]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Replace most calls to help_list and cmd_show_list
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80 #include "async-event.h"
81
82 /* The remote target. */
83
84 static const char remote_doc[] = N_("\
85 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
86 Specify the serial device it is connected to\n\
87 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
88
89 #define OPAQUETHREADBYTES 8
90
91 /* a 64 bit opaque identifier */
92 typedef unsigned char threadref[OPAQUETHREADBYTES];
93
94 struct gdb_ext_thread_info;
95 struct threads_listing_context;
96 typedef int (*rmt_thread_action) (threadref *ref, void *context);
97 struct protocol_feature;
98 struct packet_reg;
99
100 struct stop_reply;
101 typedef std::unique_ptr<stop_reply> stop_reply_up;
102
103 /* Generic configuration support for packets the stub optionally
104 supports. Allows the user to specify the use of the packet as well
105 as allowing GDB to auto-detect support in the remote stub. */
106
107 enum packet_support
108 {
109 PACKET_SUPPORT_UNKNOWN = 0,
110 PACKET_ENABLE,
111 PACKET_DISABLE
112 };
113
114 /* Analyze a packet's return value and update the packet config
115 accordingly. */
116
117 enum packet_result
118 {
119 PACKET_ERROR,
120 PACKET_OK,
121 PACKET_UNKNOWN
122 };
123
124 struct threads_listing_context;
125
126 /* Stub vCont actions support.
127
128 Each field is a boolean flag indicating whether the stub reports
129 support for the corresponding action. */
130
131 struct vCont_action_support
132 {
133 /* vCont;t */
134 bool t = false;
135
136 /* vCont;r */
137 bool r = false;
138
139 /* vCont;s */
140 bool s = false;
141
142 /* vCont;S */
143 bool S = false;
144 };
145
146 /* About this many threadids fit in a packet. */
147
148 #define MAXTHREADLISTRESULTS 32
149
150 /* Data for the vFile:pread readahead cache. */
151
152 struct readahead_cache
153 {
154 /* Invalidate the readahead cache. */
155 void invalidate ();
156
157 /* Invalidate the readahead cache if it is holding data for FD. */
158 void invalidate_fd (int fd);
159
160 /* Serve pread from the readahead cache. Returns number of bytes
161 read, or 0 if the request can't be served from the cache. */
162 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
163
164 /* The file descriptor for the file that is being cached. -1 if the
165 cache is invalid. */
166 int fd = -1;
167
168 /* The offset into the file that the cache buffer corresponds
169 to. */
170 ULONGEST offset = 0;
171
172 /* The buffer holding the cache contents. */
173 gdb_byte *buf = nullptr;
174 /* The buffer's size. We try to read as much as fits into a packet
175 at a time. */
176 size_t bufsize = 0;
177
178 /* Cache hit and miss counters. */
179 ULONGEST hit_count = 0;
180 ULONGEST miss_count = 0;
181 };
182
183 /* Description of the remote protocol for a given architecture. */
184
185 struct packet_reg
186 {
187 long offset; /* Offset into G packet. */
188 long regnum; /* GDB's internal register number. */
189 LONGEST pnum; /* Remote protocol register number. */
190 int in_g_packet; /* Always part of G packet. */
191 /* long size in bytes; == register_size (target_gdbarch (), regnum);
192 at present. */
193 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
194 at present. */
195 };
196
197 struct remote_arch_state
198 {
199 explicit remote_arch_state (struct gdbarch *gdbarch);
200
201 /* Description of the remote protocol registers. */
202 long sizeof_g_packet;
203
204 /* Description of the remote protocol registers indexed by REGNUM
205 (making an array gdbarch_num_regs in size). */
206 std::unique_ptr<packet_reg[]> regs;
207
208 /* This is the size (in chars) of the first response to the ``g''
209 packet. It is used as a heuristic when determining the maximum
210 size of memory-read and memory-write packets. A target will
211 typically only reserve a buffer large enough to hold the ``g''
212 packet. The size does not include packet overhead (headers and
213 trailers). */
214 long actual_register_packet_size;
215
216 /* This is the maximum size (in chars) of a non read/write packet.
217 It is also used as a cap on the size of read/write packets. */
218 long remote_packet_size;
219 };
220
221 /* Description of the remote protocol state for the currently
222 connected target. This is per-target state, and independent of the
223 selected architecture. */
224
225 class remote_state
226 {
227 public:
228
229 remote_state ();
230 ~remote_state ();
231
232 /* Get the remote arch state for GDBARCH. */
233 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
234
235 public: /* data */
236
237 /* A buffer to use for incoming packets, and its current size. The
238 buffer is grown dynamically for larger incoming packets.
239 Outgoing packets may also be constructed in this buffer.
240 The size of the buffer is always at least REMOTE_PACKET_SIZE;
241 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
242 packets. */
243 gdb::char_vector buf;
244
245 /* True if we're going through initial connection setup (finding out
246 about the remote side's threads, relocating symbols, etc.). */
247 bool starting_up = false;
248
249 /* If we negotiated packet size explicitly (and thus can bypass
250 heuristics for the largest packet size that will not overflow
251 a buffer in the stub), this will be set to that packet size.
252 Otherwise zero, meaning to use the guessed size. */
253 long explicit_packet_size = 0;
254
255 /* remote_wait is normally called when the target is running and
256 waits for a stop reply packet. But sometimes we need to call it
257 when the target is already stopped. We can send a "?" packet
258 and have remote_wait read the response. Or, if we already have
259 the response, we can stash it in BUF and tell remote_wait to
260 skip calling getpkt. This flag is set when BUF contains a
261 stop reply packet and the target is not waiting. */
262 int cached_wait_status = 0;
263
264 /* True, if in no ack mode. That is, neither GDB nor the stub will
265 expect acks from each other. The connection is assumed to be
266 reliable. */
267 bool noack_mode = false;
268
269 /* True if we're connected in extended remote mode. */
270 bool extended = false;
271
272 /* True if we resumed the target and we're waiting for the target to
273 stop. In the mean time, we can't start another command/query.
274 The remote server wouldn't be ready to process it, so we'd
275 timeout waiting for a reply that would never come and eventually
276 we'd close the connection. This can happen in asynchronous mode
277 because we allow GDB commands while the target is running. */
278 bool waiting_for_stop_reply = false;
279
280 /* The status of the stub support for the various vCont actions. */
281 vCont_action_support supports_vCont;
282 /* Whether vCont support was probed already. This is a workaround
283 until packet_support is per-connection. */
284 bool supports_vCont_probed;
285
286 /* True if the user has pressed Ctrl-C, but the target hasn't
287 responded to that. */
288 bool ctrlc_pending_p = false;
289
290 /* True if we saw a Ctrl-C while reading or writing from/to the
291 remote descriptor. At that point it is not safe to send a remote
292 interrupt packet, so we instead remember we saw the Ctrl-C and
293 process it once we're done with sending/receiving the current
294 packet, which should be shortly. If however that takes too long,
295 and the user presses Ctrl-C again, we offer to disconnect. */
296 bool got_ctrlc_during_io = false;
297
298 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
299 remote_open knows that we don't have a file open when the program
300 starts. */
301 struct serial *remote_desc = nullptr;
302
303 /* These are the threads which we last sent to the remote system. The
304 TID member will be -1 for all or -2 for not sent yet. */
305 ptid_t general_thread = null_ptid;
306 ptid_t continue_thread = null_ptid;
307
308 /* This is the traceframe which we last selected on the remote system.
309 It will be -1 if no traceframe is selected. */
310 int remote_traceframe_number = -1;
311
312 char *last_pass_packet = nullptr;
313
314 /* The last QProgramSignals packet sent to the target. We bypass
315 sending a new program signals list down to the target if the new
316 packet is exactly the same as the last we sent. IOW, we only let
317 the target know about program signals list changes. */
318 char *last_program_signals_packet = nullptr;
319
320 gdb_signal last_sent_signal = GDB_SIGNAL_0;
321
322 bool last_sent_step = false;
323
324 /* The execution direction of the last resume we got. */
325 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
326
327 char *finished_object = nullptr;
328 char *finished_annex = nullptr;
329 ULONGEST finished_offset = 0;
330
331 /* Should we try the 'ThreadInfo' query packet?
332
333 This variable (NOT available to the user: auto-detect only!)
334 determines whether GDB will use the new, simpler "ThreadInfo"
335 query or the older, more complex syntax for thread queries.
336 This is an auto-detect variable (set to true at each connect,
337 and set to false when the target fails to recognize it). */
338 bool use_threadinfo_query = false;
339 bool use_threadextra_query = false;
340
341 threadref echo_nextthread {};
342 threadref nextthread {};
343 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
344
345 /* The state of remote notification. */
346 struct remote_notif_state *notif_state = nullptr;
347
348 /* The branch trace configuration. */
349 struct btrace_config btrace_config {};
350
351 /* The argument to the last "vFile:setfs:" packet we sent, used
352 to avoid sending repeated unnecessary "vFile:setfs:" packets.
353 Initialized to -1 to indicate that no "vFile:setfs:" packet
354 has yet been sent. */
355 int fs_pid = -1;
356
357 /* A readahead cache for vFile:pread. Often, reading a binary
358 involves a sequence of small reads. E.g., when parsing an ELF
359 file. A readahead cache helps mostly the case of remote
360 debugging on a connection with higher latency, due to the
361 request/reply nature of the RSP. We only cache data for a single
362 file descriptor at a time. */
363 struct readahead_cache readahead_cache;
364
365 /* The list of already fetched and acknowledged stop events. This
366 queue is used for notification Stop, and other notifications
367 don't need queue for their events, because the notification
368 events of Stop can't be consumed immediately, so that events
369 should be queued first, and be consumed by remote_wait_{ns,as}
370 one per time. Other notifications can consume their events
371 immediately, so queue is not needed for them. */
372 std::vector<stop_reply_up> stop_reply_queue;
373
374 /* Asynchronous signal handle registered as event loop source for
375 when we have pending events ready to be passed to the core. */
376 struct async_event_handler *remote_async_inferior_event_token = nullptr;
377
378 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
379 ``forever'' still use the normal timeout mechanism. This is
380 currently used by the ASYNC code to guarentee that target reads
381 during the initial connect always time-out. Once getpkt has been
382 modified to return a timeout indication and, in turn
383 remote_wait()/wait_for_inferior() have gained a timeout parameter
384 this can go away. */
385 int wait_forever_enabled_p = 1;
386
387 private:
388 /* Mapping of remote protocol data for each gdbarch. Usually there
389 is only one entry here, though we may see more with stubs that
390 support multi-process. */
391 std::unordered_map<struct gdbarch *, remote_arch_state>
392 m_arch_states;
393 };
394
395 static const target_info remote_target_info = {
396 "remote",
397 N_("Remote serial target in gdb-specific protocol"),
398 remote_doc
399 };
400
401 class remote_target : public process_stratum_target
402 {
403 public:
404 remote_target () = default;
405 ~remote_target () override;
406
407 const target_info &info () const override
408 { return remote_target_info; }
409
410 const char *connection_string () override;
411
412 thread_control_capabilities get_thread_control_capabilities () override
413 { return tc_schedlock; }
414
415 /* Open a remote connection. */
416 static void open (const char *, int);
417
418 void close () override;
419
420 void detach (inferior *, int) override;
421 void disconnect (const char *, int) override;
422
423 void commit_resume () override;
424 void resume (ptid_t, int, enum gdb_signal) override;
425 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
426
427 void fetch_registers (struct regcache *, int) override;
428 void store_registers (struct regcache *, int) override;
429 void prepare_to_store (struct regcache *) override;
430
431 void files_info () override;
432
433 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
434
435 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
436 enum remove_bp_reason) override;
437
438
439 bool stopped_by_sw_breakpoint () override;
440 bool supports_stopped_by_sw_breakpoint () override;
441
442 bool stopped_by_hw_breakpoint () override;
443
444 bool supports_stopped_by_hw_breakpoint () override;
445
446 bool stopped_by_watchpoint () override;
447
448 bool stopped_data_address (CORE_ADDR *) override;
449
450 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
451
452 int can_use_hw_breakpoint (enum bptype, int, int) override;
453
454 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
455
456 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
457
458 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
459
460 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
461 struct expression *) override;
462
463 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 void kill () override;
467
468 void load (const char *, int) override;
469
470 void mourn_inferior () override;
471
472 void pass_signals (gdb::array_view<const unsigned char>) override;
473
474 int set_syscall_catchpoint (int, bool, int,
475 gdb::array_view<const int>) override;
476
477 void program_signals (gdb::array_view<const unsigned char>) override;
478
479 bool thread_alive (ptid_t ptid) override;
480
481 const char *thread_name (struct thread_info *) override;
482
483 void update_thread_list () override;
484
485 std::string pid_to_str (ptid_t) override;
486
487 const char *extra_thread_info (struct thread_info *) override;
488
489 ptid_t get_ada_task_ptid (long lwp, long thread) override;
490
491 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
492 int handle_len,
493 inferior *inf) override;
494
495 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
496 override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 int async_wait_fd () override;
547
548 void thread_events (int) override;
549
550 int can_do_single_step () override;
551
552 void terminal_inferior () override;
553
554 void terminal_ours () override;
555
556 bool supports_non_stop () override;
557
558 bool supports_multi_process () override;
559
560 bool supports_disable_randomization () override;
561
562 bool filesystem_is_local () override;
563
564
565 int fileio_open (struct inferior *inf, const char *filename,
566 int flags, int mode, int warn_if_slow,
567 int *target_errno) override;
568
569 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_pread (int fd, gdb_byte *read_buf, int len,
573 ULONGEST offset, int *target_errno) override;
574
575 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
576
577 int fileio_close (int fd, int *target_errno) override;
578
579 int fileio_unlink (struct inferior *inf,
580 const char *filename,
581 int *target_errno) override;
582
583 gdb::optional<std::string>
584 fileio_readlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 bool supports_enable_disable_tracepoint () override;
589
590 bool supports_string_tracing () override;
591
592 bool supports_evaluation_of_breakpoint_conditions () override;
593
594 bool can_run_breakpoint_commands () override;
595
596 void trace_init () override;
597
598 void download_tracepoint (struct bp_location *location) override;
599
600 bool can_download_tracepoint () override;
601
602 void download_trace_state_variable (const trace_state_variable &tsv) override;
603
604 void enable_tracepoint (struct bp_location *location) override;
605
606 void disable_tracepoint (struct bp_location *location) override;
607
608 void trace_set_readonly_regions () override;
609
610 void trace_start () override;
611
612 int get_trace_status (struct trace_status *ts) override;
613
614 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
615 override;
616
617 void trace_stop () override;
618
619 int trace_find (enum trace_find_type type, int num,
620 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
621
622 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
623
624 int save_trace_data (const char *filename) override;
625
626 int upload_tracepoints (struct uploaded_tp **utpp) override;
627
628 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
629
630 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
631
632 int get_min_fast_tracepoint_insn_len () override;
633
634 void set_disconnected_tracing (int val) override;
635
636 void set_circular_trace_buffer (int val) override;
637
638 void set_trace_buffer_size (LONGEST val) override;
639
640 bool set_trace_notes (const char *user, const char *notes,
641 const char *stopnotes) override;
642
643 int core_of_thread (ptid_t ptid) override;
644
645 int verify_memory (const gdb_byte *data,
646 CORE_ADDR memaddr, ULONGEST size) override;
647
648
649 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
650
651 void set_permissions () override;
652
653 bool static_tracepoint_marker_at (CORE_ADDR,
654 struct static_tracepoint_marker *marker)
655 override;
656
657 std::vector<static_tracepoint_marker>
658 static_tracepoint_markers_by_strid (const char *id) override;
659
660 traceframe_info_up traceframe_info () override;
661
662 bool use_agent (bool use) override;
663 bool can_use_agent () override;
664
665 struct btrace_target_info *enable_btrace (ptid_t ptid,
666 const struct btrace_config *conf) override;
667
668 void disable_btrace (struct btrace_target_info *tinfo) override;
669
670 void teardown_btrace (struct btrace_target_info *tinfo) override;
671
672 enum btrace_error read_btrace (struct btrace_data *data,
673 struct btrace_target_info *btinfo,
674 enum btrace_read_type type) override;
675
676 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
677 bool augmented_libraries_svr4_read () override;
678 bool follow_fork (bool, bool) override;
679 void follow_exec (struct inferior *, const char *) override;
680 int insert_fork_catchpoint (int) override;
681 int remove_fork_catchpoint (int) override;
682 int insert_vfork_catchpoint (int) override;
683 int remove_vfork_catchpoint (int) override;
684 int insert_exec_catchpoint (int) override;
685 int remove_exec_catchpoint (int) override;
686 enum exec_direction_kind execution_direction () override;
687
688 public: /* Remote specific methods. */
689
690 void remote_download_command_source (int num, ULONGEST addr,
691 struct command_line *cmds);
692
693 void remote_file_put (const char *local_file, const char *remote_file,
694 int from_tty);
695 void remote_file_get (const char *remote_file, const char *local_file,
696 int from_tty);
697 void remote_file_delete (const char *remote_file, int from_tty);
698
699 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *remote_errno);
703 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
704 ULONGEST offset, int *remote_errno);
705
706 int remote_hostio_send_command (int command_bytes, int which_packet,
707 int *remote_errno, char **attachment,
708 int *attachment_len);
709 int remote_hostio_set_filesystem (struct inferior *inf,
710 int *remote_errno);
711 /* We should get rid of this and use fileio_open directly. */
712 int remote_hostio_open (struct inferior *inf, const char *filename,
713 int flags, int mode, int warn_if_slow,
714 int *remote_errno);
715 int remote_hostio_close (int fd, int *remote_errno);
716
717 int remote_hostio_unlink (inferior *inf, const char *filename,
718 int *remote_errno);
719
720 struct remote_state *get_remote_state ();
721
722 long get_remote_packet_size (void);
723 long get_memory_packet_size (struct memory_packet_config *config);
724
725 long get_memory_write_packet_size ();
726 long get_memory_read_packet_size ();
727
728 char *append_pending_thread_resumptions (char *p, char *endp,
729 ptid_t ptid);
730 static void open_1 (const char *name, int from_tty, int extended_p);
731 void start_remote (int from_tty, int extended_p);
732 void remote_detach_1 (struct inferior *inf, int from_tty);
733
734 char *append_resumption (char *p, char *endp,
735 ptid_t ptid, int step, gdb_signal siggnal);
736 int remote_resume_with_vcont (ptid_t ptid, int step,
737 gdb_signal siggnal);
738
739 void add_current_inferior_and_thread (char *wait_status);
740
741 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
742 int options);
743 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
744 int options);
745
746 ptid_t process_stop_reply (struct stop_reply *stop_reply,
747 target_waitstatus *status);
748
749 void remote_notice_new_inferior (ptid_t currthread, int executing);
750
751 void process_initial_stop_replies (int from_tty);
752
753 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
754
755 void btrace_sync_conf (const btrace_config *conf);
756
757 void remote_btrace_maybe_reopen ();
758
759 void remove_new_fork_children (threads_listing_context *context);
760 void kill_new_fork_children (int pid);
761 void discard_pending_stop_replies (struct inferior *inf);
762 int stop_reply_queue_length ();
763
764 void check_pending_events_prevent_wildcard_vcont
765 (int *may_global_wildcard_vcont);
766
767 void discard_pending_stop_replies_in_queue ();
768 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
769 struct stop_reply *queued_stop_reply (ptid_t ptid);
770 int peek_stop_reply (ptid_t ptid);
771 void remote_parse_stop_reply (const char *buf, stop_reply *event);
772
773 void remote_stop_ns (ptid_t ptid);
774 void remote_interrupt_as ();
775 void remote_interrupt_ns ();
776
777 char *remote_get_noisy_reply ();
778 int remote_query_attached (int pid);
779 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
780 int try_open_exec);
781
782 ptid_t remote_current_thread (ptid_t oldpid);
783 ptid_t get_current_thread (char *wait_status);
784
785 void set_thread (ptid_t ptid, int gen);
786 void set_general_thread (ptid_t ptid);
787 void set_continue_thread (ptid_t ptid);
788 void set_general_process ();
789
790 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
791
792 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
793 gdb_ext_thread_info *info);
794 int remote_get_threadinfo (threadref *threadid, int fieldset,
795 gdb_ext_thread_info *info);
796
797 int parse_threadlist_response (char *pkt, int result_limit,
798 threadref *original_echo,
799 threadref *resultlist,
800 int *doneflag);
801 int remote_get_threadlist (int startflag, threadref *nextthread,
802 int result_limit, int *done, int *result_count,
803 threadref *threadlist);
804
805 int remote_threadlist_iterator (rmt_thread_action stepfunction,
806 void *context, int looplimit);
807
808 int remote_get_threads_with_ql (threads_listing_context *context);
809 int remote_get_threads_with_qxfer (threads_listing_context *context);
810 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
811
812 void extended_remote_restart ();
813
814 void get_offsets ();
815
816 void remote_check_symbols ();
817
818 void remote_supported_packet (const struct protocol_feature *feature,
819 enum packet_support support,
820 const char *argument);
821
822 void remote_query_supported ();
823
824 void remote_packet_size (const protocol_feature *feature,
825 packet_support support, const char *value);
826
827 void remote_serial_quit_handler ();
828
829 void remote_detach_pid (int pid);
830
831 void remote_vcont_probe ();
832
833 void remote_resume_with_hc (ptid_t ptid, int step,
834 gdb_signal siggnal);
835
836 void send_interrupt_sequence ();
837 void interrupt_query ();
838
839 void remote_notif_get_pending_events (notif_client *nc);
840
841 int fetch_register_using_p (struct regcache *regcache,
842 packet_reg *reg);
843 int send_g_packet ();
844 void process_g_packet (struct regcache *regcache);
845 void fetch_registers_using_g (struct regcache *regcache);
846 int store_register_using_P (const struct regcache *regcache,
847 packet_reg *reg);
848 void store_registers_using_G (const struct regcache *regcache);
849
850 void set_remote_traceframe ();
851
852 void check_binary_download (CORE_ADDR addr);
853
854 target_xfer_status remote_write_bytes_aux (const char *header,
855 CORE_ADDR memaddr,
856 const gdb_byte *myaddr,
857 ULONGEST len_units,
858 int unit_size,
859 ULONGEST *xfered_len_units,
860 char packet_format,
861 int use_length);
862
863 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
864 const gdb_byte *myaddr, ULONGEST len,
865 int unit_size, ULONGEST *xfered_len);
866
867 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size, ULONGEST *xfered_len_units);
870
871 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
872 ULONGEST memaddr,
873 ULONGEST len,
874 int unit_size,
875 ULONGEST *xfered_len);
876
877 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
878 gdb_byte *myaddr, ULONGEST len,
879 int unit_size,
880 ULONGEST *xfered_len);
881
882 packet_result remote_send_printf (const char *format, ...)
883 ATTRIBUTE_PRINTF (2, 3);
884
885 target_xfer_status remote_flash_write (ULONGEST address,
886 ULONGEST length, ULONGEST *xfered_len,
887 const gdb_byte *data);
888
889 int readchar (int timeout);
890
891 void remote_serial_write (const char *str, int len);
892
893 int putpkt (const char *buf);
894 int putpkt_binary (const char *buf, int cnt);
895
896 int putpkt (const gdb::char_vector &buf)
897 {
898 return putpkt (buf.data ());
899 }
900
901 void skip_frame ();
902 long read_frame (gdb::char_vector *buf_p);
903 void getpkt (gdb::char_vector *buf, int forever);
904 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
905 int expecting_notif, int *is_notif);
906 int getpkt_sane (gdb::char_vector *buf, int forever);
907 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
908 int *is_notif);
909 int remote_vkill (int pid);
910 void remote_kill_k ();
911
912 void extended_remote_disable_randomization (int val);
913 int extended_remote_run (const std::string &args);
914
915 void send_environment_packet (const char *action,
916 const char *packet,
917 const char *value);
918
919 void extended_remote_environment_support ();
920 void extended_remote_set_inferior_cwd ();
921
922 target_xfer_status remote_write_qxfer (const char *object_name,
923 const char *annex,
924 const gdb_byte *writebuf,
925 ULONGEST offset, LONGEST len,
926 ULONGEST *xfered_len,
927 struct packet_config *packet);
928
929 target_xfer_status remote_read_qxfer (const char *object_name,
930 const char *annex,
931 gdb_byte *readbuf, ULONGEST offset,
932 LONGEST len,
933 ULONGEST *xfered_len,
934 struct packet_config *packet);
935
936 void push_stop_reply (struct stop_reply *new_event);
937
938 bool vcont_r_supported ();
939
940 void packet_command (const char *args, int from_tty);
941
942 private: /* data fields */
943
944 /* The remote state. Don't reference this directly. Use the
945 get_remote_state method instead. */
946 remote_state m_remote_state;
947 };
948
949 static const target_info extended_remote_target_info = {
950 "extended-remote",
951 N_("Extended remote serial target in gdb-specific protocol"),
952 remote_doc
953 };
954
955 /* Set up the extended remote target by extending the standard remote
956 target and adding to it. */
957
958 class extended_remote_target final : public remote_target
959 {
960 public:
961 const target_info &info () const override
962 { return extended_remote_target_info; }
963
964 /* Open an extended-remote connection. */
965 static void open (const char *, int);
966
967 bool can_create_inferior () override { return true; }
968 void create_inferior (const char *, const std::string &,
969 char **, int) override;
970
971 void detach (inferior *, int) override;
972
973 bool can_attach () override { return true; }
974 void attach (const char *, int) override;
975
976 void post_attach (int) override;
977 bool supports_disable_randomization () override;
978 };
979
980 /* Per-program-space data key. */
981 static const struct program_space_key<char, gdb::xfree_deleter<char>>
982 remote_pspace_data;
983
984 /* The variable registered as the control variable used by the
985 remote exec-file commands. While the remote exec-file setting is
986 per-program-space, the set/show machinery uses this as the
987 location of the remote exec-file value. */
988 static char *remote_exec_file_var;
989
990 /* The size to align memory write packets, when practical. The protocol
991 does not guarantee any alignment, and gdb will generate short
992 writes and unaligned writes, but even as a best-effort attempt this
993 can improve bulk transfers. For instance, if a write is misaligned
994 relative to the target's data bus, the stub may need to make an extra
995 round trip fetching data from the target. This doesn't make a
996 huge difference, but it's easy to do, so we try to be helpful.
997
998 The alignment chosen is arbitrary; usually data bus width is
999 important here, not the possibly larger cache line size. */
1000 enum { REMOTE_ALIGN_WRITES = 16 };
1001
1002 /* Prototypes for local functions. */
1003
1004 static int hexnumlen (ULONGEST num);
1005
1006 static int stubhex (int ch);
1007
1008 static int hexnumstr (char *, ULONGEST);
1009
1010 static int hexnumnstr (char *, ULONGEST, int);
1011
1012 static CORE_ADDR remote_address_masked (CORE_ADDR);
1013
1014 static void print_packet (const char *);
1015
1016 static int stub_unpack_int (char *buff, int fieldlength);
1017
1018 struct packet_config;
1019
1020 static void show_packet_config_cmd (struct packet_config *config);
1021
1022 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1023 int from_tty,
1024 struct cmd_list_element *c,
1025 const char *value);
1026
1027 static ptid_t read_ptid (const char *buf, const char **obuf);
1028
1029 static void remote_async_inferior_event_handler (gdb_client_data);
1030
1031 static bool remote_read_description_p (struct target_ops *target);
1032
1033 static void remote_console_output (const char *msg);
1034
1035 static void remote_btrace_reset (remote_state *rs);
1036
1037 static void remote_unpush_and_throw (remote_target *target);
1038
1039 /* For "remote". */
1040
1041 static struct cmd_list_element *remote_cmdlist;
1042
1043 /* For "set remote" and "show remote". */
1044
1045 static struct cmd_list_element *remote_set_cmdlist;
1046 static struct cmd_list_element *remote_show_cmdlist;
1047
1048 /* Controls whether GDB is willing to use range stepping. */
1049
1050 static bool use_range_stepping = true;
1051
1052 /* Private data that we'll store in (struct thread_info)->priv. */
1053 struct remote_thread_info : public private_thread_info
1054 {
1055 std::string extra;
1056 std::string name;
1057 int core = -1;
1058
1059 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1060 sequence of bytes. */
1061 gdb::byte_vector thread_handle;
1062
1063 /* Whether the target stopped for a breakpoint/watchpoint. */
1064 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1065
1066 /* This is set to the data address of the access causing the target
1067 to stop for a watchpoint. */
1068 CORE_ADDR watch_data_address = 0;
1069
1070 /* Fields used by the vCont action coalescing implemented in
1071 remote_resume / remote_commit_resume. remote_resume stores each
1072 thread's last resume request in these fields, so that a later
1073 remote_commit_resume knows which is the proper action for this
1074 thread to include in the vCont packet. */
1075
1076 /* True if the last target_resume call for this thread was a step
1077 request, false if a continue request. */
1078 int last_resume_step = 0;
1079
1080 /* The signal specified in the last target_resume call for this
1081 thread. */
1082 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1083
1084 /* Whether this thread was already vCont-resumed on the remote
1085 side. */
1086 int vcont_resumed = 0;
1087 };
1088
1089 remote_state::remote_state ()
1090 : buf (400)
1091 {
1092 }
1093
1094 remote_state::~remote_state ()
1095 {
1096 xfree (this->last_pass_packet);
1097 xfree (this->last_program_signals_packet);
1098 xfree (this->finished_object);
1099 xfree (this->finished_annex);
1100 }
1101
1102 /* Utility: generate error from an incoming stub packet. */
1103 static void
1104 trace_error (char *buf)
1105 {
1106 if (*buf++ != 'E')
1107 return; /* not an error msg */
1108 switch (*buf)
1109 {
1110 case '1': /* malformed packet error */
1111 if (*++buf == '0') /* general case: */
1112 error (_("remote.c: error in outgoing packet."));
1113 else
1114 error (_("remote.c: error in outgoing packet at field #%ld."),
1115 strtol (buf, NULL, 16));
1116 default:
1117 error (_("Target returns error code '%s'."), buf);
1118 }
1119 }
1120
1121 /* Utility: wait for reply from stub, while accepting "O" packets. */
1122
1123 char *
1124 remote_target::remote_get_noisy_reply ()
1125 {
1126 struct remote_state *rs = get_remote_state ();
1127
1128 do /* Loop on reply from remote stub. */
1129 {
1130 char *buf;
1131
1132 QUIT; /* Allow user to bail out with ^C. */
1133 getpkt (&rs->buf, 0);
1134 buf = rs->buf.data ();
1135 if (buf[0] == 'E')
1136 trace_error (buf);
1137 else if (startswith (buf, "qRelocInsn:"))
1138 {
1139 ULONGEST ul;
1140 CORE_ADDR from, to, org_to;
1141 const char *p, *pp;
1142 int adjusted_size = 0;
1143 int relocated = 0;
1144
1145 p = buf + strlen ("qRelocInsn:");
1146 pp = unpack_varlen_hex (p, &ul);
1147 if (*pp != ';')
1148 error (_("invalid qRelocInsn packet: %s"), buf);
1149 from = ul;
1150
1151 p = pp + 1;
1152 unpack_varlen_hex (p, &ul);
1153 to = ul;
1154
1155 org_to = to;
1156
1157 try
1158 {
1159 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1160 relocated = 1;
1161 }
1162 catch (const gdb_exception &ex)
1163 {
1164 if (ex.error == MEMORY_ERROR)
1165 {
1166 /* Propagate memory errors silently back to the
1167 target. The stub may have limited the range of
1168 addresses we can write to, for example. */
1169 }
1170 else
1171 {
1172 /* Something unexpectedly bad happened. Be verbose
1173 so we can tell what, and propagate the error back
1174 to the stub, so it doesn't get stuck waiting for
1175 a response. */
1176 exception_fprintf (gdb_stderr, ex,
1177 _("warning: relocating instruction: "));
1178 }
1179 putpkt ("E01");
1180 }
1181
1182 if (relocated)
1183 {
1184 adjusted_size = to - org_to;
1185
1186 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1187 putpkt (buf);
1188 }
1189 }
1190 else if (buf[0] == 'O' && buf[1] != 'K')
1191 remote_console_output (buf + 1); /* 'O' message from stub */
1192 else
1193 return buf; /* Here's the actual reply. */
1194 }
1195 while (1);
1196 }
1197
1198 struct remote_arch_state *
1199 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1200 {
1201 remote_arch_state *rsa;
1202
1203 auto it = this->m_arch_states.find (gdbarch);
1204 if (it == this->m_arch_states.end ())
1205 {
1206 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1207 std::forward_as_tuple (gdbarch),
1208 std::forward_as_tuple (gdbarch));
1209 rsa = &p.first->second;
1210
1211 /* Make sure that the packet buffer is plenty big enough for
1212 this architecture. */
1213 if (this->buf.size () < rsa->remote_packet_size)
1214 this->buf.resize (2 * rsa->remote_packet_size);
1215 }
1216 else
1217 rsa = &it->second;
1218
1219 return rsa;
1220 }
1221
1222 /* Fetch the global remote target state. */
1223
1224 remote_state *
1225 remote_target::get_remote_state ()
1226 {
1227 /* Make sure that the remote architecture state has been
1228 initialized, because doing so might reallocate rs->buf. Any
1229 function which calls getpkt also needs to be mindful of changes
1230 to rs->buf, but this call limits the number of places which run
1231 into trouble. */
1232 m_remote_state.get_remote_arch_state (target_gdbarch ());
1233
1234 return &m_remote_state;
1235 }
1236
1237 /* Fetch the remote exec-file from the current program space. */
1238
1239 static const char *
1240 get_remote_exec_file (void)
1241 {
1242 char *remote_exec_file;
1243
1244 remote_exec_file = remote_pspace_data.get (current_program_space);
1245 if (remote_exec_file == NULL)
1246 return "";
1247
1248 return remote_exec_file;
1249 }
1250
1251 /* Set the remote exec file for PSPACE. */
1252
1253 static void
1254 set_pspace_remote_exec_file (struct program_space *pspace,
1255 const char *remote_exec_file)
1256 {
1257 char *old_file = remote_pspace_data.get (pspace);
1258
1259 xfree (old_file);
1260 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1261 }
1262
1263 /* The "set/show remote exec-file" set command hook. */
1264
1265 static void
1266 set_remote_exec_file (const char *ignored, int from_tty,
1267 struct cmd_list_element *c)
1268 {
1269 gdb_assert (remote_exec_file_var != NULL);
1270 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1271 }
1272
1273 /* The "set/show remote exec-file" show command hook. */
1274
1275 static void
1276 show_remote_exec_file (struct ui_file *file, int from_tty,
1277 struct cmd_list_element *cmd, const char *value)
1278 {
1279 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1280 }
1281
1282 static int
1283 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1284 {
1285 int regnum, num_remote_regs, offset;
1286 struct packet_reg **remote_regs;
1287
1288 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1289 {
1290 struct packet_reg *r = &regs[regnum];
1291
1292 if (register_size (gdbarch, regnum) == 0)
1293 /* Do not try to fetch zero-sized (placeholder) registers. */
1294 r->pnum = -1;
1295 else
1296 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1297
1298 r->regnum = regnum;
1299 }
1300
1301 /* Define the g/G packet format as the contents of each register
1302 with a remote protocol number, in order of ascending protocol
1303 number. */
1304
1305 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1306 for (num_remote_regs = 0, regnum = 0;
1307 regnum < gdbarch_num_regs (gdbarch);
1308 regnum++)
1309 if (regs[regnum].pnum != -1)
1310 remote_regs[num_remote_regs++] = &regs[regnum];
1311
1312 std::sort (remote_regs, remote_regs + num_remote_regs,
1313 [] (const packet_reg *a, const packet_reg *b)
1314 { return a->pnum < b->pnum; });
1315
1316 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1317 {
1318 remote_regs[regnum]->in_g_packet = 1;
1319 remote_regs[regnum]->offset = offset;
1320 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1321 }
1322
1323 return offset;
1324 }
1325
1326 /* Given the architecture described by GDBARCH, return the remote
1327 protocol register's number and the register's offset in the g/G
1328 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1329 If the target does not have a mapping for REGNUM, return false,
1330 otherwise, return true. */
1331
1332 int
1333 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1334 int *pnum, int *poffset)
1335 {
1336 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1337
1338 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1339
1340 map_regcache_remote_table (gdbarch, regs.data ());
1341
1342 *pnum = regs[regnum].pnum;
1343 *poffset = regs[regnum].offset;
1344
1345 return *pnum != -1;
1346 }
1347
1348 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1349 {
1350 /* Use the architecture to build a regnum<->pnum table, which will be
1351 1:1 unless a feature set specifies otherwise. */
1352 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1353
1354 /* Record the maximum possible size of the g packet - it may turn out
1355 to be smaller. */
1356 this->sizeof_g_packet
1357 = map_regcache_remote_table (gdbarch, this->regs.get ());
1358
1359 /* Default maximum number of characters in a packet body. Many
1360 remote stubs have a hardwired buffer size of 400 bytes
1361 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1362 as the maximum packet-size to ensure that the packet and an extra
1363 NUL character can always fit in the buffer. This stops GDB
1364 trashing stubs that try to squeeze an extra NUL into what is
1365 already a full buffer (As of 1999-12-04 that was most stubs). */
1366 this->remote_packet_size = 400 - 1;
1367
1368 /* This one is filled in when a ``g'' packet is received. */
1369 this->actual_register_packet_size = 0;
1370
1371 /* Should rsa->sizeof_g_packet needs more space than the
1372 default, adjust the size accordingly. Remember that each byte is
1373 encoded as two characters. 32 is the overhead for the packet
1374 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1375 (``$NN:G...#NN'') is a better guess, the below has been padded a
1376 little. */
1377 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1378 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1379 }
1380
1381 /* Get a pointer to the current remote target. If not connected to a
1382 remote target, return NULL. */
1383
1384 static remote_target *
1385 get_current_remote_target ()
1386 {
1387 target_ops *proc_target = current_inferior ()->process_target ();
1388 return dynamic_cast<remote_target *> (proc_target);
1389 }
1390
1391 /* Return the current allowed size of a remote packet. This is
1392 inferred from the current architecture, and should be used to
1393 limit the length of outgoing packets. */
1394 long
1395 remote_target::get_remote_packet_size ()
1396 {
1397 struct remote_state *rs = get_remote_state ();
1398 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1399
1400 if (rs->explicit_packet_size)
1401 return rs->explicit_packet_size;
1402
1403 return rsa->remote_packet_size;
1404 }
1405
1406 static struct packet_reg *
1407 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1408 long regnum)
1409 {
1410 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1411 return NULL;
1412 else
1413 {
1414 struct packet_reg *r = &rsa->regs[regnum];
1415
1416 gdb_assert (r->regnum == regnum);
1417 return r;
1418 }
1419 }
1420
1421 static struct packet_reg *
1422 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1423 LONGEST pnum)
1424 {
1425 int i;
1426
1427 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1428 {
1429 struct packet_reg *r = &rsa->regs[i];
1430
1431 if (r->pnum == pnum)
1432 return r;
1433 }
1434 return NULL;
1435 }
1436
1437 /* Allow the user to specify what sequence to send to the remote
1438 when he requests a program interruption: Although ^C is usually
1439 what remote systems expect (this is the default, here), it is
1440 sometimes preferable to send a break. On other systems such
1441 as the Linux kernel, a break followed by g, which is Magic SysRq g
1442 is required in order to interrupt the execution. */
1443 const char interrupt_sequence_control_c[] = "Ctrl-C";
1444 const char interrupt_sequence_break[] = "BREAK";
1445 const char interrupt_sequence_break_g[] = "BREAK-g";
1446 static const char *const interrupt_sequence_modes[] =
1447 {
1448 interrupt_sequence_control_c,
1449 interrupt_sequence_break,
1450 interrupt_sequence_break_g,
1451 NULL
1452 };
1453 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1454
1455 static void
1456 show_interrupt_sequence (struct ui_file *file, int from_tty,
1457 struct cmd_list_element *c,
1458 const char *value)
1459 {
1460 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1461 fprintf_filtered (file,
1462 _("Send the ASCII ETX character (Ctrl-c) "
1463 "to the remote target to interrupt the "
1464 "execution of the program.\n"));
1465 else if (interrupt_sequence_mode == interrupt_sequence_break)
1466 fprintf_filtered (file,
1467 _("send a break signal to the remote target "
1468 "to interrupt the execution of the program.\n"));
1469 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1470 fprintf_filtered (file,
1471 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1472 "the remote target to interrupt the execution "
1473 "of Linux kernel.\n"));
1474 else
1475 internal_error (__FILE__, __LINE__,
1476 _("Invalid value for interrupt_sequence_mode: %s."),
1477 interrupt_sequence_mode);
1478 }
1479
1480 /* This boolean variable specifies whether interrupt_sequence is sent
1481 to the remote target when gdb connects to it.
1482 This is mostly needed when you debug the Linux kernel: The Linux kernel
1483 expects BREAK g which is Magic SysRq g for connecting gdb. */
1484 static bool interrupt_on_connect = false;
1485
1486 /* This variable is used to implement the "set/show remotebreak" commands.
1487 Since these commands are now deprecated in favor of "set/show remote
1488 interrupt-sequence", it no longer has any effect on the code. */
1489 static bool remote_break;
1490
1491 static void
1492 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1493 {
1494 if (remote_break)
1495 interrupt_sequence_mode = interrupt_sequence_break;
1496 else
1497 interrupt_sequence_mode = interrupt_sequence_control_c;
1498 }
1499
1500 static void
1501 show_remotebreak (struct ui_file *file, int from_tty,
1502 struct cmd_list_element *c,
1503 const char *value)
1504 {
1505 }
1506
1507 /* This variable sets the number of bits in an address that are to be
1508 sent in a memory ("M" or "m") packet. Normally, after stripping
1509 leading zeros, the entire address would be sent. This variable
1510 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1511 initial implementation of remote.c restricted the address sent in
1512 memory packets to ``host::sizeof long'' bytes - (typically 32
1513 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1514 address was never sent. Since fixing this bug may cause a break in
1515 some remote targets this variable is principally provided to
1516 facilitate backward compatibility. */
1517
1518 static unsigned int remote_address_size;
1519
1520 \f
1521 /* User configurable variables for the number of characters in a
1522 memory read/write packet. MIN (rsa->remote_packet_size,
1523 rsa->sizeof_g_packet) is the default. Some targets need smaller
1524 values (fifo overruns, et.al.) and some users need larger values
1525 (speed up transfers). The variables ``preferred_*'' (the user
1526 request), ``current_*'' (what was actually set) and ``forced_*''
1527 (Positive - a soft limit, negative - a hard limit). */
1528
1529 struct memory_packet_config
1530 {
1531 const char *name;
1532 long size;
1533 int fixed_p;
1534 };
1535
1536 /* The default max memory-write-packet-size, when the setting is
1537 "fixed". The 16k is historical. (It came from older GDB's using
1538 alloca for buffers and the knowledge (folklore?) that some hosts
1539 don't cope very well with large alloca calls.) */
1540 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1541
1542 /* The minimum remote packet size for memory transfers. Ensures we
1543 can write at least one byte. */
1544 #define MIN_MEMORY_PACKET_SIZE 20
1545
1546 /* Get the memory packet size, assuming it is fixed. */
1547
1548 static long
1549 get_fixed_memory_packet_size (struct memory_packet_config *config)
1550 {
1551 gdb_assert (config->fixed_p);
1552
1553 if (config->size <= 0)
1554 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1555 else
1556 return config->size;
1557 }
1558
1559 /* Compute the current size of a read/write packet. Since this makes
1560 use of ``actual_register_packet_size'' the computation is dynamic. */
1561
1562 long
1563 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1567
1568 long what_they_get;
1569 if (config->fixed_p)
1570 what_they_get = get_fixed_memory_packet_size (config);
1571 else
1572 {
1573 what_they_get = get_remote_packet_size ();
1574 /* Limit the packet to the size specified by the user. */
1575 if (config->size > 0
1576 && what_they_get > config->size)
1577 what_they_get = config->size;
1578
1579 /* Limit it to the size of the targets ``g'' response unless we have
1580 permission from the stub to use a larger packet size. */
1581 if (rs->explicit_packet_size == 0
1582 && rsa->actual_register_packet_size > 0
1583 && what_they_get > rsa->actual_register_packet_size)
1584 what_they_get = rsa->actual_register_packet_size;
1585 }
1586 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1587 what_they_get = MIN_MEMORY_PACKET_SIZE;
1588
1589 /* Make sure there is room in the global buffer for this packet
1590 (including its trailing NUL byte). */
1591 if (rs->buf.size () < what_they_get + 1)
1592 rs->buf.resize (2 * what_they_get);
1593
1594 return what_they_get;
1595 }
1596
1597 /* Update the size of a read/write packet. If they user wants
1598 something really big then do a sanity check. */
1599
1600 static void
1601 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1602 {
1603 int fixed_p = config->fixed_p;
1604 long size = config->size;
1605
1606 if (args == NULL)
1607 error (_("Argument required (integer, `fixed' or `limited')."));
1608 else if (strcmp (args, "hard") == 0
1609 || strcmp (args, "fixed") == 0)
1610 fixed_p = 1;
1611 else if (strcmp (args, "soft") == 0
1612 || strcmp (args, "limit") == 0)
1613 fixed_p = 0;
1614 else
1615 {
1616 char *end;
1617
1618 size = strtoul (args, &end, 0);
1619 if (args == end)
1620 error (_("Invalid %s (bad syntax)."), config->name);
1621
1622 /* Instead of explicitly capping the size of a packet to or
1623 disallowing it, the user is allowed to set the size to
1624 something arbitrarily large. */
1625 }
1626
1627 /* Extra checks? */
1628 if (fixed_p && !config->fixed_p)
1629 {
1630 /* So that the query shows the correct value. */
1631 long query_size = (size <= 0
1632 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1633 : size);
1634
1635 if (! query (_("The target may not be able to correctly handle a %s\n"
1636 "of %ld bytes. Change the packet size? "),
1637 config->name, query_size))
1638 error (_("Packet size not changed."));
1639 }
1640 /* Update the config. */
1641 config->fixed_p = fixed_p;
1642 config->size = size;
1643 }
1644
1645 static void
1646 show_memory_packet_size (struct memory_packet_config *config)
1647 {
1648 if (config->size == 0)
1649 printf_filtered (_("The %s is 0 (default). "), config->name);
1650 else
1651 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1652 if (config->fixed_p)
1653 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1654 get_fixed_memory_packet_size (config));
1655 else
1656 {
1657 remote_target *remote = get_current_remote_target ();
1658
1659 if (remote != NULL)
1660 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1661 remote->get_memory_packet_size (config));
1662 else
1663 puts_filtered ("The actual limit will be further reduced "
1664 "dependent on the target.\n");
1665 }
1666 }
1667
1668 /* FIXME: needs to be per-remote-target. */
1669 static struct memory_packet_config memory_write_packet_config =
1670 {
1671 "memory-write-packet-size",
1672 };
1673
1674 static void
1675 set_memory_write_packet_size (const char *args, int from_tty)
1676 {
1677 set_memory_packet_size (args, &memory_write_packet_config);
1678 }
1679
1680 static void
1681 show_memory_write_packet_size (const char *args, int from_tty)
1682 {
1683 show_memory_packet_size (&memory_write_packet_config);
1684 }
1685
1686 /* Show the number of hardware watchpoints that can be used. */
1687
1688 static void
1689 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1690 struct cmd_list_element *c,
1691 const char *value)
1692 {
1693 fprintf_filtered (file, _("The maximum number of target hardware "
1694 "watchpoints is %s.\n"), value);
1695 }
1696
1697 /* Show the length limit (in bytes) for hardware watchpoints. */
1698
1699 static void
1700 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1701 struct cmd_list_element *c,
1702 const char *value)
1703 {
1704 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1705 "hardware watchpoint is %s.\n"), value);
1706 }
1707
1708 /* Show the number of hardware breakpoints that can be used. */
1709
1710 static void
1711 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1712 struct cmd_list_element *c,
1713 const char *value)
1714 {
1715 fprintf_filtered (file, _("The maximum number of target hardware "
1716 "breakpoints is %s.\n"), value);
1717 }
1718
1719 /* Controls the maximum number of characters to display in the debug output
1720 for each remote packet. The remaining characters are omitted. */
1721
1722 static int remote_packet_max_chars = 512;
1723
1724 /* Show the maximum number of characters to display for each remote packet
1725 when remote debugging is enabled. */
1726
1727 static void
1728 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1729 struct cmd_list_element *c,
1730 const char *value)
1731 {
1732 fprintf_filtered (file, _("Number of remote packet characters to "
1733 "display is %s.\n"), value);
1734 }
1735
1736 long
1737 remote_target::get_memory_write_packet_size ()
1738 {
1739 return get_memory_packet_size (&memory_write_packet_config);
1740 }
1741
1742 /* FIXME: needs to be per-remote-target. */
1743 static struct memory_packet_config memory_read_packet_config =
1744 {
1745 "memory-read-packet-size",
1746 };
1747
1748 static void
1749 set_memory_read_packet_size (const char *args, int from_tty)
1750 {
1751 set_memory_packet_size (args, &memory_read_packet_config);
1752 }
1753
1754 static void
1755 show_memory_read_packet_size (const char *args, int from_tty)
1756 {
1757 show_memory_packet_size (&memory_read_packet_config);
1758 }
1759
1760 long
1761 remote_target::get_memory_read_packet_size ()
1762 {
1763 long size = get_memory_packet_size (&memory_read_packet_config);
1764
1765 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1766 extra buffer size argument before the memory read size can be
1767 increased beyond this. */
1768 if (size > get_remote_packet_size ())
1769 size = get_remote_packet_size ();
1770 return size;
1771 }
1772
1773 \f
1774
1775 struct packet_config
1776 {
1777 const char *name;
1778 const char *title;
1779
1780 /* If auto, GDB auto-detects support for this packet or feature,
1781 either through qSupported, or by trying the packet and looking
1782 at the response. If true, GDB assumes the target supports this
1783 packet. If false, the packet is disabled. Configs that don't
1784 have an associated command always have this set to auto. */
1785 enum auto_boolean detect;
1786
1787 /* Does the target support this packet? */
1788 enum packet_support support;
1789 };
1790
1791 static enum packet_support packet_config_support (struct packet_config *config);
1792 static enum packet_support packet_support (int packet);
1793
1794 static void
1795 show_packet_config_cmd (struct packet_config *config)
1796 {
1797 const char *support = "internal-error";
1798
1799 switch (packet_config_support (config))
1800 {
1801 case PACKET_ENABLE:
1802 support = "enabled";
1803 break;
1804 case PACKET_DISABLE:
1805 support = "disabled";
1806 break;
1807 case PACKET_SUPPORT_UNKNOWN:
1808 support = "unknown";
1809 break;
1810 }
1811 switch (config->detect)
1812 {
1813 case AUTO_BOOLEAN_AUTO:
1814 printf_filtered (_("Support for the `%s' packet "
1815 "is auto-detected, currently %s.\n"),
1816 config->name, support);
1817 break;
1818 case AUTO_BOOLEAN_TRUE:
1819 case AUTO_BOOLEAN_FALSE:
1820 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1821 config->name, support);
1822 break;
1823 }
1824 }
1825
1826 static void
1827 add_packet_config_cmd (struct packet_config *config, const char *name,
1828 const char *title, int legacy)
1829 {
1830 char *set_doc;
1831 char *show_doc;
1832 char *cmd_name;
1833
1834 config->name = name;
1835 config->title = title;
1836 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1837 name, title);
1838 show_doc = xstrprintf ("Show current use of remote "
1839 "protocol `%s' (%s) packet.",
1840 name, title);
1841 /* set/show TITLE-packet {auto,on,off} */
1842 cmd_name = xstrprintf ("%s-packet", title);
1843 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1844 &config->detect, set_doc,
1845 show_doc, NULL, /* help_doc */
1846 NULL,
1847 show_remote_protocol_packet_cmd,
1848 &remote_set_cmdlist, &remote_show_cmdlist);
1849 /* The command code copies the documentation strings. */
1850 xfree (set_doc);
1851 xfree (show_doc);
1852 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1853 if (legacy)
1854 {
1855 char *legacy_name;
1856
1857 legacy_name = xstrprintf ("%s-packet", name);
1858 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1859 &remote_set_cmdlist);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_show_cmdlist);
1862 }
1863 }
1864
1865 static enum packet_result
1866 packet_check_result (const char *buf)
1867 {
1868 if (buf[0] != '\0')
1869 {
1870 /* The stub recognized the packet request. Check that the
1871 operation succeeded. */
1872 if (buf[0] == 'E'
1873 && isxdigit (buf[1]) && isxdigit (buf[2])
1874 && buf[3] == '\0')
1875 /* "Enn" - definitely an error. */
1876 return PACKET_ERROR;
1877
1878 /* Always treat "E." as an error. This will be used for
1879 more verbose error messages, such as E.memtypes. */
1880 if (buf[0] == 'E' && buf[1] == '.')
1881 return PACKET_ERROR;
1882
1883 /* The packet may or may not be OK. Just assume it is. */
1884 return PACKET_OK;
1885 }
1886 else
1887 /* The stub does not support the packet. */
1888 return PACKET_UNKNOWN;
1889 }
1890
1891 static enum packet_result
1892 packet_check_result (const gdb::char_vector &buf)
1893 {
1894 return packet_check_result (buf.data ());
1895 }
1896
1897 static enum packet_result
1898 packet_ok (const char *buf, struct packet_config *config)
1899 {
1900 enum packet_result result;
1901
1902 if (config->detect != AUTO_BOOLEAN_TRUE
1903 && config->support == PACKET_DISABLE)
1904 internal_error (__FILE__, __LINE__,
1905 _("packet_ok: attempt to use a disabled packet"));
1906
1907 result = packet_check_result (buf);
1908 switch (result)
1909 {
1910 case PACKET_OK:
1911 case PACKET_ERROR:
1912 /* The stub recognized the packet request. */
1913 if (config->support == PACKET_SUPPORT_UNKNOWN)
1914 {
1915 if (remote_debug)
1916 fprintf_unfiltered (gdb_stdlog,
1917 "Packet %s (%s) is supported\n",
1918 config->name, config->title);
1919 config->support = PACKET_ENABLE;
1920 }
1921 break;
1922 case PACKET_UNKNOWN:
1923 /* The stub does not support the packet. */
1924 if (config->detect == AUTO_BOOLEAN_AUTO
1925 && config->support == PACKET_ENABLE)
1926 {
1927 /* If the stub previously indicated that the packet was
1928 supported then there is a protocol error. */
1929 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1930 config->name, config->title);
1931 }
1932 else if (config->detect == AUTO_BOOLEAN_TRUE)
1933 {
1934 /* The user set it wrong. */
1935 error (_("Enabled packet %s (%s) not recognized by stub"),
1936 config->name, config->title);
1937 }
1938
1939 if (remote_debug)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "Packet %s (%s) is NOT supported\n",
1942 config->name, config->title);
1943 config->support = PACKET_DISABLE;
1944 break;
1945 }
1946
1947 return result;
1948 }
1949
1950 static enum packet_result
1951 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1952 {
1953 return packet_ok (buf.data (), config);
1954 }
1955
1956 enum {
1957 PACKET_vCont = 0,
1958 PACKET_X,
1959 PACKET_qSymbol,
1960 PACKET_P,
1961 PACKET_p,
1962 PACKET_Z0,
1963 PACKET_Z1,
1964 PACKET_Z2,
1965 PACKET_Z3,
1966 PACKET_Z4,
1967 PACKET_vFile_setfs,
1968 PACKET_vFile_open,
1969 PACKET_vFile_pread,
1970 PACKET_vFile_pwrite,
1971 PACKET_vFile_close,
1972 PACKET_vFile_unlink,
1973 PACKET_vFile_readlink,
1974 PACKET_vFile_fstat,
1975 PACKET_qXfer_auxv,
1976 PACKET_qXfer_features,
1977 PACKET_qXfer_exec_file,
1978 PACKET_qXfer_libraries,
1979 PACKET_qXfer_libraries_svr4,
1980 PACKET_qXfer_memory_map,
1981 PACKET_qXfer_osdata,
1982 PACKET_qXfer_threads,
1983 PACKET_qXfer_statictrace_read,
1984 PACKET_qXfer_traceframe_info,
1985 PACKET_qXfer_uib,
1986 PACKET_qGetTIBAddr,
1987 PACKET_qGetTLSAddr,
1988 PACKET_qSupported,
1989 PACKET_qTStatus,
1990 PACKET_QPassSignals,
1991 PACKET_QCatchSyscalls,
1992 PACKET_QProgramSignals,
1993 PACKET_QSetWorkingDir,
1994 PACKET_QStartupWithShell,
1995 PACKET_QEnvironmentHexEncoded,
1996 PACKET_QEnvironmentReset,
1997 PACKET_QEnvironmentUnset,
1998 PACKET_qCRC,
1999 PACKET_qSearch_memory,
2000 PACKET_vAttach,
2001 PACKET_vRun,
2002 PACKET_QStartNoAckMode,
2003 PACKET_vKill,
2004 PACKET_qXfer_siginfo_read,
2005 PACKET_qXfer_siginfo_write,
2006 PACKET_qAttached,
2007
2008 /* Support for conditional tracepoints. */
2009 PACKET_ConditionalTracepoints,
2010
2011 /* Support for target-side breakpoint conditions. */
2012 PACKET_ConditionalBreakpoints,
2013
2014 /* Support for target-side breakpoint commands. */
2015 PACKET_BreakpointCommands,
2016
2017 /* Support for fast tracepoints. */
2018 PACKET_FastTracepoints,
2019
2020 /* Support for static tracepoints. */
2021 PACKET_StaticTracepoints,
2022
2023 /* Support for installing tracepoints while a trace experiment is
2024 running. */
2025 PACKET_InstallInTrace,
2026
2027 PACKET_bc,
2028 PACKET_bs,
2029 PACKET_TracepointSource,
2030 PACKET_QAllow,
2031 PACKET_qXfer_fdpic,
2032 PACKET_QDisableRandomization,
2033 PACKET_QAgent,
2034 PACKET_QTBuffer_size,
2035 PACKET_Qbtrace_off,
2036 PACKET_Qbtrace_bts,
2037 PACKET_Qbtrace_pt,
2038 PACKET_qXfer_btrace,
2039
2040 /* Support for the QNonStop packet. */
2041 PACKET_QNonStop,
2042
2043 /* Support for the QThreadEvents packet. */
2044 PACKET_QThreadEvents,
2045
2046 /* Support for multi-process extensions. */
2047 PACKET_multiprocess_feature,
2048
2049 /* Support for enabling and disabling tracepoints while a trace
2050 experiment is running. */
2051 PACKET_EnableDisableTracepoints_feature,
2052
2053 /* Support for collecting strings using the tracenz bytecode. */
2054 PACKET_tracenz_feature,
2055
2056 /* Support for continuing to run a trace experiment while GDB is
2057 disconnected. */
2058 PACKET_DisconnectedTracing_feature,
2059
2060 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2061 PACKET_augmented_libraries_svr4_read_feature,
2062
2063 /* Support for the qXfer:btrace-conf:read packet. */
2064 PACKET_qXfer_btrace_conf,
2065
2066 /* Support for the Qbtrace-conf:bts:size packet. */
2067 PACKET_Qbtrace_conf_bts_size,
2068
2069 /* Support for swbreak+ feature. */
2070 PACKET_swbreak_feature,
2071
2072 /* Support for hwbreak+ feature. */
2073 PACKET_hwbreak_feature,
2074
2075 /* Support for fork events. */
2076 PACKET_fork_event_feature,
2077
2078 /* Support for vfork events. */
2079 PACKET_vfork_event_feature,
2080
2081 /* Support for the Qbtrace-conf:pt:size packet. */
2082 PACKET_Qbtrace_conf_pt_size,
2083
2084 /* Support for exec events. */
2085 PACKET_exec_event_feature,
2086
2087 /* Support for query supported vCont actions. */
2088 PACKET_vContSupported,
2089
2090 /* Support remote CTRL-C. */
2091 PACKET_vCtrlC,
2092
2093 /* Support TARGET_WAITKIND_NO_RESUMED. */
2094 PACKET_no_resumed,
2095
2096 PACKET_MAX
2097 };
2098
2099 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2100 assuming all remote targets are the same server (thus all support
2101 the same packets). */
2102 static struct packet_config remote_protocol_packets[PACKET_MAX];
2103
2104 /* Returns the packet's corresponding "set remote foo-packet" command
2105 state. See struct packet_config for more details. */
2106
2107 static enum auto_boolean
2108 packet_set_cmd_state (int packet)
2109 {
2110 return remote_protocol_packets[packet].detect;
2111 }
2112
2113 /* Returns whether a given packet or feature is supported. This takes
2114 into account the state of the corresponding "set remote foo-packet"
2115 command, which may be used to bypass auto-detection. */
2116
2117 static enum packet_support
2118 packet_config_support (struct packet_config *config)
2119 {
2120 switch (config->detect)
2121 {
2122 case AUTO_BOOLEAN_TRUE:
2123 return PACKET_ENABLE;
2124 case AUTO_BOOLEAN_FALSE:
2125 return PACKET_DISABLE;
2126 case AUTO_BOOLEAN_AUTO:
2127 return config->support;
2128 default:
2129 gdb_assert_not_reached (_("bad switch"));
2130 }
2131 }
2132
2133 /* Same as packet_config_support, but takes the packet's enum value as
2134 argument. */
2135
2136 static enum packet_support
2137 packet_support (int packet)
2138 {
2139 struct packet_config *config = &remote_protocol_packets[packet];
2140
2141 return packet_config_support (config);
2142 }
2143
2144 static void
2145 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2146 struct cmd_list_element *c,
2147 const char *value)
2148 {
2149 struct packet_config *packet;
2150
2151 for (packet = remote_protocol_packets;
2152 packet < &remote_protocol_packets[PACKET_MAX];
2153 packet++)
2154 {
2155 if (&packet->detect == c->var)
2156 {
2157 show_packet_config_cmd (packet);
2158 return;
2159 }
2160 }
2161 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2162 c->name);
2163 }
2164
2165 /* Should we try one of the 'Z' requests? */
2166
2167 enum Z_packet_type
2168 {
2169 Z_PACKET_SOFTWARE_BP,
2170 Z_PACKET_HARDWARE_BP,
2171 Z_PACKET_WRITE_WP,
2172 Z_PACKET_READ_WP,
2173 Z_PACKET_ACCESS_WP,
2174 NR_Z_PACKET_TYPES
2175 };
2176
2177 /* For compatibility with older distributions. Provide a ``set remote
2178 Z-packet ...'' command that updates all the Z packet types. */
2179
2180 static enum auto_boolean remote_Z_packet_detect;
2181
2182 static void
2183 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2184 struct cmd_list_element *c)
2185 {
2186 int i;
2187
2188 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2189 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2190 }
2191
2192 static void
2193 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2194 struct cmd_list_element *c,
2195 const char *value)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 {
2201 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2202 }
2203 }
2204
2205 /* Returns true if the multi-process extensions are in effect. */
2206
2207 static int
2208 remote_multi_process_p (struct remote_state *rs)
2209 {
2210 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2211 }
2212
2213 /* Returns true if fork events are supported. */
2214
2215 static int
2216 remote_fork_event_p (struct remote_state *rs)
2217 {
2218 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2219 }
2220
2221 /* Returns true if vfork events are supported. */
2222
2223 static int
2224 remote_vfork_event_p (struct remote_state *rs)
2225 {
2226 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2227 }
2228
2229 /* Returns true if exec events are supported. */
2230
2231 static int
2232 remote_exec_event_p (struct remote_state *rs)
2233 {
2234 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2235 }
2236
2237 /* Insert fork catchpoint target routine. If fork events are enabled
2238 then return success, nothing more to do. */
2239
2240 int
2241 remote_target::insert_fork_catchpoint (int pid)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 return !remote_fork_event_p (rs);
2246 }
2247
2248 /* Remove fork catchpoint target routine. Nothing to do, just
2249 return success. */
2250
2251 int
2252 remote_target::remove_fork_catchpoint (int pid)
2253 {
2254 return 0;
2255 }
2256
2257 /* Insert vfork catchpoint target routine. If vfork events are enabled
2258 then return success, nothing more to do. */
2259
2260 int
2261 remote_target::insert_vfork_catchpoint (int pid)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 return !remote_vfork_event_p (rs);
2266 }
2267
2268 /* Remove vfork catchpoint target routine. Nothing to do, just
2269 return success. */
2270
2271 int
2272 remote_target::remove_vfork_catchpoint (int pid)
2273 {
2274 return 0;
2275 }
2276
2277 /* Insert exec catchpoint target routine. If exec events are
2278 enabled, just return success. */
2279
2280 int
2281 remote_target::insert_exec_catchpoint (int pid)
2282 {
2283 struct remote_state *rs = get_remote_state ();
2284
2285 return !remote_exec_event_p (rs);
2286 }
2287
2288 /* Remove exec catchpoint target routine. Nothing to do, just
2289 return success. */
2290
2291 int
2292 remote_target::remove_exec_catchpoint (int pid)
2293 {
2294 return 0;
2295 }
2296
2297 \f
2298
2299 /* Take advantage of the fact that the TID field is not used, to tag
2300 special ptids with it set to != 0. */
2301 static const ptid_t magic_null_ptid (42000, -1, 1);
2302 static const ptid_t not_sent_ptid (42000, -2, 1);
2303 static const ptid_t any_thread_ptid (42000, 0, 1);
2304
2305 /* Find out if the stub attached to PID (and hence GDB should offer to
2306 detach instead of killing it when bailing out). */
2307
2308 int
2309 remote_target::remote_query_attached (int pid)
2310 {
2311 struct remote_state *rs = get_remote_state ();
2312 size_t size = get_remote_packet_size ();
2313
2314 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2315 return 0;
2316
2317 if (remote_multi_process_p (rs))
2318 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2319 else
2320 xsnprintf (rs->buf.data (), size, "qAttached");
2321
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, 0);
2324
2325 switch (packet_ok (rs->buf,
2326 &remote_protocol_packets[PACKET_qAttached]))
2327 {
2328 case PACKET_OK:
2329 if (strcmp (rs->buf.data (), "1") == 0)
2330 return 1;
2331 break;
2332 case PACKET_ERROR:
2333 warning (_("Remote failure reply: %s"), rs->buf.data ());
2334 break;
2335 case PACKET_UNKNOWN:
2336 break;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2343 has been invented by GDB, instead of reported by the target. Since
2344 we can be connected to a remote system before before knowing about
2345 any inferior, mark the target with execution when we find the first
2346 inferior. If ATTACHED is 1, then we had just attached to this
2347 inferior. If it is 0, then we just created this inferior. If it
2348 is -1, then try querying the remote stub to find out if it had
2349 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2350 attempt to open this inferior's executable as the main executable
2351 if no main executable is open already. */
2352
2353 inferior *
2354 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2355 int try_open_exec)
2356 {
2357 struct inferior *inf;
2358
2359 /* Check whether this process we're learning about is to be
2360 considered attached, or if is to be considered to have been
2361 spawned by the stub. */
2362 if (attached == -1)
2363 attached = remote_query_attached (pid);
2364
2365 if (gdbarch_has_global_solist (target_gdbarch ()))
2366 {
2367 /* If the target shares code across all inferiors, then every
2368 attach adds a new inferior. */
2369 inf = add_inferior (pid);
2370
2371 /* ... and every inferior is bound to the same program space.
2372 However, each inferior may still have its own address
2373 space. */
2374 inf->aspace = maybe_new_address_space ();
2375 inf->pspace = current_program_space;
2376 }
2377 else
2378 {
2379 /* In the traditional debugging scenario, there's a 1-1 match
2380 between program/address spaces. We simply bind the inferior
2381 to the program space's address space. */
2382 inf = current_inferior ();
2383
2384 /* However, if the current inferior is already bound to a
2385 process, find some other empty inferior. */
2386 if (inf->pid != 0)
2387 {
2388 inf = nullptr;
2389 for (inferior *it : all_inferiors ())
2390 if (it->pid == 0)
2391 {
2392 inf = it;
2393 break;
2394 }
2395 }
2396 if (inf == nullptr)
2397 {
2398 /* Since all inferiors were already bound to a process, add
2399 a new inferior. */
2400 inf = add_inferior_with_spaces ();
2401 }
2402 switch_to_inferior_no_thread (inf);
2403 push_target (this);
2404 inferior_appeared (inf, pid);
2405 }
2406
2407 inf->attach_flag = attached;
2408 inf->fake_pid_p = fake_pid_p;
2409
2410 /* If no main executable is currently open then attempt to
2411 open the file that was executed to create this inferior. */
2412 if (try_open_exec && get_exec_file (0) == NULL)
2413 exec_file_locate_attach (pid, 0, 1);
2414
2415 /* Check for exec file mismatch, and let the user solve it. */
2416 validate_exec_file (1);
2417
2418 return inf;
2419 }
2420
2421 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2422 static remote_thread_info *get_remote_thread_info (remote_target *target,
2423 ptid_t ptid);
2424
2425 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2426 according to RUNNING. */
2427
2428 thread_info *
2429 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2430 {
2431 struct remote_state *rs = get_remote_state ();
2432 struct thread_info *thread;
2433
2434 /* GDB historically didn't pull threads in the initial connection
2435 setup. If the remote target doesn't even have a concept of
2436 threads (e.g., a bare-metal target), even if internally we
2437 consider that a single-threaded target, mentioning a new thread
2438 might be confusing to the user. Be silent then, preserving the
2439 age old behavior. */
2440 if (rs->starting_up)
2441 thread = add_thread_silent (this, ptid);
2442 else
2443 thread = add_thread (this, ptid);
2444
2445 get_remote_thread_info (thread)->vcont_resumed = executing;
2446 set_executing (this, ptid, executing);
2447 set_running (this, ptid, running);
2448
2449 return thread;
2450 }
2451
2452 /* Come here when we learn about a thread id from the remote target.
2453 It may be the first time we hear about such thread, so take the
2454 opportunity to add it to GDB's thread list. In case this is the
2455 first time we're noticing its corresponding inferior, add it to
2456 GDB's inferior list as well. EXECUTING indicates whether the
2457 thread is (internally) executing or stopped. */
2458
2459 void
2460 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2461 {
2462 /* In non-stop mode, we assume new found threads are (externally)
2463 running until proven otherwise with a stop reply. In all-stop,
2464 we can only get here if all threads are stopped. */
2465 int running = target_is_non_stop_p () ? 1 : 0;
2466
2467 /* If this is a new thread, add it to GDB's thread list.
2468 If we leave it up to WFI to do this, bad things will happen. */
2469
2470 thread_info *tp = find_thread_ptid (this, currthread);
2471 if (tp != NULL && tp->state == THREAD_EXITED)
2472 {
2473 /* We're seeing an event on a thread id we knew had exited.
2474 This has to be a new thread reusing the old id. Add it. */
2475 remote_add_thread (currthread, running, executing);
2476 return;
2477 }
2478
2479 if (!in_thread_list (this, currthread))
2480 {
2481 struct inferior *inf = NULL;
2482 int pid = currthread.pid ();
2483
2484 if (inferior_ptid.is_pid ()
2485 && pid == inferior_ptid.pid ())
2486 {
2487 /* inferior_ptid has no thread member yet. This can happen
2488 with the vAttach -> remote_wait,"TAAthread:" path if the
2489 stub doesn't support qC. This is the first stop reported
2490 after an attach, so this is the main thread. Update the
2491 ptid in the thread list. */
2492 if (in_thread_list (this, ptid_t (pid)))
2493 thread_change_ptid (this, inferior_ptid, currthread);
2494 else
2495 {
2496 remote_add_thread (currthread, running, executing);
2497 inferior_ptid = currthread;
2498 }
2499 return;
2500 }
2501
2502 if (magic_null_ptid == inferior_ptid)
2503 {
2504 /* inferior_ptid is not set yet. This can happen with the
2505 vRun -> remote_wait,"TAAthread:" path if the stub
2506 doesn't support qC. This is the first stop reported
2507 after an attach, so this is the main thread. Update the
2508 ptid in the thread list. */
2509 thread_change_ptid (this, inferior_ptid, currthread);
2510 return;
2511 }
2512
2513 /* When connecting to a target remote, or to a target
2514 extended-remote which already was debugging an inferior, we
2515 may not know about it yet. Add it before adding its child
2516 thread, so notifications are emitted in a sensible order. */
2517 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2518 {
2519 struct remote_state *rs = get_remote_state ();
2520 bool fake_pid_p = !remote_multi_process_p (rs);
2521
2522 inf = remote_add_inferior (fake_pid_p,
2523 currthread.pid (), -1, 1);
2524 }
2525
2526 /* This is really a new thread. Add it. */
2527 thread_info *new_thr
2528 = remote_add_thread (currthread, running, executing);
2529
2530 /* If we found a new inferior, let the common code do whatever
2531 it needs to with it (e.g., read shared libraries, insert
2532 breakpoints), unless we're just setting up an all-stop
2533 connection. */
2534 if (inf != NULL)
2535 {
2536 struct remote_state *rs = get_remote_state ();
2537
2538 if (!rs->starting_up)
2539 notice_new_inferior (new_thr, executing, 0);
2540 }
2541 }
2542 }
2543
2544 /* Return THREAD's private thread data, creating it if necessary. */
2545
2546 static remote_thread_info *
2547 get_remote_thread_info (thread_info *thread)
2548 {
2549 gdb_assert (thread != NULL);
2550
2551 if (thread->priv == NULL)
2552 thread->priv.reset (new remote_thread_info);
2553
2554 return static_cast<remote_thread_info *> (thread->priv.get ());
2555 }
2556
2557 /* Return PTID's private thread data, creating it if necessary. */
2558
2559 static remote_thread_info *
2560 get_remote_thread_info (remote_target *target, ptid_t ptid)
2561 {
2562 thread_info *thr = find_thread_ptid (target, ptid);
2563 return get_remote_thread_info (thr);
2564 }
2565
2566 /* Call this function as a result of
2567 1) A halt indication (T packet) containing a thread id
2568 2) A direct query of currthread
2569 3) Successful execution of set thread */
2570
2571 static void
2572 record_currthread (struct remote_state *rs, ptid_t currthread)
2573 {
2574 rs->general_thread = currthread;
2575 }
2576
2577 /* If 'QPassSignals' is supported, tell the remote stub what signals
2578 it can simply pass through to the inferior without reporting. */
2579
2580 void
2581 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2582 {
2583 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2584 {
2585 char *pass_packet, *p;
2586 int count = 0;
2587 struct remote_state *rs = get_remote_state ();
2588
2589 gdb_assert (pass_signals.size () < 256);
2590 for (size_t i = 0; i < pass_signals.size (); i++)
2591 {
2592 if (pass_signals[i])
2593 count++;
2594 }
2595 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2596 strcpy (pass_packet, "QPassSignals:");
2597 p = pass_packet + strlen (pass_packet);
2598 for (size_t i = 0; i < pass_signals.size (); i++)
2599 {
2600 if (pass_signals[i])
2601 {
2602 if (i >= 16)
2603 *p++ = tohex (i >> 4);
2604 *p++ = tohex (i & 15);
2605 if (count)
2606 *p++ = ';';
2607 else
2608 break;
2609 count--;
2610 }
2611 }
2612 *p = 0;
2613 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2614 {
2615 putpkt (pass_packet);
2616 getpkt (&rs->buf, 0);
2617 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2618 if (rs->last_pass_packet)
2619 xfree (rs->last_pass_packet);
2620 rs->last_pass_packet = pass_packet;
2621 }
2622 else
2623 xfree (pass_packet);
2624 }
2625 }
2626
2627 /* If 'QCatchSyscalls' is supported, tell the remote stub
2628 to report syscalls to GDB. */
2629
2630 int
2631 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2632 gdb::array_view<const int> syscall_counts)
2633 {
2634 const char *catch_packet;
2635 enum packet_result result;
2636 int n_sysno = 0;
2637
2638 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2639 {
2640 /* Not supported. */
2641 return 1;
2642 }
2643
2644 if (needed && any_count == 0)
2645 {
2646 /* Count how many syscalls are to be caught. */
2647 for (size_t i = 0; i < syscall_counts.size (); i++)
2648 {
2649 if (syscall_counts[i] != 0)
2650 n_sysno++;
2651 }
2652 }
2653
2654 if (remote_debug)
2655 {
2656 fprintf_unfiltered (gdb_stdlog,
2657 "remote_set_syscall_catchpoint "
2658 "pid %d needed %d any_count %d n_sysno %d\n",
2659 pid, needed, any_count, n_sysno);
2660 }
2661
2662 std::string built_packet;
2663 if (needed)
2664 {
2665 /* Prepare a packet with the sysno list, assuming max 8+1
2666 characters for a sysno. If the resulting packet size is too
2667 big, fallback on the non-selective packet. */
2668 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2669 built_packet.reserve (maxpktsz);
2670 built_packet = "QCatchSyscalls:1";
2671 if (any_count == 0)
2672 {
2673 /* Add in each syscall to be caught. */
2674 for (size_t i = 0; i < syscall_counts.size (); i++)
2675 {
2676 if (syscall_counts[i] != 0)
2677 string_appendf (built_packet, ";%zx", i);
2678 }
2679 }
2680 if (built_packet.size () > get_remote_packet_size ())
2681 {
2682 /* catch_packet too big. Fallback to less efficient
2683 non selective mode, with GDB doing the filtering. */
2684 catch_packet = "QCatchSyscalls:1";
2685 }
2686 else
2687 catch_packet = built_packet.c_str ();
2688 }
2689 else
2690 catch_packet = "QCatchSyscalls:0";
2691
2692 struct remote_state *rs = get_remote_state ();
2693
2694 putpkt (catch_packet);
2695 getpkt (&rs->buf, 0);
2696 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2697 if (result == PACKET_OK)
2698 return 0;
2699 else
2700 return -1;
2701 }
2702
2703 /* If 'QProgramSignals' is supported, tell the remote stub what
2704 signals it should pass through to the inferior when detaching. */
2705
2706 void
2707 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2708 {
2709 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2710 {
2711 char *packet, *p;
2712 int count = 0;
2713 struct remote_state *rs = get_remote_state ();
2714
2715 gdb_assert (signals.size () < 256);
2716 for (size_t i = 0; i < signals.size (); i++)
2717 {
2718 if (signals[i])
2719 count++;
2720 }
2721 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2722 strcpy (packet, "QProgramSignals:");
2723 p = packet + strlen (packet);
2724 for (size_t i = 0; i < signals.size (); i++)
2725 {
2726 if (signal_pass_state (i))
2727 {
2728 if (i >= 16)
2729 *p++ = tohex (i >> 4);
2730 *p++ = tohex (i & 15);
2731 if (count)
2732 *p++ = ';';
2733 else
2734 break;
2735 count--;
2736 }
2737 }
2738 *p = 0;
2739 if (!rs->last_program_signals_packet
2740 || strcmp (rs->last_program_signals_packet, packet) != 0)
2741 {
2742 putpkt (packet);
2743 getpkt (&rs->buf, 0);
2744 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2745 xfree (rs->last_program_signals_packet);
2746 rs->last_program_signals_packet = packet;
2747 }
2748 else
2749 xfree (packet);
2750 }
2751 }
2752
2753 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2754 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2755 thread. If GEN is set, set the general thread, if not, then set
2756 the step/continue thread. */
2757 void
2758 remote_target::set_thread (ptid_t ptid, int gen)
2759 {
2760 struct remote_state *rs = get_remote_state ();
2761 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2762 char *buf = rs->buf.data ();
2763 char *endbuf = buf + get_remote_packet_size ();
2764
2765 if (state == ptid)
2766 return;
2767
2768 *buf++ = 'H';
2769 *buf++ = gen ? 'g' : 'c';
2770 if (ptid == magic_null_ptid)
2771 xsnprintf (buf, endbuf - buf, "0");
2772 else if (ptid == any_thread_ptid)
2773 xsnprintf (buf, endbuf - buf, "0");
2774 else if (ptid == minus_one_ptid)
2775 xsnprintf (buf, endbuf - buf, "-1");
2776 else
2777 write_ptid (buf, endbuf, ptid);
2778 putpkt (rs->buf);
2779 getpkt (&rs->buf, 0);
2780 if (gen)
2781 rs->general_thread = ptid;
2782 else
2783 rs->continue_thread = ptid;
2784 }
2785
2786 void
2787 remote_target::set_general_thread (ptid_t ptid)
2788 {
2789 set_thread (ptid, 1);
2790 }
2791
2792 void
2793 remote_target::set_continue_thread (ptid_t ptid)
2794 {
2795 set_thread (ptid, 0);
2796 }
2797
2798 /* Change the remote current process. Which thread within the process
2799 ends up selected isn't important, as long as it is the same process
2800 as what INFERIOR_PTID points to.
2801
2802 This comes from that fact that there is no explicit notion of
2803 "selected process" in the protocol. The selected process for
2804 general operations is the process the selected general thread
2805 belongs to. */
2806
2807 void
2808 remote_target::set_general_process ()
2809 {
2810 struct remote_state *rs = get_remote_state ();
2811
2812 /* If the remote can't handle multiple processes, don't bother. */
2813 if (!remote_multi_process_p (rs))
2814 return;
2815
2816 /* We only need to change the remote current thread if it's pointing
2817 at some other process. */
2818 if (rs->general_thread.pid () != inferior_ptid.pid ())
2819 set_general_thread (inferior_ptid);
2820 }
2821
2822 \f
2823 /* Return nonzero if this is the main thread that we made up ourselves
2824 to model non-threaded targets as single-threaded. */
2825
2826 static int
2827 remote_thread_always_alive (ptid_t ptid)
2828 {
2829 if (ptid == magic_null_ptid)
2830 /* The main thread is always alive. */
2831 return 1;
2832
2833 if (ptid.pid () != 0 && ptid.lwp () == 0)
2834 /* The main thread is always alive. This can happen after a
2835 vAttach, if the remote side doesn't support
2836 multi-threading. */
2837 return 1;
2838
2839 return 0;
2840 }
2841
2842 /* Return nonzero if the thread PTID is still alive on the remote
2843 system. */
2844
2845 bool
2846 remote_target::thread_alive (ptid_t ptid)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 char *p, *endp;
2850
2851 /* Check if this is a thread that we made up ourselves to model
2852 non-threaded targets as single-threaded. */
2853 if (remote_thread_always_alive (ptid))
2854 return 1;
2855
2856 p = rs->buf.data ();
2857 endp = p + get_remote_packet_size ();
2858
2859 *p++ = 'T';
2860 write_ptid (p, endp, ptid);
2861
2862 putpkt (rs->buf);
2863 getpkt (&rs->buf, 0);
2864 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2865 }
2866
2867 /* Return a pointer to a thread name if we know it and NULL otherwise.
2868 The thread_info object owns the memory for the name. */
2869
2870 const char *
2871 remote_target::thread_name (struct thread_info *info)
2872 {
2873 if (info->priv != NULL)
2874 {
2875 const std::string &name = get_remote_thread_info (info)->name;
2876 return !name.empty () ? name.c_str () : NULL;
2877 }
2878
2879 return NULL;
2880 }
2881
2882 /* About these extended threadlist and threadinfo packets. They are
2883 variable length packets but, the fields within them are often fixed
2884 length. They are redundant enough to send over UDP as is the
2885 remote protocol in general. There is a matching unit test module
2886 in libstub. */
2887
2888 /* WARNING: This threadref data structure comes from the remote O.S.,
2889 libstub protocol encoding, and remote.c. It is not particularly
2890 changable. */
2891
2892 /* Right now, the internal structure is int. We want it to be bigger.
2893 Plan to fix this. */
2894
2895 typedef int gdb_threadref; /* Internal GDB thread reference. */
2896
2897 /* gdb_ext_thread_info is an internal GDB data structure which is
2898 equivalent to the reply of the remote threadinfo packet. */
2899
2900 struct gdb_ext_thread_info
2901 {
2902 threadref threadid; /* External form of thread reference. */
2903 int active; /* Has state interesting to GDB?
2904 regs, stack. */
2905 char display[256]; /* Brief state display, name,
2906 blocked/suspended. */
2907 char shortname[32]; /* To be used to name threads. */
2908 char more_display[256]; /* Long info, statistics, queue depth,
2909 whatever. */
2910 };
2911
2912 /* The volume of remote transfers can be limited by submitting
2913 a mask containing bits specifying the desired information.
2914 Use a union of these values as the 'selection' parameter to
2915 get_thread_info. FIXME: Make these TAG names more thread specific. */
2916
2917 #define TAG_THREADID 1
2918 #define TAG_EXISTS 2
2919 #define TAG_DISPLAY 4
2920 #define TAG_THREADNAME 8
2921 #define TAG_MOREDISPLAY 16
2922
2923 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2924
2925 static char *unpack_nibble (char *buf, int *val);
2926
2927 static char *unpack_byte (char *buf, int *value);
2928
2929 static char *pack_int (char *buf, int value);
2930
2931 static char *unpack_int (char *buf, int *value);
2932
2933 static char *unpack_string (char *src, char *dest, int length);
2934
2935 static char *pack_threadid (char *pkt, threadref *id);
2936
2937 static char *unpack_threadid (char *inbuf, threadref *id);
2938
2939 void int_to_threadref (threadref *id, int value);
2940
2941 static int threadref_to_int (threadref *ref);
2942
2943 static void copy_threadref (threadref *dest, threadref *src);
2944
2945 static int threadmatch (threadref *dest, threadref *src);
2946
2947 static char *pack_threadinfo_request (char *pkt, int mode,
2948 threadref *id);
2949
2950 static char *pack_threadlist_request (char *pkt, int startflag,
2951 int threadcount,
2952 threadref *nextthread);
2953
2954 static int remote_newthread_step (threadref *ref, void *context);
2955
2956
2957 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2958 buffer we're allowed to write to. Returns
2959 BUF+CHARACTERS_WRITTEN. */
2960
2961 char *
2962 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2963 {
2964 int pid, tid;
2965 struct remote_state *rs = get_remote_state ();
2966
2967 if (remote_multi_process_p (rs))
2968 {
2969 pid = ptid.pid ();
2970 if (pid < 0)
2971 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2972 else
2973 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2974 }
2975 tid = ptid.lwp ();
2976 if (tid < 0)
2977 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2978 else
2979 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2980
2981 return buf;
2982 }
2983
2984 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2985 last parsed char. Returns null_ptid if no thread id is found, and
2986 throws an error if the thread id has an invalid format. */
2987
2988 static ptid_t
2989 read_ptid (const char *buf, const char **obuf)
2990 {
2991 const char *p = buf;
2992 const char *pp;
2993 ULONGEST pid = 0, tid = 0;
2994
2995 if (*p == 'p')
2996 {
2997 /* Multi-process ptid. */
2998 pp = unpack_varlen_hex (p + 1, &pid);
2999 if (*pp != '.')
3000 error (_("invalid remote ptid: %s"), p);
3001
3002 p = pp;
3003 pp = unpack_varlen_hex (p + 1, &tid);
3004 if (obuf)
3005 *obuf = pp;
3006 return ptid_t (pid, tid, 0);
3007 }
3008
3009 /* No multi-process. Just a tid. */
3010 pp = unpack_varlen_hex (p, &tid);
3011
3012 /* Return null_ptid when no thread id is found. */
3013 if (p == pp)
3014 {
3015 if (obuf)
3016 *obuf = pp;
3017 return null_ptid;
3018 }
3019
3020 /* Since the stub is not sending a process id, then default to
3021 what's in inferior_ptid, unless it's null at this point. If so,
3022 then since there's no way to know the pid of the reported
3023 threads, use the magic number. */
3024 if (inferior_ptid == null_ptid)
3025 pid = magic_null_ptid.pid ();
3026 else
3027 pid = inferior_ptid.pid ();
3028
3029 if (obuf)
3030 *obuf = pp;
3031 return ptid_t (pid, tid, 0);
3032 }
3033
3034 static int
3035 stubhex (int ch)
3036 {
3037 if (ch >= 'a' && ch <= 'f')
3038 return ch - 'a' + 10;
3039 if (ch >= '0' && ch <= '9')
3040 return ch - '0';
3041 if (ch >= 'A' && ch <= 'F')
3042 return ch - 'A' + 10;
3043 return -1;
3044 }
3045
3046 static int
3047 stub_unpack_int (char *buff, int fieldlength)
3048 {
3049 int nibble;
3050 int retval = 0;
3051
3052 while (fieldlength)
3053 {
3054 nibble = stubhex (*buff++);
3055 retval |= nibble;
3056 fieldlength--;
3057 if (fieldlength)
3058 retval = retval << 4;
3059 }
3060 return retval;
3061 }
3062
3063 static char *
3064 unpack_nibble (char *buf, int *val)
3065 {
3066 *val = fromhex (*buf++);
3067 return buf;
3068 }
3069
3070 static char *
3071 unpack_byte (char *buf, int *value)
3072 {
3073 *value = stub_unpack_int (buf, 2);
3074 return buf + 2;
3075 }
3076
3077 static char *
3078 pack_int (char *buf, int value)
3079 {
3080 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3082 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3083 buf = pack_hex_byte (buf, (value & 0xff));
3084 return buf;
3085 }
3086
3087 static char *
3088 unpack_int (char *buf, int *value)
3089 {
3090 *value = stub_unpack_int (buf, 8);
3091 return buf + 8;
3092 }
3093
3094 #if 0 /* Currently unused, uncomment when needed. */
3095 static char *pack_string (char *pkt, char *string);
3096
3097 static char *
3098 pack_string (char *pkt, char *string)
3099 {
3100 char ch;
3101 int len;
3102
3103 len = strlen (string);
3104 if (len > 200)
3105 len = 200; /* Bigger than most GDB packets, junk??? */
3106 pkt = pack_hex_byte (pkt, len);
3107 while (len-- > 0)
3108 {
3109 ch = *string++;
3110 if ((ch == '\0') || (ch == '#'))
3111 ch = '*'; /* Protect encapsulation. */
3112 *pkt++ = ch;
3113 }
3114 return pkt;
3115 }
3116 #endif /* 0 (unused) */
3117
3118 static char *
3119 unpack_string (char *src, char *dest, int length)
3120 {
3121 while (length--)
3122 *dest++ = *src++;
3123 *dest = '\0';
3124 return src;
3125 }
3126
3127 static char *
3128 pack_threadid (char *pkt, threadref *id)
3129 {
3130 char *limit;
3131 unsigned char *altid;
3132
3133 altid = (unsigned char *) id;
3134 limit = pkt + BUF_THREAD_ID_SIZE;
3135 while (pkt < limit)
3136 pkt = pack_hex_byte (pkt, *altid++);
3137 return pkt;
3138 }
3139
3140
3141 static char *
3142 unpack_threadid (char *inbuf, threadref *id)
3143 {
3144 char *altref;
3145 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3146 int x, y;
3147
3148 altref = (char *) id;
3149
3150 while (inbuf < limit)
3151 {
3152 x = stubhex (*inbuf++);
3153 y = stubhex (*inbuf++);
3154 *altref++ = (x << 4) | y;
3155 }
3156 return inbuf;
3157 }
3158
3159 /* Externally, threadrefs are 64 bits but internally, they are still
3160 ints. This is due to a mismatch of specifications. We would like
3161 to use 64bit thread references internally. This is an adapter
3162 function. */
3163
3164 void
3165 int_to_threadref (threadref *id, int value)
3166 {
3167 unsigned char *scan;
3168
3169 scan = (unsigned char *) id;
3170 {
3171 int i = 4;
3172 while (i--)
3173 *scan++ = 0;
3174 }
3175 *scan++ = (value >> 24) & 0xff;
3176 *scan++ = (value >> 16) & 0xff;
3177 *scan++ = (value >> 8) & 0xff;
3178 *scan++ = (value & 0xff);
3179 }
3180
3181 static int
3182 threadref_to_int (threadref *ref)
3183 {
3184 int i, value = 0;
3185 unsigned char *scan;
3186
3187 scan = *ref;
3188 scan += 4;
3189 i = 4;
3190 while (i-- > 0)
3191 value = (value << 8) | ((*scan++) & 0xff);
3192 return value;
3193 }
3194
3195 static void
3196 copy_threadref (threadref *dest, threadref *src)
3197 {
3198 int i;
3199 unsigned char *csrc, *cdest;
3200
3201 csrc = (unsigned char *) src;
3202 cdest = (unsigned char *) dest;
3203 i = 8;
3204 while (i--)
3205 *cdest++ = *csrc++;
3206 }
3207
3208 static int
3209 threadmatch (threadref *dest, threadref *src)
3210 {
3211 /* Things are broken right now, so just assume we got a match. */
3212 #if 0
3213 unsigned char *srcp, *destp;
3214 int i, result;
3215 srcp = (char *) src;
3216 destp = (char *) dest;
3217
3218 result = 1;
3219 while (i-- > 0)
3220 result &= (*srcp++ == *destp++) ? 1 : 0;
3221 return result;
3222 #endif
3223 return 1;
3224 }
3225
3226 /*
3227 threadid:1, # always request threadid
3228 context_exists:2,
3229 display:4,
3230 unique_name:8,
3231 more_display:16
3232 */
3233
3234 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3235
3236 static char *
3237 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3238 {
3239 *pkt++ = 'q'; /* Info Query */
3240 *pkt++ = 'P'; /* process or thread info */
3241 pkt = pack_int (pkt, mode); /* mode */
3242 pkt = pack_threadid (pkt, id); /* threadid */
3243 *pkt = '\0'; /* terminate */
3244 return pkt;
3245 }
3246
3247 /* These values tag the fields in a thread info response packet. */
3248 /* Tagging the fields allows us to request specific fields and to
3249 add more fields as time goes by. */
3250
3251 #define TAG_THREADID 1 /* Echo the thread identifier. */
3252 #define TAG_EXISTS 2 /* Is this process defined enough to
3253 fetch registers and its stack? */
3254 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3255 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3256 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3257 the process. */
3258
3259 int
3260 remote_target::remote_unpack_thread_info_response (char *pkt,
3261 threadref *expectedref,
3262 gdb_ext_thread_info *info)
3263 {
3264 struct remote_state *rs = get_remote_state ();
3265 int mask, length;
3266 int tag;
3267 threadref ref;
3268 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3269 int retval = 1;
3270
3271 /* info->threadid = 0; FIXME: implement zero_threadref. */
3272 info->active = 0;
3273 info->display[0] = '\0';
3274 info->shortname[0] = '\0';
3275 info->more_display[0] = '\0';
3276
3277 /* Assume the characters indicating the packet type have been
3278 stripped. */
3279 pkt = unpack_int (pkt, &mask); /* arg mask */
3280 pkt = unpack_threadid (pkt, &ref);
3281
3282 if (mask == 0)
3283 warning (_("Incomplete response to threadinfo request."));
3284 if (!threadmatch (&ref, expectedref))
3285 { /* This is an answer to a different request. */
3286 warning (_("ERROR RMT Thread info mismatch."));
3287 return 0;
3288 }
3289 copy_threadref (&info->threadid, &ref);
3290
3291 /* Loop on tagged fields , try to bail if something goes wrong. */
3292
3293 /* Packets are terminated with nulls. */
3294 while ((pkt < limit) && mask && *pkt)
3295 {
3296 pkt = unpack_int (pkt, &tag); /* tag */
3297 pkt = unpack_byte (pkt, &length); /* length */
3298 if (!(tag & mask)) /* Tags out of synch with mask. */
3299 {
3300 warning (_("ERROR RMT: threadinfo tag mismatch."));
3301 retval = 0;
3302 break;
3303 }
3304 if (tag == TAG_THREADID)
3305 {
3306 if (length != 16)
3307 {
3308 warning (_("ERROR RMT: length of threadid is not 16."));
3309 retval = 0;
3310 break;
3311 }
3312 pkt = unpack_threadid (pkt, &ref);
3313 mask = mask & ~TAG_THREADID;
3314 continue;
3315 }
3316 if (tag == TAG_EXISTS)
3317 {
3318 info->active = stub_unpack_int (pkt, length);
3319 pkt += length;
3320 mask = mask & ~(TAG_EXISTS);
3321 if (length > 8)
3322 {
3323 warning (_("ERROR RMT: 'exists' length too long."));
3324 retval = 0;
3325 break;
3326 }
3327 continue;
3328 }
3329 if (tag == TAG_THREADNAME)
3330 {
3331 pkt = unpack_string (pkt, &info->shortname[0], length);
3332 mask = mask & ~TAG_THREADNAME;
3333 continue;
3334 }
3335 if (tag == TAG_DISPLAY)
3336 {
3337 pkt = unpack_string (pkt, &info->display[0], length);
3338 mask = mask & ~TAG_DISPLAY;
3339 continue;
3340 }
3341 if (tag == TAG_MOREDISPLAY)
3342 {
3343 pkt = unpack_string (pkt, &info->more_display[0], length);
3344 mask = mask & ~TAG_MOREDISPLAY;
3345 continue;
3346 }
3347 warning (_("ERROR RMT: unknown thread info tag."));
3348 break; /* Not a tag we know about. */
3349 }
3350 return retval;
3351 }
3352
3353 int
3354 remote_target::remote_get_threadinfo (threadref *threadid,
3355 int fieldset,
3356 gdb_ext_thread_info *info)
3357 {
3358 struct remote_state *rs = get_remote_state ();
3359 int result;
3360
3361 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3362 putpkt (rs->buf);
3363 getpkt (&rs->buf, 0);
3364
3365 if (rs->buf[0] == '\0')
3366 return 0;
3367
3368 result = remote_unpack_thread_info_response (&rs->buf[2],
3369 threadid, info);
3370 return result;
3371 }
3372
3373 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3374
3375 static char *
3376 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3377 threadref *nextthread)
3378 {
3379 *pkt++ = 'q'; /* info query packet */
3380 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3381 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3382 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3383 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3384 *pkt = '\0';
3385 return pkt;
3386 }
3387
3388 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3389
3390 int
3391 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3392 threadref *original_echo,
3393 threadref *resultlist,
3394 int *doneflag)
3395 {
3396 struct remote_state *rs = get_remote_state ();
3397 char *limit;
3398 int count, resultcount, done;
3399
3400 resultcount = 0;
3401 /* Assume the 'q' and 'M chars have been stripped. */
3402 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3403 /* done parse past here */
3404 pkt = unpack_byte (pkt, &count); /* count field */
3405 pkt = unpack_nibble (pkt, &done);
3406 /* The first threadid is the argument threadid. */
3407 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3408 while ((count-- > 0) && (pkt < limit))
3409 {
3410 pkt = unpack_threadid (pkt, resultlist++);
3411 if (resultcount++ >= result_limit)
3412 break;
3413 }
3414 if (doneflag)
3415 *doneflag = done;
3416 return resultcount;
3417 }
3418
3419 /* Fetch the next batch of threads from the remote. Returns -1 if the
3420 qL packet is not supported, 0 on error and 1 on success. */
3421
3422 int
3423 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3424 int result_limit, int *done, int *result_count,
3425 threadref *threadlist)
3426 {
3427 struct remote_state *rs = get_remote_state ();
3428 int result = 1;
3429
3430 /* Truncate result limit to be smaller than the packet size. */
3431 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3432 >= get_remote_packet_size ())
3433 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3434
3435 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3436 nextthread);
3437 putpkt (rs->buf);
3438 getpkt (&rs->buf, 0);
3439 if (rs->buf[0] == '\0')
3440 {
3441 /* Packet not supported. */
3442 return -1;
3443 }
3444
3445 *result_count =
3446 parse_threadlist_response (&rs->buf[2], result_limit,
3447 &rs->echo_nextthread, threadlist, done);
3448
3449 if (!threadmatch (&rs->echo_nextthread, nextthread))
3450 {
3451 /* FIXME: This is a good reason to drop the packet. */
3452 /* Possibly, there is a duplicate response. */
3453 /* Possibilities :
3454 retransmit immediatly - race conditions
3455 retransmit after timeout - yes
3456 exit
3457 wait for packet, then exit
3458 */
3459 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3460 return 0; /* I choose simply exiting. */
3461 }
3462 if (*result_count <= 0)
3463 {
3464 if (*done != 1)
3465 {
3466 warning (_("RMT ERROR : failed to get remote thread list."));
3467 result = 0;
3468 }
3469 return result; /* break; */
3470 }
3471 if (*result_count > result_limit)
3472 {
3473 *result_count = 0;
3474 warning (_("RMT ERROR: threadlist response longer than requested."));
3475 return 0;
3476 }
3477 return result;
3478 }
3479
3480 /* Fetch the list of remote threads, with the qL packet, and call
3481 STEPFUNCTION for each thread found. Stops iterating and returns 1
3482 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3483 STEPFUNCTION returns false. If the packet is not supported,
3484 returns -1. */
3485
3486 int
3487 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3488 void *context, int looplimit)
3489 {
3490 struct remote_state *rs = get_remote_state ();
3491 int done, i, result_count;
3492 int startflag = 1;
3493 int result = 1;
3494 int loopcount = 0;
3495
3496 done = 0;
3497 while (!done)
3498 {
3499 if (loopcount++ > looplimit)
3500 {
3501 result = 0;
3502 warning (_("Remote fetch threadlist -infinite loop-."));
3503 break;
3504 }
3505 result = remote_get_threadlist (startflag, &rs->nextthread,
3506 MAXTHREADLISTRESULTS,
3507 &done, &result_count,
3508 rs->resultthreadlist);
3509 if (result <= 0)
3510 break;
3511 /* Clear for later iterations. */
3512 startflag = 0;
3513 /* Setup to resume next batch of thread references, set nextthread. */
3514 if (result_count >= 1)
3515 copy_threadref (&rs->nextthread,
3516 &rs->resultthreadlist[result_count - 1]);
3517 i = 0;
3518 while (result_count--)
3519 {
3520 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3521 {
3522 result = 0;
3523 break;
3524 }
3525 }
3526 }
3527 return result;
3528 }
3529
3530 /* A thread found on the remote target. */
3531
3532 struct thread_item
3533 {
3534 explicit thread_item (ptid_t ptid_)
3535 : ptid (ptid_)
3536 {}
3537
3538 thread_item (thread_item &&other) = default;
3539 thread_item &operator= (thread_item &&other) = default;
3540
3541 DISABLE_COPY_AND_ASSIGN (thread_item);
3542
3543 /* The thread's PTID. */
3544 ptid_t ptid;
3545
3546 /* The thread's extra info. */
3547 std::string extra;
3548
3549 /* The thread's name. */
3550 std::string name;
3551
3552 /* The core the thread was running on. -1 if not known. */
3553 int core = -1;
3554
3555 /* The thread handle associated with the thread. */
3556 gdb::byte_vector thread_handle;
3557 };
3558
3559 /* Context passed around to the various methods listing remote
3560 threads. As new threads are found, they're added to the ITEMS
3561 vector. */
3562
3563 struct threads_listing_context
3564 {
3565 /* Return true if this object contains an entry for a thread with ptid
3566 PTID. */
3567
3568 bool contains_thread (ptid_t ptid) const
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::find_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 return it != this->items.end ();
3580 }
3581
3582 /* Remove the thread with ptid PTID. */
3583
3584 void remove_thread (ptid_t ptid)
3585 {
3586 auto match_ptid = [&] (const thread_item &item)
3587 {
3588 return item.ptid == ptid;
3589 };
3590
3591 auto it = std::remove_if (this->items.begin (),
3592 this->items.end (),
3593 match_ptid);
3594
3595 if (it != this->items.end ())
3596 this->items.erase (it);
3597 }
3598
3599 /* The threads found on the remote target. */
3600 std::vector<thread_item> items;
3601 };
3602
3603 static int
3604 remote_newthread_step (threadref *ref, void *data)
3605 {
3606 struct threads_listing_context *context
3607 = (struct threads_listing_context *) data;
3608 int pid = inferior_ptid.pid ();
3609 int lwp = threadref_to_int (ref);
3610 ptid_t ptid (pid, lwp);
3611
3612 context->items.emplace_back (ptid);
3613
3614 return 1; /* continue iterator */
3615 }
3616
3617 #define CRAZY_MAX_THREADS 1000
3618
3619 ptid_t
3620 remote_target::remote_current_thread (ptid_t oldpid)
3621 {
3622 struct remote_state *rs = get_remote_state ();
3623
3624 putpkt ("qC");
3625 getpkt (&rs->buf, 0);
3626 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3627 {
3628 const char *obuf;
3629 ptid_t result;
3630
3631 result = read_ptid (&rs->buf[2], &obuf);
3632 if (*obuf != '\0' && remote_debug)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "warning: garbage in qC reply\n");
3635
3636 return result;
3637 }
3638 else
3639 return oldpid;
3640 }
3641
3642 /* List remote threads using the deprecated qL packet. */
3643
3644 int
3645 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3646 {
3647 if (remote_threadlist_iterator (remote_newthread_step, context,
3648 CRAZY_MAX_THREADS) >= 0)
3649 return 1;
3650
3651 return 0;
3652 }
3653
3654 #if defined(HAVE_LIBEXPAT)
3655
3656 static void
3657 start_thread (struct gdb_xml_parser *parser,
3658 const struct gdb_xml_element *element,
3659 void *user_data,
3660 std::vector<gdb_xml_value> &attributes)
3661 {
3662 struct threads_listing_context *data
3663 = (struct threads_listing_context *) user_data;
3664 struct gdb_xml_value *attr;
3665
3666 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3667 ptid_t ptid = read_ptid (id, NULL);
3668
3669 data->items.emplace_back (ptid);
3670 thread_item &item = data->items.back ();
3671
3672 attr = xml_find_attribute (attributes, "core");
3673 if (attr != NULL)
3674 item.core = *(ULONGEST *) attr->value.get ();
3675
3676 attr = xml_find_attribute (attributes, "name");
3677 if (attr != NULL)
3678 item.name = (const char *) attr->value.get ();
3679
3680 attr = xml_find_attribute (attributes, "handle");
3681 if (attr != NULL)
3682 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3683 }
3684
3685 static void
3686 end_thread (struct gdb_xml_parser *parser,
3687 const struct gdb_xml_element *element,
3688 void *user_data, const char *body_text)
3689 {
3690 struct threads_listing_context *data
3691 = (struct threads_listing_context *) user_data;
3692
3693 if (body_text != NULL && *body_text != '\0')
3694 data->items.back ().extra = body_text;
3695 }
3696
3697 const struct gdb_xml_attribute thread_attributes[] = {
3698 { "id", GDB_XML_AF_NONE, NULL, NULL },
3699 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3700 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3702 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3703 };
3704
3705 const struct gdb_xml_element thread_children[] = {
3706 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3707 };
3708
3709 const struct gdb_xml_element threads_children[] = {
3710 { "thread", thread_attributes, thread_children,
3711 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3712 start_thread, end_thread },
3713 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3714 };
3715
3716 const struct gdb_xml_element threads_elements[] = {
3717 { "threads", NULL, threads_children,
3718 GDB_XML_EF_NONE, NULL, NULL },
3719 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3720 };
3721
3722 #endif
3723
3724 /* List remote threads using qXfer:threads:read. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3728 {
3729 #if defined(HAVE_LIBEXPAT)
3730 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3731 {
3732 gdb::optional<gdb::char_vector> xml
3733 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3734
3735 if (xml && (*xml)[0] != '\0')
3736 {
3737 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3738 threads_elements, xml->data (), context);
3739 }
3740
3741 return 1;
3742 }
3743 #endif
3744
3745 return 0;
3746 }
3747
3748 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3749
3750 int
3751 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3752 {
3753 struct remote_state *rs = get_remote_state ();
3754
3755 if (rs->use_threadinfo_query)
3756 {
3757 const char *bufp;
3758
3759 putpkt ("qfThreadInfo");
3760 getpkt (&rs->buf, 0);
3761 bufp = rs->buf.data ();
3762 if (bufp[0] != '\0') /* q packet recognized */
3763 {
3764 while (*bufp++ == 'm') /* reply contains one or more TID */
3765 {
3766 do
3767 {
3768 ptid_t ptid = read_ptid (bufp, &bufp);
3769 context->items.emplace_back (ptid);
3770 }
3771 while (*bufp++ == ','); /* comma-separated list */
3772 putpkt ("qsThreadInfo");
3773 getpkt (&rs->buf, 0);
3774 bufp = rs->buf.data ();
3775 }
3776 return 1;
3777 }
3778 else
3779 {
3780 /* Packet not recognized. */
3781 rs->use_threadinfo_query = 0;
3782 }
3783 }
3784
3785 return 0;
3786 }
3787
3788 /* Implement the to_update_thread_list function for the remote
3789 targets. */
3790
3791 void
3792 remote_target::update_thread_list ()
3793 {
3794 struct threads_listing_context context;
3795 int got_list = 0;
3796
3797 /* We have a few different mechanisms to fetch the thread list. Try
3798 them all, starting with the most preferred one first, falling
3799 back to older methods. */
3800 if (remote_get_threads_with_qxfer (&context)
3801 || remote_get_threads_with_qthreadinfo (&context)
3802 || remote_get_threads_with_ql (&context))
3803 {
3804 got_list = 1;
3805
3806 if (context.items.empty ()
3807 && remote_thread_always_alive (inferior_ptid))
3808 {
3809 /* Some targets don't really support threads, but still
3810 reply an (empty) thread list in response to the thread
3811 listing packets, instead of replying "packet not
3812 supported". Exit early so we don't delete the main
3813 thread. */
3814 return;
3815 }
3816
3817 /* CONTEXT now holds the current thread list on the remote
3818 target end. Delete GDB-side threads no longer found on the
3819 target. */
3820 for (thread_info *tp : all_threads_safe ())
3821 {
3822 if (tp->inf->process_target () != this)
3823 continue;
3824
3825 if (!context.contains_thread (tp->ptid))
3826 {
3827 /* Not found. */
3828 delete_thread (tp);
3829 }
3830 }
3831
3832 /* Remove any unreported fork child threads from CONTEXT so
3833 that we don't interfere with follow fork, which is where
3834 creation of such threads is handled. */
3835 remove_new_fork_children (&context);
3836
3837 /* And now add threads we don't know about yet to our list. */
3838 for (thread_item &item : context.items)
3839 {
3840 if (item.ptid != null_ptid)
3841 {
3842 /* In non-stop mode, we assume new found threads are
3843 executing until proven otherwise with a stop reply.
3844 In all-stop, we can only get here if all threads are
3845 stopped. */
3846 int executing = target_is_non_stop_p () ? 1 : 0;
3847
3848 remote_notice_new_inferior (item.ptid, executing);
3849
3850 thread_info *tp = find_thread_ptid (this, item.ptid);
3851 remote_thread_info *info = get_remote_thread_info (tp);
3852 info->core = item.core;
3853 info->extra = std::move (item.extra);
3854 info->name = std::move (item.name);
3855 info->thread_handle = std::move (item.thread_handle);
3856 }
3857 }
3858 }
3859
3860 if (!got_list)
3861 {
3862 /* If no thread listing method is supported, then query whether
3863 each known thread is alive, one by one, with the T packet.
3864 If the target doesn't support threads at all, then this is a
3865 no-op. See remote_thread_alive. */
3866 prune_threads ();
3867 }
3868 }
3869
3870 /*
3871 * Collect a descriptive string about the given thread.
3872 * The target may say anything it wants to about the thread
3873 * (typically info about its blocked / runnable state, name, etc.).
3874 * This string will appear in the info threads display.
3875 *
3876 * Optional: targets are not required to implement this function.
3877 */
3878
3879 const char *
3880 remote_target::extra_thread_info (thread_info *tp)
3881 {
3882 struct remote_state *rs = get_remote_state ();
3883 int set;
3884 threadref id;
3885 struct gdb_ext_thread_info threadinfo;
3886
3887 if (rs->remote_desc == 0) /* paranoia */
3888 internal_error (__FILE__, __LINE__,
3889 _("remote_threads_extra_info"));
3890
3891 if (tp->ptid == magic_null_ptid
3892 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3893 /* This is the main thread which was added by GDB. The remote
3894 server doesn't know about it. */
3895 return NULL;
3896
3897 std::string &extra = get_remote_thread_info (tp)->extra;
3898
3899 /* If already have cached info, use it. */
3900 if (!extra.empty ())
3901 return extra.c_str ();
3902
3903 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3904 {
3905 /* If we're using qXfer:threads:read, then the extra info is
3906 included in the XML. So if we didn't have anything cached,
3907 it's because there's really no extra info. */
3908 return NULL;
3909 }
3910
3911 if (rs->use_threadextra_query)
3912 {
3913 char *b = rs->buf.data ();
3914 char *endb = b + get_remote_packet_size ();
3915
3916 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3917 b += strlen (b);
3918 write_ptid (b, endb, tp->ptid);
3919
3920 putpkt (rs->buf);
3921 getpkt (&rs->buf, 0);
3922 if (rs->buf[0] != 0)
3923 {
3924 extra.resize (strlen (rs->buf.data ()) / 2);
3925 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3926 return extra.c_str ();
3927 }
3928 }
3929
3930 /* If the above query fails, fall back to the old method. */
3931 rs->use_threadextra_query = 0;
3932 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3933 | TAG_MOREDISPLAY | TAG_DISPLAY;
3934 int_to_threadref (&id, tp->ptid.lwp ());
3935 if (remote_get_threadinfo (&id, set, &threadinfo))
3936 if (threadinfo.active)
3937 {
3938 if (*threadinfo.shortname)
3939 string_appendf (extra, " Name: %s", threadinfo.shortname);
3940 if (*threadinfo.display)
3941 {
3942 if (!extra.empty ())
3943 extra += ',';
3944 string_appendf (extra, " State: %s", threadinfo.display);
3945 }
3946 if (*threadinfo.more_display)
3947 {
3948 if (!extra.empty ())
3949 extra += ',';
3950 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3951 }
3952 return extra.c_str ();
3953 }
3954 return NULL;
3955 }
3956 \f
3957
3958 bool
3959 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3960 struct static_tracepoint_marker *marker)
3961 {
3962 struct remote_state *rs = get_remote_state ();
3963 char *p = rs->buf.data ();
3964
3965 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3966 p += strlen (p);
3967 p += hexnumstr (p, addr);
3968 putpkt (rs->buf);
3969 getpkt (&rs->buf, 0);
3970 p = rs->buf.data ();
3971
3972 if (*p == 'E')
3973 error (_("Remote failure reply: %s"), p);
3974
3975 if (*p++ == 'm')
3976 {
3977 parse_static_tracepoint_marker_definition (p, NULL, marker);
3978 return true;
3979 }
3980
3981 return false;
3982 }
3983
3984 std::vector<static_tracepoint_marker>
3985 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3986 {
3987 struct remote_state *rs = get_remote_state ();
3988 std::vector<static_tracepoint_marker> markers;
3989 const char *p;
3990 static_tracepoint_marker marker;
3991
3992 /* Ask for a first packet of static tracepoint marker
3993 definition. */
3994 putpkt ("qTfSTM");
3995 getpkt (&rs->buf, 0);
3996 p = rs->buf.data ();
3997 if (*p == 'E')
3998 error (_("Remote failure reply: %s"), p);
3999
4000 while (*p++ == 'm')
4001 {
4002 do
4003 {
4004 parse_static_tracepoint_marker_definition (p, &p, &marker);
4005
4006 if (strid == NULL || marker.str_id == strid)
4007 markers.push_back (std::move (marker));
4008 }
4009 while (*p++ == ','); /* comma-separated list */
4010 /* Ask for another packet of static tracepoint definition. */
4011 putpkt ("qTsSTM");
4012 getpkt (&rs->buf, 0);
4013 p = rs->buf.data ();
4014 }
4015
4016 return markers;
4017 }
4018
4019 \f
4020 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4021
4022 ptid_t
4023 remote_target::get_ada_task_ptid (long lwp, long thread)
4024 {
4025 return ptid_t (inferior_ptid.pid (), lwp, 0);
4026 }
4027 \f
4028
4029 /* Restart the remote side; this is an extended protocol operation. */
4030
4031 void
4032 remote_target::extended_remote_restart ()
4033 {
4034 struct remote_state *rs = get_remote_state ();
4035
4036 /* Send the restart command; for reasons I don't understand the
4037 remote side really expects a number after the "R". */
4038 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4039 putpkt (rs->buf);
4040
4041 remote_fileio_reset ();
4042 }
4043 \f
4044 /* Clean up connection to a remote debugger. */
4045
4046 void
4047 remote_target::close ()
4048 {
4049 /* Make sure we leave stdin registered in the event loop. */
4050 terminal_ours ();
4051
4052 trace_reset_local_state ();
4053
4054 delete this;
4055 }
4056
4057 remote_target::~remote_target ()
4058 {
4059 struct remote_state *rs = get_remote_state ();
4060
4061 /* Check for NULL because we may get here with a partially
4062 constructed target/connection. */
4063 if (rs->remote_desc == nullptr)
4064 return;
4065
4066 serial_close (rs->remote_desc);
4067
4068 /* We are destroying the remote target, so we should discard
4069 everything of this target. */
4070 discard_pending_stop_replies_in_queue ();
4071
4072 if (rs->remote_async_inferior_event_token)
4073 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4074
4075 delete rs->notif_state;
4076 }
4077
4078 /* Query the remote side for the text, data and bss offsets. */
4079
4080 void
4081 remote_target::get_offsets ()
4082 {
4083 struct remote_state *rs = get_remote_state ();
4084 char *buf;
4085 char *ptr;
4086 int lose, num_segments = 0, do_sections, do_segments;
4087 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4088 struct symfile_segment_data *data;
4089
4090 if (symfile_objfile == NULL)
4091 return;
4092
4093 putpkt ("qOffsets");
4094 getpkt (&rs->buf, 0);
4095 buf = rs->buf.data ();
4096
4097 if (buf[0] == '\000')
4098 return; /* Return silently. Stub doesn't support
4099 this command. */
4100 if (buf[0] == 'E')
4101 {
4102 warning (_("Remote failure reply: %s"), buf);
4103 return;
4104 }
4105
4106 /* Pick up each field in turn. This used to be done with scanf, but
4107 scanf will make trouble if CORE_ADDR size doesn't match
4108 conversion directives correctly. The following code will work
4109 with any size of CORE_ADDR. */
4110 text_addr = data_addr = bss_addr = 0;
4111 ptr = buf;
4112 lose = 0;
4113
4114 if (startswith (ptr, "Text="))
4115 {
4116 ptr += 5;
4117 /* Don't use strtol, could lose on big values. */
4118 while (*ptr && *ptr != ';')
4119 text_addr = (text_addr << 4) + fromhex (*ptr++);
4120
4121 if (startswith (ptr, ";Data="))
4122 {
4123 ptr += 6;
4124 while (*ptr && *ptr != ';')
4125 data_addr = (data_addr << 4) + fromhex (*ptr++);
4126 }
4127 else
4128 lose = 1;
4129
4130 if (!lose && startswith (ptr, ";Bss="))
4131 {
4132 ptr += 5;
4133 while (*ptr && *ptr != ';')
4134 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4135
4136 if (bss_addr != data_addr)
4137 warning (_("Target reported unsupported offsets: %s"), buf);
4138 }
4139 else
4140 lose = 1;
4141 }
4142 else if (startswith (ptr, "TextSeg="))
4143 {
4144 ptr += 8;
4145 /* Don't use strtol, could lose on big values. */
4146 while (*ptr && *ptr != ';')
4147 text_addr = (text_addr << 4) + fromhex (*ptr++);
4148 num_segments = 1;
4149
4150 if (startswith (ptr, ";DataSeg="))
4151 {
4152 ptr += 9;
4153 while (*ptr && *ptr != ';')
4154 data_addr = (data_addr << 4) + fromhex (*ptr++);
4155 num_segments++;
4156 }
4157 }
4158 else
4159 lose = 1;
4160
4161 if (lose)
4162 error (_("Malformed response to offset query, %s"), buf);
4163 else if (*ptr != '\0')
4164 warning (_("Target reported unsupported offsets: %s"), buf);
4165
4166 section_offsets offs = symfile_objfile->section_offsets;
4167
4168 data = get_symfile_segment_data (symfile_objfile->obfd);
4169 do_segments = (data != NULL);
4170 do_sections = num_segments == 0;
4171
4172 if (num_segments > 0)
4173 {
4174 segments[0] = text_addr;
4175 segments[1] = data_addr;
4176 }
4177 /* If we have two segments, we can still try to relocate everything
4178 by assuming that the .text and .data offsets apply to the whole
4179 text and data segments. Convert the offsets given in the packet
4180 to base addresses for symfile_map_offsets_to_segments. */
4181 else if (data && data->num_segments == 2)
4182 {
4183 segments[0] = data->segment_bases[0] + text_addr;
4184 segments[1] = data->segment_bases[1] + data_addr;
4185 num_segments = 2;
4186 }
4187 /* If the object file has only one segment, assume that it is text
4188 rather than data; main programs with no writable data are rare,
4189 but programs with no code are useless. Of course the code might
4190 have ended up in the data segment... to detect that we would need
4191 the permissions here. */
4192 else if (data && data->num_segments == 1)
4193 {
4194 segments[0] = data->segment_bases[0] + text_addr;
4195 num_segments = 1;
4196 }
4197 /* There's no way to relocate by segment. */
4198 else
4199 do_segments = 0;
4200
4201 if (do_segments)
4202 {
4203 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4204 offs, num_segments, segments);
4205
4206 if (ret == 0 && !do_sections)
4207 error (_("Can not handle qOffsets TextSeg "
4208 "response with this symbol file"));
4209
4210 if (ret > 0)
4211 do_sections = 0;
4212 }
4213
4214 if (data)
4215 free_symfile_segment_data (data);
4216
4217 if (do_sections)
4218 {
4219 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4220
4221 /* This is a temporary kludge to force data and bss to use the
4222 same offsets because that's what nlmconv does now. The real
4223 solution requires changes to the stub and remote.c that I
4224 don't have time to do right now. */
4225
4226 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4227 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4228 }
4229
4230 objfile_relocate (symfile_objfile, offs);
4231 }
4232
4233 /* Send interrupt_sequence to remote target. */
4234
4235 void
4236 remote_target::send_interrupt_sequence ()
4237 {
4238 struct remote_state *rs = get_remote_state ();
4239
4240 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4241 remote_serial_write ("\x03", 1);
4242 else if (interrupt_sequence_mode == interrupt_sequence_break)
4243 serial_send_break (rs->remote_desc);
4244 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4245 {
4246 serial_send_break (rs->remote_desc);
4247 remote_serial_write ("g", 1);
4248 }
4249 else
4250 internal_error (__FILE__, __LINE__,
4251 _("Invalid value for interrupt_sequence_mode: %s."),
4252 interrupt_sequence_mode);
4253 }
4254
4255
4256 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4257 and extract the PTID. Returns NULL_PTID if not found. */
4258
4259 static ptid_t
4260 stop_reply_extract_thread (char *stop_reply)
4261 {
4262 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4263 {
4264 const char *p;
4265
4266 /* Txx r:val ; r:val (...) */
4267 p = &stop_reply[3];
4268
4269 /* Look for "register" named "thread". */
4270 while (*p != '\0')
4271 {
4272 const char *p1;
4273
4274 p1 = strchr (p, ':');
4275 if (p1 == NULL)
4276 return null_ptid;
4277
4278 if (strncmp (p, "thread", p1 - p) == 0)
4279 return read_ptid (++p1, &p);
4280
4281 p1 = strchr (p, ';');
4282 if (p1 == NULL)
4283 return null_ptid;
4284 p1++;
4285
4286 p = p1;
4287 }
4288 }
4289
4290 return null_ptid;
4291 }
4292
4293 /* Determine the remote side's current thread. If we have a stop
4294 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4295 "thread" register we can extract the current thread from. If not,
4296 ask the remote which is the current thread with qC. The former
4297 method avoids a roundtrip. */
4298
4299 ptid_t
4300 remote_target::get_current_thread (char *wait_status)
4301 {
4302 ptid_t ptid = null_ptid;
4303
4304 /* Note we don't use remote_parse_stop_reply as that makes use of
4305 the target architecture, which we haven't yet fully determined at
4306 this point. */
4307 if (wait_status != NULL)
4308 ptid = stop_reply_extract_thread (wait_status);
4309 if (ptid == null_ptid)
4310 ptid = remote_current_thread (inferior_ptid);
4311
4312 return ptid;
4313 }
4314
4315 /* Query the remote target for which is the current thread/process,
4316 add it to our tables, and update INFERIOR_PTID. The caller is
4317 responsible for setting the state such that the remote end is ready
4318 to return the current thread.
4319
4320 This function is called after handling the '?' or 'vRun' packets,
4321 whose response is a stop reply from which we can also try
4322 extracting the thread. If the target doesn't support the explicit
4323 qC query, we infer the current thread from that stop reply, passed
4324 in in WAIT_STATUS, which may be NULL. */
4325
4326 void
4327 remote_target::add_current_inferior_and_thread (char *wait_status)
4328 {
4329 struct remote_state *rs = get_remote_state ();
4330 bool fake_pid_p = false;
4331
4332 inferior_ptid = null_ptid;
4333
4334 /* Now, if we have thread information, update inferior_ptid. */
4335 ptid_t curr_ptid = get_current_thread (wait_status);
4336
4337 if (curr_ptid != null_ptid)
4338 {
4339 if (!remote_multi_process_p (rs))
4340 fake_pid_p = true;
4341 }
4342 else
4343 {
4344 /* Without this, some commands which require an active target
4345 (such as kill) won't work. This variable serves (at least)
4346 double duty as both the pid of the target process (if it has
4347 such), and as a flag indicating that a target is active. */
4348 curr_ptid = magic_null_ptid;
4349 fake_pid_p = true;
4350 }
4351
4352 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4353
4354 /* Add the main thread and switch to it. Don't try reading
4355 registers yet, since we haven't fetched the target description
4356 yet. */
4357 thread_info *tp = add_thread_silent (this, curr_ptid);
4358 switch_to_thread_no_regs (tp);
4359 }
4360
4361 /* Print info about a thread that was found already stopped on
4362 connection. */
4363
4364 static void
4365 print_one_stopped_thread (struct thread_info *thread)
4366 {
4367 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4368
4369 switch_to_thread (thread);
4370 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4371 set_current_sal_from_frame (get_current_frame ());
4372
4373 thread->suspend.waitstatus_pending_p = 0;
4374
4375 if (ws->kind == TARGET_WAITKIND_STOPPED)
4376 {
4377 enum gdb_signal sig = ws->value.sig;
4378
4379 if (signal_print_state (sig))
4380 gdb::observers::signal_received.notify (sig);
4381 }
4382 gdb::observers::normal_stop.notify (NULL, 1);
4383 }
4384
4385 /* Process all initial stop replies the remote side sent in response
4386 to the ? packet. These indicate threads that were already stopped
4387 on initial connection. We mark these threads as stopped and print
4388 their current frame before giving the user the prompt. */
4389
4390 void
4391 remote_target::process_initial_stop_replies (int from_tty)
4392 {
4393 int pending_stop_replies = stop_reply_queue_length ();
4394 struct thread_info *selected = NULL;
4395 struct thread_info *lowest_stopped = NULL;
4396 struct thread_info *first = NULL;
4397
4398 /* Consume the initial pending events. */
4399 while (pending_stop_replies-- > 0)
4400 {
4401 ptid_t waiton_ptid = minus_one_ptid;
4402 ptid_t event_ptid;
4403 struct target_waitstatus ws;
4404 int ignore_event = 0;
4405
4406 memset (&ws, 0, sizeof (ws));
4407 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4408 if (remote_debug)
4409 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4410
4411 switch (ws.kind)
4412 {
4413 case TARGET_WAITKIND_IGNORE:
4414 case TARGET_WAITKIND_NO_RESUMED:
4415 case TARGET_WAITKIND_SIGNALLED:
4416 case TARGET_WAITKIND_EXITED:
4417 /* We shouldn't see these, but if we do, just ignore. */
4418 if (remote_debug)
4419 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4420 ignore_event = 1;
4421 break;
4422
4423 case TARGET_WAITKIND_EXECD:
4424 xfree (ws.value.execd_pathname);
4425 break;
4426 default:
4427 break;
4428 }
4429
4430 if (ignore_event)
4431 continue;
4432
4433 thread_info *evthread = find_thread_ptid (this, event_ptid);
4434
4435 if (ws.kind == TARGET_WAITKIND_STOPPED)
4436 {
4437 enum gdb_signal sig = ws.value.sig;
4438
4439 /* Stubs traditionally report SIGTRAP as initial signal,
4440 instead of signal 0. Suppress it. */
4441 if (sig == GDB_SIGNAL_TRAP)
4442 sig = GDB_SIGNAL_0;
4443 evthread->suspend.stop_signal = sig;
4444 ws.value.sig = sig;
4445 }
4446
4447 evthread->suspend.waitstatus = ws;
4448
4449 if (ws.kind != TARGET_WAITKIND_STOPPED
4450 || ws.value.sig != GDB_SIGNAL_0)
4451 evthread->suspend.waitstatus_pending_p = 1;
4452
4453 set_executing (this, event_ptid, false);
4454 set_running (this, event_ptid, false);
4455 get_remote_thread_info (evthread)->vcont_resumed = 0;
4456 }
4457
4458 /* "Notice" the new inferiors before anything related to
4459 registers/memory. */
4460 for (inferior *inf : all_non_exited_inferiors (this))
4461 {
4462 inf->needs_setup = 1;
4463
4464 if (non_stop)
4465 {
4466 thread_info *thread = any_live_thread_of_inferior (inf);
4467 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4468 from_tty);
4469 }
4470 }
4471
4472 /* If all-stop on top of non-stop, pause all threads. Note this
4473 records the threads' stop pc, so must be done after "noticing"
4474 the inferiors. */
4475 if (!non_stop)
4476 {
4477 stop_all_threads ();
4478
4479 /* If all threads of an inferior were already stopped, we
4480 haven't setup the inferior yet. */
4481 for (inferior *inf : all_non_exited_inferiors (this))
4482 {
4483 if (inf->needs_setup)
4484 {
4485 thread_info *thread = any_live_thread_of_inferior (inf);
4486 switch_to_thread_no_regs (thread);
4487 setup_inferior (0);
4488 }
4489 }
4490 }
4491
4492 /* Now go over all threads that are stopped, and print their current
4493 frame. If all-stop, then if there's a signalled thread, pick
4494 that as current. */
4495 for (thread_info *thread : all_non_exited_threads (this))
4496 {
4497 if (first == NULL)
4498 first = thread;
4499
4500 if (!non_stop)
4501 thread->set_running (false);
4502 else if (thread->state != THREAD_STOPPED)
4503 continue;
4504
4505 if (selected == NULL
4506 && thread->suspend.waitstatus_pending_p)
4507 selected = thread;
4508
4509 if (lowest_stopped == NULL
4510 || thread->inf->num < lowest_stopped->inf->num
4511 || thread->per_inf_num < lowest_stopped->per_inf_num)
4512 lowest_stopped = thread;
4513
4514 if (non_stop)
4515 print_one_stopped_thread (thread);
4516 }
4517
4518 /* In all-stop, we only print the status of one thread, and leave
4519 others with their status pending. */
4520 if (!non_stop)
4521 {
4522 thread_info *thread = selected;
4523 if (thread == NULL)
4524 thread = lowest_stopped;
4525 if (thread == NULL)
4526 thread = first;
4527
4528 print_one_stopped_thread (thread);
4529 }
4530
4531 /* For "info program". */
4532 thread_info *thread = inferior_thread ();
4533 if (thread->state == THREAD_STOPPED)
4534 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4535 }
4536
4537 /* Start the remote connection and sync state. */
4538
4539 void
4540 remote_target::start_remote (int from_tty, int extended_p)
4541 {
4542 struct remote_state *rs = get_remote_state ();
4543 struct packet_config *noack_config;
4544 char *wait_status = NULL;
4545
4546 /* Signal other parts that we're going through the initial setup,
4547 and so things may not be stable yet. E.g., we don't try to
4548 install tracepoints until we've relocated symbols. Also, a
4549 Ctrl-C before we're connected and synced up can't interrupt the
4550 target. Instead, it offers to drop the (potentially wedged)
4551 connection. */
4552 rs->starting_up = 1;
4553
4554 QUIT;
4555
4556 if (interrupt_on_connect)
4557 send_interrupt_sequence ();
4558
4559 /* Ack any packet which the remote side has already sent. */
4560 remote_serial_write ("+", 1);
4561
4562 /* The first packet we send to the target is the optional "supported
4563 packets" request. If the target can answer this, it will tell us
4564 which later probes to skip. */
4565 remote_query_supported ();
4566
4567 /* If the stub wants to get a QAllow, compose one and send it. */
4568 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4569 set_permissions ();
4570
4571 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4572 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4573 as a reply to known packet. For packet "vFile:setfs:" it is an
4574 invalid reply and GDB would return error in
4575 remote_hostio_set_filesystem, making remote files access impossible.
4576 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4577 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4578 {
4579 const char v_mustreplyempty[] = "vMustReplyEmpty";
4580
4581 putpkt (v_mustreplyempty);
4582 getpkt (&rs->buf, 0);
4583 if (strcmp (rs->buf.data (), "OK") == 0)
4584 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4585 else if (strcmp (rs->buf.data (), "") != 0)
4586 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4587 rs->buf.data ());
4588 }
4589
4590 /* Next, we possibly activate noack mode.
4591
4592 If the QStartNoAckMode packet configuration is set to AUTO,
4593 enable noack mode if the stub reported a wish for it with
4594 qSupported.
4595
4596 If set to TRUE, then enable noack mode even if the stub didn't
4597 report it in qSupported. If the stub doesn't reply OK, the
4598 session ends with an error.
4599
4600 If FALSE, then don't activate noack mode, regardless of what the
4601 stub claimed should be the default with qSupported. */
4602
4603 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4604 if (packet_config_support (noack_config) != PACKET_DISABLE)
4605 {
4606 putpkt ("QStartNoAckMode");
4607 getpkt (&rs->buf, 0);
4608 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4609 rs->noack_mode = 1;
4610 }
4611
4612 if (extended_p)
4613 {
4614 /* Tell the remote that we are using the extended protocol. */
4615 putpkt ("!");
4616 getpkt (&rs->buf, 0);
4617 }
4618
4619 /* Let the target know which signals it is allowed to pass down to
4620 the program. */
4621 update_signals_program_target ();
4622
4623 /* Next, if the target can specify a description, read it. We do
4624 this before anything involving memory or registers. */
4625 target_find_description ();
4626
4627 /* Next, now that we know something about the target, update the
4628 address spaces in the program spaces. */
4629 update_address_spaces ();
4630
4631 /* On OSs where the list of libraries is global to all
4632 processes, we fetch them early. */
4633 if (gdbarch_has_global_solist (target_gdbarch ()))
4634 solib_add (NULL, from_tty, auto_solib_add);
4635
4636 if (target_is_non_stop_p ())
4637 {
4638 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4639 error (_("Non-stop mode requested, but remote "
4640 "does not support non-stop"));
4641
4642 putpkt ("QNonStop:1");
4643 getpkt (&rs->buf, 0);
4644
4645 if (strcmp (rs->buf.data (), "OK") != 0)
4646 error (_("Remote refused setting non-stop mode with: %s"),
4647 rs->buf.data ());
4648
4649 /* Find about threads and processes the stub is already
4650 controlling. We default to adding them in the running state.
4651 The '?' query below will then tell us about which threads are
4652 stopped. */
4653 this->update_thread_list ();
4654 }
4655 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4656 {
4657 /* Don't assume that the stub can operate in all-stop mode.
4658 Request it explicitly. */
4659 putpkt ("QNonStop:0");
4660 getpkt (&rs->buf, 0);
4661
4662 if (strcmp (rs->buf.data (), "OK") != 0)
4663 error (_("Remote refused setting all-stop mode with: %s"),
4664 rs->buf.data ());
4665 }
4666
4667 /* Upload TSVs regardless of whether the target is running or not. The
4668 remote stub, such as GDBserver, may have some predefined or builtin
4669 TSVs, even if the target is not running. */
4670 if (get_trace_status (current_trace_status ()) != -1)
4671 {
4672 struct uploaded_tsv *uploaded_tsvs = NULL;
4673
4674 upload_trace_state_variables (&uploaded_tsvs);
4675 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4676 }
4677
4678 /* Check whether the target is running now. */
4679 putpkt ("?");
4680 getpkt (&rs->buf, 0);
4681
4682 if (!target_is_non_stop_p ())
4683 {
4684 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4685 {
4686 if (!extended_p)
4687 error (_("The target is not running (try extended-remote?)"));
4688
4689 /* We're connected, but not running. Drop out before we
4690 call start_remote. */
4691 rs->starting_up = 0;
4692 return;
4693 }
4694 else
4695 {
4696 /* Save the reply for later. */
4697 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4698 strcpy (wait_status, rs->buf.data ());
4699 }
4700
4701 /* Fetch thread list. */
4702 target_update_thread_list ();
4703
4704 /* Let the stub know that we want it to return the thread. */
4705 set_continue_thread (minus_one_ptid);
4706
4707 if (thread_count (this) == 0)
4708 {
4709 /* Target has no concept of threads at all. GDB treats
4710 non-threaded target as single-threaded; add a main
4711 thread. */
4712 add_current_inferior_and_thread (wait_status);
4713 }
4714 else
4715 {
4716 /* We have thread information; select the thread the target
4717 says should be current. If we're reconnecting to a
4718 multi-threaded program, this will ideally be the thread
4719 that last reported an event before GDB disconnected. */
4720 ptid_t curr_thread = get_current_thread (wait_status);
4721 if (curr_thread == null_ptid)
4722 {
4723 /* Odd... The target was able to list threads, but not
4724 tell us which thread was current (no "thread"
4725 register in T stop reply?). Just pick the first
4726 thread in the thread list then. */
4727
4728 if (remote_debug)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "warning: couldn't determine remote "
4731 "current thread; picking first in list.\n");
4732
4733 for (thread_info *tp : all_non_exited_threads (this,
4734 minus_one_ptid))
4735 {
4736 switch_to_thread (tp);
4737 break;
4738 }
4739 }
4740 else
4741 switch_to_thread (find_thread_ptid (this, curr_thread));
4742 }
4743
4744 /* init_wait_for_inferior should be called before get_offsets in order
4745 to manage `inserted' flag in bp loc in a correct state.
4746 breakpoint_init_inferior, called from init_wait_for_inferior, set
4747 `inserted' flag to 0, while before breakpoint_re_set, called from
4748 start_remote, set `inserted' flag to 1. In the initialization of
4749 inferior, breakpoint_init_inferior should be called first, and then
4750 breakpoint_re_set can be called. If this order is broken, state of
4751 `inserted' flag is wrong, and cause some problems on breakpoint
4752 manipulation. */
4753 init_wait_for_inferior ();
4754
4755 get_offsets (); /* Get text, data & bss offsets. */
4756
4757 /* If we could not find a description using qXfer, and we know
4758 how to do it some other way, try again. This is not
4759 supported for non-stop; it could be, but it is tricky if
4760 there are no stopped threads when we connect. */
4761 if (remote_read_description_p (this)
4762 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4763 {
4764 target_clear_description ();
4765 target_find_description ();
4766 }
4767
4768 /* Use the previously fetched status. */
4769 gdb_assert (wait_status != NULL);
4770 strcpy (rs->buf.data (), wait_status);
4771 rs->cached_wait_status = 1;
4772
4773 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4774 }
4775 else
4776 {
4777 /* Clear WFI global state. Do this before finding about new
4778 threads and inferiors, and setting the current inferior.
4779 Otherwise we would clear the proceed status of the current
4780 inferior when we want its stop_soon state to be preserved
4781 (see notice_new_inferior). */
4782 init_wait_for_inferior ();
4783
4784 /* In non-stop, we will either get an "OK", meaning that there
4785 are no stopped threads at this time; or, a regular stop
4786 reply. In the latter case, there may be more than one thread
4787 stopped --- we pull them all out using the vStopped
4788 mechanism. */
4789 if (strcmp (rs->buf.data (), "OK") != 0)
4790 {
4791 struct notif_client *notif = &notif_client_stop;
4792
4793 /* remote_notif_get_pending_replies acks this one, and gets
4794 the rest out. */
4795 rs->notif_state->pending_event[notif_client_stop.id]
4796 = remote_notif_parse (this, notif, rs->buf.data ());
4797 remote_notif_get_pending_events (notif);
4798 }
4799
4800 if (thread_count (this) == 0)
4801 {
4802 if (!extended_p)
4803 error (_("The target is not running (try extended-remote?)"));
4804
4805 /* We're connected, but not running. Drop out before we
4806 call start_remote. */
4807 rs->starting_up = 0;
4808 return;
4809 }
4810
4811 /* In non-stop mode, any cached wait status will be stored in
4812 the stop reply queue. */
4813 gdb_assert (wait_status == NULL);
4814
4815 /* Report all signals during attach/startup. */
4816 pass_signals ({});
4817
4818 /* If there are already stopped threads, mark them stopped and
4819 report their stops before giving the prompt to the user. */
4820 process_initial_stop_replies (from_tty);
4821
4822 if (target_can_async_p ())
4823 target_async (1);
4824 }
4825
4826 /* If we connected to a live target, do some additional setup. */
4827 if (target_has_execution)
4828 {
4829 if (symfile_objfile) /* No use without a symbol-file. */
4830 remote_check_symbols ();
4831 }
4832
4833 /* Possibly the target has been engaged in a trace run started
4834 previously; find out where things are at. */
4835 if (get_trace_status (current_trace_status ()) != -1)
4836 {
4837 struct uploaded_tp *uploaded_tps = NULL;
4838
4839 if (current_trace_status ()->running)
4840 printf_filtered (_("Trace is already running on the target.\n"));
4841
4842 upload_tracepoints (&uploaded_tps);
4843
4844 merge_uploaded_tracepoints (&uploaded_tps);
4845 }
4846
4847 /* Possibly the target has been engaged in a btrace record started
4848 previously; find out where things are at. */
4849 remote_btrace_maybe_reopen ();
4850
4851 /* The thread and inferior lists are now synchronized with the
4852 target, our symbols have been relocated, and we're merged the
4853 target's tracepoints with ours. We're done with basic start
4854 up. */
4855 rs->starting_up = 0;
4856
4857 /* Maybe breakpoints are global and need to be inserted now. */
4858 if (breakpoints_should_be_inserted_now ())
4859 insert_breakpoints ();
4860 }
4861
4862 const char *
4863 remote_target::connection_string ()
4864 {
4865 remote_state *rs = get_remote_state ();
4866
4867 if (rs->remote_desc->name != NULL)
4868 return rs->remote_desc->name;
4869 else
4870 return NULL;
4871 }
4872
4873 /* Open a connection to a remote debugger.
4874 NAME is the filename used for communication. */
4875
4876 void
4877 remote_target::open (const char *name, int from_tty)
4878 {
4879 open_1 (name, from_tty, 0);
4880 }
4881
4882 /* Open a connection to a remote debugger using the extended
4883 remote gdb protocol. NAME is the filename used for communication. */
4884
4885 void
4886 extended_remote_target::open (const char *name, int from_tty)
4887 {
4888 open_1 (name, from_tty, 1 /*extended_p */);
4889 }
4890
4891 /* Reset all packets back to "unknown support". Called when opening a
4892 new connection to a remote target. */
4893
4894 static void
4895 reset_all_packet_configs_support (void)
4896 {
4897 int i;
4898
4899 for (i = 0; i < PACKET_MAX; i++)
4900 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4901 }
4902
4903 /* Initialize all packet configs. */
4904
4905 static void
4906 init_all_packet_configs (void)
4907 {
4908 int i;
4909
4910 for (i = 0; i < PACKET_MAX; i++)
4911 {
4912 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4913 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4914 }
4915 }
4916
4917 /* Symbol look-up. */
4918
4919 void
4920 remote_target::remote_check_symbols ()
4921 {
4922 char *tmp;
4923 int end;
4924
4925 /* The remote side has no concept of inferiors that aren't running
4926 yet, it only knows about running processes. If we're connected
4927 but our current inferior is not running, we should not invite the
4928 remote target to request symbol lookups related to its
4929 (unrelated) current process. */
4930 if (!target_has_execution)
4931 return;
4932
4933 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4934 return;
4935
4936 /* Make sure the remote is pointing at the right process. Note
4937 there's no way to select "no process". */
4938 set_general_process ();
4939
4940 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4941 because we need both at the same time. */
4942 gdb::char_vector msg (get_remote_packet_size ());
4943 gdb::char_vector reply (get_remote_packet_size ());
4944
4945 /* Invite target to request symbol lookups. */
4946
4947 putpkt ("qSymbol::");
4948 getpkt (&reply, 0);
4949 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4950
4951 while (startswith (reply.data (), "qSymbol:"))
4952 {
4953 struct bound_minimal_symbol sym;
4954
4955 tmp = &reply[8];
4956 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4957 strlen (tmp) / 2);
4958 msg[end] = '\0';
4959 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4960 if (sym.minsym == NULL)
4961 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4962 &reply[8]);
4963 else
4964 {
4965 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4966 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4967
4968 /* If this is a function address, return the start of code
4969 instead of any data function descriptor. */
4970 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4971 sym_addr,
4972 current_top_target ());
4973
4974 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4975 phex_nz (sym_addr, addr_size), &reply[8]);
4976 }
4977
4978 putpkt (msg.data ());
4979 getpkt (&reply, 0);
4980 }
4981 }
4982
4983 static struct serial *
4984 remote_serial_open (const char *name)
4985 {
4986 static int udp_warning = 0;
4987
4988 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4989 of in ser-tcp.c, because it is the remote protocol assuming that the
4990 serial connection is reliable and not the serial connection promising
4991 to be. */
4992 if (!udp_warning && startswith (name, "udp:"))
4993 {
4994 warning (_("The remote protocol may be unreliable over UDP.\n"
4995 "Some events may be lost, rendering further debugging "
4996 "impossible."));
4997 udp_warning = 1;
4998 }
4999
5000 return serial_open (name);
5001 }
5002
5003 /* Inform the target of our permission settings. The permission flags
5004 work without this, but if the target knows the settings, it can do
5005 a couple things. First, it can add its own check, to catch cases
5006 that somehow manage to get by the permissions checks in target
5007 methods. Second, if the target is wired to disallow particular
5008 settings (for instance, a system in the field that is not set up to
5009 be able to stop at a breakpoint), it can object to any unavailable
5010 permissions. */
5011
5012 void
5013 remote_target::set_permissions ()
5014 {
5015 struct remote_state *rs = get_remote_state ();
5016
5017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5018 "WriteReg:%x;WriteMem:%x;"
5019 "InsertBreak:%x;InsertTrace:%x;"
5020 "InsertFastTrace:%x;Stop:%x",
5021 may_write_registers, may_write_memory,
5022 may_insert_breakpoints, may_insert_tracepoints,
5023 may_insert_fast_tracepoints, may_stop);
5024 putpkt (rs->buf);
5025 getpkt (&rs->buf, 0);
5026
5027 /* If the target didn't like the packet, warn the user. Do not try
5028 to undo the user's settings, that would just be maddening. */
5029 if (strcmp (rs->buf.data (), "OK") != 0)
5030 warning (_("Remote refused setting permissions with: %s"),
5031 rs->buf.data ());
5032 }
5033
5034 /* This type describes each known response to the qSupported
5035 packet. */
5036 struct protocol_feature
5037 {
5038 /* The name of this protocol feature. */
5039 const char *name;
5040
5041 /* The default for this protocol feature. */
5042 enum packet_support default_support;
5043
5044 /* The function to call when this feature is reported, or after
5045 qSupported processing if the feature is not supported.
5046 The first argument points to this structure. The second
5047 argument indicates whether the packet requested support be
5048 enabled, disabled, or probed (or the default, if this function
5049 is being called at the end of processing and this feature was
5050 not reported). The third argument may be NULL; if not NULL, it
5051 is a NUL-terminated string taken from the packet following
5052 this feature's name and an equals sign. */
5053 void (*func) (remote_target *remote, const struct protocol_feature *,
5054 enum packet_support, const char *);
5055
5056 /* The corresponding packet for this feature. Only used if
5057 FUNC is remote_supported_packet. */
5058 int packet;
5059 };
5060
5061 static void
5062 remote_supported_packet (remote_target *remote,
5063 const struct protocol_feature *feature,
5064 enum packet_support support,
5065 const char *argument)
5066 {
5067 if (argument)
5068 {
5069 warning (_("Remote qSupported response supplied an unexpected value for"
5070 " \"%s\"."), feature->name);
5071 return;
5072 }
5073
5074 remote_protocol_packets[feature->packet].support = support;
5075 }
5076
5077 void
5078 remote_target::remote_packet_size (const protocol_feature *feature,
5079 enum packet_support support, const char *value)
5080 {
5081 struct remote_state *rs = get_remote_state ();
5082
5083 int packet_size;
5084 char *value_end;
5085
5086 if (support != PACKET_ENABLE)
5087 return;
5088
5089 if (value == NULL || *value == '\0')
5090 {
5091 warning (_("Remote target reported \"%s\" without a size."),
5092 feature->name);
5093 return;
5094 }
5095
5096 errno = 0;
5097 packet_size = strtol (value, &value_end, 16);
5098 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5099 {
5100 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5101 feature->name, value);
5102 return;
5103 }
5104
5105 /* Record the new maximum packet size. */
5106 rs->explicit_packet_size = packet_size;
5107 }
5108
5109 static void
5110 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5111 enum packet_support support, const char *value)
5112 {
5113 remote->remote_packet_size (feature, support, value);
5114 }
5115
5116 static const struct protocol_feature remote_protocol_features[] = {
5117 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5118 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_qXfer_auxv },
5120 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_qXfer_exec_file },
5122 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_qXfer_features },
5124 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_qXfer_libraries },
5126 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_qXfer_libraries_svr4 },
5128 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5129 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5130 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_qXfer_memory_map },
5132 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_qXfer_osdata },
5134 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5135 PACKET_qXfer_threads },
5136 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5137 PACKET_qXfer_traceframe_info },
5138 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_QPassSignals },
5140 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_QCatchSyscalls },
5142 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_QProgramSignals },
5144 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_QSetWorkingDir },
5146 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_QStartupWithShell },
5148 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_QEnvironmentHexEncoded },
5150 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_QEnvironmentReset },
5152 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_QEnvironmentUnset },
5154 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_QStartNoAckMode },
5156 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_multiprocess_feature },
5158 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5159 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_qXfer_siginfo_read },
5161 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_qXfer_siginfo_write },
5163 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_ConditionalTracepoints },
5165 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_ConditionalBreakpoints },
5167 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_BreakpointCommands },
5169 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_FastTracepoints },
5171 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_StaticTracepoints },
5173 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_InstallInTrace},
5175 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_DisconnectedTracing_feature },
5177 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_bc },
5179 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5180 PACKET_bs },
5181 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_TracepointSource },
5183 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5184 PACKET_QAllow },
5185 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5186 PACKET_EnableDisableTracepoints_feature },
5187 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5188 PACKET_qXfer_fdpic },
5189 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5190 PACKET_qXfer_uib },
5191 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5192 PACKET_QDisableRandomization },
5193 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5194 { "QTBuffer:size", PACKET_DISABLE,
5195 remote_supported_packet, PACKET_QTBuffer_size},
5196 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5197 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5198 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5199 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5200 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5201 PACKET_qXfer_btrace },
5202 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5203 PACKET_qXfer_btrace_conf },
5204 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_Qbtrace_conf_bts_size },
5206 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5207 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5208 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5209 PACKET_fork_event_feature },
5210 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5211 PACKET_vfork_event_feature },
5212 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5213 PACKET_exec_event_feature },
5214 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5215 PACKET_Qbtrace_conf_pt_size },
5216 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5217 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5218 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5219 };
5220
5221 static char *remote_support_xml;
5222
5223 /* Register string appended to "xmlRegisters=" in qSupported query. */
5224
5225 void
5226 register_remote_support_xml (const char *xml)
5227 {
5228 #if defined(HAVE_LIBEXPAT)
5229 if (remote_support_xml == NULL)
5230 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5231 else
5232 {
5233 char *copy = xstrdup (remote_support_xml + 13);
5234 char *saveptr;
5235 char *p = strtok_r (copy, ",", &saveptr);
5236
5237 do
5238 {
5239 if (strcmp (p, xml) == 0)
5240 {
5241 /* already there */
5242 xfree (copy);
5243 return;
5244 }
5245 }
5246 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5247 xfree (copy);
5248
5249 remote_support_xml = reconcat (remote_support_xml,
5250 remote_support_xml, ",", xml,
5251 (char *) NULL);
5252 }
5253 #endif
5254 }
5255
5256 static void
5257 remote_query_supported_append (std::string *msg, const char *append)
5258 {
5259 if (!msg->empty ())
5260 msg->append (";");
5261 msg->append (append);
5262 }
5263
5264 void
5265 remote_target::remote_query_supported ()
5266 {
5267 struct remote_state *rs = get_remote_state ();
5268 char *next;
5269 int i;
5270 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5271
5272 /* The packet support flags are handled differently for this packet
5273 than for most others. We treat an error, a disabled packet, and
5274 an empty response identically: any features which must be reported
5275 to be used will be automatically disabled. An empty buffer
5276 accomplishes this, since that is also the representation for a list
5277 containing no features. */
5278
5279 rs->buf[0] = 0;
5280 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5281 {
5282 std::string q;
5283
5284 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5285 remote_query_supported_append (&q, "multiprocess+");
5286
5287 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5288 remote_query_supported_append (&q, "swbreak+");
5289 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5290 remote_query_supported_append (&q, "hwbreak+");
5291
5292 remote_query_supported_append (&q, "qRelocInsn+");
5293
5294 if (packet_set_cmd_state (PACKET_fork_event_feature)
5295 != AUTO_BOOLEAN_FALSE)
5296 remote_query_supported_append (&q, "fork-events+");
5297 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5298 != AUTO_BOOLEAN_FALSE)
5299 remote_query_supported_append (&q, "vfork-events+");
5300 if (packet_set_cmd_state (PACKET_exec_event_feature)
5301 != AUTO_BOOLEAN_FALSE)
5302 remote_query_supported_append (&q, "exec-events+");
5303
5304 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5305 remote_query_supported_append (&q, "vContSupported+");
5306
5307 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5308 remote_query_supported_append (&q, "QThreadEvents+");
5309
5310 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5311 remote_query_supported_append (&q, "no-resumed+");
5312
5313 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5314 the qSupported:xmlRegisters=i386 handling. */
5315 if (remote_support_xml != NULL
5316 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5317 remote_query_supported_append (&q, remote_support_xml);
5318
5319 q = "qSupported:" + q;
5320 putpkt (q.c_str ());
5321
5322 getpkt (&rs->buf, 0);
5323
5324 /* If an error occured, warn, but do not return - just reset the
5325 buffer to empty and go on to disable features. */
5326 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5327 == PACKET_ERROR)
5328 {
5329 warning (_("Remote failure reply: %s"), rs->buf.data ());
5330 rs->buf[0] = 0;
5331 }
5332 }
5333
5334 memset (seen, 0, sizeof (seen));
5335
5336 next = rs->buf.data ();
5337 while (*next)
5338 {
5339 enum packet_support is_supported;
5340 char *p, *end, *name_end, *value;
5341
5342 /* First separate out this item from the rest of the packet. If
5343 there's another item after this, we overwrite the separator
5344 (terminated strings are much easier to work with). */
5345 p = next;
5346 end = strchr (p, ';');
5347 if (end == NULL)
5348 {
5349 end = p + strlen (p);
5350 next = end;
5351 }
5352 else
5353 {
5354 *end = '\0';
5355 next = end + 1;
5356
5357 if (end == p)
5358 {
5359 warning (_("empty item in \"qSupported\" response"));
5360 continue;
5361 }
5362 }
5363
5364 name_end = strchr (p, '=');
5365 if (name_end)
5366 {
5367 /* This is a name=value entry. */
5368 is_supported = PACKET_ENABLE;
5369 value = name_end + 1;
5370 *name_end = '\0';
5371 }
5372 else
5373 {
5374 value = NULL;
5375 switch (end[-1])
5376 {
5377 case '+':
5378 is_supported = PACKET_ENABLE;
5379 break;
5380
5381 case '-':
5382 is_supported = PACKET_DISABLE;
5383 break;
5384
5385 case '?':
5386 is_supported = PACKET_SUPPORT_UNKNOWN;
5387 break;
5388
5389 default:
5390 warning (_("unrecognized item \"%s\" "
5391 "in \"qSupported\" response"), p);
5392 continue;
5393 }
5394 end[-1] = '\0';
5395 }
5396
5397 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5398 if (strcmp (remote_protocol_features[i].name, p) == 0)
5399 {
5400 const struct protocol_feature *feature;
5401
5402 seen[i] = 1;
5403 feature = &remote_protocol_features[i];
5404 feature->func (this, feature, is_supported, value);
5405 break;
5406 }
5407 }
5408
5409 /* If we increased the packet size, make sure to increase the global
5410 buffer size also. We delay this until after parsing the entire
5411 qSupported packet, because this is the same buffer we were
5412 parsing. */
5413 if (rs->buf.size () < rs->explicit_packet_size)
5414 rs->buf.resize (rs->explicit_packet_size);
5415
5416 /* Handle the defaults for unmentioned features. */
5417 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5418 if (!seen[i])
5419 {
5420 const struct protocol_feature *feature;
5421
5422 feature = &remote_protocol_features[i];
5423 feature->func (this, feature, feature->default_support, NULL);
5424 }
5425 }
5426
5427 /* Serial QUIT handler for the remote serial descriptor.
5428
5429 Defers handling a Ctrl-C until we're done with the current
5430 command/response packet sequence, unless:
5431
5432 - We're setting up the connection. Don't send a remote interrupt
5433 request, as we're not fully synced yet. Quit immediately
5434 instead.
5435
5436 - The target has been resumed in the foreground
5437 (target_terminal::is_ours is false) with a synchronous resume
5438 packet, and we're blocked waiting for the stop reply, thus a
5439 Ctrl-C should be immediately sent to the target.
5440
5441 - We get a second Ctrl-C while still within the same serial read or
5442 write. In that case the serial is seemingly wedged --- offer to
5443 quit/disconnect.
5444
5445 - We see a second Ctrl-C without target response, after having
5446 previously interrupted the target. In that case the target/stub
5447 is probably wedged --- offer to quit/disconnect.
5448 */
5449
5450 void
5451 remote_target::remote_serial_quit_handler ()
5452 {
5453 struct remote_state *rs = get_remote_state ();
5454
5455 if (check_quit_flag ())
5456 {
5457 /* If we're starting up, we're not fully synced yet. Quit
5458 immediately. */
5459 if (rs->starting_up)
5460 quit ();
5461 else if (rs->got_ctrlc_during_io)
5462 {
5463 if (query (_("The target is not responding to GDB commands.\n"
5464 "Stop debugging it? ")))
5465 remote_unpush_and_throw (this);
5466 }
5467 /* If ^C has already been sent once, offer to disconnect. */
5468 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5469 interrupt_query ();
5470 /* All-stop protocol, and blocked waiting for stop reply. Send
5471 an interrupt request. */
5472 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5473 target_interrupt ();
5474 else
5475 rs->got_ctrlc_during_io = 1;
5476 }
5477 }
5478
5479 /* The remote_target that is current while the quit handler is
5480 overridden with remote_serial_quit_handler. */
5481 static remote_target *curr_quit_handler_target;
5482
5483 static void
5484 remote_serial_quit_handler ()
5485 {
5486 curr_quit_handler_target->remote_serial_quit_handler ();
5487 }
5488
5489 /* Remove the remote target from the target stack of each inferior
5490 that is using it. Upper targets depend on it so remove them
5491 first. */
5492
5493 static void
5494 remote_unpush_target (remote_target *target)
5495 {
5496 /* We have to unpush the target from all inferiors, even those that
5497 aren't running. */
5498 scoped_restore_current_inferior restore_current_inferior;
5499
5500 for (inferior *inf : all_inferiors (target))
5501 {
5502 switch_to_inferior_no_thread (inf);
5503 pop_all_targets_at_and_above (process_stratum);
5504 generic_mourn_inferior ();
5505 }
5506 }
5507
5508 static void
5509 remote_unpush_and_throw (remote_target *target)
5510 {
5511 remote_unpush_target (target);
5512 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5513 }
5514
5515 void
5516 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5517 {
5518 remote_target *curr_remote = get_current_remote_target ();
5519
5520 if (name == 0)
5521 error (_("To open a remote debug connection, you need to specify what\n"
5522 "serial device is attached to the remote system\n"
5523 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5524
5525 /* If we're connected to a running target, target_preopen will kill it.
5526 Ask this question first, before target_preopen has a chance to kill
5527 anything. */
5528 if (curr_remote != NULL && !target_has_execution)
5529 {
5530 if (from_tty
5531 && !query (_("Already connected to a remote target. Disconnect? ")))
5532 error (_("Still connected."));
5533 }
5534
5535 /* Here the possibly existing remote target gets unpushed. */
5536 target_preopen (from_tty);
5537
5538 remote_fileio_reset ();
5539 reopen_exec_file ();
5540 reread_symbols ();
5541
5542 remote_target *remote
5543 = (extended_p ? new extended_remote_target () : new remote_target ());
5544 target_ops_up target_holder (remote);
5545
5546 remote_state *rs = remote->get_remote_state ();
5547
5548 /* See FIXME above. */
5549 if (!target_async_permitted)
5550 rs->wait_forever_enabled_p = 1;
5551
5552 rs->remote_desc = remote_serial_open (name);
5553 if (!rs->remote_desc)
5554 perror_with_name (name);
5555
5556 if (baud_rate != -1)
5557 {
5558 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5559 {
5560 /* The requested speed could not be set. Error out to
5561 top level after closing remote_desc. Take care to
5562 set remote_desc to NULL to avoid closing remote_desc
5563 more than once. */
5564 serial_close (rs->remote_desc);
5565 rs->remote_desc = NULL;
5566 perror_with_name (name);
5567 }
5568 }
5569
5570 serial_setparity (rs->remote_desc, serial_parity);
5571 serial_raw (rs->remote_desc);
5572
5573 /* If there is something sitting in the buffer we might take it as a
5574 response to a command, which would be bad. */
5575 serial_flush_input (rs->remote_desc);
5576
5577 if (from_tty)
5578 {
5579 puts_filtered ("Remote debugging using ");
5580 puts_filtered (name);
5581 puts_filtered ("\n");
5582 }
5583
5584 /* Switch to using the remote target now. */
5585 push_target (std::move (target_holder));
5586
5587 /* Register extra event sources in the event loop. */
5588 rs->remote_async_inferior_event_token
5589 = create_async_event_handler (remote_async_inferior_event_handler,
5590 remote);
5591 rs->notif_state = remote_notif_state_allocate (remote);
5592
5593 /* Reset the target state; these things will be queried either by
5594 remote_query_supported or as they are needed. */
5595 reset_all_packet_configs_support ();
5596 rs->cached_wait_status = 0;
5597 rs->explicit_packet_size = 0;
5598 rs->noack_mode = 0;
5599 rs->extended = extended_p;
5600 rs->waiting_for_stop_reply = 0;
5601 rs->ctrlc_pending_p = 0;
5602 rs->got_ctrlc_during_io = 0;
5603
5604 rs->general_thread = not_sent_ptid;
5605 rs->continue_thread = not_sent_ptid;
5606 rs->remote_traceframe_number = -1;
5607
5608 rs->last_resume_exec_dir = EXEC_FORWARD;
5609
5610 /* Probe for ability to use "ThreadInfo" query, as required. */
5611 rs->use_threadinfo_query = 1;
5612 rs->use_threadextra_query = 1;
5613
5614 rs->readahead_cache.invalidate ();
5615
5616 if (target_async_permitted)
5617 {
5618 /* FIXME: cagney/1999-09-23: During the initial connection it is
5619 assumed that the target is already ready and able to respond to
5620 requests. Unfortunately remote_start_remote() eventually calls
5621 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5622 around this. Eventually a mechanism that allows
5623 wait_for_inferior() to expect/get timeouts will be
5624 implemented. */
5625 rs->wait_forever_enabled_p = 0;
5626 }
5627
5628 /* First delete any symbols previously loaded from shared libraries. */
5629 no_shared_libraries (NULL, 0);
5630
5631 /* Start the remote connection. If error() or QUIT, discard this
5632 target (we'd otherwise be in an inconsistent state) and then
5633 propogate the error on up the exception chain. This ensures that
5634 the caller doesn't stumble along blindly assuming that the
5635 function succeeded. The CLI doesn't have this problem but other
5636 UI's, such as MI do.
5637
5638 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5639 this function should return an error indication letting the
5640 caller restore the previous state. Unfortunately the command
5641 ``target remote'' is directly wired to this function making that
5642 impossible. On a positive note, the CLI side of this problem has
5643 been fixed - the function set_cmd_context() makes it possible for
5644 all the ``target ....'' commands to share a common callback
5645 function. See cli-dump.c. */
5646 {
5647
5648 try
5649 {
5650 remote->start_remote (from_tty, extended_p);
5651 }
5652 catch (const gdb_exception &ex)
5653 {
5654 /* Pop the partially set up target - unless something else did
5655 already before throwing the exception. */
5656 if (ex.error != TARGET_CLOSE_ERROR)
5657 remote_unpush_target (remote);
5658 throw;
5659 }
5660 }
5661
5662 remote_btrace_reset (rs);
5663
5664 if (target_async_permitted)
5665 rs->wait_forever_enabled_p = 1;
5666 }
5667
5668 /* Detach the specified process. */
5669
5670 void
5671 remote_target::remote_detach_pid (int pid)
5672 {
5673 struct remote_state *rs = get_remote_state ();
5674
5675 /* This should not be necessary, but the handling for D;PID in
5676 GDBserver versions prior to 8.2 incorrectly assumes that the
5677 selected process points to the same process we're detaching,
5678 leading to misbehavior (and possibly GDBserver crashing) when it
5679 does not. Since it's easy and cheap, work around it by forcing
5680 GDBserver to select GDB's current process. */
5681 set_general_process ();
5682
5683 if (remote_multi_process_p (rs))
5684 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5685 else
5686 strcpy (rs->buf.data (), "D");
5687
5688 putpkt (rs->buf);
5689 getpkt (&rs->buf, 0);
5690
5691 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5692 ;
5693 else if (rs->buf[0] == '\0')
5694 error (_("Remote doesn't know how to detach"));
5695 else
5696 error (_("Can't detach process."));
5697 }
5698
5699 /* This detaches a program to which we previously attached, using
5700 inferior_ptid to identify the process. After this is done, GDB
5701 can be used to debug some other program. We better not have left
5702 any breakpoints in the target program or it'll die when it hits
5703 one. */
5704
5705 void
5706 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5707 {
5708 int pid = inferior_ptid.pid ();
5709 struct remote_state *rs = get_remote_state ();
5710 int is_fork_parent;
5711
5712 if (!target_has_execution)
5713 error (_("No process to detach from."));
5714
5715 target_announce_detach (from_tty);
5716
5717 /* Tell the remote target to detach. */
5718 remote_detach_pid (pid);
5719
5720 /* Exit only if this is the only active inferior. */
5721 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5722 puts_filtered (_("Ending remote debugging.\n"));
5723
5724 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5725
5726 /* Check to see if we are detaching a fork parent. Note that if we
5727 are detaching a fork child, tp == NULL. */
5728 is_fork_parent = (tp != NULL
5729 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5730
5731 /* If doing detach-on-fork, we don't mourn, because that will delete
5732 breakpoints that should be available for the followed inferior. */
5733 if (!is_fork_parent)
5734 {
5735 /* Save the pid as a string before mourning, since that will
5736 unpush the remote target, and we need the string after. */
5737 std::string infpid = target_pid_to_str (ptid_t (pid));
5738
5739 target_mourn_inferior (inferior_ptid);
5740 if (print_inferior_events)
5741 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5742 inf->num, infpid.c_str ());
5743 }
5744 else
5745 {
5746 inferior_ptid = null_ptid;
5747 detach_inferior (current_inferior ());
5748 }
5749 }
5750
5751 void
5752 remote_target::detach (inferior *inf, int from_tty)
5753 {
5754 remote_detach_1 (inf, from_tty);
5755 }
5756
5757 void
5758 extended_remote_target::detach (inferior *inf, int from_tty)
5759 {
5760 remote_detach_1 (inf, from_tty);
5761 }
5762
5763 /* Target follow-fork function for remote targets. On entry, and
5764 at return, the current inferior is the fork parent.
5765
5766 Note that although this is currently only used for extended-remote,
5767 it is named remote_follow_fork in anticipation of using it for the
5768 remote target as well. */
5769
5770 bool
5771 remote_target::follow_fork (bool follow_child, bool detach_fork)
5772 {
5773 struct remote_state *rs = get_remote_state ();
5774 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5775
5776 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5777 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5778 {
5779 /* When following the parent and detaching the child, we detach
5780 the child here. For the case of following the child and
5781 detaching the parent, the detach is done in the target-
5782 independent follow fork code in infrun.c. We can't use
5783 target_detach when detaching an unfollowed child because
5784 the client side doesn't know anything about the child. */
5785 if (detach_fork && !follow_child)
5786 {
5787 /* Detach the fork child. */
5788 ptid_t child_ptid;
5789 pid_t child_pid;
5790
5791 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5792 child_pid = child_ptid.pid ();
5793
5794 remote_detach_pid (child_pid);
5795 }
5796 }
5797
5798 return false;
5799 }
5800
5801 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5802 in the program space of the new inferior. On entry and at return the
5803 current inferior is the exec'ing inferior. INF is the new exec'd
5804 inferior, which may be the same as the exec'ing inferior unless
5805 follow-exec-mode is "new". */
5806
5807 void
5808 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5809 {
5810 /* We know that this is a target file name, so if it has the "target:"
5811 prefix we strip it off before saving it in the program space. */
5812 if (is_target_filename (execd_pathname))
5813 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5814
5815 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5816 }
5817
5818 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5819
5820 void
5821 remote_target::disconnect (const char *args, int from_tty)
5822 {
5823 if (args)
5824 error (_("Argument given to \"disconnect\" when remotely debugging."));
5825
5826 /* Make sure we unpush even the extended remote targets. Calling
5827 target_mourn_inferior won't unpush, and
5828 remote_target::mourn_inferior won't unpush if there is more than
5829 one inferior left. */
5830 remote_unpush_target (this);
5831
5832 if (from_tty)
5833 puts_filtered ("Ending remote debugging.\n");
5834 }
5835
5836 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5837 be chatty about it. */
5838
5839 void
5840 extended_remote_target::attach (const char *args, int from_tty)
5841 {
5842 struct remote_state *rs = get_remote_state ();
5843 int pid;
5844 char *wait_status = NULL;
5845
5846 pid = parse_pid_to_attach (args);
5847
5848 /* Remote PID can be freely equal to getpid, do not check it here the same
5849 way as in other targets. */
5850
5851 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5852 error (_("This target does not support attaching to a process"));
5853
5854 if (from_tty)
5855 {
5856 const char *exec_file = get_exec_file (0);
5857
5858 if (exec_file)
5859 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5860 target_pid_to_str (ptid_t (pid)).c_str ());
5861 else
5862 printf_unfiltered (_("Attaching to %s\n"),
5863 target_pid_to_str (ptid_t (pid)).c_str ());
5864 }
5865
5866 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5867 putpkt (rs->buf);
5868 getpkt (&rs->buf, 0);
5869
5870 switch (packet_ok (rs->buf,
5871 &remote_protocol_packets[PACKET_vAttach]))
5872 {
5873 case PACKET_OK:
5874 if (!target_is_non_stop_p ())
5875 {
5876 /* Save the reply for later. */
5877 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5878 strcpy (wait_status, rs->buf.data ());
5879 }
5880 else if (strcmp (rs->buf.data (), "OK") != 0)
5881 error (_("Attaching to %s failed with: %s"),
5882 target_pid_to_str (ptid_t (pid)).c_str (),
5883 rs->buf.data ());
5884 break;
5885 case PACKET_UNKNOWN:
5886 error (_("This target does not support attaching to a process"));
5887 default:
5888 error (_("Attaching to %s failed"),
5889 target_pid_to_str (ptid_t (pid)).c_str ());
5890 }
5891
5892 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5893
5894 inferior_ptid = ptid_t (pid);
5895
5896 if (target_is_non_stop_p ())
5897 {
5898 struct thread_info *thread;
5899
5900 /* Get list of threads. */
5901 update_thread_list ();
5902
5903 thread = first_thread_of_inferior (current_inferior ());
5904 if (thread)
5905 inferior_ptid = thread->ptid;
5906 else
5907 inferior_ptid = ptid_t (pid);
5908
5909 /* Invalidate our notion of the remote current thread. */
5910 record_currthread (rs, minus_one_ptid);
5911 }
5912 else
5913 {
5914 /* Now, if we have thread information, update inferior_ptid. */
5915 inferior_ptid = remote_current_thread (inferior_ptid);
5916
5917 /* Add the main thread to the thread list. */
5918 thread_info *thr = add_thread_silent (this, inferior_ptid);
5919 /* Don't consider the thread stopped until we've processed the
5920 saved stop reply. */
5921 set_executing (this, thr->ptid, true);
5922 }
5923
5924 /* Next, if the target can specify a description, read it. We do
5925 this before anything involving memory or registers. */
5926 target_find_description ();
5927
5928 if (!target_is_non_stop_p ())
5929 {
5930 /* Use the previously fetched status. */
5931 gdb_assert (wait_status != NULL);
5932
5933 if (target_can_async_p ())
5934 {
5935 struct notif_event *reply
5936 = remote_notif_parse (this, &notif_client_stop, wait_status);
5937
5938 push_stop_reply ((struct stop_reply *) reply);
5939
5940 target_async (1);
5941 }
5942 else
5943 {
5944 gdb_assert (wait_status != NULL);
5945 strcpy (rs->buf.data (), wait_status);
5946 rs->cached_wait_status = 1;
5947 }
5948 }
5949 else
5950 gdb_assert (wait_status == NULL);
5951 }
5952
5953 /* Implementation of the to_post_attach method. */
5954
5955 void
5956 extended_remote_target::post_attach (int pid)
5957 {
5958 /* Get text, data & bss offsets. */
5959 get_offsets ();
5960
5961 /* In certain cases GDB might not have had the chance to start
5962 symbol lookup up until now. This could happen if the debugged
5963 binary is not using shared libraries, the vsyscall page is not
5964 present (on Linux) and the binary itself hadn't changed since the
5965 debugging process was started. */
5966 if (symfile_objfile != NULL)
5967 remote_check_symbols();
5968 }
5969
5970 \f
5971 /* Check for the availability of vCont. This function should also check
5972 the response. */
5973
5974 void
5975 remote_target::remote_vcont_probe ()
5976 {
5977 remote_state *rs = get_remote_state ();
5978 char *buf;
5979
5980 strcpy (rs->buf.data (), "vCont?");
5981 putpkt (rs->buf);
5982 getpkt (&rs->buf, 0);
5983 buf = rs->buf.data ();
5984
5985 /* Make sure that the features we assume are supported. */
5986 if (startswith (buf, "vCont"))
5987 {
5988 char *p = &buf[5];
5989 int support_c, support_C;
5990
5991 rs->supports_vCont.s = 0;
5992 rs->supports_vCont.S = 0;
5993 support_c = 0;
5994 support_C = 0;
5995 rs->supports_vCont.t = 0;
5996 rs->supports_vCont.r = 0;
5997 while (p && *p == ';')
5998 {
5999 p++;
6000 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6001 rs->supports_vCont.s = 1;
6002 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6003 rs->supports_vCont.S = 1;
6004 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6005 support_c = 1;
6006 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6007 support_C = 1;
6008 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6009 rs->supports_vCont.t = 1;
6010 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6011 rs->supports_vCont.r = 1;
6012
6013 p = strchr (p, ';');
6014 }
6015
6016 /* If c, and C are not all supported, we can't use vCont. Clearing
6017 BUF will make packet_ok disable the packet. */
6018 if (!support_c || !support_C)
6019 buf[0] = 0;
6020 }
6021
6022 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6023 rs->supports_vCont_probed = true;
6024 }
6025
6026 /* Helper function for building "vCont" resumptions. Write a
6027 resumption to P. ENDP points to one-passed-the-end of the buffer
6028 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6029 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6030 resumed thread should be single-stepped and/or signalled. If PTID
6031 equals minus_one_ptid, then all threads are resumed; if PTID
6032 represents a process, then all threads of the process are resumed;
6033 the thread to be stepped and/or signalled is given in the global
6034 INFERIOR_PTID. */
6035
6036 char *
6037 remote_target::append_resumption (char *p, char *endp,
6038 ptid_t ptid, int step, gdb_signal siggnal)
6039 {
6040 struct remote_state *rs = get_remote_state ();
6041
6042 if (step && siggnal != GDB_SIGNAL_0)
6043 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6044 else if (step
6045 /* GDB is willing to range step. */
6046 && use_range_stepping
6047 /* Target supports range stepping. */
6048 && rs->supports_vCont.r
6049 /* We don't currently support range stepping multiple
6050 threads with a wildcard (though the protocol allows it,
6051 so stubs shouldn't make an active effort to forbid
6052 it). */
6053 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6054 {
6055 struct thread_info *tp;
6056
6057 if (ptid == minus_one_ptid)
6058 {
6059 /* If we don't know about the target thread's tid, then
6060 we're resuming magic_null_ptid (see caller). */
6061 tp = find_thread_ptid (this, magic_null_ptid);
6062 }
6063 else
6064 tp = find_thread_ptid (this, ptid);
6065 gdb_assert (tp != NULL);
6066
6067 if (tp->control.may_range_step)
6068 {
6069 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6070
6071 p += xsnprintf (p, endp - p, ";r%s,%s",
6072 phex_nz (tp->control.step_range_start,
6073 addr_size),
6074 phex_nz (tp->control.step_range_end,
6075 addr_size));
6076 }
6077 else
6078 p += xsnprintf (p, endp - p, ";s");
6079 }
6080 else if (step)
6081 p += xsnprintf (p, endp - p, ";s");
6082 else if (siggnal != GDB_SIGNAL_0)
6083 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6084 else
6085 p += xsnprintf (p, endp - p, ";c");
6086
6087 if (remote_multi_process_p (rs) && ptid.is_pid ())
6088 {
6089 ptid_t nptid;
6090
6091 /* All (-1) threads of process. */
6092 nptid = ptid_t (ptid.pid (), -1, 0);
6093
6094 p += xsnprintf (p, endp - p, ":");
6095 p = write_ptid (p, endp, nptid);
6096 }
6097 else if (ptid != minus_one_ptid)
6098 {
6099 p += xsnprintf (p, endp - p, ":");
6100 p = write_ptid (p, endp, ptid);
6101 }
6102
6103 return p;
6104 }
6105
6106 /* Clear the thread's private info on resume. */
6107
6108 static void
6109 resume_clear_thread_private_info (struct thread_info *thread)
6110 {
6111 if (thread->priv != NULL)
6112 {
6113 remote_thread_info *priv = get_remote_thread_info (thread);
6114
6115 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6116 priv->watch_data_address = 0;
6117 }
6118 }
6119
6120 /* Append a vCont continue-with-signal action for threads that have a
6121 non-zero stop signal. */
6122
6123 char *
6124 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6125 ptid_t ptid)
6126 {
6127 for (thread_info *thread : all_non_exited_threads (this, ptid))
6128 if (inferior_ptid != thread->ptid
6129 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6130 {
6131 p = append_resumption (p, endp, thread->ptid,
6132 0, thread->suspend.stop_signal);
6133 thread->suspend.stop_signal = GDB_SIGNAL_0;
6134 resume_clear_thread_private_info (thread);
6135 }
6136
6137 return p;
6138 }
6139
6140 /* Set the target running, using the packets that use Hc
6141 (c/s/C/S). */
6142
6143 void
6144 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6145 gdb_signal siggnal)
6146 {
6147 struct remote_state *rs = get_remote_state ();
6148 char *buf;
6149
6150 rs->last_sent_signal = siggnal;
6151 rs->last_sent_step = step;
6152
6153 /* The c/s/C/S resume packets use Hc, so set the continue
6154 thread. */
6155 if (ptid == minus_one_ptid)
6156 set_continue_thread (any_thread_ptid);
6157 else
6158 set_continue_thread (ptid);
6159
6160 for (thread_info *thread : all_non_exited_threads (this))
6161 resume_clear_thread_private_info (thread);
6162
6163 buf = rs->buf.data ();
6164 if (::execution_direction == EXEC_REVERSE)
6165 {
6166 /* We don't pass signals to the target in reverse exec mode. */
6167 if (info_verbose && siggnal != GDB_SIGNAL_0)
6168 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6169 siggnal);
6170
6171 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6172 error (_("Remote reverse-step not supported."));
6173 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6174 error (_("Remote reverse-continue not supported."));
6175
6176 strcpy (buf, step ? "bs" : "bc");
6177 }
6178 else if (siggnal != GDB_SIGNAL_0)
6179 {
6180 buf[0] = step ? 'S' : 'C';
6181 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6182 buf[2] = tohex (((int) siggnal) & 0xf);
6183 buf[3] = '\0';
6184 }
6185 else
6186 strcpy (buf, step ? "s" : "c");
6187
6188 putpkt (buf);
6189 }
6190
6191 /* Resume the remote inferior by using a "vCont" packet. The thread
6192 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6193 resumed thread should be single-stepped and/or signalled. If PTID
6194 equals minus_one_ptid, then all threads are resumed; the thread to
6195 be stepped and/or signalled is given in the global INFERIOR_PTID.
6196 This function returns non-zero iff it resumes the inferior.
6197
6198 This function issues a strict subset of all possible vCont commands
6199 at the moment. */
6200
6201 int
6202 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6203 enum gdb_signal siggnal)
6204 {
6205 struct remote_state *rs = get_remote_state ();
6206 char *p;
6207 char *endp;
6208
6209 /* No reverse execution actions defined for vCont. */
6210 if (::execution_direction == EXEC_REVERSE)
6211 return 0;
6212
6213 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6214 remote_vcont_probe ();
6215
6216 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6217 return 0;
6218
6219 p = rs->buf.data ();
6220 endp = p + get_remote_packet_size ();
6221
6222 /* If we could generate a wider range of packets, we'd have to worry
6223 about overflowing BUF. Should there be a generic
6224 "multi-part-packet" packet? */
6225
6226 p += xsnprintf (p, endp - p, "vCont");
6227
6228 if (ptid == magic_null_ptid)
6229 {
6230 /* MAGIC_NULL_PTID means that we don't have any active threads,
6231 so we don't have any TID numbers the inferior will
6232 understand. Make sure to only send forms that do not specify
6233 a TID. */
6234 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6235 }
6236 else if (ptid == minus_one_ptid || ptid.is_pid ())
6237 {
6238 /* Resume all threads (of all processes, or of a single
6239 process), with preference for INFERIOR_PTID. This assumes
6240 inferior_ptid belongs to the set of all threads we are about
6241 to resume. */
6242 if (step || siggnal != GDB_SIGNAL_0)
6243 {
6244 /* Step inferior_ptid, with or without signal. */
6245 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6246 }
6247
6248 /* Also pass down any pending signaled resumption for other
6249 threads not the current. */
6250 p = append_pending_thread_resumptions (p, endp, ptid);
6251
6252 /* And continue others without a signal. */
6253 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6254 }
6255 else
6256 {
6257 /* Scheduler locking; resume only PTID. */
6258 append_resumption (p, endp, ptid, step, siggnal);
6259 }
6260
6261 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6262 putpkt (rs->buf);
6263
6264 if (target_is_non_stop_p ())
6265 {
6266 /* In non-stop, the stub replies to vCont with "OK". The stop
6267 reply will be reported asynchronously by means of a `%Stop'
6268 notification. */
6269 getpkt (&rs->buf, 0);
6270 if (strcmp (rs->buf.data (), "OK") != 0)
6271 error (_("Unexpected vCont reply in non-stop mode: %s"),
6272 rs->buf.data ());
6273 }
6274
6275 return 1;
6276 }
6277
6278 /* Tell the remote machine to resume. */
6279
6280 void
6281 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6282 {
6283 struct remote_state *rs = get_remote_state ();
6284
6285 /* When connected in non-stop mode, the core resumes threads
6286 individually. Resuming remote threads directly in target_resume
6287 would thus result in sending one packet per thread. Instead, to
6288 minimize roundtrip latency, here we just store the resume
6289 request; the actual remote resumption will be done in
6290 target_commit_resume / remote_commit_resume, where we'll be able
6291 to do vCont action coalescing. */
6292 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6293 {
6294 remote_thread_info *remote_thr;
6295
6296 if (minus_one_ptid == ptid || ptid.is_pid ())
6297 remote_thr = get_remote_thread_info (this, inferior_ptid);
6298 else
6299 remote_thr = get_remote_thread_info (this, ptid);
6300
6301 remote_thr->last_resume_step = step;
6302 remote_thr->last_resume_sig = siggnal;
6303 return;
6304 }
6305
6306 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6307 (explained in remote-notif.c:handle_notification) so
6308 remote_notif_process is not called. We need find a place where
6309 it is safe to start a 'vNotif' sequence. It is good to do it
6310 before resuming inferior, because inferior was stopped and no RSP
6311 traffic at that moment. */
6312 if (!target_is_non_stop_p ())
6313 remote_notif_process (rs->notif_state, &notif_client_stop);
6314
6315 rs->last_resume_exec_dir = ::execution_direction;
6316
6317 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6318 if (!remote_resume_with_vcont (ptid, step, siggnal))
6319 remote_resume_with_hc (ptid, step, siggnal);
6320
6321 /* We are about to start executing the inferior, let's register it
6322 with the event loop. NOTE: this is the one place where all the
6323 execution commands end up. We could alternatively do this in each
6324 of the execution commands in infcmd.c. */
6325 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6326 into infcmd.c in order to allow inferior function calls to work
6327 NOT asynchronously. */
6328 if (target_can_async_p ())
6329 target_async (1);
6330
6331 /* We've just told the target to resume. The remote server will
6332 wait for the inferior to stop, and then send a stop reply. In
6333 the mean time, we can't start another command/query ourselves
6334 because the stub wouldn't be ready to process it. This applies
6335 only to the base all-stop protocol, however. In non-stop (which
6336 only supports vCont), the stub replies with an "OK", and is
6337 immediate able to process further serial input. */
6338 if (!target_is_non_stop_p ())
6339 rs->waiting_for_stop_reply = 1;
6340 }
6341
6342 static int is_pending_fork_parent_thread (struct thread_info *thread);
6343
6344 /* Private per-inferior info for target remote processes. */
6345
6346 struct remote_inferior : public private_inferior
6347 {
6348 /* Whether we can send a wildcard vCont for this process. */
6349 bool may_wildcard_vcont = true;
6350 };
6351
6352 /* Get the remote private inferior data associated to INF. */
6353
6354 static remote_inferior *
6355 get_remote_inferior (inferior *inf)
6356 {
6357 if (inf->priv == NULL)
6358 inf->priv.reset (new remote_inferior);
6359
6360 return static_cast<remote_inferior *> (inf->priv.get ());
6361 }
6362
6363 /* Class used to track the construction of a vCont packet in the
6364 outgoing packet buffer. This is used to send multiple vCont
6365 packets if we have more actions than would fit a single packet. */
6366
6367 class vcont_builder
6368 {
6369 public:
6370 explicit vcont_builder (remote_target *remote)
6371 : m_remote (remote)
6372 {
6373 restart ();
6374 }
6375
6376 void flush ();
6377 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6378
6379 private:
6380 void restart ();
6381
6382 /* The remote target. */
6383 remote_target *m_remote;
6384
6385 /* Pointer to the first action. P points here if no action has been
6386 appended yet. */
6387 char *m_first_action;
6388
6389 /* Where the next action will be appended. */
6390 char *m_p;
6391
6392 /* The end of the buffer. Must never write past this. */
6393 char *m_endp;
6394 };
6395
6396 /* Prepare the outgoing buffer for a new vCont packet. */
6397
6398 void
6399 vcont_builder::restart ()
6400 {
6401 struct remote_state *rs = m_remote->get_remote_state ();
6402
6403 m_p = rs->buf.data ();
6404 m_endp = m_p + m_remote->get_remote_packet_size ();
6405 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6406 m_first_action = m_p;
6407 }
6408
6409 /* If the vCont packet being built has any action, send it to the
6410 remote end. */
6411
6412 void
6413 vcont_builder::flush ()
6414 {
6415 struct remote_state *rs;
6416
6417 if (m_p == m_first_action)
6418 return;
6419
6420 rs = m_remote->get_remote_state ();
6421 m_remote->putpkt (rs->buf);
6422 m_remote->getpkt (&rs->buf, 0);
6423 if (strcmp (rs->buf.data (), "OK") != 0)
6424 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6425 }
6426
6427 /* The largest action is range-stepping, with its two addresses. This
6428 is more than sufficient. If a new, bigger action is created, it'll
6429 quickly trigger a failed assertion in append_resumption (and we'll
6430 just bump this). */
6431 #define MAX_ACTION_SIZE 200
6432
6433 /* Append a new vCont action in the outgoing packet being built. If
6434 the action doesn't fit the packet along with previous actions, push
6435 what we've got so far to the remote end and start over a new vCont
6436 packet (with the new action). */
6437
6438 void
6439 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6440 {
6441 char buf[MAX_ACTION_SIZE + 1];
6442
6443 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6444 ptid, step, siggnal);
6445
6446 /* Check whether this new action would fit in the vCont packet along
6447 with previous actions. If not, send what we've got so far and
6448 start a new vCont packet. */
6449 size_t rsize = endp - buf;
6450 if (rsize > m_endp - m_p)
6451 {
6452 flush ();
6453 restart ();
6454
6455 /* Should now fit. */
6456 gdb_assert (rsize <= m_endp - m_p);
6457 }
6458
6459 memcpy (m_p, buf, rsize);
6460 m_p += rsize;
6461 *m_p = '\0';
6462 }
6463
6464 /* to_commit_resume implementation. */
6465
6466 void
6467 remote_target::commit_resume ()
6468 {
6469 int any_process_wildcard;
6470 int may_global_wildcard_vcont;
6471
6472 /* If connected in all-stop mode, we'd send the remote resume
6473 request directly from remote_resume. Likewise if
6474 reverse-debugging, as there are no defined vCont actions for
6475 reverse execution. */
6476 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6477 return;
6478
6479 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6480 instead of resuming all threads of each process individually.
6481 However, if any thread of a process must remain halted, we can't
6482 send wildcard resumes and must send one action per thread.
6483
6484 Care must be taken to not resume threads/processes the server
6485 side already told us are stopped, but the core doesn't know about
6486 yet, because the events are still in the vStopped notification
6487 queue. For example:
6488
6489 #1 => vCont s:p1.1;c
6490 #2 <= OK
6491 #3 <= %Stopped T05 p1.1
6492 #4 => vStopped
6493 #5 <= T05 p1.2
6494 #6 => vStopped
6495 #7 <= OK
6496 #8 (infrun handles the stop for p1.1 and continues stepping)
6497 #9 => vCont s:p1.1;c
6498
6499 The last vCont above would resume thread p1.2 by mistake, because
6500 the server has no idea that the event for p1.2 had not been
6501 handled yet.
6502
6503 The server side must similarly ignore resume actions for the
6504 thread that has a pending %Stopped notification (and any other
6505 threads with events pending), until GDB acks the notification
6506 with vStopped. Otherwise, e.g., the following case is
6507 mishandled:
6508
6509 #1 => g (or any other packet)
6510 #2 <= [registers]
6511 #3 <= %Stopped T05 p1.2
6512 #4 => vCont s:p1.1;c
6513 #5 <= OK
6514
6515 Above, the server must not resume thread p1.2. GDB can't know
6516 that p1.2 stopped until it acks the %Stopped notification, and
6517 since from GDB's perspective all threads should be running, it
6518 sends a "c" action.
6519
6520 Finally, special care must also be given to handling fork/vfork
6521 events. A (v)fork event actually tells us that two processes
6522 stopped -- the parent and the child. Until we follow the fork,
6523 we must not resume the child. Therefore, if we have a pending
6524 fork follow, we must not send a global wildcard resume action
6525 (vCont;c). We can still send process-wide wildcards though. */
6526
6527 /* Start by assuming a global wildcard (vCont;c) is possible. */
6528 may_global_wildcard_vcont = 1;
6529
6530 /* And assume every process is individually wildcard-able too. */
6531 for (inferior *inf : all_non_exited_inferiors (this))
6532 {
6533 remote_inferior *priv = get_remote_inferior (inf);
6534
6535 priv->may_wildcard_vcont = true;
6536 }
6537
6538 /* Check for any pending events (not reported or processed yet) and
6539 disable process and global wildcard resumes appropriately. */
6540 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6541
6542 for (thread_info *tp : all_non_exited_threads (this))
6543 {
6544 /* If a thread of a process is not meant to be resumed, then we
6545 can't wildcard that process. */
6546 if (!tp->executing)
6547 {
6548 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6549
6550 /* And if we can't wildcard a process, we can't wildcard
6551 everything either. */
6552 may_global_wildcard_vcont = 0;
6553 continue;
6554 }
6555
6556 /* If a thread is the parent of an unfollowed fork, then we
6557 can't do a global wildcard, as that would resume the fork
6558 child. */
6559 if (is_pending_fork_parent_thread (tp))
6560 may_global_wildcard_vcont = 0;
6561 }
6562
6563 /* Now let's build the vCont packet(s). Actions must be appended
6564 from narrower to wider scopes (thread -> process -> global). If
6565 we end up with too many actions for a single packet vcont_builder
6566 flushes the current vCont packet to the remote side and starts a
6567 new one. */
6568 struct vcont_builder vcont_builder (this);
6569
6570 /* Threads first. */
6571 for (thread_info *tp : all_non_exited_threads (this))
6572 {
6573 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6574
6575 if (!tp->executing || remote_thr->vcont_resumed)
6576 continue;
6577
6578 gdb_assert (!thread_is_in_step_over_chain (tp));
6579
6580 if (!remote_thr->last_resume_step
6581 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6582 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6583 {
6584 /* We'll send a wildcard resume instead. */
6585 remote_thr->vcont_resumed = 1;
6586 continue;
6587 }
6588
6589 vcont_builder.push_action (tp->ptid,
6590 remote_thr->last_resume_step,
6591 remote_thr->last_resume_sig);
6592 remote_thr->vcont_resumed = 1;
6593 }
6594
6595 /* Now check whether we can send any process-wide wildcard. This is
6596 to avoid sending a global wildcard in the case nothing is
6597 supposed to be resumed. */
6598 any_process_wildcard = 0;
6599
6600 for (inferior *inf : all_non_exited_inferiors (this))
6601 {
6602 if (get_remote_inferior (inf)->may_wildcard_vcont)
6603 {
6604 any_process_wildcard = 1;
6605 break;
6606 }
6607 }
6608
6609 if (any_process_wildcard)
6610 {
6611 /* If all processes are wildcard-able, then send a single "c"
6612 action, otherwise, send an "all (-1) threads of process"
6613 continue action for each running process, if any. */
6614 if (may_global_wildcard_vcont)
6615 {
6616 vcont_builder.push_action (minus_one_ptid,
6617 false, GDB_SIGNAL_0);
6618 }
6619 else
6620 {
6621 for (inferior *inf : all_non_exited_inferiors (this))
6622 {
6623 if (get_remote_inferior (inf)->may_wildcard_vcont)
6624 {
6625 vcont_builder.push_action (ptid_t (inf->pid),
6626 false, GDB_SIGNAL_0);
6627 }
6628 }
6629 }
6630 }
6631
6632 vcont_builder.flush ();
6633 }
6634
6635 \f
6636
6637 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6638 thread, all threads of a remote process, or all threads of all
6639 processes. */
6640
6641 void
6642 remote_target::remote_stop_ns (ptid_t ptid)
6643 {
6644 struct remote_state *rs = get_remote_state ();
6645 char *p = rs->buf.data ();
6646 char *endp = p + get_remote_packet_size ();
6647
6648 /* FIXME: This supports_vCont_probed check is a workaround until
6649 packet_support is per-connection. */
6650 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6651 || !rs->supports_vCont_probed)
6652 remote_vcont_probe ();
6653
6654 if (!rs->supports_vCont.t)
6655 error (_("Remote server does not support stopping threads"));
6656
6657 if (ptid == minus_one_ptid
6658 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6659 p += xsnprintf (p, endp - p, "vCont;t");
6660 else
6661 {
6662 ptid_t nptid;
6663
6664 p += xsnprintf (p, endp - p, "vCont;t:");
6665
6666 if (ptid.is_pid ())
6667 /* All (-1) threads of process. */
6668 nptid = ptid_t (ptid.pid (), -1, 0);
6669 else
6670 {
6671 /* Small optimization: if we already have a stop reply for
6672 this thread, no use in telling the stub we want this
6673 stopped. */
6674 if (peek_stop_reply (ptid))
6675 return;
6676
6677 nptid = ptid;
6678 }
6679
6680 write_ptid (p, endp, nptid);
6681 }
6682
6683 /* In non-stop, we get an immediate OK reply. The stop reply will
6684 come in asynchronously by notification. */
6685 putpkt (rs->buf);
6686 getpkt (&rs->buf, 0);
6687 if (strcmp (rs->buf.data (), "OK") != 0)
6688 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6689 rs->buf.data ());
6690 }
6691
6692 /* All-stop version of target_interrupt. Sends a break or a ^C to
6693 interrupt the remote target. It is undefined which thread of which
6694 process reports the interrupt. */
6695
6696 void
6697 remote_target::remote_interrupt_as ()
6698 {
6699 struct remote_state *rs = get_remote_state ();
6700
6701 rs->ctrlc_pending_p = 1;
6702
6703 /* If the inferior is stopped already, but the core didn't know
6704 about it yet, just ignore the request. The cached wait status
6705 will be collected in remote_wait. */
6706 if (rs->cached_wait_status)
6707 return;
6708
6709 /* Send interrupt_sequence to remote target. */
6710 send_interrupt_sequence ();
6711 }
6712
6713 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6714 the remote target. It is undefined which thread of which process
6715 reports the interrupt. Throws an error if the packet is not
6716 supported by the server. */
6717
6718 void
6719 remote_target::remote_interrupt_ns ()
6720 {
6721 struct remote_state *rs = get_remote_state ();
6722 char *p = rs->buf.data ();
6723 char *endp = p + get_remote_packet_size ();
6724
6725 xsnprintf (p, endp - p, "vCtrlC");
6726
6727 /* In non-stop, we get an immediate OK reply. The stop reply will
6728 come in asynchronously by notification. */
6729 putpkt (rs->buf);
6730 getpkt (&rs->buf, 0);
6731
6732 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6733 {
6734 case PACKET_OK:
6735 break;
6736 case PACKET_UNKNOWN:
6737 error (_("No support for interrupting the remote target."));
6738 case PACKET_ERROR:
6739 error (_("Interrupting target failed: %s"), rs->buf.data ());
6740 }
6741 }
6742
6743 /* Implement the to_stop function for the remote targets. */
6744
6745 void
6746 remote_target::stop (ptid_t ptid)
6747 {
6748 if (remote_debug)
6749 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6750
6751 if (target_is_non_stop_p ())
6752 remote_stop_ns (ptid);
6753 else
6754 {
6755 /* We don't currently have a way to transparently pause the
6756 remote target in all-stop mode. Interrupt it instead. */
6757 remote_interrupt_as ();
6758 }
6759 }
6760
6761 /* Implement the to_interrupt function for the remote targets. */
6762
6763 void
6764 remote_target::interrupt ()
6765 {
6766 if (remote_debug)
6767 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6768
6769 if (target_is_non_stop_p ())
6770 remote_interrupt_ns ();
6771 else
6772 remote_interrupt_as ();
6773 }
6774
6775 /* Implement the to_pass_ctrlc function for the remote targets. */
6776
6777 void
6778 remote_target::pass_ctrlc ()
6779 {
6780 struct remote_state *rs = get_remote_state ();
6781
6782 if (remote_debug)
6783 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6784
6785 /* If we're starting up, we're not fully synced yet. Quit
6786 immediately. */
6787 if (rs->starting_up)
6788 quit ();
6789 /* If ^C has already been sent once, offer to disconnect. */
6790 else if (rs->ctrlc_pending_p)
6791 interrupt_query ();
6792 else
6793 target_interrupt ();
6794 }
6795
6796 /* Ask the user what to do when an interrupt is received. */
6797
6798 void
6799 remote_target::interrupt_query ()
6800 {
6801 struct remote_state *rs = get_remote_state ();
6802
6803 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6804 {
6805 if (query (_("The target is not responding to interrupt requests.\n"
6806 "Stop debugging it? ")))
6807 {
6808 remote_unpush_target (this);
6809 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6810 }
6811 }
6812 else
6813 {
6814 if (query (_("Interrupted while waiting for the program.\n"
6815 "Give up waiting? ")))
6816 quit ();
6817 }
6818 }
6819
6820 /* Enable/disable target terminal ownership. Most targets can use
6821 terminal groups to control terminal ownership. Remote targets are
6822 different in that explicit transfer of ownership to/from GDB/target
6823 is required. */
6824
6825 void
6826 remote_target::terminal_inferior ()
6827 {
6828 /* NOTE: At this point we could also register our selves as the
6829 recipient of all input. Any characters typed could then be
6830 passed on down to the target. */
6831 }
6832
6833 void
6834 remote_target::terminal_ours ()
6835 {
6836 }
6837
6838 static void
6839 remote_console_output (const char *msg)
6840 {
6841 const char *p;
6842
6843 for (p = msg; p[0] && p[1]; p += 2)
6844 {
6845 char tb[2];
6846 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6847
6848 tb[0] = c;
6849 tb[1] = 0;
6850 gdb_stdtarg->puts (tb);
6851 }
6852 gdb_stdtarg->flush ();
6853 }
6854
6855 struct stop_reply : public notif_event
6856 {
6857 ~stop_reply ();
6858
6859 /* The identifier of the thread about this event */
6860 ptid_t ptid;
6861
6862 /* The remote state this event is associated with. When the remote
6863 connection, represented by a remote_state object, is closed,
6864 all the associated stop_reply events should be released. */
6865 struct remote_state *rs;
6866
6867 struct target_waitstatus ws;
6868
6869 /* The architecture associated with the expedited registers. */
6870 gdbarch *arch;
6871
6872 /* Expedited registers. This makes remote debugging a bit more
6873 efficient for those targets that provide critical registers as
6874 part of their normal status mechanism (as another roundtrip to
6875 fetch them is avoided). */
6876 std::vector<cached_reg_t> regcache;
6877
6878 enum target_stop_reason stop_reason;
6879
6880 CORE_ADDR watch_data_address;
6881
6882 int core;
6883 };
6884
6885 /* Return the length of the stop reply queue. */
6886
6887 int
6888 remote_target::stop_reply_queue_length ()
6889 {
6890 remote_state *rs = get_remote_state ();
6891 return rs->stop_reply_queue.size ();
6892 }
6893
6894 static void
6895 remote_notif_stop_parse (remote_target *remote,
6896 struct notif_client *self, const char *buf,
6897 struct notif_event *event)
6898 {
6899 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6900 }
6901
6902 static void
6903 remote_notif_stop_ack (remote_target *remote,
6904 struct notif_client *self, const char *buf,
6905 struct notif_event *event)
6906 {
6907 struct stop_reply *stop_reply = (struct stop_reply *) event;
6908
6909 /* acknowledge */
6910 putpkt (remote, self->ack_command);
6911
6912 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6913 {
6914 /* We got an unknown stop reply. */
6915 error (_("Unknown stop reply"));
6916 }
6917
6918 remote->push_stop_reply (stop_reply);
6919 }
6920
6921 static int
6922 remote_notif_stop_can_get_pending_events (remote_target *remote,
6923 struct notif_client *self)
6924 {
6925 /* We can't get pending events in remote_notif_process for
6926 notification stop, and we have to do this in remote_wait_ns
6927 instead. If we fetch all queued events from stub, remote stub
6928 may exit and we have no chance to process them back in
6929 remote_wait_ns. */
6930 remote_state *rs = remote->get_remote_state ();
6931 mark_async_event_handler (rs->remote_async_inferior_event_token);
6932 return 0;
6933 }
6934
6935 stop_reply::~stop_reply ()
6936 {
6937 for (cached_reg_t &reg : regcache)
6938 xfree (reg.data);
6939 }
6940
6941 static notif_event_up
6942 remote_notif_stop_alloc_reply ()
6943 {
6944 return notif_event_up (new struct stop_reply ());
6945 }
6946
6947 /* A client of notification Stop. */
6948
6949 struct notif_client notif_client_stop =
6950 {
6951 "Stop",
6952 "vStopped",
6953 remote_notif_stop_parse,
6954 remote_notif_stop_ack,
6955 remote_notif_stop_can_get_pending_events,
6956 remote_notif_stop_alloc_reply,
6957 REMOTE_NOTIF_STOP,
6958 };
6959
6960 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6961 the pid of the process that owns the threads we want to check, or
6962 -1 if we want to check all threads. */
6963
6964 static int
6965 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6966 ptid_t thread_ptid)
6967 {
6968 if (ws->kind == TARGET_WAITKIND_FORKED
6969 || ws->kind == TARGET_WAITKIND_VFORKED)
6970 {
6971 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6972 return 1;
6973 }
6974
6975 return 0;
6976 }
6977
6978 /* Return the thread's pending status used to determine whether the
6979 thread is a fork parent stopped at a fork event. */
6980
6981 static struct target_waitstatus *
6982 thread_pending_fork_status (struct thread_info *thread)
6983 {
6984 if (thread->suspend.waitstatus_pending_p)
6985 return &thread->suspend.waitstatus;
6986 else
6987 return &thread->pending_follow;
6988 }
6989
6990 /* Determine if THREAD is a pending fork parent thread. */
6991
6992 static int
6993 is_pending_fork_parent_thread (struct thread_info *thread)
6994 {
6995 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6996 int pid = -1;
6997
6998 return is_pending_fork_parent (ws, pid, thread->ptid);
6999 }
7000
7001 /* If CONTEXT contains any fork child threads that have not been
7002 reported yet, remove them from the CONTEXT list. If such a
7003 thread exists it is because we are stopped at a fork catchpoint
7004 and have not yet called follow_fork, which will set up the
7005 host-side data structures for the new process. */
7006
7007 void
7008 remote_target::remove_new_fork_children (threads_listing_context *context)
7009 {
7010 int pid = -1;
7011 struct notif_client *notif = &notif_client_stop;
7012
7013 /* For any threads stopped at a fork event, remove the corresponding
7014 fork child threads from the CONTEXT list. */
7015 for (thread_info *thread : all_non_exited_threads (this))
7016 {
7017 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7018
7019 if (is_pending_fork_parent (ws, pid, thread->ptid))
7020 context->remove_thread (ws->value.related_pid);
7021 }
7022
7023 /* Check for any pending fork events (not reported or processed yet)
7024 in process PID and remove those fork child threads from the
7025 CONTEXT list as well. */
7026 remote_notif_get_pending_events (notif);
7027 for (auto &event : get_remote_state ()->stop_reply_queue)
7028 if (event->ws.kind == TARGET_WAITKIND_FORKED
7029 || event->ws.kind == TARGET_WAITKIND_VFORKED
7030 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7031 context->remove_thread (event->ws.value.related_pid);
7032 }
7033
7034 /* Check whether any event pending in the vStopped queue would prevent
7035 a global or process wildcard vCont action. Clear
7036 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7037 and clear the event inferior's may_wildcard_vcont flag if we can't
7038 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7039
7040 void
7041 remote_target::check_pending_events_prevent_wildcard_vcont
7042 (int *may_global_wildcard)
7043 {
7044 struct notif_client *notif = &notif_client_stop;
7045
7046 remote_notif_get_pending_events (notif);
7047 for (auto &event : get_remote_state ()->stop_reply_queue)
7048 {
7049 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7050 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7051 continue;
7052
7053 if (event->ws.kind == TARGET_WAITKIND_FORKED
7054 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7055 *may_global_wildcard = 0;
7056
7057 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7058
7059 /* This may be the first time we heard about this process.
7060 Regardless, we must not do a global wildcard resume, otherwise
7061 we'd resume this process too. */
7062 *may_global_wildcard = 0;
7063 if (inf != NULL)
7064 get_remote_inferior (inf)->may_wildcard_vcont = false;
7065 }
7066 }
7067
7068 /* Discard all pending stop replies of inferior INF. */
7069
7070 void
7071 remote_target::discard_pending_stop_replies (struct inferior *inf)
7072 {
7073 struct stop_reply *reply;
7074 struct remote_state *rs = get_remote_state ();
7075 struct remote_notif_state *rns = rs->notif_state;
7076
7077 /* This function can be notified when an inferior exists. When the
7078 target is not remote, the notification state is NULL. */
7079 if (rs->remote_desc == NULL)
7080 return;
7081
7082 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7083
7084 /* Discard the in-flight notification. */
7085 if (reply != NULL && reply->ptid.pid () == inf->pid)
7086 {
7087 delete reply;
7088 rns->pending_event[notif_client_stop.id] = NULL;
7089 }
7090
7091 /* Discard the stop replies we have already pulled with
7092 vStopped. */
7093 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7094 rs->stop_reply_queue.end (),
7095 [=] (const stop_reply_up &event)
7096 {
7097 return event->ptid.pid () == inf->pid;
7098 });
7099 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7100 }
7101
7102 /* Discard the stop replies for RS in stop_reply_queue. */
7103
7104 void
7105 remote_target::discard_pending_stop_replies_in_queue ()
7106 {
7107 remote_state *rs = get_remote_state ();
7108
7109 /* Discard the stop replies we have already pulled with
7110 vStopped. */
7111 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7112 rs->stop_reply_queue.end (),
7113 [=] (const stop_reply_up &event)
7114 {
7115 return event->rs == rs;
7116 });
7117 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7118 }
7119
7120 /* Remove the first reply in 'stop_reply_queue' which matches
7121 PTID. */
7122
7123 struct stop_reply *
7124 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7125 {
7126 remote_state *rs = get_remote_state ();
7127
7128 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7129 rs->stop_reply_queue.end (),
7130 [=] (const stop_reply_up &event)
7131 {
7132 return event->ptid.matches (ptid);
7133 });
7134 struct stop_reply *result;
7135 if (iter == rs->stop_reply_queue.end ())
7136 result = nullptr;
7137 else
7138 {
7139 result = iter->release ();
7140 rs->stop_reply_queue.erase (iter);
7141 }
7142
7143 if (notif_debug)
7144 fprintf_unfiltered (gdb_stdlog,
7145 "notif: discard queued event: 'Stop' in %s\n",
7146 target_pid_to_str (ptid).c_str ());
7147
7148 return result;
7149 }
7150
7151 /* Look for a queued stop reply belonging to PTID. If one is found,
7152 remove it from the queue, and return it. Returns NULL if none is
7153 found. If there are still queued events left to process, tell the
7154 event loop to get back to target_wait soon. */
7155
7156 struct stop_reply *
7157 remote_target::queued_stop_reply (ptid_t ptid)
7158 {
7159 remote_state *rs = get_remote_state ();
7160 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7161
7162 if (!rs->stop_reply_queue.empty ())
7163 {
7164 /* There's still at least an event left. */
7165 mark_async_event_handler (rs->remote_async_inferior_event_token);
7166 }
7167
7168 return r;
7169 }
7170
7171 /* Push a fully parsed stop reply in the stop reply queue. Since we
7172 know that we now have at least one queued event left to pass to the
7173 core side, tell the event loop to get back to target_wait soon. */
7174
7175 void
7176 remote_target::push_stop_reply (struct stop_reply *new_event)
7177 {
7178 remote_state *rs = get_remote_state ();
7179 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7180
7181 if (notif_debug)
7182 fprintf_unfiltered (gdb_stdlog,
7183 "notif: push 'Stop' %s to queue %d\n",
7184 target_pid_to_str (new_event->ptid).c_str (),
7185 int (rs->stop_reply_queue.size ()));
7186
7187 mark_async_event_handler (rs->remote_async_inferior_event_token);
7188 }
7189
7190 /* Returns true if we have a stop reply for PTID. */
7191
7192 int
7193 remote_target::peek_stop_reply (ptid_t ptid)
7194 {
7195 remote_state *rs = get_remote_state ();
7196 for (auto &event : rs->stop_reply_queue)
7197 if (ptid == event->ptid
7198 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7199 return 1;
7200 return 0;
7201 }
7202
7203 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7204 starting with P and ending with PEND matches PREFIX. */
7205
7206 static int
7207 strprefix (const char *p, const char *pend, const char *prefix)
7208 {
7209 for ( ; p < pend; p++, prefix++)
7210 if (*p != *prefix)
7211 return 0;
7212 return *prefix == '\0';
7213 }
7214
7215 /* Parse the stop reply in BUF. Either the function succeeds, and the
7216 result is stored in EVENT, or throws an error. */
7217
7218 void
7219 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7220 {
7221 remote_arch_state *rsa = NULL;
7222 ULONGEST addr;
7223 const char *p;
7224 int skipregs = 0;
7225
7226 event->ptid = null_ptid;
7227 event->rs = get_remote_state ();
7228 event->ws.kind = TARGET_WAITKIND_IGNORE;
7229 event->ws.value.integer = 0;
7230 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7231 event->regcache.clear ();
7232 event->core = -1;
7233
7234 switch (buf[0])
7235 {
7236 case 'T': /* Status with PC, SP, FP, ... */
7237 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7238 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7239 ss = signal number
7240 n... = register number
7241 r... = register contents
7242 */
7243
7244 p = &buf[3]; /* after Txx */
7245 while (*p)
7246 {
7247 const char *p1;
7248 int fieldsize;
7249
7250 p1 = strchr (p, ':');
7251 if (p1 == NULL)
7252 error (_("Malformed packet(a) (missing colon): %s\n\
7253 Packet: '%s'\n"),
7254 p, buf);
7255 if (p == p1)
7256 error (_("Malformed packet(a) (missing register number): %s\n\
7257 Packet: '%s'\n"),
7258 p, buf);
7259
7260 /* Some "registers" are actually extended stop information.
7261 Note if you're adding a new entry here: GDB 7.9 and
7262 earlier assume that all register "numbers" that start
7263 with an hex digit are real register numbers. Make sure
7264 the server only sends such a packet if it knows the
7265 client understands it. */
7266
7267 if (strprefix (p, p1, "thread"))
7268 event->ptid = read_ptid (++p1, &p);
7269 else if (strprefix (p, p1, "syscall_entry"))
7270 {
7271 ULONGEST sysno;
7272
7273 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7274 p = unpack_varlen_hex (++p1, &sysno);
7275 event->ws.value.syscall_number = (int) sysno;
7276 }
7277 else if (strprefix (p, p1, "syscall_return"))
7278 {
7279 ULONGEST sysno;
7280
7281 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7282 p = unpack_varlen_hex (++p1, &sysno);
7283 event->ws.value.syscall_number = (int) sysno;
7284 }
7285 else if (strprefix (p, p1, "watch")
7286 || strprefix (p, p1, "rwatch")
7287 || strprefix (p, p1, "awatch"))
7288 {
7289 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7290 p = unpack_varlen_hex (++p1, &addr);
7291 event->watch_data_address = (CORE_ADDR) addr;
7292 }
7293 else if (strprefix (p, p1, "swbreak"))
7294 {
7295 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7296
7297 /* Make sure the stub doesn't forget to indicate support
7298 with qSupported. */
7299 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7300 error (_("Unexpected swbreak stop reason"));
7301
7302 /* The value part is documented as "must be empty",
7303 though we ignore it, in case we ever decide to make
7304 use of it in a backward compatible way. */
7305 p = strchrnul (p1 + 1, ';');
7306 }
7307 else if (strprefix (p, p1, "hwbreak"))
7308 {
7309 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7310
7311 /* Make sure the stub doesn't forget to indicate support
7312 with qSupported. */
7313 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7314 error (_("Unexpected hwbreak stop reason"));
7315
7316 /* See above. */
7317 p = strchrnul (p1 + 1, ';');
7318 }
7319 else if (strprefix (p, p1, "library"))
7320 {
7321 event->ws.kind = TARGET_WAITKIND_LOADED;
7322 p = strchrnul (p1 + 1, ';');
7323 }
7324 else if (strprefix (p, p1, "replaylog"))
7325 {
7326 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7327 /* p1 will indicate "begin" or "end", but it makes
7328 no difference for now, so ignore it. */
7329 p = strchrnul (p1 + 1, ';');
7330 }
7331 else if (strprefix (p, p1, "core"))
7332 {
7333 ULONGEST c;
7334
7335 p = unpack_varlen_hex (++p1, &c);
7336 event->core = c;
7337 }
7338 else if (strprefix (p, p1, "fork"))
7339 {
7340 event->ws.value.related_pid = read_ptid (++p1, &p);
7341 event->ws.kind = TARGET_WAITKIND_FORKED;
7342 }
7343 else if (strprefix (p, p1, "vfork"))
7344 {
7345 event->ws.value.related_pid = read_ptid (++p1, &p);
7346 event->ws.kind = TARGET_WAITKIND_VFORKED;
7347 }
7348 else if (strprefix (p, p1, "vforkdone"))
7349 {
7350 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7351 p = strchrnul (p1 + 1, ';');
7352 }
7353 else if (strprefix (p, p1, "exec"))
7354 {
7355 ULONGEST ignored;
7356 int pathlen;
7357
7358 /* Determine the length of the execd pathname. */
7359 p = unpack_varlen_hex (++p1, &ignored);
7360 pathlen = (p - p1) / 2;
7361
7362 /* Save the pathname for event reporting and for
7363 the next run command. */
7364 gdb::unique_xmalloc_ptr<char[]> pathname
7365 ((char *) xmalloc (pathlen + 1));
7366 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7367 pathname[pathlen] = '\0';
7368
7369 /* This is freed during event handling. */
7370 event->ws.value.execd_pathname = pathname.release ();
7371 event->ws.kind = TARGET_WAITKIND_EXECD;
7372
7373 /* Skip the registers included in this packet, since
7374 they may be for an architecture different from the
7375 one used by the original program. */
7376 skipregs = 1;
7377 }
7378 else if (strprefix (p, p1, "create"))
7379 {
7380 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7381 p = strchrnul (p1 + 1, ';');
7382 }
7383 else
7384 {
7385 ULONGEST pnum;
7386 const char *p_temp;
7387
7388 if (skipregs)
7389 {
7390 p = strchrnul (p1 + 1, ';');
7391 p++;
7392 continue;
7393 }
7394
7395 /* Maybe a real ``P'' register number. */
7396 p_temp = unpack_varlen_hex (p, &pnum);
7397 /* If the first invalid character is the colon, we got a
7398 register number. Otherwise, it's an unknown stop
7399 reason. */
7400 if (p_temp == p1)
7401 {
7402 /* If we haven't parsed the event's thread yet, find
7403 it now, in order to find the architecture of the
7404 reported expedited registers. */
7405 if (event->ptid == null_ptid)
7406 {
7407 /* If there is no thread-id information then leave
7408 the event->ptid as null_ptid. Later in
7409 process_stop_reply we will pick a suitable
7410 thread. */
7411 const char *thr = strstr (p1 + 1, ";thread:");
7412 if (thr != NULL)
7413 event->ptid = read_ptid (thr + strlen (";thread:"),
7414 NULL);
7415 }
7416
7417 if (rsa == NULL)
7418 {
7419 inferior *inf
7420 = (event->ptid == null_ptid
7421 ? NULL
7422 : find_inferior_ptid (this, event->ptid));
7423 /* If this is the first time we learn anything
7424 about this process, skip the registers
7425 included in this packet, since we don't yet
7426 know which architecture to use to parse them.
7427 We'll determine the architecture later when
7428 we process the stop reply and retrieve the
7429 target description, via
7430 remote_notice_new_inferior ->
7431 post_create_inferior. */
7432 if (inf == NULL)
7433 {
7434 p = strchrnul (p1 + 1, ';');
7435 p++;
7436 continue;
7437 }
7438
7439 event->arch = inf->gdbarch;
7440 rsa = event->rs->get_remote_arch_state (event->arch);
7441 }
7442
7443 packet_reg *reg
7444 = packet_reg_from_pnum (event->arch, rsa, pnum);
7445 cached_reg_t cached_reg;
7446
7447 if (reg == NULL)
7448 error (_("Remote sent bad register number %s: %s\n\
7449 Packet: '%s'\n"),
7450 hex_string (pnum), p, buf);
7451
7452 cached_reg.num = reg->regnum;
7453 cached_reg.data = (gdb_byte *)
7454 xmalloc (register_size (event->arch, reg->regnum));
7455
7456 p = p1 + 1;
7457 fieldsize = hex2bin (p, cached_reg.data,
7458 register_size (event->arch, reg->regnum));
7459 p += 2 * fieldsize;
7460 if (fieldsize < register_size (event->arch, reg->regnum))
7461 warning (_("Remote reply is too short: %s"), buf);
7462
7463 event->regcache.push_back (cached_reg);
7464 }
7465 else
7466 {
7467 /* Not a number. Silently skip unknown optional
7468 info. */
7469 p = strchrnul (p1 + 1, ';');
7470 }
7471 }
7472
7473 if (*p != ';')
7474 error (_("Remote register badly formatted: %s\nhere: %s"),
7475 buf, p);
7476 ++p;
7477 }
7478
7479 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7480 break;
7481
7482 /* fall through */
7483 case 'S': /* Old style status, just signal only. */
7484 {
7485 int sig;
7486
7487 event->ws.kind = TARGET_WAITKIND_STOPPED;
7488 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7489 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7490 event->ws.value.sig = (enum gdb_signal) sig;
7491 else
7492 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7493 }
7494 break;
7495 case 'w': /* Thread exited. */
7496 {
7497 ULONGEST value;
7498
7499 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7500 p = unpack_varlen_hex (&buf[1], &value);
7501 event->ws.value.integer = value;
7502 if (*p != ';')
7503 error (_("stop reply packet badly formatted: %s"), buf);
7504 event->ptid = read_ptid (++p, NULL);
7505 break;
7506 }
7507 case 'W': /* Target exited. */
7508 case 'X':
7509 {
7510 ULONGEST value;
7511
7512 /* GDB used to accept only 2 hex chars here. Stubs should
7513 only send more if they detect GDB supports multi-process
7514 support. */
7515 p = unpack_varlen_hex (&buf[1], &value);
7516
7517 if (buf[0] == 'W')
7518 {
7519 /* The remote process exited. */
7520 event->ws.kind = TARGET_WAITKIND_EXITED;
7521 event->ws.value.integer = value;
7522 }
7523 else
7524 {
7525 /* The remote process exited with a signal. */
7526 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7527 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7528 event->ws.value.sig = (enum gdb_signal) value;
7529 else
7530 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7531 }
7532
7533 /* If no process is specified, return null_ptid, and let the
7534 caller figure out the right process to use. */
7535 int pid = 0;
7536 if (*p == '\0')
7537 ;
7538 else if (*p == ';')
7539 {
7540 p++;
7541
7542 if (*p == '\0')
7543 ;
7544 else if (startswith (p, "process:"))
7545 {
7546 ULONGEST upid;
7547
7548 p += sizeof ("process:") - 1;
7549 unpack_varlen_hex (p, &upid);
7550 pid = upid;
7551 }
7552 else
7553 error (_("unknown stop reply packet: %s"), buf);
7554 }
7555 else
7556 error (_("unknown stop reply packet: %s"), buf);
7557 event->ptid = ptid_t (pid);
7558 }
7559 break;
7560 case 'N':
7561 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7562 event->ptid = minus_one_ptid;
7563 break;
7564 }
7565 }
7566
7567 /* When the stub wants to tell GDB about a new notification reply, it
7568 sends a notification (%Stop, for example). Those can come it at
7569 any time, hence, we have to make sure that any pending
7570 putpkt/getpkt sequence we're making is finished, before querying
7571 the stub for more events with the corresponding ack command
7572 (vStopped, for example). E.g., if we started a vStopped sequence
7573 immediately upon receiving the notification, something like this
7574 could happen:
7575
7576 1.1) --> Hg 1
7577 1.2) <-- OK
7578 1.3) --> g
7579 1.4) <-- %Stop
7580 1.5) --> vStopped
7581 1.6) <-- (registers reply to step #1.3)
7582
7583 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7584 query.
7585
7586 To solve this, whenever we parse a %Stop notification successfully,
7587 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7588 doing whatever we were doing:
7589
7590 2.1) --> Hg 1
7591 2.2) <-- OK
7592 2.3) --> g
7593 2.4) <-- %Stop
7594 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7595 2.5) <-- (registers reply to step #2.3)
7596
7597 Eventually after step #2.5, we return to the event loop, which
7598 notices there's an event on the
7599 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7600 associated callback --- the function below. At this point, we're
7601 always safe to start a vStopped sequence. :
7602
7603 2.6) --> vStopped
7604 2.7) <-- T05 thread:2
7605 2.8) --> vStopped
7606 2.9) --> OK
7607 */
7608
7609 void
7610 remote_target::remote_notif_get_pending_events (notif_client *nc)
7611 {
7612 struct remote_state *rs = get_remote_state ();
7613
7614 if (rs->notif_state->pending_event[nc->id] != NULL)
7615 {
7616 if (notif_debug)
7617 fprintf_unfiltered (gdb_stdlog,
7618 "notif: process: '%s' ack pending event\n",
7619 nc->name);
7620
7621 /* acknowledge */
7622 nc->ack (this, nc, rs->buf.data (),
7623 rs->notif_state->pending_event[nc->id]);
7624 rs->notif_state->pending_event[nc->id] = NULL;
7625
7626 while (1)
7627 {
7628 getpkt (&rs->buf, 0);
7629 if (strcmp (rs->buf.data (), "OK") == 0)
7630 break;
7631 else
7632 remote_notif_ack (this, nc, rs->buf.data ());
7633 }
7634 }
7635 else
7636 {
7637 if (notif_debug)
7638 fprintf_unfiltered (gdb_stdlog,
7639 "notif: process: '%s' no pending reply\n",
7640 nc->name);
7641 }
7642 }
7643
7644 /* Wrapper around remote_target::remote_notif_get_pending_events to
7645 avoid having to export the whole remote_target class. */
7646
7647 void
7648 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7649 {
7650 remote->remote_notif_get_pending_events (nc);
7651 }
7652
7653 /* Called when it is decided that STOP_REPLY holds the info of the
7654 event that is to be returned to the core. This function always
7655 destroys STOP_REPLY. */
7656
7657 ptid_t
7658 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7659 struct target_waitstatus *status)
7660 {
7661 ptid_t ptid;
7662
7663 *status = stop_reply->ws;
7664 ptid = stop_reply->ptid;
7665
7666 /* If no thread/process was reported by the stub then use the first
7667 non-exited thread in the current target. */
7668 if (ptid == null_ptid)
7669 {
7670 /* Some stop events apply to all threads in an inferior, while others
7671 only apply to a single thread. */
7672 bool is_stop_for_all_threads
7673 = (status->kind == TARGET_WAITKIND_EXITED
7674 || status->kind == TARGET_WAITKIND_SIGNALLED);
7675
7676 for (thread_info *thr : all_non_exited_threads (this))
7677 {
7678 if (ptid != null_ptid
7679 && (!is_stop_for_all_threads
7680 || ptid.pid () != thr->ptid.pid ()))
7681 {
7682 static bool warned = false;
7683
7684 if (!warned)
7685 {
7686 /* If you are seeing this warning then the remote target
7687 has stopped without specifying a thread-id, but the
7688 target does have multiple threads (or inferiors), and
7689 so GDB is having to guess which thread stopped.
7690
7691 Examples of what might cause this are the target
7692 sending and 'S' stop packet, or a 'T' stop packet and
7693 not including a thread-id.
7694
7695 Additionally, the target might send a 'W' or 'X
7696 packet without including a process-id, when the target
7697 has multiple running inferiors. */
7698 if (is_stop_for_all_threads)
7699 warning (_("multi-inferior target stopped without "
7700 "sending a process-id, using first "
7701 "non-exited inferior"));
7702 else
7703 warning (_("multi-threaded target stopped without "
7704 "sending a thread-id, using first "
7705 "non-exited thread"));
7706 warned = true;
7707 }
7708 break;
7709 }
7710
7711 /* If this is a stop for all threads then don't use a particular
7712 threads ptid, instead create a new ptid where only the pid
7713 field is set. */
7714 if (is_stop_for_all_threads)
7715 ptid = ptid_t (thr->ptid.pid ());
7716 else
7717 ptid = thr->ptid;
7718 }
7719 gdb_assert (ptid != null_ptid);
7720 }
7721
7722 if (status->kind != TARGET_WAITKIND_EXITED
7723 && status->kind != TARGET_WAITKIND_SIGNALLED
7724 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7725 {
7726 /* Expedited registers. */
7727 if (!stop_reply->regcache.empty ())
7728 {
7729 struct regcache *regcache
7730 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7731
7732 for (cached_reg_t &reg : stop_reply->regcache)
7733 {
7734 regcache->raw_supply (reg.num, reg.data);
7735 xfree (reg.data);
7736 }
7737
7738 stop_reply->regcache.clear ();
7739 }
7740
7741 remote_notice_new_inferior (ptid, 0);
7742 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7743 remote_thr->core = stop_reply->core;
7744 remote_thr->stop_reason = stop_reply->stop_reason;
7745 remote_thr->watch_data_address = stop_reply->watch_data_address;
7746 remote_thr->vcont_resumed = 0;
7747 }
7748
7749 delete stop_reply;
7750 return ptid;
7751 }
7752
7753 /* The non-stop mode version of target_wait. */
7754
7755 ptid_t
7756 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7757 {
7758 struct remote_state *rs = get_remote_state ();
7759 struct stop_reply *stop_reply;
7760 int ret;
7761 int is_notif = 0;
7762
7763 /* If in non-stop mode, get out of getpkt even if a
7764 notification is received. */
7765
7766 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7767 while (1)
7768 {
7769 if (ret != -1 && !is_notif)
7770 switch (rs->buf[0])
7771 {
7772 case 'E': /* Error of some sort. */
7773 /* We're out of sync with the target now. Did it continue
7774 or not? We can't tell which thread it was in non-stop,
7775 so just ignore this. */
7776 warning (_("Remote failure reply: %s"), rs->buf.data ());
7777 break;
7778 case 'O': /* Console output. */
7779 remote_console_output (&rs->buf[1]);
7780 break;
7781 default:
7782 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7783 break;
7784 }
7785
7786 /* Acknowledge a pending stop reply that may have arrived in the
7787 mean time. */
7788 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7789 remote_notif_get_pending_events (&notif_client_stop);
7790
7791 /* If indeed we noticed a stop reply, we're done. */
7792 stop_reply = queued_stop_reply (ptid);
7793 if (stop_reply != NULL)
7794 return process_stop_reply (stop_reply, status);
7795
7796 /* Still no event. If we're just polling for an event, then
7797 return to the event loop. */
7798 if (options & TARGET_WNOHANG)
7799 {
7800 status->kind = TARGET_WAITKIND_IGNORE;
7801 return minus_one_ptid;
7802 }
7803
7804 /* Otherwise do a blocking wait. */
7805 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7806 }
7807 }
7808
7809 /* Return the first resumed thread. */
7810
7811 static ptid_t
7812 first_remote_resumed_thread (remote_target *target)
7813 {
7814 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7815 if (tp->resumed)
7816 return tp->ptid;
7817 return null_ptid;
7818 }
7819
7820 /* Wait until the remote machine stops, then return, storing status in
7821 STATUS just as `wait' would. */
7822
7823 ptid_t
7824 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7825 {
7826 struct remote_state *rs = get_remote_state ();
7827 ptid_t event_ptid = null_ptid;
7828 char *buf;
7829 struct stop_reply *stop_reply;
7830
7831 again:
7832
7833 status->kind = TARGET_WAITKIND_IGNORE;
7834 status->value.integer = 0;
7835
7836 stop_reply = queued_stop_reply (ptid);
7837 if (stop_reply != NULL)
7838 return process_stop_reply (stop_reply, status);
7839
7840 if (rs->cached_wait_status)
7841 /* Use the cached wait status, but only once. */
7842 rs->cached_wait_status = 0;
7843 else
7844 {
7845 int ret;
7846 int is_notif;
7847 int forever = ((options & TARGET_WNOHANG) == 0
7848 && rs->wait_forever_enabled_p);
7849
7850 if (!rs->waiting_for_stop_reply)
7851 {
7852 status->kind = TARGET_WAITKIND_NO_RESUMED;
7853 return minus_one_ptid;
7854 }
7855
7856 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7857 _never_ wait for ever -> test on target_is_async_p().
7858 However, before we do that we need to ensure that the caller
7859 knows how to take the target into/out of async mode. */
7860 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7861
7862 /* GDB gets a notification. Return to core as this event is
7863 not interesting. */
7864 if (ret != -1 && is_notif)
7865 return minus_one_ptid;
7866
7867 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7868 return minus_one_ptid;
7869 }
7870
7871 buf = rs->buf.data ();
7872
7873 /* Assume that the target has acknowledged Ctrl-C unless we receive
7874 an 'F' or 'O' packet. */
7875 if (buf[0] != 'F' && buf[0] != 'O')
7876 rs->ctrlc_pending_p = 0;
7877
7878 switch (buf[0])
7879 {
7880 case 'E': /* Error of some sort. */
7881 /* We're out of sync with the target now. Did it continue or
7882 not? Not is more likely, so report a stop. */
7883 rs->waiting_for_stop_reply = 0;
7884
7885 warning (_("Remote failure reply: %s"), buf);
7886 status->kind = TARGET_WAITKIND_STOPPED;
7887 status->value.sig = GDB_SIGNAL_0;
7888 break;
7889 case 'F': /* File-I/O request. */
7890 /* GDB may access the inferior memory while handling the File-I/O
7891 request, but we don't want GDB accessing memory while waiting
7892 for a stop reply. See the comments in putpkt_binary. Set
7893 waiting_for_stop_reply to 0 temporarily. */
7894 rs->waiting_for_stop_reply = 0;
7895 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7896 rs->ctrlc_pending_p = 0;
7897 /* GDB handled the File-I/O request, and the target is running
7898 again. Keep waiting for events. */
7899 rs->waiting_for_stop_reply = 1;
7900 break;
7901 case 'N': case 'T': case 'S': case 'X': case 'W':
7902 {
7903 /* There is a stop reply to handle. */
7904 rs->waiting_for_stop_reply = 0;
7905
7906 stop_reply
7907 = (struct stop_reply *) remote_notif_parse (this,
7908 &notif_client_stop,
7909 rs->buf.data ());
7910
7911 event_ptid = process_stop_reply (stop_reply, status);
7912 break;
7913 }
7914 case 'O': /* Console output. */
7915 remote_console_output (buf + 1);
7916 break;
7917 case '\0':
7918 if (rs->last_sent_signal != GDB_SIGNAL_0)
7919 {
7920 /* Zero length reply means that we tried 'S' or 'C' and the
7921 remote system doesn't support it. */
7922 target_terminal::ours_for_output ();
7923 printf_filtered
7924 ("Can't send signals to this remote system. %s not sent.\n",
7925 gdb_signal_to_name (rs->last_sent_signal));
7926 rs->last_sent_signal = GDB_SIGNAL_0;
7927 target_terminal::inferior ();
7928
7929 strcpy (buf, rs->last_sent_step ? "s" : "c");
7930 putpkt (buf);
7931 break;
7932 }
7933 /* fallthrough */
7934 default:
7935 warning (_("Invalid remote reply: %s"), buf);
7936 break;
7937 }
7938
7939 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7940 return minus_one_ptid;
7941 else if (status->kind == TARGET_WAITKIND_IGNORE)
7942 {
7943 /* Nothing interesting happened. If we're doing a non-blocking
7944 poll, we're done. Otherwise, go back to waiting. */
7945 if (options & TARGET_WNOHANG)
7946 return minus_one_ptid;
7947 else
7948 goto again;
7949 }
7950 else if (status->kind != TARGET_WAITKIND_EXITED
7951 && status->kind != TARGET_WAITKIND_SIGNALLED)
7952 {
7953 if (event_ptid != null_ptid)
7954 record_currthread (rs, event_ptid);
7955 else
7956 event_ptid = first_remote_resumed_thread (this);
7957 }
7958 else
7959 {
7960 /* A process exit. Invalidate our notion of current thread. */
7961 record_currthread (rs, minus_one_ptid);
7962 /* It's possible that the packet did not include a pid. */
7963 if (event_ptid == null_ptid)
7964 event_ptid = first_remote_resumed_thread (this);
7965 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7966 if (event_ptid == null_ptid)
7967 event_ptid = magic_null_ptid;
7968 }
7969
7970 return event_ptid;
7971 }
7972
7973 /* Wait until the remote machine stops, then return, storing status in
7974 STATUS just as `wait' would. */
7975
7976 ptid_t
7977 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7978 {
7979 ptid_t event_ptid;
7980
7981 if (target_is_non_stop_p ())
7982 event_ptid = wait_ns (ptid, status, options);
7983 else
7984 event_ptid = wait_as (ptid, status, options);
7985
7986 if (target_is_async_p ())
7987 {
7988 remote_state *rs = get_remote_state ();
7989
7990 /* If there are are events left in the queue tell the event loop
7991 to return here. */
7992 if (!rs->stop_reply_queue.empty ())
7993 mark_async_event_handler (rs->remote_async_inferior_event_token);
7994 }
7995
7996 return event_ptid;
7997 }
7998
7999 /* Fetch a single register using a 'p' packet. */
8000
8001 int
8002 remote_target::fetch_register_using_p (struct regcache *regcache,
8003 packet_reg *reg)
8004 {
8005 struct gdbarch *gdbarch = regcache->arch ();
8006 struct remote_state *rs = get_remote_state ();
8007 char *buf, *p;
8008 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8009 int i;
8010
8011 if (packet_support (PACKET_p) == PACKET_DISABLE)
8012 return 0;
8013
8014 if (reg->pnum == -1)
8015 return 0;
8016
8017 p = rs->buf.data ();
8018 *p++ = 'p';
8019 p += hexnumstr (p, reg->pnum);
8020 *p++ = '\0';
8021 putpkt (rs->buf);
8022 getpkt (&rs->buf, 0);
8023
8024 buf = rs->buf.data ();
8025
8026 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8027 {
8028 case PACKET_OK:
8029 break;
8030 case PACKET_UNKNOWN:
8031 return 0;
8032 case PACKET_ERROR:
8033 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8034 gdbarch_register_name (regcache->arch (),
8035 reg->regnum),
8036 buf);
8037 }
8038
8039 /* If this register is unfetchable, tell the regcache. */
8040 if (buf[0] == 'x')
8041 {
8042 regcache->raw_supply (reg->regnum, NULL);
8043 return 1;
8044 }
8045
8046 /* Otherwise, parse and supply the value. */
8047 p = buf;
8048 i = 0;
8049 while (p[0] != 0)
8050 {
8051 if (p[1] == 0)
8052 error (_("fetch_register_using_p: early buf termination"));
8053
8054 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8055 p += 2;
8056 }
8057 regcache->raw_supply (reg->regnum, regp);
8058 return 1;
8059 }
8060
8061 /* Fetch the registers included in the target's 'g' packet. */
8062
8063 int
8064 remote_target::send_g_packet ()
8065 {
8066 struct remote_state *rs = get_remote_state ();
8067 int buf_len;
8068
8069 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8070 putpkt (rs->buf);
8071 getpkt (&rs->buf, 0);
8072 if (packet_check_result (rs->buf) == PACKET_ERROR)
8073 error (_("Could not read registers; remote failure reply '%s'"),
8074 rs->buf.data ());
8075
8076 /* We can get out of synch in various cases. If the first character
8077 in the buffer is not a hex character, assume that has happened
8078 and try to fetch another packet to read. */
8079 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8080 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8081 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8082 && rs->buf[0] != 'x') /* New: unavailable register value. */
8083 {
8084 if (remote_debug)
8085 fprintf_unfiltered (gdb_stdlog,
8086 "Bad register packet; fetching a new packet\n");
8087 getpkt (&rs->buf, 0);
8088 }
8089
8090 buf_len = strlen (rs->buf.data ());
8091
8092 /* Sanity check the received packet. */
8093 if (buf_len % 2 != 0)
8094 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8095
8096 return buf_len / 2;
8097 }
8098
8099 void
8100 remote_target::process_g_packet (struct regcache *regcache)
8101 {
8102 struct gdbarch *gdbarch = regcache->arch ();
8103 struct remote_state *rs = get_remote_state ();
8104 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8105 int i, buf_len;
8106 char *p;
8107 char *regs;
8108
8109 buf_len = strlen (rs->buf.data ());
8110
8111 /* Further sanity checks, with knowledge of the architecture. */
8112 if (buf_len > 2 * rsa->sizeof_g_packet)
8113 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8114 "bytes): %s"),
8115 rsa->sizeof_g_packet, buf_len / 2,
8116 rs->buf.data ());
8117
8118 /* Save the size of the packet sent to us by the target. It is used
8119 as a heuristic when determining the max size of packets that the
8120 target can safely receive. */
8121 if (rsa->actual_register_packet_size == 0)
8122 rsa->actual_register_packet_size = buf_len;
8123
8124 /* If this is smaller than we guessed the 'g' packet would be,
8125 update our records. A 'g' reply that doesn't include a register's
8126 value implies either that the register is not available, or that
8127 the 'p' packet must be used. */
8128 if (buf_len < 2 * rsa->sizeof_g_packet)
8129 {
8130 long sizeof_g_packet = buf_len / 2;
8131
8132 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8133 {
8134 long offset = rsa->regs[i].offset;
8135 long reg_size = register_size (gdbarch, i);
8136
8137 if (rsa->regs[i].pnum == -1)
8138 continue;
8139
8140 if (offset >= sizeof_g_packet)
8141 rsa->regs[i].in_g_packet = 0;
8142 else if (offset + reg_size > sizeof_g_packet)
8143 error (_("Truncated register %d in remote 'g' packet"), i);
8144 else
8145 rsa->regs[i].in_g_packet = 1;
8146 }
8147
8148 /* Looks valid enough, we can assume this is the correct length
8149 for a 'g' packet. It's important not to adjust
8150 rsa->sizeof_g_packet if we have truncated registers otherwise
8151 this "if" won't be run the next time the method is called
8152 with a packet of the same size and one of the internal errors
8153 below will trigger instead. */
8154 rsa->sizeof_g_packet = sizeof_g_packet;
8155 }
8156
8157 regs = (char *) alloca (rsa->sizeof_g_packet);
8158
8159 /* Unimplemented registers read as all bits zero. */
8160 memset (regs, 0, rsa->sizeof_g_packet);
8161
8162 /* Reply describes registers byte by byte, each byte encoded as two
8163 hex characters. Suck them all up, then supply them to the
8164 register cacheing/storage mechanism. */
8165
8166 p = rs->buf.data ();
8167 for (i = 0; i < rsa->sizeof_g_packet; i++)
8168 {
8169 if (p[0] == 0 || p[1] == 0)
8170 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8171 internal_error (__FILE__, __LINE__,
8172 _("unexpected end of 'g' packet reply"));
8173
8174 if (p[0] == 'x' && p[1] == 'x')
8175 regs[i] = 0; /* 'x' */
8176 else
8177 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8178 p += 2;
8179 }
8180
8181 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8182 {
8183 struct packet_reg *r = &rsa->regs[i];
8184 long reg_size = register_size (gdbarch, i);
8185
8186 if (r->in_g_packet)
8187 {
8188 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8189 /* This shouldn't happen - we adjusted in_g_packet above. */
8190 internal_error (__FILE__, __LINE__,
8191 _("unexpected end of 'g' packet reply"));
8192 else if (rs->buf[r->offset * 2] == 'x')
8193 {
8194 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8195 /* The register isn't available, mark it as such (at
8196 the same time setting the value to zero). */
8197 regcache->raw_supply (r->regnum, NULL);
8198 }
8199 else
8200 regcache->raw_supply (r->regnum, regs + r->offset);
8201 }
8202 }
8203 }
8204
8205 void
8206 remote_target::fetch_registers_using_g (struct regcache *regcache)
8207 {
8208 send_g_packet ();
8209 process_g_packet (regcache);
8210 }
8211
8212 /* Make the remote selected traceframe match GDB's selected
8213 traceframe. */
8214
8215 void
8216 remote_target::set_remote_traceframe ()
8217 {
8218 int newnum;
8219 struct remote_state *rs = get_remote_state ();
8220
8221 if (rs->remote_traceframe_number == get_traceframe_number ())
8222 return;
8223
8224 /* Avoid recursion, remote_trace_find calls us again. */
8225 rs->remote_traceframe_number = get_traceframe_number ();
8226
8227 newnum = target_trace_find (tfind_number,
8228 get_traceframe_number (), 0, 0, NULL);
8229
8230 /* Should not happen. If it does, all bets are off. */
8231 if (newnum != get_traceframe_number ())
8232 warning (_("could not set remote traceframe"));
8233 }
8234
8235 void
8236 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8237 {
8238 struct gdbarch *gdbarch = regcache->arch ();
8239 struct remote_state *rs = get_remote_state ();
8240 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8241 int i;
8242
8243 set_remote_traceframe ();
8244 set_general_thread (regcache->ptid ());
8245
8246 if (regnum >= 0)
8247 {
8248 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8249
8250 gdb_assert (reg != NULL);
8251
8252 /* If this register might be in the 'g' packet, try that first -
8253 we are likely to read more than one register. If this is the
8254 first 'g' packet, we might be overly optimistic about its
8255 contents, so fall back to 'p'. */
8256 if (reg->in_g_packet)
8257 {
8258 fetch_registers_using_g (regcache);
8259 if (reg->in_g_packet)
8260 return;
8261 }
8262
8263 if (fetch_register_using_p (regcache, reg))
8264 return;
8265
8266 /* This register is not available. */
8267 regcache->raw_supply (reg->regnum, NULL);
8268
8269 return;
8270 }
8271
8272 fetch_registers_using_g (regcache);
8273
8274 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8275 if (!rsa->regs[i].in_g_packet)
8276 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8277 {
8278 /* This register is not available. */
8279 regcache->raw_supply (i, NULL);
8280 }
8281 }
8282
8283 /* Prepare to store registers. Since we may send them all (using a
8284 'G' request), we have to read out the ones we don't want to change
8285 first. */
8286
8287 void
8288 remote_target::prepare_to_store (struct regcache *regcache)
8289 {
8290 struct remote_state *rs = get_remote_state ();
8291 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8292 int i;
8293
8294 /* Make sure the entire registers array is valid. */
8295 switch (packet_support (PACKET_P))
8296 {
8297 case PACKET_DISABLE:
8298 case PACKET_SUPPORT_UNKNOWN:
8299 /* Make sure all the necessary registers are cached. */
8300 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8301 if (rsa->regs[i].in_g_packet)
8302 regcache->raw_update (rsa->regs[i].regnum);
8303 break;
8304 case PACKET_ENABLE:
8305 break;
8306 }
8307 }
8308
8309 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8310 packet was not recognized. */
8311
8312 int
8313 remote_target::store_register_using_P (const struct regcache *regcache,
8314 packet_reg *reg)
8315 {
8316 struct gdbarch *gdbarch = regcache->arch ();
8317 struct remote_state *rs = get_remote_state ();
8318 /* Try storing a single register. */
8319 char *buf = rs->buf.data ();
8320 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8321 char *p;
8322
8323 if (packet_support (PACKET_P) == PACKET_DISABLE)
8324 return 0;
8325
8326 if (reg->pnum == -1)
8327 return 0;
8328
8329 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8330 p = buf + strlen (buf);
8331 regcache->raw_collect (reg->regnum, regp);
8332 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8333 putpkt (rs->buf);
8334 getpkt (&rs->buf, 0);
8335
8336 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8337 {
8338 case PACKET_OK:
8339 return 1;
8340 case PACKET_ERROR:
8341 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8342 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8343 case PACKET_UNKNOWN:
8344 return 0;
8345 default:
8346 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8347 }
8348 }
8349
8350 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8351 contents of the register cache buffer. FIXME: ignores errors. */
8352
8353 void
8354 remote_target::store_registers_using_G (const struct regcache *regcache)
8355 {
8356 struct remote_state *rs = get_remote_state ();
8357 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8358 gdb_byte *regs;
8359 char *p;
8360
8361 /* Extract all the registers in the regcache copying them into a
8362 local buffer. */
8363 {
8364 int i;
8365
8366 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8367 memset (regs, 0, rsa->sizeof_g_packet);
8368 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8369 {
8370 struct packet_reg *r = &rsa->regs[i];
8371
8372 if (r->in_g_packet)
8373 regcache->raw_collect (r->regnum, regs + r->offset);
8374 }
8375 }
8376
8377 /* Command describes registers byte by byte,
8378 each byte encoded as two hex characters. */
8379 p = rs->buf.data ();
8380 *p++ = 'G';
8381 bin2hex (regs, p, rsa->sizeof_g_packet);
8382 putpkt (rs->buf);
8383 getpkt (&rs->buf, 0);
8384 if (packet_check_result (rs->buf) == PACKET_ERROR)
8385 error (_("Could not write registers; remote failure reply '%s'"),
8386 rs->buf.data ());
8387 }
8388
8389 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8390 of the register cache buffer. FIXME: ignores errors. */
8391
8392 void
8393 remote_target::store_registers (struct regcache *regcache, int regnum)
8394 {
8395 struct gdbarch *gdbarch = regcache->arch ();
8396 struct remote_state *rs = get_remote_state ();
8397 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8398 int i;
8399
8400 set_remote_traceframe ();
8401 set_general_thread (regcache->ptid ());
8402
8403 if (regnum >= 0)
8404 {
8405 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8406
8407 gdb_assert (reg != NULL);
8408
8409 /* Always prefer to store registers using the 'P' packet if
8410 possible; we often change only a small number of registers.
8411 Sometimes we change a larger number; we'd need help from a
8412 higher layer to know to use 'G'. */
8413 if (store_register_using_P (regcache, reg))
8414 return;
8415
8416 /* For now, don't complain if we have no way to write the
8417 register. GDB loses track of unavailable registers too
8418 easily. Some day, this may be an error. We don't have
8419 any way to read the register, either... */
8420 if (!reg->in_g_packet)
8421 return;
8422
8423 store_registers_using_G (regcache);
8424 return;
8425 }
8426
8427 store_registers_using_G (regcache);
8428
8429 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8430 if (!rsa->regs[i].in_g_packet)
8431 if (!store_register_using_P (regcache, &rsa->regs[i]))
8432 /* See above for why we do not issue an error here. */
8433 continue;
8434 }
8435 \f
8436
8437 /* Return the number of hex digits in num. */
8438
8439 static int
8440 hexnumlen (ULONGEST num)
8441 {
8442 int i;
8443
8444 for (i = 0; num != 0; i++)
8445 num >>= 4;
8446
8447 return std::max (i, 1);
8448 }
8449
8450 /* Set BUF to the minimum number of hex digits representing NUM. */
8451
8452 static int
8453 hexnumstr (char *buf, ULONGEST num)
8454 {
8455 int len = hexnumlen (num);
8456
8457 return hexnumnstr (buf, num, len);
8458 }
8459
8460
8461 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8462
8463 static int
8464 hexnumnstr (char *buf, ULONGEST num, int width)
8465 {
8466 int i;
8467
8468 buf[width] = '\0';
8469
8470 for (i = width - 1; i >= 0; i--)
8471 {
8472 buf[i] = "0123456789abcdef"[(num & 0xf)];
8473 num >>= 4;
8474 }
8475
8476 return width;
8477 }
8478
8479 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8480
8481 static CORE_ADDR
8482 remote_address_masked (CORE_ADDR addr)
8483 {
8484 unsigned int address_size = remote_address_size;
8485
8486 /* If "remoteaddresssize" was not set, default to target address size. */
8487 if (!address_size)
8488 address_size = gdbarch_addr_bit (target_gdbarch ());
8489
8490 if (address_size > 0
8491 && address_size < (sizeof (ULONGEST) * 8))
8492 {
8493 /* Only create a mask when that mask can safely be constructed
8494 in a ULONGEST variable. */
8495 ULONGEST mask = 1;
8496
8497 mask = (mask << address_size) - 1;
8498 addr &= mask;
8499 }
8500 return addr;
8501 }
8502
8503 /* Determine whether the remote target supports binary downloading.
8504 This is accomplished by sending a no-op memory write of zero length
8505 to the target at the specified address. It does not suffice to send
8506 the whole packet, since many stubs strip the eighth bit and
8507 subsequently compute a wrong checksum, which causes real havoc with
8508 remote_write_bytes.
8509
8510 NOTE: This can still lose if the serial line is not eight-bit
8511 clean. In cases like this, the user should clear "remote
8512 X-packet". */
8513
8514 void
8515 remote_target::check_binary_download (CORE_ADDR addr)
8516 {
8517 struct remote_state *rs = get_remote_state ();
8518
8519 switch (packet_support (PACKET_X))
8520 {
8521 case PACKET_DISABLE:
8522 break;
8523 case PACKET_ENABLE:
8524 break;
8525 case PACKET_SUPPORT_UNKNOWN:
8526 {
8527 char *p;
8528
8529 p = rs->buf.data ();
8530 *p++ = 'X';
8531 p += hexnumstr (p, (ULONGEST) addr);
8532 *p++ = ',';
8533 p += hexnumstr (p, (ULONGEST) 0);
8534 *p++ = ':';
8535 *p = '\0';
8536
8537 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8538 getpkt (&rs->buf, 0);
8539
8540 if (rs->buf[0] == '\0')
8541 {
8542 if (remote_debug)
8543 fprintf_unfiltered (gdb_stdlog,
8544 "binary downloading NOT "
8545 "supported by target\n");
8546 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8547 }
8548 else
8549 {
8550 if (remote_debug)
8551 fprintf_unfiltered (gdb_stdlog,
8552 "binary downloading supported by target\n");
8553 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8554 }
8555 break;
8556 }
8557 }
8558 }
8559
8560 /* Helper function to resize the payload in order to try to get a good
8561 alignment. We try to write an amount of data such that the next write will
8562 start on an address aligned on REMOTE_ALIGN_WRITES. */
8563
8564 static int
8565 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8566 {
8567 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8568 }
8569
8570 /* Write memory data directly to the remote machine.
8571 This does not inform the data cache; the data cache uses this.
8572 HEADER is the starting part of the packet.
8573 MEMADDR is the address in the remote memory space.
8574 MYADDR is the address of the buffer in our space.
8575 LEN_UNITS is the number of addressable units to write.
8576 UNIT_SIZE is the length in bytes of an addressable unit.
8577 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8578 should send data as binary ('X'), or hex-encoded ('M').
8579
8580 The function creates packet of the form
8581 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8582
8583 where encoding of <DATA> is terminated by PACKET_FORMAT.
8584
8585 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8586 are omitted.
8587
8588 Return the transferred status, error or OK (an
8589 'enum target_xfer_status' value). Save the number of addressable units
8590 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8591
8592 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8593 exchange between gdb and the stub could look like (?? in place of the
8594 checksum):
8595
8596 -> $m1000,4#??
8597 <- aaaabbbbccccdddd
8598
8599 -> $M1000,3:eeeeffffeeee#??
8600 <- OK
8601
8602 -> $m1000,4#??
8603 <- eeeeffffeeeedddd */
8604
8605 target_xfer_status
8606 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8607 const gdb_byte *myaddr,
8608 ULONGEST len_units,
8609 int unit_size,
8610 ULONGEST *xfered_len_units,
8611 char packet_format, int use_length)
8612 {
8613 struct remote_state *rs = get_remote_state ();
8614 char *p;
8615 char *plen = NULL;
8616 int plenlen = 0;
8617 int todo_units;
8618 int units_written;
8619 int payload_capacity_bytes;
8620 int payload_length_bytes;
8621
8622 if (packet_format != 'X' && packet_format != 'M')
8623 internal_error (__FILE__, __LINE__,
8624 _("remote_write_bytes_aux: bad packet format"));
8625
8626 if (len_units == 0)
8627 return TARGET_XFER_EOF;
8628
8629 payload_capacity_bytes = get_memory_write_packet_size ();
8630
8631 /* The packet buffer will be large enough for the payload;
8632 get_memory_packet_size ensures this. */
8633 rs->buf[0] = '\0';
8634
8635 /* Compute the size of the actual payload by subtracting out the
8636 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8637
8638 payload_capacity_bytes -= strlen ("$,:#NN");
8639 if (!use_length)
8640 /* The comma won't be used. */
8641 payload_capacity_bytes += 1;
8642 payload_capacity_bytes -= strlen (header);
8643 payload_capacity_bytes -= hexnumlen (memaddr);
8644
8645 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8646
8647 strcat (rs->buf.data (), header);
8648 p = rs->buf.data () + strlen (header);
8649
8650 /* Compute a best guess of the number of bytes actually transfered. */
8651 if (packet_format == 'X')
8652 {
8653 /* Best guess at number of bytes that will fit. */
8654 todo_units = std::min (len_units,
8655 (ULONGEST) payload_capacity_bytes / unit_size);
8656 if (use_length)
8657 payload_capacity_bytes -= hexnumlen (todo_units);
8658 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8659 }
8660 else
8661 {
8662 /* Number of bytes that will fit. */
8663 todo_units
8664 = std::min (len_units,
8665 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8666 if (use_length)
8667 payload_capacity_bytes -= hexnumlen (todo_units);
8668 todo_units = std::min (todo_units,
8669 (payload_capacity_bytes / unit_size) / 2);
8670 }
8671
8672 if (todo_units <= 0)
8673 internal_error (__FILE__, __LINE__,
8674 _("minimum packet size too small to write data"));
8675
8676 /* If we already need another packet, then try to align the end
8677 of this packet to a useful boundary. */
8678 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8679 todo_units = align_for_efficient_write (todo_units, memaddr);
8680
8681 /* Append "<memaddr>". */
8682 memaddr = remote_address_masked (memaddr);
8683 p += hexnumstr (p, (ULONGEST) memaddr);
8684
8685 if (use_length)
8686 {
8687 /* Append ",". */
8688 *p++ = ',';
8689
8690 /* Append the length and retain its location and size. It may need to be
8691 adjusted once the packet body has been created. */
8692 plen = p;
8693 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8694 p += plenlen;
8695 }
8696
8697 /* Append ":". */
8698 *p++ = ':';
8699 *p = '\0';
8700
8701 /* Append the packet body. */
8702 if (packet_format == 'X')
8703 {
8704 /* Binary mode. Send target system values byte by byte, in
8705 increasing byte addresses. Only escape certain critical
8706 characters. */
8707 payload_length_bytes =
8708 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8709 &units_written, payload_capacity_bytes);
8710
8711 /* If not all TODO units fit, then we'll need another packet. Make
8712 a second try to keep the end of the packet aligned. Don't do
8713 this if the packet is tiny. */
8714 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8715 {
8716 int new_todo_units;
8717
8718 new_todo_units = align_for_efficient_write (units_written, memaddr);
8719
8720 if (new_todo_units != units_written)
8721 payload_length_bytes =
8722 remote_escape_output (myaddr, new_todo_units, unit_size,
8723 (gdb_byte *) p, &units_written,
8724 payload_capacity_bytes);
8725 }
8726
8727 p += payload_length_bytes;
8728 if (use_length && units_written < todo_units)
8729 {
8730 /* Escape chars have filled up the buffer prematurely,
8731 and we have actually sent fewer units than planned.
8732 Fix-up the length field of the packet. Use the same
8733 number of characters as before. */
8734 plen += hexnumnstr (plen, (ULONGEST) units_written,
8735 plenlen);
8736 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8737 }
8738 }
8739 else
8740 {
8741 /* Normal mode: Send target system values byte by byte, in
8742 increasing byte addresses. Each byte is encoded as a two hex
8743 value. */
8744 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8745 units_written = todo_units;
8746 }
8747
8748 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8749 getpkt (&rs->buf, 0);
8750
8751 if (rs->buf[0] == 'E')
8752 return TARGET_XFER_E_IO;
8753
8754 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8755 send fewer units than we'd planned. */
8756 *xfered_len_units = (ULONGEST) units_written;
8757 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8758 }
8759
8760 /* Write memory data directly to the remote machine.
8761 This does not inform the data cache; the data cache uses this.
8762 MEMADDR is the address in the remote memory space.
8763 MYADDR is the address of the buffer in our space.
8764 LEN is the number of bytes.
8765
8766 Return the transferred status, error or OK (an
8767 'enum target_xfer_status' value). Save the number of bytes
8768 transferred in *XFERED_LEN. Only transfer a single packet. */
8769
8770 target_xfer_status
8771 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8772 ULONGEST len, int unit_size,
8773 ULONGEST *xfered_len)
8774 {
8775 const char *packet_format = NULL;
8776
8777 /* Check whether the target supports binary download. */
8778 check_binary_download (memaddr);
8779
8780 switch (packet_support (PACKET_X))
8781 {
8782 case PACKET_ENABLE:
8783 packet_format = "X";
8784 break;
8785 case PACKET_DISABLE:
8786 packet_format = "M";
8787 break;
8788 case PACKET_SUPPORT_UNKNOWN:
8789 internal_error (__FILE__, __LINE__,
8790 _("remote_write_bytes: bad internal state"));
8791 default:
8792 internal_error (__FILE__, __LINE__, _("bad switch"));
8793 }
8794
8795 return remote_write_bytes_aux (packet_format,
8796 memaddr, myaddr, len, unit_size, xfered_len,
8797 packet_format[0], 1);
8798 }
8799
8800 /* Read memory data directly from the remote machine.
8801 This does not use the data cache; the data cache uses this.
8802 MEMADDR is the address in the remote memory space.
8803 MYADDR is the address of the buffer in our space.
8804 LEN_UNITS is the number of addressable memory units to read..
8805 UNIT_SIZE is the length in bytes of an addressable unit.
8806
8807 Return the transferred status, error or OK (an
8808 'enum target_xfer_status' value). Save the number of bytes
8809 transferred in *XFERED_LEN_UNITS.
8810
8811 See the comment of remote_write_bytes_aux for an example of
8812 memory read/write exchange between gdb and the stub. */
8813
8814 target_xfer_status
8815 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8816 ULONGEST len_units,
8817 int unit_size, ULONGEST *xfered_len_units)
8818 {
8819 struct remote_state *rs = get_remote_state ();
8820 int buf_size_bytes; /* Max size of packet output buffer. */
8821 char *p;
8822 int todo_units;
8823 int decoded_bytes;
8824
8825 buf_size_bytes = get_memory_read_packet_size ();
8826 /* The packet buffer will be large enough for the payload;
8827 get_memory_packet_size ensures this. */
8828
8829 /* Number of units that will fit. */
8830 todo_units = std::min (len_units,
8831 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8832
8833 /* Construct "m"<memaddr>","<len>". */
8834 memaddr = remote_address_masked (memaddr);
8835 p = rs->buf.data ();
8836 *p++ = 'm';
8837 p += hexnumstr (p, (ULONGEST) memaddr);
8838 *p++ = ',';
8839 p += hexnumstr (p, (ULONGEST) todo_units);
8840 *p = '\0';
8841 putpkt (rs->buf);
8842 getpkt (&rs->buf, 0);
8843 if (rs->buf[0] == 'E'
8844 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8845 && rs->buf[3] == '\0')
8846 return TARGET_XFER_E_IO;
8847 /* Reply describes memory byte by byte, each byte encoded as two hex
8848 characters. */
8849 p = rs->buf.data ();
8850 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8851 /* Return what we have. Let higher layers handle partial reads. */
8852 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8853 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8854 }
8855
8856 /* Using the set of read-only target sections of remote, read live
8857 read-only memory.
8858
8859 For interface/parameters/return description see target.h,
8860 to_xfer_partial. */
8861
8862 target_xfer_status
8863 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8864 ULONGEST memaddr,
8865 ULONGEST len,
8866 int unit_size,
8867 ULONGEST *xfered_len)
8868 {
8869 struct target_section *secp;
8870 struct target_section_table *table;
8871
8872 secp = target_section_by_addr (this, memaddr);
8873 if (secp != NULL
8874 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8875 {
8876 struct target_section *p;
8877 ULONGEST memend = memaddr + len;
8878
8879 table = target_get_section_table (this);
8880
8881 for (p = table->sections; p < table->sections_end; p++)
8882 {
8883 if (memaddr >= p->addr)
8884 {
8885 if (memend <= p->endaddr)
8886 {
8887 /* Entire transfer is within this section. */
8888 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8889 xfered_len);
8890 }
8891 else if (memaddr >= p->endaddr)
8892 {
8893 /* This section ends before the transfer starts. */
8894 continue;
8895 }
8896 else
8897 {
8898 /* This section overlaps the transfer. Just do half. */
8899 len = p->endaddr - memaddr;
8900 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8901 xfered_len);
8902 }
8903 }
8904 }
8905 }
8906
8907 return TARGET_XFER_EOF;
8908 }
8909
8910 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8911 first if the requested memory is unavailable in traceframe.
8912 Otherwise, fall back to remote_read_bytes_1. */
8913
8914 target_xfer_status
8915 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8916 gdb_byte *myaddr, ULONGEST len, int unit_size,
8917 ULONGEST *xfered_len)
8918 {
8919 if (len == 0)
8920 return TARGET_XFER_EOF;
8921
8922 if (get_traceframe_number () != -1)
8923 {
8924 std::vector<mem_range> available;
8925
8926 /* If we fail to get the set of available memory, then the
8927 target does not support querying traceframe info, and so we
8928 attempt reading from the traceframe anyway (assuming the
8929 target implements the old QTro packet then). */
8930 if (traceframe_available_memory (&available, memaddr, len))
8931 {
8932 if (available.empty () || available[0].start != memaddr)
8933 {
8934 enum target_xfer_status res;
8935
8936 /* Don't read into the traceframe's available
8937 memory. */
8938 if (!available.empty ())
8939 {
8940 LONGEST oldlen = len;
8941
8942 len = available[0].start - memaddr;
8943 gdb_assert (len <= oldlen);
8944 }
8945
8946 /* This goes through the topmost target again. */
8947 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8948 len, unit_size, xfered_len);
8949 if (res == TARGET_XFER_OK)
8950 return TARGET_XFER_OK;
8951 else
8952 {
8953 /* No use trying further, we know some memory starting
8954 at MEMADDR isn't available. */
8955 *xfered_len = len;
8956 return (*xfered_len != 0) ?
8957 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8958 }
8959 }
8960
8961 /* Don't try to read more than how much is available, in
8962 case the target implements the deprecated QTro packet to
8963 cater for older GDBs (the target's knowledge of read-only
8964 sections may be outdated by now). */
8965 len = available[0].length;
8966 }
8967 }
8968
8969 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8970 }
8971
8972 \f
8973
8974 /* Sends a packet with content determined by the printf format string
8975 FORMAT and the remaining arguments, then gets the reply. Returns
8976 whether the packet was a success, a failure, or unknown. */
8977
8978 packet_result
8979 remote_target::remote_send_printf (const char *format, ...)
8980 {
8981 struct remote_state *rs = get_remote_state ();
8982 int max_size = get_remote_packet_size ();
8983 va_list ap;
8984
8985 va_start (ap, format);
8986
8987 rs->buf[0] = '\0';
8988 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8989
8990 va_end (ap);
8991
8992 if (size >= max_size)
8993 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8994
8995 if (putpkt (rs->buf) < 0)
8996 error (_("Communication problem with target."));
8997
8998 rs->buf[0] = '\0';
8999 getpkt (&rs->buf, 0);
9000
9001 return packet_check_result (rs->buf);
9002 }
9003
9004 /* Flash writing can take quite some time. We'll set
9005 effectively infinite timeout for flash operations.
9006 In future, we'll need to decide on a better approach. */
9007 static const int remote_flash_timeout = 1000;
9008
9009 void
9010 remote_target::flash_erase (ULONGEST address, LONGEST length)
9011 {
9012 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9013 enum packet_result ret;
9014 scoped_restore restore_timeout
9015 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9016
9017 ret = remote_send_printf ("vFlashErase:%s,%s",
9018 phex (address, addr_size),
9019 phex (length, 4));
9020 switch (ret)
9021 {
9022 case PACKET_UNKNOWN:
9023 error (_("Remote target does not support flash erase"));
9024 case PACKET_ERROR:
9025 error (_("Error erasing flash with vFlashErase packet"));
9026 default:
9027 break;
9028 }
9029 }
9030
9031 target_xfer_status
9032 remote_target::remote_flash_write (ULONGEST address,
9033 ULONGEST length, ULONGEST *xfered_len,
9034 const gdb_byte *data)
9035 {
9036 scoped_restore restore_timeout
9037 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9038 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9039 xfered_len,'X', 0);
9040 }
9041
9042 void
9043 remote_target::flash_done ()
9044 {
9045 int ret;
9046
9047 scoped_restore restore_timeout
9048 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9049
9050 ret = remote_send_printf ("vFlashDone");
9051
9052 switch (ret)
9053 {
9054 case PACKET_UNKNOWN:
9055 error (_("Remote target does not support vFlashDone"));
9056 case PACKET_ERROR:
9057 error (_("Error finishing flash operation"));
9058 default:
9059 break;
9060 }
9061 }
9062
9063 void
9064 remote_target::files_info ()
9065 {
9066 puts_filtered ("Debugging a target over a serial line.\n");
9067 }
9068 \f
9069 /* Stuff for dealing with the packets which are part of this protocol.
9070 See comment at top of file for details. */
9071
9072 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9073 error to higher layers. Called when a serial error is detected.
9074 The exception message is STRING, followed by a colon and a blank,
9075 the system error message for errno at function entry and final dot
9076 for output compatibility with throw_perror_with_name. */
9077
9078 static void
9079 unpush_and_perror (remote_target *target, const char *string)
9080 {
9081 int saved_errno = errno;
9082
9083 remote_unpush_target (target);
9084 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9085 safe_strerror (saved_errno));
9086 }
9087
9088 /* Read a single character from the remote end. The current quit
9089 handler is overridden to avoid quitting in the middle of packet
9090 sequence, as that would break communication with the remote server.
9091 See remote_serial_quit_handler for more detail. */
9092
9093 int
9094 remote_target::readchar (int timeout)
9095 {
9096 int ch;
9097 struct remote_state *rs = get_remote_state ();
9098
9099 {
9100 scoped_restore restore_quit_target
9101 = make_scoped_restore (&curr_quit_handler_target, this);
9102 scoped_restore restore_quit
9103 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9104
9105 rs->got_ctrlc_during_io = 0;
9106
9107 ch = serial_readchar (rs->remote_desc, timeout);
9108
9109 if (rs->got_ctrlc_during_io)
9110 set_quit_flag ();
9111 }
9112
9113 if (ch >= 0)
9114 return ch;
9115
9116 switch ((enum serial_rc) ch)
9117 {
9118 case SERIAL_EOF:
9119 remote_unpush_target (this);
9120 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9121 /* no return */
9122 case SERIAL_ERROR:
9123 unpush_and_perror (this, _("Remote communication error. "
9124 "Target disconnected."));
9125 /* no return */
9126 case SERIAL_TIMEOUT:
9127 break;
9128 }
9129 return ch;
9130 }
9131
9132 /* Wrapper for serial_write that closes the target and throws if
9133 writing fails. The current quit handler is overridden to avoid
9134 quitting in the middle of packet sequence, as that would break
9135 communication with the remote server. See
9136 remote_serial_quit_handler for more detail. */
9137
9138 void
9139 remote_target::remote_serial_write (const char *str, int len)
9140 {
9141 struct remote_state *rs = get_remote_state ();
9142
9143 scoped_restore restore_quit_target
9144 = make_scoped_restore (&curr_quit_handler_target, this);
9145 scoped_restore restore_quit
9146 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9147
9148 rs->got_ctrlc_during_io = 0;
9149
9150 if (serial_write (rs->remote_desc, str, len))
9151 {
9152 unpush_and_perror (this, _("Remote communication error. "
9153 "Target disconnected."));
9154 }
9155
9156 if (rs->got_ctrlc_during_io)
9157 set_quit_flag ();
9158 }
9159
9160 /* Return a string representing an escaped version of BUF, of len N.
9161 E.g. \n is converted to \\n, \t to \\t, etc. */
9162
9163 static std::string
9164 escape_buffer (const char *buf, int n)
9165 {
9166 string_file stb;
9167
9168 stb.putstrn (buf, n, '\\');
9169 return std::move (stb.string ());
9170 }
9171
9172 /* Display a null-terminated packet on stdout, for debugging, using C
9173 string notation. */
9174
9175 static void
9176 print_packet (const char *buf)
9177 {
9178 puts_filtered ("\"");
9179 fputstr_filtered (buf, '"', gdb_stdout);
9180 puts_filtered ("\"");
9181 }
9182
9183 int
9184 remote_target::putpkt (const char *buf)
9185 {
9186 return putpkt_binary (buf, strlen (buf));
9187 }
9188
9189 /* Wrapper around remote_target::putpkt to avoid exporting
9190 remote_target. */
9191
9192 int
9193 putpkt (remote_target *remote, const char *buf)
9194 {
9195 return remote->putpkt (buf);
9196 }
9197
9198 /* Send a packet to the remote machine, with error checking. The data
9199 of the packet is in BUF. The string in BUF can be at most
9200 get_remote_packet_size () - 5 to account for the $, # and checksum,
9201 and for a possible /0 if we are debugging (remote_debug) and want
9202 to print the sent packet as a string. */
9203
9204 int
9205 remote_target::putpkt_binary (const char *buf, int cnt)
9206 {
9207 struct remote_state *rs = get_remote_state ();
9208 int i;
9209 unsigned char csum = 0;
9210 gdb::def_vector<char> data (cnt + 6);
9211 char *buf2 = data.data ();
9212
9213 int ch;
9214 int tcount = 0;
9215 char *p;
9216
9217 /* Catch cases like trying to read memory or listing threads while
9218 we're waiting for a stop reply. The remote server wouldn't be
9219 ready to handle this request, so we'd hang and timeout. We don't
9220 have to worry about this in synchronous mode, because in that
9221 case it's not possible to issue a command while the target is
9222 running. This is not a problem in non-stop mode, because in that
9223 case, the stub is always ready to process serial input. */
9224 if (!target_is_non_stop_p ()
9225 && target_is_async_p ()
9226 && rs->waiting_for_stop_reply)
9227 {
9228 error (_("Cannot execute this command while the target is running.\n"
9229 "Use the \"interrupt\" command to stop the target\n"
9230 "and then try again."));
9231 }
9232
9233 /* We're sending out a new packet. Make sure we don't look at a
9234 stale cached response. */
9235 rs->cached_wait_status = 0;
9236
9237 /* Copy the packet into buffer BUF2, encapsulating it
9238 and giving it a checksum. */
9239
9240 p = buf2;
9241 *p++ = '$';
9242
9243 for (i = 0; i < cnt; i++)
9244 {
9245 csum += buf[i];
9246 *p++ = buf[i];
9247 }
9248 *p++ = '#';
9249 *p++ = tohex ((csum >> 4) & 0xf);
9250 *p++ = tohex (csum & 0xf);
9251
9252 /* Send it over and over until we get a positive ack. */
9253
9254 while (1)
9255 {
9256 int started_error_output = 0;
9257
9258 if (remote_debug)
9259 {
9260 *p = '\0';
9261
9262 int len = (int) (p - buf2);
9263 int max_chars;
9264
9265 if (remote_packet_max_chars < 0)
9266 max_chars = len;
9267 else
9268 max_chars = remote_packet_max_chars;
9269
9270 std::string str
9271 = escape_buffer (buf2, std::min (len, max_chars));
9272
9273 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9274
9275 if (len > max_chars)
9276 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9277 len - max_chars);
9278
9279 fprintf_unfiltered (gdb_stdlog, "...");
9280
9281 gdb_flush (gdb_stdlog);
9282 }
9283 remote_serial_write (buf2, p - buf2);
9284
9285 /* If this is a no acks version of the remote protocol, send the
9286 packet and move on. */
9287 if (rs->noack_mode)
9288 break;
9289
9290 /* Read until either a timeout occurs (-2) or '+' is read.
9291 Handle any notification that arrives in the mean time. */
9292 while (1)
9293 {
9294 ch = readchar (remote_timeout);
9295
9296 if (remote_debug)
9297 {
9298 switch (ch)
9299 {
9300 case '+':
9301 case '-':
9302 case SERIAL_TIMEOUT:
9303 case '$':
9304 case '%':
9305 if (started_error_output)
9306 {
9307 putchar_unfiltered ('\n');
9308 started_error_output = 0;
9309 }
9310 }
9311 }
9312
9313 switch (ch)
9314 {
9315 case '+':
9316 if (remote_debug)
9317 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9318 return 1;
9319 case '-':
9320 if (remote_debug)
9321 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9322 /* FALLTHROUGH */
9323 case SERIAL_TIMEOUT:
9324 tcount++;
9325 if (tcount > 3)
9326 return 0;
9327 break; /* Retransmit buffer. */
9328 case '$':
9329 {
9330 if (remote_debug)
9331 fprintf_unfiltered (gdb_stdlog,
9332 "Packet instead of Ack, ignoring it\n");
9333 /* It's probably an old response sent because an ACK
9334 was lost. Gobble up the packet and ack it so it
9335 doesn't get retransmitted when we resend this
9336 packet. */
9337 skip_frame ();
9338 remote_serial_write ("+", 1);
9339 continue; /* Now, go look for +. */
9340 }
9341
9342 case '%':
9343 {
9344 int val;
9345
9346 /* If we got a notification, handle it, and go back to looking
9347 for an ack. */
9348 /* We've found the start of a notification. Now
9349 collect the data. */
9350 val = read_frame (&rs->buf);
9351 if (val >= 0)
9352 {
9353 if (remote_debug)
9354 {
9355 std::string str = escape_buffer (rs->buf.data (), val);
9356
9357 fprintf_unfiltered (gdb_stdlog,
9358 " Notification received: %s\n",
9359 str.c_str ());
9360 }
9361 handle_notification (rs->notif_state, rs->buf.data ());
9362 /* We're in sync now, rewait for the ack. */
9363 tcount = 0;
9364 }
9365 else
9366 {
9367 if (remote_debug)
9368 {
9369 if (!started_error_output)
9370 {
9371 started_error_output = 1;
9372 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9373 }
9374 fputc_unfiltered (ch & 0177, gdb_stdlog);
9375 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9376 }
9377 }
9378 continue;
9379 }
9380 /* fall-through */
9381 default:
9382 if (remote_debug)
9383 {
9384 if (!started_error_output)
9385 {
9386 started_error_output = 1;
9387 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9388 }
9389 fputc_unfiltered (ch & 0177, gdb_stdlog);
9390 }
9391 continue;
9392 }
9393 break; /* Here to retransmit. */
9394 }
9395
9396 #if 0
9397 /* This is wrong. If doing a long backtrace, the user should be
9398 able to get out next time we call QUIT, without anything as
9399 violent as interrupt_query. If we want to provide a way out of
9400 here without getting to the next QUIT, it should be based on
9401 hitting ^C twice as in remote_wait. */
9402 if (quit_flag)
9403 {
9404 quit_flag = 0;
9405 interrupt_query ();
9406 }
9407 #endif
9408 }
9409
9410 return 0;
9411 }
9412
9413 /* Come here after finding the start of a frame when we expected an
9414 ack. Do our best to discard the rest of this packet. */
9415
9416 void
9417 remote_target::skip_frame ()
9418 {
9419 int c;
9420
9421 while (1)
9422 {
9423 c = readchar (remote_timeout);
9424 switch (c)
9425 {
9426 case SERIAL_TIMEOUT:
9427 /* Nothing we can do. */
9428 return;
9429 case '#':
9430 /* Discard the two bytes of checksum and stop. */
9431 c = readchar (remote_timeout);
9432 if (c >= 0)
9433 c = readchar (remote_timeout);
9434
9435 return;
9436 case '*': /* Run length encoding. */
9437 /* Discard the repeat count. */
9438 c = readchar (remote_timeout);
9439 if (c < 0)
9440 return;
9441 break;
9442 default:
9443 /* A regular character. */
9444 break;
9445 }
9446 }
9447 }
9448
9449 /* Come here after finding the start of the frame. Collect the rest
9450 into *BUF, verifying the checksum, length, and handling run-length
9451 compression. NUL terminate the buffer. If there is not enough room,
9452 expand *BUF.
9453
9454 Returns -1 on error, number of characters in buffer (ignoring the
9455 trailing NULL) on success. (could be extended to return one of the
9456 SERIAL status indications). */
9457
9458 long
9459 remote_target::read_frame (gdb::char_vector *buf_p)
9460 {
9461 unsigned char csum;
9462 long bc;
9463 int c;
9464 char *buf = buf_p->data ();
9465 struct remote_state *rs = get_remote_state ();
9466
9467 csum = 0;
9468 bc = 0;
9469
9470 while (1)
9471 {
9472 c = readchar (remote_timeout);
9473 switch (c)
9474 {
9475 case SERIAL_TIMEOUT:
9476 if (remote_debug)
9477 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9478 return -1;
9479 case '$':
9480 if (remote_debug)
9481 fputs_filtered ("Saw new packet start in middle of old one\n",
9482 gdb_stdlog);
9483 return -1; /* Start a new packet, count retries. */
9484 case '#':
9485 {
9486 unsigned char pktcsum;
9487 int check_0 = 0;
9488 int check_1 = 0;
9489
9490 buf[bc] = '\0';
9491
9492 check_0 = readchar (remote_timeout);
9493 if (check_0 >= 0)
9494 check_1 = readchar (remote_timeout);
9495
9496 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9497 {
9498 if (remote_debug)
9499 fputs_filtered ("Timeout in checksum, retrying\n",
9500 gdb_stdlog);
9501 return -1;
9502 }
9503 else if (check_0 < 0 || check_1 < 0)
9504 {
9505 if (remote_debug)
9506 fputs_filtered ("Communication error in checksum\n",
9507 gdb_stdlog);
9508 return -1;
9509 }
9510
9511 /* Don't recompute the checksum; with no ack packets we
9512 don't have any way to indicate a packet retransmission
9513 is necessary. */
9514 if (rs->noack_mode)
9515 return bc;
9516
9517 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9518 if (csum == pktcsum)
9519 return bc;
9520
9521 if (remote_debug)
9522 {
9523 std::string str = escape_buffer (buf, bc);
9524
9525 fprintf_unfiltered (gdb_stdlog,
9526 "Bad checksum, sentsum=0x%x, "
9527 "csum=0x%x, buf=%s\n",
9528 pktcsum, csum, str.c_str ());
9529 }
9530 /* Number of characters in buffer ignoring trailing
9531 NULL. */
9532 return -1;
9533 }
9534 case '*': /* Run length encoding. */
9535 {
9536 int repeat;
9537
9538 csum += c;
9539 c = readchar (remote_timeout);
9540 csum += c;
9541 repeat = c - ' ' + 3; /* Compute repeat count. */
9542
9543 /* The character before ``*'' is repeated. */
9544
9545 if (repeat > 0 && repeat <= 255 && bc > 0)
9546 {
9547 if (bc + repeat - 1 >= buf_p->size () - 1)
9548 {
9549 /* Make some more room in the buffer. */
9550 buf_p->resize (buf_p->size () + repeat);
9551 buf = buf_p->data ();
9552 }
9553
9554 memset (&buf[bc], buf[bc - 1], repeat);
9555 bc += repeat;
9556 continue;
9557 }
9558
9559 buf[bc] = '\0';
9560 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9561 return -1;
9562 }
9563 default:
9564 if (bc >= buf_p->size () - 1)
9565 {
9566 /* Make some more room in the buffer. */
9567 buf_p->resize (buf_p->size () * 2);
9568 buf = buf_p->data ();
9569 }
9570
9571 buf[bc++] = c;
9572 csum += c;
9573 continue;
9574 }
9575 }
9576 }
9577
9578 /* Set this to the maximum number of seconds to wait instead of waiting forever
9579 in target_wait(). If this timer times out, then it generates an error and
9580 the command is aborted. This replaces most of the need for timeouts in the
9581 GDB test suite, and makes it possible to distinguish between a hung target
9582 and one with slow communications. */
9583
9584 static int watchdog = 0;
9585 static void
9586 show_watchdog (struct ui_file *file, int from_tty,
9587 struct cmd_list_element *c, const char *value)
9588 {
9589 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9590 }
9591
9592 /* Read a packet from the remote machine, with error checking, and
9593 store it in *BUF. Resize *BUF if necessary to hold the result. If
9594 FOREVER, wait forever rather than timing out; this is used (in
9595 synchronous mode) to wait for a target that is is executing user
9596 code to stop. */
9597 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9598 don't have to change all the calls to getpkt to deal with the
9599 return value, because at the moment I don't know what the right
9600 thing to do it for those. */
9601
9602 void
9603 remote_target::getpkt (gdb::char_vector *buf, int forever)
9604 {
9605 getpkt_sane (buf, forever);
9606 }
9607
9608
9609 /* Read a packet from the remote machine, with error checking, and
9610 store it in *BUF. Resize *BUF if necessary to hold the result. If
9611 FOREVER, wait forever rather than timing out; this is used (in
9612 synchronous mode) to wait for a target that is is executing user
9613 code to stop. If FOREVER == 0, this function is allowed to time
9614 out gracefully and return an indication of this to the caller.
9615 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9616 consider receiving a notification enough reason to return to the
9617 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9618 holds a notification or not (a regular packet). */
9619
9620 int
9621 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9622 int forever, int expecting_notif,
9623 int *is_notif)
9624 {
9625 struct remote_state *rs = get_remote_state ();
9626 int c;
9627 int tries;
9628 int timeout;
9629 int val = -1;
9630
9631 /* We're reading a new response. Make sure we don't look at a
9632 previously cached response. */
9633 rs->cached_wait_status = 0;
9634
9635 strcpy (buf->data (), "timeout");
9636
9637 if (forever)
9638 timeout = watchdog > 0 ? watchdog : -1;
9639 else if (expecting_notif)
9640 timeout = 0; /* There should already be a char in the buffer. If
9641 not, bail out. */
9642 else
9643 timeout = remote_timeout;
9644
9645 #define MAX_TRIES 3
9646
9647 /* Process any number of notifications, and then return when
9648 we get a packet. */
9649 for (;;)
9650 {
9651 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9652 times. */
9653 for (tries = 1; tries <= MAX_TRIES; tries++)
9654 {
9655 /* This can loop forever if the remote side sends us
9656 characters continuously, but if it pauses, we'll get
9657 SERIAL_TIMEOUT from readchar because of timeout. Then
9658 we'll count that as a retry.
9659
9660 Note that even when forever is set, we will only wait
9661 forever prior to the start of a packet. After that, we
9662 expect characters to arrive at a brisk pace. They should
9663 show up within remote_timeout intervals. */
9664 do
9665 c = readchar (timeout);
9666 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9667
9668 if (c == SERIAL_TIMEOUT)
9669 {
9670 if (expecting_notif)
9671 return -1; /* Don't complain, it's normal to not get
9672 anything in this case. */
9673
9674 if (forever) /* Watchdog went off? Kill the target. */
9675 {
9676 remote_unpush_target (this);
9677 throw_error (TARGET_CLOSE_ERROR,
9678 _("Watchdog timeout has expired. "
9679 "Target detached."));
9680 }
9681 if (remote_debug)
9682 fputs_filtered ("Timed out.\n", gdb_stdlog);
9683 }
9684 else
9685 {
9686 /* We've found the start of a packet or notification.
9687 Now collect the data. */
9688 val = read_frame (buf);
9689 if (val >= 0)
9690 break;
9691 }
9692
9693 remote_serial_write ("-", 1);
9694 }
9695
9696 if (tries > MAX_TRIES)
9697 {
9698 /* We have tried hard enough, and just can't receive the
9699 packet/notification. Give up. */
9700 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9701
9702 /* Skip the ack char if we're in no-ack mode. */
9703 if (!rs->noack_mode)
9704 remote_serial_write ("+", 1);
9705 return -1;
9706 }
9707
9708 /* If we got an ordinary packet, return that to our caller. */
9709 if (c == '$')
9710 {
9711 if (remote_debug)
9712 {
9713 int max_chars;
9714
9715 if (remote_packet_max_chars < 0)
9716 max_chars = val;
9717 else
9718 max_chars = remote_packet_max_chars;
9719
9720 std::string str
9721 = escape_buffer (buf->data (),
9722 std::min (val, max_chars));
9723
9724 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9725 str.c_str ());
9726
9727 if (val > max_chars)
9728 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9729 val - max_chars);
9730
9731 fprintf_unfiltered (gdb_stdlog, "\n");
9732 }
9733
9734 /* Skip the ack char if we're in no-ack mode. */
9735 if (!rs->noack_mode)
9736 remote_serial_write ("+", 1);
9737 if (is_notif != NULL)
9738 *is_notif = 0;
9739 return val;
9740 }
9741
9742 /* If we got a notification, handle it, and go back to looking
9743 for a packet. */
9744 else
9745 {
9746 gdb_assert (c == '%');
9747
9748 if (remote_debug)
9749 {
9750 std::string str = escape_buffer (buf->data (), val);
9751
9752 fprintf_unfiltered (gdb_stdlog,
9753 " Notification received: %s\n",
9754 str.c_str ());
9755 }
9756 if (is_notif != NULL)
9757 *is_notif = 1;
9758
9759 handle_notification (rs->notif_state, buf->data ());
9760
9761 /* Notifications require no acknowledgement. */
9762
9763 if (expecting_notif)
9764 return val;
9765 }
9766 }
9767 }
9768
9769 int
9770 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9771 {
9772 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9773 }
9774
9775 int
9776 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9777 int *is_notif)
9778 {
9779 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9780 }
9781
9782 /* Kill any new fork children of process PID that haven't been
9783 processed by follow_fork. */
9784
9785 void
9786 remote_target::kill_new_fork_children (int pid)
9787 {
9788 remote_state *rs = get_remote_state ();
9789 struct notif_client *notif = &notif_client_stop;
9790
9791 /* Kill the fork child threads of any threads in process PID
9792 that are stopped at a fork event. */
9793 for (thread_info *thread : all_non_exited_threads (this))
9794 {
9795 struct target_waitstatus *ws = &thread->pending_follow;
9796
9797 if (is_pending_fork_parent (ws, pid, thread->ptid))
9798 {
9799 int child_pid = ws->value.related_pid.pid ();
9800 int res;
9801
9802 res = remote_vkill (child_pid);
9803 if (res != 0)
9804 error (_("Can't kill fork child process %d"), child_pid);
9805 }
9806 }
9807
9808 /* Check for any pending fork events (not reported or processed yet)
9809 in process PID and kill those fork child threads as well. */
9810 remote_notif_get_pending_events (notif);
9811 for (auto &event : rs->stop_reply_queue)
9812 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9813 {
9814 int child_pid = event->ws.value.related_pid.pid ();
9815 int res;
9816
9817 res = remote_vkill (child_pid);
9818 if (res != 0)
9819 error (_("Can't kill fork child process %d"), child_pid);
9820 }
9821 }
9822
9823 \f
9824 /* Target hook to kill the current inferior. */
9825
9826 void
9827 remote_target::kill ()
9828 {
9829 int res = -1;
9830 int pid = inferior_ptid.pid ();
9831 struct remote_state *rs = get_remote_state ();
9832
9833 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9834 {
9835 /* If we're stopped while forking and we haven't followed yet,
9836 kill the child task. We need to do this before killing the
9837 parent task because if this is a vfork then the parent will
9838 be sleeping. */
9839 kill_new_fork_children (pid);
9840
9841 res = remote_vkill (pid);
9842 if (res == 0)
9843 {
9844 target_mourn_inferior (inferior_ptid);
9845 return;
9846 }
9847 }
9848
9849 /* If we are in 'target remote' mode and we are killing the only
9850 inferior, then we will tell gdbserver to exit and unpush the
9851 target. */
9852 if (res == -1 && !remote_multi_process_p (rs)
9853 && number_of_live_inferiors (this) == 1)
9854 {
9855 remote_kill_k ();
9856
9857 /* We've killed the remote end, we get to mourn it. If we are
9858 not in extended mode, mourning the inferior also unpushes
9859 remote_ops from the target stack, which closes the remote
9860 connection. */
9861 target_mourn_inferior (inferior_ptid);
9862
9863 return;
9864 }
9865
9866 error (_("Can't kill process"));
9867 }
9868
9869 /* Send a kill request to the target using the 'vKill' packet. */
9870
9871 int
9872 remote_target::remote_vkill (int pid)
9873 {
9874 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9875 return -1;
9876
9877 remote_state *rs = get_remote_state ();
9878
9879 /* Tell the remote target to detach. */
9880 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9881 putpkt (rs->buf);
9882 getpkt (&rs->buf, 0);
9883
9884 switch (packet_ok (rs->buf,
9885 &remote_protocol_packets[PACKET_vKill]))
9886 {
9887 case PACKET_OK:
9888 return 0;
9889 case PACKET_ERROR:
9890 return 1;
9891 case PACKET_UNKNOWN:
9892 return -1;
9893 default:
9894 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9895 }
9896 }
9897
9898 /* Send a kill request to the target using the 'k' packet. */
9899
9900 void
9901 remote_target::remote_kill_k ()
9902 {
9903 /* Catch errors so the user can quit from gdb even when we
9904 aren't on speaking terms with the remote system. */
9905 try
9906 {
9907 putpkt ("k");
9908 }
9909 catch (const gdb_exception_error &ex)
9910 {
9911 if (ex.error == TARGET_CLOSE_ERROR)
9912 {
9913 /* If we got an (EOF) error that caused the target
9914 to go away, then we're done, that's what we wanted.
9915 "k" is susceptible to cause a premature EOF, given
9916 that the remote server isn't actually required to
9917 reply to "k", and it can happen that it doesn't
9918 even get to reply ACK to the "k". */
9919 return;
9920 }
9921
9922 /* Otherwise, something went wrong. We didn't actually kill
9923 the target. Just propagate the exception, and let the
9924 user or higher layers decide what to do. */
9925 throw;
9926 }
9927 }
9928
9929 void
9930 remote_target::mourn_inferior ()
9931 {
9932 struct remote_state *rs = get_remote_state ();
9933
9934 /* We're no longer interested in notification events of an inferior
9935 that exited or was killed/detached. */
9936 discard_pending_stop_replies (current_inferior ());
9937
9938 /* In 'target remote' mode with one inferior, we close the connection. */
9939 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9940 {
9941 remote_unpush_target (this);
9942 return;
9943 }
9944
9945 /* In case we got here due to an error, but we're going to stay
9946 connected. */
9947 rs->waiting_for_stop_reply = 0;
9948
9949 /* If the current general thread belonged to the process we just
9950 detached from or has exited, the remote side current general
9951 thread becomes undefined. Considering a case like this:
9952
9953 - We just got here due to a detach.
9954 - The process that we're detaching from happens to immediately
9955 report a global breakpoint being hit in non-stop mode, in the
9956 same thread we had selected before.
9957 - GDB attaches to this process again.
9958 - This event happens to be the next event we handle.
9959
9960 GDB would consider that the current general thread didn't need to
9961 be set on the stub side (with Hg), since for all it knew,
9962 GENERAL_THREAD hadn't changed.
9963
9964 Notice that although in all-stop mode, the remote server always
9965 sets the current thread to the thread reporting the stop event,
9966 that doesn't happen in non-stop mode; in non-stop, the stub *must
9967 not* change the current thread when reporting a breakpoint hit,
9968 due to the decoupling of event reporting and event handling.
9969
9970 To keep things simple, we always invalidate our notion of the
9971 current thread. */
9972 record_currthread (rs, minus_one_ptid);
9973
9974 /* Call common code to mark the inferior as not running. */
9975 generic_mourn_inferior ();
9976 }
9977
9978 bool
9979 extended_remote_target::supports_disable_randomization ()
9980 {
9981 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9982 }
9983
9984 void
9985 remote_target::extended_remote_disable_randomization (int val)
9986 {
9987 struct remote_state *rs = get_remote_state ();
9988 char *reply;
9989
9990 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9991 "QDisableRandomization:%x", val);
9992 putpkt (rs->buf);
9993 reply = remote_get_noisy_reply ();
9994 if (*reply == '\0')
9995 error (_("Target does not support QDisableRandomization."));
9996 if (strcmp (reply, "OK") != 0)
9997 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9998 }
9999
10000 int
10001 remote_target::extended_remote_run (const std::string &args)
10002 {
10003 struct remote_state *rs = get_remote_state ();
10004 int len;
10005 const char *remote_exec_file = get_remote_exec_file ();
10006
10007 /* If the user has disabled vRun support, or we have detected that
10008 support is not available, do not try it. */
10009 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10010 return -1;
10011
10012 strcpy (rs->buf.data (), "vRun;");
10013 len = strlen (rs->buf.data ());
10014
10015 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10016 error (_("Remote file name too long for run packet"));
10017 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10018 strlen (remote_exec_file));
10019
10020 if (!args.empty ())
10021 {
10022 int i;
10023
10024 gdb_argv argv (args.c_str ());
10025 for (i = 0; argv[i] != NULL; i++)
10026 {
10027 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10028 error (_("Argument list too long for run packet"));
10029 rs->buf[len++] = ';';
10030 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10031 strlen (argv[i]));
10032 }
10033 }
10034
10035 rs->buf[len++] = '\0';
10036
10037 putpkt (rs->buf);
10038 getpkt (&rs->buf, 0);
10039
10040 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10041 {
10042 case PACKET_OK:
10043 /* We have a wait response. All is well. */
10044 return 0;
10045 case PACKET_UNKNOWN:
10046 return -1;
10047 case PACKET_ERROR:
10048 if (remote_exec_file[0] == '\0')
10049 error (_("Running the default executable on the remote target failed; "
10050 "try \"set remote exec-file\"?"));
10051 else
10052 error (_("Running \"%s\" on the remote target failed"),
10053 remote_exec_file);
10054 default:
10055 gdb_assert_not_reached (_("bad switch"));
10056 }
10057 }
10058
10059 /* Helper function to send set/unset environment packets. ACTION is
10060 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10061 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10062 sent. */
10063
10064 void
10065 remote_target::send_environment_packet (const char *action,
10066 const char *packet,
10067 const char *value)
10068 {
10069 remote_state *rs = get_remote_state ();
10070
10071 /* Convert the environment variable to an hex string, which
10072 is the best format to be transmitted over the wire. */
10073 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10074 strlen (value));
10075
10076 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10077 "%s:%s", packet, encoded_value.c_str ());
10078
10079 putpkt (rs->buf);
10080 getpkt (&rs->buf, 0);
10081 if (strcmp (rs->buf.data (), "OK") != 0)
10082 warning (_("Unable to %s environment variable '%s' on remote."),
10083 action, value);
10084 }
10085
10086 /* Helper function to handle the QEnvironment* packets. */
10087
10088 void
10089 remote_target::extended_remote_environment_support ()
10090 {
10091 remote_state *rs = get_remote_state ();
10092
10093 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10094 {
10095 putpkt ("QEnvironmentReset");
10096 getpkt (&rs->buf, 0);
10097 if (strcmp (rs->buf.data (), "OK") != 0)
10098 warning (_("Unable to reset environment on remote."));
10099 }
10100
10101 gdb_environ *e = &current_inferior ()->environment;
10102
10103 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10104 for (const std::string &el : e->user_set_env ())
10105 send_environment_packet ("set", "QEnvironmentHexEncoded",
10106 el.c_str ());
10107
10108 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10109 for (const std::string &el : e->user_unset_env ())
10110 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10111 }
10112
10113 /* Helper function to set the current working directory for the
10114 inferior in the remote target. */
10115
10116 void
10117 remote_target::extended_remote_set_inferior_cwd ()
10118 {
10119 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10120 {
10121 const char *inferior_cwd = get_inferior_cwd ();
10122 remote_state *rs = get_remote_state ();
10123
10124 if (inferior_cwd != NULL)
10125 {
10126 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10127 strlen (inferior_cwd));
10128
10129 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10130 "QSetWorkingDir:%s", hexpath.c_str ());
10131 }
10132 else
10133 {
10134 /* An empty inferior_cwd means that the user wants us to
10135 reset the remote server's inferior's cwd. */
10136 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10137 "QSetWorkingDir:");
10138 }
10139
10140 putpkt (rs->buf);
10141 getpkt (&rs->buf, 0);
10142 if (packet_ok (rs->buf,
10143 &remote_protocol_packets[PACKET_QSetWorkingDir])
10144 != PACKET_OK)
10145 error (_("\
10146 Remote replied unexpectedly while setting the inferior's working\n\
10147 directory: %s"),
10148 rs->buf.data ());
10149
10150 }
10151 }
10152
10153 /* In the extended protocol we want to be able to do things like
10154 "run" and have them basically work as expected. So we need
10155 a special create_inferior function. We support changing the
10156 executable file and the command line arguments, but not the
10157 environment. */
10158
10159 void
10160 extended_remote_target::create_inferior (const char *exec_file,
10161 const std::string &args,
10162 char **env, int from_tty)
10163 {
10164 int run_worked;
10165 char *stop_reply;
10166 struct remote_state *rs = get_remote_state ();
10167 const char *remote_exec_file = get_remote_exec_file ();
10168
10169 /* If running asynchronously, register the target file descriptor
10170 with the event loop. */
10171 if (target_can_async_p ())
10172 target_async (1);
10173
10174 /* Disable address space randomization if requested (and supported). */
10175 if (supports_disable_randomization ())
10176 extended_remote_disable_randomization (disable_randomization);
10177
10178 /* If startup-with-shell is on, we inform gdbserver to start the
10179 remote inferior using a shell. */
10180 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10181 {
10182 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10183 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10184 putpkt (rs->buf);
10185 getpkt (&rs->buf, 0);
10186 if (strcmp (rs->buf.data (), "OK") != 0)
10187 error (_("\
10188 Remote replied unexpectedly while setting startup-with-shell: %s"),
10189 rs->buf.data ());
10190 }
10191
10192 extended_remote_environment_support ();
10193
10194 extended_remote_set_inferior_cwd ();
10195
10196 /* Now restart the remote server. */
10197 run_worked = extended_remote_run (args) != -1;
10198 if (!run_worked)
10199 {
10200 /* vRun was not supported. Fail if we need it to do what the
10201 user requested. */
10202 if (remote_exec_file[0])
10203 error (_("Remote target does not support \"set remote exec-file\""));
10204 if (!args.empty ())
10205 error (_("Remote target does not support \"set args\" or run ARGS"));
10206
10207 /* Fall back to "R". */
10208 extended_remote_restart ();
10209 }
10210
10211 /* vRun's success return is a stop reply. */
10212 stop_reply = run_worked ? rs->buf.data () : NULL;
10213 add_current_inferior_and_thread (stop_reply);
10214
10215 /* Get updated offsets, if the stub uses qOffsets. */
10216 get_offsets ();
10217 }
10218 \f
10219
10220 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10221 the list of conditions (in agent expression bytecode format), if any, the
10222 target needs to evaluate. The output is placed into the packet buffer
10223 started from BUF and ended at BUF_END. */
10224
10225 static int
10226 remote_add_target_side_condition (struct gdbarch *gdbarch,
10227 struct bp_target_info *bp_tgt, char *buf,
10228 char *buf_end)
10229 {
10230 if (bp_tgt->conditions.empty ())
10231 return 0;
10232
10233 buf += strlen (buf);
10234 xsnprintf (buf, buf_end - buf, "%s", ";");
10235 buf++;
10236
10237 /* Send conditions to the target. */
10238 for (agent_expr *aexpr : bp_tgt->conditions)
10239 {
10240 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10241 buf += strlen (buf);
10242 for (int i = 0; i < aexpr->len; ++i)
10243 buf = pack_hex_byte (buf, aexpr->buf[i]);
10244 *buf = '\0';
10245 }
10246 return 0;
10247 }
10248
10249 static void
10250 remote_add_target_side_commands (struct gdbarch *gdbarch,
10251 struct bp_target_info *bp_tgt, char *buf)
10252 {
10253 if (bp_tgt->tcommands.empty ())
10254 return;
10255
10256 buf += strlen (buf);
10257
10258 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10259 buf += strlen (buf);
10260
10261 /* Concatenate all the agent expressions that are commands into the
10262 cmds parameter. */
10263 for (agent_expr *aexpr : bp_tgt->tcommands)
10264 {
10265 sprintf (buf, "X%x,", aexpr->len);
10266 buf += strlen (buf);
10267 for (int i = 0; i < aexpr->len; ++i)
10268 buf = pack_hex_byte (buf, aexpr->buf[i]);
10269 *buf = '\0';
10270 }
10271 }
10272
10273 /* Insert a breakpoint. On targets that have software breakpoint
10274 support, we ask the remote target to do the work; on targets
10275 which don't, we insert a traditional memory breakpoint. */
10276
10277 int
10278 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10279 struct bp_target_info *bp_tgt)
10280 {
10281 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10282 If it succeeds, then set the support to PACKET_ENABLE. If it
10283 fails, and the user has explicitly requested the Z support then
10284 report an error, otherwise, mark it disabled and go on. */
10285
10286 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10287 {
10288 CORE_ADDR addr = bp_tgt->reqstd_address;
10289 struct remote_state *rs;
10290 char *p, *endbuf;
10291
10292 /* Make sure the remote is pointing at the right process, if
10293 necessary. */
10294 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10295 set_general_process ();
10296
10297 rs = get_remote_state ();
10298 p = rs->buf.data ();
10299 endbuf = p + get_remote_packet_size ();
10300
10301 *(p++) = 'Z';
10302 *(p++) = '0';
10303 *(p++) = ',';
10304 addr = (ULONGEST) remote_address_masked (addr);
10305 p += hexnumstr (p, addr);
10306 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10307
10308 if (supports_evaluation_of_breakpoint_conditions ())
10309 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10310
10311 if (can_run_breakpoint_commands ())
10312 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10313
10314 putpkt (rs->buf);
10315 getpkt (&rs->buf, 0);
10316
10317 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10318 {
10319 case PACKET_ERROR:
10320 return -1;
10321 case PACKET_OK:
10322 return 0;
10323 case PACKET_UNKNOWN:
10324 break;
10325 }
10326 }
10327
10328 /* If this breakpoint has target-side commands but this stub doesn't
10329 support Z0 packets, throw error. */
10330 if (!bp_tgt->tcommands.empty ())
10331 throw_error (NOT_SUPPORTED_ERROR, _("\
10332 Target doesn't support breakpoints that have target side commands."));
10333
10334 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10335 }
10336
10337 int
10338 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10339 struct bp_target_info *bp_tgt,
10340 enum remove_bp_reason reason)
10341 {
10342 CORE_ADDR addr = bp_tgt->placed_address;
10343 struct remote_state *rs = get_remote_state ();
10344
10345 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10346 {
10347 char *p = rs->buf.data ();
10348 char *endbuf = p + get_remote_packet_size ();
10349
10350 /* Make sure the remote is pointing at the right process, if
10351 necessary. */
10352 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10353 set_general_process ();
10354
10355 *(p++) = 'z';
10356 *(p++) = '0';
10357 *(p++) = ',';
10358
10359 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10360 p += hexnumstr (p, addr);
10361 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10362
10363 putpkt (rs->buf);
10364 getpkt (&rs->buf, 0);
10365
10366 return (rs->buf[0] == 'E');
10367 }
10368
10369 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10370 }
10371
10372 static enum Z_packet_type
10373 watchpoint_to_Z_packet (int type)
10374 {
10375 switch (type)
10376 {
10377 case hw_write:
10378 return Z_PACKET_WRITE_WP;
10379 break;
10380 case hw_read:
10381 return Z_PACKET_READ_WP;
10382 break;
10383 case hw_access:
10384 return Z_PACKET_ACCESS_WP;
10385 break;
10386 default:
10387 internal_error (__FILE__, __LINE__,
10388 _("hw_bp_to_z: bad watchpoint type %d"), type);
10389 }
10390 }
10391
10392 int
10393 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10394 enum target_hw_bp_type type, struct expression *cond)
10395 {
10396 struct remote_state *rs = get_remote_state ();
10397 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10398 char *p;
10399 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10400
10401 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10402 return 1;
10403
10404 /* Make sure the remote is pointing at the right process, if
10405 necessary. */
10406 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10407 set_general_process ();
10408
10409 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10410 p = strchr (rs->buf.data (), '\0');
10411 addr = remote_address_masked (addr);
10412 p += hexnumstr (p, (ULONGEST) addr);
10413 xsnprintf (p, endbuf - p, ",%x", len);
10414
10415 putpkt (rs->buf);
10416 getpkt (&rs->buf, 0);
10417
10418 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10419 {
10420 case PACKET_ERROR:
10421 return -1;
10422 case PACKET_UNKNOWN:
10423 return 1;
10424 case PACKET_OK:
10425 return 0;
10426 }
10427 internal_error (__FILE__, __LINE__,
10428 _("remote_insert_watchpoint: reached end of function"));
10429 }
10430
10431 bool
10432 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10433 CORE_ADDR start, int length)
10434 {
10435 CORE_ADDR diff = remote_address_masked (addr - start);
10436
10437 return diff < length;
10438 }
10439
10440
10441 int
10442 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10443 enum target_hw_bp_type type, struct expression *cond)
10444 {
10445 struct remote_state *rs = get_remote_state ();
10446 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10447 char *p;
10448 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10449
10450 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10451 return -1;
10452
10453 /* Make sure the remote is pointing at the right process, if
10454 necessary. */
10455 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10456 set_general_process ();
10457
10458 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10459 p = strchr (rs->buf.data (), '\0');
10460 addr = remote_address_masked (addr);
10461 p += hexnumstr (p, (ULONGEST) addr);
10462 xsnprintf (p, endbuf - p, ",%x", len);
10463 putpkt (rs->buf);
10464 getpkt (&rs->buf, 0);
10465
10466 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10467 {
10468 case PACKET_ERROR:
10469 case PACKET_UNKNOWN:
10470 return -1;
10471 case PACKET_OK:
10472 return 0;
10473 }
10474 internal_error (__FILE__, __LINE__,
10475 _("remote_remove_watchpoint: reached end of function"));
10476 }
10477
10478
10479 static int remote_hw_watchpoint_limit = -1;
10480 static int remote_hw_watchpoint_length_limit = -1;
10481 static int remote_hw_breakpoint_limit = -1;
10482
10483 int
10484 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10485 {
10486 if (remote_hw_watchpoint_length_limit == 0)
10487 return 0;
10488 else if (remote_hw_watchpoint_length_limit < 0)
10489 return 1;
10490 else if (len <= remote_hw_watchpoint_length_limit)
10491 return 1;
10492 else
10493 return 0;
10494 }
10495
10496 int
10497 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10498 {
10499 if (type == bp_hardware_breakpoint)
10500 {
10501 if (remote_hw_breakpoint_limit == 0)
10502 return 0;
10503 else if (remote_hw_breakpoint_limit < 0)
10504 return 1;
10505 else if (cnt <= remote_hw_breakpoint_limit)
10506 return 1;
10507 }
10508 else
10509 {
10510 if (remote_hw_watchpoint_limit == 0)
10511 return 0;
10512 else if (remote_hw_watchpoint_limit < 0)
10513 return 1;
10514 else if (ot)
10515 return -1;
10516 else if (cnt <= remote_hw_watchpoint_limit)
10517 return 1;
10518 }
10519 return -1;
10520 }
10521
10522 /* The to_stopped_by_sw_breakpoint method of target remote. */
10523
10524 bool
10525 remote_target::stopped_by_sw_breakpoint ()
10526 {
10527 struct thread_info *thread = inferior_thread ();
10528
10529 return (thread->priv != NULL
10530 && (get_remote_thread_info (thread)->stop_reason
10531 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10532 }
10533
10534 /* The to_supports_stopped_by_sw_breakpoint method of target
10535 remote. */
10536
10537 bool
10538 remote_target::supports_stopped_by_sw_breakpoint ()
10539 {
10540 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10541 }
10542
10543 /* The to_stopped_by_hw_breakpoint method of target remote. */
10544
10545 bool
10546 remote_target::stopped_by_hw_breakpoint ()
10547 {
10548 struct thread_info *thread = inferior_thread ();
10549
10550 return (thread->priv != NULL
10551 && (get_remote_thread_info (thread)->stop_reason
10552 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10553 }
10554
10555 /* The to_supports_stopped_by_hw_breakpoint method of target
10556 remote. */
10557
10558 bool
10559 remote_target::supports_stopped_by_hw_breakpoint ()
10560 {
10561 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10562 }
10563
10564 bool
10565 remote_target::stopped_by_watchpoint ()
10566 {
10567 struct thread_info *thread = inferior_thread ();
10568
10569 return (thread->priv != NULL
10570 && (get_remote_thread_info (thread)->stop_reason
10571 == TARGET_STOPPED_BY_WATCHPOINT));
10572 }
10573
10574 bool
10575 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10576 {
10577 struct thread_info *thread = inferior_thread ();
10578
10579 if (thread->priv != NULL
10580 && (get_remote_thread_info (thread)->stop_reason
10581 == TARGET_STOPPED_BY_WATCHPOINT))
10582 {
10583 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10584 return true;
10585 }
10586
10587 return false;
10588 }
10589
10590
10591 int
10592 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10593 struct bp_target_info *bp_tgt)
10594 {
10595 CORE_ADDR addr = bp_tgt->reqstd_address;
10596 struct remote_state *rs;
10597 char *p, *endbuf;
10598 char *message;
10599
10600 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10601 return -1;
10602
10603 /* Make sure the remote is pointing at the right process, if
10604 necessary. */
10605 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10606 set_general_process ();
10607
10608 rs = get_remote_state ();
10609 p = rs->buf.data ();
10610 endbuf = p + get_remote_packet_size ();
10611
10612 *(p++) = 'Z';
10613 *(p++) = '1';
10614 *(p++) = ',';
10615
10616 addr = remote_address_masked (addr);
10617 p += hexnumstr (p, (ULONGEST) addr);
10618 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10619
10620 if (supports_evaluation_of_breakpoint_conditions ())
10621 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10622
10623 if (can_run_breakpoint_commands ())
10624 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10625
10626 putpkt (rs->buf);
10627 getpkt (&rs->buf, 0);
10628
10629 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10630 {
10631 case PACKET_ERROR:
10632 if (rs->buf[1] == '.')
10633 {
10634 message = strchr (&rs->buf[2], '.');
10635 if (message)
10636 error (_("Remote failure reply: %s"), message + 1);
10637 }
10638 return -1;
10639 case PACKET_UNKNOWN:
10640 return -1;
10641 case PACKET_OK:
10642 return 0;
10643 }
10644 internal_error (__FILE__, __LINE__,
10645 _("remote_insert_hw_breakpoint: reached end of function"));
10646 }
10647
10648
10649 int
10650 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10651 struct bp_target_info *bp_tgt)
10652 {
10653 CORE_ADDR addr;
10654 struct remote_state *rs = get_remote_state ();
10655 char *p = rs->buf.data ();
10656 char *endbuf = p + get_remote_packet_size ();
10657
10658 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10659 return -1;
10660
10661 /* Make sure the remote is pointing at the right process, if
10662 necessary. */
10663 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10664 set_general_process ();
10665
10666 *(p++) = 'z';
10667 *(p++) = '1';
10668 *(p++) = ',';
10669
10670 addr = remote_address_masked (bp_tgt->placed_address);
10671 p += hexnumstr (p, (ULONGEST) addr);
10672 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10673
10674 putpkt (rs->buf);
10675 getpkt (&rs->buf, 0);
10676
10677 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10678 {
10679 case PACKET_ERROR:
10680 case PACKET_UNKNOWN:
10681 return -1;
10682 case PACKET_OK:
10683 return 0;
10684 }
10685 internal_error (__FILE__, __LINE__,
10686 _("remote_remove_hw_breakpoint: reached end of function"));
10687 }
10688
10689 /* Verify memory using the "qCRC:" request. */
10690
10691 int
10692 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10693 {
10694 struct remote_state *rs = get_remote_state ();
10695 unsigned long host_crc, target_crc;
10696 char *tmp;
10697
10698 /* It doesn't make sense to use qCRC if the remote target is
10699 connected but not running. */
10700 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10701 {
10702 enum packet_result result;
10703
10704 /* Make sure the remote is pointing at the right process. */
10705 set_general_process ();
10706
10707 /* FIXME: assumes lma can fit into long. */
10708 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10709 (long) lma, (long) size);
10710 putpkt (rs->buf);
10711
10712 /* Be clever; compute the host_crc before waiting for target
10713 reply. */
10714 host_crc = xcrc32 (data, size, 0xffffffff);
10715
10716 getpkt (&rs->buf, 0);
10717
10718 result = packet_ok (rs->buf,
10719 &remote_protocol_packets[PACKET_qCRC]);
10720 if (result == PACKET_ERROR)
10721 return -1;
10722 else if (result == PACKET_OK)
10723 {
10724 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10725 target_crc = target_crc * 16 + fromhex (*tmp);
10726
10727 return (host_crc == target_crc);
10728 }
10729 }
10730
10731 return simple_verify_memory (this, data, lma, size);
10732 }
10733
10734 /* compare-sections command
10735
10736 With no arguments, compares each loadable section in the exec bfd
10737 with the same memory range on the target, and reports mismatches.
10738 Useful for verifying the image on the target against the exec file. */
10739
10740 static void
10741 compare_sections_command (const char *args, int from_tty)
10742 {
10743 asection *s;
10744 const char *sectname;
10745 bfd_size_type size;
10746 bfd_vma lma;
10747 int matched = 0;
10748 int mismatched = 0;
10749 int res;
10750 int read_only = 0;
10751
10752 if (!exec_bfd)
10753 error (_("command cannot be used without an exec file"));
10754
10755 if (args != NULL && strcmp (args, "-r") == 0)
10756 {
10757 read_only = 1;
10758 args = NULL;
10759 }
10760
10761 for (s = exec_bfd->sections; s; s = s->next)
10762 {
10763 if (!(s->flags & SEC_LOAD))
10764 continue; /* Skip non-loadable section. */
10765
10766 if (read_only && (s->flags & SEC_READONLY) == 0)
10767 continue; /* Skip writeable sections */
10768
10769 size = bfd_section_size (s);
10770 if (size == 0)
10771 continue; /* Skip zero-length section. */
10772
10773 sectname = bfd_section_name (s);
10774 if (args && strcmp (args, sectname) != 0)
10775 continue; /* Not the section selected by user. */
10776
10777 matched = 1; /* Do this section. */
10778 lma = s->lma;
10779
10780 gdb::byte_vector sectdata (size);
10781 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10782
10783 res = target_verify_memory (sectdata.data (), lma, size);
10784
10785 if (res == -1)
10786 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10787 paddress (target_gdbarch (), lma),
10788 paddress (target_gdbarch (), lma + size));
10789
10790 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10791 paddress (target_gdbarch (), lma),
10792 paddress (target_gdbarch (), lma + size));
10793 if (res)
10794 printf_filtered ("matched.\n");
10795 else
10796 {
10797 printf_filtered ("MIS-MATCHED!\n");
10798 mismatched++;
10799 }
10800 }
10801 if (mismatched > 0)
10802 warning (_("One or more sections of the target image does not match\n\
10803 the loaded file\n"));
10804 if (args && !matched)
10805 printf_filtered (_("No loaded section named '%s'.\n"), args);
10806 }
10807
10808 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10809 into remote target. The number of bytes written to the remote
10810 target is returned, or -1 for error. */
10811
10812 target_xfer_status
10813 remote_target::remote_write_qxfer (const char *object_name,
10814 const char *annex, const gdb_byte *writebuf,
10815 ULONGEST offset, LONGEST len,
10816 ULONGEST *xfered_len,
10817 struct packet_config *packet)
10818 {
10819 int i, buf_len;
10820 ULONGEST n;
10821 struct remote_state *rs = get_remote_state ();
10822 int max_size = get_memory_write_packet_size ();
10823
10824 if (packet_config_support (packet) == PACKET_DISABLE)
10825 return TARGET_XFER_E_IO;
10826
10827 /* Insert header. */
10828 i = snprintf (rs->buf.data (), max_size,
10829 "qXfer:%s:write:%s:%s:",
10830 object_name, annex ? annex : "",
10831 phex_nz (offset, sizeof offset));
10832 max_size -= (i + 1);
10833
10834 /* Escape as much data as fits into rs->buf. */
10835 buf_len = remote_escape_output
10836 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10837
10838 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10839 || getpkt_sane (&rs->buf, 0) < 0
10840 || packet_ok (rs->buf, packet) != PACKET_OK)
10841 return TARGET_XFER_E_IO;
10842
10843 unpack_varlen_hex (rs->buf.data (), &n);
10844
10845 *xfered_len = n;
10846 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10847 }
10848
10849 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10850 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10851 number of bytes read is returned, or 0 for EOF, or -1 for error.
10852 The number of bytes read may be less than LEN without indicating an
10853 EOF. PACKET is checked and updated to indicate whether the remote
10854 target supports this object. */
10855
10856 target_xfer_status
10857 remote_target::remote_read_qxfer (const char *object_name,
10858 const char *annex,
10859 gdb_byte *readbuf, ULONGEST offset,
10860 LONGEST len,
10861 ULONGEST *xfered_len,
10862 struct packet_config *packet)
10863 {
10864 struct remote_state *rs = get_remote_state ();
10865 LONGEST i, n, packet_len;
10866
10867 if (packet_config_support (packet) == PACKET_DISABLE)
10868 return TARGET_XFER_E_IO;
10869
10870 /* Check whether we've cached an end-of-object packet that matches
10871 this request. */
10872 if (rs->finished_object)
10873 {
10874 if (strcmp (object_name, rs->finished_object) == 0
10875 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10876 && offset == rs->finished_offset)
10877 return TARGET_XFER_EOF;
10878
10879
10880 /* Otherwise, we're now reading something different. Discard
10881 the cache. */
10882 xfree (rs->finished_object);
10883 xfree (rs->finished_annex);
10884 rs->finished_object = NULL;
10885 rs->finished_annex = NULL;
10886 }
10887
10888 /* Request only enough to fit in a single packet. The actual data
10889 may not, since we don't know how much of it will need to be escaped;
10890 the target is free to respond with slightly less data. We subtract
10891 five to account for the response type and the protocol frame. */
10892 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10893 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10894 "qXfer:%s:read:%s:%s,%s",
10895 object_name, annex ? annex : "",
10896 phex_nz (offset, sizeof offset),
10897 phex_nz (n, sizeof n));
10898 i = putpkt (rs->buf);
10899 if (i < 0)
10900 return TARGET_XFER_E_IO;
10901
10902 rs->buf[0] = '\0';
10903 packet_len = getpkt_sane (&rs->buf, 0);
10904 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10905 return TARGET_XFER_E_IO;
10906
10907 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10908 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10909
10910 /* 'm' means there is (or at least might be) more data after this
10911 batch. That does not make sense unless there's at least one byte
10912 of data in this reply. */
10913 if (rs->buf[0] == 'm' && packet_len == 1)
10914 error (_("Remote qXfer reply contained no data."));
10915
10916 /* Got some data. */
10917 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10918 packet_len - 1, readbuf, n);
10919
10920 /* 'l' is an EOF marker, possibly including a final block of data,
10921 or possibly empty. If we have the final block of a non-empty
10922 object, record this fact to bypass a subsequent partial read. */
10923 if (rs->buf[0] == 'l' && offset + i > 0)
10924 {
10925 rs->finished_object = xstrdup (object_name);
10926 rs->finished_annex = xstrdup (annex ? annex : "");
10927 rs->finished_offset = offset + i;
10928 }
10929
10930 if (i == 0)
10931 return TARGET_XFER_EOF;
10932 else
10933 {
10934 *xfered_len = i;
10935 return TARGET_XFER_OK;
10936 }
10937 }
10938
10939 enum target_xfer_status
10940 remote_target::xfer_partial (enum target_object object,
10941 const char *annex, gdb_byte *readbuf,
10942 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10943 ULONGEST *xfered_len)
10944 {
10945 struct remote_state *rs;
10946 int i;
10947 char *p2;
10948 char query_type;
10949 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10950
10951 set_remote_traceframe ();
10952 set_general_thread (inferior_ptid);
10953
10954 rs = get_remote_state ();
10955
10956 /* Handle memory using the standard memory routines. */
10957 if (object == TARGET_OBJECT_MEMORY)
10958 {
10959 /* If the remote target is connected but not running, we should
10960 pass this request down to a lower stratum (e.g. the executable
10961 file). */
10962 if (!target_has_execution)
10963 return TARGET_XFER_EOF;
10964
10965 if (writebuf != NULL)
10966 return remote_write_bytes (offset, writebuf, len, unit_size,
10967 xfered_len);
10968 else
10969 return remote_read_bytes (offset, readbuf, len, unit_size,
10970 xfered_len);
10971 }
10972
10973 /* Handle extra signal info using qxfer packets. */
10974 if (object == TARGET_OBJECT_SIGNAL_INFO)
10975 {
10976 if (readbuf)
10977 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10978 xfered_len, &remote_protocol_packets
10979 [PACKET_qXfer_siginfo_read]);
10980 else
10981 return remote_write_qxfer ("siginfo", annex,
10982 writebuf, offset, len, xfered_len,
10983 &remote_protocol_packets
10984 [PACKET_qXfer_siginfo_write]);
10985 }
10986
10987 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10988 {
10989 if (readbuf)
10990 return remote_read_qxfer ("statictrace", annex,
10991 readbuf, offset, len, xfered_len,
10992 &remote_protocol_packets
10993 [PACKET_qXfer_statictrace_read]);
10994 else
10995 return TARGET_XFER_E_IO;
10996 }
10997
10998 /* Only handle flash writes. */
10999 if (writebuf != NULL)
11000 {
11001 switch (object)
11002 {
11003 case TARGET_OBJECT_FLASH:
11004 return remote_flash_write (offset, len, xfered_len,
11005 writebuf);
11006
11007 default:
11008 return TARGET_XFER_E_IO;
11009 }
11010 }
11011
11012 /* Map pre-existing objects onto letters. DO NOT do this for new
11013 objects!!! Instead specify new query packets. */
11014 switch (object)
11015 {
11016 case TARGET_OBJECT_AVR:
11017 query_type = 'R';
11018 break;
11019
11020 case TARGET_OBJECT_AUXV:
11021 gdb_assert (annex == NULL);
11022 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11023 xfered_len,
11024 &remote_protocol_packets[PACKET_qXfer_auxv]);
11025
11026 case TARGET_OBJECT_AVAILABLE_FEATURES:
11027 return remote_read_qxfer
11028 ("features", annex, readbuf, offset, len, xfered_len,
11029 &remote_protocol_packets[PACKET_qXfer_features]);
11030
11031 case TARGET_OBJECT_LIBRARIES:
11032 return remote_read_qxfer
11033 ("libraries", annex, readbuf, offset, len, xfered_len,
11034 &remote_protocol_packets[PACKET_qXfer_libraries]);
11035
11036 case TARGET_OBJECT_LIBRARIES_SVR4:
11037 return remote_read_qxfer
11038 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11039 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11040
11041 case TARGET_OBJECT_MEMORY_MAP:
11042 gdb_assert (annex == NULL);
11043 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11044 xfered_len,
11045 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11046
11047 case TARGET_OBJECT_OSDATA:
11048 /* Should only get here if we're connected. */
11049 gdb_assert (rs->remote_desc);
11050 return remote_read_qxfer
11051 ("osdata", annex, readbuf, offset, len, xfered_len,
11052 &remote_protocol_packets[PACKET_qXfer_osdata]);
11053
11054 case TARGET_OBJECT_THREADS:
11055 gdb_assert (annex == NULL);
11056 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11057 xfered_len,
11058 &remote_protocol_packets[PACKET_qXfer_threads]);
11059
11060 case TARGET_OBJECT_TRACEFRAME_INFO:
11061 gdb_assert (annex == NULL);
11062 return remote_read_qxfer
11063 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11064 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11065
11066 case TARGET_OBJECT_FDPIC:
11067 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11068 xfered_len,
11069 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11070
11071 case TARGET_OBJECT_OPENVMS_UIB:
11072 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11073 xfered_len,
11074 &remote_protocol_packets[PACKET_qXfer_uib]);
11075
11076 case TARGET_OBJECT_BTRACE:
11077 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11078 xfered_len,
11079 &remote_protocol_packets[PACKET_qXfer_btrace]);
11080
11081 case TARGET_OBJECT_BTRACE_CONF:
11082 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11083 len, xfered_len,
11084 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11085
11086 case TARGET_OBJECT_EXEC_FILE:
11087 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11088 len, xfered_len,
11089 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11090
11091 default:
11092 return TARGET_XFER_E_IO;
11093 }
11094
11095 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11096 large enough let the caller deal with it. */
11097 if (len < get_remote_packet_size ())
11098 return TARGET_XFER_E_IO;
11099 len = get_remote_packet_size ();
11100
11101 /* Except for querying the minimum buffer size, target must be open. */
11102 if (!rs->remote_desc)
11103 error (_("remote query is only available after target open"));
11104
11105 gdb_assert (annex != NULL);
11106 gdb_assert (readbuf != NULL);
11107
11108 p2 = rs->buf.data ();
11109 *p2++ = 'q';
11110 *p2++ = query_type;
11111
11112 /* We used one buffer char for the remote protocol q command and
11113 another for the query type. As the remote protocol encapsulation
11114 uses 4 chars plus one extra in case we are debugging
11115 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11116 string. */
11117 i = 0;
11118 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11119 {
11120 /* Bad caller may have sent forbidden characters. */
11121 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11122 *p2++ = annex[i];
11123 i++;
11124 }
11125 *p2 = '\0';
11126 gdb_assert (annex[i] == '\0');
11127
11128 i = putpkt (rs->buf);
11129 if (i < 0)
11130 return TARGET_XFER_E_IO;
11131
11132 getpkt (&rs->buf, 0);
11133 strcpy ((char *) readbuf, rs->buf.data ());
11134
11135 *xfered_len = strlen ((char *) readbuf);
11136 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11137 }
11138
11139 /* Implementation of to_get_memory_xfer_limit. */
11140
11141 ULONGEST
11142 remote_target::get_memory_xfer_limit ()
11143 {
11144 return get_memory_write_packet_size ();
11145 }
11146
11147 int
11148 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11149 const gdb_byte *pattern, ULONGEST pattern_len,
11150 CORE_ADDR *found_addrp)
11151 {
11152 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11153 struct remote_state *rs = get_remote_state ();
11154 int max_size = get_memory_write_packet_size ();
11155 struct packet_config *packet =
11156 &remote_protocol_packets[PACKET_qSearch_memory];
11157 /* Number of packet bytes used to encode the pattern;
11158 this could be more than PATTERN_LEN due to escape characters. */
11159 int escaped_pattern_len;
11160 /* Amount of pattern that was encodable in the packet. */
11161 int used_pattern_len;
11162 int i;
11163 int found;
11164 ULONGEST found_addr;
11165
11166 /* Don't go to the target if we don't have to. This is done before
11167 checking packet_config_support to avoid the possibility that a
11168 success for this edge case means the facility works in
11169 general. */
11170 if (pattern_len > search_space_len)
11171 return 0;
11172 if (pattern_len == 0)
11173 {
11174 *found_addrp = start_addr;
11175 return 1;
11176 }
11177
11178 /* If we already know the packet isn't supported, fall back to the simple
11179 way of searching memory. */
11180
11181 if (packet_config_support (packet) == PACKET_DISABLE)
11182 {
11183 /* Target doesn't provided special support, fall back and use the
11184 standard support (copy memory and do the search here). */
11185 return simple_search_memory (this, start_addr, search_space_len,
11186 pattern, pattern_len, found_addrp);
11187 }
11188
11189 /* Make sure the remote is pointing at the right process. */
11190 set_general_process ();
11191
11192 /* Insert header. */
11193 i = snprintf (rs->buf.data (), max_size,
11194 "qSearch:memory:%s;%s;",
11195 phex_nz (start_addr, addr_size),
11196 phex_nz (search_space_len, sizeof (search_space_len)));
11197 max_size -= (i + 1);
11198
11199 /* Escape as much data as fits into rs->buf. */
11200 escaped_pattern_len =
11201 remote_escape_output (pattern, pattern_len, 1,
11202 (gdb_byte *) rs->buf.data () + i,
11203 &used_pattern_len, max_size);
11204
11205 /* Bail if the pattern is too large. */
11206 if (used_pattern_len != pattern_len)
11207 error (_("Pattern is too large to transmit to remote target."));
11208
11209 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11210 || getpkt_sane (&rs->buf, 0) < 0
11211 || packet_ok (rs->buf, packet) != PACKET_OK)
11212 {
11213 /* The request may not have worked because the command is not
11214 supported. If so, fall back to the simple way. */
11215 if (packet_config_support (packet) == PACKET_DISABLE)
11216 {
11217 return simple_search_memory (this, start_addr, search_space_len,
11218 pattern, pattern_len, found_addrp);
11219 }
11220 return -1;
11221 }
11222
11223 if (rs->buf[0] == '0')
11224 found = 0;
11225 else if (rs->buf[0] == '1')
11226 {
11227 found = 1;
11228 if (rs->buf[1] != ',')
11229 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11230 unpack_varlen_hex (&rs->buf[2], &found_addr);
11231 *found_addrp = found_addr;
11232 }
11233 else
11234 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11235
11236 return found;
11237 }
11238
11239 void
11240 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11241 {
11242 struct remote_state *rs = get_remote_state ();
11243 char *p = rs->buf.data ();
11244
11245 if (!rs->remote_desc)
11246 error (_("remote rcmd is only available after target open"));
11247
11248 /* Send a NULL command across as an empty command. */
11249 if (command == NULL)
11250 command = "";
11251
11252 /* The query prefix. */
11253 strcpy (rs->buf.data (), "qRcmd,");
11254 p = strchr (rs->buf.data (), '\0');
11255
11256 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11257 > get_remote_packet_size ())
11258 error (_("\"monitor\" command ``%s'' is too long."), command);
11259
11260 /* Encode the actual command. */
11261 bin2hex ((const gdb_byte *) command, p, strlen (command));
11262
11263 if (putpkt (rs->buf) < 0)
11264 error (_("Communication problem with target."));
11265
11266 /* get/display the response */
11267 while (1)
11268 {
11269 char *buf;
11270
11271 /* XXX - see also remote_get_noisy_reply(). */
11272 QUIT; /* Allow user to bail out with ^C. */
11273 rs->buf[0] = '\0';
11274 if (getpkt_sane (&rs->buf, 0) == -1)
11275 {
11276 /* Timeout. Continue to (try to) read responses.
11277 This is better than stopping with an error, assuming the stub
11278 is still executing the (long) monitor command.
11279 If needed, the user can interrupt gdb using C-c, obtaining
11280 an effect similar to stop on timeout. */
11281 continue;
11282 }
11283 buf = rs->buf.data ();
11284 if (buf[0] == '\0')
11285 error (_("Target does not support this command."));
11286 if (buf[0] == 'O' && buf[1] != 'K')
11287 {
11288 remote_console_output (buf + 1); /* 'O' message from stub. */
11289 continue;
11290 }
11291 if (strcmp (buf, "OK") == 0)
11292 break;
11293 if (strlen (buf) == 3 && buf[0] == 'E'
11294 && isdigit (buf[1]) && isdigit (buf[2]))
11295 {
11296 error (_("Protocol error with Rcmd"));
11297 }
11298 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11299 {
11300 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11301
11302 fputc_unfiltered (c, outbuf);
11303 }
11304 break;
11305 }
11306 }
11307
11308 std::vector<mem_region>
11309 remote_target::memory_map ()
11310 {
11311 std::vector<mem_region> result;
11312 gdb::optional<gdb::char_vector> text
11313 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11314
11315 if (text)
11316 result = parse_memory_map (text->data ());
11317
11318 return result;
11319 }
11320
11321 static void
11322 packet_command (const char *args, int from_tty)
11323 {
11324 remote_target *remote = get_current_remote_target ();
11325
11326 if (remote == nullptr)
11327 error (_("command can only be used with remote target"));
11328
11329 remote->packet_command (args, from_tty);
11330 }
11331
11332 void
11333 remote_target::packet_command (const char *args, int from_tty)
11334 {
11335 if (!args)
11336 error (_("remote-packet command requires packet text as argument"));
11337
11338 puts_filtered ("sending: ");
11339 print_packet (args);
11340 puts_filtered ("\n");
11341 putpkt (args);
11342
11343 remote_state *rs = get_remote_state ();
11344
11345 getpkt (&rs->buf, 0);
11346 puts_filtered ("received: ");
11347 print_packet (rs->buf.data ());
11348 puts_filtered ("\n");
11349 }
11350
11351 #if 0
11352 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11353
11354 static void display_thread_info (struct gdb_ext_thread_info *info);
11355
11356 static void threadset_test_cmd (char *cmd, int tty);
11357
11358 static void threadalive_test (char *cmd, int tty);
11359
11360 static void threadlist_test_cmd (char *cmd, int tty);
11361
11362 int get_and_display_threadinfo (threadref *ref);
11363
11364 static void threadinfo_test_cmd (char *cmd, int tty);
11365
11366 static int thread_display_step (threadref *ref, void *context);
11367
11368 static void threadlist_update_test_cmd (char *cmd, int tty);
11369
11370 static void init_remote_threadtests (void);
11371
11372 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11373
11374 static void
11375 threadset_test_cmd (const char *cmd, int tty)
11376 {
11377 int sample_thread = SAMPLE_THREAD;
11378
11379 printf_filtered (_("Remote threadset test\n"));
11380 set_general_thread (sample_thread);
11381 }
11382
11383
11384 static void
11385 threadalive_test (const char *cmd, int tty)
11386 {
11387 int sample_thread = SAMPLE_THREAD;
11388 int pid = inferior_ptid.pid ();
11389 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11390
11391 if (remote_thread_alive (ptid))
11392 printf_filtered ("PASS: Thread alive test\n");
11393 else
11394 printf_filtered ("FAIL: Thread alive test\n");
11395 }
11396
11397 void output_threadid (char *title, threadref *ref);
11398
11399 void
11400 output_threadid (char *title, threadref *ref)
11401 {
11402 char hexid[20];
11403
11404 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11405 hexid[16] = 0;
11406 printf_filtered ("%s %s\n", title, (&hexid[0]));
11407 }
11408
11409 static void
11410 threadlist_test_cmd (const char *cmd, int tty)
11411 {
11412 int startflag = 1;
11413 threadref nextthread;
11414 int done, result_count;
11415 threadref threadlist[3];
11416
11417 printf_filtered ("Remote Threadlist test\n");
11418 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11419 &result_count, &threadlist[0]))
11420 printf_filtered ("FAIL: threadlist test\n");
11421 else
11422 {
11423 threadref *scan = threadlist;
11424 threadref *limit = scan + result_count;
11425
11426 while (scan < limit)
11427 output_threadid (" thread ", scan++);
11428 }
11429 }
11430
11431 void
11432 display_thread_info (struct gdb_ext_thread_info *info)
11433 {
11434 output_threadid ("Threadid: ", &info->threadid);
11435 printf_filtered ("Name: %s\n ", info->shortname);
11436 printf_filtered ("State: %s\n", info->display);
11437 printf_filtered ("other: %s\n\n", info->more_display);
11438 }
11439
11440 int
11441 get_and_display_threadinfo (threadref *ref)
11442 {
11443 int result;
11444 int set;
11445 struct gdb_ext_thread_info threadinfo;
11446
11447 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11448 | TAG_MOREDISPLAY | TAG_DISPLAY;
11449 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11450 display_thread_info (&threadinfo);
11451 return result;
11452 }
11453
11454 static void
11455 threadinfo_test_cmd (const char *cmd, int tty)
11456 {
11457 int athread = SAMPLE_THREAD;
11458 threadref thread;
11459 int set;
11460
11461 int_to_threadref (&thread, athread);
11462 printf_filtered ("Remote Threadinfo test\n");
11463 if (!get_and_display_threadinfo (&thread))
11464 printf_filtered ("FAIL cannot get thread info\n");
11465 }
11466
11467 static int
11468 thread_display_step (threadref *ref, void *context)
11469 {
11470 /* output_threadid(" threadstep ",ref); *//* simple test */
11471 return get_and_display_threadinfo (ref);
11472 }
11473
11474 static void
11475 threadlist_update_test_cmd (const char *cmd, int tty)
11476 {
11477 printf_filtered ("Remote Threadlist update test\n");
11478 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11479 }
11480
11481 static void
11482 init_remote_threadtests (void)
11483 {
11484 add_com ("tlist", class_obscure, threadlist_test_cmd,
11485 _("Fetch and print the remote list of "
11486 "thread identifiers, one pkt only."));
11487 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11488 _("Fetch and display info about one thread."));
11489 add_com ("tset", class_obscure, threadset_test_cmd,
11490 _("Test setting to a different thread."));
11491 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11492 _("Iterate through updating all remote thread info."));
11493 add_com ("talive", class_obscure, threadalive_test,
11494 _("Remote thread alive test."));
11495 }
11496
11497 #endif /* 0 */
11498
11499 /* Convert a thread ID to a string. */
11500
11501 std::string
11502 remote_target::pid_to_str (ptid_t ptid)
11503 {
11504 struct remote_state *rs = get_remote_state ();
11505
11506 if (ptid == null_ptid)
11507 return normal_pid_to_str (ptid);
11508 else if (ptid.is_pid ())
11509 {
11510 /* Printing an inferior target id. */
11511
11512 /* When multi-process extensions are off, there's no way in the
11513 remote protocol to know the remote process id, if there's any
11514 at all. There's one exception --- when we're connected with
11515 target extended-remote, and we manually attached to a process
11516 with "attach PID". We don't record anywhere a flag that
11517 allows us to distinguish that case from the case of
11518 connecting with extended-remote and the stub already being
11519 attached to a process, and reporting yes to qAttached, hence
11520 no smart special casing here. */
11521 if (!remote_multi_process_p (rs))
11522 return "Remote target";
11523
11524 return normal_pid_to_str (ptid);
11525 }
11526 else
11527 {
11528 if (magic_null_ptid == ptid)
11529 return "Thread <main>";
11530 else if (remote_multi_process_p (rs))
11531 if (ptid.lwp () == 0)
11532 return normal_pid_to_str (ptid);
11533 else
11534 return string_printf ("Thread %d.%ld",
11535 ptid.pid (), ptid.lwp ());
11536 else
11537 return string_printf ("Thread %ld", ptid.lwp ());
11538 }
11539 }
11540
11541 /* Get the address of the thread local variable in OBJFILE which is
11542 stored at OFFSET within the thread local storage for thread PTID. */
11543
11544 CORE_ADDR
11545 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11546 CORE_ADDR offset)
11547 {
11548 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11549 {
11550 struct remote_state *rs = get_remote_state ();
11551 char *p = rs->buf.data ();
11552 char *endp = p + get_remote_packet_size ();
11553 enum packet_result result;
11554
11555 strcpy (p, "qGetTLSAddr:");
11556 p += strlen (p);
11557 p = write_ptid (p, endp, ptid);
11558 *p++ = ',';
11559 p += hexnumstr (p, offset);
11560 *p++ = ',';
11561 p += hexnumstr (p, lm);
11562 *p++ = '\0';
11563
11564 putpkt (rs->buf);
11565 getpkt (&rs->buf, 0);
11566 result = packet_ok (rs->buf,
11567 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11568 if (result == PACKET_OK)
11569 {
11570 ULONGEST addr;
11571
11572 unpack_varlen_hex (rs->buf.data (), &addr);
11573 return addr;
11574 }
11575 else if (result == PACKET_UNKNOWN)
11576 throw_error (TLS_GENERIC_ERROR,
11577 _("Remote target doesn't support qGetTLSAddr packet"));
11578 else
11579 throw_error (TLS_GENERIC_ERROR,
11580 _("Remote target failed to process qGetTLSAddr request"));
11581 }
11582 else
11583 throw_error (TLS_GENERIC_ERROR,
11584 _("TLS not supported or disabled on this target"));
11585 /* Not reached. */
11586 return 0;
11587 }
11588
11589 /* Provide thread local base, i.e. Thread Information Block address.
11590 Returns 1 if ptid is found and thread_local_base is non zero. */
11591
11592 bool
11593 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11594 {
11595 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11596 {
11597 struct remote_state *rs = get_remote_state ();
11598 char *p = rs->buf.data ();
11599 char *endp = p + get_remote_packet_size ();
11600 enum packet_result result;
11601
11602 strcpy (p, "qGetTIBAddr:");
11603 p += strlen (p);
11604 p = write_ptid (p, endp, ptid);
11605 *p++ = '\0';
11606
11607 putpkt (rs->buf);
11608 getpkt (&rs->buf, 0);
11609 result = packet_ok (rs->buf,
11610 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11611 if (result == PACKET_OK)
11612 {
11613 ULONGEST val;
11614 unpack_varlen_hex (rs->buf.data (), &val);
11615 if (addr)
11616 *addr = (CORE_ADDR) val;
11617 return true;
11618 }
11619 else if (result == PACKET_UNKNOWN)
11620 error (_("Remote target doesn't support qGetTIBAddr packet"));
11621 else
11622 error (_("Remote target failed to process qGetTIBAddr request"));
11623 }
11624 else
11625 error (_("qGetTIBAddr not supported or disabled on this target"));
11626 /* Not reached. */
11627 return false;
11628 }
11629
11630 /* Support for inferring a target description based on the current
11631 architecture and the size of a 'g' packet. While the 'g' packet
11632 can have any size (since optional registers can be left off the
11633 end), some sizes are easily recognizable given knowledge of the
11634 approximate architecture. */
11635
11636 struct remote_g_packet_guess
11637 {
11638 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11639 : bytes (bytes_),
11640 tdesc (tdesc_)
11641 {
11642 }
11643
11644 int bytes;
11645 const struct target_desc *tdesc;
11646 };
11647
11648 struct remote_g_packet_data : public allocate_on_obstack
11649 {
11650 std::vector<remote_g_packet_guess> guesses;
11651 };
11652
11653 static struct gdbarch_data *remote_g_packet_data_handle;
11654
11655 static void *
11656 remote_g_packet_data_init (struct obstack *obstack)
11657 {
11658 return new (obstack) remote_g_packet_data;
11659 }
11660
11661 void
11662 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11663 const struct target_desc *tdesc)
11664 {
11665 struct remote_g_packet_data *data
11666 = ((struct remote_g_packet_data *)
11667 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11668
11669 gdb_assert (tdesc != NULL);
11670
11671 for (const remote_g_packet_guess &guess : data->guesses)
11672 if (guess.bytes == bytes)
11673 internal_error (__FILE__, __LINE__,
11674 _("Duplicate g packet description added for size %d"),
11675 bytes);
11676
11677 data->guesses.emplace_back (bytes, tdesc);
11678 }
11679
11680 /* Return true if remote_read_description would do anything on this target
11681 and architecture, false otherwise. */
11682
11683 static bool
11684 remote_read_description_p (struct target_ops *target)
11685 {
11686 struct remote_g_packet_data *data
11687 = ((struct remote_g_packet_data *)
11688 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11689
11690 return !data->guesses.empty ();
11691 }
11692
11693 const struct target_desc *
11694 remote_target::read_description ()
11695 {
11696 struct remote_g_packet_data *data
11697 = ((struct remote_g_packet_data *)
11698 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11699
11700 /* Do not try this during initial connection, when we do not know
11701 whether there is a running but stopped thread. */
11702 if (!target_has_execution || inferior_ptid == null_ptid)
11703 return beneath ()->read_description ();
11704
11705 if (!data->guesses.empty ())
11706 {
11707 int bytes = send_g_packet ();
11708
11709 for (const remote_g_packet_guess &guess : data->guesses)
11710 if (guess.bytes == bytes)
11711 return guess.tdesc;
11712
11713 /* We discard the g packet. A minor optimization would be to
11714 hold on to it, and fill the register cache once we have selected
11715 an architecture, but it's too tricky to do safely. */
11716 }
11717
11718 return beneath ()->read_description ();
11719 }
11720
11721 /* Remote file transfer support. This is host-initiated I/O, not
11722 target-initiated; for target-initiated, see remote-fileio.c. */
11723
11724 /* If *LEFT is at least the length of STRING, copy STRING to
11725 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11726 decrease *LEFT. Otherwise raise an error. */
11727
11728 static void
11729 remote_buffer_add_string (char **buffer, int *left, const char *string)
11730 {
11731 int len = strlen (string);
11732
11733 if (len > *left)
11734 error (_("Packet too long for target."));
11735
11736 memcpy (*buffer, string, len);
11737 *buffer += len;
11738 *left -= len;
11739
11740 /* NUL-terminate the buffer as a convenience, if there is
11741 room. */
11742 if (*left)
11743 **buffer = '\0';
11744 }
11745
11746 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11747 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11748 decrease *LEFT. Otherwise raise an error. */
11749
11750 static void
11751 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11752 int len)
11753 {
11754 if (2 * len > *left)
11755 error (_("Packet too long for target."));
11756
11757 bin2hex (bytes, *buffer, len);
11758 *buffer += 2 * len;
11759 *left -= 2 * len;
11760
11761 /* NUL-terminate the buffer as a convenience, if there is
11762 room. */
11763 if (*left)
11764 **buffer = '\0';
11765 }
11766
11767 /* If *LEFT is large enough, convert VALUE to hex and add it to
11768 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11769 decrease *LEFT. Otherwise raise an error. */
11770
11771 static void
11772 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11773 {
11774 int len = hexnumlen (value);
11775
11776 if (len > *left)
11777 error (_("Packet too long for target."));
11778
11779 hexnumstr (*buffer, value);
11780 *buffer += len;
11781 *left -= len;
11782
11783 /* NUL-terminate the buffer as a convenience, if there is
11784 room. */
11785 if (*left)
11786 **buffer = '\0';
11787 }
11788
11789 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11790 value, *REMOTE_ERRNO to the remote error number or zero if none
11791 was included, and *ATTACHMENT to point to the start of the annex
11792 if any. The length of the packet isn't needed here; there may
11793 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11794
11795 Return 0 if the packet could be parsed, -1 if it could not. If
11796 -1 is returned, the other variables may not be initialized. */
11797
11798 static int
11799 remote_hostio_parse_result (char *buffer, int *retcode,
11800 int *remote_errno, char **attachment)
11801 {
11802 char *p, *p2;
11803
11804 *remote_errno = 0;
11805 *attachment = NULL;
11806
11807 if (buffer[0] != 'F')
11808 return -1;
11809
11810 errno = 0;
11811 *retcode = strtol (&buffer[1], &p, 16);
11812 if (errno != 0 || p == &buffer[1])
11813 return -1;
11814
11815 /* Check for ",errno". */
11816 if (*p == ',')
11817 {
11818 errno = 0;
11819 *remote_errno = strtol (p + 1, &p2, 16);
11820 if (errno != 0 || p + 1 == p2)
11821 return -1;
11822 p = p2;
11823 }
11824
11825 /* Check for ";attachment". If there is no attachment, the
11826 packet should end here. */
11827 if (*p == ';')
11828 {
11829 *attachment = p + 1;
11830 return 0;
11831 }
11832 else if (*p == '\0')
11833 return 0;
11834 else
11835 return -1;
11836 }
11837
11838 /* Send a prepared I/O packet to the target and read its response.
11839 The prepared packet is in the global RS->BUF before this function
11840 is called, and the answer is there when we return.
11841
11842 COMMAND_BYTES is the length of the request to send, which may include
11843 binary data. WHICH_PACKET is the packet configuration to check
11844 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11845 is set to the error number and -1 is returned. Otherwise the value
11846 returned by the function is returned.
11847
11848 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11849 attachment is expected; an error will be reported if there's a
11850 mismatch. If one is found, *ATTACHMENT will be set to point into
11851 the packet buffer and *ATTACHMENT_LEN will be set to the
11852 attachment's length. */
11853
11854 int
11855 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11856 int *remote_errno, char **attachment,
11857 int *attachment_len)
11858 {
11859 struct remote_state *rs = get_remote_state ();
11860 int ret, bytes_read;
11861 char *attachment_tmp;
11862
11863 if (packet_support (which_packet) == PACKET_DISABLE)
11864 {
11865 *remote_errno = FILEIO_ENOSYS;
11866 return -1;
11867 }
11868
11869 putpkt_binary (rs->buf.data (), command_bytes);
11870 bytes_read = getpkt_sane (&rs->buf, 0);
11871
11872 /* If it timed out, something is wrong. Don't try to parse the
11873 buffer. */
11874 if (bytes_read < 0)
11875 {
11876 *remote_errno = FILEIO_EINVAL;
11877 return -1;
11878 }
11879
11880 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11881 {
11882 case PACKET_ERROR:
11883 *remote_errno = FILEIO_EINVAL;
11884 return -1;
11885 case PACKET_UNKNOWN:
11886 *remote_errno = FILEIO_ENOSYS;
11887 return -1;
11888 case PACKET_OK:
11889 break;
11890 }
11891
11892 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11893 &attachment_tmp))
11894 {
11895 *remote_errno = FILEIO_EINVAL;
11896 return -1;
11897 }
11898
11899 /* Make sure we saw an attachment if and only if we expected one. */
11900 if ((attachment_tmp == NULL && attachment != NULL)
11901 || (attachment_tmp != NULL && attachment == NULL))
11902 {
11903 *remote_errno = FILEIO_EINVAL;
11904 return -1;
11905 }
11906
11907 /* If an attachment was found, it must point into the packet buffer;
11908 work out how many bytes there were. */
11909 if (attachment_tmp != NULL)
11910 {
11911 *attachment = attachment_tmp;
11912 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11913 }
11914
11915 return ret;
11916 }
11917
11918 /* See declaration.h. */
11919
11920 void
11921 readahead_cache::invalidate ()
11922 {
11923 this->fd = -1;
11924 }
11925
11926 /* See declaration.h. */
11927
11928 void
11929 readahead_cache::invalidate_fd (int fd)
11930 {
11931 if (this->fd == fd)
11932 this->fd = -1;
11933 }
11934
11935 /* Set the filesystem remote_hostio functions that take FILENAME
11936 arguments will use. Return 0 on success, or -1 if an error
11937 occurs (and set *REMOTE_ERRNO). */
11938
11939 int
11940 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11941 int *remote_errno)
11942 {
11943 struct remote_state *rs = get_remote_state ();
11944 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11945 char *p = rs->buf.data ();
11946 int left = get_remote_packet_size () - 1;
11947 char arg[9];
11948 int ret;
11949
11950 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11951 return 0;
11952
11953 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11954 return 0;
11955
11956 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11957
11958 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11959 remote_buffer_add_string (&p, &left, arg);
11960
11961 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11962 remote_errno, NULL, NULL);
11963
11964 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11965 return 0;
11966
11967 if (ret == 0)
11968 rs->fs_pid = required_pid;
11969
11970 return ret;
11971 }
11972
11973 /* Implementation of to_fileio_open. */
11974
11975 int
11976 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11977 int flags, int mode, int warn_if_slow,
11978 int *remote_errno)
11979 {
11980 struct remote_state *rs = get_remote_state ();
11981 char *p = rs->buf.data ();
11982 int left = get_remote_packet_size () - 1;
11983
11984 if (warn_if_slow)
11985 {
11986 static int warning_issued = 0;
11987
11988 printf_unfiltered (_("Reading %s from remote target...\n"),
11989 filename);
11990
11991 if (!warning_issued)
11992 {
11993 warning (_("File transfers from remote targets can be slow."
11994 " Use \"set sysroot\" to access files locally"
11995 " instead."));
11996 warning_issued = 1;
11997 }
11998 }
11999
12000 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12001 return -1;
12002
12003 remote_buffer_add_string (&p, &left, "vFile:open:");
12004
12005 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12006 strlen (filename));
12007 remote_buffer_add_string (&p, &left, ",");
12008
12009 remote_buffer_add_int (&p, &left, flags);
12010 remote_buffer_add_string (&p, &left, ",");
12011
12012 remote_buffer_add_int (&p, &left, mode);
12013
12014 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12015 remote_errno, NULL, NULL);
12016 }
12017
12018 int
12019 remote_target::fileio_open (struct inferior *inf, const char *filename,
12020 int flags, int mode, int warn_if_slow,
12021 int *remote_errno)
12022 {
12023 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12024 remote_errno);
12025 }
12026
12027 /* Implementation of to_fileio_pwrite. */
12028
12029 int
12030 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12031 ULONGEST offset, int *remote_errno)
12032 {
12033 struct remote_state *rs = get_remote_state ();
12034 char *p = rs->buf.data ();
12035 int left = get_remote_packet_size ();
12036 int out_len;
12037
12038 rs->readahead_cache.invalidate_fd (fd);
12039
12040 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12041
12042 remote_buffer_add_int (&p, &left, fd);
12043 remote_buffer_add_string (&p, &left, ",");
12044
12045 remote_buffer_add_int (&p, &left, offset);
12046 remote_buffer_add_string (&p, &left, ",");
12047
12048 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12049 (get_remote_packet_size ()
12050 - (p - rs->buf.data ())));
12051
12052 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12053 remote_errno, NULL, NULL);
12054 }
12055
12056 int
12057 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12058 ULONGEST offset, int *remote_errno)
12059 {
12060 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12061 }
12062
12063 /* Helper for the implementation of to_fileio_pread. Read the file
12064 from the remote side with vFile:pread. */
12065
12066 int
12067 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12068 ULONGEST offset, int *remote_errno)
12069 {
12070 struct remote_state *rs = get_remote_state ();
12071 char *p = rs->buf.data ();
12072 char *attachment;
12073 int left = get_remote_packet_size ();
12074 int ret, attachment_len;
12075 int read_len;
12076
12077 remote_buffer_add_string (&p, &left, "vFile:pread:");
12078
12079 remote_buffer_add_int (&p, &left, fd);
12080 remote_buffer_add_string (&p, &left, ",");
12081
12082 remote_buffer_add_int (&p, &left, len);
12083 remote_buffer_add_string (&p, &left, ",");
12084
12085 remote_buffer_add_int (&p, &left, offset);
12086
12087 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12088 remote_errno, &attachment,
12089 &attachment_len);
12090
12091 if (ret < 0)
12092 return ret;
12093
12094 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12095 read_buf, len);
12096 if (read_len != ret)
12097 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12098
12099 return ret;
12100 }
12101
12102 /* See declaration.h. */
12103
12104 int
12105 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12106 ULONGEST offset)
12107 {
12108 if (this->fd == fd
12109 && this->offset <= offset
12110 && offset < this->offset + this->bufsize)
12111 {
12112 ULONGEST max = this->offset + this->bufsize;
12113
12114 if (offset + len > max)
12115 len = max - offset;
12116
12117 memcpy (read_buf, this->buf + offset - this->offset, len);
12118 return len;
12119 }
12120
12121 return 0;
12122 }
12123
12124 /* Implementation of to_fileio_pread. */
12125
12126 int
12127 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12128 ULONGEST offset, int *remote_errno)
12129 {
12130 int ret;
12131 struct remote_state *rs = get_remote_state ();
12132 readahead_cache *cache = &rs->readahead_cache;
12133
12134 ret = cache->pread (fd, read_buf, len, offset);
12135 if (ret > 0)
12136 {
12137 cache->hit_count++;
12138
12139 if (remote_debug)
12140 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12141 pulongest (cache->hit_count));
12142 return ret;
12143 }
12144
12145 cache->miss_count++;
12146 if (remote_debug)
12147 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12148 pulongest (cache->miss_count));
12149
12150 cache->fd = fd;
12151 cache->offset = offset;
12152 cache->bufsize = get_remote_packet_size ();
12153 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12154
12155 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12156 cache->offset, remote_errno);
12157 if (ret <= 0)
12158 {
12159 cache->invalidate_fd (fd);
12160 return ret;
12161 }
12162
12163 cache->bufsize = ret;
12164 return cache->pread (fd, read_buf, len, offset);
12165 }
12166
12167 int
12168 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12169 ULONGEST offset, int *remote_errno)
12170 {
12171 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12172 }
12173
12174 /* Implementation of to_fileio_close. */
12175
12176 int
12177 remote_target::remote_hostio_close (int fd, int *remote_errno)
12178 {
12179 struct remote_state *rs = get_remote_state ();
12180 char *p = rs->buf.data ();
12181 int left = get_remote_packet_size () - 1;
12182
12183 rs->readahead_cache.invalidate_fd (fd);
12184
12185 remote_buffer_add_string (&p, &left, "vFile:close:");
12186
12187 remote_buffer_add_int (&p, &left, fd);
12188
12189 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12190 remote_errno, NULL, NULL);
12191 }
12192
12193 int
12194 remote_target::fileio_close (int fd, int *remote_errno)
12195 {
12196 return remote_hostio_close (fd, remote_errno);
12197 }
12198
12199 /* Implementation of to_fileio_unlink. */
12200
12201 int
12202 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12203 int *remote_errno)
12204 {
12205 struct remote_state *rs = get_remote_state ();
12206 char *p = rs->buf.data ();
12207 int left = get_remote_packet_size () - 1;
12208
12209 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12210 return -1;
12211
12212 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12213
12214 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12215 strlen (filename));
12216
12217 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12218 remote_errno, NULL, NULL);
12219 }
12220
12221 int
12222 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12223 int *remote_errno)
12224 {
12225 return remote_hostio_unlink (inf, filename, remote_errno);
12226 }
12227
12228 /* Implementation of to_fileio_readlink. */
12229
12230 gdb::optional<std::string>
12231 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12232 int *remote_errno)
12233 {
12234 struct remote_state *rs = get_remote_state ();
12235 char *p = rs->buf.data ();
12236 char *attachment;
12237 int left = get_remote_packet_size ();
12238 int len, attachment_len;
12239 int read_len;
12240
12241 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12242 return {};
12243
12244 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12245
12246 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12247 strlen (filename));
12248
12249 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12250 remote_errno, &attachment,
12251 &attachment_len);
12252
12253 if (len < 0)
12254 return {};
12255
12256 std::string ret (len, '\0');
12257
12258 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12259 (gdb_byte *) &ret[0], len);
12260 if (read_len != len)
12261 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12262
12263 return ret;
12264 }
12265
12266 /* Implementation of to_fileio_fstat. */
12267
12268 int
12269 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12270 {
12271 struct remote_state *rs = get_remote_state ();
12272 char *p = rs->buf.data ();
12273 int left = get_remote_packet_size ();
12274 int attachment_len, ret;
12275 char *attachment;
12276 struct fio_stat fst;
12277 int read_len;
12278
12279 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12280
12281 remote_buffer_add_int (&p, &left, fd);
12282
12283 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12284 remote_errno, &attachment,
12285 &attachment_len);
12286 if (ret < 0)
12287 {
12288 if (*remote_errno != FILEIO_ENOSYS)
12289 return ret;
12290
12291 /* Strictly we should return -1, ENOSYS here, but when
12292 "set sysroot remote:" was implemented in August 2008
12293 BFD's need for a stat function was sidestepped with
12294 this hack. This was not remedied until March 2015
12295 so we retain the previous behavior to avoid breaking
12296 compatibility.
12297
12298 Note that the memset is a March 2015 addition; older
12299 GDBs set st_size *and nothing else* so the structure
12300 would have garbage in all other fields. This might
12301 break something but retaining the previous behavior
12302 here would be just too wrong. */
12303
12304 memset (st, 0, sizeof (struct stat));
12305 st->st_size = INT_MAX;
12306 return 0;
12307 }
12308
12309 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12310 (gdb_byte *) &fst, sizeof (fst));
12311
12312 if (read_len != ret)
12313 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12314
12315 if (read_len != sizeof (fst))
12316 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12317 read_len, (int) sizeof (fst));
12318
12319 remote_fileio_to_host_stat (&fst, st);
12320
12321 return 0;
12322 }
12323
12324 /* Implementation of to_filesystem_is_local. */
12325
12326 bool
12327 remote_target::filesystem_is_local ()
12328 {
12329 /* Valgrind GDB presents itself as a remote target but works
12330 on the local filesystem: it does not implement remote get
12331 and users are not expected to set a sysroot. To handle
12332 this case we treat the remote filesystem as local if the
12333 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12334 does not support vFile:open. */
12335 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12336 {
12337 enum packet_support ps = packet_support (PACKET_vFile_open);
12338
12339 if (ps == PACKET_SUPPORT_UNKNOWN)
12340 {
12341 int fd, remote_errno;
12342
12343 /* Try opening a file to probe support. The supplied
12344 filename is irrelevant, we only care about whether
12345 the stub recognizes the packet or not. */
12346 fd = remote_hostio_open (NULL, "just probing",
12347 FILEIO_O_RDONLY, 0700, 0,
12348 &remote_errno);
12349
12350 if (fd >= 0)
12351 remote_hostio_close (fd, &remote_errno);
12352
12353 ps = packet_support (PACKET_vFile_open);
12354 }
12355
12356 if (ps == PACKET_DISABLE)
12357 {
12358 static int warning_issued = 0;
12359
12360 if (!warning_issued)
12361 {
12362 warning (_("remote target does not support file"
12363 " transfer, attempting to access files"
12364 " from local filesystem."));
12365 warning_issued = 1;
12366 }
12367
12368 return true;
12369 }
12370 }
12371
12372 return false;
12373 }
12374
12375 static int
12376 remote_fileio_errno_to_host (int errnum)
12377 {
12378 switch (errnum)
12379 {
12380 case FILEIO_EPERM:
12381 return EPERM;
12382 case FILEIO_ENOENT:
12383 return ENOENT;
12384 case FILEIO_EINTR:
12385 return EINTR;
12386 case FILEIO_EIO:
12387 return EIO;
12388 case FILEIO_EBADF:
12389 return EBADF;
12390 case FILEIO_EACCES:
12391 return EACCES;
12392 case FILEIO_EFAULT:
12393 return EFAULT;
12394 case FILEIO_EBUSY:
12395 return EBUSY;
12396 case FILEIO_EEXIST:
12397 return EEXIST;
12398 case FILEIO_ENODEV:
12399 return ENODEV;
12400 case FILEIO_ENOTDIR:
12401 return ENOTDIR;
12402 case FILEIO_EISDIR:
12403 return EISDIR;
12404 case FILEIO_EINVAL:
12405 return EINVAL;
12406 case FILEIO_ENFILE:
12407 return ENFILE;
12408 case FILEIO_EMFILE:
12409 return EMFILE;
12410 case FILEIO_EFBIG:
12411 return EFBIG;
12412 case FILEIO_ENOSPC:
12413 return ENOSPC;
12414 case FILEIO_ESPIPE:
12415 return ESPIPE;
12416 case FILEIO_EROFS:
12417 return EROFS;
12418 case FILEIO_ENOSYS:
12419 return ENOSYS;
12420 case FILEIO_ENAMETOOLONG:
12421 return ENAMETOOLONG;
12422 }
12423 return -1;
12424 }
12425
12426 static char *
12427 remote_hostio_error (int errnum)
12428 {
12429 int host_error = remote_fileio_errno_to_host (errnum);
12430
12431 if (host_error == -1)
12432 error (_("Unknown remote I/O error %d"), errnum);
12433 else
12434 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12435 }
12436
12437 /* A RAII wrapper around a remote file descriptor. */
12438
12439 class scoped_remote_fd
12440 {
12441 public:
12442 scoped_remote_fd (remote_target *remote, int fd)
12443 : m_remote (remote), m_fd (fd)
12444 {
12445 }
12446
12447 ~scoped_remote_fd ()
12448 {
12449 if (m_fd != -1)
12450 {
12451 try
12452 {
12453 int remote_errno;
12454 m_remote->remote_hostio_close (m_fd, &remote_errno);
12455 }
12456 catch (...)
12457 {
12458 /* Swallow exception before it escapes the dtor. If
12459 something goes wrong, likely the connection is gone,
12460 and there's nothing else that can be done. */
12461 }
12462 }
12463 }
12464
12465 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12466
12467 /* Release ownership of the file descriptor, and return it. */
12468 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12469 {
12470 int fd = m_fd;
12471 m_fd = -1;
12472 return fd;
12473 }
12474
12475 /* Return the owned file descriptor. */
12476 int get () const noexcept
12477 {
12478 return m_fd;
12479 }
12480
12481 private:
12482 /* The remote target. */
12483 remote_target *m_remote;
12484
12485 /* The owned remote I/O file descriptor. */
12486 int m_fd;
12487 };
12488
12489 void
12490 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12491 {
12492 remote_target *remote = get_current_remote_target ();
12493
12494 if (remote == nullptr)
12495 error (_("command can only be used with remote target"));
12496
12497 remote->remote_file_put (local_file, remote_file, from_tty);
12498 }
12499
12500 void
12501 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12502 int from_tty)
12503 {
12504 int retcode, remote_errno, bytes, io_size;
12505 int bytes_in_buffer;
12506 int saw_eof;
12507 ULONGEST offset;
12508
12509 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12510 if (file == NULL)
12511 perror_with_name (local_file);
12512
12513 scoped_remote_fd fd
12514 (this, remote_hostio_open (NULL,
12515 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12516 | FILEIO_O_TRUNC),
12517 0700, 0, &remote_errno));
12518 if (fd.get () == -1)
12519 remote_hostio_error (remote_errno);
12520
12521 /* Send up to this many bytes at once. They won't all fit in the
12522 remote packet limit, so we'll transfer slightly fewer. */
12523 io_size = get_remote_packet_size ();
12524 gdb::byte_vector buffer (io_size);
12525
12526 bytes_in_buffer = 0;
12527 saw_eof = 0;
12528 offset = 0;
12529 while (bytes_in_buffer || !saw_eof)
12530 {
12531 if (!saw_eof)
12532 {
12533 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12534 io_size - bytes_in_buffer,
12535 file.get ());
12536 if (bytes == 0)
12537 {
12538 if (ferror (file.get ()))
12539 error (_("Error reading %s."), local_file);
12540 else
12541 {
12542 /* EOF. Unless there is something still in the
12543 buffer from the last iteration, we are done. */
12544 saw_eof = 1;
12545 if (bytes_in_buffer == 0)
12546 break;
12547 }
12548 }
12549 }
12550 else
12551 bytes = 0;
12552
12553 bytes += bytes_in_buffer;
12554 bytes_in_buffer = 0;
12555
12556 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12557 offset, &remote_errno);
12558
12559 if (retcode < 0)
12560 remote_hostio_error (remote_errno);
12561 else if (retcode == 0)
12562 error (_("Remote write of %d bytes returned 0!"), bytes);
12563 else if (retcode < bytes)
12564 {
12565 /* Short write. Save the rest of the read data for the next
12566 write. */
12567 bytes_in_buffer = bytes - retcode;
12568 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12569 }
12570
12571 offset += retcode;
12572 }
12573
12574 if (remote_hostio_close (fd.release (), &remote_errno))
12575 remote_hostio_error (remote_errno);
12576
12577 if (from_tty)
12578 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12579 }
12580
12581 void
12582 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12583 {
12584 remote_target *remote = get_current_remote_target ();
12585
12586 if (remote == nullptr)
12587 error (_("command can only be used with remote target"));
12588
12589 remote->remote_file_get (remote_file, local_file, from_tty);
12590 }
12591
12592 void
12593 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12594 int from_tty)
12595 {
12596 int remote_errno, bytes, io_size;
12597 ULONGEST offset;
12598
12599 scoped_remote_fd fd
12600 (this, remote_hostio_open (NULL,
12601 remote_file, FILEIO_O_RDONLY, 0, 0,
12602 &remote_errno));
12603 if (fd.get () == -1)
12604 remote_hostio_error (remote_errno);
12605
12606 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12607 if (file == NULL)
12608 perror_with_name (local_file);
12609
12610 /* Send up to this many bytes at once. They won't all fit in the
12611 remote packet limit, so we'll transfer slightly fewer. */
12612 io_size = get_remote_packet_size ();
12613 gdb::byte_vector buffer (io_size);
12614
12615 offset = 0;
12616 while (1)
12617 {
12618 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12619 &remote_errno);
12620 if (bytes == 0)
12621 /* Success, but no bytes, means end-of-file. */
12622 break;
12623 if (bytes == -1)
12624 remote_hostio_error (remote_errno);
12625
12626 offset += bytes;
12627
12628 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12629 if (bytes == 0)
12630 perror_with_name (local_file);
12631 }
12632
12633 if (remote_hostio_close (fd.release (), &remote_errno))
12634 remote_hostio_error (remote_errno);
12635
12636 if (from_tty)
12637 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12638 }
12639
12640 void
12641 remote_file_delete (const char *remote_file, int from_tty)
12642 {
12643 remote_target *remote = get_current_remote_target ();
12644
12645 if (remote == nullptr)
12646 error (_("command can only be used with remote target"));
12647
12648 remote->remote_file_delete (remote_file, from_tty);
12649 }
12650
12651 void
12652 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12653 {
12654 int retcode, remote_errno;
12655
12656 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12657 if (retcode == -1)
12658 remote_hostio_error (remote_errno);
12659
12660 if (from_tty)
12661 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12662 }
12663
12664 static void
12665 remote_put_command (const char *args, int from_tty)
12666 {
12667 if (args == NULL)
12668 error_no_arg (_("file to put"));
12669
12670 gdb_argv argv (args);
12671 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12672 error (_("Invalid parameters to remote put"));
12673
12674 remote_file_put (argv[0], argv[1], from_tty);
12675 }
12676
12677 static void
12678 remote_get_command (const char *args, int from_tty)
12679 {
12680 if (args == NULL)
12681 error_no_arg (_("file to get"));
12682
12683 gdb_argv argv (args);
12684 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12685 error (_("Invalid parameters to remote get"));
12686
12687 remote_file_get (argv[0], argv[1], from_tty);
12688 }
12689
12690 static void
12691 remote_delete_command (const char *args, int from_tty)
12692 {
12693 if (args == NULL)
12694 error_no_arg (_("file to delete"));
12695
12696 gdb_argv argv (args);
12697 if (argv[0] == NULL || argv[1] != NULL)
12698 error (_("Invalid parameters to remote delete"));
12699
12700 remote_file_delete (argv[0], from_tty);
12701 }
12702
12703 bool
12704 remote_target::can_execute_reverse ()
12705 {
12706 if (packet_support (PACKET_bs) == PACKET_ENABLE
12707 || packet_support (PACKET_bc) == PACKET_ENABLE)
12708 return true;
12709 else
12710 return false;
12711 }
12712
12713 bool
12714 remote_target::supports_non_stop ()
12715 {
12716 return true;
12717 }
12718
12719 bool
12720 remote_target::supports_disable_randomization ()
12721 {
12722 /* Only supported in extended mode. */
12723 return false;
12724 }
12725
12726 bool
12727 remote_target::supports_multi_process ()
12728 {
12729 struct remote_state *rs = get_remote_state ();
12730
12731 return remote_multi_process_p (rs);
12732 }
12733
12734 static int
12735 remote_supports_cond_tracepoints ()
12736 {
12737 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12738 }
12739
12740 bool
12741 remote_target::supports_evaluation_of_breakpoint_conditions ()
12742 {
12743 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12744 }
12745
12746 static int
12747 remote_supports_fast_tracepoints ()
12748 {
12749 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12750 }
12751
12752 static int
12753 remote_supports_static_tracepoints ()
12754 {
12755 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12756 }
12757
12758 static int
12759 remote_supports_install_in_trace ()
12760 {
12761 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12762 }
12763
12764 bool
12765 remote_target::supports_enable_disable_tracepoint ()
12766 {
12767 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12768 == PACKET_ENABLE);
12769 }
12770
12771 bool
12772 remote_target::supports_string_tracing ()
12773 {
12774 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12775 }
12776
12777 bool
12778 remote_target::can_run_breakpoint_commands ()
12779 {
12780 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12781 }
12782
12783 void
12784 remote_target::trace_init ()
12785 {
12786 struct remote_state *rs = get_remote_state ();
12787
12788 putpkt ("QTinit");
12789 remote_get_noisy_reply ();
12790 if (strcmp (rs->buf.data (), "OK") != 0)
12791 error (_("Target does not support this command."));
12792 }
12793
12794 /* Recursive routine to walk through command list including loops, and
12795 download packets for each command. */
12796
12797 void
12798 remote_target::remote_download_command_source (int num, ULONGEST addr,
12799 struct command_line *cmds)
12800 {
12801 struct remote_state *rs = get_remote_state ();
12802 struct command_line *cmd;
12803
12804 for (cmd = cmds; cmd; cmd = cmd->next)
12805 {
12806 QUIT; /* Allow user to bail out with ^C. */
12807 strcpy (rs->buf.data (), "QTDPsrc:");
12808 encode_source_string (num, addr, "cmd", cmd->line,
12809 rs->buf.data () + strlen (rs->buf.data ()),
12810 rs->buf.size () - strlen (rs->buf.data ()));
12811 putpkt (rs->buf);
12812 remote_get_noisy_reply ();
12813 if (strcmp (rs->buf.data (), "OK"))
12814 warning (_("Target does not support source download."));
12815
12816 if (cmd->control_type == while_control
12817 || cmd->control_type == while_stepping_control)
12818 {
12819 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12820
12821 QUIT; /* Allow user to bail out with ^C. */
12822 strcpy (rs->buf.data (), "QTDPsrc:");
12823 encode_source_string (num, addr, "cmd", "end",
12824 rs->buf.data () + strlen (rs->buf.data ()),
12825 rs->buf.size () - strlen (rs->buf.data ()));
12826 putpkt (rs->buf);
12827 remote_get_noisy_reply ();
12828 if (strcmp (rs->buf.data (), "OK"))
12829 warning (_("Target does not support source download."));
12830 }
12831 }
12832 }
12833
12834 void
12835 remote_target::download_tracepoint (struct bp_location *loc)
12836 {
12837 CORE_ADDR tpaddr;
12838 char addrbuf[40];
12839 std::vector<std::string> tdp_actions;
12840 std::vector<std::string> stepping_actions;
12841 char *pkt;
12842 struct breakpoint *b = loc->owner;
12843 struct tracepoint *t = (struct tracepoint *) b;
12844 struct remote_state *rs = get_remote_state ();
12845 int ret;
12846 const char *err_msg = _("Tracepoint packet too large for target.");
12847 size_t size_left;
12848
12849 /* We use a buffer other than rs->buf because we'll build strings
12850 across multiple statements, and other statements in between could
12851 modify rs->buf. */
12852 gdb::char_vector buf (get_remote_packet_size ());
12853
12854 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12855
12856 tpaddr = loc->address;
12857 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12858 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12859 b->number, addrbuf, /* address */
12860 (b->enable_state == bp_enabled ? 'E' : 'D'),
12861 t->step_count, t->pass_count);
12862
12863 if (ret < 0 || ret >= buf.size ())
12864 error ("%s", err_msg);
12865
12866 /* Fast tracepoints are mostly handled by the target, but we can
12867 tell the target how big of an instruction block should be moved
12868 around. */
12869 if (b->type == bp_fast_tracepoint)
12870 {
12871 /* Only test for support at download time; we may not know
12872 target capabilities at definition time. */
12873 if (remote_supports_fast_tracepoints ())
12874 {
12875 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12876 NULL))
12877 {
12878 size_left = buf.size () - strlen (buf.data ());
12879 ret = snprintf (buf.data () + strlen (buf.data ()),
12880 size_left, ":F%x",
12881 gdb_insn_length (loc->gdbarch, tpaddr));
12882
12883 if (ret < 0 || ret >= size_left)
12884 error ("%s", err_msg);
12885 }
12886 else
12887 /* If it passed validation at definition but fails now,
12888 something is very wrong. */
12889 internal_error (__FILE__, __LINE__,
12890 _("Fast tracepoint not "
12891 "valid during download"));
12892 }
12893 else
12894 /* Fast tracepoints are functionally identical to regular
12895 tracepoints, so don't take lack of support as a reason to
12896 give up on the trace run. */
12897 warning (_("Target does not support fast tracepoints, "
12898 "downloading %d as regular tracepoint"), b->number);
12899 }
12900 else if (b->type == bp_static_tracepoint)
12901 {
12902 /* Only test for support at download time; we may not know
12903 target capabilities at definition time. */
12904 if (remote_supports_static_tracepoints ())
12905 {
12906 struct static_tracepoint_marker marker;
12907
12908 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12909 {
12910 size_left = buf.size () - strlen (buf.data ());
12911 ret = snprintf (buf.data () + strlen (buf.data ()),
12912 size_left, ":S");
12913
12914 if (ret < 0 || ret >= size_left)
12915 error ("%s", err_msg);
12916 }
12917 else
12918 error (_("Static tracepoint not valid during download"));
12919 }
12920 else
12921 /* Fast tracepoints are functionally identical to regular
12922 tracepoints, so don't take lack of support as a reason
12923 to give up on the trace run. */
12924 error (_("Target does not support static tracepoints"));
12925 }
12926 /* If the tracepoint has a conditional, make it into an agent
12927 expression and append to the definition. */
12928 if (loc->cond)
12929 {
12930 /* Only test support at download time, we may not know target
12931 capabilities at definition time. */
12932 if (remote_supports_cond_tracepoints ())
12933 {
12934 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12935 loc->cond.get ());
12936
12937 size_left = buf.size () - strlen (buf.data ());
12938
12939 ret = snprintf (buf.data () + strlen (buf.data ()),
12940 size_left, ":X%x,", aexpr->len);
12941
12942 if (ret < 0 || ret >= size_left)
12943 error ("%s", err_msg);
12944
12945 size_left = buf.size () - strlen (buf.data ());
12946
12947 /* Two bytes to encode each aexpr byte, plus the terminating
12948 null byte. */
12949 if (aexpr->len * 2 + 1 > size_left)
12950 error ("%s", err_msg);
12951
12952 pkt = buf.data () + strlen (buf.data ());
12953
12954 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12955 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12956 *pkt = '\0';
12957 }
12958 else
12959 warning (_("Target does not support conditional tracepoints, "
12960 "ignoring tp %d cond"), b->number);
12961 }
12962
12963 if (b->commands || *default_collect)
12964 {
12965 size_left = buf.size () - strlen (buf.data ());
12966
12967 ret = snprintf (buf.data () + strlen (buf.data ()),
12968 size_left, "-");
12969
12970 if (ret < 0 || ret >= size_left)
12971 error ("%s", err_msg);
12972 }
12973
12974 putpkt (buf.data ());
12975 remote_get_noisy_reply ();
12976 if (strcmp (rs->buf.data (), "OK"))
12977 error (_("Target does not support tracepoints."));
12978
12979 /* do_single_steps (t); */
12980 for (auto action_it = tdp_actions.begin ();
12981 action_it != tdp_actions.end (); action_it++)
12982 {
12983 QUIT; /* Allow user to bail out with ^C. */
12984
12985 bool has_more = ((action_it + 1) != tdp_actions.end ()
12986 || !stepping_actions.empty ());
12987
12988 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12989 b->number, addrbuf, /* address */
12990 action_it->c_str (),
12991 has_more ? '-' : 0);
12992
12993 if (ret < 0 || ret >= buf.size ())
12994 error ("%s", err_msg);
12995
12996 putpkt (buf.data ());
12997 remote_get_noisy_reply ();
12998 if (strcmp (rs->buf.data (), "OK"))
12999 error (_("Error on target while setting tracepoints."));
13000 }
13001
13002 for (auto action_it = stepping_actions.begin ();
13003 action_it != stepping_actions.end (); action_it++)
13004 {
13005 QUIT; /* Allow user to bail out with ^C. */
13006
13007 bool is_first = action_it == stepping_actions.begin ();
13008 bool has_more = (action_it + 1) != stepping_actions.end ();
13009
13010 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13011 b->number, addrbuf, /* address */
13012 is_first ? "S" : "",
13013 action_it->c_str (),
13014 has_more ? "-" : "");
13015
13016 if (ret < 0 || ret >= buf.size ())
13017 error ("%s", err_msg);
13018
13019 putpkt (buf.data ());
13020 remote_get_noisy_reply ();
13021 if (strcmp (rs->buf.data (), "OK"))
13022 error (_("Error on target while setting tracepoints."));
13023 }
13024
13025 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13026 {
13027 if (b->location != NULL)
13028 {
13029 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13030
13031 if (ret < 0 || ret >= buf.size ())
13032 error ("%s", err_msg);
13033
13034 encode_source_string (b->number, loc->address, "at",
13035 event_location_to_string (b->location.get ()),
13036 buf.data () + strlen (buf.data ()),
13037 buf.size () - strlen (buf.data ()));
13038 putpkt (buf.data ());
13039 remote_get_noisy_reply ();
13040 if (strcmp (rs->buf.data (), "OK"))
13041 warning (_("Target does not support source download."));
13042 }
13043 if (b->cond_string)
13044 {
13045 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13046
13047 if (ret < 0 || ret >= buf.size ())
13048 error ("%s", err_msg);
13049
13050 encode_source_string (b->number, loc->address,
13051 "cond", b->cond_string,
13052 buf.data () + strlen (buf.data ()),
13053 buf.size () - strlen (buf.data ()));
13054 putpkt (buf.data ());
13055 remote_get_noisy_reply ();
13056 if (strcmp (rs->buf.data (), "OK"))
13057 warning (_("Target does not support source download."));
13058 }
13059 remote_download_command_source (b->number, loc->address,
13060 breakpoint_commands (b));
13061 }
13062 }
13063
13064 bool
13065 remote_target::can_download_tracepoint ()
13066 {
13067 struct remote_state *rs = get_remote_state ();
13068 struct trace_status *ts;
13069 int status;
13070
13071 /* Don't try to install tracepoints until we've relocated our
13072 symbols, and fetched and merged the target's tracepoint list with
13073 ours. */
13074 if (rs->starting_up)
13075 return false;
13076
13077 ts = current_trace_status ();
13078 status = get_trace_status (ts);
13079
13080 if (status == -1 || !ts->running_known || !ts->running)
13081 return false;
13082
13083 /* If we are in a tracing experiment, but remote stub doesn't support
13084 installing tracepoint in trace, we have to return. */
13085 if (!remote_supports_install_in_trace ())
13086 return false;
13087
13088 return true;
13089 }
13090
13091
13092 void
13093 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13094 {
13095 struct remote_state *rs = get_remote_state ();
13096 char *p;
13097
13098 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13099 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13100 tsv.builtin);
13101 p = rs->buf.data () + strlen (rs->buf.data ());
13102 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13103 >= get_remote_packet_size ())
13104 error (_("Trace state variable name too long for tsv definition packet"));
13105 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13106 *p++ = '\0';
13107 putpkt (rs->buf);
13108 remote_get_noisy_reply ();
13109 if (rs->buf[0] == '\0')
13110 error (_("Target does not support this command."));
13111 if (strcmp (rs->buf.data (), "OK") != 0)
13112 error (_("Error on target while downloading trace state variable."));
13113 }
13114
13115 void
13116 remote_target::enable_tracepoint (struct bp_location *location)
13117 {
13118 struct remote_state *rs = get_remote_state ();
13119
13120 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13121 location->owner->number,
13122 phex (location->address, sizeof (CORE_ADDR)));
13123 putpkt (rs->buf);
13124 remote_get_noisy_reply ();
13125 if (rs->buf[0] == '\0')
13126 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13127 if (strcmp (rs->buf.data (), "OK") != 0)
13128 error (_("Error on target while enabling tracepoint."));
13129 }
13130
13131 void
13132 remote_target::disable_tracepoint (struct bp_location *location)
13133 {
13134 struct remote_state *rs = get_remote_state ();
13135
13136 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13137 location->owner->number,
13138 phex (location->address, sizeof (CORE_ADDR)));
13139 putpkt (rs->buf);
13140 remote_get_noisy_reply ();
13141 if (rs->buf[0] == '\0')
13142 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13143 if (strcmp (rs->buf.data (), "OK") != 0)
13144 error (_("Error on target while disabling tracepoint."));
13145 }
13146
13147 void
13148 remote_target::trace_set_readonly_regions ()
13149 {
13150 asection *s;
13151 bfd_size_type size;
13152 bfd_vma vma;
13153 int anysecs = 0;
13154 int offset = 0;
13155
13156 if (!exec_bfd)
13157 return; /* No information to give. */
13158
13159 struct remote_state *rs = get_remote_state ();
13160
13161 strcpy (rs->buf.data (), "QTro");
13162 offset = strlen (rs->buf.data ());
13163 for (s = exec_bfd->sections; s; s = s->next)
13164 {
13165 char tmp1[40], tmp2[40];
13166 int sec_length;
13167
13168 if ((s->flags & SEC_LOAD) == 0 ||
13169 /* (s->flags & SEC_CODE) == 0 || */
13170 (s->flags & SEC_READONLY) == 0)
13171 continue;
13172
13173 anysecs = 1;
13174 vma = bfd_section_vma (s);
13175 size = bfd_section_size (s);
13176 sprintf_vma (tmp1, vma);
13177 sprintf_vma (tmp2, vma + size);
13178 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13179 if (offset + sec_length + 1 > rs->buf.size ())
13180 {
13181 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13182 warning (_("\
13183 Too many sections for read-only sections definition packet."));
13184 break;
13185 }
13186 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13187 tmp1, tmp2);
13188 offset += sec_length;
13189 }
13190 if (anysecs)
13191 {
13192 putpkt (rs->buf);
13193 getpkt (&rs->buf, 0);
13194 }
13195 }
13196
13197 void
13198 remote_target::trace_start ()
13199 {
13200 struct remote_state *rs = get_remote_state ();
13201
13202 putpkt ("QTStart");
13203 remote_get_noisy_reply ();
13204 if (rs->buf[0] == '\0')
13205 error (_("Target does not support this command."));
13206 if (strcmp (rs->buf.data (), "OK") != 0)
13207 error (_("Bogus reply from target: %s"), rs->buf.data ());
13208 }
13209
13210 int
13211 remote_target::get_trace_status (struct trace_status *ts)
13212 {
13213 /* Initialize it just to avoid a GCC false warning. */
13214 char *p = NULL;
13215 enum packet_result result;
13216 struct remote_state *rs = get_remote_state ();
13217
13218 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13219 return -1;
13220
13221 /* FIXME we need to get register block size some other way. */
13222 trace_regblock_size
13223 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13224
13225 putpkt ("qTStatus");
13226
13227 try
13228 {
13229 p = remote_get_noisy_reply ();
13230 }
13231 catch (const gdb_exception_error &ex)
13232 {
13233 if (ex.error != TARGET_CLOSE_ERROR)
13234 {
13235 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13236 return -1;
13237 }
13238 throw;
13239 }
13240
13241 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13242
13243 /* If the remote target doesn't do tracing, flag it. */
13244 if (result == PACKET_UNKNOWN)
13245 return -1;
13246
13247 /* We're working with a live target. */
13248 ts->filename = NULL;
13249
13250 if (*p++ != 'T')
13251 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13252
13253 /* Function 'parse_trace_status' sets default value of each field of
13254 'ts' at first, so we don't have to do it here. */
13255 parse_trace_status (p, ts);
13256
13257 return ts->running;
13258 }
13259
13260 void
13261 remote_target::get_tracepoint_status (struct breakpoint *bp,
13262 struct uploaded_tp *utp)
13263 {
13264 struct remote_state *rs = get_remote_state ();
13265 char *reply;
13266 struct bp_location *loc;
13267 struct tracepoint *tp = (struct tracepoint *) bp;
13268 size_t size = get_remote_packet_size ();
13269
13270 if (tp)
13271 {
13272 tp->hit_count = 0;
13273 tp->traceframe_usage = 0;
13274 for (loc = tp->loc; loc; loc = loc->next)
13275 {
13276 /* If the tracepoint was never downloaded, don't go asking for
13277 any status. */
13278 if (tp->number_on_target == 0)
13279 continue;
13280 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13281 phex_nz (loc->address, 0));
13282 putpkt (rs->buf);
13283 reply = remote_get_noisy_reply ();
13284 if (reply && *reply)
13285 {
13286 if (*reply == 'V')
13287 parse_tracepoint_status (reply + 1, bp, utp);
13288 }
13289 }
13290 }
13291 else if (utp)
13292 {
13293 utp->hit_count = 0;
13294 utp->traceframe_usage = 0;
13295 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13296 phex_nz (utp->addr, 0));
13297 putpkt (rs->buf);
13298 reply = remote_get_noisy_reply ();
13299 if (reply && *reply)
13300 {
13301 if (*reply == 'V')
13302 parse_tracepoint_status (reply + 1, bp, utp);
13303 }
13304 }
13305 }
13306
13307 void
13308 remote_target::trace_stop ()
13309 {
13310 struct remote_state *rs = get_remote_state ();
13311
13312 putpkt ("QTStop");
13313 remote_get_noisy_reply ();
13314 if (rs->buf[0] == '\0')
13315 error (_("Target does not support this command."));
13316 if (strcmp (rs->buf.data (), "OK") != 0)
13317 error (_("Bogus reply from target: %s"), rs->buf.data ());
13318 }
13319
13320 int
13321 remote_target::trace_find (enum trace_find_type type, int num,
13322 CORE_ADDR addr1, CORE_ADDR addr2,
13323 int *tpp)
13324 {
13325 struct remote_state *rs = get_remote_state ();
13326 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13327 char *p, *reply;
13328 int target_frameno = -1, target_tracept = -1;
13329
13330 /* Lookups other than by absolute frame number depend on the current
13331 trace selected, so make sure it is correct on the remote end
13332 first. */
13333 if (type != tfind_number)
13334 set_remote_traceframe ();
13335
13336 p = rs->buf.data ();
13337 strcpy (p, "QTFrame:");
13338 p = strchr (p, '\0');
13339 switch (type)
13340 {
13341 case tfind_number:
13342 xsnprintf (p, endbuf - p, "%x", num);
13343 break;
13344 case tfind_pc:
13345 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13346 break;
13347 case tfind_tp:
13348 xsnprintf (p, endbuf - p, "tdp:%x", num);
13349 break;
13350 case tfind_range:
13351 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13352 phex_nz (addr2, 0));
13353 break;
13354 case tfind_outside:
13355 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13356 phex_nz (addr2, 0));
13357 break;
13358 default:
13359 error (_("Unknown trace find type %d"), type);
13360 }
13361
13362 putpkt (rs->buf);
13363 reply = remote_get_noisy_reply ();
13364 if (*reply == '\0')
13365 error (_("Target does not support this command."));
13366
13367 while (reply && *reply)
13368 switch (*reply)
13369 {
13370 case 'F':
13371 p = ++reply;
13372 target_frameno = (int) strtol (p, &reply, 16);
13373 if (reply == p)
13374 error (_("Unable to parse trace frame number"));
13375 /* Don't update our remote traceframe number cache on failure
13376 to select a remote traceframe. */
13377 if (target_frameno == -1)
13378 return -1;
13379 break;
13380 case 'T':
13381 p = ++reply;
13382 target_tracept = (int) strtol (p, &reply, 16);
13383 if (reply == p)
13384 error (_("Unable to parse tracepoint number"));
13385 break;
13386 case 'O': /* "OK"? */
13387 if (reply[1] == 'K' && reply[2] == '\0')
13388 reply += 2;
13389 else
13390 error (_("Bogus reply from target: %s"), reply);
13391 break;
13392 default:
13393 error (_("Bogus reply from target: %s"), reply);
13394 }
13395 if (tpp)
13396 *tpp = target_tracept;
13397
13398 rs->remote_traceframe_number = target_frameno;
13399 return target_frameno;
13400 }
13401
13402 bool
13403 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13404 {
13405 struct remote_state *rs = get_remote_state ();
13406 char *reply;
13407 ULONGEST uval;
13408
13409 set_remote_traceframe ();
13410
13411 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13412 putpkt (rs->buf);
13413 reply = remote_get_noisy_reply ();
13414 if (reply && *reply)
13415 {
13416 if (*reply == 'V')
13417 {
13418 unpack_varlen_hex (reply + 1, &uval);
13419 *val = (LONGEST) uval;
13420 return true;
13421 }
13422 }
13423 return false;
13424 }
13425
13426 int
13427 remote_target::save_trace_data (const char *filename)
13428 {
13429 struct remote_state *rs = get_remote_state ();
13430 char *p, *reply;
13431
13432 p = rs->buf.data ();
13433 strcpy (p, "QTSave:");
13434 p += strlen (p);
13435 if ((p - rs->buf.data ()) + strlen (filename) * 2
13436 >= get_remote_packet_size ())
13437 error (_("Remote file name too long for trace save packet"));
13438 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13439 *p++ = '\0';
13440 putpkt (rs->buf);
13441 reply = remote_get_noisy_reply ();
13442 if (*reply == '\0')
13443 error (_("Target does not support this command."));
13444 if (strcmp (reply, "OK") != 0)
13445 error (_("Bogus reply from target: %s"), reply);
13446 return 0;
13447 }
13448
13449 /* This is basically a memory transfer, but needs to be its own packet
13450 because we don't know how the target actually organizes its trace
13451 memory, plus we want to be able to ask for as much as possible, but
13452 not be unhappy if we don't get as much as we ask for. */
13453
13454 LONGEST
13455 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13456 {
13457 struct remote_state *rs = get_remote_state ();
13458 char *reply;
13459 char *p;
13460 int rslt;
13461
13462 p = rs->buf.data ();
13463 strcpy (p, "qTBuffer:");
13464 p += strlen (p);
13465 p += hexnumstr (p, offset);
13466 *p++ = ',';
13467 p += hexnumstr (p, len);
13468 *p++ = '\0';
13469
13470 putpkt (rs->buf);
13471 reply = remote_get_noisy_reply ();
13472 if (reply && *reply)
13473 {
13474 /* 'l' by itself means we're at the end of the buffer and
13475 there is nothing more to get. */
13476 if (*reply == 'l')
13477 return 0;
13478
13479 /* Convert the reply into binary. Limit the number of bytes to
13480 convert according to our passed-in buffer size, rather than
13481 what was returned in the packet; if the target is
13482 unexpectedly generous and gives us a bigger reply than we
13483 asked for, we don't want to crash. */
13484 rslt = hex2bin (reply, buf, len);
13485 return rslt;
13486 }
13487
13488 /* Something went wrong, flag as an error. */
13489 return -1;
13490 }
13491
13492 void
13493 remote_target::set_disconnected_tracing (int val)
13494 {
13495 struct remote_state *rs = get_remote_state ();
13496
13497 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13498 {
13499 char *reply;
13500
13501 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13502 "QTDisconnected:%x", val);
13503 putpkt (rs->buf);
13504 reply = remote_get_noisy_reply ();
13505 if (*reply == '\0')
13506 error (_("Target does not support this command."));
13507 if (strcmp (reply, "OK") != 0)
13508 error (_("Bogus reply from target: %s"), reply);
13509 }
13510 else if (val)
13511 warning (_("Target does not support disconnected tracing."));
13512 }
13513
13514 int
13515 remote_target::core_of_thread (ptid_t ptid)
13516 {
13517 thread_info *info = find_thread_ptid (this, ptid);
13518
13519 if (info != NULL && info->priv != NULL)
13520 return get_remote_thread_info (info)->core;
13521
13522 return -1;
13523 }
13524
13525 void
13526 remote_target::set_circular_trace_buffer (int val)
13527 {
13528 struct remote_state *rs = get_remote_state ();
13529 char *reply;
13530
13531 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13532 "QTBuffer:circular:%x", val);
13533 putpkt (rs->buf);
13534 reply = remote_get_noisy_reply ();
13535 if (*reply == '\0')
13536 error (_("Target does not support this command."));
13537 if (strcmp (reply, "OK") != 0)
13538 error (_("Bogus reply from target: %s"), reply);
13539 }
13540
13541 traceframe_info_up
13542 remote_target::traceframe_info ()
13543 {
13544 gdb::optional<gdb::char_vector> text
13545 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13546 NULL);
13547 if (text)
13548 return parse_traceframe_info (text->data ());
13549
13550 return NULL;
13551 }
13552
13553 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13554 instruction on which a fast tracepoint may be placed. Returns -1
13555 if the packet is not supported, and 0 if the minimum instruction
13556 length is unknown. */
13557
13558 int
13559 remote_target::get_min_fast_tracepoint_insn_len ()
13560 {
13561 struct remote_state *rs = get_remote_state ();
13562 char *reply;
13563
13564 /* If we're not debugging a process yet, the IPA can't be
13565 loaded. */
13566 if (!target_has_execution)
13567 return 0;
13568
13569 /* Make sure the remote is pointing at the right process. */
13570 set_general_process ();
13571
13572 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13573 putpkt (rs->buf);
13574 reply = remote_get_noisy_reply ();
13575 if (*reply == '\0')
13576 return -1;
13577 else
13578 {
13579 ULONGEST min_insn_len;
13580
13581 unpack_varlen_hex (reply, &min_insn_len);
13582
13583 return (int) min_insn_len;
13584 }
13585 }
13586
13587 void
13588 remote_target::set_trace_buffer_size (LONGEST val)
13589 {
13590 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13591 {
13592 struct remote_state *rs = get_remote_state ();
13593 char *buf = rs->buf.data ();
13594 char *endbuf = buf + get_remote_packet_size ();
13595 enum packet_result result;
13596
13597 gdb_assert (val >= 0 || val == -1);
13598 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13599 /* Send -1 as literal "-1" to avoid host size dependency. */
13600 if (val < 0)
13601 {
13602 *buf++ = '-';
13603 buf += hexnumstr (buf, (ULONGEST) -val);
13604 }
13605 else
13606 buf += hexnumstr (buf, (ULONGEST) val);
13607
13608 putpkt (rs->buf);
13609 remote_get_noisy_reply ();
13610 result = packet_ok (rs->buf,
13611 &remote_protocol_packets[PACKET_QTBuffer_size]);
13612
13613 if (result != PACKET_OK)
13614 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13615 }
13616 }
13617
13618 bool
13619 remote_target::set_trace_notes (const char *user, const char *notes,
13620 const char *stop_notes)
13621 {
13622 struct remote_state *rs = get_remote_state ();
13623 char *reply;
13624 char *buf = rs->buf.data ();
13625 char *endbuf = buf + get_remote_packet_size ();
13626 int nbytes;
13627
13628 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13629 if (user)
13630 {
13631 buf += xsnprintf (buf, endbuf - buf, "user:");
13632 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13633 buf += 2 * nbytes;
13634 *buf++ = ';';
13635 }
13636 if (notes)
13637 {
13638 buf += xsnprintf (buf, endbuf - buf, "notes:");
13639 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13640 buf += 2 * nbytes;
13641 *buf++ = ';';
13642 }
13643 if (stop_notes)
13644 {
13645 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13646 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13647 buf += 2 * nbytes;
13648 *buf++ = ';';
13649 }
13650 /* Ensure the buffer is terminated. */
13651 *buf = '\0';
13652
13653 putpkt (rs->buf);
13654 reply = remote_get_noisy_reply ();
13655 if (*reply == '\0')
13656 return false;
13657
13658 if (strcmp (reply, "OK") != 0)
13659 error (_("Bogus reply from target: %s"), reply);
13660
13661 return true;
13662 }
13663
13664 bool
13665 remote_target::use_agent (bool use)
13666 {
13667 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13668 {
13669 struct remote_state *rs = get_remote_state ();
13670
13671 /* If the stub supports QAgent. */
13672 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13673 putpkt (rs->buf);
13674 getpkt (&rs->buf, 0);
13675
13676 if (strcmp (rs->buf.data (), "OK") == 0)
13677 {
13678 ::use_agent = use;
13679 return true;
13680 }
13681 }
13682
13683 return false;
13684 }
13685
13686 bool
13687 remote_target::can_use_agent ()
13688 {
13689 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13690 }
13691
13692 struct btrace_target_info
13693 {
13694 /* The ptid of the traced thread. */
13695 ptid_t ptid;
13696
13697 /* The obtained branch trace configuration. */
13698 struct btrace_config conf;
13699 };
13700
13701 /* Reset our idea of our target's btrace configuration. */
13702
13703 static void
13704 remote_btrace_reset (remote_state *rs)
13705 {
13706 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13707 }
13708
13709 /* Synchronize the configuration with the target. */
13710
13711 void
13712 remote_target::btrace_sync_conf (const btrace_config *conf)
13713 {
13714 struct packet_config *packet;
13715 struct remote_state *rs;
13716 char *buf, *pos, *endbuf;
13717
13718 rs = get_remote_state ();
13719 buf = rs->buf.data ();
13720 endbuf = buf + get_remote_packet_size ();
13721
13722 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13723 if (packet_config_support (packet) == PACKET_ENABLE
13724 && conf->bts.size != rs->btrace_config.bts.size)
13725 {
13726 pos = buf;
13727 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13728 conf->bts.size);
13729
13730 putpkt (buf);
13731 getpkt (&rs->buf, 0);
13732
13733 if (packet_ok (buf, packet) == PACKET_ERROR)
13734 {
13735 if (buf[0] == 'E' && buf[1] == '.')
13736 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13737 else
13738 error (_("Failed to configure the BTS buffer size."));
13739 }
13740
13741 rs->btrace_config.bts.size = conf->bts.size;
13742 }
13743
13744 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13745 if (packet_config_support (packet) == PACKET_ENABLE
13746 && conf->pt.size != rs->btrace_config.pt.size)
13747 {
13748 pos = buf;
13749 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13750 conf->pt.size);
13751
13752 putpkt (buf);
13753 getpkt (&rs->buf, 0);
13754
13755 if (packet_ok (buf, packet) == PACKET_ERROR)
13756 {
13757 if (buf[0] == 'E' && buf[1] == '.')
13758 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13759 else
13760 error (_("Failed to configure the trace buffer size."));
13761 }
13762
13763 rs->btrace_config.pt.size = conf->pt.size;
13764 }
13765 }
13766
13767 /* Read the current thread's btrace configuration from the target and
13768 store it into CONF. */
13769
13770 static void
13771 btrace_read_config (struct btrace_config *conf)
13772 {
13773 gdb::optional<gdb::char_vector> xml
13774 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13775 if (xml)
13776 parse_xml_btrace_conf (conf, xml->data ());
13777 }
13778
13779 /* Maybe reopen target btrace. */
13780
13781 void
13782 remote_target::remote_btrace_maybe_reopen ()
13783 {
13784 struct remote_state *rs = get_remote_state ();
13785 int btrace_target_pushed = 0;
13786 #if !defined (HAVE_LIBIPT)
13787 int warned = 0;
13788 #endif
13789
13790 /* Don't bother walking the entirety of the remote thread list when
13791 we know the feature isn't supported by the remote. */
13792 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13793 return;
13794
13795 scoped_restore_current_thread restore_thread;
13796
13797 for (thread_info *tp : all_non_exited_threads (this))
13798 {
13799 set_general_thread (tp->ptid);
13800
13801 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13802 btrace_read_config (&rs->btrace_config);
13803
13804 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13805 continue;
13806
13807 #if !defined (HAVE_LIBIPT)
13808 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13809 {
13810 if (!warned)
13811 {
13812 warned = 1;
13813 warning (_("Target is recording using Intel Processor Trace "
13814 "but support was disabled at compile time."));
13815 }
13816
13817 continue;
13818 }
13819 #endif /* !defined (HAVE_LIBIPT) */
13820
13821 /* Push target, once, but before anything else happens. This way our
13822 changes to the threads will be cleaned up by unpushing the target
13823 in case btrace_read_config () throws. */
13824 if (!btrace_target_pushed)
13825 {
13826 btrace_target_pushed = 1;
13827 record_btrace_push_target ();
13828 printf_filtered (_("Target is recording using %s.\n"),
13829 btrace_format_string (rs->btrace_config.format));
13830 }
13831
13832 tp->btrace.target = XCNEW (struct btrace_target_info);
13833 tp->btrace.target->ptid = tp->ptid;
13834 tp->btrace.target->conf = rs->btrace_config;
13835 }
13836 }
13837
13838 /* Enable branch tracing. */
13839
13840 struct btrace_target_info *
13841 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13842 {
13843 struct btrace_target_info *tinfo = NULL;
13844 struct packet_config *packet = NULL;
13845 struct remote_state *rs = get_remote_state ();
13846 char *buf = rs->buf.data ();
13847 char *endbuf = buf + get_remote_packet_size ();
13848
13849 switch (conf->format)
13850 {
13851 case BTRACE_FORMAT_BTS:
13852 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13853 break;
13854
13855 case BTRACE_FORMAT_PT:
13856 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13857 break;
13858 }
13859
13860 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13861 error (_("Target does not support branch tracing."));
13862
13863 btrace_sync_conf (conf);
13864
13865 set_general_thread (ptid);
13866
13867 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13868 putpkt (rs->buf);
13869 getpkt (&rs->buf, 0);
13870
13871 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13872 {
13873 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13874 error (_("Could not enable branch tracing for %s: %s"),
13875 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13876 else
13877 error (_("Could not enable branch tracing for %s."),
13878 target_pid_to_str (ptid).c_str ());
13879 }
13880
13881 tinfo = XCNEW (struct btrace_target_info);
13882 tinfo->ptid = ptid;
13883
13884 /* If we fail to read the configuration, we lose some information, but the
13885 tracing itself is not impacted. */
13886 try
13887 {
13888 btrace_read_config (&tinfo->conf);
13889 }
13890 catch (const gdb_exception_error &err)
13891 {
13892 if (err.message != NULL)
13893 warning ("%s", err.what ());
13894 }
13895
13896 return tinfo;
13897 }
13898
13899 /* Disable branch tracing. */
13900
13901 void
13902 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13903 {
13904 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13905 struct remote_state *rs = get_remote_state ();
13906 char *buf = rs->buf.data ();
13907 char *endbuf = buf + get_remote_packet_size ();
13908
13909 if (packet_config_support (packet) != PACKET_ENABLE)
13910 error (_("Target does not support branch tracing."));
13911
13912 set_general_thread (tinfo->ptid);
13913
13914 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13915 putpkt (rs->buf);
13916 getpkt (&rs->buf, 0);
13917
13918 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13919 {
13920 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13921 error (_("Could not disable branch tracing for %s: %s"),
13922 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13923 else
13924 error (_("Could not disable branch tracing for %s."),
13925 target_pid_to_str (tinfo->ptid).c_str ());
13926 }
13927
13928 xfree (tinfo);
13929 }
13930
13931 /* Teardown branch tracing. */
13932
13933 void
13934 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13935 {
13936 /* We must not talk to the target during teardown. */
13937 xfree (tinfo);
13938 }
13939
13940 /* Read the branch trace. */
13941
13942 enum btrace_error
13943 remote_target::read_btrace (struct btrace_data *btrace,
13944 struct btrace_target_info *tinfo,
13945 enum btrace_read_type type)
13946 {
13947 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13948 const char *annex;
13949
13950 if (packet_config_support (packet) != PACKET_ENABLE)
13951 error (_("Target does not support branch tracing."));
13952
13953 #if !defined(HAVE_LIBEXPAT)
13954 error (_("Cannot process branch tracing result. XML parsing not supported."));
13955 #endif
13956
13957 switch (type)
13958 {
13959 case BTRACE_READ_ALL:
13960 annex = "all";
13961 break;
13962 case BTRACE_READ_NEW:
13963 annex = "new";
13964 break;
13965 case BTRACE_READ_DELTA:
13966 annex = "delta";
13967 break;
13968 default:
13969 internal_error (__FILE__, __LINE__,
13970 _("Bad branch tracing read type: %u."),
13971 (unsigned int) type);
13972 }
13973
13974 gdb::optional<gdb::char_vector> xml
13975 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13976 if (!xml)
13977 return BTRACE_ERR_UNKNOWN;
13978
13979 parse_xml_btrace (btrace, xml->data ());
13980
13981 return BTRACE_ERR_NONE;
13982 }
13983
13984 const struct btrace_config *
13985 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13986 {
13987 return &tinfo->conf;
13988 }
13989
13990 bool
13991 remote_target::augmented_libraries_svr4_read ()
13992 {
13993 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13994 == PACKET_ENABLE);
13995 }
13996
13997 /* Implementation of to_load. */
13998
13999 void
14000 remote_target::load (const char *name, int from_tty)
14001 {
14002 generic_load (name, from_tty);
14003 }
14004
14005 /* Accepts an integer PID; returns a string representing a file that
14006 can be opened on the remote side to get the symbols for the child
14007 process. Returns NULL if the operation is not supported. */
14008
14009 char *
14010 remote_target::pid_to_exec_file (int pid)
14011 {
14012 static gdb::optional<gdb::char_vector> filename;
14013 char *annex = NULL;
14014
14015 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14016 return NULL;
14017
14018 inferior *inf = find_inferior_pid (this, pid);
14019 if (inf == NULL)
14020 internal_error (__FILE__, __LINE__,
14021 _("not currently attached to process %d"), pid);
14022
14023 if (!inf->fake_pid_p)
14024 {
14025 const int annex_size = 9;
14026
14027 annex = (char *) alloca (annex_size);
14028 xsnprintf (annex, annex_size, "%x", pid);
14029 }
14030
14031 filename = target_read_stralloc (current_top_target (),
14032 TARGET_OBJECT_EXEC_FILE, annex);
14033
14034 return filename ? filename->data () : nullptr;
14035 }
14036
14037 /* Implement the to_can_do_single_step target_ops method. */
14038
14039 int
14040 remote_target::can_do_single_step ()
14041 {
14042 /* We can only tell whether target supports single step or not by
14043 supported s and S vCont actions if the stub supports vContSupported
14044 feature. If the stub doesn't support vContSupported feature,
14045 we have conservatively to think target doesn't supports single
14046 step. */
14047 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14048 {
14049 struct remote_state *rs = get_remote_state ();
14050
14051 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14052 remote_vcont_probe ();
14053
14054 return rs->supports_vCont.s && rs->supports_vCont.S;
14055 }
14056 else
14057 return 0;
14058 }
14059
14060 /* Implementation of the to_execution_direction method for the remote
14061 target. */
14062
14063 enum exec_direction_kind
14064 remote_target::execution_direction ()
14065 {
14066 struct remote_state *rs = get_remote_state ();
14067
14068 return rs->last_resume_exec_dir;
14069 }
14070
14071 /* Return pointer to the thread_info struct which corresponds to
14072 THREAD_HANDLE (having length HANDLE_LEN). */
14073
14074 thread_info *
14075 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14076 int handle_len,
14077 inferior *inf)
14078 {
14079 for (thread_info *tp : all_non_exited_threads (this))
14080 {
14081 remote_thread_info *priv = get_remote_thread_info (tp);
14082
14083 if (tp->inf == inf && priv != NULL)
14084 {
14085 if (handle_len != priv->thread_handle.size ())
14086 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14087 handle_len, priv->thread_handle.size ());
14088 if (memcmp (thread_handle, priv->thread_handle.data (),
14089 handle_len) == 0)
14090 return tp;
14091 }
14092 }
14093
14094 return NULL;
14095 }
14096
14097 gdb::byte_vector
14098 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14099 {
14100 remote_thread_info *priv = get_remote_thread_info (tp);
14101 return priv->thread_handle;
14102 }
14103
14104 bool
14105 remote_target::can_async_p ()
14106 {
14107 struct remote_state *rs = get_remote_state ();
14108
14109 /* We don't go async if the user has explicitly prevented it with the
14110 "maint set target-async" command. */
14111 if (!target_async_permitted)
14112 return false;
14113
14114 /* We're async whenever the serial device is. */
14115 return serial_can_async_p (rs->remote_desc);
14116 }
14117
14118 bool
14119 remote_target::is_async_p ()
14120 {
14121 struct remote_state *rs = get_remote_state ();
14122
14123 if (!target_async_permitted)
14124 /* We only enable async when the user specifically asks for it. */
14125 return false;
14126
14127 /* We're async whenever the serial device is. */
14128 return serial_is_async_p (rs->remote_desc);
14129 }
14130
14131 /* Pass the SERIAL event on and up to the client. One day this code
14132 will be able to delay notifying the client of an event until the
14133 point where an entire packet has been received. */
14134
14135 static serial_event_ftype remote_async_serial_handler;
14136
14137 static void
14138 remote_async_serial_handler (struct serial *scb, void *context)
14139 {
14140 /* Don't propogate error information up to the client. Instead let
14141 the client find out about the error by querying the target. */
14142 inferior_event_handler (INF_REG_EVENT, NULL);
14143 }
14144
14145 static void
14146 remote_async_inferior_event_handler (gdb_client_data data)
14147 {
14148 inferior_event_handler (INF_REG_EVENT, data);
14149 }
14150
14151 int
14152 remote_target::async_wait_fd ()
14153 {
14154 struct remote_state *rs = get_remote_state ();
14155 return rs->remote_desc->fd;
14156 }
14157
14158 void
14159 remote_target::async (int enable)
14160 {
14161 struct remote_state *rs = get_remote_state ();
14162
14163 if (enable)
14164 {
14165 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14166
14167 /* If there are pending events in the stop reply queue tell the
14168 event loop to process them. */
14169 if (!rs->stop_reply_queue.empty ())
14170 mark_async_event_handler (rs->remote_async_inferior_event_token);
14171 /* For simplicity, below we clear the pending events token
14172 without remembering whether it is marked, so here we always
14173 mark it. If there's actually no pending notification to
14174 process, this ends up being a no-op (other than a spurious
14175 event-loop wakeup). */
14176 if (target_is_non_stop_p ())
14177 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14178 }
14179 else
14180 {
14181 serial_async (rs->remote_desc, NULL, NULL);
14182 /* If the core is disabling async, it doesn't want to be
14183 disturbed with target events. Clear all async event sources
14184 too. */
14185 clear_async_event_handler (rs->remote_async_inferior_event_token);
14186 if (target_is_non_stop_p ())
14187 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14188 }
14189 }
14190
14191 /* Implementation of the to_thread_events method. */
14192
14193 void
14194 remote_target::thread_events (int enable)
14195 {
14196 struct remote_state *rs = get_remote_state ();
14197 size_t size = get_remote_packet_size ();
14198
14199 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14200 return;
14201
14202 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14203 putpkt (rs->buf);
14204 getpkt (&rs->buf, 0);
14205
14206 switch (packet_ok (rs->buf,
14207 &remote_protocol_packets[PACKET_QThreadEvents]))
14208 {
14209 case PACKET_OK:
14210 if (strcmp (rs->buf.data (), "OK") != 0)
14211 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14212 break;
14213 case PACKET_ERROR:
14214 warning (_("Remote failure reply: %s"), rs->buf.data ());
14215 break;
14216 case PACKET_UNKNOWN:
14217 break;
14218 }
14219 }
14220
14221 static void
14222 show_remote_cmd (const char *args, int from_tty)
14223 {
14224 /* We can't just use cmd_show_list here, because we want to skip
14225 the redundant "show remote Z-packet" and the legacy aliases. */
14226 struct cmd_list_element *list = remote_show_cmdlist;
14227 struct ui_out *uiout = current_uiout;
14228
14229 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14230 for (; list != NULL; list = list->next)
14231 if (strcmp (list->name, "Z-packet") == 0)
14232 continue;
14233 else if (list->type == not_set_cmd)
14234 /* Alias commands are exactly like the original, except they
14235 don't have the normal type. */
14236 continue;
14237 else
14238 {
14239 ui_out_emit_tuple option_emitter (uiout, "option");
14240
14241 uiout->field_string ("name", list->name);
14242 uiout->text (": ");
14243 if (list->type == show_cmd)
14244 do_show_command (NULL, from_tty, list);
14245 else
14246 cmd_func (list, NULL, from_tty);
14247 }
14248 }
14249
14250
14251 /* Function to be called whenever a new objfile (shlib) is detected. */
14252 static void
14253 remote_new_objfile (struct objfile *objfile)
14254 {
14255 remote_target *remote = get_current_remote_target ();
14256
14257 if (remote != NULL) /* Have a remote connection. */
14258 remote->remote_check_symbols ();
14259 }
14260
14261 /* Pull all the tracepoints defined on the target and create local
14262 data structures representing them. We don't want to create real
14263 tracepoints yet, we don't want to mess up the user's existing
14264 collection. */
14265
14266 int
14267 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14268 {
14269 struct remote_state *rs = get_remote_state ();
14270 char *p;
14271
14272 /* Ask for a first packet of tracepoint definition. */
14273 putpkt ("qTfP");
14274 getpkt (&rs->buf, 0);
14275 p = rs->buf.data ();
14276 while (*p && *p != 'l')
14277 {
14278 parse_tracepoint_definition (p, utpp);
14279 /* Ask for another packet of tracepoint definition. */
14280 putpkt ("qTsP");
14281 getpkt (&rs->buf, 0);
14282 p = rs->buf.data ();
14283 }
14284 return 0;
14285 }
14286
14287 int
14288 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14289 {
14290 struct remote_state *rs = get_remote_state ();
14291 char *p;
14292
14293 /* Ask for a first packet of variable definition. */
14294 putpkt ("qTfV");
14295 getpkt (&rs->buf, 0);
14296 p = rs->buf.data ();
14297 while (*p && *p != 'l')
14298 {
14299 parse_tsv_definition (p, utsvp);
14300 /* Ask for another packet of variable definition. */
14301 putpkt ("qTsV");
14302 getpkt (&rs->buf, 0);
14303 p = rs->buf.data ();
14304 }
14305 return 0;
14306 }
14307
14308 /* The "set/show range-stepping" show hook. */
14309
14310 static void
14311 show_range_stepping (struct ui_file *file, int from_tty,
14312 struct cmd_list_element *c,
14313 const char *value)
14314 {
14315 fprintf_filtered (file,
14316 _("Debugger's willingness to use range stepping "
14317 "is %s.\n"), value);
14318 }
14319
14320 /* Return true if the vCont;r action is supported by the remote
14321 stub. */
14322
14323 bool
14324 remote_target::vcont_r_supported ()
14325 {
14326 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14327 remote_vcont_probe ();
14328
14329 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14330 && get_remote_state ()->supports_vCont.r);
14331 }
14332
14333 /* The "set/show range-stepping" set hook. */
14334
14335 static void
14336 set_range_stepping (const char *ignore_args, int from_tty,
14337 struct cmd_list_element *c)
14338 {
14339 /* When enabling, check whether range stepping is actually supported
14340 by the target, and warn if not. */
14341 if (use_range_stepping)
14342 {
14343 remote_target *remote = get_current_remote_target ();
14344 if (remote == NULL
14345 || !remote->vcont_r_supported ())
14346 warning (_("Range stepping is not supported by the current target"));
14347 }
14348 }
14349
14350 void _initialize_remote ();
14351 void
14352 _initialize_remote ()
14353 {
14354 struct cmd_list_element *cmd;
14355 const char *cmd_name;
14356
14357 /* architecture specific data */
14358 remote_g_packet_data_handle =
14359 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14360
14361 add_target (remote_target_info, remote_target::open);
14362 add_target (extended_remote_target_info, extended_remote_target::open);
14363
14364 /* Hook into new objfile notification. */
14365 gdb::observers::new_objfile.attach (remote_new_objfile);
14366
14367 #if 0
14368 init_remote_threadtests ();
14369 #endif
14370
14371 /* set/show remote ... */
14372
14373 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14374 Remote protocol specific variables.\n\
14375 Configure various remote-protocol specific variables such as\n\
14376 the packets being used."),
14377 &remote_set_cmdlist, "set remote ",
14378 0 /* allow-unknown */, &setlist);
14379 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14380 Remote protocol specific variables.\n\
14381 Configure various remote-protocol specific variables such as\n\
14382 the packets being used."),
14383 &remote_show_cmdlist, "show remote ",
14384 0 /* allow-unknown */, &showlist);
14385
14386 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14387 Compare section data on target to the exec file.\n\
14388 Argument is a single section name (default: all loaded sections).\n\
14389 To compare only read-only loaded sections, specify the -r option."),
14390 &cmdlist);
14391
14392 add_cmd ("packet", class_maintenance, packet_command, _("\
14393 Send an arbitrary packet to a remote target.\n\
14394 maintenance packet TEXT\n\
14395 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14396 this command sends the string TEXT to the inferior, and displays the\n\
14397 response packet. GDB supplies the initial `$' character, and the\n\
14398 terminating `#' character and checksum."),
14399 &maintenancelist);
14400
14401 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14402 Set whether to send break if interrupted."), _("\
14403 Show whether to send break if interrupted."), _("\
14404 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14405 set_remotebreak, show_remotebreak,
14406 &setlist, &showlist);
14407 cmd_name = "remotebreak";
14408 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14409 deprecate_cmd (cmd, "set remote interrupt-sequence");
14410 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14411 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14412 deprecate_cmd (cmd, "show remote interrupt-sequence");
14413
14414 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14415 interrupt_sequence_modes, &interrupt_sequence_mode,
14416 _("\
14417 Set interrupt sequence to remote target."), _("\
14418 Show interrupt sequence to remote target."), _("\
14419 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14420 NULL, show_interrupt_sequence,
14421 &remote_set_cmdlist,
14422 &remote_show_cmdlist);
14423
14424 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14425 &interrupt_on_connect, _("\
14426 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14427 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14428 If set, interrupt sequence is sent to remote target."),
14429 NULL, NULL,
14430 &remote_set_cmdlist, &remote_show_cmdlist);
14431
14432 /* Install commands for configuring memory read/write packets. */
14433
14434 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14435 Set the maximum number of bytes per memory write packet (deprecated)."),
14436 &setlist);
14437 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14438 Show the maximum number of bytes per memory write packet (deprecated)."),
14439 &showlist);
14440 add_cmd ("memory-write-packet-size", no_class,
14441 set_memory_write_packet_size, _("\
14442 Set the maximum number of bytes per memory-write packet.\n\
14443 Specify the number of bytes in a packet or 0 (zero) for the\n\
14444 default packet size. The actual limit is further reduced\n\
14445 dependent on the target. Specify ``fixed'' to disable the\n\
14446 further restriction and ``limit'' to enable that restriction."),
14447 &remote_set_cmdlist);
14448 add_cmd ("memory-read-packet-size", no_class,
14449 set_memory_read_packet_size, _("\
14450 Set the maximum number of bytes per memory-read packet.\n\
14451 Specify the number of bytes in a packet or 0 (zero) for the\n\
14452 default packet size. The actual limit is further reduced\n\
14453 dependent on the target. Specify ``fixed'' to disable the\n\
14454 further restriction and ``limit'' to enable that restriction."),
14455 &remote_set_cmdlist);
14456 add_cmd ("memory-write-packet-size", no_class,
14457 show_memory_write_packet_size,
14458 _("Show the maximum number of bytes per memory-write packet."),
14459 &remote_show_cmdlist);
14460 add_cmd ("memory-read-packet-size", no_class,
14461 show_memory_read_packet_size,
14462 _("Show the maximum number of bytes per memory-read packet."),
14463 &remote_show_cmdlist);
14464
14465 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14466 &remote_hw_watchpoint_limit, _("\
14467 Set the maximum number of target hardware watchpoints."), _("\
14468 Show the maximum number of target hardware watchpoints."), _("\
14469 Specify \"unlimited\" for unlimited hardware watchpoints."),
14470 NULL, show_hardware_watchpoint_limit,
14471 &remote_set_cmdlist,
14472 &remote_show_cmdlist);
14473 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14474 no_class,
14475 &remote_hw_watchpoint_length_limit, _("\
14476 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14477 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14478 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14479 NULL, show_hardware_watchpoint_length_limit,
14480 &remote_set_cmdlist, &remote_show_cmdlist);
14481 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14482 &remote_hw_breakpoint_limit, _("\
14483 Set the maximum number of target hardware breakpoints."), _("\
14484 Show the maximum number of target hardware breakpoints."), _("\
14485 Specify \"unlimited\" for unlimited hardware breakpoints."),
14486 NULL, show_hardware_breakpoint_limit,
14487 &remote_set_cmdlist, &remote_show_cmdlist);
14488
14489 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14490 &remote_address_size, _("\
14491 Set the maximum size of the address (in bits) in a memory packet."), _("\
14492 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14493 NULL,
14494 NULL, /* FIXME: i18n: */
14495 &setlist, &showlist);
14496
14497 init_all_packet_configs ();
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14500 "X", "binary-download", 1);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14503 "vCont", "verbose-resume", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14506 "QPassSignals", "pass-signals", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14509 "QCatchSyscalls", "catch-syscalls", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14512 "QProgramSignals", "program-signals", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14515 "QSetWorkingDir", "set-working-dir", 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14518 "QStartupWithShell", "startup-with-shell", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets
14521 [PACKET_QEnvironmentHexEncoded],
14522 "QEnvironmentHexEncoded", "environment-hex-encoded",
14523 0);
14524
14525 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14526 "QEnvironmentReset", "environment-reset",
14527 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14530 "QEnvironmentUnset", "environment-unset",
14531 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14534 "qSymbol", "symbol-lookup", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14537 "P", "set-register", 1);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14540 "p", "fetch-register", 1);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14543 "Z0", "software-breakpoint", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14546 "Z1", "hardware-breakpoint", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14549 "Z2", "write-watchpoint", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14552 "Z3", "read-watchpoint", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14555 "Z4", "access-watchpoint", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14558 "qXfer:auxv:read", "read-aux-vector", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14561 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14564 "qXfer:features:read", "target-features", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14567 "qXfer:libraries:read", "library-info", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14570 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14573 "qXfer:memory-map:read", "memory-map", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14576 "qXfer:osdata:read", "osdata", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14579 "qXfer:threads:read", "threads", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14582 "qXfer:siginfo:read", "read-siginfo-object", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14585 "qXfer:siginfo:write", "write-siginfo-object", 0);
14586
14587 add_packet_config_cmd
14588 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14589 "qXfer:traceframe-info:read", "traceframe-info", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14592 "qXfer:uib:read", "unwind-info-block", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14595 "qGetTLSAddr", "get-thread-local-storage-address",
14596 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14599 "qGetTIBAddr", "get-thread-information-block-address",
14600 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14603 "bc", "reverse-continue", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14606 "bs", "reverse-step", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14609 "qSupported", "supported-packets", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14612 "qSearch:memory", "search-memory", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14615 "qTStatus", "trace-status", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14618 "vFile:setfs", "hostio-setfs", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14621 "vFile:open", "hostio-open", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14624 "vFile:pread", "hostio-pread", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14627 "vFile:pwrite", "hostio-pwrite", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14630 "vFile:close", "hostio-close", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14633 "vFile:unlink", "hostio-unlink", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14636 "vFile:readlink", "hostio-readlink", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14639 "vFile:fstat", "hostio-fstat", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14642 "vAttach", "attach", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14645 "vRun", "run", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14648 "QStartNoAckMode", "noack", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14651 "vKill", "kill", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14654 "qAttached", "query-attached", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14657 "ConditionalTracepoints",
14658 "conditional-tracepoints", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14661 "ConditionalBreakpoints",
14662 "conditional-breakpoints", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14665 "BreakpointCommands",
14666 "breakpoint-commands", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14669 "FastTracepoints", "fast-tracepoints", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14672 "TracepointSource", "TracepointSource", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14675 "QAllow", "allow", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14678 "StaticTracepoints", "static-tracepoints", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14681 "InstallInTrace", "install-in-trace", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14684 "qXfer:statictrace:read", "read-sdata-object", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14687 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14690 "QDisableRandomization", "disable-randomization", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14693 "QAgent", "agent", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14696 "QTBuffer:size", "trace-buffer-size", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14699 "Qbtrace:off", "disable-btrace", 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14702 "Qbtrace:bts", "enable-btrace-bts", 0);
14703
14704 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14705 "Qbtrace:pt", "enable-btrace-pt", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14708 "qXfer:btrace", "read-btrace", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14711 "qXfer:btrace-conf", "read-btrace-conf", 0);
14712
14713 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14714 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14715
14716 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14717 "multiprocess-feature", "multiprocess-feature", 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14720 "swbreak-feature", "swbreak-feature", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14723 "hwbreak-feature", "hwbreak-feature", 0);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14726 "fork-event-feature", "fork-event-feature", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14729 "vfork-event-feature", "vfork-event-feature", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14732 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14735 "vContSupported", "verbose-resume-supported", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14738 "exec-event-feature", "exec-event-feature", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14741 "vCtrlC", "ctrl-c", 0);
14742
14743 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14744 "QThreadEvents", "thread-events", 0);
14745
14746 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14747 "N stop reply", "no-resumed-stop-reply", 0);
14748
14749 /* Assert that we've registered "set remote foo-packet" commands
14750 for all packet configs. */
14751 {
14752 int i;
14753
14754 for (i = 0; i < PACKET_MAX; i++)
14755 {
14756 /* Ideally all configs would have a command associated. Some
14757 still don't though. */
14758 int excepted;
14759
14760 switch (i)
14761 {
14762 case PACKET_QNonStop:
14763 case PACKET_EnableDisableTracepoints_feature:
14764 case PACKET_tracenz_feature:
14765 case PACKET_DisconnectedTracing_feature:
14766 case PACKET_augmented_libraries_svr4_read_feature:
14767 case PACKET_qCRC:
14768 /* Additions to this list need to be well justified:
14769 pre-existing packets are OK; new packets are not. */
14770 excepted = 1;
14771 break;
14772 default:
14773 excepted = 0;
14774 break;
14775 }
14776
14777 /* This catches both forgetting to add a config command, and
14778 forgetting to remove a packet from the exception list. */
14779 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14780 }
14781 }
14782
14783 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14784 Z sub-packet has its own set and show commands, but users may
14785 have sets to this variable in their .gdbinit files (or in their
14786 documentation). */
14787 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14788 &remote_Z_packet_detect, _("\
14789 Set use of remote protocol `Z' packets."), _("\
14790 Show use of remote protocol `Z' packets."), _("\
14791 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14792 packets."),
14793 set_remote_protocol_Z_packet_cmd,
14794 show_remote_protocol_Z_packet_cmd,
14795 /* FIXME: i18n: Use of remote protocol
14796 `Z' packets is %s. */
14797 &remote_set_cmdlist, &remote_show_cmdlist);
14798
14799 add_basic_prefix_cmd ("remote", class_files, _("\
14800 Manipulate files on the remote system.\n\
14801 Transfer files to and from the remote target system."),
14802 &remote_cmdlist, "remote ",
14803 0 /* allow-unknown */, &cmdlist);
14804
14805 add_cmd ("put", class_files, remote_put_command,
14806 _("Copy a local file to the remote system."),
14807 &remote_cmdlist);
14808
14809 add_cmd ("get", class_files, remote_get_command,
14810 _("Copy a remote file to the local system."),
14811 &remote_cmdlist);
14812
14813 add_cmd ("delete", class_files, remote_delete_command,
14814 _("Delete a remote file."),
14815 &remote_cmdlist);
14816
14817 add_setshow_string_noescape_cmd ("exec-file", class_files,
14818 &remote_exec_file_var, _("\
14819 Set the remote pathname for \"run\"."), _("\
14820 Show the remote pathname for \"run\"."), NULL,
14821 set_remote_exec_file,
14822 show_remote_exec_file,
14823 &remote_set_cmdlist,
14824 &remote_show_cmdlist);
14825
14826 add_setshow_boolean_cmd ("range-stepping", class_run,
14827 &use_range_stepping, _("\
14828 Enable or disable range stepping."), _("\
14829 Show whether target-assisted range stepping is enabled."), _("\
14830 If on, and the target supports it, when stepping a source line, GDB\n\
14831 tells the target to step the corresponding range of addresses itself instead\n\
14832 of issuing multiple single-steps. This speeds up source level\n\
14833 stepping. If off, GDB always issues single-steps, even if range\n\
14834 stepping is supported by the target. The default is on."),
14835 set_range_stepping,
14836 show_range_stepping,
14837 &setlist,
14838 &showlist);
14839
14840 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14841 Set watchdog timer."), _("\
14842 Show watchdog timer."), _("\
14843 When non-zero, this timeout is used instead of waiting forever for a target\n\
14844 to finish a low-level step or continue operation. If the specified amount\n\
14845 of time passes without a response from the target, an error occurs."),
14846 NULL,
14847 show_watchdog,
14848 &setlist, &showlist);
14849
14850 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14851 &remote_packet_max_chars, _("\
14852 Set the maximum number of characters to display for each remote packet."), _("\
14853 Show the maximum number of characters to display for each remote packet."), _("\
14854 Specify \"unlimited\" to display all the characters."),
14855 NULL, show_remote_packet_max_chars,
14856 &setdebuglist, &showdebuglist);
14857
14858 /* Eventually initialize fileio. See fileio.c */
14859 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14860 }