]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/record-full.c
Constify execute_command
[thirdparty/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38 #include "common/gdb_unlinker.h"
39 #include "common/byte-vector.h"
40
41 #include <signal.h>
42
43 /* This module implements "target record-full", also known as "process
44 record and replay". This target sits on top of a "normal" target
45 (a target that "has execution"), and provides a record and replay
46 functionality, including reverse debugging.
47
48 Target record has two modes: recording, and replaying.
49
50 In record mode, we intercept the to_resume and to_wait methods.
51 Whenever gdb resumes the target, we run the target in single step
52 mode, and we build up an execution log in which, for each executed
53 instruction, we record all changes in memory and register state.
54 This is invisible to the user, to whom it just looks like an
55 ordinary debugging session (except for performance degredation).
56
57 In replay mode, instead of actually letting the inferior run as a
58 process, we simulate its execution by playing back the recorded
59 execution log. For each instruction in the log, we simulate the
60 instruction's side effects by duplicating the changes that it would
61 have made on memory and registers. */
62
63 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
64
65 #define RECORD_FULL_IS_REPLAY \
66 (record_full_list->next || execution_direction == EXEC_REVERSE)
67
68 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
69
70 /* These are the core structs of the process record functionality.
71
72 A record_full_entry is a record of the value change of a register
73 ("record_full_reg") or a part of memory ("record_full_mem"). And each
74 instruction must have a struct record_full_entry ("record_full_end")
75 that indicates that this is the last struct record_full_entry of this
76 instruction.
77
78 Each struct record_full_entry is linked to "record_full_list" by "prev"
79 and "next" pointers. */
80
81 struct record_full_mem_entry
82 {
83 CORE_ADDR addr;
84 int len;
85 /* Set this flag if target memory for this entry
86 can no longer be accessed. */
87 int mem_entry_not_accessible;
88 union
89 {
90 gdb_byte *ptr;
91 gdb_byte buf[sizeof (gdb_byte *)];
92 } u;
93 };
94
95 struct record_full_reg_entry
96 {
97 unsigned short num;
98 unsigned short len;
99 union
100 {
101 gdb_byte *ptr;
102 gdb_byte buf[2 * sizeof (gdb_byte *)];
103 } u;
104 };
105
106 struct record_full_end_entry
107 {
108 enum gdb_signal sigval;
109 ULONGEST insn_num;
110 };
111
112 enum record_full_type
113 {
114 record_full_end = 0,
115 record_full_reg,
116 record_full_mem
117 };
118
119 /* This is the data structure that makes up the execution log.
120
121 The execution log consists of a single linked list of entries
122 of type "struct record_full_entry". It is doubly linked so that it
123 can be traversed in either direction.
124
125 The start of the list is anchored by a struct called
126 "record_full_first". The pointer "record_full_list" either points
127 to the last entry that was added to the list (in record mode), or to
128 the next entry in the list that will be executed (in replay mode).
129
130 Each list element (struct record_full_entry), in addition to next
131 and prev pointers, consists of a union of three entry types: mem,
132 reg, and end. A field called "type" determines which entry type is
133 represented by a given list element.
134
135 Each instruction that is added to the execution log is represented
136 by a variable number of list elements ('entries'). The instruction
137 will have one "reg" entry for each register that is changed by
138 executing the instruction (including the PC in every case). It
139 will also have one "mem" entry for each memory change. Finally,
140 each instruction will have an "end" entry that separates it from
141 the changes associated with the next instruction. */
142
143 struct record_full_entry
144 {
145 struct record_full_entry *prev;
146 struct record_full_entry *next;
147 enum record_full_type type;
148 union
149 {
150 /* reg */
151 struct record_full_reg_entry reg;
152 /* mem */
153 struct record_full_mem_entry mem;
154 /* end */
155 struct record_full_end_entry end;
156 } u;
157 };
158
159 /* If true, query if PREC cannot record memory
160 change of next instruction. */
161 int record_full_memory_query = 0;
162
163 struct record_full_core_buf_entry
164 {
165 struct record_full_core_buf_entry *prev;
166 struct target_section *p;
167 bfd_byte *buf;
168 };
169
170 /* Record buf with core target. */
171 static gdb_byte *record_full_core_regbuf = NULL;
172 static struct target_section *record_full_core_start;
173 static struct target_section *record_full_core_end;
174 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
175
176 /* The following variables are used for managing the linked list that
177 represents the execution log.
178
179 record_full_first is the anchor that holds down the beginning of
180 the list.
181
182 record_full_list serves two functions:
183 1) In record mode, it anchors the end of the list.
184 2) In replay mode, it traverses the list and points to
185 the next instruction that must be emulated.
186
187 record_full_arch_list_head and record_full_arch_list_tail are used
188 to manage a separate list, which is used to build up the change
189 elements of the currently executing instruction during record mode.
190 When this instruction has been completely annotated in the "arch
191 list", it will be appended to the main execution log. */
192
193 static struct record_full_entry record_full_first;
194 static struct record_full_entry *record_full_list = &record_full_first;
195 static struct record_full_entry *record_full_arch_list_head = NULL;
196 static struct record_full_entry *record_full_arch_list_tail = NULL;
197
198 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
199 static int record_full_stop_at_limit = 1;
200 /* Maximum allowed number of insns in execution log. */
201 static unsigned int record_full_insn_max_num
202 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
203 /* Actual count of insns presently in execution log. */
204 static unsigned int record_full_insn_num = 0;
205 /* Count of insns logged so far (may be larger
206 than count of insns presently in execution log). */
207 static ULONGEST record_full_insn_count;
208
209 /* The target_ops of process record. */
210 static struct target_ops record_full_ops;
211 static struct target_ops record_full_core_ops;
212
213 /* See record-full.h. */
214
215 int
216 record_full_is_used (void)
217 {
218 struct target_ops *t;
219
220 t = find_record_target ();
221 return (t == &record_full_ops
222 || t == &record_full_core_ops);
223 }
224
225
226 /* Command lists for "set/show record full". */
227 static struct cmd_list_element *set_record_full_cmdlist;
228 static struct cmd_list_element *show_record_full_cmdlist;
229
230 /* Command list for "record full". */
231 static struct cmd_list_element *record_full_cmdlist;
232
233 static void record_full_goto_insn (struct record_full_entry *entry,
234 enum exec_direction_kind dir);
235 static void record_full_save (struct target_ops *self,
236 const char *recfilename);
237
238 /* Alloc and free functions for record_full_reg, record_full_mem, and
239 record_full_end entries. */
240
241 /* Alloc a record_full_reg record entry. */
242
243 static inline struct record_full_entry *
244 record_full_reg_alloc (struct regcache *regcache, int regnum)
245 {
246 struct record_full_entry *rec;
247 struct gdbarch *gdbarch = regcache->arch ();
248
249 rec = XCNEW (struct record_full_entry);
250 rec->type = record_full_reg;
251 rec->u.reg.num = regnum;
252 rec->u.reg.len = register_size (gdbarch, regnum);
253 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
254 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
255
256 return rec;
257 }
258
259 /* Free a record_full_reg record entry. */
260
261 static inline void
262 record_full_reg_release (struct record_full_entry *rec)
263 {
264 gdb_assert (rec->type == record_full_reg);
265 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
266 xfree (rec->u.reg.u.ptr);
267 xfree (rec);
268 }
269
270 /* Alloc a record_full_mem record entry. */
271
272 static inline struct record_full_entry *
273 record_full_mem_alloc (CORE_ADDR addr, int len)
274 {
275 struct record_full_entry *rec;
276
277 rec = XCNEW (struct record_full_entry);
278 rec->type = record_full_mem;
279 rec->u.mem.addr = addr;
280 rec->u.mem.len = len;
281 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
282 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
283
284 return rec;
285 }
286
287 /* Free a record_full_mem record entry. */
288
289 static inline void
290 record_full_mem_release (struct record_full_entry *rec)
291 {
292 gdb_assert (rec->type == record_full_mem);
293 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
294 xfree (rec->u.mem.u.ptr);
295 xfree (rec);
296 }
297
298 /* Alloc a record_full_end record entry. */
299
300 static inline struct record_full_entry *
301 record_full_end_alloc (void)
302 {
303 struct record_full_entry *rec;
304
305 rec = XCNEW (struct record_full_entry);
306 rec->type = record_full_end;
307
308 return rec;
309 }
310
311 /* Free a record_full_end record entry. */
312
313 static inline void
314 record_full_end_release (struct record_full_entry *rec)
315 {
316 xfree (rec);
317 }
318
319 /* Free one record entry, any type.
320 Return entry->type, in case caller wants to know. */
321
322 static inline enum record_full_type
323 record_full_entry_release (struct record_full_entry *rec)
324 {
325 enum record_full_type type = rec->type;
326
327 switch (type) {
328 case record_full_reg:
329 record_full_reg_release (rec);
330 break;
331 case record_full_mem:
332 record_full_mem_release (rec);
333 break;
334 case record_full_end:
335 record_full_end_release (rec);
336 break;
337 }
338 return type;
339 }
340
341 /* Free all record entries in list pointed to by REC. */
342
343 static void
344 record_full_list_release (struct record_full_entry *rec)
345 {
346 if (!rec)
347 return;
348
349 while (rec->next)
350 rec = rec->next;
351
352 while (rec->prev)
353 {
354 rec = rec->prev;
355 record_full_entry_release (rec->next);
356 }
357
358 if (rec == &record_full_first)
359 {
360 record_full_insn_num = 0;
361 record_full_first.next = NULL;
362 }
363 else
364 record_full_entry_release (rec);
365 }
366
367 /* Free all record entries forward of the given list position. */
368
369 static void
370 record_full_list_release_following (struct record_full_entry *rec)
371 {
372 struct record_full_entry *tmp = rec->next;
373
374 rec->next = NULL;
375 while (tmp)
376 {
377 rec = tmp->next;
378 if (record_full_entry_release (tmp) == record_full_end)
379 {
380 record_full_insn_num--;
381 record_full_insn_count--;
382 }
383 tmp = rec;
384 }
385 }
386
387 /* Delete the first instruction from the beginning of the log, to make
388 room for adding a new instruction at the end of the log.
389
390 Note -- this function does not modify record_full_insn_num. */
391
392 static void
393 record_full_list_release_first (void)
394 {
395 struct record_full_entry *tmp;
396
397 if (!record_full_first.next)
398 return;
399
400 /* Loop until a record_full_end. */
401 while (1)
402 {
403 /* Cut record_full_first.next out of the linked list. */
404 tmp = record_full_first.next;
405 record_full_first.next = tmp->next;
406 tmp->next->prev = &record_full_first;
407
408 /* tmp is now isolated, and can be deleted. */
409 if (record_full_entry_release (tmp) == record_full_end)
410 break; /* End loop at first record_full_end. */
411
412 if (!record_full_first.next)
413 {
414 gdb_assert (record_full_insn_num == 1);
415 break; /* End loop when list is empty. */
416 }
417 }
418 }
419
420 /* Add a struct record_full_entry to record_full_arch_list. */
421
422 static void
423 record_full_arch_list_add (struct record_full_entry *rec)
424 {
425 if (record_debug > 1)
426 fprintf_unfiltered (gdb_stdlog,
427 "Process record: record_full_arch_list_add %s.\n",
428 host_address_to_string (rec));
429
430 if (record_full_arch_list_tail)
431 {
432 record_full_arch_list_tail->next = rec;
433 rec->prev = record_full_arch_list_tail;
434 record_full_arch_list_tail = rec;
435 }
436 else
437 {
438 record_full_arch_list_head = rec;
439 record_full_arch_list_tail = rec;
440 }
441 }
442
443 /* Return the value storage location of a record entry. */
444 static inline gdb_byte *
445 record_full_get_loc (struct record_full_entry *rec)
446 {
447 switch (rec->type) {
448 case record_full_mem:
449 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
450 return rec->u.mem.u.ptr;
451 else
452 return rec->u.mem.u.buf;
453 case record_full_reg:
454 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
455 return rec->u.reg.u.ptr;
456 else
457 return rec->u.reg.u.buf;
458 case record_full_end:
459 default:
460 gdb_assert_not_reached ("unexpected record_full_entry type");
461 return NULL;
462 }
463 }
464
465 /* Record the value of a register NUM to record_full_arch_list. */
466
467 int
468 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
469 {
470 struct record_full_entry *rec;
471
472 if (record_debug > 1)
473 fprintf_unfiltered (gdb_stdlog,
474 "Process record: add register num = %d to "
475 "record list.\n",
476 regnum);
477
478 rec = record_full_reg_alloc (regcache, regnum);
479
480 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
481
482 record_full_arch_list_add (rec);
483
484 return 0;
485 }
486
487 /* Record the value of a region of memory whose address is ADDR and
488 length is LEN to record_full_arch_list. */
489
490 int
491 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
492 {
493 struct record_full_entry *rec;
494
495 if (record_debug > 1)
496 fprintf_unfiltered (gdb_stdlog,
497 "Process record: add mem addr = %s len = %d to "
498 "record list.\n",
499 paddress (target_gdbarch (), addr), len);
500
501 if (!addr) /* FIXME: Why? Some arch must permit it... */
502 return 0;
503
504 rec = record_full_mem_alloc (addr, len);
505
506 if (record_read_memory (target_gdbarch (), addr,
507 record_full_get_loc (rec), len))
508 {
509 record_full_mem_release (rec);
510 return -1;
511 }
512
513 record_full_arch_list_add (rec);
514
515 return 0;
516 }
517
518 /* Add a record_full_end type struct record_full_entry to
519 record_full_arch_list. */
520
521 int
522 record_full_arch_list_add_end (void)
523 {
524 struct record_full_entry *rec;
525
526 if (record_debug > 1)
527 fprintf_unfiltered (gdb_stdlog,
528 "Process record: add end to arch list.\n");
529
530 rec = record_full_end_alloc ();
531 rec->u.end.sigval = GDB_SIGNAL_0;
532 rec->u.end.insn_num = ++record_full_insn_count;
533
534 record_full_arch_list_add (rec);
535
536 return 0;
537 }
538
539 static void
540 record_full_check_insn_num (void)
541 {
542 if (record_full_insn_num == record_full_insn_max_num)
543 {
544 /* Ask user what to do. */
545 if (record_full_stop_at_limit)
546 {
547 if (!yquery (_("Do you want to auto delete previous execution "
548 "log entries when record/replay buffer becomes "
549 "full (record full stop-at-limit)?")))
550 error (_("Process record: stopped by user."));
551 record_full_stop_at_limit = 0;
552 }
553 }
554 }
555
556 static void
557 record_full_arch_list_cleanups (void *ignore)
558 {
559 record_full_list_release (record_full_arch_list_tail);
560 }
561
562 /* Before inferior step (when GDB record the running message, inferior
563 only can step), GDB will call this function to record the values to
564 record_full_list. This function will call gdbarch_process_record to
565 record the running message of inferior and set them to
566 record_full_arch_list, and add it to record_full_list. */
567
568 static void
569 record_full_message (struct regcache *regcache, enum gdb_signal signal)
570 {
571 int ret;
572 struct gdbarch *gdbarch = regcache->arch ();
573 struct cleanup *old_cleanups
574 = make_cleanup (record_full_arch_list_cleanups, 0);
575
576 record_full_arch_list_head = NULL;
577 record_full_arch_list_tail = NULL;
578
579 /* Check record_full_insn_num. */
580 record_full_check_insn_num ();
581
582 /* If gdb sends a signal value to target_resume,
583 save it in the 'end' field of the previous instruction.
584
585 Maybe process record should record what really happened,
586 rather than what gdb pretends has happened.
587
588 So if Linux delivered the signal to the child process during
589 the record mode, we will record it and deliver it again in
590 the replay mode.
591
592 If user says "ignore this signal" during the record mode, then
593 it will be ignored again during the replay mode (no matter if
594 the user says something different, like "deliver this signal"
595 during the replay mode).
596
597 User should understand that nothing he does during the replay
598 mode will change the behavior of the child. If he tries,
599 then that is a user error.
600
601 But we should still deliver the signal to gdb during the replay,
602 if we delivered it during the recording. Therefore we should
603 record the signal during record_full_wait, not
604 record_full_resume. */
605 if (record_full_list != &record_full_first) /* FIXME better way to check */
606 {
607 gdb_assert (record_full_list->type == record_full_end);
608 record_full_list->u.end.sigval = signal;
609 }
610
611 if (signal == GDB_SIGNAL_0
612 || !gdbarch_process_record_signal_p (gdbarch))
613 ret = gdbarch_process_record (gdbarch,
614 regcache,
615 regcache_read_pc (regcache));
616 else
617 ret = gdbarch_process_record_signal (gdbarch,
618 regcache,
619 signal);
620
621 if (ret > 0)
622 error (_("Process record: inferior program stopped."));
623 if (ret < 0)
624 error (_("Process record: failed to record execution log."));
625
626 discard_cleanups (old_cleanups);
627
628 record_full_list->next = record_full_arch_list_head;
629 record_full_arch_list_head->prev = record_full_list;
630 record_full_list = record_full_arch_list_tail;
631
632 if (record_full_insn_num == record_full_insn_max_num)
633 record_full_list_release_first ();
634 else
635 record_full_insn_num++;
636 }
637
638 static bool
639 record_full_message_wrapper_safe (struct regcache *regcache,
640 enum gdb_signal signal)
641 {
642 TRY
643 {
644 record_full_message (regcache, signal);
645 }
646 CATCH (ex, RETURN_MASK_ALL)
647 {
648 exception_print (gdb_stderr, ex);
649 return false;
650 }
651 END_CATCH
652
653 return true;
654 }
655
656 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
657 doesn't need record. */
658
659 static int record_full_gdb_operation_disable = 0;
660
661 scoped_restore_tmpl<int>
662 record_full_gdb_operation_disable_set (void)
663 {
664 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
665 }
666
667 /* Flag set to TRUE for target_stopped_by_watchpoint. */
668 static enum target_stop_reason record_full_stop_reason
669 = TARGET_STOPPED_BY_NO_REASON;
670
671 /* Execute one instruction from the record log. Each instruction in
672 the log will be represented by an arbitrary sequence of register
673 entries and memory entries, followed by an 'end' entry. */
674
675 static inline void
676 record_full_exec_insn (struct regcache *regcache,
677 struct gdbarch *gdbarch,
678 struct record_full_entry *entry)
679 {
680 switch (entry->type)
681 {
682 case record_full_reg: /* reg */
683 {
684 gdb::byte_vector reg (entry->u.reg.len);
685
686 if (record_debug > 1)
687 fprintf_unfiltered (gdb_stdlog,
688 "Process record: record_full_reg %s to "
689 "inferior num = %d.\n",
690 host_address_to_string (entry),
691 entry->u.reg.num);
692
693 regcache_cooked_read (regcache, entry->u.reg.num, reg.data ());
694 regcache_cooked_write (regcache, entry->u.reg.num,
695 record_full_get_loc (entry));
696 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
697 }
698 break;
699
700 case record_full_mem: /* mem */
701 {
702 /* Nothing to do if the entry is flagged not_accessible. */
703 if (!entry->u.mem.mem_entry_not_accessible)
704 {
705 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len);
706 struct cleanup *cleanup = make_cleanup (xfree, mem);
707
708 if (record_debug > 1)
709 fprintf_unfiltered (gdb_stdlog,
710 "Process record: record_full_mem %s to "
711 "inferior addr = %s len = %d.\n",
712 host_address_to_string (entry),
713 paddress (gdbarch, entry->u.mem.addr),
714 entry->u.mem.len);
715
716 if (record_read_memory (gdbarch,
717 entry->u.mem.addr, mem, entry->u.mem.len))
718 entry->u.mem.mem_entry_not_accessible = 1;
719 else
720 {
721 if (target_write_memory (entry->u.mem.addr,
722 record_full_get_loc (entry),
723 entry->u.mem.len))
724 {
725 entry->u.mem.mem_entry_not_accessible = 1;
726 if (record_debug)
727 warning (_("Process record: error writing memory at "
728 "addr = %s len = %d."),
729 paddress (gdbarch, entry->u.mem.addr),
730 entry->u.mem.len);
731 }
732 else
733 {
734 memcpy (record_full_get_loc (entry), mem,
735 entry->u.mem.len);
736
737 /* We've changed memory --- check if a hardware
738 watchpoint should trap. Note that this
739 presently assumes the target beneath supports
740 continuable watchpoints. On non-continuable
741 watchpoints target, we'll want to check this
742 _before_ actually doing the memory change, and
743 not doing the change at all if the watchpoint
744 traps. */
745 if (hardware_watchpoint_inserted_in_range
746 (regcache->aspace (),
747 entry->u.mem.addr, entry->u.mem.len))
748 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
749 }
750 }
751
752 do_cleanups (cleanup);
753 }
754 }
755 break;
756 }
757 }
758
759 static void record_full_restore (void);
760
761 /* Asynchronous signal handle registered as event loop source for when
762 we have pending events ready to be passed to the core. */
763
764 static struct async_event_handler *record_full_async_inferior_event_token;
765
766 static void
767 record_full_async_inferior_event_handler (gdb_client_data data)
768 {
769 inferior_event_handler (INF_REG_EVENT, NULL);
770 }
771
772 /* Open the process record target. */
773
774 static void
775 record_full_core_open_1 (const char *name, int from_tty)
776 {
777 struct regcache *regcache = get_current_regcache ();
778 int regnum = gdbarch_num_regs (regcache->arch ());
779 int i;
780
781 /* Get record_full_core_regbuf. */
782 target_fetch_registers (regcache, -1);
783 record_full_core_regbuf = (gdb_byte *) xmalloc (MAX_REGISTER_SIZE * regnum);
784 for (i = 0; i < regnum; i ++)
785 regcache_raw_collect (regcache, i,
786 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
787
788 /* Get record_full_core_start and record_full_core_end. */
789 if (build_section_table (core_bfd, &record_full_core_start,
790 &record_full_core_end))
791 {
792 xfree (record_full_core_regbuf);
793 record_full_core_regbuf = NULL;
794 error (_("\"%s\": Can't find sections: %s"),
795 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
796 }
797
798 push_target (&record_full_core_ops);
799 record_full_restore ();
800 }
801
802 /* "to_open" target method for 'live' processes. */
803
804 static void
805 record_full_open_1 (const char *name, int from_tty)
806 {
807 if (record_debug)
808 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
809
810 /* check exec */
811 if (!target_has_execution)
812 error (_("Process record: the program is not being run."));
813 if (non_stop)
814 error (_("Process record target can't debug inferior in non-stop mode "
815 "(non-stop)."));
816
817 if (!gdbarch_process_record_p (target_gdbarch ()))
818 error (_("Process record: the current architecture doesn't support "
819 "record function."));
820
821 push_target (&record_full_ops);
822 }
823
824 static void record_full_init_record_breakpoints (void);
825
826 /* "to_open" target method. Open the process record target. */
827
828 static void
829 record_full_open (const char *name, int from_tty)
830 {
831 struct target_ops *t;
832
833 if (record_debug)
834 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
835
836 record_preopen ();
837
838 /* Reset */
839 record_full_insn_num = 0;
840 record_full_insn_count = 0;
841 record_full_list = &record_full_first;
842 record_full_list->next = NULL;
843
844 if (core_bfd)
845 record_full_core_open_1 (name, from_tty);
846 else
847 record_full_open_1 (name, from_tty);
848
849 /* Register extra event sources in the event loop. */
850 record_full_async_inferior_event_token
851 = create_async_event_handler (record_full_async_inferior_event_handler,
852 NULL);
853
854 record_full_init_record_breakpoints ();
855
856 observer_notify_record_changed (current_inferior (), 1, "full", NULL);
857 }
858
859 /* "to_close" target method. Close the process record target. */
860
861 static void
862 record_full_close (struct target_ops *self)
863 {
864 struct record_full_core_buf_entry *entry;
865
866 if (record_debug)
867 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
868
869 record_full_list_release (record_full_list);
870
871 /* Release record_full_core_regbuf. */
872 if (record_full_core_regbuf)
873 {
874 xfree (record_full_core_regbuf);
875 record_full_core_regbuf = NULL;
876 }
877
878 /* Release record_full_core_buf_list. */
879 if (record_full_core_buf_list)
880 {
881 for (entry = record_full_core_buf_list->prev; entry;
882 entry = entry->prev)
883 {
884 xfree (record_full_core_buf_list);
885 record_full_core_buf_list = entry;
886 }
887 record_full_core_buf_list = NULL;
888 }
889
890 if (record_full_async_inferior_event_token)
891 delete_async_event_handler (&record_full_async_inferior_event_token);
892 }
893
894 /* "to_async" target method. */
895
896 static void
897 record_full_async (struct target_ops *ops, int enable)
898 {
899 if (enable)
900 mark_async_event_handler (record_full_async_inferior_event_token);
901 else
902 clear_async_event_handler (record_full_async_inferior_event_token);
903
904 ops->beneath->to_async (ops->beneath, enable);
905 }
906
907 static int record_full_resume_step = 0;
908
909 /* True if we've been resumed, and so each record_full_wait call should
910 advance execution. If this is false, record_full_wait will return a
911 TARGET_WAITKIND_IGNORE. */
912 static int record_full_resumed = 0;
913
914 /* The execution direction of the last resume we got. This is
915 necessary for async mode. Vis (order is not strictly accurate):
916
917 1. user has the global execution direction set to forward
918 2. user does a reverse-step command
919 3. record_full_resume is called with global execution direction
920 temporarily switched to reverse
921 4. GDB's execution direction is reverted back to forward
922 5. target record notifies event loop there's an event to handle
923 6. infrun asks the target which direction was it going, and switches
924 the global execution direction accordingly (to reverse)
925 7. infrun polls an event out of the record target, and handles it
926 8. GDB goes back to the event loop, and goto #4.
927 */
928 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
929
930 /* "to_resume" target method. Resume the process record target. */
931
932 static void
933 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
934 enum gdb_signal signal)
935 {
936 record_full_resume_step = step;
937 record_full_resumed = 1;
938 record_full_execution_dir = execution_direction;
939
940 if (!RECORD_FULL_IS_REPLAY)
941 {
942 struct gdbarch *gdbarch = target_thread_architecture (ptid);
943
944 record_full_message (get_current_regcache (), signal);
945
946 if (!step)
947 {
948 /* This is not hard single step. */
949 if (!gdbarch_software_single_step_p (gdbarch))
950 {
951 /* This is a normal continue. */
952 step = 1;
953 }
954 else
955 {
956 /* This arch supports soft single step. */
957 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
958 {
959 /* This is a soft single step. */
960 record_full_resume_step = 1;
961 }
962 else
963 step = !insert_single_step_breakpoints (gdbarch);
964 }
965 }
966
967 /* Make sure the target beneath reports all signals. */
968 target_pass_signals (0, NULL);
969
970 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
971 }
972
973 /* We are about to start executing the inferior (or simulate it),
974 let's register it with the event loop. */
975 if (target_can_async_p ())
976 target_async (1);
977 }
978
979 /* "to_commit_resume" method for process record target. */
980
981 static void
982 record_full_commit_resume (struct target_ops *ops)
983 {
984 if (!RECORD_FULL_IS_REPLAY)
985 ops->beneath->to_commit_resume (ops->beneath);
986 }
987
988 static int record_full_get_sig = 0;
989
990 /* SIGINT signal handler, registered by "to_wait" method. */
991
992 static void
993 record_full_sig_handler (int signo)
994 {
995 if (record_debug)
996 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
997
998 /* It will break the running inferior in replay mode. */
999 record_full_resume_step = 1;
1000
1001 /* It will let record_full_wait set inferior status to get the signal
1002 SIGINT. */
1003 record_full_get_sig = 1;
1004 }
1005
1006 static void
1007 record_full_wait_cleanups (void *ignore)
1008 {
1009 if (execution_direction == EXEC_REVERSE)
1010 {
1011 if (record_full_list->next)
1012 record_full_list = record_full_list->next;
1013 }
1014 else
1015 record_full_list = record_full_list->prev;
1016 }
1017
1018 /* "to_wait" target method for process record target.
1019
1020 In record mode, the target is always run in singlestep mode
1021 (even when gdb says to continue). The to_wait method intercepts
1022 the stop events and determines which ones are to be passed on to
1023 gdb. Most stop events are just singlestep events that gdb is not
1024 to know about, so the to_wait method just records them and keeps
1025 singlestepping.
1026
1027 In replay mode, this function emulates the recorded execution log,
1028 one instruction at a time (forward or backward), and determines
1029 where to stop. */
1030
1031 static ptid_t
1032 record_full_wait_1 (struct target_ops *ops,
1033 ptid_t ptid, struct target_waitstatus *status,
1034 int options)
1035 {
1036 scoped_restore restore_operation_disable
1037 = record_full_gdb_operation_disable_set ();
1038
1039 if (record_debug)
1040 fprintf_unfiltered (gdb_stdlog,
1041 "Process record: record_full_wait "
1042 "record_full_resume_step = %d, "
1043 "record_full_resumed = %d, direction=%s\n",
1044 record_full_resume_step, record_full_resumed,
1045 record_full_execution_dir == EXEC_FORWARD
1046 ? "forward" : "reverse");
1047
1048 if (!record_full_resumed)
1049 {
1050 gdb_assert ((options & TARGET_WNOHANG) != 0);
1051
1052 /* No interesting event. */
1053 status->kind = TARGET_WAITKIND_IGNORE;
1054 return minus_one_ptid;
1055 }
1056
1057 record_full_get_sig = 0;
1058 signal (SIGINT, record_full_sig_handler);
1059
1060 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1061
1062 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1063 {
1064 if (record_full_resume_step)
1065 {
1066 /* This is a single step. */
1067 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1068 }
1069 else
1070 {
1071 /* This is not a single step. */
1072 ptid_t ret;
1073 CORE_ADDR tmp_pc;
1074 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1075
1076 while (1)
1077 {
1078 struct thread_info *tp;
1079
1080 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1081 if (status->kind == TARGET_WAITKIND_IGNORE)
1082 {
1083 if (record_debug)
1084 fprintf_unfiltered (gdb_stdlog,
1085 "Process record: record_full_wait "
1086 "target beneath not done yet\n");
1087 return ret;
1088 }
1089
1090 ALL_NON_EXITED_THREADS (tp)
1091 delete_single_step_breakpoints (tp);
1092
1093 if (record_full_resume_step)
1094 return ret;
1095
1096 /* Is this a SIGTRAP? */
1097 if (status->kind == TARGET_WAITKIND_STOPPED
1098 && status->value.sig == GDB_SIGNAL_TRAP)
1099 {
1100 struct regcache *regcache;
1101 enum target_stop_reason *stop_reason_p
1102 = &record_full_stop_reason;
1103
1104 /* Yes -- this is likely our single-step finishing,
1105 but check if there's any reason the core would be
1106 interested in the event. */
1107
1108 registers_changed ();
1109 regcache = get_current_regcache ();
1110 tmp_pc = regcache_read_pc (regcache);
1111 const struct address_space *aspace = regcache->aspace ();
1112
1113 if (target_stopped_by_watchpoint ())
1114 {
1115 /* Always interested in watchpoints. */
1116 }
1117 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1118 stop_reason_p))
1119 {
1120 /* There is a breakpoint here. Let the core
1121 handle it. */
1122 }
1123 else
1124 {
1125 /* This is a single-step trap. Record the
1126 insn and issue another step.
1127 FIXME: this part can be a random SIGTRAP too.
1128 But GDB cannot handle it. */
1129 int step = 1;
1130
1131 if (!record_full_message_wrapper_safe (regcache,
1132 GDB_SIGNAL_0))
1133 {
1134 status->kind = TARGET_WAITKIND_STOPPED;
1135 status->value.sig = GDB_SIGNAL_0;
1136 break;
1137 }
1138
1139 if (gdbarch_software_single_step_p (gdbarch))
1140 {
1141 /* Try to insert the software single step breakpoint.
1142 If insert success, set step to 0. */
1143 set_executing (inferior_ptid, 0);
1144 reinit_frame_cache ();
1145
1146 step = !insert_single_step_breakpoints (gdbarch);
1147
1148 set_executing (inferior_ptid, 1);
1149 }
1150
1151 if (record_debug)
1152 fprintf_unfiltered (gdb_stdlog,
1153 "Process record: record_full_wait "
1154 "issuing one more step in the "
1155 "target beneath\n");
1156 ops->beneath->to_resume (ops->beneath, ptid, step,
1157 GDB_SIGNAL_0);
1158 ops->beneath->to_commit_resume (ops->beneath);
1159 continue;
1160 }
1161 }
1162
1163 /* The inferior is broken by a breakpoint or a signal. */
1164 break;
1165 }
1166
1167 return ret;
1168 }
1169 }
1170 else
1171 {
1172 struct regcache *regcache = get_current_regcache ();
1173 struct gdbarch *gdbarch = regcache->arch ();
1174 const struct address_space *aspace = regcache->aspace ();
1175 int continue_flag = 1;
1176 int first_record_full_end = 1;
1177 struct cleanup *old_cleanups
1178 = make_cleanup (record_full_wait_cleanups, 0);
1179 CORE_ADDR tmp_pc;
1180
1181 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1182 status->kind = TARGET_WAITKIND_STOPPED;
1183
1184 /* Check breakpoint when forward execute. */
1185 if (execution_direction == EXEC_FORWARD)
1186 {
1187 tmp_pc = regcache_read_pc (regcache);
1188 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1189 &record_full_stop_reason))
1190 {
1191 if (record_debug)
1192 fprintf_unfiltered (gdb_stdlog,
1193 "Process record: break at %s.\n",
1194 paddress (gdbarch, tmp_pc));
1195 goto replay_out;
1196 }
1197 }
1198
1199 /* If GDB is in terminal_inferior mode, it will not get the signal.
1200 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1201 mode, because inferior will not executed.
1202 Then set it to terminal_ours to make GDB get the signal. */
1203 target_terminal::ours ();
1204
1205 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1206 instruction. */
1207 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1208 record_full_list = record_full_list->next;
1209
1210 /* Loop over the record_full_list, looking for the next place to
1211 stop. */
1212 do
1213 {
1214 /* Check for beginning and end of log. */
1215 if (execution_direction == EXEC_REVERSE
1216 && record_full_list == &record_full_first)
1217 {
1218 /* Hit beginning of record log in reverse. */
1219 status->kind = TARGET_WAITKIND_NO_HISTORY;
1220 break;
1221 }
1222 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1223 {
1224 /* Hit end of record log going forward. */
1225 status->kind = TARGET_WAITKIND_NO_HISTORY;
1226 break;
1227 }
1228
1229 record_full_exec_insn (regcache, gdbarch, record_full_list);
1230
1231 if (record_full_list->type == record_full_end)
1232 {
1233 if (record_debug > 1)
1234 fprintf_unfiltered (gdb_stdlog,
1235 "Process record: record_full_end %s to "
1236 "inferior.\n",
1237 host_address_to_string (record_full_list));
1238
1239 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1240 {
1241 /* When reverse excute, the first record_full_end is the
1242 part of current instruction. */
1243 first_record_full_end = 0;
1244 }
1245 else
1246 {
1247 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1248 instruction.
1249 In EXEC_FORWARD mode, this is the record_full_end of
1250 current instruction. */
1251 /* step */
1252 if (record_full_resume_step)
1253 {
1254 if (record_debug > 1)
1255 fprintf_unfiltered (gdb_stdlog,
1256 "Process record: step.\n");
1257 continue_flag = 0;
1258 }
1259
1260 /* check breakpoint */
1261 tmp_pc = regcache_read_pc (regcache);
1262 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1263 &record_full_stop_reason))
1264 {
1265 if (record_debug)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "Process record: break "
1268 "at %s.\n",
1269 paddress (gdbarch, tmp_pc));
1270
1271 continue_flag = 0;
1272 }
1273
1274 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1275 {
1276 if (record_debug)
1277 fprintf_unfiltered (gdb_stdlog,
1278 "Process record: hit hw "
1279 "watchpoint.\n");
1280 continue_flag = 0;
1281 }
1282 /* Check target signal */
1283 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1284 /* FIXME: better way to check */
1285 continue_flag = 0;
1286 }
1287 }
1288
1289 if (continue_flag)
1290 {
1291 if (execution_direction == EXEC_REVERSE)
1292 {
1293 if (record_full_list->prev)
1294 record_full_list = record_full_list->prev;
1295 }
1296 else
1297 {
1298 if (record_full_list->next)
1299 record_full_list = record_full_list->next;
1300 }
1301 }
1302 }
1303 while (continue_flag);
1304
1305 replay_out:
1306 if (record_full_get_sig)
1307 status->value.sig = GDB_SIGNAL_INT;
1308 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1309 /* FIXME: better way to check */
1310 status->value.sig = record_full_list->u.end.sigval;
1311 else
1312 status->value.sig = GDB_SIGNAL_TRAP;
1313
1314 discard_cleanups (old_cleanups);
1315 }
1316
1317 signal (SIGINT, handle_sigint);
1318
1319 return inferior_ptid;
1320 }
1321
1322 static ptid_t
1323 record_full_wait (struct target_ops *ops,
1324 ptid_t ptid, struct target_waitstatus *status,
1325 int options)
1326 {
1327 ptid_t return_ptid;
1328
1329 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1330 if (status->kind != TARGET_WAITKIND_IGNORE)
1331 {
1332 /* We're reporting a stop. Make sure any spurious
1333 target_wait(WNOHANG) doesn't advance the target until the
1334 core wants us resumed again. */
1335 record_full_resumed = 0;
1336 }
1337 return return_ptid;
1338 }
1339
1340 static int
1341 record_full_stopped_by_watchpoint (struct target_ops *ops)
1342 {
1343 if (RECORD_FULL_IS_REPLAY)
1344 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1345 else
1346 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1347 }
1348
1349 static int
1350 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1351 {
1352 if (RECORD_FULL_IS_REPLAY)
1353 return 0;
1354 else
1355 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1356 }
1357
1358 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1359
1360 static int
1361 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1362 {
1363 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1364 }
1365
1366 /* The to_supports_stopped_by_sw_breakpoint method of target
1367 record-full. */
1368
1369 static int
1370 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1371 {
1372 return 1;
1373 }
1374
1375 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1376
1377 static int
1378 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1379 {
1380 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1381 }
1382
1383 /* The to_supports_stopped_by_sw_breakpoint method of target
1384 record-full. */
1385
1386 static int
1387 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1388 {
1389 return 1;
1390 }
1391
1392 /* Record registers change (by user or by GDB) to list as an instruction. */
1393
1394 static void
1395 record_full_registers_change (struct regcache *regcache, int regnum)
1396 {
1397 /* Check record_full_insn_num. */
1398 record_full_check_insn_num ();
1399
1400 record_full_arch_list_head = NULL;
1401 record_full_arch_list_tail = NULL;
1402
1403 if (regnum < 0)
1404 {
1405 int i;
1406
1407 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1408 {
1409 if (record_full_arch_list_add_reg (regcache, i))
1410 {
1411 record_full_list_release (record_full_arch_list_tail);
1412 error (_("Process record: failed to record execution log."));
1413 }
1414 }
1415 }
1416 else
1417 {
1418 if (record_full_arch_list_add_reg (regcache, regnum))
1419 {
1420 record_full_list_release (record_full_arch_list_tail);
1421 error (_("Process record: failed to record execution log."));
1422 }
1423 }
1424 if (record_full_arch_list_add_end ())
1425 {
1426 record_full_list_release (record_full_arch_list_tail);
1427 error (_("Process record: failed to record execution log."));
1428 }
1429 record_full_list->next = record_full_arch_list_head;
1430 record_full_arch_list_head->prev = record_full_list;
1431 record_full_list = record_full_arch_list_tail;
1432
1433 if (record_full_insn_num == record_full_insn_max_num)
1434 record_full_list_release_first ();
1435 else
1436 record_full_insn_num++;
1437 }
1438
1439 /* "to_store_registers" method for process record target. */
1440
1441 static void
1442 record_full_store_registers (struct target_ops *ops,
1443 struct regcache *regcache,
1444 int regno)
1445 {
1446 if (!record_full_gdb_operation_disable)
1447 {
1448 if (RECORD_FULL_IS_REPLAY)
1449 {
1450 int n;
1451
1452 /* Let user choose if he wants to write register or not. */
1453 if (regno < 0)
1454 n =
1455 query (_("Because GDB is in replay mode, changing the "
1456 "value of a register will make the execution "
1457 "log unusable from this point onward. "
1458 "Change all registers?"));
1459 else
1460 n =
1461 query (_("Because GDB is in replay mode, changing the value "
1462 "of a register will make the execution log unusable "
1463 "from this point onward. Change register %s?"),
1464 gdbarch_register_name (regcache->arch (),
1465 regno));
1466
1467 if (!n)
1468 {
1469 /* Invalidate the value of regcache that was set in function
1470 "regcache_raw_write". */
1471 if (regno < 0)
1472 {
1473 int i;
1474
1475 for (i = 0;
1476 i < gdbarch_num_regs (regcache->arch ());
1477 i++)
1478 regcache_invalidate (regcache, i);
1479 }
1480 else
1481 regcache_invalidate (regcache, regno);
1482
1483 error (_("Process record canceled the operation."));
1484 }
1485
1486 /* Destroy the record from here forward. */
1487 record_full_list_release_following (record_full_list);
1488 }
1489
1490 record_full_registers_change (regcache, regno);
1491 }
1492 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1493 }
1494
1495 /* "to_xfer_partial" method. Behavior is conditional on
1496 RECORD_FULL_IS_REPLAY.
1497 In replay mode, we cannot write memory unles we are willing to
1498 invalidate the record/replay log from this point forward. */
1499
1500 static enum target_xfer_status
1501 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1502 const char *annex, gdb_byte *readbuf,
1503 const gdb_byte *writebuf, ULONGEST offset,
1504 ULONGEST len, ULONGEST *xfered_len)
1505 {
1506 if (!record_full_gdb_operation_disable
1507 && (object == TARGET_OBJECT_MEMORY
1508 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1509 {
1510 if (RECORD_FULL_IS_REPLAY)
1511 {
1512 /* Let user choose if he wants to write memory or not. */
1513 if (!query (_("Because GDB is in replay mode, writing to memory "
1514 "will make the execution log unusable from this "
1515 "point onward. Write memory at address %s?"),
1516 paddress (target_gdbarch (), offset)))
1517 error (_("Process record canceled the operation."));
1518
1519 /* Destroy the record from here forward. */
1520 record_full_list_release_following (record_full_list);
1521 }
1522
1523 /* Check record_full_insn_num */
1524 record_full_check_insn_num ();
1525
1526 /* Record registers change to list as an instruction. */
1527 record_full_arch_list_head = NULL;
1528 record_full_arch_list_tail = NULL;
1529 if (record_full_arch_list_add_mem (offset, len))
1530 {
1531 record_full_list_release (record_full_arch_list_tail);
1532 if (record_debug)
1533 fprintf_unfiltered (gdb_stdlog,
1534 "Process record: failed to record "
1535 "execution log.");
1536 return TARGET_XFER_E_IO;
1537 }
1538 if (record_full_arch_list_add_end ())
1539 {
1540 record_full_list_release (record_full_arch_list_tail);
1541 if (record_debug)
1542 fprintf_unfiltered (gdb_stdlog,
1543 "Process record: failed to record "
1544 "execution log.");
1545 return TARGET_XFER_E_IO;
1546 }
1547 record_full_list->next = record_full_arch_list_head;
1548 record_full_arch_list_head->prev = record_full_list;
1549 record_full_list = record_full_arch_list_tail;
1550
1551 if (record_full_insn_num == record_full_insn_max_num)
1552 record_full_list_release_first ();
1553 else
1554 record_full_insn_num++;
1555 }
1556
1557 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1558 readbuf, writebuf, offset,
1559 len, xfered_len);
1560 }
1561
1562 /* This structure represents a breakpoint inserted while the record
1563 target is active. We use this to know when to install/remove
1564 breakpoints in/from the target beneath. For example, a breakpoint
1565 may be inserted while recording, but removed when not replaying nor
1566 recording. In that case, the breakpoint had not been inserted on
1567 the target beneath, so we should not try to remove it there. */
1568
1569 struct record_full_breakpoint
1570 {
1571 /* The address and address space the breakpoint was set at. */
1572 struct address_space *address_space;
1573 CORE_ADDR addr;
1574
1575 /* True when the breakpoint has been also installed in the target
1576 beneath. This will be false for breakpoints set during replay or
1577 when recording. */
1578 int in_target_beneath;
1579 };
1580
1581 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1582 DEF_VEC_P(record_full_breakpoint_p);
1583
1584 /* The list of breakpoints inserted while the record target is
1585 active. */
1586 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1587
1588 static void
1589 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1590 {
1591 if (loc->loc_type != bp_loc_software_breakpoint)
1592 return;
1593
1594 if (loc->inserted)
1595 {
1596 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1597
1598 bp->addr = loc->target_info.placed_address;
1599 bp->address_space = loc->target_info.placed_address_space;
1600
1601 bp->in_target_beneath = 1;
1602
1603 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1604 }
1605 }
1606
1607 /* Sync existing breakpoints to record_full_breakpoints. */
1608
1609 static void
1610 record_full_init_record_breakpoints (void)
1611 {
1612 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1613
1614 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1615 }
1616
1617 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1618 insert or remove breakpoints in the real target when replaying, nor
1619 when recording. */
1620
1621 static int
1622 record_full_insert_breakpoint (struct target_ops *ops,
1623 struct gdbarch *gdbarch,
1624 struct bp_target_info *bp_tgt)
1625 {
1626 struct record_full_breakpoint *bp;
1627 int in_target_beneath = 0;
1628 int ix;
1629
1630 if (!RECORD_FULL_IS_REPLAY)
1631 {
1632 /* When recording, we currently always single-step, so we don't
1633 really need to install regular breakpoints in the inferior.
1634 However, we do have to insert software single-step
1635 breakpoints, in case the target can't hardware step. To keep
1636 things simple, we always insert. */
1637 int ret;
1638
1639 scoped_restore restore_operation_disable
1640 = record_full_gdb_operation_disable_set ();
1641 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1642
1643 if (ret != 0)
1644 return ret;
1645
1646 in_target_beneath = 1;
1647 }
1648
1649 /* Use the existing entries if found in order to avoid duplication
1650 in record_full_breakpoints. */
1651
1652 for (ix = 0;
1653 VEC_iterate (record_full_breakpoint_p,
1654 record_full_breakpoints, ix, bp);
1655 ++ix)
1656 {
1657 if (bp->addr == bp_tgt->placed_address
1658 && bp->address_space == bp_tgt->placed_address_space)
1659 {
1660 gdb_assert (bp->in_target_beneath == in_target_beneath);
1661 return 0;
1662 }
1663 }
1664
1665 bp = XNEW (struct record_full_breakpoint);
1666 bp->addr = bp_tgt->placed_address;
1667 bp->address_space = bp_tgt->placed_address_space;
1668 bp->in_target_beneath = in_target_beneath;
1669 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1670 return 0;
1671 }
1672
1673 /* "to_remove_breakpoint" method for process record target. */
1674
1675 static int
1676 record_full_remove_breakpoint (struct target_ops *ops,
1677 struct gdbarch *gdbarch,
1678 struct bp_target_info *bp_tgt,
1679 enum remove_bp_reason reason)
1680 {
1681 struct record_full_breakpoint *bp;
1682 int ix;
1683
1684 for (ix = 0;
1685 VEC_iterate (record_full_breakpoint_p,
1686 record_full_breakpoints, ix, bp);
1687 ++ix)
1688 {
1689 if (bp->addr == bp_tgt->placed_address
1690 && bp->address_space == bp_tgt->placed_address_space)
1691 {
1692 if (bp->in_target_beneath)
1693 {
1694 int ret;
1695
1696 scoped_restore restore_operation_disable
1697 = record_full_gdb_operation_disable_set ();
1698 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1699 bp_tgt, reason);
1700 if (ret != 0)
1701 return ret;
1702 }
1703
1704 if (reason == REMOVE_BREAKPOINT)
1705 {
1706 VEC_unordered_remove (record_full_breakpoint_p,
1707 record_full_breakpoints, ix);
1708 }
1709 return 0;
1710 }
1711 }
1712
1713 gdb_assert_not_reached ("removing unknown breakpoint");
1714 }
1715
1716 /* "to_can_execute_reverse" method for process record target. */
1717
1718 static int
1719 record_full_can_execute_reverse (struct target_ops *self)
1720 {
1721 return 1;
1722 }
1723
1724 /* "to_get_bookmark" method for process record and prec over core. */
1725
1726 static gdb_byte *
1727 record_full_get_bookmark (struct target_ops *self, const char *args,
1728 int from_tty)
1729 {
1730 char *ret = NULL;
1731
1732 /* Return stringified form of instruction count. */
1733 if (record_full_list && record_full_list->type == record_full_end)
1734 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1735
1736 if (record_debug)
1737 {
1738 if (ret)
1739 fprintf_unfiltered (gdb_stdlog,
1740 "record_full_get_bookmark returns %s\n", ret);
1741 else
1742 fprintf_unfiltered (gdb_stdlog,
1743 "record_full_get_bookmark returns NULL\n");
1744 }
1745 return (gdb_byte *) ret;
1746 }
1747
1748 /* "to_goto_bookmark" method for process record and prec over core. */
1749
1750 static void
1751 record_full_goto_bookmark (struct target_ops *self,
1752 const gdb_byte *raw_bookmark, int from_tty)
1753 {
1754 const char *bookmark = (const char *) raw_bookmark;
1755 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1756
1757 if (record_debug)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "record_full_goto_bookmark receives %s\n", bookmark);
1760
1761 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1762 {
1763 char *copy;
1764
1765 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1766 error (_("Unbalanced quotes: %s"), bookmark);
1767
1768
1769 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1770 make_cleanup (xfree, copy);
1771 bookmark = copy;
1772 }
1773
1774 record_goto (bookmark);
1775
1776 do_cleanups (cleanup);
1777 }
1778
1779 static enum exec_direction_kind
1780 record_full_execution_direction (struct target_ops *self)
1781 {
1782 return record_full_execution_dir;
1783 }
1784
1785 /* The to_record_method method of target record-full. */
1786
1787 enum record_method
1788 record_full_record_method (struct target_ops *self, ptid_t ptid)
1789 {
1790 return RECORD_METHOD_FULL;
1791 }
1792
1793 static void
1794 record_full_info (struct target_ops *self)
1795 {
1796 struct record_full_entry *p;
1797
1798 if (RECORD_FULL_IS_REPLAY)
1799 printf_filtered (_("Replay mode:\n"));
1800 else
1801 printf_filtered (_("Record mode:\n"));
1802
1803 /* Find entry for first actual instruction in the log. */
1804 for (p = record_full_first.next;
1805 p != NULL && p->type != record_full_end;
1806 p = p->next)
1807 ;
1808
1809 /* Do we have a log at all? */
1810 if (p != NULL && p->type == record_full_end)
1811 {
1812 /* Display instruction number for first instruction in the log. */
1813 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1814 pulongest (p->u.end.insn_num));
1815
1816 /* If in replay mode, display where we are in the log. */
1817 if (RECORD_FULL_IS_REPLAY)
1818 printf_filtered (_("Current instruction number is %s.\n"),
1819 pulongest (record_full_list->u.end.insn_num));
1820
1821 /* Display instruction number for last instruction in the log. */
1822 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1823 pulongest (record_full_insn_count));
1824
1825 /* Display log count. */
1826 printf_filtered (_("Log contains %u instructions.\n"),
1827 record_full_insn_num);
1828 }
1829 else
1830 printf_filtered (_("No instructions have been logged.\n"));
1831
1832 /* Display max log size. */
1833 printf_filtered (_("Max logged instructions is %u.\n"),
1834 record_full_insn_max_num);
1835 }
1836
1837 /* The "to_record_delete" target method. */
1838
1839 static void
1840 record_full_delete (struct target_ops *self)
1841 {
1842 record_full_list_release_following (record_full_list);
1843 }
1844
1845 /* The "to_record_is_replaying" target method. */
1846
1847 static int
1848 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1849 {
1850 return RECORD_FULL_IS_REPLAY;
1851 }
1852
1853 /* The "to_record_will_replay" target method. */
1854
1855 static int
1856 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1857 {
1858 /* We can currently only record when executing forwards. Should we be able
1859 to record when executing backwards on targets that support reverse
1860 execution, this needs to be changed. */
1861
1862 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1863 }
1864
1865 /* Go to a specific entry. */
1866
1867 static void
1868 record_full_goto_entry (struct record_full_entry *p)
1869 {
1870 if (p == NULL)
1871 error (_("Target insn not found."));
1872 else if (p == record_full_list)
1873 error (_("Already at target insn."));
1874 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1875 {
1876 printf_filtered (_("Go forward to insn number %s\n"),
1877 pulongest (p->u.end.insn_num));
1878 record_full_goto_insn (p, EXEC_FORWARD);
1879 }
1880 else
1881 {
1882 printf_filtered (_("Go backward to insn number %s\n"),
1883 pulongest (p->u.end.insn_num));
1884 record_full_goto_insn (p, EXEC_REVERSE);
1885 }
1886
1887 registers_changed ();
1888 reinit_frame_cache ();
1889 stop_pc = regcache_read_pc (get_current_regcache ());
1890 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1891 }
1892
1893 /* The "to_goto_record_begin" target method. */
1894
1895 static void
1896 record_full_goto_begin (struct target_ops *self)
1897 {
1898 struct record_full_entry *p = NULL;
1899
1900 for (p = &record_full_first; p != NULL; p = p->next)
1901 if (p->type == record_full_end)
1902 break;
1903
1904 record_full_goto_entry (p);
1905 }
1906
1907 /* The "to_goto_record_end" target method. */
1908
1909 static void
1910 record_full_goto_end (struct target_ops *self)
1911 {
1912 struct record_full_entry *p = NULL;
1913
1914 for (p = record_full_list; p->next != NULL; p = p->next)
1915 ;
1916 for (; p!= NULL; p = p->prev)
1917 if (p->type == record_full_end)
1918 break;
1919
1920 record_full_goto_entry (p);
1921 }
1922
1923 /* The "to_goto_record" target method. */
1924
1925 static void
1926 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1927 {
1928 struct record_full_entry *p = NULL;
1929
1930 for (p = &record_full_first; p != NULL; p = p->next)
1931 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1932 break;
1933
1934 record_full_goto_entry (p);
1935 }
1936
1937 /* The "to_record_stop_replaying" target method. */
1938
1939 static void
1940 record_full_stop_replaying (struct target_ops *self)
1941 {
1942 record_full_goto_end (self);
1943 }
1944
1945 static void
1946 init_record_full_ops (void)
1947 {
1948 record_full_ops.to_shortname = "record-full";
1949 record_full_ops.to_longname = "Process record and replay target";
1950 record_full_ops.to_doc =
1951 "Log program while executing and replay execution from log.";
1952 record_full_ops.to_open = record_full_open;
1953 record_full_ops.to_close = record_full_close;
1954 record_full_ops.to_async = record_full_async;
1955 record_full_ops.to_resume = record_full_resume;
1956 record_full_ops.to_commit_resume = record_full_commit_resume;
1957 record_full_ops.to_wait = record_full_wait;
1958 record_full_ops.to_disconnect = record_disconnect;
1959 record_full_ops.to_detach = record_detach;
1960 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1961 record_full_ops.to_kill = record_kill;
1962 record_full_ops.to_store_registers = record_full_store_registers;
1963 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1964 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1965 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1966 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1967 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1968 record_full_ops.to_stopped_by_sw_breakpoint
1969 = record_full_stopped_by_sw_breakpoint;
1970 record_full_ops.to_supports_stopped_by_sw_breakpoint
1971 = record_full_supports_stopped_by_sw_breakpoint;
1972 record_full_ops.to_stopped_by_hw_breakpoint
1973 = record_full_stopped_by_hw_breakpoint;
1974 record_full_ops.to_supports_stopped_by_hw_breakpoint
1975 = record_full_supports_stopped_by_hw_breakpoint;
1976 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1977 record_full_ops.to_stratum = record_stratum;
1978 /* Add bookmark target methods. */
1979 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1980 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1981 record_full_ops.to_execution_direction = record_full_execution_direction;
1982 record_full_ops.to_record_method = record_full_record_method;
1983 record_full_ops.to_info_record = record_full_info;
1984 record_full_ops.to_save_record = record_full_save;
1985 record_full_ops.to_delete_record = record_full_delete;
1986 record_full_ops.to_record_is_replaying = record_full_is_replaying;
1987 record_full_ops.to_record_will_replay = record_full_will_replay;
1988 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
1989 record_full_ops.to_goto_record_begin = record_full_goto_begin;
1990 record_full_ops.to_goto_record_end = record_full_goto_end;
1991 record_full_ops.to_goto_record = record_full_goto;
1992 record_full_ops.to_magic = OPS_MAGIC;
1993 }
1994
1995 /* "to_resume" method for prec over corefile. */
1996
1997 static void
1998 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
1999 enum gdb_signal signal)
2000 {
2001 record_full_resume_step = step;
2002 record_full_resumed = 1;
2003 record_full_execution_dir = execution_direction;
2004
2005 /* We are about to start executing the inferior (or simulate it),
2006 let's register it with the event loop. */
2007 if (target_can_async_p ())
2008 target_async (1);
2009 }
2010
2011 /* "to_kill" method for prec over corefile. */
2012
2013 static void
2014 record_full_core_kill (struct target_ops *ops)
2015 {
2016 if (record_debug)
2017 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2018
2019 unpush_target (&record_full_core_ops);
2020 }
2021
2022 /* "to_fetch_registers" method for prec over corefile. */
2023
2024 static void
2025 record_full_core_fetch_registers (struct target_ops *ops,
2026 struct regcache *regcache,
2027 int regno)
2028 {
2029 if (regno < 0)
2030 {
2031 int num = gdbarch_num_regs (regcache->arch ());
2032 int i;
2033
2034 for (i = 0; i < num; i ++)
2035 regcache_raw_supply (regcache, i,
2036 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2037 }
2038 else
2039 regcache_raw_supply (regcache, regno,
2040 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2041 }
2042
2043 /* "to_prepare_to_store" method for prec over corefile. */
2044
2045 static void
2046 record_full_core_prepare_to_store (struct target_ops *self,
2047 struct regcache *regcache)
2048 {
2049 }
2050
2051 /* "to_store_registers" method for prec over corefile. */
2052
2053 static void
2054 record_full_core_store_registers (struct target_ops *ops,
2055 struct regcache *regcache,
2056 int regno)
2057 {
2058 if (record_full_gdb_operation_disable)
2059 regcache_raw_collect (regcache, regno,
2060 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2061 else
2062 error (_("You can't do that without a process to debug."));
2063 }
2064
2065 /* "to_xfer_partial" method for prec over corefile. */
2066
2067 static enum target_xfer_status
2068 record_full_core_xfer_partial (struct target_ops *ops,
2069 enum target_object object,
2070 const char *annex, gdb_byte *readbuf,
2071 const gdb_byte *writebuf, ULONGEST offset,
2072 ULONGEST len, ULONGEST *xfered_len)
2073 {
2074 if (object == TARGET_OBJECT_MEMORY)
2075 {
2076 if (record_full_gdb_operation_disable || !writebuf)
2077 {
2078 struct target_section *p;
2079
2080 for (p = record_full_core_start; p < record_full_core_end; p++)
2081 {
2082 if (offset >= p->addr)
2083 {
2084 struct record_full_core_buf_entry *entry;
2085 ULONGEST sec_offset;
2086
2087 if (offset >= p->endaddr)
2088 continue;
2089
2090 if (offset + len > p->endaddr)
2091 len = p->endaddr - offset;
2092
2093 sec_offset = offset - p->addr;
2094
2095 /* Read readbuf or write writebuf p, offset, len. */
2096 /* Check flags. */
2097 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2098 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2099 {
2100 if (readbuf)
2101 memset (readbuf, 0, len);
2102
2103 *xfered_len = len;
2104 return TARGET_XFER_OK;
2105 }
2106 /* Get record_full_core_buf_entry. */
2107 for (entry = record_full_core_buf_list; entry;
2108 entry = entry->prev)
2109 if (entry->p == p)
2110 break;
2111 if (writebuf)
2112 {
2113 if (!entry)
2114 {
2115 /* Add a new entry. */
2116 entry = XNEW (struct record_full_core_buf_entry);
2117 entry->p = p;
2118 if (!bfd_malloc_and_get_section
2119 (p->the_bfd_section->owner,
2120 p->the_bfd_section,
2121 &entry->buf))
2122 {
2123 xfree (entry);
2124 return TARGET_XFER_EOF;
2125 }
2126 entry->prev = record_full_core_buf_list;
2127 record_full_core_buf_list = entry;
2128 }
2129
2130 memcpy (entry->buf + sec_offset, writebuf,
2131 (size_t) len);
2132 }
2133 else
2134 {
2135 if (!entry)
2136 return ops->beneath->to_xfer_partial (ops->beneath,
2137 object, annex,
2138 readbuf, writebuf,
2139 offset, len,
2140 xfered_len);
2141
2142 memcpy (readbuf, entry->buf + sec_offset,
2143 (size_t) len);
2144 }
2145
2146 *xfered_len = len;
2147 return TARGET_XFER_OK;
2148 }
2149 }
2150
2151 return TARGET_XFER_E_IO;
2152 }
2153 else
2154 error (_("You can't do that without a process to debug."));
2155 }
2156
2157 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2158 readbuf, writebuf, offset, len,
2159 xfered_len);
2160 }
2161
2162 /* "to_insert_breakpoint" method for prec over corefile. */
2163
2164 static int
2165 record_full_core_insert_breakpoint (struct target_ops *ops,
2166 struct gdbarch *gdbarch,
2167 struct bp_target_info *bp_tgt)
2168 {
2169 return 0;
2170 }
2171
2172 /* "to_remove_breakpoint" method for prec over corefile. */
2173
2174 static int
2175 record_full_core_remove_breakpoint (struct target_ops *ops,
2176 struct gdbarch *gdbarch,
2177 struct bp_target_info *bp_tgt,
2178 enum remove_bp_reason reason)
2179 {
2180 return 0;
2181 }
2182
2183 /* "to_has_execution" method for prec over corefile. */
2184
2185 static int
2186 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2187 {
2188 return 1;
2189 }
2190
2191 static void
2192 init_record_full_core_ops (void)
2193 {
2194 record_full_core_ops.to_shortname = "record-core";
2195 record_full_core_ops.to_longname = "Process record and replay target";
2196 record_full_core_ops.to_doc =
2197 "Log program while executing and replay execution from log.";
2198 record_full_core_ops.to_open = record_full_open;
2199 record_full_core_ops.to_close = record_full_close;
2200 record_full_core_ops.to_async = record_full_async;
2201 record_full_core_ops.to_resume = record_full_core_resume;
2202 record_full_core_ops.to_wait = record_full_wait;
2203 record_full_core_ops.to_kill = record_full_core_kill;
2204 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2205 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2206 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2207 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2208 record_full_core_ops.to_insert_breakpoint
2209 = record_full_core_insert_breakpoint;
2210 record_full_core_ops.to_remove_breakpoint
2211 = record_full_core_remove_breakpoint;
2212 record_full_core_ops.to_stopped_by_watchpoint
2213 = record_full_stopped_by_watchpoint;
2214 record_full_core_ops.to_stopped_data_address
2215 = record_full_stopped_data_address;
2216 record_full_core_ops.to_stopped_by_sw_breakpoint
2217 = record_full_stopped_by_sw_breakpoint;
2218 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2219 = record_full_supports_stopped_by_sw_breakpoint;
2220 record_full_core_ops.to_stopped_by_hw_breakpoint
2221 = record_full_stopped_by_hw_breakpoint;
2222 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2223 = record_full_supports_stopped_by_hw_breakpoint;
2224 record_full_core_ops.to_can_execute_reverse
2225 = record_full_can_execute_reverse;
2226 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2227 record_full_core_ops.to_stratum = record_stratum;
2228 /* Add bookmark target methods. */
2229 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2230 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2231 record_full_core_ops.to_execution_direction
2232 = record_full_execution_direction;
2233 record_full_core_ops.to_record_method = record_full_record_method;
2234 record_full_core_ops.to_info_record = record_full_info;
2235 record_full_core_ops.to_delete_record = record_full_delete;
2236 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2237 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2238 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2239 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2240 record_full_core_ops.to_goto_record = record_full_goto;
2241 record_full_core_ops.to_magic = OPS_MAGIC;
2242 }
2243
2244 /* Record log save-file format
2245 Version 1 (never released)
2246
2247 Header:
2248 4 bytes: magic number htonl(0x20090829).
2249 NOTE: be sure to change whenever this file format changes!
2250
2251 Records:
2252 record_full_end:
2253 1 byte: record type (record_full_end, see enum record_full_type).
2254 record_full_reg:
2255 1 byte: record type (record_full_reg, see enum record_full_type).
2256 8 bytes: register id (network byte order).
2257 MAX_REGISTER_SIZE bytes: register value.
2258 record_full_mem:
2259 1 byte: record type (record_full_mem, see enum record_full_type).
2260 8 bytes: memory length (network byte order).
2261 8 bytes: memory address (network byte order).
2262 n bytes: memory value (n == memory length).
2263
2264 Version 2
2265 4 bytes: magic number netorder32(0x20091016).
2266 NOTE: be sure to change whenever this file format changes!
2267
2268 Records:
2269 record_full_end:
2270 1 byte: record type (record_full_end, see enum record_full_type).
2271 4 bytes: signal
2272 4 bytes: instruction count
2273 record_full_reg:
2274 1 byte: record type (record_full_reg, see enum record_full_type).
2275 4 bytes: register id (network byte order).
2276 n bytes: register value (n == actual register size).
2277 (eg. 4 bytes for x86 general registers).
2278 record_full_mem:
2279 1 byte: record type (record_full_mem, see enum record_full_type).
2280 4 bytes: memory length (network byte order).
2281 8 bytes: memory address (network byte order).
2282 n bytes: memory value (n == memory length).
2283
2284 */
2285
2286 /* bfdcore_read -- read bytes from a core file section. */
2287
2288 static inline void
2289 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2290 {
2291 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2292
2293 if (ret)
2294 *offset += len;
2295 else
2296 error (_("Failed to read %d bytes from core file %s ('%s')."),
2297 len, bfd_get_filename (obfd),
2298 bfd_errmsg (bfd_get_error ()));
2299 }
2300
2301 static inline uint64_t
2302 netorder64 (uint64_t input)
2303 {
2304 uint64_t ret;
2305
2306 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2307 BFD_ENDIAN_BIG, input);
2308 return ret;
2309 }
2310
2311 static inline uint32_t
2312 netorder32 (uint32_t input)
2313 {
2314 uint32_t ret;
2315
2316 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2317 BFD_ENDIAN_BIG, input);
2318 return ret;
2319 }
2320
2321 /* Restore the execution log from a core_bfd file. */
2322 static void
2323 record_full_restore (void)
2324 {
2325 uint32_t magic;
2326 struct cleanup *old_cleanups;
2327 struct record_full_entry *rec;
2328 asection *osec;
2329 uint32_t osec_size;
2330 int bfd_offset = 0;
2331 struct regcache *regcache;
2332
2333 /* We restore the execution log from the open core bfd,
2334 if there is one. */
2335 if (core_bfd == NULL)
2336 return;
2337
2338 /* "record_full_restore" can only be called when record list is empty. */
2339 gdb_assert (record_full_first.next == NULL);
2340
2341 if (record_debug)
2342 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2343
2344 /* Now need to find our special note section. */
2345 osec = bfd_get_section_by_name (core_bfd, "null0");
2346 if (record_debug)
2347 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2348 osec ? "succeeded" : "failed");
2349 if (osec == NULL)
2350 return;
2351 osec_size = bfd_section_size (core_bfd, osec);
2352 if (record_debug)
2353 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2354
2355 /* Check the magic code. */
2356 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2357 if (magic != RECORD_FULL_FILE_MAGIC)
2358 error (_("Version mis-match or file format error in core file %s."),
2359 bfd_get_filename (core_bfd));
2360 if (record_debug)
2361 fprintf_unfiltered (gdb_stdlog,
2362 " Reading 4-byte magic cookie "
2363 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2364 phex_nz (netorder32 (magic), 4));
2365
2366 /* Restore the entries in recfd into record_full_arch_list_head and
2367 record_full_arch_list_tail. */
2368 record_full_arch_list_head = NULL;
2369 record_full_arch_list_tail = NULL;
2370 record_full_insn_num = 0;
2371 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2372 regcache = get_current_regcache ();
2373
2374 while (1)
2375 {
2376 uint8_t rectype;
2377 uint32_t regnum, len, signal, count;
2378 uint64_t addr;
2379
2380 /* We are finished when offset reaches osec_size. */
2381 if (bfd_offset >= osec_size)
2382 break;
2383 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2384
2385 switch (rectype)
2386 {
2387 case record_full_reg: /* reg */
2388 /* Get register number to regnum. */
2389 bfdcore_read (core_bfd, osec, &regnum,
2390 sizeof (regnum), &bfd_offset);
2391 regnum = netorder32 (regnum);
2392
2393 rec = record_full_reg_alloc (regcache, regnum);
2394
2395 /* Get val. */
2396 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2397 rec->u.reg.len, &bfd_offset);
2398
2399 if (record_debug)
2400 fprintf_unfiltered (gdb_stdlog,
2401 " Reading register %d (1 "
2402 "plus %lu plus %d bytes)\n",
2403 rec->u.reg.num,
2404 (unsigned long) sizeof (regnum),
2405 rec->u.reg.len);
2406 break;
2407
2408 case record_full_mem: /* mem */
2409 /* Get len. */
2410 bfdcore_read (core_bfd, osec, &len,
2411 sizeof (len), &bfd_offset);
2412 len = netorder32 (len);
2413
2414 /* Get addr. */
2415 bfdcore_read (core_bfd, osec, &addr,
2416 sizeof (addr), &bfd_offset);
2417 addr = netorder64 (addr);
2418
2419 rec = record_full_mem_alloc (addr, len);
2420
2421 /* Get val. */
2422 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2423 rec->u.mem.len, &bfd_offset);
2424
2425 if (record_debug)
2426 fprintf_unfiltered (gdb_stdlog,
2427 " Reading memory %s (1 plus "
2428 "%lu plus %lu plus %d bytes)\n",
2429 paddress (get_current_arch (),
2430 rec->u.mem.addr),
2431 (unsigned long) sizeof (addr),
2432 (unsigned long) sizeof (len),
2433 rec->u.mem.len);
2434 break;
2435
2436 case record_full_end: /* end */
2437 rec = record_full_end_alloc ();
2438 record_full_insn_num ++;
2439
2440 /* Get signal value. */
2441 bfdcore_read (core_bfd, osec, &signal,
2442 sizeof (signal), &bfd_offset);
2443 signal = netorder32 (signal);
2444 rec->u.end.sigval = (enum gdb_signal) signal;
2445
2446 /* Get insn count. */
2447 bfdcore_read (core_bfd, osec, &count,
2448 sizeof (count), &bfd_offset);
2449 count = netorder32 (count);
2450 rec->u.end.insn_num = count;
2451 record_full_insn_count = count + 1;
2452 if (record_debug)
2453 fprintf_unfiltered (gdb_stdlog,
2454 " Reading record_full_end (1 + "
2455 "%lu + %lu bytes), offset == %s\n",
2456 (unsigned long) sizeof (signal),
2457 (unsigned long) sizeof (count),
2458 paddress (get_current_arch (),
2459 bfd_offset));
2460 break;
2461
2462 default:
2463 error (_("Bad entry type in core file %s."),
2464 bfd_get_filename (core_bfd));
2465 break;
2466 }
2467
2468 /* Add rec to record arch list. */
2469 record_full_arch_list_add (rec);
2470 }
2471
2472 discard_cleanups (old_cleanups);
2473
2474 /* Add record_full_arch_list_head to the end of record list. */
2475 record_full_first.next = record_full_arch_list_head;
2476 record_full_arch_list_head->prev = &record_full_first;
2477 record_full_arch_list_tail->next = NULL;
2478 record_full_list = &record_full_first;
2479
2480 /* Update record_full_insn_max_num. */
2481 if (record_full_insn_num > record_full_insn_max_num)
2482 {
2483 record_full_insn_max_num = record_full_insn_num;
2484 warning (_("Auto increase record/replay buffer limit to %u."),
2485 record_full_insn_max_num);
2486 }
2487
2488 /* Succeeded. */
2489 printf_filtered (_("Restored records from core file %s.\n"),
2490 bfd_get_filename (core_bfd));
2491
2492 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2493 }
2494
2495 /* bfdcore_write -- write bytes into a core file section. */
2496
2497 static inline void
2498 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2499 {
2500 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2501
2502 if (ret)
2503 *offset += len;
2504 else
2505 error (_("Failed to write %d bytes to core file %s ('%s')."),
2506 len, bfd_get_filename (obfd),
2507 bfd_errmsg (bfd_get_error ()));
2508 }
2509
2510 /* Restore the execution log from a file. We use a modified elf
2511 corefile format, with an extra section for our data. */
2512
2513 static void
2514 cmd_record_full_restore (const char *args, int from_tty)
2515 {
2516 core_file_command (args, from_tty);
2517 record_full_open (args, from_tty);
2518 }
2519
2520 /* Save the execution log to a file. We use a modified elf corefile
2521 format, with an extra section for our data. */
2522
2523 static void
2524 record_full_save (struct target_ops *self, const char *recfilename)
2525 {
2526 struct record_full_entry *cur_record_full_list;
2527 uint32_t magic;
2528 struct regcache *regcache;
2529 struct gdbarch *gdbarch;
2530 int save_size = 0;
2531 asection *osec = NULL;
2532 int bfd_offset = 0;
2533
2534 /* Open the save file. */
2535 if (record_debug)
2536 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2537 recfilename);
2538
2539 /* Open the output file. */
2540 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2541
2542 /* Arrange to remove the output file on failure. */
2543 gdb::unlinker unlink_file (recfilename);
2544
2545 /* Save the current record entry to "cur_record_full_list". */
2546 cur_record_full_list = record_full_list;
2547
2548 /* Get the values of regcache and gdbarch. */
2549 regcache = get_current_regcache ();
2550 gdbarch = regcache->arch ();
2551
2552 /* Disable the GDB operation record. */
2553 scoped_restore restore_operation_disable
2554 = record_full_gdb_operation_disable_set ();
2555
2556 /* Reverse execute to the begin of record list. */
2557 while (1)
2558 {
2559 /* Check for beginning and end of log. */
2560 if (record_full_list == &record_full_first)
2561 break;
2562
2563 record_full_exec_insn (regcache, gdbarch, record_full_list);
2564
2565 if (record_full_list->prev)
2566 record_full_list = record_full_list->prev;
2567 }
2568
2569 /* Compute the size needed for the extra bfd section. */
2570 save_size = 4; /* magic cookie */
2571 for (record_full_list = record_full_first.next; record_full_list;
2572 record_full_list = record_full_list->next)
2573 switch (record_full_list->type)
2574 {
2575 case record_full_end:
2576 save_size += 1 + 4 + 4;
2577 break;
2578 case record_full_reg:
2579 save_size += 1 + 4 + record_full_list->u.reg.len;
2580 break;
2581 case record_full_mem:
2582 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2583 break;
2584 }
2585
2586 /* Make the new bfd section. */
2587 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2588 SEC_HAS_CONTENTS
2589 | SEC_READONLY);
2590 if (osec == NULL)
2591 error (_("Failed to create 'precord' section for corefile %s: %s"),
2592 recfilename,
2593 bfd_errmsg (bfd_get_error ()));
2594 bfd_set_section_size (obfd.get (), osec, save_size);
2595 bfd_set_section_vma (obfd.get (), osec, 0);
2596 bfd_set_section_alignment (obfd.get (), osec, 0);
2597 bfd_section_lma (obfd.get (), osec) = 0;
2598
2599 /* Save corefile state. */
2600 write_gcore_file (obfd.get ());
2601
2602 /* Write out the record log. */
2603 /* Write the magic code. */
2604 magic = RECORD_FULL_FILE_MAGIC;
2605 if (record_debug)
2606 fprintf_unfiltered (gdb_stdlog,
2607 " Writing 4-byte magic cookie "
2608 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2609 phex_nz (magic, 4));
2610 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2611
2612 /* Save the entries to recfd and forward execute to the end of
2613 record list. */
2614 record_full_list = &record_full_first;
2615 while (1)
2616 {
2617 /* Save entry. */
2618 if (record_full_list != &record_full_first)
2619 {
2620 uint8_t type;
2621 uint32_t regnum, len, signal, count;
2622 uint64_t addr;
2623
2624 type = record_full_list->type;
2625 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2626
2627 switch (record_full_list->type)
2628 {
2629 case record_full_reg: /* reg */
2630 if (record_debug)
2631 fprintf_unfiltered (gdb_stdlog,
2632 " Writing register %d (1 "
2633 "plus %lu plus %d bytes)\n",
2634 record_full_list->u.reg.num,
2635 (unsigned long) sizeof (regnum),
2636 record_full_list->u.reg.len);
2637
2638 /* Write regnum. */
2639 regnum = netorder32 (record_full_list->u.reg.num);
2640 bfdcore_write (obfd.get (), osec, &regnum,
2641 sizeof (regnum), &bfd_offset);
2642
2643 /* Write regval. */
2644 bfdcore_write (obfd.get (), osec,
2645 record_full_get_loc (record_full_list),
2646 record_full_list->u.reg.len, &bfd_offset);
2647 break;
2648
2649 case record_full_mem: /* mem */
2650 if (record_debug)
2651 fprintf_unfiltered (gdb_stdlog,
2652 " Writing memory %s (1 plus "
2653 "%lu plus %lu plus %d bytes)\n",
2654 paddress (gdbarch,
2655 record_full_list->u.mem.addr),
2656 (unsigned long) sizeof (addr),
2657 (unsigned long) sizeof (len),
2658 record_full_list->u.mem.len);
2659
2660 /* Write memlen. */
2661 len = netorder32 (record_full_list->u.mem.len);
2662 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2663 &bfd_offset);
2664
2665 /* Write memaddr. */
2666 addr = netorder64 (record_full_list->u.mem.addr);
2667 bfdcore_write (obfd.get (), osec, &addr,
2668 sizeof (addr), &bfd_offset);
2669
2670 /* Write memval. */
2671 bfdcore_write (obfd.get (), osec,
2672 record_full_get_loc (record_full_list),
2673 record_full_list->u.mem.len, &bfd_offset);
2674 break;
2675
2676 case record_full_end:
2677 if (record_debug)
2678 fprintf_unfiltered (gdb_stdlog,
2679 " Writing record_full_end (1 + "
2680 "%lu + %lu bytes)\n",
2681 (unsigned long) sizeof (signal),
2682 (unsigned long) sizeof (count));
2683 /* Write signal value. */
2684 signal = netorder32 (record_full_list->u.end.sigval);
2685 bfdcore_write (obfd.get (), osec, &signal,
2686 sizeof (signal), &bfd_offset);
2687
2688 /* Write insn count. */
2689 count = netorder32 (record_full_list->u.end.insn_num);
2690 bfdcore_write (obfd.get (), osec, &count,
2691 sizeof (count), &bfd_offset);
2692 break;
2693 }
2694 }
2695
2696 /* Execute entry. */
2697 record_full_exec_insn (regcache, gdbarch, record_full_list);
2698
2699 if (record_full_list->next)
2700 record_full_list = record_full_list->next;
2701 else
2702 break;
2703 }
2704
2705 /* Reverse execute to cur_record_full_list. */
2706 while (1)
2707 {
2708 /* Check for beginning and end of log. */
2709 if (record_full_list == cur_record_full_list)
2710 break;
2711
2712 record_full_exec_insn (regcache, gdbarch, record_full_list);
2713
2714 if (record_full_list->prev)
2715 record_full_list = record_full_list->prev;
2716 }
2717
2718 unlink_file.keep ();
2719
2720 /* Succeeded. */
2721 printf_filtered (_("Saved core file %s with execution log.\n"),
2722 recfilename);
2723 }
2724
2725 /* record_full_goto_insn -- rewind the record log (forward or backward,
2726 depending on DIR) to the given entry, changing the program state
2727 correspondingly. */
2728
2729 static void
2730 record_full_goto_insn (struct record_full_entry *entry,
2731 enum exec_direction_kind dir)
2732 {
2733 scoped_restore restore_operation_disable
2734 = record_full_gdb_operation_disable_set ();
2735 struct regcache *regcache = get_current_regcache ();
2736 struct gdbarch *gdbarch = regcache->arch ();
2737
2738 /* Assume everything is valid: we will hit the entry,
2739 and we will not hit the end of the recording. */
2740
2741 if (dir == EXEC_FORWARD)
2742 record_full_list = record_full_list->next;
2743
2744 do
2745 {
2746 record_full_exec_insn (regcache, gdbarch, record_full_list);
2747 if (dir == EXEC_REVERSE)
2748 record_full_list = record_full_list->prev;
2749 else
2750 record_full_list = record_full_list->next;
2751 } while (record_full_list != entry);
2752 }
2753
2754 /* Alias for "target record-full". */
2755
2756 static void
2757 cmd_record_full_start (const char *args, int from_tty)
2758 {
2759 execute_command ("target record-full", from_tty);
2760 }
2761
2762 static void
2763 set_record_full_insn_max_num (const char *args, int from_tty,
2764 struct cmd_list_element *c)
2765 {
2766 if (record_full_insn_num > record_full_insn_max_num)
2767 {
2768 /* Count down record_full_insn_num while releasing records from list. */
2769 while (record_full_insn_num > record_full_insn_max_num)
2770 {
2771 record_full_list_release_first ();
2772 record_full_insn_num--;
2773 }
2774 }
2775 }
2776
2777 /* The "set record full" command. */
2778
2779 static void
2780 set_record_full_command (const char *args, int from_tty)
2781 {
2782 printf_unfiltered (_("\"set record full\" must be followed "
2783 "by an appropriate subcommand.\n"));
2784 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2785 gdb_stdout);
2786 }
2787
2788 /* The "show record full" command. */
2789
2790 static void
2791 show_record_full_command (const char *args, int from_tty)
2792 {
2793 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2794 }
2795
2796 void
2797 _initialize_record_full (void)
2798 {
2799 struct cmd_list_element *c;
2800
2801 /* Init record_full_first. */
2802 record_full_first.prev = NULL;
2803 record_full_first.next = NULL;
2804 record_full_first.type = record_full_end;
2805
2806 init_record_full_ops ();
2807 add_target (&record_full_ops);
2808 add_deprecated_target_alias (&record_full_ops, "record");
2809 init_record_full_core_ops ();
2810 add_target (&record_full_core_ops);
2811
2812 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2813 _("Start full execution recording."), &record_full_cmdlist,
2814 "record full ", 0, &record_cmdlist);
2815
2816 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2817 _("Restore the execution log from a file.\n\
2818 Argument is filename. File must be created with 'record save'."),
2819 &record_full_cmdlist);
2820 set_cmd_completer (c, filename_completer);
2821
2822 /* Deprecate the old version without "full" prefix. */
2823 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2824 &record_cmdlist);
2825 set_cmd_completer (c, filename_completer);
2826 deprecate_cmd (c, "record full restore");
2827
2828 add_prefix_cmd ("full", class_support, set_record_full_command,
2829 _("Set record options"), &set_record_full_cmdlist,
2830 "set record full ", 0, &set_record_cmdlist);
2831
2832 add_prefix_cmd ("full", class_support, show_record_full_command,
2833 _("Show record options"), &show_record_full_cmdlist,
2834 "show record full ", 0, &show_record_cmdlist);
2835
2836 /* Record instructions number limit command. */
2837 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2838 &record_full_stop_at_limit, _("\
2839 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2840 Show whether record/replay stops when record/replay buffer becomes full."),
2841 _("Default is ON.\n\
2842 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2843 When OFF, if the record/replay buffer becomes full,\n\
2844 delete the oldest recorded instruction to make room for each new one."),
2845 NULL, NULL,
2846 &set_record_full_cmdlist, &show_record_full_cmdlist);
2847
2848 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2849 &set_record_cmdlist);
2850 deprecate_cmd (c, "set record full stop-at-limit");
2851
2852 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2853 &show_record_cmdlist);
2854 deprecate_cmd (c, "show record full stop-at-limit");
2855
2856 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2857 &record_full_insn_max_num,
2858 _("Set record/replay buffer limit."),
2859 _("Show record/replay buffer limit."), _("\
2860 Set the maximum number of instructions to be stored in the\n\
2861 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2862 limit. Default is 200000."),
2863 set_record_full_insn_max_num,
2864 NULL, &set_record_full_cmdlist,
2865 &show_record_full_cmdlist);
2866
2867 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2868 &set_record_cmdlist);
2869 deprecate_cmd (c, "set record full insn-number-max");
2870
2871 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2872 &show_record_cmdlist);
2873 deprecate_cmd (c, "show record full insn-number-max");
2874
2875 add_setshow_boolean_cmd ("memory-query", no_class,
2876 &record_full_memory_query, _("\
2877 Set whether query if PREC cannot record memory change of next instruction."),
2878 _("\
2879 Show whether query if PREC cannot record memory change of next instruction."),
2880 _("\
2881 Default is OFF.\n\
2882 When ON, query if PREC cannot record memory change of next instruction."),
2883 NULL, NULL,
2884 &set_record_full_cmdlist,
2885 &show_record_full_cmdlist);
2886
2887 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2888 &set_record_cmdlist);
2889 deprecate_cmd (c, "set record full memory-query");
2890
2891 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2892 &show_record_cmdlist);
2893 deprecate_cmd (c, "show record full memory-query");
2894 }