]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/record-full.c
Class detached_regcache
[thirdparty/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38 #include "common/gdb_unlinker.h"
39 #include "common/byte-vector.h"
40
41 #include <signal.h>
42
43 /* This module implements "target record-full", also known as "process
44 record and replay". This target sits on top of a "normal" target
45 (a target that "has execution"), and provides a record and replay
46 functionality, including reverse debugging.
47
48 Target record has two modes: recording, and replaying.
49
50 In record mode, we intercept the to_resume and to_wait methods.
51 Whenever gdb resumes the target, we run the target in single step
52 mode, and we build up an execution log in which, for each executed
53 instruction, we record all changes in memory and register state.
54 This is invisible to the user, to whom it just looks like an
55 ordinary debugging session (except for performance degredation).
56
57 In replay mode, instead of actually letting the inferior run as a
58 process, we simulate its execution by playing back the recorded
59 execution log. For each instruction in the log, we simulate the
60 instruction's side effects by duplicating the changes that it would
61 have made on memory and registers. */
62
63 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
64
65 #define RECORD_FULL_IS_REPLAY \
66 (record_full_list->next || execution_direction == EXEC_REVERSE)
67
68 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
69
70 /* These are the core structs of the process record functionality.
71
72 A record_full_entry is a record of the value change of a register
73 ("record_full_reg") or a part of memory ("record_full_mem"). And each
74 instruction must have a struct record_full_entry ("record_full_end")
75 that indicates that this is the last struct record_full_entry of this
76 instruction.
77
78 Each struct record_full_entry is linked to "record_full_list" by "prev"
79 and "next" pointers. */
80
81 struct record_full_mem_entry
82 {
83 CORE_ADDR addr;
84 int len;
85 /* Set this flag if target memory for this entry
86 can no longer be accessed. */
87 int mem_entry_not_accessible;
88 union
89 {
90 gdb_byte *ptr;
91 gdb_byte buf[sizeof (gdb_byte *)];
92 } u;
93 };
94
95 struct record_full_reg_entry
96 {
97 unsigned short num;
98 unsigned short len;
99 union
100 {
101 gdb_byte *ptr;
102 gdb_byte buf[2 * sizeof (gdb_byte *)];
103 } u;
104 };
105
106 struct record_full_end_entry
107 {
108 enum gdb_signal sigval;
109 ULONGEST insn_num;
110 };
111
112 enum record_full_type
113 {
114 record_full_end = 0,
115 record_full_reg,
116 record_full_mem
117 };
118
119 /* This is the data structure that makes up the execution log.
120
121 The execution log consists of a single linked list of entries
122 of type "struct record_full_entry". It is doubly linked so that it
123 can be traversed in either direction.
124
125 The start of the list is anchored by a struct called
126 "record_full_first". The pointer "record_full_list" either points
127 to the last entry that was added to the list (in record mode), or to
128 the next entry in the list that will be executed (in replay mode).
129
130 Each list element (struct record_full_entry), in addition to next
131 and prev pointers, consists of a union of three entry types: mem,
132 reg, and end. A field called "type" determines which entry type is
133 represented by a given list element.
134
135 Each instruction that is added to the execution log is represented
136 by a variable number of list elements ('entries'). The instruction
137 will have one "reg" entry for each register that is changed by
138 executing the instruction (including the PC in every case). It
139 will also have one "mem" entry for each memory change. Finally,
140 each instruction will have an "end" entry that separates it from
141 the changes associated with the next instruction. */
142
143 struct record_full_entry
144 {
145 struct record_full_entry *prev;
146 struct record_full_entry *next;
147 enum record_full_type type;
148 union
149 {
150 /* reg */
151 struct record_full_reg_entry reg;
152 /* mem */
153 struct record_full_mem_entry mem;
154 /* end */
155 struct record_full_end_entry end;
156 } u;
157 };
158
159 /* If true, query if PREC cannot record memory
160 change of next instruction. */
161 int record_full_memory_query = 0;
162
163 struct record_full_core_buf_entry
164 {
165 struct record_full_core_buf_entry *prev;
166 struct target_section *p;
167 bfd_byte *buf;
168 };
169
170 /* Record buf with core target. */
171 static detached_regcache *record_full_core_regbuf = NULL;
172 static struct target_section *record_full_core_start;
173 static struct target_section *record_full_core_end;
174 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
175
176 /* The following variables are used for managing the linked list that
177 represents the execution log.
178
179 record_full_first is the anchor that holds down the beginning of
180 the list.
181
182 record_full_list serves two functions:
183 1) In record mode, it anchors the end of the list.
184 2) In replay mode, it traverses the list and points to
185 the next instruction that must be emulated.
186
187 record_full_arch_list_head and record_full_arch_list_tail are used
188 to manage a separate list, which is used to build up the change
189 elements of the currently executing instruction during record mode.
190 When this instruction has been completely annotated in the "arch
191 list", it will be appended to the main execution log. */
192
193 static struct record_full_entry record_full_first;
194 static struct record_full_entry *record_full_list = &record_full_first;
195 static struct record_full_entry *record_full_arch_list_head = NULL;
196 static struct record_full_entry *record_full_arch_list_tail = NULL;
197
198 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
199 static int record_full_stop_at_limit = 1;
200 /* Maximum allowed number of insns in execution log. */
201 static unsigned int record_full_insn_max_num
202 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
203 /* Actual count of insns presently in execution log. */
204 static unsigned int record_full_insn_num = 0;
205 /* Count of insns logged so far (may be larger
206 than count of insns presently in execution log). */
207 static ULONGEST record_full_insn_count;
208
209 /* The target_ops of process record. */
210 static struct target_ops record_full_ops;
211 static struct target_ops record_full_core_ops;
212
213 /* See record-full.h. */
214
215 int
216 record_full_is_used (void)
217 {
218 struct target_ops *t;
219
220 t = find_record_target ();
221 return (t == &record_full_ops
222 || t == &record_full_core_ops);
223 }
224
225
226 /* Command lists for "set/show record full". */
227 static struct cmd_list_element *set_record_full_cmdlist;
228 static struct cmd_list_element *show_record_full_cmdlist;
229
230 /* Command list for "record full". */
231 static struct cmd_list_element *record_full_cmdlist;
232
233 static void record_full_goto_insn (struct record_full_entry *entry,
234 enum exec_direction_kind dir);
235 static void record_full_save (struct target_ops *self,
236 const char *recfilename);
237
238 /* Alloc and free functions for record_full_reg, record_full_mem, and
239 record_full_end entries. */
240
241 /* Alloc a record_full_reg record entry. */
242
243 static inline struct record_full_entry *
244 record_full_reg_alloc (struct regcache *regcache, int regnum)
245 {
246 struct record_full_entry *rec;
247 struct gdbarch *gdbarch = regcache->arch ();
248
249 rec = XCNEW (struct record_full_entry);
250 rec->type = record_full_reg;
251 rec->u.reg.num = regnum;
252 rec->u.reg.len = register_size (gdbarch, regnum);
253 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
254 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
255
256 return rec;
257 }
258
259 /* Free a record_full_reg record entry. */
260
261 static inline void
262 record_full_reg_release (struct record_full_entry *rec)
263 {
264 gdb_assert (rec->type == record_full_reg);
265 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
266 xfree (rec->u.reg.u.ptr);
267 xfree (rec);
268 }
269
270 /* Alloc a record_full_mem record entry. */
271
272 static inline struct record_full_entry *
273 record_full_mem_alloc (CORE_ADDR addr, int len)
274 {
275 struct record_full_entry *rec;
276
277 rec = XCNEW (struct record_full_entry);
278 rec->type = record_full_mem;
279 rec->u.mem.addr = addr;
280 rec->u.mem.len = len;
281 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
282 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
283
284 return rec;
285 }
286
287 /* Free a record_full_mem record entry. */
288
289 static inline void
290 record_full_mem_release (struct record_full_entry *rec)
291 {
292 gdb_assert (rec->type == record_full_mem);
293 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
294 xfree (rec->u.mem.u.ptr);
295 xfree (rec);
296 }
297
298 /* Alloc a record_full_end record entry. */
299
300 static inline struct record_full_entry *
301 record_full_end_alloc (void)
302 {
303 struct record_full_entry *rec;
304
305 rec = XCNEW (struct record_full_entry);
306 rec->type = record_full_end;
307
308 return rec;
309 }
310
311 /* Free a record_full_end record entry. */
312
313 static inline void
314 record_full_end_release (struct record_full_entry *rec)
315 {
316 xfree (rec);
317 }
318
319 /* Free one record entry, any type.
320 Return entry->type, in case caller wants to know. */
321
322 static inline enum record_full_type
323 record_full_entry_release (struct record_full_entry *rec)
324 {
325 enum record_full_type type = rec->type;
326
327 switch (type) {
328 case record_full_reg:
329 record_full_reg_release (rec);
330 break;
331 case record_full_mem:
332 record_full_mem_release (rec);
333 break;
334 case record_full_end:
335 record_full_end_release (rec);
336 break;
337 }
338 return type;
339 }
340
341 /* Free all record entries in list pointed to by REC. */
342
343 static void
344 record_full_list_release (struct record_full_entry *rec)
345 {
346 if (!rec)
347 return;
348
349 while (rec->next)
350 rec = rec->next;
351
352 while (rec->prev)
353 {
354 rec = rec->prev;
355 record_full_entry_release (rec->next);
356 }
357
358 if (rec == &record_full_first)
359 {
360 record_full_insn_num = 0;
361 record_full_first.next = NULL;
362 }
363 else
364 record_full_entry_release (rec);
365 }
366
367 /* Free all record entries forward of the given list position. */
368
369 static void
370 record_full_list_release_following (struct record_full_entry *rec)
371 {
372 struct record_full_entry *tmp = rec->next;
373
374 rec->next = NULL;
375 while (tmp)
376 {
377 rec = tmp->next;
378 if (record_full_entry_release (tmp) == record_full_end)
379 {
380 record_full_insn_num--;
381 record_full_insn_count--;
382 }
383 tmp = rec;
384 }
385 }
386
387 /* Delete the first instruction from the beginning of the log, to make
388 room for adding a new instruction at the end of the log.
389
390 Note -- this function does not modify record_full_insn_num. */
391
392 static void
393 record_full_list_release_first (void)
394 {
395 struct record_full_entry *tmp;
396
397 if (!record_full_first.next)
398 return;
399
400 /* Loop until a record_full_end. */
401 while (1)
402 {
403 /* Cut record_full_first.next out of the linked list. */
404 tmp = record_full_first.next;
405 record_full_first.next = tmp->next;
406 tmp->next->prev = &record_full_first;
407
408 /* tmp is now isolated, and can be deleted. */
409 if (record_full_entry_release (tmp) == record_full_end)
410 break; /* End loop at first record_full_end. */
411
412 if (!record_full_first.next)
413 {
414 gdb_assert (record_full_insn_num == 1);
415 break; /* End loop when list is empty. */
416 }
417 }
418 }
419
420 /* Add a struct record_full_entry to record_full_arch_list. */
421
422 static void
423 record_full_arch_list_add (struct record_full_entry *rec)
424 {
425 if (record_debug > 1)
426 fprintf_unfiltered (gdb_stdlog,
427 "Process record: record_full_arch_list_add %s.\n",
428 host_address_to_string (rec));
429
430 if (record_full_arch_list_tail)
431 {
432 record_full_arch_list_tail->next = rec;
433 rec->prev = record_full_arch_list_tail;
434 record_full_arch_list_tail = rec;
435 }
436 else
437 {
438 record_full_arch_list_head = rec;
439 record_full_arch_list_tail = rec;
440 }
441 }
442
443 /* Return the value storage location of a record entry. */
444 static inline gdb_byte *
445 record_full_get_loc (struct record_full_entry *rec)
446 {
447 switch (rec->type) {
448 case record_full_mem:
449 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
450 return rec->u.mem.u.ptr;
451 else
452 return rec->u.mem.u.buf;
453 case record_full_reg:
454 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
455 return rec->u.reg.u.ptr;
456 else
457 return rec->u.reg.u.buf;
458 case record_full_end:
459 default:
460 gdb_assert_not_reached ("unexpected record_full_entry type");
461 return NULL;
462 }
463 }
464
465 /* Record the value of a register NUM to record_full_arch_list. */
466
467 int
468 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
469 {
470 struct record_full_entry *rec;
471
472 if (record_debug > 1)
473 fprintf_unfiltered (gdb_stdlog,
474 "Process record: add register num = %d to "
475 "record list.\n",
476 regnum);
477
478 rec = record_full_reg_alloc (regcache, regnum);
479
480 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
481
482 record_full_arch_list_add (rec);
483
484 return 0;
485 }
486
487 /* Record the value of a region of memory whose address is ADDR and
488 length is LEN to record_full_arch_list. */
489
490 int
491 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
492 {
493 struct record_full_entry *rec;
494
495 if (record_debug > 1)
496 fprintf_unfiltered (gdb_stdlog,
497 "Process record: add mem addr = %s len = %d to "
498 "record list.\n",
499 paddress (target_gdbarch (), addr), len);
500
501 if (!addr) /* FIXME: Why? Some arch must permit it... */
502 return 0;
503
504 rec = record_full_mem_alloc (addr, len);
505
506 if (record_read_memory (target_gdbarch (), addr,
507 record_full_get_loc (rec), len))
508 {
509 record_full_mem_release (rec);
510 return -1;
511 }
512
513 record_full_arch_list_add (rec);
514
515 return 0;
516 }
517
518 /* Add a record_full_end type struct record_full_entry to
519 record_full_arch_list. */
520
521 int
522 record_full_arch_list_add_end (void)
523 {
524 struct record_full_entry *rec;
525
526 if (record_debug > 1)
527 fprintf_unfiltered (gdb_stdlog,
528 "Process record: add end to arch list.\n");
529
530 rec = record_full_end_alloc ();
531 rec->u.end.sigval = GDB_SIGNAL_0;
532 rec->u.end.insn_num = ++record_full_insn_count;
533
534 record_full_arch_list_add (rec);
535
536 return 0;
537 }
538
539 static void
540 record_full_check_insn_num (void)
541 {
542 if (record_full_insn_num == record_full_insn_max_num)
543 {
544 /* Ask user what to do. */
545 if (record_full_stop_at_limit)
546 {
547 if (!yquery (_("Do you want to auto delete previous execution "
548 "log entries when record/replay buffer becomes "
549 "full (record full stop-at-limit)?")))
550 error (_("Process record: stopped by user."));
551 record_full_stop_at_limit = 0;
552 }
553 }
554 }
555
556 static void
557 record_full_arch_list_cleanups (void *ignore)
558 {
559 record_full_list_release (record_full_arch_list_tail);
560 }
561
562 /* Before inferior step (when GDB record the running message, inferior
563 only can step), GDB will call this function to record the values to
564 record_full_list. This function will call gdbarch_process_record to
565 record the running message of inferior and set them to
566 record_full_arch_list, and add it to record_full_list. */
567
568 static void
569 record_full_message (struct regcache *regcache, enum gdb_signal signal)
570 {
571 int ret;
572 struct gdbarch *gdbarch = regcache->arch ();
573 struct cleanup *old_cleanups
574 = make_cleanup (record_full_arch_list_cleanups, 0);
575
576 record_full_arch_list_head = NULL;
577 record_full_arch_list_tail = NULL;
578
579 /* Check record_full_insn_num. */
580 record_full_check_insn_num ();
581
582 /* If gdb sends a signal value to target_resume,
583 save it in the 'end' field of the previous instruction.
584
585 Maybe process record should record what really happened,
586 rather than what gdb pretends has happened.
587
588 So if Linux delivered the signal to the child process during
589 the record mode, we will record it and deliver it again in
590 the replay mode.
591
592 If user says "ignore this signal" during the record mode, then
593 it will be ignored again during the replay mode (no matter if
594 the user says something different, like "deliver this signal"
595 during the replay mode).
596
597 User should understand that nothing he does during the replay
598 mode will change the behavior of the child. If he tries,
599 then that is a user error.
600
601 But we should still deliver the signal to gdb during the replay,
602 if we delivered it during the recording. Therefore we should
603 record the signal during record_full_wait, not
604 record_full_resume. */
605 if (record_full_list != &record_full_first) /* FIXME better way to check */
606 {
607 gdb_assert (record_full_list->type == record_full_end);
608 record_full_list->u.end.sigval = signal;
609 }
610
611 if (signal == GDB_SIGNAL_0
612 || !gdbarch_process_record_signal_p (gdbarch))
613 ret = gdbarch_process_record (gdbarch,
614 regcache,
615 regcache_read_pc (regcache));
616 else
617 ret = gdbarch_process_record_signal (gdbarch,
618 regcache,
619 signal);
620
621 if (ret > 0)
622 error (_("Process record: inferior program stopped."));
623 if (ret < 0)
624 error (_("Process record: failed to record execution log."));
625
626 discard_cleanups (old_cleanups);
627
628 record_full_list->next = record_full_arch_list_head;
629 record_full_arch_list_head->prev = record_full_list;
630 record_full_list = record_full_arch_list_tail;
631
632 if (record_full_insn_num == record_full_insn_max_num)
633 record_full_list_release_first ();
634 else
635 record_full_insn_num++;
636 }
637
638 static bool
639 record_full_message_wrapper_safe (struct regcache *regcache,
640 enum gdb_signal signal)
641 {
642 TRY
643 {
644 record_full_message (regcache, signal);
645 }
646 CATCH (ex, RETURN_MASK_ALL)
647 {
648 exception_print (gdb_stderr, ex);
649 return false;
650 }
651 END_CATCH
652
653 return true;
654 }
655
656 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
657 doesn't need record. */
658
659 static int record_full_gdb_operation_disable = 0;
660
661 scoped_restore_tmpl<int>
662 record_full_gdb_operation_disable_set (void)
663 {
664 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
665 }
666
667 /* Flag set to TRUE for target_stopped_by_watchpoint. */
668 static enum target_stop_reason record_full_stop_reason
669 = TARGET_STOPPED_BY_NO_REASON;
670
671 /* Execute one instruction from the record log. Each instruction in
672 the log will be represented by an arbitrary sequence of register
673 entries and memory entries, followed by an 'end' entry. */
674
675 static inline void
676 record_full_exec_insn (struct regcache *regcache,
677 struct gdbarch *gdbarch,
678 struct record_full_entry *entry)
679 {
680 switch (entry->type)
681 {
682 case record_full_reg: /* reg */
683 {
684 gdb::byte_vector reg (entry->u.reg.len);
685
686 if (record_debug > 1)
687 fprintf_unfiltered (gdb_stdlog,
688 "Process record: record_full_reg %s to "
689 "inferior num = %d.\n",
690 host_address_to_string (entry),
691 entry->u.reg.num);
692
693 regcache_cooked_read (regcache, entry->u.reg.num, reg.data ());
694 regcache_cooked_write (regcache, entry->u.reg.num,
695 record_full_get_loc (entry));
696 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
697 }
698 break;
699
700 case record_full_mem: /* mem */
701 {
702 /* Nothing to do if the entry is flagged not_accessible. */
703 if (!entry->u.mem.mem_entry_not_accessible)
704 {
705 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len);
706 struct cleanup *cleanup = make_cleanup (xfree, mem);
707
708 if (record_debug > 1)
709 fprintf_unfiltered (gdb_stdlog,
710 "Process record: record_full_mem %s to "
711 "inferior addr = %s len = %d.\n",
712 host_address_to_string (entry),
713 paddress (gdbarch, entry->u.mem.addr),
714 entry->u.mem.len);
715
716 if (record_read_memory (gdbarch,
717 entry->u.mem.addr, mem, entry->u.mem.len))
718 entry->u.mem.mem_entry_not_accessible = 1;
719 else
720 {
721 if (target_write_memory (entry->u.mem.addr,
722 record_full_get_loc (entry),
723 entry->u.mem.len))
724 {
725 entry->u.mem.mem_entry_not_accessible = 1;
726 if (record_debug)
727 warning (_("Process record: error writing memory at "
728 "addr = %s len = %d."),
729 paddress (gdbarch, entry->u.mem.addr),
730 entry->u.mem.len);
731 }
732 else
733 {
734 memcpy (record_full_get_loc (entry), mem,
735 entry->u.mem.len);
736
737 /* We've changed memory --- check if a hardware
738 watchpoint should trap. Note that this
739 presently assumes the target beneath supports
740 continuable watchpoints. On non-continuable
741 watchpoints target, we'll want to check this
742 _before_ actually doing the memory change, and
743 not doing the change at all if the watchpoint
744 traps. */
745 if (hardware_watchpoint_inserted_in_range
746 (regcache->aspace (),
747 entry->u.mem.addr, entry->u.mem.len))
748 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
749 }
750 }
751
752 do_cleanups (cleanup);
753 }
754 }
755 break;
756 }
757 }
758
759 static void record_full_restore (void);
760
761 /* Asynchronous signal handle registered as event loop source for when
762 we have pending events ready to be passed to the core. */
763
764 static struct async_event_handler *record_full_async_inferior_event_token;
765
766 static void
767 record_full_async_inferior_event_handler (gdb_client_data data)
768 {
769 inferior_event_handler (INF_REG_EVENT, NULL);
770 }
771
772 /* Open the process record target. */
773
774 static void
775 record_full_core_open_1 (const char *name, int from_tty)
776 {
777 struct regcache *regcache = get_current_regcache ();
778 int regnum = gdbarch_num_regs (regcache->arch ());
779 int i;
780
781 /* Get record_full_core_regbuf. */
782 target_fetch_registers (regcache, -1);
783 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
784
785 for (i = 0; i < regnum; i ++)
786 record_full_core_regbuf->raw_supply (i, *regcache);
787
788 /* Get record_full_core_start and record_full_core_end. */
789 if (build_section_table (core_bfd, &record_full_core_start,
790 &record_full_core_end))
791 {
792 delete record_full_core_regbuf;
793 record_full_core_regbuf = NULL;
794 error (_("\"%s\": Can't find sections: %s"),
795 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
796 }
797
798 push_target (&record_full_core_ops);
799 record_full_restore ();
800 }
801
802 /* "to_open" target method for 'live' processes. */
803
804 static void
805 record_full_open_1 (const char *name, int from_tty)
806 {
807 if (record_debug)
808 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
809
810 /* check exec */
811 if (!target_has_execution)
812 error (_("Process record: the program is not being run."));
813 if (non_stop)
814 error (_("Process record target can't debug inferior in non-stop mode "
815 "(non-stop)."));
816
817 if (!gdbarch_process_record_p (target_gdbarch ()))
818 error (_("Process record: the current architecture doesn't support "
819 "record function."));
820
821 push_target (&record_full_ops);
822 }
823
824 static void record_full_init_record_breakpoints (void);
825
826 /* "to_open" target method. Open the process record target. */
827
828 static void
829 record_full_open (const char *name, int from_tty)
830 {
831 if (record_debug)
832 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
833
834 record_preopen ();
835
836 /* Reset */
837 record_full_insn_num = 0;
838 record_full_insn_count = 0;
839 record_full_list = &record_full_first;
840 record_full_list->next = NULL;
841
842 if (core_bfd)
843 record_full_core_open_1 (name, from_tty);
844 else
845 record_full_open_1 (name, from_tty);
846
847 /* Register extra event sources in the event loop. */
848 record_full_async_inferior_event_token
849 = create_async_event_handler (record_full_async_inferior_event_handler,
850 NULL);
851
852 record_full_init_record_breakpoints ();
853
854 observer_notify_record_changed (current_inferior (), 1, "full", NULL);
855 }
856
857 /* "to_close" target method. Close the process record target. */
858
859 static void
860 record_full_close (struct target_ops *self)
861 {
862 struct record_full_core_buf_entry *entry;
863
864 if (record_debug)
865 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
866
867 record_full_list_release (record_full_list);
868
869 /* Release record_full_core_regbuf. */
870 if (record_full_core_regbuf)
871 {
872 delete record_full_core_regbuf;
873 record_full_core_regbuf = NULL;
874 }
875
876 /* Release record_full_core_buf_list. */
877 if (record_full_core_buf_list)
878 {
879 for (entry = record_full_core_buf_list->prev; entry;
880 entry = entry->prev)
881 {
882 xfree (record_full_core_buf_list);
883 record_full_core_buf_list = entry;
884 }
885 record_full_core_buf_list = NULL;
886 }
887
888 if (record_full_async_inferior_event_token)
889 delete_async_event_handler (&record_full_async_inferior_event_token);
890 }
891
892 /* "to_async" target method. */
893
894 static void
895 record_full_async (struct target_ops *ops, int enable)
896 {
897 if (enable)
898 mark_async_event_handler (record_full_async_inferior_event_token);
899 else
900 clear_async_event_handler (record_full_async_inferior_event_token);
901
902 ops->beneath->to_async (ops->beneath, enable);
903 }
904
905 static int record_full_resume_step = 0;
906
907 /* True if we've been resumed, and so each record_full_wait call should
908 advance execution. If this is false, record_full_wait will return a
909 TARGET_WAITKIND_IGNORE. */
910 static int record_full_resumed = 0;
911
912 /* The execution direction of the last resume we got. This is
913 necessary for async mode. Vis (order is not strictly accurate):
914
915 1. user has the global execution direction set to forward
916 2. user does a reverse-step command
917 3. record_full_resume is called with global execution direction
918 temporarily switched to reverse
919 4. GDB's execution direction is reverted back to forward
920 5. target record notifies event loop there's an event to handle
921 6. infrun asks the target which direction was it going, and switches
922 the global execution direction accordingly (to reverse)
923 7. infrun polls an event out of the record target, and handles it
924 8. GDB goes back to the event loop, and goto #4.
925 */
926 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
927
928 /* "to_resume" target method. Resume the process record target. */
929
930 static void
931 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
932 enum gdb_signal signal)
933 {
934 record_full_resume_step = step;
935 record_full_resumed = 1;
936 record_full_execution_dir = execution_direction;
937
938 if (!RECORD_FULL_IS_REPLAY)
939 {
940 struct gdbarch *gdbarch = target_thread_architecture (ptid);
941
942 record_full_message (get_current_regcache (), signal);
943
944 if (!step)
945 {
946 /* This is not hard single step. */
947 if (!gdbarch_software_single_step_p (gdbarch))
948 {
949 /* This is a normal continue. */
950 step = 1;
951 }
952 else
953 {
954 /* This arch supports soft single step. */
955 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
956 {
957 /* This is a soft single step. */
958 record_full_resume_step = 1;
959 }
960 else
961 step = !insert_single_step_breakpoints (gdbarch);
962 }
963 }
964
965 /* Make sure the target beneath reports all signals. */
966 target_pass_signals (0, NULL);
967
968 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
969 }
970
971 /* We are about to start executing the inferior (or simulate it),
972 let's register it with the event loop. */
973 if (target_can_async_p ())
974 target_async (1);
975 }
976
977 /* "to_commit_resume" method for process record target. */
978
979 static void
980 record_full_commit_resume (struct target_ops *ops)
981 {
982 if (!RECORD_FULL_IS_REPLAY)
983 ops->beneath->to_commit_resume (ops->beneath);
984 }
985
986 static int record_full_get_sig = 0;
987
988 /* SIGINT signal handler, registered by "to_wait" method. */
989
990 static void
991 record_full_sig_handler (int signo)
992 {
993 if (record_debug)
994 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
995
996 /* It will break the running inferior in replay mode. */
997 record_full_resume_step = 1;
998
999 /* It will let record_full_wait set inferior status to get the signal
1000 SIGINT. */
1001 record_full_get_sig = 1;
1002 }
1003
1004 static void
1005 record_full_wait_cleanups (void *ignore)
1006 {
1007 if (execution_direction == EXEC_REVERSE)
1008 {
1009 if (record_full_list->next)
1010 record_full_list = record_full_list->next;
1011 }
1012 else
1013 record_full_list = record_full_list->prev;
1014 }
1015
1016 /* "to_wait" target method for process record target.
1017
1018 In record mode, the target is always run in singlestep mode
1019 (even when gdb says to continue). The to_wait method intercepts
1020 the stop events and determines which ones are to be passed on to
1021 gdb. Most stop events are just singlestep events that gdb is not
1022 to know about, so the to_wait method just records them and keeps
1023 singlestepping.
1024
1025 In replay mode, this function emulates the recorded execution log,
1026 one instruction at a time (forward or backward), and determines
1027 where to stop. */
1028
1029 static ptid_t
1030 record_full_wait_1 (struct target_ops *ops,
1031 ptid_t ptid, struct target_waitstatus *status,
1032 int options)
1033 {
1034 scoped_restore restore_operation_disable
1035 = record_full_gdb_operation_disable_set ();
1036
1037 if (record_debug)
1038 fprintf_unfiltered (gdb_stdlog,
1039 "Process record: record_full_wait "
1040 "record_full_resume_step = %d, "
1041 "record_full_resumed = %d, direction=%s\n",
1042 record_full_resume_step, record_full_resumed,
1043 record_full_execution_dir == EXEC_FORWARD
1044 ? "forward" : "reverse");
1045
1046 if (!record_full_resumed)
1047 {
1048 gdb_assert ((options & TARGET_WNOHANG) != 0);
1049
1050 /* No interesting event. */
1051 status->kind = TARGET_WAITKIND_IGNORE;
1052 return minus_one_ptid;
1053 }
1054
1055 record_full_get_sig = 0;
1056 signal (SIGINT, record_full_sig_handler);
1057
1058 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1059
1060 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1061 {
1062 if (record_full_resume_step)
1063 {
1064 /* This is a single step. */
1065 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1066 }
1067 else
1068 {
1069 /* This is not a single step. */
1070 ptid_t ret;
1071 CORE_ADDR tmp_pc;
1072 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1073
1074 while (1)
1075 {
1076 struct thread_info *tp;
1077
1078 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1079 if (status->kind == TARGET_WAITKIND_IGNORE)
1080 {
1081 if (record_debug)
1082 fprintf_unfiltered (gdb_stdlog,
1083 "Process record: record_full_wait "
1084 "target beneath not done yet\n");
1085 return ret;
1086 }
1087
1088 ALL_NON_EXITED_THREADS (tp)
1089 delete_single_step_breakpoints (tp);
1090
1091 if (record_full_resume_step)
1092 return ret;
1093
1094 /* Is this a SIGTRAP? */
1095 if (status->kind == TARGET_WAITKIND_STOPPED
1096 && status->value.sig == GDB_SIGNAL_TRAP)
1097 {
1098 struct regcache *regcache;
1099 enum target_stop_reason *stop_reason_p
1100 = &record_full_stop_reason;
1101
1102 /* Yes -- this is likely our single-step finishing,
1103 but check if there's any reason the core would be
1104 interested in the event. */
1105
1106 registers_changed ();
1107 regcache = get_current_regcache ();
1108 tmp_pc = regcache_read_pc (regcache);
1109 const struct address_space *aspace = regcache->aspace ();
1110
1111 if (target_stopped_by_watchpoint ())
1112 {
1113 /* Always interested in watchpoints. */
1114 }
1115 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1116 stop_reason_p))
1117 {
1118 /* There is a breakpoint here. Let the core
1119 handle it. */
1120 }
1121 else
1122 {
1123 /* This is a single-step trap. Record the
1124 insn and issue another step.
1125 FIXME: this part can be a random SIGTRAP too.
1126 But GDB cannot handle it. */
1127 int step = 1;
1128
1129 if (!record_full_message_wrapper_safe (regcache,
1130 GDB_SIGNAL_0))
1131 {
1132 status->kind = TARGET_WAITKIND_STOPPED;
1133 status->value.sig = GDB_SIGNAL_0;
1134 break;
1135 }
1136
1137 if (gdbarch_software_single_step_p (gdbarch))
1138 {
1139 /* Try to insert the software single step breakpoint.
1140 If insert success, set step to 0. */
1141 set_executing (inferior_ptid, 0);
1142 reinit_frame_cache ();
1143
1144 step = !insert_single_step_breakpoints (gdbarch);
1145
1146 set_executing (inferior_ptid, 1);
1147 }
1148
1149 if (record_debug)
1150 fprintf_unfiltered (gdb_stdlog,
1151 "Process record: record_full_wait "
1152 "issuing one more step in the "
1153 "target beneath\n");
1154 ops->beneath->to_resume (ops->beneath, ptid, step,
1155 GDB_SIGNAL_0);
1156 ops->beneath->to_commit_resume (ops->beneath);
1157 continue;
1158 }
1159 }
1160
1161 /* The inferior is broken by a breakpoint or a signal. */
1162 break;
1163 }
1164
1165 return ret;
1166 }
1167 }
1168 else
1169 {
1170 struct regcache *regcache = get_current_regcache ();
1171 struct gdbarch *gdbarch = regcache->arch ();
1172 const struct address_space *aspace = regcache->aspace ();
1173 int continue_flag = 1;
1174 int first_record_full_end = 1;
1175 struct cleanup *old_cleanups
1176 = make_cleanup (record_full_wait_cleanups, 0);
1177 CORE_ADDR tmp_pc;
1178
1179 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1180 status->kind = TARGET_WAITKIND_STOPPED;
1181
1182 /* Check breakpoint when forward execute. */
1183 if (execution_direction == EXEC_FORWARD)
1184 {
1185 tmp_pc = regcache_read_pc (regcache);
1186 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1187 &record_full_stop_reason))
1188 {
1189 if (record_debug)
1190 fprintf_unfiltered (gdb_stdlog,
1191 "Process record: break at %s.\n",
1192 paddress (gdbarch, tmp_pc));
1193 goto replay_out;
1194 }
1195 }
1196
1197 /* If GDB is in terminal_inferior mode, it will not get the signal.
1198 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1199 mode, because inferior will not executed.
1200 Then set it to terminal_ours to make GDB get the signal. */
1201 target_terminal::ours ();
1202
1203 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1204 instruction. */
1205 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1206 record_full_list = record_full_list->next;
1207
1208 /* Loop over the record_full_list, looking for the next place to
1209 stop. */
1210 do
1211 {
1212 /* Check for beginning and end of log. */
1213 if (execution_direction == EXEC_REVERSE
1214 && record_full_list == &record_full_first)
1215 {
1216 /* Hit beginning of record log in reverse. */
1217 status->kind = TARGET_WAITKIND_NO_HISTORY;
1218 break;
1219 }
1220 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1221 {
1222 /* Hit end of record log going forward. */
1223 status->kind = TARGET_WAITKIND_NO_HISTORY;
1224 break;
1225 }
1226
1227 record_full_exec_insn (regcache, gdbarch, record_full_list);
1228
1229 if (record_full_list->type == record_full_end)
1230 {
1231 if (record_debug > 1)
1232 fprintf_unfiltered (gdb_stdlog,
1233 "Process record: record_full_end %s to "
1234 "inferior.\n",
1235 host_address_to_string (record_full_list));
1236
1237 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1238 {
1239 /* When reverse excute, the first record_full_end is the
1240 part of current instruction. */
1241 first_record_full_end = 0;
1242 }
1243 else
1244 {
1245 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1246 instruction.
1247 In EXEC_FORWARD mode, this is the record_full_end of
1248 current instruction. */
1249 /* step */
1250 if (record_full_resume_step)
1251 {
1252 if (record_debug > 1)
1253 fprintf_unfiltered (gdb_stdlog,
1254 "Process record: step.\n");
1255 continue_flag = 0;
1256 }
1257
1258 /* check breakpoint */
1259 tmp_pc = regcache_read_pc (regcache);
1260 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1261 &record_full_stop_reason))
1262 {
1263 if (record_debug)
1264 fprintf_unfiltered (gdb_stdlog,
1265 "Process record: break "
1266 "at %s.\n",
1267 paddress (gdbarch, tmp_pc));
1268
1269 continue_flag = 0;
1270 }
1271
1272 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1273 {
1274 if (record_debug)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "Process record: hit hw "
1277 "watchpoint.\n");
1278 continue_flag = 0;
1279 }
1280 /* Check target signal */
1281 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1282 /* FIXME: better way to check */
1283 continue_flag = 0;
1284 }
1285 }
1286
1287 if (continue_flag)
1288 {
1289 if (execution_direction == EXEC_REVERSE)
1290 {
1291 if (record_full_list->prev)
1292 record_full_list = record_full_list->prev;
1293 }
1294 else
1295 {
1296 if (record_full_list->next)
1297 record_full_list = record_full_list->next;
1298 }
1299 }
1300 }
1301 while (continue_flag);
1302
1303 replay_out:
1304 if (record_full_get_sig)
1305 status->value.sig = GDB_SIGNAL_INT;
1306 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1307 /* FIXME: better way to check */
1308 status->value.sig = record_full_list->u.end.sigval;
1309 else
1310 status->value.sig = GDB_SIGNAL_TRAP;
1311
1312 discard_cleanups (old_cleanups);
1313 }
1314
1315 signal (SIGINT, handle_sigint);
1316
1317 return inferior_ptid;
1318 }
1319
1320 static ptid_t
1321 record_full_wait (struct target_ops *ops,
1322 ptid_t ptid, struct target_waitstatus *status,
1323 int options)
1324 {
1325 ptid_t return_ptid;
1326
1327 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1328 if (status->kind != TARGET_WAITKIND_IGNORE)
1329 {
1330 /* We're reporting a stop. Make sure any spurious
1331 target_wait(WNOHANG) doesn't advance the target until the
1332 core wants us resumed again. */
1333 record_full_resumed = 0;
1334 }
1335 return return_ptid;
1336 }
1337
1338 static int
1339 record_full_stopped_by_watchpoint (struct target_ops *ops)
1340 {
1341 if (RECORD_FULL_IS_REPLAY)
1342 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1343 else
1344 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1345 }
1346
1347 static int
1348 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1349 {
1350 if (RECORD_FULL_IS_REPLAY)
1351 return 0;
1352 else
1353 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1354 }
1355
1356 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1357
1358 static int
1359 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1360 {
1361 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1362 }
1363
1364 /* The to_supports_stopped_by_sw_breakpoint method of target
1365 record-full. */
1366
1367 static int
1368 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1369 {
1370 return 1;
1371 }
1372
1373 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1374
1375 static int
1376 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1377 {
1378 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1379 }
1380
1381 /* The to_supports_stopped_by_sw_breakpoint method of target
1382 record-full. */
1383
1384 static int
1385 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1386 {
1387 return 1;
1388 }
1389
1390 /* Record registers change (by user or by GDB) to list as an instruction. */
1391
1392 static void
1393 record_full_registers_change (struct regcache *regcache, int regnum)
1394 {
1395 /* Check record_full_insn_num. */
1396 record_full_check_insn_num ();
1397
1398 record_full_arch_list_head = NULL;
1399 record_full_arch_list_tail = NULL;
1400
1401 if (regnum < 0)
1402 {
1403 int i;
1404
1405 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1406 {
1407 if (record_full_arch_list_add_reg (regcache, i))
1408 {
1409 record_full_list_release (record_full_arch_list_tail);
1410 error (_("Process record: failed to record execution log."));
1411 }
1412 }
1413 }
1414 else
1415 {
1416 if (record_full_arch_list_add_reg (regcache, regnum))
1417 {
1418 record_full_list_release (record_full_arch_list_tail);
1419 error (_("Process record: failed to record execution log."));
1420 }
1421 }
1422 if (record_full_arch_list_add_end ())
1423 {
1424 record_full_list_release (record_full_arch_list_tail);
1425 error (_("Process record: failed to record execution log."));
1426 }
1427 record_full_list->next = record_full_arch_list_head;
1428 record_full_arch_list_head->prev = record_full_list;
1429 record_full_list = record_full_arch_list_tail;
1430
1431 if (record_full_insn_num == record_full_insn_max_num)
1432 record_full_list_release_first ();
1433 else
1434 record_full_insn_num++;
1435 }
1436
1437 /* "to_store_registers" method for process record target. */
1438
1439 static void
1440 record_full_store_registers (struct target_ops *ops,
1441 struct regcache *regcache,
1442 int regno)
1443 {
1444 if (!record_full_gdb_operation_disable)
1445 {
1446 if (RECORD_FULL_IS_REPLAY)
1447 {
1448 int n;
1449
1450 /* Let user choose if he wants to write register or not. */
1451 if (regno < 0)
1452 n =
1453 query (_("Because GDB is in replay mode, changing the "
1454 "value of a register will make the execution "
1455 "log unusable from this point onward. "
1456 "Change all registers?"));
1457 else
1458 n =
1459 query (_("Because GDB is in replay mode, changing the value "
1460 "of a register will make the execution log unusable "
1461 "from this point onward. Change register %s?"),
1462 gdbarch_register_name (regcache->arch (),
1463 regno));
1464
1465 if (!n)
1466 {
1467 /* Invalidate the value of regcache that was set in function
1468 "regcache_raw_write". */
1469 if (regno < 0)
1470 {
1471 int i;
1472
1473 for (i = 0;
1474 i < gdbarch_num_regs (regcache->arch ());
1475 i++)
1476 regcache_invalidate (regcache, i);
1477 }
1478 else
1479 regcache_invalidate (regcache, regno);
1480
1481 error (_("Process record canceled the operation."));
1482 }
1483
1484 /* Destroy the record from here forward. */
1485 record_full_list_release_following (record_full_list);
1486 }
1487
1488 record_full_registers_change (regcache, regno);
1489 }
1490 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1491 }
1492
1493 /* "to_xfer_partial" method. Behavior is conditional on
1494 RECORD_FULL_IS_REPLAY.
1495 In replay mode, we cannot write memory unles we are willing to
1496 invalidate the record/replay log from this point forward. */
1497
1498 static enum target_xfer_status
1499 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1500 const char *annex, gdb_byte *readbuf,
1501 const gdb_byte *writebuf, ULONGEST offset,
1502 ULONGEST len, ULONGEST *xfered_len)
1503 {
1504 if (!record_full_gdb_operation_disable
1505 && (object == TARGET_OBJECT_MEMORY
1506 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1507 {
1508 if (RECORD_FULL_IS_REPLAY)
1509 {
1510 /* Let user choose if he wants to write memory or not. */
1511 if (!query (_("Because GDB is in replay mode, writing to memory "
1512 "will make the execution log unusable from this "
1513 "point onward. Write memory at address %s?"),
1514 paddress (target_gdbarch (), offset)))
1515 error (_("Process record canceled the operation."));
1516
1517 /* Destroy the record from here forward. */
1518 record_full_list_release_following (record_full_list);
1519 }
1520
1521 /* Check record_full_insn_num */
1522 record_full_check_insn_num ();
1523
1524 /* Record registers change to list as an instruction. */
1525 record_full_arch_list_head = NULL;
1526 record_full_arch_list_tail = NULL;
1527 if (record_full_arch_list_add_mem (offset, len))
1528 {
1529 record_full_list_release (record_full_arch_list_tail);
1530 if (record_debug)
1531 fprintf_unfiltered (gdb_stdlog,
1532 "Process record: failed to record "
1533 "execution log.");
1534 return TARGET_XFER_E_IO;
1535 }
1536 if (record_full_arch_list_add_end ())
1537 {
1538 record_full_list_release (record_full_arch_list_tail);
1539 if (record_debug)
1540 fprintf_unfiltered (gdb_stdlog,
1541 "Process record: failed to record "
1542 "execution log.");
1543 return TARGET_XFER_E_IO;
1544 }
1545 record_full_list->next = record_full_arch_list_head;
1546 record_full_arch_list_head->prev = record_full_list;
1547 record_full_list = record_full_arch_list_tail;
1548
1549 if (record_full_insn_num == record_full_insn_max_num)
1550 record_full_list_release_first ();
1551 else
1552 record_full_insn_num++;
1553 }
1554
1555 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1556 readbuf, writebuf, offset,
1557 len, xfered_len);
1558 }
1559
1560 /* This structure represents a breakpoint inserted while the record
1561 target is active. We use this to know when to install/remove
1562 breakpoints in/from the target beneath. For example, a breakpoint
1563 may be inserted while recording, but removed when not replaying nor
1564 recording. In that case, the breakpoint had not been inserted on
1565 the target beneath, so we should not try to remove it there. */
1566
1567 struct record_full_breakpoint
1568 {
1569 /* The address and address space the breakpoint was set at. */
1570 struct address_space *address_space;
1571 CORE_ADDR addr;
1572
1573 /* True when the breakpoint has been also installed in the target
1574 beneath. This will be false for breakpoints set during replay or
1575 when recording. */
1576 int in_target_beneath;
1577 };
1578
1579 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1580 DEF_VEC_P(record_full_breakpoint_p);
1581
1582 /* The list of breakpoints inserted while the record target is
1583 active. */
1584 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1585
1586 static void
1587 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1588 {
1589 if (loc->loc_type != bp_loc_software_breakpoint)
1590 return;
1591
1592 if (loc->inserted)
1593 {
1594 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1595
1596 bp->addr = loc->target_info.placed_address;
1597 bp->address_space = loc->target_info.placed_address_space;
1598
1599 bp->in_target_beneath = 1;
1600
1601 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1602 }
1603 }
1604
1605 /* Sync existing breakpoints to record_full_breakpoints. */
1606
1607 static void
1608 record_full_init_record_breakpoints (void)
1609 {
1610 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1611
1612 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1613 }
1614
1615 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1616 insert or remove breakpoints in the real target when replaying, nor
1617 when recording. */
1618
1619 static int
1620 record_full_insert_breakpoint (struct target_ops *ops,
1621 struct gdbarch *gdbarch,
1622 struct bp_target_info *bp_tgt)
1623 {
1624 struct record_full_breakpoint *bp;
1625 int in_target_beneath = 0;
1626 int ix;
1627
1628 if (!RECORD_FULL_IS_REPLAY)
1629 {
1630 /* When recording, we currently always single-step, so we don't
1631 really need to install regular breakpoints in the inferior.
1632 However, we do have to insert software single-step
1633 breakpoints, in case the target can't hardware step. To keep
1634 things simple, we always insert. */
1635 int ret;
1636
1637 scoped_restore restore_operation_disable
1638 = record_full_gdb_operation_disable_set ();
1639 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1640
1641 if (ret != 0)
1642 return ret;
1643
1644 in_target_beneath = 1;
1645 }
1646
1647 /* Use the existing entries if found in order to avoid duplication
1648 in record_full_breakpoints. */
1649
1650 for (ix = 0;
1651 VEC_iterate (record_full_breakpoint_p,
1652 record_full_breakpoints, ix, bp);
1653 ++ix)
1654 {
1655 if (bp->addr == bp_tgt->placed_address
1656 && bp->address_space == bp_tgt->placed_address_space)
1657 {
1658 gdb_assert (bp->in_target_beneath == in_target_beneath);
1659 return 0;
1660 }
1661 }
1662
1663 bp = XNEW (struct record_full_breakpoint);
1664 bp->addr = bp_tgt->placed_address;
1665 bp->address_space = bp_tgt->placed_address_space;
1666 bp->in_target_beneath = in_target_beneath;
1667 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1668 return 0;
1669 }
1670
1671 /* "to_remove_breakpoint" method for process record target. */
1672
1673 static int
1674 record_full_remove_breakpoint (struct target_ops *ops,
1675 struct gdbarch *gdbarch,
1676 struct bp_target_info *bp_tgt,
1677 enum remove_bp_reason reason)
1678 {
1679 struct record_full_breakpoint *bp;
1680 int ix;
1681
1682 for (ix = 0;
1683 VEC_iterate (record_full_breakpoint_p,
1684 record_full_breakpoints, ix, bp);
1685 ++ix)
1686 {
1687 if (bp->addr == bp_tgt->placed_address
1688 && bp->address_space == bp_tgt->placed_address_space)
1689 {
1690 if (bp->in_target_beneath)
1691 {
1692 int ret;
1693
1694 scoped_restore restore_operation_disable
1695 = record_full_gdb_operation_disable_set ();
1696 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1697 bp_tgt, reason);
1698 if (ret != 0)
1699 return ret;
1700 }
1701
1702 if (reason == REMOVE_BREAKPOINT)
1703 {
1704 VEC_unordered_remove (record_full_breakpoint_p,
1705 record_full_breakpoints, ix);
1706 }
1707 return 0;
1708 }
1709 }
1710
1711 gdb_assert_not_reached ("removing unknown breakpoint");
1712 }
1713
1714 /* "to_can_execute_reverse" method for process record target. */
1715
1716 static int
1717 record_full_can_execute_reverse (struct target_ops *self)
1718 {
1719 return 1;
1720 }
1721
1722 /* "to_get_bookmark" method for process record and prec over core. */
1723
1724 static gdb_byte *
1725 record_full_get_bookmark (struct target_ops *self, const char *args,
1726 int from_tty)
1727 {
1728 char *ret = NULL;
1729
1730 /* Return stringified form of instruction count. */
1731 if (record_full_list && record_full_list->type == record_full_end)
1732 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1733
1734 if (record_debug)
1735 {
1736 if (ret)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "record_full_get_bookmark returns %s\n", ret);
1739 else
1740 fprintf_unfiltered (gdb_stdlog,
1741 "record_full_get_bookmark returns NULL\n");
1742 }
1743 return (gdb_byte *) ret;
1744 }
1745
1746 /* "to_goto_bookmark" method for process record and prec over core. */
1747
1748 static void
1749 record_full_goto_bookmark (struct target_ops *self,
1750 const gdb_byte *raw_bookmark, int from_tty)
1751 {
1752 const char *bookmark = (const char *) raw_bookmark;
1753 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1754
1755 if (record_debug)
1756 fprintf_unfiltered (gdb_stdlog,
1757 "record_full_goto_bookmark receives %s\n", bookmark);
1758
1759 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1760 {
1761 char *copy;
1762
1763 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1764 error (_("Unbalanced quotes: %s"), bookmark);
1765
1766
1767 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1768 make_cleanup (xfree, copy);
1769 bookmark = copy;
1770 }
1771
1772 record_goto (bookmark);
1773
1774 do_cleanups (cleanup);
1775 }
1776
1777 static enum exec_direction_kind
1778 record_full_execution_direction (struct target_ops *self)
1779 {
1780 return record_full_execution_dir;
1781 }
1782
1783 /* The to_record_method method of target record-full. */
1784
1785 enum record_method
1786 record_full_record_method (struct target_ops *self, ptid_t ptid)
1787 {
1788 return RECORD_METHOD_FULL;
1789 }
1790
1791 static void
1792 record_full_info (struct target_ops *self)
1793 {
1794 struct record_full_entry *p;
1795
1796 if (RECORD_FULL_IS_REPLAY)
1797 printf_filtered (_("Replay mode:\n"));
1798 else
1799 printf_filtered (_("Record mode:\n"));
1800
1801 /* Find entry for first actual instruction in the log. */
1802 for (p = record_full_first.next;
1803 p != NULL && p->type != record_full_end;
1804 p = p->next)
1805 ;
1806
1807 /* Do we have a log at all? */
1808 if (p != NULL && p->type == record_full_end)
1809 {
1810 /* Display instruction number for first instruction in the log. */
1811 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1812 pulongest (p->u.end.insn_num));
1813
1814 /* If in replay mode, display where we are in the log. */
1815 if (RECORD_FULL_IS_REPLAY)
1816 printf_filtered (_("Current instruction number is %s.\n"),
1817 pulongest (record_full_list->u.end.insn_num));
1818
1819 /* Display instruction number for last instruction in the log. */
1820 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1821 pulongest (record_full_insn_count));
1822
1823 /* Display log count. */
1824 printf_filtered (_("Log contains %u instructions.\n"),
1825 record_full_insn_num);
1826 }
1827 else
1828 printf_filtered (_("No instructions have been logged.\n"));
1829
1830 /* Display max log size. */
1831 printf_filtered (_("Max logged instructions is %u.\n"),
1832 record_full_insn_max_num);
1833 }
1834
1835 /* The "to_record_delete" target method. */
1836
1837 static void
1838 record_full_delete (struct target_ops *self)
1839 {
1840 record_full_list_release_following (record_full_list);
1841 }
1842
1843 /* The "to_record_is_replaying" target method. */
1844
1845 static int
1846 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1847 {
1848 return RECORD_FULL_IS_REPLAY;
1849 }
1850
1851 /* The "to_record_will_replay" target method. */
1852
1853 static int
1854 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1855 {
1856 /* We can currently only record when executing forwards. Should we be able
1857 to record when executing backwards on targets that support reverse
1858 execution, this needs to be changed. */
1859
1860 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1861 }
1862
1863 /* Go to a specific entry. */
1864
1865 static void
1866 record_full_goto_entry (struct record_full_entry *p)
1867 {
1868 if (p == NULL)
1869 error (_("Target insn not found."));
1870 else if (p == record_full_list)
1871 error (_("Already at target insn."));
1872 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1873 {
1874 printf_filtered (_("Go forward to insn number %s\n"),
1875 pulongest (p->u.end.insn_num));
1876 record_full_goto_insn (p, EXEC_FORWARD);
1877 }
1878 else
1879 {
1880 printf_filtered (_("Go backward to insn number %s\n"),
1881 pulongest (p->u.end.insn_num));
1882 record_full_goto_insn (p, EXEC_REVERSE);
1883 }
1884
1885 registers_changed ();
1886 reinit_frame_cache ();
1887 stop_pc = regcache_read_pc (get_current_regcache ());
1888 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1889 }
1890
1891 /* The "to_goto_record_begin" target method. */
1892
1893 static void
1894 record_full_goto_begin (struct target_ops *self)
1895 {
1896 struct record_full_entry *p = NULL;
1897
1898 for (p = &record_full_first; p != NULL; p = p->next)
1899 if (p->type == record_full_end)
1900 break;
1901
1902 record_full_goto_entry (p);
1903 }
1904
1905 /* The "to_goto_record_end" target method. */
1906
1907 static void
1908 record_full_goto_end (struct target_ops *self)
1909 {
1910 struct record_full_entry *p = NULL;
1911
1912 for (p = record_full_list; p->next != NULL; p = p->next)
1913 ;
1914 for (; p!= NULL; p = p->prev)
1915 if (p->type == record_full_end)
1916 break;
1917
1918 record_full_goto_entry (p);
1919 }
1920
1921 /* The "to_goto_record" target method. */
1922
1923 static void
1924 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1925 {
1926 struct record_full_entry *p = NULL;
1927
1928 for (p = &record_full_first; p != NULL; p = p->next)
1929 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1930 break;
1931
1932 record_full_goto_entry (p);
1933 }
1934
1935 /* The "to_record_stop_replaying" target method. */
1936
1937 static void
1938 record_full_stop_replaying (struct target_ops *self)
1939 {
1940 record_full_goto_end (self);
1941 }
1942
1943 static void
1944 init_record_full_ops (void)
1945 {
1946 record_full_ops.to_shortname = "record-full";
1947 record_full_ops.to_longname = "Process record and replay target";
1948 record_full_ops.to_doc =
1949 "Log program while executing and replay execution from log.";
1950 record_full_ops.to_open = record_full_open;
1951 record_full_ops.to_close = record_full_close;
1952 record_full_ops.to_async = record_full_async;
1953 record_full_ops.to_resume = record_full_resume;
1954 record_full_ops.to_commit_resume = record_full_commit_resume;
1955 record_full_ops.to_wait = record_full_wait;
1956 record_full_ops.to_disconnect = record_disconnect;
1957 record_full_ops.to_detach = record_detach;
1958 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1959 record_full_ops.to_kill = record_kill;
1960 record_full_ops.to_store_registers = record_full_store_registers;
1961 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1962 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1963 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1964 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1965 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1966 record_full_ops.to_stopped_by_sw_breakpoint
1967 = record_full_stopped_by_sw_breakpoint;
1968 record_full_ops.to_supports_stopped_by_sw_breakpoint
1969 = record_full_supports_stopped_by_sw_breakpoint;
1970 record_full_ops.to_stopped_by_hw_breakpoint
1971 = record_full_stopped_by_hw_breakpoint;
1972 record_full_ops.to_supports_stopped_by_hw_breakpoint
1973 = record_full_supports_stopped_by_hw_breakpoint;
1974 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1975 record_full_ops.to_stratum = record_stratum;
1976 /* Add bookmark target methods. */
1977 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1978 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1979 record_full_ops.to_execution_direction = record_full_execution_direction;
1980 record_full_ops.to_record_method = record_full_record_method;
1981 record_full_ops.to_info_record = record_full_info;
1982 record_full_ops.to_save_record = record_full_save;
1983 record_full_ops.to_delete_record = record_full_delete;
1984 record_full_ops.to_record_is_replaying = record_full_is_replaying;
1985 record_full_ops.to_record_will_replay = record_full_will_replay;
1986 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
1987 record_full_ops.to_goto_record_begin = record_full_goto_begin;
1988 record_full_ops.to_goto_record_end = record_full_goto_end;
1989 record_full_ops.to_goto_record = record_full_goto;
1990 record_full_ops.to_magic = OPS_MAGIC;
1991 }
1992
1993 /* "to_resume" method for prec over corefile. */
1994
1995 static void
1996 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
1997 enum gdb_signal signal)
1998 {
1999 record_full_resume_step = step;
2000 record_full_resumed = 1;
2001 record_full_execution_dir = execution_direction;
2002
2003 /* We are about to start executing the inferior (or simulate it),
2004 let's register it with the event loop. */
2005 if (target_can_async_p ())
2006 target_async (1);
2007 }
2008
2009 /* "to_kill" method for prec over corefile. */
2010
2011 static void
2012 record_full_core_kill (struct target_ops *ops)
2013 {
2014 if (record_debug)
2015 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2016
2017 unpush_target (&record_full_core_ops);
2018 }
2019
2020 /* "to_fetch_registers" method for prec over corefile. */
2021
2022 static void
2023 record_full_core_fetch_registers (struct target_ops *ops,
2024 struct regcache *regcache,
2025 int regno)
2026 {
2027 if (regno < 0)
2028 {
2029 int num = gdbarch_num_regs (regcache->arch ());
2030 int i;
2031
2032 for (i = 0; i < num; i ++)
2033 regcache->raw_supply (i, *record_full_core_regbuf);
2034 }
2035 else
2036 regcache->raw_supply (regno, *record_full_core_regbuf);
2037 }
2038
2039 /* "to_prepare_to_store" method for prec over corefile. */
2040
2041 static void
2042 record_full_core_prepare_to_store (struct target_ops *self,
2043 struct regcache *regcache)
2044 {
2045 }
2046
2047 /* "to_store_registers" method for prec over corefile. */
2048
2049 static void
2050 record_full_core_store_registers (struct target_ops *ops,
2051 struct regcache *regcache,
2052 int regno)
2053 {
2054 if (record_full_gdb_operation_disable)
2055 record_full_core_regbuf->raw_supply (regno, *regcache);
2056 else
2057 error (_("You can't do that without a process to debug."));
2058 }
2059
2060 /* "to_xfer_partial" method for prec over corefile. */
2061
2062 static enum target_xfer_status
2063 record_full_core_xfer_partial (struct target_ops *ops,
2064 enum target_object object,
2065 const char *annex, gdb_byte *readbuf,
2066 const gdb_byte *writebuf, ULONGEST offset,
2067 ULONGEST len, ULONGEST *xfered_len)
2068 {
2069 if (object == TARGET_OBJECT_MEMORY)
2070 {
2071 if (record_full_gdb_operation_disable || !writebuf)
2072 {
2073 struct target_section *p;
2074
2075 for (p = record_full_core_start; p < record_full_core_end; p++)
2076 {
2077 if (offset >= p->addr)
2078 {
2079 struct record_full_core_buf_entry *entry;
2080 ULONGEST sec_offset;
2081
2082 if (offset >= p->endaddr)
2083 continue;
2084
2085 if (offset + len > p->endaddr)
2086 len = p->endaddr - offset;
2087
2088 sec_offset = offset - p->addr;
2089
2090 /* Read readbuf or write writebuf p, offset, len. */
2091 /* Check flags. */
2092 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2093 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2094 {
2095 if (readbuf)
2096 memset (readbuf, 0, len);
2097
2098 *xfered_len = len;
2099 return TARGET_XFER_OK;
2100 }
2101 /* Get record_full_core_buf_entry. */
2102 for (entry = record_full_core_buf_list; entry;
2103 entry = entry->prev)
2104 if (entry->p == p)
2105 break;
2106 if (writebuf)
2107 {
2108 if (!entry)
2109 {
2110 /* Add a new entry. */
2111 entry = XNEW (struct record_full_core_buf_entry);
2112 entry->p = p;
2113 if (!bfd_malloc_and_get_section
2114 (p->the_bfd_section->owner,
2115 p->the_bfd_section,
2116 &entry->buf))
2117 {
2118 xfree (entry);
2119 return TARGET_XFER_EOF;
2120 }
2121 entry->prev = record_full_core_buf_list;
2122 record_full_core_buf_list = entry;
2123 }
2124
2125 memcpy (entry->buf + sec_offset, writebuf,
2126 (size_t) len);
2127 }
2128 else
2129 {
2130 if (!entry)
2131 return ops->beneath->to_xfer_partial (ops->beneath,
2132 object, annex,
2133 readbuf, writebuf,
2134 offset, len,
2135 xfered_len);
2136
2137 memcpy (readbuf, entry->buf + sec_offset,
2138 (size_t) len);
2139 }
2140
2141 *xfered_len = len;
2142 return TARGET_XFER_OK;
2143 }
2144 }
2145
2146 return TARGET_XFER_E_IO;
2147 }
2148 else
2149 error (_("You can't do that without a process to debug."));
2150 }
2151
2152 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2153 readbuf, writebuf, offset, len,
2154 xfered_len);
2155 }
2156
2157 /* "to_insert_breakpoint" method for prec over corefile. */
2158
2159 static int
2160 record_full_core_insert_breakpoint (struct target_ops *ops,
2161 struct gdbarch *gdbarch,
2162 struct bp_target_info *bp_tgt)
2163 {
2164 return 0;
2165 }
2166
2167 /* "to_remove_breakpoint" method for prec over corefile. */
2168
2169 static int
2170 record_full_core_remove_breakpoint (struct target_ops *ops,
2171 struct gdbarch *gdbarch,
2172 struct bp_target_info *bp_tgt,
2173 enum remove_bp_reason reason)
2174 {
2175 return 0;
2176 }
2177
2178 /* "to_has_execution" method for prec over corefile. */
2179
2180 static int
2181 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2182 {
2183 return 1;
2184 }
2185
2186 static void
2187 init_record_full_core_ops (void)
2188 {
2189 record_full_core_ops.to_shortname = "record-core";
2190 record_full_core_ops.to_longname = "Process record and replay target";
2191 record_full_core_ops.to_doc =
2192 "Log program while executing and replay execution from log.";
2193 record_full_core_ops.to_open = record_full_open;
2194 record_full_core_ops.to_close = record_full_close;
2195 record_full_core_ops.to_async = record_full_async;
2196 record_full_core_ops.to_resume = record_full_core_resume;
2197 record_full_core_ops.to_wait = record_full_wait;
2198 record_full_core_ops.to_kill = record_full_core_kill;
2199 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2200 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2201 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2202 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2203 record_full_core_ops.to_insert_breakpoint
2204 = record_full_core_insert_breakpoint;
2205 record_full_core_ops.to_remove_breakpoint
2206 = record_full_core_remove_breakpoint;
2207 record_full_core_ops.to_stopped_by_watchpoint
2208 = record_full_stopped_by_watchpoint;
2209 record_full_core_ops.to_stopped_data_address
2210 = record_full_stopped_data_address;
2211 record_full_core_ops.to_stopped_by_sw_breakpoint
2212 = record_full_stopped_by_sw_breakpoint;
2213 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2214 = record_full_supports_stopped_by_sw_breakpoint;
2215 record_full_core_ops.to_stopped_by_hw_breakpoint
2216 = record_full_stopped_by_hw_breakpoint;
2217 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2218 = record_full_supports_stopped_by_hw_breakpoint;
2219 record_full_core_ops.to_can_execute_reverse
2220 = record_full_can_execute_reverse;
2221 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2222 record_full_core_ops.to_stratum = record_stratum;
2223 /* Add bookmark target methods. */
2224 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2225 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2226 record_full_core_ops.to_execution_direction
2227 = record_full_execution_direction;
2228 record_full_core_ops.to_record_method = record_full_record_method;
2229 record_full_core_ops.to_info_record = record_full_info;
2230 record_full_core_ops.to_delete_record = record_full_delete;
2231 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2232 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2233 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2234 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2235 record_full_core_ops.to_goto_record = record_full_goto;
2236 record_full_core_ops.to_magic = OPS_MAGIC;
2237 }
2238
2239 /* Record log save-file format
2240 Version 1 (never released)
2241
2242 Header:
2243 4 bytes: magic number htonl(0x20090829).
2244 NOTE: be sure to change whenever this file format changes!
2245
2246 Records:
2247 record_full_end:
2248 1 byte: record type (record_full_end, see enum record_full_type).
2249 record_full_reg:
2250 1 byte: record type (record_full_reg, see enum record_full_type).
2251 8 bytes: register id (network byte order).
2252 MAX_REGISTER_SIZE bytes: register value.
2253 record_full_mem:
2254 1 byte: record type (record_full_mem, see enum record_full_type).
2255 8 bytes: memory length (network byte order).
2256 8 bytes: memory address (network byte order).
2257 n bytes: memory value (n == memory length).
2258
2259 Version 2
2260 4 bytes: magic number netorder32(0x20091016).
2261 NOTE: be sure to change whenever this file format changes!
2262
2263 Records:
2264 record_full_end:
2265 1 byte: record type (record_full_end, see enum record_full_type).
2266 4 bytes: signal
2267 4 bytes: instruction count
2268 record_full_reg:
2269 1 byte: record type (record_full_reg, see enum record_full_type).
2270 4 bytes: register id (network byte order).
2271 n bytes: register value (n == actual register size).
2272 (eg. 4 bytes for x86 general registers).
2273 record_full_mem:
2274 1 byte: record type (record_full_mem, see enum record_full_type).
2275 4 bytes: memory length (network byte order).
2276 8 bytes: memory address (network byte order).
2277 n bytes: memory value (n == memory length).
2278
2279 */
2280
2281 /* bfdcore_read -- read bytes from a core file section. */
2282
2283 static inline void
2284 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2285 {
2286 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2287
2288 if (ret)
2289 *offset += len;
2290 else
2291 error (_("Failed to read %d bytes from core file %s ('%s')."),
2292 len, bfd_get_filename (obfd),
2293 bfd_errmsg (bfd_get_error ()));
2294 }
2295
2296 static inline uint64_t
2297 netorder64 (uint64_t input)
2298 {
2299 uint64_t ret;
2300
2301 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2302 BFD_ENDIAN_BIG, input);
2303 return ret;
2304 }
2305
2306 static inline uint32_t
2307 netorder32 (uint32_t input)
2308 {
2309 uint32_t ret;
2310
2311 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2312 BFD_ENDIAN_BIG, input);
2313 return ret;
2314 }
2315
2316 /* Restore the execution log from a core_bfd file. */
2317 static void
2318 record_full_restore (void)
2319 {
2320 uint32_t magic;
2321 struct cleanup *old_cleanups;
2322 struct record_full_entry *rec;
2323 asection *osec;
2324 uint32_t osec_size;
2325 int bfd_offset = 0;
2326 struct regcache *regcache;
2327
2328 /* We restore the execution log from the open core bfd,
2329 if there is one. */
2330 if (core_bfd == NULL)
2331 return;
2332
2333 /* "record_full_restore" can only be called when record list is empty. */
2334 gdb_assert (record_full_first.next == NULL);
2335
2336 if (record_debug)
2337 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2338
2339 /* Now need to find our special note section. */
2340 osec = bfd_get_section_by_name (core_bfd, "null0");
2341 if (record_debug)
2342 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2343 osec ? "succeeded" : "failed");
2344 if (osec == NULL)
2345 return;
2346 osec_size = bfd_section_size (core_bfd, osec);
2347 if (record_debug)
2348 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2349
2350 /* Check the magic code. */
2351 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2352 if (magic != RECORD_FULL_FILE_MAGIC)
2353 error (_("Version mis-match or file format error in core file %s."),
2354 bfd_get_filename (core_bfd));
2355 if (record_debug)
2356 fprintf_unfiltered (gdb_stdlog,
2357 " Reading 4-byte magic cookie "
2358 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2359 phex_nz (netorder32 (magic), 4));
2360
2361 /* Restore the entries in recfd into record_full_arch_list_head and
2362 record_full_arch_list_tail. */
2363 record_full_arch_list_head = NULL;
2364 record_full_arch_list_tail = NULL;
2365 record_full_insn_num = 0;
2366 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2367 regcache = get_current_regcache ();
2368
2369 while (1)
2370 {
2371 uint8_t rectype;
2372 uint32_t regnum, len, signal, count;
2373 uint64_t addr;
2374
2375 /* We are finished when offset reaches osec_size. */
2376 if (bfd_offset >= osec_size)
2377 break;
2378 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2379
2380 switch (rectype)
2381 {
2382 case record_full_reg: /* reg */
2383 /* Get register number to regnum. */
2384 bfdcore_read (core_bfd, osec, &regnum,
2385 sizeof (regnum), &bfd_offset);
2386 regnum = netorder32 (regnum);
2387
2388 rec = record_full_reg_alloc (regcache, regnum);
2389
2390 /* Get val. */
2391 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2392 rec->u.reg.len, &bfd_offset);
2393
2394 if (record_debug)
2395 fprintf_unfiltered (gdb_stdlog,
2396 " Reading register %d (1 "
2397 "plus %lu plus %d bytes)\n",
2398 rec->u.reg.num,
2399 (unsigned long) sizeof (regnum),
2400 rec->u.reg.len);
2401 break;
2402
2403 case record_full_mem: /* mem */
2404 /* Get len. */
2405 bfdcore_read (core_bfd, osec, &len,
2406 sizeof (len), &bfd_offset);
2407 len = netorder32 (len);
2408
2409 /* Get addr. */
2410 bfdcore_read (core_bfd, osec, &addr,
2411 sizeof (addr), &bfd_offset);
2412 addr = netorder64 (addr);
2413
2414 rec = record_full_mem_alloc (addr, len);
2415
2416 /* Get val. */
2417 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2418 rec->u.mem.len, &bfd_offset);
2419
2420 if (record_debug)
2421 fprintf_unfiltered (gdb_stdlog,
2422 " Reading memory %s (1 plus "
2423 "%lu plus %lu plus %d bytes)\n",
2424 paddress (get_current_arch (),
2425 rec->u.mem.addr),
2426 (unsigned long) sizeof (addr),
2427 (unsigned long) sizeof (len),
2428 rec->u.mem.len);
2429 break;
2430
2431 case record_full_end: /* end */
2432 rec = record_full_end_alloc ();
2433 record_full_insn_num ++;
2434
2435 /* Get signal value. */
2436 bfdcore_read (core_bfd, osec, &signal,
2437 sizeof (signal), &bfd_offset);
2438 signal = netorder32 (signal);
2439 rec->u.end.sigval = (enum gdb_signal) signal;
2440
2441 /* Get insn count. */
2442 bfdcore_read (core_bfd, osec, &count,
2443 sizeof (count), &bfd_offset);
2444 count = netorder32 (count);
2445 rec->u.end.insn_num = count;
2446 record_full_insn_count = count + 1;
2447 if (record_debug)
2448 fprintf_unfiltered (gdb_stdlog,
2449 " Reading record_full_end (1 + "
2450 "%lu + %lu bytes), offset == %s\n",
2451 (unsigned long) sizeof (signal),
2452 (unsigned long) sizeof (count),
2453 paddress (get_current_arch (),
2454 bfd_offset));
2455 break;
2456
2457 default:
2458 error (_("Bad entry type in core file %s."),
2459 bfd_get_filename (core_bfd));
2460 break;
2461 }
2462
2463 /* Add rec to record arch list. */
2464 record_full_arch_list_add (rec);
2465 }
2466
2467 discard_cleanups (old_cleanups);
2468
2469 /* Add record_full_arch_list_head to the end of record list. */
2470 record_full_first.next = record_full_arch_list_head;
2471 record_full_arch_list_head->prev = &record_full_first;
2472 record_full_arch_list_tail->next = NULL;
2473 record_full_list = &record_full_first;
2474
2475 /* Update record_full_insn_max_num. */
2476 if (record_full_insn_num > record_full_insn_max_num)
2477 {
2478 record_full_insn_max_num = record_full_insn_num;
2479 warning (_("Auto increase record/replay buffer limit to %u."),
2480 record_full_insn_max_num);
2481 }
2482
2483 /* Succeeded. */
2484 printf_filtered (_("Restored records from core file %s.\n"),
2485 bfd_get_filename (core_bfd));
2486
2487 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2488 }
2489
2490 /* bfdcore_write -- write bytes into a core file section. */
2491
2492 static inline void
2493 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2494 {
2495 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2496
2497 if (ret)
2498 *offset += len;
2499 else
2500 error (_("Failed to write %d bytes to core file %s ('%s')."),
2501 len, bfd_get_filename (obfd),
2502 bfd_errmsg (bfd_get_error ()));
2503 }
2504
2505 /* Restore the execution log from a file. We use a modified elf
2506 corefile format, with an extra section for our data. */
2507
2508 static void
2509 cmd_record_full_restore (const char *args, int from_tty)
2510 {
2511 core_file_command (args, from_tty);
2512 record_full_open (args, from_tty);
2513 }
2514
2515 /* Save the execution log to a file. We use a modified elf corefile
2516 format, with an extra section for our data. */
2517
2518 static void
2519 record_full_save (struct target_ops *self, const char *recfilename)
2520 {
2521 struct record_full_entry *cur_record_full_list;
2522 uint32_t magic;
2523 struct regcache *regcache;
2524 struct gdbarch *gdbarch;
2525 int save_size = 0;
2526 asection *osec = NULL;
2527 int bfd_offset = 0;
2528
2529 /* Open the save file. */
2530 if (record_debug)
2531 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2532 recfilename);
2533
2534 /* Open the output file. */
2535 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2536
2537 /* Arrange to remove the output file on failure. */
2538 gdb::unlinker unlink_file (recfilename);
2539
2540 /* Save the current record entry to "cur_record_full_list". */
2541 cur_record_full_list = record_full_list;
2542
2543 /* Get the values of regcache and gdbarch. */
2544 regcache = get_current_regcache ();
2545 gdbarch = regcache->arch ();
2546
2547 /* Disable the GDB operation record. */
2548 scoped_restore restore_operation_disable
2549 = record_full_gdb_operation_disable_set ();
2550
2551 /* Reverse execute to the begin of record list. */
2552 while (1)
2553 {
2554 /* Check for beginning and end of log. */
2555 if (record_full_list == &record_full_first)
2556 break;
2557
2558 record_full_exec_insn (regcache, gdbarch, record_full_list);
2559
2560 if (record_full_list->prev)
2561 record_full_list = record_full_list->prev;
2562 }
2563
2564 /* Compute the size needed for the extra bfd section. */
2565 save_size = 4; /* magic cookie */
2566 for (record_full_list = record_full_first.next; record_full_list;
2567 record_full_list = record_full_list->next)
2568 switch (record_full_list->type)
2569 {
2570 case record_full_end:
2571 save_size += 1 + 4 + 4;
2572 break;
2573 case record_full_reg:
2574 save_size += 1 + 4 + record_full_list->u.reg.len;
2575 break;
2576 case record_full_mem:
2577 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2578 break;
2579 }
2580
2581 /* Make the new bfd section. */
2582 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2583 SEC_HAS_CONTENTS
2584 | SEC_READONLY);
2585 if (osec == NULL)
2586 error (_("Failed to create 'precord' section for corefile %s: %s"),
2587 recfilename,
2588 bfd_errmsg (bfd_get_error ()));
2589 bfd_set_section_size (obfd.get (), osec, save_size);
2590 bfd_set_section_vma (obfd.get (), osec, 0);
2591 bfd_set_section_alignment (obfd.get (), osec, 0);
2592 bfd_section_lma (obfd.get (), osec) = 0;
2593
2594 /* Save corefile state. */
2595 write_gcore_file (obfd.get ());
2596
2597 /* Write out the record log. */
2598 /* Write the magic code. */
2599 magic = RECORD_FULL_FILE_MAGIC;
2600 if (record_debug)
2601 fprintf_unfiltered (gdb_stdlog,
2602 " Writing 4-byte magic cookie "
2603 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2604 phex_nz (magic, 4));
2605 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2606
2607 /* Save the entries to recfd and forward execute to the end of
2608 record list. */
2609 record_full_list = &record_full_first;
2610 while (1)
2611 {
2612 /* Save entry. */
2613 if (record_full_list != &record_full_first)
2614 {
2615 uint8_t type;
2616 uint32_t regnum, len, signal, count;
2617 uint64_t addr;
2618
2619 type = record_full_list->type;
2620 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2621
2622 switch (record_full_list->type)
2623 {
2624 case record_full_reg: /* reg */
2625 if (record_debug)
2626 fprintf_unfiltered (gdb_stdlog,
2627 " Writing register %d (1 "
2628 "plus %lu plus %d bytes)\n",
2629 record_full_list->u.reg.num,
2630 (unsigned long) sizeof (regnum),
2631 record_full_list->u.reg.len);
2632
2633 /* Write regnum. */
2634 regnum = netorder32 (record_full_list->u.reg.num);
2635 bfdcore_write (obfd.get (), osec, &regnum,
2636 sizeof (regnum), &bfd_offset);
2637
2638 /* Write regval. */
2639 bfdcore_write (obfd.get (), osec,
2640 record_full_get_loc (record_full_list),
2641 record_full_list->u.reg.len, &bfd_offset);
2642 break;
2643
2644 case record_full_mem: /* mem */
2645 if (record_debug)
2646 fprintf_unfiltered (gdb_stdlog,
2647 " Writing memory %s (1 plus "
2648 "%lu plus %lu plus %d bytes)\n",
2649 paddress (gdbarch,
2650 record_full_list->u.mem.addr),
2651 (unsigned long) sizeof (addr),
2652 (unsigned long) sizeof (len),
2653 record_full_list->u.mem.len);
2654
2655 /* Write memlen. */
2656 len = netorder32 (record_full_list->u.mem.len);
2657 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2658 &bfd_offset);
2659
2660 /* Write memaddr. */
2661 addr = netorder64 (record_full_list->u.mem.addr);
2662 bfdcore_write (obfd.get (), osec, &addr,
2663 sizeof (addr), &bfd_offset);
2664
2665 /* Write memval. */
2666 bfdcore_write (obfd.get (), osec,
2667 record_full_get_loc (record_full_list),
2668 record_full_list->u.mem.len, &bfd_offset);
2669 break;
2670
2671 case record_full_end:
2672 if (record_debug)
2673 fprintf_unfiltered (gdb_stdlog,
2674 " Writing record_full_end (1 + "
2675 "%lu + %lu bytes)\n",
2676 (unsigned long) sizeof (signal),
2677 (unsigned long) sizeof (count));
2678 /* Write signal value. */
2679 signal = netorder32 (record_full_list->u.end.sigval);
2680 bfdcore_write (obfd.get (), osec, &signal,
2681 sizeof (signal), &bfd_offset);
2682
2683 /* Write insn count. */
2684 count = netorder32 (record_full_list->u.end.insn_num);
2685 bfdcore_write (obfd.get (), osec, &count,
2686 sizeof (count), &bfd_offset);
2687 break;
2688 }
2689 }
2690
2691 /* Execute entry. */
2692 record_full_exec_insn (regcache, gdbarch, record_full_list);
2693
2694 if (record_full_list->next)
2695 record_full_list = record_full_list->next;
2696 else
2697 break;
2698 }
2699
2700 /* Reverse execute to cur_record_full_list. */
2701 while (1)
2702 {
2703 /* Check for beginning and end of log. */
2704 if (record_full_list == cur_record_full_list)
2705 break;
2706
2707 record_full_exec_insn (regcache, gdbarch, record_full_list);
2708
2709 if (record_full_list->prev)
2710 record_full_list = record_full_list->prev;
2711 }
2712
2713 unlink_file.keep ();
2714
2715 /* Succeeded. */
2716 printf_filtered (_("Saved core file %s with execution log.\n"),
2717 recfilename);
2718 }
2719
2720 /* record_full_goto_insn -- rewind the record log (forward or backward,
2721 depending on DIR) to the given entry, changing the program state
2722 correspondingly. */
2723
2724 static void
2725 record_full_goto_insn (struct record_full_entry *entry,
2726 enum exec_direction_kind dir)
2727 {
2728 scoped_restore restore_operation_disable
2729 = record_full_gdb_operation_disable_set ();
2730 struct regcache *regcache = get_current_regcache ();
2731 struct gdbarch *gdbarch = regcache->arch ();
2732
2733 /* Assume everything is valid: we will hit the entry,
2734 and we will not hit the end of the recording. */
2735
2736 if (dir == EXEC_FORWARD)
2737 record_full_list = record_full_list->next;
2738
2739 do
2740 {
2741 record_full_exec_insn (regcache, gdbarch, record_full_list);
2742 if (dir == EXEC_REVERSE)
2743 record_full_list = record_full_list->prev;
2744 else
2745 record_full_list = record_full_list->next;
2746 } while (record_full_list != entry);
2747 }
2748
2749 /* Alias for "target record-full". */
2750
2751 static void
2752 cmd_record_full_start (const char *args, int from_tty)
2753 {
2754 execute_command ("target record-full", from_tty);
2755 }
2756
2757 static void
2758 set_record_full_insn_max_num (const char *args, int from_tty,
2759 struct cmd_list_element *c)
2760 {
2761 if (record_full_insn_num > record_full_insn_max_num)
2762 {
2763 /* Count down record_full_insn_num while releasing records from list. */
2764 while (record_full_insn_num > record_full_insn_max_num)
2765 {
2766 record_full_list_release_first ();
2767 record_full_insn_num--;
2768 }
2769 }
2770 }
2771
2772 /* The "set record full" command. */
2773
2774 static void
2775 set_record_full_command (const char *args, int from_tty)
2776 {
2777 printf_unfiltered (_("\"set record full\" must be followed "
2778 "by an appropriate subcommand.\n"));
2779 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2780 gdb_stdout);
2781 }
2782
2783 /* The "show record full" command. */
2784
2785 static void
2786 show_record_full_command (const char *args, int from_tty)
2787 {
2788 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2789 }
2790
2791 void
2792 _initialize_record_full (void)
2793 {
2794 struct cmd_list_element *c;
2795
2796 /* Init record_full_first. */
2797 record_full_first.prev = NULL;
2798 record_full_first.next = NULL;
2799 record_full_first.type = record_full_end;
2800
2801 init_record_full_ops ();
2802 add_target (&record_full_ops);
2803 add_deprecated_target_alias (&record_full_ops, "record");
2804 init_record_full_core_ops ();
2805 add_target (&record_full_core_ops);
2806
2807 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2808 _("Start full execution recording."), &record_full_cmdlist,
2809 "record full ", 0, &record_cmdlist);
2810
2811 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2812 _("Restore the execution log from a file.\n\
2813 Argument is filename. File must be created with 'record save'."),
2814 &record_full_cmdlist);
2815 set_cmd_completer (c, filename_completer);
2816
2817 /* Deprecate the old version without "full" prefix. */
2818 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2819 &record_cmdlist);
2820 set_cmd_completer (c, filename_completer);
2821 deprecate_cmd (c, "record full restore");
2822
2823 add_prefix_cmd ("full", class_support, set_record_full_command,
2824 _("Set record options"), &set_record_full_cmdlist,
2825 "set record full ", 0, &set_record_cmdlist);
2826
2827 add_prefix_cmd ("full", class_support, show_record_full_command,
2828 _("Show record options"), &show_record_full_cmdlist,
2829 "show record full ", 0, &show_record_cmdlist);
2830
2831 /* Record instructions number limit command. */
2832 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2833 &record_full_stop_at_limit, _("\
2834 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2835 Show whether record/replay stops when record/replay buffer becomes full."),
2836 _("Default is ON.\n\
2837 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2838 When OFF, if the record/replay buffer becomes full,\n\
2839 delete the oldest recorded instruction to make room for each new one."),
2840 NULL, NULL,
2841 &set_record_full_cmdlist, &show_record_full_cmdlist);
2842
2843 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2844 &set_record_cmdlist);
2845 deprecate_cmd (c, "set record full stop-at-limit");
2846
2847 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2848 &show_record_cmdlist);
2849 deprecate_cmd (c, "show record full stop-at-limit");
2850
2851 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2852 &record_full_insn_max_num,
2853 _("Set record/replay buffer limit."),
2854 _("Show record/replay buffer limit."), _("\
2855 Set the maximum number of instructions to be stored in the\n\
2856 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2857 limit. Default is 200000."),
2858 set_record_full_insn_max_num,
2859 NULL, &set_record_full_cmdlist,
2860 &show_record_full_cmdlist);
2861
2862 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2863 &set_record_cmdlist);
2864 deprecate_cmd (c, "set record full insn-number-max");
2865
2866 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2867 &show_record_cmdlist);
2868 deprecate_cmd (c, "show record full insn-number-max");
2869
2870 add_setshow_boolean_cmd ("memory-query", no_class,
2871 &record_full_memory_query, _("\
2872 Set whether query if PREC cannot record memory change of next instruction."),
2873 _("\
2874 Show whether query if PREC cannot record memory change of next instruction."),
2875 _("\
2876 Default is OFF.\n\
2877 When ON, query if PREC cannot record memory change of next instruction."),
2878 NULL, NULL,
2879 &set_record_full_cmdlist,
2880 &show_record_full_cmdlist);
2881
2882 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2883 &set_record_cmdlist);
2884 deprecate_cmd (c, "set record full memory-query");
2885
2886 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2887 &show_record_cmdlist);
2888 deprecate_cmd (c, "show record full memory-query");
2889 }