 name will be used. STREAM is the ui_file on which to print the
2161 value. INDENT specifies the number of indent levels to print
2162 before printing the variable name.
2163
2164 This function invalidates FRAME. */
2165
2166 void
2167 print_variable_and_value (const char *name, struct symbol *var,
2168 struct frame_info *frame,
2169 struct ui_file *stream, int indent)
2170 {
2171
2172 if (!name)
2173 name = SYMBOL_PRINT_NAME (var);
2174
2175 fputs_filtered (n_spaces (2 * indent), stream);
2176 fputs_styled (name, variable_name_style.style (), stream);
2177 fputs_filtered (" = ", stream);
2178
2179 TRY
2180 {
2181 struct value *val;
2182 struct value_print_options opts;
2183
2184 /* READ_VAR_VALUE needs a block in order to deal with non-local
2185 references (i.e. to handle nested functions). In this context, we
2186 print variables that are local to this frame, so we can avoid passing
2187 a block to it. */
2188 val = read_var_value (var, NULL, frame);
2189 get_user_print_options (&opts);
2190 opts.deref_ref = 1;
2191 common_val_print (val, stream, indent, &opts, current_language);
2192
2193 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2194 function. */
2195 frame = NULL;
2196 }
2197 CATCH (except, RETURN_MASK_ERROR)
2198 {
2199 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2200 except.message);
2201 }
2202 END_CATCH
2203
2204 fprintf_filtered (stream, "\n");
2205 }
2206
2207 /* Subroutine of ui_printf to simplify it.
2208 Print VALUE to STREAM using FORMAT.
2209 VALUE is a C-style string on the target. */
2210
2211 static void
2212 printf_c_string (struct ui_file *stream, const char *format,
2213 struct value *value)
2214 {
2215 gdb_byte *str;
2216 CORE_ADDR tem;
2217 int j;
2218
2219 tem = value_as_address (value);
2220 if (tem == 0)
2221 {
2222 DIAGNOSTIC_PUSH
2223 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2224 fprintf_filtered (stream, format, "(null)");
2225 DIAGNOSTIC_POP
2226 return;
2227 }
2228
2229 /* This is a %s argument. Find the length of the string. */
2230 for (j = 0;; j++)
2231 {
2232 gdb_byte c;
2233
2234 QUIT;
2235 read_memory (tem + j, &c, 1);
2236 if (c == 0)
2237 break;
2238 }
2239
2240 /* Copy the string contents into a string inside GDB. */
2241 str = (gdb_byte *) alloca (j + 1);
2242 if (j != 0)
2243 read_memory (tem, str, j);
2244 str[j] = 0;
2245
2246 DIAGNOSTIC_PUSH
2247 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2248 fprintf_filtered (stream, format, (char *) str);
2249 DIAGNOSTIC_POP
2250 }
2251
2252 /* Subroutine of ui_printf to simplify it.
2253 Print VALUE to STREAM using FORMAT.
2254 VALUE is a wide C-style string on the target. */
2255
2256 static void
2257 printf_wide_c_string (struct ui_file *stream, const char *format,
2258 struct value *value)
2259 {
2260 gdb_byte *str;
2261 CORE_ADDR tem;
2262 int j;
2263 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2265 struct type *wctype = lookup_typename (current_language, gdbarch,
2266 "wchar_t", NULL, 0);
2267 int wcwidth = TYPE_LENGTH (wctype);
2268 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2269
2270 tem = value_as_address (value);
2271 if (tem == 0)
2272 {
2273 DIAGNOSTIC_PUSH
2274 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2275 fprintf_filtered (stream, format, "(null)");
2276 DIAGNOSTIC_POP
2277 return;
2278 }
2279
2280 /* This is a %s argument. Find the length of the string. */
2281 for (j = 0;; j += wcwidth)
2282 {
2283 QUIT;
2284 read_memory (tem + j, buf, wcwidth);
2285 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2286 break;
2287 }
2288
2289 /* Copy the string contents into a string inside GDB. */
2290 str = (gdb_byte *) alloca (j + wcwidth);
2291 if (j != 0)
2292 read_memory (tem, str, j);
2293 memset (&str[j], 0, wcwidth);
2294
2295 auto_obstack output;
2296
2297 convert_between_encodings (target_wide_charset (gdbarch),
2298 host_charset (),
2299 str, j, wcwidth,
2300 &output, translit_char);
2301 obstack_grow_str0 (&output, "");
2302
2303 DIAGNOSTIC_PUSH
2304 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2305 fprintf_filtered (stream, format, obstack_base (&output));
2306 DIAGNOSTIC_POP
2307 }
2308
2309 /* Subroutine of ui_printf to simplify it.
2310 Print VALUE, a floating point value, to STREAM using FORMAT. */
2311
2312 static void
2313 printf_floating (struct ui_file *stream, const char *format,
2314 struct value *value, enum argclass argclass)
2315 {
2316 /* Parameter data. */
2317 struct type *param_type = value_type (value);
2318 struct gdbarch *gdbarch = get_type_arch (param_type);
2319
2320 /* Determine target type corresponding to the format string. */
2321 struct type *fmt_type;
2322 switch (argclass)
2323 {
2324 case double_arg:
2325 fmt_type = builtin_type (gdbarch)->builtin_double;
2326 break;
2327 case long_double_arg:
2328 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2329 break;
2330 case dec32float_arg:
2331 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2332 break;
2333 case dec64float_arg:
2334 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2335 break;
2336 case dec128float_arg:
2337 fmt_type = builtin_type (gdbarch)->builtin_declong;
2338 break;
2339 default:
2340 gdb_assert_not_reached ("unexpected argument class");
2341 }
2342
2343 /* To match the traditional GDB behavior, the conversion is
2344 done differently depending on the type of the parameter:
2345
2346 - if the parameter has floating-point type, it's value
2347 is converted to the target type;
2348
2349 - otherwise, if the parameter has a type that is of the
2350 same size as a built-in floating-point type, the value
2351 bytes are interpreted as if they were of that type, and
2352 then converted to the target type (this is not done for
2353 decimal floating-point argument classes);
2354
2355 - otherwise, if the source value has an integer value,
2356 it's value is converted to the target type;
2357
2358 - otherwise, an error is raised.
2359
2360 In either case, the result of the conversion is a byte buffer
2361 formatted in the target format for the target type. */
2362
2363 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2364 {
2365 param_type = float_type_from_length (param_type);
2366 if (param_type != value_type (value))
2367 value = value_from_contents (param_type, value_contents (value));
2368 }
2369
2370 value = value_cast (fmt_type, value);
2371
2372 /* Convert the value to a string and print it. */
2373 std::string str
2374 = target_float_to_string (value_contents (value), fmt_type, format);
2375 fputs_filtered (str.c_str (), stream);
2376 }
2377
2378 /* Subroutine of ui_printf to simplify it.
2379 Print VALUE, a target pointer, to STREAM using FORMAT. */
2380
2381 static void
2382 printf_pointer (struct ui_file *stream, const char *format,
2383 struct value *value)
2384 {
2385 /* We avoid the host's %p because pointers are too
2386 likely to be the wrong size. The only interesting
2387 modifier for %p is a width; extract that, and then
2388 handle %p as glibc would: %#x or a literal "(nil)". */
2389
2390 const char *p;
2391 char *fmt, *fmt_p;
2392 #ifdef PRINTF_HAS_LONG_LONG
2393 long long val = value_as_long (value);
2394 #else
2395 long val = value_as_long (value);
2396 #endif
2397
2398 fmt = (char *) alloca (strlen (format) + 5);
2399
2400 /* Copy up to the leading %. */
2401 p = format;
2402 fmt_p = fmt;
2403 while (*p)
2404 {
2405 int is_percent = (*p == '%');
2406
2407 *fmt_p++ = *p++;
2408 if (is_percent)
2409 {
2410 if (*p == '%')
2411 *fmt_p++ = *p++;
2412 else
2413 break;
2414 }
2415 }
2416
2417 if (val != 0)
2418 *fmt_p++ = '#';
2419
2420 /* Copy any width or flags. Only the "-" flag is valid for pointers
2421 -- see the format_pieces constructor. */
2422 while (*p == '-' || (*p >= '0' && *p < '9'))
2423 *fmt_p++ = *p++;
2424
2425 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2426 if (val != 0)
2427 {
2428 #ifdef PRINTF_HAS_LONG_LONG
2429 *fmt_p++ = 'l';
2430 #endif
2431 *fmt_p++ = 'l';
2432 *fmt_p++ = 'x';
2433 *fmt_p++ = '\0';
2434 DIAGNOSTIC_PUSH
2435 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2436 fprintf_filtered (stream, fmt, val);
2437 DIAGNOSTIC_POP
2438 }
2439 else
2440 {
2441 *fmt_p++ = 's';
2442 *fmt_p++ = '\0';
2443 DIAGNOSTIC_PUSH
2444 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2445 fprintf_filtered (stream, fmt, "(nil)");
2446 DIAGNOSTIC_POP
2447 }
2448 }
2449
2450 /* printf "printf format string" ARG to STREAM. */
2451
2452 static void
2453 ui_printf (const char *arg, struct ui_file *stream)
2454 {
2455 const char *s = arg;
2456 std::vector<struct value *> val_args;
2457
2458 if (s == 0)
2459 error_no_arg (_("format-control string and values to print"));
2460
2461 s = skip_spaces (s);
2462
2463 /* A format string should follow, enveloped in double quotes. */
2464 if (*s++ != '"')
2465 error (_("Bad format string, missing '\"'."));
2466
2467 format_pieces fpieces (&s);
2468
2469 if (*s++ != '"')
2470 error (_("Bad format string, non-terminated '\"'."));
2471
2472 s = skip_spaces (s);
2473
2474 if (*s != ',' && *s != 0)
2475 error (_("Invalid argument syntax"));
2476
2477 if (*s == ',')
2478 s++;
2479 s = skip_spaces (s);
2480
2481 {
2482 int nargs_wanted;
2483 int i;
2484 const char *current_substring;
2485
2486 nargs_wanted = 0;
2487 for (auto &&piece : fpieces)
2488 if (piece.argclass != literal_piece)
2489 ++nargs_wanted;
2490
2491 /* Now, parse all arguments and evaluate them.
2492 Store the VALUEs in VAL_ARGS. */
2493
2494 while (*s != '\0')
2495 {
2496 const char *s1;
2497
2498 s1 = s;
2499 val_args.push_back (parse_to_comma_and_eval (&s1));
2500
2501 s = s1;
2502 if (*s == ',')
2503 s++;
2504 }
2505
2506 if (val_args.size () != nargs_wanted)
2507 error (_("Wrong number of arguments for specified format-string"));
2508
2509 /* Now actually print them. */
2510 i = 0;
2511 for (auto &&piece : fpieces)
2512 {
2513 current_substring = piece.string;
2514 switch (piece.argclass)
2515 {
2516 case string_arg:
2517 printf_c_string (stream, current_substring, val_args[i]);
2518 break;
2519 case wide_string_arg:
2520 printf_wide_c_string (stream, current_substring, val_args[i]);
2521 break;
2522 case wide_char_arg:
2523 {
2524 struct gdbarch *gdbarch
2525 = get_type_arch (value_type (val_args[i]));
2526 struct type *wctype = lookup_typename (current_language, gdbarch,
2527 "wchar_t", NULL, 0);
2528 struct type *valtype;
2529 const gdb_byte *bytes;
2530
2531 valtype = value_type (val_args[i]);
2532 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2533 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2534 error (_("expected wchar_t argument for %%lc"));
2535
2536 bytes = value_contents (val_args[i]);
2537
2538 auto_obstack output;
2539
2540 convert_between_encodings (target_wide_charset (gdbarch),
2541 host_charset (),
2542 bytes, TYPE_LENGTH (valtype),
2543 TYPE_LENGTH (valtype),
2544 &output, translit_char);
2545 obstack_grow_str0 (&output, "");
2546
2547 DIAGNOSTIC_PUSH
2548 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2549 fprintf_filtered (stream, current_substring,
2550 obstack_base (&output));
2551 DIAGNOSTIC_POP
2552 }
2553 break;
2554 case long_long_arg:
2555 #ifdef PRINTF_HAS_LONG_LONG
2556 {
2557 long long val = value_as_long (val_args[i]);
2558
2559 DIAGNOSTIC_PUSH
2560 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2561 fprintf_filtered (stream, current_substring, val);
2562 DIAGNOSTIC_POP
2563 break;
2564 }
2565 #else
2566 error (_("long long not supported in printf"));
2567 #endif
2568 case int_arg:
2569 {
2570 int val = value_as_long (val_args[i]);
2571
2572 DIAGNOSTIC_PUSH
2573 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2574 fprintf_filtered (stream, current_substring, val);
2575 DIAGNOSTIC_POP
2576 break;
2577 }
2578 case long_arg:
2579 {
2580 long val = value_as_long (val_args[i]);
2581
2582 DIAGNOSTIC_PUSH
2583 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2584 fprintf_filtered (stream, current_substring, val);
2585 DIAGNOSTIC_POP
2586 break;
2587 }
2588 /* Handles floating-point values. */
2589 case double_arg:
2590 case long_double_arg:
2591 case dec32float_arg:
2592 case dec64float_arg:
2593 case dec128float_arg:
2594 printf_floating (stream, current_substring, val_args[i],
2595 piece.argclass);
2596 break;
2597 case ptr_arg:
2598 printf_pointer (stream, current_substring, val_args[i]);
2599 break;
2600 case literal_piece:
2601 /* Print a portion of the format string that has no
2602 directives. Note that this will not include any
2603 ordinary %-specs, but it might include "%%". That is
2604 why we use printf_filtered and not puts_filtered here.
2605 Also, we pass a dummy argument because some platforms
2606 have modified GCC to include -Wformat-security by
2607 default, which will warn here if there is no
2608 argument. */
2609 DIAGNOSTIC_PUSH
2610 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2611 fprintf_filtered (stream, current_substring, 0);
2612 DIAGNOSTIC_POP
2613 break;
2614 default:
2615 internal_error (__FILE__, __LINE__,
2616 _("failed internal consistency check"));
2617 }
2618 /* Maybe advance to the next argument. */
2619 if (piece.argclass != literal_piece)
2620 ++i;
2621 }
2622 }
2623 }
2624
2625 /* Implement the "printf" command. */
2626
2627 static void
2628 printf_command (const char *arg, int from_tty)
2629 {
2630 ui_printf (arg, gdb_stdout);
2631 reset_terminal_style (gdb_stdout);
2632 wrap_here ("");
2633 gdb_flush (gdb_stdout);
2634 }
2635
2636 /* Implement the "eval" command. */
2637
2638 static void
2639 eval_command (const char *arg, int from_tty)
2640 {
2641 string_file stb;
2642
2643 ui_printf (arg, &stb);
2644
2645 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2646
2647 execute_command (expanded.c_str (), from_tty);
2648 }
2649
2650 void
2651 _initialize_printcmd (void)
2652 {
2653 struct cmd_list_element *c;
2654
2655 current_display_number = -1;
2656
2657 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2658
2659 add_info ("address", info_address_command,
2660 _("Describe where symbol SYM is stored."));
2661
2662 add_info ("symbol", info_symbol_command, _("\
2663 Describe what symbol is at location ADDR.\n\
2664 Only for symbols with fixed locations (global or static scope)."));
2665
2666 add_com ("x", class_vars, x_command, _("\
2667 Examine memory: x/FMT ADDRESS.\n\
2668 ADDRESS is an expression for the memory address to examine.\n\
2669 FMT is a repeat count followed by a format letter and a size letter.\n\
2670 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2671 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2672 and z(hex, zero padded on the left).\n\
2673 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2674 The specified number of objects of the specified size are printed\n\
2675 according to the format. If a negative number is specified, memory is\n\
2676 examined backward from the address.\n\n\
2677 Defaults for format and size letters are those previously used.\n\
2678 Default count is 1. Default address is following last thing printed\n\
2679 with this command or \"print\"."));
2680
2681 #if 0
2682 add_com ("whereis", class_vars, whereis_command,
2683 _("Print line number and file of definition of variable."));
2684 #endif
2685
2686 add_info ("display", info_display_command, _("\
2687 Expressions to display when program stops, with code numbers."));
2688
2689 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2690 Cancel some expressions to be displayed when program stops.\n\
2691 Arguments are the code numbers of the expressions to stop displaying.\n\
2692 No argument means cancel all automatic-display expressions.\n\
2693 \"delete display\" has the same effect as this command.\n\
2694 Do \"info display\" to see current list of code numbers."),
2695 &cmdlist);
2696
2697 add_com ("display", class_vars, display_command, _("\
2698 Print value of expression EXP each time the program stops.\n\
2699 /FMT may be used before EXP as in the \"print\" command.\n\
2700 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2701 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2702 and examining is done as in the \"x\" command.\n\n\
2703 With no argument, display all currently requested auto-display expressions.\n\
2704 Use \"undisplay\" to cancel display requests previously made."));
2705
2706 add_cmd ("display", class_vars, enable_display_command, _("\
2707 Enable some expressions to be displayed when program stops.\n\
2708 Arguments are the code numbers of the expressions to resume displaying.\n\
2709 No argument means enable all automatic-display expressions.\n\
2710 Do \"info display\" to see current list of code numbers."), &enablelist);
2711
2712 add_cmd ("display", class_vars, disable_display_command, _("\
2713 Disable some expressions to be displayed when program stops.\n\
2714 Arguments are the code numbers of the expressions to stop displaying.\n\
2715 No argument means disable all automatic-display expressions.\n\
2716 Do \"info display\" to see current list of code numbers."), &disablelist);
2717
2718 add_cmd ("display", class_vars, undisplay_command, _("\
2719 Cancel some expressions to be displayed when program stops.\n\
2720 Arguments are the code numbers of the expressions to stop displaying.\n\
2721 No argument means cancel all automatic-display expressions.\n\
2722 Do \"info display\" to see current list of code numbers."), &deletelist);
2723
2724 add_com ("printf", class_vars, printf_command, _("\
2725 Formatted printing, like the C \"printf\" function.\n\
2726 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2727 This supports most C printf format specifications, like %s, %d, etc."));
2728
2729 add_com ("output", class_vars, output_command, _("\
2730 Like \"print\" but don't put in value history and don't print newline.\n\
2731 This is useful in user-defined commands."));
2732
2733 add_prefix_cmd ("set", class_vars, set_command, _("\
2734 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2735 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2736 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2737 with $), a register (a few standard names starting with $), or an actual\n\
2738 variable in the program being debugged. EXP is any valid expression.\n\
2739 Use \"set variable\" for variables with names identical to set subcommands.\n\
2740 \n\
2741 With a subcommand, this command modifies parts of the gdb environment.\n\
2742 You can see these environment settings with the \"show\" command."),
2743 &setlist, "set ", 1, &cmdlist);
2744 if (dbx_commands)
2745 add_com ("assign", class_vars, set_command, _("\
2746 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2747 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2748 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2749 with $), a register (a few standard names starting with $), or an actual\n\
2750 variable in the program being debugged. EXP is any valid expression.\n\
2751 Use \"set variable\" for variables with names identical to set subcommands.\n\
2752 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2753 You can see these environment settings with the \"show\" command."));
2754
2755 /* "call" is the same as "set", but handy for dbx users to call fns. */
2756 c = add_com ("call", class_vars, call_command, _("\
2757 Call a function in the program.\n\
2758 The argument is the function name and arguments, in the notation of the\n\
2759 current working language. The result is printed and saved in the value\n\
2760 history, if it is not void."));
2761 set_cmd_completer (c, expression_completer);
2762
2763 add_cmd ("variable", class_vars, set_command, _("\
2764 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2765 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2766 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2767 with $), a register (a few standard names starting with $), or an actual\n\
2768 variable in the program being debugged. EXP is any valid expression.\n\
2769 This may usually be abbreviated to simply \"set\"."),
2770 &setlist);
2771 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2772
2773 c = add_com ("print", class_vars, print_command, _("\
2774 Print value of expression EXP.\n\
2775 Variables accessible are those of the lexical environment of the selected\n\
2776 stack frame, plus all those whose scope is global or an entire file.\n\
2777 \n\
2778 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2779 $$NUM refers to NUM'th value back from the last one.\n\
2780 Names starting with $ refer to registers (with the values they would have\n\
2781 if the program were to return to the stack frame now selected, restoring\n\
2782 all registers saved by frames farther in) or else to debugger\n\
2783 \"convenience\" variables (any such name not a known register).\n\
2784 Use assignment expressions to give values to convenience variables.\n\
2785 \n\
2786 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2787 @ is a binary operator for treating consecutive data objects\n\
2788 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2789 element is FOO, whose second element is stored in the space following\n\
2790 where FOO is stored, etc. FOO must be an expression whose value\n\
2791 resides in memory.\n\
2792 \n\
2793 EXP may be preceded with /FMT, where FMT is a format letter\n\
2794 but no count or size letter (see \"x\" command)."));
2795 set_cmd_completer (c, expression_completer);
2796 add_com_alias ("p", "print", class_vars, 1);
2797 add_com_alias ("inspect", "print", class_vars, 1);
2798
2799 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2800 &max_symbolic_offset, _("\
2801 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2802 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2803 Tell GDB to only display the symbolic form of an address if the\n\
2804 offset between the closest earlier symbol and the address is less than\n\
2805 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2806 to always print the symbolic form of an address if any symbol precedes\n\
2807 it. Zero is equivalent to \"unlimited\"."),
2808 NULL,
2809 show_max_symbolic_offset,
2810 &setprintlist, &showprintlist);
2811 add_setshow_boolean_cmd ("symbol-filename", no_class,
2812 &print_symbol_filename, _("\
2813 Set printing of source filename and line number with <symbol>."), _("\
2814 Show printing of source filename and line number with <symbol>."), NULL,
2815 NULL,
2816 show_print_symbol_filename,
2817 &setprintlist, &showprintlist);
2818
2819 add_com ("eval", no_class, eval_command, _("\
2820 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2821 a command line, and call it."));
2822 }