]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/printcmd.c
2004-07-26 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "frame.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "language.h"
31 #include "expression.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "breakpoint.h"
36 #include "demangle.h"
37 #include "valprint.h"
38 #include "annotate.h"
39 #include "symfile.h" /* for overlay functions */
40 #include "objfiles.h" /* ditto */
41 #include "completer.h" /* for completion functions */
42 #include "ui-out.h"
43 #include "gdb_assert.h"
44 #include "block.h"
45 #include "disasm.h"
46
47 #ifdef TUI
48 #include "tui/tui.h" /* For tui_active et.al. */
49 #endif
50
51 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
52 extern int addressprint; /* Whether to print hex addresses in HLL " */
53
54 struct format_data
55 {
56 int count;
57 char format;
58 char size;
59 };
60
61 /* Last specified output format. */
62
63 static char last_format = 'x';
64
65 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
66
67 static char last_size = 'w';
68
69 /* Default address to examine next. */
70
71 static CORE_ADDR next_address;
72
73 /* Default section to examine next. */
74
75 static asection *next_section;
76
77 /* Last address examined. */
78
79 static CORE_ADDR last_examine_address;
80
81 /* Contents of last address examined.
82 This is not valid past the end of the `x' command! */
83
84 static struct value *last_examine_value;
85
86 /* Largest offset between a symbolic value and an address, that will be
87 printed as `0x1234 <symbol+offset>'. */
88
89 static unsigned int max_symbolic_offset = UINT_MAX;
90
91 /* Append the source filename and linenumber of the symbol when
92 printing a symbolic value as `<symbol at filename:linenum>' if set. */
93 static int print_symbol_filename = 0;
94
95 /* Number of auto-display expression currently being displayed.
96 So that we can disable it if we get an error or a signal within it.
97 -1 when not doing one. */
98
99 int current_display_number;
100
101 /* Flag to low-level print routines that this value is being printed
102 in an epoch window. We'd like to pass this as a parameter, but
103 every routine would need to take it. Perhaps we can encapsulate
104 this in the I/O stream once we have GNU stdio. */
105
106 int inspect_it = 0;
107
108 struct display
109 {
110 /* Chain link to next auto-display item. */
111 struct display *next;
112 /* Expression to be evaluated and displayed. */
113 struct expression *exp;
114 /* Item number of this auto-display item. */
115 int number;
116 /* Display format specified. */
117 struct format_data format;
118 /* Innermost block required by this expression when evaluated */
119 struct block *block;
120 /* Status of this display (enabled or disabled) */
121 int enabled_p;
122 };
123
124 /* Chain of expressions whose values should be displayed
125 automatically each time the program stops. */
126
127 static struct display *display_chain;
128
129 static int display_number;
130
131 /* Prototypes for exported functions. */
132
133 void output_command (char *, int);
134
135 void _initialize_printcmd (void);
136
137 /* Prototypes for local functions. */
138
139 static void delete_display (int);
140
141 static void enable_display (char *, int);
142
143 static void disable_display_command (char *, int);
144
145 static void printf_command (char *, int);
146
147 static void display_info (char *, int);
148
149 static void do_one_display (struct display *);
150
151 static void undisplay_command (char *, int);
152
153 static void free_display (struct display *);
154
155 static void display_command (char *, int);
156
157 void x_command (char *, int);
158
159 static void address_info (char *, int);
160
161 static void set_command (char *, int);
162
163 static void call_command (char *, int);
164
165 static void inspect_command (char *, int);
166
167 static void print_command (char *, int);
168
169 static void print_command_1 (char *, int, int);
170
171 static void validate_format (struct format_data, char *);
172
173 static void do_examine (struct format_data, CORE_ADDR addr,
174 asection * section);
175
176 static void print_formatted (struct value *, int, int, struct ui_file *);
177
178 static struct format_data decode_format (char **, int, int);
179
180 static void sym_info (char *, int);
181 \f
182
183 /* Decode a format specification. *STRING_PTR should point to it.
184 OFORMAT and OSIZE are used as defaults for the format and size
185 if none are given in the format specification.
186 If OSIZE is zero, then the size field of the returned value
187 should be set only if a size is explicitly specified by the
188 user.
189 The structure returned describes all the data
190 found in the specification. In addition, *STRING_PTR is advanced
191 past the specification and past all whitespace following it. */
192
193 static struct format_data
194 decode_format (char **string_ptr, int oformat, int osize)
195 {
196 struct format_data val;
197 char *p = *string_ptr;
198
199 val.format = '?';
200 val.size = '?';
201 val.count = 1;
202
203 if (*p >= '0' && *p <= '9')
204 val.count = atoi (p);
205 while (*p >= '0' && *p <= '9')
206 p++;
207
208 /* Now process size or format letters that follow. */
209
210 while (1)
211 {
212 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
213 val.size = *p++;
214 else if (*p >= 'a' && *p <= 'z')
215 val.format = *p++;
216 else
217 break;
218 }
219
220 while (*p == ' ' || *p == '\t')
221 p++;
222 *string_ptr = p;
223
224 /* Set defaults for format and size if not specified. */
225 if (val.format == '?')
226 {
227 if (val.size == '?')
228 {
229 /* Neither has been specified. */
230 val.format = oformat;
231 val.size = osize;
232 }
233 else
234 /* If a size is specified, any format makes a reasonable
235 default except 'i'. */
236 val.format = oformat == 'i' ? 'x' : oformat;
237 }
238 else if (val.size == '?')
239 switch (val.format)
240 {
241 case 'a':
242 case 's':
243 /* Pick the appropriate size for an address. */
244 if (TARGET_PTR_BIT == 64)
245 val.size = osize ? 'g' : osize;
246 else if (TARGET_PTR_BIT == 32)
247 val.size = osize ? 'w' : osize;
248 else if (TARGET_PTR_BIT == 16)
249 val.size = osize ? 'h' : osize;
250 else
251 /* Bad value for TARGET_PTR_BIT */
252 internal_error (__FILE__, __LINE__, "failed internal consistency check");
253 break;
254 case 'f':
255 /* Floating point has to be word or giantword. */
256 if (osize == 'w' || osize == 'g')
257 val.size = osize;
258 else
259 /* Default it to giantword if the last used size is not
260 appropriate. */
261 val.size = osize ? 'g' : osize;
262 break;
263 case 'c':
264 /* Characters default to one byte. */
265 val.size = osize ? 'b' : osize;
266 break;
267 default:
268 /* The default is the size most recently specified. */
269 val.size = osize;
270 }
271
272 return val;
273 }
274 \f
275 /* Print value VAL on stream according to FORMAT, a letter or 0.
276 Do not end with a newline.
277 0 means print VAL according to its own type.
278 SIZE is the letter for the size of datum being printed.
279 This is used to pad hex numbers so they line up. */
280
281 static void
282 print_formatted (struct value *val, int format, int size,
283 struct ui_file *stream)
284 {
285 struct type *type = check_typedef (VALUE_TYPE (val));
286 int len = TYPE_LENGTH (type);
287
288 if (VALUE_LVAL (val) == lval_memory)
289 {
290 next_address = VALUE_ADDRESS (val) + len;
291 next_section = VALUE_BFD_SECTION (val);
292 }
293
294 switch (format)
295 {
296 case 's':
297 /* FIXME: Need to handle wchar_t's here... */
298 next_address = VALUE_ADDRESS (val)
299 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
300 next_section = VALUE_BFD_SECTION (val);
301 break;
302
303 case 'i':
304 /* The old comment says
305 "Force output out, print_insn not using _filtered".
306 I'm not completely sure what that means, I suspect most print_insn
307 now do use _filtered, so I guess it's obsolete.
308 --Yes, it does filter now, and so this is obsolete. -JB */
309
310 /* We often wrap here if there are long symbolic names. */
311 wrap_here (" ");
312 next_address = VALUE_ADDRESS (val)
313 + gdb_print_insn (VALUE_ADDRESS (val), stream);
314 next_section = VALUE_BFD_SECTION (val);
315 break;
316
317 default:
318 if (format == 0
319 || TYPE_CODE (type) == TYPE_CODE_ARRAY
320 || TYPE_CODE (type) == TYPE_CODE_STRING
321 || TYPE_CODE (type) == TYPE_CODE_STRUCT
322 || TYPE_CODE (type) == TYPE_CODE_UNION
323 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
324 /* If format is 0, use the 'natural' format for
325 * that type of value. If the type is non-scalar,
326 * we have to use language rules to print it as
327 * a series of scalars.
328 */
329 value_print (val, stream, format, Val_pretty_default);
330 else
331 /* User specified format, so don't look to the
332 * the type to tell us what to do.
333 */
334 print_scalar_formatted (VALUE_CONTENTS (val), type,
335 format, size, stream);
336 }
337 }
338
339 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
340 according to letters FORMAT and SIZE on STREAM.
341 FORMAT may not be zero. Formats s and i are not supported at this level.
342
343 This is how the elements of an array or structure are printed
344 with a format. */
345
346 void
347 print_scalar_formatted (void *valaddr, struct type *type, int format, int size,
348 struct ui_file *stream)
349 {
350 LONGEST val_long = 0;
351 unsigned int len = TYPE_LENGTH (type);
352
353 if (len > sizeof(LONGEST) &&
354 (TYPE_CODE (type) == TYPE_CODE_INT
355 || TYPE_CODE (type) == TYPE_CODE_ENUM))
356 {
357 switch (format)
358 {
359 case 'o':
360 print_octal_chars (stream, valaddr, len);
361 return;
362 case 'u':
363 case 'd':
364 print_decimal_chars (stream, valaddr, len);
365 return;
366 case 't':
367 print_binary_chars (stream, valaddr, len);
368 return;
369 case 'x':
370 print_hex_chars (stream, valaddr, len);
371 return;
372 case 'c':
373 print_char_chars (stream, valaddr, len);
374 return;
375 default:
376 break;
377 };
378 }
379
380 if (format != 'f')
381 val_long = unpack_long (type, valaddr);
382
383 /* If the value is a pointer, and pointers and addresses are not the
384 same, then at this point, the value's length (in target bytes) is
385 TARGET_ADDR_BIT/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
386 if (TYPE_CODE (type) == TYPE_CODE_PTR)
387 len = TARGET_ADDR_BIT / TARGET_CHAR_BIT;
388
389 /* If we are printing it as unsigned, truncate it in case it is actually
390 a negative signed value (e.g. "print/u (short)-1" should print 65535
391 (if shorts are 16 bits) instead of 4294967295). */
392 if (format != 'd')
393 {
394 if (len < sizeof (LONGEST))
395 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
396 }
397
398 switch (format)
399 {
400 case 'x':
401 if (!size)
402 {
403 /* no size specified, like in print. Print varying # of digits. */
404 print_longest (stream, 'x', 1, val_long);
405 }
406 else
407 switch (size)
408 {
409 case 'b':
410 case 'h':
411 case 'w':
412 case 'g':
413 print_longest (stream, size, 1, val_long);
414 break;
415 default:
416 error ("Undefined output size \"%c\".", size);
417 }
418 break;
419
420 case 'd':
421 print_longest (stream, 'd', 1, val_long);
422 break;
423
424 case 'u':
425 print_longest (stream, 'u', 0, val_long);
426 break;
427
428 case 'o':
429 if (val_long)
430 print_longest (stream, 'o', 1, val_long);
431 else
432 fprintf_filtered (stream, "0");
433 break;
434
435 case 'a':
436 {
437 CORE_ADDR addr = unpack_pointer (type, valaddr);
438 print_address (addr, stream);
439 }
440 break;
441
442 case 'c':
443 value_print (value_from_longest (builtin_type_true_char, val_long),
444 stream, 0, Val_pretty_default);
445 break;
446
447 case 'f':
448 if (len == TYPE_LENGTH (builtin_type_float))
449 type = builtin_type_float;
450 else if (len == TYPE_LENGTH (builtin_type_double))
451 type = builtin_type_double;
452 else if (len == TYPE_LENGTH (builtin_type_long_double))
453 type = builtin_type_long_double;
454 print_floating (valaddr, type, stream);
455 break;
456
457 case 0:
458 internal_error (__FILE__, __LINE__, "failed internal consistency check");
459
460 case 't':
461 /* Binary; 't' stands for "two". */
462 {
463 char bits[8 * (sizeof val_long) + 1];
464 char buf[8 * (sizeof val_long) + 32];
465 char *cp = bits;
466 int width;
467
468 if (!size)
469 width = 8 * (sizeof val_long);
470 else
471 switch (size)
472 {
473 case 'b':
474 width = 8;
475 break;
476 case 'h':
477 width = 16;
478 break;
479 case 'w':
480 width = 32;
481 break;
482 case 'g':
483 width = 64;
484 break;
485 default:
486 error ("Undefined output size \"%c\".", size);
487 }
488
489 bits[width] = '\0';
490 while (width-- > 0)
491 {
492 bits[width] = (val_long & 1) ? '1' : '0';
493 val_long >>= 1;
494 }
495 if (!size)
496 {
497 while (*cp && *cp == '0')
498 cp++;
499 if (*cp == '\0')
500 cp--;
501 }
502 strcpy (buf, local_binary_format_prefix ());
503 strcat (buf, cp);
504 strcat (buf, local_binary_format_suffix ());
505 fputs_filtered (buf, stream);
506 }
507 break;
508
509 default:
510 error ("Undefined output format \"%c\".", format);
511 }
512 }
513
514 /* Specify default address for `x' command.
515 `info lines' uses this. */
516
517 void
518 set_next_address (CORE_ADDR addr)
519 {
520 next_address = addr;
521
522 /* Make address available to the user as $_. */
523 set_internalvar (lookup_internalvar ("_"),
524 value_from_pointer (lookup_pointer_type (builtin_type_void),
525 addr));
526 }
527
528 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
529 after LEADIN. Print nothing if no symbolic name is found nearby.
530 Optionally also print source file and line number, if available.
531 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
532 or to interpret it as a possible C++ name and convert it back to source
533 form. However note that DO_DEMANGLE can be overridden by the specific
534 settings of the demangle and asm_demangle variables. */
535
536 void
537 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
538 char *leadin)
539 {
540 char *name = NULL;
541 char *filename = NULL;
542 int unmapped = 0;
543 int offset = 0;
544 int line = 0;
545
546 /* throw away both name and filename */
547 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
548 make_cleanup (free_current_contents, &filename);
549
550 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
551 {
552 do_cleanups (cleanup_chain);
553 return;
554 }
555
556 fputs_filtered (leadin, stream);
557 if (unmapped)
558 fputs_filtered ("<*", stream);
559 else
560 fputs_filtered ("<", stream);
561 fputs_filtered (name, stream);
562 if (offset != 0)
563 fprintf_filtered (stream, "+%u", (unsigned int) offset);
564
565 /* Append source filename and line number if desired. Give specific
566 line # of this addr, if we have it; else line # of the nearest symbol. */
567 if (print_symbol_filename && filename != NULL)
568 {
569 if (line != -1)
570 fprintf_filtered (stream, " at %s:%d", filename, line);
571 else
572 fprintf_filtered (stream, " in %s", filename);
573 }
574 if (unmapped)
575 fputs_filtered ("*>", stream);
576 else
577 fputs_filtered (">", stream);
578
579 do_cleanups (cleanup_chain);
580 }
581
582 /* Given an address ADDR return all the elements needed to print the
583 address in a symbolic form. NAME can be mangled or not depending
584 on DO_DEMANGLE (and also on the asm_demangle global variable,
585 manipulated via ''set print asm-demangle''). Return 0 in case of
586 success, when all the info in the OUT paramters is valid. Return 1
587 otherwise. */
588 int
589 build_address_symbolic (CORE_ADDR addr, /* IN */
590 int do_demangle, /* IN */
591 char **name, /* OUT */
592 int *offset, /* OUT */
593 char **filename, /* OUT */
594 int *line, /* OUT */
595 int *unmapped) /* OUT */
596 {
597 struct minimal_symbol *msymbol;
598 struct symbol *symbol;
599 struct symtab *symtab = 0;
600 CORE_ADDR name_location = 0;
601 asection *section = 0;
602 char *name_temp = "";
603
604 /* Let's say it is unmapped. */
605 *unmapped = 0;
606
607 /* Determine if the address is in an overlay, and whether it is
608 mapped. */
609 if (overlay_debugging)
610 {
611 section = find_pc_overlay (addr);
612 if (pc_in_unmapped_range (addr, section))
613 {
614 *unmapped = 1;
615 addr = overlay_mapped_address (addr, section);
616 }
617 }
618
619 /* First try to find the address in the symbol table, then
620 in the minsyms. Take the closest one. */
621
622 /* This is defective in the sense that it only finds text symbols. So
623 really this is kind of pointless--we should make sure that the
624 minimal symbols have everything we need (by changing that we could
625 save some memory, but for many debug format--ELF/DWARF or
626 anything/stabs--it would be inconvenient to eliminate those minimal
627 symbols anyway). */
628 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
629 symbol = find_pc_sect_function (addr, section);
630
631 if (symbol)
632 {
633 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
634 if (do_demangle || asm_demangle)
635 name_temp = SYMBOL_PRINT_NAME (symbol);
636 else
637 name_temp = DEPRECATED_SYMBOL_NAME (symbol);
638 }
639
640 if (msymbol != NULL)
641 {
642 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
643 {
644 /* The msymbol is closer to the address than the symbol;
645 use the msymbol instead. */
646 symbol = 0;
647 symtab = 0;
648 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
649 if (do_demangle || asm_demangle)
650 name_temp = SYMBOL_PRINT_NAME (msymbol);
651 else
652 name_temp = DEPRECATED_SYMBOL_NAME (msymbol);
653 }
654 }
655 if (symbol == NULL && msymbol == NULL)
656 return 1;
657
658 /* If the nearest symbol is too far away, don't print anything symbolic. */
659
660 /* For when CORE_ADDR is larger than unsigned int, we do math in
661 CORE_ADDR. But when we detect unsigned wraparound in the
662 CORE_ADDR math, we ignore this test and print the offset,
663 because addr+max_symbolic_offset has wrapped through the end
664 of the address space back to the beginning, giving bogus comparison. */
665 if (addr > name_location + max_symbolic_offset
666 && name_location + max_symbolic_offset > name_location)
667 return 1;
668
669 *offset = addr - name_location;
670
671 *name = xstrdup (name_temp);
672
673 if (print_symbol_filename)
674 {
675 struct symtab_and_line sal;
676
677 sal = find_pc_sect_line (addr, section, 0);
678
679 if (sal.symtab)
680 {
681 *filename = xstrdup (sal.symtab->filename);
682 *line = sal.line;
683 }
684 else if (symtab && symbol && symbol->line)
685 {
686 *filename = xstrdup (symtab->filename);
687 *line = symbol->line;
688 }
689 else if (symtab)
690 {
691 *filename = xstrdup (symtab->filename);
692 *line = -1;
693 }
694 }
695 return 0;
696 }
697
698 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
699 print_longest. */
700 void
701 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
702 {
703 /* Truncate address to the size of a target address, avoiding shifts
704 larger or equal than the width of a CORE_ADDR. The local
705 variable ADDR_BIT stops the compiler reporting a shift overflow
706 when it won't occur. */
707 /* NOTE: This assumes that the significant address information is
708 kept in the least significant bits of ADDR - the upper bits were
709 either zero or sign extended. Should ADDRESS_TO_POINTER() or
710 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
711
712 int addr_bit = TARGET_ADDR_BIT;
713
714 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
715 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
716 print_longest (stream, 'x', use_local, (ULONGEST) addr);
717 }
718
719 /* Print address ADDR symbolically on STREAM.
720 First print it as a number. Then perhaps print
721 <SYMBOL + OFFSET> after the number. */
722
723 void
724 print_address (CORE_ADDR addr, struct ui_file *stream)
725 {
726 print_address_numeric (addr, 1, stream);
727 print_address_symbolic (addr, stream, asm_demangle, " ");
728 }
729
730 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
731 controls whether to print the symbolic name "raw" or demangled.
732 Global setting "addressprint" controls whether to print hex address
733 or not. */
734
735 void
736 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
737 {
738 if (addr == 0)
739 {
740 fprintf_filtered (stream, "0");
741 }
742 else if (addressprint)
743 {
744 print_address_numeric (addr, 1, stream);
745 print_address_symbolic (addr, stream, do_demangle, " ");
746 }
747 else
748 {
749 print_address_symbolic (addr, stream, do_demangle, "");
750 }
751 }
752 \f
753
754 /* These are the types that $__ will get after an examine command of one
755 of these sizes. */
756
757 static struct type *examine_i_type;
758
759 static struct type *examine_b_type;
760 static struct type *examine_h_type;
761 static struct type *examine_w_type;
762 static struct type *examine_g_type;
763
764 /* Examine data at address ADDR in format FMT.
765 Fetch it from memory and print on gdb_stdout. */
766
767 static void
768 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
769 {
770 char format = 0;
771 char size;
772 int count = 1;
773 struct type *val_type = NULL;
774 int i;
775 int maxelts;
776
777 format = fmt.format;
778 size = fmt.size;
779 count = fmt.count;
780 next_address = addr;
781 next_section = sect;
782
783 /* String or instruction format implies fetch single bytes
784 regardless of the specified size. */
785 if (format == 's' || format == 'i')
786 size = 'b';
787
788 if (format == 'i')
789 val_type = examine_i_type;
790 else if (size == 'b')
791 val_type = examine_b_type;
792 else if (size == 'h')
793 val_type = examine_h_type;
794 else if (size == 'w')
795 val_type = examine_w_type;
796 else if (size == 'g')
797 val_type = examine_g_type;
798
799 maxelts = 8;
800 if (size == 'w')
801 maxelts = 4;
802 if (size == 'g')
803 maxelts = 2;
804 if (format == 's' || format == 'i')
805 maxelts = 1;
806
807 /* Print as many objects as specified in COUNT, at most maxelts per line,
808 with the address of the next one at the start of each line. */
809
810 while (count > 0)
811 {
812 QUIT;
813 print_address (next_address, gdb_stdout);
814 printf_filtered (":");
815 for (i = maxelts;
816 i > 0 && count > 0;
817 i--, count--)
818 {
819 printf_filtered ("\t");
820 /* Note that print_formatted sets next_address for the next
821 object. */
822 last_examine_address = next_address;
823
824 if (last_examine_value)
825 value_free (last_examine_value);
826
827 /* The value to be displayed is not fetched greedily.
828 Instead, to avoid the posibility of a fetched value not
829 being used, its retreval is delayed until the print code
830 uses it. When examining an instruction stream, the
831 disassembler will perform its own memory fetch using just
832 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
833 the disassembler be modified so that LAST_EXAMINE_VALUE
834 is left with the byte sequence from the last complete
835 instruction fetched from memory? */
836 last_examine_value = value_at_lazy (val_type, next_address, sect);
837
838 if (last_examine_value)
839 release_value (last_examine_value);
840
841 print_formatted (last_examine_value, format, size, gdb_stdout);
842 }
843 printf_filtered ("\n");
844 gdb_flush (gdb_stdout);
845 }
846 }
847 \f
848 static void
849 validate_format (struct format_data fmt, char *cmdname)
850 {
851 if (fmt.size != 0)
852 error ("Size letters are meaningless in \"%s\" command.", cmdname);
853 if (fmt.count != 1)
854 error ("Item count other than 1 is meaningless in \"%s\" command.",
855 cmdname);
856 if (fmt.format == 'i' || fmt.format == 's')
857 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
858 fmt.format, cmdname);
859 }
860
861 /* Evaluate string EXP as an expression in the current language and
862 print the resulting value. EXP may contain a format specifier as the
863 first argument ("/x myvar" for example, to print myvar in hex).
864 */
865
866 static void
867 print_command_1 (char *exp, int inspect, int voidprint)
868 {
869 struct expression *expr;
870 struct cleanup *old_chain = 0;
871 char format = 0;
872 struct value *val;
873 struct format_data fmt;
874 int cleanup = 0;
875
876 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
877 inspect_it = inspect;
878
879 if (exp && *exp == '/')
880 {
881 exp++;
882 fmt = decode_format (&exp, last_format, 0);
883 validate_format (fmt, "print");
884 last_format = format = fmt.format;
885 }
886 else
887 {
888 fmt.count = 1;
889 fmt.format = 0;
890 fmt.size = 0;
891 }
892
893 if (exp && *exp)
894 {
895 struct type *type;
896 expr = parse_expression (exp);
897 old_chain = make_cleanup (free_current_contents, &expr);
898 cleanup = 1;
899 val = evaluate_expression (expr);
900 }
901 else
902 val = access_value_history (0);
903
904 if (voidprint || (val && VALUE_TYPE (val) &&
905 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
906 {
907 int histindex = record_latest_value (val);
908
909 if (histindex >= 0)
910 annotate_value_history_begin (histindex, VALUE_TYPE (val));
911 else
912 annotate_value_begin (VALUE_TYPE (val));
913
914 if (inspect)
915 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
916 else if (histindex >= 0)
917 printf_filtered ("$%d = ", histindex);
918
919 if (histindex >= 0)
920 annotate_value_history_value ();
921
922 print_formatted (val, format, fmt.size, gdb_stdout);
923 printf_filtered ("\n");
924
925 if (histindex >= 0)
926 annotate_value_history_end ();
927 else
928 annotate_value_end ();
929
930 if (inspect)
931 printf_unfiltered ("\") )\030");
932 }
933
934 if (cleanup)
935 do_cleanups (old_chain);
936 inspect_it = 0; /* Reset print routines to normal */
937 }
938
939 static void
940 print_command (char *exp, int from_tty)
941 {
942 print_command_1 (exp, 0, 1);
943 }
944
945 /* Same as print, except in epoch, it gets its own window */
946 static void
947 inspect_command (char *exp, int from_tty)
948 {
949 extern int epoch_interface;
950
951 print_command_1 (exp, epoch_interface, 1);
952 }
953
954 /* Same as print, except it doesn't print void results. */
955 static void
956 call_command (char *exp, int from_tty)
957 {
958 print_command_1 (exp, 0, 0);
959 }
960
961 void
962 output_command (char *exp, int from_tty)
963 {
964 struct expression *expr;
965 struct cleanup *old_chain;
966 char format = 0;
967 struct value *val;
968 struct format_data fmt;
969
970 if (exp && *exp == '/')
971 {
972 exp++;
973 fmt = decode_format (&exp, 0, 0);
974 validate_format (fmt, "output");
975 format = fmt.format;
976 }
977
978 expr = parse_expression (exp);
979 old_chain = make_cleanup (free_current_contents, &expr);
980
981 val = evaluate_expression (expr);
982
983 annotate_value_begin (VALUE_TYPE (val));
984
985 print_formatted (val, format, fmt.size, gdb_stdout);
986
987 annotate_value_end ();
988
989 wrap_here ("");
990 gdb_flush (gdb_stdout);
991
992 do_cleanups (old_chain);
993 }
994
995 static void
996 set_command (char *exp, int from_tty)
997 {
998 struct expression *expr = parse_expression (exp);
999 struct cleanup *old_chain =
1000 make_cleanup (free_current_contents, &expr);
1001 evaluate_expression (expr);
1002 do_cleanups (old_chain);
1003 }
1004
1005 static void
1006 sym_info (char *arg, int from_tty)
1007 {
1008 struct minimal_symbol *msymbol;
1009 struct objfile *objfile;
1010 struct obj_section *osect;
1011 asection *sect;
1012 CORE_ADDR addr, sect_addr;
1013 int matches = 0;
1014 unsigned int offset;
1015
1016 if (!arg)
1017 error_no_arg ("address");
1018
1019 addr = parse_and_eval_address (arg);
1020 ALL_OBJSECTIONS (objfile, osect)
1021 {
1022 sect = osect->the_bfd_section;
1023 sect_addr = overlay_mapped_address (addr, sect);
1024
1025 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1026 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1027 {
1028 matches = 1;
1029 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1030 if (offset)
1031 printf_filtered ("%s + %u in ",
1032 SYMBOL_PRINT_NAME (msymbol), offset);
1033 else
1034 printf_filtered ("%s in ",
1035 SYMBOL_PRINT_NAME (msymbol));
1036 if (pc_in_unmapped_range (addr, sect))
1037 printf_filtered ("load address range of ");
1038 if (section_is_overlay (sect))
1039 printf_filtered ("%s overlay ",
1040 section_is_mapped (sect) ? "mapped" : "unmapped");
1041 printf_filtered ("section %s", sect->name);
1042 printf_filtered ("\n");
1043 }
1044 }
1045 if (matches == 0)
1046 printf_filtered ("No symbol matches %s.\n", arg);
1047 }
1048
1049 static void
1050 address_info (char *exp, int from_tty)
1051 {
1052 struct symbol *sym;
1053 struct minimal_symbol *msymbol;
1054 long val;
1055 long basereg;
1056 asection *section;
1057 CORE_ADDR load_addr;
1058 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1059 if exp is a field of `this'. */
1060
1061 if (exp == 0)
1062 error ("Argument required.");
1063
1064 sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN,
1065 &is_a_field_of_this, (struct symtab **) NULL);
1066 if (sym == NULL)
1067 {
1068 if (is_a_field_of_this)
1069 {
1070 printf_filtered ("Symbol \"");
1071 fprintf_symbol_filtered (gdb_stdout, exp,
1072 current_language->la_language, DMGL_ANSI);
1073 printf_filtered ("\" is a field of the local class variable ");
1074 if (current_language->la_language == language_objc)
1075 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1076 else
1077 printf_filtered ("`this'\n");
1078 return;
1079 }
1080
1081 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1082
1083 if (msymbol != NULL)
1084 {
1085 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1086
1087 printf_filtered ("Symbol \"");
1088 fprintf_symbol_filtered (gdb_stdout, exp,
1089 current_language->la_language, DMGL_ANSI);
1090 printf_filtered ("\" is at ");
1091 print_address_numeric (load_addr, 1, gdb_stdout);
1092 printf_filtered (" in a file compiled without debugging");
1093 section = SYMBOL_BFD_SECTION (msymbol);
1094 if (section_is_overlay (section))
1095 {
1096 load_addr = overlay_unmapped_address (load_addr, section);
1097 printf_filtered (",\n -- loaded at ");
1098 print_address_numeric (load_addr, 1, gdb_stdout);
1099 printf_filtered (" in overlay section %s", section->name);
1100 }
1101 printf_filtered (".\n");
1102 }
1103 else
1104 error ("No symbol \"%s\" in current context.", exp);
1105 return;
1106 }
1107
1108 printf_filtered ("Symbol \"");
1109 fprintf_symbol_filtered (gdb_stdout, DEPRECATED_SYMBOL_NAME (sym),
1110 current_language->la_language, DMGL_ANSI);
1111 printf_filtered ("\" is ");
1112 val = SYMBOL_VALUE (sym);
1113 basereg = SYMBOL_BASEREG (sym);
1114 section = SYMBOL_BFD_SECTION (sym);
1115
1116 switch (SYMBOL_CLASS (sym))
1117 {
1118 case LOC_CONST:
1119 case LOC_CONST_BYTES:
1120 printf_filtered ("constant");
1121 break;
1122
1123 case LOC_LABEL:
1124 printf_filtered ("a label at address ");
1125 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1126 1, gdb_stdout);
1127 if (section_is_overlay (section))
1128 {
1129 load_addr = overlay_unmapped_address (load_addr, section);
1130 printf_filtered (",\n -- loaded at ");
1131 print_address_numeric (load_addr, 1, gdb_stdout);
1132 printf_filtered (" in overlay section %s", section->name);
1133 }
1134 break;
1135
1136 case LOC_COMPUTED:
1137 case LOC_COMPUTED_ARG:
1138 /* FIXME: cagney/2004-01-26: It should be possible to
1139 unconditionally call the SYMBOL_OPS method when available.
1140 Unfortunately DWARF 2 stores the frame-base (instead of the
1141 function) location in a function's symbol. Oops! For the
1142 moment enable this when/where applicable. */
1143 SYMBOL_OPS (sym)->describe_location (sym, gdb_stdout);
1144 break;
1145
1146 case LOC_REGISTER:
1147 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1148 break;
1149
1150 case LOC_STATIC:
1151 printf_filtered ("static storage at address ");
1152 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1153 1, gdb_stdout);
1154 if (section_is_overlay (section))
1155 {
1156 load_addr = overlay_unmapped_address (load_addr, section);
1157 printf_filtered (",\n -- loaded at ");
1158 print_address_numeric (load_addr, 1, gdb_stdout);
1159 printf_filtered (" in overlay section %s", section->name);
1160 }
1161 break;
1162
1163 case LOC_INDIRECT:
1164 printf_filtered ("external global (indirect addressing), at address *(");
1165 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1166 1, gdb_stdout);
1167 printf_filtered (")");
1168 if (section_is_overlay (section))
1169 {
1170 load_addr = overlay_unmapped_address (load_addr, section);
1171 printf_filtered (",\n -- loaded at ");
1172 print_address_numeric (load_addr, 1, gdb_stdout);
1173 printf_filtered (" in overlay section %s", section->name);
1174 }
1175 break;
1176
1177 case LOC_REGPARM:
1178 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1179 break;
1180
1181 case LOC_REGPARM_ADDR:
1182 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1183 break;
1184
1185 case LOC_ARG:
1186 printf_filtered ("an argument at offset %ld", val);
1187 break;
1188
1189 case LOC_LOCAL_ARG:
1190 printf_filtered ("an argument at frame offset %ld", val);
1191 break;
1192
1193 case LOC_LOCAL:
1194 printf_filtered ("a local variable at frame offset %ld", val);
1195 break;
1196
1197 case LOC_REF_ARG:
1198 printf_filtered ("a reference argument at offset %ld", val);
1199 break;
1200
1201 case LOC_BASEREG:
1202 printf_filtered ("a variable at offset %ld from register %s",
1203 val, REGISTER_NAME (basereg));
1204 break;
1205
1206 case LOC_BASEREG_ARG:
1207 printf_filtered ("an argument at offset %ld from register %s",
1208 val, REGISTER_NAME (basereg));
1209 break;
1210
1211 case LOC_TYPEDEF:
1212 printf_filtered ("a typedef");
1213 break;
1214
1215 case LOC_BLOCK:
1216 printf_filtered ("a function at address ");
1217 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1218 1, gdb_stdout);
1219 if (section_is_overlay (section))
1220 {
1221 load_addr = overlay_unmapped_address (load_addr, section);
1222 printf_filtered (",\n -- loaded at ");
1223 print_address_numeric (load_addr, 1, gdb_stdout);
1224 printf_filtered (" in overlay section %s", section->name);
1225 }
1226 break;
1227
1228 case LOC_UNRESOLVED:
1229 {
1230 struct minimal_symbol *msym;
1231
1232 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, NULL);
1233 if (msym == NULL)
1234 printf_filtered ("unresolved");
1235 else
1236 {
1237 section = SYMBOL_BFD_SECTION (msym);
1238 printf_filtered ("static storage at address ");
1239 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1240 1, gdb_stdout);
1241 if (section_is_overlay (section))
1242 {
1243 load_addr = overlay_unmapped_address (load_addr, section);
1244 printf_filtered (",\n -- loaded at ");
1245 print_address_numeric (load_addr, 1, gdb_stdout);
1246 printf_filtered (" in overlay section %s", section->name);
1247 }
1248 }
1249 }
1250 break;
1251
1252 case LOC_HP_THREAD_LOCAL_STATIC:
1253 printf_filtered (
1254 "a thread-local variable at offset %ld from the thread base register %s",
1255 val, REGISTER_NAME (basereg));
1256 break;
1257
1258 case LOC_OPTIMIZED_OUT:
1259 printf_filtered ("optimized out");
1260 break;
1261
1262 default:
1263 printf_filtered ("of unknown (botched) type");
1264 break;
1265 }
1266 printf_filtered (".\n");
1267 }
1268 \f
1269 void
1270 x_command (char *exp, int from_tty)
1271 {
1272 struct expression *expr;
1273 struct format_data fmt;
1274 struct cleanup *old_chain;
1275 struct value *val;
1276
1277 fmt.format = last_format;
1278 fmt.size = last_size;
1279 fmt.count = 1;
1280
1281 if (exp && *exp == '/')
1282 {
1283 exp++;
1284 fmt = decode_format (&exp, last_format, last_size);
1285 }
1286
1287 /* If we have an expression, evaluate it and use it as the address. */
1288
1289 if (exp != 0 && *exp != 0)
1290 {
1291 expr = parse_expression (exp);
1292 /* Cause expression not to be there any more
1293 if this command is repeated with Newline.
1294 But don't clobber a user-defined command's definition. */
1295 if (from_tty)
1296 *exp = 0;
1297 old_chain = make_cleanup (free_current_contents, &expr);
1298 val = evaluate_expression (expr);
1299 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1300 val = value_ind (val);
1301 /* In rvalue contexts, such as this, functions are coerced into
1302 pointers to functions. This makes "x/i main" work. */
1303 if (/* last_format == 'i' && */
1304 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1305 && VALUE_LVAL (val) == lval_memory)
1306 next_address = VALUE_ADDRESS (val);
1307 else
1308 next_address = value_as_address (val);
1309 if (VALUE_BFD_SECTION (val))
1310 next_section = VALUE_BFD_SECTION (val);
1311 do_cleanups (old_chain);
1312 }
1313
1314 do_examine (fmt, next_address, next_section);
1315
1316 /* If the examine succeeds, we remember its size and format for next time. */
1317 last_size = fmt.size;
1318 last_format = fmt.format;
1319
1320 /* Set a couple of internal variables if appropriate. */
1321 if (last_examine_value)
1322 {
1323 /* Make last address examined available to the user as $_. Use
1324 the correct pointer type. */
1325 struct type *pointer_type
1326 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1327 set_internalvar (lookup_internalvar ("_"),
1328 value_from_pointer (pointer_type,
1329 last_examine_address));
1330
1331 /* Make contents of last address examined available to the user as $__. */
1332 /* If the last value has not been fetched from memory then don't
1333 fetch it now - instead mark it by voiding the $__ variable. */
1334 if (VALUE_LAZY (last_examine_value))
1335 set_internalvar (lookup_internalvar ("__"),
1336 allocate_value (builtin_type_void));
1337 else
1338 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1339 }
1340 }
1341 \f
1342
1343 /* Add an expression to the auto-display chain.
1344 Specify the expression. */
1345
1346 static void
1347 display_command (char *exp, int from_tty)
1348 {
1349 struct format_data fmt;
1350 struct expression *expr;
1351 struct display *new;
1352 int display_it = 1;
1353
1354 #if defined(TUI)
1355 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1356 `tui_version'. */
1357 if (tui_active && exp != NULL && *exp == '$')
1358 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1359 #endif
1360
1361 if (display_it)
1362 {
1363 if (exp == 0)
1364 {
1365 do_displays ();
1366 return;
1367 }
1368
1369 if (*exp == '/')
1370 {
1371 exp++;
1372 fmt = decode_format (&exp, 0, 0);
1373 if (fmt.size && fmt.format == 0)
1374 fmt.format = 'x';
1375 if (fmt.format == 'i' || fmt.format == 's')
1376 fmt.size = 'b';
1377 }
1378 else
1379 {
1380 fmt.format = 0;
1381 fmt.size = 0;
1382 fmt.count = 0;
1383 }
1384
1385 innermost_block = 0;
1386 expr = parse_expression (exp);
1387
1388 new = (struct display *) xmalloc (sizeof (struct display));
1389
1390 new->exp = expr;
1391 new->block = innermost_block;
1392 new->next = display_chain;
1393 new->number = ++display_number;
1394 new->format = fmt;
1395 new->enabled_p = 1;
1396 display_chain = new;
1397
1398 if (from_tty && target_has_execution)
1399 do_one_display (new);
1400
1401 dont_repeat ();
1402 }
1403 }
1404
1405 static void
1406 free_display (struct display *d)
1407 {
1408 xfree (d->exp);
1409 xfree (d);
1410 }
1411
1412 /* Clear out the display_chain.
1413 Done when new symtabs are loaded, since this invalidates
1414 the types stored in many expressions. */
1415
1416 void
1417 clear_displays (void)
1418 {
1419 struct display *d;
1420
1421 while ((d = display_chain) != NULL)
1422 {
1423 xfree (d->exp);
1424 display_chain = d->next;
1425 xfree (d);
1426 }
1427 }
1428
1429 /* Delete the auto-display number NUM. */
1430
1431 static void
1432 delete_display (int num)
1433 {
1434 struct display *d1, *d;
1435
1436 if (!display_chain)
1437 error ("No display number %d.", num);
1438
1439 if (display_chain->number == num)
1440 {
1441 d1 = display_chain;
1442 display_chain = d1->next;
1443 free_display (d1);
1444 }
1445 else
1446 for (d = display_chain;; d = d->next)
1447 {
1448 if (d->next == 0)
1449 error ("No display number %d.", num);
1450 if (d->next->number == num)
1451 {
1452 d1 = d->next;
1453 d->next = d1->next;
1454 free_display (d1);
1455 break;
1456 }
1457 }
1458 }
1459
1460 /* Delete some values from the auto-display chain.
1461 Specify the element numbers. */
1462
1463 static void
1464 undisplay_command (char *args, int from_tty)
1465 {
1466 char *p = args;
1467 char *p1;
1468 int num;
1469
1470 if (args == 0)
1471 {
1472 if (query ("Delete all auto-display expressions? "))
1473 clear_displays ();
1474 dont_repeat ();
1475 return;
1476 }
1477
1478 while (*p)
1479 {
1480 p1 = p;
1481 while (*p1 >= '0' && *p1 <= '9')
1482 p1++;
1483 if (*p1 && *p1 != ' ' && *p1 != '\t')
1484 error ("Arguments must be display numbers.");
1485
1486 num = atoi (p);
1487
1488 delete_display (num);
1489
1490 p = p1;
1491 while (*p == ' ' || *p == '\t')
1492 p++;
1493 }
1494 dont_repeat ();
1495 }
1496
1497 /* Display a single auto-display.
1498 Do nothing if the display cannot be printed in the current context,
1499 or if the display is disabled. */
1500
1501 static void
1502 do_one_display (struct display *d)
1503 {
1504 int within_current_scope;
1505
1506 if (d->enabled_p == 0)
1507 return;
1508
1509 if (d->block)
1510 within_current_scope = contained_in (get_selected_block (0), d->block);
1511 else
1512 within_current_scope = 1;
1513 if (!within_current_scope)
1514 return;
1515
1516 current_display_number = d->number;
1517
1518 annotate_display_begin ();
1519 printf_filtered ("%d", d->number);
1520 annotate_display_number_end ();
1521 printf_filtered (": ");
1522 if (d->format.size)
1523 {
1524 CORE_ADDR addr;
1525 struct value *val;
1526
1527 annotate_display_format ();
1528
1529 printf_filtered ("x/");
1530 if (d->format.count != 1)
1531 printf_filtered ("%d", d->format.count);
1532 printf_filtered ("%c", d->format.format);
1533 if (d->format.format != 'i' && d->format.format != 's')
1534 printf_filtered ("%c", d->format.size);
1535 printf_filtered (" ");
1536
1537 annotate_display_expression ();
1538
1539 print_expression (d->exp, gdb_stdout);
1540 annotate_display_expression_end ();
1541
1542 if (d->format.count != 1)
1543 printf_filtered ("\n");
1544 else
1545 printf_filtered (" ");
1546
1547 val = evaluate_expression (d->exp);
1548 addr = value_as_address (val);
1549 if (d->format.format == 'i')
1550 addr = ADDR_BITS_REMOVE (addr);
1551
1552 annotate_display_value ();
1553
1554 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1555 }
1556 else
1557 {
1558 annotate_display_format ();
1559
1560 if (d->format.format)
1561 printf_filtered ("/%c ", d->format.format);
1562
1563 annotate_display_expression ();
1564
1565 print_expression (d->exp, gdb_stdout);
1566 annotate_display_expression_end ();
1567
1568 printf_filtered (" = ");
1569
1570 annotate_display_expression ();
1571
1572 print_formatted (evaluate_expression (d->exp),
1573 d->format.format, d->format.size, gdb_stdout);
1574 printf_filtered ("\n");
1575 }
1576
1577 annotate_display_end ();
1578
1579 gdb_flush (gdb_stdout);
1580 current_display_number = -1;
1581 }
1582
1583 /* Display all of the values on the auto-display chain which can be
1584 evaluated in the current scope. */
1585
1586 void
1587 do_displays (void)
1588 {
1589 struct display *d;
1590
1591 for (d = display_chain; d; d = d->next)
1592 do_one_display (d);
1593 }
1594
1595 /* Delete the auto-display which we were in the process of displaying.
1596 This is done when there is an error or a signal. */
1597
1598 void
1599 disable_display (int num)
1600 {
1601 struct display *d;
1602
1603 for (d = display_chain; d; d = d->next)
1604 if (d->number == num)
1605 {
1606 d->enabled_p = 0;
1607 return;
1608 }
1609 printf_unfiltered ("No display number %d.\n", num);
1610 }
1611
1612 void
1613 disable_current_display (void)
1614 {
1615 if (current_display_number >= 0)
1616 {
1617 disable_display (current_display_number);
1618 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1619 current_display_number);
1620 }
1621 current_display_number = -1;
1622 }
1623
1624 static void
1625 display_info (char *ignore, int from_tty)
1626 {
1627 struct display *d;
1628
1629 if (!display_chain)
1630 printf_unfiltered ("There are no auto-display expressions now.\n");
1631 else
1632 printf_filtered ("Auto-display expressions now in effect:\n\
1633 Num Enb Expression\n");
1634
1635 for (d = display_chain; d; d = d->next)
1636 {
1637 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1638 if (d->format.size)
1639 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1640 d->format.format);
1641 else if (d->format.format)
1642 printf_filtered ("/%c ", d->format.format);
1643 print_expression (d->exp, gdb_stdout);
1644 if (d->block && !contained_in (get_selected_block (0), d->block))
1645 printf_filtered (" (cannot be evaluated in the current context)");
1646 printf_filtered ("\n");
1647 gdb_flush (gdb_stdout);
1648 }
1649 }
1650
1651 static void
1652 enable_display (char *args, int from_tty)
1653 {
1654 char *p = args;
1655 char *p1;
1656 int num;
1657 struct display *d;
1658
1659 if (p == 0)
1660 {
1661 for (d = display_chain; d; d = d->next)
1662 d->enabled_p = 1;
1663 }
1664 else
1665 while (*p)
1666 {
1667 p1 = p;
1668 while (*p1 >= '0' && *p1 <= '9')
1669 p1++;
1670 if (*p1 && *p1 != ' ' && *p1 != '\t')
1671 error ("Arguments must be display numbers.");
1672
1673 num = atoi (p);
1674
1675 for (d = display_chain; d; d = d->next)
1676 if (d->number == num)
1677 {
1678 d->enabled_p = 1;
1679 goto win;
1680 }
1681 printf_unfiltered ("No display number %d.\n", num);
1682 win:
1683 p = p1;
1684 while (*p == ' ' || *p == '\t')
1685 p++;
1686 }
1687 }
1688
1689 static void
1690 disable_display_command (char *args, int from_tty)
1691 {
1692 char *p = args;
1693 char *p1;
1694 struct display *d;
1695
1696 if (p == 0)
1697 {
1698 for (d = display_chain; d; d = d->next)
1699 d->enabled_p = 0;
1700 }
1701 else
1702 while (*p)
1703 {
1704 p1 = p;
1705 while (*p1 >= '0' && *p1 <= '9')
1706 p1++;
1707 if (*p1 && *p1 != ' ' && *p1 != '\t')
1708 error ("Arguments must be display numbers.");
1709
1710 disable_display (atoi (p));
1711
1712 p = p1;
1713 while (*p == ' ' || *p == '\t')
1714 p++;
1715 }
1716 }
1717 \f
1718
1719 /* Print the value in stack frame FRAME of a variable
1720 specified by a struct symbol. */
1721
1722 void
1723 print_variable_value (struct symbol *var, struct frame_info *frame,
1724 struct ui_file *stream)
1725 {
1726 struct value *val = read_var_value (var, frame);
1727
1728 value_print (val, stream, 0, Val_pretty_default);
1729 }
1730
1731 static void
1732 printf_command (char *arg, int from_tty)
1733 {
1734 char *f = NULL;
1735 char *s = arg;
1736 char *string = NULL;
1737 struct value **val_args;
1738 char *substrings;
1739 char *current_substring;
1740 int nargs = 0;
1741 int allocated_args = 20;
1742 struct cleanup *old_cleanups;
1743
1744 val_args = (struct value **) xmalloc (allocated_args
1745 * sizeof (struct value *));
1746 old_cleanups = make_cleanup (free_current_contents, &val_args);
1747
1748 if (s == 0)
1749 error_no_arg ("format-control string and values to print");
1750
1751 /* Skip white space before format string */
1752 while (*s == ' ' || *s == '\t')
1753 s++;
1754
1755 /* A format string should follow, enveloped in double quotes */
1756 if (*s++ != '"')
1757 error ("Bad format string, missing '\"'.");
1758
1759 /* Parse the format-control string and copy it into the string STRING,
1760 processing some kinds of escape sequence. */
1761
1762 f = string = (char *) alloca (strlen (s) + 1);
1763
1764 while (*s != '"')
1765 {
1766 int c = *s++;
1767 switch (c)
1768 {
1769 case '\0':
1770 error ("Bad format string, non-terminated '\"'.");
1771
1772 case '\\':
1773 switch (c = *s++)
1774 {
1775 case '\\':
1776 *f++ = '\\';
1777 break;
1778 case 'a':
1779 *f++ = '\a';
1780 break;
1781 case 'b':
1782 *f++ = '\b';
1783 break;
1784 case 'f':
1785 *f++ = '\f';
1786 break;
1787 case 'n':
1788 *f++ = '\n';
1789 break;
1790 case 'r':
1791 *f++ = '\r';
1792 break;
1793 case 't':
1794 *f++ = '\t';
1795 break;
1796 case 'v':
1797 *f++ = '\v';
1798 break;
1799 case '"':
1800 *f++ = '"';
1801 break;
1802 default:
1803 /* ??? TODO: handle other escape sequences */
1804 error ("Unrecognized escape character \\%c in format string.",
1805 c);
1806 }
1807 break;
1808
1809 default:
1810 *f++ = c;
1811 }
1812 }
1813
1814 /* Skip over " and following space and comma. */
1815 s++;
1816 *f++ = '\0';
1817 while (*s == ' ' || *s == '\t')
1818 s++;
1819
1820 if (*s != ',' && *s != 0)
1821 error ("Invalid argument syntax");
1822
1823 if (*s == ',')
1824 s++;
1825 while (*s == ' ' || *s == '\t')
1826 s++;
1827
1828 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1829 substrings = alloca (strlen (string) * 2);
1830 current_substring = substrings;
1831
1832 {
1833 /* Now scan the string for %-specs and see what kinds of args they want.
1834 argclass[I] classifies the %-specs so we can give printf_filtered
1835 something of the right size. */
1836
1837 enum argclass
1838 {
1839 no_arg, int_arg, string_arg, double_arg, long_long_arg
1840 };
1841 enum argclass *argclass;
1842 enum argclass this_argclass;
1843 char *last_arg;
1844 int nargs_wanted;
1845 int lcount;
1846 int i;
1847
1848 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
1849 nargs_wanted = 0;
1850 f = string;
1851 last_arg = string;
1852 while (*f)
1853 if (*f++ == '%')
1854 {
1855 lcount = 0;
1856 while (strchr ("0123456789.hlL-+ #", *f))
1857 {
1858 if (*f == 'l' || *f == 'L')
1859 lcount++;
1860 f++;
1861 }
1862 switch (*f)
1863 {
1864 case 's':
1865 this_argclass = string_arg;
1866 break;
1867
1868 case 'e':
1869 case 'f':
1870 case 'g':
1871 this_argclass = double_arg;
1872 break;
1873
1874 case '*':
1875 error ("`*' not supported for precision or width in printf");
1876
1877 case 'n':
1878 error ("Format specifier `n' not supported in printf");
1879
1880 case '%':
1881 this_argclass = no_arg;
1882 break;
1883
1884 default:
1885 if (lcount > 1)
1886 this_argclass = long_long_arg;
1887 else
1888 this_argclass = int_arg;
1889 break;
1890 }
1891 f++;
1892 if (this_argclass != no_arg)
1893 {
1894 strncpy (current_substring, last_arg, f - last_arg);
1895 current_substring += f - last_arg;
1896 *current_substring++ = '\0';
1897 last_arg = f;
1898 argclass[nargs_wanted++] = this_argclass;
1899 }
1900 }
1901
1902 /* Now, parse all arguments and evaluate them.
1903 Store the VALUEs in VAL_ARGS. */
1904
1905 while (*s != '\0')
1906 {
1907 char *s1;
1908 if (nargs == allocated_args)
1909 val_args = (struct value **) xrealloc ((char *) val_args,
1910 (allocated_args *= 2)
1911 * sizeof (struct value *));
1912 s1 = s;
1913 val_args[nargs] = parse_to_comma_and_eval (&s1);
1914
1915 /* If format string wants a float, unchecked-convert the value to
1916 floating point of the same size */
1917
1918 if (argclass[nargs] == double_arg)
1919 {
1920 struct type *type = VALUE_TYPE (val_args[nargs]);
1921 if (TYPE_LENGTH (type) == sizeof (float))
1922 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
1923 if (TYPE_LENGTH (type) == sizeof (double))
1924 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
1925 }
1926 nargs++;
1927 s = s1;
1928 if (*s == ',')
1929 s++;
1930 }
1931
1932 if (nargs != nargs_wanted)
1933 error ("Wrong number of arguments for specified format-string");
1934
1935 /* Now actually print them. */
1936 current_substring = substrings;
1937 for (i = 0; i < nargs; i++)
1938 {
1939 switch (argclass[i])
1940 {
1941 case string_arg:
1942 {
1943 char *str;
1944 CORE_ADDR tem;
1945 int j;
1946 tem = value_as_address (val_args[i]);
1947
1948 /* This is a %s argument. Find the length of the string. */
1949 for (j = 0;; j++)
1950 {
1951 char c;
1952 QUIT;
1953 read_memory (tem + j, &c, 1);
1954 if (c == 0)
1955 break;
1956 }
1957
1958 /* Copy the string contents into a string inside GDB. */
1959 str = (char *) alloca (j + 1);
1960 if (j != 0)
1961 read_memory (tem, str, j);
1962 str[j] = 0;
1963
1964 printf_filtered (current_substring, str);
1965 }
1966 break;
1967 case double_arg:
1968 {
1969 double val = value_as_double (val_args[i]);
1970 printf_filtered (current_substring, val);
1971 break;
1972 }
1973 case long_long_arg:
1974 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
1975 {
1976 long long val = value_as_long (val_args[i]);
1977 printf_filtered (current_substring, val);
1978 break;
1979 }
1980 #else
1981 error ("long long not supported in printf");
1982 #endif
1983 case int_arg:
1984 {
1985 /* FIXME: there should be separate int_arg and long_arg. */
1986 long val = value_as_long (val_args[i]);
1987 printf_filtered (current_substring, val);
1988 break;
1989 }
1990 default: /* purecov: deadcode */
1991 error ("internal error in printf_command"); /* purecov: deadcode */
1992 }
1993 /* Skip to the next substring. */
1994 current_substring += strlen (current_substring) + 1;
1995 }
1996 /* Print the portion of the format string after the last argument. */
1997 puts_filtered (last_arg);
1998 }
1999 do_cleanups (old_cleanups);
2000 }
2001
2002 void
2003 _initialize_printcmd (void)
2004 {
2005 struct cmd_list_element *c;
2006
2007 current_display_number = -1;
2008
2009 add_info ("address", address_info,
2010 "Describe where symbol SYM is stored.");
2011
2012 add_info ("symbol", sym_info,
2013 "Describe what symbol is at location ADDR.\n\
2014 Only for symbols with fixed locations (global or static scope).");
2015
2016 add_com ("x", class_vars, x_command,
2017 concat ("Examine memory: x/FMT ADDRESS.\n\
2018 ADDRESS is an expression for the memory address to examine.\n\
2019 FMT is a repeat count followed by a format letter and a size letter.\n\
2020 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2021 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2022 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2023 The specified number of objects of the specified size are printed\n\
2024 according to the format.\n\n\
2025 Defaults for format and size letters are those previously used.\n\
2026 Default count is 1. Default address is following last thing printed\n\
2027 with this command or \"print\".", NULL));
2028
2029 #if 0
2030 add_com ("whereis", class_vars, whereis_command,
2031 "Print line number and file of definition of variable.");
2032 #endif
2033
2034 add_info ("display", display_info,
2035 "Expressions to display when program stops, with code numbers.");
2036
2037 add_cmd ("undisplay", class_vars, undisplay_command,
2038 "Cancel some expressions to be displayed when program stops.\n\
2039 Arguments are the code numbers of the expressions to stop displaying.\n\
2040 No argument means cancel all automatic-display expressions.\n\
2041 \"delete display\" has the same effect as this command.\n\
2042 Do \"info display\" to see current list of code numbers.",
2043 &cmdlist);
2044
2045 add_com ("display", class_vars, display_command,
2046 "Print value of expression EXP each time the program stops.\n\
2047 /FMT may be used before EXP as in the \"print\" command.\n\
2048 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2049 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2050 and examining is done as in the \"x\" command.\n\n\
2051 With no argument, display all currently requested auto-display expressions.\n\
2052 Use \"undisplay\" to cancel display requests previously made."
2053 );
2054
2055 add_cmd ("display", class_vars, enable_display,
2056 "Enable some expressions to be displayed when program stops.\n\
2057 Arguments are the code numbers of the expressions to resume displaying.\n\
2058 No argument means enable all automatic-display expressions.\n\
2059 Do \"info display\" to see current list of code numbers.", &enablelist);
2060
2061 add_cmd ("display", class_vars, disable_display_command,
2062 "Disable some expressions to be displayed when program stops.\n\
2063 Arguments are the code numbers of the expressions to stop displaying.\n\
2064 No argument means disable all automatic-display expressions.\n\
2065 Do \"info display\" to see current list of code numbers.", &disablelist);
2066
2067 add_cmd ("display", class_vars, undisplay_command,
2068 "Cancel some expressions to be displayed when program stops.\n\
2069 Arguments are the code numbers of the expressions to stop displaying.\n\
2070 No argument means cancel all automatic-display expressions.\n\
2071 Do \"info display\" to see current list of code numbers.", &deletelist);
2072
2073 add_com ("printf", class_vars, printf_command,
2074 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2075 This is useful for formatted output in user-defined commands.");
2076
2077 add_com ("output", class_vars, output_command,
2078 "Like \"print\" but don't put in value history and don't print newline.\n\
2079 This is useful in user-defined commands.");
2080
2081 add_prefix_cmd ("set", class_vars, set_command,
2082 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2083 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2084 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2085 with $), a register (a few standard names starting with $), or an actual\n\
2086 variable in the program being debugged. EXP is any valid expression.\n",
2087 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2088 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2089 You can see these environment settings with the \"show\" command.", NULL),
2090 &setlist, "set ", 1, &cmdlist);
2091 if (dbx_commands)
2092 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2093 EXP and assign result to variable VAR, using assignment\n\
2094 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2095 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2096 with $), a register (a few standard names starting with $), or an actual\n\
2097 variable in the program being debugged. EXP is any valid expression.\n",
2098 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2099 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2100 You can see these environment settings with the \"show\" command.", NULL));
2101
2102 /* "call" is the same as "set", but handy for dbx users to call fns. */
2103 c = add_com ("call", class_vars, call_command,
2104 "Call a function in the program.\n\
2105 The argument is the function name and arguments, in the notation of the\n\
2106 current working language. The result is printed and saved in the value\n\
2107 history, if it is not void.");
2108 set_cmd_completer (c, location_completer);
2109
2110 add_cmd ("variable", class_vars, set_command,
2111 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2112 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2113 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2114 with $), a register (a few standard names starting with $), or an actual\n\
2115 variable in the program being debugged. EXP is any valid expression.\n\
2116 This may usually be abbreviated to simply \"set\".",
2117 &setlist);
2118
2119 c = add_com ("print", class_vars, print_command,
2120 concat ("Print value of expression EXP.\n\
2121 Variables accessible are those of the lexical environment of the selected\n\
2122 stack frame, plus all those whose scope is global or an entire file.\n\
2123 \n\
2124 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2125 $$NUM refers to NUM'th value back from the last one.\n\
2126 Names starting with $ refer to registers (with the values they would have\n",
2127 "if the program were to return to the stack frame now selected, restoring\n\
2128 all registers saved by frames farther in) or else to debugger\n\
2129 \"convenience\" variables (any such name not a known register).\n\
2130 Use assignment expressions to give values to convenience variables.\n",
2131 "\n\
2132 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2133 @ is a binary operator for treating consecutive data objects\n\
2134 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2135 element is FOO, whose second element is stored in the space following\n\
2136 where FOO is stored, etc. FOO must be an expression whose value\n\
2137 resides in memory.\n",
2138 "\n\
2139 EXP may be preceded with /FMT, where FMT is a format letter\n\
2140 but no count or size letter (see \"x\" command).", NULL));
2141 set_cmd_completer (c, location_completer);
2142 add_com_alias ("p", "print", class_vars, 1);
2143
2144 c = add_com ("inspect", class_vars, inspect_command,
2145 "Same as \"print\" command, except that if you are running in the epoch\n\
2146 environment, the value is printed in its own window.");
2147 set_cmd_completer (c, location_completer);
2148
2149 deprecated_add_show_from_set
2150 (add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2151 (char *) &max_symbolic_offset,
2152 "Set the largest offset that will be printed in <symbol+1234> form.",
2153 &setprintlist),
2154 &showprintlist);
2155 deprecated_add_show_from_set
2156 (add_set_cmd ("symbol-filename", no_class, var_boolean,
2157 (char *) &print_symbol_filename, "\
2158 Set printing of source filename and line number with <symbol>.",
2159 &setprintlist),
2160 &showprintlist);
2161
2162 /* For examine/instruction a single byte quantity is specified as
2163 the data. This avoids problems with value_at_lazy() requiring a
2164 valid data type (and rejecting VOID). */
2165 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2166
2167 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2168 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2169 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2170 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2171
2172 }