]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* remote.c (struct remote_arch_state): Doc fix.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void build_remote_gdbarch_data (void);
88
89 static void remote_files_info (struct target_ops *ignore);
90
91 static void remote_prepare_to_store (void);
92
93 static void remote_fetch_registers (int regno);
94
95 static void remote_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_async_resume (ptid_t ptid, int step,
98 enum target_signal siggnal);
99 static void remote_open (char *name, int from_tty);
100 static void remote_async_open (char *name, int from_tty);
101
102 static void extended_remote_open (char *name, int from_tty);
103 static void extended_remote_async_open (char *name, int from_tty);
104
105 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
106 int async_p);
107
108 static void remote_close (int quitting);
109
110 static void remote_store_registers (int regno);
111
112 static void remote_mourn (void);
113 static void remote_async_mourn (void);
114
115 static void extended_remote_restart (void);
116
117 static void extended_remote_mourn (void);
118
119 static void remote_mourn_1 (struct target_ops *);
120
121 static void remote_send (char **buf, long *sizeof_buf_p);
122
123 static int readchar (int timeout);
124
125 static ptid_t remote_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127 static ptid_t remote_async_wait (ptid_t ptid,
128 struct target_waitstatus *status);
129
130 static void remote_kill (void);
131 static void remote_async_kill (void);
132
133 static int tohex (int nib);
134
135 static void remote_detach (char *args, int from_tty);
136
137 static void remote_interrupt (int signo);
138
139 static void remote_interrupt_twice (int signo);
140
141 static void interrupt_query (void);
142
143 static void set_thread (int, int);
144
145 static int remote_thread_alive (ptid_t);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (void);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static unsigned long crc32 (unsigned char *, int, unsigned int);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static void remote_find_new_threads (void);
184
185 static void record_currthread (int currthread);
186
187 static int fromhex (int a);
188
189 static int hex2bin (const char *hex, gdb_byte *bin, int count);
190
191 static int bin2hex (const gdb_byte *bin, char *hex, int count);
192
193 static int putpkt_binary (char *buf, int cnt);
194
195 static void check_binary_download (CORE_ADDR addr);
196
197 struct packet_config;
198
199 static void show_packet_config_cmd (struct packet_config *config);
200
201 static void update_packet_config (struct packet_config *config);
202
203 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
204 struct cmd_list_element *c);
205
206 static void show_remote_protocol_packet_cmd (struct ui_file *file,
207 int from_tty,
208 struct cmd_list_element *c,
209 const char *value);
210
211 void _initialize_remote (void);
212
213 /* For "set remote" and "show remote". */
214
215 static struct cmd_list_element *remote_set_cmdlist;
216 static struct cmd_list_element *remote_show_cmdlist;
217
218 /* Description of the remote protocol state for the currently
219 connected target. This is per-target state, and independent of the
220 selected architecture. */
221
222 struct remote_state
223 {
224 /* A buffer to use for incoming packets, and its current size. The
225 buffer is grown dynamically for larger incoming packets.
226 Outgoing packets may also be constructed in this buffer.
227 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
228 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
229 packets. */
230 char *buf;
231 long buf_size;
232
233 /* If we negotiated packet size explicitly (and thus can bypass
234 heuristics for the largest packet size that will not overflow
235 a buffer in the stub), this will be set to that packet size.
236 Otherwise zero, meaning to use the guessed size. */
237 long explicit_packet_size;
238 };
239
240 /* This data could be associated with a target, but we do not always
241 have access to the current target when we need it, so for now it is
242 static. This will be fine for as long as only one target is in use
243 at a time. */
244 static struct remote_state remote_state;
245
246 static struct remote_state *
247 get_remote_state_raw (void)
248 {
249 return &remote_state;
250 }
251
252 /* Description of the remote protocol for a given architecture. */
253
254 struct packet_reg
255 {
256 long offset; /* Offset into G packet. */
257 long regnum; /* GDB's internal register number. */
258 LONGEST pnum; /* Remote protocol register number. */
259 int in_g_packet; /* Always part of G packet. */
260 /* long size in bytes; == register_size (current_gdbarch, regnum);
261 at present. */
262 /* char *name; == REGISTER_NAME (regnum); at present. */
263 };
264
265 struct remote_arch_state
266 {
267 /* Description of the remote protocol registers. */
268 long sizeof_g_packet;
269
270 /* Description of the remote protocol registers indexed by REGNUM
271 (making an array NUM_REGS in size). */
272 struct packet_reg *regs;
273
274 /* This is the size (in chars) of the first response to the ``g''
275 packet. It is used as a heuristic when determining the maximum
276 size of memory-read and memory-write packets. A target will
277 typically only reserve a buffer large enough to hold the ``g''
278 packet. The size does not include packet overhead (headers and
279 trailers). */
280 long actual_register_packet_size;
281
282 /* This is the maximum size (in chars) of a non read/write packet.
283 It is also used as a cap on the size of read/write packets. */
284 long remote_packet_size;
285 };
286
287
288 /* Handle for retreving the remote protocol data from gdbarch. */
289 static struct gdbarch_data *remote_gdbarch_data_handle;
290
291 static struct remote_arch_state *
292 get_remote_arch_state (void)
293 {
294 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
295 }
296
297 /* Fetch the global remote target state. */
298
299 static struct remote_state *
300 get_remote_state (void)
301 {
302 /* Make sure that the remote architecture state has been
303 initialized, because doing so might reallocate rs->buf. Any
304 function which calls getpkt also needs to be mindful of changes
305 to rs->buf, but this call limits the number of places which run
306 into trouble. */
307 get_remote_arch_state ();
308
309 return get_remote_state_raw ();
310 }
311
312 static int
313 compare_pnums (const void *lhs_, const void *rhs_)
314 {
315 const struct packet_reg * const *lhs = lhs_;
316 const struct packet_reg * const *rhs = rhs_;
317
318 if ((*lhs)->pnum < (*rhs)->pnum)
319 return -1;
320 else if ((*lhs)->pnum == (*rhs)->pnum)
321 return 0;
322 else
323 return 1;
324 }
325
326 static void *
327 init_remote_state (struct gdbarch *gdbarch)
328 {
329 int regnum, num_remote_regs, offset;
330 struct remote_state *rs = get_remote_state_raw ();
331 struct remote_arch_state *rsa;
332 struct packet_reg **remote_regs;
333
334 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
335
336 /* Assume a 1:1 regnum<->pnum table. */
337 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
338 for (regnum = 0; regnum < NUM_REGS; regnum++)
339 {
340 struct packet_reg *r = &rsa->regs[regnum];
341 r->pnum = regnum;
342 r->regnum = regnum;
343 }
344
345 /* Define the g/G packet format as the contents of each register
346 with a remote protocol number, in order of ascending protocol
347 number. */
348
349 remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
350 for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
351 if (rsa->regs[regnum].pnum != -1)
352 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
353
354 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
355 compare_pnums);
356
357 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
358 {
359 remote_regs[regnum]->in_g_packet = 1;
360 remote_regs[regnum]->offset = offset;
361 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
362 }
363
364 /* Record the maximum possible size of the g packet - it may turn out
365 to be smaller. */
366 rsa->sizeof_g_packet = offset;
367
368 /* Default maximum number of characters in a packet body. Many
369 remote stubs have a hardwired buffer size of 400 bytes
370 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
371 as the maximum packet-size to ensure that the packet and an extra
372 NUL character can always fit in the buffer. This stops GDB
373 trashing stubs that try to squeeze an extra NUL into what is
374 already a full buffer (As of 1999-12-04 that was most stubs). */
375 rsa->remote_packet_size = 400 - 1;
376
377 /* This one is filled in when a ``g'' packet is received. */
378 rsa->actual_register_packet_size = 0;
379
380 /* Should rsa->sizeof_g_packet needs more space than the
381 default, adjust the size accordingly. Remember that each byte is
382 encoded as two characters. 32 is the overhead for the packet
383 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
384 (``$NN:G...#NN'') is a better guess, the below has been padded a
385 little. */
386 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
387 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
388
389 /* Make sure that the packet buffer is plenty big enough for
390 this architecture. */
391 if (rs->buf_size < rsa->remote_packet_size)
392 {
393 rs->buf_size = 2 * rsa->remote_packet_size;
394 rs->buf = xrealloc (rs->buf, rs->buf_size);
395 }
396
397 return rsa;
398 }
399
400 /* Return the current allowed size of a remote packet. This is
401 inferred from the current architecture, and should be used to
402 limit the length of outgoing packets. */
403 static long
404 get_remote_packet_size (void)
405 {
406 struct remote_state *rs = get_remote_state ();
407 struct remote_arch_state *rsa = get_remote_arch_state ();
408
409 if (rs->explicit_packet_size)
410 return rs->explicit_packet_size;
411
412 return rsa->remote_packet_size;
413 }
414
415 static struct packet_reg *
416 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
417 {
418 if (regnum < 0 && regnum >= NUM_REGS)
419 return NULL;
420 else
421 {
422 struct packet_reg *r = &rsa->regs[regnum];
423 gdb_assert (r->regnum == regnum);
424 return r;
425 }
426 }
427
428 static struct packet_reg *
429 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
430 {
431 int i;
432 for (i = 0; i < NUM_REGS; i++)
433 {
434 struct packet_reg *r = &rsa->regs[i];
435 if (r->pnum == pnum)
436 return r;
437 }
438 return NULL;
439 }
440
441 /* FIXME: graces/2002-08-08: These variables should eventually be
442 bound to an instance of the target object (as in gdbarch-tdep()),
443 when such a thing exists. */
444
445 /* This is set to the data address of the access causing the target
446 to stop for a watchpoint. */
447 static CORE_ADDR remote_watch_data_address;
448
449 /* This is non-zero if target stopped for a watchpoint. */
450 static int remote_stopped_by_watchpoint_p;
451
452 static struct target_ops remote_ops;
453
454 static struct target_ops extended_remote_ops;
455
456 /* Temporary target ops. Just like the remote_ops and
457 extended_remote_ops, but with asynchronous support. */
458 static struct target_ops remote_async_ops;
459
460 static struct target_ops extended_async_remote_ops;
461
462 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
463 ``forever'' still use the normal timeout mechanism. This is
464 currently used by the ASYNC code to guarentee that target reads
465 during the initial connect always time-out. Once getpkt has been
466 modified to return a timeout indication and, in turn
467 remote_wait()/wait_for_inferior() have gained a timeout parameter
468 this can go away. */
469 static int wait_forever_enabled_p = 1;
470
471
472 /* This variable chooses whether to send a ^C or a break when the user
473 requests program interruption. Although ^C is usually what remote
474 systems expect, and that is the default here, sometimes a break is
475 preferable instead. */
476
477 static int remote_break;
478
479 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
480 remote_open knows that we don't have a file open when the program
481 starts. */
482 static struct serial *remote_desc = NULL;
483
484 /* This variable sets the number of bits in an address that are to be
485 sent in a memory ("M" or "m") packet. Normally, after stripping
486 leading zeros, the entire address would be sent. This variable
487 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
488 initial implementation of remote.c restricted the address sent in
489 memory packets to ``host::sizeof long'' bytes - (typically 32
490 bits). Consequently, for 64 bit targets, the upper 32 bits of an
491 address was never sent. Since fixing this bug may cause a break in
492 some remote targets this variable is principly provided to
493 facilitate backward compatibility. */
494
495 static int remote_address_size;
496
497 /* Tempoary to track who currently owns the terminal. See
498 target_async_terminal_* for more details. */
499
500 static int remote_async_terminal_ours_p;
501
502 \f
503 /* User configurable variables for the number of characters in a
504 memory read/write packet. MIN (rsa->remote_packet_size,
505 rsa->sizeof_g_packet) is the default. Some targets need smaller
506 values (fifo overruns, et.al.) and some users need larger values
507 (speed up transfers). The variables ``preferred_*'' (the user
508 request), ``current_*'' (what was actually set) and ``forced_*''
509 (Positive - a soft limit, negative - a hard limit). */
510
511 struct memory_packet_config
512 {
513 char *name;
514 long size;
515 int fixed_p;
516 };
517
518 /* Compute the current size of a read/write packet. Since this makes
519 use of ``actual_register_packet_size'' the computation is dynamic. */
520
521 static long
522 get_memory_packet_size (struct memory_packet_config *config)
523 {
524 struct remote_state *rs = get_remote_state ();
525 struct remote_arch_state *rsa = get_remote_arch_state ();
526
527 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
528 law?) that some hosts don't cope very well with large alloca()
529 calls. Eventually the alloca() code will be replaced by calls to
530 xmalloc() and make_cleanups() allowing this restriction to either
531 be lifted or removed. */
532 #ifndef MAX_REMOTE_PACKET_SIZE
533 #define MAX_REMOTE_PACKET_SIZE 16384
534 #endif
535 /* NOTE: 20 ensures we can write at least one byte. */
536 #ifndef MIN_REMOTE_PACKET_SIZE
537 #define MIN_REMOTE_PACKET_SIZE 20
538 #endif
539 long what_they_get;
540 if (config->fixed_p)
541 {
542 if (config->size <= 0)
543 what_they_get = MAX_REMOTE_PACKET_SIZE;
544 else
545 what_they_get = config->size;
546 }
547 else
548 {
549 what_they_get = get_remote_packet_size ();
550 /* Limit the packet to the size specified by the user. */
551 if (config->size > 0
552 && what_they_get > config->size)
553 what_they_get = config->size;
554
555 /* Limit it to the size of the targets ``g'' response unless we have
556 permission from the stub to use a larger packet size. */
557 if (rs->explicit_packet_size == 0
558 && rsa->actual_register_packet_size > 0
559 && what_they_get > rsa->actual_register_packet_size)
560 what_they_get = rsa->actual_register_packet_size;
561 }
562 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
563 what_they_get = MAX_REMOTE_PACKET_SIZE;
564 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
565 what_they_get = MIN_REMOTE_PACKET_SIZE;
566
567 /* Make sure there is room in the global buffer for this packet
568 (including its trailing NUL byte). */
569 if (rs->buf_size < what_they_get + 1)
570 {
571 rs->buf_size = 2 * what_they_get;
572 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
573 }
574
575 return what_they_get;
576 }
577
578 /* Update the size of a read/write packet. If they user wants
579 something really big then do a sanity check. */
580
581 static void
582 set_memory_packet_size (char *args, struct memory_packet_config *config)
583 {
584 int fixed_p = config->fixed_p;
585 long size = config->size;
586 if (args == NULL)
587 error (_("Argument required (integer, `fixed' or `limited')."));
588 else if (strcmp (args, "hard") == 0
589 || strcmp (args, "fixed") == 0)
590 fixed_p = 1;
591 else if (strcmp (args, "soft") == 0
592 || strcmp (args, "limit") == 0)
593 fixed_p = 0;
594 else
595 {
596 char *end;
597 size = strtoul (args, &end, 0);
598 if (args == end)
599 error (_("Invalid %s (bad syntax)."), config->name);
600 #if 0
601 /* Instead of explicitly capping the size of a packet to
602 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
603 instead allowed to set the size to something arbitrarily
604 large. */
605 if (size > MAX_REMOTE_PACKET_SIZE)
606 error (_("Invalid %s (too large)."), config->name);
607 #endif
608 }
609 /* Extra checks? */
610 if (fixed_p && !config->fixed_p)
611 {
612 if (! query (_("The target may not be able to correctly handle a %s\n"
613 "of %ld bytes. Change the packet size? "),
614 config->name, size))
615 error (_("Packet size not changed."));
616 }
617 /* Update the config. */
618 config->fixed_p = fixed_p;
619 config->size = size;
620 }
621
622 static void
623 show_memory_packet_size (struct memory_packet_config *config)
624 {
625 printf_filtered (_("The %s is %ld. "), config->name, config->size);
626 if (config->fixed_p)
627 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
628 get_memory_packet_size (config));
629 else
630 printf_filtered (_("Packets are limited to %ld bytes.\n"),
631 get_memory_packet_size (config));
632 }
633
634 static struct memory_packet_config memory_write_packet_config =
635 {
636 "memory-write-packet-size",
637 };
638
639 static void
640 set_memory_write_packet_size (char *args, int from_tty)
641 {
642 set_memory_packet_size (args, &memory_write_packet_config);
643 }
644
645 static void
646 show_memory_write_packet_size (char *args, int from_tty)
647 {
648 show_memory_packet_size (&memory_write_packet_config);
649 }
650
651 static long
652 get_memory_write_packet_size (void)
653 {
654 return get_memory_packet_size (&memory_write_packet_config);
655 }
656
657 static struct memory_packet_config memory_read_packet_config =
658 {
659 "memory-read-packet-size",
660 };
661
662 static void
663 set_memory_read_packet_size (char *args, int from_tty)
664 {
665 set_memory_packet_size (args, &memory_read_packet_config);
666 }
667
668 static void
669 show_memory_read_packet_size (char *args, int from_tty)
670 {
671 show_memory_packet_size (&memory_read_packet_config);
672 }
673
674 static long
675 get_memory_read_packet_size (void)
676 {
677 long size = get_memory_packet_size (&memory_read_packet_config);
678 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
679 extra buffer size argument before the memory read size can be
680 increased beyond this. */
681 if (size > get_remote_packet_size ())
682 size = get_remote_packet_size ();
683 return size;
684 }
685
686 \f
687 /* Generic configuration support for packets the stub optionally
688 supports. Allows the user to specify the use of the packet as well
689 as allowing GDB to auto-detect support in the remote stub. */
690
691 enum packet_support
692 {
693 PACKET_SUPPORT_UNKNOWN = 0,
694 PACKET_ENABLE,
695 PACKET_DISABLE
696 };
697
698 struct packet_config
699 {
700 const char *name;
701 const char *title;
702 enum auto_boolean detect;
703 enum packet_support support;
704 };
705
706 /* Analyze a packet's return value and update the packet config
707 accordingly. */
708
709 enum packet_result
710 {
711 PACKET_ERROR,
712 PACKET_OK,
713 PACKET_UNKNOWN
714 };
715
716 static void
717 update_packet_config (struct packet_config *config)
718 {
719 switch (config->detect)
720 {
721 case AUTO_BOOLEAN_TRUE:
722 config->support = PACKET_ENABLE;
723 break;
724 case AUTO_BOOLEAN_FALSE:
725 config->support = PACKET_DISABLE;
726 break;
727 case AUTO_BOOLEAN_AUTO:
728 config->support = PACKET_SUPPORT_UNKNOWN;
729 break;
730 }
731 }
732
733 static void
734 show_packet_config_cmd (struct packet_config *config)
735 {
736 char *support = "internal-error";
737 switch (config->support)
738 {
739 case PACKET_ENABLE:
740 support = "enabled";
741 break;
742 case PACKET_DISABLE:
743 support = "disabled";
744 break;
745 case PACKET_SUPPORT_UNKNOWN:
746 support = "unknown";
747 break;
748 }
749 switch (config->detect)
750 {
751 case AUTO_BOOLEAN_AUTO:
752 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
753 config->name, support);
754 break;
755 case AUTO_BOOLEAN_TRUE:
756 case AUTO_BOOLEAN_FALSE:
757 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
758 config->name, support);
759 break;
760 }
761 }
762
763 static void
764 add_packet_config_cmd (struct packet_config *config, const char *name,
765 const char *title, int legacy)
766 {
767 char *set_doc;
768 char *show_doc;
769 char *cmd_name;
770
771 config->name = name;
772 config->title = title;
773 config->detect = AUTO_BOOLEAN_AUTO;
774 config->support = PACKET_SUPPORT_UNKNOWN;
775 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
776 name, title);
777 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
778 name, title);
779 /* set/show TITLE-packet {auto,on,off} */
780 cmd_name = xstrprintf ("%s-packet", title);
781 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
782 &config->detect, set_doc, show_doc, NULL, /* help_doc */
783 set_remote_protocol_packet_cmd,
784 show_remote_protocol_packet_cmd,
785 &remote_set_cmdlist, &remote_show_cmdlist);
786 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
787 if (legacy)
788 {
789 char *legacy_name;
790 legacy_name = xstrprintf ("%s-packet", name);
791 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
792 &remote_set_cmdlist);
793 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
794 &remote_show_cmdlist);
795 }
796 }
797
798 static enum packet_result
799 packet_check_result (const char *buf)
800 {
801 if (buf[0] != '\0')
802 {
803 /* The stub recognized the packet request. Check that the
804 operation succeeded. */
805 if (buf[0] == 'E'
806 && isxdigit (buf[1]) && isxdigit (buf[2])
807 && buf[3] == '\0')
808 /* "Enn" - definitly an error. */
809 return PACKET_ERROR;
810
811 /* Always treat "E." as an error. This will be used for
812 more verbose error messages, such as E.memtypes. */
813 if (buf[0] == 'E' && buf[1] == '.')
814 return PACKET_ERROR;
815
816 /* The packet may or may not be OK. Just assume it is. */
817 return PACKET_OK;
818 }
819 else
820 /* The stub does not support the packet. */
821 return PACKET_UNKNOWN;
822 }
823
824 static enum packet_result
825 packet_ok (const char *buf, struct packet_config *config)
826 {
827 enum packet_result result;
828
829 result = packet_check_result (buf);
830 switch (result)
831 {
832 case PACKET_OK:
833 case PACKET_ERROR:
834 /* The stub recognized the packet request. */
835 switch (config->support)
836 {
837 case PACKET_SUPPORT_UNKNOWN:
838 if (remote_debug)
839 fprintf_unfiltered (gdb_stdlog,
840 "Packet %s (%s) is supported\n",
841 config->name, config->title);
842 config->support = PACKET_ENABLE;
843 break;
844 case PACKET_DISABLE:
845 internal_error (__FILE__, __LINE__,
846 _("packet_ok: attempt to use a disabled packet"));
847 break;
848 case PACKET_ENABLE:
849 break;
850 }
851 break;
852 case PACKET_UNKNOWN:
853 /* The stub does not support the packet. */
854 switch (config->support)
855 {
856 case PACKET_ENABLE:
857 if (config->detect == AUTO_BOOLEAN_AUTO)
858 /* If the stub previously indicated that the packet was
859 supported then there is a protocol error.. */
860 error (_("Protocol error: %s (%s) conflicting enabled responses."),
861 config->name, config->title);
862 else
863 /* The user set it wrong. */
864 error (_("Enabled packet %s (%s) not recognized by stub"),
865 config->name, config->title);
866 break;
867 case PACKET_SUPPORT_UNKNOWN:
868 if (remote_debug)
869 fprintf_unfiltered (gdb_stdlog,
870 "Packet %s (%s) is NOT supported\n",
871 config->name, config->title);
872 config->support = PACKET_DISABLE;
873 break;
874 case PACKET_DISABLE:
875 break;
876 }
877 break;
878 }
879
880 return result;
881 }
882
883 enum {
884 PACKET_vCont = 0,
885 PACKET_X,
886 PACKET_qSymbol,
887 PACKET_P,
888 PACKET_p,
889 PACKET_Z0,
890 PACKET_Z1,
891 PACKET_Z2,
892 PACKET_Z3,
893 PACKET_Z4,
894 PACKET_qXfer_auxv,
895 PACKET_qXfer_memory_map,
896 PACKET_qGetTLSAddr,
897 PACKET_qSupported,
898 PACKET_QPassSignals,
899 PACKET_MAX
900 };
901
902 static struct packet_config remote_protocol_packets[PACKET_MAX];
903
904 static void
905 set_remote_protocol_packet_cmd (char *args, int from_tty,
906 struct cmd_list_element *c)
907 {
908 struct packet_config *packet;
909
910 for (packet = remote_protocol_packets;
911 packet < &remote_protocol_packets[PACKET_MAX];
912 packet++)
913 {
914 if (&packet->detect == c->var)
915 {
916 update_packet_config (packet);
917 return;
918 }
919 }
920 internal_error (__FILE__, __LINE__, "Could not find config for %s",
921 c->name);
922 }
923
924 static void
925 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
926 struct cmd_list_element *c,
927 const char *value)
928 {
929 struct packet_config *packet;
930
931 for (packet = remote_protocol_packets;
932 packet < &remote_protocol_packets[PACKET_MAX];
933 packet++)
934 {
935 if (&packet->detect == c->var)
936 {
937 show_packet_config_cmd (packet);
938 return;
939 }
940 }
941 internal_error (__FILE__, __LINE__, "Could not find config for %s",
942 c->name);
943 }
944
945 /* Should we try one of the 'Z' requests? */
946
947 enum Z_packet_type
948 {
949 Z_PACKET_SOFTWARE_BP,
950 Z_PACKET_HARDWARE_BP,
951 Z_PACKET_WRITE_WP,
952 Z_PACKET_READ_WP,
953 Z_PACKET_ACCESS_WP,
954 NR_Z_PACKET_TYPES
955 };
956
957 /* For compatibility with older distributions. Provide a ``set remote
958 Z-packet ...'' command that updates all the Z packet types. */
959
960 static enum auto_boolean remote_Z_packet_detect;
961
962 static void
963 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
964 struct cmd_list_element *c)
965 {
966 int i;
967 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
968 {
969 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
970 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
971 }
972 }
973
974 static void
975 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
976 struct cmd_list_element *c,
977 const char *value)
978 {
979 int i;
980 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
981 {
982 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
983 }
984 }
985
986 /* Should we try the 'ThreadInfo' query packet?
987
988 This variable (NOT available to the user: auto-detect only!)
989 determines whether GDB will use the new, simpler "ThreadInfo"
990 query or the older, more complex syntax for thread queries.
991 This is an auto-detect variable (set to true at each connect,
992 and set to false when the target fails to recognize it). */
993
994 static int use_threadinfo_query;
995 static int use_threadextra_query;
996
997 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
998 static void *sigint_remote_twice_token;
999 static void *sigint_remote_token;
1000
1001 /* These are pointers to hook functions that may be set in order to
1002 modify resume/wait behavior for a particular architecture. */
1003
1004 void (*deprecated_target_resume_hook) (void);
1005 void (*deprecated_target_wait_loop_hook) (void);
1006 \f
1007
1008
1009 /* These are the threads which we last sent to the remote system.
1010 -1 for all or -2 for not sent yet. */
1011 static int general_thread;
1012 static int continue_thread;
1013
1014 /* Call this function as a result of
1015 1) A halt indication (T packet) containing a thread id
1016 2) A direct query of currthread
1017 3) Successful execution of set thread
1018 */
1019
1020 static void
1021 record_currthread (int currthread)
1022 {
1023 general_thread = currthread;
1024
1025 /* If this is a new thread, add it to GDB's thread list.
1026 If we leave it up to WFI to do this, bad things will happen. */
1027 if (!in_thread_list (pid_to_ptid (currthread)))
1028 {
1029 add_thread (pid_to_ptid (currthread));
1030 ui_out_text (uiout, "[New ");
1031 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1032 ui_out_text (uiout, "]\n");
1033 }
1034 }
1035
1036 static char *last_pass_packet;
1037
1038 /* If 'QPassSignals' is supported, tell the remote stub what signals
1039 it can simply pass through to the inferior without reporting. */
1040
1041 static void
1042 remote_pass_signals (void)
1043 {
1044 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1045 {
1046 char *pass_packet, *p;
1047 int numsigs = (int) TARGET_SIGNAL_LAST;
1048 int count = 0, i;
1049
1050 gdb_assert (numsigs < 256);
1051 for (i = 0; i < numsigs; i++)
1052 {
1053 if (signal_stop_state (i) == 0
1054 && signal_print_state (i) == 0
1055 && signal_pass_state (i) == 1)
1056 count++;
1057 }
1058 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1059 strcpy (pass_packet, "QPassSignals:");
1060 p = pass_packet + strlen (pass_packet);
1061 for (i = 0; i < numsigs; i++)
1062 {
1063 if (signal_stop_state (i) == 0
1064 && signal_print_state (i) == 0
1065 && signal_pass_state (i) == 1)
1066 {
1067 if (i >= 16)
1068 *p++ = tohex (i >> 4);
1069 *p++ = tohex (i & 15);
1070 if (count)
1071 *p++ = ';';
1072 else
1073 break;
1074 count--;
1075 }
1076 }
1077 *p = 0;
1078 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1079 {
1080 struct remote_state *rs = get_remote_state ();
1081 char *buf = rs->buf;
1082
1083 putpkt (pass_packet);
1084 getpkt (&rs->buf, &rs->buf_size, 0);
1085 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1086 if (last_pass_packet)
1087 xfree (last_pass_packet);
1088 last_pass_packet = pass_packet;
1089 }
1090 else
1091 xfree (pass_packet);
1092 }
1093 }
1094
1095 #define MAGIC_NULL_PID 42000
1096
1097 static void
1098 set_thread (int th, int gen)
1099 {
1100 struct remote_state *rs = get_remote_state ();
1101 char *buf = rs->buf;
1102 int state = gen ? general_thread : continue_thread;
1103
1104 if (state == th)
1105 return;
1106
1107 buf[0] = 'H';
1108 buf[1] = gen ? 'g' : 'c';
1109 if (th == MAGIC_NULL_PID)
1110 {
1111 buf[2] = '0';
1112 buf[3] = '\0';
1113 }
1114 else if (th < 0)
1115 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1116 else
1117 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1118 putpkt (buf);
1119 getpkt (&rs->buf, &rs->buf_size, 0);
1120 if (gen)
1121 general_thread = th;
1122 else
1123 continue_thread = th;
1124 }
1125 \f
1126 /* Return nonzero if the thread TH is still alive on the remote system. */
1127
1128 static int
1129 remote_thread_alive (ptid_t ptid)
1130 {
1131 struct remote_state *rs = get_remote_state ();
1132 int tid = PIDGET (ptid);
1133
1134 if (tid < 0)
1135 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1136 else
1137 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1141 }
1142
1143 /* About these extended threadlist and threadinfo packets. They are
1144 variable length packets but, the fields within them are often fixed
1145 length. They are redundent enough to send over UDP as is the
1146 remote protocol in general. There is a matching unit test module
1147 in libstub. */
1148
1149 #define OPAQUETHREADBYTES 8
1150
1151 /* a 64 bit opaque identifier */
1152 typedef unsigned char threadref[OPAQUETHREADBYTES];
1153
1154 /* WARNING: This threadref data structure comes from the remote O.S.,
1155 libstub protocol encoding, and remote.c. it is not particularly
1156 changable. */
1157
1158 /* Right now, the internal structure is int. We want it to be bigger.
1159 Plan to fix this.
1160 */
1161
1162 typedef int gdb_threadref; /* Internal GDB thread reference. */
1163
1164 /* gdb_ext_thread_info is an internal GDB data structure which is
1165 equivalent to the reply of the remote threadinfo packet. */
1166
1167 struct gdb_ext_thread_info
1168 {
1169 threadref threadid; /* External form of thread reference. */
1170 int active; /* Has state interesting to GDB?
1171 regs, stack. */
1172 char display[256]; /* Brief state display, name,
1173 blocked/suspended. */
1174 char shortname[32]; /* To be used to name threads. */
1175 char more_display[256]; /* Long info, statistics, queue depth,
1176 whatever. */
1177 };
1178
1179 /* The volume of remote transfers can be limited by submitting
1180 a mask containing bits specifying the desired information.
1181 Use a union of these values as the 'selection' parameter to
1182 get_thread_info. FIXME: Make these TAG names more thread specific.
1183 */
1184
1185 #define TAG_THREADID 1
1186 #define TAG_EXISTS 2
1187 #define TAG_DISPLAY 4
1188 #define TAG_THREADNAME 8
1189 #define TAG_MOREDISPLAY 16
1190
1191 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1192
1193 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1194
1195 static char *unpack_nibble (char *buf, int *val);
1196
1197 static char *pack_nibble (char *buf, int nibble);
1198
1199 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1200
1201 static char *unpack_byte (char *buf, int *value);
1202
1203 static char *pack_int (char *buf, int value);
1204
1205 static char *unpack_int (char *buf, int *value);
1206
1207 static char *unpack_string (char *src, char *dest, int length);
1208
1209 static char *pack_threadid (char *pkt, threadref *id);
1210
1211 static char *unpack_threadid (char *inbuf, threadref *id);
1212
1213 void int_to_threadref (threadref *id, int value);
1214
1215 static int threadref_to_int (threadref *ref);
1216
1217 static void copy_threadref (threadref *dest, threadref *src);
1218
1219 static int threadmatch (threadref *dest, threadref *src);
1220
1221 static char *pack_threadinfo_request (char *pkt, int mode,
1222 threadref *id);
1223
1224 static int remote_unpack_thread_info_response (char *pkt,
1225 threadref *expectedref,
1226 struct gdb_ext_thread_info
1227 *info);
1228
1229
1230 static int remote_get_threadinfo (threadref *threadid,
1231 int fieldset, /*TAG mask */
1232 struct gdb_ext_thread_info *info);
1233
1234 static char *pack_threadlist_request (char *pkt, int startflag,
1235 int threadcount,
1236 threadref *nextthread);
1237
1238 static int parse_threadlist_response (char *pkt,
1239 int result_limit,
1240 threadref *original_echo,
1241 threadref *resultlist,
1242 int *doneflag);
1243
1244 static int remote_get_threadlist (int startflag,
1245 threadref *nextthread,
1246 int result_limit,
1247 int *done,
1248 int *result_count,
1249 threadref *threadlist);
1250
1251 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1252
1253 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1254 void *context, int looplimit);
1255
1256 static int remote_newthread_step (threadref *ref, void *context);
1257
1258 /* Encode 64 bits in 16 chars of hex. */
1259
1260 static const char hexchars[] = "0123456789abcdef";
1261
1262 static int
1263 ishex (int ch, int *val)
1264 {
1265 if ((ch >= 'a') && (ch <= 'f'))
1266 {
1267 *val = ch - 'a' + 10;
1268 return 1;
1269 }
1270 if ((ch >= 'A') && (ch <= 'F'))
1271 {
1272 *val = ch - 'A' + 10;
1273 return 1;
1274 }
1275 if ((ch >= '0') && (ch <= '9'))
1276 {
1277 *val = ch - '0';
1278 return 1;
1279 }
1280 return 0;
1281 }
1282
1283 static int
1284 stubhex (int ch)
1285 {
1286 if (ch >= 'a' && ch <= 'f')
1287 return ch - 'a' + 10;
1288 if (ch >= '0' && ch <= '9')
1289 return ch - '0';
1290 if (ch >= 'A' && ch <= 'F')
1291 return ch - 'A' + 10;
1292 return -1;
1293 }
1294
1295 static int
1296 stub_unpack_int (char *buff, int fieldlength)
1297 {
1298 int nibble;
1299 int retval = 0;
1300
1301 while (fieldlength)
1302 {
1303 nibble = stubhex (*buff++);
1304 retval |= nibble;
1305 fieldlength--;
1306 if (fieldlength)
1307 retval = retval << 4;
1308 }
1309 return retval;
1310 }
1311
1312 char *
1313 unpack_varlen_hex (char *buff, /* packet to parse */
1314 ULONGEST *result)
1315 {
1316 int nibble;
1317 ULONGEST retval = 0;
1318
1319 while (ishex (*buff, &nibble))
1320 {
1321 buff++;
1322 retval = retval << 4;
1323 retval |= nibble & 0x0f;
1324 }
1325 *result = retval;
1326 return buff;
1327 }
1328
1329 static char *
1330 unpack_nibble (char *buf, int *val)
1331 {
1332 ishex (*buf++, val);
1333 return buf;
1334 }
1335
1336 static char *
1337 pack_nibble (char *buf, int nibble)
1338 {
1339 *buf++ = hexchars[(nibble & 0x0f)];
1340 return buf;
1341 }
1342
1343 static char *
1344 pack_hex_byte (char *pkt, int byte)
1345 {
1346 *pkt++ = hexchars[(byte >> 4) & 0xf];
1347 *pkt++ = hexchars[(byte & 0xf)];
1348 return pkt;
1349 }
1350
1351 static char *
1352 unpack_byte (char *buf, int *value)
1353 {
1354 *value = stub_unpack_int (buf, 2);
1355 return buf + 2;
1356 }
1357
1358 static char *
1359 pack_int (char *buf, int value)
1360 {
1361 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1362 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1363 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1364 buf = pack_hex_byte (buf, (value & 0xff));
1365 return buf;
1366 }
1367
1368 static char *
1369 unpack_int (char *buf, int *value)
1370 {
1371 *value = stub_unpack_int (buf, 8);
1372 return buf + 8;
1373 }
1374
1375 #if 0 /* Currently unused, uncomment when needed. */
1376 static char *pack_string (char *pkt, char *string);
1377
1378 static char *
1379 pack_string (char *pkt, char *string)
1380 {
1381 char ch;
1382 int len;
1383
1384 len = strlen (string);
1385 if (len > 200)
1386 len = 200; /* Bigger than most GDB packets, junk??? */
1387 pkt = pack_hex_byte (pkt, len);
1388 while (len-- > 0)
1389 {
1390 ch = *string++;
1391 if ((ch == '\0') || (ch == '#'))
1392 ch = '*'; /* Protect encapsulation. */
1393 *pkt++ = ch;
1394 }
1395 return pkt;
1396 }
1397 #endif /* 0 (unused) */
1398
1399 static char *
1400 unpack_string (char *src, char *dest, int length)
1401 {
1402 while (length--)
1403 *dest++ = *src++;
1404 *dest = '\0';
1405 return src;
1406 }
1407
1408 static char *
1409 pack_threadid (char *pkt, threadref *id)
1410 {
1411 char *limit;
1412 unsigned char *altid;
1413
1414 altid = (unsigned char *) id;
1415 limit = pkt + BUF_THREAD_ID_SIZE;
1416 while (pkt < limit)
1417 pkt = pack_hex_byte (pkt, *altid++);
1418 return pkt;
1419 }
1420
1421
1422 static char *
1423 unpack_threadid (char *inbuf, threadref *id)
1424 {
1425 char *altref;
1426 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1427 int x, y;
1428
1429 altref = (char *) id;
1430
1431 while (inbuf < limit)
1432 {
1433 x = stubhex (*inbuf++);
1434 y = stubhex (*inbuf++);
1435 *altref++ = (x << 4) | y;
1436 }
1437 return inbuf;
1438 }
1439
1440 /* Externally, threadrefs are 64 bits but internally, they are still
1441 ints. This is due to a mismatch of specifications. We would like
1442 to use 64bit thread references internally. This is an adapter
1443 function. */
1444
1445 void
1446 int_to_threadref (threadref *id, int value)
1447 {
1448 unsigned char *scan;
1449
1450 scan = (unsigned char *) id;
1451 {
1452 int i = 4;
1453 while (i--)
1454 *scan++ = 0;
1455 }
1456 *scan++ = (value >> 24) & 0xff;
1457 *scan++ = (value >> 16) & 0xff;
1458 *scan++ = (value >> 8) & 0xff;
1459 *scan++ = (value & 0xff);
1460 }
1461
1462 static int
1463 threadref_to_int (threadref *ref)
1464 {
1465 int i, value = 0;
1466 unsigned char *scan;
1467
1468 scan = *ref;
1469 scan += 4;
1470 i = 4;
1471 while (i-- > 0)
1472 value = (value << 8) | ((*scan++) & 0xff);
1473 return value;
1474 }
1475
1476 static void
1477 copy_threadref (threadref *dest, threadref *src)
1478 {
1479 int i;
1480 unsigned char *csrc, *cdest;
1481
1482 csrc = (unsigned char *) src;
1483 cdest = (unsigned char *) dest;
1484 i = 8;
1485 while (i--)
1486 *cdest++ = *csrc++;
1487 }
1488
1489 static int
1490 threadmatch (threadref *dest, threadref *src)
1491 {
1492 /* Things are broken right now, so just assume we got a match. */
1493 #if 0
1494 unsigned char *srcp, *destp;
1495 int i, result;
1496 srcp = (char *) src;
1497 destp = (char *) dest;
1498
1499 result = 1;
1500 while (i-- > 0)
1501 result &= (*srcp++ == *destp++) ? 1 : 0;
1502 return result;
1503 #endif
1504 return 1;
1505 }
1506
1507 /*
1508 threadid:1, # always request threadid
1509 context_exists:2,
1510 display:4,
1511 unique_name:8,
1512 more_display:16
1513 */
1514
1515 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1516
1517 static char *
1518 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1519 {
1520 *pkt++ = 'q'; /* Info Query */
1521 *pkt++ = 'P'; /* process or thread info */
1522 pkt = pack_int (pkt, mode); /* mode */
1523 pkt = pack_threadid (pkt, id); /* threadid */
1524 *pkt = '\0'; /* terminate */
1525 return pkt;
1526 }
1527
1528 /* These values tag the fields in a thread info response packet. */
1529 /* Tagging the fields allows us to request specific fields and to
1530 add more fields as time goes by. */
1531
1532 #define TAG_THREADID 1 /* Echo the thread identifier. */
1533 #define TAG_EXISTS 2 /* Is this process defined enough to
1534 fetch registers and its stack? */
1535 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1536 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1537 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1538 the process. */
1539
1540 static int
1541 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1542 struct gdb_ext_thread_info *info)
1543 {
1544 struct remote_state *rs = get_remote_state ();
1545 int mask, length;
1546 int tag;
1547 threadref ref;
1548 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1549 int retval = 1;
1550
1551 /* info->threadid = 0; FIXME: implement zero_threadref. */
1552 info->active = 0;
1553 info->display[0] = '\0';
1554 info->shortname[0] = '\0';
1555 info->more_display[0] = '\0';
1556
1557 /* Assume the characters indicating the packet type have been
1558 stripped. */
1559 pkt = unpack_int (pkt, &mask); /* arg mask */
1560 pkt = unpack_threadid (pkt, &ref);
1561
1562 if (mask == 0)
1563 warning (_("Incomplete response to threadinfo request."));
1564 if (!threadmatch (&ref, expectedref))
1565 { /* This is an answer to a different request. */
1566 warning (_("ERROR RMT Thread info mismatch."));
1567 return 0;
1568 }
1569 copy_threadref (&info->threadid, &ref);
1570
1571 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1572
1573 /* Packets are terminated with nulls. */
1574 while ((pkt < limit) && mask && *pkt)
1575 {
1576 pkt = unpack_int (pkt, &tag); /* tag */
1577 pkt = unpack_byte (pkt, &length); /* length */
1578 if (!(tag & mask)) /* Tags out of synch with mask. */
1579 {
1580 warning (_("ERROR RMT: threadinfo tag mismatch."));
1581 retval = 0;
1582 break;
1583 }
1584 if (tag == TAG_THREADID)
1585 {
1586 if (length != 16)
1587 {
1588 warning (_("ERROR RMT: length of threadid is not 16."));
1589 retval = 0;
1590 break;
1591 }
1592 pkt = unpack_threadid (pkt, &ref);
1593 mask = mask & ~TAG_THREADID;
1594 continue;
1595 }
1596 if (tag == TAG_EXISTS)
1597 {
1598 info->active = stub_unpack_int (pkt, length);
1599 pkt += length;
1600 mask = mask & ~(TAG_EXISTS);
1601 if (length > 8)
1602 {
1603 warning (_("ERROR RMT: 'exists' length too long."));
1604 retval = 0;
1605 break;
1606 }
1607 continue;
1608 }
1609 if (tag == TAG_THREADNAME)
1610 {
1611 pkt = unpack_string (pkt, &info->shortname[0], length);
1612 mask = mask & ~TAG_THREADNAME;
1613 continue;
1614 }
1615 if (tag == TAG_DISPLAY)
1616 {
1617 pkt = unpack_string (pkt, &info->display[0], length);
1618 mask = mask & ~TAG_DISPLAY;
1619 continue;
1620 }
1621 if (tag == TAG_MOREDISPLAY)
1622 {
1623 pkt = unpack_string (pkt, &info->more_display[0], length);
1624 mask = mask & ~TAG_MOREDISPLAY;
1625 continue;
1626 }
1627 warning (_("ERROR RMT: unknown thread info tag."));
1628 break; /* Not a tag we know about. */
1629 }
1630 return retval;
1631 }
1632
1633 static int
1634 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1635 struct gdb_ext_thread_info *info)
1636 {
1637 struct remote_state *rs = get_remote_state ();
1638 int result;
1639
1640 pack_threadinfo_request (rs->buf, fieldset, threadid);
1641 putpkt (rs->buf);
1642 getpkt (&rs->buf, &rs->buf_size, 0);
1643 result = remote_unpack_thread_info_response (rs->buf + 2,
1644 threadid, info);
1645 return result;
1646 }
1647
1648 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1649
1650 static char *
1651 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1652 threadref *nextthread)
1653 {
1654 *pkt++ = 'q'; /* info query packet */
1655 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1656 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1657 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1658 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1659 *pkt = '\0';
1660 return pkt;
1661 }
1662
1663 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1664
1665 static int
1666 parse_threadlist_response (char *pkt, int result_limit,
1667 threadref *original_echo, threadref *resultlist,
1668 int *doneflag)
1669 {
1670 struct remote_state *rs = get_remote_state ();
1671 char *limit;
1672 int count, resultcount, done;
1673
1674 resultcount = 0;
1675 /* Assume the 'q' and 'M chars have been stripped. */
1676 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1677 /* done parse past here */
1678 pkt = unpack_byte (pkt, &count); /* count field */
1679 pkt = unpack_nibble (pkt, &done);
1680 /* The first threadid is the argument threadid. */
1681 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1682 while ((count-- > 0) && (pkt < limit))
1683 {
1684 pkt = unpack_threadid (pkt, resultlist++);
1685 if (resultcount++ >= result_limit)
1686 break;
1687 }
1688 if (doneflag)
1689 *doneflag = done;
1690 return resultcount;
1691 }
1692
1693 static int
1694 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1695 int *done, int *result_count, threadref *threadlist)
1696 {
1697 struct remote_state *rs = get_remote_state ();
1698 static threadref echo_nextthread;
1699 int result = 1;
1700
1701 /* Trancate result limit to be smaller than the packet size. */
1702 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1703 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1704
1705 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1706 putpkt (rs->buf);
1707 getpkt (&rs->buf, &rs->buf_size, 0);
1708
1709 *result_count =
1710 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1711 threadlist, done);
1712
1713 if (!threadmatch (&echo_nextthread, nextthread))
1714 {
1715 /* FIXME: This is a good reason to drop the packet. */
1716 /* Possably, there is a duplicate response. */
1717 /* Possabilities :
1718 retransmit immediatly - race conditions
1719 retransmit after timeout - yes
1720 exit
1721 wait for packet, then exit
1722 */
1723 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1724 return 0; /* I choose simply exiting. */
1725 }
1726 if (*result_count <= 0)
1727 {
1728 if (*done != 1)
1729 {
1730 warning (_("RMT ERROR : failed to get remote thread list."));
1731 result = 0;
1732 }
1733 return result; /* break; */
1734 }
1735 if (*result_count > result_limit)
1736 {
1737 *result_count = 0;
1738 warning (_("RMT ERROR: threadlist response longer than requested."));
1739 return 0;
1740 }
1741 return result;
1742 }
1743
1744 /* This is the interface between remote and threads, remotes upper
1745 interface. */
1746
1747 /* remote_find_new_threads retrieves the thread list and for each
1748 thread in the list, looks up the thread in GDB's internal list,
1749 ading the thread if it does not already exist. This involves
1750 getting partial thread lists from the remote target so, polling the
1751 quit_flag is required. */
1752
1753
1754 /* About this many threadisds fit in a packet. */
1755
1756 #define MAXTHREADLISTRESULTS 32
1757
1758 static int
1759 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1760 int looplimit)
1761 {
1762 int done, i, result_count;
1763 int startflag = 1;
1764 int result = 1;
1765 int loopcount = 0;
1766 static threadref nextthread;
1767 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1768
1769 done = 0;
1770 while (!done)
1771 {
1772 if (loopcount++ > looplimit)
1773 {
1774 result = 0;
1775 warning (_("Remote fetch threadlist -infinite loop-."));
1776 break;
1777 }
1778 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1779 &done, &result_count, resultthreadlist))
1780 {
1781 result = 0;
1782 break;
1783 }
1784 /* Clear for later iterations. */
1785 startflag = 0;
1786 /* Setup to resume next batch of thread references, set nextthread. */
1787 if (result_count >= 1)
1788 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1789 i = 0;
1790 while (result_count--)
1791 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1792 break;
1793 }
1794 return result;
1795 }
1796
1797 static int
1798 remote_newthread_step (threadref *ref, void *context)
1799 {
1800 ptid_t ptid;
1801
1802 ptid = pid_to_ptid (threadref_to_int (ref));
1803
1804 if (!in_thread_list (ptid))
1805 add_thread (ptid);
1806 return 1; /* continue iterator */
1807 }
1808
1809 #define CRAZY_MAX_THREADS 1000
1810
1811 static ptid_t
1812 remote_current_thread (ptid_t oldpid)
1813 {
1814 struct remote_state *rs = get_remote_state ();
1815
1816 putpkt ("qC");
1817 getpkt (&rs->buf, &rs->buf_size, 0);
1818 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1819 /* Use strtoul here, so we'll correctly parse values whose highest
1820 bit is set. The protocol carries them as a simple series of
1821 hex digits; in the absence of a sign, strtol will see such
1822 values as positive numbers out of range for signed 'long', and
1823 return LONG_MAX to indicate an overflow. */
1824 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1825 else
1826 return oldpid;
1827 }
1828
1829 /* Find new threads for info threads command.
1830 * Original version, using John Metzler's thread protocol.
1831 */
1832
1833 static void
1834 remote_find_new_threads (void)
1835 {
1836 remote_threadlist_iterator (remote_newthread_step, 0,
1837 CRAZY_MAX_THREADS);
1838 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1839 inferior_ptid = remote_current_thread (inferior_ptid);
1840 }
1841
1842 /*
1843 * Find all threads for info threads command.
1844 * Uses new thread protocol contributed by Cisco.
1845 * Falls back and attempts to use the older method (above)
1846 * if the target doesn't respond to the new method.
1847 */
1848
1849 static void
1850 remote_threads_info (void)
1851 {
1852 struct remote_state *rs = get_remote_state ();
1853 char *bufp;
1854 int tid;
1855
1856 if (remote_desc == 0) /* paranoia */
1857 error (_("Command can only be used when connected to the remote target."));
1858
1859 if (use_threadinfo_query)
1860 {
1861 putpkt ("qfThreadInfo");
1862 getpkt (&rs->buf, &rs->buf_size, 0);
1863 bufp = rs->buf;
1864 if (bufp[0] != '\0') /* q packet recognized */
1865 {
1866 while (*bufp++ == 'm') /* reply contains one or more TID */
1867 {
1868 do
1869 {
1870 /* Use strtoul here, so we'll correctly parse values
1871 whose highest bit is set. The protocol carries
1872 them as a simple series of hex digits; in the
1873 absence of a sign, strtol will see such values as
1874 positive numbers out of range for signed 'long',
1875 and return LONG_MAX to indicate an overflow. */
1876 tid = strtoul (bufp, &bufp, 16);
1877 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1878 add_thread (pid_to_ptid (tid));
1879 }
1880 while (*bufp++ == ','); /* comma-separated list */
1881 putpkt ("qsThreadInfo");
1882 getpkt (&rs->buf, &rs->buf_size, 0);
1883 bufp = rs->buf;
1884 }
1885 return; /* done */
1886 }
1887 }
1888
1889 /* Else fall back to old method based on jmetzler protocol. */
1890 use_threadinfo_query = 0;
1891 remote_find_new_threads ();
1892 return;
1893 }
1894
1895 /*
1896 * Collect a descriptive string about the given thread.
1897 * The target may say anything it wants to about the thread
1898 * (typically info about its blocked / runnable state, name, etc.).
1899 * This string will appear in the info threads display.
1900 *
1901 * Optional: targets are not required to implement this function.
1902 */
1903
1904 static char *
1905 remote_threads_extra_info (struct thread_info *tp)
1906 {
1907 struct remote_state *rs = get_remote_state ();
1908 int result;
1909 int set;
1910 threadref id;
1911 struct gdb_ext_thread_info threadinfo;
1912 static char display_buf[100]; /* arbitrary... */
1913 int n = 0; /* position in display_buf */
1914
1915 if (remote_desc == 0) /* paranoia */
1916 internal_error (__FILE__, __LINE__,
1917 _("remote_threads_extra_info"));
1918
1919 if (use_threadextra_query)
1920 {
1921 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1922 PIDGET (tp->ptid));
1923 putpkt (rs->buf);
1924 getpkt (&rs->buf, &rs->buf_size, 0);
1925 if (rs->buf[0] != 0)
1926 {
1927 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1928 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1929 display_buf [result] = '\0';
1930 return display_buf;
1931 }
1932 }
1933
1934 /* If the above query fails, fall back to the old method. */
1935 use_threadextra_query = 0;
1936 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1937 | TAG_MOREDISPLAY | TAG_DISPLAY;
1938 int_to_threadref (&id, PIDGET (tp->ptid));
1939 if (remote_get_threadinfo (&id, set, &threadinfo))
1940 if (threadinfo.active)
1941 {
1942 if (*threadinfo.shortname)
1943 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1944 " Name: %s,", threadinfo.shortname);
1945 if (*threadinfo.display)
1946 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1947 " State: %s,", threadinfo.display);
1948 if (*threadinfo.more_display)
1949 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1950 " Priority: %s", threadinfo.more_display);
1951
1952 if (n > 0)
1953 {
1954 /* For purely cosmetic reasons, clear up trailing commas. */
1955 if (',' == display_buf[n-1])
1956 display_buf[n-1] = ' ';
1957 return display_buf;
1958 }
1959 }
1960 return NULL;
1961 }
1962 \f
1963
1964 /* Restart the remote side; this is an extended protocol operation. */
1965
1966 static void
1967 extended_remote_restart (void)
1968 {
1969 struct remote_state *rs = get_remote_state ();
1970
1971 /* Send the restart command; for reasons I don't understand the
1972 remote side really expects a number after the "R". */
1973 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1974 putpkt (rs->buf);
1975
1976 remote_fileio_reset ();
1977
1978 /* Now query for status so this looks just like we restarted
1979 gdbserver from scratch. */
1980 putpkt ("?");
1981 getpkt (&rs->buf, &rs->buf_size, 0);
1982 }
1983 \f
1984 /* Clean up connection to a remote debugger. */
1985
1986 static void
1987 remote_close (int quitting)
1988 {
1989 if (remote_desc)
1990 serial_close (remote_desc);
1991 remote_desc = NULL;
1992 }
1993
1994 /* Query the remote side for the text, data and bss offsets. */
1995
1996 static void
1997 get_offsets (void)
1998 {
1999 struct remote_state *rs = get_remote_state ();
2000 char *buf;
2001 char *ptr;
2002 int lose;
2003 CORE_ADDR text_addr, data_addr, bss_addr;
2004 struct section_offsets *offs;
2005
2006 putpkt ("qOffsets");
2007 getpkt (&rs->buf, &rs->buf_size, 0);
2008 buf = rs->buf;
2009
2010 if (buf[0] == '\000')
2011 return; /* Return silently. Stub doesn't support
2012 this command. */
2013 if (buf[0] == 'E')
2014 {
2015 warning (_("Remote failure reply: %s"), buf);
2016 return;
2017 }
2018
2019 /* Pick up each field in turn. This used to be done with scanf, but
2020 scanf will make trouble if CORE_ADDR size doesn't match
2021 conversion directives correctly. The following code will work
2022 with any size of CORE_ADDR. */
2023 text_addr = data_addr = bss_addr = 0;
2024 ptr = buf;
2025 lose = 0;
2026
2027 if (strncmp (ptr, "Text=", 5) == 0)
2028 {
2029 ptr += 5;
2030 /* Don't use strtol, could lose on big values. */
2031 while (*ptr && *ptr != ';')
2032 text_addr = (text_addr << 4) + fromhex (*ptr++);
2033 }
2034 else
2035 lose = 1;
2036
2037 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2038 {
2039 ptr += 6;
2040 while (*ptr && *ptr != ';')
2041 data_addr = (data_addr << 4) + fromhex (*ptr++);
2042 }
2043 else
2044 lose = 1;
2045
2046 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2047 {
2048 ptr += 5;
2049 while (*ptr && *ptr != ';')
2050 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2051 }
2052 else
2053 lose = 1;
2054
2055 if (lose)
2056 error (_("Malformed response to offset query, %s"), buf);
2057
2058 if (symfile_objfile == NULL)
2059 return;
2060
2061 offs = ((struct section_offsets *)
2062 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2063 memcpy (offs, symfile_objfile->section_offsets,
2064 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2065
2066 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2067
2068 /* This is a temporary kludge to force data and bss to use the same offsets
2069 because that's what nlmconv does now. The real solution requires changes
2070 to the stub and remote.c that I don't have time to do right now. */
2071
2072 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2073 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2074
2075 objfile_relocate (symfile_objfile, offs);
2076 }
2077
2078 /* Stub for catch_exception. */
2079
2080 static void
2081 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2082 {
2083 int from_tty = * (int *) from_tty_p;
2084
2085 immediate_quit++; /* Allow user to interrupt it. */
2086
2087 /* Ack any packet which the remote side has already sent. */
2088 serial_write (remote_desc, "+", 1);
2089
2090 /* Let the stub know that we want it to return the thread. */
2091 set_thread (-1, 0);
2092
2093 inferior_ptid = remote_current_thread (inferior_ptid);
2094
2095 get_offsets (); /* Get text, data & bss offsets. */
2096
2097 putpkt ("?"); /* Initiate a query from remote machine. */
2098 immediate_quit--;
2099
2100 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2101 }
2102
2103 /* Open a connection to a remote debugger.
2104 NAME is the filename used for communication. */
2105
2106 static void
2107 remote_open (char *name, int from_tty)
2108 {
2109 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2110 }
2111
2112 /* Just like remote_open, but with asynchronous support. */
2113 static void
2114 remote_async_open (char *name, int from_tty)
2115 {
2116 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2117 }
2118
2119 /* Open a connection to a remote debugger using the extended
2120 remote gdb protocol. NAME is the filename used for communication. */
2121
2122 static void
2123 extended_remote_open (char *name, int from_tty)
2124 {
2125 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2126 0 /* async_p */);
2127 }
2128
2129 /* Just like extended_remote_open, but with asynchronous support. */
2130 static void
2131 extended_remote_async_open (char *name, int from_tty)
2132 {
2133 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2134 1 /*extended_p */, 1 /* async_p */);
2135 }
2136
2137 /* Generic code for opening a connection to a remote target. */
2138
2139 static void
2140 init_all_packet_configs (void)
2141 {
2142 int i;
2143 for (i = 0; i < PACKET_MAX; i++)
2144 update_packet_config (&remote_protocol_packets[i]);
2145 }
2146
2147 /* Symbol look-up. */
2148
2149 static void
2150 remote_check_symbols (struct objfile *objfile)
2151 {
2152 struct remote_state *rs = get_remote_state ();
2153 char *msg, *reply, *tmp;
2154 struct minimal_symbol *sym;
2155 int end;
2156
2157 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2158 return;
2159
2160 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2161 because we need both at the same time. */
2162 msg = alloca (get_remote_packet_size ());
2163
2164 /* Invite target to request symbol lookups. */
2165
2166 putpkt ("qSymbol::");
2167 getpkt (&rs->buf, &rs->buf_size, 0);
2168 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2169 reply = rs->buf;
2170
2171 while (strncmp (reply, "qSymbol:", 8) == 0)
2172 {
2173 tmp = &reply[8];
2174 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2175 msg[end] = '\0';
2176 sym = lookup_minimal_symbol (msg, NULL, NULL);
2177 if (sym == NULL)
2178 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2179 else
2180 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2181 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2182 &reply[8]);
2183 putpkt (msg);
2184 getpkt (&rs->buf, &rs->buf_size, 0);
2185 reply = rs->buf;
2186 }
2187 }
2188
2189 static struct serial *
2190 remote_serial_open (char *name)
2191 {
2192 static int udp_warning = 0;
2193
2194 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2195 of in ser-tcp.c, because it is the remote protocol assuming that the
2196 serial connection is reliable and not the serial connection promising
2197 to be. */
2198 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2199 {
2200 warning (_("\
2201 The remote protocol may be unreliable over UDP.\n\
2202 Some events may be lost, rendering further debugging impossible."));
2203 udp_warning = 1;
2204 }
2205
2206 return serial_open (name);
2207 }
2208
2209 /* This type describes each known response to the qSupported
2210 packet. */
2211 struct protocol_feature
2212 {
2213 /* The name of this protocol feature. */
2214 const char *name;
2215
2216 /* The default for this protocol feature. */
2217 enum packet_support default_support;
2218
2219 /* The function to call when this feature is reported, or after
2220 qSupported processing if the feature is not supported.
2221 The first argument points to this structure. The second
2222 argument indicates whether the packet requested support be
2223 enabled, disabled, or probed (or the default, if this function
2224 is being called at the end of processing and this feature was
2225 not reported). The third argument may be NULL; if not NULL, it
2226 is a NUL-terminated string taken from the packet following
2227 this feature's name and an equals sign. */
2228 void (*func) (const struct protocol_feature *, enum packet_support,
2229 const char *);
2230
2231 /* The corresponding packet for this feature. Only used if
2232 FUNC is remote_supported_packet. */
2233 int packet;
2234 };
2235
2236 static void
2237 remote_supported_packet (const struct protocol_feature *feature,
2238 enum packet_support support,
2239 const char *argument)
2240 {
2241 if (argument)
2242 {
2243 warning (_("Remote qSupported response supplied an unexpected value for"
2244 " \"%s\"."), feature->name);
2245 return;
2246 }
2247
2248 if (remote_protocol_packets[feature->packet].support
2249 == PACKET_SUPPORT_UNKNOWN)
2250 remote_protocol_packets[feature->packet].support = support;
2251 }
2252
2253 static void
2254 remote_packet_size (const struct protocol_feature *feature,
2255 enum packet_support support, const char *value)
2256 {
2257 struct remote_state *rs = get_remote_state ();
2258
2259 int packet_size;
2260 char *value_end;
2261
2262 if (support != PACKET_ENABLE)
2263 return;
2264
2265 if (value == NULL || *value == '\0')
2266 {
2267 warning (_("Remote target reported \"%s\" without a size."),
2268 feature->name);
2269 return;
2270 }
2271
2272 errno = 0;
2273 packet_size = strtol (value, &value_end, 16);
2274 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2275 {
2276 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2277 feature->name, value);
2278 return;
2279 }
2280
2281 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2282 {
2283 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2284 packet_size, MAX_REMOTE_PACKET_SIZE);
2285 packet_size = MAX_REMOTE_PACKET_SIZE;
2286 }
2287
2288 /* Record the new maximum packet size. */
2289 rs->explicit_packet_size = packet_size;
2290 }
2291
2292 static struct protocol_feature remote_protocol_features[] = {
2293 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2294 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2295 PACKET_qXfer_auxv },
2296 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2297 PACKET_qXfer_memory_map },
2298 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2299 PACKET_QPassSignals },
2300 };
2301
2302 static void
2303 remote_query_supported (void)
2304 {
2305 struct remote_state *rs = get_remote_state ();
2306 char *next;
2307 int i;
2308 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2309
2310 /* The packet support flags are handled differently for this packet
2311 than for most others. We treat an error, a disabled packet, and
2312 an empty response identically: any features which must be reported
2313 to be used will be automatically disabled. An empty buffer
2314 accomplishes this, since that is also the representation for a list
2315 containing no features. */
2316
2317 rs->buf[0] = 0;
2318 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2319 {
2320 putpkt ("qSupported");
2321 getpkt (&rs->buf, &rs->buf_size, 0);
2322
2323 /* If an error occured, warn, but do not return - just reset the
2324 buffer to empty and go on to disable features. */
2325 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2326 == PACKET_ERROR)
2327 {
2328 warning (_("Remote failure reply: %s"), rs->buf);
2329 rs->buf[0] = 0;
2330 }
2331 }
2332
2333 memset (seen, 0, sizeof (seen));
2334
2335 next = rs->buf;
2336 while (*next)
2337 {
2338 enum packet_support is_supported;
2339 char *p, *end, *name_end, *value;
2340
2341 /* First separate out this item from the rest of the packet. If
2342 there's another item after this, we overwrite the separator
2343 (terminated strings are much easier to work with). */
2344 p = next;
2345 end = strchr (p, ';');
2346 if (end == NULL)
2347 {
2348 end = p + strlen (p);
2349 next = end;
2350 }
2351 else
2352 {
2353 *end = '\0';
2354 next = end + 1;
2355
2356 if (end == p)
2357 {
2358 warning (_("empty item in \"qSupported\" response"));
2359 continue;
2360 }
2361 }
2362
2363 name_end = strchr (p, '=');
2364 if (name_end)
2365 {
2366 /* This is a name=value entry. */
2367 is_supported = PACKET_ENABLE;
2368 value = name_end + 1;
2369 *name_end = '\0';
2370 }
2371 else
2372 {
2373 value = NULL;
2374 switch (end[-1])
2375 {
2376 case '+':
2377 is_supported = PACKET_ENABLE;
2378 break;
2379
2380 case '-':
2381 is_supported = PACKET_DISABLE;
2382 break;
2383
2384 case '?':
2385 is_supported = PACKET_SUPPORT_UNKNOWN;
2386 break;
2387
2388 default:
2389 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2390 continue;
2391 }
2392 end[-1] = '\0';
2393 }
2394
2395 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2396 if (strcmp (remote_protocol_features[i].name, p) == 0)
2397 {
2398 const struct protocol_feature *feature;
2399
2400 seen[i] = 1;
2401 feature = &remote_protocol_features[i];
2402 feature->func (feature, is_supported, value);
2403 break;
2404 }
2405 }
2406
2407 /* If we increased the packet size, make sure to increase the global
2408 buffer size also. We delay this until after parsing the entire
2409 qSupported packet, because this is the same buffer we were
2410 parsing. */
2411 if (rs->buf_size < rs->explicit_packet_size)
2412 {
2413 rs->buf_size = rs->explicit_packet_size;
2414 rs->buf = xrealloc (rs->buf, rs->buf_size);
2415 }
2416
2417 /* Handle the defaults for unmentioned features. */
2418 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2419 if (!seen[i])
2420 {
2421 const struct protocol_feature *feature;
2422
2423 feature = &remote_protocol_features[i];
2424 feature->func (feature, feature->default_support, NULL);
2425 }
2426 }
2427
2428
2429 static void
2430 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2431 int extended_p, int async_p)
2432 {
2433 struct remote_state *rs = get_remote_state ();
2434 if (name == 0)
2435 error (_("To open a remote debug connection, you need to specify what\n"
2436 "serial device is attached to the remote system\n"
2437 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2438
2439 /* See FIXME above. */
2440 if (!async_p)
2441 wait_forever_enabled_p = 1;
2442
2443 target_preopen (from_tty);
2444
2445 unpush_target (target);
2446
2447 /* Make sure we send the passed signals list the next time we resume. */
2448 xfree (last_pass_packet);
2449 last_pass_packet = NULL;
2450
2451 remote_fileio_reset ();
2452 reopen_exec_file ();
2453 reread_symbols ();
2454
2455 remote_desc = remote_serial_open (name);
2456 if (!remote_desc)
2457 perror_with_name (name);
2458
2459 if (baud_rate != -1)
2460 {
2461 if (serial_setbaudrate (remote_desc, baud_rate))
2462 {
2463 /* The requested speed could not be set. Error out to
2464 top level after closing remote_desc. Take care to
2465 set remote_desc to NULL to avoid closing remote_desc
2466 more than once. */
2467 serial_close (remote_desc);
2468 remote_desc = NULL;
2469 perror_with_name (name);
2470 }
2471 }
2472
2473 serial_raw (remote_desc);
2474
2475 /* If there is something sitting in the buffer we might take it as a
2476 response to a command, which would be bad. */
2477 serial_flush_input (remote_desc);
2478
2479 if (from_tty)
2480 {
2481 puts_filtered ("Remote debugging using ");
2482 puts_filtered (name);
2483 puts_filtered ("\n");
2484 }
2485 push_target (target); /* Switch to using remote target now. */
2486
2487 /* Reset the target state; these things will be queried either by
2488 remote_query_supported or as they are needed. */
2489 init_all_packet_configs ();
2490 rs->explicit_packet_size = 0;
2491
2492 general_thread = -2;
2493 continue_thread = -2;
2494
2495 /* Probe for ability to use "ThreadInfo" query, as required. */
2496 use_threadinfo_query = 1;
2497 use_threadextra_query = 1;
2498
2499 /* The first packet we send to the target is the optional "supported
2500 packets" request. If the target can answer this, it will tell us
2501 which later probes to skip. */
2502 remote_query_supported ();
2503
2504 /* Without this, some commands which require an active target (such
2505 as kill) won't work. This variable serves (at least) double duty
2506 as both the pid of the target process (if it has such), and as a
2507 flag indicating that a target is active. These functions should
2508 be split out into seperate variables, especially since GDB will
2509 someday have a notion of debugging several processes. */
2510
2511 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2512
2513 if (async_p)
2514 {
2515 /* With this target we start out by owning the terminal. */
2516 remote_async_terminal_ours_p = 1;
2517
2518 /* FIXME: cagney/1999-09-23: During the initial connection it is
2519 assumed that the target is already ready and able to respond to
2520 requests. Unfortunately remote_start_remote() eventually calls
2521 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2522 around this. Eventually a mechanism that allows
2523 wait_for_inferior() to expect/get timeouts will be
2524 implemented. */
2525 wait_forever_enabled_p = 0;
2526 }
2527
2528 /* First delete any symbols previously loaded from shared libraries. */
2529 no_shared_libraries (NULL, 0);
2530
2531 /* Start the remote connection. If error() or QUIT, discard this
2532 target (we'd otherwise be in an inconsistent state) and then
2533 propogate the error on up the exception chain. This ensures that
2534 the caller doesn't stumble along blindly assuming that the
2535 function succeeded. The CLI doesn't have this problem but other
2536 UI's, such as MI do.
2537
2538 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2539 this function should return an error indication letting the
2540 caller restore the previous state. Unfortunately the command
2541 ``target remote'' is directly wired to this function making that
2542 impossible. On a positive note, the CLI side of this problem has
2543 been fixed - the function set_cmd_context() makes it possible for
2544 all the ``target ....'' commands to share a common callback
2545 function. See cli-dump.c. */
2546 {
2547 struct gdb_exception ex
2548 = catch_exception (uiout, remote_start_remote, &from_tty,
2549 RETURN_MASK_ALL);
2550 if (ex.reason < 0)
2551 {
2552 pop_target ();
2553 if (async_p)
2554 wait_forever_enabled_p = 1;
2555 throw_exception (ex);
2556 }
2557 }
2558
2559 if (async_p)
2560 wait_forever_enabled_p = 1;
2561
2562 if (extended_p)
2563 {
2564 /* Tell the remote that we are using the extended protocol. */
2565 putpkt ("!");
2566 getpkt (&rs->buf, &rs->buf_size, 0);
2567 }
2568
2569 if (exec_bfd) /* No use without an exec file. */
2570 remote_check_symbols (symfile_objfile);
2571 }
2572
2573 /* This takes a program previously attached to and detaches it. After
2574 this is done, GDB can be used to debug some other program. We
2575 better not have left any breakpoints in the target program or it'll
2576 die when it hits one. */
2577
2578 static void
2579 remote_detach (char *args, int from_tty)
2580 {
2581 struct remote_state *rs = get_remote_state ();
2582
2583 if (args)
2584 error (_("Argument given to \"detach\" when remotely debugging."));
2585
2586 /* Tell the remote target to detach. */
2587 strcpy (rs->buf, "D");
2588 remote_send (&rs->buf, &rs->buf_size);
2589
2590 /* Unregister the file descriptor from the event loop. */
2591 if (target_is_async_p ())
2592 serial_async (remote_desc, NULL, 0);
2593
2594 target_mourn_inferior ();
2595 if (from_tty)
2596 puts_filtered ("Ending remote debugging.\n");
2597 }
2598
2599 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2600
2601 static void
2602 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2603 {
2604 if (args)
2605 error (_("Argument given to \"detach\" when remotely debugging."));
2606
2607 /* Unregister the file descriptor from the event loop. */
2608 if (target_is_async_p ())
2609 serial_async (remote_desc, NULL, 0);
2610
2611 target_mourn_inferior ();
2612 if (from_tty)
2613 puts_filtered ("Ending remote debugging.\n");
2614 }
2615
2616 /* Convert hex digit A to a number. */
2617
2618 static int
2619 fromhex (int a)
2620 {
2621 if (a >= '0' && a <= '9')
2622 return a - '0';
2623 else if (a >= 'a' && a <= 'f')
2624 return a - 'a' + 10;
2625 else if (a >= 'A' && a <= 'F')
2626 return a - 'A' + 10;
2627 else
2628 error (_("Reply contains invalid hex digit %d"), a);
2629 }
2630
2631 static int
2632 hex2bin (const char *hex, gdb_byte *bin, int count)
2633 {
2634 int i;
2635
2636 for (i = 0; i < count; i++)
2637 {
2638 if (hex[0] == 0 || hex[1] == 0)
2639 {
2640 /* Hex string is short, or of uneven length.
2641 Return the count that has been converted so far. */
2642 return i;
2643 }
2644 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2645 hex += 2;
2646 }
2647 return i;
2648 }
2649
2650 /* Convert number NIB to a hex digit. */
2651
2652 static int
2653 tohex (int nib)
2654 {
2655 if (nib < 10)
2656 return '0' + nib;
2657 else
2658 return 'a' + nib - 10;
2659 }
2660
2661 static int
2662 bin2hex (const gdb_byte *bin, char *hex, int count)
2663 {
2664 int i;
2665 /* May use a length, or a nul-terminated string as input. */
2666 if (count == 0)
2667 count = strlen ((char *) bin);
2668
2669 for (i = 0; i < count; i++)
2670 {
2671 *hex++ = tohex ((*bin >> 4) & 0xf);
2672 *hex++ = tohex (*bin++ & 0xf);
2673 }
2674 *hex = 0;
2675 return i;
2676 }
2677 \f
2678 /* Check for the availability of vCont. This function should also check
2679 the response. */
2680
2681 static void
2682 remote_vcont_probe (struct remote_state *rs)
2683 {
2684 char *buf;
2685
2686 strcpy (rs->buf, "vCont?");
2687 putpkt (rs->buf);
2688 getpkt (&rs->buf, &rs->buf_size, 0);
2689 buf = rs->buf;
2690
2691 /* Make sure that the features we assume are supported. */
2692 if (strncmp (buf, "vCont", 5) == 0)
2693 {
2694 char *p = &buf[5];
2695 int support_s, support_S, support_c, support_C;
2696
2697 support_s = 0;
2698 support_S = 0;
2699 support_c = 0;
2700 support_C = 0;
2701 while (p && *p == ';')
2702 {
2703 p++;
2704 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2705 support_s = 1;
2706 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2707 support_S = 1;
2708 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2709 support_c = 1;
2710 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2711 support_C = 1;
2712
2713 p = strchr (p, ';');
2714 }
2715
2716 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2717 BUF will make packet_ok disable the packet. */
2718 if (!support_s || !support_S || !support_c || !support_C)
2719 buf[0] = 0;
2720 }
2721
2722 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2723 }
2724
2725 /* Resume the remote inferior by using a "vCont" packet. The thread
2726 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2727 resumed thread should be single-stepped and/or signalled. If PTID's
2728 PID is -1, then all threads are resumed; the thread to be stepped and/or
2729 signalled is given in the global INFERIOR_PTID. This function returns
2730 non-zero iff it resumes the inferior.
2731
2732 This function issues a strict subset of all possible vCont commands at the
2733 moment. */
2734
2735 static int
2736 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2737 {
2738 struct remote_state *rs = get_remote_state ();
2739 int pid = PIDGET (ptid);
2740 char *buf = NULL, *outbuf;
2741 struct cleanup *old_cleanup;
2742
2743 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2744 remote_vcont_probe (rs);
2745
2746 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2747 return 0;
2748
2749 /* If we could generate a wider range of packets, we'd have to worry
2750 about overflowing BUF. Should there be a generic
2751 "multi-part-packet" packet? */
2752
2753 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2754 {
2755 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2756 don't have any PID numbers the inferior will understand. Make sure
2757 to only send forms that do not specify a PID. */
2758 if (step && siggnal != TARGET_SIGNAL_0)
2759 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2760 else if (step)
2761 outbuf = xstrprintf ("vCont;s");
2762 else if (siggnal != TARGET_SIGNAL_0)
2763 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2764 else
2765 outbuf = xstrprintf ("vCont;c");
2766 }
2767 else if (pid == -1)
2768 {
2769 /* Resume all threads, with preference for INFERIOR_PTID. */
2770 if (step && siggnal != TARGET_SIGNAL_0)
2771 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2772 PIDGET (inferior_ptid));
2773 else if (step)
2774 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2775 else if (siggnal != TARGET_SIGNAL_0)
2776 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2777 PIDGET (inferior_ptid));
2778 else
2779 outbuf = xstrprintf ("vCont;c");
2780 }
2781 else
2782 {
2783 /* Scheduler locking; resume only PTID. */
2784 if (step && siggnal != TARGET_SIGNAL_0)
2785 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2786 else if (step)
2787 outbuf = xstrprintf ("vCont;s:%x", pid);
2788 else if (siggnal != TARGET_SIGNAL_0)
2789 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2790 else
2791 outbuf = xstrprintf ("vCont;c:%x", pid);
2792 }
2793
2794 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2795 old_cleanup = make_cleanup (xfree, outbuf);
2796
2797 putpkt (outbuf);
2798
2799 do_cleanups (old_cleanup);
2800
2801 return 1;
2802 }
2803
2804 /* Tell the remote machine to resume. */
2805
2806 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2807
2808 static int last_sent_step;
2809
2810 static void
2811 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2812 {
2813 struct remote_state *rs = get_remote_state ();
2814 char *buf;
2815 int pid = PIDGET (ptid);
2816
2817 last_sent_signal = siggnal;
2818 last_sent_step = step;
2819
2820 /* A hook for when we need to do something at the last moment before
2821 resumption. */
2822 if (deprecated_target_resume_hook)
2823 (*deprecated_target_resume_hook) ();
2824
2825 /* Update the inferior on signals to silently pass, if they've changed. */
2826 remote_pass_signals ();
2827
2828 /* The vCont packet doesn't need to specify threads via Hc. */
2829 if (remote_vcont_resume (ptid, step, siggnal))
2830 return;
2831
2832 /* All other supported resume packets do use Hc, so call set_thread. */
2833 if (pid == -1)
2834 set_thread (0, 0); /* Run any thread. */
2835 else
2836 set_thread (pid, 0); /* Run this thread. */
2837
2838 buf = rs->buf;
2839 if (siggnal != TARGET_SIGNAL_0)
2840 {
2841 buf[0] = step ? 'S' : 'C';
2842 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2843 buf[2] = tohex (((int) siggnal) & 0xf);
2844 buf[3] = '\0';
2845 }
2846 else
2847 strcpy (buf, step ? "s" : "c");
2848
2849 putpkt (buf);
2850 }
2851
2852 /* Same as remote_resume, but with async support. */
2853 static void
2854 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2855 {
2856 remote_resume (ptid, step, siggnal);
2857
2858 /* We are about to start executing the inferior, let's register it
2859 with the event loop. NOTE: this is the one place where all the
2860 execution commands end up. We could alternatively do this in each
2861 of the execution commands in infcmd.c. */
2862 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2863 into infcmd.c in order to allow inferior function calls to work
2864 NOT asynchronously. */
2865 if (target_can_async_p ())
2866 target_async (inferior_event_handler, 0);
2867 /* Tell the world that the target is now executing. */
2868 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2869 this? Instead, should the client of target just assume (for
2870 async targets) that the target is going to start executing? Is
2871 this information already found in the continuation block? */
2872 if (target_is_async_p ())
2873 target_executing = 1;
2874 }
2875 \f
2876
2877 /* Set up the signal handler for SIGINT, while the target is
2878 executing, ovewriting the 'regular' SIGINT signal handler. */
2879 static void
2880 initialize_sigint_signal_handler (void)
2881 {
2882 sigint_remote_token =
2883 create_async_signal_handler (async_remote_interrupt, NULL);
2884 signal (SIGINT, handle_remote_sigint);
2885 }
2886
2887 /* Signal handler for SIGINT, while the target is executing. */
2888 static void
2889 handle_remote_sigint (int sig)
2890 {
2891 signal (sig, handle_remote_sigint_twice);
2892 sigint_remote_twice_token =
2893 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2894 mark_async_signal_handler_wrapper (sigint_remote_token);
2895 }
2896
2897 /* Signal handler for SIGINT, installed after SIGINT has already been
2898 sent once. It will take effect the second time that the user sends
2899 a ^C. */
2900 static void
2901 handle_remote_sigint_twice (int sig)
2902 {
2903 signal (sig, handle_sigint);
2904 sigint_remote_twice_token =
2905 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2906 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2907 }
2908
2909 /* Perform the real interruption of the target execution, in response
2910 to a ^C. */
2911 static void
2912 async_remote_interrupt (gdb_client_data arg)
2913 {
2914 if (remote_debug)
2915 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2916
2917 target_stop ();
2918 }
2919
2920 /* Perform interrupt, if the first attempt did not succeed. Just give
2921 up on the target alltogether. */
2922 void
2923 async_remote_interrupt_twice (gdb_client_data arg)
2924 {
2925 if (remote_debug)
2926 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2927 /* Do something only if the target was not killed by the previous
2928 cntl-C. */
2929 if (target_executing)
2930 {
2931 interrupt_query ();
2932 signal (SIGINT, handle_remote_sigint);
2933 }
2934 }
2935
2936 /* Reinstall the usual SIGINT handlers, after the target has
2937 stopped. */
2938 static void
2939 cleanup_sigint_signal_handler (void *dummy)
2940 {
2941 signal (SIGINT, handle_sigint);
2942 if (sigint_remote_twice_token)
2943 delete_async_signal_handler ((struct async_signal_handler **)
2944 &sigint_remote_twice_token);
2945 if (sigint_remote_token)
2946 delete_async_signal_handler ((struct async_signal_handler **)
2947 &sigint_remote_token);
2948 }
2949
2950 /* Send ^C to target to halt it. Target will respond, and send us a
2951 packet. */
2952 static void (*ofunc) (int);
2953
2954 /* The command line interface's stop routine. This function is installed
2955 as a signal handler for SIGINT. The first time a user requests a
2956 stop, we call remote_stop to send a break or ^C. If there is no
2957 response from the target (it didn't stop when the user requested it),
2958 we ask the user if he'd like to detach from the target. */
2959 static void
2960 remote_interrupt (int signo)
2961 {
2962 /* If this doesn't work, try more severe steps. */
2963 signal (signo, remote_interrupt_twice);
2964
2965 if (remote_debug)
2966 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2967
2968 target_stop ();
2969 }
2970
2971 /* The user typed ^C twice. */
2972
2973 static void
2974 remote_interrupt_twice (int signo)
2975 {
2976 signal (signo, ofunc);
2977 interrupt_query ();
2978 signal (signo, remote_interrupt);
2979 }
2980
2981 /* This is the generic stop called via the target vector. When a target
2982 interrupt is requested, either by the command line or the GUI, we
2983 will eventually end up here. */
2984 static void
2985 remote_stop (void)
2986 {
2987 /* Send a break or a ^C, depending on user preference. */
2988 if (remote_debug)
2989 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2990
2991 if (remote_break)
2992 serial_send_break (remote_desc);
2993 else
2994 serial_write (remote_desc, "\003", 1);
2995 }
2996
2997 /* Ask the user what to do when an interrupt is received. */
2998
2999 static void
3000 interrupt_query (void)
3001 {
3002 target_terminal_ours ();
3003
3004 if (query ("Interrupted while waiting for the program.\n\
3005 Give up (and stop debugging it)? "))
3006 {
3007 target_mourn_inferior ();
3008 deprecated_throw_reason (RETURN_QUIT);
3009 }
3010
3011 target_terminal_inferior ();
3012 }
3013
3014 /* Enable/disable target terminal ownership. Most targets can use
3015 terminal groups to control terminal ownership. Remote targets are
3016 different in that explicit transfer of ownership to/from GDB/target
3017 is required. */
3018
3019 static void
3020 remote_async_terminal_inferior (void)
3021 {
3022 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3023 sync_execution here. This function should only be called when
3024 GDB is resuming the inferior in the forground. A background
3025 resume (``run&'') should leave GDB in control of the terminal and
3026 consequently should not call this code. */
3027 if (!sync_execution)
3028 return;
3029 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3030 calls target_terminal_*() idenpotent. The event-loop GDB talking
3031 to an asynchronous target with a synchronous command calls this
3032 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3033 stops trying to transfer the terminal to the target when it
3034 shouldn't this guard can go away. */
3035 if (!remote_async_terminal_ours_p)
3036 return;
3037 delete_file_handler (input_fd);
3038 remote_async_terminal_ours_p = 0;
3039 initialize_sigint_signal_handler ();
3040 /* NOTE: At this point we could also register our selves as the
3041 recipient of all input. Any characters typed could then be
3042 passed on down to the target. */
3043 }
3044
3045 static void
3046 remote_async_terminal_ours (void)
3047 {
3048 /* See FIXME in remote_async_terminal_inferior. */
3049 if (!sync_execution)
3050 return;
3051 /* See FIXME in remote_async_terminal_inferior. */
3052 if (remote_async_terminal_ours_p)
3053 return;
3054 cleanup_sigint_signal_handler (NULL);
3055 add_file_handler (input_fd, stdin_event_handler, 0);
3056 remote_async_terminal_ours_p = 1;
3057 }
3058
3059 /* If nonzero, ignore the next kill. */
3060
3061 int kill_kludge;
3062
3063 void
3064 remote_console_output (char *msg)
3065 {
3066 char *p;
3067
3068 for (p = msg; p[0] && p[1]; p += 2)
3069 {
3070 char tb[2];
3071 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3072 tb[0] = c;
3073 tb[1] = 0;
3074 fputs_unfiltered (tb, gdb_stdtarg);
3075 }
3076 gdb_flush (gdb_stdtarg);
3077 }
3078
3079 /* Wait until the remote machine stops, then return,
3080 storing status in STATUS just as `wait' would.
3081 Returns "pid", which in the case of a multi-threaded
3082 remote OS, is the thread-id. */
3083
3084 static ptid_t
3085 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3086 {
3087 struct remote_state *rs = get_remote_state ();
3088 struct remote_arch_state *rsa = get_remote_arch_state ();
3089 ULONGEST thread_num = -1;
3090 ULONGEST addr;
3091
3092 status->kind = TARGET_WAITKIND_EXITED;
3093 status->value.integer = 0;
3094
3095 while (1)
3096 {
3097 char *buf, *p;
3098
3099 ofunc = signal (SIGINT, remote_interrupt);
3100 getpkt (&rs->buf, &rs->buf_size, 1);
3101 signal (SIGINT, ofunc);
3102
3103 buf = rs->buf;
3104
3105 /* This is a hook for when we need to do something (perhaps the
3106 collection of trace data) every time the target stops. */
3107 if (deprecated_target_wait_loop_hook)
3108 (*deprecated_target_wait_loop_hook) ();
3109
3110 remote_stopped_by_watchpoint_p = 0;
3111
3112 switch (buf[0])
3113 {
3114 case 'E': /* Error of some sort. */
3115 warning (_("Remote failure reply: %s"), buf);
3116 continue;
3117 case 'F': /* File-I/O request. */
3118 remote_fileio_request (buf);
3119 continue;
3120 case 'T': /* Status with PC, SP, FP, ... */
3121 {
3122 gdb_byte regs[MAX_REGISTER_SIZE];
3123
3124 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3125 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3126 ss = signal number
3127 n... = register number
3128 r... = register contents
3129 */
3130 p = &buf[3]; /* after Txx */
3131
3132 while (*p)
3133 {
3134 char *p1;
3135 char *p_temp;
3136 int fieldsize;
3137 LONGEST pnum = 0;
3138
3139 /* If the packet contains a register number save it in
3140 pnum and set p1 to point to the character following
3141 it. Otherwise p1 points to p. */
3142
3143 /* If this packet is an awatch packet, don't parse the
3144 'a' as a register number. */
3145
3146 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3147 {
3148 /* Read the ``P'' register number. */
3149 pnum = strtol (p, &p_temp, 16);
3150 p1 = p_temp;
3151 }
3152 else
3153 p1 = p;
3154
3155 if (p1 == p) /* No register number present here. */
3156 {
3157 p1 = strchr (p, ':');
3158 if (p1 == NULL)
3159 error (_("Malformed packet(a) (missing colon): %s\n\
3160 Packet: '%s'\n"),
3161 p, buf);
3162 if (strncmp (p, "thread", p1 - p) == 0)
3163 {
3164 p_temp = unpack_varlen_hex (++p1, &thread_num);
3165 record_currthread (thread_num);
3166 p = p_temp;
3167 }
3168 else if ((strncmp (p, "watch", p1 - p) == 0)
3169 || (strncmp (p, "rwatch", p1 - p) == 0)
3170 || (strncmp (p, "awatch", p1 - p) == 0))
3171 {
3172 remote_stopped_by_watchpoint_p = 1;
3173 p = unpack_varlen_hex (++p1, &addr);
3174 remote_watch_data_address = (CORE_ADDR)addr;
3175 }
3176 else
3177 {
3178 /* Silently skip unknown optional info. */
3179 p_temp = strchr (p1 + 1, ';');
3180 if (p_temp)
3181 p = p_temp;
3182 }
3183 }
3184 else
3185 {
3186 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3187 p = p1;
3188
3189 if (*p++ != ':')
3190 error (_("Malformed packet(b) (missing colon): %s\n\
3191 Packet: '%s'\n"),
3192 p, buf);
3193
3194 if (reg == NULL)
3195 error (_("Remote sent bad register number %s: %s\n\
3196 Packet: '%s'\n"),
3197 phex_nz (pnum, 0), p, buf);
3198
3199 fieldsize = hex2bin (p, regs,
3200 register_size (current_gdbarch,
3201 reg->regnum));
3202 p += 2 * fieldsize;
3203 if (fieldsize < register_size (current_gdbarch,
3204 reg->regnum))
3205 warning (_("Remote reply is too short: %s"), buf);
3206 regcache_raw_supply (current_regcache,
3207 reg->regnum, regs);
3208 }
3209
3210 if (*p++ != ';')
3211 error (_("Remote register badly formatted: %s\nhere: %s"),
3212 buf, p);
3213 }
3214 }
3215 /* fall through */
3216 case 'S': /* Old style status, just signal only. */
3217 status->kind = TARGET_WAITKIND_STOPPED;
3218 status->value.sig = (enum target_signal)
3219 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3220
3221 if (buf[3] == 'p')
3222 {
3223 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3224 record_currthread (thread_num);
3225 }
3226 goto got_status;
3227 case 'W': /* Target exited. */
3228 {
3229 /* The remote process exited. */
3230 status->kind = TARGET_WAITKIND_EXITED;
3231 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3232 goto got_status;
3233 }
3234 case 'X':
3235 status->kind = TARGET_WAITKIND_SIGNALLED;
3236 status->value.sig = (enum target_signal)
3237 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3238 kill_kludge = 1;
3239
3240 goto got_status;
3241 case 'O': /* Console output. */
3242 remote_console_output (buf + 1);
3243 continue;
3244 case '\0':
3245 if (last_sent_signal != TARGET_SIGNAL_0)
3246 {
3247 /* Zero length reply means that we tried 'S' or 'C' and
3248 the remote system doesn't support it. */
3249 target_terminal_ours_for_output ();
3250 printf_filtered
3251 ("Can't send signals to this remote system. %s not sent.\n",
3252 target_signal_to_name (last_sent_signal));
3253 last_sent_signal = TARGET_SIGNAL_0;
3254 target_terminal_inferior ();
3255
3256 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3257 putpkt ((char *) buf);
3258 continue;
3259 }
3260 /* else fallthrough */
3261 default:
3262 warning (_("Invalid remote reply: %s"), buf);
3263 continue;
3264 }
3265 }
3266 got_status:
3267 if (thread_num != -1)
3268 {
3269 return pid_to_ptid (thread_num);
3270 }
3271 return inferior_ptid;
3272 }
3273
3274 /* Async version of remote_wait. */
3275 static ptid_t
3276 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3277 {
3278 struct remote_state *rs = get_remote_state ();
3279 struct remote_arch_state *rsa = get_remote_arch_state ();
3280 ULONGEST thread_num = -1;
3281 ULONGEST addr;
3282
3283 status->kind = TARGET_WAITKIND_EXITED;
3284 status->value.integer = 0;
3285
3286 remote_stopped_by_watchpoint_p = 0;
3287
3288 while (1)
3289 {
3290 char *buf, *p;
3291
3292 if (!target_is_async_p ())
3293 ofunc = signal (SIGINT, remote_interrupt);
3294 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3295 _never_ wait for ever -> test on target_is_async_p().
3296 However, before we do that we need to ensure that the caller
3297 knows how to take the target into/out of async mode. */
3298 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3299 if (!target_is_async_p ())
3300 signal (SIGINT, ofunc);
3301
3302 buf = rs->buf;
3303
3304 /* This is a hook for when we need to do something (perhaps the
3305 collection of trace data) every time the target stops. */
3306 if (deprecated_target_wait_loop_hook)
3307 (*deprecated_target_wait_loop_hook) ();
3308
3309 switch (buf[0])
3310 {
3311 case 'E': /* Error of some sort. */
3312 warning (_("Remote failure reply: %s"), buf);
3313 continue;
3314 case 'F': /* File-I/O request. */
3315 remote_fileio_request (buf);
3316 continue;
3317 case 'T': /* Status with PC, SP, FP, ... */
3318 {
3319 gdb_byte regs[MAX_REGISTER_SIZE];
3320
3321 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3322 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3323 ss = signal number
3324 n... = register number
3325 r... = register contents
3326 */
3327 p = &buf[3]; /* after Txx */
3328
3329 while (*p)
3330 {
3331 char *p1;
3332 char *p_temp;
3333 int fieldsize;
3334 long pnum = 0;
3335
3336 /* If the packet contains a register number, save it
3337 in pnum and set p1 to point to the character
3338 following it. Otherwise p1 points to p. */
3339
3340 /* If this packet is an awatch packet, don't parse the 'a'
3341 as a register number. */
3342
3343 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3344 {
3345 /* Read the register number. */
3346 pnum = strtol (p, &p_temp, 16);
3347 p1 = p_temp;
3348 }
3349 else
3350 p1 = p;
3351
3352 if (p1 == p) /* No register number present here. */
3353 {
3354 p1 = strchr (p, ':');
3355 if (p1 == NULL)
3356 error (_("Malformed packet(a) (missing colon): %s\n\
3357 Packet: '%s'\n"),
3358 p, buf);
3359 if (strncmp (p, "thread", p1 - p) == 0)
3360 {
3361 p_temp = unpack_varlen_hex (++p1, &thread_num);
3362 record_currthread (thread_num);
3363 p = p_temp;
3364 }
3365 else if ((strncmp (p, "watch", p1 - p) == 0)
3366 || (strncmp (p, "rwatch", p1 - p) == 0)
3367 || (strncmp (p, "awatch", p1 - p) == 0))
3368 {
3369 remote_stopped_by_watchpoint_p = 1;
3370 p = unpack_varlen_hex (++p1, &addr);
3371 remote_watch_data_address = (CORE_ADDR)addr;
3372 }
3373 else
3374 {
3375 /* Silently skip unknown optional info. */
3376 p_temp = strchr (p1 + 1, ';');
3377 if (p_temp)
3378 p = p_temp;
3379 }
3380 }
3381
3382 else
3383 {
3384 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3385 p = p1;
3386 if (*p++ != ':')
3387 error (_("Malformed packet(b) (missing colon): %s\n\
3388 Packet: '%s'\n"),
3389 p, buf);
3390
3391 if (reg == NULL)
3392 error (_("Remote sent bad register number %ld: %s\n\
3393 Packet: '%s'\n"),
3394 pnum, p, buf);
3395
3396 fieldsize = hex2bin (p, regs,
3397 register_size (current_gdbarch,
3398 reg->regnum));
3399 p += 2 * fieldsize;
3400 if (fieldsize < register_size (current_gdbarch,
3401 reg->regnum))
3402 warning (_("Remote reply is too short: %s"), buf);
3403 regcache_raw_supply (current_regcache, reg->regnum, regs);
3404 }
3405
3406 if (*p++ != ';')
3407 error (_("Remote register badly formatted: %s\nhere: %s"),
3408 buf, p);
3409 }
3410 }
3411 /* fall through */
3412 case 'S': /* Old style status, just signal only. */
3413 status->kind = TARGET_WAITKIND_STOPPED;
3414 status->value.sig = (enum target_signal)
3415 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3416
3417 if (buf[3] == 'p')
3418 {
3419 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3420 record_currthread (thread_num);
3421 }
3422 goto got_status;
3423 case 'W': /* Target exited. */
3424 {
3425 /* The remote process exited. */
3426 status->kind = TARGET_WAITKIND_EXITED;
3427 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3428 goto got_status;
3429 }
3430 case 'X':
3431 status->kind = TARGET_WAITKIND_SIGNALLED;
3432 status->value.sig = (enum target_signal)
3433 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3434 kill_kludge = 1;
3435
3436 goto got_status;
3437 case 'O': /* Console output. */
3438 remote_console_output (buf + 1);
3439 /* Return immediately to the event loop. The event loop will
3440 still be waiting on the inferior afterwards. */
3441 status->kind = TARGET_WAITKIND_IGNORE;
3442 goto got_status;
3443 case '\0':
3444 if (last_sent_signal != TARGET_SIGNAL_0)
3445 {
3446 /* Zero length reply means that we tried 'S' or 'C' and
3447 the remote system doesn't support it. */
3448 target_terminal_ours_for_output ();
3449 printf_filtered
3450 ("Can't send signals to this remote system. %s not sent.\n",
3451 target_signal_to_name (last_sent_signal));
3452 last_sent_signal = TARGET_SIGNAL_0;
3453 target_terminal_inferior ();
3454
3455 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3456 putpkt ((char *) buf);
3457 continue;
3458 }
3459 /* else fallthrough */
3460 default:
3461 warning (_("Invalid remote reply: %s"), buf);
3462 continue;
3463 }
3464 }
3465 got_status:
3466 if (thread_num != -1)
3467 {
3468 return pid_to_ptid (thread_num);
3469 }
3470 return inferior_ptid;
3471 }
3472
3473 /* Fetch a single register using a 'p' packet. */
3474
3475 static int
3476 fetch_register_using_p (struct packet_reg *reg)
3477 {
3478 struct remote_state *rs = get_remote_state ();
3479 char *buf, *p;
3480 char regp[MAX_REGISTER_SIZE];
3481 int i;
3482
3483 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3484 return 0;
3485
3486 if (reg->pnum == -1)
3487 return 0;
3488
3489 p = rs->buf;
3490 *p++ = 'p';
3491 p += hexnumstr (p, reg->pnum);
3492 *p++ = '\0';
3493 remote_send (&rs->buf, &rs->buf_size);
3494
3495 buf = rs->buf;
3496
3497 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3498 {
3499 case PACKET_OK:
3500 break;
3501 case PACKET_UNKNOWN:
3502 return 0;
3503 case PACKET_ERROR:
3504 error (_("Could not fetch register \"%s\""),
3505 gdbarch_register_name (current_gdbarch, reg->regnum));
3506 }
3507
3508 /* If this register is unfetchable, tell the regcache. */
3509 if (buf[0] == 'x')
3510 {
3511 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3512 set_register_cached (reg->regnum, -1);
3513 return 1;
3514 }
3515
3516 /* Otherwise, parse and supply the value. */
3517 p = buf;
3518 i = 0;
3519 while (p[0] != 0)
3520 {
3521 if (p[1] == 0)
3522 error (_("fetch_register_using_p: early buf termination"));
3523
3524 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3525 p += 2;
3526 }
3527 regcache_raw_supply (current_regcache, reg->regnum, regp);
3528 return 1;
3529 }
3530
3531 /* Fetch the registers included in the target's 'g' packet. */
3532
3533 static void
3534 fetch_registers_using_g (void)
3535 {
3536 struct remote_state *rs = get_remote_state ();
3537 struct remote_arch_state *rsa = get_remote_arch_state ();
3538 int i, buf_len;
3539 char *p;
3540 char *regs;
3541
3542 sprintf (rs->buf, "g");
3543 remote_send (&rs->buf, &rs->buf_size);
3544
3545 buf_len = strlen (rs->buf);
3546
3547 /* Sanity check the received packet. */
3548 if (buf_len % 2 != 0)
3549 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3550 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3551 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3552 if (buf_len > 2 * rsa->sizeof_g_packet)
3553 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3554
3555 /* Save the size of the packet sent to us by the target. It is used
3556 as a heuristic when determining the max size of packets that the
3557 target can safely receive. */
3558 if (rsa->actual_register_packet_size == 0)
3559 rsa->actual_register_packet_size = buf_len;
3560
3561 /* If this is smaller than we guessed the 'g' packet would be,
3562 update our records. A 'g' reply that doesn't include a register's
3563 value implies either that the register is not available, or that
3564 the 'p' packet must be used. */
3565 if (buf_len < 2 * rsa->sizeof_g_packet)
3566 {
3567 rsa->sizeof_g_packet = buf_len / 2;
3568
3569 for (i = 0; i < NUM_REGS; i++)
3570 {
3571 if (rsa->regs[i].pnum == -1)
3572 continue;
3573
3574 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3575 rsa->regs[i].in_g_packet = 0;
3576 else
3577 rsa->regs[i].in_g_packet = 1;
3578 }
3579 }
3580
3581 regs = alloca (rsa->sizeof_g_packet);
3582
3583 /* Unimplemented registers read as all bits zero. */
3584 memset (regs, 0, rsa->sizeof_g_packet);
3585
3586 /* We can get out of synch in various cases. If the first character
3587 in the buffer is not a hex character, assume that has happened
3588 and try to fetch another packet to read. */
3589 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3590 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3591 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3592 && rs->buf[0] != 'x') /* New: unavailable register value. */
3593 {
3594 if (remote_debug)
3595 fprintf_unfiltered (gdb_stdlog,
3596 "Bad register packet; fetching a new packet\n");
3597 getpkt (&rs->buf, &rs->buf_size, 0);
3598 }
3599
3600 /* Reply describes registers byte by byte, each byte encoded as two
3601 hex characters. Suck them all up, then supply them to the
3602 register cacheing/storage mechanism. */
3603
3604 p = rs->buf;
3605 for (i = 0; i < rsa->sizeof_g_packet; i++)
3606 {
3607 if (p[0] == 0 || p[1] == 0)
3608 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3609 internal_error (__FILE__, __LINE__,
3610 "unexpected end of 'g' packet reply");
3611
3612 if (p[0] == 'x' && p[1] == 'x')
3613 regs[i] = 0; /* 'x' */
3614 else
3615 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3616 p += 2;
3617 }
3618
3619 {
3620 int i;
3621 for (i = 0; i < NUM_REGS; i++)
3622 {
3623 struct packet_reg *r = &rsa->regs[i];
3624 if (r->in_g_packet)
3625 {
3626 if (r->offset * 2 >= strlen (rs->buf))
3627 /* This shouldn't happen - we adjusted in_g_packet above. */
3628 internal_error (__FILE__, __LINE__,
3629 "unexpected end of 'g' packet reply");
3630 else if (rs->buf[r->offset * 2] == 'x')
3631 {
3632 gdb_assert (r->offset * 2 < strlen (rs->buf));
3633 /* The register isn't available, mark it as such (at
3634 the same time setting the value to zero). */
3635 regcache_raw_supply (current_regcache, r->regnum, NULL);
3636 set_register_cached (i, -1);
3637 }
3638 else
3639 regcache_raw_supply (current_regcache, r->regnum,
3640 regs + r->offset);
3641 }
3642 }
3643 }
3644 }
3645
3646 static void
3647 remote_fetch_registers (int regnum)
3648 {
3649 struct remote_state *rs = get_remote_state ();
3650 struct remote_arch_state *rsa = get_remote_arch_state ();
3651 int i;
3652
3653 set_thread (PIDGET (inferior_ptid), 1);
3654
3655 if (regnum >= 0)
3656 {
3657 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3658 gdb_assert (reg != NULL);
3659
3660 /* If this register might be in the 'g' packet, try that first -
3661 we are likely to read more than one register. If this is the
3662 first 'g' packet, we might be overly optimistic about its
3663 contents, so fall back to 'p'. */
3664 if (reg->in_g_packet)
3665 {
3666 fetch_registers_using_g ();
3667 if (reg->in_g_packet)
3668 return;
3669 }
3670
3671 if (fetch_register_using_p (reg))
3672 return;
3673
3674 /* This register is not available. */
3675 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3676 set_register_cached (reg->regnum, -1);
3677
3678 return;
3679 }
3680
3681 fetch_registers_using_g ();
3682
3683 for (i = 0; i < NUM_REGS; i++)
3684 if (!rsa->regs[i].in_g_packet)
3685 if (!fetch_register_using_p (&rsa->regs[i]))
3686 {
3687 /* This register is not available. */
3688 regcache_raw_supply (current_regcache, i, NULL);
3689 set_register_cached (i, -1);
3690 }
3691 }
3692
3693 /* Prepare to store registers. Since we may send them all (using a
3694 'G' request), we have to read out the ones we don't want to change
3695 first. */
3696
3697 static void
3698 remote_prepare_to_store (void)
3699 {
3700 struct remote_arch_state *rsa = get_remote_arch_state ();
3701 int i;
3702 gdb_byte buf[MAX_REGISTER_SIZE];
3703
3704 /* Make sure the entire registers array is valid. */
3705 switch (remote_protocol_packets[PACKET_P].support)
3706 {
3707 case PACKET_DISABLE:
3708 case PACKET_SUPPORT_UNKNOWN:
3709 /* Make sure all the necessary registers are cached. */
3710 for (i = 0; i < NUM_REGS; i++)
3711 if (rsa->regs[i].in_g_packet)
3712 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3713 break;
3714 case PACKET_ENABLE:
3715 break;
3716 }
3717 }
3718
3719 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3720 packet was not recognized. */
3721
3722 static int
3723 store_register_using_P (struct packet_reg *reg)
3724 {
3725 struct remote_state *rs = get_remote_state ();
3726 struct remote_arch_state *rsa = get_remote_arch_state ();
3727 /* Try storing a single register. */
3728 char *buf = rs->buf;
3729 gdb_byte regp[MAX_REGISTER_SIZE];
3730 char *p;
3731
3732 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3733 return 0;
3734
3735 if (reg->pnum == -1)
3736 return 0;
3737
3738 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3739 p = buf + strlen (buf);
3740 regcache_raw_collect (current_regcache, reg->regnum, regp);
3741 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3742 remote_send (&rs->buf, &rs->buf_size);
3743
3744 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3745 {
3746 case PACKET_OK:
3747 return 1;
3748 case PACKET_ERROR:
3749 error (_("Could not write register \"%s\""),
3750 gdbarch_register_name (current_gdbarch, reg->regnum));
3751 case PACKET_UNKNOWN:
3752 return 0;
3753 default:
3754 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3755 }
3756 }
3757
3758 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3759 contents of the register cache buffer. FIXME: ignores errors. */
3760
3761 static void
3762 store_registers_using_G (void)
3763 {
3764 struct remote_state *rs = get_remote_state ();
3765 struct remote_arch_state *rsa = get_remote_arch_state ();
3766 gdb_byte *regs;
3767 char *p;
3768
3769 /* Extract all the registers in the regcache copying them into a
3770 local buffer. */
3771 {
3772 int i;
3773 regs = alloca (rsa->sizeof_g_packet);
3774 memset (regs, 0, rsa->sizeof_g_packet);
3775 for (i = 0; i < NUM_REGS; i++)
3776 {
3777 struct packet_reg *r = &rsa->regs[i];
3778 if (r->in_g_packet)
3779 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3780 }
3781 }
3782
3783 /* Command describes registers byte by byte,
3784 each byte encoded as two hex characters. */
3785 p = rs->buf;
3786 *p++ = 'G';
3787 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3788 updated. */
3789 bin2hex (regs, p, rsa->sizeof_g_packet);
3790 remote_send (&rs->buf, &rs->buf_size);
3791 }
3792
3793 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3794 of the register cache buffer. FIXME: ignores errors. */
3795
3796 static void
3797 remote_store_registers (int regnum)
3798 {
3799 struct remote_state *rs = get_remote_state ();
3800 struct remote_arch_state *rsa = get_remote_arch_state ();
3801 int i;
3802
3803 set_thread (PIDGET (inferior_ptid), 1);
3804
3805 if (regnum >= 0)
3806 {
3807 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3808 gdb_assert (reg != NULL);
3809
3810 /* Always prefer to store registers using the 'P' packet if
3811 possible; we often change only a small number of registers.
3812 Sometimes we change a larger number; we'd need help from a
3813 higher layer to know to use 'G'. */
3814 if (store_register_using_P (reg))
3815 return;
3816
3817 /* For now, don't complain if we have no way to write the
3818 register. GDB loses track of unavailable registers too
3819 easily. Some day, this may be an error. We don't have
3820 any way to read the register, either... */
3821 if (!reg->in_g_packet)
3822 return;
3823
3824 store_registers_using_G ();
3825 return;
3826 }
3827
3828 store_registers_using_G ();
3829
3830 for (i = 0; i < NUM_REGS; i++)
3831 if (!rsa->regs[i].in_g_packet)
3832 if (!store_register_using_P (&rsa->regs[i]))
3833 /* See above for why we do not issue an error here. */
3834 continue;
3835 }
3836 \f
3837
3838 /* Return the number of hex digits in num. */
3839
3840 static int
3841 hexnumlen (ULONGEST num)
3842 {
3843 int i;
3844
3845 for (i = 0; num != 0; i++)
3846 num >>= 4;
3847
3848 return max (i, 1);
3849 }
3850
3851 /* Set BUF to the minimum number of hex digits representing NUM. */
3852
3853 static int
3854 hexnumstr (char *buf, ULONGEST num)
3855 {
3856 int len = hexnumlen (num);
3857 return hexnumnstr (buf, num, len);
3858 }
3859
3860
3861 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3862
3863 static int
3864 hexnumnstr (char *buf, ULONGEST num, int width)
3865 {
3866 int i;
3867
3868 buf[width] = '\0';
3869
3870 for (i = width - 1; i >= 0; i--)
3871 {
3872 buf[i] = "0123456789abcdef"[(num & 0xf)];
3873 num >>= 4;
3874 }
3875
3876 return width;
3877 }
3878
3879 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3880
3881 static CORE_ADDR
3882 remote_address_masked (CORE_ADDR addr)
3883 {
3884 if (remote_address_size > 0
3885 && remote_address_size < (sizeof (ULONGEST) * 8))
3886 {
3887 /* Only create a mask when that mask can safely be constructed
3888 in a ULONGEST variable. */
3889 ULONGEST mask = 1;
3890 mask = (mask << remote_address_size) - 1;
3891 addr &= mask;
3892 }
3893 return addr;
3894 }
3895
3896 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3897 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3898 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3899 (which may be more than *OUT_LEN due to escape characters). The
3900 total number of bytes in the output buffer will be at most
3901 OUT_MAXLEN. */
3902
3903 static int
3904 remote_escape_output (const gdb_byte *buffer, int len,
3905 gdb_byte *out_buf, int *out_len,
3906 int out_maxlen)
3907 {
3908 int input_index, output_index;
3909
3910 output_index = 0;
3911 for (input_index = 0; input_index < len; input_index++)
3912 {
3913 gdb_byte b = buffer[input_index];
3914
3915 if (b == '$' || b == '#' || b == '}')
3916 {
3917 /* These must be escaped. */
3918 if (output_index + 2 > out_maxlen)
3919 break;
3920 out_buf[output_index++] = '}';
3921 out_buf[output_index++] = b ^ 0x20;
3922 }
3923 else
3924 {
3925 if (output_index + 1 > out_maxlen)
3926 break;
3927 out_buf[output_index++] = b;
3928 }
3929 }
3930
3931 *out_len = input_index;
3932 return output_index;
3933 }
3934
3935 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3936 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3937 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3938
3939 This function reverses remote_escape_output. It allows more
3940 escaped characters than that function does, in particular because
3941 '*' must be escaped to avoid the run-length encoding processing
3942 in reading packets. */
3943
3944 static int
3945 remote_unescape_input (const gdb_byte *buffer, int len,
3946 gdb_byte *out_buf, int out_maxlen)
3947 {
3948 int input_index, output_index;
3949 int escaped;
3950
3951 output_index = 0;
3952 escaped = 0;
3953 for (input_index = 0; input_index < len; input_index++)
3954 {
3955 gdb_byte b = buffer[input_index];
3956
3957 if (output_index + 1 > out_maxlen)
3958 {
3959 warning (_("Received too much data from remote target;"
3960 " ignoring overflow."));
3961 return output_index;
3962 }
3963
3964 if (escaped)
3965 {
3966 out_buf[output_index++] = b ^ 0x20;
3967 escaped = 0;
3968 }
3969 else if (b == '}')
3970 escaped = 1;
3971 else
3972 out_buf[output_index++] = b;
3973 }
3974
3975 if (escaped)
3976 error (_("Unmatched escape character in target response."));
3977
3978 return output_index;
3979 }
3980
3981 /* Determine whether the remote target supports binary downloading.
3982 This is accomplished by sending a no-op memory write of zero length
3983 to the target at the specified address. It does not suffice to send
3984 the whole packet, since many stubs strip the eighth bit and
3985 subsequently compute a wrong checksum, which causes real havoc with
3986 remote_write_bytes.
3987
3988 NOTE: This can still lose if the serial line is not eight-bit
3989 clean. In cases like this, the user should clear "remote
3990 X-packet". */
3991
3992 static void
3993 check_binary_download (CORE_ADDR addr)
3994 {
3995 struct remote_state *rs = get_remote_state ();
3996
3997 switch (remote_protocol_packets[PACKET_X].support)
3998 {
3999 case PACKET_DISABLE:
4000 break;
4001 case PACKET_ENABLE:
4002 break;
4003 case PACKET_SUPPORT_UNKNOWN:
4004 {
4005 char *p;
4006
4007 p = rs->buf;
4008 *p++ = 'X';
4009 p += hexnumstr (p, (ULONGEST) addr);
4010 *p++ = ',';
4011 p += hexnumstr (p, (ULONGEST) 0);
4012 *p++ = ':';
4013 *p = '\0';
4014
4015 putpkt_binary (rs->buf, (int) (p - rs->buf));
4016 getpkt (&rs->buf, &rs->buf_size, 0);
4017
4018 if (rs->buf[0] == '\0')
4019 {
4020 if (remote_debug)
4021 fprintf_unfiltered (gdb_stdlog,
4022 "binary downloading NOT suppported by target\n");
4023 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4024 }
4025 else
4026 {
4027 if (remote_debug)
4028 fprintf_unfiltered (gdb_stdlog,
4029 "binary downloading suppported by target\n");
4030 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4031 }
4032 break;
4033 }
4034 }
4035 }
4036
4037 /* Write memory data directly to the remote machine.
4038 This does not inform the data cache; the data cache uses this.
4039 HEADER is the starting part of the packet.
4040 MEMADDR is the address in the remote memory space.
4041 MYADDR is the address of the buffer in our space.
4042 LEN is the number of bytes.
4043 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4044 should send data as binary ('X'), or hex-encoded ('M').
4045
4046 The function creates packet of the form
4047 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4048
4049 where encoding of <DATA> is termined by PACKET_FORMAT.
4050
4051 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4052 are omitted.
4053
4054 Returns the number of bytes transferred, or 0 (setting errno) for
4055 error. Only transfer a single packet. */
4056
4057 static int
4058 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4059 const gdb_byte *myaddr, int len,
4060 char packet_format, int use_length)
4061 {
4062 struct remote_state *rs = get_remote_state ();
4063 char *p;
4064 char *plen = NULL;
4065 int plenlen = 0;
4066 int todo;
4067 int nr_bytes;
4068 int payload_size;
4069 int payload_length;
4070 int header_length;
4071
4072 if (packet_format != 'X' && packet_format != 'M')
4073 internal_error (__FILE__, __LINE__,
4074 "remote_write_bytes_aux: bad packet format");
4075
4076 /* Should this be the selected frame? */
4077 gdbarch_remote_translate_xfer_address (current_gdbarch,
4078 current_regcache,
4079 memaddr, len,
4080 &memaddr, &len);
4081
4082 if (len <= 0)
4083 return 0;
4084
4085 payload_size = get_memory_write_packet_size ();
4086
4087 /* The packet buffer will be large enough for the payload;
4088 get_memory_packet_size ensures this. */
4089 rs->buf[0] = '\0';
4090
4091 /* Compute the size of the actual payload by subtracting out the
4092 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4093 */
4094 payload_size -= strlen ("$,:#NN");
4095 if (!use_length)
4096 /* The comma won't be used. */
4097 payload_size += 1;
4098 header_length = strlen (header);
4099 payload_size -= header_length;
4100 payload_size -= hexnumlen (memaddr);
4101
4102 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4103
4104 strcat (rs->buf, header);
4105 p = rs->buf + strlen (header);
4106
4107 /* Compute a best guess of the number of bytes actually transfered. */
4108 if (packet_format == 'X')
4109 {
4110 /* Best guess at number of bytes that will fit. */
4111 todo = min (len, payload_size);
4112 if (use_length)
4113 payload_size -= hexnumlen (todo);
4114 todo = min (todo, payload_size);
4115 }
4116 else
4117 {
4118 /* Num bytes that will fit. */
4119 todo = min (len, payload_size / 2);
4120 if (use_length)
4121 payload_size -= hexnumlen (todo);
4122 todo = min (todo, payload_size / 2);
4123 }
4124
4125 if (todo <= 0)
4126 internal_error (__FILE__, __LINE__,
4127 _("minumum packet size too small to write data"));
4128
4129 /* If we already need another packet, then try to align the end
4130 of this packet to a useful boundary. */
4131 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4132 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4133
4134 /* Append "<memaddr>". */
4135 memaddr = remote_address_masked (memaddr);
4136 p += hexnumstr (p, (ULONGEST) memaddr);
4137
4138 if (use_length)
4139 {
4140 /* Append ",". */
4141 *p++ = ',';
4142
4143 /* Append <len>. Retain the location/size of <len>. It may need to
4144 be adjusted once the packet body has been created. */
4145 plen = p;
4146 plenlen = hexnumstr (p, (ULONGEST) todo);
4147 p += plenlen;
4148 }
4149
4150 /* Append ":". */
4151 *p++ = ':';
4152 *p = '\0';
4153
4154 /* Append the packet body. */
4155 if (packet_format == 'X')
4156 {
4157 /* Binary mode. Send target system values byte by byte, in
4158 increasing byte addresses. Only escape certain critical
4159 characters. */
4160 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4161 payload_size);
4162
4163 /* If not all TODO bytes fit, then we'll need another packet. Make
4164 a second try to keep the end of the packet aligned. Don't do
4165 this if the packet is tiny. */
4166 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4167 {
4168 int new_nr_bytes;
4169
4170 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4171 - memaddr);
4172 if (new_nr_bytes != nr_bytes)
4173 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4174 p, &nr_bytes,
4175 payload_size);
4176 }
4177
4178 p += payload_length;
4179 if (use_length && nr_bytes < todo)
4180 {
4181 /* Escape chars have filled up the buffer prematurely,
4182 and we have actually sent fewer bytes than planned.
4183 Fix-up the length field of the packet. Use the same
4184 number of characters as before. */
4185 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4186 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4187 }
4188 }
4189 else
4190 {
4191 /* Normal mode: Send target system values byte by byte, in
4192 increasing byte addresses. Each byte is encoded as a two hex
4193 value. */
4194 nr_bytes = bin2hex (myaddr, p, todo);
4195 p += 2 * nr_bytes;
4196 }
4197
4198 putpkt_binary (rs->buf, (int) (p - rs->buf));
4199 getpkt (&rs->buf, &rs->buf_size, 0);
4200
4201 if (rs->buf[0] == 'E')
4202 {
4203 /* There is no correspondance between what the remote protocol
4204 uses for errors and errno codes. We would like a cleaner way
4205 of representing errors (big enough to include errno codes,
4206 bfd_error codes, and others). But for now just return EIO. */
4207 errno = EIO;
4208 return 0;
4209 }
4210
4211 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4212 fewer bytes than we'd planned. */
4213 return nr_bytes;
4214 }
4215
4216 /* Write memory data directly to the remote machine.
4217 This does not inform the data cache; the data cache uses this.
4218 MEMADDR is the address in the remote memory space.
4219 MYADDR is the address of the buffer in our space.
4220 LEN is the number of bytes.
4221
4222 Returns number of bytes transferred, or 0 (setting errno) for
4223 error. Only transfer a single packet. */
4224
4225 int
4226 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4227 {
4228 char *packet_format = 0;
4229
4230 /* Check whether the target supports binary download. */
4231 check_binary_download (memaddr);
4232
4233 switch (remote_protocol_packets[PACKET_X].support)
4234 {
4235 case PACKET_ENABLE:
4236 packet_format = "X";
4237 break;
4238 case PACKET_DISABLE:
4239 packet_format = "M";
4240 break;
4241 case PACKET_SUPPORT_UNKNOWN:
4242 internal_error (__FILE__, __LINE__,
4243 _("remote_write_bytes: bad internal state"));
4244 default:
4245 internal_error (__FILE__, __LINE__, _("bad switch"));
4246 }
4247
4248 return remote_write_bytes_aux (packet_format,
4249 memaddr, myaddr, len, packet_format[0], 1);
4250 }
4251
4252 /* Read memory data directly from the remote machine.
4253 This does not use the data cache; the data cache uses this.
4254 MEMADDR is the address in the remote memory space.
4255 MYADDR is the address of the buffer in our space.
4256 LEN is the number of bytes.
4257
4258 Returns number of bytes transferred, or 0 for error. */
4259
4260 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4261 remote targets) shouldn't attempt to read the entire buffer.
4262 Instead it should read a single packet worth of data and then
4263 return the byte size of that packet to the caller. The caller (its
4264 caller and its callers caller ;-) already contains code for
4265 handling partial reads. */
4266
4267 int
4268 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4269 {
4270 struct remote_state *rs = get_remote_state ();
4271 int max_buf_size; /* Max size of packet output buffer. */
4272 int origlen;
4273
4274 /* Should this be the selected frame? */
4275 gdbarch_remote_translate_xfer_address (current_gdbarch,
4276 current_regcache,
4277 memaddr, len,
4278 &memaddr, &len);
4279
4280 if (len <= 0)
4281 return 0;
4282
4283 max_buf_size = get_memory_read_packet_size ();
4284 /* The packet buffer will be large enough for the payload;
4285 get_memory_packet_size ensures this. */
4286
4287 origlen = len;
4288 while (len > 0)
4289 {
4290 char *p;
4291 int todo;
4292 int i;
4293
4294 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4295
4296 /* construct "m"<memaddr>","<len>" */
4297 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4298 memaddr = remote_address_masked (memaddr);
4299 p = rs->buf;
4300 *p++ = 'm';
4301 p += hexnumstr (p, (ULONGEST) memaddr);
4302 *p++ = ',';
4303 p += hexnumstr (p, (ULONGEST) todo);
4304 *p = '\0';
4305
4306 putpkt (rs->buf);
4307 getpkt (&rs->buf, &rs->buf_size, 0);
4308
4309 if (rs->buf[0] == 'E'
4310 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4311 && rs->buf[3] == '\0')
4312 {
4313 /* There is no correspondance between what the remote
4314 protocol uses for errors and errno codes. We would like
4315 a cleaner way of representing errors (big enough to
4316 include errno codes, bfd_error codes, and others). But
4317 for now just return EIO. */
4318 errno = EIO;
4319 return 0;
4320 }
4321
4322 /* Reply describes memory byte by byte,
4323 each byte encoded as two hex characters. */
4324
4325 p = rs->buf;
4326 if ((i = hex2bin (p, myaddr, todo)) < todo)
4327 {
4328 /* Reply is short. This means that we were able to read
4329 only part of what we wanted to. */
4330 return i + (origlen - len);
4331 }
4332 myaddr += todo;
4333 memaddr += todo;
4334 len -= todo;
4335 }
4336 return origlen;
4337 }
4338 \f
4339 /* Read or write LEN bytes from inferior memory at MEMADDR,
4340 transferring to or from debugger address BUFFER. Write to inferior
4341 if SHOULD_WRITE is nonzero. Returns length of data written or
4342 read; 0 for error. TARGET is unused. */
4343
4344 static int
4345 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4346 int should_write, struct mem_attrib *attrib,
4347 struct target_ops *target)
4348 {
4349 int res;
4350
4351 if (should_write)
4352 res = remote_write_bytes (mem_addr, buffer, mem_len);
4353 else
4354 res = remote_read_bytes (mem_addr, buffer, mem_len);
4355
4356 return res;
4357 }
4358
4359 /* Sends a packet with content determined by the printf format string
4360 FORMAT and the remaining arguments, then gets the reply. Returns
4361 whether the packet was a success, a failure, or unknown. */
4362
4363 enum packet_result
4364 remote_send_printf (const char *format, ...)
4365 {
4366 struct remote_state *rs = get_remote_state ();
4367 int max_size = get_remote_packet_size ();
4368
4369 va_list ap;
4370 va_start (ap, format);
4371
4372 rs->buf[0] = '\0';
4373 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4374 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4375
4376 if (putpkt (rs->buf) < 0)
4377 error (_("Communication problem with target."));
4378
4379 rs->buf[0] = '\0';
4380 getpkt (&rs->buf, &rs->buf_size, 0);
4381
4382 return packet_check_result (rs->buf);
4383 }
4384
4385 static void
4386 restore_remote_timeout (void *p)
4387 {
4388 int value = *(int *)p;
4389 remote_timeout = value;
4390 }
4391
4392 /* Flash writing can take quite some time. We'll set
4393 effectively infinite timeout for flash operations.
4394 In future, we'll need to decide on a better approach. */
4395 static const int remote_flash_timeout = 1000;
4396
4397 static void
4398 remote_flash_erase (struct target_ops *ops,
4399 ULONGEST address, LONGEST length)
4400 {
4401 int saved_remote_timeout = remote_timeout;
4402 enum packet_result ret;
4403
4404 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4405 &saved_remote_timeout);
4406 remote_timeout = remote_flash_timeout;
4407
4408 ret = remote_send_printf ("vFlashErase:%s,%s",
4409 paddr (address),
4410 phex (length, 4));
4411 switch (ret)
4412 {
4413 case PACKET_UNKNOWN:
4414 error (_("Remote target does not support flash erase"));
4415 case PACKET_ERROR:
4416 error (_("Error erasing flash with vFlashErase packet"));
4417 default:
4418 break;
4419 }
4420
4421 do_cleanups (back_to);
4422 }
4423
4424 static LONGEST
4425 remote_flash_write (struct target_ops *ops,
4426 ULONGEST address, LONGEST length,
4427 const gdb_byte *data)
4428 {
4429 int saved_remote_timeout = remote_timeout;
4430 int ret;
4431 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4432 &saved_remote_timeout);
4433
4434 remote_timeout = remote_flash_timeout;
4435 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4436 do_cleanups (back_to);
4437
4438 return ret;
4439 }
4440
4441 static void
4442 remote_flash_done (struct target_ops *ops)
4443 {
4444 int saved_remote_timeout = remote_timeout;
4445 int ret;
4446 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4447 &saved_remote_timeout);
4448
4449 remote_timeout = remote_flash_timeout;
4450 ret = remote_send_printf ("vFlashDone");
4451 do_cleanups (back_to);
4452
4453 switch (ret)
4454 {
4455 case PACKET_UNKNOWN:
4456 error (_("Remote target does not support vFlashDone"));
4457 case PACKET_ERROR:
4458 error (_("Error finishing flash operation"));
4459 default:
4460 break;
4461 }
4462 }
4463
4464 static void
4465 remote_files_info (struct target_ops *ignore)
4466 {
4467 puts_filtered ("Debugging a target over a serial line.\n");
4468 }
4469 \f
4470 /* Stuff for dealing with the packets which are part of this protocol.
4471 See comment at top of file for details. */
4472
4473 /* Read a single character from the remote end. */
4474
4475 static int
4476 readchar (int timeout)
4477 {
4478 int ch;
4479
4480 ch = serial_readchar (remote_desc, timeout);
4481
4482 if (ch >= 0)
4483 return ch;
4484
4485 switch ((enum serial_rc) ch)
4486 {
4487 case SERIAL_EOF:
4488 target_mourn_inferior ();
4489 error (_("Remote connection closed"));
4490 /* no return */
4491 case SERIAL_ERROR:
4492 perror_with_name (_("Remote communication error"));
4493 /* no return */
4494 case SERIAL_TIMEOUT:
4495 break;
4496 }
4497 return ch;
4498 }
4499
4500 /* Send the command in *BUF to the remote machine, and read the reply
4501 into *BUF. Report an error if we get an error reply. Resize
4502 *BUF using xrealloc if necessary to hold the result, and update
4503 *SIZEOF_BUF. */
4504
4505 static void
4506 remote_send (char **buf,
4507 long *sizeof_buf)
4508 {
4509 putpkt (*buf);
4510 getpkt (buf, sizeof_buf, 0);
4511
4512 if ((*buf)[0] == 'E')
4513 error (_("Remote failure reply: %s"), *buf);
4514 }
4515
4516 /* Display a null-terminated packet on stdout, for debugging, using C
4517 string notation. */
4518
4519 static void
4520 print_packet (char *buf)
4521 {
4522 puts_filtered ("\"");
4523 fputstr_filtered (buf, '"', gdb_stdout);
4524 puts_filtered ("\"");
4525 }
4526
4527 int
4528 putpkt (char *buf)
4529 {
4530 return putpkt_binary (buf, strlen (buf));
4531 }
4532
4533 /* Send a packet to the remote machine, with error checking. The data
4534 of the packet is in BUF. The string in BUF can be at most
4535 get_remote_packet_size () - 5 to account for the $, # and checksum,
4536 and for a possible /0 if we are debugging (remote_debug) and want
4537 to print the sent packet as a string. */
4538
4539 static int
4540 putpkt_binary (char *buf, int cnt)
4541 {
4542 int i;
4543 unsigned char csum = 0;
4544 char *buf2 = alloca (cnt + 6);
4545
4546 int ch;
4547 int tcount = 0;
4548 char *p;
4549
4550 /* Copy the packet into buffer BUF2, encapsulating it
4551 and giving it a checksum. */
4552
4553 p = buf2;
4554 *p++ = '$';
4555
4556 for (i = 0; i < cnt; i++)
4557 {
4558 csum += buf[i];
4559 *p++ = buf[i];
4560 }
4561 *p++ = '#';
4562 *p++ = tohex ((csum >> 4) & 0xf);
4563 *p++ = tohex (csum & 0xf);
4564
4565 /* Send it over and over until we get a positive ack. */
4566
4567 while (1)
4568 {
4569 int started_error_output = 0;
4570
4571 if (remote_debug)
4572 {
4573 *p = '\0';
4574 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4575 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4576 fprintf_unfiltered (gdb_stdlog, "...");
4577 gdb_flush (gdb_stdlog);
4578 }
4579 if (serial_write (remote_desc, buf2, p - buf2))
4580 perror_with_name (_("putpkt: write failed"));
4581
4582 /* Read until either a timeout occurs (-2) or '+' is read. */
4583 while (1)
4584 {
4585 ch = readchar (remote_timeout);
4586
4587 if (remote_debug)
4588 {
4589 switch (ch)
4590 {
4591 case '+':
4592 case '-':
4593 case SERIAL_TIMEOUT:
4594 case '$':
4595 if (started_error_output)
4596 {
4597 putchar_unfiltered ('\n');
4598 started_error_output = 0;
4599 }
4600 }
4601 }
4602
4603 switch (ch)
4604 {
4605 case '+':
4606 if (remote_debug)
4607 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4608 return 1;
4609 case '-':
4610 if (remote_debug)
4611 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4612 case SERIAL_TIMEOUT:
4613 tcount++;
4614 if (tcount > 3)
4615 return 0;
4616 break; /* Retransmit buffer. */
4617 case '$':
4618 {
4619 if (remote_debug)
4620 fprintf_unfiltered (gdb_stdlog,
4621 "Packet instead of Ack, ignoring it\n");
4622 /* It's probably an old response sent because an ACK
4623 was lost. Gobble up the packet and ack it so it
4624 doesn't get retransmitted when we resend this
4625 packet. */
4626 skip_frame ();
4627 serial_write (remote_desc, "+", 1);
4628 continue; /* Now, go look for +. */
4629 }
4630 default:
4631 if (remote_debug)
4632 {
4633 if (!started_error_output)
4634 {
4635 started_error_output = 1;
4636 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4637 }
4638 fputc_unfiltered (ch & 0177, gdb_stdlog);
4639 }
4640 continue;
4641 }
4642 break; /* Here to retransmit. */
4643 }
4644
4645 #if 0
4646 /* This is wrong. If doing a long backtrace, the user should be
4647 able to get out next time we call QUIT, without anything as
4648 violent as interrupt_query. If we want to provide a way out of
4649 here without getting to the next QUIT, it should be based on
4650 hitting ^C twice as in remote_wait. */
4651 if (quit_flag)
4652 {
4653 quit_flag = 0;
4654 interrupt_query ();
4655 }
4656 #endif
4657 }
4658 }
4659
4660 /* Come here after finding the start of a frame when we expected an
4661 ack. Do our best to discard the rest of this packet. */
4662
4663 static void
4664 skip_frame (void)
4665 {
4666 int c;
4667
4668 while (1)
4669 {
4670 c = readchar (remote_timeout);
4671 switch (c)
4672 {
4673 case SERIAL_TIMEOUT:
4674 /* Nothing we can do. */
4675 return;
4676 case '#':
4677 /* Discard the two bytes of checksum and stop. */
4678 c = readchar (remote_timeout);
4679 if (c >= 0)
4680 c = readchar (remote_timeout);
4681
4682 return;
4683 case '*': /* Run length encoding. */
4684 /* Discard the repeat count. */
4685 c = readchar (remote_timeout);
4686 if (c < 0)
4687 return;
4688 break;
4689 default:
4690 /* A regular character. */
4691 break;
4692 }
4693 }
4694 }
4695
4696 /* Come here after finding the start of the frame. Collect the rest
4697 into *BUF, verifying the checksum, length, and handling run-length
4698 compression. NUL terminate the buffer. If there is not enough room,
4699 expand *BUF using xrealloc.
4700
4701 Returns -1 on error, number of characters in buffer (ignoring the
4702 trailing NULL) on success. (could be extended to return one of the
4703 SERIAL status indications). */
4704
4705 static long
4706 read_frame (char **buf_p,
4707 long *sizeof_buf)
4708 {
4709 unsigned char csum;
4710 long bc;
4711 int c;
4712 char *buf = *buf_p;
4713
4714 csum = 0;
4715 bc = 0;
4716
4717 while (1)
4718 {
4719 c = readchar (remote_timeout);
4720 switch (c)
4721 {
4722 case SERIAL_TIMEOUT:
4723 if (remote_debug)
4724 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4725 return -1;
4726 case '$':
4727 if (remote_debug)
4728 fputs_filtered ("Saw new packet start in middle of old one\n",
4729 gdb_stdlog);
4730 return -1; /* Start a new packet, count retries. */
4731 case '#':
4732 {
4733 unsigned char pktcsum;
4734 int check_0 = 0;
4735 int check_1 = 0;
4736
4737 buf[bc] = '\0';
4738
4739 check_0 = readchar (remote_timeout);
4740 if (check_0 >= 0)
4741 check_1 = readchar (remote_timeout);
4742
4743 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4744 {
4745 if (remote_debug)
4746 fputs_filtered ("Timeout in checksum, retrying\n",
4747 gdb_stdlog);
4748 return -1;
4749 }
4750 else if (check_0 < 0 || check_1 < 0)
4751 {
4752 if (remote_debug)
4753 fputs_filtered ("Communication error in checksum\n",
4754 gdb_stdlog);
4755 return -1;
4756 }
4757
4758 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4759 if (csum == pktcsum)
4760 return bc;
4761
4762 if (remote_debug)
4763 {
4764 fprintf_filtered (gdb_stdlog,
4765 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4766 pktcsum, csum);
4767 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4768 fputs_filtered ("\n", gdb_stdlog);
4769 }
4770 /* Number of characters in buffer ignoring trailing
4771 NULL. */
4772 return -1;
4773 }
4774 case '*': /* Run length encoding. */
4775 {
4776 int repeat;
4777 csum += c;
4778
4779 c = readchar (remote_timeout);
4780 csum += c;
4781 repeat = c - ' ' + 3; /* Compute repeat count. */
4782
4783 /* The character before ``*'' is repeated. */
4784
4785 if (repeat > 0 && repeat <= 255 && bc > 0)
4786 {
4787 if (bc + repeat - 1 >= *sizeof_buf - 1)
4788 {
4789 /* Make some more room in the buffer. */
4790 *sizeof_buf += repeat;
4791 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4792 buf = *buf_p;
4793 }
4794
4795 memset (&buf[bc], buf[bc - 1], repeat);
4796 bc += repeat;
4797 continue;
4798 }
4799
4800 buf[bc] = '\0';
4801 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4802 return -1;
4803 }
4804 default:
4805 if (bc >= *sizeof_buf - 1)
4806 {
4807 /* Make some more room in the buffer. */
4808 *sizeof_buf *= 2;
4809 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4810 buf = *buf_p;
4811 }
4812
4813 buf[bc++] = c;
4814 csum += c;
4815 continue;
4816 }
4817 }
4818 }
4819
4820 /* Read a packet from the remote machine, with error checking, and
4821 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4822 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4823 rather than timing out; this is used (in synchronous mode) to wait
4824 for a target that is is executing user code to stop. */
4825 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4826 don't have to change all the calls to getpkt to deal with the
4827 return value, because at the moment I don't know what the right
4828 thing to do it for those. */
4829 void
4830 getpkt (char **buf,
4831 long *sizeof_buf,
4832 int forever)
4833 {
4834 int timed_out;
4835
4836 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4837 }
4838
4839
4840 /* Read a packet from the remote machine, with error checking, and
4841 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4842 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4843 rather than timing out; this is used (in synchronous mode) to wait
4844 for a target that is is executing user code to stop. If FOREVER ==
4845 0, this function is allowed to time out gracefully and return an
4846 indication of this to the caller. Otherwise return the number
4847 of bytes read. */
4848 static int
4849 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4850 {
4851 int c;
4852 int tries;
4853 int timeout;
4854 int val;
4855
4856 strcpy (*buf, "timeout");
4857
4858 if (forever)
4859 {
4860 timeout = watchdog > 0 ? watchdog : -1;
4861 }
4862
4863 else
4864 timeout = remote_timeout;
4865
4866 #define MAX_TRIES 3
4867
4868 for (tries = 1; tries <= MAX_TRIES; tries++)
4869 {
4870 /* This can loop forever if the remote side sends us characters
4871 continuously, but if it pauses, we'll get a zero from
4872 readchar because of timeout. Then we'll count that as a
4873 retry. */
4874
4875 /* Note that we will only wait forever prior to the start of a
4876 packet. After that, we expect characters to arrive at a
4877 brisk pace. They should show up within remote_timeout
4878 intervals. */
4879
4880 do
4881 {
4882 c = readchar (timeout);
4883
4884 if (c == SERIAL_TIMEOUT)
4885 {
4886 if (forever) /* Watchdog went off? Kill the target. */
4887 {
4888 QUIT;
4889 target_mourn_inferior ();
4890 error (_("Watchdog has expired. Target detached."));
4891 }
4892 if (remote_debug)
4893 fputs_filtered ("Timed out.\n", gdb_stdlog);
4894 goto retry;
4895 }
4896 }
4897 while (c != '$');
4898
4899 /* We've found the start of a packet, now collect the data. */
4900
4901 val = read_frame (buf, sizeof_buf);
4902
4903 if (val >= 0)
4904 {
4905 if (remote_debug)
4906 {
4907 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4908 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4909 fprintf_unfiltered (gdb_stdlog, "\n");
4910 }
4911 serial_write (remote_desc, "+", 1);
4912 return val;
4913 }
4914
4915 /* Try the whole thing again. */
4916 retry:
4917 serial_write (remote_desc, "-", 1);
4918 }
4919
4920 /* We have tried hard enough, and just can't receive the packet.
4921 Give up. */
4922
4923 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4924 serial_write (remote_desc, "+", 1);
4925 return -1;
4926 }
4927 \f
4928 static void
4929 remote_kill (void)
4930 {
4931 /* For some mysterious reason, wait_for_inferior calls kill instead of
4932 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4933 if (kill_kludge)
4934 {
4935 kill_kludge = 0;
4936 target_mourn_inferior ();
4937 return;
4938 }
4939
4940 /* Use catch_errors so the user can quit from gdb even when we aren't on
4941 speaking terms with the remote system. */
4942 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4943
4944 /* Don't wait for it to die. I'm not really sure it matters whether
4945 we do or not. For the existing stubs, kill is a noop. */
4946 target_mourn_inferior ();
4947 }
4948
4949 /* Async version of remote_kill. */
4950 static void
4951 remote_async_kill (void)
4952 {
4953 /* Unregister the file descriptor from the event loop. */
4954 if (target_is_async_p ())
4955 serial_async (remote_desc, NULL, 0);
4956
4957 /* For some mysterious reason, wait_for_inferior calls kill instead of
4958 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4959 if (kill_kludge)
4960 {
4961 kill_kludge = 0;
4962 target_mourn_inferior ();
4963 return;
4964 }
4965
4966 /* Use catch_errors so the user can quit from gdb even when we
4967 aren't on speaking terms with the remote system. */
4968 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4969
4970 /* Don't wait for it to die. I'm not really sure it matters whether
4971 we do or not. For the existing stubs, kill is a noop. */
4972 target_mourn_inferior ();
4973 }
4974
4975 static void
4976 remote_mourn (void)
4977 {
4978 remote_mourn_1 (&remote_ops);
4979 }
4980
4981 static void
4982 remote_async_mourn (void)
4983 {
4984 remote_mourn_1 (&remote_async_ops);
4985 }
4986
4987 static void
4988 extended_remote_mourn (void)
4989 {
4990 /* We do _not_ want to mourn the target like this; this will
4991 remove the extended remote target from the target stack,
4992 and the next time the user says "run" it'll fail.
4993
4994 FIXME: What is the right thing to do here? */
4995 #if 0
4996 remote_mourn_1 (&extended_remote_ops);
4997 #endif
4998 }
4999
5000 /* Worker function for remote_mourn. */
5001 static void
5002 remote_mourn_1 (struct target_ops *target)
5003 {
5004 unpush_target (target);
5005 generic_mourn_inferior ();
5006 }
5007
5008 /* In the extended protocol we want to be able to do things like
5009 "run" and have them basically work as expected. So we need
5010 a special create_inferior function.
5011
5012 FIXME: One day add support for changing the exec file
5013 we're debugging, arguments and an environment. */
5014
5015 static void
5016 extended_remote_create_inferior (char *exec_file, char *args,
5017 char **env, int from_tty)
5018 {
5019 /* Rip out the breakpoints; we'll reinsert them after restarting
5020 the remote server. */
5021 remove_breakpoints ();
5022
5023 /* Now restart the remote server. */
5024 extended_remote_restart ();
5025
5026 /* Now put the breakpoints back in. This way we're safe if the
5027 restart function works via a unix fork on the remote side. */
5028 insert_breakpoints ();
5029
5030 /* Clean up from the last time we were running. */
5031 clear_proceed_status ();
5032 }
5033
5034 /* Async version of extended_remote_create_inferior. */
5035 static void
5036 extended_remote_async_create_inferior (char *exec_file, char *args,
5037 char **env, int from_tty)
5038 {
5039 /* Rip out the breakpoints; we'll reinsert them after restarting
5040 the remote server. */
5041 remove_breakpoints ();
5042
5043 /* If running asynchronously, register the target file descriptor
5044 with the event loop. */
5045 if (target_can_async_p ())
5046 target_async (inferior_event_handler, 0);
5047
5048 /* Now restart the remote server. */
5049 extended_remote_restart ();
5050
5051 /* Now put the breakpoints back in. This way we're safe if the
5052 restart function works via a unix fork on the remote side. */
5053 insert_breakpoints ();
5054
5055 /* Clean up from the last time we were running. */
5056 clear_proceed_status ();
5057 }
5058 \f
5059
5060 /* On some machines, e.g. 68k, we may use a different breakpoint
5061 instruction than other targets; in those use
5062 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
5063 Also, bi-endian targets may define
5064 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
5065 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
5066 just call the standard routines that are in mem-break.c. */
5067
5068 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
5069 target should use an identical BREAKPOINT_FROM_PC. As for native,
5070 the ARCH-OS-tdep.c code can override the default. */
5071
5072 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
5073 #define DEPRECATED_REMOTE_BREAKPOINT
5074 #endif
5075
5076 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5077
5078 /* If the target isn't bi-endian, just pretend it is. */
5079 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
5080 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5081 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5082 #endif
5083
5084 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
5085 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
5086
5087 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5088
5089 /* Insert a breakpoint. On targets that have software breakpoint
5090 support, we ask the remote target to do the work; on targets
5091 which don't, we insert a traditional memory breakpoint. */
5092
5093 static int
5094 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5095 {
5096 CORE_ADDR addr = bp_tgt->placed_address;
5097 struct remote_state *rs = get_remote_state ();
5098 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5099 int val;
5100 #endif
5101
5102 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5103 If it succeeds, then set the support to PACKET_ENABLE. If it
5104 fails, and the user has explicitly requested the Z support then
5105 report an error, otherwise, mark it disabled and go on. */
5106
5107 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5108 {
5109 char *p = rs->buf;
5110
5111 *(p++) = 'Z';
5112 *(p++) = '0';
5113 *(p++) = ',';
5114 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5115 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5116 p += hexnumstr (p, addr);
5117 sprintf (p, ",%d", bp_tgt->placed_size);
5118
5119 putpkt (rs->buf);
5120 getpkt (&rs->buf, &rs->buf_size, 0);
5121
5122 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5123 {
5124 case PACKET_ERROR:
5125 return -1;
5126 case PACKET_OK:
5127 return 0;
5128 case PACKET_UNKNOWN:
5129 break;
5130 }
5131 }
5132
5133 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5134 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof big_break_insn;
5135 val = target_read_memory (addr, bp_tgt->shadow_contents, bp_tgt->shadow_len);
5136
5137 if (val == 0)
5138 {
5139 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5140 val = target_write_memory (addr, (char *) big_break_insn,
5141 sizeof big_break_insn);
5142 else
5143 val = target_write_memory (addr, (char *) little_break_insn,
5144 sizeof little_break_insn);
5145 }
5146
5147 return val;
5148 #else
5149 return memory_insert_breakpoint (bp_tgt);
5150 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5151 }
5152
5153 static int
5154 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5155 {
5156 CORE_ADDR addr = bp_tgt->placed_address;
5157 struct remote_state *rs = get_remote_state ();
5158 int bp_size;
5159
5160 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5161 {
5162 char *p = rs->buf;
5163
5164 *(p++) = 'z';
5165 *(p++) = '0';
5166 *(p++) = ',';
5167
5168 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5169 p += hexnumstr (p, addr);
5170 sprintf (p, ",%d", bp_tgt->placed_size);
5171
5172 putpkt (rs->buf);
5173 getpkt (&rs->buf, &rs->buf_size, 0);
5174
5175 return (rs->buf[0] == 'E');
5176 }
5177
5178 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5179 return target_write_memory (bp_tgt->placed_address, bp_tgt->shadow_contents,
5180 bp_tgt->shadow_len);
5181 #else
5182 return memory_remove_breakpoint (bp_tgt);
5183 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5184 }
5185
5186 static int
5187 watchpoint_to_Z_packet (int type)
5188 {
5189 switch (type)
5190 {
5191 case hw_write:
5192 return Z_PACKET_WRITE_WP;
5193 break;
5194 case hw_read:
5195 return Z_PACKET_READ_WP;
5196 break;
5197 case hw_access:
5198 return Z_PACKET_ACCESS_WP;
5199 break;
5200 default:
5201 internal_error (__FILE__, __LINE__,
5202 _("hw_bp_to_z: bad watchpoint type %d"), type);
5203 }
5204 }
5205
5206 static int
5207 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5208 {
5209 struct remote_state *rs = get_remote_state ();
5210 char *p;
5211 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5212
5213 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5214 return -1;
5215
5216 sprintf (rs->buf, "Z%x,", packet);
5217 p = strchr (rs->buf, '\0');
5218 addr = remote_address_masked (addr);
5219 p += hexnumstr (p, (ULONGEST) addr);
5220 sprintf (p, ",%x", len);
5221
5222 putpkt (rs->buf);
5223 getpkt (&rs->buf, &rs->buf_size, 0);
5224
5225 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5226 {
5227 case PACKET_ERROR:
5228 case PACKET_UNKNOWN:
5229 return -1;
5230 case PACKET_OK:
5231 return 0;
5232 }
5233 internal_error (__FILE__, __LINE__,
5234 _("remote_insert_watchpoint: reached end of function"));
5235 }
5236
5237
5238 static int
5239 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5240 {
5241 struct remote_state *rs = get_remote_state ();
5242 char *p;
5243 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5244
5245 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5246 return -1;
5247
5248 sprintf (rs->buf, "z%x,", packet);
5249 p = strchr (rs->buf, '\0');
5250 addr = remote_address_masked (addr);
5251 p += hexnumstr (p, (ULONGEST) addr);
5252 sprintf (p, ",%x", len);
5253 putpkt (rs->buf);
5254 getpkt (&rs->buf, &rs->buf_size, 0);
5255
5256 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5257 {
5258 case PACKET_ERROR:
5259 case PACKET_UNKNOWN:
5260 return -1;
5261 case PACKET_OK:
5262 return 0;
5263 }
5264 internal_error (__FILE__, __LINE__,
5265 _("remote_remove_watchpoint: reached end of function"));
5266 }
5267
5268
5269 int remote_hw_watchpoint_limit = -1;
5270 int remote_hw_breakpoint_limit = -1;
5271
5272 static int
5273 remote_check_watch_resources (int type, int cnt, int ot)
5274 {
5275 if (type == bp_hardware_breakpoint)
5276 {
5277 if (remote_hw_breakpoint_limit == 0)
5278 return 0;
5279 else if (remote_hw_breakpoint_limit < 0)
5280 return 1;
5281 else if (cnt <= remote_hw_breakpoint_limit)
5282 return 1;
5283 }
5284 else
5285 {
5286 if (remote_hw_watchpoint_limit == 0)
5287 return 0;
5288 else if (remote_hw_watchpoint_limit < 0)
5289 return 1;
5290 else if (ot)
5291 return -1;
5292 else if (cnt <= remote_hw_watchpoint_limit)
5293 return 1;
5294 }
5295 return -1;
5296 }
5297
5298 static int
5299 remote_stopped_by_watchpoint (void)
5300 {
5301 return remote_stopped_by_watchpoint_p;
5302 }
5303
5304 extern int stepped_after_stopped_by_watchpoint;
5305
5306 static int
5307 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5308 {
5309 int rc = 0;
5310 if (remote_stopped_by_watchpoint ()
5311 || stepped_after_stopped_by_watchpoint)
5312 {
5313 *addr_p = remote_watch_data_address;
5314 rc = 1;
5315 }
5316
5317 return rc;
5318 }
5319
5320
5321 static int
5322 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5323 {
5324 CORE_ADDR addr;
5325 struct remote_state *rs = get_remote_state ();
5326 char *p = rs->buf;
5327
5328 /* The length field should be set to the size of a breakpoint
5329 instruction, even though we aren't inserting one ourselves. */
5330
5331 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5332
5333 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5334 return -1;
5335
5336 *(p++) = 'Z';
5337 *(p++) = '1';
5338 *(p++) = ',';
5339
5340 addr = remote_address_masked (bp_tgt->placed_address);
5341 p += hexnumstr (p, (ULONGEST) addr);
5342 sprintf (p, ",%x", bp_tgt->placed_size);
5343
5344 putpkt (rs->buf);
5345 getpkt (&rs->buf, &rs->buf_size, 0);
5346
5347 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5348 {
5349 case PACKET_ERROR:
5350 case PACKET_UNKNOWN:
5351 return -1;
5352 case PACKET_OK:
5353 return 0;
5354 }
5355 internal_error (__FILE__, __LINE__,
5356 _("remote_insert_hw_breakpoint: reached end of function"));
5357 }
5358
5359
5360 static int
5361 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5362 {
5363 CORE_ADDR addr;
5364 struct remote_state *rs = get_remote_state ();
5365 char *p = rs->buf;
5366
5367 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5368 return -1;
5369
5370 *(p++) = 'z';
5371 *(p++) = '1';
5372 *(p++) = ',';
5373
5374 addr = remote_address_masked (bp_tgt->placed_address);
5375 p += hexnumstr (p, (ULONGEST) addr);
5376 sprintf (p, ",%x", bp_tgt->placed_size);
5377
5378 putpkt (rs->buf);
5379 getpkt (&rs->buf, &rs->buf_size, 0);
5380
5381 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5382 {
5383 case PACKET_ERROR:
5384 case PACKET_UNKNOWN:
5385 return -1;
5386 case PACKET_OK:
5387 return 0;
5388 }
5389 internal_error (__FILE__, __LINE__,
5390 _("remote_remove_hw_breakpoint: reached end of function"));
5391 }
5392
5393 /* Some targets are only capable of doing downloads, and afterwards
5394 they switch to the remote serial protocol. This function provides
5395 a clean way to get from the download target to the remote target.
5396 It's basically just a wrapper so that we don't have to expose any
5397 of the internal workings of remote.c.
5398
5399 Prior to calling this routine, you should shutdown the current
5400 target code, else you will get the "A program is being debugged
5401 already..." message. Usually a call to pop_target() suffices. */
5402
5403 void
5404 push_remote_target (char *name, int from_tty)
5405 {
5406 printf_filtered (_("Switching to remote protocol\n"));
5407 remote_open (name, from_tty);
5408 }
5409
5410 /* Table used by the crc32 function to calcuate the checksum. */
5411
5412 static unsigned long crc32_table[256] =
5413 {0, 0};
5414
5415 static unsigned long
5416 crc32 (unsigned char *buf, int len, unsigned int crc)
5417 {
5418 if (!crc32_table[1])
5419 {
5420 /* Initialize the CRC table and the decoding table. */
5421 int i, j;
5422 unsigned int c;
5423
5424 for (i = 0; i < 256; i++)
5425 {
5426 for (c = i << 24, j = 8; j > 0; --j)
5427 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5428 crc32_table[i] = c;
5429 }
5430 }
5431
5432 while (len--)
5433 {
5434 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5435 buf++;
5436 }
5437 return crc;
5438 }
5439
5440 /* compare-sections command
5441
5442 With no arguments, compares each loadable section in the exec bfd
5443 with the same memory range on the target, and reports mismatches.
5444 Useful for verifying the image on the target against the exec file.
5445 Depends on the target understanding the new "qCRC:" request. */
5446
5447 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5448 target method (target verify memory) and generic version of the
5449 actual command. This will allow other high-level code (especially
5450 generic_load()) to make use of this target functionality. */
5451
5452 static void
5453 compare_sections_command (char *args, int from_tty)
5454 {
5455 struct remote_state *rs = get_remote_state ();
5456 asection *s;
5457 unsigned long host_crc, target_crc;
5458 extern bfd *exec_bfd;
5459 struct cleanup *old_chain;
5460 char *tmp;
5461 char *sectdata;
5462 const char *sectname;
5463 bfd_size_type size;
5464 bfd_vma lma;
5465 int matched = 0;
5466 int mismatched = 0;
5467
5468 if (!exec_bfd)
5469 error (_("command cannot be used without an exec file"));
5470 if (!current_target.to_shortname ||
5471 strcmp (current_target.to_shortname, "remote") != 0)
5472 error (_("command can only be used with remote target"));
5473
5474 for (s = exec_bfd->sections; s; s = s->next)
5475 {
5476 if (!(s->flags & SEC_LOAD))
5477 continue; /* skip non-loadable section */
5478
5479 size = bfd_get_section_size (s);
5480 if (size == 0)
5481 continue; /* skip zero-length section */
5482
5483 sectname = bfd_get_section_name (exec_bfd, s);
5484 if (args && strcmp (args, sectname) != 0)
5485 continue; /* not the section selected by user */
5486
5487 matched = 1; /* do this section */
5488 lma = s->lma;
5489 /* FIXME: assumes lma can fit into long. */
5490 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5491 (long) lma, (long) size);
5492 putpkt (rs->buf);
5493
5494 /* Be clever; compute the host_crc before waiting for target
5495 reply. */
5496 sectdata = xmalloc (size);
5497 old_chain = make_cleanup (xfree, sectdata);
5498 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5499 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5500
5501 getpkt (&rs->buf, &rs->buf_size, 0);
5502 if (rs->buf[0] == 'E')
5503 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5504 sectname, paddr (lma), paddr (lma + size));
5505 if (rs->buf[0] != 'C')
5506 error (_("remote target does not support this operation"));
5507
5508 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5509 target_crc = target_crc * 16 + fromhex (*tmp);
5510
5511 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5512 sectname, paddr (lma), paddr (lma + size));
5513 if (host_crc == target_crc)
5514 printf_filtered ("matched.\n");
5515 else
5516 {
5517 printf_filtered ("MIS-MATCHED!\n");
5518 mismatched++;
5519 }
5520
5521 do_cleanups (old_chain);
5522 }
5523 if (mismatched > 0)
5524 warning (_("One or more sections of the remote executable does not match\n\
5525 the loaded file\n"));
5526 if (args && !matched)
5527 printf_filtered (_("No loaded section named '%s'.\n"), args);
5528 }
5529
5530 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5531 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5532 number of bytes read is returned, or 0 for EOF, or -1 for error.
5533 The number of bytes read may be less than LEN without indicating an
5534 EOF. PACKET is checked and updated to indicate whether the remote
5535 target supports this object. */
5536
5537 static LONGEST
5538 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5539 const char *annex,
5540 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5541 struct packet_config *packet)
5542 {
5543 static char *finished_object;
5544 static char *finished_annex;
5545 static ULONGEST finished_offset;
5546
5547 struct remote_state *rs = get_remote_state ();
5548 unsigned int total = 0;
5549 LONGEST i, n, packet_len;
5550
5551 if (packet->support == PACKET_DISABLE)
5552 return -1;
5553
5554 /* Check whether we've cached an end-of-object packet that matches
5555 this request. */
5556 if (finished_object)
5557 {
5558 if (strcmp (object_name, finished_object) == 0
5559 && strcmp (annex ? annex : "", finished_annex) == 0
5560 && offset == finished_offset)
5561 return 0;
5562
5563 /* Otherwise, we're now reading something different. Discard
5564 the cache. */
5565 xfree (finished_object);
5566 xfree (finished_annex);
5567 finished_object = NULL;
5568 finished_annex = NULL;
5569 }
5570
5571 /* Request only enough to fit in a single packet. The actual data
5572 may not, since we don't know how much of it will need to be escaped;
5573 the target is free to respond with slightly less data. We subtract
5574 five to account for the response type and the protocol frame. */
5575 n = min (get_remote_packet_size () - 5, len);
5576 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5577 object_name, annex ? annex : "",
5578 phex_nz (offset, sizeof offset),
5579 phex_nz (n, sizeof n));
5580 i = putpkt (rs->buf);
5581 if (i < 0)
5582 return -1;
5583
5584 rs->buf[0] = '\0';
5585 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5586 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5587 return -1;
5588
5589 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5590 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5591
5592 /* 'm' means there is (or at least might be) more data after this
5593 batch. That does not make sense unless there's at least one byte
5594 of data in this reply. */
5595 if (rs->buf[0] == 'm' && packet_len == 1)
5596 error (_("Remote qXfer reply contained no data."));
5597
5598 /* Got some data. */
5599 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5600
5601 /* 'l' is an EOF marker, possibly including a final block of data,
5602 or possibly empty. Record it to bypass the next read, if one is
5603 issued. */
5604 if (rs->buf[0] == 'l')
5605 {
5606 finished_object = xstrdup (object_name);
5607 finished_annex = xstrdup (annex ? annex : "");
5608 finished_offset = offset + i;
5609 }
5610
5611 return i;
5612 }
5613
5614 static LONGEST
5615 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5616 const char *annex, gdb_byte *readbuf,
5617 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5618 {
5619 struct remote_state *rs = get_remote_state ();
5620 int i;
5621 char *p2;
5622 char query_type;
5623
5624 /* Handle memory using the standard memory routines. */
5625 if (object == TARGET_OBJECT_MEMORY)
5626 {
5627 int xfered;
5628 errno = 0;
5629
5630 if (writebuf != NULL)
5631 xfered = remote_write_bytes (offset, writebuf, len);
5632 else
5633 xfered = remote_read_bytes (offset, readbuf, len);
5634
5635 if (xfered > 0)
5636 return xfered;
5637 else if (xfered == 0 && errno == 0)
5638 return 0;
5639 else
5640 return -1;
5641 }
5642
5643 /* Only handle flash writes. */
5644 if (writebuf != NULL)
5645 {
5646 LONGEST xfered;
5647
5648 switch (object)
5649 {
5650 case TARGET_OBJECT_FLASH:
5651 xfered = remote_flash_write (ops, offset, len, writebuf);
5652
5653 if (xfered > 0)
5654 return xfered;
5655 else if (xfered == 0 && errno == 0)
5656 return 0;
5657 else
5658 return -1;
5659
5660 default:
5661 return -1;
5662 }
5663 }
5664
5665 /* Map pre-existing objects onto letters. DO NOT do this for new
5666 objects!!! Instead specify new query packets. */
5667 switch (object)
5668 {
5669 case TARGET_OBJECT_AVR:
5670 query_type = 'R';
5671 break;
5672
5673 case TARGET_OBJECT_AUXV:
5674 gdb_assert (annex == NULL);
5675 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5676 &remote_protocol_packets[PACKET_qXfer_auxv]);
5677
5678 case TARGET_OBJECT_MEMORY_MAP:
5679 gdb_assert (annex == NULL);
5680 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5681 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5682
5683 default:
5684 return -1;
5685 }
5686
5687 /* Note: a zero OFFSET and LEN can be used to query the minimum
5688 buffer size. */
5689 if (offset == 0 && len == 0)
5690 return (get_remote_packet_size ());
5691 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5692 large enough let the caller deal with it. */
5693 if (len < get_remote_packet_size ())
5694 return -1;
5695 len = get_remote_packet_size ();
5696
5697 /* Except for querying the minimum buffer size, target must be open. */
5698 if (!remote_desc)
5699 error (_("remote query is only available after target open"));
5700
5701 gdb_assert (annex != NULL);
5702 gdb_assert (readbuf != NULL);
5703
5704 p2 = rs->buf;
5705 *p2++ = 'q';
5706 *p2++ = query_type;
5707
5708 /* We used one buffer char for the remote protocol q command and
5709 another for the query type. As the remote protocol encapsulation
5710 uses 4 chars plus one extra in case we are debugging
5711 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5712 string. */
5713 i = 0;
5714 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5715 {
5716 /* Bad caller may have sent forbidden characters. */
5717 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5718 *p2++ = annex[i];
5719 i++;
5720 }
5721 *p2 = '\0';
5722 gdb_assert (annex[i] == '\0');
5723
5724 i = putpkt (rs->buf);
5725 if (i < 0)
5726 return i;
5727
5728 getpkt (&rs->buf, &rs->buf_size, 0);
5729 strcpy ((char *) readbuf, rs->buf);
5730
5731 return strlen ((char *) readbuf);
5732 }
5733
5734 static void
5735 remote_rcmd (char *command,
5736 struct ui_file *outbuf)
5737 {
5738 struct remote_state *rs = get_remote_state ();
5739 char *p = rs->buf;
5740
5741 if (!remote_desc)
5742 error (_("remote rcmd is only available after target open"));
5743
5744 /* Send a NULL command across as an empty command. */
5745 if (command == NULL)
5746 command = "";
5747
5748 /* The query prefix. */
5749 strcpy (rs->buf, "qRcmd,");
5750 p = strchr (rs->buf, '\0');
5751
5752 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5753 error (_("\"monitor\" command ``%s'' is too long."), command);
5754
5755 /* Encode the actual command. */
5756 bin2hex ((gdb_byte *) command, p, 0);
5757
5758 if (putpkt (rs->buf) < 0)
5759 error (_("Communication problem with target."));
5760
5761 /* get/display the response */
5762 while (1)
5763 {
5764 char *buf;
5765
5766 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5767 rs->buf[0] = '\0';
5768 getpkt (&rs->buf, &rs->buf_size, 0);
5769 buf = rs->buf;
5770 if (buf[0] == '\0')
5771 error (_("Target does not support this command."));
5772 if (buf[0] == 'O' && buf[1] != 'K')
5773 {
5774 remote_console_output (buf + 1); /* 'O' message from stub. */
5775 continue;
5776 }
5777 if (strcmp (buf, "OK") == 0)
5778 break;
5779 if (strlen (buf) == 3 && buf[0] == 'E'
5780 && isdigit (buf[1]) && isdigit (buf[2]))
5781 {
5782 error (_("Protocol error with Rcmd"));
5783 }
5784 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5785 {
5786 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5787 fputc_unfiltered (c, outbuf);
5788 }
5789 break;
5790 }
5791 }
5792
5793 static VEC(mem_region_s) *
5794 remote_memory_map (struct target_ops *ops)
5795 {
5796 VEC(mem_region_s) *result = NULL;
5797 char *text = target_read_stralloc (&current_target,
5798 TARGET_OBJECT_MEMORY_MAP, NULL);
5799
5800 if (text)
5801 {
5802 struct cleanup *back_to = make_cleanup (xfree, text);
5803 result = parse_memory_map (text);
5804 do_cleanups (back_to);
5805 }
5806
5807 return result;
5808 }
5809
5810 static void
5811 packet_command (char *args, int from_tty)
5812 {
5813 struct remote_state *rs = get_remote_state ();
5814
5815 if (!remote_desc)
5816 error (_("command can only be used with remote target"));
5817
5818 if (!args)
5819 error (_("remote-packet command requires packet text as argument"));
5820
5821 puts_filtered ("sending: ");
5822 print_packet (args);
5823 puts_filtered ("\n");
5824 putpkt (args);
5825
5826 getpkt (&rs->buf, &rs->buf_size, 0);
5827 puts_filtered ("received: ");
5828 print_packet (rs->buf);
5829 puts_filtered ("\n");
5830 }
5831
5832 #if 0
5833 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5834
5835 static void display_thread_info (struct gdb_ext_thread_info *info);
5836
5837 static void threadset_test_cmd (char *cmd, int tty);
5838
5839 static void threadalive_test (char *cmd, int tty);
5840
5841 static void threadlist_test_cmd (char *cmd, int tty);
5842
5843 int get_and_display_threadinfo (threadref *ref);
5844
5845 static void threadinfo_test_cmd (char *cmd, int tty);
5846
5847 static int thread_display_step (threadref *ref, void *context);
5848
5849 static void threadlist_update_test_cmd (char *cmd, int tty);
5850
5851 static void init_remote_threadtests (void);
5852
5853 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5854
5855 static void
5856 threadset_test_cmd (char *cmd, int tty)
5857 {
5858 int sample_thread = SAMPLE_THREAD;
5859
5860 printf_filtered (_("Remote threadset test\n"));
5861 set_thread (sample_thread, 1);
5862 }
5863
5864
5865 static void
5866 threadalive_test (char *cmd, int tty)
5867 {
5868 int sample_thread = SAMPLE_THREAD;
5869
5870 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5871 printf_filtered ("PASS: Thread alive test\n");
5872 else
5873 printf_filtered ("FAIL: Thread alive test\n");
5874 }
5875
5876 void output_threadid (char *title, threadref *ref);
5877
5878 void
5879 output_threadid (char *title, threadref *ref)
5880 {
5881 char hexid[20];
5882
5883 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5884 hexid[16] = 0;
5885 printf_filtered ("%s %s\n", title, (&hexid[0]));
5886 }
5887
5888 static void
5889 threadlist_test_cmd (char *cmd, int tty)
5890 {
5891 int startflag = 1;
5892 threadref nextthread;
5893 int done, result_count;
5894 threadref threadlist[3];
5895
5896 printf_filtered ("Remote Threadlist test\n");
5897 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5898 &result_count, &threadlist[0]))
5899 printf_filtered ("FAIL: threadlist test\n");
5900 else
5901 {
5902 threadref *scan = threadlist;
5903 threadref *limit = scan + result_count;
5904
5905 while (scan < limit)
5906 output_threadid (" thread ", scan++);
5907 }
5908 }
5909
5910 void
5911 display_thread_info (struct gdb_ext_thread_info *info)
5912 {
5913 output_threadid ("Threadid: ", &info->threadid);
5914 printf_filtered ("Name: %s\n ", info->shortname);
5915 printf_filtered ("State: %s\n", info->display);
5916 printf_filtered ("other: %s\n\n", info->more_display);
5917 }
5918
5919 int
5920 get_and_display_threadinfo (threadref *ref)
5921 {
5922 int result;
5923 int set;
5924 struct gdb_ext_thread_info threadinfo;
5925
5926 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5927 | TAG_MOREDISPLAY | TAG_DISPLAY;
5928 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5929 display_thread_info (&threadinfo);
5930 return result;
5931 }
5932
5933 static void
5934 threadinfo_test_cmd (char *cmd, int tty)
5935 {
5936 int athread = SAMPLE_THREAD;
5937 threadref thread;
5938 int set;
5939
5940 int_to_threadref (&thread, athread);
5941 printf_filtered ("Remote Threadinfo test\n");
5942 if (!get_and_display_threadinfo (&thread))
5943 printf_filtered ("FAIL cannot get thread info\n");
5944 }
5945
5946 static int
5947 thread_display_step (threadref *ref, void *context)
5948 {
5949 /* output_threadid(" threadstep ",ref); *//* simple test */
5950 return get_and_display_threadinfo (ref);
5951 }
5952
5953 static void
5954 threadlist_update_test_cmd (char *cmd, int tty)
5955 {
5956 printf_filtered ("Remote Threadlist update test\n");
5957 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5958 }
5959
5960 static void
5961 init_remote_threadtests (void)
5962 {
5963 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5964 Fetch and print the remote list of thread identifiers, one pkt only"));
5965 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5966 _("Fetch and display info about one thread"));
5967 add_com ("tset", class_obscure, threadset_test_cmd,
5968 _("Test setting to a different thread"));
5969 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5970 _("Iterate through updating all remote thread info"));
5971 add_com ("talive", class_obscure, threadalive_test,
5972 _(" Remote thread alive test "));
5973 }
5974
5975 #endif /* 0 */
5976
5977 /* Convert a thread ID to a string. Returns the string in a static
5978 buffer. */
5979
5980 static char *
5981 remote_pid_to_str (ptid_t ptid)
5982 {
5983 static char buf[32];
5984
5985 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
5986 return buf;
5987 }
5988
5989 /* Get the address of the thread local variable in OBJFILE which is
5990 stored at OFFSET within the thread local storage for thread PTID. */
5991
5992 static CORE_ADDR
5993 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5994 {
5995 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5996 {
5997 struct remote_state *rs = get_remote_state ();
5998 char *p = rs->buf;
5999 enum packet_result result;
6000
6001 strcpy (p, "qGetTLSAddr:");
6002 p += strlen (p);
6003 p += hexnumstr (p, PIDGET (ptid));
6004 *p++ = ',';
6005 p += hexnumstr (p, offset);
6006 *p++ = ',';
6007 p += hexnumstr (p, lm);
6008 *p++ = '\0';
6009
6010 putpkt (rs->buf);
6011 getpkt (&rs->buf, &rs->buf_size, 0);
6012 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6013 if (result == PACKET_OK)
6014 {
6015 ULONGEST result;
6016
6017 unpack_varlen_hex (rs->buf, &result);
6018 return result;
6019 }
6020 else if (result == PACKET_UNKNOWN)
6021 throw_error (TLS_GENERIC_ERROR,
6022 _("Remote target doesn't support qGetTLSAddr packet"));
6023 else
6024 throw_error (TLS_GENERIC_ERROR,
6025 _("Remote target failed to process qGetTLSAddr request"));
6026 }
6027 else
6028 throw_error (TLS_GENERIC_ERROR,
6029 _("TLS not supported or disabled on this target"));
6030 /* Not reached. */
6031 return 0;
6032 }
6033
6034 static void
6035 init_remote_ops (void)
6036 {
6037 remote_ops.to_shortname = "remote";
6038 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6039 remote_ops.to_doc =
6040 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6041 Specify the serial device it is connected to\n\
6042 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6043 remote_ops.to_open = remote_open;
6044 remote_ops.to_close = remote_close;
6045 remote_ops.to_detach = remote_detach;
6046 remote_ops.to_disconnect = remote_disconnect;
6047 remote_ops.to_resume = remote_resume;
6048 remote_ops.to_wait = remote_wait;
6049 remote_ops.to_fetch_registers = remote_fetch_registers;
6050 remote_ops.to_store_registers = remote_store_registers;
6051 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6052 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6053 remote_ops.to_files_info = remote_files_info;
6054 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6055 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6056 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6057 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6058 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6059 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6060 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6061 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6062 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6063 remote_ops.to_kill = remote_kill;
6064 remote_ops.to_load = generic_load;
6065 remote_ops.to_mourn_inferior = remote_mourn;
6066 remote_ops.to_thread_alive = remote_thread_alive;
6067 remote_ops.to_find_new_threads = remote_threads_info;
6068 remote_ops.to_pid_to_str = remote_pid_to_str;
6069 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6070 remote_ops.to_stop = remote_stop;
6071 remote_ops.to_xfer_partial = remote_xfer_partial;
6072 remote_ops.to_rcmd = remote_rcmd;
6073 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6074 remote_ops.to_stratum = process_stratum;
6075 remote_ops.to_has_all_memory = 1;
6076 remote_ops.to_has_memory = 1;
6077 remote_ops.to_has_stack = 1;
6078 remote_ops.to_has_registers = 1;
6079 remote_ops.to_has_execution = 1;
6080 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6081 remote_ops.to_magic = OPS_MAGIC;
6082 remote_ops.to_memory_map = remote_memory_map;
6083 remote_ops.to_flash_erase = remote_flash_erase;
6084 remote_ops.to_flash_done = remote_flash_done;
6085 }
6086
6087 /* Set up the extended remote vector by making a copy of the standard
6088 remote vector and adding to it. */
6089
6090 static void
6091 init_extended_remote_ops (void)
6092 {
6093 extended_remote_ops = remote_ops;
6094
6095 extended_remote_ops.to_shortname = "extended-remote";
6096 extended_remote_ops.to_longname =
6097 "Extended remote serial target in gdb-specific protocol";
6098 extended_remote_ops.to_doc =
6099 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6100 Specify the serial device it is connected to (e.g. /dev/ttya).",
6101 extended_remote_ops.to_open = extended_remote_open;
6102 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6103 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6104 }
6105
6106 static int
6107 remote_can_async_p (void)
6108 {
6109 /* We're async whenever the serial device is. */
6110 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6111 }
6112
6113 static int
6114 remote_is_async_p (void)
6115 {
6116 /* We're async whenever the serial device is. */
6117 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6118 }
6119
6120 /* Pass the SERIAL event on and up to the client. One day this code
6121 will be able to delay notifying the client of an event until the
6122 point where an entire packet has been received. */
6123
6124 static void (*async_client_callback) (enum inferior_event_type event_type,
6125 void *context);
6126 static void *async_client_context;
6127 static serial_event_ftype remote_async_serial_handler;
6128
6129 static void
6130 remote_async_serial_handler (struct serial *scb, void *context)
6131 {
6132 /* Don't propogate error information up to the client. Instead let
6133 the client find out about the error by querying the target. */
6134 async_client_callback (INF_REG_EVENT, async_client_context);
6135 }
6136
6137 static void
6138 remote_async (void (*callback) (enum inferior_event_type event_type,
6139 void *context), void *context)
6140 {
6141 if (current_target.to_async_mask_value == 0)
6142 internal_error (__FILE__, __LINE__,
6143 _("Calling remote_async when async is masked"));
6144
6145 if (callback != NULL)
6146 {
6147 serial_async (remote_desc, remote_async_serial_handler, NULL);
6148 async_client_callback = callback;
6149 async_client_context = context;
6150 }
6151 else
6152 serial_async (remote_desc, NULL, NULL);
6153 }
6154
6155 /* Target async and target extended-async.
6156
6157 This are temporary targets, until it is all tested. Eventually
6158 async support will be incorporated int the usual 'remote'
6159 target. */
6160
6161 static void
6162 init_remote_async_ops (void)
6163 {
6164 remote_async_ops.to_shortname = "async";
6165 remote_async_ops.to_longname =
6166 "Remote serial target in async version of the gdb-specific protocol";
6167 remote_async_ops.to_doc =
6168 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6169 Specify the serial device it is connected to (e.g. /dev/ttya).";
6170 remote_async_ops.to_open = remote_async_open;
6171 remote_async_ops.to_close = remote_close;
6172 remote_async_ops.to_detach = remote_detach;
6173 remote_async_ops.to_disconnect = remote_disconnect;
6174 remote_async_ops.to_resume = remote_async_resume;
6175 remote_async_ops.to_wait = remote_async_wait;
6176 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6177 remote_async_ops.to_store_registers = remote_store_registers;
6178 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6179 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6180 remote_async_ops.to_files_info = remote_files_info;
6181 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6182 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6183 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6184 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6185 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6186 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6187 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6188 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6189 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6190 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6191 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6192 remote_async_ops.to_kill = remote_async_kill;
6193 remote_async_ops.to_load = generic_load;
6194 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6195 remote_async_ops.to_thread_alive = remote_thread_alive;
6196 remote_async_ops.to_find_new_threads = remote_threads_info;
6197 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6198 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6199 remote_async_ops.to_stop = remote_stop;
6200 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6201 remote_async_ops.to_rcmd = remote_rcmd;
6202 remote_async_ops.to_stratum = process_stratum;
6203 remote_async_ops.to_has_all_memory = 1;
6204 remote_async_ops.to_has_memory = 1;
6205 remote_async_ops.to_has_stack = 1;
6206 remote_async_ops.to_has_registers = 1;
6207 remote_async_ops.to_has_execution = 1;
6208 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6209 remote_async_ops.to_can_async_p = remote_can_async_p;
6210 remote_async_ops.to_is_async_p = remote_is_async_p;
6211 remote_async_ops.to_async = remote_async;
6212 remote_async_ops.to_async_mask_value = 1;
6213 remote_async_ops.to_magic = OPS_MAGIC;
6214 remote_async_ops.to_memory_map = remote_memory_map;
6215 remote_async_ops.to_flash_erase = remote_flash_erase;
6216 remote_async_ops.to_flash_done = remote_flash_done;
6217 }
6218
6219 /* Set up the async extended remote vector by making a copy of the standard
6220 remote vector and adding to it. */
6221
6222 static void
6223 init_extended_async_remote_ops (void)
6224 {
6225 extended_async_remote_ops = remote_async_ops;
6226
6227 extended_async_remote_ops.to_shortname = "extended-async";
6228 extended_async_remote_ops.to_longname =
6229 "Extended remote serial target in async gdb-specific protocol";
6230 extended_async_remote_ops.to_doc =
6231 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6232 Specify the serial device it is connected to (e.g. /dev/ttya).",
6233 extended_async_remote_ops.to_open = extended_remote_async_open;
6234 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6235 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6236 }
6237
6238 static void
6239 set_remote_cmd (char *args, int from_tty)
6240 {
6241 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6242 }
6243
6244 static void
6245 show_remote_cmd (char *args, int from_tty)
6246 {
6247 /* We can't just use cmd_show_list here, because we want to skip
6248 the redundant "show remote Z-packet" and the legacy aliases. */
6249 struct cleanup *showlist_chain;
6250 struct cmd_list_element *list = remote_show_cmdlist;
6251
6252 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6253 for (; list != NULL; list = list->next)
6254 if (strcmp (list->name, "Z-packet") == 0)
6255 continue;
6256 else if (list->type == not_set_cmd)
6257 /* Alias commands are exactly like the original, except they
6258 don't have the normal type. */
6259 continue;
6260 else
6261 {
6262 struct cleanup *option_chain
6263 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6264 ui_out_field_string (uiout, "name", list->name);
6265 ui_out_text (uiout, ": ");
6266 if (list->type == show_cmd)
6267 do_setshow_command ((char *) NULL, from_tty, list);
6268 else
6269 cmd_func (list, NULL, from_tty);
6270 /* Close the tuple. */
6271 do_cleanups (option_chain);
6272 }
6273
6274 /* Close the tuple. */
6275 do_cleanups (showlist_chain);
6276 }
6277
6278 static void
6279 build_remote_gdbarch_data (void)
6280 {
6281 remote_address_size = TARGET_ADDR_BIT;
6282 }
6283
6284 /* Saved pointer to previous owner of the new_objfile event. */
6285 static void (*remote_new_objfile_chain) (struct objfile *);
6286
6287 /* Function to be called whenever a new objfile (shlib) is detected. */
6288 static void
6289 remote_new_objfile (struct objfile *objfile)
6290 {
6291 if (remote_desc != 0) /* Have a remote connection. */
6292 {
6293 remote_check_symbols (objfile);
6294 }
6295 /* Call predecessor on chain, if any. */
6296 if (remote_new_objfile_chain)
6297 remote_new_objfile_chain (objfile);
6298 }
6299
6300 void
6301 _initialize_remote (void)
6302 {
6303 struct remote_state *rs;
6304
6305 /* architecture specific data */
6306 remote_gdbarch_data_handle =
6307 gdbarch_data_register_post_init (init_remote_state);
6308
6309 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6310 that the remote protocol has been initialized. */
6311 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6312 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6313
6314 /* Initialize the per-target state. At the moment there is only one
6315 of these, not one per target. Only one target is active at a
6316 time. The default buffer size is unimportant; it will be expanded
6317 whenever a larger buffer is needed. */
6318 rs = get_remote_state_raw ();
6319 rs->buf_size = 400;
6320 rs->buf = xmalloc (rs->buf_size);
6321
6322 init_remote_ops ();
6323 add_target (&remote_ops);
6324
6325 init_extended_remote_ops ();
6326 add_target (&extended_remote_ops);
6327
6328 init_remote_async_ops ();
6329 add_target (&remote_async_ops);
6330
6331 init_extended_async_remote_ops ();
6332 add_target (&extended_async_remote_ops);
6333
6334 /* Hook into new objfile notification. */
6335 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
6336 deprecated_target_new_objfile_hook = remote_new_objfile;
6337
6338 #if 0
6339 init_remote_threadtests ();
6340 #endif
6341
6342 /* set/show remote ... */
6343
6344 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6345 Remote protocol specific variables\n\
6346 Configure various remote-protocol specific variables such as\n\
6347 the packets being used"),
6348 &remote_set_cmdlist, "set remote ",
6349 0 /* allow-unknown */, &setlist);
6350 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6351 Remote protocol specific variables\n\
6352 Configure various remote-protocol specific variables such as\n\
6353 the packets being used"),
6354 &remote_show_cmdlist, "show remote ",
6355 0 /* allow-unknown */, &showlist);
6356
6357 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6358 Compare section data on target to the exec file.\n\
6359 Argument is a single section name (default: all loaded sections)."),
6360 &cmdlist);
6361
6362 add_cmd ("packet", class_maintenance, packet_command, _("\
6363 Send an arbitrary packet to a remote target.\n\
6364 maintenance packet TEXT\n\
6365 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6366 this command sends the string TEXT to the inferior, and displays the\n\
6367 response packet. GDB supplies the initial `$' character, and the\n\
6368 terminating `#' character and checksum."),
6369 &maintenancelist);
6370
6371 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6372 Set whether to send break if interrupted."), _("\
6373 Show whether to send break if interrupted."), _("\
6374 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6375 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6376 &setlist, &showlist);
6377
6378 /* Install commands for configuring memory read/write packets. */
6379
6380 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6381 Set the maximum number of bytes per memory write packet (deprecated)."),
6382 &setlist);
6383 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6384 Show the maximum number of bytes per memory write packet (deprecated)."),
6385 &showlist);
6386 add_cmd ("memory-write-packet-size", no_class,
6387 set_memory_write_packet_size, _("\
6388 Set the maximum number of bytes per memory-write packet.\n\
6389 Specify the number of bytes in a packet or 0 (zero) for the\n\
6390 default packet size. The actual limit is further reduced\n\
6391 dependent on the target. Specify ``fixed'' to disable the\n\
6392 further restriction and ``limit'' to enable that restriction."),
6393 &remote_set_cmdlist);
6394 add_cmd ("memory-read-packet-size", no_class,
6395 set_memory_read_packet_size, _("\
6396 Set the maximum number of bytes per memory-read packet.\n\
6397 Specify the number of bytes in a packet or 0 (zero) for the\n\
6398 default packet size. The actual limit is further reduced\n\
6399 dependent on the target. Specify ``fixed'' to disable the\n\
6400 further restriction and ``limit'' to enable that restriction."),
6401 &remote_set_cmdlist);
6402 add_cmd ("memory-write-packet-size", no_class,
6403 show_memory_write_packet_size,
6404 _("Show the maximum number of bytes per memory-write packet."),
6405 &remote_show_cmdlist);
6406 add_cmd ("memory-read-packet-size", no_class,
6407 show_memory_read_packet_size,
6408 _("Show the maximum number of bytes per memory-read packet."),
6409 &remote_show_cmdlist);
6410
6411 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6412 &remote_hw_watchpoint_limit, _("\
6413 Set the maximum number of target hardware watchpoints."), _("\
6414 Show the maximum number of target hardware watchpoints."), _("\
6415 Specify a negative limit for unlimited."),
6416 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6417 &remote_set_cmdlist, &remote_show_cmdlist);
6418 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6419 &remote_hw_breakpoint_limit, _("\
6420 Set the maximum number of target hardware breakpoints."), _("\
6421 Show the maximum number of target hardware breakpoints."), _("\
6422 Specify a negative limit for unlimited."),
6423 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6424 &remote_set_cmdlist, &remote_show_cmdlist);
6425
6426 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6427 &remote_address_size, _("\
6428 Set the maximum size of the address (in bits) in a memory packet."), _("\
6429 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6430 NULL,
6431 NULL, /* FIXME: i18n: */
6432 &setlist, &showlist);
6433
6434 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6435 "X", "binary-download", 1);
6436
6437 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6438 "vCont", "verbose-resume", 0);
6439
6440 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6441 "QPassSignals", "pass-signals", 0);
6442
6443 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6444 "qSymbol", "symbol-lookup", 0);
6445
6446 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6447 "P", "set-register", 1);
6448
6449 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6450 "p", "fetch-register", 1);
6451
6452 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6453 "Z0", "software-breakpoint", 0);
6454
6455 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6456 "Z1", "hardware-breakpoint", 0);
6457
6458 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6459 "Z2", "write-watchpoint", 0);
6460
6461 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6462 "Z3", "read-watchpoint", 0);
6463
6464 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6465 "Z4", "access-watchpoint", 0);
6466
6467 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6468 "qXfer:auxv:read", "read-aux-vector", 0);
6469
6470 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6471 "qXfer:memory-map:read", "memory-map", 0);
6472
6473 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6474 "qGetTLSAddr", "get-thread-local-storage-address",
6475 0);
6476
6477 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6478 "qSupported", "supported-packets", 0);
6479
6480 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6481 Z sub-packet has its own set and show commands, but users may
6482 have sets to this variable in their .gdbinit files (or in their
6483 documentation). */
6484 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6485 &remote_Z_packet_detect, _("\
6486 Set use of remote protocol `Z' packets"), _("\
6487 Show use of remote protocol `Z' packets "), _("\
6488 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6489 packets."),
6490 set_remote_protocol_Z_packet_cmd,
6491 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6492 &remote_set_cmdlist, &remote_show_cmdlist);
6493
6494 /* Eventually initialize fileio. See fileio.c */
6495 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6496 }