]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Constify remote_console_output
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45 #include "gdb_bfd.h"
46 #include "filestuff.h"
47 #include "rsp-low.h"
48 #include "disasm.h"
49 #include "location.h"
50
51 #include "gdb_sys_time.h"
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63 #include "gdb/fileio.h"
64 #include <sys/stat.h>
65 #include "xml-support.h"
66
67 #include "memory-map.h"
68
69 #include "tracepoint.h"
70 #include "ax.h"
71 #include "ax-gdb.h"
72 #include "agent.h"
73 #include "btrace.h"
74 #include "record-btrace.h"
75 #include <algorithm>
76 #include "common/scoped_restore.h"
77 #include "environ.h"
78 #include "common/byte-vector.h"
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 static void stop_reply_xfree (struct stop_reply *);
101
102 struct stop_reply_deleter
103 {
104 void operator() (stop_reply *r) const
105 {
106 stop_reply_xfree (r);
107 }
108 };
109
110 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
111
112 /* Generic configuration support for packets the stub optionally
113 supports. Allows the user to specify the use of the packet as well
114 as allowing GDB to auto-detect support in the remote stub. */
115
116 enum packet_support
117 {
118 PACKET_SUPPORT_UNKNOWN = 0,
119 PACKET_ENABLE,
120 PACKET_DISABLE
121 };
122
123 /* Analyze a packet's return value and update the packet config
124 accordingly. */
125
126 enum packet_result
127 {
128 PACKET_ERROR,
129 PACKET_OK,
130 PACKET_UNKNOWN
131 };
132
133 struct threads_listing_context;
134
135 /* Stub vCont actions support.
136
137 Each field is a boolean flag indicating whether the stub reports
138 support for the corresponding action. */
139
140 struct vCont_action_support
141 {
142 /* vCont;t */
143 bool t = false;
144
145 /* vCont;r */
146 bool r = false;
147
148 /* vCont;s */
149 bool s = false;
150
151 /* vCont;S */
152 bool S = false;
153 };
154
155 /* About this many threadisds fit in a packet. */
156
157 #define MAXTHREADLISTRESULTS 32
158
159 /* Data for the vFile:pread readahead cache. */
160
161 struct readahead_cache
162 {
163 /* Invalidate the readahead cache. */
164 void invalidate ();
165
166 /* Invalidate the readahead cache if it is holding data for FD. */
167 void invalidate_fd (int fd);
168
169 /* Serve pread from the readahead cache. Returns number of bytes
170 read, or 0 if the request can't be served from the cache. */
171 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
172
173 /* The file descriptor for the file that is being cached. -1 if the
174 cache is invalid. */
175 int fd = -1;
176
177 /* The offset into the file that the cache buffer corresponds
178 to. */
179 ULONGEST offset = 0;
180
181 /* The buffer holding the cache contents. */
182 gdb_byte *buf = nullptr;
183 /* The buffer's size. We try to read as much as fits into a packet
184 at a time. */
185 size_t bufsize = 0;
186
187 /* Cache hit and miss counters. */
188 ULONGEST hit_count = 0;
189 ULONGEST miss_count = 0;
190 };
191
192 /* Description of the remote protocol for a given architecture. */
193
194 struct packet_reg
195 {
196 long offset; /* Offset into G packet. */
197 long regnum; /* GDB's internal register number. */
198 LONGEST pnum; /* Remote protocol register number. */
199 int in_g_packet; /* Always part of G packet. */
200 /* long size in bytes; == register_size (target_gdbarch (), regnum);
201 at present. */
202 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
203 at present. */
204 };
205
206 struct remote_arch_state
207 {
208 explicit remote_arch_state (struct gdbarch *gdbarch);
209
210 /* Description of the remote protocol registers. */
211 long sizeof_g_packet;
212
213 /* Description of the remote protocol registers indexed by REGNUM
214 (making an array gdbarch_num_regs in size). */
215 std::unique_ptr<packet_reg[]> regs;
216
217 /* This is the size (in chars) of the first response to the ``g''
218 packet. It is used as a heuristic when determining the maximum
219 size of memory-read and memory-write packets. A target will
220 typically only reserve a buffer large enough to hold the ``g''
221 packet. The size does not include packet overhead (headers and
222 trailers). */
223 long actual_register_packet_size;
224
225 /* This is the maximum size (in chars) of a non read/write packet.
226 It is also used as a cap on the size of read/write packets. */
227 long remote_packet_size;
228 };
229
230 /* Description of the remote protocol state for the currently
231 connected target. This is per-target state, and independent of the
232 selected architecture. */
233
234 class remote_state
235 {
236 public:
237
238 remote_state ();
239 ~remote_state ();
240
241 /* Get the remote arch state for GDBARCH. */
242 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
243
244 public: /* data */
245
246 /* A buffer to use for incoming packets, and its current size. The
247 buffer is grown dynamically for larger incoming packets.
248 Outgoing packets may also be constructed in this buffer.
249 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
250 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
251 packets. */
252 char *buf;
253 long buf_size;
254
255 /* True if we're going through initial connection setup (finding out
256 about the remote side's threads, relocating symbols, etc.). */
257 bool starting_up = false;
258
259 /* If we negotiated packet size explicitly (and thus can bypass
260 heuristics for the largest packet size that will not overflow
261 a buffer in the stub), this will be set to that packet size.
262 Otherwise zero, meaning to use the guessed size. */
263 long explicit_packet_size = 0;
264
265 /* remote_wait is normally called when the target is running and
266 waits for a stop reply packet. But sometimes we need to call it
267 when the target is already stopped. We can send a "?" packet
268 and have remote_wait read the response. Or, if we already have
269 the response, we can stash it in BUF and tell remote_wait to
270 skip calling getpkt. This flag is set when BUF contains a
271 stop reply packet and the target is not waiting. */
272 int cached_wait_status = 0;
273
274 /* True, if in no ack mode. That is, neither GDB nor the stub will
275 expect acks from each other. The connection is assumed to be
276 reliable. */
277 bool noack_mode = false;
278
279 /* True if we're connected in extended remote mode. */
280 bool extended = false;
281
282 /* True if we resumed the target and we're waiting for the target to
283 stop. In the mean time, we can't start another command/query.
284 The remote server wouldn't be ready to process it, so we'd
285 timeout waiting for a reply that would never come and eventually
286 we'd close the connection. This can happen in asynchronous mode
287 because we allow GDB commands while the target is running. */
288 bool waiting_for_stop_reply = false;
289
290 /* The status of the stub support for the various vCont actions. */
291 vCont_action_support supports_vCont;
292
293 /* True if the user has pressed Ctrl-C, but the target hasn't
294 responded to that. */
295 bool ctrlc_pending_p = false;
296
297 /* True if we saw a Ctrl-C while reading or writing from/to the
298 remote descriptor. At that point it is not safe to send a remote
299 interrupt packet, so we instead remember we saw the Ctrl-C and
300 process it once we're done with sending/receiving the current
301 packet, which should be shortly. If however that takes too long,
302 and the user presses Ctrl-C again, we offer to disconnect. */
303 bool got_ctrlc_during_io = false;
304
305 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
306 remote_open knows that we don't have a file open when the program
307 starts. */
308 struct serial *remote_desc = nullptr;
309
310 /* These are the threads which we last sent to the remote system. The
311 TID member will be -1 for all or -2 for not sent yet. */
312 ptid_t general_thread = null_ptid;
313 ptid_t continue_thread = null_ptid;
314
315 /* This is the traceframe which we last selected on the remote system.
316 It will be -1 if no traceframe is selected. */
317 int remote_traceframe_number = -1;
318
319 char *last_pass_packet = nullptr;
320
321 /* The last QProgramSignals packet sent to the target. We bypass
322 sending a new program signals list down to the target if the new
323 packet is exactly the same as the last we sent. IOW, we only let
324 the target know about program signals list changes. */
325 char *last_program_signals_packet = nullptr;
326
327 gdb_signal last_sent_signal = GDB_SIGNAL_0;
328
329 bool last_sent_step = false;
330
331 /* The execution direction of the last resume we got. */
332 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
333
334 char *finished_object = nullptr;
335 char *finished_annex = nullptr;
336 ULONGEST finished_offset = 0;
337
338 /* Should we try the 'ThreadInfo' query packet?
339
340 This variable (NOT available to the user: auto-detect only!)
341 determines whether GDB will use the new, simpler "ThreadInfo"
342 query or the older, more complex syntax for thread queries.
343 This is an auto-detect variable (set to true at each connect,
344 and set to false when the target fails to recognize it). */
345 bool use_threadinfo_query = false;
346 bool use_threadextra_query = false;
347
348 threadref echo_nextthread {};
349 threadref nextthread {};
350 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
351
352 /* The state of remote notification. */
353 struct remote_notif_state *notif_state = nullptr;
354
355 /* The branch trace configuration. */
356 struct btrace_config btrace_config {};
357
358 /* The argument to the last "vFile:setfs:" packet we sent, used
359 to avoid sending repeated unnecessary "vFile:setfs:" packets.
360 Initialized to -1 to indicate that no "vFile:setfs:" packet
361 has yet been sent. */
362 int fs_pid = -1;
363
364 /* A readahead cache for vFile:pread. Often, reading a binary
365 involves a sequence of small reads. E.g., when parsing an ELF
366 file. A readahead cache helps mostly the case of remote
367 debugging on a connection with higher latency, due to the
368 request/reply nature of the RSP. We only cache data for a single
369 file descriptor at a time. */
370 struct readahead_cache readahead_cache;
371
372 /* The list of already fetched and acknowledged stop events. This
373 queue is used for notification Stop, and other notifications
374 don't need queue for their events, because the notification
375 events of Stop can't be consumed immediately, so that events
376 should be queued first, and be consumed by remote_wait_{ns,as}
377 one per time. Other notifications can consume their events
378 immediately, so queue is not needed for them. */
379 std::vector<stop_reply_up> stop_reply_queue;
380
381 /* Asynchronous signal handle registered as event loop source for
382 when we have pending events ready to be passed to the core. */
383 struct async_event_handler *remote_async_inferior_event_token = nullptr;
384
385 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
386 ``forever'' still use the normal timeout mechanism. This is
387 currently used by the ASYNC code to guarentee that target reads
388 during the initial connect always time-out. Once getpkt has been
389 modified to return a timeout indication and, in turn
390 remote_wait()/wait_for_inferior() have gained a timeout parameter
391 this can go away. */
392 int wait_forever_enabled_p = 1;
393
394 private:
395 /* Mapping of remote protocol data for each gdbarch. Usually there
396 is only one entry here, though we may see more with stubs that
397 support multi-process. */
398 std::unordered_map<struct gdbarch *, remote_arch_state>
399 m_arch_states;
400 };
401
402 static const target_info remote_target_info = {
403 "remote",
404 N_("Remote serial target in gdb-specific protocol"),
405 remote_doc
406 };
407
408 class remote_target : public process_stratum_target
409 {
410 public:
411 remote_target () = default;
412 ~remote_target () override;
413
414 const target_info &info () const override
415 { return remote_target_info; }
416
417 thread_control_capabilities get_thread_control_capabilities () override
418 { return tc_schedlock; }
419
420 /* Open a remote connection. */
421 static void open (const char *, int);
422
423 void close () override;
424
425 void detach (inferior *, int) override;
426 void disconnect (const char *, int) override;
427
428 void commit_resume () override;
429 void resume (ptid_t, int, enum gdb_signal) override;
430 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
431
432 void fetch_registers (struct regcache *, int) override;
433 void store_registers (struct regcache *, int) override;
434 void prepare_to_store (struct regcache *) override;
435
436 void files_info () override;
437
438 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
439
440 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
441 enum remove_bp_reason) override;
442
443
444 bool stopped_by_sw_breakpoint () override;
445 bool supports_stopped_by_sw_breakpoint () override;
446
447 bool stopped_by_hw_breakpoint () override;
448
449 bool supports_stopped_by_hw_breakpoint () override;
450
451 bool stopped_by_watchpoint () override;
452
453 bool stopped_data_address (CORE_ADDR *) override;
454
455 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
456
457 int can_use_hw_breakpoint (enum bptype, int, int) override;
458
459 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
464
465 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
466 struct expression *) override;
467
468 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
469 struct expression *) override;
470
471 void kill () override;
472
473 void load (const char *, int) override;
474
475 void mourn_inferior () override;
476
477 void pass_signals (int, const unsigned char *) override;
478
479 int set_syscall_catchpoint (int, bool, int,
480 gdb::array_view<const int>) override;
481
482 void program_signals (int, const unsigned char *) override;
483
484 bool thread_alive (ptid_t ptid) override;
485
486 const char *thread_name (struct thread_info *) override;
487
488 void update_thread_list () override;
489
490 const char *pid_to_str (ptid_t) override;
491
492 const char *extra_thread_info (struct thread_info *) override;
493
494 ptid_t get_ada_task_ptid (long lwp, long thread) override;
495
496 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
497 int handle_len,
498 inferior *inf) override;
499
500 void stop (ptid_t) override;
501
502 void interrupt () override;
503
504 void pass_ctrlc () override;
505
506 enum target_xfer_status xfer_partial (enum target_object object,
507 const char *annex,
508 gdb_byte *readbuf,
509 const gdb_byte *writebuf,
510 ULONGEST offset, ULONGEST len,
511 ULONGEST *xfered_len) override;
512
513 ULONGEST get_memory_xfer_limit () override;
514
515 void rcmd (const char *command, struct ui_file *output) override;
516
517 char *pid_to_exec_file (int pid) override;
518
519 void log_command (const char *cmd) override
520 {
521 serial_log_command (this, cmd);
522 }
523
524 CORE_ADDR get_thread_local_address (ptid_t ptid,
525 CORE_ADDR load_module_addr,
526 CORE_ADDR offset) override;
527
528 bool can_execute_reverse () override;
529
530 std::vector<mem_region> memory_map () override;
531
532 void flash_erase (ULONGEST address, LONGEST length) override;
533
534 void flash_done () override;
535
536 const struct target_desc *read_description () override;
537
538 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
539 const gdb_byte *pattern, ULONGEST pattern_len,
540 CORE_ADDR *found_addrp) override;
541
542 bool can_async_p () override;
543
544 bool is_async_p () override;
545
546 void async (int) override;
547
548 void thread_events (int) override;
549
550 int can_do_single_step () override;
551
552 void terminal_inferior () override;
553
554 void terminal_ours () override;
555
556 bool supports_non_stop () override;
557
558 bool supports_multi_process () override;
559
560 bool supports_disable_randomization () override;
561
562 bool filesystem_is_local () override;
563
564
565 int fileio_open (struct inferior *inf, const char *filename,
566 int flags, int mode, int warn_if_slow,
567 int *target_errno) override;
568
569 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_pread (int fd, gdb_byte *read_buf, int len,
573 ULONGEST offset, int *target_errno) override;
574
575 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
576
577 int fileio_close (int fd, int *target_errno) override;
578
579 int fileio_unlink (struct inferior *inf,
580 const char *filename,
581 int *target_errno) override;
582
583 gdb::optional<std::string>
584 fileio_readlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 bool supports_enable_disable_tracepoint () override;
589
590 bool supports_string_tracing () override;
591
592 bool supports_evaluation_of_breakpoint_conditions () override;
593
594 bool can_run_breakpoint_commands () override;
595
596 void trace_init () override;
597
598 void download_tracepoint (struct bp_location *location) override;
599
600 bool can_download_tracepoint () override;
601
602 void download_trace_state_variable (const trace_state_variable &tsv) override;
603
604 void enable_tracepoint (struct bp_location *location) override;
605
606 void disable_tracepoint (struct bp_location *location) override;
607
608 void trace_set_readonly_regions () override;
609
610 void trace_start () override;
611
612 int get_trace_status (struct trace_status *ts) override;
613
614 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
615 override;
616
617 void trace_stop () override;
618
619 int trace_find (enum trace_find_type type, int num,
620 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
621
622 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
623
624 int save_trace_data (const char *filename) override;
625
626 int upload_tracepoints (struct uploaded_tp **utpp) override;
627
628 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
629
630 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
631
632 int get_min_fast_tracepoint_insn_len () override;
633
634 void set_disconnected_tracing (int val) override;
635
636 void set_circular_trace_buffer (int val) override;
637
638 void set_trace_buffer_size (LONGEST val) override;
639
640 bool set_trace_notes (const char *user, const char *notes,
641 const char *stopnotes) override;
642
643 int core_of_thread (ptid_t ptid) override;
644
645 int verify_memory (const gdb_byte *data,
646 CORE_ADDR memaddr, ULONGEST size) override;
647
648
649 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
650
651 void set_permissions () override;
652
653 bool static_tracepoint_marker_at (CORE_ADDR,
654 struct static_tracepoint_marker *marker)
655 override;
656
657 std::vector<static_tracepoint_marker>
658 static_tracepoint_markers_by_strid (const char *id) override;
659
660 traceframe_info_up traceframe_info () override;
661
662 bool use_agent (bool use) override;
663 bool can_use_agent () override;
664
665 struct btrace_target_info *enable_btrace (ptid_t ptid,
666 const struct btrace_config *conf) override;
667
668 void disable_btrace (struct btrace_target_info *tinfo) override;
669
670 void teardown_btrace (struct btrace_target_info *tinfo) override;
671
672 enum btrace_error read_btrace (struct btrace_data *data,
673 struct btrace_target_info *btinfo,
674 enum btrace_read_type type) override;
675
676 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
677 bool augmented_libraries_svr4_read () override;
678 int follow_fork (int, int) override;
679 void follow_exec (struct inferior *, char *) override;
680 int insert_fork_catchpoint (int) override;
681 int remove_fork_catchpoint (int) override;
682 int insert_vfork_catchpoint (int) override;
683 int remove_vfork_catchpoint (int) override;
684 int insert_exec_catchpoint (int) override;
685 int remove_exec_catchpoint (int) override;
686 enum exec_direction_kind execution_direction () override;
687
688 public: /* Remote specific methods. */
689
690 void remote_download_command_source (int num, ULONGEST addr,
691 struct command_line *cmds);
692
693 void remote_file_put (const char *local_file, const char *remote_file,
694 int from_tty);
695 void remote_file_get (const char *remote_file, const char *local_file,
696 int from_tty);
697 void remote_file_delete (const char *remote_file, int from_tty);
698
699 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *remote_errno);
703 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
704 ULONGEST offset, int *remote_errno);
705
706 int remote_hostio_send_command (int command_bytes, int which_packet,
707 int *remote_errno, char **attachment,
708 int *attachment_len);
709 int remote_hostio_set_filesystem (struct inferior *inf,
710 int *remote_errno);
711 /* We should get rid of this and use fileio_open directly. */
712 int remote_hostio_open (struct inferior *inf, const char *filename,
713 int flags, int mode, int warn_if_slow,
714 int *remote_errno);
715 int remote_hostio_close (int fd, int *remote_errno);
716
717 int remote_hostio_unlink (inferior *inf, const char *filename,
718 int *remote_errno);
719
720 struct remote_state *get_remote_state ();
721
722 long get_remote_packet_size (void);
723 long get_memory_packet_size (struct memory_packet_config *config);
724
725 long get_memory_write_packet_size ();
726 long get_memory_read_packet_size ();
727
728 char *append_pending_thread_resumptions (char *p, char *endp,
729 ptid_t ptid);
730 static void open_1 (const char *name, int from_tty, int extended_p);
731 void start_remote (int from_tty, int extended_p);
732 void remote_detach_1 (struct inferior *inf, int from_tty);
733
734 char *append_resumption (char *p, char *endp,
735 ptid_t ptid, int step, gdb_signal siggnal);
736 int remote_resume_with_vcont (ptid_t ptid, int step,
737 gdb_signal siggnal);
738
739 void add_current_inferior_and_thread (char *wait_status);
740
741 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
742 int options);
743 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
744 int options);
745
746 ptid_t process_stop_reply (struct stop_reply *stop_reply,
747 target_waitstatus *status);
748
749 void remote_notice_new_inferior (ptid_t currthread, int executing);
750
751 void process_initial_stop_replies (int from_tty);
752
753 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
754
755 void btrace_sync_conf (const btrace_config *conf);
756
757 void remote_btrace_maybe_reopen ();
758
759 void remove_new_fork_children (threads_listing_context *context);
760 void kill_new_fork_children (int pid);
761 void discard_pending_stop_replies (struct inferior *inf);
762 int stop_reply_queue_length ();
763
764 void check_pending_events_prevent_wildcard_vcont
765 (int *may_global_wildcard_vcont);
766
767 void discard_pending_stop_replies_in_queue ();
768 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
769 struct stop_reply *queued_stop_reply (ptid_t ptid);
770 int peek_stop_reply (ptid_t ptid);
771 void remote_parse_stop_reply (char *buf, stop_reply *event);
772
773 void remote_stop_ns (ptid_t ptid);
774 void remote_interrupt_as ();
775 void remote_interrupt_ns ();
776
777 char *remote_get_noisy_reply ();
778 int remote_query_attached (int pid);
779 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
780 int try_open_exec);
781
782 ptid_t remote_current_thread (ptid_t oldpid);
783 ptid_t get_current_thread (char *wait_status);
784
785 void set_thread (ptid_t ptid, int gen);
786 void set_general_thread (ptid_t ptid);
787 void set_continue_thread (ptid_t ptid);
788 void set_general_process ();
789
790 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
791
792 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
793 gdb_ext_thread_info *info);
794 int remote_get_threadinfo (threadref *threadid, int fieldset,
795 gdb_ext_thread_info *info);
796
797 int parse_threadlist_response (char *pkt, int result_limit,
798 threadref *original_echo,
799 threadref *resultlist,
800 int *doneflag);
801 int remote_get_threadlist (int startflag, threadref *nextthread,
802 int result_limit, int *done, int *result_count,
803 threadref *threadlist);
804
805 int remote_threadlist_iterator (rmt_thread_action stepfunction,
806 void *context, int looplimit);
807
808 int remote_get_threads_with_ql (threads_listing_context *context);
809 int remote_get_threads_with_qxfer (threads_listing_context *context);
810 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
811
812 void extended_remote_restart ();
813
814 void get_offsets ();
815
816 void remote_check_symbols ();
817
818 void remote_supported_packet (const struct protocol_feature *feature,
819 enum packet_support support,
820 const char *argument);
821
822 void remote_query_supported ();
823
824 void remote_packet_size (const protocol_feature *feature,
825 packet_support support, const char *value);
826
827 void remote_serial_quit_handler ();
828
829 void remote_detach_pid (int pid);
830
831 void remote_vcont_probe ();
832
833 void remote_resume_with_hc (ptid_t ptid, int step,
834 gdb_signal siggnal);
835
836 void send_interrupt_sequence ();
837 void interrupt_query ();
838
839 void remote_notif_get_pending_events (notif_client *nc);
840
841 int fetch_register_using_p (struct regcache *regcache,
842 packet_reg *reg);
843 int send_g_packet ();
844 void process_g_packet (struct regcache *regcache);
845 void fetch_registers_using_g (struct regcache *regcache);
846 int store_register_using_P (const struct regcache *regcache,
847 packet_reg *reg);
848 void store_registers_using_G (const struct regcache *regcache);
849
850 void set_remote_traceframe ();
851
852 void check_binary_download (CORE_ADDR addr);
853
854 target_xfer_status remote_write_bytes_aux (const char *header,
855 CORE_ADDR memaddr,
856 const gdb_byte *myaddr,
857 ULONGEST len_units,
858 int unit_size,
859 ULONGEST *xfered_len_units,
860 char packet_format,
861 int use_length);
862
863 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
864 const gdb_byte *myaddr, ULONGEST len,
865 int unit_size, ULONGEST *xfered_len);
866
867 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size, ULONGEST *xfered_len_units);
870
871 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
872 ULONGEST memaddr,
873 ULONGEST len,
874 int unit_size,
875 ULONGEST *xfered_len);
876
877 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
878 gdb_byte *myaddr, ULONGEST len,
879 int unit_size,
880 ULONGEST *xfered_len);
881
882 packet_result remote_send_printf (const char *format, ...)
883 ATTRIBUTE_PRINTF (2, 3);
884
885 target_xfer_status remote_flash_write (ULONGEST address,
886 ULONGEST length, ULONGEST *xfered_len,
887 const gdb_byte *data);
888
889 int readchar (int timeout);
890
891 void remote_serial_write (const char *str, int len);
892
893 int putpkt (const char *buf);
894 int putpkt_binary (const char *buf, int cnt);
895
896 void skip_frame ();
897 long read_frame (char **buf_p, long *sizeof_buf);
898 void getpkt (char **buf, long *sizeof_buf, int forever);
899 int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
900 int expecting_notif, int *is_notif);
901 int getpkt_sane (char **buf, long *sizeof_buf, int forever);
902 int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
903 int *is_notif);
904 int remote_vkill (int pid);
905 void remote_kill_k ();
906
907 void extended_remote_disable_randomization (int val);
908 int extended_remote_run (const std::string &args);
909
910 void send_environment_packet (const char *action,
911 const char *packet,
912 const char *value);
913
914 void extended_remote_environment_support ();
915 void extended_remote_set_inferior_cwd ();
916
917 target_xfer_status remote_write_qxfer (const char *object_name,
918 const char *annex,
919 const gdb_byte *writebuf,
920 ULONGEST offset, LONGEST len,
921 ULONGEST *xfered_len,
922 struct packet_config *packet);
923
924 target_xfer_status remote_read_qxfer (const char *object_name,
925 const char *annex,
926 gdb_byte *readbuf, ULONGEST offset,
927 LONGEST len,
928 ULONGEST *xfered_len,
929 struct packet_config *packet);
930
931 void push_stop_reply (struct stop_reply *new_event);
932
933 bool vcont_r_supported ();
934
935 void packet_command (const char *args, int from_tty);
936
937 private: /* data fields */
938
939 /* The remote state. Don't reference this directly. Use the
940 get_remote_state method instead. */
941 remote_state m_remote_state;
942 };
943
944 static const target_info extended_remote_target_info = {
945 "extended-remote",
946 N_("Extended remote serial target in gdb-specific protocol"),
947 remote_doc
948 };
949
950 /* Set up the extended remote target by extending the standard remote
951 target and adding to it. */
952
953 class extended_remote_target final : public remote_target
954 {
955 public:
956 const target_info &info () const override
957 { return extended_remote_target_info; }
958
959 /* Open an extended-remote connection. */
960 static void open (const char *, int);
961
962 bool can_create_inferior () override { return true; }
963 void create_inferior (const char *, const std::string &,
964 char **, int) override;
965
966 void detach (inferior *, int) override;
967
968 bool can_attach () override { return true; }
969 void attach (const char *, int) override;
970
971 void post_attach (int) override;
972 bool supports_disable_randomization () override;
973 };
974
975 /* Per-program-space data key. */
976 static const struct program_space_data *remote_pspace_data;
977
978 /* The variable registered as the control variable used by the
979 remote exec-file commands. While the remote exec-file setting is
980 per-program-space, the set/show machinery uses this as the
981 location of the remote exec-file value. */
982 static char *remote_exec_file_var;
983
984 /* The size to align memory write packets, when practical. The protocol
985 does not guarantee any alignment, and gdb will generate short
986 writes and unaligned writes, but even as a best-effort attempt this
987 can improve bulk transfers. For instance, if a write is misaligned
988 relative to the target's data bus, the stub may need to make an extra
989 round trip fetching data from the target. This doesn't make a
990 huge difference, but it's easy to do, so we try to be helpful.
991
992 The alignment chosen is arbitrary; usually data bus width is
993 important here, not the possibly larger cache line size. */
994 enum { REMOTE_ALIGN_WRITES = 16 };
995
996 /* Prototypes for local functions. */
997
998 static int hexnumlen (ULONGEST num);
999
1000 static int stubhex (int ch);
1001
1002 static int hexnumstr (char *, ULONGEST);
1003
1004 static int hexnumnstr (char *, ULONGEST, int);
1005
1006 static CORE_ADDR remote_address_masked (CORE_ADDR);
1007
1008 static void print_packet (const char *);
1009
1010 static int stub_unpack_int (char *buff, int fieldlength);
1011
1012 struct packet_config;
1013
1014 static void show_packet_config_cmd (struct packet_config *config);
1015
1016 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1017 int from_tty,
1018 struct cmd_list_element *c,
1019 const char *value);
1020
1021 static ptid_t read_ptid (const char *buf, const char **obuf);
1022
1023 static void remote_async_inferior_event_handler (gdb_client_data);
1024
1025 static bool remote_read_description_p (struct target_ops *target);
1026
1027 static void remote_console_output (const char *msg);
1028
1029 static void remote_btrace_reset (remote_state *rs);
1030
1031 static void remote_unpush_and_throw (void);
1032
1033 /* For "remote". */
1034
1035 static struct cmd_list_element *remote_cmdlist;
1036
1037 /* For "set remote" and "show remote". */
1038
1039 static struct cmd_list_element *remote_set_cmdlist;
1040 static struct cmd_list_element *remote_show_cmdlist;
1041
1042 /* Controls whether GDB is willing to use range stepping. */
1043
1044 static int use_range_stepping = 1;
1045
1046 /* The max number of chars in debug output. The rest of chars are
1047 omitted. */
1048
1049 #define REMOTE_DEBUG_MAX_CHAR 512
1050
1051 /* Private data that we'll store in (struct thread_info)->priv. */
1052 struct remote_thread_info : public private_thread_info
1053 {
1054 std::string extra;
1055 std::string name;
1056 int core = -1;
1057
1058 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1059 sequence of bytes. */
1060 gdb::byte_vector thread_handle;
1061
1062 /* Whether the target stopped for a breakpoint/watchpoint. */
1063 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1064
1065 /* This is set to the data address of the access causing the target
1066 to stop for a watchpoint. */
1067 CORE_ADDR watch_data_address = 0;
1068
1069 /* Fields used by the vCont action coalescing implemented in
1070 remote_resume / remote_commit_resume. remote_resume stores each
1071 thread's last resume request in these fields, so that a later
1072 remote_commit_resume knows which is the proper action for this
1073 thread to include in the vCont packet. */
1074
1075 /* True if the last target_resume call for this thread was a step
1076 request, false if a continue request. */
1077 int last_resume_step = 0;
1078
1079 /* The signal specified in the last target_resume call for this
1080 thread. */
1081 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1082
1083 /* Whether this thread was already vCont-resumed on the remote
1084 side. */
1085 int vcont_resumed = 0;
1086 };
1087
1088 remote_state::remote_state ()
1089 {
1090 /* The default buffer size is unimportant; it will be expanded
1091 whenever a larger buffer is needed. */
1092 this->buf_size = 400;
1093 this->buf = (char *) xmalloc (this->buf_size);
1094 }
1095
1096 remote_state::~remote_state ()
1097 {
1098 xfree (this->last_pass_packet);
1099 xfree (this->last_program_signals_packet);
1100 xfree (this->buf);
1101 xfree (this->finished_object);
1102 xfree (this->finished_annex);
1103 }
1104
1105 /* Utility: generate error from an incoming stub packet. */
1106 static void
1107 trace_error (char *buf)
1108 {
1109 if (*buf++ != 'E')
1110 return; /* not an error msg */
1111 switch (*buf)
1112 {
1113 case '1': /* malformed packet error */
1114 if (*++buf == '0') /* general case: */
1115 error (_("remote.c: error in outgoing packet."));
1116 else
1117 error (_("remote.c: error in outgoing packet at field #%ld."),
1118 strtol (buf, NULL, 16));
1119 default:
1120 error (_("Target returns error code '%s'."), buf);
1121 }
1122 }
1123
1124 /* Utility: wait for reply from stub, while accepting "O" packets. */
1125
1126 char *
1127 remote_target::remote_get_noisy_reply ()
1128 {
1129 struct remote_state *rs = get_remote_state ();
1130
1131 do /* Loop on reply from remote stub. */
1132 {
1133 char *buf;
1134
1135 QUIT; /* Allow user to bail out with ^C. */
1136 getpkt (&rs->buf, &rs->buf_size, 0);
1137 buf = rs->buf;
1138 if (buf[0] == 'E')
1139 trace_error (buf);
1140 else if (startswith (buf, "qRelocInsn:"))
1141 {
1142 ULONGEST ul;
1143 CORE_ADDR from, to, org_to;
1144 const char *p, *pp;
1145 int adjusted_size = 0;
1146 int relocated = 0;
1147
1148 p = buf + strlen ("qRelocInsn:");
1149 pp = unpack_varlen_hex (p, &ul);
1150 if (*pp != ';')
1151 error (_("invalid qRelocInsn packet: %s"), buf);
1152 from = ul;
1153
1154 p = pp + 1;
1155 unpack_varlen_hex (p, &ul);
1156 to = ul;
1157
1158 org_to = to;
1159
1160 TRY
1161 {
1162 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1163 relocated = 1;
1164 }
1165 CATCH (ex, RETURN_MASK_ALL)
1166 {
1167 if (ex.error == MEMORY_ERROR)
1168 {
1169 /* Propagate memory errors silently back to the
1170 target. The stub may have limited the range of
1171 addresses we can write to, for example. */
1172 }
1173 else
1174 {
1175 /* Something unexpectedly bad happened. Be verbose
1176 so we can tell what, and propagate the error back
1177 to the stub, so it doesn't get stuck waiting for
1178 a response. */
1179 exception_fprintf (gdb_stderr, ex,
1180 _("warning: relocating instruction: "));
1181 }
1182 putpkt ("E01");
1183 }
1184 END_CATCH
1185
1186 if (relocated)
1187 {
1188 adjusted_size = to - org_to;
1189
1190 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
1191 putpkt (buf);
1192 }
1193 }
1194 else if (buf[0] == 'O' && buf[1] != 'K')
1195 remote_console_output (buf + 1); /* 'O' message from stub */
1196 else
1197 return buf; /* Here's the actual reply. */
1198 }
1199 while (1);
1200 }
1201
1202 struct remote_arch_state *
1203 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1204 {
1205 remote_arch_state *rsa;
1206
1207 auto it = this->m_arch_states.find (gdbarch);
1208 if (it == this->m_arch_states.end ())
1209 {
1210 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1211 std::forward_as_tuple (gdbarch),
1212 std::forward_as_tuple (gdbarch));
1213 rsa = &p.first->second;
1214
1215 /* Make sure that the packet buffer is plenty big enough for
1216 this architecture. */
1217 if (this->buf_size < rsa->remote_packet_size)
1218 {
1219 this->buf_size = 2 * rsa->remote_packet_size;
1220 this->buf = (char *) xrealloc (this->buf, this->buf_size);
1221 }
1222 }
1223 else
1224 rsa = &it->second;
1225
1226 return rsa;
1227 }
1228
1229 /* Fetch the global remote target state. */
1230
1231 remote_state *
1232 remote_target::get_remote_state ()
1233 {
1234 /* Make sure that the remote architecture state has been
1235 initialized, because doing so might reallocate rs->buf. Any
1236 function which calls getpkt also needs to be mindful of changes
1237 to rs->buf, but this call limits the number of places which run
1238 into trouble. */
1239 m_remote_state.get_remote_arch_state (target_gdbarch ());
1240
1241 return &m_remote_state;
1242 }
1243
1244 /* Cleanup routine for the remote module's pspace data. */
1245
1246 static void
1247 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1248 {
1249 char *remote_exec_file = (char *) arg;
1250
1251 xfree (remote_exec_file);
1252 }
1253
1254 /* Fetch the remote exec-file from the current program space. */
1255
1256 static const char *
1257 get_remote_exec_file (void)
1258 {
1259 char *remote_exec_file;
1260
1261 remote_exec_file
1262 = (char *) program_space_data (current_program_space,
1263 remote_pspace_data);
1264 if (remote_exec_file == NULL)
1265 return "";
1266
1267 return remote_exec_file;
1268 }
1269
1270 /* Set the remote exec file for PSPACE. */
1271
1272 static void
1273 set_pspace_remote_exec_file (struct program_space *pspace,
1274 char *remote_exec_file)
1275 {
1276 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1277
1278 xfree (old_file);
1279 set_program_space_data (pspace, remote_pspace_data,
1280 xstrdup (remote_exec_file));
1281 }
1282
1283 /* The "set/show remote exec-file" set command hook. */
1284
1285 static void
1286 set_remote_exec_file (const char *ignored, int from_tty,
1287 struct cmd_list_element *c)
1288 {
1289 gdb_assert (remote_exec_file_var != NULL);
1290 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1291 }
1292
1293 /* The "set/show remote exec-file" show command hook. */
1294
1295 static void
1296 show_remote_exec_file (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *cmd, const char *value)
1298 {
1299 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1300 }
1301
1302 static int
1303 compare_pnums (const void *lhs_, const void *rhs_)
1304 {
1305 const struct packet_reg * const *lhs
1306 = (const struct packet_reg * const *) lhs_;
1307 const struct packet_reg * const *rhs
1308 = (const struct packet_reg * const *) rhs_;
1309
1310 if ((*lhs)->pnum < (*rhs)->pnum)
1311 return -1;
1312 else if ((*lhs)->pnum == (*rhs)->pnum)
1313 return 0;
1314 else
1315 return 1;
1316 }
1317
1318 static int
1319 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1320 {
1321 int regnum, num_remote_regs, offset;
1322 struct packet_reg **remote_regs;
1323
1324 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1325 {
1326 struct packet_reg *r = &regs[regnum];
1327
1328 if (register_size (gdbarch, regnum) == 0)
1329 /* Do not try to fetch zero-sized (placeholder) registers. */
1330 r->pnum = -1;
1331 else
1332 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1333
1334 r->regnum = regnum;
1335 }
1336
1337 /* Define the g/G packet format as the contents of each register
1338 with a remote protocol number, in order of ascending protocol
1339 number. */
1340
1341 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1342 for (num_remote_regs = 0, regnum = 0;
1343 regnum < gdbarch_num_regs (gdbarch);
1344 regnum++)
1345 if (regs[regnum].pnum != -1)
1346 remote_regs[num_remote_regs++] = &regs[regnum];
1347
1348 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1349 compare_pnums);
1350
1351 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1352 {
1353 remote_regs[regnum]->in_g_packet = 1;
1354 remote_regs[regnum]->offset = offset;
1355 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1356 }
1357
1358 return offset;
1359 }
1360
1361 /* Given the architecture described by GDBARCH, return the remote
1362 protocol register's number and the register's offset in the g/G
1363 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1364 If the target does not have a mapping for REGNUM, return false,
1365 otherwise, return true. */
1366
1367 int
1368 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1369 int *pnum, int *poffset)
1370 {
1371 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1372
1373 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1374
1375 map_regcache_remote_table (gdbarch, regs.data ());
1376
1377 *pnum = regs[regnum].pnum;
1378 *poffset = regs[regnum].offset;
1379
1380 return *pnum != -1;
1381 }
1382
1383 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1384 {
1385 /* Use the architecture to build a regnum<->pnum table, which will be
1386 1:1 unless a feature set specifies otherwise. */
1387 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1388
1389 /* Record the maximum possible size of the g packet - it may turn out
1390 to be smaller. */
1391 this->sizeof_g_packet
1392 = map_regcache_remote_table (gdbarch, this->regs.get ());
1393
1394 /* Default maximum number of characters in a packet body. Many
1395 remote stubs have a hardwired buffer size of 400 bytes
1396 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1397 as the maximum packet-size to ensure that the packet and an extra
1398 NUL character can always fit in the buffer. This stops GDB
1399 trashing stubs that try to squeeze an extra NUL into what is
1400 already a full buffer (As of 1999-12-04 that was most stubs). */
1401 this->remote_packet_size = 400 - 1;
1402
1403 /* This one is filled in when a ``g'' packet is received. */
1404 this->actual_register_packet_size = 0;
1405
1406 /* Should rsa->sizeof_g_packet needs more space than the
1407 default, adjust the size accordingly. Remember that each byte is
1408 encoded as two characters. 32 is the overhead for the packet
1409 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1410 (``$NN:G...#NN'') is a better guess, the below has been padded a
1411 little. */
1412 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1413 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1414 }
1415
1416 /* Get a pointer to the current remote target. If not connected to a
1417 remote target, return NULL. */
1418
1419 static remote_target *
1420 get_current_remote_target ()
1421 {
1422 target_ops *proc_target = find_target_at (process_stratum);
1423 return dynamic_cast<remote_target *> (proc_target);
1424 }
1425
1426 /* Return the current allowed size of a remote packet. This is
1427 inferred from the current architecture, and should be used to
1428 limit the length of outgoing packets. */
1429 long
1430 remote_target::get_remote_packet_size ()
1431 {
1432 struct remote_state *rs = get_remote_state ();
1433 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1434
1435 if (rs->explicit_packet_size)
1436 return rs->explicit_packet_size;
1437
1438 return rsa->remote_packet_size;
1439 }
1440
1441 static struct packet_reg *
1442 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1443 long regnum)
1444 {
1445 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1446 return NULL;
1447 else
1448 {
1449 struct packet_reg *r = &rsa->regs[regnum];
1450
1451 gdb_assert (r->regnum == regnum);
1452 return r;
1453 }
1454 }
1455
1456 static struct packet_reg *
1457 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1458 LONGEST pnum)
1459 {
1460 int i;
1461
1462 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1463 {
1464 struct packet_reg *r = &rsa->regs[i];
1465
1466 if (r->pnum == pnum)
1467 return r;
1468 }
1469 return NULL;
1470 }
1471
1472 /* Allow the user to specify what sequence to send to the remote
1473 when he requests a program interruption: Although ^C is usually
1474 what remote systems expect (this is the default, here), it is
1475 sometimes preferable to send a break. On other systems such
1476 as the Linux kernel, a break followed by g, which is Magic SysRq g
1477 is required in order to interrupt the execution. */
1478 const char interrupt_sequence_control_c[] = "Ctrl-C";
1479 const char interrupt_sequence_break[] = "BREAK";
1480 const char interrupt_sequence_break_g[] = "BREAK-g";
1481 static const char *const interrupt_sequence_modes[] =
1482 {
1483 interrupt_sequence_control_c,
1484 interrupt_sequence_break,
1485 interrupt_sequence_break_g,
1486 NULL
1487 };
1488 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1489
1490 static void
1491 show_interrupt_sequence (struct ui_file *file, int from_tty,
1492 struct cmd_list_element *c,
1493 const char *value)
1494 {
1495 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1496 fprintf_filtered (file,
1497 _("Send the ASCII ETX character (Ctrl-c) "
1498 "to the remote target to interrupt the "
1499 "execution of the program.\n"));
1500 else if (interrupt_sequence_mode == interrupt_sequence_break)
1501 fprintf_filtered (file,
1502 _("send a break signal to the remote target "
1503 "to interrupt the execution of the program.\n"));
1504 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1505 fprintf_filtered (file,
1506 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1507 "the remote target to interrupt the execution "
1508 "of Linux kernel.\n"));
1509 else
1510 internal_error (__FILE__, __LINE__,
1511 _("Invalid value for interrupt_sequence_mode: %s."),
1512 interrupt_sequence_mode);
1513 }
1514
1515 /* This boolean variable specifies whether interrupt_sequence is sent
1516 to the remote target when gdb connects to it.
1517 This is mostly needed when you debug the Linux kernel: The Linux kernel
1518 expects BREAK g which is Magic SysRq g for connecting gdb. */
1519 static int interrupt_on_connect = 0;
1520
1521 /* This variable is used to implement the "set/show remotebreak" commands.
1522 Since these commands are now deprecated in favor of "set/show remote
1523 interrupt-sequence", it no longer has any effect on the code. */
1524 static int remote_break;
1525
1526 static void
1527 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1528 {
1529 if (remote_break)
1530 interrupt_sequence_mode = interrupt_sequence_break;
1531 else
1532 interrupt_sequence_mode = interrupt_sequence_control_c;
1533 }
1534
1535 static void
1536 show_remotebreak (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539 {
1540 }
1541
1542 /* This variable sets the number of bits in an address that are to be
1543 sent in a memory ("M" or "m") packet. Normally, after stripping
1544 leading zeros, the entire address would be sent. This variable
1545 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1546 initial implementation of remote.c restricted the address sent in
1547 memory packets to ``host::sizeof long'' bytes - (typically 32
1548 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1549 address was never sent. Since fixing this bug may cause a break in
1550 some remote targets this variable is principly provided to
1551 facilitate backward compatibility. */
1552
1553 static unsigned int remote_address_size;
1554
1555 \f
1556 /* User configurable variables for the number of characters in a
1557 memory read/write packet. MIN (rsa->remote_packet_size,
1558 rsa->sizeof_g_packet) is the default. Some targets need smaller
1559 values (fifo overruns, et.al.) and some users need larger values
1560 (speed up transfers). The variables ``preferred_*'' (the user
1561 request), ``current_*'' (what was actually set) and ``forced_*''
1562 (Positive - a soft limit, negative - a hard limit). */
1563
1564 struct memory_packet_config
1565 {
1566 const char *name;
1567 long size;
1568 int fixed_p;
1569 };
1570
1571 /* The default max memory-write-packet-size, when the setting is
1572 "fixed". The 16k is historical. (It came from older GDB's using
1573 alloca for buffers and the knowledge (folklore?) that some hosts
1574 don't cope very well with large alloca calls.) */
1575 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1576
1577 /* The minimum remote packet size for memory transfers. Ensures we
1578 can write at least one byte. */
1579 #define MIN_MEMORY_PACKET_SIZE 20
1580
1581 /* Get the memory packet size, assuming it is fixed. */
1582
1583 static long
1584 get_fixed_memory_packet_size (struct memory_packet_config *config)
1585 {
1586 gdb_assert (config->fixed_p);
1587
1588 if (config->size <= 0)
1589 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1590 else
1591 return config->size;
1592 }
1593
1594 /* Compute the current size of a read/write packet. Since this makes
1595 use of ``actual_register_packet_size'' the computation is dynamic. */
1596
1597 long
1598 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1599 {
1600 struct remote_state *rs = get_remote_state ();
1601 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1602
1603 long what_they_get;
1604 if (config->fixed_p)
1605 what_they_get = get_fixed_memory_packet_size (config);
1606 else
1607 {
1608 what_they_get = get_remote_packet_size ();
1609 /* Limit the packet to the size specified by the user. */
1610 if (config->size > 0
1611 && what_they_get > config->size)
1612 what_they_get = config->size;
1613
1614 /* Limit it to the size of the targets ``g'' response unless we have
1615 permission from the stub to use a larger packet size. */
1616 if (rs->explicit_packet_size == 0
1617 && rsa->actual_register_packet_size > 0
1618 && what_they_get > rsa->actual_register_packet_size)
1619 what_they_get = rsa->actual_register_packet_size;
1620 }
1621 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1622 what_they_get = MIN_MEMORY_PACKET_SIZE;
1623
1624 /* Make sure there is room in the global buffer for this packet
1625 (including its trailing NUL byte). */
1626 if (rs->buf_size < what_they_get + 1)
1627 {
1628 rs->buf_size = 2 * what_they_get;
1629 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1630 }
1631
1632 return what_they_get;
1633 }
1634
1635 /* Update the size of a read/write packet. If they user wants
1636 something really big then do a sanity check. */
1637
1638 static void
1639 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1640 {
1641 int fixed_p = config->fixed_p;
1642 long size = config->size;
1643
1644 if (args == NULL)
1645 error (_("Argument required (integer, `fixed' or `limited')."));
1646 else if (strcmp (args, "hard") == 0
1647 || strcmp (args, "fixed") == 0)
1648 fixed_p = 1;
1649 else if (strcmp (args, "soft") == 0
1650 || strcmp (args, "limit") == 0)
1651 fixed_p = 0;
1652 else
1653 {
1654 char *end;
1655
1656 size = strtoul (args, &end, 0);
1657 if (args == end)
1658 error (_("Invalid %s (bad syntax)."), config->name);
1659
1660 /* Instead of explicitly capping the size of a packet to or
1661 disallowing it, the user is allowed to set the size to
1662 something arbitrarily large. */
1663 }
1664
1665 /* Extra checks? */
1666 if (fixed_p && !config->fixed_p)
1667 {
1668 /* So that the query shows the correct value. */
1669 long query_size = (size <= 0
1670 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1671 : size);
1672
1673 if (! query (_("The target may not be able to correctly handle a %s\n"
1674 "of %ld bytes. Change the packet size? "),
1675 config->name, query_size))
1676 error (_("Packet size not changed."));
1677 }
1678 /* Update the config. */
1679 config->fixed_p = fixed_p;
1680 config->size = size;
1681 }
1682
1683 static void
1684 show_memory_packet_size (struct memory_packet_config *config)
1685 {
1686 if (config->size == 0)
1687 printf_filtered (_("The %s is 0 (default). "), config->name);
1688 else
1689 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1690 if (config->fixed_p)
1691 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1692 get_fixed_memory_packet_size (config));
1693 else
1694 {
1695 remote_target *remote = get_current_remote_target ();
1696
1697 if (remote != NULL)
1698 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1699 remote->get_memory_packet_size (config));
1700 else
1701 puts_filtered ("The actual limit will be further reduced "
1702 "dependent on the target.\n");
1703 }
1704 }
1705
1706 static struct memory_packet_config memory_write_packet_config =
1707 {
1708 "memory-write-packet-size",
1709 };
1710
1711 static void
1712 set_memory_write_packet_size (const char *args, int from_tty)
1713 {
1714 set_memory_packet_size (args, &memory_write_packet_config);
1715 }
1716
1717 static void
1718 show_memory_write_packet_size (const char *args, int from_tty)
1719 {
1720 show_memory_packet_size (&memory_write_packet_config);
1721 }
1722
1723 /* Show the number of hardware watchpoints that can be used. */
1724
1725 static void
1726 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1727 struct cmd_list_element *c,
1728 const char *value)
1729 {
1730 fprintf_filtered (file, _("The maximum number of target hardware "
1731 "watchpoints is %s.\n"), value);
1732 }
1733
1734 /* Show the length limit (in bytes) for hardware watchpoints. */
1735
1736 static void
1737 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1738 struct cmd_list_element *c,
1739 const char *value)
1740 {
1741 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1742 "hardware watchpoint is %s.\n"), value);
1743 }
1744
1745 /* Show the number of hardware breakpoints that can be used. */
1746
1747 static void
1748 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1749 struct cmd_list_element *c,
1750 const char *value)
1751 {
1752 fprintf_filtered (file, _("The maximum number of target hardware "
1753 "breakpoints is %s.\n"), value);
1754 }
1755
1756 long
1757 remote_target::get_memory_write_packet_size ()
1758 {
1759 return get_memory_packet_size (&memory_write_packet_config);
1760 }
1761
1762 static struct memory_packet_config memory_read_packet_config =
1763 {
1764 "memory-read-packet-size",
1765 };
1766
1767 static void
1768 set_memory_read_packet_size (const char *args, int from_tty)
1769 {
1770 set_memory_packet_size (args, &memory_read_packet_config);
1771 }
1772
1773 static void
1774 show_memory_read_packet_size (const char *args, int from_tty)
1775 {
1776 show_memory_packet_size (&memory_read_packet_config);
1777 }
1778
1779 long
1780 remote_target::get_memory_read_packet_size ()
1781 {
1782 long size = get_memory_packet_size (&memory_read_packet_config);
1783
1784 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1785 extra buffer size argument before the memory read size can be
1786 increased beyond this. */
1787 if (size > get_remote_packet_size ())
1788 size = get_remote_packet_size ();
1789 return size;
1790 }
1791
1792 \f
1793
1794 struct packet_config
1795 {
1796 const char *name;
1797 const char *title;
1798
1799 /* If auto, GDB auto-detects support for this packet or feature,
1800 either through qSupported, or by trying the packet and looking
1801 at the response. If true, GDB assumes the target supports this
1802 packet. If false, the packet is disabled. Configs that don't
1803 have an associated command always have this set to auto. */
1804 enum auto_boolean detect;
1805
1806 /* Does the target support this packet? */
1807 enum packet_support support;
1808 };
1809
1810 static enum packet_support packet_config_support (struct packet_config *config);
1811 static enum packet_support packet_support (int packet);
1812
1813 static void
1814 show_packet_config_cmd (struct packet_config *config)
1815 {
1816 const char *support = "internal-error";
1817
1818 switch (packet_config_support (config))
1819 {
1820 case PACKET_ENABLE:
1821 support = "enabled";
1822 break;
1823 case PACKET_DISABLE:
1824 support = "disabled";
1825 break;
1826 case PACKET_SUPPORT_UNKNOWN:
1827 support = "unknown";
1828 break;
1829 }
1830 switch (config->detect)
1831 {
1832 case AUTO_BOOLEAN_AUTO:
1833 printf_filtered (_("Support for the `%s' packet "
1834 "is auto-detected, currently %s.\n"),
1835 config->name, support);
1836 break;
1837 case AUTO_BOOLEAN_TRUE:
1838 case AUTO_BOOLEAN_FALSE:
1839 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1840 config->name, support);
1841 break;
1842 }
1843 }
1844
1845 static void
1846 add_packet_config_cmd (struct packet_config *config, const char *name,
1847 const char *title, int legacy)
1848 {
1849 char *set_doc;
1850 char *show_doc;
1851 char *cmd_name;
1852
1853 config->name = name;
1854 config->title = title;
1855 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1856 name, title);
1857 show_doc = xstrprintf ("Show current use of remote "
1858 "protocol `%s' (%s) packet",
1859 name, title);
1860 /* set/show TITLE-packet {auto,on,off} */
1861 cmd_name = xstrprintf ("%s-packet", title);
1862 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1863 &config->detect, set_doc,
1864 show_doc, NULL, /* help_doc */
1865 NULL,
1866 show_remote_protocol_packet_cmd,
1867 &remote_set_cmdlist, &remote_show_cmdlist);
1868 /* The command code copies the documentation strings. */
1869 xfree (set_doc);
1870 xfree (show_doc);
1871 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1872 if (legacy)
1873 {
1874 char *legacy_name;
1875
1876 legacy_name = xstrprintf ("%s-packet", name);
1877 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1878 &remote_set_cmdlist);
1879 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1880 &remote_show_cmdlist);
1881 }
1882 }
1883
1884 static enum packet_result
1885 packet_check_result (const char *buf)
1886 {
1887 if (buf[0] != '\0')
1888 {
1889 /* The stub recognized the packet request. Check that the
1890 operation succeeded. */
1891 if (buf[0] == 'E'
1892 && isxdigit (buf[1]) && isxdigit (buf[2])
1893 && buf[3] == '\0')
1894 /* "Enn" - definitly an error. */
1895 return PACKET_ERROR;
1896
1897 /* Always treat "E." as an error. This will be used for
1898 more verbose error messages, such as E.memtypes. */
1899 if (buf[0] == 'E' && buf[1] == '.')
1900 return PACKET_ERROR;
1901
1902 /* The packet may or may not be OK. Just assume it is. */
1903 return PACKET_OK;
1904 }
1905 else
1906 /* The stub does not support the packet. */
1907 return PACKET_UNKNOWN;
1908 }
1909
1910 static enum packet_result
1911 packet_ok (const char *buf, struct packet_config *config)
1912 {
1913 enum packet_result result;
1914
1915 if (config->detect != AUTO_BOOLEAN_TRUE
1916 && config->support == PACKET_DISABLE)
1917 internal_error (__FILE__, __LINE__,
1918 _("packet_ok: attempt to use a disabled packet"));
1919
1920 result = packet_check_result (buf);
1921 switch (result)
1922 {
1923 case PACKET_OK:
1924 case PACKET_ERROR:
1925 /* The stub recognized the packet request. */
1926 if (config->support == PACKET_SUPPORT_UNKNOWN)
1927 {
1928 if (remote_debug)
1929 fprintf_unfiltered (gdb_stdlog,
1930 "Packet %s (%s) is supported\n",
1931 config->name, config->title);
1932 config->support = PACKET_ENABLE;
1933 }
1934 break;
1935 case PACKET_UNKNOWN:
1936 /* The stub does not support the packet. */
1937 if (config->detect == AUTO_BOOLEAN_AUTO
1938 && config->support == PACKET_ENABLE)
1939 {
1940 /* If the stub previously indicated that the packet was
1941 supported then there is a protocol error. */
1942 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1943 config->name, config->title);
1944 }
1945 else if (config->detect == AUTO_BOOLEAN_TRUE)
1946 {
1947 /* The user set it wrong. */
1948 error (_("Enabled packet %s (%s) not recognized by stub"),
1949 config->name, config->title);
1950 }
1951
1952 if (remote_debug)
1953 fprintf_unfiltered (gdb_stdlog,
1954 "Packet %s (%s) is NOT supported\n",
1955 config->name, config->title);
1956 config->support = PACKET_DISABLE;
1957 break;
1958 }
1959
1960 return result;
1961 }
1962
1963 enum {
1964 PACKET_vCont = 0,
1965 PACKET_X,
1966 PACKET_qSymbol,
1967 PACKET_P,
1968 PACKET_p,
1969 PACKET_Z0,
1970 PACKET_Z1,
1971 PACKET_Z2,
1972 PACKET_Z3,
1973 PACKET_Z4,
1974 PACKET_vFile_setfs,
1975 PACKET_vFile_open,
1976 PACKET_vFile_pread,
1977 PACKET_vFile_pwrite,
1978 PACKET_vFile_close,
1979 PACKET_vFile_unlink,
1980 PACKET_vFile_readlink,
1981 PACKET_vFile_fstat,
1982 PACKET_qXfer_auxv,
1983 PACKET_qXfer_features,
1984 PACKET_qXfer_exec_file,
1985 PACKET_qXfer_libraries,
1986 PACKET_qXfer_libraries_svr4,
1987 PACKET_qXfer_memory_map,
1988 PACKET_qXfer_spu_read,
1989 PACKET_qXfer_spu_write,
1990 PACKET_qXfer_osdata,
1991 PACKET_qXfer_threads,
1992 PACKET_qXfer_statictrace_read,
1993 PACKET_qXfer_traceframe_info,
1994 PACKET_qXfer_uib,
1995 PACKET_qGetTIBAddr,
1996 PACKET_qGetTLSAddr,
1997 PACKET_qSupported,
1998 PACKET_qTStatus,
1999 PACKET_QPassSignals,
2000 PACKET_QCatchSyscalls,
2001 PACKET_QProgramSignals,
2002 PACKET_QSetWorkingDir,
2003 PACKET_QStartupWithShell,
2004 PACKET_QEnvironmentHexEncoded,
2005 PACKET_QEnvironmentReset,
2006 PACKET_QEnvironmentUnset,
2007 PACKET_qCRC,
2008 PACKET_qSearch_memory,
2009 PACKET_vAttach,
2010 PACKET_vRun,
2011 PACKET_QStartNoAckMode,
2012 PACKET_vKill,
2013 PACKET_qXfer_siginfo_read,
2014 PACKET_qXfer_siginfo_write,
2015 PACKET_qAttached,
2016
2017 /* Support for conditional tracepoints. */
2018 PACKET_ConditionalTracepoints,
2019
2020 /* Support for target-side breakpoint conditions. */
2021 PACKET_ConditionalBreakpoints,
2022
2023 /* Support for target-side breakpoint commands. */
2024 PACKET_BreakpointCommands,
2025
2026 /* Support for fast tracepoints. */
2027 PACKET_FastTracepoints,
2028
2029 /* Support for static tracepoints. */
2030 PACKET_StaticTracepoints,
2031
2032 /* Support for installing tracepoints while a trace experiment is
2033 running. */
2034 PACKET_InstallInTrace,
2035
2036 PACKET_bc,
2037 PACKET_bs,
2038 PACKET_TracepointSource,
2039 PACKET_QAllow,
2040 PACKET_qXfer_fdpic,
2041 PACKET_QDisableRandomization,
2042 PACKET_QAgent,
2043 PACKET_QTBuffer_size,
2044 PACKET_Qbtrace_off,
2045 PACKET_Qbtrace_bts,
2046 PACKET_Qbtrace_pt,
2047 PACKET_qXfer_btrace,
2048
2049 /* Support for the QNonStop packet. */
2050 PACKET_QNonStop,
2051
2052 /* Support for the QThreadEvents packet. */
2053 PACKET_QThreadEvents,
2054
2055 /* Support for multi-process extensions. */
2056 PACKET_multiprocess_feature,
2057
2058 /* Support for enabling and disabling tracepoints while a trace
2059 experiment is running. */
2060 PACKET_EnableDisableTracepoints_feature,
2061
2062 /* Support for collecting strings using the tracenz bytecode. */
2063 PACKET_tracenz_feature,
2064
2065 /* Support for continuing to run a trace experiment while GDB is
2066 disconnected. */
2067 PACKET_DisconnectedTracing_feature,
2068
2069 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2070 PACKET_augmented_libraries_svr4_read_feature,
2071
2072 /* Support for the qXfer:btrace-conf:read packet. */
2073 PACKET_qXfer_btrace_conf,
2074
2075 /* Support for the Qbtrace-conf:bts:size packet. */
2076 PACKET_Qbtrace_conf_bts_size,
2077
2078 /* Support for swbreak+ feature. */
2079 PACKET_swbreak_feature,
2080
2081 /* Support for hwbreak+ feature. */
2082 PACKET_hwbreak_feature,
2083
2084 /* Support for fork events. */
2085 PACKET_fork_event_feature,
2086
2087 /* Support for vfork events. */
2088 PACKET_vfork_event_feature,
2089
2090 /* Support for the Qbtrace-conf:pt:size packet. */
2091 PACKET_Qbtrace_conf_pt_size,
2092
2093 /* Support for exec events. */
2094 PACKET_exec_event_feature,
2095
2096 /* Support for query supported vCont actions. */
2097 PACKET_vContSupported,
2098
2099 /* Support remote CTRL-C. */
2100 PACKET_vCtrlC,
2101
2102 /* Support TARGET_WAITKIND_NO_RESUMED. */
2103 PACKET_no_resumed,
2104
2105 PACKET_MAX
2106 };
2107
2108 static struct packet_config remote_protocol_packets[PACKET_MAX];
2109
2110 /* Returns the packet's corresponding "set remote foo-packet" command
2111 state. See struct packet_config for more details. */
2112
2113 static enum auto_boolean
2114 packet_set_cmd_state (int packet)
2115 {
2116 return remote_protocol_packets[packet].detect;
2117 }
2118
2119 /* Returns whether a given packet or feature is supported. This takes
2120 into account the state of the corresponding "set remote foo-packet"
2121 command, which may be used to bypass auto-detection. */
2122
2123 static enum packet_support
2124 packet_config_support (struct packet_config *config)
2125 {
2126 switch (config->detect)
2127 {
2128 case AUTO_BOOLEAN_TRUE:
2129 return PACKET_ENABLE;
2130 case AUTO_BOOLEAN_FALSE:
2131 return PACKET_DISABLE;
2132 case AUTO_BOOLEAN_AUTO:
2133 return config->support;
2134 default:
2135 gdb_assert_not_reached (_("bad switch"));
2136 }
2137 }
2138
2139 /* Same as packet_config_support, but takes the packet's enum value as
2140 argument. */
2141
2142 static enum packet_support
2143 packet_support (int packet)
2144 {
2145 struct packet_config *config = &remote_protocol_packets[packet];
2146
2147 return packet_config_support (config);
2148 }
2149
2150 static void
2151 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2152 struct cmd_list_element *c,
2153 const char *value)
2154 {
2155 struct packet_config *packet;
2156
2157 for (packet = remote_protocol_packets;
2158 packet < &remote_protocol_packets[PACKET_MAX];
2159 packet++)
2160 {
2161 if (&packet->detect == c->var)
2162 {
2163 show_packet_config_cmd (packet);
2164 return;
2165 }
2166 }
2167 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2168 c->name);
2169 }
2170
2171 /* Should we try one of the 'Z' requests? */
2172
2173 enum Z_packet_type
2174 {
2175 Z_PACKET_SOFTWARE_BP,
2176 Z_PACKET_HARDWARE_BP,
2177 Z_PACKET_WRITE_WP,
2178 Z_PACKET_READ_WP,
2179 Z_PACKET_ACCESS_WP,
2180 NR_Z_PACKET_TYPES
2181 };
2182
2183 /* For compatibility with older distributions. Provide a ``set remote
2184 Z-packet ...'' command that updates all the Z packet types. */
2185
2186 static enum auto_boolean remote_Z_packet_detect;
2187
2188 static void
2189 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2190 struct cmd_list_element *c)
2191 {
2192 int i;
2193
2194 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2195 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2196 }
2197
2198 static void
2199 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2200 struct cmd_list_element *c,
2201 const char *value)
2202 {
2203 int i;
2204
2205 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2206 {
2207 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2208 }
2209 }
2210
2211 /* Returns true if the multi-process extensions are in effect. */
2212
2213 static int
2214 remote_multi_process_p (struct remote_state *rs)
2215 {
2216 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2217 }
2218
2219 /* Returns true if fork events are supported. */
2220
2221 static int
2222 remote_fork_event_p (struct remote_state *rs)
2223 {
2224 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2225 }
2226
2227 /* Returns true if vfork events are supported. */
2228
2229 static int
2230 remote_vfork_event_p (struct remote_state *rs)
2231 {
2232 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2233 }
2234
2235 /* Returns true if exec events are supported. */
2236
2237 static int
2238 remote_exec_event_p (struct remote_state *rs)
2239 {
2240 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2241 }
2242
2243 /* Insert fork catchpoint target routine. If fork events are enabled
2244 then return success, nothing more to do. */
2245
2246 int
2247 remote_target::insert_fork_catchpoint (int pid)
2248 {
2249 struct remote_state *rs = get_remote_state ();
2250
2251 return !remote_fork_event_p (rs);
2252 }
2253
2254 /* Remove fork catchpoint target routine. Nothing to do, just
2255 return success. */
2256
2257 int
2258 remote_target::remove_fork_catchpoint (int pid)
2259 {
2260 return 0;
2261 }
2262
2263 /* Insert vfork catchpoint target routine. If vfork events are enabled
2264 then return success, nothing more to do. */
2265
2266 int
2267 remote_target::insert_vfork_catchpoint (int pid)
2268 {
2269 struct remote_state *rs = get_remote_state ();
2270
2271 return !remote_vfork_event_p (rs);
2272 }
2273
2274 /* Remove vfork catchpoint target routine. Nothing to do, just
2275 return success. */
2276
2277 int
2278 remote_target::remove_vfork_catchpoint (int pid)
2279 {
2280 return 0;
2281 }
2282
2283 /* Insert exec catchpoint target routine. If exec events are
2284 enabled, just return success. */
2285
2286 int
2287 remote_target::insert_exec_catchpoint (int pid)
2288 {
2289 struct remote_state *rs = get_remote_state ();
2290
2291 return !remote_exec_event_p (rs);
2292 }
2293
2294 /* Remove exec catchpoint target routine. Nothing to do, just
2295 return success. */
2296
2297 int
2298 remote_target::remove_exec_catchpoint (int pid)
2299 {
2300 return 0;
2301 }
2302
2303 \f
2304
2305 static ptid_t magic_null_ptid;
2306 static ptid_t not_sent_ptid;
2307 static ptid_t any_thread_ptid;
2308
2309 /* Find out if the stub attached to PID (and hence GDB should offer to
2310 detach instead of killing it when bailing out). */
2311
2312 int
2313 remote_target::remote_query_attached (int pid)
2314 {
2315 struct remote_state *rs = get_remote_state ();
2316 size_t size = get_remote_packet_size ();
2317
2318 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2319 return 0;
2320
2321 if (remote_multi_process_p (rs))
2322 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2323 else
2324 xsnprintf (rs->buf, size, "qAttached");
2325
2326 putpkt (rs->buf);
2327 getpkt (&rs->buf, &rs->buf_size, 0);
2328
2329 switch (packet_ok (rs->buf,
2330 &remote_protocol_packets[PACKET_qAttached]))
2331 {
2332 case PACKET_OK:
2333 if (strcmp (rs->buf, "1") == 0)
2334 return 1;
2335 break;
2336 case PACKET_ERROR:
2337 warning (_("Remote failure reply: %s"), rs->buf);
2338 break;
2339 case PACKET_UNKNOWN:
2340 break;
2341 }
2342
2343 return 0;
2344 }
2345
2346 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2347 has been invented by GDB, instead of reported by the target. Since
2348 we can be connected to a remote system before before knowing about
2349 any inferior, mark the target with execution when we find the first
2350 inferior. If ATTACHED is 1, then we had just attached to this
2351 inferior. If it is 0, then we just created this inferior. If it
2352 is -1, then try querying the remote stub to find out if it had
2353 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2354 attempt to open this inferior's executable as the main executable
2355 if no main executable is open already. */
2356
2357 inferior *
2358 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2359 int try_open_exec)
2360 {
2361 struct inferior *inf;
2362
2363 /* Check whether this process we're learning about is to be
2364 considered attached, or if is to be considered to have been
2365 spawned by the stub. */
2366 if (attached == -1)
2367 attached = remote_query_attached (pid);
2368
2369 if (gdbarch_has_global_solist (target_gdbarch ()))
2370 {
2371 /* If the target shares code across all inferiors, then every
2372 attach adds a new inferior. */
2373 inf = add_inferior (pid);
2374
2375 /* ... and every inferior is bound to the same program space.
2376 However, each inferior may still have its own address
2377 space. */
2378 inf->aspace = maybe_new_address_space ();
2379 inf->pspace = current_program_space;
2380 }
2381 else
2382 {
2383 /* In the traditional debugging scenario, there's a 1-1 match
2384 between program/address spaces. We simply bind the inferior
2385 to the program space's address space. */
2386 inf = current_inferior ();
2387 inferior_appeared (inf, pid);
2388 }
2389
2390 inf->attach_flag = attached;
2391 inf->fake_pid_p = fake_pid_p;
2392
2393 /* If no main executable is currently open then attempt to
2394 open the file that was executed to create this inferior. */
2395 if (try_open_exec && get_exec_file (0) == NULL)
2396 exec_file_locate_attach (pid, 0, 1);
2397
2398 return inf;
2399 }
2400
2401 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2402 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2403
2404 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2405 according to RUNNING. */
2406
2407 thread_info *
2408 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2409 {
2410 struct remote_state *rs = get_remote_state ();
2411 struct thread_info *thread;
2412
2413 /* GDB historically didn't pull threads in the initial connection
2414 setup. If the remote target doesn't even have a concept of
2415 threads (e.g., a bare-metal target), even if internally we
2416 consider that a single-threaded target, mentioning a new thread
2417 might be confusing to the user. Be silent then, preserving the
2418 age old behavior. */
2419 if (rs->starting_up)
2420 thread = add_thread_silent (ptid);
2421 else
2422 thread = add_thread (ptid);
2423
2424 get_remote_thread_info (thread)->vcont_resumed = executing;
2425 set_executing (ptid, executing);
2426 set_running (ptid, running);
2427
2428 return thread;
2429 }
2430
2431 /* Come here when we learn about a thread id from the remote target.
2432 It may be the first time we hear about such thread, so take the
2433 opportunity to add it to GDB's thread list. In case this is the
2434 first time we're noticing its corresponding inferior, add it to
2435 GDB's inferior list as well. EXECUTING indicates whether the
2436 thread is (internally) executing or stopped. */
2437
2438 void
2439 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2440 {
2441 /* In non-stop mode, we assume new found threads are (externally)
2442 running until proven otherwise with a stop reply. In all-stop,
2443 we can only get here if all threads are stopped. */
2444 int running = target_is_non_stop_p () ? 1 : 0;
2445
2446 /* If this is a new thread, add it to GDB's thread list.
2447 If we leave it up to WFI to do this, bad things will happen. */
2448
2449 thread_info *tp = find_thread_ptid (currthread);
2450 if (tp != NULL && tp->state == THREAD_EXITED)
2451 {
2452 /* We're seeing an event on a thread id we knew had exited.
2453 This has to be a new thread reusing the old id. Add it. */
2454 remote_add_thread (currthread, running, executing);
2455 return;
2456 }
2457
2458 if (!in_thread_list (currthread))
2459 {
2460 struct inferior *inf = NULL;
2461 int pid = currthread.pid ();
2462
2463 if (inferior_ptid.is_pid ()
2464 && pid == inferior_ptid.pid ())
2465 {
2466 /* inferior_ptid has no thread member yet. This can happen
2467 with the vAttach -> remote_wait,"TAAthread:" path if the
2468 stub doesn't support qC. This is the first stop reported
2469 after an attach, so this is the main thread. Update the
2470 ptid in the thread list. */
2471 if (in_thread_list (ptid_t (pid)))
2472 thread_change_ptid (inferior_ptid, currthread);
2473 else
2474 {
2475 remote_add_thread (currthread, running, executing);
2476 inferior_ptid = currthread;
2477 }
2478 return;
2479 }
2480
2481 if (magic_null_ptid == inferior_ptid)
2482 {
2483 /* inferior_ptid is not set yet. This can happen with the
2484 vRun -> remote_wait,"TAAthread:" path if the stub
2485 doesn't support qC. This is the first stop reported
2486 after an attach, so this is the main thread. Update the
2487 ptid in the thread list. */
2488 thread_change_ptid (inferior_ptid, currthread);
2489 return;
2490 }
2491
2492 /* When connecting to a target remote, or to a target
2493 extended-remote which already was debugging an inferior, we
2494 may not know about it yet. Add it before adding its child
2495 thread, so notifications are emitted in a sensible order. */
2496 if (find_inferior_pid (currthread.pid ()) == NULL)
2497 {
2498 struct remote_state *rs = get_remote_state ();
2499 int fake_pid_p = !remote_multi_process_p (rs);
2500
2501 inf = remote_add_inferior (fake_pid_p,
2502 currthread.pid (), -1, 1);
2503 }
2504
2505 /* This is really a new thread. Add it. */
2506 thread_info *new_thr
2507 = remote_add_thread (currthread, running, executing);
2508
2509 /* If we found a new inferior, let the common code do whatever
2510 it needs to with it (e.g., read shared libraries, insert
2511 breakpoints), unless we're just setting up an all-stop
2512 connection. */
2513 if (inf != NULL)
2514 {
2515 struct remote_state *rs = get_remote_state ();
2516
2517 if (!rs->starting_up)
2518 notice_new_inferior (new_thr, executing, 0);
2519 }
2520 }
2521 }
2522
2523 /* Return THREAD's private thread data, creating it if necessary. */
2524
2525 static remote_thread_info *
2526 get_remote_thread_info (thread_info *thread)
2527 {
2528 gdb_assert (thread != NULL);
2529
2530 if (thread->priv == NULL)
2531 thread->priv.reset (new remote_thread_info);
2532
2533 return static_cast<remote_thread_info *> (thread->priv.get ());
2534 }
2535
2536 static remote_thread_info *
2537 get_remote_thread_info (ptid_t ptid)
2538 {
2539 thread_info *thr = find_thread_ptid (ptid);
2540 return get_remote_thread_info (thr);
2541 }
2542
2543 /* Call this function as a result of
2544 1) A halt indication (T packet) containing a thread id
2545 2) A direct query of currthread
2546 3) Successful execution of set thread */
2547
2548 static void
2549 record_currthread (struct remote_state *rs, ptid_t currthread)
2550 {
2551 rs->general_thread = currthread;
2552 }
2553
2554 /* If 'QPassSignals' is supported, tell the remote stub what signals
2555 it can simply pass through to the inferior without reporting. */
2556
2557 void
2558 remote_target::pass_signals (int numsigs, const unsigned char *pass_signals)
2559 {
2560 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2561 {
2562 char *pass_packet, *p;
2563 int count = 0, i;
2564 struct remote_state *rs = get_remote_state ();
2565
2566 gdb_assert (numsigs < 256);
2567 for (i = 0; i < numsigs; i++)
2568 {
2569 if (pass_signals[i])
2570 count++;
2571 }
2572 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2573 strcpy (pass_packet, "QPassSignals:");
2574 p = pass_packet + strlen (pass_packet);
2575 for (i = 0; i < numsigs; i++)
2576 {
2577 if (pass_signals[i])
2578 {
2579 if (i >= 16)
2580 *p++ = tohex (i >> 4);
2581 *p++ = tohex (i & 15);
2582 if (count)
2583 *p++ = ';';
2584 else
2585 break;
2586 count--;
2587 }
2588 }
2589 *p = 0;
2590 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2591 {
2592 putpkt (pass_packet);
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2595 if (rs->last_pass_packet)
2596 xfree (rs->last_pass_packet);
2597 rs->last_pass_packet = pass_packet;
2598 }
2599 else
2600 xfree (pass_packet);
2601 }
2602 }
2603
2604 /* If 'QCatchSyscalls' is supported, tell the remote stub
2605 to report syscalls to GDB. */
2606
2607 int
2608 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2609 gdb::array_view<const int> syscall_counts)
2610 {
2611 const char *catch_packet;
2612 enum packet_result result;
2613 int n_sysno = 0;
2614
2615 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2616 {
2617 /* Not supported. */
2618 return 1;
2619 }
2620
2621 if (needed && any_count == 0)
2622 {
2623 /* Count how many syscalls are to be caught. */
2624 for (size_t i = 0; i < syscall_counts.size (); i++)
2625 {
2626 if (syscall_counts[i] != 0)
2627 n_sysno++;
2628 }
2629 }
2630
2631 if (remote_debug)
2632 {
2633 fprintf_unfiltered (gdb_stdlog,
2634 "remote_set_syscall_catchpoint "
2635 "pid %d needed %d any_count %d n_sysno %d\n",
2636 pid, needed, any_count, n_sysno);
2637 }
2638
2639 std::string built_packet;
2640 if (needed)
2641 {
2642 /* Prepare a packet with the sysno list, assuming max 8+1
2643 characters for a sysno. If the resulting packet size is too
2644 big, fallback on the non-selective packet. */
2645 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2646 built_packet.reserve (maxpktsz);
2647 built_packet = "QCatchSyscalls:1";
2648 if (any_count == 0)
2649 {
2650 /* Add in each syscall to be caught. */
2651 for (size_t i = 0; i < syscall_counts.size (); i++)
2652 {
2653 if (syscall_counts[i] != 0)
2654 string_appendf (built_packet, ";%zx", i);
2655 }
2656 }
2657 if (built_packet.size () > get_remote_packet_size ())
2658 {
2659 /* catch_packet too big. Fallback to less efficient
2660 non selective mode, with GDB doing the filtering. */
2661 catch_packet = "QCatchSyscalls:1";
2662 }
2663 else
2664 catch_packet = built_packet.c_str ();
2665 }
2666 else
2667 catch_packet = "QCatchSyscalls:0";
2668
2669 struct remote_state *rs = get_remote_state ();
2670
2671 putpkt (catch_packet);
2672 getpkt (&rs->buf, &rs->buf_size, 0);
2673 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2674 if (result == PACKET_OK)
2675 return 0;
2676 else
2677 return -1;
2678 }
2679
2680 /* If 'QProgramSignals' is supported, tell the remote stub what
2681 signals it should pass through to the inferior when detaching. */
2682
2683 void
2684 remote_target::program_signals (int numsigs, const unsigned char *signals)
2685 {
2686 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2687 {
2688 char *packet, *p;
2689 int count = 0, i;
2690 struct remote_state *rs = get_remote_state ();
2691
2692 gdb_assert (numsigs < 256);
2693 for (i = 0; i < numsigs; i++)
2694 {
2695 if (signals[i])
2696 count++;
2697 }
2698 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2699 strcpy (packet, "QProgramSignals:");
2700 p = packet + strlen (packet);
2701 for (i = 0; i < numsigs; i++)
2702 {
2703 if (signal_pass_state (i))
2704 {
2705 if (i >= 16)
2706 *p++ = tohex (i >> 4);
2707 *p++ = tohex (i & 15);
2708 if (count)
2709 *p++ = ';';
2710 else
2711 break;
2712 count--;
2713 }
2714 }
2715 *p = 0;
2716 if (!rs->last_program_signals_packet
2717 || strcmp (rs->last_program_signals_packet, packet) != 0)
2718 {
2719 putpkt (packet);
2720 getpkt (&rs->buf, &rs->buf_size, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2722 xfree (rs->last_program_signals_packet);
2723 rs->last_program_signals_packet = packet;
2724 }
2725 else
2726 xfree (packet);
2727 }
2728 }
2729
2730 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2731 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2732 thread. If GEN is set, set the general thread, if not, then set
2733 the step/continue thread. */
2734 void
2735 remote_target::set_thread (ptid_t ptid, int gen)
2736 {
2737 struct remote_state *rs = get_remote_state ();
2738 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2739 char *buf = rs->buf;
2740 char *endbuf = rs->buf + get_remote_packet_size ();
2741
2742 if (state == ptid)
2743 return;
2744
2745 *buf++ = 'H';
2746 *buf++ = gen ? 'g' : 'c';
2747 if (ptid == magic_null_ptid)
2748 xsnprintf (buf, endbuf - buf, "0");
2749 else if (ptid == any_thread_ptid)
2750 xsnprintf (buf, endbuf - buf, "0");
2751 else if (ptid == minus_one_ptid)
2752 xsnprintf (buf, endbuf - buf, "-1");
2753 else
2754 write_ptid (buf, endbuf, ptid);
2755 putpkt (rs->buf);
2756 getpkt (&rs->buf, &rs->buf_size, 0);
2757 if (gen)
2758 rs->general_thread = ptid;
2759 else
2760 rs->continue_thread = ptid;
2761 }
2762
2763 void
2764 remote_target::set_general_thread (ptid_t ptid)
2765 {
2766 set_thread (ptid, 1);
2767 }
2768
2769 void
2770 remote_target::set_continue_thread (ptid_t ptid)
2771 {
2772 set_thread (ptid, 0);
2773 }
2774
2775 /* Change the remote current process. Which thread within the process
2776 ends up selected isn't important, as long as it is the same process
2777 as what INFERIOR_PTID points to.
2778
2779 This comes from that fact that there is no explicit notion of
2780 "selected process" in the protocol. The selected process for
2781 general operations is the process the selected general thread
2782 belongs to. */
2783
2784 void
2785 remote_target::set_general_process ()
2786 {
2787 struct remote_state *rs = get_remote_state ();
2788
2789 /* If the remote can't handle multiple processes, don't bother. */
2790 if (!remote_multi_process_p (rs))
2791 return;
2792
2793 /* We only need to change the remote current thread if it's pointing
2794 at some other process. */
2795 if (rs->general_thread.pid () != inferior_ptid.pid ())
2796 set_general_thread (inferior_ptid);
2797 }
2798
2799 \f
2800 /* Return nonzero if this is the main thread that we made up ourselves
2801 to model non-threaded targets as single-threaded. */
2802
2803 static int
2804 remote_thread_always_alive (ptid_t ptid)
2805 {
2806 if (ptid == magic_null_ptid)
2807 /* The main thread is always alive. */
2808 return 1;
2809
2810 if (ptid.pid () != 0 && ptid.lwp () == 0)
2811 /* The main thread is always alive. This can happen after a
2812 vAttach, if the remote side doesn't support
2813 multi-threading. */
2814 return 1;
2815
2816 return 0;
2817 }
2818
2819 /* Return nonzero if the thread PTID is still alive on the remote
2820 system. */
2821
2822 bool
2823 remote_target::thread_alive (ptid_t ptid)
2824 {
2825 struct remote_state *rs = get_remote_state ();
2826 char *p, *endp;
2827
2828 /* Check if this is a thread that we made up ourselves to model
2829 non-threaded targets as single-threaded. */
2830 if (remote_thread_always_alive (ptid))
2831 return 1;
2832
2833 p = rs->buf;
2834 endp = rs->buf + get_remote_packet_size ();
2835
2836 *p++ = 'T';
2837 write_ptid (p, endp, ptid);
2838
2839 putpkt (rs->buf);
2840 getpkt (&rs->buf, &rs->buf_size, 0);
2841 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2842 }
2843
2844 /* Return a pointer to a thread name if we know it and NULL otherwise.
2845 The thread_info object owns the memory for the name. */
2846
2847 const char *
2848 remote_target::thread_name (struct thread_info *info)
2849 {
2850 if (info->priv != NULL)
2851 {
2852 const std::string &name = get_remote_thread_info (info)->name;
2853 return !name.empty () ? name.c_str () : NULL;
2854 }
2855
2856 return NULL;
2857 }
2858
2859 /* About these extended threadlist and threadinfo packets. They are
2860 variable length packets but, the fields within them are often fixed
2861 length. They are redundent enough to send over UDP as is the
2862 remote protocol in general. There is a matching unit test module
2863 in libstub. */
2864
2865 /* WARNING: This threadref data structure comes from the remote O.S.,
2866 libstub protocol encoding, and remote.c. It is not particularly
2867 changable. */
2868
2869 /* Right now, the internal structure is int. We want it to be bigger.
2870 Plan to fix this. */
2871
2872 typedef int gdb_threadref; /* Internal GDB thread reference. */
2873
2874 /* gdb_ext_thread_info is an internal GDB data structure which is
2875 equivalent to the reply of the remote threadinfo packet. */
2876
2877 struct gdb_ext_thread_info
2878 {
2879 threadref threadid; /* External form of thread reference. */
2880 int active; /* Has state interesting to GDB?
2881 regs, stack. */
2882 char display[256]; /* Brief state display, name,
2883 blocked/suspended. */
2884 char shortname[32]; /* To be used to name threads. */
2885 char more_display[256]; /* Long info, statistics, queue depth,
2886 whatever. */
2887 };
2888
2889 /* The volume of remote transfers can be limited by submitting
2890 a mask containing bits specifying the desired information.
2891 Use a union of these values as the 'selection' parameter to
2892 get_thread_info. FIXME: Make these TAG names more thread specific. */
2893
2894 #define TAG_THREADID 1
2895 #define TAG_EXISTS 2
2896 #define TAG_DISPLAY 4
2897 #define TAG_THREADNAME 8
2898 #define TAG_MOREDISPLAY 16
2899
2900 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2901
2902 static char *unpack_nibble (char *buf, int *val);
2903
2904 static char *unpack_byte (char *buf, int *value);
2905
2906 static char *pack_int (char *buf, int value);
2907
2908 static char *unpack_int (char *buf, int *value);
2909
2910 static char *unpack_string (char *src, char *dest, int length);
2911
2912 static char *pack_threadid (char *pkt, threadref *id);
2913
2914 static char *unpack_threadid (char *inbuf, threadref *id);
2915
2916 void int_to_threadref (threadref *id, int value);
2917
2918 static int threadref_to_int (threadref *ref);
2919
2920 static void copy_threadref (threadref *dest, threadref *src);
2921
2922 static int threadmatch (threadref *dest, threadref *src);
2923
2924 static char *pack_threadinfo_request (char *pkt, int mode,
2925 threadref *id);
2926
2927 static char *pack_threadlist_request (char *pkt, int startflag,
2928 int threadcount,
2929 threadref *nextthread);
2930
2931 static int remote_newthread_step (threadref *ref, void *context);
2932
2933
2934 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2935 buffer we're allowed to write to. Returns
2936 BUF+CHARACTERS_WRITTEN. */
2937
2938 char *
2939 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2940 {
2941 int pid, tid;
2942 struct remote_state *rs = get_remote_state ();
2943
2944 if (remote_multi_process_p (rs))
2945 {
2946 pid = ptid.pid ();
2947 if (pid < 0)
2948 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2949 else
2950 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2951 }
2952 tid = ptid.lwp ();
2953 if (tid < 0)
2954 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2955 else
2956 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2957
2958 return buf;
2959 }
2960
2961 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2962 last parsed char. Returns null_ptid if no thread id is found, and
2963 throws an error if the thread id has an invalid format. */
2964
2965 static ptid_t
2966 read_ptid (const char *buf, const char **obuf)
2967 {
2968 const char *p = buf;
2969 const char *pp;
2970 ULONGEST pid = 0, tid = 0;
2971
2972 if (*p == 'p')
2973 {
2974 /* Multi-process ptid. */
2975 pp = unpack_varlen_hex (p + 1, &pid);
2976 if (*pp != '.')
2977 error (_("invalid remote ptid: %s"), p);
2978
2979 p = pp;
2980 pp = unpack_varlen_hex (p + 1, &tid);
2981 if (obuf)
2982 *obuf = pp;
2983 return ptid_t (pid, tid, 0);
2984 }
2985
2986 /* No multi-process. Just a tid. */
2987 pp = unpack_varlen_hex (p, &tid);
2988
2989 /* Return null_ptid when no thread id is found. */
2990 if (p == pp)
2991 {
2992 if (obuf)
2993 *obuf = pp;
2994 return null_ptid;
2995 }
2996
2997 /* Since the stub is not sending a process id, then default to
2998 what's in inferior_ptid, unless it's null at this point. If so,
2999 then since there's no way to know the pid of the reported
3000 threads, use the magic number. */
3001 if (inferior_ptid == null_ptid)
3002 pid = magic_null_ptid.pid ();
3003 else
3004 pid = inferior_ptid.pid ();
3005
3006 if (obuf)
3007 *obuf = pp;
3008 return ptid_t (pid, tid, 0);
3009 }
3010
3011 static int
3012 stubhex (int ch)
3013 {
3014 if (ch >= 'a' && ch <= 'f')
3015 return ch - 'a' + 10;
3016 if (ch >= '0' && ch <= '9')
3017 return ch - '0';
3018 if (ch >= 'A' && ch <= 'F')
3019 return ch - 'A' + 10;
3020 return -1;
3021 }
3022
3023 static int
3024 stub_unpack_int (char *buff, int fieldlength)
3025 {
3026 int nibble;
3027 int retval = 0;
3028
3029 while (fieldlength)
3030 {
3031 nibble = stubhex (*buff++);
3032 retval |= nibble;
3033 fieldlength--;
3034 if (fieldlength)
3035 retval = retval << 4;
3036 }
3037 return retval;
3038 }
3039
3040 static char *
3041 unpack_nibble (char *buf, int *val)
3042 {
3043 *val = fromhex (*buf++);
3044 return buf;
3045 }
3046
3047 static char *
3048 unpack_byte (char *buf, int *value)
3049 {
3050 *value = stub_unpack_int (buf, 2);
3051 return buf + 2;
3052 }
3053
3054 static char *
3055 pack_int (char *buf, int value)
3056 {
3057 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3058 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3059 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3060 buf = pack_hex_byte (buf, (value & 0xff));
3061 return buf;
3062 }
3063
3064 static char *
3065 unpack_int (char *buf, int *value)
3066 {
3067 *value = stub_unpack_int (buf, 8);
3068 return buf + 8;
3069 }
3070
3071 #if 0 /* Currently unused, uncomment when needed. */
3072 static char *pack_string (char *pkt, char *string);
3073
3074 static char *
3075 pack_string (char *pkt, char *string)
3076 {
3077 char ch;
3078 int len;
3079
3080 len = strlen (string);
3081 if (len > 200)
3082 len = 200; /* Bigger than most GDB packets, junk??? */
3083 pkt = pack_hex_byte (pkt, len);
3084 while (len-- > 0)
3085 {
3086 ch = *string++;
3087 if ((ch == '\0') || (ch == '#'))
3088 ch = '*'; /* Protect encapsulation. */
3089 *pkt++ = ch;
3090 }
3091 return pkt;
3092 }
3093 #endif /* 0 (unused) */
3094
3095 static char *
3096 unpack_string (char *src, char *dest, int length)
3097 {
3098 while (length--)
3099 *dest++ = *src++;
3100 *dest = '\0';
3101 return src;
3102 }
3103
3104 static char *
3105 pack_threadid (char *pkt, threadref *id)
3106 {
3107 char *limit;
3108 unsigned char *altid;
3109
3110 altid = (unsigned char *) id;
3111 limit = pkt + BUF_THREAD_ID_SIZE;
3112 while (pkt < limit)
3113 pkt = pack_hex_byte (pkt, *altid++);
3114 return pkt;
3115 }
3116
3117
3118 static char *
3119 unpack_threadid (char *inbuf, threadref *id)
3120 {
3121 char *altref;
3122 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3123 int x, y;
3124
3125 altref = (char *) id;
3126
3127 while (inbuf < limit)
3128 {
3129 x = stubhex (*inbuf++);
3130 y = stubhex (*inbuf++);
3131 *altref++ = (x << 4) | y;
3132 }
3133 return inbuf;
3134 }
3135
3136 /* Externally, threadrefs are 64 bits but internally, they are still
3137 ints. This is due to a mismatch of specifications. We would like
3138 to use 64bit thread references internally. This is an adapter
3139 function. */
3140
3141 void
3142 int_to_threadref (threadref *id, int value)
3143 {
3144 unsigned char *scan;
3145
3146 scan = (unsigned char *) id;
3147 {
3148 int i = 4;
3149 while (i--)
3150 *scan++ = 0;
3151 }
3152 *scan++ = (value >> 24) & 0xff;
3153 *scan++ = (value >> 16) & 0xff;
3154 *scan++ = (value >> 8) & 0xff;
3155 *scan++ = (value & 0xff);
3156 }
3157
3158 static int
3159 threadref_to_int (threadref *ref)
3160 {
3161 int i, value = 0;
3162 unsigned char *scan;
3163
3164 scan = *ref;
3165 scan += 4;
3166 i = 4;
3167 while (i-- > 0)
3168 value = (value << 8) | ((*scan++) & 0xff);
3169 return value;
3170 }
3171
3172 static void
3173 copy_threadref (threadref *dest, threadref *src)
3174 {
3175 int i;
3176 unsigned char *csrc, *cdest;
3177
3178 csrc = (unsigned char *) src;
3179 cdest = (unsigned char *) dest;
3180 i = 8;
3181 while (i--)
3182 *cdest++ = *csrc++;
3183 }
3184
3185 static int
3186 threadmatch (threadref *dest, threadref *src)
3187 {
3188 /* Things are broken right now, so just assume we got a match. */
3189 #if 0
3190 unsigned char *srcp, *destp;
3191 int i, result;
3192 srcp = (char *) src;
3193 destp = (char *) dest;
3194
3195 result = 1;
3196 while (i-- > 0)
3197 result &= (*srcp++ == *destp++) ? 1 : 0;
3198 return result;
3199 #endif
3200 return 1;
3201 }
3202
3203 /*
3204 threadid:1, # always request threadid
3205 context_exists:2,
3206 display:4,
3207 unique_name:8,
3208 more_display:16
3209 */
3210
3211 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3212
3213 static char *
3214 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3215 {
3216 *pkt++ = 'q'; /* Info Query */
3217 *pkt++ = 'P'; /* process or thread info */
3218 pkt = pack_int (pkt, mode); /* mode */
3219 pkt = pack_threadid (pkt, id); /* threadid */
3220 *pkt = '\0'; /* terminate */
3221 return pkt;
3222 }
3223
3224 /* These values tag the fields in a thread info response packet. */
3225 /* Tagging the fields allows us to request specific fields and to
3226 add more fields as time goes by. */
3227
3228 #define TAG_THREADID 1 /* Echo the thread identifier. */
3229 #define TAG_EXISTS 2 /* Is this process defined enough to
3230 fetch registers and its stack? */
3231 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3232 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3233 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3234 the process. */
3235
3236 int
3237 remote_target::remote_unpack_thread_info_response (char *pkt,
3238 threadref *expectedref,
3239 gdb_ext_thread_info *info)
3240 {
3241 struct remote_state *rs = get_remote_state ();
3242 int mask, length;
3243 int tag;
3244 threadref ref;
3245 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3246 int retval = 1;
3247
3248 /* info->threadid = 0; FIXME: implement zero_threadref. */
3249 info->active = 0;
3250 info->display[0] = '\0';
3251 info->shortname[0] = '\0';
3252 info->more_display[0] = '\0';
3253
3254 /* Assume the characters indicating the packet type have been
3255 stripped. */
3256 pkt = unpack_int (pkt, &mask); /* arg mask */
3257 pkt = unpack_threadid (pkt, &ref);
3258
3259 if (mask == 0)
3260 warning (_("Incomplete response to threadinfo request."));
3261 if (!threadmatch (&ref, expectedref))
3262 { /* This is an answer to a different request. */
3263 warning (_("ERROR RMT Thread info mismatch."));
3264 return 0;
3265 }
3266 copy_threadref (&info->threadid, &ref);
3267
3268 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3269
3270 /* Packets are terminated with nulls. */
3271 while ((pkt < limit) && mask && *pkt)
3272 {
3273 pkt = unpack_int (pkt, &tag); /* tag */
3274 pkt = unpack_byte (pkt, &length); /* length */
3275 if (!(tag & mask)) /* Tags out of synch with mask. */
3276 {
3277 warning (_("ERROR RMT: threadinfo tag mismatch."));
3278 retval = 0;
3279 break;
3280 }
3281 if (tag == TAG_THREADID)
3282 {
3283 if (length != 16)
3284 {
3285 warning (_("ERROR RMT: length of threadid is not 16."));
3286 retval = 0;
3287 break;
3288 }
3289 pkt = unpack_threadid (pkt, &ref);
3290 mask = mask & ~TAG_THREADID;
3291 continue;
3292 }
3293 if (tag == TAG_EXISTS)
3294 {
3295 info->active = stub_unpack_int (pkt, length);
3296 pkt += length;
3297 mask = mask & ~(TAG_EXISTS);
3298 if (length > 8)
3299 {
3300 warning (_("ERROR RMT: 'exists' length too long."));
3301 retval = 0;
3302 break;
3303 }
3304 continue;
3305 }
3306 if (tag == TAG_THREADNAME)
3307 {
3308 pkt = unpack_string (pkt, &info->shortname[0], length);
3309 mask = mask & ~TAG_THREADNAME;
3310 continue;
3311 }
3312 if (tag == TAG_DISPLAY)
3313 {
3314 pkt = unpack_string (pkt, &info->display[0], length);
3315 mask = mask & ~TAG_DISPLAY;
3316 continue;
3317 }
3318 if (tag == TAG_MOREDISPLAY)
3319 {
3320 pkt = unpack_string (pkt, &info->more_display[0], length);
3321 mask = mask & ~TAG_MOREDISPLAY;
3322 continue;
3323 }
3324 warning (_("ERROR RMT: unknown thread info tag."));
3325 break; /* Not a tag we know about. */
3326 }
3327 return retval;
3328 }
3329
3330 int
3331 remote_target::remote_get_threadinfo (threadref *threadid,
3332 int fieldset,
3333 gdb_ext_thread_info *info)
3334 {
3335 struct remote_state *rs = get_remote_state ();
3336 int result;
3337
3338 pack_threadinfo_request (rs->buf, fieldset, threadid);
3339 putpkt (rs->buf);
3340 getpkt (&rs->buf, &rs->buf_size, 0);
3341
3342 if (rs->buf[0] == '\0')
3343 return 0;
3344
3345 result = remote_unpack_thread_info_response (rs->buf + 2,
3346 threadid, info);
3347 return result;
3348 }
3349
3350 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3351
3352 static char *
3353 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3354 threadref *nextthread)
3355 {
3356 *pkt++ = 'q'; /* info query packet */
3357 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3358 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3359 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3360 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3361 *pkt = '\0';
3362 return pkt;
3363 }
3364
3365 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3366
3367 int
3368 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3369 threadref *original_echo,
3370 threadref *resultlist,
3371 int *doneflag)
3372 {
3373 struct remote_state *rs = get_remote_state ();
3374 char *limit;
3375 int count, resultcount, done;
3376
3377 resultcount = 0;
3378 /* Assume the 'q' and 'M chars have been stripped. */
3379 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3380 /* done parse past here */
3381 pkt = unpack_byte (pkt, &count); /* count field */
3382 pkt = unpack_nibble (pkt, &done);
3383 /* The first threadid is the argument threadid. */
3384 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3385 while ((count-- > 0) && (pkt < limit))
3386 {
3387 pkt = unpack_threadid (pkt, resultlist++);
3388 if (resultcount++ >= result_limit)
3389 break;
3390 }
3391 if (doneflag)
3392 *doneflag = done;
3393 return resultcount;
3394 }
3395
3396 /* Fetch the next batch of threads from the remote. Returns -1 if the
3397 qL packet is not supported, 0 on error and 1 on success. */
3398
3399 int
3400 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3401 int result_limit, int *done, int *result_count,
3402 threadref *threadlist)
3403 {
3404 struct remote_state *rs = get_remote_state ();
3405 int result = 1;
3406
3407 /* Trancate result limit to be smaller than the packet size. */
3408 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3409 >= get_remote_packet_size ())
3410 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3411
3412 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3413 putpkt (rs->buf);
3414 getpkt (&rs->buf, &rs->buf_size, 0);
3415 if (*rs->buf == '\0')
3416 {
3417 /* Packet not supported. */
3418 return -1;
3419 }
3420
3421 *result_count =
3422 parse_threadlist_response (rs->buf + 2, result_limit,
3423 &rs->echo_nextthread, threadlist, done);
3424
3425 if (!threadmatch (&rs->echo_nextthread, nextthread))
3426 {
3427 /* FIXME: This is a good reason to drop the packet. */
3428 /* Possably, there is a duplicate response. */
3429 /* Possabilities :
3430 retransmit immediatly - race conditions
3431 retransmit after timeout - yes
3432 exit
3433 wait for packet, then exit
3434 */
3435 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3436 return 0; /* I choose simply exiting. */
3437 }
3438 if (*result_count <= 0)
3439 {
3440 if (*done != 1)
3441 {
3442 warning (_("RMT ERROR : failed to get remote thread list."));
3443 result = 0;
3444 }
3445 return result; /* break; */
3446 }
3447 if (*result_count > result_limit)
3448 {
3449 *result_count = 0;
3450 warning (_("RMT ERROR: threadlist response longer than requested."));
3451 return 0;
3452 }
3453 return result;
3454 }
3455
3456 /* Fetch the list of remote threads, with the qL packet, and call
3457 STEPFUNCTION for each thread found. Stops iterating and returns 1
3458 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3459 STEPFUNCTION returns false. If the packet is not supported,
3460 returns -1. */
3461
3462 int
3463 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3464 void *context, int looplimit)
3465 {
3466 struct remote_state *rs = get_remote_state ();
3467 int done, i, result_count;
3468 int startflag = 1;
3469 int result = 1;
3470 int loopcount = 0;
3471
3472 done = 0;
3473 while (!done)
3474 {
3475 if (loopcount++ > looplimit)
3476 {
3477 result = 0;
3478 warning (_("Remote fetch threadlist -infinite loop-."));
3479 break;
3480 }
3481 result = remote_get_threadlist (startflag, &rs->nextthread,
3482 MAXTHREADLISTRESULTS,
3483 &done, &result_count,
3484 rs->resultthreadlist);
3485 if (result <= 0)
3486 break;
3487 /* Clear for later iterations. */
3488 startflag = 0;
3489 /* Setup to resume next batch of thread references, set nextthread. */
3490 if (result_count >= 1)
3491 copy_threadref (&rs->nextthread,
3492 &rs->resultthreadlist[result_count - 1]);
3493 i = 0;
3494 while (result_count--)
3495 {
3496 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3497 {
3498 result = 0;
3499 break;
3500 }
3501 }
3502 }
3503 return result;
3504 }
3505
3506 /* A thread found on the remote target. */
3507
3508 struct thread_item
3509 {
3510 explicit thread_item (ptid_t ptid_)
3511 : ptid (ptid_)
3512 {}
3513
3514 thread_item (thread_item &&other) = default;
3515 thread_item &operator= (thread_item &&other) = default;
3516
3517 DISABLE_COPY_AND_ASSIGN (thread_item);
3518
3519 /* The thread's PTID. */
3520 ptid_t ptid;
3521
3522 /* The thread's extra info. */
3523 std::string extra;
3524
3525 /* The thread's name. */
3526 std::string name;
3527
3528 /* The core the thread was running on. -1 if not known. */
3529 int core = -1;
3530
3531 /* The thread handle associated with the thread. */
3532 gdb::byte_vector thread_handle;
3533 };
3534
3535 /* Context passed around to the various methods listing remote
3536 threads. As new threads are found, they're added to the ITEMS
3537 vector. */
3538
3539 struct threads_listing_context
3540 {
3541 /* Return true if this object contains an entry for a thread with ptid
3542 PTID. */
3543
3544 bool contains_thread (ptid_t ptid) const
3545 {
3546 auto match_ptid = [&] (const thread_item &item)
3547 {
3548 return item.ptid == ptid;
3549 };
3550
3551 auto it = std::find_if (this->items.begin (),
3552 this->items.end (),
3553 match_ptid);
3554
3555 return it != this->items.end ();
3556 }
3557
3558 /* Remove the thread with ptid PTID. */
3559
3560 void remove_thread (ptid_t ptid)
3561 {
3562 auto match_ptid = [&] (const thread_item &item)
3563 {
3564 return item.ptid == ptid;
3565 };
3566
3567 auto it = std::remove_if (this->items.begin (),
3568 this->items.end (),
3569 match_ptid);
3570
3571 if (it != this->items.end ())
3572 this->items.erase (it);
3573 }
3574
3575 /* The threads found on the remote target. */
3576 std::vector<thread_item> items;
3577 };
3578
3579 static int
3580 remote_newthread_step (threadref *ref, void *data)
3581 {
3582 struct threads_listing_context *context
3583 = (struct threads_listing_context *) data;
3584 int pid = inferior_ptid.pid ();
3585 int lwp = threadref_to_int (ref);
3586 ptid_t ptid (pid, lwp);
3587
3588 context->items.emplace_back (ptid);
3589
3590 return 1; /* continue iterator */
3591 }
3592
3593 #define CRAZY_MAX_THREADS 1000
3594
3595 ptid_t
3596 remote_target::remote_current_thread (ptid_t oldpid)
3597 {
3598 struct remote_state *rs = get_remote_state ();
3599
3600 putpkt ("qC");
3601 getpkt (&rs->buf, &rs->buf_size, 0);
3602 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3603 {
3604 const char *obuf;
3605 ptid_t result;
3606
3607 result = read_ptid (&rs->buf[2], &obuf);
3608 if (*obuf != '\0' && remote_debug)
3609 fprintf_unfiltered (gdb_stdlog,
3610 "warning: garbage in qC reply\n");
3611
3612 return result;
3613 }
3614 else
3615 return oldpid;
3616 }
3617
3618 /* List remote threads using the deprecated qL packet. */
3619
3620 int
3621 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3622 {
3623 if (remote_threadlist_iterator (remote_newthread_step, context,
3624 CRAZY_MAX_THREADS) >= 0)
3625 return 1;
3626
3627 return 0;
3628 }
3629
3630 #if defined(HAVE_LIBEXPAT)
3631
3632 static void
3633 start_thread (struct gdb_xml_parser *parser,
3634 const struct gdb_xml_element *element,
3635 void *user_data,
3636 std::vector<gdb_xml_value> &attributes)
3637 {
3638 struct threads_listing_context *data
3639 = (struct threads_listing_context *) user_data;
3640 struct gdb_xml_value *attr;
3641
3642 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3643 ptid_t ptid = read_ptid (id, NULL);
3644
3645 data->items.emplace_back (ptid);
3646 thread_item &item = data->items.back ();
3647
3648 attr = xml_find_attribute (attributes, "core");
3649 if (attr != NULL)
3650 item.core = *(ULONGEST *) attr->value.get ();
3651
3652 attr = xml_find_attribute (attributes, "name");
3653 if (attr != NULL)
3654 item.name = (const char *) attr->value.get ();
3655
3656 attr = xml_find_attribute (attributes, "handle");
3657 if (attr != NULL)
3658 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3659 }
3660
3661 static void
3662 end_thread (struct gdb_xml_parser *parser,
3663 const struct gdb_xml_element *element,
3664 void *user_data, const char *body_text)
3665 {
3666 struct threads_listing_context *data
3667 = (struct threads_listing_context *) user_data;
3668
3669 if (body_text != NULL && *body_text != '\0')
3670 data->items.back ().extra = body_text;
3671 }
3672
3673 const struct gdb_xml_attribute thread_attributes[] = {
3674 { "id", GDB_XML_AF_NONE, NULL, NULL },
3675 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3676 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3677 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3678 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3679 };
3680
3681 const struct gdb_xml_element thread_children[] = {
3682 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3683 };
3684
3685 const struct gdb_xml_element threads_children[] = {
3686 { "thread", thread_attributes, thread_children,
3687 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3688 start_thread, end_thread },
3689 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3690 };
3691
3692 const struct gdb_xml_element threads_elements[] = {
3693 { "threads", NULL, threads_children,
3694 GDB_XML_EF_NONE, NULL, NULL },
3695 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696 };
3697
3698 #endif
3699
3700 /* List remote threads using qXfer:threads:read. */
3701
3702 int
3703 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3704 {
3705 #if defined(HAVE_LIBEXPAT)
3706 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3707 {
3708 gdb::optional<gdb::char_vector> xml
3709 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3710
3711 if (xml && (*xml)[0] != '\0')
3712 {
3713 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3714 threads_elements, xml->data (), context);
3715 }
3716
3717 return 1;
3718 }
3719 #endif
3720
3721 return 0;
3722 }
3723
3724 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3728 {
3729 struct remote_state *rs = get_remote_state ();
3730
3731 if (rs->use_threadinfo_query)
3732 {
3733 const char *bufp;
3734
3735 putpkt ("qfThreadInfo");
3736 getpkt (&rs->buf, &rs->buf_size, 0);
3737 bufp = rs->buf;
3738 if (bufp[0] != '\0') /* q packet recognized */
3739 {
3740 while (*bufp++ == 'm') /* reply contains one or more TID */
3741 {
3742 do
3743 {
3744 ptid_t ptid = read_ptid (bufp, &bufp);
3745 context->items.emplace_back (ptid);
3746 }
3747 while (*bufp++ == ','); /* comma-separated list */
3748 putpkt ("qsThreadInfo");
3749 getpkt (&rs->buf, &rs->buf_size, 0);
3750 bufp = rs->buf;
3751 }
3752 return 1;
3753 }
3754 else
3755 {
3756 /* Packet not recognized. */
3757 rs->use_threadinfo_query = 0;
3758 }
3759 }
3760
3761 return 0;
3762 }
3763
3764 /* Implement the to_update_thread_list function for the remote
3765 targets. */
3766
3767 void
3768 remote_target::update_thread_list ()
3769 {
3770 struct threads_listing_context context;
3771 int got_list = 0;
3772
3773 /* We have a few different mechanisms to fetch the thread list. Try
3774 them all, starting with the most preferred one first, falling
3775 back to older methods. */
3776 if (remote_get_threads_with_qxfer (&context)
3777 || remote_get_threads_with_qthreadinfo (&context)
3778 || remote_get_threads_with_ql (&context))
3779 {
3780 got_list = 1;
3781
3782 if (context.items.empty ()
3783 && remote_thread_always_alive (inferior_ptid))
3784 {
3785 /* Some targets don't really support threads, but still
3786 reply an (empty) thread list in response to the thread
3787 listing packets, instead of replying "packet not
3788 supported". Exit early so we don't delete the main
3789 thread. */
3790 return;
3791 }
3792
3793 /* CONTEXT now holds the current thread list on the remote
3794 target end. Delete GDB-side threads no longer found on the
3795 target. */
3796 for (thread_info *tp : all_threads_safe ())
3797 {
3798 if (!context.contains_thread (tp->ptid))
3799 {
3800 /* Not found. */
3801 delete_thread (tp);
3802 }
3803 }
3804
3805 /* Remove any unreported fork child threads from CONTEXT so
3806 that we don't interfere with follow fork, which is where
3807 creation of such threads is handled. */
3808 remove_new_fork_children (&context);
3809
3810 /* And now add threads we don't know about yet to our list. */
3811 for (thread_item &item : context.items)
3812 {
3813 if (item.ptid != null_ptid)
3814 {
3815 /* In non-stop mode, we assume new found threads are
3816 executing until proven otherwise with a stop reply.
3817 In all-stop, we can only get here if all threads are
3818 stopped. */
3819 int executing = target_is_non_stop_p () ? 1 : 0;
3820
3821 remote_notice_new_inferior (item.ptid, executing);
3822
3823 thread_info *tp = find_thread_ptid (item.ptid);
3824 remote_thread_info *info = get_remote_thread_info (tp);
3825 info->core = item.core;
3826 info->extra = std::move (item.extra);
3827 info->name = std::move (item.name);
3828 info->thread_handle = std::move (item.thread_handle);
3829 }
3830 }
3831 }
3832
3833 if (!got_list)
3834 {
3835 /* If no thread listing method is supported, then query whether
3836 each known thread is alive, one by one, with the T packet.
3837 If the target doesn't support threads at all, then this is a
3838 no-op. See remote_thread_alive. */
3839 prune_threads ();
3840 }
3841 }
3842
3843 /*
3844 * Collect a descriptive string about the given thread.
3845 * The target may say anything it wants to about the thread
3846 * (typically info about its blocked / runnable state, name, etc.).
3847 * This string will appear in the info threads display.
3848 *
3849 * Optional: targets are not required to implement this function.
3850 */
3851
3852 const char *
3853 remote_target::extra_thread_info (thread_info *tp)
3854 {
3855 struct remote_state *rs = get_remote_state ();
3856 int set;
3857 threadref id;
3858 struct gdb_ext_thread_info threadinfo;
3859
3860 if (rs->remote_desc == 0) /* paranoia */
3861 internal_error (__FILE__, __LINE__,
3862 _("remote_threads_extra_info"));
3863
3864 if (tp->ptid == magic_null_ptid
3865 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3866 /* This is the main thread which was added by GDB. The remote
3867 server doesn't know about it. */
3868 return NULL;
3869
3870 std::string &extra = get_remote_thread_info (tp)->extra;
3871
3872 /* If already have cached info, use it. */
3873 if (!extra.empty ())
3874 return extra.c_str ();
3875
3876 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3877 {
3878 /* If we're using qXfer:threads:read, then the extra info is
3879 included in the XML. So if we didn't have anything cached,
3880 it's because there's really no extra info. */
3881 return NULL;
3882 }
3883
3884 if (rs->use_threadextra_query)
3885 {
3886 char *b = rs->buf;
3887 char *endb = rs->buf + get_remote_packet_size ();
3888
3889 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3890 b += strlen (b);
3891 write_ptid (b, endb, tp->ptid);
3892
3893 putpkt (rs->buf);
3894 getpkt (&rs->buf, &rs->buf_size, 0);
3895 if (rs->buf[0] != 0)
3896 {
3897 extra.resize (strlen (rs->buf) / 2);
3898 hex2bin (rs->buf, (gdb_byte *) &extra[0], extra.size ());
3899 return extra.c_str ();
3900 }
3901 }
3902
3903 /* If the above query fails, fall back to the old method. */
3904 rs->use_threadextra_query = 0;
3905 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3906 | TAG_MOREDISPLAY | TAG_DISPLAY;
3907 int_to_threadref (&id, tp->ptid.lwp ());
3908 if (remote_get_threadinfo (&id, set, &threadinfo))
3909 if (threadinfo.active)
3910 {
3911 if (*threadinfo.shortname)
3912 string_appendf (extra, " Name: %s", threadinfo.shortname);
3913 if (*threadinfo.display)
3914 {
3915 if (!extra.empty ())
3916 extra += ',';
3917 string_appendf (extra, " State: %s", threadinfo.display);
3918 }
3919 if (*threadinfo.more_display)
3920 {
3921 if (!extra.empty ())
3922 extra += ',';
3923 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3924 }
3925 return extra.c_str ();
3926 }
3927 return NULL;
3928 }
3929 \f
3930
3931 bool
3932 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3933 struct static_tracepoint_marker *marker)
3934 {
3935 struct remote_state *rs = get_remote_state ();
3936 char *p = rs->buf;
3937
3938 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3939 p += strlen (p);
3940 p += hexnumstr (p, addr);
3941 putpkt (rs->buf);
3942 getpkt (&rs->buf, &rs->buf_size, 0);
3943 p = rs->buf;
3944
3945 if (*p == 'E')
3946 error (_("Remote failure reply: %s"), p);
3947
3948 if (*p++ == 'm')
3949 {
3950 parse_static_tracepoint_marker_definition (p, NULL, marker);
3951 return true;
3952 }
3953
3954 return false;
3955 }
3956
3957 std::vector<static_tracepoint_marker>
3958 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3959 {
3960 struct remote_state *rs = get_remote_state ();
3961 std::vector<static_tracepoint_marker> markers;
3962 const char *p;
3963 static_tracepoint_marker marker;
3964
3965 /* Ask for a first packet of static tracepoint marker
3966 definition. */
3967 putpkt ("qTfSTM");
3968 getpkt (&rs->buf, &rs->buf_size, 0);
3969 p = rs->buf;
3970 if (*p == 'E')
3971 error (_("Remote failure reply: %s"), p);
3972
3973 while (*p++ == 'm')
3974 {
3975 do
3976 {
3977 parse_static_tracepoint_marker_definition (p, &p, &marker);
3978
3979 if (strid == NULL || marker.str_id == strid)
3980 markers.push_back (std::move (marker));
3981 }
3982 while (*p++ == ','); /* comma-separated list */
3983 /* Ask for another packet of static tracepoint definition. */
3984 putpkt ("qTsSTM");
3985 getpkt (&rs->buf, &rs->buf_size, 0);
3986 p = rs->buf;
3987 }
3988
3989 return markers;
3990 }
3991
3992 \f
3993 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3994
3995 ptid_t
3996 remote_target::get_ada_task_ptid (long lwp, long thread)
3997 {
3998 return ptid_t (inferior_ptid.pid (), lwp, 0);
3999 }
4000 \f
4001
4002 /* Restart the remote side; this is an extended protocol operation. */
4003
4004 void
4005 remote_target::extended_remote_restart ()
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008
4009 /* Send the restart command; for reasons I don't understand the
4010 remote side really expects a number after the "R". */
4011 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
4012 putpkt (rs->buf);
4013
4014 remote_fileio_reset ();
4015 }
4016 \f
4017 /* Clean up connection to a remote debugger. */
4018
4019 void
4020 remote_target::close ()
4021 {
4022 /* Make sure we leave stdin registered in the event loop. */
4023 terminal_ours ();
4024
4025 /* We don't have a connection to the remote stub anymore. Get rid
4026 of all the inferiors and their threads we were controlling.
4027 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4028 will be unable to find the thread corresponding to (pid, 0, 0). */
4029 inferior_ptid = null_ptid;
4030 discard_all_inferiors ();
4031
4032 trace_reset_local_state ();
4033
4034 delete this;
4035 }
4036
4037 remote_target::~remote_target ()
4038 {
4039 struct remote_state *rs = get_remote_state ();
4040
4041 /* Check for NULL because we may get here with a partially
4042 constructed target/connection. */
4043 if (rs->remote_desc == nullptr)
4044 return;
4045
4046 serial_close (rs->remote_desc);
4047
4048 /* We are destroying the remote target, so we should discard
4049 everything of this target. */
4050 discard_pending_stop_replies_in_queue ();
4051
4052 if (rs->remote_async_inferior_event_token)
4053 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4054
4055 remote_notif_state_xfree (rs->notif_state);
4056 }
4057
4058 /* Query the remote side for the text, data and bss offsets. */
4059
4060 void
4061 remote_target::get_offsets ()
4062 {
4063 struct remote_state *rs = get_remote_state ();
4064 char *buf;
4065 char *ptr;
4066 int lose, num_segments = 0, do_sections, do_segments;
4067 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4068 struct section_offsets *offs;
4069 struct symfile_segment_data *data;
4070
4071 if (symfile_objfile == NULL)
4072 return;
4073
4074 putpkt ("qOffsets");
4075 getpkt (&rs->buf, &rs->buf_size, 0);
4076 buf = rs->buf;
4077
4078 if (buf[0] == '\000')
4079 return; /* Return silently. Stub doesn't support
4080 this command. */
4081 if (buf[0] == 'E')
4082 {
4083 warning (_("Remote failure reply: %s"), buf);
4084 return;
4085 }
4086
4087 /* Pick up each field in turn. This used to be done with scanf, but
4088 scanf will make trouble if CORE_ADDR size doesn't match
4089 conversion directives correctly. The following code will work
4090 with any size of CORE_ADDR. */
4091 text_addr = data_addr = bss_addr = 0;
4092 ptr = buf;
4093 lose = 0;
4094
4095 if (startswith (ptr, "Text="))
4096 {
4097 ptr += 5;
4098 /* Don't use strtol, could lose on big values. */
4099 while (*ptr && *ptr != ';')
4100 text_addr = (text_addr << 4) + fromhex (*ptr++);
4101
4102 if (startswith (ptr, ";Data="))
4103 {
4104 ptr += 6;
4105 while (*ptr && *ptr != ';')
4106 data_addr = (data_addr << 4) + fromhex (*ptr++);
4107 }
4108 else
4109 lose = 1;
4110
4111 if (!lose && startswith (ptr, ";Bss="))
4112 {
4113 ptr += 5;
4114 while (*ptr && *ptr != ';')
4115 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4116
4117 if (bss_addr != data_addr)
4118 warning (_("Target reported unsupported offsets: %s"), buf);
4119 }
4120 else
4121 lose = 1;
4122 }
4123 else if (startswith (ptr, "TextSeg="))
4124 {
4125 ptr += 8;
4126 /* Don't use strtol, could lose on big values. */
4127 while (*ptr && *ptr != ';')
4128 text_addr = (text_addr << 4) + fromhex (*ptr++);
4129 num_segments = 1;
4130
4131 if (startswith (ptr, ";DataSeg="))
4132 {
4133 ptr += 9;
4134 while (*ptr && *ptr != ';')
4135 data_addr = (data_addr << 4) + fromhex (*ptr++);
4136 num_segments++;
4137 }
4138 }
4139 else
4140 lose = 1;
4141
4142 if (lose)
4143 error (_("Malformed response to offset query, %s"), buf);
4144 else if (*ptr != '\0')
4145 warning (_("Target reported unsupported offsets: %s"), buf);
4146
4147 offs = ((struct section_offsets *)
4148 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4149 memcpy (offs, symfile_objfile->section_offsets,
4150 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4151
4152 data = get_symfile_segment_data (symfile_objfile->obfd);
4153 do_segments = (data != NULL);
4154 do_sections = num_segments == 0;
4155
4156 if (num_segments > 0)
4157 {
4158 segments[0] = text_addr;
4159 segments[1] = data_addr;
4160 }
4161 /* If we have two segments, we can still try to relocate everything
4162 by assuming that the .text and .data offsets apply to the whole
4163 text and data segments. Convert the offsets given in the packet
4164 to base addresses for symfile_map_offsets_to_segments. */
4165 else if (data && data->num_segments == 2)
4166 {
4167 segments[0] = data->segment_bases[0] + text_addr;
4168 segments[1] = data->segment_bases[1] + data_addr;
4169 num_segments = 2;
4170 }
4171 /* If the object file has only one segment, assume that it is text
4172 rather than data; main programs with no writable data are rare,
4173 but programs with no code are useless. Of course the code might
4174 have ended up in the data segment... to detect that we would need
4175 the permissions here. */
4176 else if (data && data->num_segments == 1)
4177 {
4178 segments[0] = data->segment_bases[0] + text_addr;
4179 num_segments = 1;
4180 }
4181 /* There's no way to relocate by segment. */
4182 else
4183 do_segments = 0;
4184
4185 if (do_segments)
4186 {
4187 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4188 offs, num_segments, segments);
4189
4190 if (ret == 0 && !do_sections)
4191 error (_("Can not handle qOffsets TextSeg "
4192 "response with this symbol file"));
4193
4194 if (ret > 0)
4195 do_sections = 0;
4196 }
4197
4198 if (data)
4199 free_symfile_segment_data (data);
4200
4201 if (do_sections)
4202 {
4203 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4204
4205 /* This is a temporary kludge to force data and bss to use the
4206 same offsets because that's what nlmconv does now. The real
4207 solution requires changes to the stub and remote.c that I
4208 don't have time to do right now. */
4209
4210 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4211 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4212 }
4213
4214 objfile_relocate (symfile_objfile, offs);
4215 }
4216
4217 /* Send interrupt_sequence to remote target. */
4218
4219 void
4220 remote_target::send_interrupt_sequence ()
4221 {
4222 struct remote_state *rs = get_remote_state ();
4223
4224 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4225 remote_serial_write ("\x03", 1);
4226 else if (interrupt_sequence_mode == interrupt_sequence_break)
4227 serial_send_break (rs->remote_desc);
4228 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4229 {
4230 serial_send_break (rs->remote_desc);
4231 remote_serial_write ("g", 1);
4232 }
4233 else
4234 internal_error (__FILE__, __LINE__,
4235 _("Invalid value for interrupt_sequence_mode: %s."),
4236 interrupt_sequence_mode);
4237 }
4238
4239
4240 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4241 and extract the PTID. Returns NULL_PTID if not found. */
4242
4243 static ptid_t
4244 stop_reply_extract_thread (char *stop_reply)
4245 {
4246 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4247 {
4248 const char *p;
4249
4250 /* Txx r:val ; r:val (...) */
4251 p = &stop_reply[3];
4252
4253 /* Look for "register" named "thread". */
4254 while (*p != '\0')
4255 {
4256 const char *p1;
4257
4258 p1 = strchr (p, ':');
4259 if (p1 == NULL)
4260 return null_ptid;
4261
4262 if (strncmp (p, "thread", p1 - p) == 0)
4263 return read_ptid (++p1, &p);
4264
4265 p1 = strchr (p, ';');
4266 if (p1 == NULL)
4267 return null_ptid;
4268 p1++;
4269
4270 p = p1;
4271 }
4272 }
4273
4274 return null_ptid;
4275 }
4276
4277 /* Determine the remote side's current thread. If we have a stop
4278 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4279 "thread" register we can extract the current thread from. If not,
4280 ask the remote which is the current thread with qC. The former
4281 method avoids a roundtrip. */
4282
4283 ptid_t
4284 remote_target::get_current_thread (char *wait_status)
4285 {
4286 ptid_t ptid = null_ptid;
4287
4288 /* Note we don't use remote_parse_stop_reply as that makes use of
4289 the target architecture, which we haven't yet fully determined at
4290 this point. */
4291 if (wait_status != NULL)
4292 ptid = stop_reply_extract_thread (wait_status);
4293 if (ptid == null_ptid)
4294 ptid = remote_current_thread (inferior_ptid);
4295
4296 return ptid;
4297 }
4298
4299 /* Query the remote target for which is the current thread/process,
4300 add it to our tables, and update INFERIOR_PTID. The caller is
4301 responsible for setting the state such that the remote end is ready
4302 to return the current thread.
4303
4304 This function is called after handling the '?' or 'vRun' packets,
4305 whose response is a stop reply from which we can also try
4306 extracting the thread. If the target doesn't support the explicit
4307 qC query, we infer the current thread from that stop reply, passed
4308 in in WAIT_STATUS, which may be NULL. */
4309
4310 void
4311 remote_target::add_current_inferior_and_thread (char *wait_status)
4312 {
4313 struct remote_state *rs = get_remote_state ();
4314 int fake_pid_p = 0;
4315
4316 inferior_ptid = null_ptid;
4317
4318 /* Now, if we have thread information, update inferior_ptid. */
4319 ptid_t curr_ptid = get_current_thread (wait_status);
4320
4321 if (curr_ptid != null_ptid)
4322 {
4323 if (!remote_multi_process_p (rs))
4324 fake_pid_p = 1;
4325 }
4326 else
4327 {
4328 /* Without this, some commands which require an active target
4329 (such as kill) won't work. This variable serves (at least)
4330 double duty as both the pid of the target process (if it has
4331 such), and as a flag indicating that a target is active. */
4332 curr_ptid = magic_null_ptid;
4333 fake_pid_p = 1;
4334 }
4335
4336 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4337
4338 /* Add the main thread and switch to it. Don't try reading
4339 registers yet, since we haven't fetched the target description
4340 yet. */
4341 thread_info *tp = add_thread_silent (curr_ptid);
4342 switch_to_thread_no_regs (tp);
4343 }
4344
4345 /* Print info about a thread that was found already stopped on
4346 connection. */
4347
4348 static void
4349 print_one_stopped_thread (struct thread_info *thread)
4350 {
4351 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4352
4353 switch_to_thread (thread);
4354 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4355 set_current_sal_from_frame (get_current_frame ());
4356
4357 thread->suspend.waitstatus_pending_p = 0;
4358
4359 if (ws->kind == TARGET_WAITKIND_STOPPED)
4360 {
4361 enum gdb_signal sig = ws->value.sig;
4362
4363 if (signal_print_state (sig))
4364 gdb::observers::signal_received.notify (sig);
4365 }
4366 gdb::observers::normal_stop.notify (NULL, 1);
4367 }
4368
4369 /* Process all initial stop replies the remote side sent in response
4370 to the ? packet. These indicate threads that were already stopped
4371 on initial connection. We mark these threads as stopped and print
4372 their current frame before giving the user the prompt. */
4373
4374 void
4375 remote_target::process_initial_stop_replies (int from_tty)
4376 {
4377 int pending_stop_replies = stop_reply_queue_length ();
4378 struct thread_info *selected = NULL;
4379 struct thread_info *lowest_stopped = NULL;
4380 struct thread_info *first = NULL;
4381
4382 /* Consume the initial pending events. */
4383 while (pending_stop_replies-- > 0)
4384 {
4385 ptid_t waiton_ptid = minus_one_ptid;
4386 ptid_t event_ptid;
4387 struct target_waitstatus ws;
4388 int ignore_event = 0;
4389
4390 memset (&ws, 0, sizeof (ws));
4391 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4392 if (remote_debug)
4393 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4394
4395 switch (ws.kind)
4396 {
4397 case TARGET_WAITKIND_IGNORE:
4398 case TARGET_WAITKIND_NO_RESUMED:
4399 case TARGET_WAITKIND_SIGNALLED:
4400 case TARGET_WAITKIND_EXITED:
4401 /* We shouldn't see these, but if we do, just ignore. */
4402 if (remote_debug)
4403 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4404 ignore_event = 1;
4405 break;
4406
4407 case TARGET_WAITKIND_EXECD:
4408 xfree (ws.value.execd_pathname);
4409 break;
4410 default:
4411 break;
4412 }
4413
4414 if (ignore_event)
4415 continue;
4416
4417 struct thread_info *evthread = find_thread_ptid (event_ptid);
4418
4419 if (ws.kind == TARGET_WAITKIND_STOPPED)
4420 {
4421 enum gdb_signal sig = ws.value.sig;
4422
4423 /* Stubs traditionally report SIGTRAP as initial signal,
4424 instead of signal 0. Suppress it. */
4425 if (sig == GDB_SIGNAL_TRAP)
4426 sig = GDB_SIGNAL_0;
4427 evthread->suspend.stop_signal = sig;
4428 ws.value.sig = sig;
4429 }
4430
4431 evthread->suspend.waitstatus = ws;
4432
4433 if (ws.kind != TARGET_WAITKIND_STOPPED
4434 || ws.value.sig != GDB_SIGNAL_0)
4435 evthread->suspend.waitstatus_pending_p = 1;
4436
4437 set_executing (event_ptid, 0);
4438 set_running (event_ptid, 0);
4439 get_remote_thread_info (evthread)->vcont_resumed = 0;
4440 }
4441
4442 /* "Notice" the new inferiors before anything related to
4443 registers/memory. */
4444 for (inferior *inf : all_non_exited_inferiors ())
4445 {
4446 inf->needs_setup = 1;
4447
4448 if (non_stop)
4449 {
4450 thread_info *thread = any_live_thread_of_inferior (inf);
4451 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4452 from_tty);
4453 }
4454 }
4455
4456 /* If all-stop on top of non-stop, pause all threads. Note this
4457 records the threads' stop pc, so must be done after "noticing"
4458 the inferiors. */
4459 if (!non_stop)
4460 {
4461 stop_all_threads ();
4462
4463 /* If all threads of an inferior were already stopped, we
4464 haven't setup the inferior yet. */
4465 for (inferior *inf : all_non_exited_inferiors ())
4466 {
4467 if (inf->needs_setup)
4468 {
4469 thread_info *thread = any_live_thread_of_inferior (inf);
4470 switch_to_thread_no_regs (thread);
4471 setup_inferior (0);
4472 }
4473 }
4474 }
4475
4476 /* Now go over all threads that are stopped, and print their current
4477 frame. If all-stop, then if there's a signalled thread, pick
4478 that as current. */
4479 for (thread_info *thread : all_non_exited_threads ())
4480 {
4481 if (first == NULL)
4482 first = thread;
4483
4484 if (!non_stop)
4485 thread->set_running (false);
4486 else if (thread->state != THREAD_STOPPED)
4487 continue;
4488
4489 if (selected == NULL
4490 && thread->suspend.waitstatus_pending_p)
4491 selected = thread;
4492
4493 if (lowest_stopped == NULL
4494 || thread->inf->num < lowest_stopped->inf->num
4495 || thread->per_inf_num < lowest_stopped->per_inf_num)
4496 lowest_stopped = thread;
4497
4498 if (non_stop)
4499 print_one_stopped_thread (thread);
4500 }
4501
4502 /* In all-stop, we only print the status of one thread, and leave
4503 others with their status pending. */
4504 if (!non_stop)
4505 {
4506 thread_info *thread = selected;
4507 if (thread == NULL)
4508 thread = lowest_stopped;
4509 if (thread == NULL)
4510 thread = first;
4511
4512 print_one_stopped_thread (thread);
4513 }
4514
4515 /* For "info program". */
4516 thread_info *thread = inferior_thread ();
4517 if (thread->state == THREAD_STOPPED)
4518 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4519 }
4520
4521 /* Start the remote connection and sync state. */
4522
4523 void
4524 remote_target::start_remote (int from_tty, int extended_p)
4525 {
4526 struct remote_state *rs = get_remote_state ();
4527 struct packet_config *noack_config;
4528 char *wait_status = NULL;
4529
4530 /* Signal other parts that we're going through the initial setup,
4531 and so things may not be stable yet. E.g., we don't try to
4532 install tracepoints until we've relocated symbols. Also, a
4533 Ctrl-C before we're connected and synced up can't interrupt the
4534 target. Instead, it offers to drop the (potentially wedged)
4535 connection. */
4536 rs->starting_up = 1;
4537
4538 QUIT;
4539
4540 if (interrupt_on_connect)
4541 send_interrupt_sequence ();
4542
4543 /* Ack any packet which the remote side has already sent. */
4544 remote_serial_write ("+", 1);
4545
4546 /* The first packet we send to the target is the optional "supported
4547 packets" request. If the target can answer this, it will tell us
4548 which later probes to skip. */
4549 remote_query_supported ();
4550
4551 /* If the stub wants to get a QAllow, compose one and send it. */
4552 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4553 set_permissions ();
4554
4555 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4556 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4557 as a reply to known packet. For packet "vFile:setfs:" it is an
4558 invalid reply and GDB would return error in
4559 remote_hostio_set_filesystem, making remote files access impossible.
4560 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4561 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4562 {
4563 const char v_mustreplyempty[] = "vMustReplyEmpty";
4564
4565 putpkt (v_mustreplyempty);
4566 getpkt (&rs->buf, &rs->buf_size, 0);
4567 if (strcmp (rs->buf, "OK") == 0)
4568 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4569 else if (strcmp (rs->buf, "") != 0)
4570 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4571 rs->buf);
4572 }
4573
4574 /* Next, we possibly activate noack mode.
4575
4576 If the QStartNoAckMode packet configuration is set to AUTO,
4577 enable noack mode if the stub reported a wish for it with
4578 qSupported.
4579
4580 If set to TRUE, then enable noack mode even if the stub didn't
4581 report it in qSupported. If the stub doesn't reply OK, the
4582 session ends with an error.
4583
4584 If FALSE, then don't activate noack mode, regardless of what the
4585 stub claimed should be the default with qSupported. */
4586
4587 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4588 if (packet_config_support (noack_config) != PACKET_DISABLE)
4589 {
4590 putpkt ("QStartNoAckMode");
4591 getpkt (&rs->buf, &rs->buf_size, 0);
4592 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4593 rs->noack_mode = 1;
4594 }
4595
4596 if (extended_p)
4597 {
4598 /* Tell the remote that we are using the extended protocol. */
4599 putpkt ("!");
4600 getpkt (&rs->buf, &rs->buf_size, 0);
4601 }
4602
4603 /* Let the target know which signals it is allowed to pass down to
4604 the program. */
4605 update_signals_program_target ();
4606
4607 /* Next, if the target can specify a description, read it. We do
4608 this before anything involving memory or registers. */
4609 target_find_description ();
4610
4611 /* Next, now that we know something about the target, update the
4612 address spaces in the program spaces. */
4613 update_address_spaces ();
4614
4615 /* On OSs where the list of libraries is global to all
4616 processes, we fetch them early. */
4617 if (gdbarch_has_global_solist (target_gdbarch ()))
4618 solib_add (NULL, from_tty, auto_solib_add);
4619
4620 if (target_is_non_stop_p ())
4621 {
4622 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4623 error (_("Non-stop mode requested, but remote "
4624 "does not support non-stop"));
4625
4626 putpkt ("QNonStop:1");
4627 getpkt (&rs->buf, &rs->buf_size, 0);
4628
4629 if (strcmp (rs->buf, "OK") != 0)
4630 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4631
4632 /* Find about threads and processes the stub is already
4633 controlling. We default to adding them in the running state.
4634 The '?' query below will then tell us about which threads are
4635 stopped. */
4636 this->update_thread_list ();
4637 }
4638 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4639 {
4640 /* Don't assume that the stub can operate in all-stop mode.
4641 Request it explicitly. */
4642 putpkt ("QNonStop:0");
4643 getpkt (&rs->buf, &rs->buf_size, 0);
4644
4645 if (strcmp (rs->buf, "OK") != 0)
4646 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4647 }
4648
4649 /* Upload TSVs regardless of whether the target is running or not. The
4650 remote stub, such as GDBserver, may have some predefined or builtin
4651 TSVs, even if the target is not running. */
4652 if (get_trace_status (current_trace_status ()) != -1)
4653 {
4654 struct uploaded_tsv *uploaded_tsvs = NULL;
4655
4656 upload_trace_state_variables (&uploaded_tsvs);
4657 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4658 }
4659
4660 /* Check whether the target is running now. */
4661 putpkt ("?");
4662 getpkt (&rs->buf, &rs->buf_size, 0);
4663
4664 if (!target_is_non_stop_p ())
4665 {
4666 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4667 {
4668 if (!extended_p)
4669 error (_("The target is not running (try extended-remote?)"));
4670
4671 /* We're connected, but not running. Drop out before we
4672 call start_remote. */
4673 rs->starting_up = 0;
4674 return;
4675 }
4676 else
4677 {
4678 /* Save the reply for later. */
4679 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4680 strcpy (wait_status, rs->buf);
4681 }
4682
4683 /* Fetch thread list. */
4684 target_update_thread_list ();
4685
4686 /* Let the stub know that we want it to return the thread. */
4687 set_continue_thread (minus_one_ptid);
4688
4689 if (thread_count () == 0)
4690 {
4691 /* Target has no concept of threads at all. GDB treats
4692 non-threaded target as single-threaded; add a main
4693 thread. */
4694 add_current_inferior_and_thread (wait_status);
4695 }
4696 else
4697 {
4698 /* We have thread information; select the thread the target
4699 says should be current. If we're reconnecting to a
4700 multi-threaded program, this will ideally be the thread
4701 that last reported an event before GDB disconnected. */
4702 inferior_ptid = get_current_thread (wait_status);
4703 if (inferior_ptid == null_ptid)
4704 {
4705 /* Odd... The target was able to list threads, but not
4706 tell us which thread was current (no "thread"
4707 register in T stop reply?). Just pick the first
4708 thread in the thread list then. */
4709
4710 if (remote_debug)
4711 fprintf_unfiltered (gdb_stdlog,
4712 "warning: couldn't determine remote "
4713 "current thread; picking first in list.\n");
4714
4715 inferior_ptid = inferior_list->thread_list->ptid;
4716 }
4717 }
4718
4719 /* init_wait_for_inferior should be called before get_offsets in order
4720 to manage `inserted' flag in bp loc in a correct state.
4721 breakpoint_init_inferior, called from init_wait_for_inferior, set
4722 `inserted' flag to 0, while before breakpoint_re_set, called from
4723 start_remote, set `inserted' flag to 1. In the initialization of
4724 inferior, breakpoint_init_inferior should be called first, and then
4725 breakpoint_re_set can be called. If this order is broken, state of
4726 `inserted' flag is wrong, and cause some problems on breakpoint
4727 manipulation. */
4728 init_wait_for_inferior ();
4729
4730 get_offsets (); /* Get text, data & bss offsets. */
4731
4732 /* If we could not find a description using qXfer, and we know
4733 how to do it some other way, try again. This is not
4734 supported for non-stop; it could be, but it is tricky if
4735 there are no stopped threads when we connect. */
4736 if (remote_read_description_p (this)
4737 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4738 {
4739 target_clear_description ();
4740 target_find_description ();
4741 }
4742
4743 /* Use the previously fetched status. */
4744 gdb_assert (wait_status != NULL);
4745 strcpy (rs->buf, wait_status);
4746 rs->cached_wait_status = 1;
4747
4748 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4749 }
4750 else
4751 {
4752 /* Clear WFI global state. Do this before finding about new
4753 threads and inferiors, and setting the current inferior.
4754 Otherwise we would clear the proceed status of the current
4755 inferior when we want its stop_soon state to be preserved
4756 (see notice_new_inferior). */
4757 init_wait_for_inferior ();
4758
4759 /* In non-stop, we will either get an "OK", meaning that there
4760 are no stopped threads at this time; or, a regular stop
4761 reply. In the latter case, there may be more than one thread
4762 stopped --- we pull them all out using the vStopped
4763 mechanism. */
4764 if (strcmp (rs->buf, "OK") != 0)
4765 {
4766 struct notif_client *notif = &notif_client_stop;
4767
4768 /* remote_notif_get_pending_replies acks this one, and gets
4769 the rest out. */
4770 rs->notif_state->pending_event[notif_client_stop.id]
4771 = remote_notif_parse (this, notif, rs->buf);
4772 remote_notif_get_pending_events (notif);
4773 }
4774
4775 if (thread_count () == 0)
4776 {
4777 if (!extended_p)
4778 error (_("The target is not running (try extended-remote?)"));
4779
4780 /* We're connected, but not running. Drop out before we
4781 call start_remote. */
4782 rs->starting_up = 0;
4783 return;
4784 }
4785
4786 /* In non-stop mode, any cached wait status will be stored in
4787 the stop reply queue. */
4788 gdb_assert (wait_status == NULL);
4789
4790 /* Report all signals during attach/startup. */
4791 pass_signals (0, NULL);
4792
4793 /* If there are already stopped threads, mark them stopped and
4794 report their stops before giving the prompt to the user. */
4795 process_initial_stop_replies (from_tty);
4796
4797 if (target_can_async_p ())
4798 target_async (1);
4799 }
4800
4801 /* If we connected to a live target, do some additional setup. */
4802 if (target_has_execution)
4803 {
4804 if (symfile_objfile) /* No use without a symbol-file. */
4805 remote_check_symbols ();
4806 }
4807
4808 /* Possibly the target has been engaged in a trace run started
4809 previously; find out where things are at. */
4810 if (get_trace_status (current_trace_status ()) != -1)
4811 {
4812 struct uploaded_tp *uploaded_tps = NULL;
4813
4814 if (current_trace_status ()->running)
4815 printf_filtered (_("Trace is already running on the target.\n"));
4816
4817 upload_tracepoints (&uploaded_tps);
4818
4819 merge_uploaded_tracepoints (&uploaded_tps);
4820 }
4821
4822 /* Possibly the target has been engaged in a btrace record started
4823 previously; find out where things are at. */
4824 remote_btrace_maybe_reopen ();
4825
4826 /* The thread and inferior lists are now synchronized with the
4827 target, our symbols have been relocated, and we're merged the
4828 target's tracepoints with ours. We're done with basic start
4829 up. */
4830 rs->starting_up = 0;
4831
4832 /* Maybe breakpoints are global and need to be inserted now. */
4833 if (breakpoints_should_be_inserted_now ())
4834 insert_breakpoints ();
4835 }
4836
4837 /* Open a connection to a remote debugger.
4838 NAME is the filename used for communication. */
4839
4840 void
4841 remote_target::open (const char *name, int from_tty)
4842 {
4843 open_1 (name, from_tty, 0);
4844 }
4845
4846 /* Open a connection to a remote debugger using the extended
4847 remote gdb protocol. NAME is the filename used for communication. */
4848
4849 void
4850 extended_remote_target::open (const char *name, int from_tty)
4851 {
4852 open_1 (name, from_tty, 1 /*extended_p */);
4853 }
4854
4855 /* Reset all packets back to "unknown support". Called when opening a
4856 new connection to a remote target. */
4857
4858 static void
4859 reset_all_packet_configs_support (void)
4860 {
4861 int i;
4862
4863 for (i = 0; i < PACKET_MAX; i++)
4864 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4865 }
4866
4867 /* Initialize all packet configs. */
4868
4869 static void
4870 init_all_packet_configs (void)
4871 {
4872 int i;
4873
4874 for (i = 0; i < PACKET_MAX; i++)
4875 {
4876 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4877 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4878 }
4879 }
4880
4881 /* Symbol look-up. */
4882
4883 void
4884 remote_target::remote_check_symbols ()
4885 {
4886 char *reply, *tmp;
4887 int end;
4888 long reply_size;
4889 struct cleanup *old_chain;
4890
4891 /* The remote side has no concept of inferiors that aren't running
4892 yet, it only knows about running processes. If we're connected
4893 but our current inferior is not running, we should not invite the
4894 remote target to request symbol lookups related to its
4895 (unrelated) current process. */
4896 if (!target_has_execution)
4897 return;
4898
4899 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4900 return;
4901
4902 /* Make sure the remote is pointing at the right process. Note
4903 there's no way to select "no process". */
4904 set_general_process ();
4905
4906 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4907 because we need both at the same time. */
4908 gdb::char_vector msg (get_remote_packet_size ());
4909 reply = (char *) xmalloc (get_remote_packet_size ());
4910 old_chain = make_cleanup (free_current_contents, &reply);
4911 reply_size = get_remote_packet_size ();
4912
4913 /* Invite target to request symbol lookups. */
4914
4915 putpkt ("qSymbol::");
4916 getpkt (&reply, &reply_size, 0);
4917 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4918
4919 while (startswith (reply, "qSymbol:"))
4920 {
4921 struct bound_minimal_symbol sym;
4922
4923 tmp = &reply[8];
4924 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4925 strlen (tmp) / 2);
4926 msg[end] = '\0';
4927 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4928 if (sym.minsym == NULL)
4929 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4930 &reply[8]);
4931 else
4932 {
4933 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4934 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4935
4936 /* If this is a function address, return the start of code
4937 instead of any data function descriptor. */
4938 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4939 sym_addr,
4940 current_top_target ());
4941
4942 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4943 phex_nz (sym_addr, addr_size), &reply[8]);
4944 }
4945
4946 putpkt (msg.data ());
4947 getpkt (&reply, &reply_size, 0);
4948 }
4949
4950 do_cleanups (old_chain);
4951 }
4952
4953 static struct serial *
4954 remote_serial_open (const char *name)
4955 {
4956 static int udp_warning = 0;
4957
4958 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4959 of in ser-tcp.c, because it is the remote protocol assuming that the
4960 serial connection is reliable and not the serial connection promising
4961 to be. */
4962 if (!udp_warning && startswith (name, "udp:"))
4963 {
4964 warning (_("The remote protocol may be unreliable over UDP.\n"
4965 "Some events may be lost, rendering further debugging "
4966 "impossible."));
4967 udp_warning = 1;
4968 }
4969
4970 return serial_open (name);
4971 }
4972
4973 /* Inform the target of our permission settings. The permission flags
4974 work without this, but if the target knows the settings, it can do
4975 a couple things. First, it can add its own check, to catch cases
4976 that somehow manage to get by the permissions checks in target
4977 methods. Second, if the target is wired to disallow particular
4978 settings (for instance, a system in the field that is not set up to
4979 be able to stop at a breakpoint), it can object to any unavailable
4980 permissions. */
4981
4982 void
4983 remote_target::set_permissions ()
4984 {
4985 struct remote_state *rs = get_remote_state ();
4986
4987 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4988 "WriteReg:%x;WriteMem:%x;"
4989 "InsertBreak:%x;InsertTrace:%x;"
4990 "InsertFastTrace:%x;Stop:%x",
4991 may_write_registers, may_write_memory,
4992 may_insert_breakpoints, may_insert_tracepoints,
4993 may_insert_fast_tracepoints, may_stop);
4994 putpkt (rs->buf);
4995 getpkt (&rs->buf, &rs->buf_size, 0);
4996
4997 /* If the target didn't like the packet, warn the user. Do not try
4998 to undo the user's settings, that would just be maddening. */
4999 if (strcmp (rs->buf, "OK") != 0)
5000 warning (_("Remote refused setting permissions with: %s"), rs->buf);
5001 }
5002
5003 /* This type describes each known response to the qSupported
5004 packet. */
5005 struct protocol_feature
5006 {
5007 /* The name of this protocol feature. */
5008 const char *name;
5009
5010 /* The default for this protocol feature. */
5011 enum packet_support default_support;
5012
5013 /* The function to call when this feature is reported, or after
5014 qSupported processing if the feature is not supported.
5015 The first argument points to this structure. The second
5016 argument indicates whether the packet requested support be
5017 enabled, disabled, or probed (or the default, if this function
5018 is being called at the end of processing and this feature was
5019 not reported). The third argument may be NULL; if not NULL, it
5020 is a NUL-terminated string taken from the packet following
5021 this feature's name and an equals sign. */
5022 void (*func) (remote_target *remote, const struct protocol_feature *,
5023 enum packet_support, const char *);
5024
5025 /* The corresponding packet for this feature. Only used if
5026 FUNC is remote_supported_packet. */
5027 int packet;
5028 };
5029
5030 static void
5031 remote_supported_packet (remote_target *remote,
5032 const struct protocol_feature *feature,
5033 enum packet_support support,
5034 const char *argument)
5035 {
5036 if (argument)
5037 {
5038 warning (_("Remote qSupported response supplied an unexpected value for"
5039 " \"%s\"."), feature->name);
5040 return;
5041 }
5042
5043 remote_protocol_packets[feature->packet].support = support;
5044 }
5045
5046 void
5047 remote_target::remote_packet_size (const protocol_feature *feature,
5048 enum packet_support support, const char *value)
5049 {
5050 struct remote_state *rs = get_remote_state ();
5051
5052 int packet_size;
5053 char *value_end;
5054
5055 if (support != PACKET_ENABLE)
5056 return;
5057
5058 if (value == NULL || *value == '\0')
5059 {
5060 warning (_("Remote target reported \"%s\" without a size."),
5061 feature->name);
5062 return;
5063 }
5064
5065 errno = 0;
5066 packet_size = strtol (value, &value_end, 16);
5067 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5068 {
5069 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5070 feature->name, value);
5071 return;
5072 }
5073
5074 /* Record the new maximum packet size. */
5075 rs->explicit_packet_size = packet_size;
5076 }
5077
5078 void
5079 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5080 enum packet_support support, const char *value)
5081 {
5082 remote->remote_packet_size (feature, support, value);
5083 }
5084
5085 static const struct protocol_feature remote_protocol_features[] = {
5086 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5087 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5088 PACKET_qXfer_auxv },
5089 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5090 PACKET_qXfer_exec_file },
5091 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5092 PACKET_qXfer_features },
5093 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5094 PACKET_qXfer_libraries },
5095 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5096 PACKET_qXfer_libraries_svr4 },
5097 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5098 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5099 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5100 PACKET_qXfer_memory_map },
5101 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5102 PACKET_qXfer_spu_read },
5103 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5104 PACKET_qXfer_spu_write },
5105 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_qXfer_osdata },
5107 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_qXfer_threads },
5109 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_qXfer_traceframe_info },
5111 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_QPassSignals },
5113 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_QCatchSyscalls },
5115 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_QProgramSignals },
5117 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_QSetWorkingDir },
5119 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_QStartupWithShell },
5121 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_QEnvironmentHexEncoded },
5123 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_QEnvironmentReset },
5125 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_QEnvironmentUnset },
5127 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_QStartNoAckMode },
5129 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_multiprocess_feature },
5131 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5132 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_qXfer_siginfo_read },
5134 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5135 PACKET_qXfer_siginfo_write },
5136 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5137 PACKET_ConditionalTracepoints },
5138 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_ConditionalBreakpoints },
5140 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_BreakpointCommands },
5142 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_FastTracepoints },
5144 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_StaticTracepoints },
5146 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_InstallInTrace},
5148 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_DisconnectedTracing_feature },
5150 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_bc },
5152 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_bs },
5154 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_TracepointSource },
5156 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_QAllow },
5158 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_EnableDisableTracepoints_feature },
5160 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_fdpic },
5162 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_qXfer_uib },
5164 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_QDisableRandomization },
5166 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5167 { "QTBuffer:size", PACKET_DISABLE,
5168 remote_supported_packet, PACKET_QTBuffer_size},
5169 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5170 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5171 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5172 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5173 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_qXfer_btrace },
5175 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_qXfer_btrace_conf },
5177 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_Qbtrace_conf_bts_size },
5179 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5180 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5181 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_fork_event_feature },
5183 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5184 PACKET_vfork_event_feature },
5185 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5186 PACKET_exec_event_feature },
5187 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5188 PACKET_Qbtrace_conf_pt_size },
5189 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5190 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5191 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5192 };
5193
5194 static char *remote_support_xml;
5195
5196 /* Register string appended to "xmlRegisters=" in qSupported query. */
5197
5198 void
5199 register_remote_support_xml (const char *xml)
5200 {
5201 #if defined(HAVE_LIBEXPAT)
5202 if (remote_support_xml == NULL)
5203 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5204 else
5205 {
5206 char *copy = xstrdup (remote_support_xml + 13);
5207 char *p = strtok (copy, ",");
5208
5209 do
5210 {
5211 if (strcmp (p, xml) == 0)
5212 {
5213 /* already there */
5214 xfree (copy);
5215 return;
5216 }
5217 }
5218 while ((p = strtok (NULL, ",")) != NULL);
5219 xfree (copy);
5220
5221 remote_support_xml = reconcat (remote_support_xml,
5222 remote_support_xml, ",", xml,
5223 (char *) NULL);
5224 }
5225 #endif
5226 }
5227
5228 static void
5229 remote_query_supported_append (std::string *msg, const char *append)
5230 {
5231 if (!msg->empty ())
5232 msg->append (";");
5233 msg->append (append);
5234 }
5235
5236 void
5237 remote_target::remote_query_supported ()
5238 {
5239 struct remote_state *rs = get_remote_state ();
5240 char *next;
5241 int i;
5242 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5243
5244 /* The packet support flags are handled differently for this packet
5245 than for most others. We treat an error, a disabled packet, and
5246 an empty response identically: any features which must be reported
5247 to be used will be automatically disabled. An empty buffer
5248 accomplishes this, since that is also the representation for a list
5249 containing no features. */
5250
5251 rs->buf[0] = 0;
5252 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5253 {
5254 std::string q;
5255
5256 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5257 remote_query_supported_append (&q, "multiprocess+");
5258
5259 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5260 remote_query_supported_append (&q, "swbreak+");
5261 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5262 remote_query_supported_append (&q, "hwbreak+");
5263
5264 remote_query_supported_append (&q, "qRelocInsn+");
5265
5266 if (packet_set_cmd_state (PACKET_fork_event_feature)
5267 != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "fork-events+");
5269 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5270 != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "vfork-events+");
5272 if (packet_set_cmd_state (PACKET_exec_event_feature)
5273 != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "exec-events+");
5275
5276 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "vContSupported+");
5278
5279 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "QThreadEvents+");
5281
5282 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5283 remote_query_supported_append (&q, "no-resumed+");
5284
5285 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5286 the qSupported:xmlRegisters=i386 handling. */
5287 if (remote_support_xml != NULL
5288 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5289 remote_query_supported_append (&q, remote_support_xml);
5290
5291 q = "qSupported:" + q;
5292 putpkt (q.c_str ());
5293
5294 getpkt (&rs->buf, &rs->buf_size, 0);
5295
5296 /* If an error occured, warn, but do not return - just reset the
5297 buffer to empty and go on to disable features. */
5298 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5299 == PACKET_ERROR)
5300 {
5301 warning (_("Remote failure reply: %s"), rs->buf);
5302 rs->buf[0] = 0;
5303 }
5304 }
5305
5306 memset (seen, 0, sizeof (seen));
5307
5308 next = rs->buf;
5309 while (*next)
5310 {
5311 enum packet_support is_supported;
5312 char *p, *end, *name_end, *value;
5313
5314 /* First separate out this item from the rest of the packet. If
5315 there's another item after this, we overwrite the separator
5316 (terminated strings are much easier to work with). */
5317 p = next;
5318 end = strchr (p, ';');
5319 if (end == NULL)
5320 {
5321 end = p + strlen (p);
5322 next = end;
5323 }
5324 else
5325 {
5326 *end = '\0';
5327 next = end + 1;
5328
5329 if (end == p)
5330 {
5331 warning (_("empty item in \"qSupported\" response"));
5332 continue;
5333 }
5334 }
5335
5336 name_end = strchr (p, '=');
5337 if (name_end)
5338 {
5339 /* This is a name=value entry. */
5340 is_supported = PACKET_ENABLE;
5341 value = name_end + 1;
5342 *name_end = '\0';
5343 }
5344 else
5345 {
5346 value = NULL;
5347 switch (end[-1])
5348 {
5349 case '+':
5350 is_supported = PACKET_ENABLE;
5351 break;
5352
5353 case '-':
5354 is_supported = PACKET_DISABLE;
5355 break;
5356
5357 case '?':
5358 is_supported = PACKET_SUPPORT_UNKNOWN;
5359 break;
5360
5361 default:
5362 warning (_("unrecognized item \"%s\" "
5363 "in \"qSupported\" response"), p);
5364 continue;
5365 }
5366 end[-1] = '\0';
5367 }
5368
5369 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5370 if (strcmp (remote_protocol_features[i].name, p) == 0)
5371 {
5372 const struct protocol_feature *feature;
5373
5374 seen[i] = 1;
5375 feature = &remote_protocol_features[i];
5376 feature->func (this, feature, is_supported, value);
5377 break;
5378 }
5379 }
5380
5381 /* If we increased the packet size, make sure to increase the global
5382 buffer size also. We delay this until after parsing the entire
5383 qSupported packet, because this is the same buffer we were
5384 parsing. */
5385 if (rs->buf_size < rs->explicit_packet_size)
5386 {
5387 rs->buf_size = rs->explicit_packet_size;
5388 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5389 }
5390
5391 /* Handle the defaults for unmentioned features. */
5392 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5393 if (!seen[i])
5394 {
5395 const struct protocol_feature *feature;
5396
5397 feature = &remote_protocol_features[i];
5398 feature->func (this, feature, feature->default_support, NULL);
5399 }
5400 }
5401
5402 /* Serial QUIT handler for the remote serial descriptor.
5403
5404 Defers handling a Ctrl-C until we're done with the current
5405 command/response packet sequence, unless:
5406
5407 - We're setting up the connection. Don't send a remote interrupt
5408 request, as we're not fully synced yet. Quit immediately
5409 instead.
5410
5411 - The target has been resumed in the foreground
5412 (target_terminal::is_ours is false) with a synchronous resume
5413 packet, and we're blocked waiting for the stop reply, thus a
5414 Ctrl-C should be immediately sent to the target.
5415
5416 - We get a second Ctrl-C while still within the same serial read or
5417 write. In that case the serial is seemingly wedged --- offer to
5418 quit/disconnect.
5419
5420 - We see a second Ctrl-C without target response, after having
5421 previously interrupted the target. In that case the target/stub
5422 is probably wedged --- offer to quit/disconnect.
5423 */
5424
5425 void
5426 remote_target::remote_serial_quit_handler ()
5427 {
5428 struct remote_state *rs = get_remote_state ();
5429
5430 if (check_quit_flag ())
5431 {
5432 /* If we're starting up, we're not fully synced yet. Quit
5433 immediately. */
5434 if (rs->starting_up)
5435 quit ();
5436 else if (rs->got_ctrlc_during_io)
5437 {
5438 if (query (_("The target is not responding to GDB commands.\n"
5439 "Stop debugging it? ")))
5440 remote_unpush_and_throw ();
5441 }
5442 /* If ^C has already been sent once, offer to disconnect. */
5443 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5444 interrupt_query ();
5445 /* All-stop protocol, and blocked waiting for stop reply. Send
5446 an interrupt request. */
5447 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5448 target_interrupt ();
5449 else
5450 rs->got_ctrlc_during_io = 1;
5451 }
5452 }
5453
5454 /* The remote_target that is current while the quit handler is
5455 overridden with remote_serial_quit_handler. */
5456 static remote_target *curr_quit_handler_target;
5457
5458 static void
5459 remote_serial_quit_handler ()
5460 {
5461 curr_quit_handler_target->remote_serial_quit_handler ();
5462 }
5463
5464 /* Remove any of the remote.c targets from target stack. Upper targets depend
5465 on it so remove them first. */
5466
5467 static void
5468 remote_unpush_target (void)
5469 {
5470 pop_all_targets_at_and_above (process_stratum);
5471 }
5472
5473 static void
5474 remote_unpush_and_throw (void)
5475 {
5476 remote_unpush_target ();
5477 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5478 }
5479
5480 void
5481 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5482 {
5483 remote_target *curr_remote = get_current_remote_target ();
5484
5485 if (name == 0)
5486 error (_("To open a remote debug connection, you need to specify what\n"
5487 "serial device is attached to the remote system\n"
5488 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5489
5490 /* If we're connected to a running target, target_preopen will kill it.
5491 Ask this question first, before target_preopen has a chance to kill
5492 anything. */
5493 if (curr_remote != NULL && !have_inferiors ())
5494 {
5495 if (from_tty
5496 && !query (_("Already connected to a remote target. Disconnect? ")))
5497 error (_("Still connected."));
5498 }
5499
5500 /* Here the possibly existing remote target gets unpushed. */
5501 target_preopen (from_tty);
5502
5503 remote_fileio_reset ();
5504 reopen_exec_file ();
5505 reread_symbols ();
5506
5507 remote_target *remote
5508 = (extended_p ? new extended_remote_target () : new remote_target ());
5509 target_ops_up target_holder (remote);
5510
5511 remote_state *rs = remote->get_remote_state ();
5512
5513 /* See FIXME above. */
5514 if (!target_async_permitted)
5515 rs->wait_forever_enabled_p = 1;
5516
5517 rs->remote_desc = remote_serial_open (name);
5518 if (!rs->remote_desc)
5519 perror_with_name (name);
5520
5521 if (baud_rate != -1)
5522 {
5523 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5524 {
5525 /* The requested speed could not be set. Error out to
5526 top level after closing remote_desc. Take care to
5527 set remote_desc to NULL to avoid closing remote_desc
5528 more than once. */
5529 serial_close (rs->remote_desc);
5530 rs->remote_desc = NULL;
5531 perror_with_name (name);
5532 }
5533 }
5534
5535 serial_setparity (rs->remote_desc, serial_parity);
5536 serial_raw (rs->remote_desc);
5537
5538 /* If there is something sitting in the buffer we might take it as a
5539 response to a command, which would be bad. */
5540 serial_flush_input (rs->remote_desc);
5541
5542 if (from_tty)
5543 {
5544 puts_filtered ("Remote debugging using ");
5545 puts_filtered (name);
5546 puts_filtered ("\n");
5547 }
5548
5549 /* Switch to using the remote target now. */
5550 push_target (remote);
5551 /* The target stack owns the target now. */
5552 target_holder.release ();
5553
5554 /* Register extra event sources in the event loop. */
5555 rs->remote_async_inferior_event_token
5556 = create_async_event_handler (remote_async_inferior_event_handler,
5557 remote);
5558 rs->notif_state = remote_notif_state_allocate (remote);
5559
5560 /* Reset the target state; these things will be queried either by
5561 remote_query_supported or as they are needed. */
5562 reset_all_packet_configs_support ();
5563 rs->cached_wait_status = 0;
5564 rs->explicit_packet_size = 0;
5565 rs->noack_mode = 0;
5566 rs->extended = extended_p;
5567 rs->waiting_for_stop_reply = 0;
5568 rs->ctrlc_pending_p = 0;
5569 rs->got_ctrlc_during_io = 0;
5570
5571 rs->general_thread = not_sent_ptid;
5572 rs->continue_thread = not_sent_ptid;
5573 rs->remote_traceframe_number = -1;
5574
5575 rs->last_resume_exec_dir = EXEC_FORWARD;
5576
5577 /* Probe for ability to use "ThreadInfo" query, as required. */
5578 rs->use_threadinfo_query = 1;
5579 rs->use_threadextra_query = 1;
5580
5581 rs->readahead_cache.invalidate ();
5582
5583 if (target_async_permitted)
5584 {
5585 /* FIXME: cagney/1999-09-23: During the initial connection it is
5586 assumed that the target is already ready and able to respond to
5587 requests. Unfortunately remote_start_remote() eventually calls
5588 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5589 around this. Eventually a mechanism that allows
5590 wait_for_inferior() to expect/get timeouts will be
5591 implemented. */
5592 rs->wait_forever_enabled_p = 0;
5593 }
5594
5595 /* First delete any symbols previously loaded from shared libraries. */
5596 no_shared_libraries (NULL, 0);
5597
5598 /* Start the remote connection. If error() or QUIT, discard this
5599 target (we'd otherwise be in an inconsistent state) and then
5600 propogate the error on up the exception chain. This ensures that
5601 the caller doesn't stumble along blindly assuming that the
5602 function succeeded. The CLI doesn't have this problem but other
5603 UI's, such as MI do.
5604
5605 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5606 this function should return an error indication letting the
5607 caller restore the previous state. Unfortunately the command
5608 ``target remote'' is directly wired to this function making that
5609 impossible. On a positive note, the CLI side of this problem has
5610 been fixed - the function set_cmd_context() makes it possible for
5611 all the ``target ....'' commands to share a common callback
5612 function. See cli-dump.c. */
5613 {
5614
5615 TRY
5616 {
5617 remote->start_remote (from_tty, extended_p);
5618 }
5619 CATCH (ex, RETURN_MASK_ALL)
5620 {
5621 /* Pop the partially set up target - unless something else did
5622 already before throwing the exception. */
5623 if (ex.error != TARGET_CLOSE_ERROR)
5624 remote_unpush_target ();
5625 throw_exception (ex);
5626 }
5627 END_CATCH
5628 }
5629
5630 remote_btrace_reset (rs);
5631
5632 if (target_async_permitted)
5633 rs->wait_forever_enabled_p = 1;
5634 }
5635
5636 /* Detach the specified process. */
5637
5638 void
5639 remote_target::remote_detach_pid (int pid)
5640 {
5641 struct remote_state *rs = get_remote_state ();
5642
5643 /* This should not be necessary, but the handling for D;PID in
5644 GDBserver versions prior to 8.2 incorrectly assumes that the
5645 selected process points to the same process we're detaching,
5646 leading to misbehavior (and possibly GDBserver crashing) when it
5647 does not. Since it's easy and cheap, work around it by forcing
5648 GDBserver to select GDB's current process. */
5649 set_general_process ();
5650
5651 if (remote_multi_process_p (rs))
5652 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5653 else
5654 strcpy (rs->buf, "D");
5655
5656 putpkt (rs->buf);
5657 getpkt (&rs->buf, &rs->buf_size, 0);
5658
5659 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5660 ;
5661 else if (rs->buf[0] == '\0')
5662 error (_("Remote doesn't know how to detach"));
5663 else
5664 error (_("Can't detach process."));
5665 }
5666
5667 /* This detaches a program to which we previously attached, using
5668 inferior_ptid to identify the process. After this is done, GDB
5669 can be used to debug some other program. We better not have left
5670 any breakpoints in the target program or it'll die when it hits
5671 one. */
5672
5673 void
5674 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5675 {
5676 int pid = inferior_ptid.pid ();
5677 struct remote_state *rs = get_remote_state ();
5678 int is_fork_parent;
5679
5680 if (!target_has_execution)
5681 error (_("No process to detach from."));
5682
5683 target_announce_detach (from_tty);
5684
5685 /* Tell the remote target to detach. */
5686 remote_detach_pid (pid);
5687
5688 /* Exit only if this is the only active inferior. */
5689 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5690 puts_filtered (_("Ending remote debugging.\n"));
5691
5692 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5693
5694 /* Check to see if we are detaching a fork parent. Note that if we
5695 are detaching a fork child, tp == NULL. */
5696 is_fork_parent = (tp != NULL
5697 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5698
5699 /* If doing detach-on-fork, we don't mourn, because that will delete
5700 breakpoints that should be available for the followed inferior. */
5701 if (!is_fork_parent)
5702 {
5703 /* Save the pid as a string before mourning, since that will
5704 unpush the remote target, and we need the string after. */
5705 std::string infpid = target_pid_to_str (ptid_t (pid));
5706
5707 target_mourn_inferior (inferior_ptid);
5708 if (print_inferior_events)
5709 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5710 inf->num, infpid.c_str ());
5711 }
5712 else
5713 {
5714 inferior_ptid = null_ptid;
5715 detach_inferior (current_inferior ());
5716 }
5717 }
5718
5719 void
5720 remote_target::detach (inferior *inf, int from_tty)
5721 {
5722 remote_detach_1 (inf, from_tty);
5723 }
5724
5725 void
5726 extended_remote_target::detach (inferior *inf, int from_tty)
5727 {
5728 remote_detach_1 (inf, from_tty);
5729 }
5730
5731 /* Target follow-fork function for remote targets. On entry, and
5732 at return, the current inferior is the fork parent.
5733
5734 Note that although this is currently only used for extended-remote,
5735 it is named remote_follow_fork in anticipation of using it for the
5736 remote target as well. */
5737
5738 int
5739 remote_target::follow_fork (int follow_child, int detach_fork)
5740 {
5741 struct remote_state *rs = get_remote_state ();
5742 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5743
5744 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5745 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5746 {
5747 /* When following the parent and detaching the child, we detach
5748 the child here. For the case of following the child and
5749 detaching the parent, the detach is done in the target-
5750 independent follow fork code in infrun.c. We can't use
5751 target_detach when detaching an unfollowed child because
5752 the client side doesn't know anything about the child. */
5753 if (detach_fork && !follow_child)
5754 {
5755 /* Detach the fork child. */
5756 ptid_t child_ptid;
5757 pid_t child_pid;
5758
5759 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5760 child_pid = child_ptid.pid ();
5761
5762 remote_detach_pid (child_pid);
5763 }
5764 }
5765 return 0;
5766 }
5767
5768 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5769 in the program space of the new inferior. On entry and at return the
5770 current inferior is the exec'ing inferior. INF is the new exec'd
5771 inferior, which may be the same as the exec'ing inferior unless
5772 follow-exec-mode is "new". */
5773
5774 void
5775 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5776 {
5777 /* We know that this is a target file name, so if it has the "target:"
5778 prefix we strip it off before saving it in the program space. */
5779 if (is_target_filename (execd_pathname))
5780 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5781
5782 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5783 }
5784
5785 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5786
5787 void
5788 remote_target::disconnect (const char *args, int from_tty)
5789 {
5790 if (args)
5791 error (_("Argument given to \"disconnect\" when remotely debugging."));
5792
5793 /* Make sure we unpush even the extended remote targets. Calling
5794 target_mourn_inferior won't unpush, and remote_mourn won't
5795 unpush if there is more than one inferior left. */
5796 unpush_target (this);
5797 generic_mourn_inferior ();
5798
5799 if (from_tty)
5800 puts_filtered ("Ending remote debugging.\n");
5801 }
5802
5803 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5804 be chatty about it. */
5805
5806 void
5807 extended_remote_target::attach (const char *args, int from_tty)
5808 {
5809 struct remote_state *rs = get_remote_state ();
5810 int pid;
5811 char *wait_status = NULL;
5812
5813 pid = parse_pid_to_attach (args);
5814
5815 /* Remote PID can be freely equal to getpid, do not check it here the same
5816 way as in other targets. */
5817
5818 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5819 error (_("This target does not support attaching to a process"));
5820
5821 if (from_tty)
5822 {
5823 char *exec_file = get_exec_file (0);
5824
5825 if (exec_file)
5826 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5827 target_pid_to_str (ptid_t (pid)));
5828 else
5829 printf_unfiltered (_("Attaching to %s\n"),
5830 target_pid_to_str (ptid_t (pid)));
5831
5832 gdb_flush (gdb_stdout);
5833 }
5834
5835 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5836 putpkt (rs->buf);
5837 getpkt (&rs->buf, &rs->buf_size, 0);
5838
5839 switch (packet_ok (rs->buf,
5840 &remote_protocol_packets[PACKET_vAttach]))
5841 {
5842 case PACKET_OK:
5843 if (!target_is_non_stop_p ())
5844 {
5845 /* Save the reply for later. */
5846 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5847 strcpy (wait_status, rs->buf);
5848 }
5849 else if (strcmp (rs->buf, "OK") != 0)
5850 error (_("Attaching to %s failed with: %s"),
5851 target_pid_to_str (ptid_t (pid)),
5852 rs->buf);
5853 break;
5854 case PACKET_UNKNOWN:
5855 error (_("This target does not support attaching to a process"));
5856 default:
5857 error (_("Attaching to %s failed"),
5858 target_pid_to_str (ptid_t (pid)));
5859 }
5860
5861 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5862
5863 inferior_ptid = ptid_t (pid);
5864
5865 if (target_is_non_stop_p ())
5866 {
5867 struct thread_info *thread;
5868
5869 /* Get list of threads. */
5870 update_thread_list ();
5871
5872 thread = first_thread_of_inferior (current_inferior ());
5873 if (thread)
5874 inferior_ptid = thread->ptid;
5875 else
5876 inferior_ptid = ptid_t (pid);
5877
5878 /* Invalidate our notion of the remote current thread. */
5879 record_currthread (rs, minus_one_ptid);
5880 }
5881 else
5882 {
5883 /* Now, if we have thread information, update inferior_ptid. */
5884 inferior_ptid = remote_current_thread (inferior_ptid);
5885
5886 /* Add the main thread to the thread list. */
5887 thread_info *thr = add_thread_silent (inferior_ptid);
5888 /* Don't consider the thread stopped until we've processed the
5889 saved stop reply. */
5890 set_executing (thr->ptid, true);
5891 }
5892
5893 /* Next, if the target can specify a description, read it. We do
5894 this before anything involving memory or registers. */
5895 target_find_description ();
5896
5897 if (!target_is_non_stop_p ())
5898 {
5899 /* Use the previously fetched status. */
5900 gdb_assert (wait_status != NULL);
5901
5902 if (target_can_async_p ())
5903 {
5904 struct notif_event *reply
5905 = remote_notif_parse (this, &notif_client_stop, wait_status);
5906
5907 push_stop_reply ((struct stop_reply *) reply);
5908
5909 target_async (1);
5910 }
5911 else
5912 {
5913 gdb_assert (wait_status != NULL);
5914 strcpy (rs->buf, wait_status);
5915 rs->cached_wait_status = 1;
5916 }
5917 }
5918 else
5919 gdb_assert (wait_status == NULL);
5920 }
5921
5922 /* Implementation of the to_post_attach method. */
5923
5924 void
5925 extended_remote_target::post_attach (int pid)
5926 {
5927 /* Get text, data & bss offsets. */
5928 get_offsets ();
5929
5930 /* In certain cases GDB might not have had the chance to start
5931 symbol lookup up until now. This could happen if the debugged
5932 binary is not using shared libraries, the vsyscall page is not
5933 present (on Linux) and the binary itself hadn't changed since the
5934 debugging process was started. */
5935 if (symfile_objfile != NULL)
5936 remote_check_symbols();
5937 }
5938
5939 \f
5940 /* Check for the availability of vCont. This function should also check
5941 the response. */
5942
5943 void
5944 remote_target::remote_vcont_probe ()
5945 {
5946 remote_state *rs = get_remote_state ();
5947 char *buf;
5948
5949 strcpy (rs->buf, "vCont?");
5950 putpkt (rs->buf);
5951 getpkt (&rs->buf, &rs->buf_size, 0);
5952 buf = rs->buf;
5953
5954 /* Make sure that the features we assume are supported. */
5955 if (startswith (buf, "vCont"))
5956 {
5957 char *p = &buf[5];
5958 int support_c, support_C;
5959
5960 rs->supports_vCont.s = 0;
5961 rs->supports_vCont.S = 0;
5962 support_c = 0;
5963 support_C = 0;
5964 rs->supports_vCont.t = 0;
5965 rs->supports_vCont.r = 0;
5966 while (p && *p == ';')
5967 {
5968 p++;
5969 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5970 rs->supports_vCont.s = 1;
5971 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5972 rs->supports_vCont.S = 1;
5973 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5974 support_c = 1;
5975 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5976 support_C = 1;
5977 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5978 rs->supports_vCont.t = 1;
5979 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5980 rs->supports_vCont.r = 1;
5981
5982 p = strchr (p, ';');
5983 }
5984
5985 /* If c, and C are not all supported, we can't use vCont. Clearing
5986 BUF will make packet_ok disable the packet. */
5987 if (!support_c || !support_C)
5988 buf[0] = 0;
5989 }
5990
5991 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5992 }
5993
5994 /* Helper function for building "vCont" resumptions. Write a
5995 resumption to P. ENDP points to one-passed-the-end of the buffer
5996 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5997 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5998 resumed thread should be single-stepped and/or signalled. If PTID
5999 equals minus_one_ptid, then all threads are resumed; if PTID
6000 represents a process, then all threads of the process are resumed;
6001 the thread to be stepped and/or signalled is given in the global
6002 INFERIOR_PTID. */
6003
6004 char *
6005 remote_target::append_resumption (char *p, char *endp,
6006 ptid_t ptid, int step, gdb_signal siggnal)
6007 {
6008 struct remote_state *rs = get_remote_state ();
6009
6010 if (step && siggnal != GDB_SIGNAL_0)
6011 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6012 else if (step
6013 /* GDB is willing to range step. */
6014 && use_range_stepping
6015 /* Target supports range stepping. */
6016 && rs->supports_vCont.r
6017 /* We don't currently support range stepping multiple
6018 threads with a wildcard (though the protocol allows it,
6019 so stubs shouldn't make an active effort to forbid
6020 it). */
6021 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6022 {
6023 struct thread_info *tp;
6024
6025 if (ptid == minus_one_ptid)
6026 {
6027 /* If we don't know about the target thread's tid, then
6028 we're resuming magic_null_ptid (see caller). */
6029 tp = find_thread_ptid (magic_null_ptid);
6030 }
6031 else
6032 tp = find_thread_ptid (ptid);
6033 gdb_assert (tp != NULL);
6034
6035 if (tp->control.may_range_step)
6036 {
6037 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6038
6039 p += xsnprintf (p, endp - p, ";r%s,%s",
6040 phex_nz (tp->control.step_range_start,
6041 addr_size),
6042 phex_nz (tp->control.step_range_end,
6043 addr_size));
6044 }
6045 else
6046 p += xsnprintf (p, endp - p, ";s");
6047 }
6048 else if (step)
6049 p += xsnprintf (p, endp - p, ";s");
6050 else if (siggnal != GDB_SIGNAL_0)
6051 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6052 else
6053 p += xsnprintf (p, endp - p, ";c");
6054
6055 if (remote_multi_process_p (rs) && ptid.is_pid ())
6056 {
6057 ptid_t nptid;
6058
6059 /* All (-1) threads of process. */
6060 nptid = ptid_t (ptid.pid (), -1, 0);
6061
6062 p += xsnprintf (p, endp - p, ":");
6063 p = write_ptid (p, endp, nptid);
6064 }
6065 else if (ptid != minus_one_ptid)
6066 {
6067 p += xsnprintf (p, endp - p, ":");
6068 p = write_ptid (p, endp, ptid);
6069 }
6070
6071 return p;
6072 }
6073
6074 /* Clear the thread's private info on resume. */
6075
6076 static void
6077 resume_clear_thread_private_info (struct thread_info *thread)
6078 {
6079 if (thread->priv != NULL)
6080 {
6081 remote_thread_info *priv = get_remote_thread_info (thread);
6082
6083 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6084 priv->watch_data_address = 0;
6085 }
6086 }
6087
6088 /* Append a vCont continue-with-signal action for threads that have a
6089 non-zero stop signal. */
6090
6091 char *
6092 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6093 ptid_t ptid)
6094 {
6095 for (thread_info *thread : all_non_exited_threads (ptid))
6096 if (inferior_ptid != thread->ptid
6097 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6098 {
6099 p = append_resumption (p, endp, thread->ptid,
6100 0, thread->suspend.stop_signal);
6101 thread->suspend.stop_signal = GDB_SIGNAL_0;
6102 resume_clear_thread_private_info (thread);
6103 }
6104
6105 return p;
6106 }
6107
6108 /* Set the target running, using the packets that use Hc
6109 (c/s/C/S). */
6110
6111 void
6112 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6113 gdb_signal siggnal)
6114 {
6115 struct remote_state *rs = get_remote_state ();
6116 char *buf;
6117
6118 rs->last_sent_signal = siggnal;
6119 rs->last_sent_step = step;
6120
6121 /* The c/s/C/S resume packets use Hc, so set the continue
6122 thread. */
6123 if (ptid == minus_one_ptid)
6124 set_continue_thread (any_thread_ptid);
6125 else
6126 set_continue_thread (ptid);
6127
6128 for (thread_info *thread : all_non_exited_threads ())
6129 resume_clear_thread_private_info (thread);
6130
6131 buf = rs->buf;
6132 if (::execution_direction == EXEC_REVERSE)
6133 {
6134 /* We don't pass signals to the target in reverse exec mode. */
6135 if (info_verbose && siggnal != GDB_SIGNAL_0)
6136 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6137 siggnal);
6138
6139 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6140 error (_("Remote reverse-step not supported."));
6141 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6142 error (_("Remote reverse-continue not supported."));
6143
6144 strcpy (buf, step ? "bs" : "bc");
6145 }
6146 else if (siggnal != GDB_SIGNAL_0)
6147 {
6148 buf[0] = step ? 'S' : 'C';
6149 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6150 buf[2] = tohex (((int) siggnal) & 0xf);
6151 buf[3] = '\0';
6152 }
6153 else
6154 strcpy (buf, step ? "s" : "c");
6155
6156 putpkt (buf);
6157 }
6158
6159 /* Resume the remote inferior by using a "vCont" packet. The thread
6160 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6161 resumed thread should be single-stepped and/or signalled. If PTID
6162 equals minus_one_ptid, then all threads are resumed; the thread to
6163 be stepped and/or signalled is given in the global INFERIOR_PTID.
6164 This function returns non-zero iff it resumes the inferior.
6165
6166 This function issues a strict subset of all possible vCont commands
6167 at the moment. */
6168
6169 int
6170 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6171 enum gdb_signal siggnal)
6172 {
6173 struct remote_state *rs = get_remote_state ();
6174 char *p;
6175 char *endp;
6176
6177 /* No reverse execution actions defined for vCont. */
6178 if (::execution_direction == EXEC_REVERSE)
6179 return 0;
6180
6181 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6182 remote_vcont_probe ();
6183
6184 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6185 return 0;
6186
6187 p = rs->buf;
6188 endp = rs->buf + get_remote_packet_size ();
6189
6190 /* If we could generate a wider range of packets, we'd have to worry
6191 about overflowing BUF. Should there be a generic
6192 "multi-part-packet" packet? */
6193
6194 p += xsnprintf (p, endp - p, "vCont");
6195
6196 if (ptid == magic_null_ptid)
6197 {
6198 /* MAGIC_NULL_PTID means that we don't have any active threads,
6199 so we don't have any TID numbers the inferior will
6200 understand. Make sure to only send forms that do not specify
6201 a TID. */
6202 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6203 }
6204 else if (ptid == minus_one_ptid || ptid.is_pid ())
6205 {
6206 /* Resume all threads (of all processes, or of a single
6207 process), with preference for INFERIOR_PTID. This assumes
6208 inferior_ptid belongs to the set of all threads we are about
6209 to resume. */
6210 if (step || siggnal != GDB_SIGNAL_0)
6211 {
6212 /* Step inferior_ptid, with or without signal. */
6213 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6214 }
6215
6216 /* Also pass down any pending signaled resumption for other
6217 threads not the current. */
6218 p = append_pending_thread_resumptions (p, endp, ptid);
6219
6220 /* And continue others without a signal. */
6221 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6222 }
6223 else
6224 {
6225 /* Scheduler locking; resume only PTID. */
6226 append_resumption (p, endp, ptid, step, siggnal);
6227 }
6228
6229 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
6230 putpkt (rs->buf);
6231
6232 if (target_is_non_stop_p ())
6233 {
6234 /* In non-stop, the stub replies to vCont with "OK". The stop
6235 reply will be reported asynchronously by means of a `%Stop'
6236 notification. */
6237 getpkt (&rs->buf, &rs->buf_size, 0);
6238 if (strcmp (rs->buf, "OK") != 0)
6239 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6240 }
6241
6242 return 1;
6243 }
6244
6245 /* Tell the remote machine to resume. */
6246
6247 void
6248 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6249 {
6250 struct remote_state *rs = get_remote_state ();
6251
6252 /* When connected in non-stop mode, the core resumes threads
6253 individually. Resuming remote threads directly in target_resume
6254 would thus result in sending one packet per thread. Instead, to
6255 minimize roundtrip latency, here we just store the resume
6256 request; the actual remote resumption will be done in
6257 target_commit_resume / remote_commit_resume, where we'll be able
6258 to do vCont action coalescing. */
6259 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6260 {
6261 remote_thread_info *remote_thr;
6262
6263 if (minus_one_ptid == ptid || ptid.is_pid ())
6264 remote_thr = get_remote_thread_info (inferior_ptid);
6265 else
6266 remote_thr = get_remote_thread_info (ptid);
6267
6268 remote_thr->last_resume_step = step;
6269 remote_thr->last_resume_sig = siggnal;
6270 return;
6271 }
6272
6273 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6274 (explained in remote-notif.c:handle_notification) so
6275 remote_notif_process is not called. We need find a place where
6276 it is safe to start a 'vNotif' sequence. It is good to do it
6277 before resuming inferior, because inferior was stopped and no RSP
6278 traffic at that moment. */
6279 if (!target_is_non_stop_p ())
6280 remote_notif_process (rs->notif_state, &notif_client_stop);
6281
6282 rs->last_resume_exec_dir = ::execution_direction;
6283
6284 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6285 if (!remote_resume_with_vcont (ptid, step, siggnal))
6286 remote_resume_with_hc (ptid, step, siggnal);
6287
6288 /* We are about to start executing the inferior, let's register it
6289 with the event loop. NOTE: this is the one place where all the
6290 execution commands end up. We could alternatively do this in each
6291 of the execution commands in infcmd.c. */
6292 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6293 into infcmd.c in order to allow inferior function calls to work
6294 NOT asynchronously. */
6295 if (target_can_async_p ())
6296 target_async (1);
6297
6298 /* We've just told the target to resume. The remote server will
6299 wait for the inferior to stop, and then send a stop reply. In
6300 the mean time, we can't start another command/query ourselves
6301 because the stub wouldn't be ready to process it. This applies
6302 only to the base all-stop protocol, however. In non-stop (which
6303 only supports vCont), the stub replies with an "OK", and is
6304 immediate able to process further serial input. */
6305 if (!target_is_non_stop_p ())
6306 rs->waiting_for_stop_reply = 1;
6307 }
6308
6309 static int is_pending_fork_parent_thread (struct thread_info *thread);
6310
6311 /* Private per-inferior info for target remote processes. */
6312
6313 struct remote_inferior : public private_inferior
6314 {
6315 /* Whether we can send a wildcard vCont for this process. */
6316 bool may_wildcard_vcont = true;
6317 };
6318
6319 /* Get the remote private inferior data associated to INF. */
6320
6321 static remote_inferior *
6322 get_remote_inferior (inferior *inf)
6323 {
6324 if (inf->priv == NULL)
6325 inf->priv.reset (new remote_inferior);
6326
6327 return static_cast<remote_inferior *> (inf->priv.get ());
6328 }
6329
6330 /* Class used to track the construction of a vCont packet in the
6331 outgoing packet buffer. This is used to send multiple vCont
6332 packets if we have more actions than would fit a single packet. */
6333
6334 class vcont_builder
6335 {
6336 public:
6337 explicit vcont_builder (remote_target *remote)
6338 : m_remote (remote)
6339 {
6340 restart ();
6341 }
6342
6343 void flush ();
6344 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6345
6346 private:
6347 void restart ();
6348
6349 /* The remote target. */
6350 remote_target *m_remote;
6351
6352 /* Pointer to the first action. P points here if no action has been
6353 appended yet. */
6354 char *m_first_action;
6355
6356 /* Where the next action will be appended. */
6357 char *m_p;
6358
6359 /* The end of the buffer. Must never write past this. */
6360 char *m_endp;
6361 };
6362
6363 /* Prepare the outgoing buffer for a new vCont packet. */
6364
6365 void
6366 vcont_builder::restart ()
6367 {
6368 struct remote_state *rs = m_remote->get_remote_state ();
6369
6370 m_p = rs->buf;
6371 m_endp = rs->buf + m_remote->get_remote_packet_size ();
6372 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6373 m_first_action = m_p;
6374 }
6375
6376 /* If the vCont packet being built has any action, send it to the
6377 remote end. */
6378
6379 void
6380 vcont_builder::flush ()
6381 {
6382 struct remote_state *rs;
6383
6384 if (m_p == m_first_action)
6385 return;
6386
6387 rs = m_remote->get_remote_state ();
6388 m_remote->putpkt (rs->buf);
6389 m_remote->getpkt (&rs->buf, &rs->buf_size, 0);
6390 if (strcmp (rs->buf, "OK") != 0)
6391 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6392 }
6393
6394 /* The largest action is range-stepping, with its two addresses. This
6395 is more than sufficient. If a new, bigger action is created, it'll
6396 quickly trigger a failed assertion in append_resumption (and we'll
6397 just bump this). */
6398 #define MAX_ACTION_SIZE 200
6399
6400 /* Append a new vCont action in the outgoing packet being built. If
6401 the action doesn't fit the packet along with previous actions, push
6402 what we've got so far to the remote end and start over a new vCont
6403 packet (with the new action). */
6404
6405 void
6406 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6407 {
6408 char buf[MAX_ACTION_SIZE + 1];
6409
6410 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6411 ptid, step, siggnal);
6412
6413 /* Check whether this new action would fit in the vCont packet along
6414 with previous actions. If not, send what we've got so far and
6415 start a new vCont packet. */
6416 size_t rsize = endp - buf;
6417 if (rsize > m_endp - m_p)
6418 {
6419 flush ();
6420 restart ();
6421
6422 /* Should now fit. */
6423 gdb_assert (rsize <= m_endp - m_p);
6424 }
6425
6426 memcpy (m_p, buf, rsize);
6427 m_p += rsize;
6428 *m_p = '\0';
6429 }
6430
6431 /* to_commit_resume implementation. */
6432
6433 void
6434 remote_target::commit_resume ()
6435 {
6436 int any_process_wildcard;
6437 int may_global_wildcard_vcont;
6438
6439 /* If connected in all-stop mode, we'd send the remote resume
6440 request directly from remote_resume. Likewise if
6441 reverse-debugging, as there are no defined vCont actions for
6442 reverse execution. */
6443 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6444 return;
6445
6446 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6447 instead of resuming all threads of each process individually.
6448 However, if any thread of a process must remain halted, we can't
6449 send wildcard resumes and must send one action per thread.
6450
6451 Care must be taken to not resume threads/processes the server
6452 side already told us are stopped, but the core doesn't know about
6453 yet, because the events are still in the vStopped notification
6454 queue. For example:
6455
6456 #1 => vCont s:p1.1;c
6457 #2 <= OK
6458 #3 <= %Stopped T05 p1.1
6459 #4 => vStopped
6460 #5 <= T05 p1.2
6461 #6 => vStopped
6462 #7 <= OK
6463 #8 (infrun handles the stop for p1.1 and continues stepping)
6464 #9 => vCont s:p1.1;c
6465
6466 The last vCont above would resume thread p1.2 by mistake, because
6467 the server has no idea that the event for p1.2 had not been
6468 handled yet.
6469
6470 The server side must similarly ignore resume actions for the
6471 thread that has a pending %Stopped notification (and any other
6472 threads with events pending), until GDB acks the notification
6473 with vStopped. Otherwise, e.g., the following case is
6474 mishandled:
6475
6476 #1 => g (or any other packet)
6477 #2 <= [registers]
6478 #3 <= %Stopped T05 p1.2
6479 #4 => vCont s:p1.1;c
6480 #5 <= OK
6481
6482 Above, the server must not resume thread p1.2. GDB can't know
6483 that p1.2 stopped until it acks the %Stopped notification, and
6484 since from GDB's perspective all threads should be running, it
6485 sends a "c" action.
6486
6487 Finally, special care must also be given to handling fork/vfork
6488 events. A (v)fork event actually tells us that two processes
6489 stopped -- the parent and the child. Until we follow the fork,
6490 we must not resume the child. Therefore, if we have a pending
6491 fork follow, we must not send a global wildcard resume action
6492 (vCont;c). We can still send process-wide wildcards though. */
6493
6494 /* Start by assuming a global wildcard (vCont;c) is possible. */
6495 may_global_wildcard_vcont = 1;
6496
6497 /* And assume every process is individually wildcard-able too. */
6498 for (inferior *inf : all_non_exited_inferiors ())
6499 {
6500 remote_inferior *priv = get_remote_inferior (inf);
6501
6502 priv->may_wildcard_vcont = true;
6503 }
6504
6505 /* Check for any pending events (not reported or processed yet) and
6506 disable process and global wildcard resumes appropriately. */
6507 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6508
6509 for (thread_info *tp : all_non_exited_threads ())
6510 {
6511 /* If a thread of a process is not meant to be resumed, then we
6512 can't wildcard that process. */
6513 if (!tp->executing)
6514 {
6515 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6516
6517 /* And if we can't wildcard a process, we can't wildcard
6518 everything either. */
6519 may_global_wildcard_vcont = 0;
6520 continue;
6521 }
6522
6523 /* If a thread is the parent of an unfollowed fork, then we
6524 can't do a global wildcard, as that would resume the fork
6525 child. */
6526 if (is_pending_fork_parent_thread (tp))
6527 may_global_wildcard_vcont = 0;
6528 }
6529
6530 /* Now let's build the vCont packet(s). Actions must be appended
6531 from narrower to wider scopes (thread -> process -> global). If
6532 we end up with too many actions for a single packet vcont_builder
6533 flushes the current vCont packet to the remote side and starts a
6534 new one. */
6535 struct vcont_builder vcont_builder (this);
6536
6537 /* Threads first. */
6538 for (thread_info *tp : all_non_exited_threads ())
6539 {
6540 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6541
6542 if (!tp->executing || remote_thr->vcont_resumed)
6543 continue;
6544
6545 gdb_assert (!thread_is_in_step_over_chain (tp));
6546
6547 if (!remote_thr->last_resume_step
6548 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6549 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6550 {
6551 /* We'll send a wildcard resume instead. */
6552 remote_thr->vcont_resumed = 1;
6553 continue;
6554 }
6555
6556 vcont_builder.push_action (tp->ptid,
6557 remote_thr->last_resume_step,
6558 remote_thr->last_resume_sig);
6559 remote_thr->vcont_resumed = 1;
6560 }
6561
6562 /* Now check whether we can send any process-wide wildcard. This is
6563 to avoid sending a global wildcard in the case nothing is
6564 supposed to be resumed. */
6565 any_process_wildcard = 0;
6566
6567 for (inferior *inf : all_non_exited_inferiors ())
6568 {
6569 if (get_remote_inferior (inf)->may_wildcard_vcont)
6570 {
6571 any_process_wildcard = 1;
6572 break;
6573 }
6574 }
6575
6576 if (any_process_wildcard)
6577 {
6578 /* If all processes are wildcard-able, then send a single "c"
6579 action, otherwise, send an "all (-1) threads of process"
6580 continue action for each running process, if any. */
6581 if (may_global_wildcard_vcont)
6582 {
6583 vcont_builder.push_action (minus_one_ptid,
6584 false, GDB_SIGNAL_0);
6585 }
6586 else
6587 {
6588 for (inferior *inf : all_non_exited_inferiors ())
6589 {
6590 if (get_remote_inferior (inf)->may_wildcard_vcont)
6591 {
6592 vcont_builder.push_action (ptid_t (inf->pid),
6593 false, GDB_SIGNAL_0);
6594 }
6595 }
6596 }
6597 }
6598
6599 vcont_builder.flush ();
6600 }
6601
6602 \f
6603
6604 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6605 thread, all threads of a remote process, or all threads of all
6606 processes. */
6607
6608 void
6609 remote_target::remote_stop_ns (ptid_t ptid)
6610 {
6611 struct remote_state *rs = get_remote_state ();
6612 char *p = rs->buf;
6613 char *endp = rs->buf + get_remote_packet_size ();
6614
6615 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6616 remote_vcont_probe ();
6617
6618 if (!rs->supports_vCont.t)
6619 error (_("Remote server does not support stopping threads"));
6620
6621 if (ptid == minus_one_ptid
6622 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6623 p += xsnprintf (p, endp - p, "vCont;t");
6624 else
6625 {
6626 ptid_t nptid;
6627
6628 p += xsnprintf (p, endp - p, "vCont;t:");
6629
6630 if (ptid.is_pid ())
6631 /* All (-1) threads of process. */
6632 nptid = ptid_t (ptid.pid (), -1, 0);
6633 else
6634 {
6635 /* Small optimization: if we already have a stop reply for
6636 this thread, no use in telling the stub we want this
6637 stopped. */
6638 if (peek_stop_reply (ptid))
6639 return;
6640
6641 nptid = ptid;
6642 }
6643
6644 write_ptid (p, endp, nptid);
6645 }
6646
6647 /* In non-stop, we get an immediate OK reply. The stop reply will
6648 come in asynchronously by notification. */
6649 putpkt (rs->buf);
6650 getpkt (&rs->buf, &rs->buf_size, 0);
6651 if (strcmp (rs->buf, "OK") != 0)
6652 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6653 }
6654
6655 /* All-stop version of target_interrupt. Sends a break or a ^C to
6656 interrupt the remote target. It is undefined which thread of which
6657 process reports the interrupt. */
6658
6659 void
6660 remote_target::remote_interrupt_as ()
6661 {
6662 struct remote_state *rs = get_remote_state ();
6663
6664 rs->ctrlc_pending_p = 1;
6665
6666 /* If the inferior is stopped already, but the core didn't know
6667 about it yet, just ignore the request. The cached wait status
6668 will be collected in remote_wait. */
6669 if (rs->cached_wait_status)
6670 return;
6671
6672 /* Send interrupt_sequence to remote target. */
6673 send_interrupt_sequence ();
6674 }
6675
6676 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6677 the remote target. It is undefined which thread of which process
6678 reports the interrupt. Throws an error if the packet is not
6679 supported by the server. */
6680
6681 void
6682 remote_target::remote_interrupt_ns ()
6683 {
6684 struct remote_state *rs = get_remote_state ();
6685 char *p = rs->buf;
6686 char *endp = rs->buf + get_remote_packet_size ();
6687
6688 xsnprintf (p, endp - p, "vCtrlC");
6689
6690 /* In non-stop, we get an immediate OK reply. The stop reply will
6691 come in asynchronously by notification. */
6692 putpkt (rs->buf);
6693 getpkt (&rs->buf, &rs->buf_size, 0);
6694
6695 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6696 {
6697 case PACKET_OK:
6698 break;
6699 case PACKET_UNKNOWN:
6700 error (_("No support for interrupting the remote target."));
6701 case PACKET_ERROR:
6702 error (_("Interrupting target failed: %s"), rs->buf);
6703 }
6704 }
6705
6706 /* Implement the to_stop function for the remote targets. */
6707
6708 void
6709 remote_target::stop (ptid_t ptid)
6710 {
6711 if (remote_debug)
6712 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6713
6714 if (target_is_non_stop_p ())
6715 remote_stop_ns (ptid);
6716 else
6717 {
6718 /* We don't currently have a way to transparently pause the
6719 remote target in all-stop mode. Interrupt it instead. */
6720 remote_interrupt_as ();
6721 }
6722 }
6723
6724 /* Implement the to_interrupt function for the remote targets. */
6725
6726 void
6727 remote_target::interrupt ()
6728 {
6729 if (remote_debug)
6730 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6731
6732 if (target_is_non_stop_p ())
6733 remote_interrupt_ns ();
6734 else
6735 remote_interrupt_as ();
6736 }
6737
6738 /* Implement the to_pass_ctrlc function for the remote targets. */
6739
6740 void
6741 remote_target::pass_ctrlc ()
6742 {
6743 struct remote_state *rs = get_remote_state ();
6744
6745 if (remote_debug)
6746 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6747
6748 /* If we're starting up, we're not fully synced yet. Quit
6749 immediately. */
6750 if (rs->starting_up)
6751 quit ();
6752 /* If ^C has already been sent once, offer to disconnect. */
6753 else if (rs->ctrlc_pending_p)
6754 interrupt_query ();
6755 else
6756 target_interrupt ();
6757 }
6758
6759 /* Ask the user what to do when an interrupt is received. */
6760
6761 void
6762 remote_target::interrupt_query ()
6763 {
6764 struct remote_state *rs = get_remote_state ();
6765
6766 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6767 {
6768 if (query (_("The target is not responding to interrupt requests.\n"
6769 "Stop debugging it? ")))
6770 {
6771 remote_unpush_target ();
6772 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6773 }
6774 }
6775 else
6776 {
6777 if (query (_("Interrupted while waiting for the program.\n"
6778 "Give up waiting? ")))
6779 quit ();
6780 }
6781 }
6782
6783 /* Enable/disable target terminal ownership. Most targets can use
6784 terminal groups to control terminal ownership. Remote targets are
6785 different in that explicit transfer of ownership to/from GDB/target
6786 is required. */
6787
6788 void
6789 remote_target::terminal_inferior ()
6790 {
6791 /* NOTE: At this point we could also register our selves as the
6792 recipient of all input. Any characters typed could then be
6793 passed on down to the target. */
6794 }
6795
6796 void
6797 remote_target::terminal_ours ()
6798 {
6799 }
6800
6801 static void
6802 remote_console_output (const char *msg)
6803 {
6804 const char *p;
6805
6806 for (p = msg; p[0] && p[1]; p += 2)
6807 {
6808 char tb[2];
6809 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6810
6811 tb[0] = c;
6812 tb[1] = 0;
6813 fputs_unfiltered (tb, gdb_stdtarg);
6814 }
6815 gdb_flush (gdb_stdtarg);
6816 }
6817
6818 DEF_VEC_O(cached_reg_t);
6819
6820 typedef struct stop_reply
6821 {
6822 struct notif_event base;
6823
6824 /* The identifier of the thread about this event */
6825 ptid_t ptid;
6826
6827 /* The remote state this event is associated with. When the remote
6828 connection, represented by a remote_state object, is closed,
6829 all the associated stop_reply events should be released. */
6830 struct remote_state *rs;
6831
6832 struct target_waitstatus ws;
6833
6834 /* The architecture associated with the expedited registers. */
6835 gdbarch *arch;
6836
6837 /* Expedited registers. This makes remote debugging a bit more
6838 efficient for those targets that provide critical registers as
6839 part of their normal status mechanism (as another roundtrip to
6840 fetch them is avoided). */
6841 VEC(cached_reg_t) *regcache;
6842
6843 enum target_stop_reason stop_reason;
6844
6845 CORE_ADDR watch_data_address;
6846
6847 int core;
6848 } *stop_reply_p;
6849
6850 static void
6851 stop_reply_xfree (struct stop_reply *r)
6852 {
6853 notif_event_xfree ((struct notif_event *) r);
6854 }
6855
6856 /* Return the length of the stop reply queue. */
6857
6858 int
6859 remote_target::stop_reply_queue_length ()
6860 {
6861 remote_state *rs = get_remote_state ();
6862 return rs->stop_reply_queue.size ();
6863 }
6864
6865 void
6866 remote_notif_stop_parse (remote_target *remote,
6867 struct notif_client *self, char *buf,
6868 struct notif_event *event)
6869 {
6870 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6871 }
6872
6873 static void
6874 remote_notif_stop_ack (remote_target *remote,
6875 struct notif_client *self, char *buf,
6876 struct notif_event *event)
6877 {
6878 struct stop_reply *stop_reply = (struct stop_reply *) event;
6879
6880 /* acknowledge */
6881 putpkt (remote, self->ack_command);
6882
6883 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6884 {
6885 /* We got an unknown stop reply. */
6886 error (_("Unknown stop reply"));
6887 }
6888
6889 remote->push_stop_reply (stop_reply);
6890 }
6891
6892 static int
6893 remote_notif_stop_can_get_pending_events (remote_target *remote,
6894 struct notif_client *self)
6895 {
6896 /* We can't get pending events in remote_notif_process for
6897 notification stop, and we have to do this in remote_wait_ns
6898 instead. If we fetch all queued events from stub, remote stub
6899 may exit and we have no chance to process them back in
6900 remote_wait_ns. */
6901 remote_state *rs = remote->get_remote_state ();
6902 mark_async_event_handler (rs->remote_async_inferior_event_token);
6903 return 0;
6904 }
6905
6906 static void
6907 stop_reply_dtr (struct notif_event *event)
6908 {
6909 struct stop_reply *r = (struct stop_reply *) event;
6910 cached_reg_t *reg;
6911 int ix;
6912
6913 for (ix = 0;
6914 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6915 ix++)
6916 xfree (reg->data);
6917
6918 VEC_free (cached_reg_t, r->regcache);
6919 }
6920
6921 static struct notif_event *
6922 remote_notif_stop_alloc_reply (void)
6923 {
6924 /* We cast to a pointer to the "base class". */
6925 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6926
6927 r->dtr = stop_reply_dtr;
6928
6929 return r;
6930 }
6931
6932 /* A client of notification Stop. */
6933
6934 struct notif_client notif_client_stop =
6935 {
6936 "Stop",
6937 "vStopped",
6938 remote_notif_stop_parse,
6939 remote_notif_stop_ack,
6940 remote_notif_stop_can_get_pending_events,
6941 remote_notif_stop_alloc_reply,
6942 REMOTE_NOTIF_STOP,
6943 };
6944
6945 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6946 the pid of the process that owns the threads we want to check, or
6947 -1 if we want to check all threads. */
6948
6949 static int
6950 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6951 ptid_t thread_ptid)
6952 {
6953 if (ws->kind == TARGET_WAITKIND_FORKED
6954 || ws->kind == TARGET_WAITKIND_VFORKED)
6955 {
6956 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6957 return 1;
6958 }
6959
6960 return 0;
6961 }
6962
6963 /* Return the thread's pending status used to determine whether the
6964 thread is a fork parent stopped at a fork event. */
6965
6966 static struct target_waitstatus *
6967 thread_pending_fork_status (struct thread_info *thread)
6968 {
6969 if (thread->suspend.waitstatus_pending_p)
6970 return &thread->suspend.waitstatus;
6971 else
6972 return &thread->pending_follow;
6973 }
6974
6975 /* Determine if THREAD is a pending fork parent thread. */
6976
6977 static int
6978 is_pending_fork_parent_thread (struct thread_info *thread)
6979 {
6980 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6981 int pid = -1;
6982
6983 return is_pending_fork_parent (ws, pid, thread->ptid);
6984 }
6985
6986 /* If CONTEXT contains any fork child threads that have not been
6987 reported yet, remove them from the CONTEXT list. If such a
6988 thread exists it is because we are stopped at a fork catchpoint
6989 and have not yet called follow_fork, which will set up the
6990 host-side data structures for the new process. */
6991
6992 void
6993 remote_target::remove_new_fork_children (threads_listing_context *context)
6994 {
6995 int pid = -1;
6996 struct notif_client *notif = &notif_client_stop;
6997
6998 /* For any threads stopped at a fork event, remove the corresponding
6999 fork child threads from the CONTEXT list. */
7000 for (thread_info *thread : all_non_exited_threads ())
7001 {
7002 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7003
7004 if (is_pending_fork_parent (ws, pid, thread->ptid))
7005 context->remove_thread (ws->value.related_pid);
7006 }
7007
7008 /* Check for any pending fork events (not reported or processed yet)
7009 in process PID and remove those fork child threads from the
7010 CONTEXT list as well. */
7011 remote_notif_get_pending_events (notif);
7012 for (auto &event : get_remote_state ()->stop_reply_queue)
7013 if (event->ws.kind == TARGET_WAITKIND_FORKED
7014 || event->ws.kind == TARGET_WAITKIND_VFORKED
7015 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7016 context->remove_thread (event->ws.value.related_pid);
7017 }
7018
7019 /* Check whether any event pending in the vStopped queue would prevent
7020 a global or process wildcard vCont action. Clear
7021 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7022 and clear the event inferior's may_wildcard_vcont flag if we can't
7023 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7024
7025 void
7026 remote_target::check_pending_events_prevent_wildcard_vcont
7027 (int *may_global_wildcard)
7028 {
7029 struct notif_client *notif = &notif_client_stop;
7030
7031 remote_notif_get_pending_events (notif);
7032 for (auto &event : get_remote_state ()->stop_reply_queue)
7033 {
7034 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7035 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7036 continue;
7037
7038 if (event->ws.kind == TARGET_WAITKIND_FORKED
7039 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7040 *may_global_wildcard = 0;
7041
7042 struct inferior *inf = find_inferior_ptid (event->ptid);
7043
7044 /* This may be the first time we heard about this process.
7045 Regardless, we must not do a global wildcard resume, otherwise
7046 we'd resume this process too. */
7047 *may_global_wildcard = 0;
7048 if (inf != NULL)
7049 get_remote_inferior (inf)->may_wildcard_vcont = false;
7050 }
7051 }
7052
7053 /* Discard all pending stop replies of inferior INF. */
7054
7055 void
7056 remote_target::discard_pending_stop_replies (struct inferior *inf)
7057 {
7058 struct stop_reply *reply;
7059 struct remote_state *rs = get_remote_state ();
7060 struct remote_notif_state *rns = rs->notif_state;
7061
7062 /* This function can be notified when an inferior exists. When the
7063 target is not remote, the notification state is NULL. */
7064 if (rs->remote_desc == NULL)
7065 return;
7066
7067 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7068
7069 /* Discard the in-flight notification. */
7070 if (reply != NULL && reply->ptid.pid () == inf->pid)
7071 {
7072 stop_reply_xfree (reply);
7073 rns->pending_event[notif_client_stop.id] = NULL;
7074 }
7075
7076 /* Discard the stop replies we have already pulled with
7077 vStopped. */
7078 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7079 rs->stop_reply_queue.end (),
7080 [=] (const stop_reply_up &event)
7081 {
7082 return event->ptid.pid () == inf->pid;
7083 });
7084 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7085 }
7086
7087 /* Discard the stop replies for RS in stop_reply_queue. */
7088
7089 void
7090 remote_target::discard_pending_stop_replies_in_queue ()
7091 {
7092 remote_state *rs = get_remote_state ();
7093
7094 /* Discard the stop replies we have already pulled with
7095 vStopped. */
7096 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7097 rs->stop_reply_queue.end (),
7098 [=] (const stop_reply_up &event)
7099 {
7100 return event->rs == rs;
7101 });
7102 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7103 }
7104
7105 /* Remove the first reply in 'stop_reply_queue' which matches
7106 PTID. */
7107
7108 struct stop_reply *
7109 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7110 {
7111 remote_state *rs = get_remote_state ();
7112
7113 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7114 rs->stop_reply_queue.end (),
7115 [=] (const stop_reply_up &event)
7116 {
7117 return event->ptid.matches (ptid);
7118 });
7119 struct stop_reply *result;
7120 if (iter == rs->stop_reply_queue.end ())
7121 result = nullptr;
7122 else
7123 {
7124 result = iter->release ();
7125 rs->stop_reply_queue.erase (iter);
7126 }
7127
7128 if (notif_debug)
7129 fprintf_unfiltered (gdb_stdlog,
7130 "notif: discard queued event: 'Stop' in %s\n",
7131 target_pid_to_str (ptid));
7132
7133 return result;
7134 }
7135
7136 /* Look for a queued stop reply belonging to PTID. If one is found,
7137 remove it from the queue, and return it. Returns NULL if none is
7138 found. If there are still queued events left to process, tell the
7139 event loop to get back to target_wait soon. */
7140
7141 struct stop_reply *
7142 remote_target::queued_stop_reply (ptid_t ptid)
7143 {
7144 remote_state *rs = get_remote_state ();
7145 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7146
7147 if (!rs->stop_reply_queue.empty ())
7148 {
7149 /* There's still at least an event left. */
7150 mark_async_event_handler (rs->remote_async_inferior_event_token);
7151 }
7152
7153 return r;
7154 }
7155
7156 /* Push a fully parsed stop reply in the stop reply queue. Since we
7157 know that we now have at least one queued event left to pass to the
7158 core side, tell the event loop to get back to target_wait soon. */
7159
7160 void
7161 remote_target::push_stop_reply (struct stop_reply *new_event)
7162 {
7163 remote_state *rs = get_remote_state ();
7164 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7165
7166 if (notif_debug)
7167 fprintf_unfiltered (gdb_stdlog,
7168 "notif: push 'Stop' %s to queue %d\n",
7169 target_pid_to_str (new_event->ptid),
7170 int (rs->stop_reply_queue.size ()));
7171
7172 mark_async_event_handler (rs->remote_async_inferior_event_token);
7173 }
7174
7175 /* Returns true if we have a stop reply for PTID. */
7176
7177 int
7178 remote_target::peek_stop_reply (ptid_t ptid)
7179 {
7180 remote_state *rs = get_remote_state ();
7181 for (auto &event : rs->stop_reply_queue)
7182 if (ptid == event->ptid
7183 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7184 return 1;
7185 return 0;
7186 }
7187
7188 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7189 starting with P and ending with PEND matches PREFIX. */
7190
7191 static int
7192 strprefix (const char *p, const char *pend, const char *prefix)
7193 {
7194 for ( ; p < pend; p++, prefix++)
7195 if (*p != *prefix)
7196 return 0;
7197 return *prefix == '\0';
7198 }
7199
7200 /* Parse the stop reply in BUF. Either the function succeeds, and the
7201 result is stored in EVENT, or throws an error. */
7202
7203 void
7204 remote_target::remote_parse_stop_reply (char *buf, stop_reply *event)
7205 {
7206 remote_arch_state *rsa = NULL;
7207 ULONGEST addr;
7208 const char *p;
7209 int skipregs = 0;
7210
7211 event->ptid = null_ptid;
7212 event->rs = get_remote_state ();
7213 event->ws.kind = TARGET_WAITKIND_IGNORE;
7214 event->ws.value.integer = 0;
7215 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7216 event->regcache = NULL;
7217 event->core = -1;
7218
7219 switch (buf[0])
7220 {
7221 case 'T': /* Status with PC, SP, FP, ... */
7222 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7223 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7224 ss = signal number
7225 n... = register number
7226 r... = register contents
7227 */
7228
7229 p = &buf[3]; /* after Txx */
7230 while (*p)
7231 {
7232 const char *p1;
7233 int fieldsize;
7234
7235 p1 = strchr (p, ':');
7236 if (p1 == NULL)
7237 error (_("Malformed packet(a) (missing colon): %s\n\
7238 Packet: '%s'\n"),
7239 p, buf);
7240 if (p == p1)
7241 error (_("Malformed packet(a) (missing register number): %s\n\
7242 Packet: '%s'\n"),
7243 p, buf);
7244
7245 /* Some "registers" are actually extended stop information.
7246 Note if you're adding a new entry here: GDB 7.9 and
7247 earlier assume that all register "numbers" that start
7248 with an hex digit are real register numbers. Make sure
7249 the server only sends such a packet if it knows the
7250 client understands it. */
7251
7252 if (strprefix (p, p1, "thread"))
7253 event->ptid = read_ptid (++p1, &p);
7254 else if (strprefix (p, p1, "syscall_entry"))
7255 {
7256 ULONGEST sysno;
7257
7258 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7259 p = unpack_varlen_hex (++p1, &sysno);
7260 event->ws.value.syscall_number = (int) sysno;
7261 }
7262 else if (strprefix (p, p1, "syscall_return"))
7263 {
7264 ULONGEST sysno;
7265
7266 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7267 p = unpack_varlen_hex (++p1, &sysno);
7268 event->ws.value.syscall_number = (int) sysno;
7269 }
7270 else if (strprefix (p, p1, "watch")
7271 || strprefix (p, p1, "rwatch")
7272 || strprefix (p, p1, "awatch"))
7273 {
7274 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7275 p = unpack_varlen_hex (++p1, &addr);
7276 event->watch_data_address = (CORE_ADDR) addr;
7277 }
7278 else if (strprefix (p, p1, "swbreak"))
7279 {
7280 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7281
7282 /* Make sure the stub doesn't forget to indicate support
7283 with qSupported. */
7284 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7285 error (_("Unexpected swbreak stop reason"));
7286
7287 /* The value part is documented as "must be empty",
7288 though we ignore it, in case we ever decide to make
7289 use of it in a backward compatible way. */
7290 p = strchrnul (p1 + 1, ';');
7291 }
7292 else if (strprefix (p, p1, "hwbreak"))
7293 {
7294 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7295
7296 /* Make sure the stub doesn't forget to indicate support
7297 with qSupported. */
7298 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7299 error (_("Unexpected hwbreak stop reason"));
7300
7301 /* See above. */
7302 p = strchrnul (p1 + 1, ';');
7303 }
7304 else if (strprefix (p, p1, "library"))
7305 {
7306 event->ws.kind = TARGET_WAITKIND_LOADED;
7307 p = strchrnul (p1 + 1, ';');
7308 }
7309 else if (strprefix (p, p1, "replaylog"))
7310 {
7311 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7312 /* p1 will indicate "begin" or "end", but it makes
7313 no difference for now, so ignore it. */
7314 p = strchrnul (p1 + 1, ';');
7315 }
7316 else if (strprefix (p, p1, "core"))
7317 {
7318 ULONGEST c;
7319
7320 p = unpack_varlen_hex (++p1, &c);
7321 event->core = c;
7322 }
7323 else if (strprefix (p, p1, "fork"))
7324 {
7325 event->ws.value.related_pid = read_ptid (++p1, &p);
7326 event->ws.kind = TARGET_WAITKIND_FORKED;
7327 }
7328 else if (strprefix (p, p1, "vfork"))
7329 {
7330 event->ws.value.related_pid = read_ptid (++p1, &p);
7331 event->ws.kind = TARGET_WAITKIND_VFORKED;
7332 }
7333 else if (strprefix (p, p1, "vforkdone"))
7334 {
7335 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7336 p = strchrnul (p1 + 1, ';');
7337 }
7338 else if (strprefix (p, p1, "exec"))
7339 {
7340 ULONGEST ignored;
7341 char pathname[PATH_MAX];
7342 int pathlen;
7343
7344 /* Determine the length of the execd pathname. */
7345 p = unpack_varlen_hex (++p1, &ignored);
7346 pathlen = (p - p1) / 2;
7347
7348 /* Save the pathname for event reporting and for
7349 the next run command. */
7350 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7351 pathname[pathlen] = '\0';
7352
7353 /* This is freed during event handling. */
7354 event->ws.value.execd_pathname = xstrdup (pathname);
7355 event->ws.kind = TARGET_WAITKIND_EXECD;
7356
7357 /* Skip the registers included in this packet, since
7358 they may be for an architecture different from the
7359 one used by the original program. */
7360 skipregs = 1;
7361 }
7362 else if (strprefix (p, p1, "create"))
7363 {
7364 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7365 p = strchrnul (p1 + 1, ';');
7366 }
7367 else
7368 {
7369 ULONGEST pnum;
7370 const char *p_temp;
7371
7372 if (skipregs)
7373 {
7374 p = strchrnul (p1 + 1, ';');
7375 p++;
7376 continue;
7377 }
7378
7379 /* Maybe a real ``P'' register number. */
7380 p_temp = unpack_varlen_hex (p, &pnum);
7381 /* If the first invalid character is the colon, we got a
7382 register number. Otherwise, it's an unknown stop
7383 reason. */
7384 if (p_temp == p1)
7385 {
7386 /* If we haven't parsed the event's thread yet, find
7387 it now, in order to find the architecture of the
7388 reported expedited registers. */
7389 if (event->ptid == null_ptid)
7390 {
7391 const char *thr = strstr (p1 + 1, ";thread:");
7392 if (thr != NULL)
7393 event->ptid = read_ptid (thr + strlen (";thread:"),
7394 NULL);
7395 else
7396 {
7397 /* Either the current thread hasn't changed,
7398 or the inferior is not multi-threaded.
7399 The event must be for the thread we last
7400 set as (or learned as being) current. */
7401 event->ptid = event->rs->general_thread;
7402 }
7403 }
7404
7405 if (rsa == NULL)
7406 {
7407 inferior *inf = (event->ptid == null_ptid
7408 ? NULL
7409 : find_inferior_ptid (event->ptid));
7410 /* If this is the first time we learn anything
7411 about this process, skip the registers
7412 included in this packet, since we don't yet
7413 know which architecture to use to parse them.
7414 We'll determine the architecture later when
7415 we process the stop reply and retrieve the
7416 target description, via
7417 remote_notice_new_inferior ->
7418 post_create_inferior. */
7419 if (inf == NULL)
7420 {
7421 p = strchrnul (p1 + 1, ';');
7422 p++;
7423 continue;
7424 }
7425
7426 event->arch = inf->gdbarch;
7427 rsa = event->rs->get_remote_arch_state (event->arch);
7428 }
7429
7430 packet_reg *reg
7431 = packet_reg_from_pnum (event->arch, rsa, pnum);
7432 cached_reg_t cached_reg;
7433
7434 if (reg == NULL)
7435 error (_("Remote sent bad register number %s: %s\n\
7436 Packet: '%s'\n"),
7437 hex_string (pnum), p, buf);
7438
7439 cached_reg.num = reg->regnum;
7440 cached_reg.data = (gdb_byte *)
7441 xmalloc (register_size (event->arch, reg->regnum));
7442
7443 p = p1 + 1;
7444 fieldsize = hex2bin (p, cached_reg.data,
7445 register_size (event->arch, reg->regnum));
7446 p += 2 * fieldsize;
7447 if (fieldsize < register_size (event->arch, reg->regnum))
7448 warning (_("Remote reply is too short: %s"), buf);
7449
7450 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7451 }
7452 else
7453 {
7454 /* Not a number. Silently skip unknown optional
7455 info. */
7456 p = strchrnul (p1 + 1, ';');
7457 }
7458 }
7459
7460 if (*p != ';')
7461 error (_("Remote register badly formatted: %s\nhere: %s"),
7462 buf, p);
7463 ++p;
7464 }
7465
7466 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7467 break;
7468
7469 /* fall through */
7470 case 'S': /* Old style status, just signal only. */
7471 {
7472 int sig;
7473
7474 event->ws.kind = TARGET_WAITKIND_STOPPED;
7475 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7476 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7477 event->ws.value.sig = (enum gdb_signal) sig;
7478 else
7479 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7480 }
7481 break;
7482 case 'w': /* Thread exited. */
7483 {
7484 ULONGEST value;
7485
7486 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7487 p = unpack_varlen_hex (&buf[1], &value);
7488 event->ws.value.integer = value;
7489 if (*p != ';')
7490 error (_("stop reply packet badly formatted: %s"), buf);
7491 event->ptid = read_ptid (++p, NULL);
7492 break;
7493 }
7494 case 'W': /* Target exited. */
7495 case 'X':
7496 {
7497 int pid;
7498 ULONGEST value;
7499
7500 /* GDB used to accept only 2 hex chars here. Stubs should
7501 only send more if they detect GDB supports multi-process
7502 support. */
7503 p = unpack_varlen_hex (&buf[1], &value);
7504
7505 if (buf[0] == 'W')
7506 {
7507 /* The remote process exited. */
7508 event->ws.kind = TARGET_WAITKIND_EXITED;
7509 event->ws.value.integer = value;
7510 }
7511 else
7512 {
7513 /* The remote process exited with a signal. */
7514 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7515 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7516 event->ws.value.sig = (enum gdb_signal) value;
7517 else
7518 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7519 }
7520
7521 /* If no process is specified, assume inferior_ptid. */
7522 pid = inferior_ptid.pid ();
7523 if (*p == '\0')
7524 ;
7525 else if (*p == ';')
7526 {
7527 p++;
7528
7529 if (*p == '\0')
7530 ;
7531 else if (startswith (p, "process:"))
7532 {
7533 ULONGEST upid;
7534
7535 p += sizeof ("process:") - 1;
7536 unpack_varlen_hex (p, &upid);
7537 pid = upid;
7538 }
7539 else
7540 error (_("unknown stop reply packet: %s"), buf);
7541 }
7542 else
7543 error (_("unknown stop reply packet: %s"), buf);
7544 event->ptid = ptid_t (pid);
7545 }
7546 break;
7547 case 'N':
7548 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7549 event->ptid = minus_one_ptid;
7550 break;
7551 }
7552
7553 if (target_is_non_stop_p () && event->ptid == null_ptid)
7554 error (_("No process or thread specified in stop reply: %s"), buf);
7555 }
7556
7557 /* When the stub wants to tell GDB about a new notification reply, it
7558 sends a notification (%Stop, for example). Those can come it at
7559 any time, hence, we have to make sure that any pending
7560 putpkt/getpkt sequence we're making is finished, before querying
7561 the stub for more events with the corresponding ack command
7562 (vStopped, for example). E.g., if we started a vStopped sequence
7563 immediately upon receiving the notification, something like this
7564 could happen:
7565
7566 1.1) --> Hg 1
7567 1.2) <-- OK
7568 1.3) --> g
7569 1.4) <-- %Stop
7570 1.5) --> vStopped
7571 1.6) <-- (registers reply to step #1.3)
7572
7573 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7574 query.
7575
7576 To solve this, whenever we parse a %Stop notification successfully,
7577 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7578 doing whatever we were doing:
7579
7580 2.1) --> Hg 1
7581 2.2) <-- OK
7582 2.3) --> g
7583 2.4) <-- %Stop
7584 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7585 2.5) <-- (registers reply to step #2.3)
7586
7587 Eventualy after step #2.5, we return to the event loop, which
7588 notices there's an event on the
7589 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7590 associated callback --- the function below. At this point, we're
7591 always safe to start a vStopped sequence. :
7592
7593 2.6) --> vStopped
7594 2.7) <-- T05 thread:2
7595 2.8) --> vStopped
7596 2.9) --> OK
7597 */
7598
7599 void
7600 remote_target::remote_notif_get_pending_events (notif_client *nc)
7601 {
7602 struct remote_state *rs = get_remote_state ();
7603
7604 if (rs->notif_state->pending_event[nc->id] != NULL)
7605 {
7606 if (notif_debug)
7607 fprintf_unfiltered (gdb_stdlog,
7608 "notif: process: '%s' ack pending event\n",
7609 nc->name);
7610
7611 /* acknowledge */
7612 nc->ack (this, nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7613 rs->notif_state->pending_event[nc->id] = NULL;
7614
7615 while (1)
7616 {
7617 getpkt (&rs->buf, &rs->buf_size, 0);
7618 if (strcmp (rs->buf, "OK") == 0)
7619 break;
7620 else
7621 remote_notif_ack (this, nc, rs->buf);
7622 }
7623 }
7624 else
7625 {
7626 if (notif_debug)
7627 fprintf_unfiltered (gdb_stdlog,
7628 "notif: process: '%s' no pending reply\n",
7629 nc->name);
7630 }
7631 }
7632
7633 /* Wrapper around remote_target::remote_notif_get_pending_events to
7634 avoid having to export the whole remote_target class. */
7635
7636 void
7637 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7638 {
7639 remote->remote_notif_get_pending_events (nc);
7640 }
7641
7642 /* Called when it is decided that STOP_REPLY holds the info of the
7643 event that is to be returned to the core. This function always
7644 destroys STOP_REPLY. */
7645
7646 ptid_t
7647 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7648 struct target_waitstatus *status)
7649 {
7650 ptid_t ptid;
7651
7652 *status = stop_reply->ws;
7653 ptid = stop_reply->ptid;
7654
7655 /* If no thread/process was reported by the stub, assume the current
7656 inferior. */
7657 if (ptid == null_ptid)
7658 ptid = inferior_ptid;
7659
7660 if (status->kind != TARGET_WAITKIND_EXITED
7661 && status->kind != TARGET_WAITKIND_SIGNALLED
7662 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7663 {
7664 /* Expedited registers. */
7665 if (stop_reply->regcache)
7666 {
7667 struct regcache *regcache
7668 = get_thread_arch_regcache (ptid, stop_reply->arch);
7669 cached_reg_t *reg;
7670 int ix;
7671
7672 for (ix = 0;
7673 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7674 ix++)
7675 {
7676 regcache->raw_supply (reg->num, reg->data);
7677 xfree (reg->data);
7678 }
7679
7680 VEC_free (cached_reg_t, stop_reply->regcache);
7681 }
7682
7683 remote_notice_new_inferior (ptid, 0);
7684 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7685 remote_thr->core = stop_reply->core;
7686 remote_thr->stop_reason = stop_reply->stop_reason;
7687 remote_thr->watch_data_address = stop_reply->watch_data_address;
7688 remote_thr->vcont_resumed = 0;
7689 }
7690
7691 stop_reply_xfree (stop_reply);
7692 return ptid;
7693 }
7694
7695 /* The non-stop mode version of target_wait. */
7696
7697 ptid_t
7698 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7699 {
7700 struct remote_state *rs = get_remote_state ();
7701 struct stop_reply *stop_reply;
7702 int ret;
7703 int is_notif = 0;
7704
7705 /* If in non-stop mode, get out of getpkt even if a
7706 notification is received. */
7707
7708 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7709 0 /* forever */, &is_notif);
7710 while (1)
7711 {
7712 if (ret != -1 && !is_notif)
7713 switch (rs->buf[0])
7714 {
7715 case 'E': /* Error of some sort. */
7716 /* We're out of sync with the target now. Did it continue
7717 or not? We can't tell which thread it was in non-stop,
7718 so just ignore this. */
7719 warning (_("Remote failure reply: %s"), rs->buf);
7720 break;
7721 case 'O': /* Console output. */
7722 remote_console_output (rs->buf + 1);
7723 break;
7724 default:
7725 warning (_("Invalid remote reply: %s"), rs->buf);
7726 break;
7727 }
7728
7729 /* Acknowledge a pending stop reply that may have arrived in the
7730 mean time. */
7731 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7732 remote_notif_get_pending_events (&notif_client_stop);
7733
7734 /* If indeed we noticed a stop reply, we're done. */
7735 stop_reply = queued_stop_reply (ptid);
7736 if (stop_reply != NULL)
7737 return process_stop_reply (stop_reply, status);
7738
7739 /* Still no event. If we're just polling for an event, then
7740 return to the event loop. */
7741 if (options & TARGET_WNOHANG)
7742 {
7743 status->kind = TARGET_WAITKIND_IGNORE;
7744 return minus_one_ptid;
7745 }
7746
7747 /* Otherwise do a blocking wait. */
7748 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7749 1 /* forever */, &is_notif);
7750 }
7751 }
7752
7753 /* Wait until the remote machine stops, then return, storing status in
7754 STATUS just as `wait' would. */
7755
7756 ptid_t
7757 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7758 {
7759 struct remote_state *rs = get_remote_state ();
7760 ptid_t event_ptid = null_ptid;
7761 char *buf;
7762 struct stop_reply *stop_reply;
7763
7764 again:
7765
7766 status->kind = TARGET_WAITKIND_IGNORE;
7767 status->value.integer = 0;
7768
7769 stop_reply = queued_stop_reply (ptid);
7770 if (stop_reply != NULL)
7771 return process_stop_reply (stop_reply, status);
7772
7773 if (rs->cached_wait_status)
7774 /* Use the cached wait status, but only once. */
7775 rs->cached_wait_status = 0;
7776 else
7777 {
7778 int ret;
7779 int is_notif;
7780 int forever = ((options & TARGET_WNOHANG) == 0
7781 && rs->wait_forever_enabled_p);
7782
7783 if (!rs->waiting_for_stop_reply)
7784 {
7785 status->kind = TARGET_WAITKIND_NO_RESUMED;
7786 return minus_one_ptid;
7787 }
7788
7789 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7790 _never_ wait for ever -> test on target_is_async_p().
7791 However, before we do that we need to ensure that the caller
7792 knows how to take the target into/out of async mode. */
7793 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7794 forever, &is_notif);
7795
7796 /* GDB gets a notification. Return to core as this event is
7797 not interesting. */
7798 if (ret != -1 && is_notif)
7799 return minus_one_ptid;
7800
7801 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7802 return minus_one_ptid;
7803 }
7804
7805 buf = rs->buf;
7806
7807 /* Assume that the target has acknowledged Ctrl-C unless we receive
7808 an 'F' or 'O' packet. */
7809 if (buf[0] != 'F' && buf[0] != 'O')
7810 rs->ctrlc_pending_p = 0;
7811
7812 switch (buf[0])
7813 {
7814 case 'E': /* Error of some sort. */
7815 /* We're out of sync with the target now. Did it continue or
7816 not? Not is more likely, so report a stop. */
7817 rs->waiting_for_stop_reply = 0;
7818
7819 warning (_("Remote failure reply: %s"), buf);
7820 status->kind = TARGET_WAITKIND_STOPPED;
7821 status->value.sig = GDB_SIGNAL_0;
7822 break;
7823 case 'F': /* File-I/O request. */
7824 /* GDB may access the inferior memory while handling the File-I/O
7825 request, but we don't want GDB accessing memory while waiting
7826 for a stop reply. See the comments in putpkt_binary. Set
7827 waiting_for_stop_reply to 0 temporarily. */
7828 rs->waiting_for_stop_reply = 0;
7829 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7830 rs->ctrlc_pending_p = 0;
7831 /* GDB handled the File-I/O request, and the target is running
7832 again. Keep waiting for events. */
7833 rs->waiting_for_stop_reply = 1;
7834 break;
7835 case 'N': case 'T': case 'S': case 'X': case 'W':
7836 {
7837 /* There is a stop reply to handle. */
7838 rs->waiting_for_stop_reply = 0;
7839
7840 stop_reply
7841 = (struct stop_reply *) remote_notif_parse (this,
7842 &notif_client_stop,
7843 rs->buf);
7844
7845 event_ptid = process_stop_reply (stop_reply, status);
7846 break;
7847 }
7848 case 'O': /* Console output. */
7849 remote_console_output (buf + 1);
7850 break;
7851 case '\0':
7852 if (rs->last_sent_signal != GDB_SIGNAL_0)
7853 {
7854 /* Zero length reply means that we tried 'S' or 'C' and the
7855 remote system doesn't support it. */
7856 target_terminal::ours_for_output ();
7857 printf_filtered
7858 ("Can't send signals to this remote system. %s not sent.\n",
7859 gdb_signal_to_name (rs->last_sent_signal));
7860 rs->last_sent_signal = GDB_SIGNAL_0;
7861 target_terminal::inferior ();
7862
7863 strcpy (buf, rs->last_sent_step ? "s" : "c");
7864 putpkt (buf);
7865 break;
7866 }
7867 /* fallthrough */
7868 default:
7869 warning (_("Invalid remote reply: %s"), buf);
7870 break;
7871 }
7872
7873 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7874 return minus_one_ptid;
7875 else if (status->kind == TARGET_WAITKIND_IGNORE)
7876 {
7877 /* Nothing interesting happened. If we're doing a non-blocking
7878 poll, we're done. Otherwise, go back to waiting. */
7879 if (options & TARGET_WNOHANG)
7880 return minus_one_ptid;
7881 else
7882 goto again;
7883 }
7884 else if (status->kind != TARGET_WAITKIND_EXITED
7885 && status->kind != TARGET_WAITKIND_SIGNALLED)
7886 {
7887 if (event_ptid != null_ptid)
7888 record_currthread (rs, event_ptid);
7889 else
7890 event_ptid = inferior_ptid;
7891 }
7892 else
7893 /* A process exit. Invalidate our notion of current thread. */
7894 record_currthread (rs, minus_one_ptid);
7895
7896 return event_ptid;
7897 }
7898
7899 /* Wait until the remote machine stops, then return, storing status in
7900 STATUS just as `wait' would. */
7901
7902 ptid_t
7903 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7904 {
7905 ptid_t event_ptid;
7906
7907 if (target_is_non_stop_p ())
7908 event_ptid = wait_ns (ptid, status, options);
7909 else
7910 event_ptid = wait_as (ptid, status, options);
7911
7912 if (target_is_async_p ())
7913 {
7914 remote_state *rs = get_remote_state ();
7915
7916 /* If there are are events left in the queue tell the event loop
7917 to return here. */
7918 if (!rs->stop_reply_queue.empty ())
7919 mark_async_event_handler (rs->remote_async_inferior_event_token);
7920 }
7921
7922 return event_ptid;
7923 }
7924
7925 /* Fetch a single register using a 'p' packet. */
7926
7927 int
7928 remote_target::fetch_register_using_p (struct regcache *regcache,
7929 packet_reg *reg)
7930 {
7931 struct gdbarch *gdbarch = regcache->arch ();
7932 struct remote_state *rs = get_remote_state ();
7933 char *buf, *p;
7934 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7935 int i;
7936
7937 if (packet_support (PACKET_p) == PACKET_DISABLE)
7938 return 0;
7939
7940 if (reg->pnum == -1)
7941 return 0;
7942
7943 p = rs->buf;
7944 *p++ = 'p';
7945 p += hexnumstr (p, reg->pnum);
7946 *p++ = '\0';
7947 putpkt (rs->buf);
7948 getpkt (&rs->buf, &rs->buf_size, 0);
7949
7950 buf = rs->buf;
7951
7952 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7953 {
7954 case PACKET_OK:
7955 break;
7956 case PACKET_UNKNOWN:
7957 return 0;
7958 case PACKET_ERROR:
7959 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7960 gdbarch_register_name (regcache->arch (),
7961 reg->regnum),
7962 buf);
7963 }
7964
7965 /* If this register is unfetchable, tell the regcache. */
7966 if (buf[0] == 'x')
7967 {
7968 regcache->raw_supply (reg->regnum, NULL);
7969 return 1;
7970 }
7971
7972 /* Otherwise, parse and supply the value. */
7973 p = buf;
7974 i = 0;
7975 while (p[0] != 0)
7976 {
7977 if (p[1] == 0)
7978 error (_("fetch_register_using_p: early buf termination"));
7979
7980 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7981 p += 2;
7982 }
7983 regcache->raw_supply (reg->regnum, regp);
7984 return 1;
7985 }
7986
7987 /* Fetch the registers included in the target's 'g' packet. */
7988
7989 int
7990 remote_target::send_g_packet ()
7991 {
7992 struct remote_state *rs = get_remote_state ();
7993 int buf_len;
7994
7995 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7996 putpkt (rs->buf);
7997 getpkt (&rs->buf, &rs->buf_size, 0);
7998 if (packet_check_result (rs->buf) == PACKET_ERROR)
7999 error (_("Could not read registers; remote failure reply '%s'"),
8000 rs->buf);
8001
8002 /* We can get out of synch in various cases. If the first character
8003 in the buffer is not a hex character, assume that has happened
8004 and try to fetch another packet to read. */
8005 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8006 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8007 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8008 && rs->buf[0] != 'x') /* New: unavailable register value. */
8009 {
8010 if (remote_debug)
8011 fprintf_unfiltered (gdb_stdlog,
8012 "Bad register packet; fetching a new packet\n");
8013 getpkt (&rs->buf, &rs->buf_size, 0);
8014 }
8015
8016 buf_len = strlen (rs->buf);
8017
8018 /* Sanity check the received packet. */
8019 if (buf_len % 2 != 0)
8020 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
8021
8022 return buf_len / 2;
8023 }
8024
8025 void
8026 remote_target::process_g_packet (struct regcache *regcache)
8027 {
8028 struct gdbarch *gdbarch = regcache->arch ();
8029 struct remote_state *rs = get_remote_state ();
8030 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8031 int i, buf_len;
8032 char *p;
8033 char *regs;
8034
8035 buf_len = strlen (rs->buf);
8036
8037 /* Further sanity checks, with knowledge of the architecture. */
8038 if (buf_len > 2 * rsa->sizeof_g_packet)
8039 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8040 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
8041
8042 /* Save the size of the packet sent to us by the target. It is used
8043 as a heuristic when determining the max size of packets that the
8044 target can safely receive. */
8045 if (rsa->actual_register_packet_size == 0)
8046 rsa->actual_register_packet_size = buf_len;
8047
8048 /* If this is smaller than we guessed the 'g' packet would be,
8049 update our records. A 'g' reply that doesn't include a register's
8050 value implies either that the register is not available, or that
8051 the 'p' packet must be used. */
8052 if (buf_len < 2 * rsa->sizeof_g_packet)
8053 {
8054 long sizeof_g_packet = buf_len / 2;
8055
8056 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8057 {
8058 long offset = rsa->regs[i].offset;
8059 long reg_size = register_size (gdbarch, i);
8060
8061 if (rsa->regs[i].pnum == -1)
8062 continue;
8063
8064 if (offset >= sizeof_g_packet)
8065 rsa->regs[i].in_g_packet = 0;
8066 else if (offset + reg_size > sizeof_g_packet)
8067 error (_("Truncated register %d in remote 'g' packet"), i);
8068 else
8069 rsa->regs[i].in_g_packet = 1;
8070 }
8071
8072 /* Looks valid enough, we can assume this is the correct length
8073 for a 'g' packet. It's important not to adjust
8074 rsa->sizeof_g_packet if we have truncated registers otherwise
8075 this "if" won't be run the next time the method is called
8076 with a packet of the same size and one of the internal errors
8077 below will trigger instead. */
8078 rsa->sizeof_g_packet = sizeof_g_packet;
8079 }
8080
8081 regs = (char *) alloca (rsa->sizeof_g_packet);
8082
8083 /* Unimplemented registers read as all bits zero. */
8084 memset (regs, 0, rsa->sizeof_g_packet);
8085
8086 /* Reply describes registers byte by byte, each byte encoded as two
8087 hex characters. Suck them all up, then supply them to the
8088 register cacheing/storage mechanism. */
8089
8090 p = rs->buf;
8091 for (i = 0; i < rsa->sizeof_g_packet; i++)
8092 {
8093 if (p[0] == 0 || p[1] == 0)
8094 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8095 internal_error (__FILE__, __LINE__,
8096 _("unexpected end of 'g' packet reply"));
8097
8098 if (p[0] == 'x' && p[1] == 'x')
8099 regs[i] = 0; /* 'x' */
8100 else
8101 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8102 p += 2;
8103 }
8104
8105 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8106 {
8107 struct packet_reg *r = &rsa->regs[i];
8108 long reg_size = register_size (gdbarch, i);
8109
8110 if (r->in_g_packet)
8111 {
8112 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
8113 /* This shouldn't happen - we adjusted in_g_packet above. */
8114 internal_error (__FILE__, __LINE__,
8115 _("unexpected end of 'g' packet reply"));
8116 else if (rs->buf[r->offset * 2] == 'x')
8117 {
8118 gdb_assert (r->offset * 2 < strlen (rs->buf));
8119 /* The register isn't available, mark it as such (at
8120 the same time setting the value to zero). */
8121 regcache->raw_supply (r->regnum, NULL);
8122 }
8123 else
8124 regcache->raw_supply (r->regnum, regs + r->offset);
8125 }
8126 }
8127 }
8128
8129 void
8130 remote_target::fetch_registers_using_g (struct regcache *regcache)
8131 {
8132 send_g_packet ();
8133 process_g_packet (regcache);
8134 }
8135
8136 /* Make the remote selected traceframe match GDB's selected
8137 traceframe. */
8138
8139 void
8140 remote_target::set_remote_traceframe ()
8141 {
8142 int newnum;
8143 struct remote_state *rs = get_remote_state ();
8144
8145 if (rs->remote_traceframe_number == get_traceframe_number ())
8146 return;
8147
8148 /* Avoid recursion, remote_trace_find calls us again. */
8149 rs->remote_traceframe_number = get_traceframe_number ();
8150
8151 newnum = target_trace_find (tfind_number,
8152 get_traceframe_number (), 0, 0, NULL);
8153
8154 /* Should not happen. If it does, all bets are off. */
8155 if (newnum != get_traceframe_number ())
8156 warning (_("could not set remote traceframe"));
8157 }
8158
8159 void
8160 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8161 {
8162 struct gdbarch *gdbarch = regcache->arch ();
8163 struct remote_state *rs = get_remote_state ();
8164 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8165 int i;
8166
8167 set_remote_traceframe ();
8168 set_general_thread (regcache->ptid ());
8169
8170 if (regnum >= 0)
8171 {
8172 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8173
8174 gdb_assert (reg != NULL);
8175
8176 /* If this register might be in the 'g' packet, try that first -
8177 we are likely to read more than one register. If this is the
8178 first 'g' packet, we might be overly optimistic about its
8179 contents, so fall back to 'p'. */
8180 if (reg->in_g_packet)
8181 {
8182 fetch_registers_using_g (regcache);
8183 if (reg->in_g_packet)
8184 return;
8185 }
8186
8187 if (fetch_register_using_p (regcache, reg))
8188 return;
8189
8190 /* This register is not available. */
8191 regcache->raw_supply (reg->regnum, NULL);
8192
8193 return;
8194 }
8195
8196 fetch_registers_using_g (regcache);
8197
8198 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8199 if (!rsa->regs[i].in_g_packet)
8200 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8201 {
8202 /* This register is not available. */
8203 regcache->raw_supply (i, NULL);
8204 }
8205 }
8206
8207 /* Prepare to store registers. Since we may send them all (using a
8208 'G' request), we have to read out the ones we don't want to change
8209 first. */
8210
8211 void
8212 remote_target::prepare_to_store (struct regcache *regcache)
8213 {
8214 struct remote_state *rs = get_remote_state ();
8215 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8216 int i;
8217
8218 /* Make sure the entire registers array is valid. */
8219 switch (packet_support (PACKET_P))
8220 {
8221 case PACKET_DISABLE:
8222 case PACKET_SUPPORT_UNKNOWN:
8223 /* Make sure all the necessary registers are cached. */
8224 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8225 if (rsa->regs[i].in_g_packet)
8226 regcache->raw_update (rsa->regs[i].regnum);
8227 break;
8228 case PACKET_ENABLE:
8229 break;
8230 }
8231 }
8232
8233 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8234 packet was not recognized. */
8235
8236 int
8237 remote_target::store_register_using_P (const struct regcache *regcache,
8238 packet_reg *reg)
8239 {
8240 struct gdbarch *gdbarch = regcache->arch ();
8241 struct remote_state *rs = get_remote_state ();
8242 /* Try storing a single register. */
8243 char *buf = rs->buf;
8244 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8245 char *p;
8246
8247 if (packet_support (PACKET_P) == PACKET_DISABLE)
8248 return 0;
8249
8250 if (reg->pnum == -1)
8251 return 0;
8252
8253 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8254 p = buf + strlen (buf);
8255 regcache->raw_collect (reg->regnum, regp);
8256 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8257 putpkt (rs->buf);
8258 getpkt (&rs->buf, &rs->buf_size, 0);
8259
8260 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8261 {
8262 case PACKET_OK:
8263 return 1;
8264 case PACKET_ERROR:
8265 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8266 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8267 case PACKET_UNKNOWN:
8268 return 0;
8269 default:
8270 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8271 }
8272 }
8273
8274 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8275 contents of the register cache buffer. FIXME: ignores errors. */
8276
8277 void
8278 remote_target::store_registers_using_G (const struct regcache *regcache)
8279 {
8280 struct remote_state *rs = get_remote_state ();
8281 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8282 gdb_byte *regs;
8283 char *p;
8284
8285 /* Extract all the registers in the regcache copying them into a
8286 local buffer. */
8287 {
8288 int i;
8289
8290 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8291 memset (regs, 0, rsa->sizeof_g_packet);
8292 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8293 {
8294 struct packet_reg *r = &rsa->regs[i];
8295
8296 if (r->in_g_packet)
8297 regcache->raw_collect (r->regnum, regs + r->offset);
8298 }
8299 }
8300
8301 /* Command describes registers byte by byte,
8302 each byte encoded as two hex characters. */
8303 p = rs->buf;
8304 *p++ = 'G';
8305 bin2hex (regs, p, rsa->sizeof_g_packet);
8306 putpkt (rs->buf);
8307 getpkt (&rs->buf, &rs->buf_size, 0);
8308 if (packet_check_result (rs->buf) == PACKET_ERROR)
8309 error (_("Could not write registers; remote failure reply '%s'"),
8310 rs->buf);
8311 }
8312
8313 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8314 of the register cache buffer. FIXME: ignores errors. */
8315
8316 void
8317 remote_target::store_registers (struct regcache *regcache, int regnum)
8318 {
8319 struct gdbarch *gdbarch = regcache->arch ();
8320 struct remote_state *rs = get_remote_state ();
8321 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8322 int i;
8323
8324 set_remote_traceframe ();
8325 set_general_thread (regcache->ptid ());
8326
8327 if (regnum >= 0)
8328 {
8329 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8330
8331 gdb_assert (reg != NULL);
8332
8333 /* Always prefer to store registers using the 'P' packet if
8334 possible; we often change only a small number of registers.
8335 Sometimes we change a larger number; we'd need help from a
8336 higher layer to know to use 'G'. */
8337 if (store_register_using_P (regcache, reg))
8338 return;
8339
8340 /* For now, don't complain if we have no way to write the
8341 register. GDB loses track of unavailable registers too
8342 easily. Some day, this may be an error. We don't have
8343 any way to read the register, either... */
8344 if (!reg->in_g_packet)
8345 return;
8346
8347 store_registers_using_G (regcache);
8348 return;
8349 }
8350
8351 store_registers_using_G (regcache);
8352
8353 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8354 if (!rsa->regs[i].in_g_packet)
8355 if (!store_register_using_P (regcache, &rsa->regs[i]))
8356 /* See above for why we do not issue an error here. */
8357 continue;
8358 }
8359 \f
8360
8361 /* Return the number of hex digits in num. */
8362
8363 static int
8364 hexnumlen (ULONGEST num)
8365 {
8366 int i;
8367
8368 for (i = 0; num != 0; i++)
8369 num >>= 4;
8370
8371 return std::max (i, 1);
8372 }
8373
8374 /* Set BUF to the minimum number of hex digits representing NUM. */
8375
8376 static int
8377 hexnumstr (char *buf, ULONGEST num)
8378 {
8379 int len = hexnumlen (num);
8380
8381 return hexnumnstr (buf, num, len);
8382 }
8383
8384
8385 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8386
8387 static int
8388 hexnumnstr (char *buf, ULONGEST num, int width)
8389 {
8390 int i;
8391
8392 buf[width] = '\0';
8393
8394 for (i = width - 1; i >= 0; i--)
8395 {
8396 buf[i] = "0123456789abcdef"[(num & 0xf)];
8397 num >>= 4;
8398 }
8399
8400 return width;
8401 }
8402
8403 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8404
8405 static CORE_ADDR
8406 remote_address_masked (CORE_ADDR addr)
8407 {
8408 unsigned int address_size = remote_address_size;
8409
8410 /* If "remoteaddresssize" was not set, default to target address size. */
8411 if (!address_size)
8412 address_size = gdbarch_addr_bit (target_gdbarch ());
8413
8414 if (address_size > 0
8415 && address_size < (sizeof (ULONGEST) * 8))
8416 {
8417 /* Only create a mask when that mask can safely be constructed
8418 in a ULONGEST variable. */
8419 ULONGEST mask = 1;
8420
8421 mask = (mask << address_size) - 1;
8422 addr &= mask;
8423 }
8424 return addr;
8425 }
8426
8427 /* Determine whether the remote target supports binary downloading.
8428 This is accomplished by sending a no-op memory write of zero length
8429 to the target at the specified address. It does not suffice to send
8430 the whole packet, since many stubs strip the eighth bit and
8431 subsequently compute a wrong checksum, which causes real havoc with
8432 remote_write_bytes.
8433
8434 NOTE: This can still lose if the serial line is not eight-bit
8435 clean. In cases like this, the user should clear "remote
8436 X-packet". */
8437
8438 void
8439 remote_target::check_binary_download (CORE_ADDR addr)
8440 {
8441 struct remote_state *rs = get_remote_state ();
8442
8443 switch (packet_support (PACKET_X))
8444 {
8445 case PACKET_DISABLE:
8446 break;
8447 case PACKET_ENABLE:
8448 break;
8449 case PACKET_SUPPORT_UNKNOWN:
8450 {
8451 char *p;
8452
8453 p = rs->buf;
8454 *p++ = 'X';
8455 p += hexnumstr (p, (ULONGEST) addr);
8456 *p++ = ',';
8457 p += hexnumstr (p, (ULONGEST) 0);
8458 *p++ = ':';
8459 *p = '\0';
8460
8461 putpkt_binary (rs->buf, (int) (p - rs->buf));
8462 getpkt (&rs->buf, &rs->buf_size, 0);
8463
8464 if (rs->buf[0] == '\0')
8465 {
8466 if (remote_debug)
8467 fprintf_unfiltered (gdb_stdlog,
8468 "binary downloading NOT "
8469 "supported by target\n");
8470 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8471 }
8472 else
8473 {
8474 if (remote_debug)
8475 fprintf_unfiltered (gdb_stdlog,
8476 "binary downloading supported by target\n");
8477 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8478 }
8479 break;
8480 }
8481 }
8482 }
8483
8484 /* Helper function to resize the payload in order to try to get a good
8485 alignment. We try to write an amount of data such that the next write will
8486 start on an address aligned on REMOTE_ALIGN_WRITES. */
8487
8488 static int
8489 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8490 {
8491 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8492 }
8493
8494 /* Write memory data directly to the remote machine.
8495 This does not inform the data cache; the data cache uses this.
8496 HEADER is the starting part of the packet.
8497 MEMADDR is the address in the remote memory space.
8498 MYADDR is the address of the buffer in our space.
8499 LEN_UNITS is the number of addressable units to write.
8500 UNIT_SIZE is the length in bytes of an addressable unit.
8501 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8502 should send data as binary ('X'), or hex-encoded ('M').
8503
8504 The function creates packet of the form
8505 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8506
8507 where encoding of <DATA> is terminated by PACKET_FORMAT.
8508
8509 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8510 are omitted.
8511
8512 Return the transferred status, error or OK (an
8513 'enum target_xfer_status' value). Save the number of addressable units
8514 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8515
8516 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8517 exchange between gdb and the stub could look like (?? in place of the
8518 checksum):
8519
8520 -> $m1000,4#??
8521 <- aaaabbbbccccdddd
8522
8523 -> $M1000,3:eeeeffffeeee#??
8524 <- OK
8525
8526 -> $m1000,4#??
8527 <- eeeeffffeeeedddd */
8528
8529 target_xfer_status
8530 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8531 const gdb_byte *myaddr,
8532 ULONGEST len_units,
8533 int unit_size,
8534 ULONGEST *xfered_len_units,
8535 char packet_format, int use_length)
8536 {
8537 struct remote_state *rs = get_remote_state ();
8538 char *p;
8539 char *plen = NULL;
8540 int plenlen = 0;
8541 int todo_units;
8542 int units_written;
8543 int payload_capacity_bytes;
8544 int payload_length_bytes;
8545
8546 if (packet_format != 'X' && packet_format != 'M')
8547 internal_error (__FILE__, __LINE__,
8548 _("remote_write_bytes_aux: bad packet format"));
8549
8550 if (len_units == 0)
8551 return TARGET_XFER_EOF;
8552
8553 payload_capacity_bytes = get_memory_write_packet_size ();
8554
8555 /* The packet buffer will be large enough for the payload;
8556 get_memory_packet_size ensures this. */
8557 rs->buf[0] = '\0';
8558
8559 /* Compute the size of the actual payload by subtracting out the
8560 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8561
8562 payload_capacity_bytes -= strlen ("$,:#NN");
8563 if (!use_length)
8564 /* The comma won't be used. */
8565 payload_capacity_bytes += 1;
8566 payload_capacity_bytes -= strlen (header);
8567 payload_capacity_bytes -= hexnumlen (memaddr);
8568
8569 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8570
8571 strcat (rs->buf, header);
8572 p = rs->buf + strlen (header);
8573
8574 /* Compute a best guess of the number of bytes actually transfered. */
8575 if (packet_format == 'X')
8576 {
8577 /* Best guess at number of bytes that will fit. */
8578 todo_units = std::min (len_units,
8579 (ULONGEST) payload_capacity_bytes / unit_size);
8580 if (use_length)
8581 payload_capacity_bytes -= hexnumlen (todo_units);
8582 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8583 }
8584 else
8585 {
8586 /* Number of bytes that will fit. */
8587 todo_units
8588 = std::min (len_units,
8589 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8590 if (use_length)
8591 payload_capacity_bytes -= hexnumlen (todo_units);
8592 todo_units = std::min (todo_units,
8593 (payload_capacity_bytes / unit_size) / 2);
8594 }
8595
8596 if (todo_units <= 0)
8597 internal_error (__FILE__, __LINE__,
8598 _("minimum packet size too small to write data"));
8599
8600 /* If we already need another packet, then try to align the end
8601 of this packet to a useful boundary. */
8602 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8603 todo_units = align_for_efficient_write (todo_units, memaddr);
8604
8605 /* Append "<memaddr>". */
8606 memaddr = remote_address_masked (memaddr);
8607 p += hexnumstr (p, (ULONGEST) memaddr);
8608
8609 if (use_length)
8610 {
8611 /* Append ",". */
8612 *p++ = ',';
8613
8614 /* Append the length and retain its location and size. It may need to be
8615 adjusted once the packet body has been created. */
8616 plen = p;
8617 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8618 p += plenlen;
8619 }
8620
8621 /* Append ":". */
8622 *p++ = ':';
8623 *p = '\0';
8624
8625 /* Append the packet body. */
8626 if (packet_format == 'X')
8627 {
8628 /* Binary mode. Send target system values byte by byte, in
8629 increasing byte addresses. Only escape certain critical
8630 characters. */
8631 payload_length_bytes =
8632 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8633 &units_written, payload_capacity_bytes);
8634
8635 /* If not all TODO units fit, then we'll need another packet. Make
8636 a second try to keep the end of the packet aligned. Don't do
8637 this if the packet is tiny. */
8638 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8639 {
8640 int new_todo_units;
8641
8642 new_todo_units = align_for_efficient_write (units_written, memaddr);
8643
8644 if (new_todo_units != units_written)
8645 payload_length_bytes =
8646 remote_escape_output (myaddr, new_todo_units, unit_size,
8647 (gdb_byte *) p, &units_written,
8648 payload_capacity_bytes);
8649 }
8650
8651 p += payload_length_bytes;
8652 if (use_length && units_written < todo_units)
8653 {
8654 /* Escape chars have filled up the buffer prematurely,
8655 and we have actually sent fewer units than planned.
8656 Fix-up the length field of the packet. Use the same
8657 number of characters as before. */
8658 plen += hexnumnstr (plen, (ULONGEST) units_written,
8659 plenlen);
8660 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8661 }
8662 }
8663 else
8664 {
8665 /* Normal mode: Send target system values byte by byte, in
8666 increasing byte addresses. Each byte is encoded as a two hex
8667 value. */
8668 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8669 units_written = todo_units;
8670 }
8671
8672 putpkt_binary (rs->buf, (int) (p - rs->buf));
8673 getpkt (&rs->buf, &rs->buf_size, 0);
8674
8675 if (rs->buf[0] == 'E')
8676 return TARGET_XFER_E_IO;
8677
8678 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8679 send fewer units than we'd planned. */
8680 *xfered_len_units = (ULONGEST) units_written;
8681 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8682 }
8683
8684 /* Write memory data directly to the remote machine.
8685 This does not inform the data cache; the data cache uses this.
8686 MEMADDR is the address in the remote memory space.
8687 MYADDR is the address of the buffer in our space.
8688 LEN is the number of bytes.
8689
8690 Return the transferred status, error or OK (an
8691 'enum target_xfer_status' value). Save the number of bytes
8692 transferred in *XFERED_LEN. Only transfer a single packet. */
8693
8694 target_xfer_status
8695 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8696 ULONGEST len, int unit_size,
8697 ULONGEST *xfered_len)
8698 {
8699 const char *packet_format = NULL;
8700
8701 /* Check whether the target supports binary download. */
8702 check_binary_download (memaddr);
8703
8704 switch (packet_support (PACKET_X))
8705 {
8706 case PACKET_ENABLE:
8707 packet_format = "X";
8708 break;
8709 case PACKET_DISABLE:
8710 packet_format = "M";
8711 break;
8712 case PACKET_SUPPORT_UNKNOWN:
8713 internal_error (__FILE__, __LINE__,
8714 _("remote_write_bytes: bad internal state"));
8715 default:
8716 internal_error (__FILE__, __LINE__, _("bad switch"));
8717 }
8718
8719 return remote_write_bytes_aux (packet_format,
8720 memaddr, myaddr, len, unit_size, xfered_len,
8721 packet_format[0], 1);
8722 }
8723
8724 /* Read memory data directly from the remote machine.
8725 This does not use the data cache; the data cache uses this.
8726 MEMADDR is the address in the remote memory space.
8727 MYADDR is the address of the buffer in our space.
8728 LEN_UNITS is the number of addressable memory units to read..
8729 UNIT_SIZE is the length in bytes of an addressable unit.
8730
8731 Return the transferred status, error or OK (an
8732 'enum target_xfer_status' value). Save the number of bytes
8733 transferred in *XFERED_LEN_UNITS.
8734
8735 See the comment of remote_write_bytes_aux for an example of
8736 memory read/write exchange between gdb and the stub. */
8737
8738 target_xfer_status
8739 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8740 ULONGEST len_units,
8741 int unit_size, ULONGEST *xfered_len_units)
8742 {
8743 struct remote_state *rs = get_remote_state ();
8744 int buf_size_bytes; /* Max size of packet output buffer. */
8745 char *p;
8746 int todo_units;
8747 int decoded_bytes;
8748
8749 buf_size_bytes = get_memory_read_packet_size ();
8750 /* The packet buffer will be large enough for the payload;
8751 get_memory_packet_size ensures this. */
8752
8753 /* Number of units that will fit. */
8754 todo_units = std::min (len_units,
8755 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8756
8757 /* Construct "m"<memaddr>","<len>". */
8758 memaddr = remote_address_masked (memaddr);
8759 p = rs->buf;
8760 *p++ = 'm';
8761 p += hexnumstr (p, (ULONGEST) memaddr);
8762 *p++ = ',';
8763 p += hexnumstr (p, (ULONGEST) todo_units);
8764 *p = '\0';
8765 putpkt (rs->buf);
8766 getpkt (&rs->buf, &rs->buf_size, 0);
8767 if (rs->buf[0] == 'E'
8768 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8769 && rs->buf[3] == '\0')
8770 return TARGET_XFER_E_IO;
8771 /* Reply describes memory byte by byte, each byte encoded as two hex
8772 characters. */
8773 p = rs->buf;
8774 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8775 /* Return what we have. Let higher layers handle partial reads. */
8776 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8777 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8778 }
8779
8780 /* Using the set of read-only target sections of remote, read live
8781 read-only memory.
8782
8783 For interface/parameters/return description see target.h,
8784 to_xfer_partial. */
8785
8786 target_xfer_status
8787 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8788 ULONGEST memaddr,
8789 ULONGEST len,
8790 int unit_size,
8791 ULONGEST *xfered_len)
8792 {
8793 struct target_section *secp;
8794 struct target_section_table *table;
8795
8796 secp = target_section_by_addr (this, memaddr);
8797 if (secp != NULL
8798 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8799 secp->the_bfd_section)
8800 & SEC_READONLY))
8801 {
8802 struct target_section *p;
8803 ULONGEST memend = memaddr + len;
8804
8805 table = target_get_section_table (this);
8806
8807 for (p = table->sections; p < table->sections_end; p++)
8808 {
8809 if (memaddr >= p->addr)
8810 {
8811 if (memend <= p->endaddr)
8812 {
8813 /* Entire transfer is within this section. */
8814 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8815 xfered_len);
8816 }
8817 else if (memaddr >= p->endaddr)
8818 {
8819 /* This section ends before the transfer starts. */
8820 continue;
8821 }
8822 else
8823 {
8824 /* This section overlaps the transfer. Just do half. */
8825 len = p->endaddr - memaddr;
8826 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8827 xfered_len);
8828 }
8829 }
8830 }
8831 }
8832
8833 return TARGET_XFER_EOF;
8834 }
8835
8836 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8837 first if the requested memory is unavailable in traceframe.
8838 Otherwise, fall back to remote_read_bytes_1. */
8839
8840 target_xfer_status
8841 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8842 gdb_byte *myaddr, ULONGEST len, int unit_size,
8843 ULONGEST *xfered_len)
8844 {
8845 if (len == 0)
8846 return TARGET_XFER_EOF;
8847
8848 if (get_traceframe_number () != -1)
8849 {
8850 std::vector<mem_range> available;
8851
8852 /* If we fail to get the set of available memory, then the
8853 target does not support querying traceframe info, and so we
8854 attempt reading from the traceframe anyway (assuming the
8855 target implements the old QTro packet then). */
8856 if (traceframe_available_memory (&available, memaddr, len))
8857 {
8858 if (available.empty () || available[0].start != memaddr)
8859 {
8860 enum target_xfer_status res;
8861
8862 /* Don't read into the traceframe's available
8863 memory. */
8864 if (!available.empty ())
8865 {
8866 LONGEST oldlen = len;
8867
8868 len = available[0].start - memaddr;
8869 gdb_assert (len <= oldlen);
8870 }
8871
8872 /* This goes through the topmost target again. */
8873 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8874 len, unit_size, xfered_len);
8875 if (res == TARGET_XFER_OK)
8876 return TARGET_XFER_OK;
8877 else
8878 {
8879 /* No use trying further, we know some memory starting
8880 at MEMADDR isn't available. */
8881 *xfered_len = len;
8882 return (*xfered_len != 0) ?
8883 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8884 }
8885 }
8886
8887 /* Don't try to read more than how much is available, in
8888 case the target implements the deprecated QTro packet to
8889 cater for older GDBs (the target's knowledge of read-only
8890 sections may be outdated by now). */
8891 len = available[0].length;
8892 }
8893 }
8894
8895 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8896 }
8897
8898 \f
8899
8900 /* Sends a packet with content determined by the printf format string
8901 FORMAT and the remaining arguments, then gets the reply. Returns
8902 whether the packet was a success, a failure, or unknown. */
8903
8904 packet_result
8905 remote_target::remote_send_printf (const char *format, ...)
8906 {
8907 struct remote_state *rs = get_remote_state ();
8908 int max_size = get_remote_packet_size ();
8909 va_list ap;
8910
8911 va_start (ap, format);
8912
8913 rs->buf[0] = '\0';
8914 int size = vsnprintf (rs->buf, max_size, format, ap);
8915
8916 va_end (ap);
8917
8918 if (size >= max_size)
8919 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8920
8921 if (putpkt (rs->buf) < 0)
8922 error (_("Communication problem with target."));
8923
8924 rs->buf[0] = '\0';
8925 getpkt (&rs->buf, &rs->buf_size, 0);
8926
8927 return packet_check_result (rs->buf);
8928 }
8929
8930 /* Flash writing can take quite some time. We'll set
8931 effectively infinite timeout for flash operations.
8932 In future, we'll need to decide on a better approach. */
8933 static const int remote_flash_timeout = 1000;
8934
8935 void
8936 remote_target::flash_erase (ULONGEST address, LONGEST length)
8937 {
8938 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8939 enum packet_result ret;
8940 scoped_restore restore_timeout
8941 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8942
8943 ret = remote_send_printf ("vFlashErase:%s,%s",
8944 phex (address, addr_size),
8945 phex (length, 4));
8946 switch (ret)
8947 {
8948 case PACKET_UNKNOWN:
8949 error (_("Remote target does not support flash erase"));
8950 case PACKET_ERROR:
8951 error (_("Error erasing flash with vFlashErase packet"));
8952 default:
8953 break;
8954 }
8955 }
8956
8957 target_xfer_status
8958 remote_target::remote_flash_write (ULONGEST address,
8959 ULONGEST length, ULONGEST *xfered_len,
8960 const gdb_byte *data)
8961 {
8962 scoped_restore restore_timeout
8963 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8964 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8965 xfered_len,'X', 0);
8966 }
8967
8968 void
8969 remote_target::flash_done ()
8970 {
8971 int ret;
8972
8973 scoped_restore restore_timeout
8974 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8975
8976 ret = remote_send_printf ("vFlashDone");
8977
8978 switch (ret)
8979 {
8980 case PACKET_UNKNOWN:
8981 error (_("Remote target does not support vFlashDone"));
8982 case PACKET_ERROR:
8983 error (_("Error finishing flash operation"));
8984 default:
8985 break;
8986 }
8987 }
8988
8989 void
8990 remote_target::files_info ()
8991 {
8992 puts_filtered ("Debugging a target over a serial line.\n");
8993 }
8994 \f
8995 /* Stuff for dealing with the packets which are part of this protocol.
8996 See comment at top of file for details. */
8997
8998 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8999 error to higher layers. Called when a serial error is detected.
9000 The exception message is STRING, followed by a colon and a blank,
9001 the system error message for errno at function entry and final dot
9002 for output compatibility with throw_perror_with_name. */
9003
9004 static void
9005 unpush_and_perror (const char *string)
9006 {
9007 int saved_errno = errno;
9008
9009 remote_unpush_target ();
9010 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9011 safe_strerror (saved_errno));
9012 }
9013
9014 /* Read a single character from the remote end. The current quit
9015 handler is overridden to avoid quitting in the middle of packet
9016 sequence, as that would break communication with the remote server.
9017 See remote_serial_quit_handler for more detail. */
9018
9019 int
9020 remote_target::readchar (int timeout)
9021 {
9022 int ch;
9023 struct remote_state *rs = get_remote_state ();
9024
9025 {
9026 scoped_restore restore_quit_target
9027 = make_scoped_restore (&curr_quit_handler_target, this);
9028 scoped_restore restore_quit
9029 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9030
9031 rs->got_ctrlc_during_io = 0;
9032
9033 ch = serial_readchar (rs->remote_desc, timeout);
9034
9035 if (rs->got_ctrlc_during_io)
9036 set_quit_flag ();
9037 }
9038
9039 if (ch >= 0)
9040 return ch;
9041
9042 switch ((enum serial_rc) ch)
9043 {
9044 case SERIAL_EOF:
9045 remote_unpush_target ();
9046 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9047 /* no return */
9048 case SERIAL_ERROR:
9049 unpush_and_perror (_("Remote communication error. "
9050 "Target disconnected."));
9051 /* no return */
9052 case SERIAL_TIMEOUT:
9053 break;
9054 }
9055 return ch;
9056 }
9057
9058 /* Wrapper for serial_write that closes the target and throws if
9059 writing fails. The current quit handler is overridden to avoid
9060 quitting in the middle of packet sequence, as that would break
9061 communication with the remote server. See
9062 remote_serial_quit_handler for more detail. */
9063
9064 void
9065 remote_target::remote_serial_write (const char *str, int len)
9066 {
9067 struct remote_state *rs = get_remote_state ();
9068
9069 scoped_restore restore_quit_target
9070 = make_scoped_restore (&curr_quit_handler_target, this);
9071 scoped_restore restore_quit
9072 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9073
9074 rs->got_ctrlc_during_io = 0;
9075
9076 if (serial_write (rs->remote_desc, str, len))
9077 {
9078 unpush_and_perror (_("Remote communication error. "
9079 "Target disconnected."));
9080 }
9081
9082 if (rs->got_ctrlc_during_io)
9083 set_quit_flag ();
9084 }
9085
9086 /* Return a string representing an escaped version of BUF, of len N.
9087 E.g. \n is converted to \\n, \t to \\t, etc. */
9088
9089 static std::string
9090 escape_buffer (const char *buf, int n)
9091 {
9092 string_file stb;
9093
9094 stb.putstrn (buf, n, '\\');
9095 return std::move (stb.string ());
9096 }
9097
9098 /* Display a null-terminated packet on stdout, for debugging, using C
9099 string notation. */
9100
9101 static void
9102 print_packet (const char *buf)
9103 {
9104 puts_filtered ("\"");
9105 fputstr_filtered (buf, '"', gdb_stdout);
9106 puts_filtered ("\"");
9107 }
9108
9109 int
9110 remote_target::putpkt (const char *buf)
9111 {
9112 return putpkt_binary (buf, strlen (buf));
9113 }
9114
9115 /* Wrapper around remote_target::putpkt to avoid exporting
9116 remote_target. */
9117
9118 int
9119 putpkt (remote_target *remote, const char *buf)
9120 {
9121 return remote->putpkt (buf);
9122 }
9123
9124 /* Send a packet to the remote machine, with error checking. The data
9125 of the packet is in BUF. The string in BUF can be at most
9126 get_remote_packet_size () - 5 to account for the $, # and checksum,
9127 and for a possible /0 if we are debugging (remote_debug) and want
9128 to print the sent packet as a string. */
9129
9130 int
9131 remote_target::putpkt_binary (const char *buf, int cnt)
9132 {
9133 struct remote_state *rs = get_remote_state ();
9134 int i;
9135 unsigned char csum = 0;
9136 gdb::def_vector<char> data (cnt + 6);
9137 char *buf2 = data.data ();
9138
9139 int ch;
9140 int tcount = 0;
9141 char *p;
9142
9143 /* Catch cases like trying to read memory or listing threads while
9144 we're waiting for a stop reply. The remote server wouldn't be
9145 ready to handle this request, so we'd hang and timeout. We don't
9146 have to worry about this in synchronous mode, because in that
9147 case it's not possible to issue a command while the target is
9148 running. This is not a problem in non-stop mode, because in that
9149 case, the stub is always ready to process serial input. */
9150 if (!target_is_non_stop_p ()
9151 && target_is_async_p ()
9152 && rs->waiting_for_stop_reply)
9153 {
9154 error (_("Cannot execute this command while the target is running.\n"
9155 "Use the \"interrupt\" command to stop the target\n"
9156 "and then try again."));
9157 }
9158
9159 /* We're sending out a new packet. Make sure we don't look at a
9160 stale cached response. */
9161 rs->cached_wait_status = 0;
9162
9163 /* Copy the packet into buffer BUF2, encapsulating it
9164 and giving it a checksum. */
9165
9166 p = buf2;
9167 *p++ = '$';
9168
9169 for (i = 0; i < cnt; i++)
9170 {
9171 csum += buf[i];
9172 *p++ = buf[i];
9173 }
9174 *p++ = '#';
9175 *p++ = tohex ((csum >> 4) & 0xf);
9176 *p++ = tohex (csum & 0xf);
9177
9178 /* Send it over and over until we get a positive ack. */
9179
9180 while (1)
9181 {
9182 int started_error_output = 0;
9183
9184 if (remote_debug)
9185 {
9186 *p = '\0';
9187
9188 int len = (int) (p - buf2);
9189
9190 std::string str
9191 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9192
9193 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9194
9195 if (len > REMOTE_DEBUG_MAX_CHAR)
9196 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9197 len - REMOTE_DEBUG_MAX_CHAR);
9198
9199 fprintf_unfiltered (gdb_stdlog, "...");
9200
9201 gdb_flush (gdb_stdlog);
9202 }
9203 remote_serial_write (buf2, p - buf2);
9204
9205 /* If this is a no acks version of the remote protocol, send the
9206 packet and move on. */
9207 if (rs->noack_mode)
9208 break;
9209
9210 /* Read until either a timeout occurs (-2) or '+' is read.
9211 Handle any notification that arrives in the mean time. */
9212 while (1)
9213 {
9214 ch = readchar (remote_timeout);
9215
9216 if (remote_debug)
9217 {
9218 switch (ch)
9219 {
9220 case '+':
9221 case '-':
9222 case SERIAL_TIMEOUT:
9223 case '$':
9224 case '%':
9225 if (started_error_output)
9226 {
9227 putchar_unfiltered ('\n');
9228 started_error_output = 0;
9229 }
9230 }
9231 }
9232
9233 switch (ch)
9234 {
9235 case '+':
9236 if (remote_debug)
9237 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9238 return 1;
9239 case '-':
9240 if (remote_debug)
9241 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9242 /* FALLTHROUGH */
9243 case SERIAL_TIMEOUT:
9244 tcount++;
9245 if (tcount > 3)
9246 return 0;
9247 break; /* Retransmit buffer. */
9248 case '$':
9249 {
9250 if (remote_debug)
9251 fprintf_unfiltered (gdb_stdlog,
9252 "Packet instead of Ack, ignoring it\n");
9253 /* It's probably an old response sent because an ACK
9254 was lost. Gobble up the packet and ack it so it
9255 doesn't get retransmitted when we resend this
9256 packet. */
9257 skip_frame ();
9258 remote_serial_write ("+", 1);
9259 continue; /* Now, go look for +. */
9260 }
9261
9262 case '%':
9263 {
9264 int val;
9265
9266 /* If we got a notification, handle it, and go back to looking
9267 for an ack. */
9268 /* We've found the start of a notification. Now
9269 collect the data. */
9270 val = read_frame (&rs->buf, &rs->buf_size);
9271 if (val >= 0)
9272 {
9273 if (remote_debug)
9274 {
9275 std::string str = escape_buffer (rs->buf, val);
9276
9277 fprintf_unfiltered (gdb_stdlog,
9278 " Notification received: %s\n",
9279 str.c_str ());
9280 }
9281 handle_notification (rs->notif_state, rs->buf);
9282 /* We're in sync now, rewait for the ack. */
9283 tcount = 0;
9284 }
9285 else
9286 {
9287 if (remote_debug)
9288 {
9289 if (!started_error_output)
9290 {
9291 started_error_output = 1;
9292 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9293 }
9294 fputc_unfiltered (ch & 0177, gdb_stdlog);
9295 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9296 }
9297 }
9298 continue;
9299 }
9300 /* fall-through */
9301 default:
9302 if (remote_debug)
9303 {
9304 if (!started_error_output)
9305 {
9306 started_error_output = 1;
9307 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9308 }
9309 fputc_unfiltered (ch & 0177, gdb_stdlog);
9310 }
9311 continue;
9312 }
9313 break; /* Here to retransmit. */
9314 }
9315
9316 #if 0
9317 /* This is wrong. If doing a long backtrace, the user should be
9318 able to get out next time we call QUIT, without anything as
9319 violent as interrupt_query. If we want to provide a way out of
9320 here without getting to the next QUIT, it should be based on
9321 hitting ^C twice as in remote_wait. */
9322 if (quit_flag)
9323 {
9324 quit_flag = 0;
9325 interrupt_query ();
9326 }
9327 #endif
9328 }
9329
9330 return 0;
9331 }
9332
9333 /* Come here after finding the start of a frame when we expected an
9334 ack. Do our best to discard the rest of this packet. */
9335
9336 void
9337 remote_target::skip_frame ()
9338 {
9339 int c;
9340
9341 while (1)
9342 {
9343 c = readchar (remote_timeout);
9344 switch (c)
9345 {
9346 case SERIAL_TIMEOUT:
9347 /* Nothing we can do. */
9348 return;
9349 case '#':
9350 /* Discard the two bytes of checksum and stop. */
9351 c = readchar (remote_timeout);
9352 if (c >= 0)
9353 c = readchar (remote_timeout);
9354
9355 return;
9356 case '*': /* Run length encoding. */
9357 /* Discard the repeat count. */
9358 c = readchar (remote_timeout);
9359 if (c < 0)
9360 return;
9361 break;
9362 default:
9363 /* A regular character. */
9364 break;
9365 }
9366 }
9367 }
9368
9369 /* Come here after finding the start of the frame. Collect the rest
9370 into *BUF, verifying the checksum, length, and handling run-length
9371 compression. NUL terminate the buffer. If there is not enough room,
9372 expand *BUF using xrealloc.
9373
9374 Returns -1 on error, number of characters in buffer (ignoring the
9375 trailing NULL) on success. (could be extended to return one of the
9376 SERIAL status indications). */
9377
9378 long
9379 remote_target::read_frame (char **buf_p, long *sizeof_buf)
9380 {
9381 unsigned char csum;
9382 long bc;
9383 int c;
9384 char *buf = *buf_p;
9385 struct remote_state *rs = get_remote_state ();
9386
9387 csum = 0;
9388 bc = 0;
9389
9390 while (1)
9391 {
9392 c = readchar (remote_timeout);
9393 switch (c)
9394 {
9395 case SERIAL_TIMEOUT:
9396 if (remote_debug)
9397 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9398 return -1;
9399 case '$':
9400 if (remote_debug)
9401 fputs_filtered ("Saw new packet start in middle of old one\n",
9402 gdb_stdlog);
9403 return -1; /* Start a new packet, count retries. */
9404 case '#':
9405 {
9406 unsigned char pktcsum;
9407 int check_0 = 0;
9408 int check_1 = 0;
9409
9410 buf[bc] = '\0';
9411
9412 check_0 = readchar (remote_timeout);
9413 if (check_0 >= 0)
9414 check_1 = readchar (remote_timeout);
9415
9416 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9417 {
9418 if (remote_debug)
9419 fputs_filtered ("Timeout in checksum, retrying\n",
9420 gdb_stdlog);
9421 return -1;
9422 }
9423 else if (check_0 < 0 || check_1 < 0)
9424 {
9425 if (remote_debug)
9426 fputs_filtered ("Communication error in checksum\n",
9427 gdb_stdlog);
9428 return -1;
9429 }
9430
9431 /* Don't recompute the checksum; with no ack packets we
9432 don't have any way to indicate a packet retransmission
9433 is necessary. */
9434 if (rs->noack_mode)
9435 return bc;
9436
9437 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9438 if (csum == pktcsum)
9439 return bc;
9440
9441 if (remote_debug)
9442 {
9443 std::string str = escape_buffer (buf, bc);
9444
9445 fprintf_unfiltered (gdb_stdlog,
9446 "Bad checksum, sentsum=0x%x, "
9447 "csum=0x%x, buf=%s\n",
9448 pktcsum, csum, str.c_str ());
9449 }
9450 /* Number of characters in buffer ignoring trailing
9451 NULL. */
9452 return -1;
9453 }
9454 case '*': /* Run length encoding. */
9455 {
9456 int repeat;
9457
9458 csum += c;
9459 c = readchar (remote_timeout);
9460 csum += c;
9461 repeat = c - ' ' + 3; /* Compute repeat count. */
9462
9463 /* The character before ``*'' is repeated. */
9464
9465 if (repeat > 0 && repeat <= 255 && bc > 0)
9466 {
9467 if (bc + repeat - 1 >= *sizeof_buf - 1)
9468 {
9469 /* Make some more room in the buffer. */
9470 *sizeof_buf += repeat;
9471 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9472 buf = *buf_p;
9473 }
9474
9475 memset (&buf[bc], buf[bc - 1], repeat);
9476 bc += repeat;
9477 continue;
9478 }
9479
9480 buf[bc] = '\0';
9481 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9482 return -1;
9483 }
9484 default:
9485 if (bc >= *sizeof_buf - 1)
9486 {
9487 /* Make some more room in the buffer. */
9488 *sizeof_buf *= 2;
9489 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9490 buf = *buf_p;
9491 }
9492
9493 buf[bc++] = c;
9494 csum += c;
9495 continue;
9496 }
9497 }
9498 }
9499
9500 /* Read a packet from the remote machine, with error checking, and
9501 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9502 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9503 rather than timing out; this is used (in synchronous mode) to wait
9504 for a target that is is executing user code to stop. */
9505 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9506 don't have to change all the calls to getpkt to deal with the
9507 return value, because at the moment I don't know what the right
9508 thing to do it for those. */
9509
9510 void
9511 remote_target::getpkt (char **buf, long *sizeof_buf, int forever)
9512 {
9513 getpkt_sane (buf, sizeof_buf, forever);
9514 }
9515
9516
9517 /* Read a packet from the remote machine, with error checking, and
9518 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9519 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9520 rather than timing out; this is used (in synchronous mode) to wait
9521 for a target that is is executing user code to stop. If FOREVER ==
9522 0, this function is allowed to time out gracefully and return an
9523 indication of this to the caller. Otherwise return the number of
9524 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9525 enough reason to return to the caller. *IS_NOTIF is an output
9526 boolean that indicates whether *BUF holds a notification or not
9527 (a regular packet). */
9528
9529 int
9530 remote_target::getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf,
9531 int forever, int expecting_notif,
9532 int *is_notif)
9533 {
9534 struct remote_state *rs = get_remote_state ();
9535 int c;
9536 int tries;
9537 int timeout;
9538 int val = -1;
9539
9540 /* We're reading a new response. Make sure we don't look at a
9541 previously cached response. */
9542 rs->cached_wait_status = 0;
9543
9544 strcpy (*buf, "timeout");
9545
9546 if (forever)
9547 timeout = watchdog > 0 ? watchdog : -1;
9548 else if (expecting_notif)
9549 timeout = 0; /* There should already be a char in the buffer. If
9550 not, bail out. */
9551 else
9552 timeout = remote_timeout;
9553
9554 #define MAX_TRIES 3
9555
9556 /* Process any number of notifications, and then return when
9557 we get a packet. */
9558 for (;;)
9559 {
9560 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9561 times. */
9562 for (tries = 1; tries <= MAX_TRIES; tries++)
9563 {
9564 /* This can loop forever if the remote side sends us
9565 characters continuously, but if it pauses, we'll get
9566 SERIAL_TIMEOUT from readchar because of timeout. Then
9567 we'll count that as a retry.
9568
9569 Note that even when forever is set, we will only wait
9570 forever prior to the start of a packet. After that, we
9571 expect characters to arrive at a brisk pace. They should
9572 show up within remote_timeout intervals. */
9573 do
9574 c = readchar (timeout);
9575 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9576
9577 if (c == SERIAL_TIMEOUT)
9578 {
9579 if (expecting_notif)
9580 return -1; /* Don't complain, it's normal to not get
9581 anything in this case. */
9582
9583 if (forever) /* Watchdog went off? Kill the target. */
9584 {
9585 remote_unpush_target ();
9586 throw_error (TARGET_CLOSE_ERROR,
9587 _("Watchdog timeout has expired. "
9588 "Target detached."));
9589 }
9590 if (remote_debug)
9591 fputs_filtered ("Timed out.\n", gdb_stdlog);
9592 }
9593 else
9594 {
9595 /* We've found the start of a packet or notification.
9596 Now collect the data. */
9597 val = read_frame (buf, sizeof_buf);
9598 if (val >= 0)
9599 break;
9600 }
9601
9602 remote_serial_write ("-", 1);
9603 }
9604
9605 if (tries > MAX_TRIES)
9606 {
9607 /* We have tried hard enough, and just can't receive the
9608 packet/notification. Give up. */
9609 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9610
9611 /* Skip the ack char if we're in no-ack mode. */
9612 if (!rs->noack_mode)
9613 remote_serial_write ("+", 1);
9614 return -1;
9615 }
9616
9617 /* If we got an ordinary packet, return that to our caller. */
9618 if (c == '$')
9619 {
9620 if (remote_debug)
9621 {
9622 std::string str
9623 = escape_buffer (*buf,
9624 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9625
9626 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9627 str.c_str ());
9628
9629 if (val > REMOTE_DEBUG_MAX_CHAR)
9630 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9631 val - REMOTE_DEBUG_MAX_CHAR);
9632
9633 fprintf_unfiltered (gdb_stdlog, "\n");
9634 }
9635
9636 /* Skip the ack char if we're in no-ack mode. */
9637 if (!rs->noack_mode)
9638 remote_serial_write ("+", 1);
9639 if (is_notif != NULL)
9640 *is_notif = 0;
9641 return val;
9642 }
9643
9644 /* If we got a notification, handle it, and go back to looking
9645 for a packet. */
9646 else
9647 {
9648 gdb_assert (c == '%');
9649
9650 if (remote_debug)
9651 {
9652 std::string str = escape_buffer (*buf, val);
9653
9654 fprintf_unfiltered (gdb_stdlog,
9655 " Notification received: %s\n",
9656 str.c_str ());
9657 }
9658 if (is_notif != NULL)
9659 *is_notif = 1;
9660
9661 handle_notification (rs->notif_state, *buf);
9662
9663 /* Notifications require no acknowledgement. */
9664
9665 if (expecting_notif)
9666 return val;
9667 }
9668 }
9669 }
9670
9671 int
9672 remote_target::getpkt_sane (char **buf, long *sizeof_buf, int forever)
9673 {
9674 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9675 }
9676
9677 int
9678 remote_target::getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9679 int *is_notif)
9680 {
9681 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9682 is_notif);
9683 }
9684
9685 /* Kill any new fork children of process PID that haven't been
9686 processed by follow_fork. */
9687
9688 void
9689 remote_target::kill_new_fork_children (int pid)
9690 {
9691 remote_state *rs = get_remote_state ();
9692 struct notif_client *notif = &notif_client_stop;
9693
9694 /* Kill the fork child threads of any threads in process PID
9695 that are stopped at a fork event. */
9696 for (thread_info *thread : all_non_exited_threads ())
9697 {
9698 struct target_waitstatus *ws = &thread->pending_follow;
9699
9700 if (is_pending_fork_parent (ws, pid, thread->ptid))
9701 {
9702 int child_pid = ws->value.related_pid.pid ();
9703 int res;
9704
9705 res = remote_vkill (child_pid);
9706 if (res != 0)
9707 error (_("Can't kill fork child process %d"), child_pid);
9708 }
9709 }
9710
9711 /* Check for any pending fork events (not reported or processed yet)
9712 in process PID and kill those fork child threads as well. */
9713 remote_notif_get_pending_events (notif);
9714 for (auto &event : rs->stop_reply_queue)
9715 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9716 {
9717 int child_pid = event->ws.value.related_pid.pid ();
9718 int res;
9719
9720 res = remote_vkill (child_pid);
9721 if (res != 0)
9722 error (_("Can't kill fork child process %d"), child_pid);
9723 }
9724 }
9725
9726 \f
9727 /* Target hook to kill the current inferior. */
9728
9729 void
9730 remote_target::kill ()
9731 {
9732 int res = -1;
9733 int pid = inferior_ptid.pid ();
9734 struct remote_state *rs = get_remote_state ();
9735
9736 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9737 {
9738 /* If we're stopped while forking and we haven't followed yet,
9739 kill the child task. We need to do this before killing the
9740 parent task because if this is a vfork then the parent will
9741 be sleeping. */
9742 kill_new_fork_children (pid);
9743
9744 res = remote_vkill (pid);
9745 if (res == 0)
9746 {
9747 target_mourn_inferior (inferior_ptid);
9748 return;
9749 }
9750 }
9751
9752 /* If we are in 'target remote' mode and we are killing the only
9753 inferior, then we will tell gdbserver to exit and unpush the
9754 target. */
9755 if (res == -1 && !remote_multi_process_p (rs)
9756 && number_of_live_inferiors () == 1)
9757 {
9758 remote_kill_k ();
9759
9760 /* We've killed the remote end, we get to mourn it. If we are
9761 not in extended mode, mourning the inferior also unpushes
9762 remote_ops from the target stack, which closes the remote
9763 connection. */
9764 target_mourn_inferior (inferior_ptid);
9765
9766 return;
9767 }
9768
9769 error (_("Can't kill process"));
9770 }
9771
9772 /* Send a kill request to the target using the 'vKill' packet. */
9773
9774 int
9775 remote_target::remote_vkill (int pid)
9776 {
9777 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9778 return -1;
9779
9780 remote_state *rs = get_remote_state ();
9781
9782 /* Tell the remote target to detach. */
9783 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9784 putpkt (rs->buf);
9785 getpkt (&rs->buf, &rs->buf_size, 0);
9786
9787 switch (packet_ok (rs->buf,
9788 &remote_protocol_packets[PACKET_vKill]))
9789 {
9790 case PACKET_OK:
9791 return 0;
9792 case PACKET_ERROR:
9793 return 1;
9794 case PACKET_UNKNOWN:
9795 return -1;
9796 default:
9797 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9798 }
9799 }
9800
9801 /* Send a kill request to the target using the 'k' packet. */
9802
9803 void
9804 remote_target::remote_kill_k ()
9805 {
9806 /* Catch errors so the user can quit from gdb even when we
9807 aren't on speaking terms with the remote system. */
9808 TRY
9809 {
9810 putpkt ("k");
9811 }
9812 CATCH (ex, RETURN_MASK_ERROR)
9813 {
9814 if (ex.error == TARGET_CLOSE_ERROR)
9815 {
9816 /* If we got an (EOF) error that caused the target
9817 to go away, then we're done, that's what we wanted.
9818 "k" is susceptible to cause a premature EOF, given
9819 that the remote server isn't actually required to
9820 reply to "k", and it can happen that it doesn't
9821 even get to reply ACK to the "k". */
9822 return;
9823 }
9824
9825 /* Otherwise, something went wrong. We didn't actually kill
9826 the target. Just propagate the exception, and let the
9827 user or higher layers decide what to do. */
9828 throw_exception (ex);
9829 }
9830 END_CATCH
9831 }
9832
9833 void
9834 remote_target::mourn_inferior ()
9835 {
9836 struct remote_state *rs = get_remote_state ();
9837
9838 /* We're no longer interested in notification events of an inferior
9839 that exited or was killed/detached. */
9840 discard_pending_stop_replies (current_inferior ());
9841
9842 /* In 'target remote' mode with one inferior, we close the connection. */
9843 if (!rs->extended && number_of_live_inferiors () <= 1)
9844 {
9845 unpush_target (this);
9846
9847 /* remote_close takes care of doing most of the clean up. */
9848 generic_mourn_inferior ();
9849 return;
9850 }
9851
9852 /* In case we got here due to an error, but we're going to stay
9853 connected. */
9854 rs->waiting_for_stop_reply = 0;
9855
9856 /* If the current general thread belonged to the process we just
9857 detached from or has exited, the remote side current general
9858 thread becomes undefined. Considering a case like this:
9859
9860 - We just got here due to a detach.
9861 - The process that we're detaching from happens to immediately
9862 report a global breakpoint being hit in non-stop mode, in the
9863 same thread we had selected before.
9864 - GDB attaches to this process again.
9865 - This event happens to be the next event we handle.
9866
9867 GDB would consider that the current general thread didn't need to
9868 be set on the stub side (with Hg), since for all it knew,
9869 GENERAL_THREAD hadn't changed.
9870
9871 Notice that although in all-stop mode, the remote server always
9872 sets the current thread to the thread reporting the stop event,
9873 that doesn't happen in non-stop mode; in non-stop, the stub *must
9874 not* change the current thread when reporting a breakpoint hit,
9875 due to the decoupling of event reporting and event handling.
9876
9877 To keep things simple, we always invalidate our notion of the
9878 current thread. */
9879 record_currthread (rs, minus_one_ptid);
9880
9881 /* Call common code to mark the inferior as not running. */
9882 generic_mourn_inferior ();
9883
9884 if (!have_inferiors ())
9885 {
9886 if (!remote_multi_process_p (rs))
9887 {
9888 /* Check whether the target is running now - some remote stubs
9889 automatically restart after kill. */
9890 putpkt ("?");
9891 getpkt (&rs->buf, &rs->buf_size, 0);
9892
9893 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9894 {
9895 /* Assume that the target has been restarted. Set
9896 inferior_ptid so that bits of core GDB realizes
9897 there's something here, e.g., so that the user can
9898 say "kill" again. */
9899 inferior_ptid = magic_null_ptid;
9900 }
9901 }
9902 }
9903 }
9904
9905 bool
9906 extended_remote_target::supports_disable_randomization ()
9907 {
9908 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9909 }
9910
9911 void
9912 remote_target::extended_remote_disable_randomization (int val)
9913 {
9914 struct remote_state *rs = get_remote_state ();
9915 char *reply;
9916
9917 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9918 val);
9919 putpkt (rs->buf);
9920 reply = remote_get_noisy_reply ();
9921 if (*reply == '\0')
9922 error (_("Target does not support QDisableRandomization."));
9923 if (strcmp (reply, "OK") != 0)
9924 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9925 }
9926
9927 int
9928 remote_target::extended_remote_run (const std::string &args)
9929 {
9930 struct remote_state *rs = get_remote_state ();
9931 int len;
9932 const char *remote_exec_file = get_remote_exec_file ();
9933
9934 /* If the user has disabled vRun support, or we have detected that
9935 support is not available, do not try it. */
9936 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9937 return -1;
9938
9939 strcpy (rs->buf, "vRun;");
9940 len = strlen (rs->buf);
9941
9942 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9943 error (_("Remote file name too long for run packet"));
9944 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9945 strlen (remote_exec_file));
9946
9947 if (!args.empty ())
9948 {
9949 int i;
9950
9951 gdb_argv argv (args.c_str ());
9952 for (i = 0; argv[i] != NULL; i++)
9953 {
9954 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9955 error (_("Argument list too long for run packet"));
9956 rs->buf[len++] = ';';
9957 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9958 strlen (argv[i]));
9959 }
9960 }
9961
9962 rs->buf[len++] = '\0';
9963
9964 putpkt (rs->buf);
9965 getpkt (&rs->buf, &rs->buf_size, 0);
9966
9967 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9968 {
9969 case PACKET_OK:
9970 /* We have a wait response. All is well. */
9971 return 0;
9972 case PACKET_UNKNOWN:
9973 return -1;
9974 case PACKET_ERROR:
9975 if (remote_exec_file[0] == '\0')
9976 error (_("Running the default executable on the remote target failed; "
9977 "try \"set remote exec-file\"?"));
9978 else
9979 error (_("Running \"%s\" on the remote target failed"),
9980 remote_exec_file);
9981 default:
9982 gdb_assert_not_reached (_("bad switch"));
9983 }
9984 }
9985
9986 /* Helper function to send set/unset environment packets. ACTION is
9987 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9988 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9989 sent. */
9990
9991 void
9992 remote_target::send_environment_packet (const char *action,
9993 const char *packet,
9994 const char *value)
9995 {
9996 remote_state *rs = get_remote_state ();
9997
9998 /* Convert the environment variable to an hex string, which
9999 is the best format to be transmitted over the wire. */
10000 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10001 strlen (value));
10002
10003 xsnprintf (rs->buf, get_remote_packet_size (),
10004 "%s:%s", packet, encoded_value.c_str ());
10005
10006 putpkt (rs->buf);
10007 getpkt (&rs->buf, &rs->buf_size, 0);
10008 if (strcmp (rs->buf, "OK") != 0)
10009 warning (_("Unable to %s environment variable '%s' on remote."),
10010 action, value);
10011 }
10012
10013 /* Helper function to handle the QEnvironment* packets. */
10014
10015 void
10016 remote_target::extended_remote_environment_support ()
10017 {
10018 remote_state *rs = get_remote_state ();
10019
10020 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10021 {
10022 putpkt ("QEnvironmentReset");
10023 getpkt (&rs->buf, &rs->buf_size, 0);
10024 if (strcmp (rs->buf, "OK") != 0)
10025 warning (_("Unable to reset environment on remote."));
10026 }
10027
10028 gdb_environ *e = &current_inferior ()->environment;
10029
10030 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10031 for (const std::string &el : e->user_set_env ())
10032 send_environment_packet ("set", "QEnvironmentHexEncoded",
10033 el.c_str ());
10034
10035 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10036 for (const std::string &el : e->user_unset_env ())
10037 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10038 }
10039
10040 /* Helper function to set the current working directory for the
10041 inferior in the remote target. */
10042
10043 void
10044 remote_target::extended_remote_set_inferior_cwd ()
10045 {
10046 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10047 {
10048 const char *inferior_cwd = get_inferior_cwd ();
10049 remote_state *rs = get_remote_state ();
10050
10051 if (inferior_cwd != NULL)
10052 {
10053 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10054 strlen (inferior_cwd));
10055
10056 xsnprintf (rs->buf, get_remote_packet_size (),
10057 "QSetWorkingDir:%s", hexpath.c_str ());
10058 }
10059 else
10060 {
10061 /* An empty inferior_cwd means that the user wants us to
10062 reset the remote server's inferior's cwd. */
10063 xsnprintf (rs->buf, get_remote_packet_size (),
10064 "QSetWorkingDir:");
10065 }
10066
10067 putpkt (rs->buf);
10068 getpkt (&rs->buf, &rs->buf_size, 0);
10069 if (packet_ok (rs->buf,
10070 &remote_protocol_packets[PACKET_QSetWorkingDir])
10071 != PACKET_OK)
10072 error (_("\
10073 Remote replied unexpectedly while setting the inferior's working\n\
10074 directory: %s"),
10075 rs->buf);
10076
10077 }
10078 }
10079
10080 /* In the extended protocol we want to be able to do things like
10081 "run" and have them basically work as expected. So we need
10082 a special create_inferior function. We support changing the
10083 executable file and the command line arguments, but not the
10084 environment. */
10085
10086 void
10087 extended_remote_target::create_inferior (const char *exec_file,
10088 const std::string &args,
10089 char **env, int from_tty)
10090 {
10091 int run_worked;
10092 char *stop_reply;
10093 struct remote_state *rs = get_remote_state ();
10094 const char *remote_exec_file = get_remote_exec_file ();
10095
10096 /* If running asynchronously, register the target file descriptor
10097 with the event loop. */
10098 if (target_can_async_p ())
10099 target_async (1);
10100
10101 /* Disable address space randomization if requested (and supported). */
10102 if (supports_disable_randomization ())
10103 extended_remote_disable_randomization (disable_randomization);
10104
10105 /* If startup-with-shell is on, we inform gdbserver to start the
10106 remote inferior using a shell. */
10107 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10108 {
10109 xsnprintf (rs->buf, get_remote_packet_size (),
10110 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10111 putpkt (rs->buf);
10112 getpkt (&rs->buf, &rs->buf_size, 0);
10113 if (strcmp (rs->buf, "OK") != 0)
10114 error (_("\
10115 Remote replied unexpectedly while setting startup-with-shell: %s"),
10116 rs->buf);
10117 }
10118
10119 extended_remote_environment_support ();
10120
10121 extended_remote_set_inferior_cwd ();
10122
10123 /* Now restart the remote server. */
10124 run_worked = extended_remote_run (args) != -1;
10125 if (!run_worked)
10126 {
10127 /* vRun was not supported. Fail if we need it to do what the
10128 user requested. */
10129 if (remote_exec_file[0])
10130 error (_("Remote target does not support \"set remote exec-file\""));
10131 if (!args.empty ())
10132 error (_("Remote target does not support \"set args\" or run ARGS"));
10133
10134 /* Fall back to "R". */
10135 extended_remote_restart ();
10136 }
10137
10138 /* vRun's success return is a stop reply. */
10139 stop_reply = run_worked ? rs->buf : NULL;
10140 add_current_inferior_and_thread (stop_reply);
10141
10142 /* Get updated offsets, if the stub uses qOffsets. */
10143 get_offsets ();
10144 }
10145 \f
10146
10147 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10148 the list of conditions (in agent expression bytecode format), if any, the
10149 target needs to evaluate. The output is placed into the packet buffer
10150 started from BUF and ended at BUF_END. */
10151
10152 static int
10153 remote_add_target_side_condition (struct gdbarch *gdbarch,
10154 struct bp_target_info *bp_tgt, char *buf,
10155 char *buf_end)
10156 {
10157 if (bp_tgt->conditions.empty ())
10158 return 0;
10159
10160 buf += strlen (buf);
10161 xsnprintf (buf, buf_end - buf, "%s", ";");
10162 buf++;
10163
10164 /* Send conditions to the target. */
10165 for (agent_expr *aexpr : bp_tgt->conditions)
10166 {
10167 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10168 buf += strlen (buf);
10169 for (int i = 0; i < aexpr->len; ++i)
10170 buf = pack_hex_byte (buf, aexpr->buf[i]);
10171 *buf = '\0';
10172 }
10173 return 0;
10174 }
10175
10176 static void
10177 remote_add_target_side_commands (struct gdbarch *gdbarch,
10178 struct bp_target_info *bp_tgt, char *buf)
10179 {
10180 if (bp_tgt->tcommands.empty ())
10181 return;
10182
10183 buf += strlen (buf);
10184
10185 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10186 buf += strlen (buf);
10187
10188 /* Concatenate all the agent expressions that are commands into the
10189 cmds parameter. */
10190 for (agent_expr *aexpr : bp_tgt->tcommands)
10191 {
10192 sprintf (buf, "X%x,", aexpr->len);
10193 buf += strlen (buf);
10194 for (int i = 0; i < aexpr->len; ++i)
10195 buf = pack_hex_byte (buf, aexpr->buf[i]);
10196 *buf = '\0';
10197 }
10198 }
10199
10200 /* Insert a breakpoint. On targets that have software breakpoint
10201 support, we ask the remote target to do the work; on targets
10202 which don't, we insert a traditional memory breakpoint. */
10203
10204 int
10205 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10206 struct bp_target_info *bp_tgt)
10207 {
10208 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10209 If it succeeds, then set the support to PACKET_ENABLE. If it
10210 fails, and the user has explicitly requested the Z support then
10211 report an error, otherwise, mark it disabled and go on. */
10212
10213 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10214 {
10215 CORE_ADDR addr = bp_tgt->reqstd_address;
10216 struct remote_state *rs;
10217 char *p, *endbuf;
10218
10219 /* Make sure the remote is pointing at the right process, if
10220 necessary. */
10221 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10222 set_general_process ();
10223
10224 rs = get_remote_state ();
10225 p = rs->buf;
10226 endbuf = rs->buf + get_remote_packet_size ();
10227
10228 *(p++) = 'Z';
10229 *(p++) = '0';
10230 *(p++) = ',';
10231 addr = (ULONGEST) remote_address_masked (addr);
10232 p += hexnumstr (p, addr);
10233 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10234
10235 if (supports_evaluation_of_breakpoint_conditions ())
10236 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10237
10238 if (can_run_breakpoint_commands ())
10239 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10240
10241 putpkt (rs->buf);
10242 getpkt (&rs->buf, &rs->buf_size, 0);
10243
10244 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10245 {
10246 case PACKET_ERROR:
10247 return -1;
10248 case PACKET_OK:
10249 return 0;
10250 case PACKET_UNKNOWN:
10251 break;
10252 }
10253 }
10254
10255 /* If this breakpoint has target-side commands but this stub doesn't
10256 support Z0 packets, throw error. */
10257 if (!bp_tgt->tcommands.empty ())
10258 throw_error (NOT_SUPPORTED_ERROR, _("\
10259 Target doesn't support breakpoints that have target side commands."));
10260
10261 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10262 }
10263
10264 int
10265 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10266 struct bp_target_info *bp_tgt,
10267 enum remove_bp_reason reason)
10268 {
10269 CORE_ADDR addr = bp_tgt->placed_address;
10270 struct remote_state *rs = get_remote_state ();
10271
10272 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10273 {
10274 char *p = rs->buf;
10275 char *endbuf = rs->buf + get_remote_packet_size ();
10276
10277 /* Make sure the remote is pointing at the right process, if
10278 necessary. */
10279 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10280 set_general_process ();
10281
10282 *(p++) = 'z';
10283 *(p++) = '0';
10284 *(p++) = ',';
10285
10286 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10287 p += hexnumstr (p, addr);
10288 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10289
10290 putpkt (rs->buf);
10291 getpkt (&rs->buf, &rs->buf_size, 0);
10292
10293 return (rs->buf[0] == 'E');
10294 }
10295
10296 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10297 }
10298
10299 static enum Z_packet_type
10300 watchpoint_to_Z_packet (int type)
10301 {
10302 switch (type)
10303 {
10304 case hw_write:
10305 return Z_PACKET_WRITE_WP;
10306 break;
10307 case hw_read:
10308 return Z_PACKET_READ_WP;
10309 break;
10310 case hw_access:
10311 return Z_PACKET_ACCESS_WP;
10312 break;
10313 default:
10314 internal_error (__FILE__, __LINE__,
10315 _("hw_bp_to_z: bad watchpoint type %d"), type);
10316 }
10317 }
10318
10319 int
10320 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10321 enum target_hw_bp_type type, struct expression *cond)
10322 {
10323 struct remote_state *rs = get_remote_state ();
10324 char *endbuf = rs->buf + get_remote_packet_size ();
10325 char *p;
10326 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10327
10328 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10329 return 1;
10330
10331 /* Make sure the remote is pointing at the right process, if
10332 necessary. */
10333 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10334 set_general_process ();
10335
10336 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10337 p = strchr (rs->buf, '\0');
10338 addr = remote_address_masked (addr);
10339 p += hexnumstr (p, (ULONGEST) addr);
10340 xsnprintf (p, endbuf - p, ",%x", len);
10341
10342 putpkt (rs->buf);
10343 getpkt (&rs->buf, &rs->buf_size, 0);
10344
10345 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10346 {
10347 case PACKET_ERROR:
10348 return -1;
10349 case PACKET_UNKNOWN:
10350 return 1;
10351 case PACKET_OK:
10352 return 0;
10353 }
10354 internal_error (__FILE__, __LINE__,
10355 _("remote_insert_watchpoint: reached end of function"));
10356 }
10357
10358 bool
10359 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10360 CORE_ADDR start, int length)
10361 {
10362 CORE_ADDR diff = remote_address_masked (addr - start);
10363
10364 return diff < length;
10365 }
10366
10367
10368 int
10369 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10370 enum target_hw_bp_type type, struct expression *cond)
10371 {
10372 struct remote_state *rs = get_remote_state ();
10373 char *endbuf = rs->buf + get_remote_packet_size ();
10374 char *p;
10375 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10376
10377 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10378 return -1;
10379
10380 /* Make sure the remote is pointing at the right process, if
10381 necessary. */
10382 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10383 set_general_process ();
10384
10385 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10386 p = strchr (rs->buf, '\0');
10387 addr = remote_address_masked (addr);
10388 p += hexnumstr (p, (ULONGEST) addr);
10389 xsnprintf (p, endbuf - p, ",%x", len);
10390 putpkt (rs->buf);
10391 getpkt (&rs->buf, &rs->buf_size, 0);
10392
10393 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10394 {
10395 case PACKET_ERROR:
10396 case PACKET_UNKNOWN:
10397 return -1;
10398 case PACKET_OK:
10399 return 0;
10400 }
10401 internal_error (__FILE__, __LINE__,
10402 _("remote_remove_watchpoint: reached end of function"));
10403 }
10404
10405
10406 int remote_hw_watchpoint_limit = -1;
10407 int remote_hw_watchpoint_length_limit = -1;
10408 int remote_hw_breakpoint_limit = -1;
10409
10410 int
10411 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10412 {
10413 if (remote_hw_watchpoint_length_limit == 0)
10414 return 0;
10415 else if (remote_hw_watchpoint_length_limit < 0)
10416 return 1;
10417 else if (len <= remote_hw_watchpoint_length_limit)
10418 return 1;
10419 else
10420 return 0;
10421 }
10422
10423 int
10424 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10425 {
10426 if (type == bp_hardware_breakpoint)
10427 {
10428 if (remote_hw_breakpoint_limit == 0)
10429 return 0;
10430 else if (remote_hw_breakpoint_limit < 0)
10431 return 1;
10432 else if (cnt <= remote_hw_breakpoint_limit)
10433 return 1;
10434 }
10435 else
10436 {
10437 if (remote_hw_watchpoint_limit == 0)
10438 return 0;
10439 else if (remote_hw_watchpoint_limit < 0)
10440 return 1;
10441 else if (ot)
10442 return -1;
10443 else if (cnt <= remote_hw_watchpoint_limit)
10444 return 1;
10445 }
10446 return -1;
10447 }
10448
10449 /* The to_stopped_by_sw_breakpoint method of target remote. */
10450
10451 bool
10452 remote_target::stopped_by_sw_breakpoint ()
10453 {
10454 struct thread_info *thread = inferior_thread ();
10455
10456 return (thread->priv != NULL
10457 && (get_remote_thread_info (thread)->stop_reason
10458 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10459 }
10460
10461 /* The to_supports_stopped_by_sw_breakpoint method of target
10462 remote. */
10463
10464 bool
10465 remote_target::supports_stopped_by_sw_breakpoint ()
10466 {
10467 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10468 }
10469
10470 /* The to_stopped_by_hw_breakpoint method of target remote. */
10471
10472 bool
10473 remote_target::stopped_by_hw_breakpoint ()
10474 {
10475 struct thread_info *thread = inferior_thread ();
10476
10477 return (thread->priv != NULL
10478 && (get_remote_thread_info (thread)->stop_reason
10479 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10480 }
10481
10482 /* The to_supports_stopped_by_hw_breakpoint method of target
10483 remote. */
10484
10485 bool
10486 remote_target::supports_stopped_by_hw_breakpoint ()
10487 {
10488 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10489 }
10490
10491 bool
10492 remote_target::stopped_by_watchpoint ()
10493 {
10494 struct thread_info *thread = inferior_thread ();
10495
10496 return (thread->priv != NULL
10497 && (get_remote_thread_info (thread)->stop_reason
10498 == TARGET_STOPPED_BY_WATCHPOINT));
10499 }
10500
10501 bool
10502 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10503 {
10504 struct thread_info *thread = inferior_thread ();
10505
10506 if (thread->priv != NULL
10507 && (get_remote_thread_info (thread)->stop_reason
10508 == TARGET_STOPPED_BY_WATCHPOINT))
10509 {
10510 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10511 return true;
10512 }
10513
10514 return false;
10515 }
10516
10517
10518 int
10519 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10520 struct bp_target_info *bp_tgt)
10521 {
10522 CORE_ADDR addr = bp_tgt->reqstd_address;
10523 struct remote_state *rs;
10524 char *p, *endbuf;
10525 char *message;
10526
10527 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10528 return -1;
10529
10530 /* Make sure the remote is pointing at the right process, if
10531 necessary. */
10532 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10533 set_general_process ();
10534
10535 rs = get_remote_state ();
10536 p = rs->buf;
10537 endbuf = rs->buf + get_remote_packet_size ();
10538
10539 *(p++) = 'Z';
10540 *(p++) = '1';
10541 *(p++) = ',';
10542
10543 addr = remote_address_masked (addr);
10544 p += hexnumstr (p, (ULONGEST) addr);
10545 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10546
10547 if (supports_evaluation_of_breakpoint_conditions ())
10548 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10549
10550 if (can_run_breakpoint_commands ())
10551 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10552
10553 putpkt (rs->buf);
10554 getpkt (&rs->buf, &rs->buf_size, 0);
10555
10556 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10557 {
10558 case PACKET_ERROR:
10559 if (rs->buf[1] == '.')
10560 {
10561 message = strchr (rs->buf + 2, '.');
10562 if (message)
10563 error (_("Remote failure reply: %s"), message + 1);
10564 }
10565 return -1;
10566 case PACKET_UNKNOWN:
10567 return -1;
10568 case PACKET_OK:
10569 return 0;
10570 }
10571 internal_error (__FILE__, __LINE__,
10572 _("remote_insert_hw_breakpoint: reached end of function"));
10573 }
10574
10575
10576 int
10577 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10578 struct bp_target_info *bp_tgt)
10579 {
10580 CORE_ADDR addr;
10581 struct remote_state *rs = get_remote_state ();
10582 char *p = rs->buf;
10583 char *endbuf = rs->buf + get_remote_packet_size ();
10584
10585 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10586 return -1;
10587
10588 /* Make sure the remote is pointing at the right process, if
10589 necessary. */
10590 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10591 set_general_process ();
10592
10593 *(p++) = 'z';
10594 *(p++) = '1';
10595 *(p++) = ',';
10596
10597 addr = remote_address_masked (bp_tgt->placed_address);
10598 p += hexnumstr (p, (ULONGEST) addr);
10599 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10600
10601 putpkt (rs->buf);
10602 getpkt (&rs->buf, &rs->buf_size, 0);
10603
10604 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10605 {
10606 case PACKET_ERROR:
10607 case PACKET_UNKNOWN:
10608 return -1;
10609 case PACKET_OK:
10610 return 0;
10611 }
10612 internal_error (__FILE__, __LINE__,
10613 _("remote_remove_hw_breakpoint: reached end of function"));
10614 }
10615
10616 /* Verify memory using the "qCRC:" request. */
10617
10618 int
10619 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10620 {
10621 struct remote_state *rs = get_remote_state ();
10622 unsigned long host_crc, target_crc;
10623 char *tmp;
10624
10625 /* It doesn't make sense to use qCRC if the remote target is
10626 connected but not running. */
10627 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10628 {
10629 enum packet_result result;
10630
10631 /* Make sure the remote is pointing at the right process. */
10632 set_general_process ();
10633
10634 /* FIXME: assumes lma can fit into long. */
10635 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10636 (long) lma, (long) size);
10637 putpkt (rs->buf);
10638
10639 /* Be clever; compute the host_crc before waiting for target
10640 reply. */
10641 host_crc = xcrc32 (data, size, 0xffffffff);
10642
10643 getpkt (&rs->buf, &rs->buf_size, 0);
10644
10645 result = packet_ok (rs->buf,
10646 &remote_protocol_packets[PACKET_qCRC]);
10647 if (result == PACKET_ERROR)
10648 return -1;
10649 else if (result == PACKET_OK)
10650 {
10651 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10652 target_crc = target_crc * 16 + fromhex (*tmp);
10653
10654 return (host_crc == target_crc);
10655 }
10656 }
10657
10658 return simple_verify_memory (this, data, lma, size);
10659 }
10660
10661 /* compare-sections command
10662
10663 With no arguments, compares each loadable section in the exec bfd
10664 with the same memory range on the target, and reports mismatches.
10665 Useful for verifying the image on the target against the exec file. */
10666
10667 static void
10668 compare_sections_command (const char *args, int from_tty)
10669 {
10670 asection *s;
10671 const char *sectname;
10672 bfd_size_type size;
10673 bfd_vma lma;
10674 int matched = 0;
10675 int mismatched = 0;
10676 int res;
10677 int read_only = 0;
10678
10679 if (!exec_bfd)
10680 error (_("command cannot be used without an exec file"));
10681
10682 if (args != NULL && strcmp (args, "-r") == 0)
10683 {
10684 read_only = 1;
10685 args = NULL;
10686 }
10687
10688 for (s = exec_bfd->sections; s; s = s->next)
10689 {
10690 if (!(s->flags & SEC_LOAD))
10691 continue; /* Skip non-loadable section. */
10692
10693 if (read_only && (s->flags & SEC_READONLY) == 0)
10694 continue; /* Skip writeable sections */
10695
10696 size = bfd_get_section_size (s);
10697 if (size == 0)
10698 continue; /* Skip zero-length section. */
10699
10700 sectname = bfd_get_section_name (exec_bfd, s);
10701 if (args && strcmp (args, sectname) != 0)
10702 continue; /* Not the section selected by user. */
10703
10704 matched = 1; /* Do this section. */
10705 lma = s->lma;
10706
10707 gdb::byte_vector sectdata (size);
10708 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10709
10710 res = target_verify_memory (sectdata.data (), lma, size);
10711
10712 if (res == -1)
10713 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10714 paddress (target_gdbarch (), lma),
10715 paddress (target_gdbarch (), lma + size));
10716
10717 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10718 paddress (target_gdbarch (), lma),
10719 paddress (target_gdbarch (), lma + size));
10720 if (res)
10721 printf_filtered ("matched.\n");
10722 else
10723 {
10724 printf_filtered ("MIS-MATCHED!\n");
10725 mismatched++;
10726 }
10727 }
10728 if (mismatched > 0)
10729 warning (_("One or more sections of the target image does not match\n\
10730 the loaded file\n"));
10731 if (args && !matched)
10732 printf_filtered (_("No loaded section named '%s'.\n"), args);
10733 }
10734
10735 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10736 into remote target. The number of bytes written to the remote
10737 target is returned, or -1 for error. */
10738
10739 target_xfer_status
10740 remote_target::remote_write_qxfer (const char *object_name,
10741 const char *annex, const gdb_byte *writebuf,
10742 ULONGEST offset, LONGEST len,
10743 ULONGEST *xfered_len,
10744 struct packet_config *packet)
10745 {
10746 int i, buf_len;
10747 ULONGEST n;
10748 struct remote_state *rs = get_remote_state ();
10749 int max_size = get_memory_write_packet_size ();
10750
10751 if (packet_config_support (packet) == PACKET_DISABLE)
10752 return TARGET_XFER_E_IO;
10753
10754 /* Insert header. */
10755 i = snprintf (rs->buf, max_size,
10756 "qXfer:%s:write:%s:%s:",
10757 object_name, annex ? annex : "",
10758 phex_nz (offset, sizeof offset));
10759 max_size -= (i + 1);
10760
10761 /* Escape as much data as fits into rs->buf. */
10762 buf_len = remote_escape_output
10763 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10764
10765 if (putpkt_binary (rs->buf, i + buf_len) < 0
10766 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10767 || packet_ok (rs->buf, packet) != PACKET_OK)
10768 return TARGET_XFER_E_IO;
10769
10770 unpack_varlen_hex (rs->buf, &n);
10771
10772 *xfered_len = n;
10773 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10774 }
10775
10776 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10777 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10778 number of bytes read is returned, or 0 for EOF, or -1 for error.
10779 The number of bytes read may be less than LEN without indicating an
10780 EOF. PACKET is checked and updated to indicate whether the remote
10781 target supports this object. */
10782
10783 target_xfer_status
10784 remote_target::remote_read_qxfer (const char *object_name,
10785 const char *annex,
10786 gdb_byte *readbuf, ULONGEST offset,
10787 LONGEST len,
10788 ULONGEST *xfered_len,
10789 struct packet_config *packet)
10790 {
10791 struct remote_state *rs = get_remote_state ();
10792 LONGEST i, n, packet_len;
10793
10794 if (packet_config_support (packet) == PACKET_DISABLE)
10795 return TARGET_XFER_E_IO;
10796
10797 /* Check whether we've cached an end-of-object packet that matches
10798 this request. */
10799 if (rs->finished_object)
10800 {
10801 if (strcmp (object_name, rs->finished_object) == 0
10802 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10803 && offset == rs->finished_offset)
10804 return TARGET_XFER_EOF;
10805
10806
10807 /* Otherwise, we're now reading something different. Discard
10808 the cache. */
10809 xfree (rs->finished_object);
10810 xfree (rs->finished_annex);
10811 rs->finished_object = NULL;
10812 rs->finished_annex = NULL;
10813 }
10814
10815 /* Request only enough to fit in a single packet. The actual data
10816 may not, since we don't know how much of it will need to be escaped;
10817 the target is free to respond with slightly less data. We subtract
10818 five to account for the response type and the protocol frame. */
10819 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10820 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10821 object_name, annex ? annex : "",
10822 phex_nz (offset, sizeof offset),
10823 phex_nz (n, sizeof n));
10824 i = putpkt (rs->buf);
10825 if (i < 0)
10826 return TARGET_XFER_E_IO;
10827
10828 rs->buf[0] = '\0';
10829 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10830 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10831 return TARGET_XFER_E_IO;
10832
10833 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10834 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10835
10836 /* 'm' means there is (or at least might be) more data after this
10837 batch. That does not make sense unless there's at least one byte
10838 of data in this reply. */
10839 if (rs->buf[0] == 'm' && packet_len == 1)
10840 error (_("Remote qXfer reply contained no data."));
10841
10842 /* Got some data. */
10843 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10844 packet_len - 1, readbuf, n);
10845
10846 /* 'l' is an EOF marker, possibly including a final block of data,
10847 or possibly empty. If we have the final block of a non-empty
10848 object, record this fact to bypass a subsequent partial read. */
10849 if (rs->buf[0] == 'l' && offset + i > 0)
10850 {
10851 rs->finished_object = xstrdup (object_name);
10852 rs->finished_annex = xstrdup (annex ? annex : "");
10853 rs->finished_offset = offset + i;
10854 }
10855
10856 if (i == 0)
10857 return TARGET_XFER_EOF;
10858 else
10859 {
10860 *xfered_len = i;
10861 return TARGET_XFER_OK;
10862 }
10863 }
10864
10865 enum target_xfer_status
10866 remote_target::xfer_partial (enum target_object object,
10867 const char *annex, gdb_byte *readbuf,
10868 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10869 ULONGEST *xfered_len)
10870 {
10871 struct remote_state *rs;
10872 int i;
10873 char *p2;
10874 char query_type;
10875 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10876
10877 set_remote_traceframe ();
10878 set_general_thread (inferior_ptid);
10879
10880 rs = get_remote_state ();
10881
10882 /* Handle memory using the standard memory routines. */
10883 if (object == TARGET_OBJECT_MEMORY)
10884 {
10885 /* If the remote target is connected but not running, we should
10886 pass this request down to a lower stratum (e.g. the executable
10887 file). */
10888 if (!target_has_execution)
10889 return TARGET_XFER_EOF;
10890
10891 if (writebuf != NULL)
10892 return remote_write_bytes (offset, writebuf, len, unit_size,
10893 xfered_len);
10894 else
10895 return remote_read_bytes (offset, readbuf, len, unit_size,
10896 xfered_len);
10897 }
10898
10899 /* Handle SPU memory using qxfer packets. */
10900 if (object == TARGET_OBJECT_SPU)
10901 {
10902 if (readbuf)
10903 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10904 xfered_len, &remote_protocol_packets
10905 [PACKET_qXfer_spu_read]);
10906 else
10907 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10908 xfered_len, &remote_protocol_packets
10909 [PACKET_qXfer_spu_write]);
10910 }
10911
10912 /* Handle extra signal info using qxfer packets. */
10913 if (object == TARGET_OBJECT_SIGNAL_INFO)
10914 {
10915 if (readbuf)
10916 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10917 xfered_len, &remote_protocol_packets
10918 [PACKET_qXfer_siginfo_read]);
10919 else
10920 return remote_write_qxfer ("siginfo", annex,
10921 writebuf, offset, len, xfered_len,
10922 &remote_protocol_packets
10923 [PACKET_qXfer_siginfo_write]);
10924 }
10925
10926 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10927 {
10928 if (readbuf)
10929 return remote_read_qxfer ("statictrace", annex,
10930 readbuf, offset, len, xfered_len,
10931 &remote_protocol_packets
10932 [PACKET_qXfer_statictrace_read]);
10933 else
10934 return TARGET_XFER_E_IO;
10935 }
10936
10937 /* Only handle flash writes. */
10938 if (writebuf != NULL)
10939 {
10940 switch (object)
10941 {
10942 case TARGET_OBJECT_FLASH:
10943 return remote_flash_write (offset, len, xfered_len,
10944 writebuf);
10945
10946 default:
10947 return TARGET_XFER_E_IO;
10948 }
10949 }
10950
10951 /* Map pre-existing objects onto letters. DO NOT do this for new
10952 objects!!! Instead specify new query packets. */
10953 switch (object)
10954 {
10955 case TARGET_OBJECT_AVR:
10956 query_type = 'R';
10957 break;
10958
10959 case TARGET_OBJECT_AUXV:
10960 gdb_assert (annex == NULL);
10961 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10962 xfered_len,
10963 &remote_protocol_packets[PACKET_qXfer_auxv]);
10964
10965 case TARGET_OBJECT_AVAILABLE_FEATURES:
10966 return remote_read_qxfer
10967 ("features", annex, readbuf, offset, len, xfered_len,
10968 &remote_protocol_packets[PACKET_qXfer_features]);
10969
10970 case TARGET_OBJECT_LIBRARIES:
10971 return remote_read_qxfer
10972 ("libraries", annex, readbuf, offset, len, xfered_len,
10973 &remote_protocol_packets[PACKET_qXfer_libraries]);
10974
10975 case TARGET_OBJECT_LIBRARIES_SVR4:
10976 return remote_read_qxfer
10977 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10978 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10979
10980 case TARGET_OBJECT_MEMORY_MAP:
10981 gdb_assert (annex == NULL);
10982 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10983 xfered_len,
10984 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10985
10986 case TARGET_OBJECT_OSDATA:
10987 /* Should only get here if we're connected. */
10988 gdb_assert (rs->remote_desc);
10989 return remote_read_qxfer
10990 ("osdata", annex, readbuf, offset, len, xfered_len,
10991 &remote_protocol_packets[PACKET_qXfer_osdata]);
10992
10993 case TARGET_OBJECT_THREADS:
10994 gdb_assert (annex == NULL);
10995 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10996 xfered_len,
10997 &remote_protocol_packets[PACKET_qXfer_threads]);
10998
10999 case TARGET_OBJECT_TRACEFRAME_INFO:
11000 gdb_assert (annex == NULL);
11001 return remote_read_qxfer
11002 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11003 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11004
11005 case TARGET_OBJECT_FDPIC:
11006 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11007 xfered_len,
11008 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11009
11010 case TARGET_OBJECT_OPENVMS_UIB:
11011 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11012 xfered_len,
11013 &remote_protocol_packets[PACKET_qXfer_uib]);
11014
11015 case TARGET_OBJECT_BTRACE:
11016 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11017 xfered_len,
11018 &remote_protocol_packets[PACKET_qXfer_btrace]);
11019
11020 case TARGET_OBJECT_BTRACE_CONF:
11021 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11022 len, xfered_len,
11023 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11024
11025 case TARGET_OBJECT_EXEC_FILE:
11026 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11027 len, xfered_len,
11028 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11029
11030 default:
11031 return TARGET_XFER_E_IO;
11032 }
11033
11034 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11035 large enough let the caller deal with it. */
11036 if (len < get_remote_packet_size ())
11037 return TARGET_XFER_E_IO;
11038 len = get_remote_packet_size ();
11039
11040 /* Except for querying the minimum buffer size, target must be open. */
11041 if (!rs->remote_desc)
11042 error (_("remote query is only available after target open"));
11043
11044 gdb_assert (annex != NULL);
11045 gdb_assert (readbuf != NULL);
11046
11047 p2 = rs->buf;
11048 *p2++ = 'q';
11049 *p2++ = query_type;
11050
11051 /* We used one buffer char for the remote protocol q command and
11052 another for the query type. As the remote protocol encapsulation
11053 uses 4 chars plus one extra in case we are debugging
11054 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11055 string. */
11056 i = 0;
11057 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11058 {
11059 /* Bad caller may have sent forbidden characters. */
11060 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11061 *p2++ = annex[i];
11062 i++;
11063 }
11064 *p2 = '\0';
11065 gdb_assert (annex[i] == '\0');
11066
11067 i = putpkt (rs->buf);
11068 if (i < 0)
11069 return TARGET_XFER_E_IO;
11070
11071 getpkt (&rs->buf, &rs->buf_size, 0);
11072 strcpy ((char *) readbuf, rs->buf);
11073
11074 *xfered_len = strlen ((char *) readbuf);
11075 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11076 }
11077
11078 /* Implementation of to_get_memory_xfer_limit. */
11079
11080 ULONGEST
11081 remote_target::get_memory_xfer_limit ()
11082 {
11083 return get_memory_write_packet_size ();
11084 }
11085
11086 int
11087 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11088 const gdb_byte *pattern, ULONGEST pattern_len,
11089 CORE_ADDR *found_addrp)
11090 {
11091 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11092 struct remote_state *rs = get_remote_state ();
11093 int max_size = get_memory_write_packet_size ();
11094 struct packet_config *packet =
11095 &remote_protocol_packets[PACKET_qSearch_memory];
11096 /* Number of packet bytes used to encode the pattern;
11097 this could be more than PATTERN_LEN due to escape characters. */
11098 int escaped_pattern_len;
11099 /* Amount of pattern that was encodable in the packet. */
11100 int used_pattern_len;
11101 int i;
11102 int found;
11103 ULONGEST found_addr;
11104
11105 /* Don't go to the target if we don't have to. This is done before
11106 checking packet_config_support to avoid the possibility that a
11107 success for this edge case means the facility works in
11108 general. */
11109 if (pattern_len > search_space_len)
11110 return 0;
11111 if (pattern_len == 0)
11112 {
11113 *found_addrp = start_addr;
11114 return 1;
11115 }
11116
11117 /* If we already know the packet isn't supported, fall back to the simple
11118 way of searching memory. */
11119
11120 if (packet_config_support (packet) == PACKET_DISABLE)
11121 {
11122 /* Target doesn't provided special support, fall back and use the
11123 standard support (copy memory and do the search here). */
11124 return simple_search_memory (this, start_addr, search_space_len,
11125 pattern, pattern_len, found_addrp);
11126 }
11127
11128 /* Make sure the remote is pointing at the right process. */
11129 set_general_process ();
11130
11131 /* Insert header. */
11132 i = snprintf (rs->buf, max_size,
11133 "qSearch:memory:%s;%s;",
11134 phex_nz (start_addr, addr_size),
11135 phex_nz (search_space_len, sizeof (search_space_len)));
11136 max_size -= (i + 1);
11137
11138 /* Escape as much data as fits into rs->buf. */
11139 escaped_pattern_len =
11140 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11141 &used_pattern_len, max_size);
11142
11143 /* Bail if the pattern is too large. */
11144 if (used_pattern_len != pattern_len)
11145 error (_("Pattern is too large to transmit to remote target."));
11146
11147 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11148 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11149 || packet_ok (rs->buf, packet) != PACKET_OK)
11150 {
11151 /* The request may not have worked because the command is not
11152 supported. If so, fall back to the simple way. */
11153 if (packet_config_support (packet) == PACKET_DISABLE)
11154 {
11155 return simple_search_memory (this, start_addr, search_space_len,
11156 pattern, pattern_len, found_addrp);
11157 }
11158 return -1;
11159 }
11160
11161 if (rs->buf[0] == '0')
11162 found = 0;
11163 else if (rs->buf[0] == '1')
11164 {
11165 found = 1;
11166 if (rs->buf[1] != ',')
11167 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11168 unpack_varlen_hex (rs->buf + 2, &found_addr);
11169 *found_addrp = found_addr;
11170 }
11171 else
11172 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11173
11174 return found;
11175 }
11176
11177 void
11178 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11179 {
11180 struct remote_state *rs = get_remote_state ();
11181 char *p = rs->buf;
11182
11183 if (!rs->remote_desc)
11184 error (_("remote rcmd is only available after target open"));
11185
11186 /* Send a NULL command across as an empty command. */
11187 if (command == NULL)
11188 command = "";
11189
11190 /* The query prefix. */
11191 strcpy (rs->buf, "qRcmd,");
11192 p = strchr (rs->buf, '\0');
11193
11194 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11195 > get_remote_packet_size ())
11196 error (_("\"monitor\" command ``%s'' is too long."), command);
11197
11198 /* Encode the actual command. */
11199 bin2hex ((const gdb_byte *) command, p, strlen (command));
11200
11201 if (putpkt (rs->buf) < 0)
11202 error (_("Communication problem with target."));
11203
11204 /* get/display the response */
11205 while (1)
11206 {
11207 char *buf;
11208
11209 /* XXX - see also remote_get_noisy_reply(). */
11210 QUIT; /* Allow user to bail out with ^C. */
11211 rs->buf[0] = '\0';
11212 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11213 {
11214 /* Timeout. Continue to (try to) read responses.
11215 This is better than stopping with an error, assuming the stub
11216 is still executing the (long) monitor command.
11217 If needed, the user can interrupt gdb using C-c, obtaining
11218 an effect similar to stop on timeout. */
11219 continue;
11220 }
11221 buf = rs->buf;
11222 if (buf[0] == '\0')
11223 error (_("Target does not support this command."));
11224 if (buf[0] == 'O' && buf[1] != 'K')
11225 {
11226 remote_console_output (buf + 1); /* 'O' message from stub. */
11227 continue;
11228 }
11229 if (strcmp (buf, "OK") == 0)
11230 break;
11231 if (strlen (buf) == 3 && buf[0] == 'E'
11232 && isdigit (buf[1]) && isdigit (buf[2]))
11233 {
11234 error (_("Protocol error with Rcmd"));
11235 }
11236 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11237 {
11238 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11239
11240 fputc_unfiltered (c, outbuf);
11241 }
11242 break;
11243 }
11244 }
11245
11246 std::vector<mem_region>
11247 remote_target::memory_map ()
11248 {
11249 std::vector<mem_region> result;
11250 gdb::optional<gdb::char_vector> text
11251 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11252
11253 if (text)
11254 result = parse_memory_map (text->data ());
11255
11256 return result;
11257 }
11258
11259 static void
11260 packet_command (const char *args, int from_tty)
11261 {
11262 remote_target *remote = get_current_remote_target ();
11263
11264 if (remote == nullptr)
11265 error (_("command can only be used with remote target"));
11266
11267 remote->packet_command (args, from_tty);
11268 }
11269
11270 void
11271 remote_target::packet_command (const char *args, int from_tty)
11272 {
11273 if (!args)
11274 error (_("remote-packet command requires packet text as argument"));
11275
11276 puts_filtered ("sending: ");
11277 print_packet (args);
11278 puts_filtered ("\n");
11279 putpkt (args);
11280
11281 remote_state *rs = get_remote_state ();
11282
11283 getpkt (&rs->buf, &rs->buf_size, 0);
11284 puts_filtered ("received: ");
11285 print_packet (rs->buf);
11286 puts_filtered ("\n");
11287 }
11288
11289 #if 0
11290 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11291
11292 static void display_thread_info (struct gdb_ext_thread_info *info);
11293
11294 static void threadset_test_cmd (char *cmd, int tty);
11295
11296 static void threadalive_test (char *cmd, int tty);
11297
11298 static void threadlist_test_cmd (char *cmd, int tty);
11299
11300 int get_and_display_threadinfo (threadref *ref);
11301
11302 static void threadinfo_test_cmd (char *cmd, int tty);
11303
11304 static int thread_display_step (threadref *ref, void *context);
11305
11306 static void threadlist_update_test_cmd (char *cmd, int tty);
11307
11308 static void init_remote_threadtests (void);
11309
11310 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11311
11312 static void
11313 threadset_test_cmd (const char *cmd, int tty)
11314 {
11315 int sample_thread = SAMPLE_THREAD;
11316
11317 printf_filtered (_("Remote threadset test\n"));
11318 set_general_thread (sample_thread);
11319 }
11320
11321
11322 static void
11323 threadalive_test (const char *cmd, int tty)
11324 {
11325 int sample_thread = SAMPLE_THREAD;
11326 int pid = inferior_ptid.pid ();
11327 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11328
11329 if (remote_thread_alive (ptid))
11330 printf_filtered ("PASS: Thread alive test\n");
11331 else
11332 printf_filtered ("FAIL: Thread alive test\n");
11333 }
11334
11335 void output_threadid (char *title, threadref *ref);
11336
11337 void
11338 output_threadid (char *title, threadref *ref)
11339 {
11340 char hexid[20];
11341
11342 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11343 hexid[16] = 0;
11344 printf_filtered ("%s %s\n", title, (&hexid[0]));
11345 }
11346
11347 static void
11348 threadlist_test_cmd (const char *cmd, int tty)
11349 {
11350 int startflag = 1;
11351 threadref nextthread;
11352 int done, result_count;
11353 threadref threadlist[3];
11354
11355 printf_filtered ("Remote Threadlist test\n");
11356 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11357 &result_count, &threadlist[0]))
11358 printf_filtered ("FAIL: threadlist test\n");
11359 else
11360 {
11361 threadref *scan = threadlist;
11362 threadref *limit = scan + result_count;
11363
11364 while (scan < limit)
11365 output_threadid (" thread ", scan++);
11366 }
11367 }
11368
11369 void
11370 display_thread_info (struct gdb_ext_thread_info *info)
11371 {
11372 output_threadid ("Threadid: ", &info->threadid);
11373 printf_filtered ("Name: %s\n ", info->shortname);
11374 printf_filtered ("State: %s\n", info->display);
11375 printf_filtered ("other: %s\n\n", info->more_display);
11376 }
11377
11378 int
11379 get_and_display_threadinfo (threadref *ref)
11380 {
11381 int result;
11382 int set;
11383 struct gdb_ext_thread_info threadinfo;
11384
11385 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11386 | TAG_MOREDISPLAY | TAG_DISPLAY;
11387 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11388 display_thread_info (&threadinfo);
11389 return result;
11390 }
11391
11392 static void
11393 threadinfo_test_cmd (const char *cmd, int tty)
11394 {
11395 int athread = SAMPLE_THREAD;
11396 threadref thread;
11397 int set;
11398
11399 int_to_threadref (&thread, athread);
11400 printf_filtered ("Remote Threadinfo test\n");
11401 if (!get_and_display_threadinfo (&thread))
11402 printf_filtered ("FAIL cannot get thread info\n");
11403 }
11404
11405 static int
11406 thread_display_step (threadref *ref, void *context)
11407 {
11408 /* output_threadid(" threadstep ",ref); *//* simple test */
11409 return get_and_display_threadinfo (ref);
11410 }
11411
11412 static void
11413 threadlist_update_test_cmd (const char *cmd, int tty)
11414 {
11415 printf_filtered ("Remote Threadlist update test\n");
11416 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11417 }
11418
11419 static void
11420 init_remote_threadtests (void)
11421 {
11422 add_com ("tlist", class_obscure, threadlist_test_cmd,
11423 _("Fetch and print the remote list of "
11424 "thread identifiers, one pkt only"));
11425 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11426 _("Fetch and display info about one thread"));
11427 add_com ("tset", class_obscure, threadset_test_cmd,
11428 _("Test setting to a different thread"));
11429 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11430 _("Iterate through updating all remote thread info"));
11431 add_com ("talive", class_obscure, threadalive_test,
11432 _(" Remote thread alive test "));
11433 }
11434
11435 #endif /* 0 */
11436
11437 /* Convert a thread ID to a string. Returns the string in a static
11438 buffer. */
11439
11440 const char *
11441 remote_target::pid_to_str (ptid_t ptid)
11442 {
11443 static char buf[64];
11444 struct remote_state *rs = get_remote_state ();
11445
11446 if (ptid == null_ptid)
11447 return normal_pid_to_str (ptid);
11448 else if (ptid.is_pid ())
11449 {
11450 /* Printing an inferior target id. */
11451
11452 /* When multi-process extensions are off, there's no way in the
11453 remote protocol to know the remote process id, if there's any
11454 at all. There's one exception --- when we're connected with
11455 target extended-remote, and we manually attached to a process
11456 with "attach PID". We don't record anywhere a flag that
11457 allows us to distinguish that case from the case of
11458 connecting with extended-remote and the stub already being
11459 attached to a process, and reporting yes to qAttached, hence
11460 no smart special casing here. */
11461 if (!remote_multi_process_p (rs))
11462 {
11463 xsnprintf (buf, sizeof buf, "Remote target");
11464 return buf;
11465 }
11466
11467 return normal_pid_to_str (ptid);
11468 }
11469 else
11470 {
11471 if (magic_null_ptid == ptid)
11472 xsnprintf (buf, sizeof buf, "Thread <main>");
11473 else if (remote_multi_process_p (rs))
11474 if (ptid.lwp () == 0)
11475 return normal_pid_to_str (ptid);
11476 else
11477 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11478 ptid.pid (), ptid.lwp ());
11479 else
11480 xsnprintf (buf, sizeof buf, "Thread %ld",
11481 ptid.lwp ());
11482 return buf;
11483 }
11484 }
11485
11486 /* Get the address of the thread local variable in OBJFILE which is
11487 stored at OFFSET within the thread local storage for thread PTID. */
11488
11489 CORE_ADDR
11490 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11491 CORE_ADDR offset)
11492 {
11493 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11494 {
11495 struct remote_state *rs = get_remote_state ();
11496 char *p = rs->buf;
11497 char *endp = rs->buf + get_remote_packet_size ();
11498 enum packet_result result;
11499
11500 strcpy (p, "qGetTLSAddr:");
11501 p += strlen (p);
11502 p = write_ptid (p, endp, ptid);
11503 *p++ = ',';
11504 p += hexnumstr (p, offset);
11505 *p++ = ',';
11506 p += hexnumstr (p, lm);
11507 *p++ = '\0';
11508
11509 putpkt (rs->buf);
11510 getpkt (&rs->buf, &rs->buf_size, 0);
11511 result = packet_ok (rs->buf,
11512 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11513 if (result == PACKET_OK)
11514 {
11515 ULONGEST addr;
11516
11517 unpack_varlen_hex (rs->buf, &addr);
11518 return addr;
11519 }
11520 else if (result == PACKET_UNKNOWN)
11521 throw_error (TLS_GENERIC_ERROR,
11522 _("Remote target doesn't support qGetTLSAddr packet"));
11523 else
11524 throw_error (TLS_GENERIC_ERROR,
11525 _("Remote target failed to process qGetTLSAddr request"));
11526 }
11527 else
11528 throw_error (TLS_GENERIC_ERROR,
11529 _("TLS not supported or disabled on this target"));
11530 /* Not reached. */
11531 return 0;
11532 }
11533
11534 /* Provide thread local base, i.e. Thread Information Block address.
11535 Returns 1 if ptid is found and thread_local_base is non zero. */
11536
11537 bool
11538 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11539 {
11540 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11541 {
11542 struct remote_state *rs = get_remote_state ();
11543 char *p = rs->buf;
11544 char *endp = rs->buf + get_remote_packet_size ();
11545 enum packet_result result;
11546
11547 strcpy (p, "qGetTIBAddr:");
11548 p += strlen (p);
11549 p = write_ptid (p, endp, ptid);
11550 *p++ = '\0';
11551
11552 putpkt (rs->buf);
11553 getpkt (&rs->buf, &rs->buf_size, 0);
11554 result = packet_ok (rs->buf,
11555 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11556 if (result == PACKET_OK)
11557 {
11558 ULONGEST val;
11559 unpack_varlen_hex (rs->buf, &val);
11560 if (addr)
11561 *addr = (CORE_ADDR) val;
11562 return true;
11563 }
11564 else if (result == PACKET_UNKNOWN)
11565 error (_("Remote target doesn't support qGetTIBAddr packet"));
11566 else
11567 error (_("Remote target failed to process qGetTIBAddr request"));
11568 }
11569 else
11570 error (_("qGetTIBAddr not supported or disabled on this target"));
11571 /* Not reached. */
11572 return false;
11573 }
11574
11575 /* Support for inferring a target description based on the current
11576 architecture and the size of a 'g' packet. While the 'g' packet
11577 can have any size (since optional registers can be left off the
11578 end), some sizes are easily recognizable given knowledge of the
11579 approximate architecture. */
11580
11581 struct remote_g_packet_guess
11582 {
11583 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11584 : bytes (bytes_),
11585 tdesc (tdesc_)
11586 {
11587 }
11588
11589 int bytes;
11590 const struct target_desc *tdesc;
11591 };
11592
11593 struct remote_g_packet_data : public allocate_on_obstack
11594 {
11595 std::vector<remote_g_packet_guess> guesses;
11596 };
11597
11598 static struct gdbarch_data *remote_g_packet_data_handle;
11599
11600 static void *
11601 remote_g_packet_data_init (struct obstack *obstack)
11602 {
11603 return new (obstack) remote_g_packet_data;
11604 }
11605
11606 void
11607 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11608 const struct target_desc *tdesc)
11609 {
11610 struct remote_g_packet_data *data
11611 = ((struct remote_g_packet_data *)
11612 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11613
11614 gdb_assert (tdesc != NULL);
11615
11616 for (const remote_g_packet_guess &guess : data->guesses)
11617 if (guess.bytes == bytes)
11618 internal_error (__FILE__, __LINE__,
11619 _("Duplicate g packet description added for size %d"),
11620 bytes);
11621
11622 data->guesses.emplace_back (bytes, tdesc);
11623 }
11624
11625 /* Return true if remote_read_description would do anything on this target
11626 and architecture, false otherwise. */
11627
11628 static bool
11629 remote_read_description_p (struct target_ops *target)
11630 {
11631 struct remote_g_packet_data *data
11632 = ((struct remote_g_packet_data *)
11633 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11634
11635 return !data->guesses.empty ();
11636 }
11637
11638 const struct target_desc *
11639 remote_target::read_description ()
11640 {
11641 struct remote_g_packet_data *data
11642 = ((struct remote_g_packet_data *)
11643 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11644
11645 /* Do not try this during initial connection, when we do not know
11646 whether there is a running but stopped thread. */
11647 if (!target_has_execution || inferior_ptid == null_ptid)
11648 return beneath ()->read_description ();
11649
11650 if (!data->guesses.empty ())
11651 {
11652 int bytes = send_g_packet ();
11653
11654 for (const remote_g_packet_guess &guess : data->guesses)
11655 if (guess.bytes == bytes)
11656 return guess.tdesc;
11657
11658 /* We discard the g packet. A minor optimization would be to
11659 hold on to it, and fill the register cache once we have selected
11660 an architecture, but it's too tricky to do safely. */
11661 }
11662
11663 return beneath ()->read_description ();
11664 }
11665
11666 /* Remote file transfer support. This is host-initiated I/O, not
11667 target-initiated; for target-initiated, see remote-fileio.c. */
11668
11669 /* If *LEFT is at least the length of STRING, copy STRING to
11670 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11671 decrease *LEFT. Otherwise raise an error. */
11672
11673 static void
11674 remote_buffer_add_string (char **buffer, int *left, const char *string)
11675 {
11676 int len = strlen (string);
11677
11678 if (len > *left)
11679 error (_("Packet too long for target."));
11680
11681 memcpy (*buffer, string, len);
11682 *buffer += len;
11683 *left -= len;
11684
11685 /* NUL-terminate the buffer as a convenience, if there is
11686 room. */
11687 if (*left)
11688 **buffer = '\0';
11689 }
11690
11691 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11692 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11693 decrease *LEFT. Otherwise raise an error. */
11694
11695 static void
11696 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11697 int len)
11698 {
11699 if (2 * len > *left)
11700 error (_("Packet too long for target."));
11701
11702 bin2hex (bytes, *buffer, len);
11703 *buffer += 2 * len;
11704 *left -= 2 * len;
11705
11706 /* NUL-terminate the buffer as a convenience, if there is
11707 room. */
11708 if (*left)
11709 **buffer = '\0';
11710 }
11711
11712 /* If *LEFT is large enough, convert VALUE to hex and add it to
11713 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11714 decrease *LEFT. Otherwise raise an error. */
11715
11716 static void
11717 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11718 {
11719 int len = hexnumlen (value);
11720
11721 if (len > *left)
11722 error (_("Packet too long for target."));
11723
11724 hexnumstr (*buffer, value);
11725 *buffer += len;
11726 *left -= len;
11727
11728 /* NUL-terminate the buffer as a convenience, if there is
11729 room. */
11730 if (*left)
11731 **buffer = '\0';
11732 }
11733
11734 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11735 value, *REMOTE_ERRNO to the remote error number or zero if none
11736 was included, and *ATTACHMENT to point to the start of the annex
11737 if any. The length of the packet isn't needed here; there may
11738 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11739
11740 Return 0 if the packet could be parsed, -1 if it could not. If
11741 -1 is returned, the other variables may not be initialized. */
11742
11743 static int
11744 remote_hostio_parse_result (char *buffer, int *retcode,
11745 int *remote_errno, char **attachment)
11746 {
11747 char *p, *p2;
11748
11749 *remote_errno = 0;
11750 *attachment = NULL;
11751
11752 if (buffer[0] != 'F')
11753 return -1;
11754
11755 errno = 0;
11756 *retcode = strtol (&buffer[1], &p, 16);
11757 if (errno != 0 || p == &buffer[1])
11758 return -1;
11759
11760 /* Check for ",errno". */
11761 if (*p == ',')
11762 {
11763 errno = 0;
11764 *remote_errno = strtol (p + 1, &p2, 16);
11765 if (errno != 0 || p + 1 == p2)
11766 return -1;
11767 p = p2;
11768 }
11769
11770 /* Check for ";attachment". If there is no attachment, the
11771 packet should end here. */
11772 if (*p == ';')
11773 {
11774 *attachment = p + 1;
11775 return 0;
11776 }
11777 else if (*p == '\0')
11778 return 0;
11779 else
11780 return -1;
11781 }
11782
11783 /* Send a prepared I/O packet to the target and read its response.
11784 The prepared packet is in the global RS->BUF before this function
11785 is called, and the answer is there when we return.
11786
11787 COMMAND_BYTES is the length of the request to send, which may include
11788 binary data. WHICH_PACKET is the packet configuration to check
11789 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11790 is set to the error number and -1 is returned. Otherwise the value
11791 returned by the function is returned.
11792
11793 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11794 attachment is expected; an error will be reported if there's a
11795 mismatch. If one is found, *ATTACHMENT will be set to point into
11796 the packet buffer and *ATTACHMENT_LEN will be set to the
11797 attachment's length. */
11798
11799 int
11800 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11801 int *remote_errno, char **attachment,
11802 int *attachment_len)
11803 {
11804 struct remote_state *rs = get_remote_state ();
11805 int ret, bytes_read;
11806 char *attachment_tmp;
11807
11808 if (packet_support (which_packet) == PACKET_DISABLE)
11809 {
11810 *remote_errno = FILEIO_ENOSYS;
11811 return -1;
11812 }
11813
11814 putpkt_binary (rs->buf, command_bytes);
11815 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11816
11817 /* If it timed out, something is wrong. Don't try to parse the
11818 buffer. */
11819 if (bytes_read < 0)
11820 {
11821 *remote_errno = FILEIO_EINVAL;
11822 return -1;
11823 }
11824
11825 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11826 {
11827 case PACKET_ERROR:
11828 *remote_errno = FILEIO_EINVAL;
11829 return -1;
11830 case PACKET_UNKNOWN:
11831 *remote_errno = FILEIO_ENOSYS;
11832 return -1;
11833 case PACKET_OK:
11834 break;
11835 }
11836
11837 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11838 &attachment_tmp))
11839 {
11840 *remote_errno = FILEIO_EINVAL;
11841 return -1;
11842 }
11843
11844 /* Make sure we saw an attachment if and only if we expected one. */
11845 if ((attachment_tmp == NULL && attachment != NULL)
11846 || (attachment_tmp != NULL && attachment == NULL))
11847 {
11848 *remote_errno = FILEIO_EINVAL;
11849 return -1;
11850 }
11851
11852 /* If an attachment was found, it must point into the packet buffer;
11853 work out how many bytes there were. */
11854 if (attachment_tmp != NULL)
11855 {
11856 *attachment = attachment_tmp;
11857 *attachment_len = bytes_read - (*attachment - rs->buf);
11858 }
11859
11860 return ret;
11861 }
11862
11863 /* See declaration.h. */
11864
11865 void
11866 readahead_cache::invalidate ()
11867 {
11868 this->fd = -1;
11869 }
11870
11871 /* See declaration.h. */
11872
11873 void
11874 readahead_cache::invalidate_fd (int fd)
11875 {
11876 if (this->fd == fd)
11877 this->fd = -1;
11878 }
11879
11880 /* Set the filesystem remote_hostio functions that take FILENAME
11881 arguments will use. Return 0 on success, or -1 if an error
11882 occurs (and set *REMOTE_ERRNO). */
11883
11884 int
11885 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11886 int *remote_errno)
11887 {
11888 struct remote_state *rs = get_remote_state ();
11889 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11890 char *p = rs->buf;
11891 int left = get_remote_packet_size () - 1;
11892 char arg[9];
11893 int ret;
11894
11895 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11896 return 0;
11897
11898 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11899 return 0;
11900
11901 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11902
11903 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11904 remote_buffer_add_string (&p, &left, arg);
11905
11906 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11907 remote_errno, NULL, NULL);
11908
11909 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11910 return 0;
11911
11912 if (ret == 0)
11913 rs->fs_pid = required_pid;
11914
11915 return ret;
11916 }
11917
11918 /* Implementation of to_fileio_open. */
11919
11920 int
11921 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11922 int flags, int mode, int warn_if_slow,
11923 int *remote_errno)
11924 {
11925 struct remote_state *rs = get_remote_state ();
11926 char *p = rs->buf;
11927 int left = get_remote_packet_size () - 1;
11928
11929 if (warn_if_slow)
11930 {
11931 static int warning_issued = 0;
11932
11933 printf_unfiltered (_("Reading %s from remote target...\n"),
11934 filename);
11935
11936 if (!warning_issued)
11937 {
11938 warning (_("File transfers from remote targets can be slow."
11939 " Use \"set sysroot\" to access files locally"
11940 " instead."));
11941 warning_issued = 1;
11942 }
11943 }
11944
11945 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11946 return -1;
11947
11948 remote_buffer_add_string (&p, &left, "vFile:open:");
11949
11950 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11951 strlen (filename));
11952 remote_buffer_add_string (&p, &left, ",");
11953
11954 remote_buffer_add_int (&p, &left, flags);
11955 remote_buffer_add_string (&p, &left, ",");
11956
11957 remote_buffer_add_int (&p, &left, mode);
11958
11959 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11960 remote_errno, NULL, NULL);
11961 }
11962
11963 int
11964 remote_target::fileio_open (struct inferior *inf, const char *filename,
11965 int flags, int mode, int warn_if_slow,
11966 int *remote_errno)
11967 {
11968 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11969 remote_errno);
11970 }
11971
11972 /* Implementation of to_fileio_pwrite. */
11973
11974 int
11975 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11976 ULONGEST offset, int *remote_errno)
11977 {
11978 struct remote_state *rs = get_remote_state ();
11979 char *p = rs->buf;
11980 int left = get_remote_packet_size ();
11981 int out_len;
11982
11983 rs->readahead_cache.invalidate_fd (fd);
11984
11985 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11986
11987 remote_buffer_add_int (&p, &left, fd);
11988 remote_buffer_add_string (&p, &left, ",");
11989
11990 remote_buffer_add_int (&p, &left, offset);
11991 remote_buffer_add_string (&p, &left, ",");
11992
11993 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11994 get_remote_packet_size () - (p - rs->buf));
11995
11996 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11997 remote_errno, NULL, NULL);
11998 }
11999
12000 int
12001 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12002 ULONGEST offset, int *remote_errno)
12003 {
12004 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12005 }
12006
12007 /* Helper for the implementation of to_fileio_pread. Read the file
12008 from the remote side with vFile:pread. */
12009
12010 int
12011 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12012 ULONGEST offset, int *remote_errno)
12013 {
12014 struct remote_state *rs = get_remote_state ();
12015 char *p = rs->buf;
12016 char *attachment;
12017 int left = get_remote_packet_size ();
12018 int ret, attachment_len;
12019 int read_len;
12020
12021 remote_buffer_add_string (&p, &left, "vFile:pread:");
12022
12023 remote_buffer_add_int (&p, &left, fd);
12024 remote_buffer_add_string (&p, &left, ",");
12025
12026 remote_buffer_add_int (&p, &left, len);
12027 remote_buffer_add_string (&p, &left, ",");
12028
12029 remote_buffer_add_int (&p, &left, offset);
12030
12031 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
12032 remote_errno, &attachment,
12033 &attachment_len);
12034
12035 if (ret < 0)
12036 return ret;
12037
12038 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12039 read_buf, len);
12040 if (read_len != ret)
12041 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12042
12043 return ret;
12044 }
12045
12046 /* See declaration.h. */
12047
12048 int
12049 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12050 ULONGEST offset)
12051 {
12052 if (this->fd == fd
12053 && this->offset <= offset
12054 && offset < this->offset + this->bufsize)
12055 {
12056 ULONGEST max = this->offset + this->bufsize;
12057
12058 if (offset + len > max)
12059 len = max - offset;
12060
12061 memcpy (read_buf, this->buf + offset - this->offset, len);
12062 return len;
12063 }
12064
12065 return 0;
12066 }
12067
12068 /* Implementation of to_fileio_pread. */
12069
12070 int
12071 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12072 ULONGEST offset, int *remote_errno)
12073 {
12074 int ret;
12075 struct remote_state *rs = get_remote_state ();
12076 readahead_cache *cache = &rs->readahead_cache;
12077
12078 ret = cache->pread (fd, read_buf, len, offset);
12079 if (ret > 0)
12080 {
12081 cache->hit_count++;
12082
12083 if (remote_debug)
12084 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12085 pulongest (cache->hit_count));
12086 return ret;
12087 }
12088
12089 cache->miss_count++;
12090 if (remote_debug)
12091 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12092 pulongest (cache->miss_count));
12093
12094 cache->fd = fd;
12095 cache->offset = offset;
12096 cache->bufsize = get_remote_packet_size ();
12097 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12098
12099 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12100 cache->offset, remote_errno);
12101 if (ret <= 0)
12102 {
12103 cache->invalidate_fd (fd);
12104 return ret;
12105 }
12106
12107 cache->bufsize = ret;
12108 return cache->pread (fd, read_buf, len, offset);
12109 }
12110
12111 int
12112 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12113 ULONGEST offset, int *remote_errno)
12114 {
12115 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12116 }
12117
12118 /* Implementation of to_fileio_close. */
12119
12120 int
12121 remote_target::remote_hostio_close (int fd, int *remote_errno)
12122 {
12123 struct remote_state *rs = get_remote_state ();
12124 char *p = rs->buf;
12125 int left = get_remote_packet_size () - 1;
12126
12127 rs->readahead_cache.invalidate_fd (fd);
12128
12129 remote_buffer_add_string (&p, &left, "vFile:close:");
12130
12131 remote_buffer_add_int (&p, &left, fd);
12132
12133 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
12134 remote_errno, NULL, NULL);
12135 }
12136
12137 int
12138 remote_target::fileio_close (int fd, int *remote_errno)
12139 {
12140 return remote_hostio_close (fd, remote_errno);
12141 }
12142
12143 /* Implementation of to_fileio_unlink. */
12144
12145 int
12146 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12147 int *remote_errno)
12148 {
12149 struct remote_state *rs = get_remote_state ();
12150 char *p = rs->buf;
12151 int left = get_remote_packet_size () - 1;
12152
12153 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12154 return -1;
12155
12156 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12157
12158 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12159 strlen (filename));
12160
12161 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12162 remote_errno, NULL, NULL);
12163 }
12164
12165 int
12166 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12167 int *remote_errno)
12168 {
12169 return remote_hostio_unlink (inf, filename, remote_errno);
12170 }
12171
12172 /* Implementation of to_fileio_readlink. */
12173
12174 gdb::optional<std::string>
12175 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12176 int *remote_errno)
12177 {
12178 struct remote_state *rs = get_remote_state ();
12179 char *p = rs->buf;
12180 char *attachment;
12181 int left = get_remote_packet_size ();
12182 int len, attachment_len;
12183 int read_len;
12184
12185 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12186 return {};
12187
12188 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12189
12190 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12191 strlen (filename));
12192
12193 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12194 remote_errno, &attachment,
12195 &attachment_len);
12196
12197 if (len < 0)
12198 return {};
12199
12200 std::string ret (len, '\0');
12201
12202 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12203 (gdb_byte *) &ret[0], len);
12204 if (read_len != len)
12205 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12206
12207 return ret;
12208 }
12209
12210 /* Implementation of to_fileio_fstat. */
12211
12212 int
12213 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12214 {
12215 struct remote_state *rs = get_remote_state ();
12216 char *p = rs->buf;
12217 int left = get_remote_packet_size ();
12218 int attachment_len, ret;
12219 char *attachment;
12220 struct fio_stat fst;
12221 int read_len;
12222
12223 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12224
12225 remote_buffer_add_int (&p, &left, fd);
12226
12227 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12228 remote_errno, &attachment,
12229 &attachment_len);
12230 if (ret < 0)
12231 {
12232 if (*remote_errno != FILEIO_ENOSYS)
12233 return ret;
12234
12235 /* Strictly we should return -1, ENOSYS here, but when
12236 "set sysroot remote:" was implemented in August 2008
12237 BFD's need for a stat function was sidestepped with
12238 this hack. This was not remedied until March 2015
12239 so we retain the previous behavior to avoid breaking
12240 compatibility.
12241
12242 Note that the memset is a March 2015 addition; older
12243 GDBs set st_size *and nothing else* so the structure
12244 would have garbage in all other fields. This might
12245 break something but retaining the previous behavior
12246 here would be just too wrong. */
12247
12248 memset (st, 0, sizeof (struct stat));
12249 st->st_size = INT_MAX;
12250 return 0;
12251 }
12252
12253 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12254 (gdb_byte *) &fst, sizeof (fst));
12255
12256 if (read_len != ret)
12257 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12258
12259 if (read_len != sizeof (fst))
12260 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12261 read_len, (int) sizeof (fst));
12262
12263 remote_fileio_to_host_stat (&fst, st);
12264
12265 return 0;
12266 }
12267
12268 /* Implementation of to_filesystem_is_local. */
12269
12270 bool
12271 remote_target::filesystem_is_local ()
12272 {
12273 /* Valgrind GDB presents itself as a remote target but works
12274 on the local filesystem: it does not implement remote get
12275 and users are not expected to set a sysroot. To handle
12276 this case we treat the remote filesystem as local if the
12277 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12278 does not support vFile:open. */
12279 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12280 {
12281 enum packet_support ps = packet_support (PACKET_vFile_open);
12282
12283 if (ps == PACKET_SUPPORT_UNKNOWN)
12284 {
12285 int fd, remote_errno;
12286
12287 /* Try opening a file to probe support. The supplied
12288 filename is irrelevant, we only care about whether
12289 the stub recognizes the packet or not. */
12290 fd = remote_hostio_open (NULL, "just probing",
12291 FILEIO_O_RDONLY, 0700, 0,
12292 &remote_errno);
12293
12294 if (fd >= 0)
12295 remote_hostio_close (fd, &remote_errno);
12296
12297 ps = packet_support (PACKET_vFile_open);
12298 }
12299
12300 if (ps == PACKET_DISABLE)
12301 {
12302 static int warning_issued = 0;
12303
12304 if (!warning_issued)
12305 {
12306 warning (_("remote target does not support file"
12307 " transfer, attempting to access files"
12308 " from local filesystem."));
12309 warning_issued = 1;
12310 }
12311
12312 return true;
12313 }
12314 }
12315
12316 return false;
12317 }
12318
12319 static int
12320 remote_fileio_errno_to_host (int errnum)
12321 {
12322 switch (errnum)
12323 {
12324 case FILEIO_EPERM:
12325 return EPERM;
12326 case FILEIO_ENOENT:
12327 return ENOENT;
12328 case FILEIO_EINTR:
12329 return EINTR;
12330 case FILEIO_EIO:
12331 return EIO;
12332 case FILEIO_EBADF:
12333 return EBADF;
12334 case FILEIO_EACCES:
12335 return EACCES;
12336 case FILEIO_EFAULT:
12337 return EFAULT;
12338 case FILEIO_EBUSY:
12339 return EBUSY;
12340 case FILEIO_EEXIST:
12341 return EEXIST;
12342 case FILEIO_ENODEV:
12343 return ENODEV;
12344 case FILEIO_ENOTDIR:
12345 return ENOTDIR;
12346 case FILEIO_EISDIR:
12347 return EISDIR;
12348 case FILEIO_EINVAL:
12349 return EINVAL;
12350 case FILEIO_ENFILE:
12351 return ENFILE;
12352 case FILEIO_EMFILE:
12353 return EMFILE;
12354 case FILEIO_EFBIG:
12355 return EFBIG;
12356 case FILEIO_ENOSPC:
12357 return ENOSPC;
12358 case FILEIO_ESPIPE:
12359 return ESPIPE;
12360 case FILEIO_EROFS:
12361 return EROFS;
12362 case FILEIO_ENOSYS:
12363 return ENOSYS;
12364 case FILEIO_ENAMETOOLONG:
12365 return ENAMETOOLONG;
12366 }
12367 return -1;
12368 }
12369
12370 static char *
12371 remote_hostio_error (int errnum)
12372 {
12373 int host_error = remote_fileio_errno_to_host (errnum);
12374
12375 if (host_error == -1)
12376 error (_("Unknown remote I/O error %d"), errnum);
12377 else
12378 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12379 }
12380
12381 /* A RAII wrapper around a remote file descriptor. */
12382
12383 class scoped_remote_fd
12384 {
12385 public:
12386 scoped_remote_fd (remote_target *remote, int fd)
12387 : m_remote (remote), m_fd (fd)
12388 {
12389 }
12390
12391 ~scoped_remote_fd ()
12392 {
12393 if (m_fd != -1)
12394 {
12395 try
12396 {
12397 int remote_errno;
12398 m_remote->remote_hostio_close (m_fd, &remote_errno);
12399 }
12400 catch (...)
12401 {
12402 /* Swallow exception before it escapes the dtor. If
12403 something goes wrong, likely the connection is gone,
12404 and there's nothing else that can be done. */
12405 }
12406 }
12407 }
12408
12409 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12410
12411 /* Release ownership of the file descriptor, and return it. */
12412 int release () noexcept
12413 {
12414 int fd = m_fd;
12415 m_fd = -1;
12416 return fd;
12417 }
12418
12419 /* Return the owned file descriptor. */
12420 int get () const noexcept
12421 {
12422 return m_fd;
12423 }
12424
12425 private:
12426 /* The remote target. */
12427 remote_target *m_remote;
12428
12429 /* The owned remote I/O file descriptor. */
12430 int m_fd;
12431 };
12432
12433 void
12434 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12435 {
12436 remote_target *remote = get_current_remote_target ();
12437
12438 if (remote == nullptr)
12439 error (_("command can only be used with remote target"));
12440
12441 remote->remote_file_put (local_file, remote_file, from_tty);
12442 }
12443
12444 void
12445 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12446 int from_tty)
12447 {
12448 int retcode, remote_errno, bytes, io_size;
12449 int bytes_in_buffer;
12450 int saw_eof;
12451 ULONGEST offset;
12452
12453 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12454 if (file == NULL)
12455 perror_with_name (local_file);
12456
12457 scoped_remote_fd fd
12458 (this, remote_hostio_open (NULL,
12459 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12460 | FILEIO_O_TRUNC),
12461 0700, 0, &remote_errno));
12462 if (fd.get () == -1)
12463 remote_hostio_error (remote_errno);
12464
12465 /* Send up to this many bytes at once. They won't all fit in the
12466 remote packet limit, so we'll transfer slightly fewer. */
12467 io_size = get_remote_packet_size ();
12468 gdb::byte_vector buffer (io_size);
12469
12470 bytes_in_buffer = 0;
12471 saw_eof = 0;
12472 offset = 0;
12473 while (bytes_in_buffer || !saw_eof)
12474 {
12475 if (!saw_eof)
12476 {
12477 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12478 io_size - bytes_in_buffer,
12479 file.get ());
12480 if (bytes == 0)
12481 {
12482 if (ferror (file.get ()))
12483 error (_("Error reading %s."), local_file);
12484 else
12485 {
12486 /* EOF. Unless there is something still in the
12487 buffer from the last iteration, we are done. */
12488 saw_eof = 1;
12489 if (bytes_in_buffer == 0)
12490 break;
12491 }
12492 }
12493 }
12494 else
12495 bytes = 0;
12496
12497 bytes += bytes_in_buffer;
12498 bytes_in_buffer = 0;
12499
12500 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12501 offset, &remote_errno);
12502
12503 if (retcode < 0)
12504 remote_hostio_error (remote_errno);
12505 else if (retcode == 0)
12506 error (_("Remote write of %d bytes returned 0!"), bytes);
12507 else if (retcode < bytes)
12508 {
12509 /* Short write. Save the rest of the read data for the next
12510 write. */
12511 bytes_in_buffer = bytes - retcode;
12512 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12513 }
12514
12515 offset += retcode;
12516 }
12517
12518 if (remote_hostio_close (fd.release (), &remote_errno))
12519 remote_hostio_error (remote_errno);
12520
12521 if (from_tty)
12522 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12523 }
12524
12525 void
12526 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12527 {
12528 remote_target *remote = get_current_remote_target ();
12529
12530 if (remote == nullptr)
12531 error (_("command can only be used with remote target"));
12532
12533 remote->remote_file_get (remote_file, local_file, from_tty);
12534 }
12535
12536 void
12537 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12538 int from_tty)
12539 {
12540 int remote_errno, bytes, io_size;
12541 ULONGEST offset;
12542
12543 scoped_remote_fd fd
12544 (this, remote_hostio_open (NULL,
12545 remote_file, FILEIO_O_RDONLY, 0, 0,
12546 &remote_errno));
12547 if (fd.get () == -1)
12548 remote_hostio_error (remote_errno);
12549
12550 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12551 if (file == NULL)
12552 perror_with_name (local_file);
12553
12554 /* Send up to this many bytes at once. They won't all fit in the
12555 remote packet limit, so we'll transfer slightly fewer. */
12556 io_size = get_remote_packet_size ();
12557 gdb::byte_vector buffer (io_size);
12558
12559 offset = 0;
12560 while (1)
12561 {
12562 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12563 &remote_errno);
12564 if (bytes == 0)
12565 /* Success, but no bytes, means end-of-file. */
12566 break;
12567 if (bytes == -1)
12568 remote_hostio_error (remote_errno);
12569
12570 offset += bytes;
12571
12572 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12573 if (bytes == 0)
12574 perror_with_name (local_file);
12575 }
12576
12577 if (remote_hostio_close (fd.release (), &remote_errno))
12578 remote_hostio_error (remote_errno);
12579
12580 if (from_tty)
12581 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12582 }
12583
12584 void
12585 remote_file_delete (const char *remote_file, int from_tty)
12586 {
12587 remote_target *remote = get_current_remote_target ();
12588
12589 if (remote == nullptr)
12590 error (_("command can only be used with remote target"));
12591
12592 remote->remote_file_delete (remote_file, from_tty);
12593 }
12594
12595 void
12596 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12597 {
12598 int retcode, remote_errno;
12599
12600 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12601 if (retcode == -1)
12602 remote_hostio_error (remote_errno);
12603
12604 if (from_tty)
12605 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12606 }
12607
12608 static void
12609 remote_put_command (const char *args, int from_tty)
12610 {
12611 if (args == NULL)
12612 error_no_arg (_("file to put"));
12613
12614 gdb_argv argv (args);
12615 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12616 error (_("Invalid parameters to remote put"));
12617
12618 remote_file_put (argv[0], argv[1], from_tty);
12619 }
12620
12621 static void
12622 remote_get_command (const char *args, int from_tty)
12623 {
12624 if (args == NULL)
12625 error_no_arg (_("file to get"));
12626
12627 gdb_argv argv (args);
12628 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12629 error (_("Invalid parameters to remote get"));
12630
12631 remote_file_get (argv[0], argv[1], from_tty);
12632 }
12633
12634 static void
12635 remote_delete_command (const char *args, int from_tty)
12636 {
12637 if (args == NULL)
12638 error_no_arg (_("file to delete"));
12639
12640 gdb_argv argv (args);
12641 if (argv[0] == NULL || argv[1] != NULL)
12642 error (_("Invalid parameters to remote delete"));
12643
12644 remote_file_delete (argv[0], from_tty);
12645 }
12646
12647 static void
12648 remote_command (const char *args, int from_tty)
12649 {
12650 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12651 }
12652
12653 bool
12654 remote_target::can_execute_reverse ()
12655 {
12656 if (packet_support (PACKET_bs) == PACKET_ENABLE
12657 || packet_support (PACKET_bc) == PACKET_ENABLE)
12658 return true;
12659 else
12660 return false;
12661 }
12662
12663 bool
12664 remote_target::supports_non_stop ()
12665 {
12666 return true;
12667 }
12668
12669 bool
12670 remote_target::supports_disable_randomization ()
12671 {
12672 /* Only supported in extended mode. */
12673 return false;
12674 }
12675
12676 bool
12677 remote_target::supports_multi_process ()
12678 {
12679 struct remote_state *rs = get_remote_state ();
12680
12681 return remote_multi_process_p (rs);
12682 }
12683
12684 static int
12685 remote_supports_cond_tracepoints ()
12686 {
12687 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12688 }
12689
12690 bool
12691 remote_target::supports_evaluation_of_breakpoint_conditions ()
12692 {
12693 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12694 }
12695
12696 static int
12697 remote_supports_fast_tracepoints ()
12698 {
12699 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12700 }
12701
12702 static int
12703 remote_supports_static_tracepoints ()
12704 {
12705 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12706 }
12707
12708 static int
12709 remote_supports_install_in_trace ()
12710 {
12711 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12712 }
12713
12714 bool
12715 remote_target::supports_enable_disable_tracepoint ()
12716 {
12717 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12718 == PACKET_ENABLE);
12719 }
12720
12721 bool
12722 remote_target::supports_string_tracing ()
12723 {
12724 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12725 }
12726
12727 bool
12728 remote_target::can_run_breakpoint_commands ()
12729 {
12730 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12731 }
12732
12733 void
12734 remote_target::trace_init ()
12735 {
12736 struct remote_state *rs = get_remote_state ();
12737
12738 putpkt ("QTinit");
12739 remote_get_noisy_reply ();
12740 if (strcmp (rs->buf, "OK") != 0)
12741 error (_("Target does not support this command."));
12742 }
12743
12744 /* Recursive routine to walk through command list including loops, and
12745 download packets for each command. */
12746
12747 void
12748 remote_target::remote_download_command_source (int num, ULONGEST addr,
12749 struct command_line *cmds)
12750 {
12751 struct remote_state *rs = get_remote_state ();
12752 struct command_line *cmd;
12753
12754 for (cmd = cmds; cmd; cmd = cmd->next)
12755 {
12756 QUIT; /* Allow user to bail out with ^C. */
12757 strcpy (rs->buf, "QTDPsrc:");
12758 encode_source_string (num, addr, "cmd", cmd->line,
12759 rs->buf + strlen (rs->buf),
12760 rs->buf_size - strlen (rs->buf));
12761 putpkt (rs->buf);
12762 remote_get_noisy_reply ();
12763 if (strcmp (rs->buf, "OK"))
12764 warning (_("Target does not support source download."));
12765
12766 if (cmd->control_type == while_control
12767 || cmd->control_type == while_stepping_control)
12768 {
12769 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12770
12771 QUIT; /* Allow user to bail out with ^C. */
12772 strcpy (rs->buf, "QTDPsrc:");
12773 encode_source_string (num, addr, "cmd", "end",
12774 rs->buf + strlen (rs->buf),
12775 rs->buf_size - strlen (rs->buf));
12776 putpkt (rs->buf);
12777 remote_get_noisy_reply ();
12778 if (strcmp (rs->buf, "OK"))
12779 warning (_("Target does not support source download."));
12780 }
12781 }
12782 }
12783
12784 void
12785 remote_target::download_tracepoint (struct bp_location *loc)
12786 {
12787 CORE_ADDR tpaddr;
12788 char addrbuf[40];
12789 std::vector<std::string> tdp_actions;
12790 std::vector<std::string> stepping_actions;
12791 char *pkt;
12792 struct breakpoint *b = loc->owner;
12793 struct tracepoint *t = (struct tracepoint *) b;
12794 struct remote_state *rs = get_remote_state ();
12795 int ret;
12796 const char *err_msg = _("Tracepoint packet too large for target.");
12797 size_t size_left;
12798
12799 /* We use a buffer other than rs->buf because we'll build strings
12800 across multiple statements, and other statements in between could
12801 modify rs->buf. */
12802 gdb::char_vector buf (get_remote_packet_size ());
12803
12804 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12805
12806 tpaddr = loc->address;
12807 sprintf_vma (addrbuf, tpaddr);
12808 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12809 b->number, addrbuf, /* address */
12810 (b->enable_state == bp_enabled ? 'E' : 'D'),
12811 t->step_count, t->pass_count);
12812
12813 if (ret < 0 || ret >= buf.size ())
12814 error ("%s", err_msg);
12815
12816 /* Fast tracepoints are mostly handled by the target, but we can
12817 tell the target how big of an instruction block should be moved
12818 around. */
12819 if (b->type == bp_fast_tracepoint)
12820 {
12821 /* Only test for support at download time; we may not know
12822 target capabilities at definition time. */
12823 if (remote_supports_fast_tracepoints ())
12824 {
12825 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12826 NULL))
12827 {
12828 size_left = buf.size () - strlen (buf.data ());
12829 ret = snprintf (buf.data () + strlen (buf.data ()),
12830 size_left, ":F%x",
12831 gdb_insn_length (loc->gdbarch, tpaddr));
12832
12833 if (ret < 0 || ret >= size_left)
12834 error ("%s", err_msg);
12835 }
12836 else
12837 /* If it passed validation at definition but fails now,
12838 something is very wrong. */
12839 internal_error (__FILE__, __LINE__,
12840 _("Fast tracepoint not "
12841 "valid during download"));
12842 }
12843 else
12844 /* Fast tracepoints are functionally identical to regular
12845 tracepoints, so don't take lack of support as a reason to
12846 give up on the trace run. */
12847 warning (_("Target does not support fast tracepoints, "
12848 "downloading %d as regular tracepoint"), b->number);
12849 }
12850 else if (b->type == bp_static_tracepoint)
12851 {
12852 /* Only test for support at download time; we may not know
12853 target capabilities at definition time. */
12854 if (remote_supports_static_tracepoints ())
12855 {
12856 struct static_tracepoint_marker marker;
12857
12858 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12859 {
12860 size_left = buf.size () - strlen (buf.data ());
12861 ret = snprintf (buf.data () + strlen (buf.data ()),
12862 size_left, ":S");
12863
12864 if (ret < 0 || ret >= size_left)
12865 error ("%s", err_msg);
12866 }
12867 else
12868 error (_("Static tracepoint not valid during download"));
12869 }
12870 else
12871 /* Fast tracepoints are functionally identical to regular
12872 tracepoints, so don't take lack of support as a reason
12873 to give up on the trace run. */
12874 error (_("Target does not support static tracepoints"));
12875 }
12876 /* If the tracepoint has a conditional, make it into an agent
12877 expression and append to the definition. */
12878 if (loc->cond)
12879 {
12880 /* Only test support at download time, we may not know target
12881 capabilities at definition time. */
12882 if (remote_supports_cond_tracepoints ())
12883 {
12884 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12885 loc->cond.get ());
12886
12887 size_left = buf.size () - strlen (buf.data ());
12888
12889 ret = snprintf (buf.data () + strlen (buf.data ()),
12890 size_left, ":X%x,", aexpr->len);
12891
12892 if (ret < 0 || ret >= size_left)
12893 error ("%s", err_msg);
12894
12895 size_left = buf.size () - strlen (buf.data ());
12896
12897 /* Two bytes to encode each aexpr byte, plus the terminating
12898 null byte. */
12899 if (aexpr->len * 2 + 1 > size_left)
12900 error ("%s", err_msg);
12901
12902 pkt = buf.data () + strlen (buf.data ());
12903
12904 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12905 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12906 *pkt = '\0';
12907 }
12908 else
12909 warning (_("Target does not support conditional tracepoints, "
12910 "ignoring tp %d cond"), b->number);
12911 }
12912
12913 if (b->commands || *default_collect)
12914 {
12915 size_left = buf.size () - strlen (buf.data ());
12916
12917 ret = snprintf (buf.data () + strlen (buf.data ()),
12918 size_left, "-");
12919
12920 if (ret < 0 || ret >= size_left)
12921 error ("%s", err_msg);
12922 }
12923
12924 putpkt (buf.data ());
12925 remote_get_noisy_reply ();
12926 if (strcmp (rs->buf, "OK"))
12927 error (_("Target does not support tracepoints."));
12928
12929 /* do_single_steps (t); */
12930 for (auto action_it = tdp_actions.begin ();
12931 action_it != tdp_actions.end (); action_it++)
12932 {
12933 QUIT; /* Allow user to bail out with ^C. */
12934
12935 bool has_more = ((action_it + 1) != tdp_actions.end ()
12936 || !stepping_actions.empty ());
12937
12938 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12939 b->number, addrbuf, /* address */
12940 action_it->c_str (),
12941 has_more ? '-' : 0);
12942
12943 if (ret < 0 || ret >= buf.size ())
12944 error ("%s", err_msg);
12945
12946 putpkt (buf.data ());
12947 remote_get_noisy_reply ();
12948 if (strcmp (rs->buf, "OK"))
12949 error (_("Error on target while setting tracepoints."));
12950 }
12951
12952 for (auto action_it = stepping_actions.begin ();
12953 action_it != stepping_actions.end (); action_it++)
12954 {
12955 QUIT; /* Allow user to bail out with ^C. */
12956
12957 bool is_first = action_it == stepping_actions.begin ();
12958 bool has_more = (action_it + 1) != stepping_actions.end ();
12959
12960 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12961 b->number, addrbuf, /* address */
12962 is_first ? "S" : "",
12963 action_it->c_str (),
12964 has_more ? "-" : "");
12965
12966 if (ret < 0 || ret >= buf.size ())
12967 error ("%s", err_msg);
12968
12969 putpkt (buf.data ());
12970 remote_get_noisy_reply ();
12971 if (strcmp (rs->buf, "OK"))
12972 error (_("Error on target while setting tracepoints."));
12973 }
12974
12975 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12976 {
12977 if (b->location != NULL)
12978 {
12979 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12980
12981 if (ret < 0 || ret >= buf.size ())
12982 error ("%s", err_msg);
12983
12984 encode_source_string (b->number, loc->address, "at",
12985 event_location_to_string (b->location.get ()),
12986 buf.data () + strlen (buf.data ()),
12987 buf.size () - strlen (buf.data ()));
12988 putpkt (buf.data ());
12989 remote_get_noisy_reply ();
12990 if (strcmp (rs->buf, "OK"))
12991 warning (_("Target does not support source download."));
12992 }
12993 if (b->cond_string)
12994 {
12995 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12996
12997 if (ret < 0 || ret >= buf.size ())
12998 error ("%s", err_msg);
12999
13000 encode_source_string (b->number, loc->address,
13001 "cond", b->cond_string,
13002 buf.data () + strlen (buf.data ()),
13003 buf.size () - strlen (buf.data ()));
13004 putpkt (buf.data ());
13005 remote_get_noisy_reply ();
13006 if (strcmp (rs->buf, "OK"))
13007 warning (_("Target does not support source download."));
13008 }
13009 remote_download_command_source (b->number, loc->address,
13010 breakpoint_commands (b));
13011 }
13012 }
13013
13014 bool
13015 remote_target::can_download_tracepoint ()
13016 {
13017 struct remote_state *rs = get_remote_state ();
13018 struct trace_status *ts;
13019 int status;
13020
13021 /* Don't try to install tracepoints until we've relocated our
13022 symbols, and fetched and merged the target's tracepoint list with
13023 ours. */
13024 if (rs->starting_up)
13025 return false;
13026
13027 ts = current_trace_status ();
13028 status = get_trace_status (ts);
13029
13030 if (status == -1 || !ts->running_known || !ts->running)
13031 return false;
13032
13033 /* If we are in a tracing experiment, but remote stub doesn't support
13034 installing tracepoint in trace, we have to return. */
13035 if (!remote_supports_install_in_trace ())
13036 return false;
13037
13038 return true;
13039 }
13040
13041
13042 void
13043 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13044 {
13045 struct remote_state *rs = get_remote_state ();
13046 char *p;
13047
13048 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
13049 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13050 tsv.builtin);
13051 p = rs->buf + strlen (rs->buf);
13052 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
13053 error (_("Trace state variable name too long for tsv definition packet"));
13054 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13055 *p++ = '\0';
13056 putpkt (rs->buf);
13057 remote_get_noisy_reply ();
13058 if (*rs->buf == '\0')
13059 error (_("Target does not support this command."));
13060 if (strcmp (rs->buf, "OK") != 0)
13061 error (_("Error on target while downloading trace state variable."));
13062 }
13063
13064 void
13065 remote_target::enable_tracepoint (struct bp_location *location)
13066 {
13067 struct remote_state *rs = get_remote_state ();
13068 char addr_buf[40];
13069
13070 sprintf_vma (addr_buf, location->address);
13071 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
13072 location->owner->number, addr_buf);
13073 putpkt (rs->buf);
13074 remote_get_noisy_reply ();
13075 if (*rs->buf == '\0')
13076 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13077 if (strcmp (rs->buf, "OK") != 0)
13078 error (_("Error on target while enabling tracepoint."));
13079 }
13080
13081 void
13082 remote_target::disable_tracepoint (struct bp_location *location)
13083 {
13084 struct remote_state *rs = get_remote_state ();
13085 char addr_buf[40];
13086
13087 sprintf_vma (addr_buf, location->address);
13088 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
13089 location->owner->number, addr_buf);
13090 putpkt (rs->buf);
13091 remote_get_noisy_reply ();
13092 if (*rs->buf == '\0')
13093 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13094 if (strcmp (rs->buf, "OK") != 0)
13095 error (_("Error on target while disabling tracepoint."));
13096 }
13097
13098 void
13099 remote_target::trace_set_readonly_regions ()
13100 {
13101 asection *s;
13102 bfd *abfd = NULL;
13103 bfd_size_type size;
13104 bfd_vma vma;
13105 int anysecs = 0;
13106 int offset = 0;
13107
13108 if (!exec_bfd)
13109 return; /* No information to give. */
13110
13111 struct remote_state *rs = get_remote_state ();
13112
13113 strcpy (rs->buf, "QTro");
13114 offset = strlen (rs->buf);
13115 for (s = exec_bfd->sections; s; s = s->next)
13116 {
13117 char tmp1[40], tmp2[40];
13118 int sec_length;
13119
13120 if ((s->flags & SEC_LOAD) == 0 ||
13121 /* (s->flags & SEC_CODE) == 0 || */
13122 (s->flags & SEC_READONLY) == 0)
13123 continue;
13124
13125 anysecs = 1;
13126 vma = bfd_get_section_vma (abfd, s);
13127 size = bfd_get_section_size (s);
13128 sprintf_vma (tmp1, vma);
13129 sprintf_vma (tmp2, vma + size);
13130 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13131 if (offset + sec_length + 1 > rs->buf_size)
13132 {
13133 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13134 warning (_("\
13135 Too many sections for read-only sections definition packet."));
13136 break;
13137 }
13138 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
13139 tmp1, tmp2);
13140 offset += sec_length;
13141 }
13142 if (anysecs)
13143 {
13144 putpkt (rs->buf);
13145 getpkt (&rs->buf, &rs->buf_size, 0);
13146 }
13147 }
13148
13149 void
13150 remote_target::trace_start ()
13151 {
13152 struct remote_state *rs = get_remote_state ();
13153
13154 putpkt ("QTStart");
13155 remote_get_noisy_reply ();
13156 if (*rs->buf == '\0')
13157 error (_("Target does not support this command."));
13158 if (strcmp (rs->buf, "OK") != 0)
13159 error (_("Bogus reply from target: %s"), rs->buf);
13160 }
13161
13162 int
13163 remote_target::get_trace_status (struct trace_status *ts)
13164 {
13165 /* Initialize it just to avoid a GCC false warning. */
13166 char *p = NULL;
13167 /* FIXME we need to get register block size some other way. */
13168 extern int trace_regblock_size;
13169 enum packet_result result;
13170 struct remote_state *rs = get_remote_state ();
13171
13172 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13173 return -1;
13174
13175 trace_regblock_size
13176 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13177
13178 putpkt ("qTStatus");
13179
13180 TRY
13181 {
13182 p = remote_get_noisy_reply ();
13183 }
13184 CATCH (ex, RETURN_MASK_ERROR)
13185 {
13186 if (ex.error != TARGET_CLOSE_ERROR)
13187 {
13188 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13189 return -1;
13190 }
13191 throw_exception (ex);
13192 }
13193 END_CATCH
13194
13195 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13196
13197 /* If the remote target doesn't do tracing, flag it. */
13198 if (result == PACKET_UNKNOWN)
13199 return -1;
13200
13201 /* We're working with a live target. */
13202 ts->filename = NULL;
13203
13204 if (*p++ != 'T')
13205 error (_("Bogus trace status reply from target: %s"), rs->buf);
13206
13207 /* Function 'parse_trace_status' sets default value of each field of
13208 'ts' at first, so we don't have to do it here. */
13209 parse_trace_status (p, ts);
13210
13211 return ts->running;
13212 }
13213
13214 void
13215 remote_target::get_tracepoint_status (struct breakpoint *bp,
13216 struct uploaded_tp *utp)
13217 {
13218 struct remote_state *rs = get_remote_state ();
13219 char *reply;
13220 struct bp_location *loc;
13221 struct tracepoint *tp = (struct tracepoint *) bp;
13222 size_t size = get_remote_packet_size ();
13223
13224 if (tp)
13225 {
13226 tp->hit_count = 0;
13227 tp->traceframe_usage = 0;
13228 for (loc = tp->loc; loc; loc = loc->next)
13229 {
13230 /* If the tracepoint was never downloaded, don't go asking for
13231 any status. */
13232 if (tp->number_on_target == 0)
13233 continue;
13234 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13235 phex_nz (loc->address, 0));
13236 putpkt (rs->buf);
13237 reply = remote_get_noisy_reply ();
13238 if (reply && *reply)
13239 {
13240 if (*reply == 'V')
13241 parse_tracepoint_status (reply + 1, bp, utp);
13242 }
13243 }
13244 }
13245 else if (utp)
13246 {
13247 utp->hit_count = 0;
13248 utp->traceframe_usage = 0;
13249 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13250 phex_nz (utp->addr, 0));
13251 putpkt (rs->buf);
13252 reply = remote_get_noisy_reply ();
13253 if (reply && *reply)
13254 {
13255 if (*reply == 'V')
13256 parse_tracepoint_status (reply + 1, bp, utp);
13257 }
13258 }
13259 }
13260
13261 void
13262 remote_target::trace_stop ()
13263 {
13264 struct remote_state *rs = get_remote_state ();
13265
13266 putpkt ("QTStop");
13267 remote_get_noisy_reply ();
13268 if (*rs->buf == '\0')
13269 error (_("Target does not support this command."));
13270 if (strcmp (rs->buf, "OK") != 0)
13271 error (_("Bogus reply from target: %s"), rs->buf);
13272 }
13273
13274 int
13275 remote_target::trace_find (enum trace_find_type type, int num,
13276 CORE_ADDR addr1, CORE_ADDR addr2,
13277 int *tpp)
13278 {
13279 struct remote_state *rs = get_remote_state ();
13280 char *endbuf = rs->buf + get_remote_packet_size ();
13281 char *p, *reply;
13282 int target_frameno = -1, target_tracept = -1;
13283
13284 /* Lookups other than by absolute frame number depend on the current
13285 trace selected, so make sure it is correct on the remote end
13286 first. */
13287 if (type != tfind_number)
13288 set_remote_traceframe ();
13289
13290 p = rs->buf;
13291 strcpy (p, "QTFrame:");
13292 p = strchr (p, '\0');
13293 switch (type)
13294 {
13295 case tfind_number:
13296 xsnprintf (p, endbuf - p, "%x", num);
13297 break;
13298 case tfind_pc:
13299 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13300 break;
13301 case tfind_tp:
13302 xsnprintf (p, endbuf - p, "tdp:%x", num);
13303 break;
13304 case tfind_range:
13305 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13306 phex_nz (addr2, 0));
13307 break;
13308 case tfind_outside:
13309 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13310 phex_nz (addr2, 0));
13311 break;
13312 default:
13313 error (_("Unknown trace find type %d"), type);
13314 }
13315
13316 putpkt (rs->buf);
13317 reply = remote_get_noisy_reply ();
13318 if (*reply == '\0')
13319 error (_("Target does not support this command."));
13320
13321 while (reply && *reply)
13322 switch (*reply)
13323 {
13324 case 'F':
13325 p = ++reply;
13326 target_frameno = (int) strtol (p, &reply, 16);
13327 if (reply == p)
13328 error (_("Unable to parse trace frame number"));
13329 /* Don't update our remote traceframe number cache on failure
13330 to select a remote traceframe. */
13331 if (target_frameno == -1)
13332 return -1;
13333 break;
13334 case 'T':
13335 p = ++reply;
13336 target_tracept = (int) strtol (p, &reply, 16);
13337 if (reply == p)
13338 error (_("Unable to parse tracepoint number"));
13339 break;
13340 case 'O': /* "OK"? */
13341 if (reply[1] == 'K' && reply[2] == '\0')
13342 reply += 2;
13343 else
13344 error (_("Bogus reply from target: %s"), reply);
13345 break;
13346 default:
13347 error (_("Bogus reply from target: %s"), reply);
13348 }
13349 if (tpp)
13350 *tpp = target_tracept;
13351
13352 rs->remote_traceframe_number = target_frameno;
13353 return target_frameno;
13354 }
13355
13356 bool
13357 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13358 {
13359 struct remote_state *rs = get_remote_state ();
13360 char *reply;
13361 ULONGEST uval;
13362
13363 set_remote_traceframe ();
13364
13365 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13366 putpkt (rs->buf);
13367 reply = remote_get_noisy_reply ();
13368 if (reply && *reply)
13369 {
13370 if (*reply == 'V')
13371 {
13372 unpack_varlen_hex (reply + 1, &uval);
13373 *val = (LONGEST) uval;
13374 return true;
13375 }
13376 }
13377 return false;
13378 }
13379
13380 int
13381 remote_target::save_trace_data (const char *filename)
13382 {
13383 struct remote_state *rs = get_remote_state ();
13384 char *p, *reply;
13385
13386 p = rs->buf;
13387 strcpy (p, "QTSave:");
13388 p += strlen (p);
13389 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13390 error (_("Remote file name too long for trace save packet"));
13391 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13392 *p++ = '\0';
13393 putpkt (rs->buf);
13394 reply = remote_get_noisy_reply ();
13395 if (*reply == '\0')
13396 error (_("Target does not support this command."));
13397 if (strcmp (reply, "OK") != 0)
13398 error (_("Bogus reply from target: %s"), reply);
13399 return 0;
13400 }
13401
13402 /* This is basically a memory transfer, but needs to be its own packet
13403 because we don't know how the target actually organizes its trace
13404 memory, plus we want to be able to ask for as much as possible, but
13405 not be unhappy if we don't get as much as we ask for. */
13406
13407 LONGEST
13408 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13409 {
13410 struct remote_state *rs = get_remote_state ();
13411 char *reply;
13412 char *p;
13413 int rslt;
13414
13415 p = rs->buf;
13416 strcpy (p, "qTBuffer:");
13417 p += strlen (p);
13418 p += hexnumstr (p, offset);
13419 *p++ = ',';
13420 p += hexnumstr (p, len);
13421 *p++ = '\0';
13422
13423 putpkt (rs->buf);
13424 reply = remote_get_noisy_reply ();
13425 if (reply && *reply)
13426 {
13427 /* 'l' by itself means we're at the end of the buffer and
13428 there is nothing more to get. */
13429 if (*reply == 'l')
13430 return 0;
13431
13432 /* Convert the reply into binary. Limit the number of bytes to
13433 convert according to our passed-in buffer size, rather than
13434 what was returned in the packet; if the target is
13435 unexpectedly generous and gives us a bigger reply than we
13436 asked for, we don't want to crash. */
13437 rslt = hex2bin (reply, buf, len);
13438 return rslt;
13439 }
13440
13441 /* Something went wrong, flag as an error. */
13442 return -1;
13443 }
13444
13445 void
13446 remote_target::set_disconnected_tracing (int val)
13447 {
13448 struct remote_state *rs = get_remote_state ();
13449
13450 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13451 {
13452 char *reply;
13453
13454 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13455 putpkt (rs->buf);
13456 reply = remote_get_noisy_reply ();
13457 if (*reply == '\0')
13458 error (_("Target does not support this command."));
13459 if (strcmp (reply, "OK") != 0)
13460 error (_("Bogus reply from target: %s"), reply);
13461 }
13462 else if (val)
13463 warning (_("Target does not support disconnected tracing."));
13464 }
13465
13466 int
13467 remote_target::core_of_thread (ptid_t ptid)
13468 {
13469 struct thread_info *info = find_thread_ptid (ptid);
13470
13471 if (info != NULL && info->priv != NULL)
13472 return get_remote_thread_info (info)->core;
13473
13474 return -1;
13475 }
13476
13477 void
13478 remote_target::set_circular_trace_buffer (int val)
13479 {
13480 struct remote_state *rs = get_remote_state ();
13481 char *reply;
13482
13483 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13484 putpkt (rs->buf);
13485 reply = remote_get_noisy_reply ();
13486 if (*reply == '\0')
13487 error (_("Target does not support this command."));
13488 if (strcmp (reply, "OK") != 0)
13489 error (_("Bogus reply from target: %s"), reply);
13490 }
13491
13492 traceframe_info_up
13493 remote_target::traceframe_info ()
13494 {
13495 gdb::optional<gdb::char_vector> text
13496 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13497 NULL);
13498 if (text)
13499 return parse_traceframe_info (text->data ());
13500
13501 return NULL;
13502 }
13503
13504 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13505 instruction on which a fast tracepoint may be placed. Returns -1
13506 if the packet is not supported, and 0 if the minimum instruction
13507 length is unknown. */
13508
13509 int
13510 remote_target::get_min_fast_tracepoint_insn_len ()
13511 {
13512 struct remote_state *rs = get_remote_state ();
13513 char *reply;
13514
13515 /* If we're not debugging a process yet, the IPA can't be
13516 loaded. */
13517 if (!target_has_execution)
13518 return 0;
13519
13520 /* Make sure the remote is pointing at the right process. */
13521 set_general_process ();
13522
13523 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13524 putpkt (rs->buf);
13525 reply = remote_get_noisy_reply ();
13526 if (*reply == '\0')
13527 return -1;
13528 else
13529 {
13530 ULONGEST min_insn_len;
13531
13532 unpack_varlen_hex (reply, &min_insn_len);
13533
13534 return (int) min_insn_len;
13535 }
13536 }
13537
13538 void
13539 remote_target::set_trace_buffer_size (LONGEST val)
13540 {
13541 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13542 {
13543 struct remote_state *rs = get_remote_state ();
13544 char *buf = rs->buf;
13545 char *endbuf = rs->buf + get_remote_packet_size ();
13546 enum packet_result result;
13547
13548 gdb_assert (val >= 0 || val == -1);
13549 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13550 /* Send -1 as literal "-1" to avoid host size dependency. */
13551 if (val < 0)
13552 {
13553 *buf++ = '-';
13554 buf += hexnumstr (buf, (ULONGEST) -val);
13555 }
13556 else
13557 buf += hexnumstr (buf, (ULONGEST) val);
13558
13559 putpkt (rs->buf);
13560 remote_get_noisy_reply ();
13561 result = packet_ok (rs->buf,
13562 &remote_protocol_packets[PACKET_QTBuffer_size]);
13563
13564 if (result != PACKET_OK)
13565 warning (_("Bogus reply from target: %s"), rs->buf);
13566 }
13567 }
13568
13569 bool
13570 remote_target::set_trace_notes (const char *user, const char *notes,
13571 const char *stop_notes)
13572 {
13573 struct remote_state *rs = get_remote_state ();
13574 char *reply;
13575 char *buf = rs->buf;
13576 char *endbuf = rs->buf + get_remote_packet_size ();
13577 int nbytes;
13578
13579 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13580 if (user)
13581 {
13582 buf += xsnprintf (buf, endbuf - buf, "user:");
13583 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13584 buf += 2 * nbytes;
13585 *buf++ = ';';
13586 }
13587 if (notes)
13588 {
13589 buf += xsnprintf (buf, endbuf - buf, "notes:");
13590 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13591 buf += 2 * nbytes;
13592 *buf++ = ';';
13593 }
13594 if (stop_notes)
13595 {
13596 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13597 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13598 buf += 2 * nbytes;
13599 *buf++ = ';';
13600 }
13601 /* Ensure the buffer is terminated. */
13602 *buf = '\0';
13603
13604 putpkt (rs->buf);
13605 reply = remote_get_noisy_reply ();
13606 if (*reply == '\0')
13607 return false;
13608
13609 if (strcmp (reply, "OK") != 0)
13610 error (_("Bogus reply from target: %s"), reply);
13611
13612 return true;
13613 }
13614
13615 bool
13616 remote_target::use_agent (bool use)
13617 {
13618 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13619 {
13620 struct remote_state *rs = get_remote_state ();
13621
13622 /* If the stub supports QAgent. */
13623 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13624 putpkt (rs->buf);
13625 getpkt (&rs->buf, &rs->buf_size, 0);
13626
13627 if (strcmp (rs->buf, "OK") == 0)
13628 {
13629 ::use_agent = use;
13630 return true;
13631 }
13632 }
13633
13634 return false;
13635 }
13636
13637 bool
13638 remote_target::can_use_agent ()
13639 {
13640 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13641 }
13642
13643 struct btrace_target_info
13644 {
13645 /* The ptid of the traced thread. */
13646 ptid_t ptid;
13647
13648 /* The obtained branch trace configuration. */
13649 struct btrace_config conf;
13650 };
13651
13652 /* Reset our idea of our target's btrace configuration. */
13653
13654 static void
13655 remote_btrace_reset (remote_state *rs)
13656 {
13657 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13658 }
13659
13660 /* Synchronize the configuration with the target. */
13661
13662 void
13663 remote_target::btrace_sync_conf (const btrace_config *conf)
13664 {
13665 struct packet_config *packet;
13666 struct remote_state *rs;
13667 char *buf, *pos, *endbuf;
13668
13669 rs = get_remote_state ();
13670 buf = rs->buf;
13671 endbuf = buf + get_remote_packet_size ();
13672
13673 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13674 if (packet_config_support (packet) == PACKET_ENABLE
13675 && conf->bts.size != rs->btrace_config.bts.size)
13676 {
13677 pos = buf;
13678 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13679 conf->bts.size);
13680
13681 putpkt (buf);
13682 getpkt (&buf, &rs->buf_size, 0);
13683
13684 if (packet_ok (buf, packet) == PACKET_ERROR)
13685 {
13686 if (buf[0] == 'E' && buf[1] == '.')
13687 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13688 else
13689 error (_("Failed to configure the BTS buffer size."));
13690 }
13691
13692 rs->btrace_config.bts.size = conf->bts.size;
13693 }
13694
13695 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13696 if (packet_config_support (packet) == PACKET_ENABLE
13697 && conf->pt.size != rs->btrace_config.pt.size)
13698 {
13699 pos = buf;
13700 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13701 conf->pt.size);
13702
13703 putpkt (buf);
13704 getpkt (&buf, &rs->buf_size, 0);
13705
13706 if (packet_ok (buf, packet) == PACKET_ERROR)
13707 {
13708 if (buf[0] == 'E' && buf[1] == '.')
13709 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13710 else
13711 error (_("Failed to configure the trace buffer size."));
13712 }
13713
13714 rs->btrace_config.pt.size = conf->pt.size;
13715 }
13716 }
13717
13718 /* Read the current thread's btrace configuration from the target and
13719 store it into CONF. */
13720
13721 static void
13722 btrace_read_config (struct btrace_config *conf)
13723 {
13724 gdb::optional<gdb::char_vector> xml
13725 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13726 if (xml)
13727 parse_xml_btrace_conf (conf, xml->data ());
13728 }
13729
13730 /* Maybe reopen target btrace. */
13731
13732 void
13733 remote_target::remote_btrace_maybe_reopen ()
13734 {
13735 struct remote_state *rs = get_remote_state ();
13736 int btrace_target_pushed = 0;
13737 #if !defined (HAVE_LIBIPT)
13738 int warned = 0;
13739 #endif
13740
13741 scoped_restore_current_thread restore_thread;
13742
13743 for (thread_info *tp : all_non_exited_threads ())
13744 {
13745 set_general_thread (tp->ptid);
13746
13747 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13748 btrace_read_config (&rs->btrace_config);
13749
13750 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13751 continue;
13752
13753 #if !defined (HAVE_LIBIPT)
13754 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13755 {
13756 if (!warned)
13757 {
13758 warned = 1;
13759 warning (_("Target is recording using Intel Processor Trace "
13760 "but support was disabled at compile time."));
13761 }
13762
13763 continue;
13764 }
13765 #endif /* !defined (HAVE_LIBIPT) */
13766
13767 /* Push target, once, but before anything else happens. This way our
13768 changes to the threads will be cleaned up by unpushing the target
13769 in case btrace_read_config () throws. */
13770 if (!btrace_target_pushed)
13771 {
13772 btrace_target_pushed = 1;
13773 record_btrace_push_target ();
13774 printf_filtered (_("Target is recording using %s.\n"),
13775 btrace_format_string (rs->btrace_config.format));
13776 }
13777
13778 tp->btrace.target = XCNEW (struct btrace_target_info);
13779 tp->btrace.target->ptid = tp->ptid;
13780 tp->btrace.target->conf = rs->btrace_config;
13781 }
13782 }
13783
13784 /* Enable branch tracing. */
13785
13786 struct btrace_target_info *
13787 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13788 {
13789 struct btrace_target_info *tinfo = NULL;
13790 struct packet_config *packet = NULL;
13791 struct remote_state *rs = get_remote_state ();
13792 char *buf = rs->buf;
13793 char *endbuf = rs->buf + get_remote_packet_size ();
13794
13795 switch (conf->format)
13796 {
13797 case BTRACE_FORMAT_BTS:
13798 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13799 break;
13800
13801 case BTRACE_FORMAT_PT:
13802 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13803 break;
13804 }
13805
13806 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13807 error (_("Target does not support branch tracing."));
13808
13809 btrace_sync_conf (conf);
13810
13811 set_general_thread (ptid);
13812
13813 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13814 putpkt (rs->buf);
13815 getpkt (&rs->buf, &rs->buf_size, 0);
13816
13817 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13818 {
13819 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13820 error (_("Could not enable branch tracing for %s: %s"),
13821 target_pid_to_str (ptid), rs->buf + 2);
13822 else
13823 error (_("Could not enable branch tracing for %s."),
13824 target_pid_to_str (ptid));
13825 }
13826
13827 tinfo = XCNEW (struct btrace_target_info);
13828 tinfo->ptid = ptid;
13829
13830 /* If we fail to read the configuration, we lose some information, but the
13831 tracing itself is not impacted. */
13832 TRY
13833 {
13834 btrace_read_config (&tinfo->conf);
13835 }
13836 CATCH (err, RETURN_MASK_ERROR)
13837 {
13838 if (err.message != NULL)
13839 warning ("%s", err.message);
13840 }
13841 END_CATCH
13842
13843 return tinfo;
13844 }
13845
13846 /* Disable branch tracing. */
13847
13848 void
13849 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13850 {
13851 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13852 struct remote_state *rs = get_remote_state ();
13853 char *buf = rs->buf;
13854 char *endbuf = rs->buf + get_remote_packet_size ();
13855
13856 if (packet_config_support (packet) != PACKET_ENABLE)
13857 error (_("Target does not support branch tracing."));
13858
13859 set_general_thread (tinfo->ptid);
13860
13861 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13862 putpkt (rs->buf);
13863 getpkt (&rs->buf, &rs->buf_size, 0);
13864
13865 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13866 {
13867 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13868 error (_("Could not disable branch tracing for %s: %s"),
13869 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13870 else
13871 error (_("Could not disable branch tracing for %s."),
13872 target_pid_to_str (tinfo->ptid));
13873 }
13874
13875 xfree (tinfo);
13876 }
13877
13878 /* Teardown branch tracing. */
13879
13880 void
13881 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13882 {
13883 /* We must not talk to the target during teardown. */
13884 xfree (tinfo);
13885 }
13886
13887 /* Read the branch trace. */
13888
13889 enum btrace_error
13890 remote_target::read_btrace (struct btrace_data *btrace,
13891 struct btrace_target_info *tinfo,
13892 enum btrace_read_type type)
13893 {
13894 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13895 const char *annex;
13896
13897 if (packet_config_support (packet) != PACKET_ENABLE)
13898 error (_("Target does not support branch tracing."));
13899
13900 #if !defined(HAVE_LIBEXPAT)
13901 error (_("Cannot process branch tracing result. XML parsing not supported."));
13902 #endif
13903
13904 switch (type)
13905 {
13906 case BTRACE_READ_ALL:
13907 annex = "all";
13908 break;
13909 case BTRACE_READ_NEW:
13910 annex = "new";
13911 break;
13912 case BTRACE_READ_DELTA:
13913 annex = "delta";
13914 break;
13915 default:
13916 internal_error (__FILE__, __LINE__,
13917 _("Bad branch tracing read type: %u."),
13918 (unsigned int) type);
13919 }
13920
13921 gdb::optional<gdb::char_vector> xml
13922 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13923 if (!xml)
13924 return BTRACE_ERR_UNKNOWN;
13925
13926 parse_xml_btrace (btrace, xml->data ());
13927
13928 return BTRACE_ERR_NONE;
13929 }
13930
13931 const struct btrace_config *
13932 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13933 {
13934 return &tinfo->conf;
13935 }
13936
13937 bool
13938 remote_target::augmented_libraries_svr4_read ()
13939 {
13940 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13941 == PACKET_ENABLE);
13942 }
13943
13944 /* Implementation of to_load. */
13945
13946 void
13947 remote_target::load (const char *name, int from_tty)
13948 {
13949 generic_load (name, from_tty);
13950 }
13951
13952 /* Accepts an integer PID; returns a string representing a file that
13953 can be opened on the remote side to get the symbols for the child
13954 process. Returns NULL if the operation is not supported. */
13955
13956 char *
13957 remote_target::pid_to_exec_file (int pid)
13958 {
13959 static gdb::optional<gdb::char_vector> filename;
13960 struct inferior *inf;
13961 char *annex = NULL;
13962
13963 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13964 return NULL;
13965
13966 inf = find_inferior_pid (pid);
13967 if (inf == NULL)
13968 internal_error (__FILE__, __LINE__,
13969 _("not currently attached to process %d"), pid);
13970
13971 if (!inf->fake_pid_p)
13972 {
13973 const int annex_size = 9;
13974
13975 annex = (char *) alloca (annex_size);
13976 xsnprintf (annex, annex_size, "%x", pid);
13977 }
13978
13979 filename = target_read_stralloc (current_top_target (),
13980 TARGET_OBJECT_EXEC_FILE, annex);
13981
13982 return filename ? filename->data () : nullptr;
13983 }
13984
13985 /* Implement the to_can_do_single_step target_ops method. */
13986
13987 int
13988 remote_target::can_do_single_step ()
13989 {
13990 /* We can only tell whether target supports single step or not by
13991 supported s and S vCont actions if the stub supports vContSupported
13992 feature. If the stub doesn't support vContSupported feature,
13993 we have conservatively to think target doesn't supports single
13994 step. */
13995 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13996 {
13997 struct remote_state *rs = get_remote_state ();
13998
13999 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14000 remote_vcont_probe ();
14001
14002 return rs->supports_vCont.s && rs->supports_vCont.S;
14003 }
14004 else
14005 return 0;
14006 }
14007
14008 /* Implementation of the to_execution_direction method for the remote
14009 target. */
14010
14011 enum exec_direction_kind
14012 remote_target::execution_direction ()
14013 {
14014 struct remote_state *rs = get_remote_state ();
14015
14016 return rs->last_resume_exec_dir;
14017 }
14018
14019 /* Return pointer to the thread_info struct which corresponds to
14020 THREAD_HANDLE (having length HANDLE_LEN). */
14021
14022 thread_info *
14023 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14024 int handle_len,
14025 inferior *inf)
14026 {
14027 for (thread_info *tp : all_non_exited_threads ())
14028 {
14029 remote_thread_info *priv = get_remote_thread_info (tp);
14030
14031 if (tp->inf == inf && priv != NULL)
14032 {
14033 if (handle_len != priv->thread_handle.size ())
14034 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14035 handle_len, priv->thread_handle.size ());
14036 if (memcmp (thread_handle, priv->thread_handle.data (),
14037 handle_len) == 0)
14038 return tp;
14039 }
14040 }
14041
14042 return NULL;
14043 }
14044
14045 bool
14046 remote_target::can_async_p ()
14047 {
14048 struct remote_state *rs = get_remote_state ();
14049
14050 /* We don't go async if the user has explicitly prevented it with the
14051 "maint set target-async" command. */
14052 if (!target_async_permitted)
14053 return false;
14054
14055 /* We're async whenever the serial device is. */
14056 return serial_can_async_p (rs->remote_desc);
14057 }
14058
14059 bool
14060 remote_target::is_async_p ()
14061 {
14062 struct remote_state *rs = get_remote_state ();
14063
14064 if (!target_async_permitted)
14065 /* We only enable async when the user specifically asks for it. */
14066 return false;
14067
14068 /* We're async whenever the serial device is. */
14069 return serial_is_async_p (rs->remote_desc);
14070 }
14071
14072 /* Pass the SERIAL event on and up to the client. One day this code
14073 will be able to delay notifying the client of an event until the
14074 point where an entire packet has been received. */
14075
14076 static serial_event_ftype remote_async_serial_handler;
14077
14078 static void
14079 remote_async_serial_handler (struct serial *scb, void *context)
14080 {
14081 /* Don't propogate error information up to the client. Instead let
14082 the client find out about the error by querying the target. */
14083 inferior_event_handler (INF_REG_EVENT, NULL);
14084 }
14085
14086 static void
14087 remote_async_inferior_event_handler (gdb_client_data data)
14088 {
14089 inferior_event_handler (INF_REG_EVENT, data);
14090 }
14091
14092 void
14093 remote_target::async (int enable)
14094 {
14095 struct remote_state *rs = get_remote_state ();
14096
14097 if (enable)
14098 {
14099 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14100
14101 /* If there are pending events in the stop reply queue tell the
14102 event loop to process them. */
14103 if (!rs->stop_reply_queue.empty ())
14104 mark_async_event_handler (rs->remote_async_inferior_event_token);
14105 /* For simplicity, below we clear the pending events token
14106 without remembering whether it is marked, so here we always
14107 mark it. If there's actually no pending notification to
14108 process, this ends up being a no-op (other than a spurious
14109 event-loop wakeup). */
14110 if (target_is_non_stop_p ())
14111 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14112 }
14113 else
14114 {
14115 serial_async (rs->remote_desc, NULL, NULL);
14116 /* If the core is disabling async, it doesn't want to be
14117 disturbed with target events. Clear all async event sources
14118 too. */
14119 clear_async_event_handler (rs->remote_async_inferior_event_token);
14120 if (target_is_non_stop_p ())
14121 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14122 }
14123 }
14124
14125 /* Implementation of the to_thread_events method. */
14126
14127 void
14128 remote_target::thread_events (int enable)
14129 {
14130 struct remote_state *rs = get_remote_state ();
14131 size_t size = get_remote_packet_size ();
14132
14133 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14134 return;
14135
14136 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
14137 putpkt (rs->buf);
14138 getpkt (&rs->buf, &rs->buf_size, 0);
14139
14140 switch (packet_ok (rs->buf,
14141 &remote_protocol_packets[PACKET_QThreadEvents]))
14142 {
14143 case PACKET_OK:
14144 if (strcmp (rs->buf, "OK") != 0)
14145 error (_("Remote refused setting thread events: %s"), rs->buf);
14146 break;
14147 case PACKET_ERROR:
14148 warning (_("Remote failure reply: %s"), rs->buf);
14149 break;
14150 case PACKET_UNKNOWN:
14151 break;
14152 }
14153 }
14154
14155 static void
14156 set_remote_cmd (const char *args, int from_tty)
14157 {
14158 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14159 }
14160
14161 static void
14162 show_remote_cmd (const char *args, int from_tty)
14163 {
14164 /* We can't just use cmd_show_list here, because we want to skip
14165 the redundant "show remote Z-packet" and the legacy aliases. */
14166 struct cmd_list_element *list = remote_show_cmdlist;
14167 struct ui_out *uiout = current_uiout;
14168
14169 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14170 for (; list != NULL; list = list->next)
14171 if (strcmp (list->name, "Z-packet") == 0)
14172 continue;
14173 else if (list->type == not_set_cmd)
14174 /* Alias commands are exactly like the original, except they
14175 don't have the normal type. */
14176 continue;
14177 else
14178 {
14179 ui_out_emit_tuple option_emitter (uiout, "option");
14180
14181 uiout->field_string ("name", list->name);
14182 uiout->text (": ");
14183 if (list->type == show_cmd)
14184 do_show_command (NULL, from_tty, list);
14185 else
14186 cmd_func (list, NULL, from_tty);
14187 }
14188 }
14189
14190
14191 /* Function to be called whenever a new objfile (shlib) is detected. */
14192 static void
14193 remote_new_objfile (struct objfile *objfile)
14194 {
14195 remote_target *remote = get_current_remote_target ();
14196
14197 if (remote != NULL) /* Have a remote connection. */
14198 remote->remote_check_symbols ();
14199 }
14200
14201 /* Pull all the tracepoints defined on the target and create local
14202 data structures representing them. We don't want to create real
14203 tracepoints yet, we don't want to mess up the user's existing
14204 collection. */
14205
14206 int
14207 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14208 {
14209 struct remote_state *rs = get_remote_state ();
14210 char *p;
14211
14212 /* Ask for a first packet of tracepoint definition. */
14213 putpkt ("qTfP");
14214 getpkt (&rs->buf, &rs->buf_size, 0);
14215 p = rs->buf;
14216 while (*p && *p != 'l')
14217 {
14218 parse_tracepoint_definition (p, utpp);
14219 /* Ask for another packet of tracepoint definition. */
14220 putpkt ("qTsP");
14221 getpkt (&rs->buf, &rs->buf_size, 0);
14222 p = rs->buf;
14223 }
14224 return 0;
14225 }
14226
14227 int
14228 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14229 {
14230 struct remote_state *rs = get_remote_state ();
14231 char *p;
14232
14233 /* Ask for a first packet of variable definition. */
14234 putpkt ("qTfV");
14235 getpkt (&rs->buf, &rs->buf_size, 0);
14236 p = rs->buf;
14237 while (*p && *p != 'l')
14238 {
14239 parse_tsv_definition (p, utsvp);
14240 /* Ask for another packet of variable definition. */
14241 putpkt ("qTsV");
14242 getpkt (&rs->buf, &rs->buf_size, 0);
14243 p = rs->buf;
14244 }
14245 return 0;
14246 }
14247
14248 /* The "set/show range-stepping" show hook. */
14249
14250 static void
14251 show_range_stepping (struct ui_file *file, int from_tty,
14252 struct cmd_list_element *c,
14253 const char *value)
14254 {
14255 fprintf_filtered (file,
14256 _("Debugger's willingness to use range stepping "
14257 "is %s.\n"), value);
14258 }
14259
14260 /* Return true if the vCont;r action is supported by the remote
14261 stub. */
14262
14263 bool
14264 remote_target::vcont_r_supported ()
14265 {
14266 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14267 remote_vcont_probe ();
14268
14269 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14270 && get_remote_state ()->supports_vCont.r);
14271 }
14272
14273 /* The "set/show range-stepping" set hook. */
14274
14275 static void
14276 set_range_stepping (const char *ignore_args, int from_tty,
14277 struct cmd_list_element *c)
14278 {
14279 /* When enabling, check whether range stepping is actually supported
14280 by the target, and warn if not. */
14281 if (use_range_stepping)
14282 {
14283 remote_target *remote = get_current_remote_target ();
14284 if (remote == NULL
14285 || !remote->vcont_r_supported ())
14286 warning (_("Range stepping is not supported by the current target"));
14287 }
14288 }
14289
14290 void
14291 _initialize_remote (void)
14292 {
14293 struct cmd_list_element *cmd;
14294 const char *cmd_name;
14295
14296 /* architecture specific data */
14297 remote_g_packet_data_handle =
14298 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14299
14300 remote_pspace_data
14301 = register_program_space_data_with_cleanup (NULL,
14302 remote_pspace_data_cleanup);
14303
14304 add_target (remote_target_info, remote_target::open);
14305 add_target (extended_remote_target_info, extended_remote_target::open);
14306
14307 /* Hook into new objfile notification. */
14308 gdb::observers::new_objfile.attach (remote_new_objfile);
14309
14310 #if 0
14311 init_remote_threadtests ();
14312 #endif
14313
14314 /* set/show remote ... */
14315
14316 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14317 Remote protocol specific variables\n\
14318 Configure various remote-protocol specific variables such as\n\
14319 the packets being used"),
14320 &remote_set_cmdlist, "set remote ",
14321 0 /* allow-unknown */, &setlist);
14322 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14323 Remote protocol specific variables\n\
14324 Configure various remote-protocol specific variables such as\n\
14325 the packets being used"),
14326 &remote_show_cmdlist, "show remote ",
14327 0 /* allow-unknown */, &showlist);
14328
14329 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14330 Compare section data on target to the exec file.\n\
14331 Argument is a single section name (default: all loaded sections).\n\
14332 To compare only read-only loaded sections, specify the -r option."),
14333 &cmdlist);
14334
14335 add_cmd ("packet", class_maintenance, packet_command, _("\
14336 Send an arbitrary packet to a remote target.\n\
14337 maintenance packet TEXT\n\
14338 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14339 this command sends the string TEXT to the inferior, and displays the\n\
14340 response packet. GDB supplies the initial `$' character, and the\n\
14341 terminating `#' character and checksum."),
14342 &maintenancelist);
14343
14344 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14345 Set whether to send break if interrupted."), _("\
14346 Show whether to send break if interrupted."), _("\
14347 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14348 set_remotebreak, show_remotebreak,
14349 &setlist, &showlist);
14350 cmd_name = "remotebreak";
14351 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14352 deprecate_cmd (cmd, "set remote interrupt-sequence");
14353 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14354 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14355 deprecate_cmd (cmd, "show remote interrupt-sequence");
14356
14357 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14358 interrupt_sequence_modes, &interrupt_sequence_mode,
14359 _("\
14360 Set interrupt sequence to remote target."), _("\
14361 Show interrupt sequence to remote target."), _("\
14362 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14363 NULL, show_interrupt_sequence,
14364 &remote_set_cmdlist,
14365 &remote_show_cmdlist);
14366
14367 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14368 &interrupt_on_connect, _("\
14369 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14370 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14371 If set, interrupt sequence is sent to remote target."),
14372 NULL, NULL,
14373 &remote_set_cmdlist, &remote_show_cmdlist);
14374
14375 /* Install commands for configuring memory read/write packets. */
14376
14377 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14378 Set the maximum number of bytes per memory write packet (deprecated)."),
14379 &setlist);
14380 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14381 Show the maximum number of bytes per memory write packet (deprecated)."),
14382 &showlist);
14383 add_cmd ("memory-write-packet-size", no_class,
14384 set_memory_write_packet_size, _("\
14385 Set the maximum number of bytes per memory-write packet.\n\
14386 Specify the number of bytes in a packet or 0 (zero) for the\n\
14387 default packet size. The actual limit is further reduced\n\
14388 dependent on the target. Specify ``fixed'' to disable the\n\
14389 further restriction and ``limit'' to enable that restriction."),
14390 &remote_set_cmdlist);
14391 add_cmd ("memory-read-packet-size", no_class,
14392 set_memory_read_packet_size, _("\
14393 Set the maximum number of bytes per memory-read packet.\n\
14394 Specify the number of bytes in a packet or 0 (zero) for the\n\
14395 default packet size. The actual limit is further reduced\n\
14396 dependent on the target. Specify ``fixed'' to disable the\n\
14397 further restriction and ``limit'' to enable that restriction."),
14398 &remote_set_cmdlist);
14399 add_cmd ("memory-write-packet-size", no_class,
14400 show_memory_write_packet_size,
14401 _("Show the maximum number of bytes per memory-write packet."),
14402 &remote_show_cmdlist);
14403 add_cmd ("memory-read-packet-size", no_class,
14404 show_memory_read_packet_size,
14405 _("Show the maximum number of bytes per memory-read packet."),
14406 &remote_show_cmdlist);
14407
14408 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14409 &remote_hw_watchpoint_limit, _("\
14410 Set the maximum number of target hardware watchpoints."), _("\
14411 Show the maximum number of target hardware watchpoints."), _("\
14412 Specify \"unlimited\" for unlimited hardware watchpoints."),
14413 NULL, show_hardware_watchpoint_limit,
14414 &remote_set_cmdlist,
14415 &remote_show_cmdlist);
14416 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14417 no_class,
14418 &remote_hw_watchpoint_length_limit, _("\
14419 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14420 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14421 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14422 NULL, show_hardware_watchpoint_length_limit,
14423 &remote_set_cmdlist, &remote_show_cmdlist);
14424 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14425 &remote_hw_breakpoint_limit, _("\
14426 Set the maximum number of target hardware breakpoints."), _("\
14427 Show the maximum number of target hardware breakpoints."), _("\
14428 Specify \"unlimited\" for unlimited hardware breakpoints."),
14429 NULL, show_hardware_breakpoint_limit,
14430 &remote_set_cmdlist, &remote_show_cmdlist);
14431
14432 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14433 &remote_address_size, _("\
14434 Set the maximum size of the address (in bits) in a memory packet."), _("\
14435 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14436 NULL,
14437 NULL, /* FIXME: i18n: */
14438 &setlist, &showlist);
14439
14440 init_all_packet_configs ();
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14443 "X", "binary-download", 1);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14446 "vCont", "verbose-resume", 0);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14449 "QPassSignals", "pass-signals", 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14452 "QCatchSyscalls", "catch-syscalls", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14455 "QProgramSignals", "program-signals", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14458 "QSetWorkingDir", "set-working-dir", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14461 "QStartupWithShell", "startup-with-shell", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets
14464 [PACKET_QEnvironmentHexEncoded],
14465 "QEnvironmentHexEncoded", "environment-hex-encoded",
14466 0);
14467
14468 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14469 "QEnvironmentReset", "environment-reset",
14470 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14473 "QEnvironmentUnset", "environment-unset",
14474 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14477 "qSymbol", "symbol-lookup", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14480 "P", "set-register", 1);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14483 "p", "fetch-register", 1);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14486 "Z0", "software-breakpoint", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14489 "Z1", "hardware-breakpoint", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14492 "Z2", "write-watchpoint", 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14495 "Z3", "read-watchpoint", 0);
14496
14497 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14498 "Z4", "access-watchpoint", 0);
14499
14500 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14501 "qXfer:auxv:read", "read-aux-vector", 0);
14502
14503 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14504 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14507 "qXfer:features:read", "target-features", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14510 "qXfer:libraries:read", "library-info", 0);
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14513 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14516 "qXfer:memory-map:read", "memory-map", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14519 "qXfer:spu:read", "read-spu-object", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14522 "qXfer:spu:write", "write-spu-object", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14525 "qXfer:osdata:read", "osdata", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14528 "qXfer:threads:read", "threads", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14531 "qXfer:siginfo:read", "read-siginfo-object", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14534 "qXfer:siginfo:write", "write-siginfo-object", 0);
14535
14536 add_packet_config_cmd
14537 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14538 "qXfer:traceframe-info:read", "traceframe-info", 0);
14539
14540 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14541 "qXfer:uib:read", "unwind-info-block", 0);
14542
14543 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14544 "qGetTLSAddr", "get-thread-local-storage-address",
14545 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14548 "qGetTIBAddr", "get-thread-information-block-address",
14549 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14552 "bc", "reverse-continue", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14555 "bs", "reverse-step", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14558 "qSupported", "supported-packets", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14561 "qSearch:memory", "search-memory", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14564 "qTStatus", "trace-status", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14567 "vFile:setfs", "hostio-setfs", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14570 "vFile:open", "hostio-open", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14573 "vFile:pread", "hostio-pread", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14576 "vFile:pwrite", "hostio-pwrite", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14579 "vFile:close", "hostio-close", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14582 "vFile:unlink", "hostio-unlink", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14585 "vFile:readlink", "hostio-readlink", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14588 "vFile:fstat", "hostio-fstat", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14591 "vAttach", "attach", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14594 "vRun", "run", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14597 "QStartNoAckMode", "noack", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14600 "vKill", "kill", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14603 "qAttached", "query-attached", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14606 "ConditionalTracepoints",
14607 "conditional-tracepoints", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14610 "ConditionalBreakpoints",
14611 "conditional-breakpoints", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14614 "BreakpointCommands",
14615 "breakpoint-commands", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14618 "FastTracepoints", "fast-tracepoints", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14621 "TracepointSource", "TracepointSource", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14624 "QAllow", "allow", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14627 "StaticTracepoints", "static-tracepoints", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14630 "InstallInTrace", "install-in-trace", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14633 "qXfer:statictrace:read", "read-sdata-object", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14636 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14639 "QDisableRandomization", "disable-randomization", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14642 "QAgent", "agent", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14645 "QTBuffer:size", "trace-buffer-size", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14648 "Qbtrace:off", "disable-btrace", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14651 "Qbtrace:bts", "enable-btrace-bts", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14654 "Qbtrace:pt", "enable-btrace-pt", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14657 "qXfer:btrace", "read-btrace", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14660 "qXfer:btrace-conf", "read-btrace-conf", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14663 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14666 "multiprocess-feature", "multiprocess-feature", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14669 "swbreak-feature", "swbreak-feature", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14672 "hwbreak-feature", "hwbreak-feature", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14675 "fork-event-feature", "fork-event-feature", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14678 "vfork-event-feature", "vfork-event-feature", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14681 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14684 "vContSupported", "verbose-resume-supported", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14687 "exec-event-feature", "exec-event-feature", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14690 "vCtrlC", "ctrl-c", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14693 "QThreadEvents", "thread-events", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14696 "N stop reply", "no-resumed-stop-reply", 0);
14697
14698 /* Assert that we've registered "set remote foo-packet" commands
14699 for all packet configs. */
14700 {
14701 int i;
14702
14703 for (i = 0; i < PACKET_MAX; i++)
14704 {
14705 /* Ideally all configs would have a command associated. Some
14706 still don't though. */
14707 int excepted;
14708
14709 switch (i)
14710 {
14711 case PACKET_QNonStop:
14712 case PACKET_EnableDisableTracepoints_feature:
14713 case PACKET_tracenz_feature:
14714 case PACKET_DisconnectedTracing_feature:
14715 case PACKET_augmented_libraries_svr4_read_feature:
14716 case PACKET_qCRC:
14717 /* Additions to this list need to be well justified:
14718 pre-existing packets are OK; new packets are not. */
14719 excepted = 1;
14720 break;
14721 default:
14722 excepted = 0;
14723 break;
14724 }
14725
14726 /* This catches both forgetting to add a config command, and
14727 forgetting to remove a packet from the exception list. */
14728 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14729 }
14730 }
14731
14732 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14733 Z sub-packet has its own set and show commands, but users may
14734 have sets to this variable in their .gdbinit files (or in their
14735 documentation). */
14736 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14737 &remote_Z_packet_detect, _("\
14738 Set use of remote protocol `Z' packets"), _("\
14739 Show use of remote protocol `Z' packets "), _("\
14740 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14741 packets."),
14742 set_remote_protocol_Z_packet_cmd,
14743 show_remote_protocol_Z_packet_cmd,
14744 /* FIXME: i18n: Use of remote protocol
14745 `Z' packets is %s. */
14746 &remote_set_cmdlist, &remote_show_cmdlist);
14747
14748 add_prefix_cmd ("remote", class_files, remote_command, _("\
14749 Manipulate files on the remote system\n\
14750 Transfer files to and from the remote target system."),
14751 &remote_cmdlist, "remote ",
14752 0 /* allow-unknown */, &cmdlist);
14753
14754 add_cmd ("put", class_files, remote_put_command,
14755 _("Copy a local file to the remote system."),
14756 &remote_cmdlist);
14757
14758 add_cmd ("get", class_files, remote_get_command,
14759 _("Copy a remote file to the local system."),
14760 &remote_cmdlist);
14761
14762 add_cmd ("delete", class_files, remote_delete_command,
14763 _("Delete a remote file."),
14764 &remote_cmdlist);
14765
14766 add_setshow_string_noescape_cmd ("exec-file", class_files,
14767 &remote_exec_file_var, _("\
14768 Set the remote pathname for \"run\""), _("\
14769 Show the remote pathname for \"run\""), NULL,
14770 set_remote_exec_file,
14771 show_remote_exec_file,
14772 &remote_set_cmdlist,
14773 &remote_show_cmdlist);
14774
14775 add_setshow_boolean_cmd ("range-stepping", class_run,
14776 &use_range_stepping, _("\
14777 Enable or disable range stepping."), _("\
14778 Show whether target-assisted range stepping is enabled."), _("\
14779 If on, and the target supports it, when stepping a source line, GDB\n\
14780 tells the target to step the corresponding range of addresses itself instead\n\
14781 of issuing multiple single-steps. This speeds up source level\n\
14782 stepping. If off, GDB always issues single-steps, even if range\n\
14783 stepping is supported by the target. The default is on."),
14784 set_range_stepping,
14785 show_range_stepping,
14786 &setlist,
14787 &showlist);
14788
14789 /* Eventually initialize fileio. See fileio.c */
14790 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14791
14792 /* Take advantage of the fact that the TID field is not used, to tag
14793 special ptids with it set to != 0. */
14794 magic_null_ptid = ptid_t (42000, -1, 1);
14795 not_sent_ptid = ptid_t (42000, -2, 1);
14796 any_thread_ptid = ptid_t (42000, 0, 1);
14797 }