]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/printcmd.c
* printcmd.c (print_insn): Use the given stream for
[thirdparty/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "language.h"
30 #include "expression.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "breakpoint.h"
35 #include "demangle.h"
36 #include "valprint.h"
37 #include "annotate.h"
38 #include "symfile.h" /* for overlay functions */
39 #include "objfiles.h" /* ditto */
40 #include "completer.h" /* for completion functions */
41 #ifdef UI_OUT
42 #include "ui-out.h"
43 #endif
44
45 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
46 extern int addressprint; /* Whether to print hex addresses in HLL " */
47
48 struct format_data
49 {
50 int count;
51 char format;
52 char size;
53 };
54
55 /* Last specified output format. */
56
57 static char last_format = 'x';
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Default address to examine next. */
64
65 static CORE_ADDR next_address;
66
67 /* Default section to examine next. */
68
69 static asection *next_section;
70
71 /* Last address examined. */
72
73 static CORE_ADDR last_examine_address;
74
75 /* Contents of last address examined.
76 This is not valid past the end of the `x' command! */
77
78 static value_ptr last_examine_value;
79
80 /* Largest offset between a symbolic value and an address, that will be
81 printed as `0x1234 <symbol+offset>'. */
82
83 static unsigned int max_symbolic_offset = UINT_MAX;
84
85 /* Append the source filename and linenumber of the symbol when
86 printing a symbolic value as `<symbol at filename:linenum>' if set. */
87 static int print_symbol_filename = 0;
88
89 /* Number of auto-display expression currently being displayed.
90 So that we can disable it if we get an error or a signal within it.
91 -1 when not doing one. */
92
93 int current_display_number;
94
95 /* Flag to low-level print routines that this value is being printed
96 in an epoch window. We'd like to pass this as a parameter, but
97 every routine would need to take it. Perhaps we can encapsulate
98 this in the I/O stream once we have GNU stdio. */
99
100 int inspect_it = 0;
101
102 struct display
103 {
104 /* Chain link to next auto-display item. */
105 struct display *next;
106 /* Expression to be evaluated and displayed. */
107 struct expression *exp;
108 /* Item number of this auto-display item. */
109 int number;
110 /* Display format specified. */
111 struct format_data format;
112 /* Innermost block required by this expression when evaluated */
113 struct block *block;
114 /* Status of this display (enabled or disabled) */
115 int enabled_p;
116 };
117
118 /* Chain of expressions whose values should be displayed
119 automatically each time the program stops. */
120
121 static struct display *display_chain;
122
123 static int display_number;
124
125 /* Prototypes for exported functions. */
126
127 void output_command (char *, int);
128
129 void _initialize_printcmd (void);
130
131 /* Prototypes for local functions. */
132
133 static void delete_display (int);
134
135 static void enable_display (char *, int);
136
137 static void disable_display_command (char *, int);
138
139 static void disassemble_command (char *, int);
140
141 static void printf_command (char *, int);
142
143 static void print_frame_nameless_args (struct frame_info *, long,
144 int, int, struct ui_file *);
145
146 static void display_info (char *, int);
147
148 static void do_one_display (struct display *);
149
150 static void undisplay_command (char *, int);
151
152 static void free_display (struct display *);
153
154 static void display_command (char *, int);
155
156 void x_command (char *, int);
157
158 static void address_info (char *, int);
159
160 static void set_command (char *, int);
161
162 static void call_command (char *, int);
163
164 static void inspect_command (char *, int);
165
166 static void print_command (char *, int);
167
168 static void print_command_1 (char *, int, int);
169
170 static void validate_format (struct format_data, char *);
171
172 static void do_examine (struct format_data, CORE_ADDR addr,
173 asection * section);
174
175 static void print_formatted (value_ptr, int, int, struct ui_file *);
176
177 static struct format_data decode_format (char **, int, int);
178
179 static int print_insn (CORE_ADDR, struct ui_file *);
180
181 static void sym_info (char *, int);
182 \f
183
184 /* Decode a format specification. *STRING_PTR should point to it.
185 OFORMAT and OSIZE are used as defaults for the format and size
186 if none are given in the format specification.
187 If OSIZE is zero, then the size field of the returned value
188 should be set only if a size is explicitly specified by the
189 user.
190 The structure returned describes all the data
191 found in the specification. In addition, *STRING_PTR is advanced
192 past the specification and past all whitespace following it. */
193
194 static struct format_data
195 decode_format (char **string_ptr, int oformat, int osize)
196 {
197 struct format_data val;
198 register char *p = *string_ptr;
199
200 val.format = '?';
201 val.size = '?';
202 val.count = 1;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9')
207 p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p >= 'a' && *p <= 'z')
216 val.format = *p++;
217 else
218 break;
219 }
220
221 while (*p == ' ' || *p == '\t')
222 p++;
223 *string_ptr = p;
224
225 /* Set defaults for format and size if not specified. */
226 if (val.format == '?')
227 {
228 if (val.size == '?')
229 {
230 /* Neither has been specified. */
231 val.format = oformat;
232 val.size = osize;
233 }
234 else
235 /* If a size is specified, any format makes a reasonable
236 default except 'i'. */
237 val.format = oformat == 'i' ? 'x' : oformat;
238 }
239 else if (val.size == '?')
240 switch (val.format)
241 {
242 case 'a':
243 case 's':
244 /* Pick the appropriate size for an address. */
245 if (TARGET_PTR_BIT == 64)
246 val.size = osize ? 'g' : osize;
247 else if (TARGET_PTR_BIT == 32)
248 val.size = osize ? 'w' : osize;
249 else if (TARGET_PTR_BIT == 16)
250 val.size = osize ? 'h' : osize;
251 else
252 /* Bad value for TARGET_PTR_BIT */
253 internal_error (__FILE__, __LINE__, "failed internal consistency check");
254 break;
255 case 'f':
256 /* Floating point has to be word or giantword. */
257 if (osize == 'w' || osize == 'g')
258 val.size = osize;
259 else
260 /* Default it to giantword if the last used size is not
261 appropriate. */
262 val.size = osize ? 'g' : osize;
263 break;
264 case 'c':
265 /* Characters default to one byte. */
266 val.size = osize ? 'b' : osize;
267 break;
268 default:
269 /* The default is the size most recently specified. */
270 val.size = osize;
271 }
272
273 return val;
274 }
275 \f
276 /* Print value VAL on stream according to FORMAT, a letter or 0.
277 Do not end with a newline.
278 0 means print VAL according to its own type.
279 SIZE is the letter for the size of datum being printed.
280 This is used to pad hex numbers so they line up. */
281
282 static void
283 print_formatted (register value_ptr val, register int format, int size,
284 struct ui_file *stream)
285 {
286 struct type *type = check_typedef (VALUE_TYPE (val));
287 int len = TYPE_LENGTH (type);
288
289 if (VALUE_LVAL (val) == lval_memory)
290 {
291 next_address = VALUE_ADDRESS (val) + len;
292 next_section = VALUE_BFD_SECTION (val);
293 }
294
295 switch (format)
296 {
297 case 's':
298 /* FIXME: Need to handle wchar_t's here... */
299 next_address = VALUE_ADDRESS (val)
300 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
301 next_section = VALUE_BFD_SECTION (val);
302 break;
303
304 case 'i':
305 /* The old comment says
306 "Force output out, print_insn not using _filtered".
307 I'm not completely sure what that means, I suspect most print_insn
308 now do use _filtered, so I guess it's obsolete.
309 --Yes, it does filter now, and so this is obsolete. -JB */
310
311 /* We often wrap here if there are long symbolic names. */
312 wrap_here (" ");
313 next_address = VALUE_ADDRESS (val)
314 + print_insn (VALUE_ADDRESS (val), stream);
315 next_section = VALUE_BFD_SECTION (val);
316 break;
317
318 default:
319 if (format == 0
320 || TYPE_CODE (type) == TYPE_CODE_ARRAY
321 || TYPE_CODE (type) == TYPE_CODE_STRING
322 || TYPE_CODE (type) == TYPE_CODE_STRUCT
323 || TYPE_CODE (type) == TYPE_CODE_UNION)
324 /* If format is 0, use the 'natural' format for
325 * that type of value. If the type is non-scalar,
326 * we have to use language rules to print it as
327 * a series of scalars.
328 */
329 value_print (val, stream, format, Val_pretty_default);
330 else
331 /* User specified format, so don't look to the
332 * the type to tell us what to do.
333 */
334 print_scalar_formatted (VALUE_CONTENTS (val), type,
335 format, size, stream);
336 }
337 }
338
339 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
340 according to letters FORMAT and SIZE on STREAM.
341 FORMAT may not be zero. Formats s and i are not supported at this level.
342
343 This is how the elements of an array or structure are printed
344 with a format. */
345
346 void
347 print_scalar_formatted (char *valaddr, struct type *type, int format, int size,
348 struct ui_file *stream)
349 {
350 LONGEST val_long;
351 unsigned int len = TYPE_LENGTH (type);
352
353 if (len > sizeof (LONGEST)
354 && (format == 't'
355 || format == 'c'
356 || format == 'o'
357 || format == 'u'
358 || format == 'd'
359 || format == 'x'))
360 {
361 if (!TYPE_UNSIGNED (type)
362 || !extract_long_unsigned_integer (valaddr, len, &val_long))
363 {
364 /* We can't print it normally, but we can print it in hex.
365 Printing it in the wrong radix is more useful than saying
366 "use /x, you dummy". */
367 /* FIXME: we could also do octal or binary if that was the
368 desired format. */
369 /* FIXME: we should be using the size field to give us a
370 minimum field width to print. */
371
372 if (format == 'o')
373 print_octal_chars (stream, valaddr, len);
374 else if (format == 'd')
375 print_decimal_chars (stream, valaddr, len);
376 else if (format == 't')
377 print_binary_chars (stream, valaddr, len);
378 else
379 /* replace with call to print_hex_chars? Looks
380 like val_print_type_code_int is redoing
381 work. - edie */
382
383 val_print_type_code_int (type, valaddr, stream);
384
385 return;
386 }
387
388 /* If we get here, extract_long_unsigned_integer set val_long. */
389 }
390 else if (format != 'f')
391 val_long = unpack_long (type, valaddr);
392
393 /* If the value is a pointer, and pointers and addresses are not the
394 same, then at this point, the value's length is TARGET_ADDR_BIT, not
395 TYPE_LENGTH (type). */
396 if (TYPE_CODE (type) == TYPE_CODE_PTR)
397 len = TARGET_ADDR_BIT;
398
399 /* If we are printing it as unsigned, truncate it in case it is actually
400 a negative signed value (e.g. "print/u (short)-1" should print 65535
401 (if shorts are 16 bits) instead of 4294967295). */
402 if (format != 'd')
403 {
404 if (len < sizeof (LONGEST))
405 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
406 }
407
408 switch (format)
409 {
410 case 'x':
411 if (!size)
412 {
413 /* no size specified, like in print. Print varying # of digits. */
414 print_longest (stream, 'x', 1, val_long);
415 }
416 else
417 switch (size)
418 {
419 case 'b':
420 case 'h':
421 case 'w':
422 case 'g':
423 print_longest (stream, size, 1, val_long);
424 break;
425 default:
426 error ("Undefined output size \"%c\".", size);
427 }
428 break;
429
430 case 'd':
431 print_longest (stream, 'd', 1, val_long);
432 break;
433
434 case 'u':
435 print_longest (stream, 'u', 0, val_long);
436 break;
437
438 case 'o':
439 if (val_long)
440 print_longest (stream, 'o', 1, val_long);
441 else
442 fprintf_filtered (stream, "0");
443 break;
444
445 case 'a':
446 {
447 CORE_ADDR addr = unpack_pointer (type, valaddr);
448 print_address (addr, stream);
449 }
450 break;
451
452 case 'c':
453 value_print (value_from_longest (builtin_type_true_char, val_long),
454 stream, 0, Val_pretty_default);
455 break;
456
457 case 'f':
458 if (len == sizeof (float))
459 type = builtin_type_float;
460 else if (len == sizeof (double))
461 type = builtin_type_double;
462 print_floating (valaddr, type, stream);
463 break;
464
465 case 0:
466 internal_error (__FILE__, __LINE__, "failed internal consistency check");
467
468 case 't':
469 /* Binary; 't' stands for "two". */
470 {
471 char bits[8 * (sizeof val_long) + 1];
472 char buf[8 * (sizeof val_long) + 32];
473 char *cp = bits;
474 int width;
475
476 if (!size)
477 width = 8 * (sizeof val_long);
478 else
479 switch (size)
480 {
481 case 'b':
482 width = 8;
483 break;
484 case 'h':
485 width = 16;
486 break;
487 case 'w':
488 width = 32;
489 break;
490 case 'g':
491 width = 64;
492 break;
493 default:
494 error ("Undefined output size \"%c\".", size);
495 }
496
497 bits[width] = '\0';
498 while (width-- > 0)
499 {
500 bits[width] = (val_long & 1) ? '1' : '0';
501 val_long >>= 1;
502 }
503 if (!size)
504 {
505 while (*cp && *cp == '0')
506 cp++;
507 if (*cp == '\0')
508 cp--;
509 }
510 strcpy (buf, local_binary_format_prefix ());
511 strcat (buf, cp);
512 strcat (buf, local_binary_format_suffix ());
513 fprintf_filtered (stream, buf);
514 }
515 break;
516
517 default:
518 error ("Undefined output format \"%c\".", format);
519 }
520 }
521
522 /* Specify default address for `x' command.
523 `info lines' uses this. */
524
525 void
526 set_next_address (CORE_ADDR addr)
527 {
528 next_address = addr;
529
530 /* Make address available to the user as $_. */
531 set_internalvar (lookup_internalvar ("_"),
532 value_from_pointer (lookup_pointer_type (builtin_type_void),
533 addr));
534 }
535
536 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
537 after LEADIN. Print nothing if no symbolic name is found nearby.
538 Optionally also print source file and line number, if available.
539 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
540 or to interpret it as a possible C++ name and convert it back to source
541 form. However note that DO_DEMANGLE can be overridden by the specific
542 settings of the demangle and asm_demangle variables. */
543
544 void
545 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
546 char *leadin)
547 {
548 char *name = NULL;
549 char *filename = NULL;
550 int unmapped = 0;
551 int offset = 0;
552 int line = 0;
553
554 /* throw away both name and filename */
555 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
556 make_cleanup (free_current_contents, &filename);
557
558 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
559 {
560 do_cleanups (cleanup_chain);
561 return;
562 }
563
564 fputs_filtered (leadin, stream);
565 if (unmapped)
566 fputs_filtered ("<*", stream);
567 else
568 fputs_filtered ("<", stream);
569 fputs_filtered (name, stream);
570 if (offset != 0)
571 fprintf_filtered (stream, "+%u", (unsigned int) offset);
572
573 /* Append source filename and line number if desired. Give specific
574 line # of this addr, if we have it; else line # of the nearest symbol. */
575 if (print_symbol_filename && filename != NULL)
576 {
577 if (line != -1)
578 fprintf_filtered (stream, " at %s:%d", filename, line);
579 else
580 fprintf_filtered (stream, " in %s", filename);
581 }
582 if (unmapped)
583 fputs_filtered ("*>", stream);
584 else
585 fputs_filtered (">", stream);
586
587 do_cleanups (cleanup_chain);
588 }
589
590 /* Given an address ADDR return all the elements needed to print the
591 address in a symbolic form. NAME can be mangled or not depending
592 on DO_DEMANGLE (and also on the asm_demangle global variable,
593 manipulated via ''set print asm-demangle''). Return 0 in case of
594 success, when all the info in the OUT paramters is valid. Return 1
595 otherwise. */
596 int
597 build_address_symbolic (CORE_ADDR addr, /* IN */
598 int do_demangle, /* IN */
599 char **name, /* OUT */
600 int *offset, /* OUT */
601 char **filename, /* OUT */
602 int *line, /* OUT */
603 int *unmapped) /* OUT */
604 {
605 struct minimal_symbol *msymbol;
606 struct symbol *symbol;
607 struct symtab *symtab = 0;
608 CORE_ADDR name_location = 0;
609 asection *section = 0;
610 char *name_temp = "";
611
612 /* Let's say it is unmapped. */
613 *unmapped = 0;
614
615 /* Determine if the address is in an overlay, and whether it is
616 mapped. */
617 if (overlay_debugging)
618 {
619 section = find_pc_overlay (addr);
620 if (pc_in_unmapped_range (addr, section))
621 {
622 *unmapped = 1;
623 addr = overlay_mapped_address (addr, section);
624 }
625 }
626
627 /* On some targets, add in extra "flag" bits to PC for
628 disassembly. This should ensure that "rounding errors" in
629 symbol addresses that are masked for disassembly favour the
630 the correct symbol. */
631
632 #ifdef GDB_TARGET_UNMASK_DISAS_PC
633 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
634 #endif
635
636 /* First try to find the address in the symbol table, then
637 in the minsyms. Take the closest one. */
638
639 /* This is defective in the sense that it only finds text symbols. So
640 really this is kind of pointless--we should make sure that the
641 minimal symbols have everything we need (by changing that we could
642 save some memory, but for many debug format--ELF/DWARF or
643 anything/stabs--it would be inconvenient to eliminate those minimal
644 symbols anyway). */
645 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
646 symbol = find_pc_sect_function (addr, section);
647
648 if (symbol)
649 {
650 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
651 if (do_demangle)
652 name_temp = SYMBOL_SOURCE_NAME (symbol);
653 else
654 name_temp = SYMBOL_LINKAGE_NAME (symbol);
655 }
656
657 if (msymbol != NULL)
658 {
659 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
660 {
661 /* The msymbol is closer to the address than the symbol;
662 use the msymbol instead. */
663 symbol = 0;
664 symtab = 0;
665 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
666 if (do_demangle)
667 name_temp = SYMBOL_SOURCE_NAME (msymbol);
668 else
669 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
670 }
671 }
672 if (symbol == NULL && msymbol == NULL)
673 return 1;
674
675 /* On some targets, mask out extra "flag" bits from PC for handsome
676 disassembly. */
677
678 #ifdef GDB_TARGET_MASK_DISAS_PC
679 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
680 addr = GDB_TARGET_MASK_DISAS_PC (addr);
681 #endif
682
683 /* If the nearest symbol is too far away, don't print anything symbolic. */
684
685 /* For when CORE_ADDR is larger than unsigned int, we do math in
686 CORE_ADDR. But when we detect unsigned wraparound in the
687 CORE_ADDR math, we ignore this test and print the offset,
688 because addr+max_symbolic_offset has wrapped through the end
689 of the address space back to the beginning, giving bogus comparison. */
690 if (addr > name_location + max_symbolic_offset
691 && name_location + max_symbolic_offset > name_location)
692 return 1;
693
694 *offset = addr - name_location;
695
696 *name = xstrdup (name_temp);
697
698 if (print_symbol_filename)
699 {
700 struct symtab_and_line sal;
701
702 sal = find_pc_sect_line (addr, section, 0);
703
704 if (sal.symtab)
705 {
706 *filename = xstrdup (sal.symtab->filename);
707 *line = sal.line;
708 }
709 else if (symtab && symbol && symbol->line)
710 {
711 *filename = xstrdup (symtab->filename);
712 *line = symbol->line;
713 }
714 else if (symtab)
715 {
716 *filename = xstrdup (symtab->filename);
717 *line = -1;
718 }
719 }
720 return 0;
721 }
722
723 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
724 print_longest. */
725 void
726 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
727 {
728 /* Truncate address to the size of a target address, avoiding shifts
729 larger or equal than the width of a CORE_ADDR. The local
730 variable ADDR_BIT stops the compiler reporting a shift overflow
731 when it won't occur. */
732 /* NOTE: This assumes that the significant address information is
733 kept in the least significant bits of ADDR - the upper bits were
734 either zero or sign extended. Should ADDRESS_TO_POINTER() or
735 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
736
737 int addr_bit = TARGET_ADDR_BIT;
738
739 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
740 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
741 print_longest (stream, 'x', use_local, (ULONGEST) addr);
742 }
743
744 /* Print address ADDR symbolically on STREAM.
745 First print it as a number. Then perhaps print
746 <SYMBOL + OFFSET> after the number. */
747
748 void
749 print_address (CORE_ADDR addr, struct ui_file *stream)
750 {
751 print_address_numeric (addr, 1, stream);
752 print_address_symbolic (addr, stream, asm_demangle, " ");
753 }
754
755 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
756 controls whether to print the symbolic name "raw" or demangled.
757 Global setting "addressprint" controls whether to print hex address
758 or not. */
759
760 void
761 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
762 {
763 if (addr == 0)
764 {
765 fprintf_filtered (stream, "0");
766 }
767 else if (addressprint)
768 {
769 print_address_numeric (addr, 1, stream);
770 print_address_symbolic (addr, stream, do_demangle, " ");
771 }
772 else
773 {
774 print_address_symbolic (addr, stream, do_demangle, "");
775 }
776 }
777 \f
778
779 /* These are the types that $__ will get after an examine command of one
780 of these sizes. */
781
782 static struct type *examine_i_type;
783
784 static struct type *examine_b_type;
785 static struct type *examine_h_type;
786 static struct type *examine_w_type;
787 static struct type *examine_g_type;
788
789 /* Examine data at address ADDR in format FMT.
790 Fetch it from memory and print on gdb_stdout. */
791
792 static void
793 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
794 {
795 register char format = 0;
796 register char size;
797 register int count = 1;
798 struct type *val_type = NULL;
799 register int i;
800 register int maxelts;
801
802 format = fmt.format;
803 size = fmt.size;
804 count = fmt.count;
805 next_address = addr;
806 next_section = sect;
807
808 /* String or instruction format implies fetch single bytes
809 regardless of the specified size. */
810 if (format == 's' || format == 'i')
811 size = 'b';
812
813 if (format == 'i')
814 val_type = examine_i_type;
815 else if (size == 'b')
816 val_type = examine_b_type;
817 else if (size == 'h')
818 val_type = examine_h_type;
819 else if (size == 'w')
820 val_type = examine_w_type;
821 else if (size == 'g')
822 val_type = examine_g_type;
823
824 maxelts = 8;
825 if (size == 'w')
826 maxelts = 4;
827 if (size == 'g')
828 maxelts = 2;
829 if (format == 's' || format == 'i')
830 maxelts = 1;
831
832 /* Print as many objects as specified in COUNT, at most maxelts per line,
833 with the address of the next one at the start of each line. */
834
835 while (count > 0)
836 {
837 QUIT;
838 print_address (next_address, gdb_stdout);
839 printf_filtered (":");
840 for (i = maxelts;
841 i > 0 && count > 0;
842 i--, count--)
843 {
844 printf_filtered ("\t");
845 /* Note that print_formatted sets next_address for the next
846 object. */
847 last_examine_address = next_address;
848
849 if (last_examine_value)
850 value_free (last_examine_value);
851
852 /* The value to be displayed is not fetched greedily.
853 Instead, to avoid the posibility of a fetched value not
854 being used, its retreval is delayed until the print code
855 uses it. When examining an instruction stream, the
856 disassembler will perform its own memory fetch using just
857 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
858 the disassembler be modified so that LAST_EXAMINE_VALUE
859 is left with the byte sequence from the last complete
860 instruction fetched from memory? */
861 last_examine_value = value_at_lazy (val_type, next_address, sect);
862
863 if (last_examine_value)
864 release_value (last_examine_value);
865
866 print_formatted (last_examine_value, format, size, gdb_stdout);
867 }
868 printf_filtered ("\n");
869 gdb_flush (gdb_stdout);
870 }
871 }
872 \f
873 static void
874 validate_format (struct format_data fmt, char *cmdname)
875 {
876 if (fmt.size != 0)
877 error ("Size letters are meaningless in \"%s\" command.", cmdname);
878 if (fmt.count != 1)
879 error ("Item count other than 1 is meaningless in \"%s\" command.",
880 cmdname);
881 if (fmt.format == 'i' || fmt.format == 's')
882 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
883 fmt.format, cmdname);
884 }
885
886 /* Evaluate string EXP as an expression in the current language and
887 print the resulting value. EXP may contain a format specifier as the
888 first argument ("/x myvar" for example, to print myvar in hex).
889 */
890
891 static void
892 print_command_1 (char *exp, int inspect, int voidprint)
893 {
894 struct expression *expr;
895 register struct cleanup *old_chain = 0;
896 register char format = 0;
897 register value_ptr val;
898 struct format_data fmt;
899 int cleanup = 0;
900
901 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
902 inspect_it = inspect;
903
904 if (exp && *exp == '/')
905 {
906 exp++;
907 fmt = decode_format (&exp, last_format, 0);
908 validate_format (fmt, "print");
909 last_format = format = fmt.format;
910 }
911 else
912 {
913 fmt.count = 1;
914 fmt.format = 0;
915 fmt.size = 0;
916 }
917
918 if (exp && *exp)
919 {
920 struct type *type;
921 expr = parse_expression (exp);
922 old_chain = make_cleanup (free_current_contents, &expr);
923 cleanup = 1;
924 val = evaluate_expression (expr);
925
926 /* C++: figure out what type we actually want to print it as. */
927 type = VALUE_TYPE (val);
928
929 if (objectprint
930 && (TYPE_CODE (type) == TYPE_CODE_PTR
931 || TYPE_CODE (type) == TYPE_CODE_REF)
932 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
933 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
934 {
935 value_ptr v;
936
937 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
938 if (v != 0)
939 {
940 val = v;
941 type = VALUE_TYPE (val);
942 }
943 }
944 }
945 else
946 val = access_value_history (0);
947
948 if (voidprint || (val && VALUE_TYPE (val) &&
949 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
950 {
951 int histindex = record_latest_value (val);
952
953 if (histindex >= 0)
954 annotate_value_history_begin (histindex, VALUE_TYPE (val));
955 else
956 annotate_value_begin (VALUE_TYPE (val));
957
958 if (inspect)
959 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
960 else if (histindex >= 0)
961 printf_filtered ("$%d = ", histindex);
962
963 if (histindex >= 0)
964 annotate_value_history_value ();
965
966 print_formatted (val, format, fmt.size, gdb_stdout);
967 printf_filtered ("\n");
968
969 if (histindex >= 0)
970 annotate_value_history_end ();
971 else
972 annotate_value_end ();
973
974 if (inspect)
975 printf_unfiltered ("\") )\030");
976 }
977
978 if (cleanup)
979 do_cleanups (old_chain);
980 inspect_it = 0; /* Reset print routines to normal */
981 }
982
983 /* ARGSUSED */
984 static void
985 print_command (char *exp, int from_tty)
986 {
987 print_command_1 (exp, 0, 1);
988 }
989
990 /* Same as print, except in epoch, it gets its own window */
991 /* ARGSUSED */
992 static void
993 inspect_command (char *exp, int from_tty)
994 {
995 extern int epoch_interface;
996
997 print_command_1 (exp, epoch_interface, 1);
998 }
999
1000 /* Same as print, except it doesn't print void results. */
1001 /* ARGSUSED */
1002 static void
1003 call_command (char *exp, int from_tty)
1004 {
1005 print_command_1 (exp, 0, 0);
1006 }
1007
1008 /* ARGSUSED */
1009 void
1010 output_command (char *exp, int from_tty)
1011 {
1012 struct expression *expr;
1013 register struct cleanup *old_chain;
1014 register char format = 0;
1015 register value_ptr val;
1016 struct format_data fmt;
1017
1018 if (exp && *exp == '/')
1019 {
1020 exp++;
1021 fmt = decode_format (&exp, 0, 0);
1022 validate_format (fmt, "output");
1023 format = fmt.format;
1024 }
1025
1026 expr = parse_expression (exp);
1027 old_chain = make_cleanup (free_current_contents, &expr);
1028
1029 val = evaluate_expression (expr);
1030
1031 annotate_value_begin (VALUE_TYPE (val));
1032
1033 print_formatted (val, format, fmt.size, gdb_stdout);
1034
1035 annotate_value_end ();
1036
1037 wrap_here ("");
1038 gdb_flush (gdb_stdout);
1039
1040 do_cleanups (old_chain);
1041 }
1042
1043 /* ARGSUSED */
1044 static void
1045 set_command (char *exp, int from_tty)
1046 {
1047 struct expression *expr = parse_expression (exp);
1048 register struct cleanup *old_chain =
1049 make_cleanup (free_current_contents, &expr);
1050 evaluate_expression (expr);
1051 do_cleanups (old_chain);
1052 }
1053
1054 /* ARGSUSED */
1055 static void
1056 sym_info (char *arg, int from_tty)
1057 {
1058 struct minimal_symbol *msymbol;
1059 struct objfile *objfile;
1060 struct obj_section *osect;
1061 asection *sect;
1062 CORE_ADDR addr, sect_addr;
1063 int matches = 0;
1064 unsigned int offset;
1065
1066 if (!arg)
1067 error_no_arg ("address");
1068
1069 addr = parse_and_eval_address (arg);
1070 ALL_OBJSECTIONS (objfile, osect)
1071 {
1072 sect = osect->the_bfd_section;
1073 sect_addr = overlay_mapped_address (addr, sect);
1074
1075 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1076 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1077 {
1078 matches = 1;
1079 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1080 if (offset)
1081 printf_filtered ("%s + %u in ",
1082 SYMBOL_SOURCE_NAME (msymbol), offset);
1083 else
1084 printf_filtered ("%s in ",
1085 SYMBOL_SOURCE_NAME (msymbol));
1086 if (pc_in_unmapped_range (addr, sect))
1087 printf_filtered ("load address range of ");
1088 if (section_is_overlay (sect))
1089 printf_filtered ("%s overlay ",
1090 section_is_mapped (sect) ? "mapped" : "unmapped");
1091 printf_filtered ("section %s", sect->name);
1092 printf_filtered ("\n");
1093 }
1094 }
1095 if (matches == 0)
1096 printf_filtered ("No symbol matches %s.\n", arg);
1097 }
1098
1099 /* ARGSUSED */
1100 static void
1101 address_info (char *exp, int from_tty)
1102 {
1103 register struct symbol *sym;
1104 register struct minimal_symbol *msymbol;
1105 register long val;
1106 register long basereg;
1107 asection *section;
1108 CORE_ADDR load_addr;
1109 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1110 if exp is a field of `this'. */
1111
1112 if (exp == 0)
1113 error ("Argument required.");
1114
1115 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1116 &is_a_field_of_this, (struct symtab **) NULL);
1117 if (sym == NULL)
1118 {
1119 if (is_a_field_of_this)
1120 {
1121 printf_filtered ("Symbol \"");
1122 fprintf_symbol_filtered (gdb_stdout, exp,
1123 current_language->la_language, DMGL_ANSI);
1124 printf_filtered ("\" is a field of the local class variable `this'\n");
1125 return;
1126 }
1127
1128 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1129
1130 if (msymbol != NULL)
1131 {
1132 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1133
1134 printf_filtered ("Symbol \"");
1135 fprintf_symbol_filtered (gdb_stdout, exp,
1136 current_language->la_language, DMGL_ANSI);
1137 printf_filtered ("\" is at ");
1138 print_address_numeric (load_addr, 1, gdb_stdout);
1139 printf_filtered (" in a file compiled without debugging");
1140 section = SYMBOL_BFD_SECTION (msymbol);
1141 if (section_is_overlay (section))
1142 {
1143 load_addr = overlay_unmapped_address (load_addr, section);
1144 printf_filtered (",\n -- loaded at ");
1145 print_address_numeric (load_addr, 1, gdb_stdout);
1146 printf_filtered (" in overlay section %s", section->name);
1147 }
1148 printf_filtered (".\n");
1149 }
1150 else
1151 error ("No symbol \"%s\" in current context.", exp);
1152 return;
1153 }
1154
1155 printf_filtered ("Symbol \"");
1156 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1157 current_language->la_language, DMGL_ANSI);
1158 printf_filtered ("\" is ");
1159 val = SYMBOL_VALUE (sym);
1160 basereg = SYMBOL_BASEREG (sym);
1161 section = SYMBOL_BFD_SECTION (sym);
1162
1163 switch (SYMBOL_CLASS (sym))
1164 {
1165 case LOC_CONST:
1166 case LOC_CONST_BYTES:
1167 printf_filtered ("constant");
1168 break;
1169
1170 case LOC_LABEL:
1171 printf_filtered ("a label at address ");
1172 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1173 1, gdb_stdout);
1174 if (section_is_overlay (section))
1175 {
1176 load_addr = overlay_unmapped_address (load_addr, section);
1177 printf_filtered (",\n -- loaded at ");
1178 print_address_numeric (load_addr, 1, gdb_stdout);
1179 printf_filtered (" in overlay section %s", section->name);
1180 }
1181 break;
1182
1183 case LOC_REGISTER:
1184 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1185 break;
1186
1187 case LOC_STATIC:
1188 printf_filtered ("static storage at address ");
1189 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1190 1, gdb_stdout);
1191 if (section_is_overlay (section))
1192 {
1193 load_addr = overlay_unmapped_address (load_addr, section);
1194 printf_filtered (",\n -- loaded at ");
1195 print_address_numeric (load_addr, 1, gdb_stdout);
1196 printf_filtered (" in overlay section %s", section->name);
1197 }
1198 break;
1199
1200 case LOC_INDIRECT:
1201 printf_filtered ("external global (indirect addressing), at address *(");
1202 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1203 1, gdb_stdout);
1204 printf_filtered (")");
1205 if (section_is_overlay (section))
1206 {
1207 load_addr = overlay_unmapped_address (load_addr, section);
1208 printf_filtered (",\n -- loaded at ");
1209 print_address_numeric (load_addr, 1, gdb_stdout);
1210 printf_filtered (" in overlay section %s", section->name);
1211 }
1212 break;
1213
1214 case LOC_REGPARM:
1215 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1216 break;
1217
1218 case LOC_REGPARM_ADDR:
1219 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1220 break;
1221
1222 case LOC_ARG:
1223 printf_filtered ("an argument at offset %ld", val);
1224 break;
1225
1226 case LOC_LOCAL_ARG:
1227 printf_filtered ("an argument at frame offset %ld", val);
1228 break;
1229
1230 case LOC_LOCAL:
1231 printf_filtered ("a local variable at frame offset %ld", val);
1232 break;
1233
1234 case LOC_REF_ARG:
1235 printf_filtered ("a reference argument at offset %ld", val);
1236 break;
1237
1238 case LOC_BASEREG:
1239 printf_filtered ("a variable at offset %ld from register %s",
1240 val, REGISTER_NAME (basereg));
1241 break;
1242
1243 case LOC_BASEREG_ARG:
1244 printf_filtered ("an argument at offset %ld from register %s",
1245 val, REGISTER_NAME (basereg));
1246 break;
1247
1248 case LOC_TYPEDEF:
1249 printf_filtered ("a typedef");
1250 break;
1251
1252 case LOC_BLOCK:
1253 printf_filtered ("a function at address ");
1254 #ifdef GDB_TARGET_MASK_DISAS_PC
1255 print_address_numeric
1256 (load_addr = GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1257 1, gdb_stdout);
1258 #else
1259 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1260 1, gdb_stdout);
1261 #endif
1262 if (section_is_overlay (section))
1263 {
1264 load_addr = overlay_unmapped_address (load_addr, section);
1265 printf_filtered (",\n -- loaded at ");
1266 print_address_numeric (load_addr, 1, gdb_stdout);
1267 printf_filtered (" in overlay section %s", section->name);
1268 }
1269 break;
1270
1271 case LOC_UNRESOLVED:
1272 {
1273 struct minimal_symbol *msym;
1274
1275 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1276 if (msym == NULL)
1277 printf_filtered ("unresolved");
1278 else
1279 {
1280 section = SYMBOL_BFD_SECTION (msym);
1281 printf_filtered ("static storage at address ");
1282 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1283 1, gdb_stdout);
1284 if (section_is_overlay (section))
1285 {
1286 load_addr = overlay_unmapped_address (load_addr, section);
1287 printf_filtered (",\n -- loaded at ");
1288 print_address_numeric (load_addr, 1, gdb_stdout);
1289 printf_filtered (" in overlay section %s", section->name);
1290 }
1291 }
1292 }
1293 break;
1294
1295 case LOC_THREAD_LOCAL_STATIC:
1296 printf_filtered (
1297 "a thread-local variable at offset %ld from the thread base register %s",
1298 val, REGISTER_NAME (basereg));
1299 break;
1300
1301 case LOC_OPTIMIZED_OUT:
1302 printf_filtered ("optimized out");
1303 break;
1304
1305 default:
1306 printf_filtered ("of unknown (botched) type");
1307 break;
1308 }
1309 printf_filtered (".\n");
1310 }
1311 \f
1312 void
1313 x_command (char *exp, int from_tty)
1314 {
1315 struct expression *expr;
1316 struct format_data fmt;
1317 struct cleanup *old_chain;
1318 struct value *val;
1319
1320 fmt.format = last_format;
1321 fmt.size = last_size;
1322 fmt.count = 1;
1323
1324 if (exp && *exp == '/')
1325 {
1326 exp++;
1327 fmt = decode_format (&exp, last_format, last_size);
1328 }
1329
1330 /* If we have an expression, evaluate it and use it as the address. */
1331
1332 if (exp != 0 && *exp != 0)
1333 {
1334 expr = parse_expression (exp);
1335 /* Cause expression not to be there any more
1336 if this command is repeated with Newline.
1337 But don't clobber a user-defined command's definition. */
1338 if (from_tty)
1339 *exp = 0;
1340 old_chain = make_cleanup (free_current_contents, &expr);
1341 val = evaluate_expression (expr);
1342 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1343 val = value_ind (val);
1344 /* In rvalue contexts, such as this, functions are coerced into
1345 pointers to functions. This makes "x/i main" work. */
1346 if (/* last_format == 'i' && */
1347 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1348 && VALUE_LVAL (val) == lval_memory)
1349 next_address = VALUE_ADDRESS (val);
1350 else
1351 next_address = value_as_pointer (val);
1352 if (VALUE_BFD_SECTION (val))
1353 next_section = VALUE_BFD_SECTION (val);
1354 do_cleanups (old_chain);
1355 }
1356
1357 do_examine (fmt, next_address, next_section);
1358
1359 /* If the examine succeeds, we remember its size and format for next time. */
1360 last_size = fmt.size;
1361 last_format = fmt.format;
1362
1363 /* Set a couple of internal variables if appropriate. */
1364 if (last_examine_value)
1365 {
1366 /* Make last address examined available to the user as $_. Use
1367 the correct pointer type. */
1368 struct type *pointer_type
1369 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1370 set_internalvar (lookup_internalvar ("_"),
1371 value_from_pointer (pointer_type,
1372 last_examine_address));
1373
1374 /* Make contents of last address examined available to the user as $__. */
1375 /* If the last value has not been fetched from memory then don't
1376 fetch it now - instead mark it by voiding the $__ variable. */
1377 if (VALUE_LAZY (last_examine_value))
1378 set_internalvar (lookup_internalvar ("__"),
1379 allocate_value (builtin_type_void));
1380 else
1381 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1382 }
1383 }
1384 \f
1385
1386 /* Add an expression to the auto-display chain.
1387 Specify the expression. */
1388
1389 static void
1390 display_command (char *exp, int from_tty)
1391 {
1392 struct format_data fmt;
1393 register struct expression *expr;
1394 register struct display *new;
1395 int display_it = 1;
1396
1397 #if defined(TUI)
1398 if (tui_version && *exp == '$')
1399 display_it = (tui_set_layout (exp) == TUI_FAILURE);
1400 #endif
1401
1402 if (display_it)
1403 {
1404 if (exp == 0)
1405 {
1406 do_displays ();
1407 return;
1408 }
1409
1410 if (*exp == '/')
1411 {
1412 exp++;
1413 fmt = decode_format (&exp, 0, 0);
1414 if (fmt.size && fmt.format == 0)
1415 fmt.format = 'x';
1416 if (fmt.format == 'i' || fmt.format == 's')
1417 fmt.size = 'b';
1418 }
1419 else
1420 {
1421 fmt.format = 0;
1422 fmt.size = 0;
1423 fmt.count = 0;
1424 }
1425
1426 innermost_block = 0;
1427 expr = parse_expression (exp);
1428
1429 new = (struct display *) xmalloc (sizeof (struct display));
1430
1431 new->exp = expr;
1432 new->block = innermost_block;
1433 new->next = display_chain;
1434 new->number = ++display_number;
1435 new->format = fmt;
1436 new->enabled_p = 1;
1437 display_chain = new;
1438
1439 if (from_tty && target_has_execution)
1440 do_one_display (new);
1441
1442 dont_repeat ();
1443 }
1444 }
1445
1446 static void
1447 free_display (struct display *d)
1448 {
1449 xfree (d->exp);
1450 xfree (d);
1451 }
1452
1453 /* Clear out the display_chain.
1454 Done when new symtabs are loaded, since this invalidates
1455 the types stored in many expressions. */
1456
1457 void
1458 clear_displays (void)
1459 {
1460 register struct display *d;
1461
1462 while ((d = display_chain) != NULL)
1463 {
1464 xfree (d->exp);
1465 display_chain = d->next;
1466 xfree (d);
1467 }
1468 }
1469
1470 /* Delete the auto-display number NUM. */
1471
1472 static void
1473 delete_display (int num)
1474 {
1475 register struct display *d1, *d;
1476
1477 if (!display_chain)
1478 error ("No display number %d.", num);
1479
1480 if (display_chain->number == num)
1481 {
1482 d1 = display_chain;
1483 display_chain = d1->next;
1484 free_display (d1);
1485 }
1486 else
1487 for (d = display_chain;; d = d->next)
1488 {
1489 if (d->next == 0)
1490 error ("No display number %d.", num);
1491 if (d->next->number == num)
1492 {
1493 d1 = d->next;
1494 d->next = d1->next;
1495 free_display (d1);
1496 break;
1497 }
1498 }
1499 }
1500
1501 /* Delete some values from the auto-display chain.
1502 Specify the element numbers. */
1503
1504 static void
1505 undisplay_command (char *args, int from_tty)
1506 {
1507 register char *p = args;
1508 register char *p1;
1509 register int num;
1510
1511 if (args == 0)
1512 {
1513 if (query ("Delete all auto-display expressions? "))
1514 clear_displays ();
1515 dont_repeat ();
1516 return;
1517 }
1518
1519 while (*p)
1520 {
1521 p1 = p;
1522 while (*p1 >= '0' && *p1 <= '9')
1523 p1++;
1524 if (*p1 && *p1 != ' ' && *p1 != '\t')
1525 error ("Arguments must be display numbers.");
1526
1527 num = atoi (p);
1528
1529 delete_display (num);
1530
1531 p = p1;
1532 while (*p == ' ' || *p == '\t')
1533 p++;
1534 }
1535 dont_repeat ();
1536 }
1537
1538 /* Display a single auto-display.
1539 Do nothing if the display cannot be printed in the current context,
1540 or if the display is disabled. */
1541
1542 static void
1543 do_one_display (struct display *d)
1544 {
1545 int within_current_scope;
1546
1547 if (d->enabled_p == 0)
1548 return;
1549
1550 if (d->block)
1551 within_current_scope = contained_in (get_selected_block (), d->block);
1552 else
1553 within_current_scope = 1;
1554 if (!within_current_scope)
1555 return;
1556
1557 current_display_number = d->number;
1558
1559 annotate_display_begin ();
1560 printf_filtered ("%d", d->number);
1561 annotate_display_number_end ();
1562 printf_filtered (": ");
1563 if (d->format.size)
1564 {
1565 CORE_ADDR addr;
1566 value_ptr val;
1567
1568 annotate_display_format ();
1569
1570 printf_filtered ("x/");
1571 if (d->format.count != 1)
1572 printf_filtered ("%d", d->format.count);
1573 printf_filtered ("%c", d->format.format);
1574 if (d->format.format != 'i' && d->format.format != 's')
1575 printf_filtered ("%c", d->format.size);
1576 printf_filtered (" ");
1577
1578 annotate_display_expression ();
1579
1580 print_expression (d->exp, gdb_stdout);
1581 annotate_display_expression_end ();
1582
1583 if (d->format.count != 1)
1584 printf_filtered ("\n");
1585 else
1586 printf_filtered (" ");
1587
1588 val = evaluate_expression (d->exp);
1589 addr = value_as_pointer (val);
1590 if (d->format.format == 'i')
1591 addr = ADDR_BITS_REMOVE (addr);
1592
1593 annotate_display_value ();
1594
1595 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1596 }
1597 else
1598 {
1599 annotate_display_format ();
1600
1601 if (d->format.format)
1602 printf_filtered ("/%c ", d->format.format);
1603
1604 annotate_display_expression ();
1605
1606 print_expression (d->exp, gdb_stdout);
1607 annotate_display_expression_end ();
1608
1609 printf_filtered (" = ");
1610
1611 annotate_display_expression ();
1612
1613 print_formatted (evaluate_expression (d->exp),
1614 d->format.format, d->format.size, gdb_stdout);
1615 printf_filtered ("\n");
1616 }
1617
1618 annotate_display_end ();
1619
1620 gdb_flush (gdb_stdout);
1621 current_display_number = -1;
1622 }
1623
1624 /* Display all of the values on the auto-display chain which can be
1625 evaluated in the current scope. */
1626
1627 void
1628 do_displays (void)
1629 {
1630 register struct display *d;
1631
1632 for (d = display_chain; d; d = d->next)
1633 do_one_display (d);
1634 }
1635
1636 /* Delete the auto-display which we were in the process of displaying.
1637 This is done when there is an error or a signal. */
1638
1639 void
1640 disable_display (int num)
1641 {
1642 register struct display *d;
1643
1644 for (d = display_chain; d; d = d->next)
1645 if (d->number == num)
1646 {
1647 d->enabled_p = 0;
1648 return;
1649 }
1650 printf_unfiltered ("No display number %d.\n", num);
1651 }
1652
1653 void
1654 disable_current_display (void)
1655 {
1656 if (current_display_number >= 0)
1657 {
1658 disable_display (current_display_number);
1659 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1660 current_display_number);
1661 }
1662 current_display_number = -1;
1663 }
1664
1665 static void
1666 display_info (char *ignore, int from_tty)
1667 {
1668 register struct display *d;
1669
1670 if (!display_chain)
1671 printf_unfiltered ("There are no auto-display expressions now.\n");
1672 else
1673 printf_filtered ("Auto-display expressions now in effect:\n\
1674 Num Enb Expression\n");
1675
1676 for (d = display_chain; d; d = d->next)
1677 {
1678 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1679 if (d->format.size)
1680 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1681 d->format.format);
1682 else if (d->format.format)
1683 printf_filtered ("/%c ", d->format.format);
1684 print_expression (d->exp, gdb_stdout);
1685 if (d->block && !contained_in (get_selected_block (), d->block))
1686 printf_filtered (" (cannot be evaluated in the current context)");
1687 printf_filtered ("\n");
1688 gdb_flush (gdb_stdout);
1689 }
1690 }
1691
1692 static void
1693 enable_display (char *args, int from_tty)
1694 {
1695 register char *p = args;
1696 register char *p1;
1697 register int num;
1698 register struct display *d;
1699
1700 if (p == 0)
1701 {
1702 for (d = display_chain; d; d = d->next)
1703 d->enabled_p = 1;
1704 }
1705 else
1706 while (*p)
1707 {
1708 p1 = p;
1709 while (*p1 >= '0' && *p1 <= '9')
1710 p1++;
1711 if (*p1 && *p1 != ' ' && *p1 != '\t')
1712 error ("Arguments must be display numbers.");
1713
1714 num = atoi (p);
1715
1716 for (d = display_chain; d; d = d->next)
1717 if (d->number == num)
1718 {
1719 d->enabled_p = 1;
1720 goto win;
1721 }
1722 printf_unfiltered ("No display number %d.\n", num);
1723 win:
1724 p = p1;
1725 while (*p == ' ' || *p == '\t')
1726 p++;
1727 }
1728 }
1729
1730 /* ARGSUSED */
1731 static void
1732 disable_display_command (char *args, int from_tty)
1733 {
1734 register char *p = args;
1735 register char *p1;
1736 register struct display *d;
1737
1738 if (p == 0)
1739 {
1740 for (d = display_chain; d; d = d->next)
1741 d->enabled_p = 0;
1742 }
1743 else
1744 while (*p)
1745 {
1746 p1 = p;
1747 while (*p1 >= '0' && *p1 <= '9')
1748 p1++;
1749 if (*p1 && *p1 != ' ' && *p1 != '\t')
1750 error ("Arguments must be display numbers.");
1751
1752 disable_display (atoi (p));
1753
1754 p = p1;
1755 while (*p == ' ' || *p == '\t')
1756 p++;
1757 }
1758 }
1759 \f
1760
1761 /* Print the value in stack frame FRAME of a variable
1762 specified by a struct symbol. */
1763
1764 void
1765 print_variable_value (struct symbol *var, struct frame_info *frame,
1766 struct ui_file *stream)
1767 {
1768 value_ptr val = read_var_value (var, frame);
1769
1770 value_print (val, stream, 0, Val_pretty_default);
1771 }
1772
1773 /* Print the arguments of a stack frame, given the function FUNC
1774 running in that frame (as a symbol), the info on the frame,
1775 and the number of args according to the stack frame (or -1 if unknown). */
1776
1777 /* References here and elsewhere to "number of args according to the
1778 stack frame" appear in all cases to refer to "number of ints of args
1779 according to the stack frame". At least for VAX, i386, isi. */
1780
1781 void
1782 print_frame_args (struct symbol *func, struct frame_info *fi, int num,
1783 struct ui_file *stream)
1784 {
1785 struct block *b = NULL;
1786 int nsyms = 0;
1787 int first = 1;
1788 register int i;
1789 register struct symbol *sym;
1790 register value_ptr val;
1791 /* Offset of next stack argument beyond the one we have seen that is
1792 at the highest offset.
1793 -1 if we haven't come to a stack argument yet. */
1794 long highest_offset = -1;
1795 int arg_size;
1796 /* Number of ints of arguments that we have printed so far. */
1797 int args_printed = 0;
1798 #ifdef UI_OUT
1799 struct cleanup *old_chain, *list_chain;
1800 struct ui_stream *stb;
1801
1802 stb = ui_out_stream_new (uiout);
1803 old_chain = make_cleanup_ui_out_stream_delete (stb);
1804 #endif /* UI_OUT */
1805
1806 if (func)
1807 {
1808 b = SYMBOL_BLOCK_VALUE (func);
1809 nsyms = BLOCK_NSYMS (b);
1810 }
1811
1812 for (i = 0; i < nsyms; i++)
1813 {
1814 QUIT;
1815 sym = BLOCK_SYM (b, i);
1816
1817 /* Keep track of the highest stack argument offset seen, and
1818 skip over any kinds of symbols we don't care about. */
1819
1820 switch (SYMBOL_CLASS (sym))
1821 {
1822 case LOC_ARG:
1823 case LOC_REF_ARG:
1824 {
1825 long current_offset = SYMBOL_VALUE (sym);
1826 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1827
1828 /* Compute address of next argument by adding the size of
1829 this argument and rounding to an int boundary. */
1830 current_offset =
1831 ((current_offset + arg_size + sizeof (int) - 1)
1832 & ~(sizeof (int) - 1));
1833
1834 /* If this is the highest offset seen yet, set highest_offset. */
1835 if (highest_offset == -1
1836 || (current_offset > highest_offset))
1837 highest_offset = current_offset;
1838
1839 /* Add the number of ints we're about to print to args_printed. */
1840 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1841 }
1842
1843 /* We care about types of symbols, but don't need to keep track of
1844 stack offsets in them. */
1845 case LOC_REGPARM:
1846 case LOC_REGPARM_ADDR:
1847 case LOC_LOCAL_ARG:
1848 case LOC_BASEREG_ARG:
1849 break;
1850
1851 /* Other types of symbols we just skip over. */
1852 default:
1853 continue;
1854 }
1855
1856 /* We have to look up the symbol because arguments can have
1857 two entries (one a parameter, one a local) and the one we
1858 want is the local, which lookup_symbol will find for us.
1859 This includes gcc1 (not gcc2) on the sparc when passing a
1860 small structure and gcc2 when the argument type is float
1861 and it is passed as a double and converted to float by
1862 the prologue (in the latter case the type of the LOC_ARG
1863 symbol is double and the type of the LOC_LOCAL symbol is
1864 float). */
1865 /* But if the parameter name is null, don't try it.
1866 Null parameter names occur on the RS/6000, for traceback tables.
1867 FIXME, should we even print them? */
1868
1869 if (*SYMBOL_NAME (sym))
1870 {
1871 struct symbol *nsym;
1872 nsym = lookup_symbol
1873 (SYMBOL_NAME (sym),
1874 b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
1875 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1876 {
1877 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1878 it was passed on the stack and loaded into a register,
1879 or passed in a register and stored in a stack slot.
1880 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1881
1882 Reasons for using the LOC_ARG:
1883 (1) because find_saved_registers may be slow for remote
1884 debugging,
1885 (2) because registers are often re-used and stack slots
1886 rarely (never?) are. Therefore using the stack slot is
1887 much less likely to print garbage.
1888
1889 Reasons why we might want to use the LOC_REGISTER:
1890 (1) So that the backtrace prints the same value as
1891 "print foo". I see no compelling reason why this needs
1892 to be the case; having the backtrace print the value which
1893 was passed in, and "print foo" print the value as modified
1894 within the called function, makes perfect sense to me.
1895
1896 Additional note: It might be nice if "info args" displayed
1897 both values.
1898 One more note: There is a case with sparc structure passing
1899 where we need to use the LOC_REGISTER, but this is dealt with
1900 by creating a single LOC_REGPARM in symbol reading. */
1901
1902 /* Leave sym (the LOC_ARG) alone. */
1903 ;
1904 }
1905 else
1906 sym = nsym;
1907 }
1908
1909 #ifdef UI_OUT
1910 /* Print the current arg. */
1911 if (!first)
1912 ui_out_text (uiout, ", ");
1913 ui_out_wrap_hint (uiout, " ");
1914
1915 annotate_arg_begin ();
1916
1917 list_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1918 fprintf_symbol_filtered (stb->stream, SYMBOL_SOURCE_NAME (sym),
1919 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1920 ui_out_field_stream (uiout, "name", stb);
1921 annotate_arg_name_end ();
1922 ui_out_text (uiout, "=");
1923 #else
1924 /* Print the current arg. */
1925 if (!first)
1926 fprintf_filtered (stream, ", ");
1927 wrap_here (" ");
1928
1929 annotate_arg_begin ();
1930
1931 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1932 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1933 annotate_arg_name_end ();
1934 fputs_filtered ("=", stream);
1935 #endif
1936
1937 /* Avoid value_print because it will deref ref parameters. We just
1938 want to print their addresses. Print ??? for args whose address
1939 we do not know. We pass 2 as "recurse" to val_print because our
1940 standard indentation here is 4 spaces, and val_print indents
1941 2 for each recurse. */
1942 val = read_var_value (sym, fi);
1943
1944 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1945
1946 if (val)
1947 {
1948 #ifdef UI_OUT
1949 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1950 VALUE_ADDRESS (val),
1951 stb->stream, 0, 0, 2, Val_no_prettyprint);
1952 ui_out_field_stream (uiout, "value", stb);
1953 }
1954 else
1955 ui_out_text (uiout, "???");
1956
1957 /* Invoke ui_out_tuple_end. */
1958 do_cleanups (list_chain);
1959 #else
1960 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1961 VALUE_ADDRESS (val),
1962 stream, 0, 0, 2, Val_no_prettyprint);
1963 }
1964 else
1965 fputs_filtered ("???", stream);
1966 #endif
1967
1968 annotate_arg_end ();
1969
1970 first = 0;
1971 }
1972
1973 /* Don't print nameless args in situations where we don't know
1974 enough about the stack to find them. */
1975 if (num != -1)
1976 {
1977 long start;
1978
1979 if (highest_offset == -1)
1980 start = FRAME_ARGS_SKIP;
1981 else
1982 start = highest_offset;
1983
1984 print_frame_nameless_args (fi, start, num - args_printed,
1985 first, stream);
1986 }
1987 #ifdef UI_OUT
1988 do_cleanups (old_chain);
1989 #endif /* no UI_OUT */
1990 }
1991
1992 /* Print nameless args on STREAM.
1993 FI is the frameinfo for this frame, START is the offset
1994 of the first nameless arg, and NUM is the number of nameless args to
1995 print. FIRST is nonzero if this is the first argument (not just
1996 the first nameless arg). */
1997
1998 static void
1999 print_frame_nameless_args (struct frame_info *fi, long start, int num,
2000 int first, struct ui_file *stream)
2001 {
2002 int i;
2003 CORE_ADDR argsaddr;
2004 long arg_value;
2005
2006 for (i = 0; i < num; i++)
2007 {
2008 QUIT;
2009 #ifdef NAMELESS_ARG_VALUE
2010 NAMELESS_ARG_VALUE (fi, start, &arg_value);
2011 #else
2012 argsaddr = FRAME_ARGS_ADDRESS (fi);
2013 if (!argsaddr)
2014 return;
2015
2016 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
2017 #endif
2018
2019 if (!first)
2020 fprintf_filtered (stream, ", ");
2021
2022 #ifdef PRINT_NAMELESS_INTEGER
2023 PRINT_NAMELESS_INTEGER (stream, arg_value);
2024 #else
2025 #ifdef PRINT_TYPELESS_INTEGER
2026 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
2027 #else
2028 fprintf_filtered (stream, "%ld", arg_value);
2029 #endif /* PRINT_TYPELESS_INTEGER */
2030 #endif /* PRINT_NAMELESS_INTEGER */
2031 first = 0;
2032 start += sizeof (int);
2033 }
2034 }
2035 \f
2036 /* ARGSUSED */
2037 static void
2038 printf_command (char *arg, int from_tty)
2039 {
2040 register char *f = NULL;
2041 register char *s = arg;
2042 char *string = NULL;
2043 value_ptr *val_args;
2044 char *substrings;
2045 char *current_substring;
2046 int nargs = 0;
2047 int allocated_args = 20;
2048 struct cleanup *old_cleanups;
2049
2050 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
2051 old_cleanups = make_cleanup (free_current_contents, &val_args);
2052
2053 if (s == 0)
2054 error_no_arg ("format-control string and values to print");
2055
2056 /* Skip white space before format string */
2057 while (*s == ' ' || *s == '\t')
2058 s++;
2059
2060 /* A format string should follow, enveloped in double quotes */
2061 if (*s++ != '"')
2062 error ("Bad format string, missing '\"'.");
2063
2064 /* Parse the format-control string and copy it into the string STRING,
2065 processing some kinds of escape sequence. */
2066
2067 f = string = (char *) alloca (strlen (s) + 1);
2068
2069 while (*s != '"')
2070 {
2071 int c = *s++;
2072 switch (c)
2073 {
2074 case '\0':
2075 error ("Bad format string, non-terminated '\"'.");
2076
2077 case '\\':
2078 switch (c = *s++)
2079 {
2080 case '\\':
2081 *f++ = '\\';
2082 break;
2083 case 'a':
2084 *f++ = '\a';
2085 break;
2086 case 'b':
2087 *f++ = '\b';
2088 break;
2089 case 'f':
2090 *f++ = '\f';
2091 break;
2092 case 'n':
2093 *f++ = '\n';
2094 break;
2095 case 'r':
2096 *f++ = '\r';
2097 break;
2098 case 't':
2099 *f++ = '\t';
2100 break;
2101 case 'v':
2102 *f++ = '\v';
2103 break;
2104 case '"':
2105 *f++ = '"';
2106 break;
2107 default:
2108 /* ??? TODO: handle other escape sequences */
2109 error ("Unrecognized escape character \\%c in format string.",
2110 c);
2111 }
2112 break;
2113
2114 default:
2115 *f++ = c;
2116 }
2117 }
2118
2119 /* Skip over " and following space and comma. */
2120 s++;
2121 *f++ = '\0';
2122 while (*s == ' ' || *s == '\t')
2123 s++;
2124
2125 if (*s != ',' && *s != 0)
2126 error ("Invalid argument syntax");
2127
2128 if (*s == ',')
2129 s++;
2130 while (*s == ' ' || *s == '\t')
2131 s++;
2132
2133 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2134 substrings = alloca (strlen (string) * 2);
2135 current_substring = substrings;
2136
2137 {
2138 /* Now scan the string for %-specs and see what kinds of args they want.
2139 argclass[I] classifies the %-specs so we can give printf_filtered
2140 something of the right size. */
2141
2142 enum argclass
2143 {
2144 no_arg, int_arg, string_arg, double_arg, long_long_arg
2145 };
2146 enum argclass *argclass;
2147 enum argclass this_argclass;
2148 char *last_arg;
2149 int nargs_wanted;
2150 int lcount;
2151 int i;
2152
2153 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2154 nargs_wanted = 0;
2155 f = string;
2156 last_arg = string;
2157 while (*f)
2158 if (*f++ == '%')
2159 {
2160 lcount = 0;
2161 while (strchr ("0123456789.hlL-+ #", *f))
2162 {
2163 if (*f == 'l' || *f == 'L')
2164 lcount++;
2165 f++;
2166 }
2167 switch (*f)
2168 {
2169 case 's':
2170 this_argclass = string_arg;
2171 break;
2172
2173 case 'e':
2174 case 'f':
2175 case 'g':
2176 this_argclass = double_arg;
2177 break;
2178
2179 case '*':
2180 error ("`*' not supported for precision or width in printf");
2181
2182 case 'n':
2183 error ("Format specifier `n' not supported in printf");
2184
2185 case '%':
2186 this_argclass = no_arg;
2187 break;
2188
2189 default:
2190 if (lcount > 1)
2191 this_argclass = long_long_arg;
2192 else
2193 this_argclass = int_arg;
2194 break;
2195 }
2196 f++;
2197 if (this_argclass != no_arg)
2198 {
2199 strncpy (current_substring, last_arg, f - last_arg);
2200 current_substring += f - last_arg;
2201 *current_substring++ = '\0';
2202 last_arg = f;
2203 argclass[nargs_wanted++] = this_argclass;
2204 }
2205 }
2206
2207 /* Now, parse all arguments and evaluate them.
2208 Store the VALUEs in VAL_ARGS. */
2209
2210 while (*s != '\0')
2211 {
2212 char *s1;
2213 if (nargs == allocated_args)
2214 val_args = (value_ptr *) xrealloc ((char *) val_args,
2215 (allocated_args *= 2)
2216 * sizeof (value_ptr));
2217 s1 = s;
2218 val_args[nargs] = parse_to_comma_and_eval (&s1);
2219
2220 /* If format string wants a float, unchecked-convert the value to
2221 floating point of the same size */
2222
2223 if (argclass[nargs] == double_arg)
2224 {
2225 struct type *type = VALUE_TYPE (val_args[nargs]);
2226 if (TYPE_LENGTH (type) == sizeof (float))
2227 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2228 if (TYPE_LENGTH (type) == sizeof (double))
2229 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2230 }
2231 nargs++;
2232 s = s1;
2233 if (*s == ',')
2234 s++;
2235 }
2236
2237 if (nargs != nargs_wanted)
2238 error ("Wrong number of arguments for specified format-string");
2239
2240 /* Now actually print them. */
2241 current_substring = substrings;
2242 for (i = 0; i < nargs; i++)
2243 {
2244 switch (argclass[i])
2245 {
2246 case string_arg:
2247 {
2248 char *str;
2249 CORE_ADDR tem;
2250 int j;
2251 tem = value_as_pointer (val_args[i]);
2252
2253 /* This is a %s argument. Find the length of the string. */
2254 for (j = 0;; j++)
2255 {
2256 char c;
2257 QUIT;
2258 read_memory (tem + j, &c, 1);
2259 if (c == 0)
2260 break;
2261 }
2262
2263 /* Copy the string contents into a string inside GDB. */
2264 str = (char *) alloca (j + 1);
2265 if (j != 0)
2266 read_memory (tem, str, j);
2267 str[j] = 0;
2268
2269 printf_filtered (current_substring, str);
2270 }
2271 break;
2272 case double_arg:
2273 {
2274 double val = value_as_double (val_args[i]);
2275 printf_filtered (current_substring, val);
2276 break;
2277 }
2278 case long_long_arg:
2279 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2280 {
2281 long long val = value_as_long (val_args[i]);
2282 printf_filtered (current_substring, val);
2283 break;
2284 }
2285 #else
2286 error ("long long not supported in printf");
2287 #endif
2288 case int_arg:
2289 {
2290 /* FIXME: there should be separate int_arg and long_arg. */
2291 long val = value_as_long (val_args[i]);
2292 printf_filtered (current_substring, val);
2293 break;
2294 }
2295 default: /* purecov: deadcode */
2296 error ("internal error in printf_command"); /* purecov: deadcode */
2297 }
2298 /* Skip to the next substring. */
2299 current_substring += strlen (current_substring) + 1;
2300 }
2301 /* Print the portion of the format string after the last argument. */
2302 printf_filtered (last_arg);
2303 }
2304 do_cleanups (old_cleanups);
2305 }
2306 \f
2307 /* Dump a specified section of assembly code. With no command line
2308 arguments, this command will dump the assembly code for the
2309 function surrounding the pc value in the selected frame. With one
2310 argument, it will dump the assembly code surrounding that pc value.
2311 Two arguments are interpeted as bounds within which to dump
2312 assembly. */
2313
2314 /* ARGSUSED */
2315 static void
2316 disassemble_command (char *arg, int from_tty)
2317 {
2318 CORE_ADDR low, high;
2319 char *name;
2320 CORE_ADDR pc, pc_masked;
2321 char *space_index;
2322 #if 0
2323 asection *section;
2324 #endif
2325
2326 name = NULL;
2327 if (!arg)
2328 {
2329 if (!selected_frame)
2330 error ("No frame selected.\n");
2331
2332 pc = get_frame_pc (selected_frame);
2333 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2334 error ("No function contains program counter for selected frame.\n");
2335 #if defined(TUI)
2336 else if (tui_version)
2337 low = tuiGetLowDisassemblyAddress (low, pc);
2338 #endif
2339 low += FUNCTION_START_OFFSET;
2340 }
2341 else if (!(space_index = (char *) strchr (arg, ' ')))
2342 {
2343 /* One argument. */
2344 pc = parse_and_eval_address (arg);
2345 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2346 error ("No function contains specified address.\n");
2347 #if defined(TUI)
2348 else if (tui_version)
2349 low = tuiGetLowDisassemblyAddress (low, pc);
2350 #endif
2351 #if 0
2352 if (overlay_debugging)
2353 {
2354 section = find_pc_overlay (pc);
2355 if (pc_in_unmapped_range (pc, section))
2356 {
2357 /* find_pc_partial_function will have returned low and high
2358 relative to the symbolic (mapped) address range. Need to
2359 translate them back to the unmapped range where PC is. */
2360 low = overlay_unmapped_address (low, section);
2361 high = overlay_unmapped_address (high, section);
2362 }
2363 }
2364 #endif
2365 low += FUNCTION_START_OFFSET;
2366 }
2367 else
2368 {
2369 /* Two arguments. */
2370 *space_index = '\0';
2371 low = parse_and_eval_address (arg);
2372 high = parse_and_eval_address (space_index + 1);
2373 }
2374
2375 #if defined(TUI)
2376 if (!tui_is_window_visible (DISASSEM_WIN))
2377 #endif
2378 {
2379 printf_filtered ("Dump of assembler code ");
2380 if (name != NULL)
2381 {
2382 printf_filtered ("for function %s:\n", name);
2383 }
2384 else
2385 {
2386 printf_filtered ("from ");
2387 print_address_numeric (low, 1, gdb_stdout);
2388 printf_filtered (" to ");
2389 print_address_numeric (high, 1, gdb_stdout);
2390 printf_filtered (":\n");
2391 }
2392
2393 /* Dump the specified range. */
2394 pc = low;
2395
2396 #ifdef GDB_TARGET_MASK_DISAS_PC
2397 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2398 #else
2399 pc_masked = pc;
2400 #endif
2401
2402 while (pc_masked < high)
2403 {
2404 QUIT;
2405 print_address (pc_masked, gdb_stdout);
2406 printf_filtered (":\t");
2407 /* We often wrap here if there are long symbolic names. */
2408 wrap_here (" ");
2409 pc += print_insn (pc, gdb_stdout);
2410 printf_filtered ("\n");
2411
2412 #ifdef GDB_TARGET_MASK_DISAS_PC
2413 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2414 #else
2415 pc_masked = pc;
2416 #endif
2417 }
2418 printf_filtered ("End of assembler dump.\n");
2419 gdb_flush (gdb_stdout);
2420 }
2421 #if defined(TUI)
2422 else
2423 {
2424 tui_show_assembly (low);
2425 }
2426 #endif
2427 }
2428
2429 /* Print the instruction at address MEMADDR in debugged memory,
2430 on STREAM. Returns length of the instruction, in bytes. */
2431
2432 static int
2433 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
2434 {
2435 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2436 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
2437 else
2438 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
2439
2440 if (TARGET_ARCHITECTURE != NULL)
2441 TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
2442 /* else: should set .mach=0 but some disassemblers don't grok this */
2443
2444 TARGET_PRINT_INSN_INFO->stream = stream;
2445
2446 return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
2447 }
2448 \f
2449
2450 void
2451 _initialize_printcmd (void)
2452 {
2453 struct cmd_list_element *c;
2454
2455 current_display_number = -1;
2456
2457 add_info ("address", address_info,
2458 "Describe where symbol SYM is stored.");
2459
2460 add_info ("symbol", sym_info,
2461 "Describe what symbol is at location ADDR.\n\
2462 Only for symbols with fixed locations (global or static scope).");
2463
2464 add_com ("x", class_vars, x_command,
2465 concat ("Examine memory: x/FMT ADDRESS.\n\
2466 ADDRESS is an expression for the memory address to examine.\n\
2467 FMT is a repeat count followed by a format letter and a size letter.\n\
2468 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2469 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2470 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2471 The specified number of objects of the specified size are printed\n\
2472 according to the format.\n\n\
2473 Defaults for format and size letters are those previously used.\n\
2474 Default count is 1. Default address is following last thing printed\n\
2475 with this command or \"print\".", NULL));
2476
2477 c = add_com ("disassemble", class_vars, disassemble_command,
2478 "Disassemble a specified section of memory.\n\
2479 Default is the function surrounding the pc of the selected frame.\n\
2480 With a single argument, the function surrounding that address is dumped.\n\
2481 Two arguments are taken as a range of memory to dump.");
2482 c->completer = location_completer;
2483 if (xdb_commands)
2484 add_com_alias ("va", "disassemble", class_xdb, 0);
2485
2486 #if 0
2487 add_com ("whereis", class_vars, whereis_command,
2488 "Print line number and file of definition of variable.");
2489 #endif
2490
2491 add_info ("display", display_info,
2492 "Expressions to display when program stops, with code numbers.");
2493
2494 add_cmd ("undisplay", class_vars, undisplay_command,
2495 "Cancel some expressions to be displayed when program stops.\n\
2496 Arguments are the code numbers of the expressions to stop displaying.\n\
2497 No argument means cancel all automatic-display expressions.\n\
2498 \"delete display\" has the same effect as this command.\n\
2499 Do \"info display\" to see current list of code numbers.",
2500 &cmdlist);
2501
2502 add_com ("display", class_vars, display_command,
2503 "Print value of expression EXP each time the program stops.\n\
2504 /FMT may be used before EXP as in the \"print\" command.\n\
2505 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2506 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2507 and examining is done as in the \"x\" command.\n\n\
2508 With no argument, display all currently requested auto-display expressions.\n\
2509 Use \"undisplay\" to cancel display requests previously made."
2510 );
2511
2512 add_cmd ("display", class_vars, enable_display,
2513 "Enable some expressions to be displayed when program stops.\n\
2514 Arguments are the code numbers of the expressions to resume displaying.\n\
2515 No argument means enable all automatic-display expressions.\n\
2516 Do \"info display\" to see current list of code numbers.", &enablelist);
2517
2518 add_cmd ("display", class_vars, disable_display_command,
2519 "Disable some expressions to be displayed when program stops.\n\
2520 Arguments are the code numbers of the expressions to stop displaying.\n\
2521 No argument means disable all automatic-display expressions.\n\
2522 Do \"info display\" to see current list of code numbers.", &disablelist);
2523
2524 add_cmd ("display", class_vars, undisplay_command,
2525 "Cancel some expressions to be displayed when program stops.\n\
2526 Arguments are the code numbers of the expressions to stop displaying.\n\
2527 No argument means cancel all automatic-display expressions.\n\
2528 Do \"info display\" to see current list of code numbers.", &deletelist);
2529
2530 add_com ("printf", class_vars, printf_command,
2531 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2532 This is useful for formatted output in user-defined commands.");
2533
2534 add_com ("output", class_vars, output_command,
2535 "Like \"print\" but don't put in value history and don't print newline.\n\
2536 This is useful in user-defined commands.");
2537
2538 add_prefix_cmd ("set", class_vars, set_command,
2539 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2540 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2541 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2542 with $), a register (a few standard names starting with $), or an actual\n\
2543 variable in the program being debugged. EXP is any valid expression.\n",
2544 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2545 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2546 You can see these environment settings with the \"show\" command.", NULL),
2547 &setlist, "set ", 1, &cmdlist);
2548 if (dbx_commands)
2549 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2550 EXP and assign result to variable VAR, using assignment\n\
2551 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2552 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2553 with $), a register (a few standard names starting with $), or an actual\n\
2554 variable in the program being debugged. EXP is any valid expression.\n",
2555 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2556 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2557 You can see these environment settings with the \"show\" command.", NULL));
2558
2559 /* "call" is the same as "set", but handy for dbx users to call fns. */
2560 c = add_com ("call", class_vars, call_command,
2561 "Call a function in the program.\n\
2562 The argument is the function name and arguments, in the notation of the\n\
2563 current working language. The result is printed and saved in the value\n\
2564 history, if it is not void.");
2565 c->completer = location_completer;
2566
2567 add_cmd ("variable", class_vars, set_command,
2568 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2569 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2570 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2571 with $), a register (a few standard names starting with $), or an actual\n\
2572 variable in the program being debugged. EXP is any valid expression.\n\
2573 This may usually be abbreviated to simply \"set\".",
2574 &setlist);
2575
2576 c = add_com ("print", class_vars, print_command,
2577 concat ("Print value of expression EXP.\n\
2578 Variables accessible are those of the lexical environment of the selected\n\
2579 stack frame, plus all those whose scope is global or an entire file.\n\
2580 \n\
2581 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2582 $$NUM refers to NUM'th value back from the last one.\n\
2583 Names starting with $ refer to registers (with the values they would have\n",
2584 "if the program were to return to the stack frame now selected, restoring\n\
2585 all registers saved by frames farther in) or else to debugger\n\
2586 \"convenience\" variables (any such name not a known register).\n\
2587 Use assignment expressions to give values to convenience variables.\n",
2588 "\n\
2589 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2590 @ is a binary operator for treating consecutive data objects\n\
2591 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2592 element is FOO, whose second element is stored in the space following\n\
2593 where FOO is stored, etc. FOO must be an expression whose value\n\
2594 resides in memory.\n",
2595 "\n\
2596 EXP may be preceded with /FMT, where FMT is a format letter\n\
2597 but no count or size letter (see \"x\" command).", NULL));
2598 c->completer = location_completer;
2599 add_com_alias ("p", "print", class_vars, 1);
2600
2601 c = add_com ("inspect", class_vars, inspect_command,
2602 "Same as \"print\" command, except that if you are running in the epoch\n\
2603 environment, the value is printed in its own window.");
2604 c->completer = location_completer;
2605
2606 add_show_from_set (
2607 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2608 (char *) &max_symbolic_offset,
2609 "Set the largest offset that will be printed in <symbol+1234> form.",
2610 &setprintlist),
2611 &showprintlist);
2612 add_show_from_set (
2613 add_set_cmd ("symbol-filename", no_class, var_boolean,
2614 (char *) &print_symbol_filename,
2615 "Set printing of source filename and line number with <symbol>.",
2616 &setprintlist),
2617 &showprintlist);
2618
2619 /* For examine/instruction a single byte quantity is specified as
2620 the data. This avoids problems with value_at_lazy() requiring a
2621 valid data type (and rejecting VOID). */
2622 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2623
2624 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2625 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2626 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2627 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2628
2629 }