]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/procfs.c
3a5d173ee429ccffd44363b9c155ce84dac7b8e1
[thirdparty/binutils-gdb.git] / gdb / procfs.c
1 /* Machine independent support for Solaris /proc (process file system) for GDB.
2
3 Copyright (C) 1999-2023 Free Software Foundation, Inc.
4
5 Written by Michael Snyder at Cygnus Solutions.
6 Based on work by Fred Fish, Stu Grossman, Geoff Noer, and others.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "elf-bfd.h"
29 #include "gdbcmd.h"
30 #include "gdbthread.h"
31 #include "regcache.h"
32 #include "inf-child.h"
33 #include "nat/fork-inferior.h"
34 #include "gdbarch.h"
35
36 #include <sys/procfs.h>
37 #include <sys/fault.h>
38 #include <sys/syscall.h>
39 #include "gdbsupport/gdb_wait.h"
40 #include <signal.h>
41 #include <ctype.h>
42 #include "gdb_bfd.h"
43 #include "auxv.h"
44 #include "procfs.h"
45 #include "observable.h"
46 #include "gdbsupport/scoped_fd.h"
47 #include "gdbsupport/pathstuff.h"
48 #include "gdbsupport/buildargv.h"
49 #include "cli/cli-style.h"
50
51 /* This module provides the interface between GDB and the
52 /proc file system, which is used on many versions of Unix
53 as a means for debuggers to control other processes.
54
55 /proc works by imitating a file system: you open a simulated file
56 that represents the process you wish to interact with, and perform
57 operations on that "file" in order to examine or change the state
58 of the other process.
59
60 The most important thing to know about /proc and this module is
61 that there are two very different interfaces to /proc:
62
63 One that uses the ioctl system call, and another that uses read
64 and write system calls.
65
66 This module supports only the Solaris version of the read/write
67 interface. */
68
69 #include <sys/types.h>
70 #include <dirent.h>
71
72 #include <fcntl.h>
73 #include <unistd.h>
74 #include <sys/stat.h>
75
76 /* Note: procfs-utils.h must be included after the above system header
77 files, because it redefines various system calls using macros.
78 This may be incompatible with the prototype declarations. */
79
80 #include "proc-utils.h"
81
82 /* Prototypes for supply_gregset etc. */
83 #include "gregset.h"
84
85 /* =================== TARGET_OPS "MODULE" =================== */
86
87 /* This module defines the GDB target vector and its methods. */
88
89
90 static enum target_xfer_status procfs_xfer_memory (gdb_byte *,
91 const gdb_byte *,
92 ULONGEST, ULONGEST,
93 ULONGEST *);
94
95 class procfs_target final : public inf_child_target
96 {
97 public:
98 void create_inferior (const char *, const std::string &,
99 char **, int) override;
100
101 void kill () override;
102
103 void mourn_inferior () override;
104
105 void attach (const char *, int) override;
106 void detach (inferior *inf, int) override;
107
108 void resume (ptid_t, int, enum gdb_signal) override;
109 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
110
111 void fetch_registers (struct regcache *, int) override;
112 void store_registers (struct regcache *, int) override;
113
114 enum target_xfer_status xfer_partial (enum target_object object,
115 const char *annex,
116 gdb_byte *readbuf,
117 const gdb_byte *writebuf,
118 ULONGEST offset, ULONGEST len,
119 ULONGEST *xfered_len) override;
120
121 void pass_signals (gdb::array_view<const unsigned char>) override;
122
123 void files_info () override;
124
125 void update_thread_list () override;
126
127 bool thread_alive (ptid_t ptid) override;
128
129 std::string pid_to_str (ptid_t) override;
130
131 const char *pid_to_exec_file (int pid) override;
132
133 thread_control_capabilities get_thread_control_capabilities () override
134 { return tc_schedlock; }
135
136 /* find_memory_regions support method for gcore */
137 int find_memory_regions (find_memory_region_ftype func, void *data)
138 override;
139
140 gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *) override;
141
142 bool info_proc (const char *, enum info_proc_what) override;
143
144 #if PR_MODEL_NATIVE == PR_MODEL_LP64
145 int auxv_parse (const gdb_byte **readptr,
146 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
147 override;
148 #endif
149
150 bool stopped_by_watchpoint () override;
151
152 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
153 struct expression *) override;
154
155 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
156 struct expression *) override;
157
158 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
159
160 int can_use_hw_breakpoint (enum bptype, int, int) override;
161 bool stopped_data_address (CORE_ADDR *) override;
162
163 void procfs_init_inferior (int pid);
164 };
165
166 static procfs_target the_procfs_target;
167
168 #if PR_MODEL_NATIVE == PR_MODEL_LP64
169 /* When GDB is built as 64-bit application on Solaris, the auxv data
170 is presented in 64-bit format. We need to provide a custom parser
171 to handle that. */
172 int
173 procfs_target::auxv_parse (const gdb_byte **readptr,
174 const gdb_byte *endptr, CORE_ADDR *typep,
175 CORE_ADDR *valp)
176 {
177 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
178 const gdb_byte *ptr = *readptr;
179
180 if (endptr == ptr)
181 return 0;
182
183 if (endptr - ptr < 8 * 2)
184 return -1;
185
186 *typep = extract_unsigned_integer (ptr, 4, byte_order);
187 ptr += 8;
188 /* The size of data is always 64-bit. If the application is 32-bit,
189 it will be zero extended, as expected. */
190 *valp = extract_unsigned_integer (ptr, 8, byte_order);
191 ptr += 8;
192
193 *readptr = ptr;
194 return 1;
195 }
196 #endif
197
198 /* =================== END, TARGET_OPS "MODULE" =================== */
199
200 /* =================== STRUCT PROCINFO "MODULE" =================== */
201
202 /* FIXME: this comment will soon be out of date W.R.T. threads. */
203
204 /* The procinfo struct is a wrapper to hold all the state information
205 concerning a /proc process. There should be exactly one procinfo
206 for each process, and since GDB currently can debug only one
207 process at a time, that means there should be only one procinfo.
208 All of the LWP's of a process can be accessed indirectly thru the
209 single process procinfo.
210
211 However, against the day when GDB may debug more than one process,
212 this data structure is kept in a list (which for now will hold no
213 more than one member), and many functions will have a pointer to a
214 procinfo as an argument.
215
216 There will be a separate procinfo structure for use by the (not yet
217 implemented) "info proc" command, so that we can print useful
218 information about any random process without interfering with the
219 inferior's procinfo information. */
220
221 /* format strings for /proc paths */
222 #define CTL_PROC_NAME_FMT "/proc/%d/ctl"
223 #define AS_PROC_NAME_FMT "/proc/%d/as"
224 #define MAP_PROC_NAME_FMT "/proc/%d/map"
225 #define STATUS_PROC_NAME_FMT "/proc/%d/status"
226 #define MAX_PROC_NAME_SIZE sizeof("/proc/999999/lwp/0123456789/lwpstatus")
227
228 typedef struct procinfo {
229 struct procinfo *next;
230 int pid; /* Process ID */
231 int tid; /* Thread/LWP id */
232
233 /* process state */
234 int was_stopped;
235 int ignore_next_sigstop;
236
237 int ctl_fd; /* File descriptor for /proc control file */
238 int status_fd; /* File descriptor for /proc status file */
239 int as_fd; /* File descriptor for /proc as file */
240
241 char pathname[MAX_PROC_NAME_SIZE]; /* Pathname to /proc entry */
242
243 fltset_t saved_fltset; /* Saved traced hardware fault set */
244 sigset_t saved_sigset; /* Saved traced signal set */
245 sigset_t saved_sighold; /* Saved held signal set */
246 sysset_t *saved_exitset; /* Saved traced system call exit set */
247 sysset_t *saved_entryset; /* Saved traced system call entry set */
248
249 pstatus_t prstatus; /* Current process status info */
250
251 struct procinfo *thread_list;
252
253 int status_valid : 1;
254 int gregs_valid : 1;
255 int fpregs_valid : 1;
256 int threads_valid: 1;
257 } procinfo;
258
259 /* Function prototypes for procinfo module: */
260
261 static procinfo *find_procinfo_or_die (int pid, int tid);
262 static procinfo *find_procinfo (int pid, int tid);
263 static procinfo *create_procinfo (int pid, int tid);
264 static void destroy_procinfo (procinfo *p);
265 static void dead_procinfo (procinfo *p, const char *msg, int killp);
266 static int open_procinfo_files (procinfo *p, int which);
267 static void close_procinfo_files (procinfo *p);
268
269 static int iterate_over_mappings
270 (procinfo *pi, find_memory_region_ftype child_func, void *data,
271 int (*func) (struct prmap *map, find_memory_region_ftype child_func,
272 void *data));
273
274 /* The head of the procinfo list: */
275 static procinfo *procinfo_list;
276
277 /* Search the procinfo list. Return a pointer to procinfo, or NULL if
278 not found. */
279
280 static procinfo *
281 find_procinfo (int pid, int tid)
282 {
283 procinfo *pi;
284
285 for (pi = procinfo_list; pi; pi = pi->next)
286 if (pi->pid == pid)
287 break;
288
289 if (pi)
290 if (tid)
291 {
292 /* Don't check threads_valid. If we're updating the
293 thread_list, we want to find whatever threads are already
294 here. This means that in general it is the caller's
295 responsibility to check threads_valid and update before
296 calling find_procinfo, if the caller wants to find a new
297 thread. */
298
299 for (pi = pi->thread_list; pi; pi = pi->next)
300 if (pi->tid == tid)
301 break;
302 }
303
304 return pi;
305 }
306
307 /* Calls find_procinfo, but errors on failure. */
308
309 static procinfo *
310 find_procinfo_or_die (int pid, int tid)
311 {
312 procinfo *pi = find_procinfo (pid, tid);
313
314 if (pi == NULL)
315 {
316 if (tid)
317 error (_("procfs: couldn't find pid %d "
318 "(kernel thread %d) in procinfo list."),
319 pid, tid);
320 else
321 error (_("procfs: couldn't find pid %d in procinfo list."), pid);
322 }
323 return pi;
324 }
325
326 /* Wrapper for `open'. The appropriate open call is attempted; if
327 unsuccessful, it will be retried as many times as needed for the
328 EAGAIN and EINTR conditions.
329
330 For other conditions, retry the open a limited number of times. In
331 addition, a short sleep is imposed prior to retrying the open. The
332 reason for this sleep is to give the kernel a chance to catch up
333 and create the file in question in the event that GDB "wins" the
334 race to open a file before the kernel has created it. */
335
336 static int
337 open_with_retry (const char *pathname, int flags)
338 {
339 int retries_remaining, status;
340
341 retries_remaining = 2;
342
343 while (1)
344 {
345 status = open (pathname, flags);
346
347 if (status >= 0 || retries_remaining == 0)
348 break;
349 else if (errno != EINTR && errno != EAGAIN)
350 {
351 retries_remaining--;
352 sleep (1);
353 }
354 }
355
356 return status;
357 }
358
359 /* Open the file descriptor for the process or LWP. We only open the
360 control file descriptor; the others are opened lazily as needed.
361 Returns the file descriptor, or zero for failure. */
362
363 enum { FD_CTL, FD_STATUS, FD_AS };
364
365 static int
366 open_procinfo_files (procinfo *pi, int which)
367 {
368 char tmp[MAX_PROC_NAME_SIZE];
369 int fd;
370
371 /* This function is getting ALMOST long enough to break up into
372 several. Here is some rationale:
373
374 There are several file descriptors that may need to be open
375 for any given process or LWP. The ones we're interested in are:
376 - control (ctl) write-only change the state
377 - status (status) read-only query the state
378 - address space (as) read/write access memory
379 - map (map) read-only virtual addr map
380 Most of these are opened lazily as they are needed.
381 The pathnames for the 'files' for an LWP look slightly
382 different from those of a first-class process:
383 Pathnames for a process (<proc-id>):
384 /proc/<proc-id>/ctl
385 /proc/<proc-id>/status
386 /proc/<proc-id>/as
387 /proc/<proc-id>/map
388 Pathnames for an LWP (lwp-id):
389 /proc/<proc-id>/lwp/<lwp-id>/lwpctl
390 /proc/<proc-id>/lwp/<lwp-id>/lwpstatus
391 An LWP has no map or address space file descriptor, since
392 the memory map and address space are shared by all LWPs. */
393
394 /* In this case, there are several different file descriptors that
395 we might be asked to open. The control file descriptor will be
396 opened early, but the others will be opened lazily as they are
397 needed. */
398
399 strcpy (tmp, pi->pathname);
400 switch (which) { /* Which file descriptor to open? */
401 case FD_CTL:
402 if (pi->tid)
403 strcat (tmp, "/lwpctl");
404 else
405 strcat (tmp, "/ctl");
406 fd = open_with_retry (tmp, O_WRONLY);
407 if (fd < 0)
408 return 0; /* fail */
409 pi->ctl_fd = fd;
410 break;
411 case FD_AS:
412 if (pi->tid)
413 return 0; /* There is no 'as' file descriptor for an lwp. */
414 strcat (tmp, "/as");
415 fd = open_with_retry (tmp, O_RDWR);
416 if (fd < 0)
417 return 0; /* fail */
418 pi->as_fd = fd;
419 break;
420 case FD_STATUS:
421 if (pi->tid)
422 strcat (tmp, "/lwpstatus");
423 else
424 strcat (tmp, "/status");
425 fd = open_with_retry (tmp, O_RDONLY);
426 if (fd < 0)
427 return 0; /* fail */
428 pi->status_fd = fd;
429 break;
430 default:
431 return 0; /* unknown file descriptor */
432 }
433
434 return 1; /* success */
435 }
436
437 /* Allocate a data structure and link it into the procinfo list.
438 First tries to find a pre-existing one (FIXME: why?). Returns the
439 pointer to new procinfo struct. */
440
441 static procinfo *
442 create_procinfo (int pid, int tid)
443 {
444 procinfo *pi, *parent = NULL;
445
446 pi = find_procinfo (pid, tid);
447 if (pi != NULL)
448 return pi; /* Already exists, nothing to do. */
449
450 /* Find parent before doing malloc, to save having to cleanup. */
451 if (tid != 0)
452 parent = find_procinfo_or_die (pid, 0); /* FIXME: should I
453 create it if it
454 doesn't exist yet? */
455
456 pi = XNEW (procinfo);
457 memset (pi, 0, sizeof (procinfo));
458 pi->pid = pid;
459 pi->tid = tid;
460
461 pi->saved_entryset = XNEW (sysset_t);
462 pi->saved_exitset = XNEW (sysset_t);
463
464 /* Chain into list. */
465 if (tid == 0)
466 {
467 xsnprintf (pi->pathname, sizeof (pi->pathname), "/proc/%d", pid);
468 pi->next = procinfo_list;
469 procinfo_list = pi;
470 }
471 else
472 {
473 xsnprintf (pi->pathname, sizeof (pi->pathname), "/proc/%d/lwp/%d",
474 pid, tid);
475 pi->next = parent->thread_list;
476 parent->thread_list = pi;
477 }
478 return pi;
479 }
480
481 /* Close all file descriptors associated with the procinfo. */
482
483 static void
484 close_procinfo_files (procinfo *pi)
485 {
486 if (pi->ctl_fd > 0)
487 close (pi->ctl_fd);
488 if (pi->as_fd > 0)
489 close (pi->as_fd);
490 if (pi->status_fd > 0)
491 close (pi->status_fd);
492 pi->ctl_fd = pi->as_fd = pi->status_fd = 0;
493 }
494
495 /* Destructor function. Close, unlink and deallocate the object. */
496
497 static void
498 destroy_one_procinfo (procinfo **list, procinfo *pi)
499 {
500 procinfo *ptr;
501
502 /* Step one: unlink the procinfo from its list. */
503 if (pi == *list)
504 *list = pi->next;
505 else
506 for (ptr = *list; ptr; ptr = ptr->next)
507 if (ptr->next == pi)
508 {
509 ptr->next = pi->next;
510 break;
511 }
512
513 /* Step two: close any open file descriptors. */
514 close_procinfo_files (pi);
515
516 /* Step three: free the memory. */
517 xfree (pi->saved_entryset);
518 xfree (pi->saved_exitset);
519 xfree (pi);
520 }
521
522 static void
523 destroy_procinfo (procinfo *pi)
524 {
525 procinfo *tmp;
526
527 if (pi->tid != 0) /* Destroy a thread procinfo. */
528 {
529 tmp = find_procinfo (pi->pid, 0); /* Find the parent process. */
530 destroy_one_procinfo (&tmp->thread_list, pi);
531 }
532 else /* Destroy a process procinfo and all its threads. */
533 {
534 /* First destroy the children, if any; */
535 while (pi->thread_list != NULL)
536 destroy_one_procinfo (&pi->thread_list, pi->thread_list);
537 /* Then destroy the parent. Genocide!!! */
538 destroy_one_procinfo (&procinfo_list, pi);
539 }
540 }
541
542 /* A deleter that calls destroy_procinfo. */
543 struct procinfo_deleter
544 {
545 void operator() (procinfo *pi) const
546 {
547 destroy_procinfo (pi);
548 }
549 };
550
551 typedef std::unique_ptr<procinfo, procinfo_deleter> procinfo_up;
552
553 enum { NOKILL, KILL };
554
555 /* To be called on a non_recoverable error for a procinfo. Prints
556 error messages, optionally sends a SIGKILL to the process, then
557 destroys the data structure. */
558
559 static void
560 dead_procinfo (procinfo *pi, const char *msg, int kill_p)
561 {
562 warning_filename_and_errno (pi->pathname, errno);
563 if (kill_p == KILL)
564 kill (pi->pid, SIGKILL);
565
566 destroy_procinfo (pi);
567 error ("%s", msg);
568 }
569
570 /* =================== END, STRUCT PROCINFO "MODULE" =================== */
571
572 /* =================== /proc "MODULE" =================== */
573
574 /* This "module" is the interface layer between the /proc system API
575 and the gdb target vector functions. This layer consists of access
576 functions that encapsulate each of the basic operations that we
577 need to use from the /proc API.
578
579 The main motivation for this layer is to hide the fact that there
580 were two very different implementations of the /proc API. */
581
582 static long proc_flags (procinfo *pi);
583 static int proc_why (procinfo *pi);
584 static int proc_what (procinfo *pi);
585 static int proc_set_current_signal (procinfo *pi, int signo);
586 static int proc_get_current_thread (procinfo *pi);
587 static int proc_iterate_over_threads
588 (procinfo *pi,
589 int (*func) (procinfo *, procinfo *, void *),
590 void *ptr);
591 static void proc_resume (procinfo *pi, ptid_t scope_ptid,
592 int step, enum gdb_signal signo);
593
594 static void
595 proc_warn (procinfo *pi, const char *func, int line)
596 {
597 int saved_errno = errno;
598 warning ("procfs: %s line %d, %ps: %s",
599 func, line, styled_string (file_name_style.style (),
600 pi->pathname),
601 safe_strerror (saved_errno));
602 }
603
604 static void
605 proc_error (procinfo *pi, const char *func, int line)
606 {
607 int saved_errno = errno;
608 error ("procfs: %s line %d, %ps: %s",
609 func, line, styled_string (file_name_style.style (),
610 pi->pathname),
611 safe_strerror (saved_errno));
612 }
613
614 /* Updates the status struct in the procinfo. There is a 'valid'
615 flag, to let other functions know when this function needs to be
616 called (so the status is only read when it is needed). The status
617 file descriptor is also only opened when it is needed. Returns
618 non-zero for success, zero for failure. */
619
620 static int
621 proc_get_status (procinfo *pi)
622 {
623 /* Status file descriptor is opened "lazily". */
624 if (pi->status_fd == 0 && open_procinfo_files (pi, FD_STATUS) == 0)
625 {
626 pi->status_valid = 0;
627 return 0;
628 }
629
630 if (lseek (pi->status_fd, 0, SEEK_SET) < 0)
631 pi->status_valid = 0; /* fail */
632 else
633 {
634 /* Sigh... I have to read a different data structure,
635 depending on whether this is a main process or an LWP. */
636 if (pi->tid)
637 pi->status_valid = (read (pi->status_fd,
638 (char *) &pi->prstatus.pr_lwp,
639 sizeof (lwpstatus_t))
640 == sizeof (lwpstatus_t));
641 else
642 {
643 pi->status_valid = (read (pi->status_fd,
644 (char *) &pi->prstatus,
645 sizeof (pstatus_t))
646 == sizeof (pstatus_t));
647 }
648 }
649
650 if (pi->status_valid)
651 {
652 PROC_PRETTYFPRINT_STATUS (proc_flags (pi),
653 proc_why (pi),
654 proc_what (pi),
655 proc_get_current_thread (pi));
656 }
657
658 /* The status struct includes general regs, so mark them valid too. */
659 pi->gregs_valid = pi->status_valid;
660 /* In the read/write multiple-fd model, the status struct includes
661 the fp regs too, so mark them valid too. */
662 pi->fpregs_valid = pi->status_valid;
663 return pi->status_valid; /* True if success, false if failure. */
664 }
665
666 /* Returns the process flags (pr_flags field). */
667
668 static long
669 proc_flags (procinfo *pi)
670 {
671 if (!pi->status_valid)
672 if (!proc_get_status (pi))
673 return 0; /* FIXME: not a good failure value (but what is?) */
674
675 return pi->prstatus.pr_lwp.pr_flags;
676 }
677
678 /* Returns the pr_why field (why the process stopped). */
679
680 static int
681 proc_why (procinfo *pi)
682 {
683 if (!pi->status_valid)
684 if (!proc_get_status (pi))
685 return 0; /* FIXME: not a good failure value (but what is?) */
686
687 return pi->prstatus.pr_lwp.pr_why;
688 }
689
690 /* Returns the pr_what field (details of why the process stopped). */
691
692 static int
693 proc_what (procinfo *pi)
694 {
695 if (!pi->status_valid)
696 if (!proc_get_status (pi))
697 return 0; /* FIXME: not a good failure value (but what is?) */
698
699 return pi->prstatus.pr_lwp.pr_what;
700 }
701
702 /* This function is only called when PI is stopped by a watchpoint.
703 Assuming the OS supports it, write to *ADDR the data address which
704 triggered it and return 1. Return 0 if it is not possible to know
705 the address. */
706
707 static int
708 proc_watchpoint_address (procinfo *pi, CORE_ADDR *addr)
709 {
710 if (!pi->status_valid)
711 if (!proc_get_status (pi))
712 return 0;
713
714 gdbarch *arch = current_inferior ()->arch ();
715 *addr = gdbarch_pointer_to_address
716 (arch, builtin_type (arch)->builtin_data_ptr,
717 (gdb_byte *) &pi->prstatus.pr_lwp.pr_info.si_addr);
718 return 1;
719 }
720
721 /* Returns the pr_nsysarg field (number of args to the current
722 syscall). */
723
724 static int
725 proc_nsysarg (procinfo *pi)
726 {
727 if (!pi->status_valid)
728 if (!proc_get_status (pi))
729 return 0;
730
731 return pi->prstatus.pr_lwp.pr_nsysarg;
732 }
733
734 /* Returns the pr_sysarg field (pointer to the arguments of current
735 syscall). */
736
737 static long *
738 proc_sysargs (procinfo *pi)
739 {
740 if (!pi->status_valid)
741 if (!proc_get_status (pi))
742 return NULL;
743
744 return (long *) &pi->prstatus.pr_lwp.pr_sysarg;
745 }
746
747 /* Set or reset any of the following process flags:
748 PR_FORK -- forked child will inherit trace flags
749 PR_RLC -- traced process runs when last /proc file closed.
750 PR_KLC -- traced process is killed when last /proc file closed.
751 PR_ASYNC -- LWP's get to run/stop independently.
752
753 This function is done using read/write [PCSET/PCRESET/PCUNSET].
754
755 Arguments:
756 pi -- the procinfo
757 flag -- one of PR_FORK, PR_RLC, or PR_ASYNC
758 mode -- 1 for set, 0 for reset.
759
760 Returns non-zero for success, zero for failure. */
761
762 enum { FLAG_RESET, FLAG_SET };
763
764 static int
765 proc_modify_flag (procinfo *pi, long flag, long mode)
766 {
767 long win = 0; /* default to fail */
768
769 /* These operations affect the process as a whole, and applying them
770 to an individual LWP has the same meaning as applying them to the
771 main process. Therefore, if we're ever called with a pointer to
772 an LWP's procinfo, let's substitute the process's procinfo and
773 avoid opening the LWP's file descriptor unnecessarily. */
774
775 if (pi->pid != 0)
776 pi = find_procinfo_or_die (pi->pid, 0);
777
778 procfs_ctl_t arg[2];
779
780 if (mode == FLAG_SET) /* Set the flag (RLC, FORK, or ASYNC). */
781 arg[0] = PCSET;
782 else /* Reset the flag. */
783 arg[0] = PCUNSET;
784
785 arg[1] = flag;
786 win = (write (pi->ctl_fd, (void *) &arg, sizeof (arg)) == sizeof (arg));
787
788 /* The above operation renders the procinfo's cached pstatus
789 obsolete. */
790 pi->status_valid = 0;
791
792 if (!win)
793 warning (_("procfs: modify_flag failed to turn %s %s"),
794 flag == PR_FORK ? "PR_FORK" :
795 flag == PR_RLC ? "PR_RLC" :
796 flag == PR_ASYNC ? "PR_ASYNC" :
797 flag == PR_KLC ? "PR_KLC" :
798 "<unknown flag>",
799 mode == FLAG_RESET ? "off" : "on");
800
801 return win;
802 }
803
804 /* Set the run_on_last_close flag. Process with all threads will
805 become runnable when debugger closes all /proc fds. Returns
806 non-zero for success, zero for failure. */
807
808 static int
809 proc_set_run_on_last_close (procinfo *pi)
810 {
811 return proc_modify_flag (pi, PR_RLC, FLAG_SET);
812 }
813
814 /* Reset the run_on_last_close flag. The process will NOT become
815 runnable when debugger closes its file handles. Returns non-zero
816 for success, zero for failure. */
817
818 static int
819 proc_unset_run_on_last_close (procinfo *pi)
820 {
821 return proc_modify_flag (pi, PR_RLC, FLAG_RESET);
822 }
823
824 /* Reset inherit_on_fork flag. If the process forks a child while we
825 are registered for events in the parent, then we will NOT receive
826 events from the child. Returns non-zero for success, zero for
827 failure. */
828
829 static int
830 proc_unset_inherit_on_fork (procinfo *pi)
831 {
832 return proc_modify_flag (pi, PR_FORK, FLAG_RESET);
833 }
834
835 /* Set PR_ASYNC flag. If one LWP stops because of a debug event
836 (signal etc.), the remaining LWPs will continue to run. Returns
837 non-zero for success, zero for failure. */
838
839 static int
840 proc_set_async (procinfo *pi)
841 {
842 return proc_modify_flag (pi, PR_ASYNC, FLAG_SET);
843 }
844
845 /* Reset PR_ASYNC flag. If one LWP stops because of a debug event
846 (signal etc.), then all other LWPs will stop as well. Returns
847 non-zero for success, zero for failure. */
848
849 static int
850 proc_unset_async (procinfo *pi)
851 {
852 return proc_modify_flag (pi, PR_ASYNC, FLAG_RESET);
853 }
854
855 /* Request the process/LWP to stop. Does not wait. Returns non-zero
856 for success, zero for failure. */
857
858 static int
859 proc_stop_process (procinfo *pi)
860 {
861 int win;
862
863 /* We might conceivably apply this operation to an LWP, and the
864 LWP's ctl file descriptor might not be open. */
865
866 if (pi->ctl_fd == 0 && open_procinfo_files (pi, FD_CTL) == 0)
867 return 0;
868 else
869 {
870 procfs_ctl_t cmd = PCSTOP;
871
872 win = (write (pi->ctl_fd, (char *) &cmd, sizeof (cmd)) == sizeof (cmd));
873 }
874
875 return win;
876 }
877
878 /* Wait for the process or LWP to stop (block until it does). Returns
879 non-zero for success, zero for failure. */
880
881 static int
882 proc_wait_for_stop (procinfo *pi)
883 {
884 int win;
885
886 /* We should never have to apply this operation to any procinfo
887 except the one for the main process. If that ever changes for
888 any reason, then take out the following clause and replace it
889 with one that makes sure the ctl_fd is open. */
890
891 if (pi->tid != 0)
892 pi = find_procinfo_or_die (pi->pid, 0);
893
894 procfs_ctl_t cmd = PCWSTOP;
895
896 set_sigint_trap ();
897
898 win = (write (pi->ctl_fd, (char *) &cmd, sizeof (cmd)) == sizeof (cmd));
899
900 clear_sigint_trap ();
901
902 /* We been runnin' and we stopped -- need to update status. */
903 pi->status_valid = 0;
904
905 return win;
906 }
907
908 /* Make the process or LWP runnable.
909
910 Options (not all are implemented):
911 - single-step
912 - clear current fault
913 - clear current signal
914 - abort the current system call
915 - stop as soon as finished with system call
916
917 Always clears the current fault. PI is the process or LWP to
918 operate on. If STEP is true, set the process or LWP to trap after
919 one instruction. If SIGNO is zero, clear the current signal if
920 any; if non-zero, set the current signal to this one. Returns
921 non-zero for success, zero for failure. */
922
923 static int
924 proc_run_process (procinfo *pi, int step, int signo)
925 {
926 int win;
927 int runflags;
928
929 /* We will probably have to apply this operation to individual
930 threads, so make sure the control file descriptor is open. */
931
932 if (pi->ctl_fd == 0 && open_procinfo_files (pi, FD_CTL) == 0)
933 return 0;
934
935 runflags = PRCFAULT; /* Always clear current fault. */
936 if (step)
937 runflags |= PRSTEP;
938 if (signo == 0)
939 runflags |= PRCSIG;
940 else if (signo != -1) /* -1 means do nothing W.R.T. signals. */
941 proc_set_current_signal (pi, signo);
942
943 procfs_ctl_t cmd[2];
944
945 cmd[0] = PCRUN;
946 cmd[1] = runflags;
947 win = (write (pi->ctl_fd, (char *) &cmd, sizeof (cmd)) == sizeof (cmd));
948
949 return win;
950 }
951
952 /* Register to trace signals in the process or LWP. Returns non-zero
953 for success, zero for failure. */
954
955 static int
956 proc_set_traced_signals (procinfo *pi, sigset_t *sigset)
957 {
958 int win;
959
960 /* We should never have to apply this operation to any procinfo
961 except the one for the main process. If that ever changes for
962 any reason, then take out the following clause and replace it
963 with one that makes sure the ctl_fd is open. */
964
965 if (pi->tid != 0)
966 pi = find_procinfo_or_die (pi->pid, 0);
967
968 struct {
969 procfs_ctl_t cmd;
970 /* Use char array to avoid alignment issues. */
971 char sigset[sizeof (sigset_t)];
972 } arg;
973
974 arg.cmd = PCSTRACE;
975 memcpy (&arg.sigset, sigset, sizeof (sigset_t));
976
977 win = (write (pi->ctl_fd, (char *) &arg, sizeof (arg)) == sizeof (arg));
978
979 /* The above operation renders the procinfo's cached pstatus obsolete. */
980 pi->status_valid = 0;
981
982 if (!win)
983 warning (_("procfs: set_traced_signals failed"));
984 return win;
985 }
986
987 /* Register to trace hardware faults in the process or LWP. Returns
988 non-zero for success, zero for failure. */
989
990 static int
991 proc_set_traced_faults (procinfo *pi, fltset_t *fltset)
992 {
993 int win;
994
995 /* We should never have to apply this operation to any procinfo
996 except the one for the main process. If that ever changes for
997 any reason, then take out the following clause and replace it
998 with one that makes sure the ctl_fd is open. */
999
1000 if (pi->tid != 0)
1001 pi = find_procinfo_or_die (pi->pid, 0);
1002
1003 struct {
1004 procfs_ctl_t cmd;
1005 /* Use char array to avoid alignment issues. */
1006 char fltset[sizeof (fltset_t)];
1007 } arg;
1008
1009 arg.cmd = PCSFAULT;
1010 memcpy (&arg.fltset, fltset, sizeof (fltset_t));
1011
1012 win = (write (pi->ctl_fd, (char *) &arg, sizeof (arg)) == sizeof (arg));
1013
1014 /* The above operation renders the procinfo's cached pstatus obsolete. */
1015 pi->status_valid = 0;
1016
1017 return win;
1018 }
1019
1020 /* Register to trace entry to system calls in the process or LWP.
1021 Returns non-zero for success, zero for failure. */
1022
1023 static int
1024 proc_set_traced_sysentry (procinfo *pi, sysset_t *sysset)
1025 {
1026 int win;
1027
1028 /* We should never have to apply this operation to any procinfo
1029 except the one for the main process. If that ever changes for
1030 any reason, then take out the following clause and replace it
1031 with one that makes sure the ctl_fd is open. */
1032
1033 if (pi->tid != 0)
1034 pi = find_procinfo_or_die (pi->pid, 0);
1035
1036 struct {
1037 procfs_ctl_t cmd;
1038 /* Use char array to avoid alignment issues. */
1039 char sysset[sizeof (sysset_t)];
1040 } arg;
1041
1042 arg.cmd = PCSENTRY;
1043 memcpy (&arg.sysset, sysset, sizeof (sysset_t));
1044
1045 win = (write (pi->ctl_fd, (char *) &arg, sizeof (arg)) == sizeof (arg));
1046
1047 /* The above operation renders the procinfo's cached pstatus
1048 obsolete. */
1049 pi->status_valid = 0;
1050
1051 return win;
1052 }
1053
1054 /* Register to trace exit from system calls in the process or LWP.
1055 Returns non-zero for success, zero for failure. */
1056
1057 static int
1058 proc_set_traced_sysexit (procinfo *pi, sysset_t *sysset)
1059 {
1060 int win;
1061
1062 /* We should never have to apply this operation to any procinfo
1063 except the one for the main process. If that ever changes for
1064 any reason, then take out the following clause and replace it
1065 with one that makes sure the ctl_fd is open. */
1066
1067 if (pi->tid != 0)
1068 pi = find_procinfo_or_die (pi->pid, 0);
1069
1070 struct gdb_proc_ctl_pcsexit {
1071 procfs_ctl_t cmd;
1072 /* Use char array to avoid alignment issues. */
1073 char sysset[sizeof (sysset_t)];
1074 } arg;
1075
1076 arg.cmd = PCSEXIT;
1077 memcpy (&arg.sysset, sysset, sizeof (sysset_t));
1078
1079 win = (write (pi->ctl_fd, (char *) &arg, sizeof (arg)) == sizeof (arg));
1080
1081 /* The above operation renders the procinfo's cached pstatus
1082 obsolete. */
1083 pi->status_valid = 0;
1084
1085 return win;
1086 }
1087
1088 /* Specify the set of blocked / held signals in the process or LWP.
1089 Returns non-zero for success, zero for failure. */
1090
1091 static int
1092 proc_set_held_signals (procinfo *pi, sigset_t *sighold)
1093 {
1094 int win;
1095
1096 /* We should never have to apply this operation to any procinfo
1097 except the one for the main process. If that ever changes for
1098 any reason, then take out the following clause and replace it
1099 with one that makes sure the ctl_fd is open. */
1100
1101 if (pi->tid != 0)
1102 pi = find_procinfo_or_die (pi->pid, 0);
1103
1104 struct {
1105 procfs_ctl_t cmd;
1106 /* Use char array to avoid alignment issues. */
1107 char hold[sizeof (sigset_t)];
1108 } arg;
1109
1110 arg.cmd = PCSHOLD;
1111 memcpy (&arg.hold, sighold, sizeof (sigset_t));
1112 win = (write (pi->ctl_fd, (void *) &arg, sizeof (arg)) == sizeof (arg));
1113
1114 /* The above operation renders the procinfo's cached pstatus
1115 obsolete. */
1116 pi->status_valid = 0;
1117
1118 return win;
1119 }
1120
1121 /* Returns the set of signals that are held / blocked. Will also copy
1122 the sigset if SAVE is non-zero. */
1123
1124 static sigset_t *
1125 proc_get_held_signals (procinfo *pi, sigset_t *save)
1126 {
1127 sigset_t *ret = NULL;
1128
1129 /* We should never have to apply this operation to any procinfo
1130 except the one for the main process. If that ever changes for
1131 any reason, then take out the following clause and replace it
1132 with one that makes sure the ctl_fd is open. */
1133
1134 if (pi->tid != 0)
1135 pi = find_procinfo_or_die (pi->pid, 0);
1136
1137 if (!pi->status_valid)
1138 if (!proc_get_status (pi))
1139 return NULL;
1140
1141 ret = &pi->prstatus.pr_lwp.pr_lwphold;
1142 if (save && ret)
1143 memcpy (save, ret, sizeof (sigset_t));
1144
1145 return ret;
1146 }
1147
1148 /* Returns the set of signals that are traced / debugged. Will also
1149 copy the sigset if SAVE is non-zero. */
1150
1151 static sigset_t *
1152 proc_get_traced_signals (procinfo *pi, sigset_t *save)
1153 {
1154 sigset_t *ret = NULL;
1155
1156 /* We should never have to apply this operation to any procinfo
1157 except the one for the main process. If that ever changes for
1158 any reason, then take out the following clause and replace it
1159 with one that makes sure the ctl_fd is open. */
1160
1161 if (pi->tid != 0)
1162 pi = find_procinfo_or_die (pi->pid, 0);
1163
1164 if (!pi->status_valid)
1165 if (!proc_get_status (pi))
1166 return NULL;
1167
1168 ret = &pi->prstatus.pr_sigtrace;
1169 if (save && ret)
1170 memcpy (save, ret, sizeof (sigset_t));
1171
1172 return ret;
1173 }
1174
1175 /* Returns the set of hardware faults that are traced /debugged. Will
1176 also copy the faultset if SAVE is non-zero. */
1177
1178 static fltset_t *
1179 proc_get_traced_faults (procinfo *pi, fltset_t *save)
1180 {
1181 fltset_t *ret = NULL;
1182
1183 /* We should never have to apply this operation to any procinfo
1184 except the one for the main process. If that ever changes for
1185 any reason, then take out the following clause and replace it
1186 with one that makes sure the ctl_fd is open. */
1187
1188 if (pi->tid != 0)
1189 pi = find_procinfo_or_die (pi->pid, 0);
1190
1191 if (!pi->status_valid)
1192 if (!proc_get_status (pi))
1193 return NULL;
1194
1195 ret = &pi->prstatus.pr_flttrace;
1196 if (save && ret)
1197 memcpy (save, ret, sizeof (fltset_t));
1198
1199 return ret;
1200 }
1201
1202 /* Returns the set of syscalls that are traced /debugged on entry.
1203 Will also copy the syscall set if SAVE is non-zero. */
1204
1205 static sysset_t *
1206 proc_get_traced_sysentry (procinfo *pi, sysset_t *save)
1207 {
1208 sysset_t *ret = NULL;
1209
1210 /* We should never have to apply this operation to any procinfo
1211 except the one for the main process. If that ever changes for
1212 any reason, then take out the following clause and replace it
1213 with one that makes sure the ctl_fd is open. */
1214
1215 if (pi->tid != 0)
1216 pi = find_procinfo_or_die (pi->pid, 0);
1217
1218 if (!pi->status_valid)
1219 if (!proc_get_status (pi))
1220 return NULL;
1221
1222 ret = &pi->prstatus.pr_sysentry;
1223 if (save && ret)
1224 memcpy (save, ret, sizeof (sysset_t));
1225
1226 return ret;
1227 }
1228
1229 /* Returns the set of syscalls that are traced /debugged on exit.
1230 Will also copy the syscall set if SAVE is non-zero. */
1231
1232 static sysset_t *
1233 proc_get_traced_sysexit (procinfo *pi, sysset_t *save)
1234 {
1235 sysset_t *ret = NULL;
1236
1237 /* We should never have to apply this operation to any procinfo
1238 except the one for the main process. If that ever changes for
1239 any reason, then take out the following clause and replace it
1240 with one that makes sure the ctl_fd is open. */
1241
1242 if (pi->tid != 0)
1243 pi = find_procinfo_or_die (pi->pid, 0);
1244
1245 if (!pi->status_valid)
1246 if (!proc_get_status (pi))
1247 return NULL;
1248
1249 ret = &pi->prstatus.pr_sysexit;
1250 if (save && ret)
1251 memcpy (save, ret, sizeof (sysset_t));
1252
1253 return ret;
1254 }
1255
1256 /* The current fault (if any) is cleared; the associated signal will
1257 not be sent to the process or LWP when it resumes. Returns
1258 non-zero for success, zero for failure. */
1259
1260 static int
1261 proc_clear_current_fault (procinfo *pi)
1262 {
1263 int win;
1264
1265 /* We should never have to apply this operation to any procinfo
1266 except the one for the main process. If that ever changes for
1267 any reason, then take out the following clause and replace it
1268 with one that makes sure the ctl_fd is open. */
1269
1270 if (pi->tid != 0)
1271 pi = find_procinfo_or_die (pi->pid, 0);
1272
1273 procfs_ctl_t cmd = PCCFAULT;
1274
1275 win = (write (pi->ctl_fd, (void *) &cmd, sizeof (cmd)) == sizeof (cmd));
1276
1277 return win;
1278 }
1279
1280 /* Set the "current signal" that will be delivered next to the
1281 process. NOTE: semantics are different from those of KILL. This
1282 signal will be delivered to the process or LWP immediately when it
1283 is resumed (even if the signal is held/blocked); it will NOT
1284 immediately cause another event of interest, and will NOT first
1285 trap back to the debugger. Returns non-zero for success, zero for
1286 failure. */
1287
1288 static int
1289 proc_set_current_signal (procinfo *pi, int signo)
1290 {
1291 int win;
1292 struct {
1293 procfs_ctl_t cmd;
1294 /* Use char array to avoid alignment issues. */
1295 char sinfo[sizeof (siginfo_t)];
1296 } arg;
1297 siginfo_t mysinfo;
1298 process_stratum_target *wait_target;
1299 ptid_t wait_ptid;
1300 struct target_waitstatus wait_status;
1301
1302 /* We should never have to apply this operation to any procinfo
1303 except the one for the main process. If that ever changes for
1304 any reason, then take out the following clause and replace it
1305 with one that makes sure the ctl_fd is open. */
1306
1307 if (pi->tid != 0)
1308 pi = find_procinfo_or_die (pi->pid, 0);
1309
1310 /* The pointer is just a type alias. */
1311 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
1312 if (wait_target == &the_procfs_target
1313 && wait_ptid == inferior_ptid
1314 && wait_status.kind () == TARGET_WAITKIND_STOPPED
1315 && wait_status.sig () == gdb_signal_from_host (signo)
1316 && proc_get_status (pi)
1317 && pi->prstatus.pr_lwp.pr_info.si_signo == signo
1318 )
1319 /* Use the siginfo associated with the signal being
1320 redelivered. */
1321 memcpy (arg.sinfo, &pi->prstatus.pr_lwp.pr_info, sizeof (siginfo_t));
1322 else
1323 {
1324 mysinfo.si_signo = signo;
1325 mysinfo.si_code = 0;
1326 mysinfo.si_pid = getpid (); /* ?why? */
1327 mysinfo.si_uid = getuid (); /* ?why? */
1328 memcpy (arg.sinfo, &mysinfo, sizeof (siginfo_t));
1329 }
1330
1331 arg.cmd = PCSSIG;
1332 win = (write (pi->ctl_fd, (void *) &arg, sizeof (arg)) == sizeof (arg));
1333
1334 return win;
1335 }
1336
1337 /* The current signal (if any) is cleared, and is not sent to the
1338 process or LWP when it resumes. Returns non-zero for success, zero
1339 for failure. */
1340
1341 static int
1342 proc_clear_current_signal (procinfo *pi)
1343 {
1344 int win;
1345
1346 /* We should never have to apply this operation to any procinfo
1347 except the one for the main process. If that ever changes for
1348 any reason, then take out the following clause and replace it
1349 with one that makes sure the ctl_fd is open. */
1350
1351 if (pi->tid != 0)
1352 pi = find_procinfo_or_die (pi->pid, 0);
1353
1354 struct {
1355 procfs_ctl_t cmd;
1356 /* Use char array to avoid alignment issues. */
1357 char sinfo[sizeof (siginfo_t)];
1358 } arg;
1359 siginfo_t mysinfo;
1360
1361 arg.cmd = PCSSIG;
1362 /* The pointer is just a type alias. */
1363 mysinfo.si_signo = 0;
1364 mysinfo.si_code = 0;
1365 mysinfo.si_errno = 0;
1366 mysinfo.si_pid = getpid (); /* ?why? */
1367 mysinfo.si_uid = getuid (); /* ?why? */
1368 memcpy (arg.sinfo, &mysinfo, sizeof (siginfo_t));
1369
1370 win = (write (pi->ctl_fd, (void *) &arg, sizeof (arg)) == sizeof (arg));
1371
1372 return win;
1373 }
1374
1375 /* Return the general-purpose registers for the process or LWP
1376 corresponding to PI. Upon failure, return NULL. */
1377
1378 static gdb_gregset_t *
1379 proc_get_gregs (procinfo *pi)
1380 {
1381 if (!pi->status_valid || !pi->gregs_valid)
1382 if (!proc_get_status (pi))
1383 return NULL;
1384
1385 return &pi->prstatus.pr_lwp.pr_reg;
1386 }
1387
1388 /* Return the general-purpose registers for the process or LWP
1389 corresponding to PI. Upon failure, return NULL. */
1390
1391 static gdb_fpregset_t *
1392 proc_get_fpregs (procinfo *pi)
1393 {
1394 if (!pi->status_valid || !pi->fpregs_valid)
1395 if (!proc_get_status (pi))
1396 return NULL;
1397
1398 return &pi->prstatus.pr_lwp.pr_fpreg;
1399 }
1400
1401 /* Write the general-purpose registers back to the process or LWP
1402 corresponding to PI. Return non-zero for success, zero for
1403 failure. */
1404
1405 static int
1406 proc_set_gregs (procinfo *pi)
1407 {
1408 gdb_gregset_t *gregs;
1409 int win;
1410
1411 gregs = proc_get_gregs (pi);
1412 if (gregs == NULL)
1413 return 0; /* proc_get_regs has already warned. */
1414
1415 if (pi->ctl_fd == 0 && open_procinfo_files (pi, FD_CTL) == 0)
1416 return 0;
1417 else
1418 {
1419 struct {
1420 procfs_ctl_t cmd;
1421 /* Use char array to avoid alignment issues. */
1422 char gregs[sizeof (gdb_gregset_t)];
1423 } arg;
1424
1425 arg.cmd = PCSREG;
1426 memcpy (&arg.gregs, gregs, sizeof (arg.gregs));
1427 win = (write (pi->ctl_fd, (void *) &arg, sizeof (arg)) == sizeof (arg));
1428 }
1429
1430 /* Policy: writing the registers invalidates our cache. */
1431 pi->gregs_valid = 0;
1432 return win;
1433 }
1434
1435 /* Write the floating-pointer registers back to the process or LWP
1436 corresponding to PI. Return non-zero for success, zero for
1437 failure. */
1438
1439 static int
1440 proc_set_fpregs (procinfo *pi)
1441 {
1442 gdb_fpregset_t *fpregs;
1443 int win;
1444
1445 fpregs = proc_get_fpregs (pi);
1446 if (fpregs == NULL)
1447 return 0; /* proc_get_fpregs has already warned. */
1448
1449 if (pi->ctl_fd == 0 && open_procinfo_files (pi, FD_CTL) == 0)
1450 return 0;
1451 else
1452 {
1453 struct {
1454 procfs_ctl_t cmd;
1455 /* Use char array to avoid alignment issues. */
1456 char fpregs[sizeof (gdb_fpregset_t)];
1457 } arg;
1458
1459 arg.cmd = PCSFPREG;
1460 memcpy (&arg.fpregs, fpregs, sizeof (arg.fpregs));
1461 win = (write (pi->ctl_fd, (void *) &arg, sizeof (arg)) == sizeof (arg));
1462 }
1463
1464 /* Policy: writing the registers invalidates our cache. */
1465 pi->fpregs_valid = 0;
1466 return win;
1467 }
1468
1469 /* Send a signal to the proc or lwp with the semantics of "kill()".
1470 Returns non-zero for success, zero for failure. */
1471
1472 static int
1473 proc_kill (procinfo *pi, int signo)
1474 {
1475 int win;
1476
1477 /* We might conceivably apply this operation to an LWP, and the
1478 LWP's ctl file descriptor might not be open. */
1479
1480 if (pi->ctl_fd == 0 && open_procinfo_files (pi, FD_CTL) == 0)
1481 return 0;
1482 else
1483 {
1484 procfs_ctl_t cmd[2];
1485
1486 cmd[0] = PCKILL;
1487 cmd[1] = signo;
1488 win = (write (pi->ctl_fd, (char *) &cmd, sizeof (cmd)) == sizeof (cmd));
1489 }
1490
1491 return win;
1492 }
1493
1494 /* Find the pid of the process that started this one. Returns the
1495 parent process pid, or zero. */
1496
1497 static int
1498 proc_parent_pid (procinfo *pi)
1499 {
1500 /* We should never have to apply this operation to any procinfo
1501 except the one for the main process. If that ever changes for
1502 any reason, then take out the following clause and replace it
1503 with one that makes sure the ctl_fd is open. */
1504
1505 if (pi->tid != 0)
1506 pi = find_procinfo_or_die (pi->pid, 0);
1507
1508 if (!pi->status_valid)
1509 if (!proc_get_status (pi))
1510 return 0;
1511
1512 return pi->prstatus.pr_ppid;
1513 }
1514
1515 /* Convert a target address (a.k.a. CORE_ADDR) into a host address
1516 (a.k.a void pointer)! */
1517
1518 static void *
1519 procfs_address_to_host_pointer (CORE_ADDR addr)
1520 {
1521 gdbarch *arch = current_inferior ()->arch ();
1522 type *ptr_type = builtin_type (arch)->builtin_data_ptr;
1523 void *ptr;
1524
1525 gdb_assert (sizeof (ptr) == ptr_type->length ());
1526 gdbarch_address_to_pointer (arch, ptr_type, (gdb_byte *) &ptr, addr);
1527 return ptr;
1528 }
1529
1530 static int
1531 proc_set_watchpoint (procinfo *pi, CORE_ADDR addr, int len, int wflags)
1532 {
1533 struct {
1534 procfs_ctl_t cmd;
1535 char watch[sizeof (prwatch_t)];
1536 } arg;
1537 prwatch_t pwatch;
1538
1539 /* NOTE: cagney/2003-02-01: Even more horrible hack. Need to
1540 convert a target address into something that can be stored in a
1541 native data structure. */
1542 pwatch.pr_vaddr = (uintptr_t) procfs_address_to_host_pointer (addr);
1543 pwatch.pr_size = len;
1544 pwatch.pr_wflags = wflags;
1545 arg.cmd = PCWATCH;
1546 memcpy (arg.watch, &pwatch, sizeof (prwatch_t));
1547 return (write (pi->ctl_fd, &arg, sizeof (arg)) == sizeof (arg));
1548 }
1549
1550 /* =============== END, non-thread part of /proc "MODULE" =============== */
1551
1552 /* =================== Thread "MODULE" =================== */
1553
1554 /* Returns the number of threads for the process. */
1555
1556 static int
1557 proc_get_nthreads (procinfo *pi)
1558 {
1559 if (!pi->status_valid)
1560 if (!proc_get_status (pi))
1561 return 0;
1562
1563 /* Only works for the process procinfo, because the LWP procinfos do not
1564 get prstatus filled in. */
1565 if (pi->tid != 0) /* Find the parent process procinfo. */
1566 pi = find_procinfo_or_die (pi->pid, 0);
1567 return pi->prstatus.pr_nlwp;
1568 }
1569
1570 /* Return the ID of the thread that had an event of interest.
1571 (ie. the one that hit a breakpoint or other traced event). All
1572 other things being equal, this should be the ID of a thread that is
1573 currently executing. */
1574
1575 static int
1576 proc_get_current_thread (procinfo *pi)
1577 {
1578 /* Note: this should be applied to the root procinfo for the
1579 process, not to the procinfo for an LWP. If applied to the
1580 procinfo for an LWP, it will simply return that LWP's ID. In
1581 that case, find the parent process procinfo. */
1582
1583 if (pi->tid != 0)
1584 pi = find_procinfo_or_die (pi->pid, 0);
1585
1586 if (!pi->status_valid)
1587 if (!proc_get_status (pi))
1588 return 0;
1589
1590 return pi->prstatus.pr_lwp.pr_lwpid;
1591 }
1592
1593 /* Discover the IDs of all the threads within the process, and create
1594 a procinfo for each of them (chained to the parent). Returns
1595 non-zero for success, zero for failure. */
1596
1597 static int
1598 proc_delete_dead_threads (procinfo *parent, procinfo *thread, void *ignore)
1599 {
1600 if (thread && parent) /* sanity */
1601 {
1602 thread->status_valid = 0;
1603 if (!proc_get_status (thread))
1604 destroy_one_procinfo (&parent->thread_list, thread);
1605 }
1606 return 0; /* keep iterating */
1607 }
1608
1609 static int
1610 proc_update_threads (procinfo *pi)
1611 {
1612 char pathname[MAX_PROC_NAME_SIZE + 16];
1613 struct dirent *direntry;
1614 procinfo *thread;
1615 gdb_dir_up dirp;
1616 int lwpid;
1617
1618 /* We should never have to apply this operation to any procinfo
1619 except the one for the main process. If that ever changes for
1620 any reason, then take out the following clause and replace it
1621 with one that makes sure the ctl_fd is open. */
1622
1623 if (pi->tid != 0)
1624 pi = find_procinfo_or_die (pi->pid, 0);
1625
1626 proc_iterate_over_threads (pi, proc_delete_dead_threads, NULL);
1627
1628 /* Note: this brute-force method was originally devised for Unixware
1629 (support removed since), and will also work on Solaris 2.6 and
1630 2.7. The original comment mentioned the existence of a much
1631 simpler and more elegant way to do this on Solaris, but didn't
1632 point out what that was. */
1633
1634 strcpy (pathname, pi->pathname);
1635 strcat (pathname, "/lwp");
1636 dirp.reset (opendir (pathname));
1637 if (dirp == NULL)
1638 proc_error (pi, "update_threads, opendir", __LINE__);
1639
1640 while ((direntry = readdir (dirp.get ())) != NULL)
1641 if (direntry->d_name[0] != '.') /* skip '.' and '..' */
1642 {
1643 lwpid = atoi (&direntry->d_name[0]);
1644 thread = create_procinfo (pi->pid, lwpid);
1645 if (thread == NULL)
1646 proc_error (pi, "update_threads, create_procinfo", __LINE__);
1647 }
1648 pi->threads_valid = 1;
1649 return 1;
1650 }
1651
1652 /* Given a pointer to a function, call that function once for each lwp
1653 in the procinfo list, until the function returns non-zero, in which
1654 event return the value returned by the function.
1655
1656 Note: this function does NOT call update_threads. If you want to
1657 discover new threads first, you must call that function explicitly.
1658 This function just makes a quick pass over the currently-known
1659 procinfos.
1660
1661 PI is the parent process procinfo. FUNC is the per-thread
1662 function. PTR is an opaque parameter for function. Returns the
1663 first non-zero return value from the callee, or zero. */
1664
1665 static int
1666 proc_iterate_over_threads (procinfo *pi,
1667 int (*func) (procinfo *, procinfo *, void *),
1668 void *ptr)
1669 {
1670 procinfo *thread, *next;
1671 int retval = 0;
1672
1673 /* We should never have to apply this operation to any procinfo
1674 except the one for the main process. If that ever changes for
1675 any reason, then take out the following clause and replace it
1676 with one that makes sure the ctl_fd is open. */
1677
1678 if (pi->tid != 0)
1679 pi = find_procinfo_or_die (pi->pid, 0);
1680
1681 for (thread = pi->thread_list; thread != NULL; thread = next)
1682 {
1683 next = thread->next; /* In case thread is destroyed. */
1684 retval = (*func) (pi, thread, ptr);
1685 if (retval != 0)
1686 break;
1687 }
1688
1689 return retval;
1690 }
1691
1692 /* =================== END, Thread "MODULE" =================== */
1693
1694 /* =================== END, /proc "MODULE" =================== */
1695
1696 /* =================== GDB "MODULE" =================== */
1697
1698 /* Here are all of the gdb target vector functions and their
1699 friends. */
1700
1701 static void do_attach (ptid_t ptid);
1702 static void do_detach ();
1703 static void proc_trace_syscalls_1 (procinfo *pi, int syscallnum,
1704 int entry_or_exit, int mode, int from_tty);
1705
1706 /* Sets up the inferior to be debugged. Registers to trace signals,
1707 hardware faults, and syscalls. Note: does not set RLC flag: caller
1708 may want to customize that. Returns zero for success (note!
1709 unlike most functions in this module); on failure, returns the LINE
1710 NUMBER where it failed! */
1711
1712 static int
1713 procfs_debug_inferior (procinfo *pi)
1714 {
1715 fltset_t traced_faults;
1716 sigset_t traced_signals;
1717 sysset_t *traced_syscall_entries;
1718 sysset_t *traced_syscall_exits;
1719 int status;
1720
1721 /* Register to trace hardware faults in the child. */
1722 prfillset (&traced_faults); /* trace all faults... */
1723 prdelset (&traced_faults, FLTPAGE); /* except page fault. */
1724 if (!proc_set_traced_faults (pi, &traced_faults))
1725 return __LINE__;
1726
1727 /* Initially, register to trace all signals in the child. */
1728 prfillset (&traced_signals);
1729 if (!proc_set_traced_signals (pi, &traced_signals))
1730 return __LINE__;
1731
1732
1733 /* Register to trace the 'exit' system call (on entry). */
1734 traced_syscall_entries = XNEW (sysset_t);
1735 premptyset (traced_syscall_entries);
1736 praddset (traced_syscall_entries, SYS_exit);
1737 praddset (traced_syscall_entries, SYS_lwp_exit);
1738
1739 status = proc_set_traced_sysentry (pi, traced_syscall_entries);
1740 xfree (traced_syscall_entries);
1741 if (!status)
1742 return __LINE__;
1743
1744 /* Method for tracing exec syscalls. */
1745 traced_syscall_exits = XNEW (sysset_t);
1746 premptyset (traced_syscall_exits);
1747 praddset (traced_syscall_exits, SYS_execve);
1748 praddset (traced_syscall_exits, SYS_lwp_create);
1749 praddset (traced_syscall_exits, SYS_lwp_exit);
1750
1751 status = proc_set_traced_sysexit (pi, traced_syscall_exits);
1752 xfree (traced_syscall_exits);
1753 if (!status)
1754 return __LINE__;
1755
1756 return 0;
1757 }
1758
1759 void
1760 procfs_target::attach (const char *args, int from_tty)
1761 {
1762 int pid;
1763
1764 pid = parse_pid_to_attach (args);
1765
1766 if (pid == getpid ())
1767 error (_("Attaching GDB to itself is not a good idea..."));
1768
1769 /* Push the target if needed, ensure it gets un-pushed it if attach fails. */
1770 inferior *inf = current_inferior ();
1771 target_unpush_up unpusher;
1772 if (!inf->target_is_pushed (this))
1773 {
1774 inf->push_target (this);
1775 unpusher.reset (this);
1776 }
1777
1778 target_announce_attach (from_tty, pid);
1779
1780 do_attach (ptid_t (pid));
1781
1782 /* Everything went fine, keep the target pushed. */
1783 unpusher.release ();
1784 }
1785
1786 void
1787 procfs_target::detach (inferior *inf, int from_tty)
1788 {
1789 target_announce_detach (from_tty);
1790
1791 do_detach ();
1792
1793 switch_to_no_thread ();
1794 detach_inferior (inf);
1795 maybe_unpush_target ();
1796 }
1797
1798 static void
1799 do_attach (ptid_t ptid)
1800 {
1801 procinfo *pi;
1802 struct inferior *inf;
1803 int fail;
1804 int lwpid;
1805
1806 pi = create_procinfo (ptid.pid (), 0);
1807 if (pi == NULL)
1808 perror (_("procfs: out of memory in 'attach'"));
1809
1810 if (!open_procinfo_files (pi, FD_CTL))
1811 {
1812 int saved_errno = errno;
1813 std::string errmsg
1814 = string_printf ("procfs:%d -- do_attach: couldn't open /proc "
1815 "file for process %d", __LINE__, ptid.pid ());
1816 errno = saved_errno;
1817 dead_procinfo (pi, errmsg.c_str (), NOKILL);
1818 }
1819
1820 /* Stop the process (if it isn't already stopped). */
1821 if (proc_flags (pi) & (PR_STOPPED | PR_ISTOP))
1822 {
1823 pi->was_stopped = 1;
1824 proc_prettyprint_why (proc_why (pi), proc_what (pi), 1);
1825 }
1826 else
1827 {
1828 pi->was_stopped = 0;
1829 /* Set the process to run again when we close it. */
1830 if (!proc_set_run_on_last_close (pi))
1831 dead_procinfo (pi, "do_attach: couldn't set RLC.", NOKILL);
1832
1833 /* Now stop the process. */
1834 if (!proc_stop_process (pi))
1835 dead_procinfo (pi, "do_attach: couldn't stop the process.", NOKILL);
1836 pi->ignore_next_sigstop = 1;
1837 }
1838 /* Save some of the /proc state to be restored if we detach. */
1839 if (!proc_get_traced_faults (pi, &pi->saved_fltset))
1840 dead_procinfo (pi, "do_attach: couldn't save traced faults.", NOKILL);
1841 if (!proc_get_traced_signals (pi, &pi->saved_sigset))
1842 dead_procinfo (pi, "do_attach: couldn't save traced signals.", NOKILL);
1843 if (!proc_get_traced_sysentry (pi, pi->saved_entryset))
1844 dead_procinfo (pi, "do_attach: couldn't save traced syscall entries.",
1845 NOKILL);
1846 if (!proc_get_traced_sysexit (pi, pi->saved_exitset))
1847 dead_procinfo (pi, "do_attach: couldn't save traced syscall exits.",
1848 NOKILL);
1849 if (!proc_get_held_signals (pi, &pi->saved_sighold))
1850 dead_procinfo (pi, "do_attach: couldn't save held signals.", NOKILL);
1851
1852 fail = procfs_debug_inferior (pi);
1853 if (fail != 0)
1854 dead_procinfo (pi, "do_attach: failed in procfs_debug_inferior", NOKILL);
1855
1856 inf = current_inferior ();
1857 inferior_appeared (inf, pi->pid);
1858 /* Let GDB know that the inferior was attached. */
1859 inf->attach_flag = true;
1860
1861 /* Create a procinfo for the current lwp. */
1862 lwpid = proc_get_current_thread (pi);
1863 create_procinfo (pi->pid, lwpid);
1864
1865 /* Add it to gdb's thread list. */
1866 ptid = ptid_t (pi->pid, lwpid, 0);
1867 thread_info *thr = add_thread (&the_procfs_target, ptid);
1868 switch_to_thread (thr);
1869 }
1870
1871 static void
1872 do_detach ()
1873 {
1874 procinfo *pi;
1875
1876 /* Find procinfo for the main process. */
1877 pi = find_procinfo_or_die (inferior_ptid.pid (),
1878 0); /* FIXME: threads */
1879
1880 if (!proc_set_traced_signals (pi, &pi->saved_sigset))
1881 proc_warn (pi, "do_detach, set_traced_signal", __LINE__);
1882
1883 if (!proc_set_traced_faults (pi, &pi->saved_fltset))
1884 proc_warn (pi, "do_detach, set_traced_faults", __LINE__);
1885
1886 if (!proc_set_traced_sysentry (pi, pi->saved_entryset))
1887 proc_warn (pi, "do_detach, set_traced_sysentry", __LINE__);
1888
1889 if (!proc_set_traced_sysexit (pi, pi->saved_exitset))
1890 proc_warn (pi, "do_detach, set_traced_sysexit", __LINE__);
1891
1892 if (!proc_set_held_signals (pi, &pi->saved_sighold))
1893 proc_warn (pi, "do_detach, set_held_signals", __LINE__);
1894
1895 if (proc_flags (pi) & (PR_STOPPED | PR_ISTOP))
1896 if (!(pi->was_stopped)
1897 || query (_("Was stopped when attached, make it runnable again? ")))
1898 {
1899 /* Clear any pending signal. */
1900 if (!proc_clear_current_fault (pi))
1901 proc_warn (pi, "do_detach, clear_current_fault", __LINE__);
1902
1903 if (!proc_clear_current_signal (pi))
1904 proc_warn (pi, "do_detach, clear_current_signal", __LINE__);
1905
1906 if (!proc_set_run_on_last_close (pi))
1907 proc_warn (pi, "do_detach, set_rlc", __LINE__);
1908 }
1909
1910 destroy_procinfo (pi);
1911 }
1912
1913 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
1914 for all registers.
1915
1916 NOTE: Since the /proc interface cannot give us individual
1917 registers, we pay no attention to REGNUM, and just fetch them all.
1918 This results in the possibility that we will do unnecessarily many
1919 fetches, since we may be called repeatedly for individual
1920 registers. So we cache the results, and mark the cache invalid
1921 when the process is resumed. */
1922
1923 void
1924 procfs_target::fetch_registers (struct regcache *regcache, int regnum)
1925 {
1926 gdb_gregset_t *gregs;
1927 procinfo *pi;
1928 ptid_t ptid = regcache->ptid ();
1929 int pid = ptid.pid ();
1930 int tid = ptid.lwp ();
1931 struct gdbarch *gdbarch = regcache->arch ();
1932
1933 pi = find_procinfo_or_die (pid, tid);
1934
1935 if (pi == NULL)
1936 error (_("procfs: fetch_registers failed to find procinfo for %s"),
1937 target_pid_to_str (ptid).c_str ());
1938
1939 gregs = proc_get_gregs (pi);
1940 if (gregs == NULL)
1941 proc_error (pi, "fetch_registers, get_gregs", __LINE__);
1942
1943 supply_gregset (regcache, (const gdb_gregset_t *) gregs);
1944
1945 if (gdbarch_fp0_regnum (gdbarch) >= 0) /* Do we have an FPU? */
1946 {
1947 gdb_fpregset_t *fpregs;
1948
1949 if ((regnum >= 0 && regnum < gdbarch_fp0_regnum (gdbarch))
1950 || regnum == gdbarch_pc_regnum (gdbarch)
1951 || regnum == gdbarch_sp_regnum (gdbarch))
1952 return; /* Not a floating point register. */
1953
1954 fpregs = proc_get_fpregs (pi);
1955 if (fpregs == NULL)
1956 proc_error (pi, "fetch_registers, get_fpregs", __LINE__);
1957
1958 supply_fpregset (regcache, (const gdb_fpregset_t *) fpregs);
1959 }
1960 }
1961
1962 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
1963 this for all registers.
1964
1965 NOTE: Since the /proc interface will not read individual registers,
1966 we will cache these requests until the process is resumed, and only
1967 then write them back to the inferior process.
1968
1969 FIXME: is that a really bad idea? Have to think about cases where
1970 writing one register might affect the value of others, etc. */
1971
1972 void
1973 procfs_target::store_registers (struct regcache *regcache, int regnum)
1974 {
1975 gdb_gregset_t *gregs;
1976 procinfo *pi;
1977 ptid_t ptid = regcache->ptid ();
1978 int pid = ptid.pid ();
1979 int tid = ptid.lwp ();
1980 struct gdbarch *gdbarch = regcache->arch ();
1981
1982 pi = find_procinfo_or_die (pid, tid);
1983
1984 if (pi == NULL)
1985 error (_("procfs: store_registers: failed to find procinfo for %s"),
1986 target_pid_to_str (ptid).c_str ());
1987
1988 gregs = proc_get_gregs (pi);
1989 if (gregs == NULL)
1990 proc_error (pi, "store_registers, get_gregs", __LINE__);
1991
1992 fill_gregset (regcache, gregs, regnum);
1993 if (!proc_set_gregs (pi))
1994 proc_error (pi, "store_registers, set_gregs", __LINE__);
1995
1996 if (gdbarch_fp0_regnum (gdbarch) >= 0) /* Do we have an FPU? */
1997 {
1998 gdb_fpregset_t *fpregs;
1999
2000 if ((regnum >= 0 && regnum < gdbarch_fp0_regnum (gdbarch))
2001 || regnum == gdbarch_pc_regnum (gdbarch)
2002 || regnum == gdbarch_sp_regnum (gdbarch))
2003 return; /* Not a floating point register. */
2004
2005 fpregs = proc_get_fpregs (pi);
2006 if (fpregs == NULL)
2007 proc_error (pi, "store_registers, get_fpregs", __LINE__);
2008
2009 fill_fpregset (regcache, fpregs, regnum);
2010 if (!proc_set_fpregs (pi))
2011 proc_error (pi, "store_registers, set_fpregs", __LINE__);
2012 }
2013 }
2014
2015 /* Retrieve the next stop event from the child process. If child has
2016 not stopped yet, wait for it to stop. Translate /proc eventcodes
2017 (or possibly wait eventcodes) into gdb internal event codes.
2018 Returns the id of process (and possibly thread) that incurred the
2019 event. Event codes are returned through a pointer parameter. */
2020
2021 ptid_t
2022 procfs_target::wait (ptid_t ptid, struct target_waitstatus *status,
2023 target_wait_flags options)
2024 {
2025 /* First cut: loosely based on original version 2.1. */
2026 procinfo *pi;
2027 int wstat;
2028 int temp_tid;
2029 ptid_t retval, temp_ptid;
2030 int why, what, flags;
2031 int retry = 0;
2032
2033 wait_again:
2034
2035 retry++;
2036 wstat = 0;
2037 retval = ptid_t (-1);
2038
2039 /* Find procinfo for main process. */
2040
2041 /* procfs_target currently only supports one inferior. */
2042 inferior *inf = current_inferior ();
2043
2044 pi = find_procinfo_or_die (inf->pid, 0);
2045 if (pi)
2046 {
2047 /* We must assume that the status is stale now... */
2048 pi->status_valid = 0;
2049 pi->gregs_valid = 0;
2050 pi->fpregs_valid = 0;
2051
2052 #if 0 /* just try this out... */
2053 flags = proc_flags (pi);
2054 why = proc_why (pi);
2055 if ((flags & PR_STOPPED) && (why == PR_REQUESTED))
2056 pi->status_valid = 0; /* re-read again, IMMEDIATELY... */
2057 #endif
2058 /* If child is not stopped, wait for it to stop. */
2059 if (!(proc_flags (pi) & (PR_STOPPED | PR_ISTOP))
2060 && !proc_wait_for_stop (pi))
2061 {
2062 /* wait_for_stop failed: has the child terminated? */
2063 if (errno == ENOENT)
2064 {
2065 int wait_retval;
2066
2067 /* /proc file not found; presumably child has terminated. */
2068 wait_retval = ::wait (&wstat); /* "wait" for the child's exit. */
2069
2070 /* Wrong child? */
2071 if (wait_retval != inf->pid)
2072 error (_("procfs: couldn't stop "
2073 "process %d: wait returned %d."),
2074 inf->pid, wait_retval);
2075 /* FIXME: might I not just use waitpid?
2076 Or try find_procinfo to see if I know about this child? */
2077 retval = ptid_t (wait_retval);
2078 }
2079 else if (errno == EINTR)
2080 goto wait_again;
2081 else
2082 {
2083 /* Unknown error from wait_for_stop. */
2084 proc_error (pi, "target_wait (wait_for_stop)", __LINE__);
2085 }
2086 }
2087 else
2088 {
2089 /* This long block is reached if either:
2090 a) the child was already stopped, or
2091 b) we successfully waited for the child with wait_for_stop.
2092 This block will analyze the /proc status, and translate it
2093 into a waitstatus for GDB.
2094
2095 If we actually had to call wait because the /proc file
2096 is gone (child terminated), then we skip this block,
2097 because we already have a waitstatus. */
2098
2099 flags = proc_flags (pi);
2100 why = proc_why (pi);
2101 what = proc_what (pi);
2102
2103 if (flags & (PR_STOPPED | PR_ISTOP))
2104 {
2105 /* If it's running async (for single_thread control),
2106 set it back to normal again. */
2107 if (flags & PR_ASYNC)
2108 if (!proc_unset_async (pi))
2109 proc_error (pi, "target_wait, unset_async", __LINE__);
2110
2111 if (info_verbose)
2112 proc_prettyprint_why (why, what, 1);
2113
2114 /* The 'pid' we will return to GDB is composed of
2115 the process ID plus the lwp ID. */
2116 retval = ptid_t (pi->pid, proc_get_current_thread (pi), 0);
2117
2118 switch (why) {
2119 case PR_SIGNALLED:
2120 wstat = (what << 8) | 0177;
2121 break;
2122 case PR_SYSENTRY:
2123 if (what == SYS_lwp_exit)
2124 {
2125 delete_thread (this->find_thread (retval));
2126 proc_resume (pi, ptid, 0, GDB_SIGNAL_0);
2127 goto wait_again;
2128 }
2129 else if (what == SYS_exit)
2130 {
2131 /* Handle SYS_exit call only. */
2132 /* Stopped at entry to SYS_exit.
2133 Make it runnable, resume it, then use
2134 the wait system call to get its exit code.
2135 Proc_run_process always clears the current
2136 fault and signal.
2137 Then return its exit status. */
2138 pi->status_valid = 0;
2139 wstat = 0;
2140 /* FIXME: what we should do is return
2141 TARGET_WAITKIND_SPURIOUS. */
2142 if (!proc_run_process (pi, 0, 0))
2143 proc_error (pi, "target_wait, run_process", __LINE__);
2144
2145 if (inf->attach_flag)
2146 {
2147 /* Don't call wait: simulate waiting for exit,
2148 return a "success" exit code. Bogus: what if
2149 it returns something else? */
2150 wstat = 0;
2151 retval = ptid_t (inf->pid); /* ? ? ? */
2152 }
2153 else
2154 {
2155 int temp = ::wait (&wstat);
2156
2157 /* FIXME: shouldn't I make sure I get the right
2158 event from the right process? If (for
2159 instance) I have killed an earlier inferior
2160 process but failed to clean up after it
2161 somehow, I could get its termination event
2162 here. */
2163
2164 /* If wait returns -1, that's what we return
2165 to GDB. */
2166 if (temp < 0)
2167 retval = ptid_t (temp);
2168 }
2169 }
2170 else
2171 {
2172 gdb_printf (_("procfs: trapped on entry to "));
2173 proc_prettyprint_syscall (proc_what (pi), 0);
2174 gdb_printf ("\n");
2175
2176 long i, nsysargs, *sysargs;
2177
2178 nsysargs = proc_nsysarg (pi);
2179 sysargs = proc_sysargs (pi);
2180
2181 if (nsysargs > 0 && sysargs != NULL)
2182 {
2183 gdb_printf (_("%ld syscall arguments:\n"),
2184 nsysargs);
2185 for (i = 0; i < nsysargs; i++)
2186 gdb_printf ("#%ld: 0x%08lx\n",
2187 i, sysargs[i]);
2188 }
2189
2190 proc_resume (pi, ptid, 0, GDB_SIGNAL_0);
2191 goto wait_again;
2192 }
2193 break;
2194 case PR_SYSEXIT:
2195 if (what == SYS_execve)
2196 {
2197 /* Hopefully this is our own "fork-child" execing
2198 the real child. Hoax this event into a trap, and
2199 GDB will see the child about to execute its start
2200 address. */
2201 wstat = (SIGTRAP << 8) | 0177;
2202 }
2203 else if (what == SYS_lwp_create)
2204 {
2205 /* This syscall is somewhat like fork/exec. We
2206 will get the event twice: once for the parent
2207 LWP, and once for the child. We should already
2208 know about the parent LWP, but the child will
2209 be new to us. So, whenever we get this event,
2210 if it represents a new thread, simply add the
2211 thread to the list. */
2212
2213 /* If not in procinfo list, add it. */
2214 temp_tid = proc_get_current_thread (pi);
2215 if (!find_procinfo (pi->pid, temp_tid))
2216 create_procinfo (pi->pid, temp_tid);
2217
2218 temp_ptid = ptid_t (pi->pid, temp_tid, 0);
2219 /* If not in GDB's thread list, add it. */
2220 if (!in_thread_list (this, temp_ptid))
2221 add_thread (this, temp_ptid);
2222
2223 proc_resume (pi, ptid, 0, GDB_SIGNAL_0);
2224 goto wait_again;
2225 }
2226 else if (what == SYS_lwp_exit)
2227 {
2228 delete_thread (this->find_thread (retval));
2229 status->set_spurious ();
2230 return retval;
2231 }
2232 else
2233 {
2234 gdb_printf (_("procfs: trapped on exit from "));
2235 proc_prettyprint_syscall (proc_what (pi), 0);
2236 gdb_printf ("\n");
2237
2238 long i, nsysargs, *sysargs;
2239
2240 nsysargs = proc_nsysarg (pi);
2241 sysargs = proc_sysargs (pi);
2242
2243 if (nsysargs > 0 && sysargs != NULL)
2244 {
2245 gdb_printf (_("%ld syscall arguments:\n"),
2246 nsysargs);
2247 for (i = 0; i < nsysargs; i++)
2248 gdb_printf ("#%ld: 0x%08lx\n",
2249 i, sysargs[i]);
2250 }
2251
2252 proc_resume (pi, ptid, 0, GDB_SIGNAL_0);
2253 goto wait_again;
2254 }
2255 break;
2256 case PR_REQUESTED:
2257 #if 0 /* FIXME */
2258 wstat = (SIGSTOP << 8) | 0177;
2259 break;
2260 #else
2261 if (retry < 5)
2262 {
2263 gdb_printf (_("Retry #%d:\n"), retry);
2264 pi->status_valid = 0;
2265 goto wait_again;
2266 }
2267 else
2268 {
2269 /* If not in procinfo list, add it. */
2270 temp_tid = proc_get_current_thread (pi);
2271 if (!find_procinfo (pi->pid, temp_tid))
2272 create_procinfo (pi->pid, temp_tid);
2273
2274 /* If not in GDB's thread list, add it. */
2275 temp_ptid = ptid_t (pi->pid, temp_tid, 0);
2276 if (!in_thread_list (this, temp_ptid))
2277 add_thread (this, temp_ptid);
2278
2279 status->set_stopped (GDB_SIGNAL_0);
2280 return retval;
2281 }
2282 #endif
2283 case PR_JOBCONTROL:
2284 wstat = (what << 8) | 0177;
2285 break;
2286 case PR_FAULTED:
2287 {
2288 int signo = pi->prstatus.pr_lwp.pr_info.si_signo;
2289 if (signo != 0)
2290 wstat = (signo << 8) | 0177;
2291 }
2292 break;
2293 default: /* switch (why) unmatched */
2294 gdb_printf ("procfs:%d -- ", __LINE__);
2295 gdb_printf (_("child stopped for unknown reason:\n"));
2296 proc_prettyprint_why (why, what, 1);
2297 error (_("... giving up..."));
2298 break;
2299 }
2300 /* Got this far without error: If retval isn't in the
2301 threads database, add it. */
2302 if (retval.pid () > 0
2303 && !in_thread_list (this, retval))
2304 {
2305 /* We have a new thread. We need to add it both to
2306 GDB's list and to our own. If we don't create a
2307 procinfo, resume may be unhappy later. */
2308 add_thread (this, retval);
2309 if (find_procinfo (retval.pid (),
2310 retval.lwp ()) == NULL)
2311 create_procinfo (retval.pid (),
2312 retval.lwp ());
2313 }
2314 }
2315 else /* Flags do not indicate STOPPED. */
2316 {
2317 /* surely this can't happen... */
2318 gdb_printf ("procfs:%d -- process not stopped.\n",
2319 __LINE__);
2320 proc_prettyprint_flags (flags, 1);
2321 error (_("procfs: ...giving up..."));
2322 }
2323 }
2324
2325 if (status)
2326 *status = host_status_to_waitstatus (wstat);
2327 }
2328
2329 return retval;
2330 }
2331
2332 /* Perform a partial transfer to/from the specified object. For
2333 memory transfers, fall back to the old memory xfer functions. */
2334
2335 enum target_xfer_status
2336 procfs_target::xfer_partial (enum target_object object,
2337 const char *annex, gdb_byte *readbuf,
2338 const gdb_byte *writebuf, ULONGEST offset,
2339 ULONGEST len, ULONGEST *xfered_len)
2340 {
2341 switch (object)
2342 {
2343 case TARGET_OBJECT_MEMORY:
2344 return procfs_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
2345
2346 case TARGET_OBJECT_AUXV:
2347 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
2348 offset, len, xfered_len);
2349
2350 default:
2351 return this->beneath ()->xfer_partial (object, annex,
2352 readbuf, writebuf, offset, len,
2353 xfered_len);
2354 }
2355 }
2356
2357 /* Helper for procfs_xfer_partial that handles memory transfers.
2358 Arguments are like target_xfer_partial. */
2359
2360 static enum target_xfer_status
2361 procfs_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
2362 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
2363 {
2364 procinfo *pi;
2365 int nbytes;
2366
2367 /* Find procinfo for main process. */
2368 pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
2369 if (pi->as_fd == 0 && open_procinfo_files (pi, FD_AS) == 0)
2370 {
2371 proc_warn (pi, "xfer_memory, open_proc_files", __LINE__);
2372 return TARGET_XFER_E_IO;
2373 }
2374
2375 if (lseek (pi->as_fd, (off_t) memaddr, SEEK_SET) != (off_t) memaddr)
2376 return TARGET_XFER_E_IO;
2377
2378 if (writebuf != NULL)
2379 {
2380 PROCFS_NOTE ("write memory:\n");
2381 nbytes = write (pi->as_fd, writebuf, len);
2382 }
2383 else
2384 {
2385 PROCFS_NOTE ("read memory:\n");
2386 nbytes = read (pi->as_fd, readbuf, len);
2387 }
2388 if (nbytes <= 0)
2389 return TARGET_XFER_E_IO;
2390 *xfered_len = nbytes;
2391 return TARGET_XFER_OK;
2392 }
2393
2394 /* Called by target_resume before making child runnable. Mark cached
2395 registers and status's invalid. If there are "dirty" caches that
2396 need to be written back to the child process, do that.
2397
2398 File descriptors are also cached. As they are a limited resource,
2399 we cannot hold onto them indefinitely. However, as they are
2400 expensive to open, we don't want to throw them away
2401 indiscriminately either. As a compromise, we will keep the file
2402 descriptors for the parent process, but discard any file
2403 descriptors we may have accumulated for the threads.
2404
2405 As this function is called by iterate_over_threads, it always
2406 returns zero (so that iterate_over_threads will keep
2407 iterating). */
2408
2409 static int
2410 invalidate_cache (procinfo *parent, procinfo *pi, void *ptr)
2411 {
2412 /* About to run the child; invalidate caches and do any other
2413 cleanup. */
2414
2415 if (parent != NULL)
2416 {
2417 /* The presence of a parent indicates that this is an LWP.
2418 Close any file descriptors that it might have open.
2419 We don't do this to the master (parent) procinfo. */
2420
2421 close_procinfo_files (pi);
2422 }
2423 pi->gregs_valid = 0;
2424 pi->fpregs_valid = 0;
2425 pi->status_valid = 0;
2426 pi->threads_valid = 0;
2427
2428 return 0;
2429 }
2430
2431 /* Make child process PI runnable.
2432
2433 If STEP is true, then arrange for the child to stop again after
2434 executing a single instruction. SCOPE_PTID, STEP and SIGNO are
2435 like in the target_resume interface. */
2436
2437 static void
2438 proc_resume (procinfo *pi, ptid_t scope_ptid, int step, enum gdb_signal signo)
2439 {
2440 procinfo *thread;
2441 int native_signo;
2442
2443 /* FIXME: Check/reword. */
2444
2445 /* prrun.prflags |= PRCFAULT; clear current fault.
2446 PRCFAULT may be replaced by a PCCFAULT call (proc_clear_current_fault)
2447 This basically leaves PRSTEP and PRCSIG.
2448 PRCSIG is like PCSSIG (proc_clear_current_signal).
2449 So basically PR_STEP is the sole argument that must be passed
2450 to proc_run_process. */
2451
2452 errno = 0;
2453
2454 /* Convert signal to host numbering. */
2455 if (signo == 0 || (signo == GDB_SIGNAL_STOP && pi->ignore_next_sigstop))
2456 native_signo = 0;
2457 else
2458 native_signo = gdb_signal_to_host (signo);
2459
2460 pi->ignore_next_sigstop = 0;
2461
2462 /* Running the process voids all cached registers and status. */
2463 /* Void the threads' caches first. */
2464 proc_iterate_over_threads (pi, invalidate_cache, NULL);
2465 /* Void the process procinfo's caches. */
2466 invalidate_cache (NULL, pi, NULL);
2467
2468 if (scope_ptid.pid () != -1)
2469 {
2470 /* Resume a specific thread, presumably suppressing the
2471 others. */
2472 thread = find_procinfo (scope_ptid.pid (), scope_ptid.lwp ());
2473 if (thread != NULL)
2474 {
2475 if (thread->tid != 0)
2476 {
2477 /* We're to resume a specific thread, and not the
2478 others. Set the child process's PR_ASYNC flag. */
2479 if (!proc_set_async (pi))
2480 proc_error (pi, "target_resume, set_async", __LINE__);
2481 pi = thread; /* Substitute the thread's procinfo
2482 for run. */
2483 }
2484 }
2485 }
2486
2487 if (!proc_run_process (pi, step, native_signo))
2488 {
2489 if (errno == EBUSY)
2490 warning (_("resume: target already running. "
2491 "Pretend to resume, and hope for the best!"));
2492 else
2493 proc_error (pi, "target_resume", __LINE__);
2494 }
2495 }
2496
2497 /* Implementation of target_ops::resume. */
2498
2499 void
2500 procfs_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo)
2501 {
2502 /* Find procinfo for main process. */
2503 procinfo *pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
2504
2505 proc_resume (pi, scope_ptid, step, signo);
2506 }
2507
2508 /* Set up to trace signals in the child process. */
2509
2510 void
2511 procfs_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2512 {
2513 sigset_t signals;
2514 procinfo *pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
2515 int signo;
2516
2517 prfillset (&signals);
2518
2519 for (signo = 0; signo < NSIG; signo++)
2520 {
2521 int target_signo = gdb_signal_from_host (signo);
2522 if (target_signo < pass_signals.size () && pass_signals[target_signo])
2523 prdelset (&signals, signo);
2524 }
2525
2526 if (!proc_set_traced_signals (pi, &signals))
2527 proc_error (pi, "pass_signals", __LINE__);
2528 }
2529
2530 /* Print status information about the child process. */
2531
2532 void
2533 procfs_target::files_info ()
2534 {
2535 struct inferior *inf = current_inferior ();
2536
2537 gdb_printf (_("\tUsing the running image of %s %s via /proc.\n"),
2538 inf->attach_flag? "attached": "child",
2539 target_pid_to_str (ptid_t (inf->pid)).c_str ());
2540 }
2541
2542 /* Make it die. Wait for it to die. Clean up after it. Note: this
2543 should only be applied to the real process, not to an LWP, because
2544 of the check for parent-process. If we need this to work for an
2545 LWP, it needs some more logic. */
2546
2547 static void
2548 unconditionally_kill_inferior (procinfo *pi)
2549 {
2550 int parent_pid;
2551
2552 parent_pid = proc_parent_pid (pi);
2553 if (!proc_kill (pi, SIGKILL))
2554 proc_error (pi, "unconditionally_kill, proc_kill", __LINE__);
2555 destroy_procinfo (pi);
2556
2557 /* If pi is GDB's child, wait for it to die. */
2558 if (parent_pid == getpid ())
2559 /* FIXME: should we use waitpid to make sure we get the right event?
2560 Should we check the returned event? */
2561 {
2562 #if 0
2563 int status, ret;
2564
2565 ret = waitpid (pi->pid, &status, 0);
2566 #else
2567 wait (NULL);
2568 #endif
2569 }
2570 }
2571
2572 /* We're done debugging it, and we want it to go away. Then we want
2573 GDB to forget all about it. */
2574
2575 void
2576 procfs_target::kill ()
2577 {
2578 if (inferior_ptid != null_ptid) /* ? */
2579 {
2580 /* Find procinfo for main process. */
2581 procinfo *pi = find_procinfo (inferior_ptid.pid (), 0);
2582
2583 if (pi)
2584 unconditionally_kill_inferior (pi);
2585 target_mourn_inferior (inferior_ptid);
2586 }
2587 }
2588
2589 /* Forget we ever debugged this thing! */
2590
2591 void
2592 procfs_target::mourn_inferior ()
2593 {
2594 procinfo *pi;
2595
2596 if (inferior_ptid != null_ptid)
2597 {
2598 /* Find procinfo for main process. */
2599 pi = find_procinfo (inferior_ptid.pid (), 0);
2600 if (pi)
2601 destroy_procinfo (pi);
2602 }
2603
2604 generic_mourn_inferior ();
2605
2606 maybe_unpush_target ();
2607 }
2608
2609 /* When GDB forks to create a runnable inferior process, this function
2610 is called on the parent side of the fork. It's job is to do
2611 whatever is necessary to make the child ready to be debugged, and
2612 then wait for the child to synchronize. */
2613
2614 void
2615 procfs_target::procfs_init_inferior (int pid)
2616 {
2617 procinfo *pi;
2618 int fail;
2619 int lwpid;
2620
2621 pi = create_procinfo (pid, 0);
2622 if (pi == NULL)
2623 perror (_("procfs: out of memory in 'init_inferior'"));
2624
2625 if (!open_procinfo_files (pi, FD_CTL))
2626 proc_error (pi, "init_inferior, open_proc_files", __LINE__);
2627
2628 /*
2629 xmalloc // done
2630 open_procinfo_files // done
2631 link list // done
2632 prfillset (trace)
2633 procfs_notice_signals
2634 prfillset (fault)
2635 prdelset (FLTPAGE)
2636 */
2637
2638 /* If not stopped yet, wait for it to stop. */
2639 if (!(proc_flags (pi) & PR_STOPPED) && !(proc_wait_for_stop (pi)))
2640 dead_procinfo (pi, "init_inferior: wait_for_stop failed", KILL);
2641
2642 /* Save some of the /proc state to be restored if we detach. */
2643 /* FIXME: Why? In case another debugger was debugging it?
2644 We're it's parent, for Ghu's sake! */
2645 if (!proc_get_traced_signals (pi, &pi->saved_sigset))
2646 proc_error (pi, "init_inferior, get_traced_signals", __LINE__);
2647 if (!proc_get_held_signals (pi, &pi->saved_sighold))
2648 proc_error (pi, "init_inferior, get_held_signals", __LINE__);
2649 if (!proc_get_traced_faults (pi, &pi->saved_fltset))
2650 proc_error (pi, "init_inferior, get_traced_faults", __LINE__);
2651 if (!proc_get_traced_sysentry (pi, pi->saved_entryset))
2652 proc_error (pi, "init_inferior, get_traced_sysentry", __LINE__);
2653 if (!proc_get_traced_sysexit (pi, pi->saved_exitset))
2654 proc_error (pi, "init_inferior, get_traced_sysexit", __LINE__);
2655
2656 fail = procfs_debug_inferior (pi);
2657 if (fail != 0)
2658 proc_error (pi, "init_inferior (procfs_debug_inferior)", fail);
2659
2660 /* FIXME: logically, we should really be turning OFF run-on-last-close,
2661 and possibly even turning ON kill-on-last-close at this point. But
2662 I can't make that change without careful testing which I don't have
2663 time to do right now... */
2664 /* Turn on run-on-last-close flag so that the child
2665 will die if GDB goes away for some reason. */
2666 if (!proc_set_run_on_last_close (pi))
2667 proc_error (pi, "init_inferior, set_RLC", __LINE__);
2668
2669 /* We now have have access to the lwpid of the main thread/lwp. */
2670 lwpid = proc_get_current_thread (pi);
2671
2672 /* Create a procinfo for the main lwp. */
2673 create_procinfo (pid, lwpid);
2674
2675 /* We already have a main thread registered in the thread table at
2676 this point, but it didn't have any lwp info yet. Notify the core
2677 about it. This changes inferior_ptid as well. */
2678 thread_change_ptid (this, ptid_t (pid), ptid_t (pid, lwpid, 0));
2679
2680 gdb_startup_inferior (pid, START_INFERIOR_TRAPS_EXPECTED);
2681 }
2682
2683 /* When GDB forks to create a new process, this function is called on
2684 the child side of the fork before GDB exec's the user program. Its
2685 job is to make the child minimally debuggable, so that the parent
2686 GDB process can connect to the child and take over. This function
2687 should do only the minimum to make that possible, and to
2688 synchronize with the parent process. The parent process should
2689 take care of the details. */
2690
2691 static void
2692 procfs_set_exec_trap (void)
2693 {
2694 /* This routine called on the child side (inferior side)
2695 after GDB forks the inferior. It must use only local variables,
2696 because it may be sharing data space with its parent. */
2697
2698 procinfo *pi;
2699 sysset_t *exitset;
2700
2701 pi = create_procinfo (getpid (), 0);
2702 if (pi == NULL)
2703 perror_with_name (_("procfs: create_procinfo failed in child"));
2704
2705 if (open_procinfo_files (pi, FD_CTL) == 0)
2706 {
2707 proc_warn (pi, "set_exec_trap, open_proc_files", __LINE__);
2708 gdb_flush (gdb_stderr);
2709 /* No need to call "dead_procinfo", because we're going to
2710 exit. */
2711 _exit (127);
2712 }
2713
2714 exitset = XNEW (sysset_t);
2715 premptyset (exitset);
2716 praddset (exitset, SYS_execve);
2717
2718 if (!proc_set_traced_sysexit (pi, exitset))
2719 {
2720 proc_warn (pi, "set_exec_trap, set_traced_sysexit", __LINE__);
2721 gdb_flush (gdb_stderr);
2722 _exit (127);
2723 }
2724
2725 /* FIXME: should this be done in the parent instead? */
2726 /* Turn off inherit on fork flag so that all grand-children
2727 of gdb start with tracing flags cleared. */
2728 if (!proc_unset_inherit_on_fork (pi))
2729 proc_warn (pi, "set_exec_trap, unset_inherit", __LINE__);
2730
2731 /* Turn off run on last close flag, so that the child process
2732 cannot run away just because we close our handle on it.
2733 We want it to wait for the parent to attach. */
2734 if (!proc_unset_run_on_last_close (pi))
2735 proc_warn (pi, "set_exec_trap, unset_RLC", __LINE__);
2736
2737 /* FIXME: No need to destroy the procinfo --
2738 we have our own address space, and we're about to do an exec! */
2739 /*destroy_procinfo (pi);*/
2740 }
2741
2742 /* Dummy function to be sure fork_inferior uses fork(2) and not vfork(2).
2743 This avoids a possible deadlock gdb and its vfork'ed child. */
2744 static void
2745 procfs_pre_trace (void)
2746 {
2747 }
2748
2749 /* This function is called BEFORE gdb forks the inferior process. Its
2750 only real responsibility is to set things up for the fork, and tell
2751 GDB which two functions to call after the fork (one for the parent,
2752 and one for the child).
2753
2754 This function does a complicated search for a unix shell program,
2755 which it then uses to parse arguments and environment variables to
2756 be sent to the child. I wonder whether this code could not be
2757 abstracted out and shared with other unix targets such as
2758 inf-ptrace? */
2759
2760 void
2761 procfs_target::create_inferior (const char *exec_file,
2762 const std::string &allargs,
2763 char **env, int from_tty)
2764 {
2765 const char *shell_file = get_shell ();
2766 char *tryname;
2767 int pid;
2768
2769 if (strchr (shell_file, '/') == NULL)
2770 {
2771
2772 /* We will be looking down the PATH to find shell_file. If we
2773 just do this the normal way (via execlp, which operates by
2774 attempting an exec for each element of the PATH until it
2775 finds one which succeeds), then there will be an exec for
2776 each failed attempt, each of which will cause a PR_SYSEXIT
2777 stop, and we won't know how to distinguish the PR_SYSEXIT's
2778 for these failed execs with the ones for successful execs
2779 (whether the exec has succeeded is stored at that time in the
2780 carry bit or some such architecture-specific and
2781 non-ABI-specified place).
2782
2783 So I can't think of anything better than to search the PATH
2784 now. This has several disadvantages: (1) There is a race
2785 condition; if we find a file now and it is deleted before we
2786 exec it, we lose, even if the deletion leaves a valid file
2787 further down in the PATH, (2) there is no way to know exactly
2788 what an executable (in the sense of "capable of being
2789 exec'd") file is. Using access() loses because it may lose
2790 if the caller is the superuser; failing to use it loses if
2791 there are ACLs or some such. */
2792
2793 const char *p;
2794 const char *p1;
2795 /* FIXME-maybe: might want "set path" command so user can change what
2796 path is used from within GDB. */
2797 const char *path = getenv ("PATH");
2798 int len;
2799 struct stat statbuf;
2800
2801 if (path == NULL)
2802 path = "/bin:/usr/bin";
2803
2804 tryname = (char *) alloca (strlen (path) + strlen (shell_file) + 2);
2805 for (p = path; p != NULL; p = p1 ? p1 + 1: NULL)
2806 {
2807 p1 = strchr (p, ':');
2808 if (p1 != NULL)
2809 len = p1 - p;
2810 else
2811 len = strlen (p);
2812 memcpy (tryname, p, len);
2813 tryname[len] = '\0';
2814 strcat (tryname, "/");
2815 strcat (tryname, shell_file);
2816 if (access (tryname, X_OK) < 0)
2817 continue;
2818 if (stat (tryname, &statbuf) < 0)
2819 continue;
2820 if (!S_ISREG (statbuf.st_mode))
2821 /* We certainly need to reject directories. I'm not quite
2822 as sure about FIFOs, sockets, etc., but I kind of doubt
2823 that people want to exec() these things. */
2824 continue;
2825 break;
2826 }
2827 if (p == NULL)
2828 /* Not found. This must be an error rather than merely passing
2829 the file to execlp(), because execlp() would try all the
2830 exec()s, causing GDB to get confused. */
2831 error (_("procfs:%d -- Can't find shell %s in PATH"),
2832 __LINE__, shell_file);
2833
2834 shell_file = tryname;
2835 }
2836
2837 inferior *inf = current_inferior ();
2838 if (!inf->target_is_pushed (this))
2839 inf->push_target (this);
2840
2841 pid = fork_inferior (exec_file, allargs, env, procfs_set_exec_trap,
2842 NULL, procfs_pre_trace, shell_file, NULL);
2843
2844 /* We have something that executes now. We'll be running through
2845 the shell at this point (if startup-with-shell is true), but the
2846 pid shouldn't change. */
2847 thread_info *thr = add_thread_silent (this, ptid_t (pid));
2848 switch_to_thread (thr);
2849
2850 procfs_init_inferior (pid);
2851 }
2852
2853 /* Callback for update_thread_list. Calls "add_thread". */
2854
2855 static int
2856 procfs_notice_thread (procinfo *pi, procinfo *thread, void *ptr)
2857 {
2858 ptid_t gdb_threadid = ptid_t (pi->pid, thread->tid, 0);
2859
2860 thread_info *thr = the_procfs_target.find_thread (gdb_threadid);
2861 if (thr == NULL || thr->state == THREAD_EXITED)
2862 add_thread (&the_procfs_target, gdb_threadid);
2863
2864 return 0;
2865 }
2866
2867 /* Query all the threads that the target knows about, and give them
2868 back to GDB to add to its list. */
2869
2870 void
2871 procfs_target::update_thread_list ()
2872 {
2873 procinfo *pi;
2874
2875 prune_threads ();
2876
2877 /* Find procinfo for main process. */
2878 pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
2879 proc_update_threads (pi);
2880 proc_iterate_over_threads (pi, procfs_notice_thread, NULL);
2881 }
2882
2883 /* Return true if the thread is still 'alive'. This guy doesn't
2884 really seem to be doing his job. Got to investigate how to tell
2885 when a thread is really gone. */
2886
2887 bool
2888 procfs_target::thread_alive (ptid_t ptid)
2889 {
2890 int proc, thread;
2891 procinfo *pi;
2892
2893 proc = ptid.pid ();
2894 thread = ptid.lwp ();
2895 /* If I don't know it, it ain't alive! */
2896 pi = find_procinfo (proc, thread);
2897 if (pi == NULL)
2898 return false;
2899
2900 /* If I can't get its status, it ain't alive!
2901 What's more, I need to forget about it! */
2902 if (!proc_get_status (pi))
2903 {
2904 destroy_procinfo (pi);
2905 return false;
2906 }
2907 /* I couldn't have got its status if it weren't alive, so it's
2908 alive. */
2909 return true;
2910 }
2911
2912 /* Convert PTID to a string. */
2913
2914 std::string
2915 procfs_target::pid_to_str (ptid_t ptid)
2916 {
2917 if (ptid.lwp () == 0)
2918 return string_printf ("process %d", ptid.pid ());
2919 else
2920 return string_printf ("LWP %ld", ptid.lwp ());
2921 }
2922
2923 /* Accepts an integer PID; Returns a string representing a file that
2924 can be opened to get the symbols for the child process. */
2925
2926 const char *
2927 procfs_target::pid_to_exec_file (int pid)
2928 {
2929 static char buf[PATH_MAX];
2930 char name[PATH_MAX];
2931
2932 /* Solaris 11 introduced /proc/<proc-id>/execname. */
2933 xsnprintf (name, sizeof (name), "/proc/%d/execname", pid);
2934 scoped_fd fd (gdb_open_cloexec (name, O_RDONLY, 0));
2935 if (fd.get () < 0 || read (fd.get (), buf, PATH_MAX - 1) < 0)
2936 {
2937 /* If that fails, fall back to /proc/<proc-id>/path/a.out introduced in
2938 Solaris 10. */
2939 ssize_t len;
2940
2941 xsnprintf (name, sizeof (name), "/proc/%d/path/a.out", pid);
2942 len = readlink (name, buf, PATH_MAX - 1);
2943 if (len <= 0)
2944 strcpy (buf, name);
2945 else
2946 buf[len] = '\0';
2947 }
2948
2949 return buf;
2950 }
2951
2952 /* Insert a watchpoint. */
2953
2954 static int
2955 procfs_set_watchpoint (ptid_t ptid, CORE_ADDR addr, int len, int rwflag,
2956 int after)
2957 {
2958 int pflags = 0;
2959 procinfo *pi;
2960
2961 pi = find_procinfo_or_die (ptid.pid () == -1 ?
2962 inferior_ptid.pid () : ptid.pid (),
2963 0);
2964
2965 /* Translate from GDB's flags to /proc's. */
2966 if (len > 0) /* len == 0 means delete watchpoint. */
2967 {
2968 switch (rwflag) { /* FIXME: need an enum! */
2969 case hw_write: /* default watchpoint (write) */
2970 pflags = WA_WRITE;
2971 break;
2972 case hw_read: /* read watchpoint */
2973 pflags = WA_READ;
2974 break;
2975 case hw_access: /* access watchpoint */
2976 pflags = WA_READ | WA_WRITE;
2977 break;
2978 case hw_execute: /* execution HW breakpoint */
2979 pflags = WA_EXEC;
2980 break;
2981 default: /* Something weird. Return error. */
2982 return -1;
2983 }
2984 if (after) /* Stop after r/w access is completed. */
2985 pflags |= WA_TRAPAFTER;
2986 }
2987
2988 if (!proc_set_watchpoint (pi, addr, len, pflags))
2989 {
2990 if (errno == E2BIG) /* Typical error for no resources. */
2991 return -1; /* fail */
2992 /* GDB may try to remove the same watchpoint twice.
2993 If a remove request returns no match, don't error. */
2994 if (errno == ESRCH && len == 0)
2995 return 0; /* ignore */
2996 proc_error (pi, "set_watchpoint", __LINE__);
2997 }
2998 return 0;
2999 }
3000
3001 /* Return non-zero if we can set a hardware watchpoint of type TYPE. TYPE
3002 is one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint,
3003 or bp_hardware_watchpoint. CNT is the number of watchpoints used so
3004 far. */
3005
3006 int
3007 procfs_target::can_use_hw_breakpoint (enum bptype type, int cnt, int othertype)
3008 {
3009 /* Due to the way that proc_set_watchpoint() is implemented, host
3010 and target pointers must be of the same size. If they are not,
3011 we can't use hardware watchpoints. This limitation is due to the
3012 fact that proc_set_watchpoint() calls
3013 procfs_address_to_host_pointer(); a close inspection of
3014 procfs_address_to_host_pointer will reveal that an internal error
3015 will be generated when the host and target pointer sizes are
3016 different. */
3017 type *ptr_type
3018 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
3019
3020 if (sizeof (void *) != ptr_type->length ())
3021 return 0;
3022
3023 /* Other tests here??? */
3024
3025 return 1;
3026 }
3027
3028 /* Returns non-zero if process is stopped on a hardware watchpoint
3029 fault, else returns zero. */
3030
3031 bool
3032 procfs_target::stopped_by_watchpoint ()
3033 {
3034 procinfo *pi;
3035
3036 pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
3037
3038 if (proc_flags (pi) & (PR_STOPPED | PR_ISTOP))
3039 if (proc_why (pi) == PR_FAULTED)
3040 if (proc_what (pi) == FLTWATCH)
3041 return true;
3042 return false;
3043 }
3044
3045 /* Returns 1 if the OS knows the position of the triggered watchpoint,
3046 and sets *ADDR to that address. Returns 0 if OS cannot report that
3047 address. This function is only called if
3048 procfs_stopped_by_watchpoint returned 1, thus no further checks are
3049 done. The function also assumes that ADDR is not NULL. */
3050
3051 bool
3052 procfs_target::stopped_data_address (CORE_ADDR *addr)
3053 {
3054 procinfo *pi;
3055
3056 pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
3057 return proc_watchpoint_address (pi, addr);
3058 }
3059
3060 int
3061 procfs_target::insert_watchpoint (CORE_ADDR addr, int len,
3062 enum target_hw_bp_type type,
3063 struct expression *cond)
3064 {
3065 if (!target_have_steppable_watchpoint ()
3066 && !gdbarch_have_nonsteppable_watchpoint (current_inferior ()->arch ()))
3067 /* When a hardware watchpoint fires off the PC will be left at
3068 the instruction following the one which caused the
3069 watchpoint. It will *NOT* be necessary for GDB to step over
3070 the watchpoint. */
3071 return procfs_set_watchpoint (inferior_ptid, addr, len, type, 1);
3072 else
3073 /* When a hardware watchpoint fires off the PC will be left at
3074 the instruction which caused the watchpoint. It will be
3075 necessary for GDB to step over the watchpoint. */
3076 return procfs_set_watchpoint (inferior_ptid, addr, len, type, 0);
3077 }
3078
3079 int
3080 procfs_target::remove_watchpoint (CORE_ADDR addr, int len,
3081 enum target_hw_bp_type type,
3082 struct expression *cond)
3083 {
3084 return procfs_set_watchpoint (inferior_ptid, addr, 0, 0, 0);
3085 }
3086
3087 int
3088 procfs_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3089 {
3090 /* The man page for proc(4) on Solaris 2.6 and up says that the
3091 system can support "thousands" of hardware watchpoints, but gives
3092 no method for finding out how many; It doesn't say anything about
3093 the allowed size for the watched area either. So we just tell
3094 GDB 'yes'. */
3095 return 1;
3096 }
3097
3098 /* Memory Mappings Functions: */
3099
3100 /* Call a callback function once for each mapping, passing it the
3101 mapping, an optional secondary callback function, and some optional
3102 opaque data. Quit and return the first non-zero value returned
3103 from the callback.
3104
3105 PI is the procinfo struct for the process to be mapped. FUNC is
3106 the callback function to be called by this iterator. DATA is the
3107 optional opaque data to be passed to the callback function.
3108 CHILD_FUNC is the optional secondary function pointer to be passed
3109 to the child function. Returns the first non-zero return value
3110 from the callback function, or zero. */
3111
3112 static int
3113 iterate_over_mappings (procinfo *pi, find_memory_region_ftype child_func,
3114 void *data,
3115 int (*func) (struct prmap *map,
3116 find_memory_region_ftype child_func,
3117 void *data))
3118 {
3119 char pathname[MAX_PROC_NAME_SIZE];
3120 struct prmap *prmaps;
3121 struct prmap *prmap;
3122 int funcstat;
3123 int nmap;
3124 struct stat sbuf;
3125
3126 /* Get the number of mappings, allocate space,
3127 and read the mappings into prmaps. */
3128 /* Open map fd. */
3129 xsnprintf (pathname, sizeof (pathname), "/proc/%d/map", pi->pid);
3130
3131 scoped_fd map_fd (open (pathname, O_RDONLY));
3132 if (map_fd.get () < 0)
3133 proc_error (pi, "iterate_over_mappings (open)", __LINE__);
3134
3135 /* Use stat to determine the file size, and compute
3136 the number of prmap_t objects it contains. */
3137 if (fstat (map_fd.get (), &sbuf) != 0)
3138 proc_error (pi, "iterate_over_mappings (fstat)", __LINE__);
3139
3140 nmap = sbuf.st_size / sizeof (prmap_t);
3141 prmaps = (struct prmap *) alloca ((nmap + 1) * sizeof (*prmaps));
3142 if (read (map_fd.get (), (char *) prmaps, nmap * sizeof (*prmaps))
3143 != (nmap * sizeof (*prmaps)))
3144 proc_error (pi, "iterate_over_mappings (read)", __LINE__);
3145
3146 for (prmap = prmaps; nmap > 0; prmap++, nmap--)
3147 {
3148 funcstat = (*func) (prmap, child_func, data);
3149 if (funcstat != 0)
3150 return funcstat;
3151 }
3152
3153 return 0;
3154 }
3155
3156 /* Implements the to_find_memory_regions method. Calls an external
3157 function for each memory region.
3158 Returns the integer value returned by the callback. */
3159
3160 static int
3161 find_memory_regions_callback (struct prmap *map,
3162 find_memory_region_ftype func, void *data)
3163 {
3164 return (*func) ((CORE_ADDR) map->pr_vaddr,
3165 map->pr_size,
3166 (map->pr_mflags & MA_READ) != 0,
3167 (map->pr_mflags & MA_WRITE) != 0,
3168 (map->pr_mflags & MA_EXEC) != 0,
3169 1, /* MODIFIED is unknown, pass it as true. */
3170 false,
3171 data);
3172 }
3173
3174 /* External interface. Calls a callback function once for each
3175 mapped memory region in the child process, passing as arguments:
3176
3177 CORE_ADDR virtual_address,
3178 unsigned long size,
3179 int read, TRUE if region is readable by the child
3180 int write, TRUE if region is writable by the child
3181 int execute TRUE if region is executable by the child.
3182
3183 Stops iterating and returns the first non-zero value returned by
3184 the callback. */
3185
3186 int
3187 procfs_target::find_memory_regions (find_memory_region_ftype func, void *data)
3188 {
3189 procinfo *pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
3190
3191 return iterate_over_mappings (pi, func, data,
3192 find_memory_regions_callback);
3193 }
3194
3195 /* Returns an ascii representation of a memory mapping's flags. */
3196
3197 static char *
3198 mappingflags (long flags)
3199 {
3200 static char asciiflags[8];
3201
3202 strcpy (asciiflags, "-------");
3203 if (flags & MA_STACK)
3204 asciiflags[1] = 's';
3205 if (flags & MA_BREAK)
3206 asciiflags[2] = 'b';
3207 if (flags & MA_SHARED)
3208 asciiflags[3] = 's';
3209 if (flags & MA_READ)
3210 asciiflags[4] = 'r';
3211 if (flags & MA_WRITE)
3212 asciiflags[5] = 'w';
3213 if (flags & MA_EXEC)
3214 asciiflags[6] = 'x';
3215 return (asciiflags);
3216 }
3217
3218 /* Callback function, does the actual work for 'info proc
3219 mappings'. */
3220
3221 static int
3222 info_mappings_callback (struct prmap *map, find_memory_region_ftype ignore,
3223 void *unused)
3224 {
3225 unsigned int pr_off;
3226
3227 pr_off = (unsigned int) map->pr_offset;
3228
3229 if (gdbarch_addr_bit (current_inferior ()->arch ()) == 32)
3230 gdb_printf ("\t%#10lx %#10lx %#10lx %#10x %7s\n",
3231 (unsigned long) map->pr_vaddr,
3232 (unsigned long) map->pr_vaddr + map->pr_size - 1,
3233 (unsigned long) map->pr_size,
3234 pr_off,
3235 mappingflags (map->pr_mflags));
3236 else
3237 gdb_printf (" %#18lx %#18lx %#10lx %#10x %7s\n",
3238 (unsigned long) map->pr_vaddr,
3239 (unsigned long) map->pr_vaddr + map->pr_size - 1,
3240 (unsigned long) map->pr_size,
3241 pr_off,
3242 mappingflags (map->pr_mflags));
3243
3244 return 0;
3245 }
3246
3247 /* Implement the "info proc mappings" subcommand. */
3248
3249 static void
3250 info_proc_mappings (procinfo *pi, int summary)
3251 {
3252 if (summary)
3253 return; /* No output for summary mode. */
3254
3255 gdb_printf (_("Mapped address spaces:\n\n"));
3256 if (gdbarch_ptr_bit (current_inferior ()->arch ()) == 32)
3257 gdb_printf ("\t%10s %10s %10s %10s %7s\n",
3258 "Start Addr",
3259 " End Addr",
3260 " Size",
3261 " Offset",
3262 "Flags");
3263 else
3264 gdb_printf (" %18s %18s %10s %10s %7s\n",
3265 "Start Addr",
3266 " End Addr",
3267 " Size",
3268 " Offset",
3269 "Flags");
3270
3271 iterate_over_mappings (pi, NULL, NULL, info_mappings_callback);
3272 gdb_printf ("\n");
3273 }
3274
3275 /* Implement the "info proc" command. */
3276
3277 bool
3278 procfs_target::info_proc (const char *args, enum info_proc_what what)
3279 {
3280 procinfo *process = NULL;
3281 procinfo *thread = NULL;
3282 char *tmp = NULL;
3283 int pid = 0;
3284 int tid = 0;
3285 int mappings = 0;
3286
3287 switch (what)
3288 {
3289 case IP_MINIMAL:
3290 break;
3291
3292 case IP_MAPPINGS:
3293 case IP_ALL:
3294 mappings = 1;
3295 break;
3296
3297 default:
3298 error (_("Not supported on this target."));
3299 }
3300
3301 gdb_argv built_argv (args);
3302 for (char *arg : built_argv)
3303 {
3304 if (isdigit (arg[0]))
3305 {
3306 pid = strtoul (arg, &tmp, 10);
3307 if (*tmp == '/')
3308 tid = strtoul (++tmp, NULL, 10);
3309 }
3310 else if (arg[0] == '/')
3311 {
3312 tid = strtoul (arg + 1, NULL, 10);
3313 }
3314 }
3315
3316 procinfo_up temporary_procinfo;
3317 if (pid == 0)
3318 pid = inferior_ptid.pid ();
3319 if (pid == 0)
3320 error (_("No current process: you must name one."));
3321 else
3322 {
3323 /* Have pid, will travel.
3324 First see if it's a process we're already debugging. */
3325 process = find_procinfo (pid, 0);
3326 if (process == NULL)
3327 {
3328 /* No. So open a procinfo for it, but
3329 remember to close it again when finished. */
3330 process = create_procinfo (pid, 0);
3331 temporary_procinfo.reset (process);
3332 if (!open_procinfo_files (process, FD_CTL))
3333 proc_error (process, "info proc, open_procinfo_files", __LINE__);
3334 }
3335 }
3336 if (tid != 0)
3337 thread = create_procinfo (pid, tid);
3338
3339 if (process)
3340 {
3341 gdb_printf (_("process %d flags:\n"), process->pid);
3342 proc_prettyprint_flags (proc_flags (process), 1);
3343 if (proc_flags (process) & (PR_STOPPED | PR_ISTOP))
3344 proc_prettyprint_why (proc_why (process), proc_what (process), 1);
3345 if (proc_get_nthreads (process) > 1)
3346 gdb_printf ("Process has %d threads.\n",
3347 proc_get_nthreads (process));
3348 }
3349 if (thread)
3350 {
3351 gdb_printf (_("thread %d flags:\n"), thread->tid);
3352 proc_prettyprint_flags (proc_flags (thread), 1);
3353 if (proc_flags (thread) & (PR_STOPPED | PR_ISTOP))
3354 proc_prettyprint_why (proc_why (thread), proc_what (thread), 1);
3355 }
3356
3357 if (mappings)
3358 info_proc_mappings (process, 0);
3359
3360 return true;
3361 }
3362
3363 /* Modify the status of the system call identified by SYSCALLNUM in
3364 the set of syscalls that are currently traced/debugged.
3365
3366 If ENTRY_OR_EXIT is set to PR_SYSENTRY, then the entry syscalls set
3367 will be updated. Otherwise, the exit syscalls set will be updated.
3368
3369 If MODE is FLAG_SET, then traces will be enabled. Otherwise, they
3370 will be disabled. */
3371
3372 static void
3373 proc_trace_syscalls_1 (procinfo *pi, int syscallnum, int entry_or_exit,
3374 int mode, int from_tty)
3375 {
3376 sysset_t *sysset;
3377
3378 if (entry_or_exit == PR_SYSENTRY)
3379 sysset = proc_get_traced_sysentry (pi, NULL);
3380 else
3381 sysset = proc_get_traced_sysexit (pi, NULL);
3382
3383 if (sysset == NULL)
3384 proc_error (pi, "proc-trace, get_traced_sysset", __LINE__);
3385
3386 if (mode == FLAG_SET)
3387 praddset (sysset, syscallnum);
3388 else
3389 prdelset (sysset, syscallnum);
3390
3391 if (entry_or_exit == PR_SYSENTRY)
3392 {
3393 if (!proc_set_traced_sysentry (pi, sysset))
3394 proc_error (pi, "proc-trace, set_traced_sysentry", __LINE__);
3395 }
3396 else
3397 {
3398 if (!proc_set_traced_sysexit (pi, sysset))
3399 proc_error (pi, "proc-trace, set_traced_sysexit", __LINE__);
3400 }
3401 }
3402
3403 static void
3404 proc_trace_syscalls (const char *args, int from_tty, int entry_or_exit, int mode)
3405 {
3406 procinfo *pi;
3407
3408 if (inferior_ptid.pid () <= 0)
3409 error (_("you must be debugging a process to use this command."));
3410
3411 if (args == NULL || args[0] == 0)
3412 error_no_arg (_("system call to trace"));
3413
3414 pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
3415 if (isdigit (args[0]))
3416 {
3417 const int syscallnum = atoi (args);
3418
3419 proc_trace_syscalls_1 (pi, syscallnum, entry_or_exit, mode, from_tty);
3420 }
3421 }
3422
3423 static void
3424 proc_trace_sysentry_cmd (const char *args, int from_tty)
3425 {
3426 proc_trace_syscalls (args, from_tty, PR_SYSENTRY, FLAG_SET);
3427 }
3428
3429 static void
3430 proc_trace_sysexit_cmd (const char *args, int from_tty)
3431 {
3432 proc_trace_syscalls (args, from_tty, PR_SYSEXIT, FLAG_SET);
3433 }
3434
3435 static void
3436 proc_untrace_sysentry_cmd (const char *args, int from_tty)
3437 {
3438 proc_trace_syscalls (args, from_tty, PR_SYSENTRY, FLAG_RESET);
3439 }
3440
3441 static void
3442 proc_untrace_sysexit_cmd (const char *args, int from_tty)
3443 {
3444 proc_trace_syscalls (args, from_tty, PR_SYSEXIT, FLAG_RESET);
3445 }
3446
3447 void _initialize_procfs ();
3448 void
3449 _initialize_procfs ()
3450 {
3451 add_com ("proc-trace-entry", no_class, proc_trace_sysentry_cmd,
3452 _("Give a trace of entries into the syscall."));
3453 add_com ("proc-trace-exit", no_class, proc_trace_sysexit_cmd,
3454 _("Give a trace of exits from the syscall."));
3455 add_com ("proc-untrace-entry", no_class, proc_untrace_sysentry_cmd,
3456 _("Cancel a trace of entries into the syscall."));
3457 add_com ("proc-untrace-exit", no_class, proc_untrace_sysexit_cmd,
3458 _("Cancel a trace of exits from the syscall."));
3459
3460 add_inf_child_target (&the_procfs_target);
3461 }
3462
3463 /* =================== END, GDB "MODULE" =================== */
3464
3465
3466
3467 /* miscellaneous stubs: */
3468
3469 /* The following satisfy a few random symbols mostly created by the
3470 solaris threads implementation, which I will chase down later. */
3471
3472 /* Return a pid for which we guarantee we will be able to find a
3473 'live' procinfo. */
3474
3475 ptid_t
3476 procfs_first_available (void)
3477 {
3478 return ptid_t (procinfo_list ? procinfo_list->pid : -1);
3479 }
3480
3481 /* =================== GCORE .NOTE "MODULE" =================== */
3482
3483 static void
3484 procfs_do_thread_registers (bfd *obfd, ptid_t ptid,
3485 gdb::unique_xmalloc_ptr<char> &note_data,
3486 int *note_size, enum gdb_signal stop_signal)
3487 {
3488 struct regcache *regcache = get_thread_regcache (&the_procfs_target, ptid);
3489 gdb_gregset_t gregs;
3490 gdb_fpregset_t fpregs;
3491 unsigned long merged_pid;
3492
3493 merged_pid = ptid.lwp () << 16 | ptid.pid ();
3494
3495 /* This part is the old method for fetching registers.
3496 It should be replaced by the newer one using regsets
3497 once it is implemented in this platform:
3498 gdbarch_iterate_over_regset_sections(). */
3499
3500 target_fetch_registers (regcache, -1);
3501
3502 fill_gregset (regcache, &gregs, -1);
3503 note_data.reset (elfcore_write_lwpstatus (obfd,
3504 note_data.release (),
3505 note_size,
3506 merged_pid,
3507 stop_signal,
3508 &gregs));
3509 fill_fpregset (regcache, &fpregs, -1);
3510 note_data.reset (elfcore_write_prfpreg (obfd,
3511 note_data.release (),
3512 note_size,
3513 &fpregs,
3514 sizeof (fpregs)));
3515 }
3516
3517 struct procfs_corefile_thread_data
3518 {
3519 procfs_corefile_thread_data (bfd *obfd,
3520 gdb::unique_xmalloc_ptr<char> &note_data,
3521 int *note_size, gdb_signal stop_signal)
3522 : obfd (obfd), note_data (note_data), note_size (note_size),
3523 stop_signal (stop_signal)
3524 {}
3525
3526 bfd *obfd;
3527 gdb::unique_xmalloc_ptr<char> &note_data;
3528 int *note_size;
3529 enum gdb_signal stop_signal;
3530 };
3531
3532 static int
3533 procfs_corefile_thread_callback (procinfo *pi, procinfo *thread, void *data)
3534 {
3535 struct procfs_corefile_thread_data *args
3536 = (struct procfs_corefile_thread_data *) data;
3537
3538 if (pi != NULL)
3539 {
3540 ptid_t ptid = ptid_t (pi->pid, thread->tid, 0);
3541
3542 procfs_do_thread_registers (args->obfd, ptid,
3543 args->note_data,
3544 args->note_size,
3545 args->stop_signal);
3546 }
3547 return 0;
3548 }
3549
3550 static int
3551 find_signalled_thread (struct thread_info *info, void *data)
3552 {
3553 if (info->stop_signal () != GDB_SIGNAL_0
3554 && info->ptid.pid () == inferior_ptid.pid ())
3555 return 1;
3556
3557 return 0;
3558 }
3559
3560 static enum gdb_signal
3561 find_stop_signal (void)
3562 {
3563 struct thread_info *info =
3564 iterate_over_threads (find_signalled_thread, NULL);
3565
3566 if (info)
3567 return info->stop_signal ();
3568 else
3569 return GDB_SIGNAL_0;
3570 }
3571
3572 gdb::unique_xmalloc_ptr<char>
3573 procfs_target::make_corefile_notes (bfd *obfd, int *note_size)
3574 {
3575 gdb_gregset_t gregs;
3576 char fname[16] = {'\0'};
3577 char psargs[80] = {'\0'};
3578 procinfo *pi = find_procinfo_or_die (inferior_ptid.pid (), 0);
3579 gdb::unique_xmalloc_ptr<char> note_data;
3580 enum gdb_signal stop_signal;
3581
3582 if (get_exec_file (0))
3583 {
3584 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
3585 fname[sizeof (fname) - 1] = 0;
3586 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3587 psargs[sizeof (psargs) - 1] = 0;
3588
3589 const std::string &inf_args = current_inferior ()->args ();
3590 if (!inf_args.empty () &&
3591 inf_args.length () < ((int) sizeof (psargs) - (int) strlen (psargs)))
3592 {
3593 strncat (psargs, " ",
3594 sizeof (psargs) - strlen (psargs));
3595 strncat (psargs, inf_args.c_str (),
3596 sizeof (psargs) - strlen (psargs));
3597 }
3598 }
3599
3600 note_data.reset (elfcore_write_prpsinfo (obfd,
3601 note_data.release (),
3602 note_size,
3603 fname,
3604 psargs));
3605
3606 stop_signal = find_stop_signal ();
3607
3608 fill_gregset (get_thread_regcache (inferior_thread ()), &gregs, -1);
3609 note_data.reset (elfcore_write_pstatus (obfd, note_data.release (), note_size,
3610 inferior_ptid.pid (),
3611 stop_signal, &gregs));
3612
3613 procfs_corefile_thread_data thread_args (obfd, note_data, note_size,
3614 stop_signal);
3615 proc_iterate_over_threads (pi, procfs_corefile_thread_callback,
3616 &thread_args);
3617
3618 gdb::optional<gdb::byte_vector> auxv =
3619 target_read_alloc (current_inferior ()->top_target (),
3620 TARGET_OBJECT_AUXV, NULL);
3621 if (auxv && !auxv->empty ())
3622 note_data.reset (elfcore_write_note (obfd, note_data.release (), note_size,
3623 "CORE", NT_AUXV, auxv->data (),
3624 auxv->size ()));
3625
3626 return note_data;
3627 }
3628 /* =================== END GCORE .NOTE "MODULE" =================== */