]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data, VEC(gdb_xml_value_s) *attributes)
3081 {
3082 struct threads_listing_context *data
3083 = (struct threads_listing_context *) user_data;
3084 struct gdb_xml_value *attr;
3085
3086 char *id = (char *) xml_find_attribute (attributes, "id")->value;
3087 ptid_t ptid = read_ptid (id, NULL);
3088
3089 data->items.emplace_back (ptid);
3090 thread_item &item = data->items.back ();
3091
3092 attr = xml_find_attribute (attributes, "core");
3093 if (attr != NULL)
3094 item.core = *(ULONGEST *) attr->value;
3095
3096 attr = xml_find_attribute (attributes, "name");
3097 if (attr != NULL)
3098 item.name = (const char *) attr->value;
3099
3100 attr = xml_find_attribute (attributes, "handle");
3101 if (attr != NULL)
3102 item.thread_handle = hex2bin ((const char *) attr->value);
3103 }
3104
3105 static void
3106 end_thread (struct gdb_xml_parser *parser,
3107 const struct gdb_xml_element *element,
3108 void *user_data, const char *body_text)
3109 {
3110 struct threads_listing_context *data
3111 = (struct threads_listing_context *) user_data;
3112
3113 if (body_text != NULL && *body_text != '\0')
3114 data->items.back ().extra = body_text;
3115 }
3116
3117 const struct gdb_xml_attribute thread_attributes[] = {
3118 { "id", GDB_XML_AF_NONE, NULL, NULL },
3119 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3120 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3121 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3123 };
3124
3125 const struct gdb_xml_element thread_children[] = {
3126 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3127 };
3128
3129 const struct gdb_xml_element threads_children[] = {
3130 { "thread", thread_attributes, thread_children,
3131 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3132 start_thread, end_thread },
3133 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3134 };
3135
3136 const struct gdb_xml_element threads_elements[] = {
3137 { "threads", NULL, threads_children,
3138 GDB_XML_EF_NONE, NULL, NULL },
3139 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3140 };
3141
3142 #endif
3143
3144 /* List remote threads using qXfer:threads:read. */
3145
3146 static int
3147 remote_get_threads_with_qxfer (struct target_ops *ops,
3148 struct threads_listing_context *context)
3149 {
3150 #if defined(HAVE_LIBEXPAT)
3151 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3152 {
3153 gdb::unique_xmalloc_ptr<char> xml
3154 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3155
3156 if (xml != NULL && *xml != '\0')
3157 {
3158 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3159 threads_elements, xml.get (), context);
3160 }
3161
3162 return 1;
3163 }
3164 #endif
3165
3166 return 0;
3167 }
3168
3169 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3170
3171 static int
3172 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3173 struct threads_listing_context *context)
3174 {
3175 struct remote_state *rs = get_remote_state ();
3176
3177 if (rs->use_threadinfo_query)
3178 {
3179 const char *bufp;
3180
3181 putpkt ("qfThreadInfo");
3182 getpkt (&rs->buf, &rs->buf_size, 0);
3183 bufp = rs->buf;
3184 if (bufp[0] != '\0') /* q packet recognized */
3185 {
3186 while (*bufp++ == 'm') /* reply contains one or more TID */
3187 {
3188 do
3189 {
3190 ptid_t ptid = read_ptid (bufp, &bufp);
3191 context->items.emplace_back (ptid);
3192 }
3193 while (*bufp++ == ','); /* comma-separated list */
3194 putpkt ("qsThreadInfo");
3195 getpkt (&rs->buf, &rs->buf_size, 0);
3196 bufp = rs->buf;
3197 }
3198 return 1;
3199 }
3200 else
3201 {
3202 /* Packet not recognized. */
3203 rs->use_threadinfo_query = 0;
3204 }
3205 }
3206
3207 return 0;
3208 }
3209
3210 /* Implement the to_update_thread_list function for the remote
3211 targets. */
3212
3213 static void
3214 remote_update_thread_list (struct target_ops *ops)
3215 {
3216 struct threads_listing_context context;
3217 int got_list = 0;
3218
3219 /* We have a few different mechanisms to fetch the thread list. Try
3220 them all, starting with the most preferred one first, falling
3221 back to older methods. */
3222 if (remote_get_threads_with_qxfer (ops, &context)
3223 || remote_get_threads_with_qthreadinfo (ops, &context)
3224 || remote_get_threads_with_ql (ops, &context))
3225 {
3226 struct thread_info *tp, *tmp;
3227
3228 got_list = 1;
3229
3230 if (context.items.empty ()
3231 && remote_thread_always_alive (ops, inferior_ptid))
3232 {
3233 /* Some targets don't really support threads, but still
3234 reply an (empty) thread list in response to the thread
3235 listing packets, instead of replying "packet not
3236 supported". Exit early so we don't delete the main
3237 thread. */
3238 return;
3239 }
3240
3241 /* CONTEXT now holds the current thread list on the remote
3242 target end. Delete GDB-side threads no longer found on the
3243 target. */
3244 ALL_THREADS_SAFE (tp, tmp)
3245 {
3246 if (!context.contains_thread (tp->ptid))
3247 {
3248 /* Not found. */
3249 delete_thread (tp->ptid);
3250 }
3251 }
3252
3253 /* Remove any unreported fork child threads from CONTEXT so
3254 that we don't interfere with follow fork, which is where
3255 creation of such threads is handled. */
3256 remove_new_fork_children (&context);
3257
3258 /* And now add threads we don't know about yet to our list. */
3259 for (thread_item &item : context.items)
3260 {
3261 if (item.ptid != null_ptid)
3262 {
3263 /* In non-stop mode, we assume new found threads are
3264 executing until proven otherwise with a stop reply.
3265 In all-stop, we can only get here if all threads are
3266 stopped. */
3267 int executing = target_is_non_stop_p () ? 1 : 0;
3268
3269 remote_notice_new_inferior (item.ptid, executing);
3270
3271 remote_thread_info *info = get_remote_thread_info (item.ptid);
3272 info->core = item.core;
3273 info->extra = std::move (item.extra);
3274 info->name = std::move (item.name);
3275 info->thread_handle = std::move (item.thread_handle);
3276 }
3277 }
3278 }
3279
3280 if (!got_list)
3281 {
3282 /* If no thread listing method is supported, then query whether
3283 each known thread is alive, one by one, with the T packet.
3284 If the target doesn't support threads at all, then this is a
3285 no-op. See remote_thread_alive. */
3286 prune_threads ();
3287 }
3288 }
3289
3290 /*
3291 * Collect a descriptive string about the given thread.
3292 * The target may say anything it wants to about the thread
3293 * (typically info about its blocked / runnable state, name, etc.).
3294 * This string will appear in the info threads display.
3295 *
3296 * Optional: targets are not required to implement this function.
3297 */
3298
3299 static const char *
3300 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3301 {
3302 struct remote_state *rs = get_remote_state ();
3303 int result;
3304 int set;
3305 threadref id;
3306 struct gdb_ext_thread_info threadinfo;
3307 static char display_buf[100]; /* arbitrary... */
3308 int n = 0; /* position in display_buf */
3309
3310 if (rs->remote_desc == 0) /* paranoia */
3311 internal_error (__FILE__, __LINE__,
3312 _("remote_threads_extra_info"));
3313
3314 if (ptid_equal (tp->ptid, magic_null_ptid)
3315 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3316 /* This is the main thread which was added by GDB. The remote
3317 server doesn't know about it. */
3318 return NULL;
3319
3320 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3321 {
3322 struct thread_info *info = find_thread_ptid (tp->ptid);
3323
3324 if (info != NULL && info->priv != NULL)
3325 {
3326 const std::string &extra = get_remote_thread_info (info)->extra;
3327 return !extra.empty () ? extra.c_str () : NULL;
3328 }
3329 else
3330 return NULL;
3331 }
3332
3333 if (rs->use_threadextra_query)
3334 {
3335 char *b = rs->buf;
3336 char *endb = rs->buf + get_remote_packet_size ();
3337
3338 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3339 b += strlen (b);
3340 write_ptid (b, endb, tp->ptid);
3341
3342 putpkt (rs->buf);
3343 getpkt (&rs->buf, &rs->buf_size, 0);
3344 if (rs->buf[0] != 0)
3345 {
3346 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3347 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3348 display_buf [result] = '\0';
3349 return display_buf;
3350 }
3351 }
3352
3353 /* If the above query fails, fall back to the old method. */
3354 rs->use_threadextra_query = 0;
3355 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3356 | TAG_MOREDISPLAY | TAG_DISPLAY;
3357 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3358 if (remote_get_threadinfo (&id, set, &threadinfo))
3359 if (threadinfo.active)
3360 {
3361 if (*threadinfo.shortname)
3362 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3363 " Name: %s,", threadinfo.shortname);
3364 if (*threadinfo.display)
3365 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3366 " State: %s,", threadinfo.display);
3367 if (*threadinfo.more_display)
3368 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3369 " Priority: %s", threadinfo.more_display);
3370
3371 if (n > 0)
3372 {
3373 /* For purely cosmetic reasons, clear up trailing commas. */
3374 if (',' == display_buf[n-1])
3375 display_buf[n-1] = ' ';
3376 return display_buf;
3377 }
3378 }
3379 return NULL;
3380 }
3381 \f
3382
3383 static int
3384 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3385 struct static_tracepoint_marker *marker)
3386 {
3387 struct remote_state *rs = get_remote_state ();
3388 char *p = rs->buf;
3389
3390 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3391 p += strlen (p);
3392 p += hexnumstr (p, addr);
3393 putpkt (rs->buf);
3394 getpkt (&rs->buf, &rs->buf_size, 0);
3395 p = rs->buf;
3396
3397 if (*p == 'E')
3398 error (_("Remote failure reply: %s"), p);
3399
3400 if (*p++ == 'm')
3401 {
3402 parse_static_tracepoint_marker_definition (p, NULL, marker);
3403 return 1;
3404 }
3405
3406 return 0;
3407 }
3408
3409 static VEC(static_tracepoint_marker_p) *
3410 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3411 const char *strid)
3412 {
3413 struct remote_state *rs = get_remote_state ();
3414 VEC(static_tracepoint_marker_p) *markers = NULL;
3415 struct static_tracepoint_marker *marker = NULL;
3416 struct cleanup *old_chain;
3417 const char *p;
3418
3419 /* Ask for a first packet of static tracepoint marker
3420 definition. */
3421 putpkt ("qTfSTM");
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 p = rs->buf;
3424 if (*p == 'E')
3425 error (_("Remote failure reply: %s"), p);
3426
3427 old_chain = make_cleanup (free_current_marker, &marker);
3428
3429 while (*p++ == 'm')
3430 {
3431 if (marker == NULL)
3432 marker = XCNEW (struct static_tracepoint_marker);
3433
3434 do
3435 {
3436 parse_static_tracepoint_marker_definition (p, &p, marker);
3437
3438 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3439 {
3440 VEC_safe_push (static_tracepoint_marker_p,
3441 markers, marker);
3442 marker = NULL;
3443 }
3444 else
3445 {
3446 release_static_tracepoint_marker (marker);
3447 memset (marker, 0, sizeof (*marker));
3448 }
3449 }
3450 while (*p++ == ','); /* comma-separated list */
3451 /* Ask for another packet of static tracepoint definition. */
3452 putpkt ("qTsSTM");
3453 getpkt (&rs->buf, &rs->buf_size, 0);
3454 p = rs->buf;
3455 }
3456
3457 do_cleanups (old_chain);
3458 return markers;
3459 }
3460
3461 \f
3462 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3463
3464 static ptid_t
3465 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3466 {
3467 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3468 }
3469 \f
3470
3471 /* Restart the remote side; this is an extended protocol operation. */
3472
3473 static void
3474 extended_remote_restart (void)
3475 {
3476 struct remote_state *rs = get_remote_state ();
3477
3478 /* Send the restart command; for reasons I don't understand the
3479 remote side really expects a number after the "R". */
3480 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3481 putpkt (rs->buf);
3482
3483 remote_fileio_reset ();
3484 }
3485 \f
3486 /* Clean up connection to a remote debugger. */
3487
3488 static void
3489 remote_close (struct target_ops *self)
3490 {
3491 struct remote_state *rs = get_remote_state ();
3492
3493 if (rs->remote_desc == NULL)
3494 return; /* already closed */
3495
3496 /* Make sure we leave stdin registered in the event loop. */
3497 remote_terminal_ours (self);
3498
3499 serial_close (rs->remote_desc);
3500 rs->remote_desc = NULL;
3501
3502 /* We don't have a connection to the remote stub anymore. Get rid
3503 of all the inferiors and their threads we were controlling.
3504 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3505 will be unable to find the thread corresponding to (pid, 0, 0). */
3506 inferior_ptid = null_ptid;
3507 discard_all_inferiors ();
3508
3509 /* We are closing the remote target, so we should discard
3510 everything of this target. */
3511 discard_pending_stop_replies_in_queue (rs);
3512
3513 if (remote_async_inferior_event_token)
3514 delete_async_event_handler (&remote_async_inferior_event_token);
3515
3516 remote_notif_state_xfree (rs->notif_state);
3517
3518 trace_reset_local_state ();
3519 }
3520
3521 /* Query the remote side for the text, data and bss offsets. */
3522
3523 static void
3524 get_offsets (void)
3525 {
3526 struct remote_state *rs = get_remote_state ();
3527 char *buf;
3528 char *ptr;
3529 int lose, num_segments = 0, do_sections, do_segments;
3530 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3531 struct section_offsets *offs;
3532 struct symfile_segment_data *data;
3533
3534 if (symfile_objfile == NULL)
3535 return;
3536
3537 putpkt ("qOffsets");
3538 getpkt (&rs->buf, &rs->buf_size, 0);
3539 buf = rs->buf;
3540
3541 if (buf[0] == '\000')
3542 return; /* Return silently. Stub doesn't support
3543 this command. */
3544 if (buf[0] == 'E')
3545 {
3546 warning (_("Remote failure reply: %s"), buf);
3547 return;
3548 }
3549
3550 /* Pick up each field in turn. This used to be done with scanf, but
3551 scanf will make trouble if CORE_ADDR size doesn't match
3552 conversion directives correctly. The following code will work
3553 with any size of CORE_ADDR. */
3554 text_addr = data_addr = bss_addr = 0;
3555 ptr = buf;
3556 lose = 0;
3557
3558 if (startswith (ptr, "Text="))
3559 {
3560 ptr += 5;
3561 /* Don't use strtol, could lose on big values. */
3562 while (*ptr && *ptr != ';')
3563 text_addr = (text_addr << 4) + fromhex (*ptr++);
3564
3565 if (startswith (ptr, ";Data="))
3566 {
3567 ptr += 6;
3568 while (*ptr && *ptr != ';')
3569 data_addr = (data_addr << 4) + fromhex (*ptr++);
3570 }
3571 else
3572 lose = 1;
3573
3574 if (!lose && startswith (ptr, ";Bss="))
3575 {
3576 ptr += 5;
3577 while (*ptr && *ptr != ';')
3578 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3579
3580 if (bss_addr != data_addr)
3581 warning (_("Target reported unsupported offsets: %s"), buf);
3582 }
3583 else
3584 lose = 1;
3585 }
3586 else if (startswith (ptr, "TextSeg="))
3587 {
3588 ptr += 8;
3589 /* Don't use strtol, could lose on big values. */
3590 while (*ptr && *ptr != ';')
3591 text_addr = (text_addr << 4) + fromhex (*ptr++);
3592 num_segments = 1;
3593
3594 if (startswith (ptr, ";DataSeg="))
3595 {
3596 ptr += 9;
3597 while (*ptr && *ptr != ';')
3598 data_addr = (data_addr << 4) + fromhex (*ptr++);
3599 num_segments++;
3600 }
3601 }
3602 else
3603 lose = 1;
3604
3605 if (lose)
3606 error (_("Malformed response to offset query, %s"), buf);
3607 else if (*ptr != '\0')
3608 warning (_("Target reported unsupported offsets: %s"), buf);
3609
3610 offs = ((struct section_offsets *)
3611 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3612 memcpy (offs, symfile_objfile->section_offsets,
3613 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3614
3615 data = get_symfile_segment_data (symfile_objfile->obfd);
3616 do_segments = (data != NULL);
3617 do_sections = num_segments == 0;
3618
3619 if (num_segments > 0)
3620 {
3621 segments[0] = text_addr;
3622 segments[1] = data_addr;
3623 }
3624 /* If we have two segments, we can still try to relocate everything
3625 by assuming that the .text and .data offsets apply to the whole
3626 text and data segments. Convert the offsets given in the packet
3627 to base addresses for symfile_map_offsets_to_segments. */
3628 else if (data && data->num_segments == 2)
3629 {
3630 segments[0] = data->segment_bases[0] + text_addr;
3631 segments[1] = data->segment_bases[1] + data_addr;
3632 num_segments = 2;
3633 }
3634 /* If the object file has only one segment, assume that it is text
3635 rather than data; main programs with no writable data are rare,
3636 but programs with no code are useless. Of course the code might
3637 have ended up in the data segment... to detect that we would need
3638 the permissions here. */
3639 else if (data && data->num_segments == 1)
3640 {
3641 segments[0] = data->segment_bases[0] + text_addr;
3642 num_segments = 1;
3643 }
3644 /* There's no way to relocate by segment. */
3645 else
3646 do_segments = 0;
3647
3648 if (do_segments)
3649 {
3650 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3651 offs, num_segments, segments);
3652
3653 if (ret == 0 && !do_sections)
3654 error (_("Can not handle qOffsets TextSeg "
3655 "response with this symbol file"));
3656
3657 if (ret > 0)
3658 do_sections = 0;
3659 }
3660
3661 if (data)
3662 free_symfile_segment_data (data);
3663
3664 if (do_sections)
3665 {
3666 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3667
3668 /* This is a temporary kludge to force data and bss to use the
3669 same offsets because that's what nlmconv does now. The real
3670 solution requires changes to the stub and remote.c that I
3671 don't have time to do right now. */
3672
3673 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3674 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3675 }
3676
3677 objfile_relocate (symfile_objfile, offs);
3678 }
3679
3680 /* Send interrupt_sequence to remote target. */
3681 static void
3682 send_interrupt_sequence (void)
3683 {
3684 struct remote_state *rs = get_remote_state ();
3685
3686 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3687 remote_serial_write ("\x03", 1);
3688 else if (interrupt_sequence_mode == interrupt_sequence_break)
3689 serial_send_break (rs->remote_desc);
3690 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3691 {
3692 serial_send_break (rs->remote_desc);
3693 remote_serial_write ("g", 1);
3694 }
3695 else
3696 internal_error (__FILE__, __LINE__,
3697 _("Invalid value for interrupt_sequence_mode: %s."),
3698 interrupt_sequence_mode);
3699 }
3700
3701
3702 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3703 and extract the PTID. Returns NULL_PTID if not found. */
3704
3705 static ptid_t
3706 stop_reply_extract_thread (char *stop_reply)
3707 {
3708 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3709 {
3710 const char *p;
3711
3712 /* Txx r:val ; r:val (...) */
3713 p = &stop_reply[3];
3714
3715 /* Look for "register" named "thread". */
3716 while (*p != '\0')
3717 {
3718 const char *p1;
3719
3720 p1 = strchr (p, ':');
3721 if (p1 == NULL)
3722 return null_ptid;
3723
3724 if (strncmp (p, "thread", p1 - p) == 0)
3725 return read_ptid (++p1, &p);
3726
3727 p1 = strchr (p, ';');
3728 if (p1 == NULL)
3729 return null_ptid;
3730 p1++;
3731
3732 p = p1;
3733 }
3734 }
3735
3736 return null_ptid;
3737 }
3738
3739 /* Determine the remote side's current thread. If we have a stop
3740 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3741 "thread" register we can extract the current thread from. If not,
3742 ask the remote which is the current thread with qC. The former
3743 method avoids a roundtrip. */
3744
3745 static ptid_t
3746 get_current_thread (char *wait_status)
3747 {
3748 ptid_t ptid = null_ptid;
3749
3750 /* Note we don't use remote_parse_stop_reply as that makes use of
3751 the target architecture, which we haven't yet fully determined at
3752 this point. */
3753 if (wait_status != NULL)
3754 ptid = stop_reply_extract_thread (wait_status);
3755 if (ptid_equal (ptid, null_ptid))
3756 ptid = remote_current_thread (inferior_ptid);
3757
3758 return ptid;
3759 }
3760
3761 /* Query the remote target for which is the current thread/process,
3762 add it to our tables, and update INFERIOR_PTID. The caller is
3763 responsible for setting the state such that the remote end is ready
3764 to return the current thread.
3765
3766 This function is called after handling the '?' or 'vRun' packets,
3767 whose response is a stop reply from which we can also try
3768 extracting the thread. If the target doesn't support the explicit
3769 qC query, we infer the current thread from that stop reply, passed
3770 in in WAIT_STATUS, which may be NULL. */
3771
3772 static void
3773 add_current_inferior_and_thread (char *wait_status)
3774 {
3775 struct remote_state *rs = get_remote_state ();
3776 int fake_pid_p = 0;
3777
3778 inferior_ptid = null_ptid;
3779
3780 /* Now, if we have thread information, update inferior_ptid. */
3781 ptid_t curr_ptid = get_current_thread (wait_status);
3782
3783 if (curr_ptid != null_ptid)
3784 {
3785 if (!remote_multi_process_p (rs))
3786 fake_pid_p = 1;
3787 }
3788 else
3789 {
3790 /* Without this, some commands which require an active target
3791 (such as kill) won't work. This variable serves (at least)
3792 double duty as both the pid of the target process (if it has
3793 such), and as a flag indicating that a target is active. */
3794 curr_ptid = magic_null_ptid;
3795 fake_pid_p = 1;
3796 }
3797
3798 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3799
3800 /* Add the main thread and switch to it. Don't try reading
3801 registers yet, since we haven't fetched the target description
3802 yet. */
3803 thread_info *tp = add_thread_silent (curr_ptid);
3804 switch_to_thread_no_regs (tp);
3805 }
3806
3807 /* Print info about a thread that was found already stopped on
3808 connection. */
3809
3810 static void
3811 print_one_stopped_thread (struct thread_info *thread)
3812 {
3813 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3814
3815 switch_to_thread (thread->ptid);
3816 stop_pc = get_frame_pc (get_current_frame ());
3817 set_current_sal_from_frame (get_current_frame ());
3818
3819 thread->suspend.waitstatus_pending_p = 0;
3820
3821 if (ws->kind == TARGET_WAITKIND_STOPPED)
3822 {
3823 enum gdb_signal sig = ws->value.sig;
3824
3825 if (signal_print_state (sig))
3826 observer_notify_signal_received (sig);
3827 }
3828 observer_notify_normal_stop (NULL, 1);
3829 }
3830
3831 /* Process all initial stop replies the remote side sent in response
3832 to the ? packet. These indicate threads that were already stopped
3833 on initial connection. We mark these threads as stopped and print
3834 their current frame before giving the user the prompt. */
3835
3836 static void
3837 process_initial_stop_replies (int from_tty)
3838 {
3839 int pending_stop_replies = stop_reply_queue_length ();
3840 struct inferior *inf;
3841 struct thread_info *thread;
3842 struct thread_info *selected = NULL;
3843 struct thread_info *lowest_stopped = NULL;
3844 struct thread_info *first = NULL;
3845
3846 /* Consume the initial pending events. */
3847 while (pending_stop_replies-- > 0)
3848 {
3849 ptid_t waiton_ptid = minus_one_ptid;
3850 ptid_t event_ptid;
3851 struct target_waitstatus ws;
3852 int ignore_event = 0;
3853 struct thread_info *thread;
3854
3855 memset (&ws, 0, sizeof (ws));
3856 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3857 if (remote_debug)
3858 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3859
3860 switch (ws.kind)
3861 {
3862 case TARGET_WAITKIND_IGNORE:
3863 case TARGET_WAITKIND_NO_RESUMED:
3864 case TARGET_WAITKIND_SIGNALLED:
3865 case TARGET_WAITKIND_EXITED:
3866 /* We shouldn't see these, but if we do, just ignore. */
3867 if (remote_debug)
3868 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3869 ignore_event = 1;
3870 break;
3871
3872 case TARGET_WAITKIND_EXECD:
3873 xfree (ws.value.execd_pathname);
3874 break;
3875 default:
3876 break;
3877 }
3878
3879 if (ignore_event)
3880 continue;
3881
3882 thread = find_thread_ptid (event_ptid);
3883
3884 if (ws.kind == TARGET_WAITKIND_STOPPED)
3885 {
3886 enum gdb_signal sig = ws.value.sig;
3887
3888 /* Stubs traditionally report SIGTRAP as initial signal,
3889 instead of signal 0. Suppress it. */
3890 if (sig == GDB_SIGNAL_TRAP)
3891 sig = GDB_SIGNAL_0;
3892 thread->suspend.stop_signal = sig;
3893 ws.value.sig = sig;
3894 }
3895
3896 thread->suspend.waitstatus = ws;
3897
3898 if (ws.kind != TARGET_WAITKIND_STOPPED
3899 || ws.value.sig != GDB_SIGNAL_0)
3900 thread->suspend.waitstatus_pending_p = 1;
3901
3902 set_executing (event_ptid, 0);
3903 set_running (event_ptid, 0);
3904 get_remote_thread_info (thread)->vcont_resumed = 0;
3905 }
3906
3907 /* "Notice" the new inferiors before anything related to
3908 registers/memory. */
3909 ALL_INFERIORS (inf)
3910 {
3911 if (inf->pid == 0)
3912 continue;
3913
3914 inf->needs_setup = 1;
3915
3916 if (non_stop)
3917 {
3918 thread = any_live_thread_of_process (inf->pid);
3919 notice_new_inferior (thread->ptid,
3920 thread->state == THREAD_RUNNING,
3921 from_tty);
3922 }
3923 }
3924
3925 /* If all-stop on top of non-stop, pause all threads. Note this
3926 records the threads' stop pc, so must be done after "noticing"
3927 the inferiors. */
3928 if (!non_stop)
3929 {
3930 stop_all_threads ();
3931
3932 /* If all threads of an inferior were already stopped, we
3933 haven't setup the inferior yet. */
3934 ALL_INFERIORS (inf)
3935 {
3936 if (inf->pid == 0)
3937 continue;
3938
3939 if (inf->needs_setup)
3940 {
3941 thread = any_live_thread_of_process (inf->pid);
3942 switch_to_thread_no_regs (thread);
3943 setup_inferior (0);
3944 }
3945 }
3946 }
3947
3948 /* Now go over all threads that are stopped, and print their current
3949 frame. If all-stop, then if there's a signalled thread, pick
3950 that as current. */
3951 ALL_NON_EXITED_THREADS (thread)
3952 {
3953 if (first == NULL)
3954 first = thread;
3955
3956 if (!non_stop)
3957 set_running (thread->ptid, 0);
3958 else if (thread->state != THREAD_STOPPED)
3959 continue;
3960
3961 if (selected == NULL
3962 && thread->suspend.waitstatus_pending_p)
3963 selected = thread;
3964
3965 if (lowest_stopped == NULL
3966 || thread->inf->num < lowest_stopped->inf->num
3967 || thread->per_inf_num < lowest_stopped->per_inf_num)
3968 lowest_stopped = thread;
3969
3970 if (non_stop)
3971 print_one_stopped_thread (thread);
3972 }
3973
3974 /* In all-stop, we only print the status of one thread, and leave
3975 others with their status pending. */
3976 if (!non_stop)
3977 {
3978 thread = selected;
3979 if (thread == NULL)
3980 thread = lowest_stopped;
3981 if (thread == NULL)
3982 thread = first;
3983
3984 print_one_stopped_thread (thread);
3985 }
3986
3987 /* For "info program". */
3988 thread = inferior_thread ();
3989 if (thread->state == THREAD_STOPPED)
3990 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3991 }
3992
3993 /* Start the remote connection and sync state. */
3994
3995 static void
3996 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3997 {
3998 struct remote_state *rs = get_remote_state ();
3999 struct packet_config *noack_config;
4000 char *wait_status = NULL;
4001
4002 /* Signal other parts that we're going through the initial setup,
4003 and so things may not be stable yet. E.g., we don't try to
4004 install tracepoints until we've relocated symbols. Also, a
4005 Ctrl-C before we're connected and synced up can't interrupt the
4006 target. Instead, it offers to drop the (potentially wedged)
4007 connection. */
4008 rs->starting_up = 1;
4009
4010 QUIT;
4011
4012 if (interrupt_on_connect)
4013 send_interrupt_sequence ();
4014
4015 /* Ack any packet which the remote side has already sent. */
4016 remote_serial_write ("+", 1);
4017
4018 /* The first packet we send to the target is the optional "supported
4019 packets" request. If the target can answer this, it will tell us
4020 which later probes to skip. */
4021 remote_query_supported ();
4022
4023 /* If the stub wants to get a QAllow, compose one and send it. */
4024 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4025 remote_set_permissions (target);
4026
4027 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4028 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4029 as a reply to known packet. For packet "vFile:setfs:" it is an
4030 invalid reply and GDB would return error in
4031 remote_hostio_set_filesystem, making remote files access impossible.
4032 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4033 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4034 {
4035 const char v_mustreplyempty[] = "vMustReplyEmpty";
4036
4037 putpkt (v_mustreplyempty);
4038 getpkt (&rs->buf, &rs->buf_size, 0);
4039 if (strcmp (rs->buf, "OK") == 0)
4040 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4041 else if (strcmp (rs->buf, "") != 0)
4042 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4043 rs->buf);
4044 }
4045
4046 /* Next, we possibly activate noack mode.
4047
4048 If the QStartNoAckMode packet configuration is set to AUTO,
4049 enable noack mode if the stub reported a wish for it with
4050 qSupported.
4051
4052 If set to TRUE, then enable noack mode even if the stub didn't
4053 report it in qSupported. If the stub doesn't reply OK, the
4054 session ends with an error.
4055
4056 If FALSE, then don't activate noack mode, regardless of what the
4057 stub claimed should be the default with qSupported. */
4058
4059 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4060 if (packet_config_support (noack_config) != PACKET_DISABLE)
4061 {
4062 putpkt ("QStartNoAckMode");
4063 getpkt (&rs->buf, &rs->buf_size, 0);
4064 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4065 rs->noack_mode = 1;
4066 }
4067
4068 if (extended_p)
4069 {
4070 /* Tell the remote that we are using the extended protocol. */
4071 putpkt ("!");
4072 getpkt (&rs->buf, &rs->buf_size, 0);
4073 }
4074
4075 /* Let the target know which signals it is allowed to pass down to
4076 the program. */
4077 update_signals_program_target ();
4078
4079 /* Next, if the target can specify a description, read it. We do
4080 this before anything involving memory or registers. */
4081 target_find_description ();
4082
4083 /* Next, now that we know something about the target, update the
4084 address spaces in the program spaces. */
4085 update_address_spaces ();
4086
4087 /* On OSs where the list of libraries is global to all
4088 processes, we fetch them early. */
4089 if (gdbarch_has_global_solist (target_gdbarch ()))
4090 solib_add (NULL, from_tty, auto_solib_add);
4091
4092 if (target_is_non_stop_p ())
4093 {
4094 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4095 error (_("Non-stop mode requested, but remote "
4096 "does not support non-stop"));
4097
4098 putpkt ("QNonStop:1");
4099 getpkt (&rs->buf, &rs->buf_size, 0);
4100
4101 if (strcmp (rs->buf, "OK") != 0)
4102 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4103
4104 /* Find about threads and processes the stub is already
4105 controlling. We default to adding them in the running state.
4106 The '?' query below will then tell us about which threads are
4107 stopped. */
4108 remote_update_thread_list (target);
4109 }
4110 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4111 {
4112 /* Don't assume that the stub can operate in all-stop mode.
4113 Request it explicitly. */
4114 putpkt ("QNonStop:0");
4115 getpkt (&rs->buf, &rs->buf_size, 0);
4116
4117 if (strcmp (rs->buf, "OK") != 0)
4118 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4119 }
4120
4121 /* Upload TSVs regardless of whether the target is running or not. The
4122 remote stub, such as GDBserver, may have some predefined or builtin
4123 TSVs, even if the target is not running. */
4124 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4125 {
4126 struct uploaded_tsv *uploaded_tsvs = NULL;
4127
4128 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4129 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4130 }
4131
4132 /* Check whether the target is running now. */
4133 putpkt ("?");
4134 getpkt (&rs->buf, &rs->buf_size, 0);
4135
4136 if (!target_is_non_stop_p ())
4137 {
4138 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4139 {
4140 if (!extended_p)
4141 error (_("The target is not running (try extended-remote?)"));
4142
4143 /* We're connected, but not running. Drop out before we
4144 call start_remote. */
4145 rs->starting_up = 0;
4146 return;
4147 }
4148 else
4149 {
4150 /* Save the reply for later. */
4151 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4152 strcpy (wait_status, rs->buf);
4153 }
4154
4155 /* Fetch thread list. */
4156 target_update_thread_list ();
4157
4158 /* Let the stub know that we want it to return the thread. */
4159 set_continue_thread (minus_one_ptid);
4160
4161 if (thread_count () == 0)
4162 {
4163 /* Target has no concept of threads at all. GDB treats
4164 non-threaded target as single-threaded; add a main
4165 thread. */
4166 add_current_inferior_and_thread (wait_status);
4167 }
4168 else
4169 {
4170 /* We have thread information; select the thread the target
4171 says should be current. If we're reconnecting to a
4172 multi-threaded program, this will ideally be the thread
4173 that last reported an event before GDB disconnected. */
4174 inferior_ptid = get_current_thread (wait_status);
4175 if (ptid_equal (inferior_ptid, null_ptid))
4176 {
4177 /* Odd... The target was able to list threads, but not
4178 tell us which thread was current (no "thread"
4179 register in T stop reply?). Just pick the first
4180 thread in the thread list then. */
4181
4182 if (remote_debug)
4183 fprintf_unfiltered (gdb_stdlog,
4184 "warning: couldn't determine remote "
4185 "current thread; picking first in list.\n");
4186
4187 inferior_ptid = thread_list->ptid;
4188 }
4189 }
4190
4191 /* init_wait_for_inferior should be called before get_offsets in order
4192 to manage `inserted' flag in bp loc in a correct state.
4193 breakpoint_init_inferior, called from init_wait_for_inferior, set
4194 `inserted' flag to 0, while before breakpoint_re_set, called from
4195 start_remote, set `inserted' flag to 1. In the initialization of
4196 inferior, breakpoint_init_inferior should be called first, and then
4197 breakpoint_re_set can be called. If this order is broken, state of
4198 `inserted' flag is wrong, and cause some problems on breakpoint
4199 manipulation. */
4200 init_wait_for_inferior ();
4201
4202 get_offsets (); /* Get text, data & bss offsets. */
4203
4204 /* If we could not find a description using qXfer, and we know
4205 how to do it some other way, try again. This is not
4206 supported for non-stop; it could be, but it is tricky if
4207 there are no stopped threads when we connect. */
4208 if (remote_read_description_p (target)
4209 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4210 {
4211 target_clear_description ();
4212 target_find_description ();
4213 }
4214
4215 /* Use the previously fetched status. */
4216 gdb_assert (wait_status != NULL);
4217 strcpy (rs->buf, wait_status);
4218 rs->cached_wait_status = 1;
4219
4220 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4221 }
4222 else
4223 {
4224 /* Clear WFI global state. Do this before finding about new
4225 threads and inferiors, and setting the current inferior.
4226 Otherwise we would clear the proceed status of the current
4227 inferior when we want its stop_soon state to be preserved
4228 (see notice_new_inferior). */
4229 init_wait_for_inferior ();
4230
4231 /* In non-stop, we will either get an "OK", meaning that there
4232 are no stopped threads at this time; or, a regular stop
4233 reply. In the latter case, there may be more than one thread
4234 stopped --- we pull them all out using the vStopped
4235 mechanism. */
4236 if (strcmp (rs->buf, "OK") != 0)
4237 {
4238 struct notif_client *notif = &notif_client_stop;
4239
4240 /* remote_notif_get_pending_replies acks this one, and gets
4241 the rest out. */
4242 rs->notif_state->pending_event[notif_client_stop.id]
4243 = remote_notif_parse (notif, rs->buf);
4244 remote_notif_get_pending_events (notif);
4245 }
4246
4247 if (thread_count () == 0)
4248 {
4249 if (!extended_p)
4250 error (_("The target is not running (try extended-remote?)"));
4251
4252 /* We're connected, but not running. Drop out before we
4253 call start_remote. */
4254 rs->starting_up = 0;
4255 return;
4256 }
4257
4258 /* In non-stop mode, any cached wait status will be stored in
4259 the stop reply queue. */
4260 gdb_assert (wait_status == NULL);
4261
4262 /* Report all signals during attach/startup. */
4263 remote_pass_signals (target, 0, NULL);
4264
4265 /* If there are already stopped threads, mark them stopped and
4266 report their stops before giving the prompt to the user. */
4267 process_initial_stop_replies (from_tty);
4268
4269 if (target_can_async_p ())
4270 target_async (1);
4271 }
4272
4273 /* If we connected to a live target, do some additional setup. */
4274 if (target_has_execution)
4275 {
4276 if (symfile_objfile) /* No use without a symbol-file. */
4277 remote_check_symbols ();
4278 }
4279
4280 /* Possibly the target has been engaged in a trace run started
4281 previously; find out where things are at. */
4282 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4283 {
4284 struct uploaded_tp *uploaded_tps = NULL;
4285
4286 if (current_trace_status ()->running)
4287 printf_filtered (_("Trace is already running on the target.\n"));
4288
4289 remote_upload_tracepoints (target, &uploaded_tps);
4290
4291 merge_uploaded_tracepoints (&uploaded_tps);
4292 }
4293
4294 /* Possibly the target has been engaged in a btrace record started
4295 previously; find out where things are at. */
4296 remote_btrace_maybe_reopen ();
4297
4298 /* The thread and inferior lists are now synchronized with the
4299 target, our symbols have been relocated, and we're merged the
4300 target's tracepoints with ours. We're done with basic start
4301 up. */
4302 rs->starting_up = 0;
4303
4304 /* Maybe breakpoints are global and need to be inserted now. */
4305 if (breakpoints_should_be_inserted_now ())
4306 insert_breakpoints ();
4307 }
4308
4309 /* Open a connection to a remote debugger.
4310 NAME is the filename used for communication. */
4311
4312 static void
4313 remote_open (const char *name, int from_tty)
4314 {
4315 remote_open_1 (name, from_tty, &remote_ops, 0);
4316 }
4317
4318 /* Open a connection to a remote debugger using the extended
4319 remote gdb protocol. NAME is the filename used for communication. */
4320
4321 static void
4322 extended_remote_open (const char *name, int from_tty)
4323 {
4324 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4325 }
4326
4327 /* Reset all packets back to "unknown support". Called when opening a
4328 new connection to a remote target. */
4329
4330 static void
4331 reset_all_packet_configs_support (void)
4332 {
4333 int i;
4334
4335 for (i = 0; i < PACKET_MAX; i++)
4336 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4337 }
4338
4339 /* Initialize all packet configs. */
4340
4341 static void
4342 init_all_packet_configs (void)
4343 {
4344 int i;
4345
4346 for (i = 0; i < PACKET_MAX; i++)
4347 {
4348 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4349 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4350 }
4351 }
4352
4353 /* Symbol look-up. */
4354
4355 static void
4356 remote_check_symbols (void)
4357 {
4358 char *msg, *reply, *tmp;
4359 int end;
4360 long reply_size;
4361 struct cleanup *old_chain;
4362
4363 /* The remote side has no concept of inferiors that aren't running
4364 yet, it only knows about running processes. If we're connected
4365 but our current inferior is not running, we should not invite the
4366 remote target to request symbol lookups related to its
4367 (unrelated) current process. */
4368 if (!target_has_execution)
4369 return;
4370
4371 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4372 return;
4373
4374 /* Make sure the remote is pointing at the right process. Note
4375 there's no way to select "no process". */
4376 set_general_process ();
4377
4378 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4379 because we need both at the same time. */
4380 msg = (char *) xmalloc (get_remote_packet_size ());
4381 old_chain = make_cleanup (xfree, msg);
4382 reply = (char *) xmalloc (get_remote_packet_size ());
4383 make_cleanup (free_current_contents, &reply);
4384 reply_size = get_remote_packet_size ();
4385
4386 /* Invite target to request symbol lookups. */
4387
4388 putpkt ("qSymbol::");
4389 getpkt (&reply, &reply_size, 0);
4390 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4391
4392 while (startswith (reply, "qSymbol:"))
4393 {
4394 struct bound_minimal_symbol sym;
4395
4396 tmp = &reply[8];
4397 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4398 msg[end] = '\0';
4399 sym = lookup_minimal_symbol (msg, NULL, NULL);
4400 if (sym.minsym == NULL)
4401 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4402 else
4403 {
4404 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4405 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4406
4407 /* If this is a function address, return the start of code
4408 instead of any data function descriptor. */
4409 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4410 sym_addr,
4411 &current_target);
4412
4413 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4414 phex_nz (sym_addr, addr_size), &reply[8]);
4415 }
4416
4417 putpkt (msg);
4418 getpkt (&reply, &reply_size, 0);
4419 }
4420
4421 do_cleanups (old_chain);
4422 }
4423
4424 static struct serial *
4425 remote_serial_open (const char *name)
4426 {
4427 static int udp_warning = 0;
4428
4429 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4430 of in ser-tcp.c, because it is the remote protocol assuming that the
4431 serial connection is reliable and not the serial connection promising
4432 to be. */
4433 if (!udp_warning && startswith (name, "udp:"))
4434 {
4435 warning (_("The remote protocol may be unreliable over UDP.\n"
4436 "Some events may be lost, rendering further debugging "
4437 "impossible."));
4438 udp_warning = 1;
4439 }
4440
4441 return serial_open (name);
4442 }
4443
4444 /* Inform the target of our permission settings. The permission flags
4445 work without this, but if the target knows the settings, it can do
4446 a couple things. First, it can add its own check, to catch cases
4447 that somehow manage to get by the permissions checks in target
4448 methods. Second, if the target is wired to disallow particular
4449 settings (for instance, a system in the field that is not set up to
4450 be able to stop at a breakpoint), it can object to any unavailable
4451 permissions. */
4452
4453 void
4454 remote_set_permissions (struct target_ops *self)
4455 {
4456 struct remote_state *rs = get_remote_state ();
4457
4458 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4459 "WriteReg:%x;WriteMem:%x;"
4460 "InsertBreak:%x;InsertTrace:%x;"
4461 "InsertFastTrace:%x;Stop:%x",
4462 may_write_registers, may_write_memory,
4463 may_insert_breakpoints, may_insert_tracepoints,
4464 may_insert_fast_tracepoints, may_stop);
4465 putpkt (rs->buf);
4466 getpkt (&rs->buf, &rs->buf_size, 0);
4467
4468 /* If the target didn't like the packet, warn the user. Do not try
4469 to undo the user's settings, that would just be maddening. */
4470 if (strcmp (rs->buf, "OK") != 0)
4471 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4472 }
4473
4474 /* This type describes each known response to the qSupported
4475 packet. */
4476 struct protocol_feature
4477 {
4478 /* The name of this protocol feature. */
4479 const char *name;
4480
4481 /* The default for this protocol feature. */
4482 enum packet_support default_support;
4483
4484 /* The function to call when this feature is reported, or after
4485 qSupported processing if the feature is not supported.
4486 The first argument points to this structure. The second
4487 argument indicates whether the packet requested support be
4488 enabled, disabled, or probed (or the default, if this function
4489 is being called at the end of processing and this feature was
4490 not reported). The third argument may be NULL; if not NULL, it
4491 is a NUL-terminated string taken from the packet following
4492 this feature's name and an equals sign. */
4493 void (*func) (const struct protocol_feature *, enum packet_support,
4494 const char *);
4495
4496 /* The corresponding packet for this feature. Only used if
4497 FUNC is remote_supported_packet. */
4498 int packet;
4499 };
4500
4501 static void
4502 remote_supported_packet (const struct protocol_feature *feature,
4503 enum packet_support support,
4504 const char *argument)
4505 {
4506 if (argument)
4507 {
4508 warning (_("Remote qSupported response supplied an unexpected value for"
4509 " \"%s\"."), feature->name);
4510 return;
4511 }
4512
4513 remote_protocol_packets[feature->packet].support = support;
4514 }
4515
4516 static void
4517 remote_packet_size (const struct protocol_feature *feature,
4518 enum packet_support support, const char *value)
4519 {
4520 struct remote_state *rs = get_remote_state ();
4521
4522 int packet_size;
4523 char *value_end;
4524
4525 if (support != PACKET_ENABLE)
4526 return;
4527
4528 if (value == NULL || *value == '\0')
4529 {
4530 warning (_("Remote target reported \"%s\" without a size."),
4531 feature->name);
4532 return;
4533 }
4534
4535 errno = 0;
4536 packet_size = strtol (value, &value_end, 16);
4537 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4538 {
4539 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4540 feature->name, value);
4541 return;
4542 }
4543
4544 /* Record the new maximum packet size. */
4545 rs->explicit_packet_size = packet_size;
4546 }
4547
4548 static const struct protocol_feature remote_protocol_features[] = {
4549 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4550 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4551 PACKET_qXfer_auxv },
4552 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4553 PACKET_qXfer_exec_file },
4554 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4555 PACKET_qXfer_features },
4556 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4557 PACKET_qXfer_libraries },
4558 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4559 PACKET_qXfer_libraries_svr4 },
4560 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4561 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4562 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4563 PACKET_qXfer_memory_map },
4564 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4565 PACKET_qXfer_spu_read },
4566 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4567 PACKET_qXfer_spu_write },
4568 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4569 PACKET_qXfer_osdata },
4570 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4571 PACKET_qXfer_threads },
4572 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4573 PACKET_qXfer_traceframe_info },
4574 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4575 PACKET_QPassSignals },
4576 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4577 PACKET_QCatchSyscalls },
4578 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4579 PACKET_QProgramSignals },
4580 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4581 PACKET_QSetWorkingDir },
4582 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4583 PACKET_QStartupWithShell },
4584 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4585 PACKET_QEnvironmentHexEncoded },
4586 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4587 PACKET_QEnvironmentReset },
4588 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4589 PACKET_QEnvironmentUnset },
4590 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4591 PACKET_QStartNoAckMode },
4592 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4593 PACKET_multiprocess_feature },
4594 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4595 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4596 PACKET_qXfer_siginfo_read },
4597 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4598 PACKET_qXfer_siginfo_write },
4599 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4600 PACKET_ConditionalTracepoints },
4601 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4602 PACKET_ConditionalBreakpoints },
4603 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4604 PACKET_BreakpointCommands },
4605 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4606 PACKET_FastTracepoints },
4607 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4608 PACKET_StaticTracepoints },
4609 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4610 PACKET_InstallInTrace},
4611 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4612 PACKET_DisconnectedTracing_feature },
4613 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4614 PACKET_bc },
4615 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4616 PACKET_bs },
4617 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4618 PACKET_TracepointSource },
4619 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4620 PACKET_QAllow },
4621 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_EnableDisableTracepoints_feature },
4623 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_fdpic },
4625 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_qXfer_uib },
4627 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4628 PACKET_QDisableRandomization },
4629 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4630 { "QTBuffer:size", PACKET_DISABLE,
4631 remote_supported_packet, PACKET_QTBuffer_size},
4632 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4633 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4634 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4635 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4636 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_qXfer_btrace },
4638 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_qXfer_btrace_conf },
4640 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_Qbtrace_conf_bts_size },
4642 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4643 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4644 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_fork_event_feature },
4646 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_vfork_event_feature },
4648 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_exec_event_feature },
4650 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_Qbtrace_conf_pt_size },
4652 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4653 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4654 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4655 };
4656
4657 static char *remote_support_xml;
4658
4659 /* Register string appended to "xmlRegisters=" in qSupported query. */
4660
4661 void
4662 register_remote_support_xml (const char *xml)
4663 {
4664 #if defined(HAVE_LIBEXPAT)
4665 if (remote_support_xml == NULL)
4666 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4667 else
4668 {
4669 char *copy = xstrdup (remote_support_xml + 13);
4670 char *p = strtok (copy, ",");
4671
4672 do
4673 {
4674 if (strcmp (p, xml) == 0)
4675 {
4676 /* already there */
4677 xfree (copy);
4678 return;
4679 }
4680 }
4681 while ((p = strtok (NULL, ",")) != NULL);
4682 xfree (copy);
4683
4684 remote_support_xml = reconcat (remote_support_xml,
4685 remote_support_xml, ",", xml,
4686 (char *) NULL);
4687 }
4688 #endif
4689 }
4690
4691 static char *
4692 remote_query_supported_append (char *msg, const char *append)
4693 {
4694 if (msg)
4695 return reconcat (msg, msg, ";", append, (char *) NULL);
4696 else
4697 return xstrdup (append);
4698 }
4699
4700 static void
4701 remote_query_supported (void)
4702 {
4703 struct remote_state *rs = get_remote_state ();
4704 char *next;
4705 int i;
4706 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4707
4708 /* The packet support flags are handled differently for this packet
4709 than for most others. We treat an error, a disabled packet, and
4710 an empty response identically: any features which must be reported
4711 to be used will be automatically disabled. An empty buffer
4712 accomplishes this, since that is also the representation for a list
4713 containing no features. */
4714
4715 rs->buf[0] = 0;
4716 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4717 {
4718 char *q = NULL;
4719 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4720
4721 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4722 q = remote_query_supported_append (q, "multiprocess+");
4723
4724 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4725 q = remote_query_supported_append (q, "swbreak+");
4726 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4727 q = remote_query_supported_append (q, "hwbreak+");
4728
4729 q = remote_query_supported_append (q, "qRelocInsn+");
4730
4731 if (packet_set_cmd_state (PACKET_fork_event_feature)
4732 != AUTO_BOOLEAN_FALSE)
4733 q = remote_query_supported_append (q, "fork-events+");
4734 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4735 != AUTO_BOOLEAN_FALSE)
4736 q = remote_query_supported_append (q, "vfork-events+");
4737 if (packet_set_cmd_state (PACKET_exec_event_feature)
4738 != AUTO_BOOLEAN_FALSE)
4739 q = remote_query_supported_append (q, "exec-events+");
4740
4741 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4742 q = remote_query_supported_append (q, "vContSupported+");
4743
4744 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4745 q = remote_query_supported_append (q, "QThreadEvents+");
4746
4747 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4748 q = remote_query_supported_append (q, "no-resumed+");
4749
4750 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4751 the qSupported:xmlRegisters=i386 handling. */
4752 if (remote_support_xml != NULL
4753 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4754 q = remote_query_supported_append (q, remote_support_xml);
4755
4756 q = reconcat (q, "qSupported:", q, (char *) NULL);
4757 putpkt (q);
4758
4759 do_cleanups (old_chain);
4760
4761 getpkt (&rs->buf, &rs->buf_size, 0);
4762
4763 /* If an error occured, warn, but do not return - just reset the
4764 buffer to empty and go on to disable features. */
4765 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4766 == PACKET_ERROR)
4767 {
4768 warning (_("Remote failure reply: %s"), rs->buf);
4769 rs->buf[0] = 0;
4770 }
4771 }
4772
4773 memset (seen, 0, sizeof (seen));
4774
4775 next = rs->buf;
4776 while (*next)
4777 {
4778 enum packet_support is_supported;
4779 char *p, *end, *name_end, *value;
4780
4781 /* First separate out this item from the rest of the packet. If
4782 there's another item after this, we overwrite the separator
4783 (terminated strings are much easier to work with). */
4784 p = next;
4785 end = strchr (p, ';');
4786 if (end == NULL)
4787 {
4788 end = p + strlen (p);
4789 next = end;
4790 }
4791 else
4792 {
4793 *end = '\0';
4794 next = end + 1;
4795
4796 if (end == p)
4797 {
4798 warning (_("empty item in \"qSupported\" response"));
4799 continue;
4800 }
4801 }
4802
4803 name_end = strchr (p, '=');
4804 if (name_end)
4805 {
4806 /* This is a name=value entry. */
4807 is_supported = PACKET_ENABLE;
4808 value = name_end + 1;
4809 *name_end = '\0';
4810 }
4811 else
4812 {
4813 value = NULL;
4814 switch (end[-1])
4815 {
4816 case '+':
4817 is_supported = PACKET_ENABLE;
4818 break;
4819
4820 case '-':
4821 is_supported = PACKET_DISABLE;
4822 break;
4823
4824 case '?':
4825 is_supported = PACKET_SUPPORT_UNKNOWN;
4826 break;
4827
4828 default:
4829 warning (_("unrecognized item \"%s\" "
4830 "in \"qSupported\" response"), p);
4831 continue;
4832 }
4833 end[-1] = '\0';
4834 }
4835
4836 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4837 if (strcmp (remote_protocol_features[i].name, p) == 0)
4838 {
4839 const struct protocol_feature *feature;
4840
4841 seen[i] = 1;
4842 feature = &remote_protocol_features[i];
4843 feature->func (feature, is_supported, value);
4844 break;
4845 }
4846 }
4847
4848 /* If we increased the packet size, make sure to increase the global
4849 buffer size also. We delay this until after parsing the entire
4850 qSupported packet, because this is the same buffer we were
4851 parsing. */
4852 if (rs->buf_size < rs->explicit_packet_size)
4853 {
4854 rs->buf_size = rs->explicit_packet_size;
4855 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4856 }
4857
4858 /* Handle the defaults for unmentioned features. */
4859 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4860 if (!seen[i])
4861 {
4862 const struct protocol_feature *feature;
4863
4864 feature = &remote_protocol_features[i];
4865 feature->func (feature, feature->default_support, NULL);
4866 }
4867 }
4868
4869 /* Serial QUIT handler for the remote serial descriptor.
4870
4871 Defers handling a Ctrl-C until we're done with the current
4872 command/response packet sequence, unless:
4873
4874 - We're setting up the connection. Don't send a remote interrupt
4875 request, as we're not fully synced yet. Quit immediately
4876 instead.
4877
4878 - The target has been resumed in the foreground
4879 (target_terminal::is_ours is false) with a synchronous resume
4880 packet, and we're blocked waiting for the stop reply, thus a
4881 Ctrl-C should be immediately sent to the target.
4882
4883 - We get a second Ctrl-C while still within the same serial read or
4884 write. In that case the serial is seemingly wedged --- offer to
4885 quit/disconnect.
4886
4887 - We see a second Ctrl-C without target response, after having
4888 previously interrupted the target. In that case the target/stub
4889 is probably wedged --- offer to quit/disconnect.
4890 */
4891
4892 static void
4893 remote_serial_quit_handler (void)
4894 {
4895 struct remote_state *rs = get_remote_state ();
4896
4897 if (check_quit_flag ())
4898 {
4899 /* If we're starting up, we're not fully synced yet. Quit
4900 immediately. */
4901 if (rs->starting_up)
4902 quit ();
4903 else if (rs->got_ctrlc_during_io)
4904 {
4905 if (query (_("The target is not responding to GDB commands.\n"
4906 "Stop debugging it? ")))
4907 remote_unpush_and_throw ();
4908 }
4909 /* If ^C has already been sent once, offer to disconnect. */
4910 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4911 interrupt_query ();
4912 /* All-stop protocol, and blocked waiting for stop reply. Send
4913 an interrupt request. */
4914 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4915 target_interrupt (inferior_ptid);
4916 else
4917 rs->got_ctrlc_during_io = 1;
4918 }
4919 }
4920
4921 /* Remove any of the remote.c targets from target stack. Upper targets depend
4922 on it so remove them first. */
4923
4924 static void
4925 remote_unpush_target (void)
4926 {
4927 pop_all_targets_at_and_above (process_stratum);
4928 }
4929
4930 static void
4931 remote_unpush_and_throw (void)
4932 {
4933 remote_unpush_target ();
4934 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4935 }
4936
4937 static void
4938 remote_open_1 (const char *name, int from_tty,
4939 struct target_ops *target, int extended_p)
4940 {
4941 struct remote_state *rs = get_remote_state ();
4942
4943 if (name == 0)
4944 error (_("To open a remote debug connection, you need to specify what\n"
4945 "serial device is attached to the remote system\n"
4946 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4947
4948 /* See FIXME above. */
4949 if (!target_async_permitted)
4950 wait_forever_enabled_p = 1;
4951
4952 /* If we're connected to a running target, target_preopen will kill it.
4953 Ask this question first, before target_preopen has a chance to kill
4954 anything. */
4955 if (rs->remote_desc != NULL && !have_inferiors ())
4956 {
4957 if (from_tty
4958 && !query (_("Already connected to a remote target. Disconnect? ")))
4959 error (_("Still connected."));
4960 }
4961
4962 /* Here the possibly existing remote target gets unpushed. */
4963 target_preopen (from_tty);
4964
4965 /* Make sure we send the passed signals list the next time we resume. */
4966 xfree (rs->last_pass_packet);
4967 rs->last_pass_packet = NULL;
4968
4969 /* Make sure we send the program signals list the next time we
4970 resume. */
4971 xfree (rs->last_program_signals_packet);
4972 rs->last_program_signals_packet = NULL;
4973
4974 remote_fileio_reset ();
4975 reopen_exec_file ();
4976 reread_symbols ();
4977
4978 rs->remote_desc = remote_serial_open (name);
4979 if (!rs->remote_desc)
4980 perror_with_name (name);
4981
4982 if (baud_rate != -1)
4983 {
4984 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4985 {
4986 /* The requested speed could not be set. Error out to
4987 top level after closing remote_desc. Take care to
4988 set remote_desc to NULL to avoid closing remote_desc
4989 more than once. */
4990 serial_close (rs->remote_desc);
4991 rs->remote_desc = NULL;
4992 perror_with_name (name);
4993 }
4994 }
4995
4996 serial_setparity (rs->remote_desc, serial_parity);
4997 serial_raw (rs->remote_desc);
4998
4999 /* If there is something sitting in the buffer we might take it as a
5000 response to a command, which would be bad. */
5001 serial_flush_input (rs->remote_desc);
5002
5003 if (from_tty)
5004 {
5005 puts_filtered ("Remote debugging using ");
5006 puts_filtered (name);
5007 puts_filtered ("\n");
5008 }
5009 push_target (target); /* Switch to using remote target now. */
5010
5011 /* Register extra event sources in the event loop. */
5012 remote_async_inferior_event_token
5013 = create_async_event_handler (remote_async_inferior_event_handler,
5014 NULL);
5015 rs->notif_state = remote_notif_state_allocate ();
5016
5017 /* Reset the target state; these things will be queried either by
5018 remote_query_supported or as they are needed. */
5019 reset_all_packet_configs_support ();
5020 rs->cached_wait_status = 0;
5021 rs->explicit_packet_size = 0;
5022 rs->noack_mode = 0;
5023 rs->extended = extended_p;
5024 rs->waiting_for_stop_reply = 0;
5025 rs->ctrlc_pending_p = 0;
5026 rs->got_ctrlc_during_io = 0;
5027
5028 rs->general_thread = not_sent_ptid;
5029 rs->continue_thread = not_sent_ptid;
5030 rs->remote_traceframe_number = -1;
5031
5032 rs->last_resume_exec_dir = EXEC_FORWARD;
5033
5034 /* Probe for ability to use "ThreadInfo" query, as required. */
5035 rs->use_threadinfo_query = 1;
5036 rs->use_threadextra_query = 1;
5037
5038 readahead_cache_invalidate ();
5039
5040 if (target_async_permitted)
5041 {
5042 /* FIXME: cagney/1999-09-23: During the initial connection it is
5043 assumed that the target is already ready and able to respond to
5044 requests. Unfortunately remote_start_remote() eventually calls
5045 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5046 around this. Eventually a mechanism that allows
5047 wait_for_inferior() to expect/get timeouts will be
5048 implemented. */
5049 wait_forever_enabled_p = 0;
5050 }
5051
5052 /* First delete any symbols previously loaded from shared libraries. */
5053 no_shared_libraries (NULL, 0);
5054
5055 /* Start afresh. */
5056 init_thread_list ();
5057
5058 /* Start the remote connection. If error() or QUIT, discard this
5059 target (we'd otherwise be in an inconsistent state) and then
5060 propogate the error on up the exception chain. This ensures that
5061 the caller doesn't stumble along blindly assuming that the
5062 function succeeded. The CLI doesn't have this problem but other
5063 UI's, such as MI do.
5064
5065 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5066 this function should return an error indication letting the
5067 caller restore the previous state. Unfortunately the command
5068 ``target remote'' is directly wired to this function making that
5069 impossible. On a positive note, the CLI side of this problem has
5070 been fixed - the function set_cmd_context() makes it possible for
5071 all the ``target ....'' commands to share a common callback
5072 function. See cli-dump.c. */
5073 {
5074
5075 TRY
5076 {
5077 remote_start_remote (from_tty, target, extended_p);
5078 }
5079 CATCH (ex, RETURN_MASK_ALL)
5080 {
5081 /* Pop the partially set up target - unless something else did
5082 already before throwing the exception. */
5083 if (rs->remote_desc != NULL)
5084 remote_unpush_target ();
5085 if (target_async_permitted)
5086 wait_forever_enabled_p = 1;
5087 throw_exception (ex);
5088 }
5089 END_CATCH
5090 }
5091
5092 remote_btrace_reset ();
5093
5094 if (target_async_permitted)
5095 wait_forever_enabled_p = 1;
5096 }
5097
5098 /* Detach the specified process. */
5099
5100 static void
5101 remote_detach_pid (int pid)
5102 {
5103 struct remote_state *rs = get_remote_state ();
5104
5105 if (remote_multi_process_p (rs))
5106 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5107 else
5108 strcpy (rs->buf, "D");
5109
5110 putpkt (rs->buf);
5111 getpkt (&rs->buf, &rs->buf_size, 0);
5112
5113 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5114 ;
5115 else if (rs->buf[0] == '\0')
5116 error (_("Remote doesn't know how to detach"));
5117 else
5118 error (_("Can't detach process."));
5119 }
5120
5121 /* This detaches a program to which we previously attached, using
5122 inferior_ptid to identify the process. After this is done, GDB
5123 can be used to debug some other program. We better not have left
5124 any breakpoints in the target program or it'll die when it hits
5125 one. */
5126
5127 static void
5128 remote_detach_1 (const char *args, int from_tty)
5129 {
5130 int pid = ptid_get_pid (inferior_ptid);
5131 struct remote_state *rs = get_remote_state ();
5132 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5133 int is_fork_parent;
5134
5135 if (args)
5136 error (_("Argument given to \"detach\" when remotely debugging."));
5137
5138 if (!target_has_execution)
5139 error (_("No process to detach from."));
5140
5141 target_announce_detach (from_tty);
5142
5143 /* Tell the remote target to detach. */
5144 remote_detach_pid (pid);
5145
5146 /* Exit only if this is the only active inferior. */
5147 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5148 puts_filtered (_("Ending remote debugging.\n"));
5149
5150 /* Check to see if we are detaching a fork parent. Note that if we
5151 are detaching a fork child, tp == NULL. */
5152 is_fork_parent = (tp != NULL
5153 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5154
5155 /* If doing detach-on-fork, we don't mourn, because that will delete
5156 breakpoints that should be available for the followed inferior. */
5157 if (!is_fork_parent)
5158 target_mourn_inferior (inferior_ptid);
5159 else
5160 {
5161 inferior_ptid = null_ptid;
5162 detach_inferior (pid);
5163 }
5164 }
5165
5166 static void
5167 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5168 {
5169 remote_detach_1 (args, from_tty);
5170 }
5171
5172 static void
5173 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5174 {
5175 remote_detach_1 (args, from_tty);
5176 }
5177
5178 /* Target follow-fork function for remote targets. On entry, and
5179 at return, the current inferior is the fork parent.
5180
5181 Note that although this is currently only used for extended-remote,
5182 it is named remote_follow_fork in anticipation of using it for the
5183 remote target as well. */
5184
5185 static int
5186 remote_follow_fork (struct target_ops *ops, int follow_child,
5187 int detach_fork)
5188 {
5189 struct remote_state *rs = get_remote_state ();
5190 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5191
5192 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5193 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5194 {
5195 /* When following the parent and detaching the child, we detach
5196 the child here. For the case of following the child and
5197 detaching the parent, the detach is done in the target-
5198 independent follow fork code in infrun.c. We can't use
5199 target_detach when detaching an unfollowed child because
5200 the client side doesn't know anything about the child. */
5201 if (detach_fork && !follow_child)
5202 {
5203 /* Detach the fork child. */
5204 ptid_t child_ptid;
5205 pid_t child_pid;
5206
5207 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5208 child_pid = ptid_get_pid (child_ptid);
5209
5210 remote_detach_pid (child_pid);
5211 detach_inferior (child_pid);
5212 }
5213 }
5214 return 0;
5215 }
5216
5217 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5218 in the program space of the new inferior. On entry and at return the
5219 current inferior is the exec'ing inferior. INF is the new exec'd
5220 inferior, which may be the same as the exec'ing inferior unless
5221 follow-exec-mode is "new". */
5222
5223 static void
5224 remote_follow_exec (struct target_ops *ops,
5225 struct inferior *inf, char *execd_pathname)
5226 {
5227 /* We know that this is a target file name, so if it has the "target:"
5228 prefix we strip it off before saving it in the program space. */
5229 if (is_target_filename (execd_pathname))
5230 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5231
5232 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5233 }
5234
5235 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5236
5237 static void
5238 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5239 {
5240 if (args)
5241 error (_("Argument given to \"disconnect\" when remotely debugging."));
5242
5243 /* Make sure we unpush even the extended remote targets. Calling
5244 target_mourn_inferior won't unpush, and remote_mourn won't
5245 unpush if there is more than one inferior left. */
5246 unpush_target (target);
5247 generic_mourn_inferior ();
5248
5249 if (from_tty)
5250 puts_filtered ("Ending remote debugging.\n");
5251 }
5252
5253 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5254 be chatty about it. */
5255
5256 static void
5257 extended_remote_attach (struct target_ops *target, const char *args,
5258 int from_tty)
5259 {
5260 struct remote_state *rs = get_remote_state ();
5261 int pid;
5262 char *wait_status = NULL;
5263
5264 pid = parse_pid_to_attach (args);
5265
5266 /* Remote PID can be freely equal to getpid, do not check it here the same
5267 way as in other targets. */
5268
5269 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5270 error (_("This target does not support attaching to a process"));
5271
5272 if (from_tty)
5273 {
5274 char *exec_file = get_exec_file (0);
5275
5276 if (exec_file)
5277 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5278 target_pid_to_str (pid_to_ptid (pid)));
5279 else
5280 printf_unfiltered (_("Attaching to %s\n"),
5281 target_pid_to_str (pid_to_ptid (pid)));
5282
5283 gdb_flush (gdb_stdout);
5284 }
5285
5286 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5287 putpkt (rs->buf);
5288 getpkt (&rs->buf, &rs->buf_size, 0);
5289
5290 switch (packet_ok (rs->buf,
5291 &remote_protocol_packets[PACKET_vAttach]))
5292 {
5293 case PACKET_OK:
5294 if (!target_is_non_stop_p ())
5295 {
5296 /* Save the reply for later. */
5297 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5298 strcpy (wait_status, rs->buf);
5299 }
5300 else if (strcmp (rs->buf, "OK") != 0)
5301 error (_("Attaching to %s failed with: %s"),
5302 target_pid_to_str (pid_to_ptid (pid)),
5303 rs->buf);
5304 break;
5305 case PACKET_UNKNOWN:
5306 error (_("This target does not support attaching to a process"));
5307 default:
5308 error (_("Attaching to %s failed"),
5309 target_pid_to_str (pid_to_ptid (pid)));
5310 }
5311
5312 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5313
5314 inferior_ptid = pid_to_ptid (pid);
5315
5316 if (target_is_non_stop_p ())
5317 {
5318 struct thread_info *thread;
5319
5320 /* Get list of threads. */
5321 remote_update_thread_list (target);
5322
5323 thread = first_thread_of_process (pid);
5324 if (thread)
5325 inferior_ptid = thread->ptid;
5326 else
5327 inferior_ptid = pid_to_ptid (pid);
5328
5329 /* Invalidate our notion of the remote current thread. */
5330 record_currthread (rs, minus_one_ptid);
5331 }
5332 else
5333 {
5334 /* Now, if we have thread information, update inferior_ptid. */
5335 inferior_ptid = remote_current_thread (inferior_ptid);
5336
5337 /* Add the main thread to the thread list. */
5338 add_thread_silent (inferior_ptid);
5339 }
5340
5341 /* Next, if the target can specify a description, read it. We do
5342 this before anything involving memory or registers. */
5343 target_find_description ();
5344
5345 if (!target_is_non_stop_p ())
5346 {
5347 /* Use the previously fetched status. */
5348 gdb_assert (wait_status != NULL);
5349
5350 if (target_can_async_p ())
5351 {
5352 struct notif_event *reply
5353 = remote_notif_parse (&notif_client_stop, wait_status);
5354
5355 push_stop_reply ((struct stop_reply *) reply);
5356
5357 target_async (1);
5358 }
5359 else
5360 {
5361 gdb_assert (wait_status != NULL);
5362 strcpy (rs->buf, wait_status);
5363 rs->cached_wait_status = 1;
5364 }
5365 }
5366 else
5367 gdb_assert (wait_status == NULL);
5368 }
5369
5370 /* Implementation of the to_post_attach method. */
5371
5372 static void
5373 extended_remote_post_attach (struct target_ops *ops, int pid)
5374 {
5375 /* Get text, data & bss offsets. */
5376 get_offsets ();
5377
5378 /* In certain cases GDB might not have had the chance to start
5379 symbol lookup up until now. This could happen if the debugged
5380 binary is not using shared libraries, the vsyscall page is not
5381 present (on Linux) and the binary itself hadn't changed since the
5382 debugging process was started. */
5383 if (symfile_objfile != NULL)
5384 remote_check_symbols();
5385 }
5386
5387 \f
5388 /* Check for the availability of vCont. This function should also check
5389 the response. */
5390
5391 static void
5392 remote_vcont_probe (struct remote_state *rs)
5393 {
5394 char *buf;
5395
5396 strcpy (rs->buf, "vCont?");
5397 putpkt (rs->buf);
5398 getpkt (&rs->buf, &rs->buf_size, 0);
5399 buf = rs->buf;
5400
5401 /* Make sure that the features we assume are supported. */
5402 if (startswith (buf, "vCont"))
5403 {
5404 char *p = &buf[5];
5405 int support_c, support_C;
5406
5407 rs->supports_vCont.s = 0;
5408 rs->supports_vCont.S = 0;
5409 support_c = 0;
5410 support_C = 0;
5411 rs->supports_vCont.t = 0;
5412 rs->supports_vCont.r = 0;
5413 while (p && *p == ';')
5414 {
5415 p++;
5416 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5417 rs->supports_vCont.s = 1;
5418 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5419 rs->supports_vCont.S = 1;
5420 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5421 support_c = 1;
5422 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5423 support_C = 1;
5424 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5425 rs->supports_vCont.t = 1;
5426 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5427 rs->supports_vCont.r = 1;
5428
5429 p = strchr (p, ';');
5430 }
5431
5432 /* If c, and C are not all supported, we can't use vCont. Clearing
5433 BUF will make packet_ok disable the packet. */
5434 if (!support_c || !support_C)
5435 buf[0] = 0;
5436 }
5437
5438 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5439 }
5440
5441 /* Helper function for building "vCont" resumptions. Write a
5442 resumption to P. ENDP points to one-passed-the-end of the buffer
5443 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5444 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5445 resumed thread should be single-stepped and/or signalled. If PTID
5446 equals minus_one_ptid, then all threads are resumed; if PTID
5447 represents a process, then all threads of the process are resumed;
5448 the thread to be stepped and/or signalled is given in the global
5449 INFERIOR_PTID. */
5450
5451 static char *
5452 append_resumption (char *p, char *endp,
5453 ptid_t ptid, int step, enum gdb_signal siggnal)
5454 {
5455 struct remote_state *rs = get_remote_state ();
5456
5457 if (step && siggnal != GDB_SIGNAL_0)
5458 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5459 else if (step
5460 /* GDB is willing to range step. */
5461 && use_range_stepping
5462 /* Target supports range stepping. */
5463 && rs->supports_vCont.r
5464 /* We don't currently support range stepping multiple
5465 threads with a wildcard (though the protocol allows it,
5466 so stubs shouldn't make an active effort to forbid
5467 it). */
5468 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5469 {
5470 struct thread_info *tp;
5471
5472 if (ptid_equal (ptid, minus_one_ptid))
5473 {
5474 /* If we don't know about the target thread's tid, then
5475 we're resuming magic_null_ptid (see caller). */
5476 tp = find_thread_ptid (magic_null_ptid);
5477 }
5478 else
5479 tp = find_thread_ptid (ptid);
5480 gdb_assert (tp != NULL);
5481
5482 if (tp->control.may_range_step)
5483 {
5484 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5485
5486 p += xsnprintf (p, endp - p, ";r%s,%s",
5487 phex_nz (tp->control.step_range_start,
5488 addr_size),
5489 phex_nz (tp->control.step_range_end,
5490 addr_size));
5491 }
5492 else
5493 p += xsnprintf (p, endp - p, ";s");
5494 }
5495 else if (step)
5496 p += xsnprintf (p, endp - p, ";s");
5497 else if (siggnal != GDB_SIGNAL_0)
5498 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5499 else
5500 p += xsnprintf (p, endp - p, ";c");
5501
5502 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5503 {
5504 ptid_t nptid;
5505
5506 /* All (-1) threads of process. */
5507 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5508
5509 p += xsnprintf (p, endp - p, ":");
5510 p = write_ptid (p, endp, nptid);
5511 }
5512 else if (!ptid_equal (ptid, minus_one_ptid))
5513 {
5514 p += xsnprintf (p, endp - p, ":");
5515 p = write_ptid (p, endp, ptid);
5516 }
5517
5518 return p;
5519 }
5520
5521 /* Clear the thread's private info on resume. */
5522
5523 static void
5524 resume_clear_thread_private_info (struct thread_info *thread)
5525 {
5526 if (thread->priv != NULL)
5527 {
5528 remote_thread_info *priv = get_remote_thread_info (thread);
5529
5530 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5531 priv->watch_data_address = 0;
5532 }
5533 }
5534
5535 /* Append a vCont continue-with-signal action for threads that have a
5536 non-zero stop signal. */
5537
5538 static char *
5539 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5540 {
5541 struct thread_info *thread;
5542
5543 ALL_NON_EXITED_THREADS (thread)
5544 if (ptid_match (thread->ptid, ptid)
5545 && !ptid_equal (inferior_ptid, thread->ptid)
5546 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5547 {
5548 p = append_resumption (p, endp, thread->ptid,
5549 0, thread->suspend.stop_signal);
5550 thread->suspend.stop_signal = GDB_SIGNAL_0;
5551 resume_clear_thread_private_info (thread);
5552 }
5553
5554 return p;
5555 }
5556
5557 /* Set the target running, using the packets that use Hc
5558 (c/s/C/S). */
5559
5560 static void
5561 remote_resume_with_hc (struct target_ops *ops,
5562 ptid_t ptid, int step, enum gdb_signal siggnal)
5563 {
5564 struct remote_state *rs = get_remote_state ();
5565 struct thread_info *thread;
5566 char *buf;
5567
5568 rs->last_sent_signal = siggnal;
5569 rs->last_sent_step = step;
5570
5571 /* The c/s/C/S resume packets use Hc, so set the continue
5572 thread. */
5573 if (ptid_equal (ptid, minus_one_ptid))
5574 set_continue_thread (any_thread_ptid);
5575 else
5576 set_continue_thread (ptid);
5577
5578 ALL_NON_EXITED_THREADS (thread)
5579 resume_clear_thread_private_info (thread);
5580
5581 buf = rs->buf;
5582 if (execution_direction == EXEC_REVERSE)
5583 {
5584 /* We don't pass signals to the target in reverse exec mode. */
5585 if (info_verbose && siggnal != GDB_SIGNAL_0)
5586 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5587 siggnal);
5588
5589 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5590 error (_("Remote reverse-step not supported."));
5591 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5592 error (_("Remote reverse-continue not supported."));
5593
5594 strcpy (buf, step ? "bs" : "bc");
5595 }
5596 else if (siggnal != GDB_SIGNAL_0)
5597 {
5598 buf[0] = step ? 'S' : 'C';
5599 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5600 buf[2] = tohex (((int) siggnal) & 0xf);
5601 buf[3] = '\0';
5602 }
5603 else
5604 strcpy (buf, step ? "s" : "c");
5605
5606 putpkt (buf);
5607 }
5608
5609 /* Resume the remote inferior by using a "vCont" packet. The thread
5610 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5611 resumed thread should be single-stepped and/or signalled. If PTID
5612 equals minus_one_ptid, then all threads are resumed; the thread to
5613 be stepped and/or signalled is given in the global INFERIOR_PTID.
5614 This function returns non-zero iff it resumes the inferior.
5615
5616 This function issues a strict subset of all possible vCont commands
5617 at the moment. */
5618
5619 static int
5620 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5621 {
5622 struct remote_state *rs = get_remote_state ();
5623 char *p;
5624 char *endp;
5625
5626 /* No reverse execution actions defined for vCont. */
5627 if (execution_direction == EXEC_REVERSE)
5628 return 0;
5629
5630 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5631 remote_vcont_probe (rs);
5632
5633 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5634 return 0;
5635
5636 p = rs->buf;
5637 endp = rs->buf + get_remote_packet_size ();
5638
5639 /* If we could generate a wider range of packets, we'd have to worry
5640 about overflowing BUF. Should there be a generic
5641 "multi-part-packet" packet? */
5642
5643 p += xsnprintf (p, endp - p, "vCont");
5644
5645 if (ptid_equal (ptid, magic_null_ptid))
5646 {
5647 /* MAGIC_NULL_PTID means that we don't have any active threads,
5648 so we don't have any TID numbers the inferior will
5649 understand. Make sure to only send forms that do not specify
5650 a TID. */
5651 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5652 }
5653 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5654 {
5655 /* Resume all threads (of all processes, or of a single
5656 process), with preference for INFERIOR_PTID. This assumes
5657 inferior_ptid belongs to the set of all threads we are about
5658 to resume. */
5659 if (step || siggnal != GDB_SIGNAL_0)
5660 {
5661 /* Step inferior_ptid, with or without signal. */
5662 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5663 }
5664
5665 /* Also pass down any pending signaled resumption for other
5666 threads not the current. */
5667 p = append_pending_thread_resumptions (p, endp, ptid);
5668
5669 /* And continue others without a signal. */
5670 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5671 }
5672 else
5673 {
5674 /* Scheduler locking; resume only PTID. */
5675 append_resumption (p, endp, ptid, step, siggnal);
5676 }
5677
5678 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5679 putpkt (rs->buf);
5680
5681 if (target_is_non_stop_p ())
5682 {
5683 /* In non-stop, the stub replies to vCont with "OK". The stop
5684 reply will be reported asynchronously by means of a `%Stop'
5685 notification. */
5686 getpkt (&rs->buf, &rs->buf_size, 0);
5687 if (strcmp (rs->buf, "OK") != 0)
5688 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5689 }
5690
5691 return 1;
5692 }
5693
5694 /* Tell the remote machine to resume. */
5695
5696 static void
5697 remote_resume (struct target_ops *ops,
5698 ptid_t ptid, int step, enum gdb_signal siggnal)
5699 {
5700 struct remote_state *rs = get_remote_state ();
5701
5702 /* When connected in non-stop mode, the core resumes threads
5703 individually. Resuming remote threads directly in target_resume
5704 would thus result in sending one packet per thread. Instead, to
5705 minimize roundtrip latency, here we just store the resume
5706 request; the actual remote resumption will be done in
5707 target_commit_resume / remote_commit_resume, where we'll be able
5708 to do vCont action coalescing. */
5709 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5710 {
5711 remote_thread_info *remote_thr;
5712
5713 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5714 remote_thr = get_remote_thread_info (inferior_ptid);
5715 else
5716 remote_thr = get_remote_thread_info (ptid);
5717
5718 remote_thr->last_resume_step = step;
5719 remote_thr->last_resume_sig = siggnal;
5720 return;
5721 }
5722
5723 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5724 (explained in remote-notif.c:handle_notification) so
5725 remote_notif_process is not called. We need find a place where
5726 it is safe to start a 'vNotif' sequence. It is good to do it
5727 before resuming inferior, because inferior was stopped and no RSP
5728 traffic at that moment. */
5729 if (!target_is_non_stop_p ())
5730 remote_notif_process (rs->notif_state, &notif_client_stop);
5731
5732 rs->last_resume_exec_dir = execution_direction;
5733
5734 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5735 if (!remote_resume_with_vcont (ptid, step, siggnal))
5736 remote_resume_with_hc (ops, ptid, step, siggnal);
5737
5738 /* We are about to start executing the inferior, let's register it
5739 with the event loop. NOTE: this is the one place where all the
5740 execution commands end up. We could alternatively do this in each
5741 of the execution commands in infcmd.c. */
5742 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5743 into infcmd.c in order to allow inferior function calls to work
5744 NOT asynchronously. */
5745 if (target_can_async_p ())
5746 target_async (1);
5747
5748 /* We've just told the target to resume. The remote server will
5749 wait for the inferior to stop, and then send a stop reply. In
5750 the mean time, we can't start another command/query ourselves
5751 because the stub wouldn't be ready to process it. This applies
5752 only to the base all-stop protocol, however. In non-stop (which
5753 only supports vCont), the stub replies with an "OK", and is
5754 immediate able to process further serial input. */
5755 if (!target_is_non_stop_p ())
5756 rs->waiting_for_stop_reply = 1;
5757 }
5758
5759 static void check_pending_events_prevent_wildcard_vcont
5760 (int *may_global_wildcard_vcont);
5761 static int is_pending_fork_parent_thread (struct thread_info *thread);
5762
5763 /* Private per-inferior info for target remote processes. */
5764
5765 struct remote_inferior : public private_inferior
5766 {
5767 /* Whether we can send a wildcard vCont for this process. */
5768 bool may_wildcard_vcont = true;
5769 };
5770
5771 /* Get the remote private inferior data associated to INF. */
5772
5773 static remote_inferior *
5774 get_remote_inferior (inferior *inf)
5775 {
5776 if (inf->priv == NULL)
5777 inf->priv.reset (new remote_inferior);
5778
5779 return static_cast<remote_inferior *> (inf->priv.get ());
5780 }
5781
5782 /* Structure used to track the construction of a vCont packet in the
5783 outgoing packet buffer. This is used to send multiple vCont
5784 packets if we have more actions than would fit a single packet. */
5785
5786 struct vcont_builder
5787 {
5788 /* Pointer to the first action. P points here if no action has been
5789 appended yet. */
5790 char *first_action;
5791
5792 /* Where the next action will be appended. */
5793 char *p;
5794
5795 /* The end of the buffer. Must never write past this. */
5796 char *endp;
5797 };
5798
5799 /* Prepare the outgoing buffer for a new vCont packet. */
5800
5801 static void
5802 vcont_builder_restart (struct vcont_builder *builder)
5803 {
5804 struct remote_state *rs = get_remote_state ();
5805
5806 builder->p = rs->buf;
5807 builder->endp = rs->buf + get_remote_packet_size ();
5808 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5809 builder->first_action = builder->p;
5810 }
5811
5812 /* If the vCont packet being built has any action, send it to the
5813 remote end. */
5814
5815 static void
5816 vcont_builder_flush (struct vcont_builder *builder)
5817 {
5818 struct remote_state *rs;
5819
5820 if (builder->p == builder->first_action)
5821 return;
5822
5823 rs = get_remote_state ();
5824 putpkt (rs->buf);
5825 getpkt (&rs->buf, &rs->buf_size, 0);
5826 if (strcmp (rs->buf, "OK") != 0)
5827 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5828 }
5829
5830 /* The largest action is range-stepping, with its two addresses. This
5831 is more than sufficient. If a new, bigger action is created, it'll
5832 quickly trigger a failed assertion in append_resumption (and we'll
5833 just bump this). */
5834 #define MAX_ACTION_SIZE 200
5835
5836 /* Append a new vCont action in the outgoing packet being built. If
5837 the action doesn't fit the packet along with previous actions, push
5838 what we've got so far to the remote end and start over a new vCont
5839 packet (with the new action). */
5840
5841 static void
5842 vcont_builder_push_action (struct vcont_builder *builder,
5843 ptid_t ptid, int step, enum gdb_signal siggnal)
5844 {
5845 char buf[MAX_ACTION_SIZE + 1];
5846 char *endp;
5847 size_t rsize;
5848
5849 endp = append_resumption (buf, buf + sizeof (buf),
5850 ptid, step, siggnal);
5851
5852 /* Check whether this new action would fit in the vCont packet along
5853 with previous actions. If not, send what we've got so far and
5854 start a new vCont packet. */
5855 rsize = endp - buf;
5856 if (rsize > builder->endp - builder->p)
5857 {
5858 vcont_builder_flush (builder);
5859 vcont_builder_restart (builder);
5860
5861 /* Should now fit. */
5862 gdb_assert (rsize <= builder->endp - builder->p);
5863 }
5864
5865 memcpy (builder->p, buf, rsize);
5866 builder->p += rsize;
5867 *builder->p = '\0';
5868 }
5869
5870 /* to_commit_resume implementation. */
5871
5872 static void
5873 remote_commit_resume (struct target_ops *ops)
5874 {
5875 struct inferior *inf;
5876 struct thread_info *tp;
5877 int any_process_wildcard;
5878 int may_global_wildcard_vcont;
5879 struct vcont_builder vcont_builder;
5880
5881 /* If connected in all-stop mode, we'd send the remote resume
5882 request directly from remote_resume. Likewise if
5883 reverse-debugging, as there are no defined vCont actions for
5884 reverse execution. */
5885 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5886 return;
5887
5888 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5889 instead of resuming all threads of each process individually.
5890 However, if any thread of a process must remain halted, we can't
5891 send wildcard resumes and must send one action per thread.
5892
5893 Care must be taken to not resume threads/processes the server
5894 side already told us are stopped, but the core doesn't know about
5895 yet, because the events are still in the vStopped notification
5896 queue. For example:
5897
5898 #1 => vCont s:p1.1;c
5899 #2 <= OK
5900 #3 <= %Stopped T05 p1.1
5901 #4 => vStopped
5902 #5 <= T05 p1.2
5903 #6 => vStopped
5904 #7 <= OK
5905 #8 (infrun handles the stop for p1.1 and continues stepping)
5906 #9 => vCont s:p1.1;c
5907
5908 The last vCont above would resume thread p1.2 by mistake, because
5909 the server has no idea that the event for p1.2 had not been
5910 handled yet.
5911
5912 The server side must similarly ignore resume actions for the
5913 thread that has a pending %Stopped notification (and any other
5914 threads with events pending), until GDB acks the notification
5915 with vStopped. Otherwise, e.g., the following case is
5916 mishandled:
5917
5918 #1 => g (or any other packet)
5919 #2 <= [registers]
5920 #3 <= %Stopped T05 p1.2
5921 #4 => vCont s:p1.1;c
5922 #5 <= OK
5923
5924 Above, the server must not resume thread p1.2. GDB can't know
5925 that p1.2 stopped until it acks the %Stopped notification, and
5926 since from GDB's perspective all threads should be running, it
5927 sends a "c" action.
5928
5929 Finally, special care must also be given to handling fork/vfork
5930 events. A (v)fork event actually tells us that two processes
5931 stopped -- the parent and the child. Until we follow the fork,
5932 we must not resume the child. Therefore, if we have a pending
5933 fork follow, we must not send a global wildcard resume action
5934 (vCont;c). We can still send process-wide wildcards though. */
5935
5936 /* Start by assuming a global wildcard (vCont;c) is possible. */
5937 may_global_wildcard_vcont = 1;
5938
5939 /* And assume every process is individually wildcard-able too. */
5940 ALL_NON_EXITED_INFERIORS (inf)
5941 {
5942 remote_inferior *priv = get_remote_inferior (inf);
5943
5944 priv->may_wildcard_vcont = true;
5945 }
5946
5947 /* Check for any pending events (not reported or processed yet) and
5948 disable process and global wildcard resumes appropriately. */
5949 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5950
5951 ALL_NON_EXITED_THREADS (tp)
5952 {
5953 /* If a thread of a process is not meant to be resumed, then we
5954 can't wildcard that process. */
5955 if (!tp->executing)
5956 {
5957 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5958
5959 /* And if we can't wildcard a process, we can't wildcard
5960 everything either. */
5961 may_global_wildcard_vcont = 0;
5962 continue;
5963 }
5964
5965 /* If a thread is the parent of an unfollowed fork, then we
5966 can't do a global wildcard, as that would resume the fork
5967 child. */
5968 if (is_pending_fork_parent_thread (tp))
5969 may_global_wildcard_vcont = 0;
5970 }
5971
5972 /* Now let's build the vCont packet(s). Actions must be appended
5973 from narrower to wider scopes (thread -> process -> global). If
5974 we end up with too many actions for a single packet vcont_builder
5975 flushes the current vCont packet to the remote side and starts a
5976 new one. */
5977 vcont_builder_restart (&vcont_builder);
5978
5979 /* Threads first. */
5980 ALL_NON_EXITED_THREADS (tp)
5981 {
5982 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5983
5984 if (!tp->executing || remote_thr->vcont_resumed)
5985 continue;
5986
5987 gdb_assert (!thread_is_in_step_over_chain (tp));
5988
5989 if (!remote_thr->last_resume_step
5990 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5991 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5992 {
5993 /* We'll send a wildcard resume instead. */
5994 remote_thr->vcont_resumed = 1;
5995 continue;
5996 }
5997
5998 vcont_builder_push_action (&vcont_builder, tp->ptid,
5999 remote_thr->last_resume_step,
6000 remote_thr->last_resume_sig);
6001 remote_thr->vcont_resumed = 1;
6002 }
6003
6004 /* Now check whether we can send any process-wide wildcard. This is
6005 to avoid sending a global wildcard in the case nothing is
6006 supposed to be resumed. */
6007 any_process_wildcard = 0;
6008
6009 ALL_NON_EXITED_INFERIORS (inf)
6010 {
6011 if (get_remote_inferior (inf)->may_wildcard_vcont)
6012 {
6013 any_process_wildcard = 1;
6014 break;
6015 }
6016 }
6017
6018 if (any_process_wildcard)
6019 {
6020 /* If all processes are wildcard-able, then send a single "c"
6021 action, otherwise, send an "all (-1) threads of process"
6022 continue action for each running process, if any. */
6023 if (may_global_wildcard_vcont)
6024 {
6025 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6026 0, GDB_SIGNAL_0);
6027 }
6028 else
6029 {
6030 ALL_NON_EXITED_INFERIORS (inf)
6031 {
6032 if (get_remote_inferior (inf)->may_wildcard_vcont)
6033 {
6034 vcont_builder_push_action (&vcont_builder,
6035 pid_to_ptid (inf->pid),
6036 0, GDB_SIGNAL_0);
6037 }
6038 }
6039 }
6040 }
6041
6042 vcont_builder_flush (&vcont_builder);
6043 }
6044
6045 \f
6046
6047 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6048 thread, all threads of a remote process, or all threads of all
6049 processes. */
6050
6051 static void
6052 remote_stop_ns (ptid_t ptid)
6053 {
6054 struct remote_state *rs = get_remote_state ();
6055 char *p = rs->buf;
6056 char *endp = rs->buf + get_remote_packet_size ();
6057
6058 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6059 remote_vcont_probe (rs);
6060
6061 if (!rs->supports_vCont.t)
6062 error (_("Remote server does not support stopping threads"));
6063
6064 if (ptid_equal (ptid, minus_one_ptid)
6065 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6066 p += xsnprintf (p, endp - p, "vCont;t");
6067 else
6068 {
6069 ptid_t nptid;
6070
6071 p += xsnprintf (p, endp - p, "vCont;t:");
6072
6073 if (ptid_is_pid (ptid))
6074 /* All (-1) threads of process. */
6075 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6076 else
6077 {
6078 /* Small optimization: if we already have a stop reply for
6079 this thread, no use in telling the stub we want this
6080 stopped. */
6081 if (peek_stop_reply (ptid))
6082 return;
6083
6084 nptid = ptid;
6085 }
6086
6087 write_ptid (p, endp, nptid);
6088 }
6089
6090 /* In non-stop, we get an immediate OK reply. The stop reply will
6091 come in asynchronously by notification. */
6092 putpkt (rs->buf);
6093 getpkt (&rs->buf, &rs->buf_size, 0);
6094 if (strcmp (rs->buf, "OK") != 0)
6095 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6096 }
6097
6098 /* All-stop version of target_interrupt. Sends a break or a ^C to
6099 interrupt the remote target. It is undefined which thread of which
6100 process reports the interrupt. */
6101
6102 static void
6103 remote_interrupt_as (void)
6104 {
6105 struct remote_state *rs = get_remote_state ();
6106
6107 rs->ctrlc_pending_p = 1;
6108
6109 /* If the inferior is stopped already, but the core didn't know
6110 about it yet, just ignore the request. The cached wait status
6111 will be collected in remote_wait. */
6112 if (rs->cached_wait_status)
6113 return;
6114
6115 /* Send interrupt_sequence to remote target. */
6116 send_interrupt_sequence ();
6117 }
6118
6119 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6120 the remote target. It is undefined which thread of which process
6121 reports the interrupt. Throws an error if the packet is not
6122 supported by the server. */
6123
6124 static void
6125 remote_interrupt_ns (void)
6126 {
6127 struct remote_state *rs = get_remote_state ();
6128 char *p = rs->buf;
6129 char *endp = rs->buf + get_remote_packet_size ();
6130
6131 xsnprintf (p, endp - p, "vCtrlC");
6132
6133 /* In non-stop, we get an immediate OK reply. The stop reply will
6134 come in asynchronously by notification. */
6135 putpkt (rs->buf);
6136 getpkt (&rs->buf, &rs->buf_size, 0);
6137
6138 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6139 {
6140 case PACKET_OK:
6141 break;
6142 case PACKET_UNKNOWN:
6143 error (_("No support for interrupting the remote target."));
6144 case PACKET_ERROR:
6145 error (_("Interrupting target failed: %s"), rs->buf);
6146 }
6147 }
6148
6149 /* Implement the to_stop function for the remote targets. */
6150
6151 static void
6152 remote_stop (struct target_ops *self, ptid_t ptid)
6153 {
6154 if (remote_debug)
6155 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6156
6157 if (target_is_non_stop_p ())
6158 remote_stop_ns (ptid);
6159 else
6160 {
6161 /* We don't currently have a way to transparently pause the
6162 remote target in all-stop mode. Interrupt it instead. */
6163 remote_interrupt_as ();
6164 }
6165 }
6166
6167 /* Implement the to_interrupt function for the remote targets. */
6168
6169 static void
6170 remote_interrupt (struct target_ops *self, ptid_t ptid)
6171 {
6172 if (remote_debug)
6173 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6174
6175 if (target_is_non_stop_p ())
6176 remote_interrupt_ns ();
6177 else
6178 remote_interrupt_as ();
6179 }
6180
6181 /* Implement the to_pass_ctrlc function for the remote targets. */
6182
6183 static void
6184 remote_pass_ctrlc (struct target_ops *self)
6185 {
6186 struct remote_state *rs = get_remote_state ();
6187
6188 if (remote_debug)
6189 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6190
6191 /* If we're starting up, we're not fully synced yet. Quit
6192 immediately. */
6193 if (rs->starting_up)
6194 quit ();
6195 /* If ^C has already been sent once, offer to disconnect. */
6196 else if (rs->ctrlc_pending_p)
6197 interrupt_query ();
6198 else
6199 target_interrupt (inferior_ptid);
6200 }
6201
6202 /* Ask the user what to do when an interrupt is received. */
6203
6204 static void
6205 interrupt_query (void)
6206 {
6207 struct remote_state *rs = get_remote_state ();
6208
6209 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6210 {
6211 if (query (_("The target is not responding to interrupt requests.\n"
6212 "Stop debugging it? ")))
6213 {
6214 remote_unpush_target ();
6215 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6216 }
6217 }
6218 else
6219 {
6220 if (query (_("Interrupted while waiting for the program.\n"
6221 "Give up waiting? ")))
6222 quit ();
6223 }
6224 }
6225
6226 /* Enable/disable target terminal ownership. Most targets can use
6227 terminal groups to control terminal ownership. Remote targets are
6228 different in that explicit transfer of ownership to/from GDB/target
6229 is required. */
6230
6231 static void
6232 remote_terminal_inferior (struct target_ops *self)
6233 {
6234 /* NOTE: At this point we could also register our selves as the
6235 recipient of all input. Any characters typed could then be
6236 passed on down to the target. */
6237 }
6238
6239 static void
6240 remote_terminal_ours (struct target_ops *self)
6241 {
6242 }
6243
6244 static void
6245 remote_console_output (char *msg)
6246 {
6247 char *p;
6248
6249 for (p = msg; p[0] && p[1]; p += 2)
6250 {
6251 char tb[2];
6252 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6253
6254 tb[0] = c;
6255 tb[1] = 0;
6256 fputs_unfiltered (tb, gdb_stdtarg);
6257 }
6258 gdb_flush (gdb_stdtarg);
6259 }
6260
6261 DEF_VEC_O(cached_reg_t);
6262
6263 typedef struct stop_reply
6264 {
6265 struct notif_event base;
6266
6267 /* The identifier of the thread about this event */
6268 ptid_t ptid;
6269
6270 /* The remote state this event is associated with. When the remote
6271 connection, represented by a remote_state object, is closed,
6272 all the associated stop_reply events should be released. */
6273 struct remote_state *rs;
6274
6275 struct target_waitstatus ws;
6276
6277 /* The architecture associated with the expedited registers. */
6278 gdbarch *arch;
6279
6280 /* Expedited registers. This makes remote debugging a bit more
6281 efficient for those targets that provide critical registers as
6282 part of their normal status mechanism (as another roundtrip to
6283 fetch them is avoided). */
6284 VEC(cached_reg_t) *regcache;
6285
6286 enum target_stop_reason stop_reason;
6287
6288 CORE_ADDR watch_data_address;
6289
6290 int core;
6291 } *stop_reply_p;
6292
6293 DECLARE_QUEUE_P (stop_reply_p);
6294 DEFINE_QUEUE_P (stop_reply_p);
6295 /* The list of already fetched and acknowledged stop events. This
6296 queue is used for notification Stop, and other notifications
6297 don't need queue for their events, because the notification events
6298 of Stop can't be consumed immediately, so that events should be
6299 queued first, and be consumed by remote_wait_{ns,as} one per
6300 time. Other notifications can consume their events immediately,
6301 so queue is not needed for them. */
6302 static QUEUE (stop_reply_p) *stop_reply_queue;
6303
6304 static void
6305 stop_reply_xfree (struct stop_reply *r)
6306 {
6307 notif_event_xfree ((struct notif_event *) r);
6308 }
6309
6310 /* Return the length of the stop reply queue. */
6311
6312 static int
6313 stop_reply_queue_length (void)
6314 {
6315 return QUEUE_length (stop_reply_p, stop_reply_queue);
6316 }
6317
6318 static void
6319 remote_notif_stop_parse (struct notif_client *self, char *buf,
6320 struct notif_event *event)
6321 {
6322 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6323 }
6324
6325 static void
6326 remote_notif_stop_ack (struct notif_client *self, char *buf,
6327 struct notif_event *event)
6328 {
6329 struct stop_reply *stop_reply = (struct stop_reply *) event;
6330
6331 /* acknowledge */
6332 putpkt (self->ack_command);
6333
6334 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6335 /* We got an unknown stop reply. */
6336 error (_("Unknown stop reply"));
6337
6338 push_stop_reply (stop_reply);
6339 }
6340
6341 static int
6342 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6343 {
6344 /* We can't get pending events in remote_notif_process for
6345 notification stop, and we have to do this in remote_wait_ns
6346 instead. If we fetch all queued events from stub, remote stub
6347 may exit and we have no chance to process them back in
6348 remote_wait_ns. */
6349 mark_async_event_handler (remote_async_inferior_event_token);
6350 return 0;
6351 }
6352
6353 static void
6354 stop_reply_dtr (struct notif_event *event)
6355 {
6356 struct stop_reply *r = (struct stop_reply *) event;
6357 cached_reg_t *reg;
6358 int ix;
6359
6360 for (ix = 0;
6361 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6362 ix++)
6363 xfree (reg->data);
6364
6365 VEC_free (cached_reg_t, r->regcache);
6366 }
6367
6368 static struct notif_event *
6369 remote_notif_stop_alloc_reply (void)
6370 {
6371 /* We cast to a pointer to the "base class". */
6372 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6373
6374 r->dtr = stop_reply_dtr;
6375
6376 return r;
6377 }
6378
6379 /* A client of notification Stop. */
6380
6381 struct notif_client notif_client_stop =
6382 {
6383 "Stop",
6384 "vStopped",
6385 remote_notif_stop_parse,
6386 remote_notif_stop_ack,
6387 remote_notif_stop_can_get_pending_events,
6388 remote_notif_stop_alloc_reply,
6389 REMOTE_NOTIF_STOP,
6390 };
6391
6392 /* A parameter to pass data in and out. */
6393
6394 struct queue_iter_param
6395 {
6396 void *input;
6397 struct stop_reply *output;
6398 };
6399
6400 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6401 the pid of the process that owns the threads we want to check, or
6402 -1 if we want to check all threads. */
6403
6404 static int
6405 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6406 ptid_t thread_ptid)
6407 {
6408 if (ws->kind == TARGET_WAITKIND_FORKED
6409 || ws->kind == TARGET_WAITKIND_VFORKED)
6410 {
6411 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6412 return 1;
6413 }
6414
6415 return 0;
6416 }
6417
6418 /* Return the thread's pending status used to determine whether the
6419 thread is a fork parent stopped at a fork event. */
6420
6421 static struct target_waitstatus *
6422 thread_pending_fork_status (struct thread_info *thread)
6423 {
6424 if (thread->suspend.waitstatus_pending_p)
6425 return &thread->suspend.waitstatus;
6426 else
6427 return &thread->pending_follow;
6428 }
6429
6430 /* Determine if THREAD is a pending fork parent thread. */
6431
6432 static int
6433 is_pending_fork_parent_thread (struct thread_info *thread)
6434 {
6435 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6436 int pid = -1;
6437
6438 return is_pending_fork_parent (ws, pid, thread->ptid);
6439 }
6440
6441 /* Check whether EVENT is a fork event, and if it is, remove the
6442 fork child from the context list passed in DATA. */
6443
6444 static int
6445 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6446 QUEUE_ITER (stop_reply_p) *iter,
6447 stop_reply_p event,
6448 void *data)
6449 {
6450 struct queue_iter_param *param = (struct queue_iter_param *) data;
6451 struct threads_listing_context *context
6452 = (struct threads_listing_context *) param->input;
6453
6454 if (event->ws.kind == TARGET_WAITKIND_FORKED
6455 || event->ws.kind == TARGET_WAITKIND_VFORKED
6456 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6457 context->remove_thread (event->ws.value.related_pid);
6458
6459 return 1;
6460 }
6461
6462 /* If CONTEXT contains any fork child threads that have not been
6463 reported yet, remove them from the CONTEXT list. If such a
6464 thread exists it is because we are stopped at a fork catchpoint
6465 and have not yet called follow_fork, which will set up the
6466 host-side data structures for the new process. */
6467
6468 static void
6469 remove_new_fork_children (struct threads_listing_context *context)
6470 {
6471 struct thread_info * thread;
6472 int pid = -1;
6473 struct notif_client *notif = &notif_client_stop;
6474 struct queue_iter_param param;
6475
6476 /* For any threads stopped at a fork event, remove the corresponding
6477 fork child threads from the CONTEXT list. */
6478 ALL_NON_EXITED_THREADS (thread)
6479 {
6480 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6481
6482 if (is_pending_fork_parent (ws, pid, thread->ptid))
6483 context->remove_thread (ws->value.related_pid);
6484 }
6485
6486 /* Check for any pending fork events (not reported or processed yet)
6487 in process PID and remove those fork child threads from the
6488 CONTEXT list as well. */
6489 remote_notif_get_pending_events (notif);
6490 param.input = context;
6491 param.output = NULL;
6492 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6493 remove_child_of_pending_fork, &param);
6494 }
6495
6496 /* Check whether EVENT would prevent a global or process wildcard
6497 vCont action. */
6498
6499 static int
6500 check_pending_event_prevents_wildcard_vcont_callback
6501 (QUEUE (stop_reply_p) *q,
6502 QUEUE_ITER (stop_reply_p) *iter,
6503 stop_reply_p event,
6504 void *data)
6505 {
6506 struct inferior *inf;
6507 int *may_global_wildcard_vcont = (int *) data;
6508
6509 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6510 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6511 return 1;
6512
6513 if (event->ws.kind == TARGET_WAITKIND_FORKED
6514 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6515 *may_global_wildcard_vcont = 0;
6516
6517 inf = find_inferior_ptid (event->ptid);
6518
6519 /* This may be the first time we heard about this process.
6520 Regardless, we must not do a global wildcard resume, otherwise
6521 we'd resume this process too. */
6522 *may_global_wildcard_vcont = 0;
6523 if (inf != NULL)
6524 get_remote_inferior (inf)->may_wildcard_vcont = false;
6525
6526 return 1;
6527 }
6528
6529 /* Check whether any event pending in the vStopped queue would prevent
6530 a global or process wildcard vCont action. Clear
6531 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6532 and clear the event inferior's may_wildcard_vcont flag if we can't
6533 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6534
6535 static void
6536 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6537 {
6538 struct notif_client *notif = &notif_client_stop;
6539
6540 remote_notif_get_pending_events (notif);
6541 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6542 check_pending_event_prevents_wildcard_vcont_callback,
6543 may_global_wildcard);
6544 }
6545
6546 /* Remove stop replies in the queue if its pid is equal to the given
6547 inferior's pid. */
6548
6549 static int
6550 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6551 QUEUE_ITER (stop_reply_p) *iter,
6552 stop_reply_p event,
6553 void *data)
6554 {
6555 struct queue_iter_param *param = (struct queue_iter_param *) data;
6556 struct inferior *inf = (struct inferior *) param->input;
6557
6558 if (ptid_get_pid (event->ptid) == inf->pid)
6559 {
6560 stop_reply_xfree (event);
6561 QUEUE_remove_elem (stop_reply_p, q, iter);
6562 }
6563
6564 return 1;
6565 }
6566
6567 /* Discard all pending stop replies of inferior INF. */
6568
6569 static void
6570 discard_pending_stop_replies (struct inferior *inf)
6571 {
6572 struct queue_iter_param param;
6573 struct stop_reply *reply;
6574 struct remote_state *rs = get_remote_state ();
6575 struct remote_notif_state *rns = rs->notif_state;
6576
6577 /* This function can be notified when an inferior exists. When the
6578 target is not remote, the notification state is NULL. */
6579 if (rs->remote_desc == NULL)
6580 return;
6581
6582 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6583
6584 /* Discard the in-flight notification. */
6585 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6586 {
6587 stop_reply_xfree (reply);
6588 rns->pending_event[notif_client_stop.id] = NULL;
6589 }
6590
6591 param.input = inf;
6592 param.output = NULL;
6593 /* Discard the stop replies we have already pulled with
6594 vStopped. */
6595 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6596 remove_stop_reply_for_inferior, &param);
6597 }
6598
6599 /* If its remote state is equal to the given remote state,
6600 remove EVENT from the stop reply queue. */
6601
6602 static int
6603 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6604 QUEUE_ITER (stop_reply_p) *iter,
6605 stop_reply_p event,
6606 void *data)
6607 {
6608 struct queue_iter_param *param = (struct queue_iter_param *) data;
6609 struct remote_state *rs = (struct remote_state *) param->input;
6610
6611 if (event->rs == rs)
6612 {
6613 stop_reply_xfree (event);
6614 QUEUE_remove_elem (stop_reply_p, q, iter);
6615 }
6616
6617 return 1;
6618 }
6619
6620 /* Discard the stop replies for RS in stop_reply_queue. */
6621
6622 static void
6623 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6624 {
6625 struct queue_iter_param param;
6626
6627 param.input = rs;
6628 param.output = NULL;
6629 /* Discard the stop replies we have already pulled with
6630 vStopped. */
6631 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6632 remove_stop_reply_of_remote_state, &param);
6633 }
6634
6635 /* A parameter to pass data in and out. */
6636
6637 static int
6638 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6639 QUEUE_ITER (stop_reply_p) *iter,
6640 stop_reply_p event,
6641 void *data)
6642 {
6643 struct queue_iter_param *param = (struct queue_iter_param *) data;
6644 ptid_t *ptid = (ptid_t *) param->input;
6645
6646 if (ptid_match (event->ptid, *ptid))
6647 {
6648 param->output = event;
6649 QUEUE_remove_elem (stop_reply_p, q, iter);
6650 return 0;
6651 }
6652
6653 return 1;
6654 }
6655
6656 /* Remove the first reply in 'stop_reply_queue' which matches
6657 PTID. */
6658
6659 static struct stop_reply *
6660 remote_notif_remove_queued_reply (ptid_t ptid)
6661 {
6662 struct queue_iter_param param;
6663
6664 param.input = &ptid;
6665 param.output = NULL;
6666
6667 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6668 remote_notif_remove_once_on_match, &param);
6669 if (notif_debug)
6670 fprintf_unfiltered (gdb_stdlog,
6671 "notif: discard queued event: 'Stop' in %s\n",
6672 target_pid_to_str (ptid));
6673
6674 return param.output;
6675 }
6676
6677 /* Look for a queued stop reply belonging to PTID. If one is found,
6678 remove it from the queue, and return it. Returns NULL if none is
6679 found. If there are still queued events left to process, tell the
6680 event loop to get back to target_wait soon. */
6681
6682 static struct stop_reply *
6683 queued_stop_reply (ptid_t ptid)
6684 {
6685 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6686
6687 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6688 /* There's still at least an event left. */
6689 mark_async_event_handler (remote_async_inferior_event_token);
6690
6691 return r;
6692 }
6693
6694 /* Push a fully parsed stop reply in the stop reply queue. Since we
6695 know that we now have at least one queued event left to pass to the
6696 core side, tell the event loop to get back to target_wait soon. */
6697
6698 static void
6699 push_stop_reply (struct stop_reply *new_event)
6700 {
6701 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6702
6703 if (notif_debug)
6704 fprintf_unfiltered (gdb_stdlog,
6705 "notif: push 'Stop' %s to queue %d\n",
6706 target_pid_to_str (new_event->ptid),
6707 QUEUE_length (stop_reply_p,
6708 stop_reply_queue));
6709
6710 mark_async_event_handler (remote_async_inferior_event_token);
6711 }
6712
6713 static int
6714 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6715 QUEUE_ITER (stop_reply_p) *iter,
6716 struct stop_reply *event,
6717 void *data)
6718 {
6719 ptid_t *ptid = (ptid_t *) data;
6720
6721 return !(ptid_equal (*ptid, event->ptid)
6722 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6723 }
6724
6725 /* Returns true if we have a stop reply for PTID. */
6726
6727 static int
6728 peek_stop_reply (ptid_t ptid)
6729 {
6730 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6731 stop_reply_match_ptid_and_ws, &ptid);
6732 }
6733
6734 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6735 starting with P and ending with PEND matches PREFIX. */
6736
6737 static int
6738 strprefix (const char *p, const char *pend, const char *prefix)
6739 {
6740 for ( ; p < pend; p++, prefix++)
6741 if (*p != *prefix)
6742 return 0;
6743 return *prefix == '\0';
6744 }
6745
6746 /* Parse the stop reply in BUF. Either the function succeeds, and the
6747 result is stored in EVENT, or throws an error. */
6748
6749 static void
6750 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6751 {
6752 remote_arch_state *rsa = NULL;
6753 ULONGEST addr;
6754 const char *p;
6755 int skipregs = 0;
6756
6757 event->ptid = null_ptid;
6758 event->rs = get_remote_state ();
6759 event->ws.kind = TARGET_WAITKIND_IGNORE;
6760 event->ws.value.integer = 0;
6761 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6762 event->regcache = NULL;
6763 event->core = -1;
6764
6765 switch (buf[0])
6766 {
6767 case 'T': /* Status with PC, SP, FP, ... */
6768 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6769 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6770 ss = signal number
6771 n... = register number
6772 r... = register contents
6773 */
6774
6775 p = &buf[3]; /* after Txx */
6776 while (*p)
6777 {
6778 const char *p1;
6779 int fieldsize;
6780
6781 p1 = strchr (p, ':');
6782 if (p1 == NULL)
6783 error (_("Malformed packet(a) (missing colon): %s\n\
6784 Packet: '%s'\n"),
6785 p, buf);
6786 if (p == p1)
6787 error (_("Malformed packet(a) (missing register number): %s\n\
6788 Packet: '%s'\n"),
6789 p, buf);
6790
6791 /* Some "registers" are actually extended stop information.
6792 Note if you're adding a new entry here: GDB 7.9 and
6793 earlier assume that all register "numbers" that start
6794 with an hex digit are real register numbers. Make sure
6795 the server only sends such a packet if it knows the
6796 client understands it. */
6797
6798 if (strprefix (p, p1, "thread"))
6799 event->ptid = read_ptid (++p1, &p);
6800 else if (strprefix (p, p1, "syscall_entry"))
6801 {
6802 ULONGEST sysno;
6803
6804 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6805 p = unpack_varlen_hex (++p1, &sysno);
6806 event->ws.value.syscall_number = (int) sysno;
6807 }
6808 else if (strprefix (p, p1, "syscall_return"))
6809 {
6810 ULONGEST sysno;
6811
6812 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6813 p = unpack_varlen_hex (++p1, &sysno);
6814 event->ws.value.syscall_number = (int) sysno;
6815 }
6816 else if (strprefix (p, p1, "watch")
6817 || strprefix (p, p1, "rwatch")
6818 || strprefix (p, p1, "awatch"))
6819 {
6820 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6821 p = unpack_varlen_hex (++p1, &addr);
6822 event->watch_data_address = (CORE_ADDR) addr;
6823 }
6824 else if (strprefix (p, p1, "swbreak"))
6825 {
6826 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6827
6828 /* Make sure the stub doesn't forget to indicate support
6829 with qSupported. */
6830 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6831 error (_("Unexpected swbreak stop reason"));
6832
6833 /* The value part is documented as "must be empty",
6834 though we ignore it, in case we ever decide to make
6835 use of it in a backward compatible way. */
6836 p = strchrnul (p1 + 1, ';');
6837 }
6838 else if (strprefix (p, p1, "hwbreak"))
6839 {
6840 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6841
6842 /* Make sure the stub doesn't forget to indicate support
6843 with qSupported. */
6844 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6845 error (_("Unexpected hwbreak stop reason"));
6846
6847 /* See above. */
6848 p = strchrnul (p1 + 1, ';');
6849 }
6850 else if (strprefix (p, p1, "library"))
6851 {
6852 event->ws.kind = TARGET_WAITKIND_LOADED;
6853 p = strchrnul (p1 + 1, ';');
6854 }
6855 else if (strprefix (p, p1, "replaylog"))
6856 {
6857 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6858 /* p1 will indicate "begin" or "end", but it makes
6859 no difference for now, so ignore it. */
6860 p = strchrnul (p1 + 1, ';');
6861 }
6862 else if (strprefix (p, p1, "core"))
6863 {
6864 ULONGEST c;
6865
6866 p = unpack_varlen_hex (++p1, &c);
6867 event->core = c;
6868 }
6869 else if (strprefix (p, p1, "fork"))
6870 {
6871 event->ws.value.related_pid = read_ptid (++p1, &p);
6872 event->ws.kind = TARGET_WAITKIND_FORKED;
6873 }
6874 else if (strprefix (p, p1, "vfork"))
6875 {
6876 event->ws.value.related_pid = read_ptid (++p1, &p);
6877 event->ws.kind = TARGET_WAITKIND_VFORKED;
6878 }
6879 else if (strprefix (p, p1, "vforkdone"))
6880 {
6881 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6882 p = strchrnul (p1 + 1, ';');
6883 }
6884 else if (strprefix (p, p1, "exec"))
6885 {
6886 ULONGEST ignored;
6887 char pathname[PATH_MAX];
6888 int pathlen;
6889
6890 /* Determine the length of the execd pathname. */
6891 p = unpack_varlen_hex (++p1, &ignored);
6892 pathlen = (p - p1) / 2;
6893
6894 /* Save the pathname for event reporting and for
6895 the next run command. */
6896 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6897 pathname[pathlen] = '\0';
6898
6899 /* This is freed during event handling. */
6900 event->ws.value.execd_pathname = xstrdup (pathname);
6901 event->ws.kind = TARGET_WAITKIND_EXECD;
6902
6903 /* Skip the registers included in this packet, since
6904 they may be for an architecture different from the
6905 one used by the original program. */
6906 skipregs = 1;
6907 }
6908 else if (strprefix (p, p1, "create"))
6909 {
6910 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6911 p = strchrnul (p1 + 1, ';');
6912 }
6913 else
6914 {
6915 ULONGEST pnum;
6916 const char *p_temp;
6917
6918 if (skipregs)
6919 {
6920 p = strchrnul (p1 + 1, ';');
6921 p++;
6922 continue;
6923 }
6924
6925 /* Maybe a real ``P'' register number. */
6926 p_temp = unpack_varlen_hex (p, &pnum);
6927 /* If the first invalid character is the colon, we got a
6928 register number. Otherwise, it's an unknown stop
6929 reason. */
6930 if (p_temp == p1)
6931 {
6932 /* If we haven't parsed the event's thread yet, find
6933 it now, in order to find the architecture of the
6934 reported expedited registers. */
6935 if (event->ptid == null_ptid)
6936 {
6937 const char *thr = strstr (p1 + 1, ";thread:");
6938 if (thr != NULL)
6939 event->ptid = read_ptid (thr + strlen (";thread:"),
6940 NULL);
6941 else
6942 event->ptid = magic_null_ptid;
6943 }
6944
6945 if (rsa == NULL)
6946 {
6947 inferior *inf = (event->ptid == null_ptid
6948 ? NULL
6949 : find_inferior_ptid (event->ptid));
6950 /* If this is the first time we learn anything
6951 about this process, skip the registers
6952 included in this packet, since we don't yet
6953 know which architecture to use to parse them.
6954 We'll determine the architecture later when
6955 we process the stop reply and retrieve the
6956 target description, via
6957 remote_notice_new_inferior ->
6958 post_create_inferior. */
6959 if (inf == NULL)
6960 {
6961 p = strchrnul (p1 + 1, ';');
6962 p++;
6963 continue;
6964 }
6965
6966 event->arch = inf->gdbarch;
6967 rsa = get_remote_arch_state (event->arch);
6968 }
6969
6970 packet_reg *reg
6971 = packet_reg_from_pnum (event->arch, rsa, pnum);
6972 cached_reg_t cached_reg;
6973
6974 if (reg == NULL)
6975 error (_("Remote sent bad register number %s: %s\n\
6976 Packet: '%s'\n"),
6977 hex_string (pnum), p, buf);
6978
6979 cached_reg.num = reg->regnum;
6980 cached_reg.data = (gdb_byte *)
6981 xmalloc (register_size (event->arch, reg->regnum));
6982
6983 p = p1 + 1;
6984 fieldsize = hex2bin (p, cached_reg.data,
6985 register_size (event->arch, reg->regnum));
6986 p += 2 * fieldsize;
6987 if (fieldsize < register_size (event->arch, reg->regnum))
6988 warning (_("Remote reply is too short: %s"), buf);
6989
6990 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6991 }
6992 else
6993 {
6994 /* Not a number. Silently skip unknown optional
6995 info. */
6996 p = strchrnul (p1 + 1, ';');
6997 }
6998 }
6999
7000 if (*p != ';')
7001 error (_("Remote register badly formatted: %s\nhere: %s"),
7002 buf, p);
7003 ++p;
7004 }
7005
7006 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7007 break;
7008
7009 /* fall through */
7010 case 'S': /* Old style status, just signal only. */
7011 {
7012 int sig;
7013
7014 event->ws.kind = TARGET_WAITKIND_STOPPED;
7015 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7016 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7017 event->ws.value.sig = (enum gdb_signal) sig;
7018 else
7019 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7020 }
7021 break;
7022 case 'w': /* Thread exited. */
7023 {
7024 const char *p;
7025 ULONGEST value;
7026
7027 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7028 p = unpack_varlen_hex (&buf[1], &value);
7029 event->ws.value.integer = value;
7030 if (*p != ';')
7031 error (_("stop reply packet badly formatted: %s"), buf);
7032 event->ptid = read_ptid (++p, NULL);
7033 break;
7034 }
7035 case 'W': /* Target exited. */
7036 case 'X':
7037 {
7038 const char *p;
7039 int pid;
7040 ULONGEST value;
7041
7042 /* GDB used to accept only 2 hex chars here. Stubs should
7043 only send more if they detect GDB supports multi-process
7044 support. */
7045 p = unpack_varlen_hex (&buf[1], &value);
7046
7047 if (buf[0] == 'W')
7048 {
7049 /* The remote process exited. */
7050 event->ws.kind = TARGET_WAITKIND_EXITED;
7051 event->ws.value.integer = value;
7052 }
7053 else
7054 {
7055 /* The remote process exited with a signal. */
7056 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7057 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7058 event->ws.value.sig = (enum gdb_signal) value;
7059 else
7060 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7061 }
7062
7063 /* If no process is specified, assume inferior_ptid. */
7064 pid = ptid_get_pid (inferior_ptid);
7065 if (*p == '\0')
7066 ;
7067 else if (*p == ';')
7068 {
7069 p++;
7070
7071 if (*p == '\0')
7072 ;
7073 else if (startswith (p, "process:"))
7074 {
7075 ULONGEST upid;
7076
7077 p += sizeof ("process:") - 1;
7078 unpack_varlen_hex (p, &upid);
7079 pid = upid;
7080 }
7081 else
7082 error (_("unknown stop reply packet: %s"), buf);
7083 }
7084 else
7085 error (_("unknown stop reply packet: %s"), buf);
7086 event->ptid = pid_to_ptid (pid);
7087 }
7088 break;
7089 case 'N':
7090 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7091 event->ptid = minus_one_ptid;
7092 break;
7093 }
7094
7095 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7096 error (_("No process or thread specified in stop reply: %s"), buf);
7097 }
7098
7099 /* When the stub wants to tell GDB about a new notification reply, it
7100 sends a notification (%Stop, for example). Those can come it at
7101 any time, hence, we have to make sure that any pending
7102 putpkt/getpkt sequence we're making is finished, before querying
7103 the stub for more events with the corresponding ack command
7104 (vStopped, for example). E.g., if we started a vStopped sequence
7105 immediately upon receiving the notification, something like this
7106 could happen:
7107
7108 1.1) --> Hg 1
7109 1.2) <-- OK
7110 1.3) --> g
7111 1.4) <-- %Stop
7112 1.5) --> vStopped
7113 1.6) <-- (registers reply to step #1.3)
7114
7115 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7116 query.
7117
7118 To solve this, whenever we parse a %Stop notification successfully,
7119 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7120 doing whatever we were doing:
7121
7122 2.1) --> Hg 1
7123 2.2) <-- OK
7124 2.3) --> g
7125 2.4) <-- %Stop
7126 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7127 2.5) <-- (registers reply to step #2.3)
7128
7129 Eventualy after step #2.5, we return to the event loop, which
7130 notices there's an event on the
7131 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7132 associated callback --- the function below. At this point, we're
7133 always safe to start a vStopped sequence. :
7134
7135 2.6) --> vStopped
7136 2.7) <-- T05 thread:2
7137 2.8) --> vStopped
7138 2.9) --> OK
7139 */
7140
7141 void
7142 remote_notif_get_pending_events (struct notif_client *nc)
7143 {
7144 struct remote_state *rs = get_remote_state ();
7145
7146 if (rs->notif_state->pending_event[nc->id] != NULL)
7147 {
7148 if (notif_debug)
7149 fprintf_unfiltered (gdb_stdlog,
7150 "notif: process: '%s' ack pending event\n",
7151 nc->name);
7152
7153 /* acknowledge */
7154 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7155 rs->notif_state->pending_event[nc->id] = NULL;
7156
7157 while (1)
7158 {
7159 getpkt (&rs->buf, &rs->buf_size, 0);
7160 if (strcmp (rs->buf, "OK") == 0)
7161 break;
7162 else
7163 remote_notif_ack (nc, rs->buf);
7164 }
7165 }
7166 else
7167 {
7168 if (notif_debug)
7169 fprintf_unfiltered (gdb_stdlog,
7170 "notif: process: '%s' no pending reply\n",
7171 nc->name);
7172 }
7173 }
7174
7175 /* Called when it is decided that STOP_REPLY holds the info of the
7176 event that is to be returned to the core. This function always
7177 destroys STOP_REPLY. */
7178
7179 static ptid_t
7180 process_stop_reply (struct stop_reply *stop_reply,
7181 struct target_waitstatus *status)
7182 {
7183 ptid_t ptid;
7184
7185 *status = stop_reply->ws;
7186 ptid = stop_reply->ptid;
7187
7188 /* If no thread/process was reported by the stub, assume the current
7189 inferior. */
7190 if (ptid_equal (ptid, null_ptid))
7191 ptid = inferior_ptid;
7192
7193 if (status->kind != TARGET_WAITKIND_EXITED
7194 && status->kind != TARGET_WAITKIND_SIGNALLED
7195 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7196 {
7197 /* Expedited registers. */
7198 if (stop_reply->regcache)
7199 {
7200 struct regcache *regcache
7201 = get_thread_arch_regcache (ptid, stop_reply->arch);
7202 cached_reg_t *reg;
7203 int ix;
7204
7205 for (ix = 0;
7206 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7207 ix++)
7208 {
7209 regcache_raw_supply (regcache, reg->num, reg->data);
7210 xfree (reg->data);
7211 }
7212
7213 VEC_free (cached_reg_t, stop_reply->regcache);
7214 }
7215
7216 remote_notice_new_inferior (ptid, 0);
7217 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7218 remote_thr->core = stop_reply->core;
7219 remote_thr->stop_reason = stop_reply->stop_reason;
7220 remote_thr->watch_data_address = stop_reply->watch_data_address;
7221 remote_thr->vcont_resumed = 0;
7222 }
7223
7224 stop_reply_xfree (stop_reply);
7225 return ptid;
7226 }
7227
7228 /* The non-stop mode version of target_wait. */
7229
7230 static ptid_t
7231 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7232 {
7233 struct remote_state *rs = get_remote_state ();
7234 struct stop_reply *stop_reply;
7235 int ret;
7236 int is_notif = 0;
7237
7238 /* If in non-stop mode, get out of getpkt even if a
7239 notification is received. */
7240
7241 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7242 0 /* forever */, &is_notif);
7243 while (1)
7244 {
7245 if (ret != -1 && !is_notif)
7246 switch (rs->buf[0])
7247 {
7248 case 'E': /* Error of some sort. */
7249 /* We're out of sync with the target now. Did it continue
7250 or not? We can't tell which thread it was in non-stop,
7251 so just ignore this. */
7252 warning (_("Remote failure reply: %s"), rs->buf);
7253 break;
7254 case 'O': /* Console output. */
7255 remote_console_output (rs->buf + 1);
7256 break;
7257 default:
7258 warning (_("Invalid remote reply: %s"), rs->buf);
7259 break;
7260 }
7261
7262 /* Acknowledge a pending stop reply that may have arrived in the
7263 mean time. */
7264 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7265 remote_notif_get_pending_events (&notif_client_stop);
7266
7267 /* If indeed we noticed a stop reply, we're done. */
7268 stop_reply = queued_stop_reply (ptid);
7269 if (stop_reply != NULL)
7270 return process_stop_reply (stop_reply, status);
7271
7272 /* Still no event. If we're just polling for an event, then
7273 return to the event loop. */
7274 if (options & TARGET_WNOHANG)
7275 {
7276 status->kind = TARGET_WAITKIND_IGNORE;
7277 return minus_one_ptid;
7278 }
7279
7280 /* Otherwise do a blocking wait. */
7281 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7282 1 /* forever */, &is_notif);
7283 }
7284 }
7285
7286 /* Wait until the remote machine stops, then return, storing status in
7287 STATUS just as `wait' would. */
7288
7289 static ptid_t
7290 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7291 {
7292 struct remote_state *rs = get_remote_state ();
7293 ptid_t event_ptid = null_ptid;
7294 char *buf;
7295 struct stop_reply *stop_reply;
7296
7297 again:
7298
7299 status->kind = TARGET_WAITKIND_IGNORE;
7300 status->value.integer = 0;
7301
7302 stop_reply = queued_stop_reply (ptid);
7303 if (stop_reply != NULL)
7304 return process_stop_reply (stop_reply, status);
7305
7306 if (rs->cached_wait_status)
7307 /* Use the cached wait status, but only once. */
7308 rs->cached_wait_status = 0;
7309 else
7310 {
7311 int ret;
7312 int is_notif;
7313 int forever = ((options & TARGET_WNOHANG) == 0
7314 && wait_forever_enabled_p);
7315
7316 if (!rs->waiting_for_stop_reply)
7317 {
7318 status->kind = TARGET_WAITKIND_NO_RESUMED;
7319 return minus_one_ptid;
7320 }
7321
7322 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7323 _never_ wait for ever -> test on target_is_async_p().
7324 However, before we do that we need to ensure that the caller
7325 knows how to take the target into/out of async mode. */
7326 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7327 forever, &is_notif);
7328
7329 /* GDB gets a notification. Return to core as this event is
7330 not interesting. */
7331 if (ret != -1 && is_notif)
7332 return minus_one_ptid;
7333
7334 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7335 return minus_one_ptid;
7336 }
7337
7338 buf = rs->buf;
7339
7340 /* Assume that the target has acknowledged Ctrl-C unless we receive
7341 an 'F' or 'O' packet. */
7342 if (buf[0] != 'F' && buf[0] != 'O')
7343 rs->ctrlc_pending_p = 0;
7344
7345 switch (buf[0])
7346 {
7347 case 'E': /* Error of some sort. */
7348 /* We're out of sync with the target now. Did it continue or
7349 not? Not is more likely, so report a stop. */
7350 rs->waiting_for_stop_reply = 0;
7351
7352 warning (_("Remote failure reply: %s"), buf);
7353 status->kind = TARGET_WAITKIND_STOPPED;
7354 status->value.sig = GDB_SIGNAL_0;
7355 break;
7356 case 'F': /* File-I/O request. */
7357 /* GDB may access the inferior memory while handling the File-I/O
7358 request, but we don't want GDB accessing memory while waiting
7359 for a stop reply. See the comments in putpkt_binary. Set
7360 waiting_for_stop_reply to 0 temporarily. */
7361 rs->waiting_for_stop_reply = 0;
7362 remote_fileio_request (buf, rs->ctrlc_pending_p);
7363 rs->ctrlc_pending_p = 0;
7364 /* GDB handled the File-I/O request, and the target is running
7365 again. Keep waiting for events. */
7366 rs->waiting_for_stop_reply = 1;
7367 break;
7368 case 'N': case 'T': case 'S': case 'X': case 'W':
7369 {
7370 struct stop_reply *stop_reply;
7371
7372 /* There is a stop reply to handle. */
7373 rs->waiting_for_stop_reply = 0;
7374
7375 stop_reply
7376 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7377 rs->buf);
7378
7379 event_ptid = process_stop_reply (stop_reply, status);
7380 break;
7381 }
7382 case 'O': /* Console output. */
7383 remote_console_output (buf + 1);
7384 break;
7385 case '\0':
7386 if (rs->last_sent_signal != GDB_SIGNAL_0)
7387 {
7388 /* Zero length reply means that we tried 'S' or 'C' and the
7389 remote system doesn't support it. */
7390 target_terminal::ours_for_output ();
7391 printf_filtered
7392 ("Can't send signals to this remote system. %s not sent.\n",
7393 gdb_signal_to_name (rs->last_sent_signal));
7394 rs->last_sent_signal = GDB_SIGNAL_0;
7395 target_terminal::inferior ();
7396
7397 strcpy (buf, rs->last_sent_step ? "s" : "c");
7398 putpkt (buf);
7399 break;
7400 }
7401 /* else fallthrough */
7402 default:
7403 warning (_("Invalid remote reply: %s"), buf);
7404 break;
7405 }
7406
7407 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7408 return minus_one_ptid;
7409 else if (status->kind == TARGET_WAITKIND_IGNORE)
7410 {
7411 /* Nothing interesting happened. If we're doing a non-blocking
7412 poll, we're done. Otherwise, go back to waiting. */
7413 if (options & TARGET_WNOHANG)
7414 return minus_one_ptid;
7415 else
7416 goto again;
7417 }
7418 else if (status->kind != TARGET_WAITKIND_EXITED
7419 && status->kind != TARGET_WAITKIND_SIGNALLED)
7420 {
7421 if (!ptid_equal (event_ptid, null_ptid))
7422 record_currthread (rs, event_ptid);
7423 else
7424 event_ptid = inferior_ptid;
7425 }
7426 else
7427 /* A process exit. Invalidate our notion of current thread. */
7428 record_currthread (rs, minus_one_ptid);
7429
7430 return event_ptid;
7431 }
7432
7433 /* Wait until the remote machine stops, then return, storing status in
7434 STATUS just as `wait' would. */
7435
7436 static ptid_t
7437 remote_wait (struct target_ops *ops,
7438 ptid_t ptid, struct target_waitstatus *status, int options)
7439 {
7440 ptid_t event_ptid;
7441
7442 if (target_is_non_stop_p ())
7443 event_ptid = remote_wait_ns (ptid, status, options);
7444 else
7445 event_ptid = remote_wait_as (ptid, status, options);
7446
7447 if (target_is_async_p ())
7448 {
7449 /* If there are are events left in the queue tell the event loop
7450 to return here. */
7451 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7452 mark_async_event_handler (remote_async_inferior_event_token);
7453 }
7454
7455 return event_ptid;
7456 }
7457
7458 /* Fetch a single register using a 'p' packet. */
7459
7460 static int
7461 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7462 {
7463 struct gdbarch *gdbarch = regcache->arch ();
7464 struct remote_state *rs = get_remote_state ();
7465 char *buf, *p;
7466 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7467 int i;
7468
7469 if (packet_support (PACKET_p) == PACKET_DISABLE)
7470 return 0;
7471
7472 if (reg->pnum == -1)
7473 return 0;
7474
7475 p = rs->buf;
7476 *p++ = 'p';
7477 p += hexnumstr (p, reg->pnum);
7478 *p++ = '\0';
7479 putpkt (rs->buf);
7480 getpkt (&rs->buf, &rs->buf_size, 0);
7481
7482 buf = rs->buf;
7483
7484 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7485 {
7486 case PACKET_OK:
7487 break;
7488 case PACKET_UNKNOWN:
7489 return 0;
7490 case PACKET_ERROR:
7491 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7492 gdbarch_register_name (regcache->arch (),
7493 reg->regnum),
7494 buf);
7495 }
7496
7497 /* If this register is unfetchable, tell the regcache. */
7498 if (buf[0] == 'x')
7499 {
7500 regcache_raw_supply (regcache, reg->regnum, NULL);
7501 return 1;
7502 }
7503
7504 /* Otherwise, parse and supply the value. */
7505 p = buf;
7506 i = 0;
7507 while (p[0] != 0)
7508 {
7509 if (p[1] == 0)
7510 error (_("fetch_register_using_p: early buf termination"));
7511
7512 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7513 p += 2;
7514 }
7515 regcache_raw_supply (regcache, reg->regnum, regp);
7516 return 1;
7517 }
7518
7519 /* Fetch the registers included in the target's 'g' packet. */
7520
7521 static int
7522 send_g_packet (void)
7523 {
7524 struct remote_state *rs = get_remote_state ();
7525 int buf_len;
7526
7527 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7528 remote_send (&rs->buf, &rs->buf_size);
7529
7530 /* We can get out of synch in various cases. If the first character
7531 in the buffer is not a hex character, assume that has happened
7532 and try to fetch another packet to read. */
7533 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7534 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7535 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7536 && rs->buf[0] != 'x') /* New: unavailable register value. */
7537 {
7538 if (remote_debug)
7539 fprintf_unfiltered (gdb_stdlog,
7540 "Bad register packet; fetching a new packet\n");
7541 getpkt (&rs->buf, &rs->buf_size, 0);
7542 }
7543
7544 buf_len = strlen (rs->buf);
7545
7546 /* Sanity check the received packet. */
7547 if (buf_len % 2 != 0)
7548 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7549
7550 return buf_len / 2;
7551 }
7552
7553 static void
7554 process_g_packet (struct regcache *regcache)
7555 {
7556 struct gdbarch *gdbarch = regcache->arch ();
7557 struct remote_state *rs = get_remote_state ();
7558 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7559 int i, buf_len;
7560 char *p;
7561 char *regs;
7562
7563 buf_len = strlen (rs->buf);
7564
7565 /* Further sanity checks, with knowledge of the architecture. */
7566 if (buf_len > 2 * rsa->sizeof_g_packet)
7567 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7568 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7569
7570 /* Save the size of the packet sent to us by the target. It is used
7571 as a heuristic when determining the max size of packets that the
7572 target can safely receive. */
7573 if (rsa->actual_register_packet_size == 0)
7574 rsa->actual_register_packet_size = buf_len;
7575
7576 /* If this is smaller than we guessed the 'g' packet would be,
7577 update our records. A 'g' reply that doesn't include a register's
7578 value implies either that the register is not available, or that
7579 the 'p' packet must be used. */
7580 if (buf_len < 2 * rsa->sizeof_g_packet)
7581 {
7582 long sizeof_g_packet = buf_len / 2;
7583
7584 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7585 {
7586 long offset = rsa->regs[i].offset;
7587 long reg_size = register_size (gdbarch, i);
7588
7589 if (rsa->regs[i].pnum == -1)
7590 continue;
7591
7592 if (offset >= sizeof_g_packet)
7593 rsa->regs[i].in_g_packet = 0;
7594 else if (offset + reg_size > sizeof_g_packet)
7595 error (_("Truncated register %d in remote 'g' packet"), i);
7596 else
7597 rsa->regs[i].in_g_packet = 1;
7598 }
7599
7600 /* Looks valid enough, we can assume this is the correct length
7601 for a 'g' packet. It's important not to adjust
7602 rsa->sizeof_g_packet if we have truncated registers otherwise
7603 this "if" won't be run the next time the method is called
7604 with a packet of the same size and one of the internal errors
7605 below will trigger instead. */
7606 rsa->sizeof_g_packet = sizeof_g_packet;
7607 }
7608
7609 regs = (char *) alloca (rsa->sizeof_g_packet);
7610
7611 /* Unimplemented registers read as all bits zero. */
7612 memset (regs, 0, rsa->sizeof_g_packet);
7613
7614 /* Reply describes registers byte by byte, each byte encoded as two
7615 hex characters. Suck them all up, then supply them to the
7616 register cacheing/storage mechanism. */
7617
7618 p = rs->buf;
7619 for (i = 0; i < rsa->sizeof_g_packet; i++)
7620 {
7621 if (p[0] == 0 || p[1] == 0)
7622 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7623 internal_error (__FILE__, __LINE__,
7624 _("unexpected end of 'g' packet reply"));
7625
7626 if (p[0] == 'x' && p[1] == 'x')
7627 regs[i] = 0; /* 'x' */
7628 else
7629 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7630 p += 2;
7631 }
7632
7633 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7634 {
7635 struct packet_reg *r = &rsa->regs[i];
7636 long reg_size = register_size (gdbarch, i);
7637
7638 if (r->in_g_packet)
7639 {
7640 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7641 /* This shouldn't happen - we adjusted in_g_packet above. */
7642 internal_error (__FILE__, __LINE__,
7643 _("unexpected end of 'g' packet reply"));
7644 else if (rs->buf[r->offset * 2] == 'x')
7645 {
7646 gdb_assert (r->offset * 2 < strlen (rs->buf));
7647 /* The register isn't available, mark it as such (at
7648 the same time setting the value to zero). */
7649 regcache_raw_supply (regcache, r->regnum, NULL);
7650 }
7651 else
7652 regcache_raw_supply (regcache, r->regnum,
7653 regs + r->offset);
7654 }
7655 }
7656 }
7657
7658 static void
7659 fetch_registers_using_g (struct regcache *regcache)
7660 {
7661 send_g_packet ();
7662 process_g_packet (regcache);
7663 }
7664
7665 /* Make the remote selected traceframe match GDB's selected
7666 traceframe. */
7667
7668 static void
7669 set_remote_traceframe (void)
7670 {
7671 int newnum;
7672 struct remote_state *rs = get_remote_state ();
7673
7674 if (rs->remote_traceframe_number == get_traceframe_number ())
7675 return;
7676
7677 /* Avoid recursion, remote_trace_find calls us again. */
7678 rs->remote_traceframe_number = get_traceframe_number ();
7679
7680 newnum = target_trace_find (tfind_number,
7681 get_traceframe_number (), 0, 0, NULL);
7682
7683 /* Should not happen. If it does, all bets are off. */
7684 if (newnum != get_traceframe_number ())
7685 warning (_("could not set remote traceframe"));
7686 }
7687
7688 static void
7689 remote_fetch_registers (struct target_ops *ops,
7690 struct regcache *regcache, int regnum)
7691 {
7692 struct gdbarch *gdbarch = regcache->arch ();
7693 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7694 int i;
7695
7696 set_remote_traceframe ();
7697 set_general_thread (regcache_get_ptid (regcache));
7698
7699 if (regnum >= 0)
7700 {
7701 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7702
7703 gdb_assert (reg != NULL);
7704
7705 /* If this register might be in the 'g' packet, try that first -
7706 we are likely to read more than one register. If this is the
7707 first 'g' packet, we might be overly optimistic about its
7708 contents, so fall back to 'p'. */
7709 if (reg->in_g_packet)
7710 {
7711 fetch_registers_using_g (regcache);
7712 if (reg->in_g_packet)
7713 return;
7714 }
7715
7716 if (fetch_register_using_p (regcache, reg))
7717 return;
7718
7719 /* This register is not available. */
7720 regcache_raw_supply (regcache, reg->regnum, NULL);
7721
7722 return;
7723 }
7724
7725 fetch_registers_using_g (regcache);
7726
7727 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7728 if (!rsa->regs[i].in_g_packet)
7729 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7730 {
7731 /* This register is not available. */
7732 regcache_raw_supply (regcache, i, NULL);
7733 }
7734 }
7735
7736 /* Prepare to store registers. Since we may send them all (using a
7737 'G' request), we have to read out the ones we don't want to change
7738 first. */
7739
7740 static void
7741 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7742 {
7743 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7744 int i;
7745
7746 /* Make sure the entire registers array is valid. */
7747 switch (packet_support (PACKET_P))
7748 {
7749 case PACKET_DISABLE:
7750 case PACKET_SUPPORT_UNKNOWN:
7751 /* Make sure all the necessary registers are cached. */
7752 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7753 if (rsa->regs[i].in_g_packet)
7754 regcache_raw_update (regcache, rsa->regs[i].regnum);
7755 break;
7756 case PACKET_ENABLE:
7757 break;
7758 }
7759 }
7760
7761 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7762 packet was not recognized. */
7763
7764 static int
7765 store_register_using_P (const struct regcache *regcache,
7766 struct packet_reg *reg)
7767 {
7768 struct gdbarch *gdbarch = regcache->arch ();
7769 struct remote_state *rs = get_remote_state ();
7770 /* Try storing a single register. */
7771 char *buf = rs->buf;
7772 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7773 char *p;
7774
7775 if (packet_support (PACKET_P) == PACKET_DISABLE)
7776 return 0;
7777
7778 if (reg->pnum == -1)
7779 return 0;
7780
7781 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7782 p = buf + strlen (buf);
7783 regcache_raw_collect (regcache, reg->regnum, regp);
7784 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7785 putpkt (rs->buf);
7786 getpkt (&rs->buf, &rs->buf_size, 0);
7787
7788 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7789 {
7790 case PACKET_OK:
7791 return 1;
7792 case PACKET_ERROR:
7793 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7794 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7795 case PACKET_UNKNOWN:
7796 return 0;
7797 default:
7798 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7799 }
7800 }
7801
7802 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7803 contents of the register cache buffer. FIXME: ignores errors. */
7804
7805 static void
7806 store_registers_using_G (const struct regcache *regcache)
7807 {
7808 struct remote_state *rs = get_remote_state ();
7809 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7810 gdb_byte *regs;
7811 char *p;
7812
7813 /* Extract all the registers in the regcache copying them into a
7814 local buffer. */
7815 {
7816 int i;
7817
7818 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7819 memset (regs, 0, rsa->sizeof_g_packet);
7820 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7821 {
7822 struct packet_reg *r = &rsa->regs[i];
7823
7824 if (r->in_g_packet)
7825 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7826 }
7827 }
7828
7829 /* Command describes registers byte by byte,
7830 each byte encoded as two hex characters. */
7831 p = rs->buf;
7832 *p++ = 'G';
7833 bin2hex (regs, p, rsa->sizeof_g_packet);
7834 putpkt (rs->buf);
7835 getpkt (&rs->buf, &rs->buf_size, 0);
7836 if (packet_check_result (rs->buf) == PACKET_ERROR)
7837 error (_("Could not write registers; remote failure reply '%s'"),
7838 rs->buf);
7839 }
7840
7841 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7842 of the register cache buffer. FIXME: ignores errors. */
7843
7844 static void
7845 remote_store_registers (struct target_ops *ops,
7846 struct regcache *regcache, int regnum)
7847 {
7848 struct gdbarch *gdbarch = regcache->arch ();
7849 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7850 int i;
7851
7852 set_remote_traceframe ();
7853 set_general_thread (regcache_get_ptid (regcache));
7854
7855 if (regnum >= 0)
7856 {
7857 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7858
7859 gdb_assert (reg != NULL);
7860
7861 /* Always prefer to store registers using the 'P' packet if
7862 possible; we often change only a small number of registers.
7863 Sometimes we change a larger number; we'd need help from a
7864 higher layer to know to use 'G'. */
7865 if (store_register_using_P (regcache, reg))
7866 return;
7867
7868 /* For now, don't complain if we have no way to write the
7869 register. GDB loses track of unavailable registers too
7870 easily. Some day, this may be an error. We don't have
7871 any way to read the register, either... */
7872 if (!reg->in_g_packet)
7873 return;
7874
7875 store_registers_using_G (regcache);
7876 return;
7877 }
7878
7879 store_registers_using_G (regcache);
7880
7881 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7882 if (!rsa->regs[i].in_g_packet)
7883 if (!store_register_using_P (regcache, &rsa->regs[i]))
7884 /* See above for why we do not issue an error here. */
7885 continue;
7886 }
7887 \f
7888
7889 /* Return the number of hex digits in num. */
7890
7891 static int
7892 hexnumlen (ULONGEST num)
7893 {
7894 int i;
7895
7896 for (i = 0; num != 0; i++)
7897 num >>= 4;
7898
7899 return std::max (i, 1);
7900 }
7901
7902 /* Set BUF to the minimum number of hex digits representing NUM. */
7903
7904 static int
7905 hexnumstr (char *buf, ULONGEST num)
7906 {
7907 int len = hexnumlen (num);
7908
7909 return hexnumnstr (buf, num, len);
7910 }
7911
7912
7913 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7914
7915 static int
7916 hexnumnstr (char *buf, ULONGEST num, int width)
7917 {
7918 int i;
7919
7920 buf[width] = '\0';
7921
7922 for (i = width - 1; i >= 0; i--)
7923 {
7924 buf[i] = "0123456789abcdef"[(num & 0xf)];
7925 num >>= 4;
7926 }
7927
7928 return width;
7929 }
7930
7931 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7932
7933 static CORE_ADDR
7934 remote_address_masked (CORE_ADDR addr)
7935 {
7936 unsigned int address_size = remote_address_size;
7937
7938 /* If "remoteaddresssize" was not set, default to target address size. */
7939 if (!address_size)
7940 address_size = gdbarch_addr_bit (target_gdbarch ());
7941
7942 if (address_size > 0
7943 && address_size < (sizeof (ULONGEST) * 8))
7944 {
7945 /* Only create a mask when that mask can safely be constructed
7946 in a ULONGEST variable. */
7947 ULONGEST mask = 1;
7948
7949 mask = (mask << address_size) - 1;
7950 addr &= mask;
7951 }
7952 return addr;
7953 }
7954
7955 /* Determine whether the remote target supports binary downloading.
7956 This is accomplished by sending a no-op memory write of zero length
7957 to the target at the specified address. It does not suffice to send
7958 the whole packet, since many stubs strip the eighth bit and
7959 subsequently compute a wrong checksum, which causes real havoc with
7960 remote_write_bytes.
7961
7962 NOTE: This can still lose if the serial line is not eight-bit
7963 clean. In cases like this, the user should clear "remote
7964 X-packet". */
7965
7966 static void
7967 check_binary_download (CORE_ADDR addr)
7968 {
7969 struct remote_state *rs = get_remote_state ();
7970
7971 switch (packet_support (PACKET_X))
7972 {
7973 case PACKET_DISABLE:
7974 break;
7975 case PACKET_ENABLE:
7976 break;
7977 case PACKET_SUPPORT_UNKNOWN:
7978 {
7979 char *p;
7980
7981 p = rs->buf;
7982 *p++ = 'X';
7983 p += hexnumstr (p, (ULONGEST) addr);
7984 *p++ = ',';
7985 p += hexnumstr (p, (ULONGEST) 0);
7986 *p++ = ':';
7987 *p = '\0';
7988
7989 putpkt_binary (rs->buf, (int) (p - rs->buf));
7990 getpkt (&rs->buf, &rs->buf_size, 0);
7991
7992 if (rs->buf[0] == '\0')
7993 {
7994 if (remote_debug)
7995 fprintf_unfiltered (gdb_stdlog,
7996 "binary downloading NOT "
7997 "supported by target\n");
7998 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7999 }
8000 else
8001 {
8002 if (remote_debug)
8003 fprintf_unfiltered (gdb_stdlog,
8004 "binary downloading supported by target\n");
8005 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8006 }
8007 break;
8008 }
8009 }
8010 }
8011
8012 /* Helper function to resize the payload in order to try to get a good
8013 alignment. We try to write an amount of data such that the next write will
8014 start on an address aligned on REMOTE_ALIGN_WRITES. */
8015
8016 static int
8017 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8018 {
8019 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8020 }
8021
8022 /* Write memory data directly to the remote machine.
8023 This does not inform the data cache; the data cache uses this.
8024 HEADER is the starting part of the packet.
8025 MEMADDR is the address in the remote memory space.
8026 MYADDR is the address of the buffer in our space.
8027 LEN_UNITS is the number of addressable units to write.
8028 UNIT_SIZE is the length in bytes of an addressable unit.
8029 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8030 should send data as binary ('X'), or hex-encoded ('M').
8031
8032 The function creates packet of the form
8033 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8034
8035 where encoding of <DATA> is terminated by PACKET_FORMAT.
8036
8037 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8038 are omitted.
8039
8040 Return the transferred status, error or OK (an
8041 'enum target_xfer_status' value). Save the number of addressable units
8042 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8043
8044 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8045 exchange between gdb and the stub could look like (?? in place of the
8046 checksum):
8047
8048 -> $m1000,4#??
8049 <- aaaabbbbccccdddd
8050
8051 -> $M1000,3:eeeeffffeeee#??
8052 <- OK
8053
8054 -> $m1000,4#??
8055 <- eeeeffffeeeedddd */
8056
8057 static enum target_xfer_status
8058 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8059 const gdb_byte *myaddr, ULONGEST len_units,
8060 int unit_size, ULONGEST *xfered_len_units,
8061 char packet_format, int use_length)
8062 {
8063 struct remote_state *rs = get_remote_state ();
8064 char *p;
8065 char *plen = NULL;
8066 int plenlen = 0;
8067 int todo_units;
8068 int units_written;
8069 int payload_capacity_bytes;
8070 int payload_length_bytes;
8071
8072 if (packet_format != 'X' && packet_format != 'M')
8073 internal_error (__FILE__, __LINE__,
8074 _("remote_write_bytes_aux: bad packet format"));
8075
8076 if (len_units == 0)
8077 return TARGET_XFER_EOF;
8078
8079 payload_capacity_bytes = get_memory_write_packet_size ();
8080
8081 /* The packet buffer will be large enough for the payload;
8082 get_memory_packet_size ensures this. */
8083 rs->buf[0] = '\0';
8084
8085 /* Compute the size of the actual payload by subtracting out the
8086 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8087
8088 payload_capacity_bytes -= strlen ("$,:#NN");
8089 if (!use_length)
8090 /* The comma won't be used. */
8091 payload_capacity_bytes += 1;
8092 payload_capacity_bytes -= strlen (header);
8093 payload_capacity_bytes -= hexnumlen (memaddr);
8094
8095 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8096
8097 strcat (rs->buf, header);
8098 p = rs->buf + strlen (header);
8099
8100 /* Compute a best guess of the number of bytes actually transfered. */
8101 if (packet_format == 'X')
8102 {
8103 /* Best guess at number of bytes that will fit. */
8104 todo_units = std::min (len_units,
8105 (ULONGEST) payload_capacity_bytes / unit_size);
8106 if (use_length)
8107 payload_capacity_bytes -= hexnumlen (todo_units);
8108 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8109 }
8110 else
8111 {
8112 /* Number of bytes that will fit. */
8113 todo_units
8114 = std::min (len_units,
8115 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8116 if (use_length)
8117 payload_capacity_bytes -= hexnumlen (todo_units);
8118 todo_units = std::min (todo_units,
8119 (payload_capacity_bytes / unit_size) / 2);
8120 }
8121
8122 if (todo_units <= 0)
8123 internal_error (__FILE__, __LINE__,
8124 _("minimum packet size too small to write data"));
8125
8126 /* If we already need another packet, then try to align the end
8127 of this packet to a useful boundary. */
8128 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8129 todo_units = align_for_efficient_write (todo_units, memaddr);
8130
8131 /* Append "<memaddr>". */
8132 memaddr = remote_address_masked (memaddr);
8133 p += hexnumstr (p, (ULONGEST) memaddr);
8134
8135 if (use_length)
8136 {
8137 /* Append ",". */
8138 *p++ = ',';
8139
8140 /* Append the length and retain its location and size. It may need to be
8141 adjusted once the packet body has been created. */
8142 plen = p;
8143 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8144 p += plenlen;
8145 }
8146
8147 /* Append ":". */
8148 *p++ = ':';
8149 *p = '\0';
8150
8151 /* Append the packet body. */
8152 if (packet_format == 'X')
8153 {
8154 /* Binary mode. Send target system values byte by byte, in
8155 increasing byte addresses. Only escape certain critical
8156 characters. */
8157 payload_length_bytes =
8158 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8159 &units_written, payload_capacity_bytes);
8160
8161 /* If not all TODO units fit, then we'll need another packet. Make
8162 a second try to keep the end of the packet aligned. Don't do
8163 this if the packet is tiny. */
8164 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8165 {
8166 int new_todo_units;
8167
8168 new_todo_units = align_for_efficient_write (units_written, memaddr);
8169
8170 if (new_todo_units != units_written)
8171 payload_length_bytes =
8172 remote_escape_output (myaddr, new_todo_units, unit_size,
8173 (gdb_byte *) p, &units_written,
8174 payload_capacity_bytes);
8175 }
8176
8177 p += payload_length_bytes;
8178 if (use_length && units_written < todo_units)
8179 {
8180 /* Escape chars have filled up the buffer prematurely,
8181 and we have actually sent fewer units than planned.
8182 Fix-up the length field of the packet. Use the same
8183 number of characters as before. */
8184 plen += hexnumnstr (plen, (ULONGEST) units_written,
8185 plenlen);
8186 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8187 }
8188 }
8189 else
8190 {
8191 /* Normal mode: Send target system values byte by byte, in
8192 increasing byte addresses. Each byte is encoded as a two hex
8193 value. */
8194 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8195 units_written = todo_units;
8196 }
8197
8198 putpkt_binary (rs->buf, (int) (p - rs->buf));
8199 getpkt (&rs->buf, &rs->buf_size, 0);
8200
8201 if (rs->buf[0] == 'E')
8202 return TARGET_XFER_E_IO;
8203
8204 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8205 send fewer units than we'd planned. */
8206 *xfered_len_units = (ULONGEST) units_written;
8207 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8208 }
8209
8210 /* Write memory data directly to the remote machine.
8211 This does not inform the data cache; the data cache uses this.
8212 MEMADDR is the address in the remote memory space.
8213 MYADDR is the address of the buffer in our space.
8214 LEN is the number of bytes.
8215
8216 Return the transferred status, error or OK (an
8217 'enum target_xfer_status' value). Save the number of bytes
8218 transferred in *XFERED_LEN. Only transfer a single packet. */
8219
8220 static enum target_xfer_status
8221 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8222 int unit_size, ULONGEST *xfered_len)
8223 {
8224 const char *packet_format = NULL;
8225
8226 /* Check whether the target supports binary download. */
8227 check_binary_download (memaddr);
8228
8229 switch (packet_support (PACKET_X))
8230 {
8231 case PACKET_ENABLE:
8232 packet_format = "X";
8233 break;
8234 case PACKET_DISABLE:
8235 packet_format = "M";
8236 break;
8237 case PACKET_SUPPORT_UNKNOWN:
8238 internal_error (__FILE__, __LINE__,
8239 _("remote_write_bytes: bad internal state"));
8240 default:
8241 internal_error (__FILE__, __LINE__, _("bad switch"));
8242 }
8243
8244 return remote_write_bytes_aux (packet_format,
8245 memaddr, myaddr, len, unit_size, xfered_len,
8246 packet_format[0], 1);
8247 }
8248
8249 /* Read memory data directly from the remote machine.
8250 This does not use the data cache; the data cache uses this.
8251 MEMADDR is the address in the remote memory space.
8252 MYADDR is the address of the buffer in our space.
8253 LEN_UNITS is the number of addressable memory units to read..
8254 UNIT_SIZE is the length in bytes of an addressable unit.
8255
8256 Return the transferred status, error or OK (an
8257 'enum target_xfer_status' value). Save the number of bytes
8258 transferred in *XFERED_LEN_UNITS.
8259
8260 See the comment of remote_write_bytes_aux for an example of
8261 memory read/write exchange between gdb and the stub. */
8262
8263 static enum target_xfer_status
8264 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8265 int unit_size, ULONGEST *xfered_len_units)
8266 {
8267 struct remote_state *rs = get_remote_state ();
8268 int buf_size_bytes; /* Max size of packet output buffer. */
8269 char *p;
8270 int todo_units;
8271 int decoded_bytes;
8272
8273 buf_size_bytes = get_memory_read_packet_size ();
8274 /* The packet buffer will be large enough for the payload;
8275 get_memory_packet_size ensures this. */
8276
8277 /* Number of units that will fit. */
8278 todo_units = std::min (len_units,
8279 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8280
8281 /* Construct "m"<memaddr>","<len>". */
8282 memaddr = remote_address_masked (memaddr);
8283 p = rs->buf;
8284 *p++ = 'm';
8285 p += hexnumstr (p, (ULONGEST) memaddr);
8286 *p++ = ',';
8287 p += hexnumstr (p, (ULONGEST) todo_units);
8288 *p = '\0';
8289 putpkt (rs->buf);
8290 getpkt (&rs->buf, &rs->buf_size, 0);
8291 if (rs->buf[0] == 'E'
8292 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8293 && rs->buf[3] == '\0')
8294 return TARGET_XFER_E_IO;
8295 /* Reply describes memory byte by byte, each byte encoded as two hex
8296 characters. */
8297 p = rs->buf;
8298 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8299 /* Return what we have. Let higher layers handle partial reads. */
8300 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8301 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8302 }
8303
8304 /* Using the set of read-only target sections of remote, read live
8305 read-only memory.
8306
8307 For interface/parameters/return description see target.h,
8308 to_xfer_partial. */
8309
8310 static enum target_xfer_status
8311 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8312 ULONGEST memaddr, ULONGEST len,
8313 int unit_size, ULONGEST *xfered_len)
8314 {
8315 struct target_section *secp;
8316 struct target_section_table *table;
8317
8318 secp = target_section_by_addr (ops, memaddr);
8319 if (secp != NULL
8320 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8321 secp->the_bfd_section)
8322 & SEC_READONLY))
8323 {
8324 struct target_section *p;
8325 ULONGEST memend = memaddr + len;
8326
8327 table = target_get_section_table (ops);
8328
8329 for (p = table->sections; p < table->sections_end; p++)
8330 {
8331 if (memaddr >= p->addr)
8332 {
8333 if (memend <= p->endaddr)
8334 {
8335 /* Entire transfer is within this section. */
8336 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8337 xfered_len);
8338 }
8339 else if (memaddr >= p->endaddr)
8340 {
8341 /* This section ends before the transfer starts. */
8342 continue;
8343 }
8344 else
8345 {
8346 /* This section overlaps the transfer. Just do half. */
8347 len = p->endaddr - memaddr;
8348 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8349 xfered_len);
8350 }
8351 }
8352 }
8353 }
8354
8355 return TARGET_XFER_EOF;
8356 }
8357
8358 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8359 first if the requested memory is unavailable in traceframe.
8360 Otherwise, fall back to remote_read_bytes_1. */
8361
8362 static enum target_xfer_status
8363 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8364 gdb_byte *myaddr, ULONGEST len, int unit_size,
8365 ULONGEST *xfered_len)
8366 {
8367 if (len == 0)
8368 return TARGET_XFER_EOF;
8369
8370 if (get_traceframe_number () != -1)
8371 {
8372 std::vector<mem_range> available;
8373
8374 /* If we fail to get the set of available memory, then the
8375 target does not support querying traceframe info, and so we
8376 attempt reading from the traceframe anyway (assuming the
8377 target implements the old QTro packet then). */
8378 if (traceframe_available_memory (&available, memaddr, len))
8379 {
8380 if (available.empty () || available[0].start != memaddr)
8381 {
8382 enum target_xfer_status res;
8383
8384 /* Don't read into the traceframe's available
8385 memory. */
8386 if (!available.empty ())
8387 {
8388 LONGEST oldlen = len;
8389
8390 len = available[0].start - memaddr;
8391 gdb_assert (len <= oldlen);
8392 }
8393
8394 /* This goes through the topmost target again. */
8395 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8396 len, unit_size, xfered_len);
8397 if (res == TARGET_XFER_OK)
8398 return TARGET_XFER_OK;
8399 else
8400 {
8401 /* No use trying further, we know some memory starting
8402 at MEMADDR isn't available. */
8403 *xfered_len = len;
8404 return (*xfered_len != 0) ?
8405 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8406 }
8407 }
8408
8409 /* Don't try to read more than how much is available, in
8410 case the target implements the deprecated QTro packet to
8411 cater for older GDBs (the target's knowledge of read-only
8412 sections may be outdated by now). */
8413 len = available[0].length;
8414 }
8415 }
8416
8417 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8418 }
8419
8420 \f
8421
8422 /* Sends a packet with content determined by the printf format string
8423 FORMAT and the remaining arguments, then gets the reply. Returns
8424 whether the packet was a success, a failure, or unknown. */
8425
8426 static enum packet_result remote_send_printf (const char *format, ...)
8427 ATTRIBUTE_PRINTF (1, 2);
8428
8429 static enum packet_result
8430 remote_send_printf (const char *format, ...)
8431 {
8432 struct remote_state *rs = get_remote_state ();
8433 int max_size = get_remote_packet_size ();
8434 va_list ap;
8435
8436 va_start (ap, format);
8437
8438 rs->buf[0] = '\0';
8439 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8440 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8441
8442 if (putpkt (rs->buf) < 0)
8443 error (_("Communication problem with target."));
8444
8445 rs->buf[0] = '\0';
8446 getpkt (&rs->buf, &rs->buf_size, 0);
8447
8448 return packet_check_result (rs->buf);
8449 }
8450
8451 /* Flash writing can take quite some time. We'll set
8452 effectively infinite timeout for flash operations.
8453 In future, we'll need to decide on a better approach. */
8454 static const int remote_flash_timeout = 1000;
8455
8456 static void
8457 remote_flash_erase (struct target_ops *ops,
8458 ULONGEST address, LONGEST length)
8459 {
8460 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8461 enum packet_result ret;
8462 scoped_restore restore_timeout
8463 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8464
8465 ret = remote_send_printf ("vFlashErase:%s,%s",
8466 phex (address, addr_size),
8467 phex (length, 4));
8468 switch (ret)
8469 {
8470 case PACKET_UNKNOWN:
8471 error (_("Remote target does not support flash erase"));
8472 case PACKET_ERROR:
8473 error (_("Error erasing flash with vFlashErase packet"));
8474 default:
8475 break;
8476 }
8477 }
8478
8479 static enum target_xfer_status
8480 remote_flash_write (struct target_ops *ops, ULONGEST address,
8481 ULONGEST length, ULONGEST *xfered_len,
8482 const gdb_byte *data)
8483 {
8484 scoped_restore restore_timeout
8485 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8486 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8487 xfered_len,'X', 0);
8488 }
8489
8490 static void
8491 remote_flash_done (struct target_ops *ops)
8492 {
8493 int ret;
8494
8495 scoped_restore restore_timeout
8496 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8497
8498 ret = remote_send_printf ("vFlashDone");
8499
8500 switch (ret)
8501 {
8502 case PACKET_UNKNOWN:
8503 error (_("Remote target does not support vFlashDone"));
8504 case PACKET_ERROR:
8505 error (_("Error finishing flash operation"));
8506 default:
8507 break;
8508 }
8509 }
8510
8511 static void
8512 remote_files_info (struct target_ops *ignore)
8513 {
8514 puts_filtered ("Debugging a target over a serial line.\n");
8515 }
8516 \f
8517 /* Stuff for dealing with the packets which are part of this protocol.
8518 See comment at top of file for details. */
8519
8520 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8521 error to higher layers. Called when a serial error is detected.
8522 The exception message is STRING, followed by a colon and a blank,
8523 the system error message for errno at function entry and final dot
8524 for output compatibility with throw_perror_with_name. */
8525
8526 static void
8527 unpush_and_perror (const char *string)
8528 {
8529 int saved_errno = errno;
8530
8531 remote_unpush_target ();
8532 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8533 safe_strerror (saved_errno));
8534 }
8535
8536 /* Read a single character from the remote end. The current quit
8537 handler is overridden to avoid quitting in the middle of packet
8538 sequence, as that would break communication with the remote server.
8539 See remote_serial_quit_handler for more detail. */
8540
8541 static int
8542 readchar (int timeout)
8543 {
8544 int ch;
8545 struct remote_state *rs = get_remote_state ();
8546
8547 {
8548 scoped_restore restore_quit
8549 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8550
8551 rs->got_ctrlc_during_io = 0;
8552
8553 ch = serial_readchar (rs->remote_desc, timeout);
8554
8555 if (rs->got_ctrlc_during_io)
8556 set_quit_flag ();
8557 }
8558
8559 if (ch >= 0)
8560 return ch;
8561
8562 switch ((enum serial_rc) ch)
8563 {
8564 case SERIAL_EOF:
8565 remote_unpush_target ();
8566 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8567 /* no return */
8568 case SERIAL_ERROR:
8569 unpush_and_perror (_("Remote communication error. "
8570 "Target disconnected."));
8571 /* no return */
8572 case SERIAL_TIMEOUT:
8573 break;
8574 }
8575 return ch;
8576 }
8577
8578 /* Wrapper for serial_write that closes the target and throws if
8579 writing fails. The current quit handler is overridden to avoid
8580 quitting in the middle of packet sequence, as that would break
8581 communication with the remote server. See
8582 remote_serial_quit_handler for more detail. */
8583
8584 static void
8585 remote_serial_write (const char *str, int len)
8586 {
8587 struct remote_state *rs = get_remote_state ();
8588
8589 scoped_restore restore_quit
8590 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8591
8592 rs->got_ctrlc_during_io = 0;
8593
8594 if (serial_write (rs->remote_desc, str, len))
8595 {
8596 unpush_and_perror (_("Remote communication error. "
8597 "Target disconnected."));
8598 }
8599
8600 if (rs->got_ctrlc_during_io)
8601 set_quit_flag ();
8602 }
8603
8604 /* Send the command in *BUF to the remote machine, and read the reply
8605 into *BUF. Report an error if we get an error reply. Resize
8606 *BUF using xrealloc if necessary to hold the result, and update
8607 *SIZEOF_BUF. */
8608
8609 static void
8610 remote_send (char **buf,
8611 long *sizeof_buf)
8612 {
8613 putpkt (*buf);
8614 getpkt (buf, sizeof_buf, 0);
8615
8616 if ((*buf)[0] == 'E')
8617 error (_("Remote failure reply: %s"), *buf);
8618 }
8619
8620 /* Return a string representing an escaped version of BUF, of len N.
8621 E.g. \n is converted to \\n, \t to \\t, etc. */
8622
8623 static std::string
8624 escape_buffer (const char *buf, int n)
8625 {
8626 string_file stb;
8627
8628 stb.putstrn (buf, n, '\\');
8629 return std::move (stb.string ());
8630 }
8631
8632 /* Display a null-terminated packet on stdout, for debugging, using C
8633 string notation. */
8634
8635 static void
8636 print_packet (const char *buf)
8637 {
8638 puts_filtered ("\"");
8639 fputstr_filtered (buf, '"', gdb_stdout);
8640 puts_filtered ("\"");
8641 }
8642
8643 int
8644 putpkt (const char *buf)
8645 {
8646 return putpkt_binary (buf, strlen (buf));
8647 }
8648
8649 /* Send a packet to the remote machine, with error checking. The data
8650 of the packet is in BUF. The string in BUF can be at most
8651 get_remote_packet_size () - 5 to account for the $, # and checksum,
8652 and for a possible /0 if we are debugging (remote_debug) and want
8653 to print the sent packet as a string. */
8654
8655 static int
8656 putpkt_binary (const char *buf, int cnt)
8657 {
8658 struct remote_state *rs = get_remote_state ();
8659 int i;
8660 unsigned char csum = 0;
8661 gdb::def_vector<char> data (cnt + 6);
8662 char *buf2 = data.data ();
8663
8664 int ch;
8665 int tcount = 0;
8666 char *p;
8667
8668 /* Catch cases like trying to read memory or listing threads while
8669 we're waiting for a stop reply. The remote server wouldn't be
8670 ready to handle this request, so we'd hang and timeout. We don't
8671 have to worry about this in synchronous mode, because in that
8672 case it's not possible to issue a command while the target is
8673 running. This is not a problem in non-stop mode, because in that
8674 case, the stub is always ready to process serial input. */
8675 if (!target_is_non_stop_p ()
8676 && target_is_async_p ()
8677 && rs->waiting_for_stop_reply)
8678 {
8679 error (_("Cannot execute this command while the target is running.\n"
8680 "Use the \"interrupt\" command to stop the target\n"
8681 "and then try again."));
8682 }
8683
8684 /* We're sending out a new packet. Make sure we don't look at a
8685 stale cached response. */
8686 rs->cached_wait_status = 0;
8687
8688 /* Copy the packet into buffer BUF2, encapsulating it
8689 and giving it a checksum. */
8690
8691 p = buf2;
8692 *p++ = '$';
8693
8694 for (i = 0; i < cnt; i++)
8695 {
8696 csum += buf[i];
8697 *p++ = buf[i];
8698 }
8699 *p++ = '#';
8700 *p++ = tohex ((csum >> 4) & 0xf);
8701 *p++ = tohex (csum & 0xf);
8702
8703 /* Send it over and over until we get a positive ack. */
8704
8705 while (1)
8706 {
8707 int started_error_output = 0;
8708
8709 if (remote_debug)
8710 {
8711 *p = '\0';
8712
8713 int len = (int) (p - buf2);
8714
8715 std::string str
8716 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8717
8718 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8719
8720 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8721 {
8722 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8723 str.length () - REMOTE_DEBUG_MAX_CHAR);
8724 }
8725
8726 fprintf_unfiltered (gdb_stdlog, "...");
8727
8728 gdb_flush (gdb_stdlog);
8729 }
8730 remote_serial_write (buf2, p - buf2);
8731
8732 /* If this is a no acks version of the remote protocol, send the
8733 packet and move on. */
8734 if (rs->noack_mode)
8735 break;
8736
8737 /* Read until either a timeout occurs (-2) or '+' is read.
8738 Handle any notification that arrives in the mean time. */
8739 while (1)
8740 {
8741 ch = readchar (remote_timeout);
8742
8743 if (remote_debug)
8744 {
8745 switch (ch)
8746 {
8747 case '+':
8748 case '-':
8749 case SERIAL_TIMEOUT:
8750 case '$':
8751 case '%':
8752 if (started_error_output)
8753 {
8754 putchar_unfiltered ('\n');
8755 started_error_output = 0;
8756 }
8757 }
8758 }
8759
8760 switch (ch)
8761 {
8762 case '+':
8763 if (remote_debug)
8764 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8765 return 1;
8766 case '-':
8767 if (remote_debug)
8768 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8769 /* FALLTHROUGH */
8770 case SERIAL_TIMEOUT:
8771 tcount++;
8772 if (tcount > 3)
8773 return 0;
8774 break; /* Retransmit buffer. */
8775 case '$':
8776 {
8777 if (remote_debug)
8778 fprintf_unfiltered (gdb_stdlog,
8779 "Packet instead of Ack, ignoring it\n");
8780 /* It's probably an old response sent because an ACK
8781 was lost. Gobble up the packet and ack it so it
8782 doesn't get retransmitted when we resend this
8783 packet. */
8784 skip_frame ();
8785 remote_serial_write ("+", 1);
8786 continue; /* Now, go look for +. */
8787 }
8788
8789 case '%':
8790 {
8791 int val;
8792
8793 /* If we got a notification, handle it, and go back to looking
8794 for an ack. */
8795 /* We've found the start of a notification. Now
8796 collect the data. */
8797 val = read_frame (&rs->buf, &rs->buf_size);
8798 if (val >= 0)
8799 {
8800 if (remote_debug)
8801 {
8802 std::string str = escape_buffer (rs->buf, val);
8803
8804 fprintf_unfiltered (gdb_stdlog,
8805 " Notification received: %s\n",
8806 str.c_str ());
8807 }
8808 handle_notification (rs->notif_state, rs->buf);
8809 /* We're in sync now, rewait for the ack. */
8810 tcount = 0;
8811 }
8812 else
8813 {
8814 if (remote_debug)
8815 {
8816 if (!started_error_output)
8817 {
8818 started_error_output = 1;
8819 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8820 }
8821 fputc_unfiltered (ch & 0177, gdb_stdlog);
8822 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8823 }
8824 }
8825 continue;
8826 }
8827 /* fall-through */
8828 default:
8829 if (remote_debug)
8830 {
8831 if (!started_error_output)
8832 {
8833 started_error_output = 1;
8834 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8835 }
8836 fputc_unfiltered (ch & 0177, gdb_stdlog);
8837 }
8838 continue;
8839 }
8840 break; /* Here to retransmit. */
8841 }
8842
8843 #if 0
8844 /* This is wrong. If doing a long backtrace, the user should be
8845 able to get out next time we call QUIT, without anything as
8846 violent as interrupt_query. If we want to provide a way out of
8847 here without getting to the next QUIT, it should be based on
8848 hitting ^C twice as in remote_wait. */
8849 if (quit_flag)
8850 {
8851 quit_flag = 0;
8852 interrupt_query ();
8853 }
8854 #endif
8855 }
8856
8857 return 0;
8858 }
8859
8860 /* Come here after finding the start of a frame when we expected an
8861 ack. Do our best to discard the rest of this packet. */
8862
8863 static void
8864 skip_frame (void)
8865 {
8866 int c;
8867
8868 while (1)
8869 {
8870 c = readchar (remote_timeout);
8871 switch (c)
8872 {
8873 case SERIAL_TIMEOUT:
8874 /* Nothing we can do. */
8875 return;
8876 case '#':
8877 /* Discard the two bytes of checksum and stop. */
8878 c = readchar (remote_timeout);
8879 if (c >= 0)
8880 c = readchar (remote_timeout);
8881
8882 return;
8883 case '*': /* Run length encoding. */
8884 /* Discard the repeat count. */
8885 c = readchar (remote_timeout);
8886 if (c < 0)
8887 return;
8888 break;
8889 default:
8890 /* A regular character. */
8891 break;
8892 }
8893 }
8894 }
8895
8896 /* Come here after finding the start of the frame. Collect the rest
8897 into *BUF, verifying the checksum, length, and handling run-length
8898 compression. NUL terminate the buffer. If there is not enough room,
8899 expand *BUF using xrealloc.
8900
8901 Returns -1 on error, number of characters in buffer (ignoring the
8902 trailing NULL) on success. (could be extended to return one of the
8903 SERIAL status indications). */
8904
8905 static long
8906 read_frame (char **buf_p,
8907 long *sizeof_buf)
8908 {
8909 unsigned char csum;
8910 long bc;
8911 int c;
8912 char *buf = *buf_p;
8913 struct remote_state *rs = get_remote_state ();
8914
8915 csum = 0;
8916 bc = 0;
8917
8918 while (1)
8919 {
8920 c = readchar (remote_timeout);
8921 switch (c)
8922 {
8923 case SERIAL_TIMEOUT:
8924 if (remote_debug)
8925 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8926 return -1;
8927 case '$':
8928 if (remote_debug)
8929 fputs_filtered ("Saw new packet start in middle of old one\n",
8930 gdb_stdlog);
8931 return -1; /* Start a new packet, count retries. */
8932 case '#':
8933 {
8934 unsigned char pktcsum;
8935 int check_0 = 0;
8936 int check_1 = 0;
8937
8938 buf[bc] = '\0';
8939
8940 check_0 = readchar (remote_timeout);
8941 if (check_0 >= 0)
8942 check_1 = readchar (remote_timeout);
8943
8944 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8945 {
8946 if (remote_debug)
8947 fputs_filtered ("Timeout in checksum, retrying\n",
8948 gdb_stdlog);
8949 return -1;
8950 }
8951 else if (check_0 < 0 || check_1 < 0)
8952 {
8953 if (remote_debug)
8954 fputs_filtered ("Communication error in checksum\n",
8955 gdb_stdlog);
8956 return -1;
8957 }
8958
8959 /* Don't recompute the checksum; with no ack packets we
8960 don't have any way to indicate a packet retransmission
8961 is necessary. */
8962 if (rs->noack_mode)
8963 return bc;
8964
8965 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8966 if (csum == pktcsum)
8967 return bc;
8968
8969 if (remote_debug)
8970 {
8971 std::string str = escape_buffer (buf, bc);
8972
8973 fprintf_unfiltered (gdb_stdlog,
8974 "Bad checksum, sentsum=0x%x, "
8975 "csum=0x%x, buf=%s\n",
8976 pktcsum, csum, str.c_str ());
8977 }
8978 /* Number of characters in buffer ignoring trailing
8979 NULL. */
8980 return -1;
8981 }
8982 case '*': /* Run length encoding. */
8983 {
8984 int repeat;
8985
8986 csum += c;
8987 c = readchar (remote_timeout);
8988 csum += c;
8989 repeat = c - ' ' + 3; /* Compute repeat count. */
8990
8991 /* The character before ``*'' is repeated. */
8992
8993 if (repeat > 0 && repeat <= 255 && bc > 0)
8994 {
8995 if (bc + repeat - 1 >= *sizeof_buf - 1)
8996 {
8997 /* Make some more room in the buffer. */
8998 *sizeof_buf += repeat;
8999 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9000 buf = *buf_p;
9001 }
9002
9003 memset (&buf[bc], buf[bc - 1], repeat);
9004 bc += repeat;
9005 continue;
9006 }
9007
9008 buf[bc] = '\0';
9009 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9010 return -1;
9011 }
9012 default:
9013 if (bc >= *sizeof_buf - 1)
9014 {
9015 /* Make some more room in the buffer. */
9016 *sizeof_buf *= 2;
9017 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9018 buf = *buf_p;
9019 }
9020
9021 buf[bc++] = c;
9022 csum += c;
9023 continue;
9024 }
9025 }
9026 }
9027
9028 /* Read a packet from the remote machine, with error checking, and
9029 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9030 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9031 rather than timing out; this is used (in synchronous mode) to wait
9032 for a target that is is executing user code to stop. */
9033 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9034 don't have to change all the calls to getpkt to deal with the
9035 return value, because at the moment I don't know what the right
9036 thing to do it for those. */
9037 void
9038 getpkt (char **buf,
9039 long *sizeof_buf,
9040 int forever)
9041 {
9042 getpkt_sane (buf, sizeof_buf, forever);
9043 }
9044
9045
9046 /* Read a packet from the remote machine, with error checking, and
9047 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9048 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9049 rather than timing out; this is used (in synchronous mode) to wait
9050 for a target that is is executing user code to stop. If FOREVER ==
9051 0, this function is allowed to time out gracefully and return an
9052 indication of this to the caller. Otherwise return the number of
9053 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9054 enough reason to return to the caller. *IS_NOTIF is an output
9055 boolean that indicates whether *BUF holds a notification or not
9056 (a regular packet). */
9057
9058 static int
9059 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9060 int expecting_notif, int *is_notif)
9061 {
9062 struct remote_state *rs = get_remote_state ();
9063 int c;
9064 int tries;
9065 int timeout;
9066 int val = -1;
9067
9068 /* We're reading a new response. Make sure we don't look at a
9069 previously cached response. */
9070 rs->cached_wait_status = 0;
9071
9072 strcpy (*buf, "timeout");
9073
9074 if (forever)
9075 timeout = watchdog > 0 ? watchdog : -1;
9076 else if (expecting_notif)
9077 timeout = 0; /* There should already be a char in the buffer. If
9078 not, bail out. */
9079 else
9080 timeout = remote_timeout;
9081
9082 #define MAX_TRIES 3
9083
9084 /* Process any number of notifications, and then return when
9085 we get a packet. */
9086 for (;;)
9087 {
9088 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9089 times. */
9090 for (tries = 1; tries <= MAX_TRIES; tries++)
9091 {
9092 /* This can loop forever if the remote side sends us
9093 characters continuously, but if it pauses, we'll get
9094 SERIAL_TIMEOUT from readchar because of timeout. Then
9095 we'll count that as a retry.
9096
9097 Note that even when forever is set, we will only wait
9098 forever prior to the start of a packet. After that, we
9099 expect characters to arrive at a brisk pace. They should
9100 show up within remote_timeout intervals. */
9101 do
9102 c = readchar (timeout);
9103 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9104
9105 if (c == SERIAL_TIMEOUT)
9106 {
9107 if (expecting_notif)
9108 return -1; /* Don't complain, it's normal to not get
9109 anything in this case. */
9110
9111 if (forever) /* Watchdog went off? Kill the target. */
9112 {
9113 remote_unpush_target ();
9114 throw_error (TARGET_CLOSE_ERROR,
9115 _("Watchdog timeout has expired. "
9116 "Target detached."));
9117 }
9118 if (remote_debug)
9119 fputs_filtered ("Timed out.\n", gdb_stdlog);
9120 }
9121 else
9122 {
9123 /* We've found the start of a packet or notification.
9124 Now collect the data. */
9125 val = read_frame (buf, sizeof_buf);
9126 if (val >= 0)
9127 break;
9128 }
9129
9130 remote_serial_write ("-", 1);
9131 }
9132
9133 if (tries > MAX_TRIES)
9134 {
9135 /* We have tried hard enough, and just can't receive the
9136 packet/notification. Give up. */
9137 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9138
9139 /* Skip the ack char if we're in no-ack mode. */
9140 if (!rs->noack_mode)
9141 remote_serial_write ("+", 1);
9142 return -1;
9143 }
9144
9145 /* If we got an ordinary packet, return that to our caller. */
9146 if (c == '$')
9147 {
9148 if (remote_debug)
9149 {
9150 std::string str
9151 = escape_buffer (*buf,
9152 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9153
9154 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9155 str.c_str ());
9156
9157 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9158 {
9159 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9160 str.length () - REMOTE_DEBUG_MAX_CHAR);
9161 }
9162
9163 fprintf_unfiltered (gdb_stdlog, "\n");
9164 }
9165
9166 /* Skip the ack char if we're in no-ack mode. */
9167 if (!rs->noack_mode)
9168 remote_serial_write ("+", 1);
9169 if (is_notif != NULL)
9170 *is_notif = 0;
9171 return val;
9172 }
9173
9174 /* If we got a notification, handle it, and go back to looking
9175 for a packet. */
9176 else
9177 {
9178 gdb_assert (c == '%');
9179
9180 if (remote_debug)
9181 {
9182 std::string str = escape_buffer (*buf, val);
9183
9184 fprintf_unfiltered (gdb_stdlog,
9185 " Notification received: %s\n",
9186 str.c_str ());
9187 }
9188 if (is_notif != NULL)
9189 *is_notif = 1;
9190
9191 handle_notification (rs->notif_state, *buf);
9192
9193 /* Notifications require no acknowledgement. */
9194
9195 if (expecting_notif)
9196 return val;
9197 }
9198 }
9199 }
9200
9201 static int
9202 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9203 {
9204 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9205 }
9206
9207 static int
9208 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9209 int *is_notif)
9210 {
9211 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9212 is_notif);
9213 }
9214
9215 /* Check whether EVENT is a fork event for the process specified
9216 by the pid passed in DATA, and if it is, kill the fork child. */
9217
9218 static int
9219 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9220 QUEUE_ITER (stop_reply_p) *iter,
9221 stop_reply_p event,
9222 void *data)
9223 {
9224 struct queue_iter_param *param = (struct queue_iter_param *) data;
9225 int parent_pid = *(int *) param->input;
9226
9227 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9228 {
9229 struct remote_state *rs = get_remote_state ();
9230 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9231 int res;
9232
9233 res = remote_vkill (child_pid, rs);
9234 if (res != 0)
9235 error (_("Can't kill fork child process %d"), child_pid);
9236 }
9237
9238 return 1;
9239 }
9240
9241 /* Kill any new fork children of process PID that haven't been
9242 processed by follow_fork. */
9243
9244 static void
9245 kill_new_fork_children (int pid, struct remote_state *rs)
9246 {
9247 struct thread_info *thread;
9248 struct notif_client *notif = &notif_client_stop;
9249 struct queue_iter_param param;
9250
9251 /* Kill the fork child threads of any threads in process PID
9252 that are stopped at a fork event. */
9253 ALL_NON_EXITED_THREADS (thread)
9254 {
9255 struct target_waitstatus *ws = &thread->pending_follow;
9256
9257 if (is_pending_fork_parent (ws, pid, thread->ptid))
9258 {
9259 struct remote_state *rs = get_remote_state ();
9260 int child_pid = ptid_get_pid (ws->value.related_pid);
9261 int res;
9262
9263 res = remote_vkill (child_pid, rs);
9264 if (res != 0)
9265 error (_("Can't kill fork child process %d"), child_pid);
9266 }
9267 }
9268
9269 /* Check for any pending fork events (not reported or processed yet)
9270 in process PID and kill those fork child threads as well. */
9271 remote_notif_get_pending_events (notif);
9272 param.input = &pid;
9273 param.output = NULL;
9274 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9275 kill_child_of_pending_fork, &param);
9276 }
9277
9278 \f
9279 /* Target hook to kill the current inferior. */
9280
9281 static void
9282 remote_kill (struct target_ops *ops)
9283 {
9284 int res = -1;
9285 int pid = ptid_get_pid (inferior_ptid);
9286 struct remote_state *rs = get_remote_state ();
9287
9288 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9289 {
9290 /* If we're stopped while forking and we haven't followed yet,
9291 kill the child task. We need to do this before killing the
9292 parent task because if this is a vfork then the parent will
9293 be sleeping. */
9294 kill_new_fork_children (pid, rs);
9295
9296 res = remote_vkill (pid, rs);
9297 if (res == 0)
9298 {
9299 target_mourn_inferior (inferior_ptid);
9300 return;
9301 }
9302 }
9303
9304 /* If we are in 'target remote' mode and we are killing the only
9305 inferior, then we will tell gdbserver to exit and unpush the
9306 target. */
9307 if (res == -1 && !remote_multi_process_p (rs)
9308 && number_of_live_inferiors () == 1)
9309 {
9310 remote_kill_k ();
9311
9312 /* We've killed the remote end, we get to mourn it. If we are
9313 not in extended mode, mourning the inferior also unpushes
9314 remote_ops from the target stack, which closes the remote
9315 connection. */
9316 target_mourn_inferior (inferior_ptid);
9317
9318 return;
9319 }
9320
9321 error (_("Can't kill process"));
9322 }
9323
9324 /* Send a kill request to the target using the 'vKill' packet. */
9325
9326 static int
9327 remote_vkill (int pid, struct remote_state *rs)
9328 {
9329 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9330 return -1;
9331
9332 /* Tell the remote target to detach. */
9333 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9334 putpkt (rs->buf);
9335 getpkt (&rs->buf, &rs->buf_size, 0);
9336
9337 switch (packet_ok (rs->buf,
9338 &remote_protocol_packets[PACKET_vKill]))
9339 {
9340 case PACKET_OK:
9341 return 0;
9342 case PACKET_ERROR:
9343 return 1;
9344 case PACKET_UNKNOWN:
9345 return -1;
9346 default:
9347 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9348 }
9349 }
9350
9351 /* Send a kill request to the target using the 'k' packet. */
9352
9353 static void
9354 remote_kill_k (void)
9355 {
9356 /* Catch errors so the user can quit from gdb even when we
9357 aren't on speaking terms with the remote system. */
9358 TRY
9359 {
9360 putpkt ("k");
9361 }
9362 CATCH (ex, RETURN_MASK_ERROR)
9363 {
9364 if (ex.error == TARGET_CLOSE_ERROR)
9365 {
9366 /* If we got an (EOF) error that caused the target
9367 to go away, then we're done, that's what we wanted.
9368 "k" is susceptible to cause a premature EOF, given
9369 that the remote server isn't actually required to
9370 reply to "k", and it can happen that it doesn't
9371 even get to reply ACK to the "k". */
9372 return;
9373 }
9374
9375 /* Otherwise, something went wrong. We didn't actually kill
9376 the target. Just propagate the exception, and let the
9377 user or higher layers decide what to do. */
9378 throw_exception (ex);
9379 }
9380 END_CATCH
9381 }
9382
9383 static void
9384 remote_mourn (struct target_ops *target)
9385 {
9386 struct remote_state *rs = get_remote_state ();
9387
9388 /* In 'target remote' mode with one inferior, we close the connection. */
9389 if (!rs->extended && number_of_live_inferiors () <= 1)
9390 {
9391 unpush_target (target);
9392
9393 /* remote_close takes care of doing most of the clean up. */
9394 generic_mourn_inferior ();
9395 return;
9396 }
9397
9398 /* In case we got here due to an error, but we're going to stay
9399 connected. */
9400 rs->waiting_for_stop_reply = 0;
9401
9402 /* If the current general thread belonged to the process we just
9403 detached from or has exited, the remote side current general
9404 thread becomes undefined. Considering a case like this:
9405
9406 - We just got here due to a detach.
9407 - The process that we're detaching from happens to immediately
9408 report a global breakpoint being hit in non-stop mode, in the
9409 same thread we had selected before.
9410 - GDB attaches to this process again.
9411 - This event happens to be the next event we handle.
9412
9413 GDB would consider that the current general thread didn't need to
9414 be set on the stub side (with Hg), since for all it knew,
9415 GENERAL_THREAD hadn't changed.
9416
9417 Notice that although in all-stop mode, the remote server always
9418 sets the current thread to the thread reporting the stop event,
9419 that doesn't happen in non-stop mode; in non-stop, the stub *must
9420 not* change the current thread when reporting a breakpoint hit,
9421 due to the decoupling of event reporting and event handling.
9422
9423 To keep things simple, we always invalidate our notion of the
9424 current thread. */
9425 record_currthread (rs, minus_one_ptid);
9426
9427 /* Call common code to mark the inferior as not running. */
9428 generic_mourn_inferior ();
9429
9430 if (!have_inferiors ())
9431 {
9432 if (!remote_multi_process_p (rs))
9433 {
9434 /* Check whether the target is running now - some remote stubs
9435 automatically restart after kill. */
9436 putpkt ("?");
9437 getpkt (&rs->buf, &rs->buf_size, 0);
9438
9439 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9440 {
9441 /* Assume that the target has been restarted. Set
9442 inferior_ptid so that bits of core GDB realizes
9443 there's something here, e.g., so that the user can
9444 say "kill" again. */
9445 inferior_ptid = magic_null_ptid;
9446 }
9447 }
9448 }
9449 }
9450
9451 static int
9452 extended_remote_supports_disable_randomization (struct target_ops *self)
9453 {
9454 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9455 }
9456
9457 static void
9458 extended_remote_disable_randomization (int val)
9459 {
9460 struct remote_state *rs = get_remote_state ();
9461 char *reply;
9462
9463 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9464 val);
9465 putpkt (rs->buf);
9466 reply = remote_get_noisy_reply ();
9467 if (*reply == '\0')
9468 error (_("Target does not support QDisableRandomization."));
9469 if (strcmp (reply, "OK") != 0)
9470 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9471 }
9472
9473 static int
9474 extended_remote_run (const std::string &args)
9475 {
9476 struct remote_state *rs = get_remote_state ();
9477 int len;
9478 const char *remote_exec_file = get_remote_exec_file ();
9479
9480 /* If the user has disabled vRun support, or we have detected that
9481 support is not available, do not try it. */
9482 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9483 return -1;
9484
9485 strcpy (rs->buf, "vRun;");
9486 len = strlen (rs->buf);
9487
9488 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9489 error (_("Remote file name too long for run packet"));
9490 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9491 strlen (remote_exec_file));
9492
9493 if (!args.empty ())
9494 {
9495 int i;
9496
9497 gdb_argv argv (args.c_str ());
9498 for (i = 0; argv[i] != NULL; i++)
9499 {
9500 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9501 error (_("Argument list too long for run packet"));
9502 rs->buf[len++] = ';';
9503 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9504 strlen (argv[i]));
9505 }
9506 }
9507
9508 rs->buf[len++] = '\0';
9509
9510 putpkt (rs->buf);
9511 getpkt (&rs->buf, &rs->buf_size, 0);
9512
9513 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9514 {
9515 case PACKET_OK:
9516 /* We have a wait response. All is well. */
9517 return 0;
9518 case PACKET_UNKNOWN:
9519 return -1;
9520 case PACKET_ERROR:
9521 if (remote_exec_file[0] == '\0')
9522 error (_("Running the default executable on the remote target failed; "
9523 "try \"set remote exec-file\"?"));
9524 else
9525 error (_("Running \"%s\" on the remote target failed"),
9526 remote_exec_file);
9527 default:
9528 gdb_assert_not_reached (_("bad switch"));
9529 }
9530 }
9531
9532 /* Helper function to send set/unset environment packets. ACTION is
9533 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9534 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9535 sent. */
9536
9537 static void
9538 send_environment_packet (struct remote_state *rs,
9539 const char *action,
9540 const char *packet,
9541 const char *value)
9542 {
9543 /* Convert the environment variable to an hex string, which
9544 is the best format to be transmitted over the wire. */
9545 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9546 strlen (value));
9547
9548 xsnprintf (rs->buf, get_remote_packet_size (),
9549 "%s:%s", packet, encoded_value.c_str ());
9550
9551 putpkt (rs->buf);
9552 getpkt (&rs->buf, &rs->buf_size, 0);
9553 if (strcmp (rs->buf, "OK") != 0)
9554 warning (_("Unable to %s environment variable '%s' on remote."),
9555 action, value);
9556 }
9557
9558 /* Helper function to handle the QEnvironment* packets. */
9559
9560 static void
9561 extended_remote_environment_support (struct remote_state *rs)
9562 {
9563 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9564 {
9565 putpkt ("QEnvironmentReset");
9566 getpkt (&rs->buf, &rs->buf_size, 0);
9567 if (strcmp (rs->buf, "OK") != 0)
9568 warning (_("Unable to reset environment on remote."));
9569 }
9570
9571 gdb_environ *e = &current_inferior ()->environment;
9572
9573 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9574 for (const std::string &el : e->user_set_env ())
9575 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9576 el.c_str ());
9577
9578 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9579 for (const std::string &el : e->user_unset_env ())
9580 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9581 }
9582
9583 /* Helper function to set the current working directory for the
9584 inferior in the remote target. */
9585
9586 static void
9587 extended_remote_set_inferior_cwd (struct remote_state *rs)
9588 {
9589 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9590 {
9591 const char *inferior_cwd = get_inferior_cwd ();
9592
9593 if (inferior_cwd != NULL)
9594 {
9595 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9596 strlen (inferior_cwd));
9597
9598 xsnprintf (rs->buf, get_remote_packet_size (),
9599 "QSetWorkingDir:%s", hexpath.c_str ());
9600 }
9601 else
9602 {
9603 /* An empty inferior_cwd means that the user wants us to
9604 reset the remote server's inferior's cwd. */
9605 xsnprintf (rs->buf, get_remote_packet_size (),
9606 "QSetWorkingDir:");
9607 }
9608
9609 putpkt (rs->buf);
9610 getpkt (&rs->buf, &rs->buf_size, 0);
9611 if (packet_ok (rs->buf,
9612 &remote_protocol_packets[PACKET_QSetWorkingDir])
9613 != PACKET_OK)
9614 error (_("\
9615 Remote replied unexpectedly while setting the inferior's working\n\
9616 directory: %s"),
9617 rs->buf);
9618
9619 }
9620 }
9621
9622 /* In the extended protocol we want to be able to do things like
9623 "run" and have them basically work as expected. So we need
9624 a special create_inferior function. We support changing the
9625 executable file and the command line arguments, but not the
9626 environment. */
9627
9628 static void
9629 extended_remote_create_inferior (struct target_ops *ops,
9630 const char *exec_file,
9631 const std::string &args,
9632 char **env, int from_tty)
9633 {
9634 int run_worked;
9635 char *stop_reply;
9636 struct remote_state *rs = get_remote_state ();
9637 const char *remote_exec_file = get_remote_exec_file ();
9638
9639 /* If running asynchronously, register the target file descriptor
9640 with the event loop. */
9641 if (target_can_async_p ())
9642 target_async (1);
9643
9644 /* Disable address space randomization if requested (and supported). */
9645 if (extended_remote_supports_disable_randomization (ops))
9646 extended_remote_disable_randomization (disable_randomization);
9647
9648 /* If startup-with-shell is on, we inform gdbserver to start the
9649 remote inferior using a shell. */
9650 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9651 {
9652 xsnprintf (rs->buf, get_remote_packet_size (),
9653 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9654 putpkt (rs->buf);
9655 getpkt (&rs->buf, &rs->buf_size, 0);
9656 if (strcmp (rs->buf, "OK") != 0)
9657 error (_("\
9658 Remote replied unexpectedly while setting startup-with-shell: %s"),
9659 rs->buf);
9660 }
9661
9662 extended_remote_environment_support (rs);
9663
9664 extended_remote_set_inferior_cwd (rs);
9665
9666 /* Now restart the remote server. */
9667 run_worked = extended_remote_run (args) != -1;
9668 if (!run_worked)
9669 {
9670 /* vRun was not supported. Fail if we need it to do what the
9671 user requested. */
9672 if (remote_exec_file[0])
9673 error (_("Remote target does not support \"set remote exec-file\""));
9674 if (!args.empty ())
9675 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9676
9677 /* Fall back to "R". */
9678 extended_remote_restart ();
9679 }
9680
9681 if (!have_inferiors ())
9682 {
9683 /* Clean up from the last time we ran, before we mark the target
9684 running again. This will mark breakpoints uninserted, and
9685 get_offsets may insert breakpoints. */
9686 init_thread_list ();
9687 init_wait_for_inferior ();
9688 }
9689
9690 /* vRun's success return is a stop reply. */
9691 stop_reply = run_worked ? rs->buf : NULL;
9692 add_current_inferior_and_thread (stop_reply);
9693
9694 /* Get updated offsets, if the stub uses qOffsets. */
9695 get_offsets ();
9696 }
9697 \f
9698
9699 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9700 the list of conditions (in agent expression bytecode format), if any, the
9701 target needs to evaluate. The output is placed into the packet buffer
9702 started from BUF and ended at BUF_END. */
9703
9704 static int
9705 remote_add_target_side_condition (struct gdbarch *gdbarch,
9706 struct bp_target_info *bp_tgt, char *buf,
9707 char *buf_end)
9708 {
9709 if (bp_tgt->conditions.empty ())
9710 return 0;
9711
9712 buf += strlen (buf);
9713 xsnprintf (buf, buf_end - buf, "%s", ";");
9714 buf++;
9715
9716 /* Send conditions to the target. */
9717 for (agent_expr *aexpr : bp_tgt->conditions)
9718 {
9719 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9720 buf += strlen (buf);
9721 for (int i = 0; i < aexpr->len; ++i)
9722 buf = pack_hex_byte (buf, aexpr->buf[i]);
9723 *buf = '\0';
9724 }
9725 return 0;
9726 }
9727
9728 static void
9729 remote_add_target_side_commands (struct gdbarch *gdbarch,
9730 struct bp_target_info *bp_tgt, char *buf)
9731 {
9732 if (bp_tgt->tcommands.empty ())
9733 return;
9734
9735 buf += strlen (buf);
9736
9737 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9738 buf += strlen (buf);
9739
9740 /* Concatenate all the agent expressions that are commands into the
9741 cmds parameter. */
9742 for (agent_expr *aexpr : bp_tgt->tcommands)
9743 {
9744 sprintf (buf, "X%x,", aexpr->len);
9745 buf += strlen (buf);
9746 for (int i = 0; i < aexpr->len; ++i)
9747 buf = pack_hex_byte (buf, aexpr->buf[i]);
9748 *buf = '\0';
9749 }
9750 }
9751
9752 /* Insert a breakpoint. On targets that have software breakpoint
9753 support, we ask the remote target to do the work; on targets
9754 which don't, we insert a traditional memory breakpoint. */
9755
9756 static int
9757 remote_insert_breakpoint (struct target_ops *ops,
9758 struct gdbarch *gdbarch,
9759 struct bp_target_info *bp_tgt)
9760 {
9761 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9762 If it succeeds, then set the support to PACKET_ENABLE. If it
9763 fails, and the user has explicitly requested the Z support then
9764 report an error, otherwise, mark it disabled and go on. */
9765
9766 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9767 {
9768 CORE_ADDR addr = bp_tgt->reqstd_address;
9769 struct remote_state *rs;
9770 char *p, *endbuf;
9771
9772 /* Make sure the remote is pointing at the right process, if
9773 necessary. */
9774 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9775 set_general_process ();
9776
9777 rs = get_remote_state ();
9778 p = rs->buf;
9779 endbuf = rs->buf + get_remote_packet_size ();
9780
9781 *(p++) = 'Z';
9782 *(p++) = '0';
9783 *(p++) = ',';
9784 addr = (ULONGEST) remote_address_masked (addr);
9785 p += hexnumstr (p, addr);
9786 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9787
9788 if (remote_supports_cond_breakpoints (ops))
9789 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9790
9791 if (remote_can_run_breakpoint_commands (ops))
9792 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9793
9794 putpkt (rs->buf);
9795 getpkt (&rs->buf, &rs->buf_size, 0);
9796
9797 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9798 {
9799 case PACKET_ERROR:
9800 return -1;
9801 case PACKET_OK:
9802 return 0;
9803 case PACKET_UNKNOWN:
9804 break;
9805 }
9806 }
9807
9808 /* If this breakpoint has target-side commands but this stub doesn't
9809 support Z0 packets, throw error. */
9810 if (!bp_tgt->tcommands.empty ())
9811 throw_error (NOT_SUPPORTED_ERROR, _("\
9812 Target doesn't support breakpoints that have target side commands."));
9813
9814 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9815 }
9816
9817 static int
9818 remote_remove_breakpoint (struct target_ops *ops,
9819 struct gdbarch *gdbarch,
9820 struct bp_target_info *bp_tgt,
9821 enum remove_bp_reason reason)
9822 {
9823 CORE_ADDR addr = bp_tgt->placed_address;
9824 struct remote_state *rs = get_remote_state ();
9825
9826 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9827 {
9828 char *p = rs->buf;
9829 char *endbuf = rs->buf + get_remote_packet_size ();
9830
9831 /* Make sure the remote is pointing at the right process, if
9832 necessary. */
9833 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9834 set_general_process ();
9835
9836 *(p++) = 'z';
9837 *(p++) = '0';
9838 *(p++) = ',';
9839
9840 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9841 p += hexnumstr (p, addr);
9842 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9843
9844 putpkt (rs->buf);
9845 getpkt (&rs->buf, &rs->buf_size, 0);
9846
9847 return (rs->buf[0] == 'E');
9848 }
9849
9850 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9851 }
9852
9853 static enum Z_packet_type
9854 watchpoint_to_Z_packet (int type)
9855 {
9856 switch (type)
9857 {
9858 case hw_write:
9859 return Z_PACKET_WRITE_WP;
9860 break;
9861 case hw_read:
9862 return Z_PACKET_READ_WP;
9863 break;
9864 case hw_access:
9865 return Z_PACKET_ACCESS_WP;
9866 break;
9867 default:
9868 internal_error (__FILE__, __LINE__,
9869 _("hw_bp_to_z: bad watchpoint type %d"), type);
9870 }
9871 }
9872
9873 static int
9874 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9875 enum target_hw_bp_type type, struct expression *cond)
9876 {
9877 struct remote_state *rs = get_remote_state ();
9878 char *endbuf = rs->buf + get_remote_packet_size ();
9879 char *p;
9880 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9881
9882 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9883 return 1;
9884
9885 /* Make sure the remote is pointing at the right process, if
9886 necessary. */
9887 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9888 set_general_process ();
9889
9890 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9891 p = strchr (rs->buf, '\0');
9892 addr = remote_address_masked (addr);
9893 p += hexnumstr (p, (ULONGEST) addr);
9894 xsnprintf (p, endbuf - p, ",%x", len);
9895
9896 putpkt (rs->buf);
9897 getpkt (&rs->buf, &rs->buf_size, 0);
9898
9899 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9900 {
9901 case PACKET_ERROR:
9902 return -1;
9903 case PACKET_UNKNOWN:
9904 return 1;
9905 case PACKET_OK:
9906 return 0;
9907 }
9908 internal_error (__FILE__, __LINE__,
9909 _("remote_insert_watchpoint: reached end of function"));
9910 }
9911
9912 static int
9913 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9914 CORE_ADDR start, int length)
9915 {
9916 CORE_ADDR diff = remote_address_masked (addr - start);
9917
9918 return diff < length;
9919 }
9920
9921
9922 static int
9923 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9924 enum target_hw_bp_type type, struct expression *cond)
9925 {
9926 struct remote_state *rs = get_remote_state ();
9927 char *endbuf = rs->buf + get_remote_packet_size ();
9928 char *p;
9929 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9930
9931 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9932 return -1;
9933
9934 /* Make sure the remote is pointing at the right process, if
9935 necessary. */
9936 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9937 set_general_process ();
9938
9939 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9940 p = strchr (rs->buf, '\0');
9941 addr = remote_address_masked (addr);
9942 p += hexnumstr (p, (ULONGEST) addr);
9943 xsnprintf (p, endbuf - p, ",%x", len);
9944 putpkt (rs->buf);
9945 getpkt (&rs->buf, &rs->buf_size, 0);
9946
9947 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9948 {
9949 case PACKET_ERROR:
9950 case PACKET_UNKNOWN:
9951 return -1;
9952 case PACKET_OK:
9953 return 0;
9954 }
9955 internal_error (__FILE__, __LINE__,
9956 _("remote_remove_watchpoint: reached end of function"));
9957 }
9958
9959
9960 int remote_hw_watchpoint_limit = -1;
9961 int remote_hw_watchpoint_length_limit = -1;
9962 int remote_hw_breakpoint_limit = -1;
9963
9964 static int
9965 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9966 CORE_ADDR addr, int len)
9967 {
9968 if (remote_hw_watchpoint_length_limit == 0)
9969 return 0;
9970 else if (remote_hw_watchpoint_length_limit < 0)
9971 return 1;
9972 else if (len <= remote_hw_watchpoint_length_limit)
9973 return 1;
9974 else
9975 return 0;
9976 }
9977
9978 static int
9979 remote_check_watch_resources (struct target_ops *self,
9980 enum bptype type, int cnt, int ot)
9981 {
9982 if (type == bp_hardware_breakpoint)
9983 {
9984 if (remote_hw_breakpoint_limit == 0)
9985 return 0;
9986 else if (remote_hw_breakpoint_limit < 0)
9987 return 1;
9988 else if (cnt <= remote_hw_breakpoint_limit)
9989 return 1;
9990 }
9991 else
9992 {
9993 if (remote_hw_watchpoint_limit == 0)
9994 return 0;
9995 else if (remote_hw_watchpoint_limit < 0)
9996 return 1;
9997 else if (ot)
9998 return -1;
9999 else if (cnt <= remote_hw_watchpoint_limit)
10000 return 1;
10001 }
10002 return -1;
10003 }
10004
10005 /* The to_stopped_by_sw_breakpoint method of target remote. */
10006
10007 static int
10008 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10009 {
10010 struct thread_info *thread = inferior_thread ();
10011
10012 return (thread->priv != NULL
10013 && (get_remote_thread_info (thread)->stop_reason
10014 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10015 }
10016
10017 /* The to_supports_stopped_by_sw_breakpoint method of target
10018 remote. */
10019
10020 static int
10021 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10022 {
10023 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10024 }
10025
10026 /* The to_stopped_by_hw_breakpoint method of target remote. */
10027
10028 static int
10029 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10030 {
10031 struct thread_info *thread = inferior_thread ();
10032
10033 return (thread->priv != NULL
10034 && (get_remote_thread_info (thread)->stop_reason
10035 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10036 }
10037
10038 /* The to_supports_stopped_by_hw_breakpoint method of target
10039 remote. */
10040
10041 static int
10042 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10043 {
10044 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10045 }
10046
10047 static int
10048 remote_stopped_by_watchpoint (struct target_ops *ops)
10049 {
10050 struct thread_info *thread = inferior_thread ();
10051
10052 return (thread->priv != NULL
10053 && (get_remote_thread_info (thread)->stop_reason
10054 == TARGET_STOPPED_BY_WATCHPOINT));
10055 }
10056
10057 static int
10058 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10059 {
10060 struct thread_info *thread = inferior_thread ();
10061
10062 if (thread->priv != NULL
10063 && (get_remote_thread_info (thread)->stop_reason
10064 == TARGET_STOPPED_BY_WATCHPOINT))
10065 {
10066 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10067 return 1;
10068 }
10069
10070 return 0;
10071 }
10072
10073
10074 static int
10075 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10076 struct bp_target_info *bp_tgt)
10077 {
10078 CORE_ADDR addr = bp_tgt->reqstd_address;
10079 struct remote_state *rs;
10080 char *p, *endbuf;
10081 char *message;
10082
10083 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10084 return -1;
10085
10086 /* Make sure the remote is pointing at the right process, if
10087 necessary. */
10088 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10089 set_general_process ();
10090
10091 rs = get_remote_state ();
10092 p = rs->buf;
10093 endbuf = rs->buf + get_remote_packet_size ();
10094
10095 *(p++) = 'Z';
10096 *(p++) = '1';
10097 *(p++) = ',';
10098
10099 addr = remote_address_masked (addr);
10100 p += hexnumstr (p, (ULONGEST) addr);
10101 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10102
10103 if (remote_supports_cond_breakpoints (self))
10104 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10105
10106 if (remote_can_run_breakpoint_commands (self))
10107 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10108
10109 putpkt (rs->buf);
10110 getpkt (&rs->buf, &rs->buf_size, 0);
10111
10112 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10113 {
10114 case PACKET_ERROR:
10115 if (rs->buf[1] == '.')
10116 {
10117 message = strchr (rs->buf + 2, '.');
10118 if (message)
10119 error (_("Remote failure reply: %s"), message + 1);
10120 }
10121 return -1;
10122 case PACKET_UNKNOWN:
10123 return -1;
10124 case PACKET_OK:
10125 return 0;
10126 }
10127 internal_error (__FILE__, __LINE__,
10128 _("remote_insert_hw_breakpoint: reached end of function"));
10129 }
10130
10131
10132 static int
10133 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10134 struct bp_target_info *bp_tgt)
10135 {
10136 CORE_ADDR addr;
10137 struct remote_state *rs = get_remote_state ();
10138 char *p = rs->buf;
10139 char *endbuf = rs->buf + get_remote_packet_size ();
10140
10141 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10142 return -1;
10143
10144 /* Make sure the remote is pointing at the right process, if
10145 necessary. */
10146 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10147 set_general_process ();
10148
10149 *(p++) = 'z';
10150 *(p++) = '1';
10151 *(p++) = ',';
10152
10153 addr = remote_address_masked (bp_tgt->placed_address);
10154 p += hexnumstr (p, (ULONGEST) addr);
10155 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10156
10157 putpkt (rs->buf);
10158 getpkt (&rs->buf, &rs->buf_size, 0);
10159
10160 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10161 {
10162 case PACKET_ERROR:
10163 case PACKET_UNKNOWN:
10164 return -1;
10165 case PACKET_OK:
10166 return 0;
10167 }
10168 internal_error (__FILE__, __LINE__,
10169 _("remote_remove_hw_breakpoint: reached end of function"));
10170 }
10171
10172 /* Verify memory using the "qCRC:" request. */
10173
10174 static int
10175 remote_verify_memory (struct target_ops *ops,
10176 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10177 {
10178 struct remote_state *rs = get_remote_state ();
10179 unsigned long host_crc, target_crc;
10180 char *tmp;
10181
10182 /* It doesn't make sense to use qCRC if the remote target is
10183 connected but not running. */
10184 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10185 {
10186 enum packet_result result;
10187
10188 /* Make sure the remote is pointing at the right process. */
10189 set_general_process ();
10190
10191 /* FIXME: assumes lma can fit into long. */
10192 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10193 (long) lma, (long) size);
10194 putpkt (rs->buf);
10195
10196 /* Be clever; compute the host_crc before waiting for target
10197 reply. */
10198 host_crc = xcrc32 (data, size, 0xffffffff);
10199
10200 getpkt (&rs->buf, &rs->buf_size, 0);
10201
10202 result = packet_ok (rs->buf,
10203 &remote_protocol_packets[PACKET_qCRC]);
10204 if (result == PACKET_ERROR)
10205 return -1;
10206 else if (result == PACKET_OK)
10207 {
10208 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10209 target_crc = target_crc * 16 + fromhex (*tmp);
10210
10211 return (host_crc == target_crc);
10212 }
10213 }
10214
10215 return simple_verify_memory (ops, data, lma, size);
10216 }
10217
10218 /* compare-sections command
10219
10220 With no arguments, compares each loadable section in the exec bfd
10221 with the same memory range on the target, and reports mismatches.
10222 Useful for verifying the image on the target against the exec file. */
10223
10224 static void
10225 compare_sections_command (const char *args, int from_tty)
10226 {
10227 asection *s;
10228 const char *sectname;
10229 bfd_size_type size;
10230 bfd_vma lma;
10231 int matched = 0;
10232 int mismatched = 0;
10233 int res;
10234 int read_only = 0;
10235
10236 if (!exec_bfd)
10237 error (_("command cannot be used without an exec file"));
10238
10239 /* Make sure the remote is pointing at the right process. */
10240 set_general_process ();
10241
10242 if (args != NULL && strcmp (args, "-r") == 0)
10243 {
10244 read_only = 1;
10245 args = NULL;
10246 }
10247
10248 for (s = exec_bfd->sections; s; s = s->next)
10249 {
10250 if (!(s->flags & SEC_LOAD))
10251 continue; /* Skip non-loadable section. */
10252
10253 if (read_only && (s->flags & SEC_READONLY) == 0)
10254 continue; /* Skip writeable sections */
10255
10256 size = bfd_get_section_size (s);
10257 if (size == 0)
10258 continue; /* Skip zero-length section. */
10259
10260 sectname = bfd_get_section_name (exec_bfd, s);
10261 if (args && strcmp (args, sectname) != 0)
10262 continue; /* Not the section selected by user. */
10263
10264 matched = 1; /* Do this section. */
10265 lma = s->lma;
10266
10267 gdb::byte_vector sectdata (size);
10268 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10269
10270 res = target_verify_memory (sectdata.data (), lma, size);
10271
10272 if (res == -1)
10273 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10274 paddress (target_gdbarch (), lma),
10275 paddress (target_gdbarch (), lma + size));
10276
10277 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10278 paddress (target_gdbarch (), lma),
10279 paddress (target_gdbarch (), lma + size));
10280 if (res)
10281 printf_filtered ("matched.\n");
10282 else
10283 {
10284 printf_filtered ("MIS-MATCHED!\n");
10285 mismatched++;
10286 }
10287 }
10288 if (mismatched > 0)
10289 warning (_("One or more sections of the target image does not match\n\
10290 the loaded file\n"));
10291 if (args && !matched)
10292 printf_filtered (_("No loaded section named '%s'.\n"), args);
10293 }
10294
10295 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10296 into remote target. The number of bytes written to the remote
10297 target is returned, or -1 for error. */
10298
10299 static enum target_xfer_status
10300 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10301 const char *annex, const gdb_byte *writebuf,
10302 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10303 struct packet_config *packet)
10304 {
10305 int i, buf_len;
10306 ULONGEST n;
10307 struct remote_state *rs = get_remote_state ();
10308 int max_size = get_memory_write_packet_size ();
10309
10310 if (packet_config_support (packet) == PACKET_DISABLE)
10311 return TARGET_XFER_E_IO;
10312
10313 /* Insert header. */
10314 i = snprintf (rs->buf, max_size,
10315 "qXfer:%s:write:%s:%s:",
10316 object_name, annex ? annex : "",
10317 phex_nz (offset, sizeof offset));
10318 max_size -= (i + 1);
10319
10320 /* Escape as much data as fits into rs->buf. */
10321 buf_len = remote_escape_output
10322 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10323
10324 if (putpkt_binary (rs->buf, i + buf_len) < 0
10325 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10326 || packet_ok (rs->buf, packet) != PACKET_OK)
10327 return TARGET_XFER_E_IO;
10328
10329 unpack_varlen_hex (rs->buf, &n);
10330
10331 *xfered_len = n;
10332 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10333 }
10334
10335 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10336 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10337 number of bytes read is returned, or 0 for EOF, or -1 for error.
10338 The number of bytes read may be less than LEN without indicating an
10339 EOF. PACKET is checked and updated to indicate whether the remote
10340 target supports this object. */
10341
10342 static enum target_xfer_status
10343 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10344 const char *annex,
10345 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10346 ULONGEST *xfered_len,
10347 struct packet_config *packet)
10348 {
10349 struct remote_state *rs = get_remote_state ();
10350 LONGEST i, n, packet_len;
10351
10352 if (packet_config_support (packet) == PACKET_DISABLE)
10353 return TARGET_XFER_E_IO;
10354
10355 /* Check whether we've cached an end-of-object packet that matches
10356 this request. */
10357 if (rs->finished_object)
10358 {
10359 if (strcmp (object_name, rs->finished_object) == 0
10360 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10361 && offset == rs->finished_offset)
10362 return TARGET_XFER_EOF;
10363
10364
10365 /* Otherwise, we're now reading something different. Discard
10366 the cache. */
10367 xfree (rs->finished_object);
10368 xfree (rs->finished_annex);
10369 rs->finished_object = NULL;
10370 rs->finished_annex = NULL;
10371 }
10372
10373 /* Request only enough to fit in a single packet. The actual data
10374 may not, since we don't know how much of it will need to be escaped;
10375 the target is free to respond with slightly less data. We subtract
10376 five to account for the response type and the protocol frame. */
10377 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10378 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10379 object_name, annex ? annex : "",
10380 phex_nz (offset, sizeof offset),
10381 phex_nz (n, sizeof n));
10382 i = putpkt (rs->buf);
10383 if (i < 0)
10384 return TARGET_XFER_E_IO;
10385
10386 rs->buf[0] = '\0';
10387 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10388 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10389 return TARGET_XFER_E_IO;
10390
10391 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10392 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10393
10394 /* 'm' means there is (or at least might be) more data after this
10395 batch. That does not make sense unless there's at least one byte
10396 of data in this reply. */
10397 if (rs->buf[0] == 'm' && packet_len == 1)
10398 error (_("Remote qXfer reply contained no data."));
10399
10400 /* Got some data. */
10401 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10402 packet_len - 1, readbuf, n);
10403
10404 /* 'l' is an EOF marker, possibly including a final block of data,
10405 or possibly empty. If we have the final block of a non-empty
10406 object, record this fact to bypass a subsequent partial read. */
10407 if (rs->buf[0] == 'l' && offset + i > 0)
10408 {
10409 rs->finished_object = xstrdup (object_name);
10410 rs->finished_annex = xstrdup (annex ? annex : "");
10411 rs->finished_offset = offset + i;
10412 }
10413
10414 if (i == 0)
10415 return TARGET_XFER_EOF;
10416 else
10417 {
10418 *xfered_len = i;
10419 return TARGET_XFER_OK;
10420 }
10421 }
10422
10423 static enum target_xfer_status
10424 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10425 const char *annex, gdb_byte *readbuf,
10426 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10427 ULONGEST *xfered_len)
10428 {
10429 struct remote_state *rs;
10430 int i;
10431 char *p2;
10432 char query_type;
10433 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10434
10435 set_remote_traceframe ();
10436 set_general_thread (inferior_ptid);
10437
10438 rs = get_remote_state ();
10439
10440 /* Handle memory using the standard memory routines. */
10441 if (object == TARGET_OBJECT_MEMORY)
10442 {
10443 /* If the remote target is connected but not running, we should
10444 pass this request down to a lower stratum (e.g. the executable
10445 file). */
10446 if (!target_has_execution)
10447 return TARGET_XFER_EOF;
10448
10449 if (writebuf != NULL)
10450 return remote_write_bytes (offset, writebuf, len, unit_size,
10451 xfered_len);
10452 else
10453 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10454 xfered_len);
10455 }
10456
10457 /* Handle SPU memory using qxfer packets. */
10458 if (object == TARGET_OBJECT_SPU)
10459 {
10460 if (readbuf)
10461 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10462 xfered_len, &remote_protocol_packets
10463 [PACKET_qXfer_spu_read]);
10464 else
10465 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10466 xfered_len, &remote_protocol_packets
10467 [PACKET_qXfer_spu_write]);
10468 }
10469
10470 /* Handle extra signal info using qxfer packets. */
10471 if (object == TARGET_OBJECT_SIGNAL_INFO)
10472 {
10473 if (readbuf)
10474 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10475 xfered_len, &remote_protocol_packets
10476 [PACKET_qXfer_siginfo_read]);
10477 else
10478 return remote_write_qxfer (ops, "siginfo", annex,
10479 writebuf, offset, len, xfered_len,
10480 &remote_protocol_packets
10481 [PACKET_qXfer_siginfo_write]);
10482 }
10483
10484 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10485 {
10486 if (readbuf)
10487 return remote_read_qxfer (ops, "statictrace", annex,
10488 readbuf, offset, len, xfered_len,
10489 &remote_protocol_packets
10490 [PACKET_qXfer_statictrace_read]);
10491 else
10492 return TARGET_XFER_E_IO;
10493 }
10494
10495 /* Only handle flash writes. */
10496 if (writebuf != NULL)
10497 {
10498 switch (object)
10499 {
10500 case TARGET_OBJECT_FLASH:
10501 return remote_flash_write (ops, offset, len, xfered_len,
10502 writebuf);
10503
10504 default:
10505 return TARGET_XFER_E_IO;
10506 }
10507 }
10508
10509 /* Map pre-existing objects onto letters. DO NOT do this for new
10510 objects!!! Instead specify new query packets. */
10511 switch (object)
10512 {
10513 case TARGET_OBJECT_AVR:
10514 query_type = 'R';
10515 break;
10516
10517 case TARGET_OBJECT_AUXV:
10518 gdb_assert (annex == NULL);
10519 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10520 xfered_len,
10521 &remote_protocol_packets[PACKET_qXfer_auxv]);
10522
10523 case TARGET_OBJECT_AVAILABLE_FEATURES:
10524 return remote_read_qxfer
10525 (ops, "features", annex, readbuf, offset, len, xfered_len,
10526 &remote_protocol_packets[PACKET_qXfer_features]);
10527
10528 case TARGET_OBJECT_LIBRARIES:
10529 return remote_read_qxfer
10530 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10531 &remote_protocol_packets[PACKET_qXfer_libraries]);
10532
10533 case TARGET_OBJECT_LIBRARIES_SVR4:
10534 return remote_read_qxfer
10535 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10536 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10537
10538 case TARGET_OBJECT_MEMORY_MAP:
10539 gdb_assert (annex == NULL);
10540 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10541 xfered_len,
10542 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10543
10544 case TARGET_OBJECT_OSDATA:
10545 /* Should only get here if we're connected. */
10546 gdb_assert (rs->remote_desc);
10547 return remote_read_qxfer
10548 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10549 &remote_protocol_packets[PACKET_qXfer_osdata]);
10550
10551 case TARGET_OBJECT_THREADS:
10552 gdb_assert (annex == NULL);
10553 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10554 xfered_len,
10555 &remote_protocol_packets[PACKET_qXfer_threads]);
10556
10557 case TARGET_OBJECT_TRACEFRAME_INFO:
10558 gdb_assert (annex == NULL);
10559 return remote_read_qxfer
10560 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10561 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10562
10563 case TARGET_OBJECT_FDPIC:
10564 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10565 xfered_len,
10566 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10567
10568 case TARGET_OBJECT_OPENVMS_UIB:
10569 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10570 xfered_len,
10571 &remote_protocol_packets[PACKET_qXfer_uib]);
10572
10573 case TARGET_OBJECT_BTRACE:
10574 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10575 xfered_len,
10576 &remote_protocol_packets[PACKET_qXfer_btrace]);
10577
10578 case TARGET_OBJECT_BTRACE_CONF:
10579 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10580 len, xfered_len,
10581 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10582
10583 case TARGET_OBJECT_EXEC_FILE:
10584 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10585 len, xfered_len,
10586 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10587
10588 default:
10589 return TARGET_XFER_E_IO;
10590 }
10591
10592 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10593 large enough let the caller deal with it. */
10594 if (len < get_remote_packet_size ())
10595 return TARGET_XFER_E_IO;
10596 len = get_remote_packet_size ();
10597
10598 /* Except for querying the minimum buffer size, target must be open. */
10599 if (!rs->remote_desc)
10600 error (_("remote query is only available after target open"));
10601
10602 gdb_assert (annex != NULL);
10603 gdb_assert (readbuf != NULL);
10604
10605 p2 = rs->buf;
10606 *p2++ = 'q';
10607 *p2++ = query_type;
10608
10609 /* We used one buffer char for the remote protocol q command and
10610 another for the query type. As the remote protocol encapsulation
10611 uses 4 chars plus one extra in case we are debugging
10612 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10613 string. */
10614 i = 0;
10615 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10616 {
10617 /* Bad caller may have sent forbidden characters. */
10618 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10619 *p2++ = annex[i];
10620 i++;
10621 }
10622 *p2 = '\0';
10623 gdb_assert (annex[i] == '\0');
10624
10625 i = putpkt (rs->buf);
10626 if (i < 0)
10627 return TARGET_XFER_E_IO;
10628
10629 getpkt (&rs->buf, &rs->buf_size, 0);
10630 strcpy ((char *) readbuf, rs->buf);
10631
10632 *xfered_len = strlen ((char *) readbuf);
10633 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10634 }
10635
10636 /* Implementation of to_get_memory_xfer_limit. */
10637
10638 static ULONGEST
10639 remote_get_memory_xfer_limit (struct target_ops *ops)
10640 {
10641 return get_memory_write_packet_size ();
10642 }
10643
10644 static int
10645 remote_search_memory (struct target_ops* ops,
10646 CORE_ADDR start_addr, ULONGEST search_space_len,
10647 const gdb_byte *pattern, ULONGEST pattern_len,
10648 CORE_ADDR *found_addrp)
10649 {
10650 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10651 struct remote_state *rs = get_remote_state ();
10652 int max_size = get_memory_write_packet_size ();
10653 struct packet_config *packet =
10654 &remote_protocol_packets[PACKET_qSearch_memory];
10655 /* Number of packet bytes used to encode the pattern;
10656 this could be more than PATTERN_LEN due to escape characters. */
10657 int escaped_pattern_len;
10658 /* Amount of pattern that was encodable in the packet. */
10659 int used_pattern_len;
10660 int i;
10661 int found;
10662 ULONGEST found_addr;
10663
10664 /* Don't go to the target if we don't have to. This is done before
10665 checking packet_config_support to avoid the possibility that a
10666 success for this edge case means the facility works in
10667 general. */
10668 if (pattern_len > search_space_len)
10669 return 0;
10670 if (pattern_len == 0)
10671 {
10672 *found_addrp = start_addr;
10673 return 1;
10674 }
10675
10676 /* If we already know the packet isn't supported, fall back to the simple
10677 way of searching memory. */
10678
10679 if (packet_config_support (packet) == PACKET_DISABLE)
10680 {
10681 /* Target doesn't provided special support, fall back and use the
10682 standard support (copy memory and do the search here). */
10683 return simple_search_memory (ops, start_addr, search_space_len,
10684 pattern, pattern_len, found_addrp);
10685 }
10686
10687 /* Make sure the remote is pointing at the right process. */
10688 set_general_process ();
10689
10690 /* Insert header. */
10691 i = snprintf (rs->buf, max_size,
10692 "qSearch:memory:%s;%s;",
10693 phex_nz (start_addr, addr_size),
10694 phex_nz (search_space_len, sizeof (search_space_len)));
10695 max_size -= (i + 1);
10696
10697 /* Escape as much data as fits into rs->buf. */
10698 escaped_pattern_len =
10699 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10700 &used_pattern_len, max_size);
10701
10702 /* Bail if the pattern is too large. */
10703 if (used_pattern_len != pattern_len)
10704 error (_("Pattern is too large to transmit to remote target."));
10705
10706 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10707 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10708 || packet_ok (rs->buf, packet) != PACKET_OK)
10709 {
10710 /* The request may not have worked because the command is not
10711 supported. If so, fall back to the simple way. */
10712 if (packet_config_support (packet) == PACKET_DISABLE)
10713 {
10714 return simple_search_memory (ops, start_addr, search_space_len,
10715 pattern, pattern_len, found_addrp);
10716 }
10717 return -1;
10718 }
10719
10720 if (rs->buf[0] == '0')
10721 found = 0;
10722 else if (rs->buf[0] == '1')
10723 {
10724 found = 1;
10725 if (rs->buf[1] != ',')
10726 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10727 unpack_varlen_hex (rs->buf + 2, &found_addr);
10728 *found_addrp = found_addr;
10729 }
10730 else
10731 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10732
10733 return found;
10734 }
10735
10736 static void
10737 remote_rcmd (struct target_ops *self, const char *command,
10738 struct ui_file *outbuf)
10739 {
10740 struct remote_state *rs = get_remote_state ();
10741 char *p = rs->buf;
10742
10743 if (!rs->remote_desc)
10744 error (_("remote rcmd is only available after target open"));
10745
10746 /* Send a NULL command across as an empty command. */
10747 if (command == NULL)
10748 command = "";
10749
10750 /* The query prefix. */
10751 strcpy (rs->buf, "qRcmd,");
10752 p = strchr (rs->buf, '\0');
10753
10754 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10755 > get_remote_packet_size ())
10756 error (_("\"monitor\" command ``%s'' is too long."), command);
10757
10758 /* Encode the actual command. */
10759 bin2hex ((const gdb_byte *) command, p, strlen (command));
10760
10761 if (putpkt (rs->buf) < 0)
10762 error (_("Communication problem with target."));
10763
10764 /* get/display the response */
10765 while (1)
10766 {
10767 char *buf;
10768
10769 /* XXX - see also remote_get_noisy_reply(). */
10770 QUIT; /* Allow user to bail out with ^C. */
10771 rs->buf[0] = '\0';
10772 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10773 {
10774 /* Timeout. Continue to (try to) read responses.
10775 This is better than stopping with an error, assuming the stub
10776 is still executing the (long) monitor command.
10777 If needed, the user can interrupt gdb using C-c, obtaining
10778 an effect similar to stop on timeout. */
10779 continue;
10780 }
10781 buf = rs->buf;
10782 if (buf[0] == '\0')
10783 error (_("Target does not support this command."));
10784 if (buf[0] == 'O' && buf[1] != 'K')
10785 {
10786 remote_console_output (buf + 1); /* 'O' message from stub. */
10787 continue;
10788 }
10789 if (strcmp (buf, "OK") == 0)
10790 break;
10791 if (strlen (buf) == 3 && buf[0] == 'E'
10792 && isdigit (buf[1]) && isdigit (buf[2]))
10793 {
10794 error (_("Protocol error with Rcmd"));
10795 }
10796 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10797 {
10798 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10799
10800 fputc_unfiltered (c, outbuf);
10801 }
10802 break;
10803 }
10804 }
10805
10806 static std::vector<mem_region>
10807 remote_memory_map (struct target_ops *ops)
10808 {
10809 std::vector<mem_region> result;
10810 gdb::unique_xmalloc_ptr<char> text
10811 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10812
10813 if (text)
10814 result = parse_memory_map (text.get ());
10815
10816 return result;
10817 }
10818
10819 static void
10820 packet_command (const char *args, int from_tty)
10821 {
10822 struct remote_state *rs = get_remote_state ();
10823
10824 if (!rs->remote_desc)
10825 error (_("command can only be used with remote target"));
10826
10827 if (!args)
10828 error (_("remote-packet command requires packet text as argument"));
10829
10830 puts_filtered ("sending: ");
10831 print_packet (args);
10832 puts_filtered ("\n");
10833 putpkt (args);
10834
10835 getpkt (&rs->buf, &rs->buf_size, 0);
10836 puts_filtered ("received: ");
10837 print_packet (rs->buf);
10838 puts_filtered ("\n");
10839 }
10840
10841 #if 0
10842 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10843
10844 static void display_thread_info (struct gdb_ext_thread_info *info);
10845
10846 static void threadset_test_cmd (char *cmd, int tty);
10847
10848 static void threadalive_test (char *cmd, int tty);
10849
10850 static void threadlist_test_cmd (char *cmd, int tty);
10851
10852 int get_and_display_threadinfo (threadref *ref);
10853
10854 static void threadinfo_test_cmd (char *cmd, int tty);
10855
10856 static int thread_display_step (threadref *ref, void *context);
10857
10858 static void threadlist_update_test_cmd (char *cmd, int tty);
10859
10860 static void init_remote_threadtests (void);
10861
10862 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10863
10864 static void
10865 threadset_test_cmd (const char *cmd, int tty)
10866 {
10867 int sample_thread = SAMPLE_THREAD;
10868
10869 printf_filtered (_("Remote threadset test\n"));
10870 set_general_thread (sample_thread);
10871 }
10872
10873
10874 static void
10875 threadalive_test (const char *cmd, int tty)
10876 {
10877 int sample_thread = SAMPLE_THREAD;
10878 int pid = ptid_get_pid (inferior_ptid);
10879 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10880
10881 if (remote_thread_alive (ptid))
10882 printf_filtered ("PASS: Thread alive test\n");
10883 else
10884 printf_filtered ("FAIL: Thread alive test\n");
10885 }
10886
10887 void output_threadid (char *title, threadref *ref);
10888
10889 void
10890 output_threadid (char *title, threadref *ref)
10891 {
10892 char hexid[20];
10893
10894 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10895 hexid[16] = 0;
10896 printf_filtered ("%s %s\n", title, (&hexid[0]));
10897 }
10898
10899 static void
10900 threadlist_test_cmd (const char *cmd, int tty)
10901 {
10902 int startflag = 1;
10903 threadref nextthread;
10904 int done, result_count;
10905 threadref threadlist[3];
10906
10907 printf_filtered ("Remote Threadlist test\n");
10908 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10909 &result_count, &threadlist[0]))
10910 printf_filtered ("FAIL: threadlist test\n");
10911 else
10912 {
10913 threadref *scan = threadlist;
10914 threadref *limit = scan + result_count;
10915
10916 while (scan < limit)
10917 output_threadid (" thread ", scan++);
10918 }
10919 }
10920
10921 void
10922 display_thread_info (struct gdb_ext_thread_info *info)
10923 {
10924 output_threadid ("Threadid: ", &info->threadid);
10925 printf_filtered ("Name: %s\n ", info->shortname);
10926 printf_filtered ("State: %s\n", info->display);
10927 printf_filtered ("other: %s\n\n", info->more_display);
10928 }
10929
10930 int
10931 get_and_display_threadinfo (threadref *ref)
10932 {
10933 int result;
10934 int set;
10935 struct gdb_ext_thread_info threadinfo;
10936
10937 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10938 | TAG_MOREDISPLAY | TAG_DISPLAY;
10939 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10940 display_thread_info (&threadinfo);
10941 return result;
10942 }
10943
10944 static void
10945 threadinfo_test_cmd (const char *cmd, int tty)
10946 {
10947 int athread = SAMPLE_THREAD;
10948 threadref thread;
10949 int set;
10950
10951 int_to_threadref (&thread, athread);
10952 printf_filtered ("Remote Threadinfo test\n");
10953 if (!get_and_display_threadinfo (&thread))
10954 printf_filtered ("FAIL cannot get thread info\n");
10955 }
10956
10957 static int
10958 thread_display_step (threadref *ref, void *context)
10959 {
10960 /* output_threadid(" threadstep ",ref); *//* simple test */
10961 return get_and_display_threadinfo (ref);
10962 }
10963
10964 static void
10965 threadlist_update_test_cmd (const char *cmd, int tty)
10966 {
10967 printf_filtered ("Remote Threadlist update test\n");
10968 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10969 }
10970
10971 static void
10972 init_remote_threadtests (void)
10973 {
10974 add_com ("tlist", class_obscure, threadlist_test_cmd,
10975 _("Fetch and print the remote list of "
10976 "thread identifiers, one pkt only"));
10977 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10978 _("Fetch and display info about one thread"));
10979 add_com ("tset", class_obscure, threadset_test_cmd,
10980 _("Test setting to a different thread"));
10981 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10982 _("Iterate through updating all remote thread info"));
10983 add_com ("talive", class_obscure, threadalive_test,
10984 _(" Remote thread alive test "));
10985 }
10986
10987 #endif /* 0 */
10988
10989 /* Convert a thread ID to a string. Returns the string in a static
10990 buffer. */
10991
10992 static const char *
10993 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10994 {
10995 static char buf[64];
10996 struct remote_state *rs = get_remote_state ();
10997
10998 if (ptid_equal (ptid, null_ptid))
10999 return normal_pid_to_str (ptid);
11000 else if (ptid_is_pid (ptid))
11001 {
11002 /* Printing an inferior target id. */
11003
11004 /* When multi-process extensions are off, there's no way in the
11005 remote protocol to know the remote process id, if there's any
11006 at all. There's one exception --- when we're connected with
11007 target extended-remote, and we manually attached to a process
11008 with "attach PID". We don't record anywhere a flag that
11009 allows us to distinguish that case from the case of
11010 connecting with extended-remote and the stub already being
11011 attached to a process, and reporting yes to qAttached, hence
11012 no smart special casing here. */
11013 if (!remote_multi_process_p (rs))
11014 {
11015 xsnprintf (buf, sizeof buf, "Remote target");
11016 return buf;
11017 }
11018
11019 return normal_pid_to_str (ptid);
11020 }
11021 else
11022 {
11023 if (ptid_equal (magic_null_ptid, ptid))
11024 xsnprintf (buf, sizeof buf, "Thread <main>");
11025 else if (remote_multi_process_p (rs))
11026 if (ptid_get_lwp (ptid) == 0)
11027 return normal_pid_to_str (ptid);
11028 else
11029 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11030 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11031 else
11032 xsnprintf (buf, sizeof buf, "Thread %ld",
11033 ptid_get_lwp (ptid));
11034 return buf;
11035 }
11036 }
11037
11038 /* Get the address of the thread local variable in OBJFILE which is
11039 stored at OFFSET within the thread local storage for thread PTID. */
11040
11041 static CORE_ADDR
11042 remote_get_thread_local_address (struct target_ops *ops,
11043 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11044 {
11045 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11046 {
11047 struct remote_state *rs = get_remote_state ();
11048 char *p = rs->buf;
11049 char *endp = rs->buf + get_remote_packet_size ();
11050 enum packet_result result;
11051
11052 strcpy (p, "qGetTLSAddr:");
11053 p += strlen (p);
11054 p = write_ptid (p, endp, ptid);
11055 *p++ = ',';
11056 p += hexnumstr (p, offset);
11057 *p++ = ',';
11058 p += hexnumstr (p, lm);
11059 *p++ = '\0';
11060
11061 putpkt (rs->buf);
11062 getpkt (&rs->buf, &rs->buf_size, 0);
11063 result = packet_ok (rs->buf,
11064 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11065 if (result == PACKET_OK)
11066 {
11067 ULONGEST result;
11068
11069 unpack_varlen_hex (rs->buf, &result);
11070 return result;
11071 }
11072 else if (result == PACKET_UNKNOWN)
11073 throw_error (TLS_GENERIC_ERROR,
11074 _("Remote target doesn't support qGetTLSAddr packet"));
11075 else
11076 throw_error (TLS_GENERIC_ERROR,
11077 _("Remote target failed to process qGetTLSAddr request"));
11078 }
11079 else
11080 throw_error (TLS_GENERIC_ERROR,
11081 _("TLS not supported or disabled on this target"));
11082 /* Not reached. */
11083 return 0;
11084 }
11085
11086 /* Provide thread local base, i.e. Thread Information Block address.
11087 Returns 1 if ptid is found and thread_local_base is non zero. */
11088
11089 static int
11090 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11091 {
11092 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11093 {
11094 struct remote_state *rs = get_remote_state ();
11095 char *p = rs->buf;
11096 char *endp = rs->buf + get_remote_packet_size ();
11097 enum packet_result result;
11098
11099 strcpy (p, "qGetTIBAddr:");
11100 p += strlen (p);
11101 p = write_ptid (p, endp, ptid);
11102 *p++ = '\0';
11103
11104 putpkt (rs->buf);
11105 getpkt (&rs->buf, &rs->buf_size, 0);
11106 result = packet_ok (rs->buf,
11107 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11108 if (result == PACKET_OK)
11109 {
11110 ULONGEST result;
11111
11112 unpack_varlen_hex (rs->buf, &result);
11113 if (addr)
11114 *addr = (CORE_ADDR) result;
11115 return 1;
11116 }
11117 else if (result == PACKET_UNKNOWN)
11118 error (_("Remote target doesn't support qGetTIBAddr packet"));
11119 else
11120 error (_("Remote target failed to process qGetTIBAddr request"));
11121 }
11122 else
11123 error (_("qGetTIBAddr not supported or disabled on this target"));
11124 /* Not reached. */
11125 return 0;
11126 }
11127
11128 /* Support for inferring a target description based on the current
11129 architecture and the size of a 'g' packet. While the 'g' packet
11130 can have any size (since optional registers can be left off the
11131 end), some sizes are easily recognizable given knowledge of the
11132 approximate architecture. */
11133
11134 struct remote_g_packet_guess
11135 {
11136 int bytes;
11137 const struct target_desc *tdesc;
11138 };
11139 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11140 DEF_VEC_O(remote_g_packet_guess_s);
11141
11142 struct remote_g_packet_data
11143 {
11144 VEC(remote_g_packet_guess_s) *guesses;
11145 };
11146
11147 static struct gdbarch_data *remote_g_packet_data_handle;
11148
11149 static void *
11150 remote_g_packet_data_init (struct obstack *obstack)
11151 {
11152 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11153 }
11154
11155 void
11156 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11157 const struct target_desc *tdesc)
11158 {
11159 struct remote_g_packet_data *data
11160 = ((struct remote_g_packet_data *)
11161 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11162 struct remote_g_packet_guess new_guess, *guess;
11163 int ix;
11164
11165 gdb_assert (tdesc != NULL);
11166
11167 for (ix = 0;
11168 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11169 ix++)
11170 if (guess->bytes == bytes)
11171 internal_error (__FILE__, __LINE__,
11172 _("Duplicate g packet description added for size %d"),
11173 bytes);
11174
11175 new_guess.bytes = bytes;
11176 new_guess.tdesc = tdesc;
11177 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11178 }
11179
11180 /* Return 1 if remote_read_description would do anything on this target
11181 and architecture, 0 otherwise. */
11182
11183 static int
11184 remote_read_description_p (struct target_ops *target)
11185 {
11186 struct remote_g_packet_data *data
11187 = ((struct remote_g_packet_data *)
11188 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11189
11190 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11191 return 1;
11192
11193 return 0;
11194 }
11195
11196 static const struct target_desc *
11197 remote_read_description (struct target_ops *target)
11198 {
11199 struct remote_g_packet_data *data
11200 = ((struct remote_g_packet_data *)
11201 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11202
11203 /* Do not try this during initial connection, when we do not know
11204 whether there is a running but stopped thread. */
11205 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11206 return target->beneath->to_read_description (target->beneath);
11207
11208 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11209 {
11210 struct remote_g_packet_guess *guess;
11211 int ix;
11212 int bytes = send_g_packet ();
11213
11214 for (ix = 0;
11215 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11216 ix++)
11217 if (guess->bytes == bytes)
11218 return guess->tdesc;
11219
11220 /* We discard the g packet. A minor optimization would be to
11221 hold on to it, and fill the register cache once we have selected
11222 an architecture, but it's too tricky to do safely. */
11223 }
11224
11225 return target->beneath->to_read_description (target->beneath);
11226 }
11227
11228 /* Remote file transfer support. This is host-initiated I/O, not
11229 target-initiated; for target-initiated, see remote-fileio.c. */
11230
11231 /* If *LEFT is at least the length of STRING, copy STRING to
11232 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11233 decrease *LEFT. Otherwise raise an error. */
11234
11235 static void
11236 remote_buffer_add_string (char **buffer, int *left, const char *string)
11237 {
11238 int len = strlen (string);
11239
11240 if (len > *left)
11241 error (_("Packet too long for target."));
11242
11243 memcpy (*buffer, string, len);
11244 *buffer += len;
11245 *left -= len;
11246
11247 /* NUL-terminate the buffer as a convenience, if there is
11248 room. */
11249 if (*left)
11250 **buffer = '\0';
11251 }
11252
11253 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11254 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11255 decrease *LEFT. Otherwise raise an error. */
11256
11257 static void
11258 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11259 int len)
11260 {
11261 if (2 * len > *left)
11262 error (_("Packet too long for target."));
11263
11264 bin2hex (bytes, *buffer, len);
11265 *buffer += 2 * len;
11266 *left -= 2 * len;
11267
11268 /* NUL-terminate the buffer as a convenience, if there is
11269 room. */
11270 if (*left)
11271 **buffer = '\0';
11272 }
11273
11274 /* If *LEFT is large enough, convert VALUE to hex and add it to
11275 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11276 decrease *LEFT. Otherwise raise an error. */
11277
11278 static void
11279 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11280 {
11281 int len = hexnumlen (value);
11282
11283 if (len > *left)
11284 error (_("Packet too long for target."));
11285
11286 hexnumstr (*buffer, value);
11287 *buffer += len;
11288 *left -= len;
11289
11290 /* NUL-terminate the buffer as a convenience, if there is
11291 room. */
11292 if (*left)
11293 **buffer = '\0';
11294 }
11295
11296 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11297 value, *REMOTE_ERRNO to the remote error number or zero if none
11298 was included, and *ATTACHMENT to point to the start of the annex
11299 if any. The length of the packet isn't needed here; there may
11300 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11301
11302 Return 0 if the packet could be parsed, -1 if it could not. If
11303 -1 is returned, the other variables may not be initialized. */
11304
11305 static int
11306 remote_hostio_parse_result (char *buffer, int *retcode,
11307 int *remote_errno, char **attachment)
11308 {
11309 char *p, *p2;
11310
11311 *remote_errno = 0;
11312 *attachment = NULL;
11313
11314 if (buffer[0] != 'F')
11315 return -1;
11316
11317 errno = 0;
11318 *retcode = strtol (&buffer[1], &p, 16);
11319 if (errno != 0 || p == &buffer[1])
11320 return -1;
11321
11322 /* Check for ",errno". */
11323 if (*p == ',')
11324 {
11325 errno = 0;
11326 *remote_errno = strtol (p + 1, &p2, 16);
11327 if (errno != 0 || p + 1 == p2)
11328 return -1;
11329 p = p2;
11330 }
11331
11332 /* Check for ";attachment". If there is no attachment, the
11333 packet should end here. */
11334 if (*p == ';')
11335 {
11336 *attachment = p + 1;
11337 return 0;
11338 }
11339 else if (*p == '\0')
11340 return 0;
11341 else
11342 return -1;
11343 }
11344
11345 /* Send a prepared I/O packet to the target and read its response.
11346 The prepared packet is in the global RS->BUF before this function
11347 is called, and the answer is there when we return.
11348
11349 COMMAND_BYTES is the length of the request to send, which may include
11350 binary data. WHICH_PACKET is the packet configuration to check
11351 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11352 is set to the error number and -1 is returned. Otherwise the value
11353 returned by the function is returned.
11354
11355 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11356 attachment is expected; an error will be reported if there's a
11357 mismatch. If one is found, *ATTACHMENT will be set to point into
11358 the packet buffer and *ATTACHMENT_LEN will be set to the
11359 attachment's length. */
11360
11361 static int
11362 remote_hostio_send_command (int command_bytes, int which_packet,
11363 int *remote_errno, char **attachment,
11364 int *attachment_len)
11365 {
11366 struct remote_state *rs = get_remote_state ();
11367 int ret, bytes_read;
11368 char *attachment_tmp;
11369
11370 if (!rs->remote_desc
11371 || packet_support (which_packet) == PACKET_DISABLE)
11372 {
11373 *remote_errno = FILEIO_ENOSYS;
11374 return -1;
11375 }
11376
11377 putpkt_binary (rs->buf, command_bytes);
11378 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11379
11380 /* If it timed out, something is wrong. Don't try to parse the
11381 buffer. */
11382 if (bytes_read < 0)
11383 {
11384 *remote_errno = FILEIO_EINVAL;
11385 return -1;
11386 }
11387
11388 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11389 {
11390 case PACKET_ERROR:
11391 *remote_errno = FILEIO_EINVAL;
11392 return -1;
11393 case PACKET_UNKNOWN:
11394 *remote_errno = FILEIO_ENOSYS;
11395 return -1;
11396 case PACKET_OK:
11397 break;
11398 }
11399
11400 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11401 &attachment_tmp))
11402 {
11403 *remote_errno = FILEIO_EINVAL;
11404 return -1;
11405 }
11406
11407 /* Make sure we saw an attachment if and only if we expected one. */
11408 if ((attachment_tmp == NULL && attachment != NULL)
11409 || (attachment_tmp != NULL && attachment == NULL))
11410 {
11411 *remote_errno = FILEIO_EINVAL;
11412 return -1;
11413 }
11414
11415 /* If an attachment was found, it must point into the packet buffer;
11416 work out how many bytes there were. */
11417 if (attachment_tmp != NULL)
11418 {
11419 *attachment = attachment_tmp;
11420 *attachment_len = bytes_read - (*attachment - rs->buf);
11421 }
11422
11423 return ret;
11424 }
11425
11426 /* Invalidate the readahead cache. */
11427
11428 static void
11429 readahead_cache_invalidate (void)
11430 {
11431 struct remote_state *rs = get_remote_state ();
11432
11433 rs->readahead_cache.fd = -1;
11434 }
11435
11436 /* Invalidate the readahead cache if it is holding data for FD. */
11437
11438 static void
11439 readahead_cache_invalidate_fd (int fd)
11440 {
11441 struct remote_state *rs = get_remote_state ();
11442
11443 if (rs->readahead_cache.fd == fd)
11444 rs->readahead_cache.fd = -1;
11445 }
11446
11447 /* Set the filesystem remote_hostio functions that take FILENAME
11448 arguments will use. Return 0 on success, or -1 if an error
11449 occurs (and set *REMOTE_ERRNO). */
11450
11451 static int
11452 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11453 {
11454 struct remote_state *rs = get_remote_state ();
11455 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11456 char *p = rs->buf;
11457 int left = get_remote_packet_size () - 1;
11458 char arg[9];
11459 int ret;
11460
11461 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11462 return 0;
11463
11464 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11465 return 0;
11466
11467 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11468
11469 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11470 remote_buffer_add_string (&p, &left, arg);
11471
11472 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11473 remote_errno, NULL, NULL);
11474
11475 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11476 return 0;
11477
11478 if (ret == 0)
11479 rs->fs_pid = required_pid;
11480
11481 return ret;
11482 }
11483
11484 /* Implementation of to_fileio_open. */
11485
11486 static int
11487 remote_hostio_open (struct target_ops *self,
11488 struct inferior *inf, const char *filename,
11489 int flags, int mode, int warn_if_slow,
11490 int *remote_errno)
11491 {
11492 struct remote_state *rs = get_remote_state ();
11493 char *p = rs->buf;
11494 int left = get_remote_packet_size () - 1;
11495
11496 if (warn_if_slow)
11497 {
11498 static int warning_issued = 0;
11499
11500 printf_unfiltered (_("Reading %s from remote target...\n"),
11501 filename);
11502
11503 if (!warning_issued)
11504 {
11505 warning (_("File transfers from remote targets can be slow."
11506 " Use \"set sysroot\" to access files locally"
11507 " instead."));
11508 warning_issued = 1;
11509 }
11510 }
11511
11512 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11513 return -1;
11514
11515 remote_buffer_add_string (&p, &left, "vFile:open:");
11516
11517 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11518 strlen (filename));
11519 remote_buffer_add_string (&p, &left, ",");
11520
11521 remote_buffer_add_int (&p, &left, flags);
11522 remote_buffer_add_string (&p, &left, ",");
11523
11524 remote_buffer_add_int (&p, &left, mode);
11525
11526 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11527 remote_errno, NULL, NULL);
11528 }
11529
11530 /* Implementation of to_fileio_pwrite. */
11531
11532 static int
11533 remote_hostio_pwrite (struct target_ops *self,
11534 int fd, const gdb_byte *write_buf, int len,
11535 ULONGEST offset, int *remote_errno)
11536 {
11537 struct remote_state *rs = get_remote_state ();
11538 char *p = rs->buf;
11539 int left = get_remote_packet_size ();
11540 int out_len;
11541
11542 readahead_cache_invalidate_fd (fd);
11543
11544 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11545
11546 remote_buffer_add_int (&p, &left, fd);
11547 remote_buffer_add_string (&p, &left, ",");
11548
11549 remote_buffer_add_int (&p, &left, offset);
11550 remote_buffer_add_string (&p, &left, ",");
11551
11552 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11553 get_remote_packet_size () - (p - rs->buf));
11554
11555 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11556 remote_errno, NULL, NULL);
11557 }
11558
11559 /* Helper for the implementation of to_fileio_pread. Read the file
11560 from the remote side with vFile:pread. */
11561
11562 static int
11563 remote_hostio_pread_vFile (struct target_ops *self,
11564 int fd, gdb_byte *read_buf, int len,
11565 ULONGEST offset, int *remote_errno)
11566 {
11567 struct remote_state *rs = get_remote_state ();
11568 char *p = rs->buf;
11569 char *attachment;
11570 int left = get_remote_packet_size ();
11571 int ret, attachment_len;
11572 int read_len;
11573
11574 remote_buffer_add_string (&p, &left, "vFile:pread:");
11575
11576 remote_buffer_add_int (&p, &left, fd);
11577 remote_buffer_add_string (&p, &left, ",");
11578
11579 remote_buffer_add_int (&p, &left, len);
11580 remote_buffer_add_string (&p, &left, ",");
11581
11582 remote_buffer_add_int (&p, &left, offset);
11583
11584 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11585 remote_errno, &attachment,
11586 &attachment_len);
11587
11588 if (ret < 0)
11589 return ret;
11590
11591 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11592 read_buf, len);
11593 if (read_len != ret)
11594 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11595
11596 return ret;
11597 }
11598
11599 /* Serve pread from the readahead cache. Returns number of bytes
11600 read, or 0 if the request can't be served from the cache. */
11601
11602 static int
11603 remote_hostio_pread_from_cache (struct remote_state *rs,
11604 int fd, gdb_byte *read_buf, size_t len,
11605 ULONGEST offset)
11606 {
11607 struct readahead_cache *cache = &rs->readahead_cache;
11608
11609 if (cache->fd == fd
11610 && cache->offset <= offset
11611 && offset < cache->offset + cache->bufsize)
11612 {
11613 ULONGEST max = cache->offset + cache->bufsize;
11614
11615 if (offset + len > max)
11616 len = max - offset;
11617
11618 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11619 return len;
11620 }
11621
11622 return 0;
11623 }
11624
11625 /* Implementation of to_fileio_pread. */
11626
11627 static int
11628 remote_hostio_pread (struct target_ops *self,
11629 int fd, gdb_byte *read_buf, int len,
11630 ULONGEST offset, int *remote_errno)
11631 {
11632 int ret;
11633 struct remote_state *rs = get_remote_state ();
11634 struct readahead_cache *cache = &rs->readahead_cache;
11635
11636 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11637 if (ret > 0)
11638 {
11639 cache->hit_count++;
11640
11641 if (remote_debug)
11642 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11643 pulongest (cache->hit_count));
11644 return ret;
11645 }
11646
11647 cache->miss_count++;
11648 if (remote_debug)
11649 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11650 pulongest (cache->miss_count));
11651
11652 cache->fd = fd;
11653 cache->offset = offset;
11654 cache->bufsize = get_remote_packet_size ();
11655 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11656
11657 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11658 cache->offset, remote_errno);
11659 if (ret <= 0)
11660 {
11661 readahead_cache_invalidate_fd (fd);
11662 return ret;
11663 }
11664
11665 cache->bufsize = ret;
11666 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11667 }
11668
11669 /* Implementation of to_fileio_close. */
11670
11671 static int
11672 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11673 {
11674 struct remote_state *rs = get_remote_state ();
11675 char *p = rs->buf;
11676 int left = get_remote_packet_size () - 1;
11677
11678 readahead_cache_invalidate_fd (fd);
11679
11680 remote_buffer_add_string (&p, &left, "vFile:close:");
11681
11682 remote_buffer_add_int (&p, &left, fd);
11683
11684 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11685 remote_errno, NULL, NULL);
11686 }
11687
11688 /* Implementation of to_fileio_unlink. */
11689
11690 static int
11691 remote_hostio_unlink (struct target_ops *self,
11692 struct inferior *inf, const char *filename,
11693 int *remote_errno)
11694 {
11695 struct remote_state *rs = get_remote_state ();
11696 char *p = rs->buf;
11697 int left = get_remote_packet_size () - 1;
11698
11699 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11700 return -1;
11701
11702 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11703
11704 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11705 strlen (filename));
11706
11707 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11708 remote_errno, NULL, NULL);
11709 }
11710
11711 /* Implementation of to_fileio_readlink. */
11712
11713 static char *
11714 remote_hostio_readlink (struct target_ops *self,
11715 struct inferior *inf, const char *filename,
11716 int *remote_errno)
11717 {
11718 struct remote_state *rs = get_remote_state ();
11719 char *p = rs->buf;
11720 char *attachment;
11721 int left = get_remote_packet_size ();
11722 int len, attachment_len;
11723 int read_len;
11724 char *ret;
11725
11726 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11727 return NULL;
11728
11729 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11730
11731 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11732 strlen (filename));
11733
11734 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11735 remote_errno, &attachment,
11736 &attachment_len);
11737
11738 if (len < 0)
11739 return NULL;
11740
11741 ret = (char *) xmalloc (len + 1);
11742
11743 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11744 (gdb_byte *) ret, len);
11745 if (read_len != len)
11746 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11747
11748 ret[len] = '\0';
11749 return ret;
11750 }
11751
11752 /* Implementation of to_fileio_fstat. */
11753
11754 static int
11755 remote_hostio_fstat (struct target_ops *self,
11756 int fd, struct stat *st,
11757 int *remote_errno)
11758 {
11759 struct remote_state *rs = get_remote_state ();
11760 char *p = rs->buf;
11761 int left = get_remote_packet_size ();
11762 int attachment_len, ret;
11763 char *attachment;
11764 struct fio_stat fst;
11765 int read_len;
11766
11767 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11768
11769 remote_buffer_add_int (&p, &left, fd);
11770
11771 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11772 remote_errno, &attachment,
11773 &attachment_len);
11774 if (ret < 0)
11775 {
11776 if (*remote_errno != FILEIO_ENOSYS)
11777 return ret;
11778
11779 /* Strictly we should return -1, ENOSYS here, but when
11780 "set sysroot remote:" was implemented in August 2008
11781 BFD's need for a stat function was sidestepped with
11782 this hack. This was not remedied until March 2015
11783 so we retain the previous behavior to avoid breaking
11784 compatibility.
11785
11786 Note that the memset is a March 2015 addition; older
11787 GDBs set st_size *and nothing else* so the structure
11788 would have garbage in all other fields. This might
11789 break something but retaining the previous behavior
11790 here would be just too wrong. */
11791
11792 memset (st, 0, sizeof (struct stat));
11793 st->st_size = INT_MAX;
11794 return 0;
11795 }
11796
11797 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11798 (gdb_byte *) &fst, sizeof (fst));
11799
11800 if (read_len != ret)
11801 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11802
11803 if (read_len != sizeof (fst))
11804 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11805 read_len, (int) sizeof (fst));
11806
11807 remote_fileio_to_host_stat (&fst, st);
11808
11809 return 0;
11810 }
11811
11812 /* Implementation of to_filesystem_is_local. */
11813
11814 static int
11815 remote_filesystem_is_local (struct target_ops *self)
11816 {
11817 /* Valgrind GDB presents itself as a remote target but works
11818 on the local filesystem: it does not implement remote get
11819 and users are not expected to set a sysroot. To handle
11820 this case we treat the remote filesystem as local if the
11821 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11822 does not support vFile:open. */
11823 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11824 {
11825 enum packet_support ps = packet_support (PACKET_vFile_open);
11826
11827 if (ps == PACKET_SUPPORT_UNKNOWN)
11828 {
11829 int fd, remote_errno;
11830
11831 /* Try opening a file to probe support. The supplied
11832 filename is irrelevant, we only care about whether
11833 the stub recognizes the packet or not. */
11834 fd = remote_hostio_open (self, NULL, "just probing",
11835 FILEIO_O_RDONLY, 0700, 0,
11836 &remote_errno);
11837
11838 if (fd >= 0)
11839 remote_hostio_close (self, fd, &remote_errno);
11840
11841 ps = packet_support (PACKET_vFile_open);
11842 }
11843
11844 if (ps == PACKET_DISABLE)
11845 {
11846 static int warning_issued = 0;
11847
11848 if (!warning_issued)
11849 {
11850 warning (_("remote target does not support file"
11851 " transfer, attempting to access files"
11852 " from local filesystem."));
11853 warning_issued = 1;
11854 }
11855
11856 return 1;
11857 }
11858 }
11859
11860 return 0;
11861 }
11862
11863 static int
11864 remote_fileio_errno_to_host (int errnum)
11865 {
11866 switch (errnum)
11867 {
11868 case FILEIO_EPERM:
11869 return EPERM;
11870 case FILEIO_ENOENT:
11871 return ENOENT;
11872 case FILEIO_EINTR:
11873 return EINTR;
11874 case FILEIO_EIO:
11875 return EIO;
11876 case FILEIO_EBADF:
11877 return EBADF;
11878 case FILEIO_EACCES:
11879 return EACCES;
11880 case FILEIO_EFAULT:
11881 return EFAULT;
11882 case FILEIO_EBUSY:
11883 return EBUSY;
11884 case FILEIO_EEXIST:
11885 return EEXIST;
11886 case FILEIO_ENODEV:
11887 return ENODEV;
11888 case FILEIO_ENOTDIR:
11889 return ENOTDIR;
11890 case FILEIO_EISDIR:
11891 return EISDIR;
11892 case FILEIO_EINVAL:
11893 return EINVAL;
11894 case FILEIO_ENFILE:
11895 return ENFILE;
11896 case FILEIO_EMFILE:
11897 return EMFILE;
11898 case FILEIO_EFBIG:
11899 return EFBIG;
11900 case FILEIO_ENOSPC:
11901 return ENOSPC;
11902 case FILEIO_ESPIPE:
11903 return ESPIPE;
11904 case FILEIO_EROFS:
11905 return EROFS;
11906 case FILEIO_ENOSYS:
11907 return ENOSYS;
11908 case FILEIO_ENAMETOOLONG:
11909 return ENAMETOOLONG;
11910 }
11911 return -1;
11912 }
11913
11914 static char *
11915 remote_hostio_error (int errnum)
11916 {
11917 int host_error = remote_fileio_errno_to_host (errnum);
11918
11919 if (host_error == -1)
11920 error (_("Unknown remote I/O error %d"), errnum);
11921 else
11922 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11923 }
11924
11925 static void
11926 remote_hostio_close_cleanup (void *opaque)
11927 {
11928 int fd = *(int *) opaque;
11929 int remote_errno;
11930
11931 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11932 }
11933
11934 void
11935 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11936 {
11937 struct cleanup *back_to, *close_cleanup;
11938 int retcode, fd, remote_errno, bytes, io_size;
11939 gdb_byte *buffer;
11940 int bytes_in_buffer;
11941 int saw_eof;
11942 ULONGEST offset;
11943 struct remote_state *rs = get_remote_state ();
11944
11945 if (!rs->remote_desc)
11946 error (_("command can only be used with remote target"));
11947
11948 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11949 if (file == NULL)
11950 perror_with_name (local_file);
11951
11952 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11953 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11954 | FILEIO_O_TRUNC),
11955 0700, 0, &remote_errno);
11956 if (fd == -1)
11957 remote_hostio_error (remote_errno);
11958
11959 /* Send up to this many bytes at once. They won't all fit in the
11960 remote packet limit, so we'll transfer slightly fewer. */
11961 io_size = get_remote_packet_size ();
11962 buffer = (gdb_byte *) xmalloc (io_size);
11963 back_to = make_cleanup (xfree, buffer);
11964
11965 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11966
11967 bytes_in_buffer = 0;
11968 saw_eof = 0;
11969 offset = 0;
11970 while (bytes_in_buffer || !saw_eof)
11971 {
11972 if (!saw_eof)
11973 {
11974 bytes = fread (buffer + bytes_in_buffer, 1,
11975 io_size - bytes_in_buffer,
11976 file.get ());
11977 if (bytes == 0)
11978 {
11979 if (ferror (file.get ()))
11980 error (_("Error reading %s."), local_file);
11981 else
11982 {
11983 /* EOF. Unless there is something still in the
11984 buffer from the last iteration, we are done. */
11985 saw_eof = 1;
11986 if (bytes_in_buffer == 0)
11987 break;
11988 }
11989 }
11990 }
11991 else
11992 bytes = 0;
11993
11994 bytes += bytes_in_buffer;
11995 bytes_in_buffer = 0;
11996
11997 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11998 fd, buffer, bytes,
11999 offset, &remote_errno);
12000
12001 if (retcode < 0)
12002 remote_hostio_error (remote_errno);
12003 else if (retcode == 0)
12004 error (_("Remote write of %d bytes returned 0!"), bytes);
12005 else if (retcode < bytes)
12006 {
12007 /* Short write. Save the rest of the read data for the next
12008 write. */
12009 bytes_in_buffer = bytes - retcode;
12010 memmove (buffer, buffer + retcode, bytes_in_buffer);
12011 }
12012
12013 offset += retcode;
12014 }
12015
12016 discard_cleanups (close_cleanup);
12017 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12018 remote_hostio_error (remote_errno);
12019
12020 if (from_tty)
12021 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12022 do_cleanups (back_to);
12023 }
12024
12025 void
12026 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12027 {
12028 struct cleanup *back_to, *close_cleanup;
12029 int fd, remote_errno, bytes, io_size;
12030 gdb_byte *buffer;
12031 ULONGEST offset;
12032 struct remote_state *rs = get_remote_state ();
12033
12034 if (!rs->remote_desc)
12035 error (_("command can only be used with remote target"));
12036
12037 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12038 remote_file, FILEIO_O_RDONLY, 0, 0,
12039 &remote_errno);
12040 if (fd == -1)
12041 remote_hostio_error (remote_errno);
12042
12043 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12044 if (file == NULL)
12045 perror_with_name (local_file);
12046
12047 /* Send up to this many bytes at once. They won't all fit in the
12048 remote packet limit, so we'll transfer slightly fewer. */
12049 io_size = get_remote_packet_size ();
12050 buffer = (gdb_byte *) xmalloc (io_size);
12051 back_to = make_cleanup (xfree, buffer);
12052
12053 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12054
12055 offset = 0;
12056 while (1)
12057 {
12058 bytes = remote_hostio_pread (find_target_at (process_stratum),
12059 fd, buffer, io_size, offset, &remote_errno);
12060 if (bytes == 0)
12061 /* Success, but no bytes, means end-of-file. */
12062 break;
12063 if (bytes == -1)
12064 remote_hostio_error (remote_errno);
12065
12066 offset += bytes;
12067
12068 bytes = fwrite (buffer, 1, bytes, file.get ());
12069 if (bytes == 0)
12070 perror_with_name (local_file);
12071 }
12072
12073 discard_cleanups (close_cleanup);
12074 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12075 remote_hostio_error (remote_errno);
12076
12077 if (from_tty)
12078 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12079 do_cleanups (back_to);
12080 }
12081
12082 void
12083 remote_file_delete (const char *remote_file, int from_tty)
12084 {
12085 int retcode, remote_errno;
12086 struct remote_state *rs = get_remote_state ();
12087
12088 if (!rs->remote_desc)
12089 error (_("command can only be used with remote target"));
12090
12091 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12092 NULL, remote_file, &remote_errno);
12093 if (retcode == -1)
12094 remote_hostio_error (remote_errno);
12095
12096 if (from_tty)
12097 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12098 }
12099
12100 static void
12101 remote_put_command (const char *args, int from_tty)
12102 {
12103 if (args == NULL)
12104 error_no_arg (_("file to put"));
12105
12106 gdb_argv argv (args);
12107 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12108 error (_("Invalid parameters to remote put"));
12109
12110 remote_file_put (argv[0], argv[1], from_tty);
12111 }
12112
12113 static void
12114 remote_get_command (const char *args, int from_tty)
12115 {
12116 if (args == NULL)
12117 error_no_arg (_("file to get"));
12118
12119 gdb_argv argv (args);
12120 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12121 error (_("Invalid parameters to remote get"));
12122
12123 remote_file_get (argv[0], argv[1], from_tty);
12124 }
12125
12126 static void
12127 remote_delete_command (const char *args, int from_tty)
12128 {
12129 if (args == NULL)
12130 error_no_arg (_("file to delete"));
12131
12132 gdb_argv argv (args);
12133 if (argv[0] == NULL || argv[1] != NULL)
12134 error (_("Invalid parameters to remote delete"));
12135
12136 remote_file_delete (argv[0], from_tty);
12137 }
12138
12139 static void
12140 remote_command (const char *args, int from_tty)
12141 {
12142 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12143 }
12144
12145 static int
12146 remote_can_execute_reverse (struct target_ops *self)
12147 {
12148 if (packet_support (PACKET_bs) == PACKET_ENABLE
12149 || packet_support (PACKET_bc) == PACKET_ENABLE)
12150 return 1;
12151 else
12152 return 0;
12153 }
12154
12155 static int
12156 remote_supports_non_stop (struct target_ops *self)
12157 {
12158 return 1;
12159 }
12160
12161 static int
12162 remote_supports_disable_randomization (struct target_ops *self)
12163 {
12164 /* Only supported in extended mode. */
12165 return 0;
12166 }
12167
12168 static int
12169 remote_supports_multi_process (struct target_ops *self)
12170 {
12171 struct remote_state *rs = get_remote_state ();
12172
12173 return remote_multi_process_p (rs);
12174 }
12175
12176 static int
12177 remote_supports_cond_tracepoints (void)
12178 {
12179 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12180 }
12181
12182 static int
12183 remote_supports_cond_breakpoints (struct target_ops *self)
12184 {
12185 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12186 }
12187
12188 static int
12189 remote_supports_fast_tracepoints (void)
12190 {
12191 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12192 }
12193
12194 static int
12195 remote_supports_static_tracepoints (void)
12196 {
12197 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12198 }
12199
12200 static int
12201 remote_supports_install_in_trace (void)
12202 {
12203 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12204 }
12205
12206 static int
12207 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12208 {
12209 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12210 == PACKET_ENABLE);
12211 }
12212
12213 static int
12214 remote_supports_string_tracing (struct target_ops *self)
12215 {
12216 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12217 }
12218
12219 static int
12220 remote_can_run_breakpoint_commands (struct target_ops *self)
12221 {
12222 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12223 }
12224
12225 static void
12226 remote_trace_init (struct target_ops *self)
12227 {
12228 struct remote_state *rs = get_remote_state ();
12229
12230 putpkt ("QTinit");
12231 remote_get_noisy_reply ();
12232 if (strcmp (rs->buf, "OK") != 0)
12233 error (_("Target does not support this command."));
12234 }
12235
12236 /* Recursive routine to walk through command list including loops, and
12237 download packets for each command. */
12238
12239 static void
12240 remote_download_command_source (int num, ULONGEST addr,
12241 struct command_line *cmds)
12242 {
12243 struct remote_state *rs = get_remote_state ();
12244 struct command_line *cmd;
12245
12246 for (cmd = cmds; cmd; cmd = cmd->next)
12247 {
12248 QUIT; /* Allow user to bail out with ^C. */
12249 strcpy (rs->buf, "QTDPsrc:");
12250 encode_source_string (num, addr, "cmd", cmd->line,
12251 rs->buf + strlen (rs->buf),
12252 rs->buf_size - strlen (rs->buf));
12253 putpkt (rs->buf);
12254 remote_get_noisy_reply ();
12255 if (strcmp (rs->buf, "OK"))
12256 warning (_("Target does not support source download."));
12257
12258 if (cmd->control_type == while_control
12259 || cmd->control_type == while_stepping_control)
12260 {
12261 remote_download_command_source (num, addr, *cmd->body_list);
12262
12263 QUIT; /* Allow user to bail out with ^C. */
12264 strcpy (rs->buf, "QTDPsrc:");
12265 encode_source_string (num, addr, "cmd", "end",
12266 rs->buf + strlen (rs->buf),
12267 rs->buf_size - strlen (rs->buf));
12268 putpkt (rs->buf);
12269 remote_get_noisy_reply ();
12270 if (strcmp (rs->buf, "OK"))
12271 warning (_("Target does not support source download."));
12272 }
12273 }
12274 }
12275
12276 static void
12277 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12278 {
12279 #define BUF_SIZE 2048
12280
12281 CORE_ADDR tpaddr;
12282 char addrbuf[40];
12283 char buf[BUF_SIZE];
12284 std::vector<std::string> tdp_actions;
12285 std::vector<std::string> stepping_actions;
12286 char *pkt;
12287 struct breakpoint *b = loc->owner;
12288 struct tracepoint *t = (struct tracepoint *) b;
12289 struct remote_state *rs = get_remote_state ();
12290
12291 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12292
12293 tpaddr = loc->address;
12294 sprintf_vma (addrbuf, tpaddr);
12295 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12296 addrbuf, /* address */
12297 (b->enable_state == bp_enabled ? 'E' : 'D'),
12298 t->step_count, t->pass_count);
12299 /* Fast tracepoints are mostly handled by the target, but we can
12300 tell the target how big of an instruction block should be moved
12301 around. */
12302 if (b->type == bp_fast_tracepoint)
12303 {
12304 /* Only test for support at download time; we may not know
12305 target capabilities at definition time. */
12306 if (remote_supports_fast_tracepoints ())
12307 {
12308 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12309 NULL))
12310 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12311 gdb_insn_length (loc->gdbarch, tpaddr));
12312 else
12313 /* If it passed validation at definition but fails now,
12314 something is very wrong. */
12315 internal_error (__FILE__, __LINE__,
12316 _("Fast tracepoint not "
12317 "valid during download"));
12318 }
12319 else
12320 /* Fast tracepoints are functionally identical to regular
12321 tracepoints, so don't take lack of support as a reason to
12322 give up on the trace run. */
12323 warning (_("Target does not support fast tracepoints, "
12324 "downloading %d as regular tracepoint"), b->number);
12325 }
12326 else if (b->type == bp_static_tracepoint)
12327 {
12328 /* Only test for support at download time; we may not know
12329 target capabilities at definition time. */
12330 if (remote_supports_static_tracepoints ())
12331 {
12332 struct static_tracepoint_marker marker;
12333
12334 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12335 strcat (buf, ":S");
12336 else
12337 error (_("Static tracepoint not valid during download"));
12338 }
12339 else
12340 /* Fast tracepoints are functionally identical to regular
12341 tracepoints, so don't take lack of support as a reason
12342 to give up on the trace run. */
12343 error (_("Target does not support static tracepoints"));
12344 }
12345 /* If the tracepoint has a conditional, make it into an agent
12346 expression and append to the definition. */
12347 if (loc->cond)
12348 {
12349 /* Only test support at download time, we may not know target
12350 capabilities at definition time. */
12351 if (remote_supports_cond_tracepoints ())
12352 {
12353 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12354 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12355 aexpr->len);
12356 pkt = buf + strlen (buf);
12357 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12358 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12359 *pkt = '\0';
12360 }
12361 else
12362 warning (_("Target does not support conditional tracepoints, "
12363 "ignoring tp %d cond"), b->number);
12364 }
12365
12366 if (b->commands || *default_collect)
12367 strcat (buf, "-");
12368 putpkt (buf);
12369 remote_get_noisy_reply ();
12370 if (strcmp (rs->buf, "OK"))
12371 error (_("Target does not support tracepoints."));
12372
12373 /* do_single_steps (t); */
12374 for (auto action_it = tdp_actions.begin ();
12375 action_it != tdp_actions.end (); action_it++)
12376 {
12377 QUIT; /* Allow user to bail out with ^C. */
12378
12379 bool has_more = (action_it != tdp_actions.end ()
12380 || !stepping_actions.empty ());
12381
12382 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12383 b->number, addrbuf, /* address */
12384 action_it->c_str (),
12385 has_more ? '-' : 0);
12386 putpkt (buf);
12387 remote_get_noisy_reply ();
12388 if (strcmp (rs->buf, "OK"))
12389 error (_("Error on target while setting tracepoints."));
12390 }
12391
12392 for (auto action_it = stepping_actions.begin ();
12393 action_it != stepping_actions.end (); action_it++)
12394 {
12395 QUIT; /* Allow user to bail out with ^C. */
12396
12397 bool is_first = action_it == stepping_actions.begin ();
12398 bool has_more = action_it != stepping_actions.end ();
12399
12400 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12401 b->number, addrbuf, /* address */
12402 is_first ? "S" : "",
12403 action_it->c_str (),
12404 has_more ? "-" : "");
12405 putpkt (buf);
12406 remote_get_noisy_reply ();
12407 if (strcmp (rs->buf, "OK"))
12408 error (_("Error on target while setting tracepoints."));
12409 }
12410
12411 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12412 {
12413 if (b->location != NULL)
12414 {
12415 strcpy (buf, "QTDPsrc:");
12416 encode_source_string (b->number, loc->address, "at",
12417 event_location_to_string (b->location.get ()),
12418 buf + strlen (buf), 2048 - strlen (buf));
12419 putpkt (buf);
12420 remote_get_noisy_reply ();
12421 if (strcmp (rs->buf, "OK"))
12422 warning (_("Target does not support source download."));
12423 }
12424 if (b->cond_string)
12425 {
12426 strcpy (buf, "QTDPsrc:");
12427 encode_source_string (b->number, loc->address,
12428 "cond", b->cond_string, buf + strlen (buf),
12429 2048 - strlen (buf));
12430 putpkt (buf);
12431 remote_get_noisy_reply ();
12432 if (strcmp (rs->buf, "OK"))
12433 warning (_("Target does not support source download."));
12434 }
12435 remote_download_command_source (b->number, loc->address,
12436 breakpoint_commands (b));
12437 }
12438 }
12439
12440 static int
12441 remote_can_download_tracepoint (struct target_ops *self)
12442 {
12443 struct remote_state *rs = get_remote_state ();
12444 struct trace_status *ts;
12445 int status;
12446
12447 /* Don't try to install tracepoints until we've relocated our
12448 symbols, and fetched and merged the target's tracepoint list with
12449 ours. */
12450 if (rs->starting_up)
12451 return 0;
12452
12453 ts = current_trace_status ();
12454 status = remote_get_trace_status (self, ts);
12455
12456 if (status == -1 || !ts->running_known || !ts->running)
12457 return 0;
12458
12459 /* If we are in a tracing experiment, but remote stub doesn't support
12460 installing tracepoint in trace, we have to return. */
12461 if (!remote_supports_install_in_trace ())
12462 return 0;
12463
12464 return 1;
12465 }
12466
12467
12468 static void
12469 remote_download_trace_state_variable (struct target_ops *self,
12470 struct trace_state_variable *tsv)
12471 {
12472 struct remote_state *rs = get_remote_state ();
12473 char *p;
12474
12475 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12476 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12477 tsv->builtin);
12478 p = rs->buf + strlen (rs->buf);
12479 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12480 error (_("Trace state variable name too long for tsv definition packet"));
12481 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12482 *p++ = '\0';
12483 putpkt (rs->buf);
12484 remote_get_noisy_reply ();
12485 if (*rs->buf == '\0')
12486 error (_("Target does not support this command."));
12487 if (strcmp (rs->buf, "OK") != 0)
12488 error (_("Error on target while downloading trace state variable."));
12489 }
12490
12491 static void
12492 remote_enable_tracepoint (struct target_ops *self,
12493 struct bp_location *location)
12494 {
12495 struct remote_state *rs = get_remote_state ();
12496 char addr_buf[40];
12497
12498 sprintf_vma (addr_buf, location->address);
12499 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12500 location->owner->number, addr_buf);
12501 putpkt (rs->buf);
12502 remote_get_noisy_reply ();
12503 if (*rs->buf == '\0')
12504 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12505 if (strcmp (rs->buf, "OK") != 0)
12506 error (_("Error on target while enabling tracepoint."));
12507 }
12508
12509 static void
12510 remote_disable_tracepoint (struct target_ops *self,
12511 struct bp_location *location)
12512 {
12513 struct remote_state *rs = get_remote_state ();
12514 char addr_buf[40];
12515
12516 sprintf_vma (addr_buf, location->address);
12517 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12518 location->owner->number, addr_buf);
12519 putpkt (rs->buf);
12520 remote_get_noisy_reply ();
12521 if (*rs->buf == '\0')
12522 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12523 if (strcmp (rs->buf, "OK") != 0)
12524 error (_("Error on target while disabling tracepoint."));
12525 }
12526
12527 static void
12528 remote_trace_set_readonly_regions (struct target_ops *self)
12529 {
12530 asection *s;
12531 bfd *abfd = NULL;
12532 bfd_size_type size;
12533 bfd_vma vma;
12534 int anysecs = 0;
12535 int offset = 0;
12536
12537 if (!exec_bfd)
12538 return; /* No information to give. */
12539
12540 struct remote_state *rs = get_remote_state ();
12541
12542 strcpy (rs->buf, "QTro");
12543 offset = strlen (rs->buf);
12544 for (s = exec_bfd->sections; s; s = s->next)
12545 {
12546 char tmp1[40], tmp2[40];
12547 int sec_length;
12548
12549 if ((s->flags & SEC_LOAD) == 0 ||
12550 /* (s->flags & SEC_CODE) == 0 || */
12551 (s->flags & SEC_READONLY) == 0)
12552 continue;
12553
12554 anysecs = 1;
12555 vma = bfd_get_section_vma (abfd, s);
12556 size = bfd_get_section_size (s);
12557 sprintf_vma (tmp1, vma);
12558 sprintf_vma (tmp2, vma + size);
12559 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12560 if (offset + sec_length + 1 > rs->buf_size)
12561 {
12562 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12563 warning (_("\
12564 Too many sections for read-only sections definition packet."));
12565 break;
12566 }
12567 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12568 tmp1, tmp2);
12569 offset += sec_length;
12570 }
12571 if (anysecs)
12572 {
12573 putpkt (rs->buf);
12574 getpkt (&rs->buf, &rs->buf_size, 0);
12575 }
12576 }
12577
12578 static void
12579 remote_trace_start (struct target_ops *self)
12580 {
12581 struct remote_state *rs = get_remote_state ();
12582
12583 putpkt ("QTStart");
12584 remote_get_noisy_reply ();
12585 if (*rs->buf == '\0')
12586 error (_("Target does not support this command."));
12587 if (strcmp (rs->buf, "OK") != 0)
12588 error (_("Bogus reply from target: %s"), rs->buf);
12589 }
12590
12591 static int
12592 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12593 {
12594 /* Initialize it just to avoid a GCC false warning. */
12595 char *p = NULL;
12596 /* FIXME we need to get register block size some other way. */
12597 extern int trace_regblock_size;
12598 enum packet_result result;
12599 struct remote_state *rs = get_remote_state ();
12600
12601 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12602 return -1;
12603
12604 trace_regblock_size
12605 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12606
12607 putpkt ("qTStatus");
12608
12609 TRY
12610 {
12611 p = remote_get_noisy_reply ();
12612 }
12613 CATCH (ex, RETURN_MASK_ERROR)
12614 {
12615 if (ex.error != TARGET_CLOSE_ERROR)
12616 {
12617 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12618 return -1;
12619 }
12620 throw_exception (ex);
12621 }
12622 END_CATCH
12623
12624 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12625
12626 /* If the remote target doesn't do tracing, flag it. */
12627 if (result == PACKET_UNKNOWN)
12628 return -1;
12629
12630 /* We're working with a live target. */
12631 ts->filename = NULL;
12632
12633 if (*p++ != 'T')
12634 error (_("Bogus trace status reply from target: %s"), rs->buf);
12635
12636 /* Function 'parse_trace_status' sets default value of each field of
12637 'ts' at first, so we don't have to do it here. */
12638 parse_trace_status (p, ts);
12639
12640 return ts->running;
12641 }
12642
12643 static void
12644 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12645 struct uploaded_tp *utp)
12646 {
12647 struct remote_state *rs = get_remote_state ();
12648 char *reply;
12649 struct bp_location *loc;
12650 struct tracepoint *tp = (struct tracepoint *) bp;
12651 size_t size = get_remote_packet_size ();
12652
12653 if (tp)
12654 {
12655 tp->hit_count = 0;
12656 tp->traceframe_usage = 0;
12657 for (loc = tp->loc; loc; loc = loc->next)
12658 {
12659 /* If the tracepoint was never downloaded, don't go asking for
12660 any status. */
12661 if (tp->number_on_target == 0)
12662 continue;
12663 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12664 phex_nz (loc->address, 0));
12665 putpkt (rs->buf);
12666 reply = remote_get_noisy_reply ();
12667 if (reply && *reply)
12668 {
12669 if (*reply == 'V')
12670 parse_tracepoint_status (reply + 1, bp, utp);
12671 }
12672 }
12673 }
12674 else if (utp)
12675 {
12676 utp->hit_count = 0;
12677 utp->traceframe_usage = 0;
12678 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12679 phex_nz (utp->addr, 0));
12680 putpkt (rs->buf);
12681 reply = remote_get_noisy_reply ();
12682 if (reply && *reply)
12683 {
12684 if (*reply == 'V')
12685 parse_tracepoint_status (reply + 1, bp, utp);
12686 }
12687 }
12688 }
12689
12690 static void
12691 remote_trace_stop (struct target_ops *self)
12692 {
12693 struct remote_state *rs = get_remote_state ();
12694
12695 putpkt ("QTStop");
12696 remote_get_noisy_reply ();
12697 if (*rs->buf == '\0')
12698 error (_("Target does not support this command."));
12699 if (strcmp (rs->buf, "OK") != 0)
12700 error (_("Bogus reply from target: %s"), rs->buf);
12701 }
12702
12703 static int
12704 remote_trace_find (struct target_ops *self,
12705 enum trace_find_type type, int num,
12706 CORE_ADDR addr1, CORE_ADDR addr2,
12707 int *tpp)
12708 {
12709 struct remote_state *rs = get_remote_state ();
12710 char *endbuf = rs->buf + get_remote_packet_size ();
12711 char *p, *reply;
12712 int target_frameno = -1, target_tracept = -1;
12713
12714 /* Lookups other than by absolute frame number depend on the current
12715 trace selected, so make sure it is correct on the remote end
12716 first. */
12717 if (type != tfind_number)
12718 set_remote_traceframe ();
12719
12720 p = rs->buf;
12721 strcpy (p, "QTFrame:");
12722 p = strchr (p, '\0');
12723 switch (type)
12724 {
12725 case tfind_number:
12726 xsnprintf (p, endbuf - p, "%x", num);
12727 break;
12728 case tfind_pc:
12729 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12730 break;
12731 case tfind_tp:
12732 xsnprintf (p, endbuf - p, "tdp:%x", num);
12733 break;
12734 case tfind_range:
12735 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12736 phex_nz (addr2, 0));
12737 break;
12738 case tfind_outside:
12739 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12740 phex_nz (addr2, 0));
12741 break;
12742 default:
12743 error (_("Unknown trace find type %d"), type);
12744 }
12745
12746 putpkt (rs->buf);
12747 reply = remote_get_noisy_reply ();
12748 if (*reply == '\0')
12749 error (_("Target does not support this command."));
12750
12751 while (reply && *reply)
12752 switch (*reply)
12753 {
12754 case 'F':
12755 p = ++reply;
12756 target_frameno = (int) strtol (p, &reply, 16);
12757 if (reply == p)
12758 error (_("Unable to parse trace frame number"));
12759 /* Don't update our remote traceframe number cache on failure
12760 to select a remote traceframe. */
12761 if (target_frameno == -1)
12762 return -1;
12763 break;
12764 case 'T':
12765 p = ++reply;
12766 target_tracept = (int) strtol (p, &reply, 16);
12767 if (reply == p)
12768 error (_("Unable to parse tracepoint number"));
12769 break;
12770 case 'O': /* "OK"? */
12771 if (reply[1] == 'K' && reply[2] == '\0')
12772 reply += 2;
12773 else
12774 error (_("Bogus reply from target: %s"), reply);
12775 break;
12776 default:
12777 error (_("Bogus reply from target: %s"), reply);
12778 }
12779 if (tpp)
12780 *tpp = target_tracept;
12781
12782 rs->remote_traceframe_number = target_frameno;
12783 return target_frameno;
12784 }
12785
12786 static int
12787 remote_get_trace_state_variable_value (struct target_ops *self,
12788 int tsvnum, LONGEST *val)
12789 {
12790 struct remote_state *rs = get_remote_state ();
12791 char *reply;
12792 ULONGEST uval;
12793
12794 set_remote_traceframe ();
12795
12796 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12797 putpkt (rs->buf);
12798 reply = remote_get_noisy_reply ();
12799 if (reply && *reply)
12800 {
12801 if (*reply == 'V')
12802 {
12803 unpack_varlen_hex (reply + 1, &uval);
12804 *val = (LONGEST) uval;
12805 return 1;
12806 }
12807 }
12808 return 0;
12809 }
12810
12811 static int
12812 remote_save_trace_data (struct target_ops *self, const char *filename)
12813 {
12814 struct remote_state *rs = get_remote_state ();
12815 char *p, *reply;
12816
12817 p = rs->buf;
12818 strcpy (p, "QTSave:");
12819 p += strlen (p);
12820 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12821 error (_("Remote file name too long for trace save packet"));
12822 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12823 *p++ = '\0';
12824 putpkt (rs->buf);
12825 reply = remote_get_noisy_reply ();
12826 if (*reply == '\0')
12827 error (_("Target does not support this command."));
12828 if (strcmp (reply, "OK") != 0)
12829 error (_("Bogus reply from target: %s"), reply);
12830 return 0;
12831 }
12832
12833 /* This is basically a memory transfer, but needs to be its own packet
12834 because we don't know how the target actually organizes its trace
12835 memory, plus we want to be able to ask for as much as possible, but
12836 not be unhappy if we don't get as much as we ask for. */
12837
12838 static LONGEST
12839 remote_get_raw_trace_data (struct target_ops *self,
12840 gdb_byte *buf, ULONGEST offset, LONGEST len)
12841 {
12842 struct remote_state *rs = get_remote_state ();
12843 char *reply;
12844 char *p;
12845 int rslt;
12846
12847 p = rs->buf;
12848 strcpy (p, "qTBuffer:");
12849 p += strlen (p);
12850 p += hexnumstr (p, offset);
12851 *p++ = ',';
12852 p += hexnumstr (p, len);
12853 *p++ = '\0';
12854
12855 putpkt (rs->buf);
12856 reply = remote_get_noisy_reply ();
12857 if (reply && *reply)
12858 {
12859 /* 'l' by itself means we're at the end of the buffer and
12860 there is nothing more to get. */
12861 if (*reply == 'l')
12862 return 0;
12863
12864 /* Convert the reply into binary. Limit the number of bytes to
12865 convert according to our passed-in buffer size, rather than
12866 what was returned in the packet; if the target is
12867 unexpectedly generous and gives us a bigger reply than we
12868 asked for, we don't want to crash. */
12869 rslt = hex2bin (reply, buf, len);
12870 return rslt;
12871 }
12872
12873 /* Something went wrong, flag as an error. */
12874 return -1;
12875 }
12876
12877 static void
12878 remote_set_disconnected_tracing (struct target_ops *self, int val)
12879 {
12880 struct remote_state *rs = get_remote_state ();
12881
12882 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12883 {
12884 char *reply;
12885
12886 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12887 putpkt (rs->buf);
12888 reply = remote_get_noisy_reply ();
12889 if (*reply == '\0')
12890 error (_("Target does not support this command."));
12891 if (strcmp (reply, "OK") != 0)
12892 error (_("Bogus reply from target: %s"), reply);
12893 }
12894 else if (val)
12895 warning (_("Target does not support disconnected tracing."));
12896 }
12897
12898 static int
12899 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12900 {
12901 struct thread_info *info = find_thread_ptid (ptid);
12902
12903 if (info != NULL && info->priv != NULL)
12904 return get_remote_thread_info (info)->core;
12905
12906 return -1;
12907 }
12908
12909 static void
12910 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12911 {
12912 struct remote_state *rs = get_remote_state ();
12913 char *reply;
12914
12915 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12916 putpkt (rs->buf);
12917 reply = remote_get_noisy_reply ();
12918 if (*reply == '\0')
12919 error (_("Target does not support this command."));
12920 if (strcmp (reply, "OK") != 0)
12921 error (_("Bogus reply from target: %s"), reply);
12922 }
12923
12924 static traceframe_info_up
12925 remote_traceframe_info (struct target_ops *self)
12926 {
12927 gdb::unique_xmalloc_ptr<char> text
12928 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12929 NULL);
12930 if (text != NULL)
12931 return parse_traceframe_info (text.get ());
12932
12933 return NULL;
12934 }
12935
12936 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12937 instruction on which a fast tracepoint may be placed. Returns -1
12938 if the packet is not supported, and 0 if the minimum instruction
12939 length is unknown. */
12940
12941 static int
12942 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12943 {
12944 struct remote_state *rs = get_remote_state ();
12945 char *reply;
12946
12947 /* If we're not debugging a process yet, the IPA can't be
12948 loaded. */
12949 if (!target_has_execution)
12950 return 0;
12951
12952 /* Make sure the remote is pointing at the right process. */
12953 set_general_process ();
12954
12955 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12956 putpkt (rs->buf);
12957 reply = remote_get_noisy_reply ();
12958 if (*reply == '\0')
12959 return -1;
12960 else
12961 {
12962 ULONGEST min_insn_len;
12963
12964 unpack_varlen_hex (reply, &min_insn_len);
12965
12966 return (int) min_insn_len;
12967 }
12968 }
12969
12970 static void
12971 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12972 {
12973 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12974 {
12975 struct remote_state *rs = get_remote_state ();
12976 char *buf = rs->buf;
12977 char *endbuf = rs->buf + get_remote_packet_size ();
12978 enum packet_result result;
12979
12980 gdb_assert (val >= 0 || val == -1);
12981 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12982 /* Send -1 as literal "-1" to avoid host size dependency. */
12983 if (val < 0)
12984 {
12985 *buf++ = '-';
12986 buf += hexnumstr (buf, (ULONGEST) -val);
12987 }
12988 else
12989 buf += hexnumstr (buf, (ULONGEST) val);
12990
12991 putpkt (rs->buf);
12992 remote_get_noisy_reply ();
12993 result = packet_ok (rs->buf,
12994 &remote_protocol_packets[PACKET_QTBuffer_size]);
12995
12996 if (result != PACKET_OK)
12997 warning (_("Bogus reply from target: %s"), rs->buf);
12998 }
12999 }
13000
13001 static int
13002 remote_set_trace_notes (struct target_ops *self,
13003 const char *user, const char *notes,
13004 const char *stop_notes)
13005 {
13006 struct remote_state *rs = get_remote_state ();
13007 char *reply;
13008 char *buf = rs->buf;
13009 char *endbuf = rs->buf + get_remote_packet_size ();
13010 int nbytes;
13011
13012 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13013 if (user)
13014 {
13015 buf += xsnprintf (buf, endbuf - buf, "user:");
13016 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13017 buf += 2 * nbytes;
13018 *buf++ = ';';
13019 }
13020 if (notes)
13021 {
13022 buf += xsnprintf (buf, endbuf - buf, "notes:");
13023 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13024 buf += 2 * nbytes;
13025 *buf++ = ';';
13026 }
13027 if (stop_notes)
13028 {
13029 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13030 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13031 buf += 2 * nbytes;
13032 *buf++ = ';';
13033 }
13034 /* Ensure the buffer is terminated. */
13035 *buf = '\0';
13036
13037 putpkt (rs->buf);
13038 reply = remote_get_noisy_reply ();
13039 if (*reply == '\0')
13040 return 0;
13041
13042 if (strcmp (reply, "OK") != 0)
13043 error (_("Bogus reply from target: %s"), reply);
13044
13045 return 1;
13046 }
13047
13048 static int
13049 remote_use_agent (struct target_ops *self, int use)
13050 {
13051 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13052 {
13053 struct remote_state *rs = get_remote_state ();
13054
13055 /* If the stub supports QAgent. */
13056 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13057 putpkt (rs->buf);
13058 getpkt (&rs->buf, &rs->buf_size, 0);
13059
13060 if (strcmp (rs->buf, "OK") == 0)
13061 {
13062 use_agent = use;
13063 return 1;
13064 }
13065 }
13066
13067 return 0;
13068 }
13069
13070 static int
13071 remote_can_use_agent (struct target_ops *self)
13072 {
13073 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13074 }
13075
13076 struct btrace_target_info
13077 {
13078 /* The ptid of the traced thread. */
13079 ptid_t ptid;
13080
13081 /* The obtained branch trace configuration. */
13082 struct btrace_config conf;
13083 };
13084
13085 /* Reset our idea of our target's btrace configuration. */
13086
13087 static void
13088 remote_btrace_reset (void)
13089 {
13090 struct remote_state *rs = get_remote_state ();
13091
13092 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13093 }
13094
13095 /* Check whether the target supports branch tracing. */
13096
13097 static int
13098 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13099 {
13100 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13101 return 0;
13102 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13103 return 0;
13104
13105 switch (format)
13106 {
13107 case BTRACE_FORMAT_NONE:
13108 return 0;
13109
13110 case BTRACE_FORMAT_BTS:
13111 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13112
13113 case BTRACE_FORMAT_PT:
13114 /* The trace is decoded on the host. Even if our target supports it,
13115 we still need to have libipt to decode the trace. */
13116 #if defined (HAVE_LIBIPT)
13117 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13118 #else /* !defined (HAVE_LIBIPT) */
13119 return 0;
13120 #endif /* !defined (HAVE_LIBIPT) */
13121 }
13122
13123 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13124 }
13125
13126 /* Synchronize the configuration with the target. */
13127
13128 static void
13129 btrace_sync_conf (const struct btrace_config *conf)
13130 {
13131 struct packet_config *packet;
13132 struct remote_state *rs;
13133 char *buf, *pos, *endbuf;
13134
13135 rs = get_remote_state ();
13136 buf = rs->buf;
13137 endbuf = buf + get_remote_packet_size ();
13138
13139 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13140 if (packet_config_support (packet) == PACKET_ENABLE
13141 && conf->bts.size != rs->btrace_config.bts.size)
13142 {
13143 pos = buf;
13144 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13145 conf->bts.size);
13146
13147 putpkt (buf);
13148 getpkt (&buf, &rs->buf_size, 0);
13149
13150 if (packet_ok (buf, packet) == PACKET_ERROR)
13151 {
13152 if (buf[0] == 'E' && buf[1] == '.')
13153 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13154 else
13155 error (_("Failed to configure the BTS buffer size."));
13156 }
13157
13158 rs->btrace_config.bts.size = conf->bts.size;
13159 }
13160
13161 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13162 if (packet_config_support (packet) == PACKET_ENABLE
13163 && conf->pt.size != rs->btrace_config.pt.size)
13164 {
13165 pos = buf;
13166 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13167 conf->pt.size);
13168
13169 putpkt (buf);
13170 getpkt (&buf, &rs->buf_size, 0);
13171
13172 if (packet_ok (buf, packet) == PACKET_ERROR)
13173 {
13174 if (buf[0] == 'E' && buf[1] == '.')
13175 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13176 else
13177 error (_("Failed to configure the trace buffer size."));
13178 }
13179
13180 rs->btrace_config.pt.size = conf->pt.size;
13181 }
13182 }
13183
13184 /* Read the current thread's btrace configuration from the target and
13185 store it into CONF. */
13186
13187 static void
13188 btrace_read_config (struct btrace_config *conf)
13189 {
13190 gdb::unique_xmalloc_ptr<char> xml
13191 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13192 if (xml != NULL)
13193 parse_xml_btrace_conf (conf, xml.get ());
13194 }
13195
13196 /* Maybe reopen target btrace. */
13197
13198 static void
13199 remote_btrace_maybe_reopen (void)
13200 {
13201 struct remote_state *rs = get_remote_state ();
13202 struct thread_info *tp;
13203 int btrace_target_pushed = 0;
13204 int warned = 0;
13205
13206 scoped_restore_current_thread restore_thread;
13207
13208 ALL_NON_EXITED_THREADS (tp)
13209 {
13210 set_general_thread (tp->ptid);
13211
13212 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13213 btrace_read_config (&rs->btrace_config);
13214
13215 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13216 continue;
13217
13218 #if !defined (HAVE_LIBIPT)
13219 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13220 {
13221 if (!warned)
13222 {
13223 warned = 1;
13224 warning (_("GDB does not support Intel Processor Trace. "
13225 "\"record\" will not work in this session."));
13226 }
13227
13228 continue;
13229 }
13230 #endif /* !defined (HAVE_LIBIPT) */
13231
13232 /* Push target, once, but before anything else happens. This way our
13233 changes to the threads will be cleaned up by unpushing the target
13234 in case btrace_read_config () throws. */
13235 if (!btrace_target_pushed)
13236 {
13237 btrace_target_pushed = 1;
13238 record_btrace_push_target ();
13239 printf_filtered (_("Target is recording using %s.\n"),
13240 btrace_format_string (rs->btrace_config.format));
13241 }
13242
13243 tp->btrace.target = XCNEW (struct btrace_target_info);
13244 tp->btrace.target->ptid = tp->ptid;
13245 tp->btrace.target->conf = rs->btrace_config;
13246 }
13247 }
13248
13249 /* Enable branch tracing. */
13250
13251 static struct btrace_target_info *
13252 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13253 const struct btrace_config *conf)
13254 {
13255 struct btrace_target_info *tinfo = NULL;
13256 struct packet_config *packet = NULL;
13257 struct remote_state *rs = get_remote_state ();
13258 char *buf = rs->buf;
13259 char *endbuf = rs->buf + get_remote_packet_size ();
13260
13261 switch (conf->format)
13262 {
13263 case BTRACE_FORMAT_BTS:
13264 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13265 break;
13266
13267 case BTRACE_FORMAT_PT:
13268 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13269 break;
13270 }
13271
13272 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13273 error (_("Target does not support branch tracing."));
13274
13275 btrace_sync_conf (conf);
13276
13277 set_general_thread (ptid);
13278
13279 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13280 putpkt (rs->buf);
13281 getpkt (&rs->buf, &rs->buf_size, 0);
13282
13283 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13284 {
13285 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13286 error (_("Could not enable branch tracing for %s: %s"),
13287 target_pid_to_str (ptid), rs->buf + 2);
13288 else
13289 error (_("Could not enable branch tracing for %s."),
13290 target_pid_to_str (ptid));
13291 }
13292
13293 tinfo = XCNEW (struct btrace_target_info);
13294 tinfo->ptid = ptid;
13295
13296 /* If we fail to read the configuration, we lose some information, but the
13297 tracing itself is not impacted. */
13298 TRY
13299 {
13300 btrace_read_config (&tinfo->conf);
13301 }
13302 CATCH (err, RETURN_MASK_ERROR)
13303 {
13304 if (err.message != NULL)
13305 warning ("%s", err.message);
13306 }
13307 END_CATCH
13308
13309 return tinfo;
13310 }
13311
13312 /* Disable branch tracing. */
13313
13314 static void
13315 remote_disable_btrace (struct target_ops *self,
13316 struct btrace_target_info *tinfo)
13317 {
13318 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13319 struct remote_state *rs = get_remote_state ();
13320 char *buf = rs->buf;
13321 char *endbuf = rs->buf + get_remote_packet_size ();
13322
13323 if (packet_config_support (packet) != PACKET_ENABLE)
13324 error (_("Target does not support branch tracing."));
13325
13326 set_general_thread (tinfo->ptid);
13327
13328 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13329 putpkt (rs->buf);
13330 getpkt (&rs->buf, &rs->buf_size, 0);
13331
13332 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13333 {
13334 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13335 error (_("Could not disable branch tracing for %s: %s"),
13336 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13337 else
13338 error (_("Could not disable branch tracing for %s."),
13339 target_pid_to_str (tinfo->ptid));
13340 }
13341
13342 xfree (tinfo);
13343 }
13344
13345 /* Teardown branch tracing. */
13346
13347 static void
13348 remote_teardown_btrace (struct target_ops *self,
13349 struct btrace_target_info *tinfo)
13350 {
13351 /* We must not talk to the target during teardown. */
13352 xfree (tinfo);
13353 }
13354
13355 /* Read the branch trace. */
13356
13357 static enum btrace_error
13358 remote_read_btrace (struct target_ops *self,
13359 struct btrace_data *btrace,
13360 struct btrace_target_info *tinfo,
13361 enum btrace_read_type type)
13362 {
13363 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13364 const char *annex;
13365
13366 if (packet_config_support (packet) != PACKET_ENABLE)
13367 error (_("Target does not support branch tracing."));
13368
13369 #if !defined(HAVE_LIBEXPAT)
13370 error (_("Cannot process branch tracing result. XML parsing not supported."));
13371 #endif
13372
13373 switch (type)
13374 {
13375 case BTRACE_READ_ALL:
13376 annex = "all";
13377 break;
13378 case BTRACE_READ_NEW:
13379 annex = "new";
13380 break;
13381 case BTRACE_READ_DELTA:
13382 annex = "delta";
13383 break;
13384 default:
13385 internal_error (__FILE__, __LINE__,
13386 _("Bad branch tracing read type: %u."),
13387 (unsigned int) type);
13388 }
13389
13390 gdb::unique_xmalloc_ptr<char> xml
13391 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13392 if (xml == NULL)
13393 return BTRACE_ERR_UNKNOWN;
13394
13395 parse_xml_btrace (btrace, xml.get ());
13396
13397 return BTRACE_ERR_NONE;
13398 }
13399
13400 static const struct btrace_config *
13401 remote_btrace_conf (struct target_ops *self,
13402 const struct btrace_target_info *tinfo)
13403 {
13404 return &tinfo->conf;
13405 }
13406
13407 static int
13408 remote_augmented_libraries_svr4_read (struct target_ops *self)
13409 {
13410 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13411 == PACKET_ENABLE);
13412 }
13413
13414 /* Implementation of to_load. */
13415
13416 static void
13417 remote_load (struct target_ops *self, const char *name, int from_tty)
13418 {
13419 generic_load (name, from_tty);
13420 }
13421
13422 /* Accepts an integer PID; returns a string representing a file that
13423 can be opened on the remote side to get the symbols for the child
13424 process. Returns NULL if the operation is not supported. */
13425
13426 static char *
13427 remote_pid_to_exec_file (struct target_ops *self, int pid)
13428 {
13429 static gdb::unique_xmalloc_ptr<char> filename;
13430 struct inferior *inf;
13431 char *annex = NULL;
13432
13433 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13434 return NULL;
13435
13436 inf = find_inferior_pid (pid);
13437 if (inf == NULL)
13438 internal_error (__FILE__, __LINE__,
13439 _("not currently attached to process %d"), pid);
13440
13441 if (!inf->fake_pid_p)
13442 {
13443 const int annex_size = 9;
13444
13445 annex = (char *) alloca (annex_size);
13446 xsnprintf (annex, annex_size, "%x", pid);
13447 }
13448
13449 filename = target_read_stralloc (&current_target,
13450 TARGET_OBJECT_EXEC_FILE, annex);
13451
13452 return filename.get ();
13453 }
13454
13455 /* Implement the to_can_do_single_step target_ops method. */
13456
13457 static int
13458 remote_can_do_single_step (struct target_ops *ops)
13459 {
13460 /* We can only tell whether target supports single step or not by
13461 supported s and S vCont actions if the stub supports vContSupported
13462 feature. If the stub doesn't support vContSupported feature,
13463 we have conservatively to think target doesn't supports single
13464 step. */
13465 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13466 {
13467 struct remote_state *rs = get_remote_state ();
13468
13469 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13470 remote_vcont_probe (rs);
13471
13472 return rs->supports_vCont.s && rs->supports_vCont.S;
13473 }
13474 else
13475 return 0;
13476 }
13477
13478 /* Implementation of the to_execution_direction method for the remote
13479 target. */
13480
13481 static enum exec_direction_kind
13482 remote_execution_direction (struct target_ops *self)
13483 {
13484 struct remote_state *rs = get_remote_state ();
13485
13486 return rs->last_resume_exec_dir;
13487 }
13488
13489 /* Return pointer to the thread_info struct which corresponds to
13490 THREAD_HANDLE (having length HANDLE_LEN). */
13491
13492 static struct thread_info *
13493 remote_thread_handle_to_thread_info (struct target_ops *ops,
13494 const gdb_byte *thread_handle,
13495 int handle_len,
13496 struct inferior *inf)
13497 {
13498 struct thread_info *tp;
13499
13500 ALL_NON_EXITED_THREADS (tp)
13501 {
13502 remote_thread_info *priv = get_remote_thread_info (tp);
13503
13504 if (tp->inf == inf && priv != NULL)
13505 {
13506 if (handle_len != priv->thread_handle.size ())
13507 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13508 handle_len, priv->thread_handle.size ());
13509 if (memcmp (thread_handle, priv->thread_handle.data (),
13510 handle_len) == 0)
13511 return tp;
13512 }
13513 }
13514
13515 return NULL;
13516 }
13517
13518 static void
13519 init_remote_ops (void)
13520 {
13521 remote_ops.to_shortname = "remote";
13522 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13523 remote_ops.to_doc =
13524 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13525 Specify the serial device it is connected to\n\
13526 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13527 remote_ops.to_open = remote_open;
13528 remote_ops.to_close = remote_close;
13529 remote_ops.to_detach = remote_detach;
13530 remote_ops.to_disconnect = remote_disconnect;
13531 remote_ops.to_resume = remote_resume;
13532 remote_ops.to_commit_resume = remote_commit_resume;
13533 remote_ops.to_wait = remote_wait;
13534 remote_ops.to_fetch_registers = remote_fetch_registers;
13535 remote_ops.to_store_registers = remote_store_registers;
13536 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13537 remote_ops.to_files_info = remote_files_info;
13538 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13539 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13540 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13541 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13542 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13543 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13544 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13545 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13546 remote_ops.to_watchpoint_addr_within_range =
13547 remote_watchpoint_addr_within_range;
13548 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13549 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13550 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13551 remote_ops.to_region_ok_for_hw_watchpoint
13552 = remote_region_ok_for_hw_watchpoint;
13553 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13554 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13555 remote_ops.to_kill = remote_kill;
13556 remote_ops.to_load = remote_load;
13557 remote_ops.to_mourn_inferior = remote_mourn;
13558 remote_ops.to_pass_signals = remote_pass_signals;
13559 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13560 remote_ops.to_program_signals = remote_program_signals;
13561 remote_ops.to_thread_alive = remote_thread_alive;
13562 remote_ops.to_thread_name = remote_thread_name;
13563 remote_ops.to_update_thread_list = remote_update_thread_list;
13564 remote_ops.to_pid_to_str = remote_pid_to_str;
13565 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13566 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13567 remote_ops.to_stop = remote_stop;
13568 remote_ops.to_interrupt = remote_interrupt;
13569 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13570 remote_ops.to_xfer_partial = remote_xfer_partial;
13571 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13572 remote_ops.to_rcmd = remote_rcmd;
13573 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13574 remote_ops.to_log_command = serial_log_command;
13575 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13576 remote_ops.to_stratum = process_stratum;
13577 remote_ops.to_has_all_memory = default_child_has_all_memory;
13578 remote_ops.to_has_memory = default_child_has_memory;
13579 remote_ops.to_has_stack = default_child_has_stack;
13580 remote_ops.to_has_registers = default_child_has_registers;
13581 remote_ops.to_has_execution = default_child_has_execution;
13582 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13583 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13584 remote_ops.to_magic = OPS_MAGIC;
13585 remote_ops.to_memory_map = remote_memory_map;
13586 remote_ops.to_flash_erase = remote_flash_erase;
13587 remote_ops.to_flash_done = remote_flash_done;
13588 remote_ops.to_read_description = remote_read_description;
13589 remote_ops.to_search_memory = remote_search_memory;
13590 remote_ops.to_can_async_p = remote_can_async_p;
13591 remote_ops.to_is_async_p = remote_is_async_p;
13592 remote_ops.to_async = remote_async;
13593 remote_ops.to_thread_events = remote_thread_events;
13594 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13595 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13596 remote_ops.to_terminal_ours = remote_terminal_ours;
13597 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13598 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13599 remote_ops.to_supports_disable_randomization
13600 = remote_supports_disable_randomization;
13601 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13602 remote_ops.to_fileio_open = remote_hostio_open;
13603 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13604 remote_ops.to_fileio_pread = remote_hostio_pread;
13605 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13606 remote_ops.to_fileio_close = remote_hostio_close;
13607 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13608 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13609 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13610 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13611 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13612 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13613 remote_ops.to_trace_init = remote_trace_init;
13614 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13615 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13616 remote_ops.to_download_trace_state_variable
13617 = remote_download_trace_state_variable;
13618 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13619 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13620 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13621 remote_ops.to_trace_start = remote_trace_start;
13622 remote_ops.to_get_trace_status = remote_get_trace_status;
13623 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13624 remote_ops.to_trace_stop = remote_trace_stop;
13625 remote_ops.to_trace_find = remote_trace_find;
13626 remote_ops.to_get_trace_state_variable_value
13627 = remote_get_trace_state_variable_value;
13628 remote_ops.to_save_trace_data = remote_save_trace_data;
13629 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13630 remote_ops.to_upload_trace_state_variables
13631 = remote_upload_trace_state_variables;
13632 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13633 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13634 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13635 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13636 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13637 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13638 remote_ops.to_core_of_thread = remote_core_of_thread;
13639 remote_ops.to_verify_memory = remote_verify_memory;
13640 remote_ops.to_get_tib_address = remote_get_tib_address;
13641 remote_ops.to_set_permissions = remote_set_permissions;
13642 remote_ops.to_static_tracepoint_marker_at
13643 = remote_static_tracepoint_marker_at;
13644 remote_ops.to_static_tracepoint_markers_by_strid
13645 = remote_static_tracepoint_markers_by_strid;
13646 remote_ops.to_traceframe_info = remote_traceframe_info;
13647 remote_ops.to_use_agent = remote_use_agent;
13648 remote_ops.to_can_use_agent = remote_can_use_agent;
13649 remote_ops.to_supports_btrace = remote_supports_btrace;
13650 remote_ops.to_enable_btrace = remote_enable_btrace;
13651 remote_ops.to_disable_btrace = remote_disable_btrace;
13652 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13653 remote_ops.to_read_btrace = remote_read_btrace;
13654 remote_ops.to_btrace_conf = remote_btrace_conf;
13655 remote_ops.to_augmented_libraries_svr4_read =
13656 remote_augmented_libraries_svr4_read;
13657 remote_ops.to_follow_fork = remote_follow_fork;
13658 remote_ops.to_follow_exec = remote_follow_exec;
13659 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13660 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13661 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13662 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13663 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13664 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13665 remote_ops.to_execution_direction = remote_execution_direction;
13666 remote_ops.to_thread_handle_to_thread_info =
13667 remote_thread_handle_to_thread_info;
13668 }
13669
13670 /* Set up the extended remote vector by making a copy of the standard
13671 remote vector and adding to it. */
13672
13673 static void
13674 init_extended_remote_ops (void)
13675 {
13676 extended_remote_ops = remote_ops;
13677
13678 extended_remote_ops.to_shortname = "extended-remote";
13679 extended_remote_ops.to_longname =
13680 "Extended remote serial target in gdb-specific protocol";
13681 extended_remote_ops.to_doc =
13682 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13683 Specify the serial device it is connected to (e.g. /dev/ttya).";
13684 extended_remote_ops.to_open = extended_remote_open;
13685 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13686 extended_remote_ops.to_detach = extended_remote_detach;
13687 extended_remote_ops.to_attach = extended_remote_attach;
13688 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13689 extended_remote_ops.to_supports_disable_randomization
13690 = extended_remote_supports_disable_randomization;
13691 }
13692
13693 static int
13694 remote_can_async_p (struct target_ops *ops)
13695 {
13696 struct remote_state *rs = get_remote_state ();
13697
13698 /* We don't go async if the user has explicitly prevented it with the
13699 "maint set target-async" command. */
13700 if (!target_async_permitted)
13701 return 0;
13702
13703 /* We're async whenever the serial device is. */
13704 return serial_can_async_p (rs->remote_desc);
13705 }
13706
13707 static int
13708 remote_is_async_p (struct target_ops *ops)
13709 {
13710 struct remote_state *rs = get_remote_state ();
13711
13712 if (!target_async_permitted)
13713 /* We only enable async when the user specifically asks for it. */
13714 return 0;
13715
13716 /* We're async whenever the serial device is. */
13717 return serial_is_async_p (rs->remote_desc);
13718 }
13719
13720 /* Pass the SERIAL event on and up to the client. One day this code
13721 will be able to delay notifying the client of an event until the
13722 point where an entire packet has been received. */
13723
13724 static serial_event_ftype remote_async_serial_handler;
13725
13726 static void
13727 remote_async_serial_handler (struct serial *scb, void *context)
13728 {
13729 /* Don't propogate error information up to the client. Instead let
13730 the client find out about the error by querying the target. */
13731 inferior_event_handler (INF_REG_EVENT, NULL);
13732 }
13733
13734 static void
13735 remote_async_inferior_event_handler (gdb_client_data data)
13736 {
13737 inferior_event_handler (INF_REG_EVENT, NULL);
13738 }
13739
13740 static void
13741 remote_async (struct target_ops *ops, int enable)
13742 {
13743 struct remote_state *rs = get_remote_state ();
13744
13745 if (enable)
13746 {
13747 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13748
13749 /* If there are pending events in the stop reply queue tell the
13750 event loop to process them. */
13751 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13752 mark_async_event_handler (remote_async_inferior_event_token);
13753 /* For simplicity, below we clear the pending events token
13754 without remembering whether it is marked, so here we always
13755 mark it. If there's actually no pending notification to
13756 process, this ends up being a no-op (other than a spurious
13757 event-loop wakeup). */
13758 if (target_is_non_stop_p ())
13759 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13760 }
13761 else
13762 {
13763 serial_async (rs->remote_desc, NULL, NULL);
13764 /* If the core is disabling async, it doesn't want to be
13765 disturbed with target events. Clear all async event sources
13766 too. */
13767 clear_async_event_handler (remote_async_inferior_event_token);
13768 if (target_is_non_stop_p ())
13769 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13770 }
13771 }
13772
13773 /* Implementation of the to_thread_events method. */
13774
13775 static void
13776 remote_thread_events (struct target_ops *ops, int enable)
13777 {
13778 struct remote_state *rs = get_remote_state ();
13779 size_t size = get_remote_packet_size ();
13780
13781 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13782 return;
13783
13784 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13785 putpkt (rs->buf);
13786 getpkt (&rs->buf, &rs->buf_size, 0);
13787
13788 switch (packet_ok (rs->buf,
13789 &remote_protocol_packets[PACKET_QThreadEvents]))
13790 {
13791 case PACKET_OK:
13792 if (strcmp (rs->buf, "OK") != 0)
13793 error (_("Remote refused setting thread events: %s"), rs->buf);
13794 break;
13795 case PACKET_ERROR:
13796 warning (_("Remote failure reply: %s"), rs->buf);
13797 break;
13798 case PACKET_UNKNOWN:
13799 break;
13800 }
13801 }
13802
13803 static void
13804 set_remote_cmd (const char *args, int from_tty)
13805 {
13806 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13807 }
13808
13809 static void
13810 show_remote_cmd (const char *args, int from_tty)
13811 {
13812 /* We can't just use cmd_show_list here, because we want to skip
13813 the redundant "show remote Z-packet" and the legacy aliases. */
13814 struct cmd_list_element *list = remote_show_cmdlist;
13815 struct ui_out *uiout = current_uiout;
13816
13817 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13818 for (; list != NULL; list = list->next)
13819 if (strcmp (list->name, "Z-packet") == 0)
13820 continue;
13821 else if (list->type == not_set_cmd)
13822 /* Alias commands are exactly like the original, except they
13823 don't have the normal type. */
13824 continue;
13825 else
13826 {
13827 ui_out_emit_tuple option_emitter (uiout, "option");
13828
13829 uiout->field_string ("name", list->name);
13830 uiout->text (": ");
13831 if (list->type == show_cmd)
13832 do_show_command (NULL, from_tty, list);
13833 else
13834 cmd_func (list, NULL, from_tty);
13835 }
13836 }
13837
13838
13839 /* Function to be called whenever a new objfile (shlib) is detected. */
13840 static void
13841 remote_new_objfile (struct objfile *objfile)
13842 {
13843 struct remote_state *rs = get_remote_state ();
13844
13845 if (rs->remote_desc != 0) /* Have a remote connection. */
13846 remote_check_symbols ();
13847 }
13848
13849 /* Pull all the tracepoints defined on the target and create local
13850 data structures representing them. We don't want to create real
13851 tracepoints yet, we don't want to mess up the user's existing
13852 collection. */
13853
13854 static int
13855 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13856 {
13857 struct remote_state *rs = get_remote_state ();
13858 char *p;
13859
13860 /* Ask for a first packet of tracepoint definition. */
13861 putpkt ("qTfP");
13862 getpkt (&rs->buf, &rs->buf_size, 0);
13863 p = rs->buf;
13864 while (*p && *p != 'l')
13865 {
13866 parse_tracepoint_definition (p, utpp);
13867 /* Ask for another packet of tracepoint definition. */
13868 putpkt ("qTsP");
13869 getpkt (&rs->buf, &rs->buf_size, 0);
13870 p = rs->buf;
13871 }
13872 return 0;
13873 }
13874
13875 static int
13876 remote_upload_trace_state_variables (struct target_ops *self,
13877 struct uploaded_tsv **utsvp)
13878 {
13879 struct remote_state *rs = get_remote_state ();
13880 char *p;
13881
13882 /* Ask for a first packet of variable definition. */
13883 putpkt ("qTfV");
13884 getpkt (&rs->buf, &rs->buf_size, 0);
13885 p = rs->buf;
13886 while (*p && *p != 'l')
13887 {
13888 parse_tsv_definition (p, utsvp);
13889 /* Ask for another packet of variable definition. */
13890 putpkt ("qTsV");
13891 getpkt (&rs->buf, &rs->buf_size, 0);
13892 p = rs->buf;
13893 }
13894 return 0;
13895 }
13896
13897 /* The "set/show range-stepping" show hook. */
13898
13899 static void
13900 show_range_stepping (struct ui_file *file, int from_tty,
13901 struct cmd_list_element *c,
13902 const char *value)
13903 {
13904 fprintf_filtered (file,
13905 _("Debugger's willingness to use range stepping "
13906 "is %s.\n"), value);
13907 }
13908
13909 /* The "set/show range-stepping" set hook. */
13910
13911 static void
13912 set_range_stepping (const char *ignore_args, int from_tty,
13913 struct cmd_list_element *c)
13914 {
13915 struct remote_state *rs = get_remote_state ();
13916
13917 /* Whene enabling, check whether range stepping is actually
13918 supported by the target, and warn if not. */
13919 if (use_range_stepping)
13920 {
13921 if (rs->remote_desc != NULL)
13922 {
13923 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13924 remote_vcont_probe (rs);
13925
13926 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13927 && rs->supports_vCont.r)
13928 return;
13929 }
13930
13931 warning (_("Range stepping is not supported by the current target"));
13932 }
13933 }
13934
13935 void
13936 _initialize_remote (void)
13937 {
13938 struct cmd_list_element *cmd;
13939 const char *cmd_name;
13940
13941 /* architecture specific data */
13942 remote_gdbarch_data_handle =
13943 gdbarch_data_register_post_init (init_remote_state);
13944 remote_g_packet_data_handle =
13945 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13946
13947 remote_pspace_data
13948 = register_program_space_data_with_cleanup (NULL,
13949 remote_pspace_data_cleanup);
13950
13951 /* Initialize the per-target state. At the moment there is only one
13952 of these, not one per target. Only one target is active at a
13953 time. */
13954 remote_state = new_remote_state ();
13955
13956 init_remote_ops ();
13957 add_target (&remote_ops);
13958
13959 init_extended_remote_ops ();
13960 add_target (&extended_remote_ops);
13961
13962 /* Hook into new objfile notification. */
13963 observer_attach_new_objfile (remote_new_objfile);
13964 /* We're no longer interested in notification events of an inferior
13965 when it exits. */
13966 observer_attach_inferior_exit (discard_pending_stop_replies);
13967
13968 #if 0
13969 init_remote_threadtests ();
13970 #endif
13971
13972 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13973 /* set/show remote ... */
13974
13975 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13976 Remote protocol specific variables\n\
13977 Configure various remote-protocol specific variables such as\n\
13978 the packets being used"),
13979 &remote_set_cmdlist, "set remote ",
13980 0 /* allow-unknown */, &setlist);
13981 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13982 Remote protocol specific variables\n\
13983 Configure various remote-protocol specific variables such as\n\
13984 the packets being used"),
13985 &remote_show_cmdlist, "show remote ",
13986 0 /* allow-unknown */, &showlist);
13987
13988 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13989 Compare section data on target to the exec file.\n\
13990 Argument is a single section name (default: all loaded sections).\n\
13991 To compare only read-only loaded sections, specify the -r option."),
13992 &cmdlist);
13993
13994 add_cmd ("packet", class_maintenance, packet_command, _("\
13995 Send an arbitrary packet to a remote target.\n\
13996 maintenance packet TEXT\n\
13997 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13998 this command sends the string TEXT to the inferior, and displays the\n\
13999 response packet. GDB supplies the initial `$' character, and the\n\
14000 terminating `#' character and checksum."),
14001 &maintenancelist);
14002
14003 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14004 Set whether to send break if interrupted."), _("\
14005 Show whether to send break if interrupted."), _("\
14006 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14007 set_remotebreak, show_remotebreak,
14008 &setlist, &showlist);
14009 cmd_name = "remotebreak";
14010 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14011 deprecate_cmd (cmd, "set remote interrupt-sequence");
14012 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14013 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14014 deprecate_cmd (cmd, "show remote interrupt-sequence");
14015
14016 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14017 interrupt_sequence_modes, &interrupt_sequence_mode,
14018 _("\
14019 Set interrupt sequence to remote target."), _("\
14020 Show interrupt sequence to remote target."), _("\
14021 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14022 NULL, show_interrupt_sequence,
14023 &remote_set_cmdlist,
14024 &remote_show_cmdlist);
14025
14026 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14027 &interrupt_on_connect, _("\
14028 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14029 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14030 If set, interrupt sequence is sent to remote target."),
14031 NULL, NULL,
14032 &remote_set_cmdlist, &remote_show_cmdlist);
14033
14034 /* Install commands for configuring memory read/write packets. */
14035
14036 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14037 Set the maximum number of bytes per memory write packet (deprecated)."),
14038 &setlist);
14039 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14040 Show the maximum number of bytes per memory write packet (deprecated)."),
14041 &showlist);
14042 add_cmd ("memory-write-packet-size", no_class,
14043 set_memory_write_packet_size, _("\
14044 Set the maximum number of bytes per memory-write packet.\n\
14045 Specify the number of bytes in a packet or 0 (zero) for the\n\
14046 default packet size. The actual limit is further reduced\n\
14047 dependent on the target. Specify ``fixed'' to disable the\n\
14048 further restriction and ``limit'' to enable that restriction."),
14049 &remote_set_cmdlist);
14050 add_cmd ("memory-read-packet-size", no_class,
14051 set_memory_read_packet_size, _("\
14052 Set the maximum number of bytes per memory-read packet.\n\
14053 Specify the number of bytes in a packet or 0 (zero) for the\n\
14054 default packet size. The actual limit is further reduced\n\
14055 dependent on the target. Specify ``fixed'' to disable the\n\
14056 further restriction and ``limit'' to enable that restriction."),
14057 &remote_set_cmdlist);
14058 add_cmd ("memory-write-packet-size", no_class,
14059 show_memory_write_packet_size,
14060 _("Show the maximum number of bytes per memory-write packet."),
14061 &remote_show_cmdlist);
14062 add_cmd ("memory-read-packet-size", no_class,
14063 show_memory_read_packet_size,
14064 _("Show the maximum number of bytes per memory-read packet."),
14065 &remote_show_cmdlist);
14066
14067 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14068 &remote_hw_watchpoint_limit, _("\
14069 Set the maximum number of target hardware watchpoints."), _("\
14070 Show the maximum number of target hardware watchpoints."), _("\
14071 Specify a negative limit for unlimited."),
14072 NULL, NULL, /* FIXME: i18n: The maximum
14073 number of target hardware
14074 watchpoints is %s. */
14075 &remote_set_cmdlist, &remote_show_cmdlist);
14076 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14077 &remote_hw_watchpoint_length_limit, _("\
14078 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14079 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14080 Specify a negative limit for unlimited."),
14081 NULL, NULL, /* FIXME: i18n: The maximum
14082 length (in bytes) of a target
14083 hardware watchpoint is %s. */
14084 &remote_set_cmdlist, &remote_show_cmdlist);
14085 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14086 &remote_hw_breakpoint_limit, _("\
14087 Set the maximum number of target hardware breakpoints."), _("\
14088 Show the maximum number of target hardware breakpoints."), _("\
14089 Specify a negative limit for unlimited."),
14090 NULL, NULL, /* FIXME: i18n: The maximum
14091 number of target hardware
14092 breakpoints is %s. */
14093 &remote_set_cmdlist, &remote_show_cmdlist);
14094
14095 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14096 &remote_address_size, _("\
14097 Set the maximum size of the address (in bits) in a memory packet."), _("\
14098 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14099 NULL,
14100 NULL, /* FIXME: i18n: */
14101 &setlist, &showlist);
14102
14103 init_all_packet_configs ();
14104
14105 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14106 "X", "binary-download", 1);
14107
14108 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14109 "vCont", "verbose-resume", 0);
14110
14111 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14112 "QPassSignals", "pass-signals", 0);
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14115 "QCatchSyscalls", "catch-syscalls", 0);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14118 "QProgramSignals", "program-signals", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14121 "QSetWorkingDir", "set-working-dir", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14124 "QStartupWithShell", "startup-with-shell", 0);
14125
14126 add_packet_config_cmd (&remote_protocol_packets
14127 [PACKET_QEnvironmentHexEncoded],
14128 "QEnvironmentHexEncoded", "environment-hex-encoded",
14129 0);
14130
14131 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14132 "QEnvironmentReset", "environment-reset",
14133 0);
14134
14135 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14136 "QEnvironmentUnset", "environment-unset",
14137 0);
14138
14139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14140 "qSymbol", "symbol-lookup", 0);
14141
14142 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14143 "P", "set-register", 1);
14144
14145 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14146 "p", "fetch-register", 1);
14147
14148 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14149 "Z0", "software-breakpoint", 0);
14150
14151 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14152 "Z1", "hardware-breakpoint", 0);
14153
14154 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14155 "Z2", "write-watchpoint", 0);
14156
14157 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14158 "Z3", "read-watchpoint", 0);
14159
14160 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14161 "Z4", "access-watchpoint", 0);
14162
14163 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14164 "qXfer:auxv:read", "read-aux-vector", 0);
14165
14166 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14167 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14168
14169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14170 "qXfer:features:read", "target-features", 0);
14171
14172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14173 "qXfer:libraries:read", "library-info", 0);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14176 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14177
14178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14179 "qXfer:memory-map:read", "memory-map", 0);
14180
14181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14182 "qXfer:spu:read", "read-spu-object", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14185 "qXfer:spu:write", "write-spu-object", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14188 "qXfer:osdata:read", "osdata", 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14191 "qXfer:threads:read", "threads", 0);
14192
14193 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14194 "qXfer:siginfo:read", "read-siginfo-object", 0);
14195
14196 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14197 "qXfer:siginfo:write", "write-siginfo-object", 0);
14198
14199 add_packet_config_cmd
14200 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14201 "qXfer:traceframe-info:read", "traceframe-info", 0);
14202
14203 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14204 "qXfer:uib:read", "unwind-info-block", 0);
14205
14206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14207 "qGetTLSAddr", "get-thread-local-storage-address",
14208 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14211 "qGetTIBAddr", "get-thread-information-block-address",
14212 0);
14213
14214 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14215 "bc", "reverse-continue", 0);
14216
14217 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14218 "bs", "reverse-step", 0);
14219
14220 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14221 "qSupported", "supported-packets", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14224 "qSearch:memory", "search-memory", 0);
14225
14226 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14227 "qTStatus", "trace-status", 0);
14228
14229 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14230 "vFile:setfs", "hostio-setfs", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14233 "vFile:open", "hostio-open", 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14236 "vFile:pread", "hostio-pread", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14239 "vFile:pwrite", "hostio-pwrite", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14242 "vFile:close", "hostio-close", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14245 "vFile:unlink", "hostio-unlink", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14248 "vFile:readlink", "hostio-readlink", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14251 "vFile:fstat", "hostio-fstat", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14254 "vAttach", "attach", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14257 "vRun", "run", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14260 "QStartNoAckMode", "noack", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14263 "vKill", "kill", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14266 "qAttached", "query-attached", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14269 "ConditionalTracepoints",
14270 "conditional-tracepoints", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14273 "ConditionalBreakpoints",
14274 "conditional-breakpoints", 0);
14275
14276 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14277 "BreakpointCommands",
14278 "breakpoint-commands", 0);
14279
14280 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14281 "FastTracepoints", "fast-tracepoints", 0);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14284 "TracepointSource", "TracepointSource", 0);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14287 "QAllow", "allow", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14290 "StaticTracepoints", "static-tracepoints", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14293 "InstallInTrace", "install-in-trace", 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14296 "qXfer:statictrace:read", "read-sdata-object", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14299 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14302 "QDisableRandomization", "disable-randomization", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14305 "QAgent", "agent", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14308 "QTBuffer:size", "trace-buffer-size", 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14311 "Qbtrace:off", "disable-btrace", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14314 "Qbtrace:bts", "enable-btrace-bts", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14317 "Qbtrace:pt", "enable-btrace-pt", 0);
14318
14319 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14320 "qXfer:btrace", "read-btrace", 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14323 "qXfer:btrace-conf", "read-btrace-conf", 0);
14324
14325 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14326 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14327
14328 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14329 "multiprocess-feature", "multiprocess-feature", 0);
14330
14331 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14332 "swbreak-feature", "swbreak-feature", 0);
14333
14334 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14335 "hwbreak-feature", "hwbreak-feature", 0);
14336
14337 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14338 "fork-event-feature", "fork-event-feature", 0);
14339
14340 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14341 "vfork-event-feature", "vfork-event-feature", 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14344 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14345
14346 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14347 "vContSupported", "verbose-resume-supported", 0);
14348
14349 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14350 "exec-event-feature", "exec-event-feature", 0);
14351
14352 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14353 "vCtrlC", "ctrl-c", 0);
14354
14355 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14356 "QThreadEvents", "thread-events", 0);
14357
14358 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14359 "N stop reply", "no-resumed-stop-reply", 0);
14360
14361 /* Assert that we've registered "set remote foo-packet" commands
14362 for all packet configs. */
14363 {
14364 int i;
14365
14366 for (i = 0; i < PACKET_MAX; i++)
14367 {
14368 /* Ideally all configs would have a command associated. Some
14369 still don't though. */
14370 int excepted;
14371
14372 switch (i)
14373 {
14374 case PACKET_QNonStop:
14375 case PACKET_EnableDisableTracepoints_feature:
14376 case PACKET_tracenz_feature:
14377 case PACKET_DisconnectedTracing_feature:
14378 case PACKET_augmented_libraries_svr4_read_feature:
14379 case PACKET_qCRC:
14380 /* Additions to this list need to be well justified:
14381 pre-existing packets are OK; new packets are not. */
14382 excepted = 1;
14383 break;
14384 default:
14385 excepted = 0;
14386 break;
14387 }
14388
14389 /* This catches both forgetting to add a config command, and
14390 forgetting to remove a packet from the exception list. */
14391 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14392 }
14393 }
14394
14395 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14396 Z sub-packet has its own set and show commands, but users may
14397 have sets to this variable in their .gdbinit files (or in their
14398 documentation). */
14399 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14400 &remote_Z_packet_detect, _("\
14401 Set use of remote protocol `Z' packets"), _("\
14402 Show use of remote protocol `Z' packets "), _("\
14403 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14404 packets."),
14405 set_remote_protocol_Z_packet_cmd,
14406 show_remote_protocol_Z_packet_cmd,
14407 /* FIXME: i18n: Use of remote protocol
14408 `Z' packets is %s. */
14409 &remote_set_cmdlist, &remote_show_cmdlist);
14410
14411 add_prefix_cmd ("remote", class_files, remote_command, _("\
14412 Manipulate files on the remote system\n\
14413 Transfer files to and from the remote target system."),
14414 &remote_cmdlist, "remote ",
14415 0 /* allow-unknown */, &cmdlist);
14416
14417 add_cmd ("put", class_files, remote_put_command,
14418 _("Copy a local file to the remote system."),
14419 &remote_cmdlist);
14420
14421 add_cmd ("get", class_files, remote_get_command,
14422 _("Copy a remote file to the local system."),
14423 &remote_cmdlist);
14424
14425 add_cmd ("delete", class_files, remote_delete_command,
14426 _("Delete a remote file."),
14427 &remote_cmdlist);
14428
14429 add_setshow_string_noescape_cmd ("exec-file", class_files,
14430 &remote_exec_file_var, _("\
14431 Set the remote pathname for \"run\""), _("\
14432 Show the remote pathname for \"run\""), NULL,
14433 set_remote_exec_file,
14434 show_remote_exec_file,
14435 &remote_set_cmdlist,
14436 &remote_show_cmdlist);
14437
14438 add_setshow_boolean_cmd ("range-stepping", class_run,
14439 &use_range_stepping, _("\
14440 Enable or disable range stepping."), _("\
14441 Show whether target-assisted range stepping is enabled."), _("\
14442 If on, and the target supports it, when stepping a source line, GDB\n\
14443 tells the target to step the corresponding range of addresses itself instead\n\
14444 of issuing multiple single-steps. This speeds up source level\n\
14445 stepping. If off, GDB always issues single-steps, even if range\n\
14446 stepping is supported by the target. The default is on."),
14447 set_range_stepping,
14448 show_range_stepping,
14449 &setlist,
14450 &showlist);
14451
14452 /* Eventually initialize fileio. See fileio.c */
14453 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14454
14455 /* Take advantage of the fact that the TID field is not used, to tag
14456 special ptids with it set to != 0. */
14457 magic_null_ptid = ptid_build (42000, -1, 1);
14458 not_sent_ptid = ptid_build (42000, -2, 1);
14459 any_thread_ptid = ptid_build (42000, 0, 1);
14460 }