]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/record-full.c
record-full/record-btrace: software/hardware breakpoint trap
[thirdparty/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38
39 #include <signal.h>
40
41 /* This module implements "target record-full", also known as "process
42 record and replay". This target sits on top of a "normal" target
43 (a target that "has execution"), and provides a record and replay
44 functionality, including reverse debugging.
45
46 Target record has two modes: recording, and replaying.
47
48 In record mode, we intercept the to_resume and to_wait methods.
49 Whenever gdb resumes the target, we run the target in single step
50 mode, and we build up an execution log in which, for each executed
51 instruction, we record all changes in memory and register state.
52 This is invisible to the user, to whom it just looks like an
53 ordinary debugging session (except for performance degredation).
54
55 In replay mode, instead of actually letting the inferior run as a
56 process, we simulate its execution by playing back the recorded
57 execution log. For each instruction in the log, we simulate the
58 instruction's side effects by duplicating the changes that it would
59 have made on memory and registers. */
60
61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
62
63 #define RECORD_FULL_IS_REPLAY \
64 (record_full_list->next || execution_direction == EXEC_REVERSE)
65
66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
67
68 /* These are the core structs of the process record functionality.
69
70 A record_full_entry is a record of the value change of a register
71 ("record_full_reg") or a part of memory ("record_full_mem"). And each
72 instruction must have a struct record_full_entry ("record_full_end")
73 that indicates that this is the last struct record_full_entry of this
74 instruction.
75
76 Each struct record_full_entry is linked to "record_full_list" by "prev"
77 and "next" pointers. */
78
79 struct record_full_mem_entry
80 {
81 CORE_ADDR addr;
82 int len;
83 /* Set this flag if target memory for this entry
84 can no longer be accessed. */
85 int mem_entry_not_accessible;
86 union
87 {
88 gdb_byte *ptr;
89 gdb_byte buf[sizeof (gdb_byte *)];
90 } u;
91 };
92
93 struct record_full_reg_entry
94 {
95 unsigned short num;
96 unsigned short len;
97 union
98 {
99 gdb_byte *ptr;
100 gdb_byte buf[2 * sizeof (gdb_byte *)];
101 } u;
102 };
103
104 struct record_full_end_entry
105 {
106 enum gdb_signal sigval;
107 ULONGEST insn_num;
108 };
109
110 enum record_full_type
111 {
112 record_full_end = 0,
113 record_full_reg,
114 record_full_mem
115 };
116
117 /* This is the data structure that makes up the execution log.
118
119 The execution log consists of a single linked list of entries
120 of type "struct record_full_entry". It is doubly linked so that it
121 can be traversed in either direction.
122
123 The start of the list is anchored by a struct called
124 "record_full_first". The pointer "record_full_list" either points
125 to the last entry that was added to the list (in record mode), or to
126 the next entry in the list that will be executed (in replay mode).
127
128 Each list element (struct record_full_entry), in addition to next
129 and prev pointers, consists of a union of three entry types: mem,
130 reg, and end. A field called "type" determines which entry type is
131 represented by a given list element.
132
133 Each instruction that is added to the execution log is represented
134 by a variable number of list elements ('entries'). The instruction
135 will have one "reg" entry for each register that is changed by
136 executing the instruction (including the PC in every case). It
137 will also have one "mem" entry for each memory change. Finally,
138 each instruction will have an "end" entry that separates it from
139 the changes associated with the next instruction. */
140
141 struct record_full_entry
142 {
143 struct record_full_entry *prev;
144 struct record_full_entry *next;
145 enum record_full_type type;
146 union
147 {
148 /* reg */
149 struct record_full_reg_entry reg;
150 /* mem */
151 struct record_full_mem_entry mem;
152 /* end */
153 struct record_full_end_entry end;
154 } u;
155 };
156
157 /* If true, query if PREC cannot record memory
158 change of next instruction. */
159 int record_full_memory_query = 0;
160
161 struct record_full_core_buf_entry
162 {
163 struct record_full_core_buf_entry *prev;
164 struct target_section *p;
165 bfd_byte *buf;
166 };
167
168 /* Record buf with core target. */
169 static gdb_byte *record_full_core_regbuf = NULL;
170 static struct target_section *record_full_core_start;
171 static struct target_section *record_full_core_end;
172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
173
174 /* The following variables are used for managing the linked list that
175 represents the execution log.
176
177 record_full_first is the anchor that holds down the beginning of
178 the list.
179
180 record_full_list serves two functions:
181 1) In record mode, it anchors the end of the list.
182 2) In replay mode, it traverses the list and points to
183 the next instruction that must be emulated.
184
185 record_full_arch_list_head and record_full_arch_list_tail are used
186 to manage a separate list, which is used to build up the change
187 elements of the currently executing instruction during record mode.
188 When this instruction has been completely annotated in the "arch
189 list", it will be appended to the main execution log. */
190
191 static struct record_full_entry record_full_first;
192 static struct record_full_entry *record_full_list = &record_full_first;
193 static struct record_full_entry *record_full_arch_list_head = NULL;
194 static struct record_full_entry *record_full_arch_list_tail = NULL;
195
196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
197 static int record_full_stop_at_limit = 1;
198 /* Maximum allowed number of insns in execution log. */
199 static unsigned int record_full_insn_max_num
200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
201 /* Actual count of insns presently in execution log. */
202 static unsigned int record_full_insn_num = 0;
203 /* Count of insns logged so far (may be larger
204 than count of insns presently in execution log). */
205 static ULONGEST record_full_insn_count;
206
207 /* The target_ops of process record. */
208 static struct target_ops record_full_ops;
209 static struct target_ops record_full_core_ops;
210
211 /* See record-full.h. */
212
213 int
214 record_full_is_used (void)
215 {
216 struct target_ops *t;
217
218 t = find_record_target ();
219 return (t == &record_full_ops
220 || t == &record_full_core_ops);
221 }
222
223
224 /* Command lists for "set/show record full". */
225 static struct cmd_list_element *set_record_full_cmdlist;
226 static struct cmd_list_element *show_record_full_cmdlist;
227
228 /* Command list for "record full". */
229 static struct cmd_list_element *record_full_cmdlist;
230
231 static void record_full_goto_insn (struct record_full_entry *entry,
232 enum exec_direction_kind dir);
233 static void record_full_save (struct target_ops *self,
234 const char *recfilename);
235
236 /* Alloc and free functions for record_full_reg, record_full_mem, and
237 record_full_end entries. */
238
239 /* Alloc a record_full_reg record entry. */
240
241 static inline struct record_full_entry *
242 record_full_reg_alloc (struct regcache *regcache, int regnum)
243 {
244 struct record_full_entry *rec;
245 struct gdbarch *gdbarch = get_regcache_arch (regcache);
246
247 rec = xcalloc (1, sizeof (struct record_full_entry));
248 rec->type = record_full_reg;
249 rec->u.reg.num = regnum;
250 rec->u.reg.len = register_size (gdbarch, regnum);
251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
253
254 return rec;
255 }
256
257 /* Free a record_full_reg record entry. */
258
259 static inline void
260 record_full_reg_release (struct record_full_entry *rec)
261 {
262 gdb_assert (rec->type == record_full_reg);
263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
264 xfree (rec->u.reg.u.ptr);
265 xfree (rec);
266 }
267
268 /* Alloc a record_full_mem record entry. */
269
270 static inline struct record_full_entry *
271 record_full_mem_alloc (CORE_ADDR addr, int len)
272 {
273 struct record_full_entry *rec;
274
275 rec = xcalloc (1, sizeof (struct record_full_entry));
276 rec->type = record_full_mem;
277 rec->u.mem.addr = addr;
278 rec->u.mem.len = len;
279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
281
282 return rec;
283 }
284
285 /* Free a record_full_mem record entry. */
286
287 static inline void
288 record_full_mem_release (struct record_full_entry *rec)
289 {
290 gdb_assert (rec->type == record_full_mem);
291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
292 xfree (rec->u.mem.u.ptr);
293 xfree (rec);
294 }
295
296 /* Alloc a record_full_end record entry. */
297
298 static inline struct record_full_entry *
299 record_full_end_alloc (void)
300 {
301 struct record_full_entry *rec;
302
303 rec = xcalloc (1, sizeof (struct record_full_entry));
304 rec->type = record_full_end;
305
306 return rec;
307 }
308
309 /* Free a record_full_end record entry. */
310
311 static inline void
312 record_full_end_release (struct record_full_entry *rec)
313 {
314 xfree (rec);
315 }
316
317 /* Free one record entry, any type.
318 Return entry->type, in case caller wants to know. */
319
320 static inline enum record_full_type
321 record_full_entry_release (struct record_full_entry *rec)
322 {
323 enum record_full_type type = rec->type;
324
325 switch (type) {
326 case record_full_reg:
327 record_full_reg_release (rec);
328 break;
329 case record_full_mem:
330 record_full_mem_release (rec);
331 break;
332 case record_full_end:
333 record_full_end_release (rec);
334 break;
335 }
336 return type;
337 }
338
339 /* Free all record entries in list pointed to by REC. */
340
341 static void
342 record_full_list_release (struct record_full_entry *rec)
343 {
344 if (!rec)
345 return;
346
347 while (rec->next)
348 rec = rec->next;
349
350 while (rec->prev)
351 {
352 rec = rec->prev;
353 record_full_entry_release (rec->next);
354 }
355
356 if (rec == &record_full_first)
357 {
358 record_full_insn_num = 0;
359 record_full_first.next = NULL;
360 }
361 else
362 record_full_entry_release (rec);
363 }
364
365 /* Free all record entries forward of the given list position. */
366
367 static void
368 record_full_list_release_following (struct record_full_entry *rec)
369 {
370 struct record_full_entry *tmp = rec->next;
371
372 rec->next = NULL;
373 while (tmp)
374 {
375 rec = tmp->next;
376 if (record_full_entry_release (tmp) == record_full_end)
377 {
378 record_full_insn_num--;
379 record_full_insn_count--;
380 }
381 tmp = rec;
382 }
383 }
384
385 /* Delete the first instruction from the beginning of the log, to make
386 room for adding a new instruction at the end of the log.
387
388 Note -- this function does not modify record_full_insn_num. */
389
390 static void
391 record_full_list_release_first (void)
392 {
393 struct record_full_entry *tmp;
394
395 if (!record_full_first.next)
396 return;
397
398 /* Loop until a record_full_end. */
399 while (1)
400 {
401 /* Cut record_full_first.next out of the linked list. */
402 tmp = record_full_first.next;
403 record_full_first.next = tmp->next;
404 tmp->next->prev = &record_full_first;
405
406 /* tmp is now isolated, and can be deleted. */
407 if (record_full_entry_release (tmp) == record_full_end)
408 break; /* End loop at first record_full_end. */
409
410 if (!record_full_first.next)
411 {
412 gdb_assert (record_full_insn_num == 1);
413 break; /* End loop when list is empty. */
414 }
415 }
416 }
417
418 /* Add a struct record_full_entry to record_full_arch_list. */
419
420 static void
421 record_full_arch_list_add (struct record_full_entry *rec)
422 {
423 if (record_debug > 1)
424 fprintf_unfiltered (gdb_stdlog,
425 "Process record: record_full_arch_list_add %s.\n",
426 host_address_to_string (rec));
427
428 if (record_full_arch_list_tail)
429 {
430 record_full_arch_list_tail->next = rec;
431 rec->prev = record_full_arch_list_tail;
432 record_full_arch_list_tail = rec;
433 }
434 else
435 {
436 record_full_arch_list_head = rec;
437 record_full_arch_list_tail = rec;
438 }
439 }
440
441 /* Return the value storage location of a record entry. */
442 static inline gdb_byte *
443 record_full_get_loc (struct record_full_entry *rec)
444 {
445 switch (rec->type) {
446 case record_full_mem:
447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
448 return rec->u.mem.u.ptr;
449 else
450 return rec->u.mem.u.buf;
451 case record_full_reg:
452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
453 return rec->u.reg.u.ptr;
454 else
455 return rec->u.reg.u.buf;
456 case record_full_end:
457 default:
458 gdb_assert_not_reached ("unexpected record_full_entry type");
459 return NULL;
460 }
461 }
462
463 /* Record the value of a register NUM to record_full_arch_list. */
464
465 int
466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
467 {
468 struct record_full_entry *rec;
469
470 if (record_debug > 1)
471 fprintf_unfiltered (gdb_stdlog,
472 "Process record: add register num = %d to "
473 "record list.\n",
474 regnum);
475
476 rec = record_full_reg_alloc (regcache, regnum);
477
478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
479
480 record_full_arch_list_add (rec);
481
482 return 0;
483 }
484
485 /* Record the value of a region of memory whose address is ADDR and
486 length is LEN to record_full_arch_list. */
487
488 int
489 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
490 {
491 struct record_full_entry *rec;
492
493 if (record_debug > 1)
494 fprintf_unfiltered (gdb_stdlog,
495 "Process record: add mem addr = %s len = %d to "
496 "record list.\n",
497 paddress (target_gdbarch (), addr), len);
498
499 if (!addr) /* FIXME: Why? Some arch must permit it... */
500 return 0;
501
502 rec = record_full_mem_alloc (addr, len);
503
504 if (record_read_memory (target_gdbarch (), addr,
505 record_full_get_loc (rec), len))
506 {
507 record_full_mem_release (rec);
508 return -1;
509 }
510
511 record_full_arch_list_add (rec);
512
513 return 0;
514 }
515
516 /* Add a record_full_end type struct record_full_entry to
517 record_full_arch_list. */
518
519 int
520 record_full_arch_list_add_end (void)
521 {
522 struct record_full_entry *rec;
523
524 if (record_debug > 1)
525 fprintf_unfiltered (gdb_stdlog,
526 "Process record: add end to arch list.\n");
527
528 rec = record_full_end_alloc ();
529 rec->u.end.sigval = GDB_SIGNAL_0;
530 rec->u.end.insn_num = ++record_full_insn_count;
531
532 record_full_arch_list_add (rec);
533
534 return 0;
535 }
536
537 static void
538 record_full_check_insn_num (int set_terminal)
539 {
540 if (record_full_insn_num == record_full_insn_max_num)
541 {
542 /* Ask user what to do. */
543 if (record_full_stop_at_limit)
544 {
545 int q;
546
547 if (set_terminal)
548 target_terminal_ours ();
549 q = yquery (_("Do you want to auto delete previous execution "
550 "log entries when record/replay buffer becomes "
551 "full (record full stop-at-limit)?"));
552 if (set_terminal)
553 target_terminal_inferior ();
554 if (q)
555 record_full_stop_at_limit = 0;
556 else
557 error (_("Process record: stopped by user."));
558 }
559 }
560 }
561
562 static void
563 record_full_arch_list_cleanups (void *ignore)
564 {
565 record_full_list_release (record_full_arch_list_tail);
566 }
567
568 /* Before inferior step (when GDB record the running message, inferior
569 only can step), GDB will call this function to record the values to
570 record_full_list. This function will call gdbarch_process_record to
571 record the running message of inferior and set them to
572 record_full_arch_list, and add it to record_full_list. */
573
574 static int
575 record_full_message (struct regcache *regcache, enum gdb_signal signal)
576 {
577 int ret;
578 struct gdbarch *gdbarch = get_regcache_arch (regcache);
579 struct cleanup *old_cleanups
580 = make_cleanup (record_full_arch_list_cleanups, 0);
581
582 record_full_arch_list_head = NULL;
583 record_full_arch_list_tail = NULL;
584
585 /* Check record_full_insn_num. */
586 record_full_check_insn_num (1);
587
588 /* If gdb sends a signal value to target_resume,
589 save it in the 'end' field of the previous instruction.
590
591 Maybe process record should record what really happened,
592 rather than what gdb pretends has happened.
593
594 So if Linux delivered the signal to the child process during
595 the record mode, we will record it and deliver it again in
596 the replay mode.
597
598 If user says "ignore this signal" during the record mode, then
599 it will be ignored again during the replay mode (no matter if
600 the user says something different, like "deliver this signal"
601 during the replay mode).
602
603 User should understand that nothing he does during the replay
604 mode will change the behavior of the child. If he tries,
605 then that is a user error.
606
607 But we should still deliver the signal to gdb during the replay,
608 if we delivered it during the recording. Therefore we should
609 record the signal during record_full_wait, not
610 record_full_resume. */
611 if (record_full_list != &record_full_first) /* FIXME better way to check */
612 {
613 gdb_assert (record_full_list->type == record_full_end);
614 record_full_list->u.end.sigval = signal;
615 }
616
617 if (signal == GDB_SIGNAL_0
618 || !gdbarch_process_record_signal_p (gdbarch))
619 ret = gdbarch_process_record (gdbarch,
620 regcache,
621 regcache_read_pc (regcache));
622 else
623 ret = gdbarch_process_record_signal (gdbarch,
624 regcache,
625 signal);
626
627 if (ret > 0)
628 error (_("Process record: inferior program stopped."));
629 if (ret < 0)
630 error (_("Process record: failed to record execution log."));
631
632 discard_cleanups (old_cleanups);
633
634 record_full_list->next = record_full_arch_list_head;
635 record_full_arch_list_head->prev = record_full_list;
636 record_full_list = record_full_arch_list_tail;
637
638 if (record_full_insn_num == record_full_insn_max_num)
639 record_full_list_release_first ();
640 else
641 record_full_insn_num++;
642
643 return 1;
644 }
645
646 struct record_full_message_args {
647 struct regcache *regcache;
648 enum gdb_signal signal;
649 };
650
651 static int
652 record_full_message_wrapper (void *args)
653 {
654 struct record_full_message_args *record_full_args = args;
655
656 return record_full_message (record_full_args->regcache,
657 record_full_args->signal);
658 }
659
660 static int
661 record_full_message_wrapper_safe (struct regcache *regcache,
662 enum gdb_signal signal)
663 {
664 struct record_full_message_args args;
665
666 args.regcache = regcache;
667 args.signal = signal;
668
669 return catch_errors (record_full_message_wrapper, &args, NULL,
670 RETURN_MASK_ALL);
671 }
672
673 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
674 doesn't need record. */
675
676 static int record_full_gdb_operation_disable = 0;
677
678 struct cleanup *
679 record_full_gdb_operation_disable_set (void)
680 {
681 struct cleanup *old_cleanups = NULL;
682
683 old_cleanups =
684 make_cleanup_restore_integer (&record_full_gdb_operation_disable);
685 record_full_gdb_operation_disable = 1;
686
687 return old_cleanups;
688 }
689
690 /* Flag set to TRUE for target_stopped_by_watchpoint. */
691 static enum target_stop_reason record_full_stop_reason
692 = TARGET_STOPPED_BY_NO_REASON;
693
694 /* Execute one instruction from the record log. Each instruction in
695 the log will be represented by an arbitrary sequence of register
696 entries and memory entries, followed by an 'end' entry. */
697
698 static inline void
699 record_full_exec_insn (struct regcache *regcache,
700 struct gdbarch *gdbarch,
701 struct record_full_entry *entry)
702 {
703 switch (entry->type)
704 {
705 case record_full_reg: /* reg */
706 {
707 gdb_byte reg[MAX_REGISTER_SIZE];
708
709 if (record_debug > 1)
710 fprintf_unfiltered (gdb_stdlog,
711 "Process record: record_full_reg %s to "
712 "inferior num = %d.\n",
713 host_address_to_string (entry),
714 entry->u.reg.num);
715
716 regcache_cooked_read (regcache, entry->u.reg.num, reg);
717 regcache_cooked_write (regcache, entry->u.reg.num,
718 record_full_get_loc (entry));
719 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len);
720 }
721 break;
722
723 case record_full_mem: /* mem */
724 {
725 /* Nothing to do if the entry is flagged not_accessible. */
726 if (!entry->u.mem.mem_entry_not_accessible)
727 {
728 gdb_byte *mem = alloca (entry->u.mem.len);
729
730 if (record_debug > 1)
731 fprintf_unfiltered (gdb_stdlog,
732 "Process record: record_full_mem %s to "
733 "inferior addr = %s len = %d.\n",
734 host_address_to_string (entry),
735 paddress (gdbarch, entry->u.mem.addr),
736 entry->u.mem.len);
737
738 if (record_read_memory (gdbarch,
739 entry->u.mem.addr, mem, entry->u.mem.len))
740 entry->u.mem.mem_entry_not_accessible = 1;
741 else
742 {
743 if (target_write_memory (entry->u.mem.addr,
744 record_full_get_loc (entry),
745 entry->u.mem.len))
746 {
747 entry->u.mem.mem_entry_not_accessible = 1;
748 if (record_debug)
749 warning (_("Process record: error writing memory at "
750 "addr = %s len = %d."),
751 paddress (gdbarch, entry->u.mem.addr),
752 entry->u.mem.len);
753 }
754 else
755 {
756 memcpy (record_full_get_loc (entry), mem,
757 entry->u.mem.len);
758
759 /* We've changed memory --- check if a hardware
760 watchpoint should trap. Note that this
761 presently assumes the target beneath supports
762 continuable watchpoints. On non-continuable
763 watchpoints target, we'll want to check this
764 _before_ actually doing the memory change, and
765 not doing the change at all if the watchpoint
766 traps. */
767 if (hardware_watchpoint_inserted_in_range
768 (get_regcache_aspace (regcache),
769 entry->u.mem.addr, entry->u.mem.len))
770 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
771 }
772 }
773 }
774 }
775 break;
776 }
777 }
778
779 static void record_full_restore (void);
780
781 /* Asynchronous signal handle registered as event loop source for when
782 we have pending events ready to be passed to the core. */
783
784 static struct async_event_handler *record_full_async_inferior_event_token;
785
786 static void
787 record_full_async_inferior_event_handler (gdb_client_data data)
788 {
789 inferior_event_handler (INF_REG_EVENT, NULL);
790 }
791
792 /* Open the process record target. */
793
794 static void
795 record_full_core_open_1 (const char *name, int from_tty)
796 {
797 struct regcache *regcache = get_current_regcache ();
798 int regnum = gdbarch_num_regs (get_regcache_arch (regcache));
799 int i;
800
801 /* Get record_full_core_regbuf. */
802 target_fetch_registers (regcache, -1);
803 record_full_core_regbuf = xmalloc (MAX_REGISTER_SIZE * regnum);
804 for (i = 0; i < regnum; i ++)
805 regcache_raw_collect (regcache, i,
806 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
807
808 /* Get record_full_core_start and record_full_core_end. */
809 if (build_section_table (core_bfd, &record_full_core_start,
810 &record_full_core_end))
811 {
812 xfree (record_full_core_regbuf);
813 record_full_core_regbuf = NULL;
814 error (_("\"%s\": Can't find sections: %s"),
815 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
816 }
817
818 push_target (&record_full_core_ops);
819 record_full_restore ();
820 }
821
822 /* "to_open" target method for 'live' processes. */
823
824 static void
825 record_full_open_1 (const char *name, int from_tty)
826 {
827 if (record_debug)
828 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
829
830 /* check exec */
831 if (!target_has_execution)
832 error (_("Process record: the program is not being run."));
833 if (non_stop)
834 error (_("Process record target can't debug inferior in non-stop mode "
835 "(non-stop)."));
836
837 if (!gdbarch_process_record_p (target_gdbarch ()))
838 error (_("Process record: the current architecture doesn't support "
839 "record function."));
840
841 push_target (&record_full_ops);
842 }
843
844 static void record_full_init_record_breakpoints (void);
845
846 /* "to_open" target method. Open the process record target. */
847
848 static void
849 record_full_open (const char *name, int from_tty)
850 {
851 struct target_ops *t;
852
853 if (record_debug)
854 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
855
856 record_preopen ();
857
858 /* Reset */
859 record_full_insn_num = 0;
860 record_full_insn_count = 0;
861 record_full_list = &record_full_first;
862 record_full_list->next = NULL;
863
864 if (core_bfd)
865 record_full_core_open_1 (name, from_tty);
866 else
867 record_full_open_1 (name, from_tty);
868
869 /* Register extra event sources in the event loop. */
870 record_full_async_inferior_event_token
871 = create_async_event_handler (record_full_async_inferior_event_handler,
872 NULL);
873
874 record_full_init_record_breakpoints ();
875
876 observer_notify_record_changed (current_inferior (), 1);
877 }
878
879 /* "to_close" target method. Close the process record target. */
880
881 static void
882 record_full_close (struct target_ops *self)
883 {
884 struct record_full_core_buf_entry *entry;
885
886 if (record_debug)
887 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
888
889 record_full_list_release (record_full_list);
890
891 /* Release record_full_core_regbuf. */
892 if (record_full_core_regbuf)
893 {
894 xfree (record_full_core_regbuf);
895 record_full_core_regbuf = NULL;
896 }
897
898 /* Release record_full_core_buf_list. */
899 if (record_full_core_buf_list)
900 {
901 for (entry = record_full_core_buf_list->prev; entry;
902 entry = entry->prev)
903 {
904 xfree (record_full_core_buf_list);
905 record_full_core_buf_list = entry;
906 }
907 record_full_core_buf_list = NULL;
908 }
909
910 if (record_full_async_inferior_event_token)
911 delete_async_event_handler (&record_full_async_inferior_event_token);
912 }
913
914 /* "to_async" target method. */
915
916 static void
917 record_full_async (struct target_ops *ops,
918 void (*callback) (enum inferior_event_type event_type,
919 void *context),
920 void *context)
921 {
922 if (callback != NULL)
923 mark_async_event_handler (record_full_async_inferior_event_token);
924 else
925 clear_async_event_handler (record_full_async_inferior_event_token);
926
927 ops->beneath->to_async (ops->beneath, callback, context);
928 }
929
930 static int record_full_resume_step = 0;
931
932 /* True if we've been resumed, and so each record_full_wait call should
933 advance execution. If this is false, record_full_wait will return a
934 TARGET_WAITKIND_IGNORE. */
935 static int record_full_resumed = 0;
936
937 /* The execution direction of the last resume we got. This is
938 necessary for async mode. Vis (order is not strictly accurate):
939
940 1. user has the global execution direction set to forward
941 2. user does a reverse-step command
942 3. record_full_resume is called with global execution direction
943 temporarily switched to reverse
944 4. GDB's execution direction is reverted back to forward
945 5. target record notifies event loop there's an event to handle
946 6. infrun asks the target which direction was it going, and switches
947 the global execution direction accordingly (to reverse)
948 7. infrun polls an event out of the record target, and handles it
949 8. GDB goes back to the event loop, and goto #4.
950 */
951 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
952
953 /* "to_resume" target method. Resume the process record target. */
954
955 static void
956 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
957 enum gdb_signal signal)
958 {
959 record_full_resume_step = step;
960 record_full_resumed = 1;
961 record_full_execution_dir = execution_direction;
962
963 if (!RECORD_FULL_IS_REPLAY)
964 {
965 struct gdbarch *gdbarch = target_thread_architecture (ptid);
966
967 record_full_message (get_current_regcache (), signal);
968
969 if (!step)
970 {
971 /* This is not hard single step. */
972 if (!gdbarch_software_single_step_p (gdbarch))
973 {
974 /* This is a normal continue. */
975 step = 1;
976 }
977 else
978 {
979 /* This arch support soft sigle step. */
980 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
981 {
982 /* This is a soft single step. */
983 record_full_resume_step = 1;
984 }
985 else
986 {
987 /* This is a continue.
988 Try to insert a soft single step breakpoint. */
989 if (!gdbarch_software_single_step (gdbarch,
990 get_current_frame ()))
991 {
992 /* This system don't want use soft single step.
993 Use hard sigle step. */
994 step = 1;
995 }
996 }
997 }
998 }
999
1000 /* Make sure the target beneath reports all signals. */
1001 target_pass_signals (0, NULL);
1002
1003 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
1004 }
1005
1006 /* We are about to start executing the inferior (or simulate it),
1007 let's register it with the event loop. */
1008 if (target_can_async_p ())
1009 target_async (inferior_event_handler, 0);
1010 }
1011
1012 static int record_full_get_sig = 0;
1013
1014 /* SIGINT signal handler, registered by "to_wait" method. */
1015
1016 static void
1017 record_full_sig_handler (int signo)
1018 {
1019 if (record_debug)
1020 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1021
1022 /* It will break the running inferior in replay mode. */
1023 record_full_resume_step = 1;
1024
1025 /* It will let record_full_wait set inferior status to get the signal
1026 SIGINT. */
1027 record_full_get_sig = 1;
1028 }
1029
1030 static void
1031 record_full_wait_cleanups (void *ignore)
1032 {
1033 if (execution_direction == EXEC_REVERSE)
1034 {
1035 if (record_full_list->next)
1036 record_full_list = record_full_list->next;
1037 }
1038 else
1039 record_full_list = record_full_list->prev;
1040 }
1041
1042 /* "to_wait" target method for process record target.
1043
1044 In record mode, the target is always run in singlestep mode
1045 (even when gdb says to continue). The to_wait method intercepts
1046 the stop events and determines which ones are to be passed on to
1047 gdb. Most stop events are just singlestep events that gdb is not
1048 to know about, so the to_wait method just records them and keeps
1049 singlestepping.
1050
1051 In replay mode, this function emulates the recorded execution log,
1052 one instruction at a time (forward or backward), and determines
1053 where to stop. */
1054
1055 static ptid_t
1056 record_full_wait_1 (struct target_ops *ops,
1057 ptid_t ptid, struct target_waitstatus *status,
1058 int options)
1059 {
1060 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
1061
1062 if (record_debug)
1063 fprintf_unfiltered (gdb_stdlog,
1064 "Process record: record_full_wait "
1065 "record_full_resume_step = %d, "
1066 "record_full_resumed = %d, direction=%s\n",
1067 record_full_resume_step, record_full_resumed,
1068 record_full_execution_dir == EXEC_FORWARD
1069 ? "forward" : "reverse");
1070
1071 if (!record_full_resumed)
1072 {
1073 gdb_assert ((options & TARGET_WNOHANG) != 0);
1074
1075 /* No interesting event. */
1076 status->kind = TARGET_WAITKIND_IGNORE;
1077 return minus_one_ptid;
1078 }
1079
1080 record_full_get_sig = 0;
1081 signal (SIGINT, record_full_sig_handler);
1082
1083 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1084
1085 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1086 {
1087 if (record_full_resume_step)
1088 {
1089 /* This is a single step. */
1090 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1091 }
1092 else
1093 {
1094 /* This is not a single step. */
1095 ptid_t ret;
1096 CORE_ADDR tmp_pc;
1097 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1098
1099 while (1)
1100 {
1101 struct thread_info *tp;
1102
1103 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1104 if (status->kind == TARGET_WAITKIND_IGNORE)
1105 {
1106 if (record_debug)
1107 fprintf_unfiltered (gdb_stdlog,
1108 "Process record: record_full_wait "
1109 "target beneath not done yet\n");
1110 return ret;
1111 }
1112
1113 ALL_NON_EXITED_THREADS (tp)
1114 delete_single_step_breakpoints (tp);
1115
1116 if (record_full_resume_step)
1117 return ret;
1118
1119 /* Is this a SIGTRAP? */
1120 if (status->kind == TARGET_WAITKIND_STOPPED
1121 && status->value.sig == GDB_SIGNAL_TRAP)
1122 {
1123 struct regcache *regcache;
1124 struct address_space *aspace;
1125 enum target_stop_reason *stop_reason_p
1126 = &record_full_stop_reason;
1127
1128 /* Yes -- this is likely our single-step finishing,
1129 but check if there's any reason the core would be
1130 interested in the event. */
1131
1132 registers_changed ();
1133 regcache = get_current_regcache ();
1134 tmp_pc = regcache_read_pc (regcache);
1135 aspace = get_regcache_aspace (regcache);
1136
1137 if (target_stopped_by_watchpoint ())
1138 {
1139 /* Always interested in watchpoints. */
1140 }
1141 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1142 stop_reason_p))
1143 {
1144 /* There is a breakpoint here. Let the core
1145 handle it. */
1146 }
1147 else
1148 {
1149 /* This is a single-step trap. Record the
1150 insn and issue another step.
1151 FIXME: this part can be a random SIGTRAP too.
1152 But GDB cannot handle it. */
1153 int step = 1;
1154
1155 if (!record_full_message_wrapper_safe (regcache,
1156 GDB_SIGNAL_0))
1157 {
1158 status->kind = TARGET_WAITKIND_STOPPED;
1159 status->value.sig = GDB_SIGNAL_0;
1160 break;
1161 }
1162
1163 if (gdbarch_software_single_step_p (gdbarch))
1164 {
1165 /* Try to insert the software single step breakpoint.
1166 If insert success, set step to 0. */
1167 set_executing (inferior_ptid, 0);
1168 reinit_frame_cache ();
1169 if (gdbarch_software_single_step (gdbarch,
1170 get_current_frame ()))
1171 step = 0;
1172 set_executing (inferior_ptid, 1);
1173 }
1174
1175 if (record_debug)
1176 fprintf_unfiltered (gdb_stdlog,
1177 "Process record: record_full_wait "
1178 "issuing one more step in the "
1179 "target beneath\n");
1180 ops->beneath->to_resume (ops->beneath, ptid, step,
1181 GDB_SIGNAL_0);
1182 continue;
1183 }
1184 }
1185
1186 /* The inferior is broken by a breakpoint or a signal. */
1187 break;
1188 }
1189
1190 return ret;
1191 }
1192 }
1193 else
1194 {
1195 struct regcache *regcache = get_current_regcache ();
1196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1197 struct address_space *aspace = get_regcache_aspace (regcache);
1198 int continue_flag = 1;
1199 int first_record_full_end = 1;
1200 struct cleanup *old_cleanups
1201 = make_cleanup (record_full_wait_cleanups, 0);
1202 CORE_ADDR tmp_pc;
1203
1204 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1205 status->kind = TARGET_WAITKIND_STOPPED;
1206
1207 /* Check breakpoint when forward execute. */
1208 if (execution_direction == EXEC_FORWARD)
1209 {
1210 tmp_pc = regcache_read_pc (regcache);
1211 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1212 &record_full_stop_reason))
1213 {
1214 if (record_debug)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "Process record: break at %s.\n",
1217 paddress (gdbarch, tmp_pc));
1218 goto replay_out;
1219 }
1220 }
1221
1222 /* If GDB is in terminal_inferior mode, it will not get the signal.
1223 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1224 mode, because inferior will not executed.
1225 Then set it to terminal_ours to make GDB get the signal. */
1226 target_terminal_ours ();
1227
1228 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1229 instruction. */
1230 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1231 record_full_list = record_full_list->next;
1232
1233 /* Loop over the record_full_list, looking for the next place to
1234 stop. */
1235 do
1236 {
1237 /* Check for beginning and end of log. */
1238 if (execution_direction == EXEC_REVERSE
1239 && record_full_list == &record_full_first)
1240 {
1241 /* Hit beginning of record log in reverse. */
1242 status->kind = TARGET_WAITKIND_NO_HISTORY;
1243 break;
1244 }
1245 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1246 {
1247 /* Hit end of record log going forward. */
1248 status->kind = TARGET_WAITKIND_NO_HISTORY;
1249 break;
1250 }
1251
1252 record_full_exec_insn (regcache, gdbarch, record_full_list);
1253
1254 if (record_full_list->type == record_full_end)
1255 {
1256 if (record_debug > 1)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "Process record: record_full_end %s to "
1259 "inferior.\n",
1260 host_address_to_string (record_full_list));
1261
1262 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1263 {
1264 /* When reverse excute, the first record_full_end is the
1265 part of current instruction. */
1266 first_record_full_end = 0;
1267 }
1268 else
1269 {
1270 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1271 instruction.
1272 In EXEC_FORWARD mode, this is the record_full_end of
1273 current instruction. */
1274 /* step */
1275 if (record_full_resume_step)
1276 {
1277 if (record_debug > 1)
1278 fprintf_unfiltered (gdb_stdlog,
1279 "Process record: step.\n");
1280 continue_flag = 0;
1281 }
1282
1283 /* check breakpoint */
1284 tmp_pc = regcache_read_pc (regcache);
1285 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1286 &record_full_stop_reason))
1287 {
1288 if (record_debug)
1289 fprintf_unfiltered (gdb_stdlog,
1290 "Process record: break "
1291 "at %s.\n",
1292 paddress (gdbarch, tmp_pc));
1293
1294 continue_flag = 0;
1295 }
1296
1297 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1298 {
1299 if (record_debug)
1300 fprintf_unfiltered (gdb_stdlog,
1301 "Process record: hit hw "
1302 "watchpoint.\n");
1303 continue_flag = 0;
1304 }
1305 /* Check target signal */
1306 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1307 /* FIXME: better way to check */
1308 continue_flag = 0;
1309 }
1310 }
1311
1312 if (continue_flag)
1313 {
1314 if (execution_direction == EXEC_REVERSE)
1315 {
1316 if (record_full_list->prev)
1317 record_full_list = record_full_list->prev;
1318 }
1319 else
1320 {
1321 if (record_full_list->next)
1322 record_full_list = record_full_list->next;
1323 }
1324 }
1325 }
1326 while (continue_flag);
1327
1328 replay_out:
1329 if (record_full_get_sig)
1330 status->value.sig = GDB_SIGNAL_INT;
1331 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1332 /* FIXME: better way to check */
1333 status->value.sig = record_full_list->u.end.sigval;
1334 else
1335 status->value.sig = GDB_SIGNAL_TRAP;
1336
1337 discard_cleanups (old_cleanups);
1338 }
1339
1340 signal (SIGINT, handle_sigint);
1341
1342 do_cleanups (set_cleanups);
1343 return inferior_ptid;
1344 }
1345
1346 static ptid_t
1347 record_full_wait (struct target_ops *ops,
1348 ptid_t ptid, struct target_waitstatus *status,
1349 int options)
1350 {
1351 ptid_t return_ptid;
1352
1353 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1354 if (status->kind != TARGET_WAITKIND_IGNORE)
1355 {
1356 /* We're reporting a stop. Make sure any spurious
1357 target_wait(WNOHANG) doesn't advance the target until the
1358 core wants us resumed again. */
1359 record_full_resumed = 0;
1360 }
1361 return return_ptid;
1362 }
1363
1364 static int
1365 record_full_stopped_by_watchpoint (struct target_ops *ops)
1366 {
1367 if (RECORD_FULL_IS_REPLAY)
1368 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1369 else
1370 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1371 }
1372
1373 static int
1374 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1375 {
1376 if (RECORD_FULL_IS_REPLAY)
1377 return 0;
1378 else
1379 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1380 }
1381
1382 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1383
1384 static int
1385 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1386 {
1387 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1388 }
1389
1390 /* The to_supports_stopped_by_sw_breakpoint method of target
1391 record-full. */
1392
1393 static int
1394 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1395 {
1396 return 1;
1397 }
1398
1399 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1400
1401 static int
1402 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1403 {
1404 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1405 }
1406
1407 /* The to_supports_stopped_by_sw_breakpoint method of target
1408 record-full. */
1409
1410 static int
1411 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1412 {
1413 return 1;
1414 }
1415
1416 /* Record registers change (by user or by GDB) to list as an instruction. */
1417
1418 static void
1419 record_full_registers_change (struct regcache *regcache, int regnum)
1420 {
1421 /* Check record_full_insn_num. */
1422 record_full_check_insn_num (0);
1423
1424 record_full_arch_list_head = NULL;
1425 record_full_arch_list_tail = NULL;
1426
1427 if (regnum < 0)
1428 {
1429 int i;
1430
1431 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
1432 {
1433 if (record_full_arch_list_add_reg (regcache, i))
1434 {
1435 record_full_list_release (record_full_arch_list_tail);
1436 error (_("Process record: failed to record execution log."));
1437 }
1438 }
1439 }
1440 else
1441 {
1442 if (record_full_arch_list_add_reg (regcache, regnum))
1443 {
1444 record_full_list_release (record_full_arch_list_tail);
1445 error (_("Process record: failed to record execution log."));
1446 }
1447 }
1448 if (record_full_arch_list_add_end ())
1449 {
1450 record_full_list_release (record_full_arch_list_tail);
1451 error (_("Process record: failed to record execution log."));
1452 }
1453 record_full_list->next = record_full_arch_list_head;
1454 record_full_arch_list_head->prev = record_full_list;
1455 record_full_list = record_full_arch_list_tail;
1456
1457 if (record_full_insn_num == record_full_insn_max_num)
1458 record_full_list_release_first ();
1459 else
1460 record_full_insn_num++;
1461 }
1462
1463 /* "to_store_registers" method for process record target. */
1464
1465 static void
1466 record_full_store_registers (struct target_ops *ops,
1467 struct regcache *regcache,
1468 int regno)
1469 {
1470 if (!record_full_gdb_operation_disable)
1471 {
1472 if (RECORD_FULL_IS_REPLAY)
1473 {
1474 int n;
1475
1476 /* Let user choose if he wants to write register or not. */
1477 if (regno < 0)
1478 n =
1479 query (_("Because GDB is in replay mode, changing the "
1480 "value of a register will make the execution "
1481 "log unusable from this point onward. "
1482 "Change all registers?"));
1483 else
1484 n =
1485 query (_("Because GDB is in replay mode, changing the value "
1486 "of a register will make the execution log unusable "
1487 "from this point onward. Change register %s?"),
1488 gdbarch_register_name (get_regcache_arch (regcache),
1489 regno));
1490
1491 if (!n)
1492 {
1493 /* Invalidate the value of regcache that was set in function
1494 "regcache_raw_write". */
1495 if (regno < 0)
1496 {
1497 int i;
1498
1499 for (i = 0;
1500 i < gdbarch_num_regs (get_regcache_arch (regcache));
1501 i++)
1502 regcache_invalidate (regcache, i);
1503 }
1504 else
1505 regcache_invalidate (regcache, regno);
1506
1507 error (_("Process record canceled the operation."));
1508 }
1509
1510 /* Destroy the record from here forward. */
1511 record_full_list_release_following (record_full_list);
1512 }
1513
1514 record_full_registers_change (regcache, regno);
1515 }
1516 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1517 }
1518
1519 /* "to_xfer_partial" method. Behavior is conditional on
1520 RECORD_FULL_IS_REPLAY.
1521 In replay mode, we cannot write memory unles we are willing to
1522 invalidate the record/replay log from this point forward. */
1523
1524 static enum target_xfer_status
1525 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1526 const char *annex, gdb_byte *readbuf,
1527 const gdb_byte *writebuf, ULONGEST offset,
1528 ULONGEST len, ULONGEST *xfered_len)
1529 {
1530 if (!record_full_gdb_operation_disable
1531 && (object == TARGET_OBJECT_MEMORY
1532 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1533 {
1534 if (RECORD_FULL_IS_REPLAY)
1535 {
1536 /* Let user choose if he wants to write memory or not. */
1537 if (!query (_("Because GDB is in replay mode, writing to memory "
1538 "will make the execution log unusable from this "
1539 "point onward. Write memory at address %s?"),
1540 paddress (target_gdbarch (), offset)))
1541 error (_("Process record canceled the operation."));
1542
1543 /* Destroy the record from here forward. */
1544 record_full_list_release_following (record_full_list);
1545 }
1546
1547 /* Check record_full_insn_num */
1548 record_full_check_insn_num (0);
1549
1550 /* Record registers change to list as an instruction. */
1551 record_full_arch_list_head = NULL;
1552 record_full_arch_list_tail = NULL;
1553 if (record_full_arch_list_add_mem (offset, len))
1554 {
1555 record_full_list_release (record_full_arch_list_tail);
1556 if (record_debug)
1557 fprintf_unfiltered (gdb_stdlog,
1558 "Process record: failed to record "
1559 "execution log.");
1560 return TARGET_XFER_E_IO;
1561 }
1562 if (record_full_arch_list_add_end ())
1563 {
1564 record_full_list_release (record_full_arch_list_tail);
1565 if (record_debug)
1566 fprintf_unfiltered (gdb_stdlog,
1567 "Process record: failed to record "
1568 "execution log.");
1569 return TARGET_XFER_E_IO;
1570 }
1571 record_full_list->next = record_full_arch_list_head;
1572 record_full_arch_list_head->prev = record_full_list;
1573 record_full_list = record_full_arch_list_tail;
1574
1575 if (record_full_insn_num == record_full_insn_max_num)
1576 record_full_list_release_first ();
1577 else
1578 record_full_insn_num++;
1579 }
1580
1581 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1582 readbuf, writebuf, offset,
1583 len, xfered_len);
1584 }
1585
1586 /* This structure represents a breakpoint inserted while the record
1587 target is active. We use this to know when to install/remove
1588 breakpoints in/from the target beneath. For example, a breakpoint
1589 may be inserted while recording, but removed when not replaying nor
1590 recording. In that case, the breakpoint had not been inserted on
1591 the target beneath, so we should not try to remove it there. */
1592
1593 struct record_full_breakpoint
1594 {
1595 /* The address and address space the breakpoint was set at. */
1596 struct address_space *address_space;
1597 CORE_ADDR addr;
1598
1599 /* True when the breakpoint has been also installed in the target
1600 beneath. This will be false for breakpoints set during replay or
1601 when recording. */
1602 int in_target_beneath;
1603 };
1604
1605 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1606 DEF_VEC_P(record_full_breakpoint_p);
1607
1608 /* The list of breakpoints inserted while the record target is
1609 active. */
1610 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1611
1612 static void
1613 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1614 {
1615 if (loc->loc_type != bp_loc_software_breakpoint)
1616 return;
1617
1618 if (loc->inserted)
1619 {
1620 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1621
1622 bp->addr = loc->target_info.placed_address;
1623 bp->address_space = loc->target_info.placed_address_space;
1624
1625 bp->in_target_beneath = 1;
1626
1627 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1628 }
1629 }
1630
1631 /* Sync existing breakpoints to record_full_breakpoints. */
1632
1633 static void
1634 record_full_init_record_breakpoints (void)
1635 {
1636 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1637
1638 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1639 }
1640
1641 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1642 insert or remove breakpoints in the real target when replaying, nor
1643 when recording. */
1644
1645 static int
1646 record_full_insert_breakpoint (struct target_ops *ops,
1647 struct gdbarch *gdbarch,
1648 struct bp_target_info *bp_tgt)
1649 {
1650 struct record_full_breakpoint *bp;
1651 int in_target_beneath = 0;
1652
1653 if (!RECORD_FULL_IS_REPLAY)
1654 {
1655 /* When recording, we currently always single-step, so we don't
1656 really need to install regular breakpoints in the inferior.
1657 However, we do have to insert software single-step
1658 breakpoints, in case the target can't hardware step. To keep
1659 things single, we always insert. */
1660 struct cleanup *old_cleanups;
1661 int ret;
1662
1663 old_cleanups = record_full_gdb_operation_disable_set ();
1664 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1665 do_cleanups (old_cleanups);
1666
1667 if (ret != 0)
1668 return ret;
1669
1670 in_target_beneath = 1;
1671 }
1672
1673 bp = XNEW (struct record_full_breakpoint);
1674 bp->addr = bp_tgt->placed_address;
1675 bp->address_space = bp_tgt->placed_address_space;
1676 bp->in_target_beneath = in_target_beneath;
1677 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1678 return 0;
1679 }
1680
1681 /* "to_remove_breakpoint" method for process record target. */
1682
1683 static int
1684 record_full_remove_breakpoint (struct target_ops *ops,
1685 struct gdbarch *gdbarch,
1686 struct bp_target_info *bp_tgt)
1687 {
1688 struct record_full_breakpoint *bp;
1689 int ix;
1690
1691 for (ix = 0;
1692 VEC_iterate (record_full_breakpoint_p,
1693 record_full_breakpoints, ix, bp);
1694 ++ix)
1695 {
1696 if (bp->addr == bp_tgt->placed_address
1697 && bp->address_space == bp_tgt->placed_address_space)
1698 {
1699 if (bp->in_target_beneath)
1700 {
1701 struct cleanup *old_cleanups;
1702 int ret;
1703
1704 old_cleanups = record_full_gdb_operation_disable_set ();
1705 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1706 bp_tgt);
1707 do_cleanups (old_cleanups);
1708
1709 if (ret != 0)
1710 return ret;
1711 }
1712
1713 VEC_unordered_remove (record_full_breakpoint_p,
1714 record_full_breakpoints, ix);
1715 return 0;
1716 }
1717 }
1718
1719 gdb_assert_not_reached ("removing unknown breakpoint");
1720 }
1721
1722 /* "to_can_execute_reverse" method for process record target. */
1723
1724 static int
1725 record_full_can_execute_reverse (struct target_ops *self)
1726 {
1727 return 1;
1728 }
1729
1730 /* "to_get_bookmark" method for process record and prec over core. */
1731
1732 static gdb_byte *
1733 record_full_get_bookmark (struct target_ops *self, const char *args,
1734 int from_tty)
1735 {
1736 char *ret = NULL;
1737
1738 /* Return stringified form of instruction count. */
1739 if (record_full_list && record_full_list->type == record_full_end)
1740 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1741
1742 if (record_debug)
1743 {
1744 if (ret)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "record_full_get_bookmark returns %s\n", ret);
1747 else
1748 fprintf_unfiltered (gdb_stdlog,
1749 "record_full_get_bookmark returns NULL\n");
1750 }
1751 return (gdb_byte *) ret;
1752 }
1753
1754 /* "to_goto_bookmark" method for process record and prec over core. */
1755
1756 static void
1757 record_full_goto_bookmark (struct target_ops *self,
1758 const gdb_byte *raw_bookmark, int from_tty)
1759 {
1760 const char *bookmark = (const char *) raw_bookmark;
1761 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1762
1763 if (record_debug)
1764 fprintf_unfiltered (gdb_stdlog,
1765 "record_full_goto_bookmark receives %s\n", bookmark);
1766
1767 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1768 {
1769 char *copy;
1770
1771 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1772 error (_("Unbalanced quotes: %s"), bookmark);
1773
1774
1775 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1776 make_cleanup (xfree, copy);
1777 bookmark = copy;
1778 }
1779
1780 record_goto (bookmark);
1781
1782 do_cleanups (cleanup);
1783 }
1784
1785 static enum exec_direction_kind
1786 record_full_execution_direction (struct target_ops *self)
1787 {
1788 return record_full_execution_dir;
1789 }
1790
1791 static void
1792 record_full_info (struct target_ops *self)
1793 {
1794 struct record_full_entry *p;
1795
1796 if (RECORD_FULL_IS_REPLAY)
1797 printf_filtered (_("Replay mode:\n"));
1798 else
1799 printf_filtered (_("Record mode:\n"));
1800
1801 /* Find entry for first actual instruction in the log. */
1802 for (p = record_full_first.next;
1803 p != NULL && p->type != record_full_end;
1804 p = p->next)
1805 ;
1806
1807 /* Do we have a log at all? */
1808 if (p != NULL && p->type == record_full_end)
1809 {
1810 /* Display instruction number for first instruction in the log. */
1811 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1812 pulongest (p->u.end.insn_num));
1813
1814 /* If in replay mode, display where we are in the log. */
1815 if (RECORD_FULL_IS_REPLAY)
1816 printf_filtered (_("Current instruction number is %s.\n"),
1817 pulongest (record_full_list->u.end.insn_num));
1818
1819 /* Display instruction number for last instruction in the log. */
1820 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1821 pulongest (record_full_insn_count));
1822
1823 /* Display log count. */
1824 printf_filtered (_("Log contains %u instructions.\n"),
1825 record_full_insn_num);
1826 }
1827 else
1828 printf_filtered (_("No instructions have been logged.\n"));
1829
1830 /* Display max log size. */
1831 printf_filtered (_("Max logged instructions is %u.\n"),
1832 record_full_insn_max_num);
1833 }
1834
1835 /* The "to_record_delete" target method. */
1836
1837 static void
1838 record_full_delete (struct target_ops *self)
1839 {
1840 record_full_list_release_following (record_full_list);
1841 }
1842
1843 /* The "to_record_is_replaying" target method. */
1844
1845 static int
1846 record_full_is_replaying (struct target_ops *self)
1847 {
1848 return RECORD_FULL_IS_REPLAY;
1849 }
1850
1851 /* Go to a specific entry. */
1852
1853 static void
1854 record_full_goto_entry (struct record_full_entry *p)
1855 {
1856 if (p == NULL)
1857 error (_("Target insn not found."));
1858 else if (p == record_full_list)
1859 error (_("Already at target insn."));
1860 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1861 {
1862 printf_filtered (_("Go forward to insn number %s\n"),
1863 pulongest (p->u.end.insn_num));
1864 record_full_goto_insn (p, EXEC_FORWARD);
1865 }
1866 else
1867 {
1868 printf_filtered (_("Go backward to insn number %s\n"),
1869 pulongest (p->u.end.insn_num));
1870 record_full_goto_insn (p, EXEC_REVERSE);
1871 }
1872
1873 registers_changed ();
1874 reinit_frame_cache ();
1875 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1876 }
1877
1878 /* The "to_goto_record_begin" target method. */
1879
1880 static void
1881 record_full_goto_begin (struct target_ops *self)
1882 {
1883 struct record_full_entry *p = NULL;
1884
1885 for (p = &record_full_first; p != NULL; p = p->next)
1886 if (p->type == record_full_end)
1887 break;
1888
1889 record_full_goto_entry (p);
1890 }
1891
1892 /* The "to_goto_record_end" target method. */
1893
1894 static void
1895 record_full_goto_end (struct target_ops *self)
1896 {
1897 struct record_full_entry *p = NULL;
1898
1899 for (p = record_full_list; p->next != NULL; p = p->next)
1900 ;
1901 for (; p!= NULL; p = p->prev)
1902 if (p->type == record_full_end)
1903 break;
1904
1905 record_full_goto_entry (p);
1906 }
1907
1908 /* The "to_goto_record" target method. */
1909
1910 static void
1911 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1912 {
1913 struct record_full_entry *p = NULL;
1914
1915 for (p = &record_full_first; p != NULL; p = p->next)
1916 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1917 break;
1918
1919 record_full_goto_entry (p);
1920 }
1921
1922 static void
1923 init_record_full_ops (void)
1924 {
1925 record_full_ops.to_shortname = "record-full";
1926 record_full_ops.to_longname = "Process record and replay target";
1927 record_full_ops.to_doc =
1928 "Log program while executing and replay execution from log.";
1929 record_full_ops.to_open = record_full_open;
1930 record_full_ops.to_close = record_full_close;
1931 record_full_ops.to_async = record_full_async;
1932 record_full_ops.to_resume = record_full_resume;
1933 record_full_ops.to_wait = record_full_wait;
1934 record_full_ops.to_disconnect = record_disconnect;
1935 record_full_ops.to_detach = record_detach;
1936 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1937 record_full_ops.to_kill = record_kill;
1938 record_full_ops.to_store_registers = record_full_store_registers;
1939 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1940 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1941 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1942 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1943 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1944 record_full_ops.to_stopped_by_sw_breakpoint
1945 = record_full_stopped_by_sw_breakpoint;
1946 record_full_ops.to_supports_stopped_by_sw_breakpoint
1947 = record_full_supports_stopped_by_sw_breakpoint;
1948 record_full_ops.to_stopped_by_hw_breakpoint
1949 = record_full_stopped_by_hw_breakpoint;
1950 record_full_ops.to_supports_stopped_by_hw_breakpoint
1951 = record_full_supports_stopped_by_hw_breakpoint;
1952 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1953 record_full_ops.to_stratum = record_stratum;
1954 /* Add bookmark target methods. */
1955 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1956 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1957 record_full_ops.to_execution_direction = record_full_execution_direction;
1958 record_full_ops.to_info_record = record_full_info;
1959 record_full_ops.to_save_record = record_full_save;
1960 record_full_ops.to_delete_record = record_full_delete;
1961 record_full_ops.to_record_is_replaying = record_full_is_replaying;
1962 record_full_ops.to_goto_record_begin = record_full_goto_begin;
1963 record_full_ops.to_goto_record_end = record_full_goto_end;
1964 record_full_ops.to_goto_record = record_full_goto;
1965 record_full_ops.to_magic = OPS_MAGIC;
1966 }
1967
1968 /* "to_resume" method for prec over corefile. */
1969
1970 static void
1971 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
1972 enum gdb_signal signal)
1973 {
1974 record_full_resume_step = step;
1975 record_full_resumed = 1;
1976 record_full_execution_dir = execution_direction;
1977
1978 /* We are about to start executing the inferior (or simulate it),
1979 let's register it with the event loop. */
1980 if (target_can_async_p ())
1981 target_async (inferior_event_handler, 0);
1982 }
1983
1984 /* "to_kill" method for prec over corefile. */
1985
1986 static void
1987 record_full_core_kill (struct target_ops *ops)
1988 {
1989 if (record_debug)
1990 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
1991
1992 unpush_target (&record_full_core_ops);
1993 }
1994
1995 /* "to_fetch_registers" method for prec over corefile. */
1996
1997 static void
1998 record_full_core_fetch_registers (struct target_ops *ops,
1999 struct regcache *regcache,
2000 int regno)
2001 {
2002 if (regno < 0)
2003 {
2004 int num = gdbarch_num_regs (get_regcache_arch (regcache));
2005 int i;
2006
2007 for (i = 0; i < num; i ++)
2008 regcache_raw_supply (regcache, i,
2009 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2010 }
2011 else
2012 regcache_raw_supply (regcache, regno,
2013 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2014 }
2015
2016 /* "to_prepare_to_store" method for prec over corefile. */
2017
2018 static void
2019 record_full_core_prepare_to_store (struct target_ops *self,
2020 struct regcache *regcache)
2021 {
2022 }
2023
2024 /* "to_store_registers" method for prec over corefile. */
2025
2026 static void
2027 record_full_core_store_registers (struct target_ops *ops,
2028 struct regcache *regcache,
2029 int regno)
2030 {
2031 if (record_full_gdb_operation_disable)
2032 regcache_raw_collect (regcache, regno,
2033 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2034 else
2035 error (_("You can't do that without a process to debug."));
2036 }
2037
2038 /* "to_xfer_partial" method for prec over corefile. */
2039
2040 static enum target_xfer_status
2041 record_full_core_xfer_partial (struct target_ops *ops,
2042 enum target_object object,
2043 const char *annex, gdb_byte *readbuf,
2044 const gdb_byte *writebuf, ULONGEST offset,
2045 ULONGEST len, ULONGEST *xfered_len)
2046 {
2047 if (object == TARGET_OBJECT_MEMORY)
2048 {
2049 if (record_full_gdb_operation_disable || !writebuf)
2050 {
2051 struct target_section *p;
2052
2053 for (p = record_full_core_start; p < record_full_core_end; p++)
2054 {
2055 if (offset >= p->addr)
2056 {
2057 struct record_full_core_buf_entry *entry;
2058 ULONGEST sec_offset;
2059
2060 if (offset >= p->endaddr)
2061 continue;
2062
2063 if (offset + len > p->endaddr)
2064 len = p->endaddr - offset;
2065
2066 sec_offset = offset - p->addr;
2067
2068 /* Read readbuf or write writebuf p, offset, len. */
2069 /* Check flags. */
2070 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2071 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2072 {
2073 if (readbuf)
2074 memset (readbuf, 0, len);
2075
2076 *xfered_len = len;
2077 return TARGET_XFER_OK;
2078 }
2079 /* Get record_full_core_buf_entry. */
2080 for (entry = record_full_core_buf_list; entry;
2081 entry = entry->prev)
2082 if (entry->p == p)
2083 break;
2084 if (writebuf)
2085 {
2086 if (!entry)
2087 {
2088 /* Add a new entry. */
2089 entry = (struct record_full_core_buf_entry *)
2090 xmalloc
2091 (sizeof (struct record_full_core_buf_entry));
2092 entry->p = p;
2093 if (!bfd_malloc_and_get_section
2094 (p->the_bfd_section->owner,
2095 p->the_bfd_section,
2096 &entry->buf))
2097 {
2098 xfree (entry);
2099 return TARGET_XFER_EOF;
2100 }
2101 entry->prev = record_full_core_buf_list;
2102 record_full_core_buf_list = entry;
2103 }
2104
2105 memcpy (entry->buf + sec_offset, writebuf,
2106 (size_t) len);
2107 }
2108 else
2109 {
2110 if (!entry)
2111 return ops->beneath->to_xfer_partial (ops->beneath,
2112 object, annex,
2113 readbuf, writebuf,
2114 offset, len,
2115 xfered_len);
2116
2117 memcpy (readbuf, entry->buf + sec_offset,
2118 (size_t) len);
2119 }
2120
2121 *xfered_len = len;
2122 return TARGET_XFER_OK;
2123 }
2124 }
2125
2126 return TARGET_XFER_E_IO;
2127 }
2128 else
2129 error (_("You can't do that without a process to debug."));
2130 }
2131
2132 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2133 readbuf, writebuf, offset, len,
2134 xfered_len);
2135 }
2136
2137 /* "to_insert_breakpoint" method for prec over corefile. */
2138
2139 static int
2140 record_full_core_insert_breakpoint (struct target_ops *ops,
2141 struct gdbarch *gdbarch,
2142 struct bp_target_info *bp_tgt)
2143 {
2144 return 0;
2145 }
2146
2147 /* "to_remove_breakpoint" method for prec over corefile. */
2148
2149 static int
2150 record_full_core_remove_breakpoint (struct target_ops *ops,
2151 struct gdbarch *gdbarch,
2152 struct bp_target_info *bp_tgt)
2153 {
2154 return 0;
2155 }
2156
2157 /* "to_has_execution" method for prec over corefile. */
2158
2159 static int
2160 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2161 {
2162 return 1;
2163 }
2164
2165 static void
2166 init_record_full_core_ops (void)
2167 {
2168 record_full_core_ops.to_shortname = "record-core";
2169 record_full_core_ops.to_longname = "Process record and replay target";
2170 record_full_core_ops.to_doc =
2171 "Log program while executing and replay execution from log.";
2172 record_full_core_ops.to_open = record_full_open;
2173 record_full_core_ops.to_close = record_full_close;
2174 record_full_core_ops.to_async = record_full_async;
2175 record_full_core_ops.to_resume = record_full_core_resume;
2176 record_full_core_ops.to_wait = record_full_wait;
2177 record_full_core_ops.to_kill = record_full_core_kill;
2178 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2179 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2180 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2181 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2182 record_full_core_ops.to_insert_breakpoint
2183 = record_full_core_insert_breakpoint;
2184 record_full_core_ops.to_remove_breakpoint
2185 = record_full_core_remove_breakpoint;
2186 record_full_core_ops.to_stopped_by_watchpoint
2187 = record_full_stopped_by_watchpoint;
2188 record_full_core_ops.to_stopped_data_address
2189 = record_full_stopped_data_address;
2190 record_full_core_ops.to_stopped_by_sw_breakpoint
2191 = record_full_stopped_by_sw_breakpoint;
2192 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2193 = record_full_supports_stopped_by_sw_breakpoint;
2194 record_full_core_ops.to_stopped_by_hw_breakpoint
2195 = record_full_stopped_by_hw_breakpoint;
2196 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2197 = record_full_supports_stopped_by_hw_breakpoint;
2198 record_full_core_ops.to_can_execute_reverse
2199 = record_full_can_execute_reverse;
2200 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2201 record_full_core_ops.to_stratum = record_stratum;
2202 /* Add bookmark target methods. */
2203 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2204 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2205 record_full_core_ops.to_execution_direction
2206 = record_full_execution_direction;
2207 record_full_core_ops.to_info_record = record_full_info;
2208 record_full_core_ops.to_delete_record = record_full_delete;
2209 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2210 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2211 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2212 record_full_core_ops.to_goto_record = record_full_goto;
2213 record_full_core_ops.to_magic = OPS_MAGIC;
2214 }
2215
2216 /* Record log save-file format
2217 Version 1 (never released)
2218
2219 Header:
2220 4 bytes: magic number htonl(0x20090829).
2221 NOTE: be sure to change whenever this file format changes!
2222
2223 Records:
2224 record_full_end:
2225 1 byte: record type (record_full_end, see enum record_full_type).
2226 record_full_reg:
2227 1 byte: record type (record_full_reg, see enum record_full_type).
2228 8 bytes: register id (network byte order).
2229 MAX_REGISTER_SIZE bytes: register value.
2230 record_full_mem:
2231 1 byte: record type (record_full_mem, see enum record_full_type).
2232 8 bytes: memory length (network byte order).
2233 8 bytes: memory address (network byte order).
2234 n bytes: memory value (n == memory length).
2235
2236 Version 2
2237 4 bytes: magic number netorder32(0x20091016).
2238 NOTE: be sure to change whenever this file format changes!
2239
2240 Records:
2241 record_full_end:
2242 1 byte: record type (record_full_end, see enum record_full_type).
2243 4 bytes: signal
2244 4 bytes: instruction count
2245 record_full_reg:
2246 1 byte: record type (record_full_reg, see enum record_full_type).
2247 4 bytes: register id (network byte order).
2248 n bytes: register value (n == actual register size).
2249 (eg. 4 bytes for x86 general registers).
2250 record_full_mem:
2251 1 byte: record type (record_full_mem, see enum record_full_type).
2252 4 bytes: memory length (network byte order).
2253 8 bytes: memory address (network byte order).
2254 n bytes: memory value (n == memory length).
2255
2256 */
2257
2258 /* bfdcore_read -- read bytes from a core file section. */
2259
2260 static inline void
2261 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2262 {
2263 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2264
2265 if (ret)
2266 *offset += len;
2267 else
2268 error (_("Failed to read %d bytes from core file %s ('%s')."),
2269 len, bfd_get_filename (obfd),
2270 bfd_errmsg (bfd_get_error ()));
2271 }
2272
2273 static inline uint64_t
2274 netorder64 (uint64_t input)
2275 {
2276 uint64_t ret;
2277
2278 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2279 BFD_ENDIAN_BIG, input);
2280 return ret;
2281 }
2282
2283 static inline uint32_t
2284 netorder32 (uint32_t input)
2285 {
2286 uint32_t ret;
2287
2288 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2289 BFD_ENDIAN_BIG, input);
2290 return ret;
2291 }
2292
2293 static inline uint16_t
2294 netorder16 (uint16_t input)
2295 {
2296 uint16_t ret;
2297
2298 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2299 BFD_ENDIAN_BIG, input);
2300 return ret;
2301 }
2302
2303 /* Restore the execution log from a core_bfd file. */
2304 static void
2305 record_full_restore (void)
2306 {
2307 uint32_t magic;
2308 struct cleanup *old_cleanups;
2309 struct record_full_entry *rec;
2310 asection *osec;
2311 uint32_t osec_size;
2312 int bfd_offset = 0;
2313 struct regcache *regcache;
2314
2315 /* We restore the execution log from the open core bfd,
2316 if there is one. */
2317 if (core_bfd == NULL)
2318 return;
2319
2320 /* "record_full_restore" can only be called when record list is empty. */
2321 gdb_assert (record_full_first.next == NULL);
2322
2323 if (record_debug)
2324 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2325
2326 /* Now need to find our special note section. */
2327 osec = bfd_get_section_by_name (core_bfd, "null0");
2328 if (record_debug)
2329 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2330 osec ? "succeeded" : "failed");
2331 if (osec == NULL)
2332 return;
2333 osec_size = bfd_section_size (core_bfd, osec);
2334 if (record_debug)
2335 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2336
2337 /* Check the magic code. */
2338 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2339 if (magic != RECORD_FULL_FILE_MAGIC)
2340 error (_("Version mis-match or file format error in core file %s."),
2341 bfd_get_filename (core_bfd));
2342 if (record_debug)
2343 fprintf_unfiltered (gdb_stdlog,
2344 " Reading 4-byte magic cookie "
2345 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2346 phex_nz (netorder32 (magic), 4));
2347
2348 /* Restore the entries in recfd into record_full_arch_list_head and
2349 record_full_arch_list_tail. */
2350 record_full_arch_list_head = NULL;
2351 record_full_arch_list_tail = NULL;
2352 record_full_insn_num = 0;
2353 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2354 regcache = get_current_regcache ();
2355
2356 while (1)
2357 {
2358 uint8_t rectype;
2359 uint32_t regnum, len, signal, count;
2360 uint64_t addr;
2361
2362 /* We are finished when offset reaches osec_size. */
2363 if (bfd_offset >= osec_size)
2364 break;
2365 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2366
2367 switch (rectype)
2368 {
2369 case record_full_reg: /* reg */
2370 /* Get register number to regnum. */
2371 bfdcore_read (core_bfd, osec, &regnum,
2372 sizeof (regnum), &bfd_offset);
2373 regnum = netorder32 (regnum);
2374
2375 rec = record_full_reg_alloc (regcache, regnum);
2376
2377 /* Get val. */
2378 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2379 rec->u.reg.len, &bfd_offset);
2380
2381 if (record_debug)
2382 fprintf_unfiltered (gdb_stdlog,
2383 " Reading register %d (1 "
2384 "plus %lu plus %d bytes)\n",
2385 rec->u.reg.num,
2386 (unsigned long) sizeof (regnum),
2387 rec->u.reg.len);
2388 break;
2389
2390 case record_full_mem: /* mem */
2391 /* Get len. */
2392 bfdcore_read (core_bfd, osec, &len,
2393 sizeof (len), &bfd_offset);
2394 len = netorder32 (len);
2395
2396 /* Get addr. */
2397 bfdcore_read (core_bfd, osec, &addr,
2398 sizeof (addr), &bfd_offset);
2399 addr = netorder64 (addr);
2400
2401 rec = record_full_mem_alloc (addr, len);
2402
2403 /* Get val. */
2404 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2405 rec->u.mem.len, &bfd_offset);
2406
2407 if (record_debug)
2408 fprintf_unfiltered (gdb_stdlog,
2409 " Reading memory %s (1 plus "
2410 "%lu plus %lu plus %d bytes)\n",
2411 paddress (get_current_arch (),
2412 rec->u.mem.addr),
2413 (unsigned long) sizeof (addr),
2414 (unsigned long) sizeof (len),
2415 rec->u.mem.len);
2416 break;
2417
2418 case record_full_end: /* end */
2419 rec = record_full_end_alloc ();
2420 record_full_insn_num ++;
2421
2422 /* Get signal value. */
2423 bfdcore_read (core_bfd, osec, &signal,
2424 sizeof (signal), &bfd_offset);
2425 signal = netorder32 (signal);
2426 rec->u.end.sigval = signal;
2427
2428 /* Get insn count. */
2429 bfdcore_read (core_bfd, osec, &count,
2430 sizeof (count), &bfd_offset);
2431 count = netorder32 (count);
2432 rec->u.end.insn_num = count;
2433 record_full_insn_count = count + 1;
2434 if (record_debug)
2435 fprintf_unfiltered (gdb_stdlog,
2436 " Reading record_full_end (1 + "
2437 "%lu + %lu bytes), offset == %s\n",
2438 (unsigned long) sizeof (signal),
2439 (unsigned long) sizeof (count),
2440 paddress (get_current_arch (),
2441 bfd_offset));
2442 break;
2443
2444 default:
2445 error (_("Bad entry type in core file %s."),
2446 bfd_get_filename (core_bfd));
2447 break;
2448 }
2449
2450 /* Add rec to record arch list. */
2451 record_full_arch_list_add (rec);
2452 }
2453
2454 discard_cleanups (old_cleanups);
2455
2456 /* Add record_full_arch_list_head to the end of record list. */
2457 record_full_first.next = record_full_arch_list_head;
2458 record_full_arch_list_head->prev = &record_full_first;
2459 record_full_arch_list_tail->next = NULL;
2460 record_full_list = &record_full_first;
2461
2462 /* Update record_full_insn_max_num. */
2463 if (record_full_insn_num > record_full_insn_max_num)
2464 {
2465 record_full_insn_max_num = record_full_insn_num;
2466 warning (_("Auto increase record/replay buffer limit to %u."),
2467 record_full_insn_max_num);
2468 }
2469
2470 /* Succeeded. */
2471 printf_filtered (_("Restored records from core file %s.\n"),
2472 bfd_get_filename (core_bfd));
2473
2474 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2475 }
2476
2477 /* bfdcore_write -- write bytes into a core file section. */
2478
2479 static inline void
2480 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2481 {
2482 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2483
2484 if (ret)
2485 *offset += len;
2486 else
2487 error (_("Failed to write %d bytes to core file %s ('%s')."),
2488 len, bfd_get_filename (obfd),
2489 bfd_errmsg (bfd_get_error ()));
2490 }
2491
2492 /* Restore the execution log from a file. We use a modified elf
2493 corefile format, with an extra section for our data. */
2494
2495 static void
2496 cmd_record_full_restore (char *args, int from_tty)
2497 {
2498 core_file_command (args, from_tty);
2499 record_full_open (args, from_tty);
2500 }
2501
2502 static void
2503 record_full_save_cleanups (void *data)
2504 {
2505 bfd *obfd = data;
2506 char *pathname = xstrdup (bfd_get_filename (obfd));
2507
2508 gdb_bfd_unref (obfd);
2509 unlink (pathname);
2510 xfree (pathname);
2511 }
2512
2513 /* Save the execution log to a file. We use a modified elf corefile
2514 format, with an extra section for our data. */
2515
2516 static void
2517 record_full_save (struct target_ops *self, const char *recfilename)
2518 {
2519 struct record_full_entry *cur_record_full_list;
2520 uint32_t magic;
2521 struct regcache *regcache;
2522 struct gdbarch *gdbarch;
2523 struct cleanup *old_cleanups;
2524 struct cleanup *set_cleanups;
2525 bfd *obfd;
2526 int save_size = 0;
2527 asection *osec = NULL;
2528 int bfd_offset = 0;
2529
2530 /* Open the save file. */
2531 if (record_debug)
2532 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2533 recfilename);
2534
2535 /* Open the output file. */
2536 obfd = create_gcore_bfd (recfilename);
2537 old_cleanups = make_cleanup (record_full_save_cleanups, obfd);
2538
2539 /* Save the current record entry to "cur_record_full_list". */
2540 cur_record_full_list = record_full_list;
2541
2542 /* Get the values of regcache and gdbarch. */
2543 regcache = get_current_regcache ();
2544 gdbarch = get_regcache_arch (regcache);
2545
2546 /* Disable the GDB operation record. */
2547 set_cleanups = record_full_gdb_operation_disable_set ();
2548
2549 /* Reverse execute to the begin of record list. */
2550 while (1)
2551 {
2552 /* Check for beginning and end of log. */
2553 if (record_full_list == &record_full_first)
2554 break;
2555
2556 record_full_exec_insn (regcache, gdbarch, record_full_list);
2557
2558 if (record_full_list->prev)
2559 record_full_list = record_full_list->prev;
2560 }
2561
2562 /* Compute the size needed for the extra bfd section. */
2563 save_size = 4; /* magic cookie */
2564 for (record_full_list = record_full_first.next; record_full_list;
2565 record_full_list = record_full_list->next)
2566 switch (record_full_list->type)
2567 {
2568 case record_full_end:
2569 save_size += 1 + 4 + 4;
2570 break;
2571 case record_full_reg:
2572 save_size += 1 + 4 + record_full_list->u.reg.len;
2573 break;
2574 case record_full_mem:
2575 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2576 break;
2577 }
2578
2579 /* Make the new bfd section. */
2580 osec = bfd_make_section_anyway_with_flags (obfd, "precord",
2581 SEC_HAS_CONTENTS
2582 | SEC_READONLY);
2583 if (osec == NULL)
2584 error (_("Failed to create 'precord' section for corefile %s: %s"),
2585 recfilename,
2586 bfd_errmsg (bfd_get_error ()));
2587 bfd_set_section_size (obfd, osec, save_size);
2588 bfd_set_section_vma (obfd, osec, 0);
2589 bfd_set_section_alignment (obfd, osec, 0);
2590 bfd_section_lma (obfd, osec) = 0;
2591
2592 /* Save corefile state. */
2593 write_gcore_file (obfd);
2594
2595 /* Write out the record log. */
2596 /* Write the magic code. */
2597 magic = RECORD_FULL_FILE_MAGIC;
2598 if (record_debug)
2599 fprintf_unfiltered (gdb_stdlog,
2600 " Writing 4-byte magic cookie "
2601 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2602 phex_nz (magic, 4));
2603 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset);
2604
2605 /* Save the entries to recfd and forward execute to the end of
2606 record list. */
2607 record_full_list = &record_full_first;
2608 while (1)
2609 {
2610 /* Save entry. */
2611 if (record_full_list != &record_full_first)
2612 {
2613 uint8_t type;
2614 uint32_t regnum, len, signal, count;
2615 uint64_t addr;
2616
2617 type = record_full_list->type;
2618 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset);
2619
2620 switch (record_full_list->type)
2621 {
2622 case record_full_reg: /* reg */
2623 if (record_debug)
2624 fprintf_unfiltered (gdb_stdlog,
2625 " Writing register %d (1 "
2626 "plus %lu plus %d bytes)\n",
2627 record_full_list->u.reg.num,
2628 (unsigned long) sizeof (regnum),
2629 record_full_list->u.reg.len);
2630
2631 /* Write regnum. */
2632 regnum = netorder32 (record_full_list->u.reg.num);
2633 bfdcore_write (obfd, osec, &regnum,
2634 sizeof (regnum), &bfd_offset);
2635
2636 /* Write regval. */
2637 bfdcore_write (obfd, osec,
2638 record_full_get_loc (record_full_list),
2639 record_full_list->u.reg.len, &bfd_offset);
2640 break;
2641
2642 case record_full_mem: /* mem */
2643 if (record_debug)
2644 fprintf_unfiltered (gdb_stdlog,
2645 " Writing memory %s (1 plus "
2646 "%lu plus %lu plus %d bytes)\n",
2647 paddress (gdbarch,
2648 record_full_list->u.mem.addr),
2649 (unsigned long) sizeof (addr),
2650 (unsigned long) sizeof (len),
2651 record_full_list->u.mem.len);
2652
2653 /* Write memlen. */
2654 len = netorder32 (record_full_list->u.mem.len);
2655 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset);
2656
2657 /* Write memaddr. */
2658 addr = netorder64 (record_full_list->u.mem.addr);
2659 bfdcore_write (obfd, osec, &addr,
2660 sizeof (addr), &bfd_offset);
2661
2662 /* Write memval. */
2663 bfdcore_write (obfd, osec,
2664 record_full_get_loc (record_full_list),
2665 record_full_list->u.mem.len, &bfd_offset);
2666 break;
2667
2668 case record_full_end:
2669 if (record_debug)
2670 fprintf_unfiltered (gdb_stdlog,
2671 " Writing record_full_end (1 + "
2672 "%lu + %lu bytes)\n",
2673 (unsigned long) sizeof (signal),
2674 (unsigned long) sizeof (count));
2675 /* Write signal value. */
2676 signal = netorder32 (record_full_list->u.end.sigval);
2677 bfdcore_write (obfd, osec, &signal,
2678 sizeof (signal), &bfd_offset);
2679
2680 /* Write insn count. */
2681 count = netorder32 (record_full_list->u.end.insn_num);
2682 bfdcore_write (obfd, osec, &count,
2683 sizeof (count), &bfd_offset);
2684 break;
2685 }
2686 }
2687
2688 /* Execute entry. */
2689 record_full_exec_insn (regcache, gdbarch, record_full_list);
2690
2691 if (record_full_list->next)
2692 record_full_list = record_full_list->next;
2693 else
2694 break;
2695 }
2696
2697 /* Reverse execute to cur_record_full_list. */
2698 while (1)
2699 {
2700 /* Check for beginning and end of log. */
2701 if (record_full_list == cur_record_full_list)
2702 break;
2703
2704 record_full_exec_insn (regcache, gdbarch, record_full_list);
2705
2706 if (record_full_list->prev)
2707 record_full_list = record_full_list->prev;
2708 }
2709
2710 do_cleanups (set_cleanups);
2711 gdb_bfd_unref (obfd);
2712 discard_cleanups (old_cleanups);
2713
2714 /* Succeeded. */
2715 printf_filtered (_("Saved core file %s with execution log.\n"),
2716 recfilename);
2717 }
2718
2719 /* record_full_goto_insn -- rewind the record log (forward or backward,
2720 depending on DIR) to the given entry, changing the program state
2721 correspondingly. */
2722
2723 static void
2724 record_full_goto_insn (struct record_full_entry *entry,
2725 enum exec_direction_kind dir)
2726 {
2727 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
2728 struct regcache *regcache = get_current_regcache ();
2729 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2730
2731 /* Assume everything is valid: we will hit the entry,
2732 and we will not hit the end of the recording. */
2733
2734 if (dir == EXEC_FORWARD)
2735 record_full_list = record_full_list->next;
2736
2737 do
2738 {
2739 record_full_exec_insn (regcache, gdbarch, record_full_list);
2740 if (dir == EXEC_REVERSE)
2741 record_full_list = record_full_list->prev;
2742 else
2743 record_full_list = record_full_list->next;
2744 } while (record_full_list != entry);
2745 do_cleanups (set_cleanups);
2746 }
2747
2748 /* Alias for "target record-full". */
2749
2750 static void
2751 cmd_record_full_start (char *args, int from_tty)
2752 {
2753 execute_command ("target record-full", from_tty);
2754 }
2755
2756 static void
2757 set_record_full_insn_max_num (char *args, int from_tty,
2758 struct cmd_list_element *c)
2759 {
2760 if (record_full_insn_num > record_full_insn_max_num)
2761 {
2762 /* Count down record_full_insn_num while releasing records from list. */
2763 while (record_full_insn_num > record_full_insn_max_num)
2764 {
2765 record_full_list_release_first ();
2766 record_full_insn_num--;
2767 }
2768 }
2769 }
2770
2771 /* The "set record full" command. */
2772
2773 static void
2774 set_record_full_command (char *args, int from_tty)
2775 {
2776 printf_unfiltered (_("\"set record full\" must be followed "
2777 "by an apporpriate subcommand.\n"));
2778 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2779 gdb_stdout);
2780 }
2781
2782 /* The "show record full" command. */
2783
2784 static void
2785 show_record_full_command (char *args, int from_tty)
2786 {
2787 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2788 }
2789
2790 /* Provide a prototype to silence -Wmissing-prototypes. */
2791 extern initialize_file_ftype _initialize_record_full;
2792
2793 void
2794 _initialize_record_full (void)
2795 {
2796 struct cmd_list_element *c;
2797
2798 /* Init record_full_first. */
2799 record_full_first.prev = NULL;
2800 record_full_first.next = NULL;
2801 record_full_first.type = record_full_end;
2802
2803 init_record_full_ops ();
2804 add_target (&record_full_ops);
2805 add_deprecated_target_alias (&record_full_ops, "record");
2806 init_record_full_core_ops ();
2807 add_target (&record_full_core_ops);
2808
2809 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2810 _("Start full execution recording."), &record_full_cmdlist,
2811 "record full ", 0, &record_cmdlist);
2812
2813 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2814 _("Restore the execution log from a file.\n\
2815 Argument is filename. File must be created with 'record save'."),
2816 &record_full_cmdlist);
2817 set_cmd_completer (c, filename_completer);
2818
2819 /* Deprecate the old version without "full" prefix. */
2820 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2821 &record_cmdlist);
2822 set_cmd_completer (c, filename_completer);
2823 deprecate_cmd (c, "record full restore");
2824
2825 add_prefix_cmd ("full", class_support, set_record_full_command,
2826 _("Set record options"), &set_record_full_cmdlist,
2827 "set record full ", 0, &set_record_cmdlist);
2828
2829 add_prefix_cmd ("full", class_support, show_record_full_command,
2830 _("Show record options"), &show_record_full_cmdlist,
2831 "show record full ", 0, &show_record_cmdlist);
2832
2833 /* Record instructions number limit command. */
2834 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2835 &record_full_stop_at_limit, _("\
2836 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2837 Show whether record/replay stops when record/replay buffer becomes full."),
2838 _("Default is ON.\n\
2839 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2840 When OFF, if the record/replay buffer becomes full,\n\
2841 delete the oldest recorded instruction to make room for each new one."),
2842 NULL, NULL,
2843 &set_record_full_cmdlist, &show_record_full_cmdlist);
2844
2845 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2846 &set_record_cmdlist);
2847 deprecate_cmd (c, "set record full stop-at-limit");
2848
2849 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2850 &show_record_cmdlist);
2851 deprecate_cmd (c, "show record full stop-at-limit");
2852
2853 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2854 &record_full_insn_max_num,
2855 _("Set record/replay buffer limit."),
2856 _("Show record/replay buffer limit."), _("\
2857 Set the maximum number of instructions to be stored in the\n\
2858 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2859 limit. Default is 200000."),
2860 set_record_full_insn_max_num,
2861 NULL, &set_record_full_cmdlist,
2862 &show_record_full_cmdlist);
2863
2864 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2865 &set_record_cmdlist);
2866 deprecate_cmd (c, "set record full insn-number-max");
2867
2868 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2869 &show_record_cmdlist);
2870 deprecate_cmd (c, "show record full insn-number-max");
2871
2872 add_setshow_boolean_cmd ("memory-query", no_class,
2873 &record_full_memory_query, _("\
2874 Set whether query if PREC cannot record memory change of next instruction."),
2875 _("\
2876 Show whether query if PREC cannot record memory change of next instruction."),
2877 _("\
2878 Default is OFF.\n\
2879 When ON, query if PREC cannot record memory change of next instruction."),
2880 NULL, NULL,
2881 &set_record_full_cmdlist,
2882 &show_record_full_cmdlist);
2883
2884 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2885 &set_record_cmdlist);
2886 deprecate_cmd (c, "set record full memory-query");
2887
2888 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2889 &show_record_cmdlist);
2890 deprecate_cmd (c, "show record full memory-query");
2891 }