]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* inferior.h (ptid_match): Declare.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, char ***tdp_actions,
76 char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static unsigned long crc32 (unsigned char *, int, unsigned int);
177
178 static void compare_sections_command (char *, int);
179
180 static void packet_command (char *, int);
181
182 static int stub_unpack_int (char *buff, int fieldlength);
183
184 static ptid_t remote_current_thread (ptid_t oldptid);
185
186 static void remote_find_new_threads (void);
187
188 static void record_currthread (ptid_t currthread);
189
190 static int fromhex (int a);
191
192 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
193
194 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
195
196 static int putpkt_binary (char *buf, int cnt);
197
198 static void check_binary_download (CORE_ADDR addr);
199
200 struct packet_config;
201
202 static void show_packet_config_cmd (struct packet_config *config);
203
204 static void update_packet_config (struct packet_config *config);
205
206 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
207 struct cmd_list_element *c);
208
209 static void show_remote_protocol_packet_cmd (struct ui_file *file,
210 int from_tty,
211 struct cmd_list_element *c,
212 const char *value);
213
214 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
215 static ptid_t read_ptid (char *buf, char **obuf);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub can continue running a trace while GDB is
324 disconnected. */
325 int disconnected_tracing;
326
327 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
328 responded to that. */
329 int ctrlc_pending_p;
330 };
331
332 /* Private data that we'll store in (struct thread_info)->private. */
333 struct private_thread_info
334 {
335 char *extra;
336 int core;
337 };
338
339 static void
340 free_private_thread_info (struct private_thread_info *info)
341 {
342 xfree (info->extra);
343 xfree (info);
344 }
345
346 /* Returns true if the multi-process extensions are in effect. */
347 static int
348 remote_multi_process_p (struct remote_state *rs)
349 {
350 return rs->extended && rs->multi_process_aware;
351 }
352
353 /* This data could be associated with a target, but we do not always
354 have access to the current target when we need it, so for now it is
355 static. This will be fine for as long as only one target is in use
356 at a time. */
357 static struct remote_state remote_state;
358
359 static struct remote_state *
360 get_remote_state_raw (void)
361 {
362 return &remote_state;
363 }
364
365 /* Description of the remote protocol for a given architecture. */
366
367 struct packet_reg
368 {
369 long offset; /* Offset into G packet. */
370 long regnum; /* GDB's internal register number. */
371 LONGEST pnum; /* Remote protocol register number. */
372 int in_g_packet; /* Always part of G packet. */
373 /* long size in bytes; == register_size (target_gdbarch, regnum);
374 at present. */
375 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
376 at present. */
377 };
378
379 struct remote_arch_state
380 {
381 /* Description of the remote protocol registers. */
382 long sizeof_g_packet;
383
384 /* Description of the remote protocol registers indexed by REGNUM
385 (making an array gdbarch_num_regs in size). */
386 struct packet_reg *regs;
387
388 /* This is the size (in chars) of the first response to the ``g''
389 packet. It is used as a heuristic when determining the maximum
390 size of memory-read and memory-write packets. A target will
391 typically only reserve a buffer large enough to hold the ``g''
392 packet. The size does not include packet overhead (headers and
393 trailers). */
394 long actual_register_packet_size;
395
396 /* This is the maximum size (in chars) of a non read/write packet.
397 It is also used as a cap on the size of read/write packets. */
398 long remote_packet_size;
399 };
400
401 long sizeof_pkt = 2000;
402
403 /* Utility: generate error from an incoming stub packet. */
404 static void
405 trace_error (char *buf)
406 {
407 if (*buf++ != 'E')
408 return; /* not an error msg */
409 switch (*buf)
410 {
411 case '1': /* malformed packet error */
412 if (*++buf == '0') /* general case: */
413 error (_("remote.c: error in outgoing packet."));
414 else
415 error (_("remote.c: error in outgoing packet at field #%ld."),
416 strtol (buf, NULL, 16));
417 case '2':
418 error (_("trace API error 0x%s."), ++buf);
419 default:
420 error (_("Target returns error code '%s'."), buf);
421 }
422 }
423
424 /* Utility: wait for reply from stub, while accepting "O" packets. */
425 static char *
426 remote_get_noisy_reply (char **buf_p,
427 long *sizeof_buf)
428 {
429 do /* Loop on reply from remote stub. */
430 {
431 char *buf;
432 QUIT; /* allow user to bail out with ^C */
433 getpkt (buf_p, sizeof_buf, 0);
434 buf = *buf_p;
435 if (buf[0] == 0)
436 error (_("Target does not support this command."));
437 else if (buf[0] == 'E')
438 trace_error (buf);
439 else if (buf[0] == 'O' &&
440 buf[1] != 'K')
441 remote_console_output (buf + 1); /* 'O' message from stub */
442 else
443 return buf; /* here's the actual reply */
444 }
445 while (1);
446 }
447
448 /* Handle for retreving the remote protocol data from gdbarch. */
449 static struct gdbarch_data *remote_gdbarch_data_handle;
450
451 static struct remote_arch_state *
452 get_remote_arch_state (void)
453 {
454 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
455 }
456
457 /* Fetch the global remote target state. */
458
459 static struct remote_state *
460 get_remote_state (void)
461 {
462 /* Make sure that the remote architecture state has been
463 initialized, because doing so might reallocate rs->buf. Any
464 function which calls getpkt also needs to be mindful of changes
465 to rs->buf, but this call limits the number of places which run
466 into trouble. */
467 get_remote_arch_state ();
468
469 return get_remote_state_raw ();
470 }
471
472 static int
473 compare_pnums (const void *lhs_, const void *rhs_)
474 {
475 const struct packet_reg * const *lhs = lhs_;
476 const struct packet_reg * const *rhs = rhs_;
477
478 if ((*lhs)->pnum < (*rhs)->pnum)
479 return -1;
480 else if ((*lhs)->pnum == (*rhs)->pnum)
481 return 0;
482 else
483 return 1;
484 }
485
486 static void *
487 init_remote_state (struct gdbarch *gdbarch)
488 {
489 int regnum, num_remote_regs, offset;
490 struct remote_state *rs = get_remote_state_raw ();
491 struct remote_arch_state *rsa;
492 struct packet_reg **remote_regs;
493
494 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
495
496 /* Use the architecture to build a regnum<->pnum table, which will be
497 1:1 unless a feature set specifies otherwise. */
498 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
499 gdbarch_num_regs (gdbarch),
500 struct packet_reg);
501 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
502 {
503 struct packet_reg *r = &rsa->regs[regnum];
504
505 if (register_size (gdbarch, regnum) == 0)
506 /* Do not try to fetch zero-sized (placeholder) registers. */
507 r->pnum = -1;
508 else
509 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
510
511 r->regnum = regnum;
512 }
513
514 /* Define the g/G packet format as the contents of each register
515 with a remote protocol number, in order of ascending protocol
516 number. */
517
518 remote_regs = alloca (gdbarch_num_regs (gdbarch)
519 * sizeof (struct packet_reg *));
520 for (num_remote_regs = 0, regnum = 0;
521 regnum < gdbarch_num_regs (gdbarch);
522 regnum++)
523 if (rsa->regs[regnum].pnum != -1)
524 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
525
526 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
527 compare_pnums);
528
529 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
530 {
531 remote_regs[regnum]->in_g_packet = 1;
532 remote_regs[regnum]->offset = offset;
533 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
534 }
535
536 /* Record the maximum possible size of the g packet - it may turn out
537 to be smaller. */
538 rsa->sizeof_g_packet = offset;
539
540 /* Default maximum number of characters in a packet body. Many
541 remote stubs have a hardwired buffer size of 400 bytes
542 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
543 as the maximum packet-size to ensure that the packet and an extra
544 NUL character can always fit in the buffer. This stops GDB
545 trashing stubs that try to squeeze an extra NUL into what is
546 already a full buffer (As of 1999-12-04 that was most stubs). */
547 rsa->remote_packet_size = 400 - 1;
548
549 /* This one is filled in when a ``g'' packet is received. */
550 rsa->actual_register_packet_size = 0;
551
552 /* Should rsa->sizeof_g_packet needs more space than the
553 default, adjust the size accordingly. Remember that each byte is
554 encoded as two characters. 32 is the overhead for the packet
555 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
556 (``$NN:G...#NN'') is a better guess, the below has been padded a
557 little. */
558 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
559 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
560
561 /* Make sure that the packet buffer is plenty big enough for
562 this architecture. */
563 if (rs->buf_size < rsa->remote_packet_size)
564 {
565 rs->buf_size = 2 * rsa->remote_packet_size;
566 rs->buf = xrealloc (rs->buf, rs->buf_size);
567 }
568
569 return rsa;
570 }
571
572 /* Return the current allowed size of a remote packet. This is
573 inferred from the current architecture, and should be used to
574 limit the length of outgoing packets. */
575 static long
576 get_remote_packet_size (void)
577 {
578 struct remote_state *rs = get_remote_state ();
579 struct remote_arch_state *rsa = get_remote_arch_state ();
580
581 if (rs->explicit_packet_size)
582 return rs->explicit_packet_size;
583
584 return rsa->remote_packet_size;
585 }
586
587 static struct packet_reg *
588 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
589 {
590 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
591 return NULL;
592 else
593 {
594 struct packet_reg *r = &rsa->regs[regnum];
595 gdb_assert (r->regnum == regnum);
596 return r;
597 }
598 }
599
600 static struct packet_reg *
601 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
602 {
603 int i;
604 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
605 {
606 struct packet_reg *r = &rsa->regs[i];
607 if (r->pnum == pnum)
608 return r;
609 }
610 return NULL;
611 }
612
613 /* FIXME: graces/2002-08-08: These variables should eventually be
614 bound to an instance of the target object (as in gdbarch-tdep()),
615 when such a thing exists. */
616
617 /* This is set to the data address of the access causing the target
618 to stop for a watchpoint. */
619 static CORE_ADDR remote_watch_data_address;
620
621 /* This is non-zero if target stopped for a watchpoint. */
622 static int remote_stopped_by_watchpoint_p;
623
624 static struct target_ops remote_ops;
625
626 static struct target_ops extended_remote_ops;
627
628 static int remote_async_mask_value = 1;
629
630 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
631 ``forever'' still use the normal timeout mechanism. This is
632 currently used by the ASYNC code to guarentee that target reads
633 during the initial connect always time-out. Once getpkt has been
634 modified to return a timeout indication and, in turn
635 remote_wait()/wait_for_inferior() have gained a timeout parameter
636 this can go away. */
637 static int wait_forever_enabled_p = 1;
638
639 /* Allow the user to specify what sequence to send to the remote
640 when he requests a program interruption: Although ^C is usually
641 what remote systems expect (this is the default, here), it is
642 sometimes preferable to send a break. On other systems such
643 as the Linux kernel, a break followed by g, which is Magic SysRq g
644 is required in order to interrupt the execution. */
645 const char interrupt_sequence_control_c[] = "Ctrl-C";
646 const char interrupt_sequence_break[] = "BREAK";
647 const char interrupt_sequence_break_g[] = "BREAK-g";
648 static const char *interrupt_sequence_modes[] =
649 {
650 interrupt_sequence_control_c,
651 interrupt_sequence_break,
652 interrupt_sequence_break_g,
653 NULL
654 };
655 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
656
657 static void
658 show_interrupt_sequence (struct ui_file *file, int from_tty,
659 struct cmd_list_element *c,
660 const char *value)
661 {
662 if (interrupt_sequence_mode == interrupt_sequence_control_c)
663 fprintf_filtered (file,
664 _("Send the ASCII ETX character (Ctrl-c) "
665 "to the remote target to interrupt the "
666 "execution of the program.\n"));
667 else if (interrupt_sequence_mode == interrupt_sequence_break)
668 fprintf_filtered (file,
669 _("send a break signal to the remote target "
670 "to interrupt the execution of the program.\n"));
671 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
672 fprintf_filtered (file,
673 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
674 "the remote target to interrupt the execution "
675 "of Linux kernel.\n"));
676 else
677 internal_error (__FILE__, __LINE__,
678 _("Invalid value for interrupt_sequence_mode: %s."),
679 interrupt_sequence_mode);
680 }
681
682 /* This boolean variable specifies whether interrupt_sequence is sent
683 to the remote target when gdb connects to it.
684 This is mostly needed when you debug the Linux kernel: The Linux kernel
685 expects BREAK g which is Magic SysRq g for connecting gdb. */
686 static int interrupt_on_connect = 0;
687
688 /* This variable is used to implement the "set/show remotebreak" commands.
689 Since these commands are now deprecated in favor of "set/show remote
690 interrupt-sequence", it no longer has any effect on the code. */
691 static int remote_break;
692
693 static void
694 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
695 {
696 if (remote_break)
697 interrupt_sequence_mode = interrupt_sequence_break;
698 else
699 interrupt_sequence_mode = interrupt_sequence_control_c;
700 }
701
702 static void
703 show_remotebreak (struct ui_file *file, int from_tty,
704 struct cmd_list_element *c,
705 const char *value)
706 {
707 }
708
709 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
710 remote_open knows that we don't have a file open when the program
711 starts. */
712 static struct serial *remote_desc = NULL;
713
714 /* This variable sets the number of bits in an address that are to be
715 sent in a memory ("M" or "m") packet. Normally, after stripping
716 leading zeros, the entire address would be sent. This variable
717 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
718 initial implementation of remote.c restricted the address sent in
719 memory packets to ``host::sizeof long'' bytes - (typically 32
720 bits). Consequently, for 64 bit targets, the upper 32 bits of an
721 address was never sent. Since fixing this bug may cause a break in
722 some remote targets this variable is principly provided to
723 facilitate backward compatibility. */
724
725 static int remote_address_size;
726
727 /* Temporary to track who currently owns the terminal. See
728 remote_terminal_* for more details. */
729
730 static int remote_async_terminal_ours_p;
731
732 /* The executable file to use for "run" on the remote side. */
733
734 static char *remote_exec_file = "";
735
736 \f
737 /* User configurable variables for the number of characters in a
738 memory read/write packet. MIN (rsa->remote_packet_size,
739 rsa->sizeof_g_packet) is the default. Some targets need smaller
740 values (fifo overruns, et.al.) and some users need larger values
741 (speed up transfers). The variables ``preferred_*'' (the user
742 request), ``current_*'' (what was actually set) and ``forced_*''
743 (Positive - a soft limit, negative - a hard limit). */
744
745 struct memory_packet_config
746 {
747 char *name;
748 long size;
749 int fixed_p;
750 };
751
752 /* Compute the current size of a read/write packet. Since this makes
753 use of ``actual_register_packet_size'' the computation is dynamic. */
754
755 static long
756 get_memory_packet_size (struct memory_packet_config *config)
757 {
758 struct remote_state *rs = get_remote_state ();
759 struct remote_arch_state *rsa = get_remote_arch_state ();
760
761 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
762 law?) that some hosts don't cope very well with large alloca()
763 calls. Eventually the alloca() code will be replaced by calls to
764 xmalloc() and make_cleanups() allowing this restriction to either
765 be lifted or removed. */
766 #ifndef MAX_REMOTE_PACKET_SIZE
767 #define MAX_REMOTE_PACKET_SIZE 16384
768 #endif
769 /* NOTE: 20 ensures we can write at least one byte. */
770 #ifndef MIN_REMOTE_PACKET_SIZE
771 #define MIN_REMOTE_PACKET_SIZE 20
772 #endif
773 long what_they_get;
774 if (config->fixed_p)
775 {
776 if (config->size <= 0)
777 what_they_get = MAX_REMOTE_PACKET_SIZE;
778 else
779 what_they_get = config->size;
780 }
781 else
782 {
783 what_they_get = get_remote_packet_size ();
784 /* Limit the packet to the size specified by the user. */
785 if (config->size > 0
786 && what_they_get > config->size)
787 what_they_get = config->size;
788
789 /* Limit it to the size of the targets ``g'' response unless we have
790 permission from the stub to use a larger packet size. */
791 if (rs->explicit_packet_size == 0
792 && rsa->actual_register_packet_size > 0
793 && what_they_get > rsa->actual_register_packet_size)
794 what_they_get = rsa->actual_register_packet_size;
795 }
796 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
797 what_they_get = MAX_REMOTE_PACKET_SIZE;
798 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
799 what_they_get = MIN_REMOTE_PACKET_SIZE;
800
801 /* Make sure there is room in the global buffer for this packet
802 (including its trailing NUL byte). */
803 if (rs->buf_size < what_they_get + 1)
804 {
805 rs->buf_size = 2 * what_they_get;
806 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
807 }
808
809 return what_they_get;
810 }
811
812 /* Update the size of a read/write packet. If they user wants
813 something really big then do a sanity check. */
814
815 static void
816 set_memory_packet_size (char *args, struct memory_packet_config *config)
817 {
818 int fixed_p = config->fixed_p;
819 long size = config->size;
820 if (args == NULL)
821 error (_("Argument required (integer, `fixed' or `limited')."));
822 else if (strcmp (args, "hard") == 0
823 || strcmp (args, "fixed") == 0)
824 fixed_p = 1;
825 else if (strcmp (args, "soft") == 0
826 || strcmp (args, "limit") == 0)
827 fixed_p = 0;
828 else
829 {
830 char *end;
831 size = strtoul (args, &end, 0);
832 if (args == end)
833 error (_("Invalid %s (bad syntax)."), config->name);
834 #if 0
835 /* Instead of explicitly capping the size of a packet to
836 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
837 instead allowed to set the size to something arbitrarily
838 large. */
839 if (size > MAX_REMOTE_PACKET_SIZE)
840 error (_("Invalid %s (too large)."), config->name);
841 #endif
842 }
843 /* Extra checks? */
844 if (fixed_p && !config->fixed_p)
845 {
846 if (! query (_("The target may not be able to correctly handle a %s\n"
847 "of %ld bytes. Change the packet size? "),
848 config->name, size))
849 error (_("Packet size not changed."));
850 }
851 /* Update the config. */
852 config->fixed_p = fixed_p;
853 config->size = size;
854 }
855
856 static void
857 show_memory_packet_size (struct memory_packet_config *config)
858 {
859 printf_filtered (_("The %s is %ld. "), config->name, config->size);
860 if (config->fixed_p)
861 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
862 get_memory_packet_size (config));
863 else
864 printf_filtered (_("Packets are limited to %ld bytes.\n"),
865 get_memory_packet_size (config));
866 }
867
868 static struct memory_packet_config memory_write_packet_config =
869 {
870 "memory-write-packet-size",
871 };
872
873 static void
874 set_memory_write_packet_size (char *args, int from_tty)
875 {
876 set_memory_packet_size (args, &memory_write_packet_config);
877 }
878
879 static void
880 show_memory_write_packet_size (char *args, int from_tty)
881 {
882 show_memory_packet_size (&memory_write_packet_config);
883 }
884
885 static long
886 get_memory_write_packet_size (void)
887 {
888 return get_memory_packet_size (&memory_write_packet_config);
889 }
890
891 static struct memory_packet_config memory_read_packet_config =
892 {
893 "memory-read-packet-size",
894 };
895
896 static void
897 set_memory_read_packet_size (char *args, int from_tty)
898 {
899 set_memory_packet_size (args, &memory_read_packet_config);
900 }
901
902 static void
903 show_memory_read_packet_size (char *args, int from_tty)
904 {
905 show_memory_packet_size (&memory_read_packet_config);
906 }
907
908 static long
909 get_memory_read_packet_size (void)
910 {
911 long size = get_memory_packet_size (&memory_read_packet_config);
912 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
913 extra buffer size argument before the memory read size can be
914 increased beyond this. */
915 if (size > get_remote_packet_size ())
916 size = get_remote_packet_size ();
917 return size;
918 }
919
920 \f
921 /* Generic configuration support for packets the stub optionally
922 supports. Allows the user to specify the use of the packet as well
923 as allowing GDB to auto-detect support in the remote stub. */
924
925 enum packet_support
926 {
927 PACKET_SUPPORT_UNKNOWN = 0,
928 PACKET_ENABLE,
929 PACKET_DISABLE
930 };
931
932 struct packet_config
933 {
934 const char *name;
935 const char *title;
936 enum auto_boolean detect;
937 enum packet_support support;
938 };
939
940 /* Analyze a packet's return value and update the packet config
941 accordingly. */
942
943 enum packet_result
944 {
945 PACKET_ERROR,
946 PACKET_OK,
947 PACKET_UNKNOWN
948 };
949
950 static void
951 update_packet_config (struct packet_config *config)
952 {
953 switch (config->detect)
954 {
955 case AUTO_BOOLEAN_TRUE:
956 config->support = PACKET_ENABLE;
957 break;
958 case AUTO_BOOLEAN_FALSE:
959 config->support = PACKET_DISABLE;
960 break;
961 case AUTO_BOOLEAN_AUTO:
962 config->support = PACKET_SUPPORT_UNKNOWN;
963 break;
964 }
965 }
966
967 static void
968 show_packet_config_cmd (struct packet_config *config)
969 {
970 char *support = "internal-error";
971 switch (config->support)
972 {
973 case PACKET_ENABLE:
974 support = "enabled";
975 break;
976 case PACKET_DISABLE:
977 support = "disabled";
978 break;
979 case PACKET_SUPPORT_UNKNOWN:
980 support = "unknown";
981 break;
982 }
983 switch (config->detect)
984 {
985 case AUTO_BOOLEAN_AUTO:
986 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
987 config->name, support);
988 break;
989 case AUTO_BOOLEAN_TRUE:
990 case AUTO_BOOLEAN_FALSE:
991 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
992 config->name, support);
993 break;
994 }
995 }
996
997 static void
998 add_packet_config_cmd (struct packet_config *config, const char *name,
999 const char *title, int legacy)
1000 {
1001 char *set_doc;
1002 char *show_doc;
1003 char *cmd_name;
1004
1005 config->name = name;
1006 config->title = title;
1007 config->detect = AUTO_BOOLEAN_AUTO;
1008 config->support = PACKET_SUPPORT_UNKNOWN;
1009 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1010 name, title);
1011 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1012 name, title);
1013 /* set/show TITLE-packet {auto,on,off} */
1014 cmd_name = xstrprintf ("%s-packet", title);
1015 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1016 &config->detect, set_doc, show_doc, NULL, /* help_doc */
1017 set_remote_protocol_packet_cmd,
1018 show_remote_protocol_packet_cmd,
1019 &remote_set_cmdlist, &remote_show_cmdlist);
1020 /* The command code copies the documentation strings. */
1021 xfree (set_doc);
1022 xfree (show_doc);
1023 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1024 if (legacy)
1025 {
1026 char *legacy_name;
1027 legacy_name = xstrprintf ("%s-packet", name);
1028 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1029 &remote_set_cmdlist);
1030 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1031 &remote_show_cmdlist);
1032 }
1033 }
1034
1035 static enum packet_result
1036 packet_check_result (const char *buf)
1037 {
1038 if (buf[0] != '\0')
1039 {
1040 /* The stub recognized the packet request. Check that the
1041 operation succeeded. */
1042 if (buf[0] == 'E'
1043 && isxdigit (buf[1]) && isxdigit (buf[2])
1044 && buf[3] == '\0')
1045 /* "Enn" - definitly an error. */
1046 return PACKET_ERROR;
1047
1048 /* Always treat "E." as an error. This will be used for
1049 more verbose error messages, such as E.memtypes. */
1050 if (buf[0] == 'E' && buf[1] == '.')
1051 return PACKET_ERROR;
1052
1053 /* The packet may or may not be OK. Just assume it is. */
1054 return PACKET_OK;
1055 }
1056 else
1057 /* The stub does not support the packet. */
1058 return PACKET_UNKNOWN;
1059 }
1060
1061 static enum packet_result
1062 packet_ok (const char *buf, struct packet_config *config)
1063 {
1064 enum packet_result result;
1065
1066 result = packet_check_result (buf);
1067 switch (result)
1068 {
1069 case PACKET_OK:
1070 case PACKET_ERROR:
1071 /* The stub recognized the packet request. */
1072 switch (config->support)
1073 {
1074 case PACKET_SUPPORT_UNKNOWN:
1075 if (remote_debug)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "Packet %s (%s) is supported\n",
1078 config->name, config->title);
1079 config->support = PACKET_ENABLE;
1080 break;
1081 case PACKET_DISABLE:
1082 internal_error (__FILE__, __LINE__,
1083 _("packet_ok: attempt to use a disabled packet"));
1084 break;
1085 case PACKET_ENABLE:
1086 break;
1087 }
1088 break;
1089 case PACKET_UNKNOWN:
1090 /* The stub does not support the packet. */
1091 switch (config->support)
1092 {
1093 case PACKET_ENABLE:
1094 if (config->detect == AUTO_BOOLEAN_AUTO)
1095 /* If the stub previously indicated that the packet was
1096 supported then there is a protocol error.. */
1097 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1098 config->name, config->title);
1099 else
1100 /* The user set it wrong. */
1101 error (_("Enabled packet %s (%s) not recognized by stub"),
1102 config->name, config->title);
1103 break;
1104 case PACKET_SUPPORT_UNKNOWN:
1105 if (remote_debug)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "Packet %s (%s) is NOT supported\n",
1108 config->name, config->title);
1109 config->support = PACKET_DISABLE;
1110 break;
1111 case PACKET_DISABLE:
1112 break;
1113 }
1114 break;
1115 }
1116
1117 return result;
1118 }
1119
1120 enum {
1121 PACKET_vCont = 0,
1122 PACKET_X,
1123 PACKET_qSymbol,
1124 PACKET_P,
1125 PACKET_p,
1126 PACKET_Z0,
1127 PACKET_Z1,
1128 PACKET_Z2,
1129 PACKET_Z3,
1130 PACKET_Z4,
1131 PACKET_vFile_open,
1132 PACKET_vFile_pread,
1133 PACKET_vFile_pwrite,
1134 PACKET_vFile_close,
1135 PACKET_vFile_unlink,
1136 PACKET_qXfer_auxv,
1137 PACKET_qXfer_features,
1138 PACKET_qXfer_libraries,
1139 PACKET_qXfer_memory_map,
1140 PACKET_qXfer_spu_read,
1141 PACKET_qXfer_spu_write,
1142 PACKET_qXfer_osdata,
1143 PACKET_qXfer_threads,
1144 PACKET_qGetTLSAddr,
1145 PACKET_qSupported,
1146 PACKET_QPassSignals,
1147 PACKET_qSearch_memory,
1148 PACKET_vAttach,
1149 PACKET_vRun,
1150 PACKET_QStartNoAckMode,
1151 PACKET_vKill,
1152 PACKET_qXfer_siginfo_read,
1153 PACKET_qXfer_siginfo_write,
1154 PACKET_qAttached,
1155 PACKET_ConditionalTracepoints,
1156 PACKET_FastTracepoints,
1157 PACKET_bc,
1158 PACKET_bs,
1159 PACKET_MAX
1160 };
1161
1162 static struct packet_config remote_protocol_packets[PACKET_MAX];
1163
1164 static void
1165 set_remote_protocol_packet_cmd (char *args, int from_tty,
1166 struct cmd_list_element *c)
1167 {
1168 struct packet_config *packet;
1169
1170 for (packet = remote_protocol_packets;
1171 packet < &remote_protocol_packets[PACKET_MAX];
1172 packet++)
1173 {
1174 if (&packet->detect == c->var)
1175 {
1176 update_packet_config (packet);
1177 return;
1178 }
1179 }
1180 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1181 c->name);
1182 }
1183
1184 static void
1185 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1186 struct cmd_list_element *c,
1187 const char *value)
1188 {
1189 struct packet_config *packet;
1190
1191 for (packet = remote_protocol_packets;
1192 packet < &remote_protocol_packets[PACKET_MAX];
1193 packet++)
1194 {
1195 if (&packet->detect == c->var)
1196 {
1197 show_packet_config_cmd (packet);
1198 return;
1199 }
1200 }
1201 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1202 c->name);
1203 }
1204
1205 /* Should we try one of the 'Z' requests? */
1206
1207 enum Z_packet_type
1208 {
1209 Z_PACKET_SOFTWARE_BP,
1210 Z_PACKET_HARDWARE_BP,
1211 Z_PACKET_WRITE_WP,
1212 Z_PACKET_READ_WP,
1213 Z_PACKET_ACCESS_WP,
1214 NR_Z_PACKET_TYPES
1215 };
1216
1217 /* For compatibility with older distributions. Provide a ``set remote
1218 Z-packet ...'' command that updates all the Z packet types. */
1219
1220 static enum auto_boolean remote_Z_packet_detect;
1221
1222 static void
1223 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1224 struct cmd_list_element *c)
1225 {
1226 int i;
1227 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1228 {
1229 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1230 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1231 }
1232 }
1233
1234 static void
1235 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c,
1237 const char *value)
1238 {
1239 int i;
1240 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1241 {
1242 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1243 }
1244 }
1245
1246 /* Should we try the 'ThreadInfo' query packet?
1247
1248 This variable (NOT available to the user: auto-detect only!)
1249 determines whether GDB will use the new, simpler "ThreadInfo"
1250 query or the older, more complex syntax for thread queries.
1251 This is an auto-detect variable (set to true at each connect,
1252 and set to false when the target fails to recognize it). */
1253
1254 static int use_threadinfo_query;
1255 static int use_threadextra_query;
1256
1257 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1258 static struct async_signal_handler *sigint_remote_twice_token;
1259 static struct async_signal_handler *sigint_remote_token;
1260
1261 \f
1262 /* Asynchronous signal handle registered as event loop source for
1263 when we have pending events ready to be passed to the core. */
1264
1265 static struct async_event_handler *remote_async_inferior_event_token;
1266
1267 /* Asynchronous signal handle registered as event loop source for when
1268 the remote sent us a %Stop notification. The registered callback
1269 will do a vStopped sequence to pull the rest of the events out of
1270 the remote side into our event queue. */
1271
1272 static struct async_event_handler *remote_async_get_pending_events_token;
1273 \f
1274
1275 static ptid_t magic_null_ptid;
1276 static ptid_t not_sent_ptid;
1277 static ptid_t any_thread_ptid;
1278
1279 /* These are the threads which we last sent to the remote system. The
1280 TID member will be -1 for all or -2 for not sent yet. */
1281
1282 static ptid_t general_thread;
1283 static ptid_t continue_thread;
1284
1285 /* Find out if the stub attached to PID (and hence GDB should offer to
1286 detach instead of killing it when bailing out). */
1287
1288 static int
1289 remote_query_attached (int pid)
1290 {
1291 struct remote_state *rs = get_remote_state ();
1292
1293 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1294 return 0;
1295
1296 if (remote_multi_process_p (rs))
1297 sprintf (rs->buf, "qAttached:%x", pid);
1298 else
1299 sprintf (rs->buf, "qAttached");
1300
1301 putpkt (rs->buf);
1302 getpkt (&rs->buf, &rs->buf_size, 0);
1303
1304 switch (packet_ok (rs->buf,
1305 &remote_protocol_packets[PACKET_qAttached]))
1306 {
1307 case PACKET_OK:
1308 if (strcmp (rs->buf, "1") == 0)
1309 return 1;
1310 break;
1311 case PACKET_ERROR:
1312 warning (_("Remote failure reply: %s"), rs->buf);
1313 break;
1314 case PACKET_UNKNOWN:
1315 break;
1316 }
1317
1318 return 0;
1319 }
1320
1321 /* Add PID to GDB's inferior table. Since we can be connected to a
1322 remote system before before knowing about any inferior, mark the
1323 target with execution when we find the first inferior. If ATTACHED
1324 is 1, then we had just attached to this inferior. If it is 0, then
1325 we just created this inferior. If it is -1, then try querying the
1326 remote stub to find out if it had attached to the inferior or
1327 not. */
1328
1329 static struct inferior *
1330 remote_add_inferior (int pid, int attached)
1331 {
1332 struct inferior *inf;
1333
1334 /* Check whether this process we're learning about is to be
1335 considered attached, or if is to be considered to have been
1336 spawned by the stub. */
1337 if (attached == -1)
1338 attached = remote_query_attached (pid);
1339
1340 if (gdbarch_has_global_solist (target_gdbarch))
1341 {
1342 /* If the target shares code across all inferiors, then every
1343 attach adds a new inferior. */
1344 inf = add_inferior (pid);
1345
1346 /* ... and every inferior is bound to the same program space.
1347 However, each inferior may still have its own address
1348 space. */
1349 inf->aspace = maybe_new_address_space ();
1350 inf->pspace = current_program_space;
1351 }
1352 else
1353 {
1354 /* In the traditional debugging scenario, there's a 1-1 match
1355 between program/address spaces. We simply bind the inferior
1356 to the program space's address space. */
1357 inf = current_inferior ();
1358 inferior_appeared (inf, pid);
1359 }
1360
1361 inf->attach_flag = attached;
1362
1363 return inf;
1364 }
1365
1366 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1367 according to RUNNING. */
1368
1369 static void
1370 remote_add_thread (ptid_t ptid, int running)
1371 {
1372 add_thread (ptid);
1373
1374 set_executing (ptid, running);
1375 set_running (ptid, running);
1376 }
1377
1378 /* Come here when we learn about a thread id from the remote target.
1379 It may be the first time we hear about such thread, so take the
1380 opportunity to add it to GDB's thread list. In case this is the
1381 first time we're noticing its corresponding inferior, add it to
1382 GDB's inferior list as well. */
1383
1384 static void
1385 remote_notice_new_inferior (ptid_t currthread, int running)
1386 {
1387 /* If this is a new thread, add it to GDB's thread list.
1388 If we leave it up to WFI to do this, bad things will happen. */
1389
1390 if (in_thread_list (currthread) && is_exited (currthread))
1391 {
1392 /* We're seeing an event on a thread id we knew had exited.
1393 This has to be a new thread reusing the old id. Add it. */
1394 remote_add_thread (currthread, running);
1395 return;
1396 }
1397
1398 if (!in_thread_list (currthread))
1399 {
1400 struct inferior *inf = NULL;
1401 int pid = ptid_get_pid (currthread);
1402
1403 if (ptid_is_pid (inferior_ptid)
1404 && pid == ptid_get_pid (inferior_ptid))
1405 {
1406 /* inferior_ptid has no thread member yet. This can happen
1407 with the vAttach -> remote_wait,"TAAthread:" path if the
1408 stub doesn't support qC. This is the first stop reported
1409 after an attach, so this is the main thread. Update the
1410 ptid in the thread list. */
1411 if (in_thread_list (pid_to_ptid (pid)))
1412 thread_change_ptid (inferior_ptid, currthread);
1413 else
1414 {
1415 remote_add_thread (currthread, running);
1416 inferior_ptid = currthread;
1417 }
1418 return;
1419 }
1420
1421 if (ptid_equal (magic_null_ptid, inferior_ptid))
1422 {
1423 /* inferior_ptid is not set yet. This can happen with the
1424 vRun -> remote_wait,"TAAthread:" path if the stub
1425 doesn't support qC. This is the first stop reported
1426 after an attach, so this is the main thread. Update the
1427 ptid in the thread list. */
1428 thread_change_ptid (inferior_ptid, currthread);
1429 return;
1430 }
1431
1432 /* When connecting to a target remote, or to a target
1433 extended-remote which already was debugging an inferior, we
1434 may not know about it yet. Add it before adding its child
1435 thread, so notifications are emitted in a sensible order. */
1436 if (!in_inferior_list (ptid_get_pid (currthread)))
1437 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1438
1439 /* This is really a new thread. Add it. */
1440 remote_add_thread (currthread, running);
1441
1442 /* If we found a new inferior, let the common code do whatever
1443 it needs to with it (e.g., read shared libraries, insert
1444 breakpoints). */
1445 if (inf != NULL)
1446 notice_new_inferior (currthread, running, 0);
1447 }
1448 }
1449
1450 /* Return the private thread data, creating it if necessary. */
1451
1452 struct private_thread_info *
1453 demand_private_info (ptid_t ptid)
1454 {
1455 struct thread_info *info = find_thread_ptid (ptid);
1456
1457 gdb_assert (info);
1458
1459 if (!info->private)
1460 {
1461 info->private = xmalloc (sizeof (*(info->private)));
1462 info->private_dtor = free_private_thread_info;
1463 info->private->core = -1;
1464 info->private->extra = 0;
1465 }
1466
1467 return info->private;
1468 }
1469
1470 /* Call this function as a result of
1471 1) A halt indication (T packet) containing a thread id
1472 2) A direct query of currthread
1473 3) Successful execution of set thread
1474 */
1475
1476 static void
1477 record_currthread (ptid_t currthread)
1478 {
1479 general_thread = currthread;
1480 }
1481
1482 static char *last_pass_packet;
1483
1484 /* If 'QPassSignals' is supported, tell the remote stub what signals
1485 it can simply pass through to the inferior without reporting. */
1486
1487 static void
1488 remote_pass_signals (void)
1489 {
1490 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1491 {
1492 char *pass_packet, *p;
1493 int numsigs = (int) TARGET_SIGNAL_LAST;
1494 int count = 0, i;
1495
1496 gdb_assert (numsigs < 256);
1497 for (i = 0; i < numsigs; i++)
1498 {
1499 if (signal_stop_state (i) == 0
1500 && signal_print_state (i) == 0
1501 && signal_pass_state (i) == 1)
1502 count++;
1503 }
1504 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1505 strcpy (pass_packet, "QPassSignals:");
1506 p = pass_packet + strlen (pass_packet);
1507 for (i = 0; i < numsigs; i++)
1508 {
1509 if (signal_stop_state (i) == 0
1510 && signal_print_state (i) == 0
1511 && signal_pass_state (i) == 1)
1512 {
1513 if (i >= 16)
1514 *p++ = tohex (i >> 4);
1515 *p++ = tohex (i & 15);
1516 if (count)
1517 *p++ = ';';
1518 else
1519 break;
1520 count--;
1521 }
1522 }
1523 *p = 0;
1524 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1525 {
1526 struct remote_state *rs = get_remote_state ();
1527 char *buf = rs->buf;
1528
1529 putpkt (pass_packet);
1530 getpkt (&rs->buf, &rs->buf_size, 0);
1531 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1532 if (last_pass_packet)
1533 xfree (last_pass_packet);
1534 last_pass_packet = pass_packet;
1535 }
1536 else
1537 xfree (pass_packet);
1538 }
1539 }
1540
1541 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1542 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1543 thread. If GEN is set, set the general thread, if not, then set
1544 the step/continue thread. */
1545 static void
1546 set_thread (struct ptid ptid, int gen)
1547 {
1548 struct remote_state *rs = get_remote_state ();
1549 ptid_t state = gen ? general_thread : continue_thread;
1550 char *buf = rs->buf;
1551 char *endbuf = rs->buf + get_remote_packet_size ();
1552
1553 if (ptid_equal (state, ptid))
1554 return;
1555
1556 *buf++ = 'H';
1557 *buf++ = gen ? 'g' : 'c';
1558 if (ptid_equal (ptid, magic_null_ptid))
1559 xsnprintf (buf, endbuf - buf, "0");
1560 else if (ptid_equal (ptid, any_thread_ptid))
1561 xsnprintf (buf, endbuf - buf, "0");
1562 else if (ptid_equal (ptid, minus_one_ptid))
1563 xsnprintf (buf, endbuf - buf, "-1");
1564 else
1565 write_ptid (buf, endbuf, ptid);
1566 putpkt (rs->buf);
1567 getpkt (&rs->buf, &rs->buf_size, 0);
1568 if (gen)
1569 general_thread = ptid;
1570 else
1571 continue_thread = ptid;
1572 }
1573
1574 static void
1575 set_general_thread (struct ptid ptid)
1576 {
1577 set_thread (ptid, 1);
1578 }
1579
1580 static void
1581 set_continue_thread (struct ptid ptid)
1582 {
1583 set_thread (ptid, 0);
1584 }
1585
1586 /* Change the remote current process. Which thread within the process
1587 ends up selected isn't important, as long as it is the same process
1588 as what INFERIOR_PTID points to.
1589
1590 This comes from that fact that there is no explicit notion of
1591 "selected process" in the protocol. The selected process for
1592 general operations is the process the selected general thread
1593 belongs to. */
1594
1595 static void
1596 set_general_process (void)
1597 {
1598 struct remote_state *rs = get_remote_state ();
1599
1600 /* If the remote can't handle multiple processes, don't bother. */
1601 if (!remote_multi_process_p (rs))
1602 return;
1603
1604 /* We only need to change the remote current thread if it's pointing
1605 at some other process. */
1606 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1607 set_general_thread (inferior_ptid);
1608 }
1609
1610 \f
1611 /* Return nonzero if the thread PTID is still alive on the remote
1612 system. */
1613
1614 static int
1615 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1616 {
1617 struct remote_state *rs = get_remote_state ();
1618 char *p, *endp;
1619
1620 if (ptid_equal (ptid, magic_null_ptid))
1621 /* The main thread is always alive. */
1622 return 1;
1623
1624 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1625 /* The main thread is always alive. This can happen after a
1626 vAttach, if the remote side doesn't support
1627 multi-threading. */
1628 return 1;
1629
1630 p = rs->buf;
1631 endp = rs->buf + get_remote_packet_size ();
1632
1633 *p++ = 'T';
1634 write_ptid (p, endp, ptid);
1635
1636 putpkt (rs->buf);
1637 getpkt (&rs->buf, &rs->buf_size, 0);
1638 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1639 }
1640
1641 /* About these extended threadlist and threadinfo packets. They are
1642 variable length packets but, the fields within them are often fixed
1643 length. They are redundent enough to send over UDP as is the
1644 remote protocol in general. There is a matching unit test module
1645 in libstub. */
1646
1647 #define OPAQUETHREADBYTES 8
1648
1649 /* a 64 bit opaque identifier */
1650 typedef unsigned char threadref[OPAQUETHREADBYTES];
1651
1652 /* WARNING: This threadref data structure comes from the remote O.S.,
1653 libstub protocol encoding, and remote.c. it is not particularly
1654 changable. */
1655
1656 /* Right now, the internal structure is int. We want it to be bigger.
1657 Plan to fix this.
1658 */
1659
1660 typedef int gdb_threadref; /* Internal GDB thread reference. */
1661
1662 /* gdb_ext_thread_info is an internal GDB data structure which is
1663 equivalent to the reply of the remote threadinfo packet. */
1664
1665 struct gdb_ext_thread_info
1666 {
1667 threadref threadid; /* External form of thread reference. */
1668 int active; /* Has state interesting to GDB?
1669 regs, stack. */
1670 char display[256]; /* Brief state display, name,
1671 blocked/suspended. */
1672 char shortname[32]; /* To be used to name threads. */
1673 char more_display[256]; /* Long info, statistics, queue depth,
1674 whatever. */
1675 };
1676
1677 /* The volume of remote transfers can be limited by submitting
1678 a mask containing bits specifying the desired information.
1679 Use a union of these values as the 'selection' parameter to
1680 get_thread_info. FIXME: Make these TAG names more thread specific.
1681 */
1682
1683 #define TAG_THREADID 1
1684 #define TAG_EXISTS 2
1685 #define TAG_DISPLAY 4
1686 #define TAG_THREADNAME 8
1687 #define TAG_MOREDISPLAY 16
1688
1689 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1690
1691 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1692
1693 static char *unpack_nibble (char *buf, int *val);
1694
1695 static char *pack_nibble (char *buf, int nibble);
1696
1697 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1698
1699 static char *unpack_byte (char *buf, int *value);
1700
1701 static char *pack_int (char *buf, int value);
1702
1703 static char *unpack_int (char *buf, int *value);
1704
1705 static char *unpack_string (char *src, char *dest, int length);
1706
1707 static char *pack_threadid (char *pkt, threadref *id);
1708
1709 static char *unpack_threadid (char *inbuf, threadref *id);
1710
1711 void int_to_threadref (threadref *id, int value);
1712
1713 static int threadref_to_int (threadref *ref);
1714
1715 static void copy_threadref (threadref *dest, threadref *src);
1716
1717 static int threadmatch (threadref *dest, threadref *src);
1718
1719 static char *pack_threadinfo_request (char *pkt, int mode,
1720 threadref *id);
1721
1722 static int remote_unpack_thread_info_response (char *pkt,
1723 threadref *expectedref,
1724 struct gdb_ext_thread_info
1725 *info);
1726
1727
1728 static int remote_get_threadinfo (threadref *threadid,
1729 int fieldset, /*TAG mask */
1730 struct gdb_ext_thread_info *info);
1731
1732 static char *pack_threadlist_request (char *pkt, int startflag,
1733 int threadcount,
1734 threadref *nextthread);
1735
1736 static int parse_threadlist_response (char *pkt,
1737 int result_limit,
1738 threadref *original_echo,
1739 threadref *resultlist,
1740 int *doneflag);
1741
1742 static int remote_get_threadlist (int startflag,
1743 threadref *nextthread,
1744 int result_limit,
1745 int *done,
1746 int *result_count,
1747 threadref *threadlist);
1748
1749 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1750
1751 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1752 void *context, int looplimit);
1753
1754 static int remote_newthread_step (threadref *ref, void *context);
1755
1756
1757 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1758 buffer we're allowed to write to. Returns
1759 BUF+CHARACTERS_WRITTEN. */
1760
1761 static char *
1762 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1763 {
1764 int pid, tid;
1765 struct remote_state *rs = get_remote_state ();
1766
1767 if (remote_multi_process_p (rs))
1768 {
1769 pid = ptid_get_pid (ptid);
1770 if (pid < 0)
1771 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1772 else
1773 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1774 }
1775 tid = ptid_get_tid (ptid);
1776 if (tid < 0)
1777 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1778 else
1779 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1780
1781 return buf;
1782 }
1783
1784 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1785 passed the last parsed char. Returns null_ptid on error. */
1786
1787 static ptid_t
1788 read_ptid (char *buf, char **obuf)
1789 {
1790 char *p = buf;
1791 char *pp;
1792 ULONGEST pid = 0, tid = 0;
1793
1794 if (*p == 'p')
1795 {
1796 /* Multi-process ptid. */
1797 pp = unpack_varlen_hex (p + 1, &pid);
1798 if (*pp != '.')
1799 error (_("invalid remote ptid: %s\n"), p);
1800
1801 p = pp;
1802 pp = unpack_varlen_hex (p + 1, &tid);
1803 if (obuf)
1804 *obuf = pp;
1805 return ptid_build (pid, 0, tid);
1806 }
1807
1808 /* No multi-process. Just a tid. */
1809 pp = unpack_varlen_hex (p, &tid);
1810
1811 /* Since the stub is not sending a process id, then default to
1812 what's in inferior_ptid, unless it's null at this point. If so,
1813 then since there's no way to know the pid of the reported
1814 threads, use the magic number. */
1815 if (ptid_equal (inferior_ptid, null_ptid))
1816 pid = ptid_get_pid (magic_null_ptid);
1817 else
1818 pid = ptid_get_pid (inferior_ptid);
1819
1820 if (obuf)
1821 *obuf = pp;
1822 return ptid_build (pid, 0, tid);
1823 }
1824
1825 /* Encode 64 bits in 16 chars of hex. */
1826
1827 static const char hexchars[] = "0123456789abcdef";
1828
1829 static int
1830 ishex (int ch, int *val)
1831 {
1832 if ((ch >= 'a') && (ch <= 'f'))
1833 {
1834 *val = ch - 'a' + 10;
1835 return 1;
1836 }
1837 if ((ch >= 'A') && (ch <= 'F'))
1838 {
1839 *val = ch - 'A' + 10;
1840 return 1;
1841 }
1842 if ((ch >= '0') && (ch <= '9'))
1843 {
1844 *val = ch - '0';
1845 return 1;
1846 }
1847 return 0;
1848 }
1849
1850 static int
1851 stubhex (int ch)
1852 {
1853 if (ch >= 'a' && ch <= 'f')
1854 return ch - 'a' + 10;
1855 if (ch >= '0' && ch <= '9')
1856 return ch - '0';
1857 if (ch >= 'A' && ch <= 'F')
1858 return ch - 'A' + 10;
1859 return -1;
1860 }
1861
1862 static int
1863 stub_unpack_int (char *buff, int fieldlength)
1864 {
1865 int nibble;
1866 int retval = 0;
1867
1868 while (fieldlength)
1869 {
1870 nibble = stubhex (*buff++);
1871 retval |= nibble;
1872 fieldlength--;
1873 if (fieldlength)
1874 retval = retval << 4;
1875 }
1876 return retval;
1877 }
1878
1879 char *
1880 unpack_varlen_hex (char *buff, /* packet to parse */
1881 ULONGEST *result)
1882 {
1883 int nibble;
1884 ULONGEST retval = 0;
1885
1886 while (ishex (*buff, &nibble))
1887 {
1888 buff++;
1889 retval = retval << 4;
1890 retval |= nibble & 0x0f;
1891 }
1892 *result = retval;
1893 return buff;
1894 }
1895
1896 static char *
1897 unpack_nibble (char *buf, int *val)
1898 {
1899 *val = fromhex (*buf++);
1900 return buf;
1901 }
1902
1903 static char *
1904 pack_nibble (char *buf, int nibble)
1905 {
1906 *buf++ = hexchars[(nibble & 0x0f)];
1907 return buf;
1908 }
1909
1910 static char *
1911 pack_hex_byte (char *pkt, int byte)
1912 {
1913 *pkt++ = hexchars[(byte >> 4) & 0xf];
1914 *pkt++ = hexchars[(byte & 0xf)];
1915 return pkt;
1916 }
1917
1918 static char *
1919 unpack_byte (char *buf, int *value)
1920 {
1921 *value = stub_unpack_int (buf, 2);
1922 return buf + 2;
1923 }
1924
1925 static char *
1926 pack_int (char *buf, int value)
1927 {
1928 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1929 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1930 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1931 buf = pack_hex_byte (buf, (value & 0xff));
1932 return buf;
1933 }
1934
1935 static char *
1936 unpack_int (char *buf, int *value)
1937 {
1938 *value = stub_unpack_int (buf, 8);
1939 return buf + 8;
1940 }
1941
1942 #if 0 /* Currently unused, uncomment when needed. */
1943 static char *pack_string (char *pkt, char *string);
1944
1945 static char *
1946 pack_string (char *pkt, char *string)
1947 {
1948 char ch;
1949 int len;
1950
1951 len = strlen (string);
1952 if (len > 200)
1953 len = 200; /* Bigger than most GDB packets, junk??? */
1954 pkt = pack_hex_byte (pkt, len);
1955 while (len-- > 0)
1956 {
1957 ch = *string++;
1958 if ((ch == '\0') || (ch == '#'))
1959 ch = '*'; /* Protect encapsulation. */
1960 *pkt++ = ch;
1961 }
1962 return pkt;
1963 }
1964 #endif /* 0 (unused) */
1965
1966 static char *
1967 unpack_string (char *src, char *dest, int length)
1968 {
1969 while (length--)
1970 *dest++ = *src++;
1971 *dest = '\0';
1972 return src;
1973 }
1974
1975 static char *
1976 pack_threadid (char *pkt, threadref *id)
1977 {
1978 char *limit;
1979 unsigned char *altid;
1980
1981 altid = (unsigned char *) id;
1982 limit = pkt + BUF_THREAD_ID_SIZE;
1983 while (pkt < limit)
1984 pkt = pack_hex_byte (pkt, *altid++);
1985 return pkt;
1986 }
1987
1988
1989 static char *
1990 unpack_threadid (char *inbuf, threadref *id)
1991 {
1992 char *altref;
1993 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1994 int x, y;
1995
1996 altref = (char *) id;
1997
1998 while (inbuf < limit)
1999 {
2000 x = stubhex (*inbuf++);
2001 y = stubhex (*inbuf++);
2002 *altref++ = (x << 4) | y;
2003 }
2004 return inbuf;
2005 }
2006
2007 /* Externally, threadrefs are 64 bits but internally, they are still
2008 ints. This is due to a mismatch of specifications. We would like
2009 to use 64bit thread references internally. This is an adapter
2010 function. */
2011
2012 void
2013 int_to_threadref (threadref *id, int value)
2014 {
2015 unsigned char *scan;
2016
2017 scan = (unsigned char *) id;
2018 {
2019 int i = 4;
2020 while (i--)
2021 *scan++ = 0;
2022 }
2023 *scan++ = (value >> 24) & 0xff;
2024 *scan++ = (value >> 16) & 0xff;
2025 *scan++ = (value >> 8) & 0xff;
2026 *scan++ = (value & 0xff);
2027 }
2028
2029 static int
2030 threadref_to_int (threadref *ref)
2031 {
2032 int i, value = 0;
2033 unsigned char *scan;
2034
2035 scan = *ref;
2036 scan += 4;
2037 i = 4;
2038 while (i-- > 0)
2039 value = (value << 8) | ((*scan++) & 0xff);
2040 return value;
2041 }
2042
2043 static void
2044 copy_threadref (threadref *dest, threadref *src)
2045 {
2046 int i;
2047 unsigned char *csrc, *cdest;
2048
2049 csrc = (unsigned char *) src;
2050 cdest = (unsigned char *) dest;
2051 i = 8;
2052 while (i--)
2053 *cdest++ = *csrc++;
2054 }
2055
2056 static int
2057 threadmatch (threadref *dest, threadref *src)
2058 {
2059 /* Things are broken right now, so just assume we got a match. */
2060 #if 0
2061 unsigned char *srcp, *destp;
2062 int i, result;
2063 srcp = (char *) src;
2064 destp = (char *) dest;
2065
2066 result = 1;
2067 while (i-- > 0)
2068 result &= (*srcp++ == *destp++) ? 1 : 0;
2069 return result;
2070 #endif
2071 return 1;
2072 }
2073
2074 /*
2075 threadid:1, # always request threadid
2076 context_exists:2,
2077 display:4,
2078 unique_name:8,
2079 more_display:16
2080 */
2081
2082 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2083
2084 static char *
2085 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2086 {
2087 *pkt++ = 'q'; /* Info Query */
2088 *pkt++ = 'P'; /* process or thread info */
2089 pkt = pack_int (pkt, mode); /* mode */
2090 pkt = pack_threadid (pkt, id); /* threadid */
2091 *pkt = '\0'; /* terminate */
2092 return pkt;
2093 }
2094
2095 /* These values tag the fields in a thread info response packet. */
2096 /* Tagging the fields allows us to request specific fields and to
2097 add more fields as time goes by. */
2098
2099 #define TAG_THREADID 1 /* Echo the thread identifier. */
2100 #define TAG_EXISTS 2 /* Is this process defined enough to
2101 fetch registers and its stack? */
2102 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2103 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2104 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2105 the process. */
2106
2107 static int
2108 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2109 struct gdb_ext_thread_info *info)
2110 {
2111 struct remote_state *rs = get_remote_state ();
2112 int mask, length;
2113 int tag;
2114 threadref ref;
2115 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2116 int retval = 1;
2117
2118 /* info->threadid = 0; FIXME: implement zero_threadref. */
2119 info->active = 0;
2120 info->display[0] = '\0';
2121 info->shortname[0] = '\0';
2122 info->more_display[0] = '\0';
2123
2124 /* Assume the characters indicating the packet type have been
2125 stripped. */
2126 pkt = unpack_int (pkt, &mask); /* arg mask */
2127 pkt = unpack_threadid (pkt, &ref);
2128
2129 if (mask == 0)
2130 warning (_("Incomplete response to threadinfo request."));
2131 if (!threadmatch (&ref, expectedref))
2132 { /* This is an answer to a different request. */
2133 warning (_("ERROR RMT Thread info mismatch."));
2134 return 0;
2135 }
2136 copy_threadref (&info->threadid, &ref);
2137
2138 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2139
2140 /* Packets are terminated with nulls. */
2141 while ((pkt < limit) && mask && *pkt)
2142 {
2143 pkt = unpack_int (pkt, &tag); /* tag */
2144 pkt = unpack_byte (pkt, &length); /* length */
2145 if (!(tag & mask)) /* Tags out of synch with mask. */
2146 {
2147 warning (_("ERROR RMT: threadinfo tag mismatch."));
2148 retval = 0;
2149 break;
2150 }
2151 if (tag == TAG_THREADID)
2152 {
2153 if (length != 16)
2154 {
2155 warning (_("ERROR RMT: length of threadid is not 16."));
2156 retval = 0;
2157 break;
2158 }
2159 pkt = unpack_threadid (pkt, &ref);
2160 mask = mask & ~TAG_THREADID;
2161 continue;
2162 }
2163 if (tag == TAG_EXISTS)
2164 {
2165 info->active = stub_unpack_int (pkt, length);
2166 pkt += length;
2167 mask = mask & ~(TAG_EXISTS);
2168 if (length > 8)
2169 {
2170 warning (_("ERROR RMT: 'exists' length too long."));
2171 retval = 0;
2172 break;
2173 }
2174 continue;
2175 }
2176 if (tag == TAG_THREADNAME)
2177 {
2178 pkt = unpack_string (pkt, &info->shortname[0], length);
2179 mask = mask & ~TAG_THREADNAME;
2180 continue;
2181 }
2182 if (tag == TAG_DISPLAY)
2183 {
2184 pkt = unpack_string (pkt, &info->display[0], length);
2185 mask = mask & ~TAG_DISPLAY;
2186 continue;
2187 }
2188 if (tag == TAG_MOREDISPLAY)
2189 {
2190 pkt = unpack_string (pkt, &info->more_display[0], length);
2191 mask = mask & ~TAG_MOREDISPLAY;
2192 continue;
2193 }
2194 warning (_("ERROR RMT: unknown thread info tag."));
2195 break; /* Not a tag we know about. */
2196 }
2197 return retval;
2198 }
2199
2200 static int
2201 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2202 struct gdb_ext_thread_info *info)
2203 {
2204 struct remote_state *rs = get_remote_state ();
2205 int result;
2206
2207 pack_threadinfo_request (rs->buf, fieldset, threadid);
2208 putpkt (rs->buf);
2209 getpkt (&rs->buf, &rs->buf_size, 0);
2210
2211 if (rs->buf[0] == '\0')
2212 return 0;
2213
2214 result = remote_unpack_thread_info_response (rs->buf + 2,
2215 threadid, info);
2216 return result;
2217 }
2218
2219 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2220
2221 static char *
2222 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2223 threadref *nextthread)
2224 {
2225 *pkt++ = 'q'; /* info query packet */
2226 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2227 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2228 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2229 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2230 *pkt = '\0';
2231 return pkt;
2232 }
2233
2234 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2235
2236 static int
2237 parse_threadlist_response (char *pkt, int result_limit,
2238 threadref *original_echo, threadref *resultlist,
2239 int *doneflag)
2240 {
2241 struct remote_state *rs = get_remote_state ();
2242 char *limit;
2243 int count, resultcount, done;
2244
2245 resultcount = 0;
2246 /* Assume the 'q' and 'M chars have been stripped. */
2247 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2248 /* done parse past here */
2249 pkt = unpack_byte (pkt, &count); /* count field */
2250 pkt = unpack_nibble (pkt, &done);
2251 /* The first threadid is the argument threadid. */
2252 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2253 while ((count-- > 0) && (pkt < limit))
2254 {
2255 pkt = unpack_threadid (pkt, resultlist++);
2256 if (resultcount++ >= result_limit)
2257 break;
2258 }
2259 if (doneflag)
2260 *doneflag = done;
2261 return resultcount;
2262 }
2263
2264 static int
2265 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2266 int *done, int *result_count, threadref *threadlist)
2267 {
2268 struct remote_state *rs = get_remote_state ();
2269 static threadref echo_nextthread;
2270 int result = 1;
2271
2272 /* Trancate result limit to be smaller than the packet size. */
2273 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2274 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2275
2276 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2277 putpkt (rs->buf);
2278 getpkt (&rs->buf, &rs->buf_size, 0);
2279
2280 if (*rs->buf == '\0')
2281 *result_count = 0;
2282 else
2283 *result_count =
2284 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2285 threadlist, done);
2286
2287 if (!threadmatch (&echo_nextthread, nextthread))
2288 {
2289 /* FIXME: This is a good reason to drop the packet. */
2290 /* Possably, there is a duplicate response. */
2291 /* Possabilities :
2292 retransmit immediatly - race conditions
2293 retransmit after timeout - yes
2294 exit
2295 wait for packet, then exit
2296 */
2297 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2298 return 0; /* I choose simply exiting. */
2299 }
2300 if (*result_count <= 0)
2301 {
2302 if (*done != 1)
2303 {
2304 warning (_("RMT ERROR : failed to get remote thread list."));
2305 result = 0;
2306 }
2307 return result; /* break; */
2308 }
2309 if (*result_count > result_limit)
2310 {
2311 *result_count = 0;
2312 warning (_("RMT ERROR: threadlist response longer than requested."));
2313 return 0;
2314 }
2315 return result;
2316 }
2317
2318 /* This is the interface between remote and threads, remotes upper
2319 interface. */
2320
2321 /* remote_find_new_threads retrieves the thread list and for each
2322 thread in the list, looks up the thread in GDB's internal list,
2323 adding the thread if it does not already exist. This involves
2324 getting partial thread lists from the remote target so, polling the
2325 quit_flag is required. */
2326
2327
2328 /* About this many threadisds fit in a packet. */
2329
2330 #define MAXTHREADLISTRESULTS 32
2331
2332 static int
2333 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2334 int looplimit)
2335 {
2336 int done, i, result_count;
2337 int startflag = 1;
2338 int result = 1;
2339 int loopcount = 0;
2340 static threadref nextthread;
2341 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2342
2343 done = 0;
2344 while (!done)
2345 {
2346 if (loopcount++ > looplimit)
2347 {
2348 result = 0;
2349 warning (_("Remote fetch threadlist -infinite loop-."));
2350 break;
2351 }
2352 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2353 &done, &result_count, resultthreadlist))
2354 {
2355 result = 0;
2356 break;
2357 }
2358 /* Clear for later iterations. */
2359 startflag = 0;
2360 /* Setup to resume next batch of thread references, set nextthread. */
2361 if (result_count >= 1)
2362 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2363 i = 0;
2364 while (result_count--)
2365 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2366 break;
2367 }
2368 return result;
2369 }
2370
2371 static int
2372 remote_newthread_step (threadref *ref, void *context)
2373 {
2374 int pid = ptid_get_pid (inferior_ptid);
2375 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2376
2377 if (!in_thread_list (ptid))
2378 add_thread (ptid);
2379 return 1; /* continue iterator */
2380 }
2381
2382 #define CRAZY_MAX_THREADS 1000
2383
2384 static ptid_t
2385 remote_current_thread (ptid_t oldpid)
2386 {
2387 struct remote_state *rs = get_remote_state ();
2388
2389 putpkt ("qC");
2390 getpkt (&rs->buf, &rs->buf_size, 0);
2391 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2392 return read_ptid (&rs->buf[2], NULL);
2393 else
2394 return oldpid;
2395 }
2396
2397 /* Find new threads for info threads command.
2398 * Original version, using John Metzler's thread protocol.
2399 */
2400
2401 static void
2402 remote_find_new_threads (void)
2403 {
2404 remote_threadlist_iterator (remote_newthread_step, 0,
2405 CRAZY_MAX_THREADS);
2406 }
2407
2408 #if defined(HAVE_LIBEXPAT)
2409
2410 typedef struct thread_item
2411 {
2412 ptid_t ptid;
2413 char *extra;
2414 int core;
2415 } thread_item_t;
2416 DEF_VEC_O(thread_item_t);
2417
2418 struct threads_parsing_context
2419 {
2420 VEC (thread_item_t) *items;
2421 };
2422
2423 static void
2424 start_thread (struct gdb_xml_parser *parser,
2425 const struct gdb_xml_element *element,
2426 void *user_data, VEC(gdb_xml_value_s) *attributes)
2427 {
2428 struct threads_parsing_context *data = user_data;
2429
2430 struct thread_item item;
2431 char *id;
2432
2433 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2434 item.ptid = read_ptid (id, NULL);
2435
2436 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2437 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2438 else
2439 item.core = -1;
2440
2441 item.extra = 0;
2442
2443 VEC_safe_push (thread_item_t, data->items, &item);
2444 }
2445
2446 static void
2447 end_thread (struct gdb_xml_parser *parser,
2448 const struct gdb_xml_element *element,
2449 void *user_data, const char *body_text)
2450 {
2451 struct threads_parsing_context *data = user_data;
2452
2453 if (body_text && *body_text)
2454 VEC_last (thread_item_t, data->items)->extra = strdup (body_text);
2455 }
2456
2457 const struct gdb_xml_attribute thread_attributes[] = {
2458 { "id", GDB_XML_AF_NONE, NULL, NULL },
2459 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2460 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2461 };
2462
2463 const struct gdb_xml_element thread_children[] = {
2464 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2465 };
2466
2467 const struct gdb_xml_element threads_children[] = {
2468 { "thread", thread_attributes, thread_children,
2469 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2470 start_thread, end_thread },
2471 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2472 };
2473
2474 const struct gdb_xml_element threads_elements[] = {
2475 { "threads", NULL, threads_children,
2476 GDB_XML_EF_NONE, NULL, NULL },
2477 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2478 };
2479
2480 #endif
2481
2482 /*
2483 * Find all threads for info threads command.
2484 * Uses new thread protocol contributed by Cisco.
2485 * Falls back and attempts to use the older method (above)
2486 * if the target doesn't respond to the new method.
2487 */
2488
2489 static void
2490 remote_threads_info (struct target_ops *ops)
2491 {
2492 struct remote_state *rs = get_remote_state ();
2493 char *bufp;
2494 ptid_t new_thread;
2495
2496 if (remote_desc == 0) /* paranoia */
2497 error (_("Command can only be used when connected to the remote target."));
2498
2499 #if defined(HAVE_LIBEXPAT)
2500 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2501 {
2502 char *xml = target_read_stralloc (&current_target,
2503 TARGET_OBJECT_THREADS, NULL);
2504
2505 struct cleanup *back_to = make_cleanup (xfree, xml);
2506 if (xml && *xml)
2507 {
2508 struct gdb_xml_parser *parser;
2509 struct threads_parsing_context context;
2510 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
2511
2512 context.items = 0;
2513 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2514 threads_elements,
2515 &context);
2516
2517 gdb_xml_use_dtd (parser, "threads.dtd");
2518
2519 if (gdb_xml_parse (parser, xml) == 0)
2520 {
2521 int i;
2522 struct thread_item *item;
2523
2524 for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2525 {
2526 if (!ptid_equal (item->ptid, null_ptid))
2527 {
2528 struct private_thread_info *info;
2529 /* In non-stop mode, we assume new found threads
2530 are running until proven otherwise with a
2531 stop reply. In all-stop, we can only get
2532 here if all threads are stopped. */
2533 int running = non_stop ? 1 : 0;
2534
2535 remote_notice_new_inferior (item->ptid, running);
2536
2537 info = demand_private_info (item->ptid);
2538 info->core = item->core;
2539 info->extra = item->extra;
2540 item->extra = 0;
2541 }
2542 xfree (item->extra);
2543 }
2544 }
2545
2546 VEC_free (thread_item_t, context.items);
2547 }
2548
2549 do_cleanups (back_to);
2550 return;
2551 }
2552 #endif
2553
2554 if (use_threadinfo_query)
2555 {
2556 putpkt ("qfThreadInfo");
2557 getpkt (&rs->buf, &rs->buf_size, 0);
2558 bufp = rs->buf;
2559 if (bufp[0] != '\0') /* q packet recognized */
2560 {
2561 while (*bufp++ == 'm') /* reply contains one or more TID */
2562 {
2563 do
2564 {
2565 new_thread = read_ptid (bufp, &bufp);
2566 if (!ptid_equal (new_thread, null_ptid))
2567 {
2568 /* In non-stop mode, we assume new found threads
2569 are running until proven otherwise with a
2570 stop reply. In all-stop, we can only get
2571 here if all threads are stopped. */
2572 int running = non_stop ? 1 : 0;
2573
2574 remote_notice_new_inferior (new_thread, running);
2575 }
2576 }
2577 while (*bufp++ == ','); /* comma-separated list */
2578 putpkt ("qsThreadInfo");
2579 getpkt (&rs->buf, &rs->buf_size, 0);
2580 bufp = rs->buf;
2581 }
2582 return; /* done */
2583 }
2584 }
2585
2586 /* Only qfThreadInfo is supported in non-stop mode. */
2587 if (non_stop)
2588 return;
2589
2590 /* Else fall back to old method based on jmetzler protocol. */
2591 use_threadinfo_query = 0;
2592 remote_find_new_threads ();
2593 return;
2594 }
2595
2596 /*
2597 * Collect a descriptive string about the given thread.
2598 * The target may say anything it wants to about the thread
2599 * (typically info about its blocked / runnable state, name, etc.).
2600 * This string will appear in the info threads display.
2601 *
2602 * Optional: targets are not required to implement this function.
2603 */
2604
2605 static char *
2606 remote_threads_extra_info (struct thread_info *tp)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 int result;
2610 int set;
2611 threadref id;
2612 struct gdb_ext_thread_info threadinfo;
2613 static char display_buf[100]; /* arbitrary... */
2614 int n = 0; /* position in display_buf */
2615
2616 if (remote_desc == 0) /* paranoia */
2617 internal_error (__FILE__, __LINE__,
2618 _("remote_threads_extra_info"));
2619
2620 if (ptid_equal (tp->ptid, magic_null_ptid)
2621 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2622 /* This is the main thread which was added by GDB. The remote
2623 server doesn't know about it. */
2624 return NULL;
2625
2626 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2627 {
2628 struct thread_info *info = find_thread_ptid (tp->ptid);
2629 if (info && info->private)
2630 return info->private->extra;
2631 else
2632 return NULL;
2633 }
2634
2635 if (use_threadextra_query)
2636 {
2637 char *b = rs->buf;
2638 char *endb = rs->buf + get_remote_packet_size ();
2639
2640 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2641 b += strlen (b);
2642 write_ptid (b, endb, tp->ptid);
2643
2644 putpkt (rs->buf);
2645 getpkt (&rs->buf, &rs->buf_size, 0);
2646 if (rs->buf[0] != 0)
2647 {
2648 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2649 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2650 display_buf [result] = '\0';
2651 return display_buf;
2652 }
2653 }
2654
2655 /* If the above query fails, fall back to the old method. */
2656 use_threadextra_query = 0;
2657 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2658 | TAG_MOREDISPLAY | TAG_DISPLAY;
2659 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2660 if (remote_get_threadinfo (&id, set, &threadinfo))
2661 if (threadinfo.active)
2662 {
2663 if (*threadinfo.shortname)
2664 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2665 " Name: %s,", threadinfo.shortname);
2666 if (*threadinfo.display)
2667 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2668 " State: %s,", threadinfo.display);
2669 if (*threadinfo.more_display)
2670 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2671 " Priority: %s", threadinfo.more_display);
2672
2673 if (n > 0)
2674 {
2675 /* For purely cosmetic reasons, clear up trailing commas. */
2676 if (',' == display_buf[n-1])
2677 display_buf[n-1] = ' ';
2678 return display_buf;
2679 }
2680 }
2681 return NULL;
2682 }
2683 \f
2684
2685 /* Restart the remote side; this is an extended protocol operation. */
2686
2687 static void
2688 extended_remote_restart (void)
2689 {
2690 struct remote_state *rs = get_remote_state ();
2691
2692 /* Send the restart command; for reasons I don't understand the
2693 remote side really expects a number after the "R". */
2694 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2695 putpkt (rs->buf);
2696
2697 remote_fileio_reset ();
2698 }
2699 \f
2700 /* Clean up connection to a remote debugger. */
2701
2702 static void
2703 remote_close (int quitting)
2704 {
2705 if (remote_desc == NULL)
2706 return; /* already closed */
2707
2708 /* Make sure we leave stdin registered in the event loop, and we
2709 don't leave the async SIGINT signal handler installed. */
2710 remote_terminal_ours ();
2711
2712 serial_close (remote_desc);
2713 remote_desc = NULL;
2714
2715 /* We don't have a connection to the remote stub anymore. Get rid
2716 of all the inferiors and their threads we were controlling. */
2717 discard_all_inferiors ();
2718
2719 /* We're no longer interested in any of these events. */
2720 discard_pending_stop_replies (-1);
2721
2722 if (remote_async_inferior_event_token)
2723 delete_async_event_handler (&remote_async_inferior_event_token);
2724 if (remote_async_get_pending_events_token)
2725 delete_async_event_handler (&remote_async_get_pending_events_token);
2726 }
2727
2728 /* Query the remote side for the text, data and bss offsets. */
2729
2730 static void
2731 get_offsets (void)
2732 {
2733 struct remote_state *rs = get_remote_state ();
2734 char *buf;
2735 char *ptr;
2736 int lose, num_segments = 0, do_sections, do_segments;
2737 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2738 struct section_offsets *offs;
2739 struct symfile_segment_data *data;
2740
2741 if (symfile_objfile == NULL)
2742 return;
2743
2744 putpkt ("qOffsets");
2745 getpkt (&rs->buf, &rs->buf_size, 0);
2746 buf = rs->buf;
2747
2748 if (buf[0] == '\000')
2749 return; /* Return silently. Stub doesn't support
2750 this command. */
2751 if (buf[0] == 'E')
2752 {
2753 warning (_("Remote failure reply: %s"), buf);
2754 return;
2755 }
2756
2757 /* Pick up each field in turn. This used to be done with scanf, but
2758 scanf will make trouble if CORE_ADDR size doesn't match
2759 conversion directives correctly. The following code will work
2760 with any size of CORE_ADDR. */
2761 text_addr = data_addr = bss_addr = 0;
2762 ptr = buf;
2763 lose = 0;
2764
2765 if (strncmp (ptr, "Text=", 5) == 0)
2766 {
2767 ptr += 5;
2768 /* Don't use strtol, could lose on big values. */
2769 while (*ptr && *ptr != ';')
2770 text_addr = (text_addr << 4) + fromhex (*ptr++);
2771
2772 if (strncmp (ptr, ";Data=", 6) == 0)
2773 {
2774 ptr += 6;
2775 while (*ptr && *ptr != ';')
2776 data_addr = (data_addr << 4) + fromhex (*ptr++);
2777 }
2778 else
2779 lose = 1;
2780
2781 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2782 {
2783 ptr += 5;
2784 while (*ptr && *ptr != ';')
2785 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2786
2787 if (bss_addr != data_addr)
2788 warning (_("Target reported unsupported offsets: %s"), buf);
2789 }
2790 else
2791 lose = 1;
2792 }
2793 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2794 {
2795 ptr += 8;
2796 /* Don't use strtol, could lose on big values. */
2797 while (*ptr && *ptr != ';')
2798 text_addr = (text_addr << 4) + fromhex (*ptr++);
2799 num_segments = 1;
2800
2801 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2802 {
2803 ptr += 9;
2804 while (*ptr && *ptr != ';')
2805 data_addr = (data_addr << 4) + fromhex (*ptr++);
2806 num_segments++;
2807 }
2808 }
2809 else
2810 lose = 1;
2811
2812 if (lose)
2813 error (_("Malformed response to offset query, %s"), buf);
2814 else if (*ptr != '\0')
2815 warning (_("Target reported unsupported offsets: %s"), buf);
2816
2817 offs = ((struct section_offsets *)
2818 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2819 memcpy (offs, symfile_objfile->section_offsets,
2820 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2821
2822 data = get_symfile_segment_data (symfile_objfile->obfd);
2823 do_segments = (data != NULL);
2824 do_sections = num_segments == 0;
2825
2826 if (num_segments > 0)
2827 {
2828 segments[0] = text_addr;
2829 segments[1] = data_addr;
2830 }
2831 /* If we have two segments, we can still try to relocate everything
2832 by assuming that the .text and .data offsets apply to the whole
2833 text and data segments. Convert the offsets given in the packet
2834 to base addresses for symfile_map_offsets_to_segments. */
2835 else if (data && data->num_segments == 2)
2836 {
2837 segments[0] = data->segment_bases[0] + text_addr;
2838 segments[1] = data->segment_bases[1] + data_addr;
2839 num_segments = 2;
2840 }
2841 /* If the object file has only one segment, assume that it is text
2842 rather than data; main programs with no writable data are rare,
2843 but programs with no code are useless. Of course the code might
2844 have ended up in the data segment... to detect that we would need
2845 the permissions here. */
2846 else if (data && data->num_segments == 1)
2847 {
2848 segments[0] = data->segment_bases[0] + text_addr;
2849 num_segments = 1;
2850 }
2851 /* There's no way to relocate by segment. */
2852 else
2853 do_segments = 0;
2854
2855 if (do_segments)
2856 {
2857 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2858 offs, num_segments, segments);
2859
2860 if (ret == 0 && !do_sections)
2861 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2862
2863 if (ret > 0)
2864 do_sections = 0;
2865 }
2866
2867 if (data)
2868 free_symfile_segment_data (data);
2869
2870 if (do_sections)
2871 {
2872 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2873
2874 /* This is a temporary kludge to force data and bss to use the same offsets
2875 because that's what nlmconv does now. The real solution requires changes
2876 to the stub and remote.c that I don't have time to do right now. */
2877
2878 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2879 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2880 }
2881
2882 objfile_relocate (symfile_objfile, offs);
2883 }
2884
2885 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2886 threads we know are stopped already. This is used during the
2887 initial remote connection in non-stop mode --- threads that are
2888 reported as already being stopped are left stopped. */
2889
2890 static int
2891 set_stop_requested_callback (struct thread_info *thread, void *data)
2892 {
2893 /* If we have a stop reply for this thread, it must be stopped. */
2894 if (peek_stop_reply (thread->ptid))
2895 set_stop_requested (thread->ptid, 1);
2896
2897 return 0;
2898 }
2899
2900 /* Stub for catch_exception. */
2901
2902 struct start_remote_args
2903 {
2904 int from_tty;
2905
2906 /* The current target. */
2907 struct target_ops *target;
2908
2909 /* Non-zero if this is an extended-remote target. */
2910 int extended_p;
2911 };
2912
2913 /* Send interrupt_sequence to remote target. */
2914 static void
2915 send_interrupt_sequence ()
2916 {
2917 if (interrupt_sequence_mode == interrupt_sequence_control_c)
2918 serial_write (remote_desc, "\x03", 1);
2919 else if (interrupt_sequence_mode == interrupt_sequence_break)
2920 serial_send_break (remote_desc);
2921 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
2922 {
2923 serial_send_break (remote_desc);
2924 serial_write (remote_desc, "g", 1);
2925 }
2926 else
2927 internal_error (__FILE__, __LINE__,
2928 _("Invalid value for interrupt_sequence_mode: %s."),
2929 interrupt_sequence_mode);
2930 }
2931
2932 static void
2933 remote_start_remote (struct ui_out *uiout, void *opaque)
2934 {
2935 struct start_remote_args *args = opaque;
2936 struct remote_state *rs = get_remote_state ();
2937 struct packet_config *noack_config;
2938 char *wait_status = NULL;
2939
2940 immediate_quit++; /* Allow user to interrupt it. */
2941
2942 /* Ack any packet which the remote side has already sent. */
2943 serial_write (remote_desc, "+", 1);
2944
2945 if (interrupt_on_connect)
2946 send_interrupt_sequence ();
2947
2948 /* The first packet we send to the target is the optional "supported
2949 packets" request. If the target can answer this, it will tell us
2950 which later probes to skip. */
2951 remote_query_supported ();
2952
2953 /* Next, we possibly activate noack mode.
2954
2955 If the QStartNoAckMode packet configuration is set to AUTO,
2956 enable noack mode if the stub reported a wish for it with
2957 qSupported.
2958
2959 If set to TRUE, then enable noack mode even if the stub didn't
2960 report it in qSupported. If the stub doesn't reply OK, the
2961 session ends with an error.
2962
2963 If FALSE, then don't activate noack mode, regardless of what the
2964 stub claimed should be the default with qSupported. */
2965
2966 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2967
2968 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2969 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2970 && noack_config->support == PACKET_ENABLE))
2971 {
2972 putpkt ("QStartNoAckMode");
2973 getpkt (&rs->buf, &rs->buf_size, 0);
2974 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2975 rs->noack_mode = 1;
2976 }
2977
2978 if (args->extended_p)
2979 {
2980 /* Tell the remote that we are using the extended protocol. */
2981 putpkt ("!");
2982 getpkt (&rs->buf, &rs->buf_size, 0);
2983 }
2984
2985 /* Next, if the target can specify a description, read it. We do
2986 this before anything involving memory or registers. */
2987 target_find_description ();
2988
2989 /* Next, now that we know something about the target, update the
2990 address spaces in the program spaces. */
2991 update_address_spaces ();
2992
2993 /* On OSs where the list of libraries is global to all
2994 processes, we fetch them early. */
2995 if (gdbarch_has_global_solist (target_gdbarch))
2996 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2997
2998 if (non_stop)
2999 {
3000 if (!rs->non_stop_aware)
3001 error (_("Non-stop mode requested, but remote does not support non-stop"));
3002
3003 putpkt ("QNonStop:1");
3004 getpkt (&rs->buf, &rs->buf_size, 0);
3005
3006 if (strcmp (rs->buf, "OK") != 0)
3007 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3008
3009 /* Find about threads and processes the stub is already
3010 controlling. We default to adding them in the running state.
3011 The '?' query below will then tell us about which threads are
3012 stopped. */
3013 remote_threads_info (args->target);
3014 }
3015 else if (rs->non_stop_aware)
3016 {
3017 /* Don't assume that the stub can operate in all-stop mode.
3018 Request it explicitely. */
3019 putpkt ("QNonStop:0");
3020 getpkt (&rs->buf, &rs->buf_size, 0);
3021
3022 if (strcmp (rs->buf, "OK") != 0)
3023 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3024 }
3025
3026 /* Check whether the target is running now. */
3027 putpkt ("?");
3028 getpkt (&rs->buf, &rs->buf_size, 0);
3029
3030 if (!non_stop)
3031 {
3032 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3033 {
3034 if (!args->extended_p)
3035 error (_("The target is not running (try extended-remote?)"));
3036
3037 /* We're connected, but not running. Drop out before we
3038 call start_remote. */
3039 return;
3040 }
3041 else
3042 {
3043 /* Save the reply for later. */
3044 wait_status = alloca (strlen (rs->buf) + 1);
3045 strcpy (wait_status, rs->buf);
3046 }
3047
3048 /* Let the stub know that we want it to return the thread. */
3049 set_continue_thread (minus_one_ptid);
3050
3051 /* Without this, some commands which require an active target
3052 (such as kill) won't work. This variable serves (at least)
3053 double duty as both the pid of the target process (if it has
3054 such), and as a flag indicating that a target is active.
3055 These functions should be split out into seperate variables,
3056 especially since GDB will someday have a notion of debugging
3057 several processes. */
3058 inferior_ptid = magic_null_ptid;
3059
3060 /* Now, if we have thread information, update inferior_ptid. */
3061 inferior_ptid = remote_current_thread (inferior_ptid);
3062
3063 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3064
3065 /* Always add the main thread. */
3066 add_thread_silent (inferior_ptid);
3067
3068 get_offsets (); /* Get text, data & bss offsets. */
3069
3070 /* If we could not find a description using qXfer, and we know
3071 how to do it some other way, try again. This is not
3072 supported for non-stop; it could be, but it is tricky if
3073 there are no stopped threads when we connect. */
3074 if (remote_read_description_p (args->target)
3075 && gdbarch_target_desc (target_gdbarch) == NULL)
3076 {
3077 target_clear_description ();
3078 target_find_description ();
3079 }
3080
3081 /* Use the previously fetched status. */
3082 gdb_assert (wait_status != NULL);
3083 strcpy (rs->buf, wait_status);
3084 rs->cached_wait_status = 1;
3085
3086 immediate_quit--;
3087 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3088 }
3089 else
3090 {
3091 /* Clear WFI global state. Do this before finding about new
3092 threads and inferiors, and setting the current inferior.
3093 Otherwise we would clear the proceed status of the current
3094 inferior when we want its stop_soon state to be preserved
3095 (see notice_new_inferior). */
3096 init_wait_for_inferior ();
3097
3098 /* In non-stop, we will either get an "OK", meaning that there
3099 are no stopped threads at this time; or, a regular stop
3100 reply. In the latter case, there may be more than one thread
3101 stopped --- we pull them all out using the vStopped
3102 mechanism. */
3103 if (strcmp (rs->buf, "OK") != 0)
3104 {
3105 struct stop_reply *stop_reply;
3106 struct cleanup *old_chain;
3107
3108 stop_reply = stop_reply_xmalloc ();
3109 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3110
3111 remote_parse_stop_reply (rs->buf, stop_reply);
3112 discard_cleanups (old_chain);
3113
3114 /* get_pending_stop_replies acks this one, and gets the rest
3115 out. */
3116 pending_stop_reply = stop_reply;
3117 remote_get_pending_stop_replies ();
3118
3119 /* Make sure that threads that were stopped remain
3120 stopped. */
3121 iterate_over_threads (set_stop_requested_callback, NULL);
3122 }
3123
3124 if (target_can_async_p ())
3125 target_async (inferior_event_handler, 0);
3126
3127 if (thread_count () == 0)
3128 {
3129 if (!args->extended_p)
3130 error (_("The target is not running (try extended-remote?)"));
3131
3132 /* We're connected, but not running. Drop out before we
3133 call start_remote. */
3134 return;
3135 }
3136
3137 /* Let the stub know that we want it to return the thread. */
3138
3139 /* Force the stub to choose a thread. */
3140 set_general_thread (null_ptid);
3141
3142 /* Query it. */
3143 inferior_ptid = remote_current_thread (minus_one_ptid);
3144 if (ptid_equal (inferior_ptid, minus_one_ptid))
3145 error (_("remote didn't report the current thread in non-stop mode"));
3146
3147 get_offsets (); /* Get text, data & bss offsets. */
3148
3149 /* In non-stop mode, any cached wait status will be stored in
3150 the stop reply queue. */
3151 gdb_assert (wait_status == NULL);
3152 }
3153
3154 /* If we connected to a live target, do some additional setup. */
3155 if (target_has_execution)
3156 {
3157 if (exec_bfd) /* No use without an exec file. */
3158 remote_check_symbols (symfile_objfile);
3159 }
3160
3161 /* Possibly the target has been engaged in a trace run started
3162 previously; find out where things are at. */
3163 if (rs->disconnected_tracing)
3164 {
3165 struct uploaded_tp *uploaded_tps = NULL;
3166 struct uploaded_tsv *uploaded_tsvs = NULL;
3167
3168 remote_get_trace_status (current_trace_status ());
3169 if (current_trace_status ()->running)
3170 printf_filtered (_("Trace is already running on the target.\n"));
3171
3172 /* Get trace state variables first, they may be checked when
3173 parsing uploaded commands. */
3174
3175 remote_upload_trace_state_variables (&uploaded_tsvs);
3176
3177 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3178
3179 remote_upload_tracepoints (&uploaded_tps);
3180
3181 merge_uploaded_tracepoints (&uploaded_tps);
3182 }
3183
3184 /* If breakpoints are global, insert them now. */
3185 if (gdbarch_has_global_breakpoints (target_gdbarch)
3186 && breakpoints_always_inserted_mode ())
3187 insert_breakpoints ();
3188 }
3189
3190 /* Open a connection to a remote debugger.
3191 NAME is the filename used for communication. */
3192
3193 static void
3194 remote_open (char *name, int from_tty)
3195 {
3196 remote_open_1 (name, from_tty, &remote_ops, 0);
3197 }
3198
3199 /* Open a connection to a remote debugger using the extended
3200 remote gdb protocol. NAME is the filename used for communication. */
3201
3202 static void
3203 extended_remote_open (char *name, int from_tty)
3204 {
3205 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3206 }
3207
3208 /* Generic code for opening a connection to a remote target. */
3209
3210 static void
3211 init_all_packet_configs (void)
3212 {
3213 int i;
3214 for (i = 0; i < PACKET_MAX; i++)
3215 update_packet_config (&remote_protocol_packets[i]);
3216 }
3217
3218 /* Symbol look-up. */
3219
3220 static void
3221 remote_check_symbols (struct objfile *objfile)
3222 {
3223 struct remote_state *rs = get_remote_state ();
3224 char *msg, *reply, *tmp;
3225 struct minimal_symbol *sym;
3226 int end;
3227
3228 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3229 return;
3230
3231 /* Make sure the remote is pointing at the right process. */
3232 set_general_process ();
3233
3234 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3235 because we need both at the same time. */
3236 msg = alloca (get_remote_packet_size ());
3237
3238 /* Invite target to request symbol lookups. */
3239
3240 putpkt ("qSymbol::");
3241 getpkt (&rs->buf, &rs->buf_size, 0);
3242 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3243 reply = rs->buf;
3244
3245 while (strncmp (reply, "qSymbol:", 8) == 0)
3246 {
3247 tmp = &reply[8];
3248 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3249 msg[end] = '\0';
3250 sym = lookup_minimal_symbol (msg, NULL, NULL);
3251 if (sym == NULL)
3252 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3253 else
3254 {
3255 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3256 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3257
3258 /* If this is a function address, return the start of code
3259 instead of any data function descriptor. */
3260 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3261 sym_addr,
3262 &current_target);
3263
3264 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3265 phex_nz (sym_addr, addr_size), &reply[8]);
3266 }
3267
3268 putpkt (msg);
3269 getpkt (&rs->buf, &rs->buf_size, 0);
3270 reply = rs->buf;
3271 }
3272 }
3273
3274 static struct serial *
3275 remote_serial_open (char *name)
3276 {
3277 static int udp_warning = 0;
3278
3279 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3280 of in ser-tcp.c, because it is the remote protocol assuming that the
3281 serial connection is reliable and not the serial connection promising
3282 to be. */
3283 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3284 {
3285 warning (_("\
3286 The remote protocol may be unreliable over UDP.\n\
3287 Some events may be lost, rendering further debugging impossible."));
3288 udp_warning = 1;
3289 }
3290
3291 return serial_open (name);
3292 }
3293
3294 /* This type describes each known response to the qSupported
3295 packet. */
3296 struct protocol_feature
3297 {
3298 /* The name of this protocol feature. */
3299 const char *name;
3300
3301 /* The default for this protocol feature. */
3302 enum packet_support default_support;
3303
3304 /* The function to call when this feature is reported, or after
3305 qSupported processing if the feature is not supported.
3306 The first argument points to this structure. The second
3307 argument indicates whether the packet requested support be
3308 enabled, disabled, or probed (or the default, if this function
3309 is being called at the end of processing and this feature was
3310 not reported). The third argument may be NULL; if not NULL, it
3311 is a NUL-terminated string taken from the packet following
3312 this feature's name and an equals sign. */
3313 void (*func) (const struct protocol_feature *, enum packet_support,
3314 const char *);
3315
3316 /* The corresponding packet for this feature. Only used if
3317 FUNC is remote_supported_packet. */
3318 int packet;
3319 };
3320
3321 static void
3322 remote_supported_packet (const struct protocol_feature *feature,
3323 enum packet_support support,
3324 const char *argument)
3325 {
3326 if (argument)
3327 {
3328 warning (_("Remote qSupported response supplied an unexpected value for"
3329 " \"%s\"."), feature->name);
3330 return;
3331 }
3332
3333 if (remote_protocol_packets[feature->packet].support
3334 == PACKET_SUPPORT_UNKNOWN)
3335 remote_protocol_packets[feature->packet].support = support;
3336 }
3337
3338 static void
3339 remote_packet_size (const struct protocol_feature *feature,
3340 enum packet_support support, const char *value)
3341 {
3342 struct remote_state *rs = get_remote_state ();
3343
3344 int packet_size;
3345 char *value_end;
3346
3347 if (support != PACKET_ENABLE)
3348 return;
3349
3350 if (value == NULL || *value == '\0')
3351 {
3352 warning (_("Remote target reported \"%s\" without a size."),
3353 feature->name);
3354 return;
3355 }
3356
3357 errno = 0;
3358 packet_size = strtol (value, &value_end, 16);
3359 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3360 {
3361 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3362 feature->name, value);
3363 return;
3364 }
3365
3366 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3367 {
3368 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3369 packet_size, MAX_REMOTE_PACKET_SIZE);
3370 packet_size = MAX_REMOTE_PACKET_SIZE;
3371 }
3372
3373 /* Record the new maximum packet size. */
3374 rs->explicit_packet_size = packet_size;
3375 }
3376
3377 static void
3378 remote_multi_process_feature (const struct protocol_feature *feature,
3379 enum packet_support support, const char *value)
3380 {
3381 struct remote_state *rs = get_remote_state ();
3382 rs->multi_process_aware = (support == PACKET_ENABLE);
3383 }
3384
3385 static void
3386 remote_non_stop_feature (const struct protocol_feature *feature,
3387 enum packet_support support, const char *value)
3388 {
3389 struct remote_state *rs = get_remote_state ();
3390 rs->non_stop_aware = (support == PACKET_ENABLE);
3391 }
3392
3393 static void
3394 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3395 enum packet_support support,
3396 const char *value)
3397 {
3398 struct remote_state *rs = get_remote_state ();
3399 rs->cond_tracepoints = (support == PACKET_ENABLE);
3400 }
3401
3402 static void
3403 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3404 enum packet_support support,
3405 const char *value)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 rs->fast_tracepoints = (support == PACKET_ENABLE);
3409 }
3410
3411 static void
3412 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3413 enum packet_support support,
3414 const char *value)
3415 {
3416 struct remote_state *rs = get_remote_state ();
3417 rs->disconnected_tracing = (support == PACKET_ENABLE);
3418 }
3419
3420 static struct protocol_feature remote_protocol_features[] = {
3421 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3422 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3423 PACKET_qXfer_auxv },
3424 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3425 PACKET_qXfer_features },
3426 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3427 PACKET_qXfer_libraries },
3428 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3429 PACKET_qXfer_memory_map },
3430 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3431 PACKET_qXfer_spu_read },
3432 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3433 PACKET_qXfer_spu_write },
3434 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3435 PACKET_qXfer_osdata },
3436 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3437 PACKET_qXfer_threads },
3438 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3439 PACKET_QPassSignals },
3440 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3441 PACKET_QStartNoAckMode },
3442 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3443 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3444 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3445 PACKET_qXfer_siginfo_read },
3446 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3447 PACKET_qXfer_siginfo_write },
3448 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3449 PACKET_ConditionalTracepoints },
3450 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3451 PACKET_FastTracepoints },
3452 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3453 -1 },
3454 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3455 PACKET_bc },
3456 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3457 PACKET_bs },
3458 };
3459
3460 static void
3461 remote_query_supported (void)
3462 {
3463 struct remote_state *rs = get_remote_state ();
3464 char *next;
3465 int i;
3466 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3467
3468 /* The packet support flags are handled differently for this packet
3469 than for most others. We treat an error, a disabled packet, and
3470 an empty response identically: any features which must be reported
3471 to be used will be automatically disabled. An empty buffer
3472 accomplishes this, since that is also the representation for a list
3473 containing no features. */
3474
3475 rs->buf[0] = 0;
3476 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3477 {
3478 const char *qsupported = gdbarch_qsupported (target_gdbarch);
3479 if (qsupported)
3480 {
3481 char *q;
3482 if (rs->extended)
3483 q = concat ("qSupported:multiprocess+;", qsupported, NULL);
3484 else
3485 q = concat ("qSupported:", qsupported, NULL);
3486 putpkt (q);
3487 xfree (q);
3488 }
3489 else
3490 {
3491 if (rs->extended)
3492 putpkt ("qSupported:multiprocess+");
3493 else
3494 putpkt ("qSupported");
3495 }
3496
3497 getpkt (&rs->buf, &rs->buf_size, 0);
3498
3499 /* If an error occured, warn, but do not return - just reset the
3500 buffer to empty and go on to disable features. */
3501 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3502 == PACKET_ERROR)
3503 {
3504 warning (_("Remote failure reply: %s"), rs->buf);
3505 rs->buf[0] = 0;
3506 }
3507 }
3508
3509 memset (seen, 0, sizeof (seen));
3510
3511 next = rs->buf;
3512 while (*next)
3513 {
3514 enum packet_support is_supported;
3515 char *p, *end, *name_end, *value;
3516
3517 /* First separate out this item from the rest of the packet. If
3518 there's another item after this, we overwrite the separator
3519 (terminated strings are much easier to work with). */
3520 p = next;
3521 end = strchr (p, ';');
3522 if (end == NULL)
3523 {
3524 end = p + strlen (p);
3525 next = end;
3526 }
3527 else
3528 {
3529 *end = '\0';
3530 next = end + 1;
3531
3532 if (end == p)
3533 {
3534 warning (_("empty item in \"qSupported\" response"));
3535 continue;
3536 }
3537 }
3538
3539 name_end = strchr (p, '=');
3540 if (name_end)
3541 {
3542 /* This is a name=value entry. */
3543 is_supported = PACKET_ENABLE;
3544 value = name_end + 1;
3545 *name_end = '\0';
3546 }
3547 else
3548 {
3549 value = NULL;
3550 switch (end[-1])
3551 {
3552 case '+':
3553 is_supported = PACKET_ENABLE;
3554 break;
3555
3556 case '-':
3557 is_supported = PACKET_DISABLE;
3558 break;
3559
3560 case '?':
3561 is_supported = PACKET_SUPPORT_UNKNOWN;
3562 break;
3563
3564 default:
3565 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3566 continue;
3567 }
3568 end[-1] = '\0';
3569 }
3570
3571 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3572 if (strcmp (remote_protocol_features[i].name, p) == 0)
3573 {
3574 const struct protocol_feature *feature;
3575
3576 seen[i] = 1;
3577 feature = &remote_protocol_features[i];
3578 feature->func (feature, is_supported, value);
3579 break;
3580 }
3581 }
3582
3583 /* If we increased the packet size, make sure to increase the global
3584 buffer size also. We delay this until after parsing the entire
3585 qSupported packet, because this is the same buffer we were
3586 parsing. */
3587 if (rs->buf_size < rs->explicit_packet_size)
3588 {
3589 rs->buf_size = rs->explicit_packet_size;
3590 rs->buf = xrealloc (rs->buf, rs->buf_size);
3591 }
3592
3593 /* Handle the defaults for unmentioned features. */
3594 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3595 if (!seen[i])
3596 {
3597 const struct protocol_feature *feature;
3598
3599 feature = &remote_protocol_features[i];
3600 feature->func (feature, feature->default_support, NULL);
3601 }
3602 }
3603
3604
3605 static void
3606 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3607 {
3608 struct remote_state *rs = get_remote_state ();
3609
3610 if (name == 0)
3611 error (_("To open a remote debug connection, you need to specify what\n"
3612 "serial device is attached to the remote system\n"
3613 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3614
3615 /* See FIXME above. */
3616 if (!target_async_permitted)
3617 wait_forever_enabled_p = 1;
3618
3619 /* If we're connected to a running target, target_preopen will kill it.
3620 But if we're connected to a target system with no running process,
3621 then we will still be connected when it returns. Ask this question
3622 first, before target_preopen has a chance to kill anything. */
3623 if (remote_desc != NULL && !have_inferiors ())
3624 {
3625 if (!from_tty
3626 || query (_("Already connected to a remote target. Disconnect? ")))
3627 pop_target ();
3628 else
3629 error (_("Still connected."));
3630 }
3631
3632 target_preopen (from_tty);
3633
3634 unpush_target (target);
3635
3636 /* This time without a query. If we were connected to an
3637 extended-remote target and target_preopen killed the running
3638 process, we may still be connected. If we are starting "target
3639 remote" now, the extended-remote target will not have been
3640 removed by unpush_target. */
3641 if (remote_desc != NULL && !have_inferiors ())
3642 pop_target ();
3643
3644 /* Make sure we send the passed signals list the next time we resume. */
3645 xfree (last_pass_packet);
3646 last_pass_packet = NULL;
3647
3648 remote_fileio_reset ();
3649 reopen_exec_file ();
3650 reread_symbols ();
3651
3652 remote_desc = remote_serial_open (name);
3653 if (!remote_desc)
3654 perror_with_name (name);
3655
3656 if (baud_rate != -1)
3657 {
3658 if (serial_setbaudrate (remote_desc, baud_rate))
3659 {
3660 /* The requested speed could not be set. Error out to
3661 top level after closing remote_desc. Take care to
3662 set remote_desc to NULL to avoid closing remote_desc
3663 more than once. */
3664 serial_close (remote_desc);
3665 remote_desc = NULL;
3666 perror_with_name (name);
3667 }
3668 }
3669
3670 serial_raw (remote_desc);
3671
3672 /* If there is something sitting in the buffer we might take it as a
3673 response to a command, which would be bad. */
3674 serial_flush_input (remote_desc);
3675
3676 if (from_tty)
3677 {
3678 puts_filtered ("Remote debugging using ");
3679 puts_filtered (name);
3680 puts_filtered ("\n");
3681 }
3682 push_target (target); /* Switch to using remote target now. */
3683
3684 /* Register extra event sources in the event loop. */
3685 remote_async_inferior_event_token
3686 = create_async_event_handler (remote_async_inferior_event_handler,
3687 NULL);
3688 remote_async_get_pending_events_token
3689 = create_async_event_handler (remote_async_get_pending_events_handler,
3690 NULL);
3691
3692 /* Reset the target state; these things will be queried either by
3693 remote_query_supported or as they are needed. */
3694 init_all_packet_configs ();
3695 rs->cached_wait_status = 0;
3696 rs->explicit_packet_size = 0;
3697 rs->noack_mode = 0;
3698 rs->multi_process_aware = 0;
3699 rs->extended = extended_p;
3700 rs->non_stop_aware = 0;
3701 rs->waiting_for_stop_reply = 0;
3702 rs->ctrlc_pending_p = 0;
3703
3704 general_thread = not_sent_ptid;
3705 continue_thread = not_sent_ptid;
3706
3707 /* Probe for ability to use "ThreadInfo" query, as required. */
3708 use_threadinfo_query = 1;
3709 use_threadextra_query = 1;
3710
3711 if (target_async_permitted)
3712 {
3713 /* With this target we start out by owning the terminal. */
3714 remote_async_terminal_ours_p = 1;
3715
3716 /* FIXME: cagney/1999-09-23: During the initial connection it is
3717 assumed that the target is already ready and able to respond to
3718 requests. Unfortunately remote_start_remote() eventually calls
3719 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3720 around this. Eventually a mechanism that allows
3721 wait_for_inferior() to expect/get timeouts will be
3722 implemented. */
3723 wait_forever_enabled_p = 0;
3724 }
3725
3726 /* First delete any symbols previously loaded from shared libraries. */
3727 no_shared_libraries (NULL, 0);
3728
3729 /* Start afresh. */
3730 init_thread_list ();
3731
3732 /* Start the remote connection. If error() or QUIT, discard this
3733 target (we'd otherwise be in an inconsistent state) and then
3734 propogate the error on up the exception chain. This ensures that
3735 the caller doesn't stumble along blindly assuming that the
3736 function succeeded. The CLI doesn't have this problem but other
3737 UI's, such as MI do.
3738
3739 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3740 this function should return an error indication letting the
3741 caller restore the previous state. Unfortunately the command
3742 ``target remote'' is directly wired to this function making that
3743 impossible. On a positive note, the CLI side of this problem has
3744 been fixed - the function set_cmd_context() makes it possible for
3745 all the ``target ....'' commands to share a common callback
3746 function. See cli-dump.c. */
3747 {
3748 struct gdb_exception ex;
3749 struct start_remote_args args;
3750
3751 args.from_tty = from_tty;
3752 args.target = target;
3753 args.extended_p = extended_p;
3754
3755 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3756 if (ex.reason < 0)
3757 {
3758 /* Pop the partially set up target - unless something else did
3759 already before throwing the exception. */
3760 if (remote_desc != NULL)
3761 pop_target ();
3762 if (target_async_permitted)
3763 wait_forever_enabled_p = 1;
3764 throw_exception (ex);
3765 }
3766 }
3767
3768 if (target_async_permitted)
3769 wait_forever_enabled_p = 1;
3770 }
3771
3772 /* This takes a program previously attached to and detaches it. After
3773 this is done, GDB can be used to debug some other program. We
3774 better not have left any breakpoints in the target program or it'll
3775 die when it hits one. */
3776
3777 static void
3778 remote_detach_1 (char *args, int from_tty, int extended)
3779 {
3780 int pid = ptid_get_pid (inferior_ptid);
3781 struct remote_state *rs = get_remote_state ();
3782
3783 if (args)
3784 error (_("Argument given to \"detach\" when remotely debugging."));
3785
3786 if (!target_has_execution)
3787 error (_("No process to detach from."));
3788
3789 /* Tell the remote target to detach. */
3790 if (remote_multi_process_p (rs))
3791 sprintf (rs->buf, "D;%x", pid);
3792 else
3793 strcpy (rs->buf, "D");
3794
3795 putpkt (rs->buf);
3796 getpkt (&rs->buf, &rs->buf_size, 0);
3797
3798 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3799 ;
3800 else if (rs->buf[0] == '\0')
3801 error (_("Remote doesn't know how to detach"));
3802 else
3803 error (_("Can't detach process."));
3804
3805 if (from_tty)
3806 {
3807 if (remote_multi_process_p (rs))
3808 printf_filtered (_("Detached from remote %s.\n"),
3809 target_pid_to_str (pid_to_ptid (pid)));
3810 else
3811 {
3812 if (extended)
3813 puts_filtered (_("Detached from remote process.\n"));
3814 else
3815 puts_filtered (_("Ending remote debugging.\n"));
3816 }
3817 }
3818
3819 discard_pending_stop_replies (pid);
3820 target_mourn_inferior ();
3821 }
3822
3823 static void
3824 remote_detach (struct target_ops *ops, char *args, int from_tty)
3825 {
3826 remote_detach_1 (args, from_tty, 0);
3827 }
3828
3829 static void
3830 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3831 {
3832 remote_detach_1 (args, from_tty, 1);
3833 }
3834
3835 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3836
3837 static void
3838 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3839 {
3840 if (args)
3841 error (_("Argument given to \"disconnect\" when remotely debugging."));
3842
3843 /* Make sure we unpush even the extended remote targets; mourn
3844 won't do it. So call remote_mourn_1 directly instead of
3845 target_mourn_inferior. */
3846 remote_mourn_1 (target);
3847
3848 if (from_tty)
3849 puts_filtered ("Ending remote debugging.\n");
3850 }
3851
3852 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3853 be chatty about it. */
3854
3855 static void
3856 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3857 {
3858 struct remote_state *rs = get_remote_state ();
3859 int pid;
3860 char *wait_status = NULL;
3861
3862 pid = parse_pid_to_attach (args);
3863
3864 /* Remote PID can be freely equal to getpid, do not check it here the same
3865 way as in other targets. */
3866
3867 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3868 error (_("This target does not support attaching to a process"));
3869
3870 sprintf (rs->buf, "vAttach;%x", pid);
3871 putpkt (rs->buf);
3872 getpkt (&rs->buf, &rs->buf_size, 0);
3873
3874 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3875 {
3876 if (from_tty)
3877 printf_unfiltered (_("Attached to %s\n"),
3878 target_pid_to_str (pid_to_ptid (pid)));
3879
3880 if (!non_stop)
3881 {
3882 /* Save the reply for later. */
3883 wait_status = alloca (strlen (rs->buf) + 1);
3884 strcpy (wait_status, rs->buf);
3885 }
3886 else if (strcmp (rs->buf, "OK") != 0)
3887 error (_("Attaching to %s failed with: %s"),
3888 target_pid_to_str (pid_to_ptid (pid)),
3889 rs->buf);
3890 }
3891 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3892 error (_("This target does not support attaching to a process"));
3893 else
3894 error (_("Attaching to %s failed"),
3895 target_pid_to_str (pid_to_ptid (pid)));
3896
3897 set_current_inferior (remote_add_inferior (pid, 1));
3898
3899 inferior_ptid = pid_to_ptid (pid);
3900
3901 if (non_stop)
3902 {
3903 struct thread_info *thread;
3904
3905 /* Get list of threads. */
3906 remote_threads_info (target);
3907
3908 thread = first_thread_of_process (pid);
3909 if (thread)
3910 inferior_ptid = thread->ptid;
3911 else
3912 inferior_ptid = pid_to_ptid (pid);
3913
3914 /* Invalidate our notion of the remote current thread. */
3915 record_currthread (minus_one_ptid);
3916 }
3917 else
3918 {
3919 /* Now, if we have thread information, update inferior_ptid. */
3920 inferior_ptid = remote_current_thread (inferior_ptid);
3921
3922 /* Add the main thread to the thread list. */
3923 add_thread_silent (inferior_ptid);
3924 }
3925
3926 /* Next, if the target can specify a description, read it. We do
3927 this before anything involving memory or registers. */
3928 target_find_description ();
3929
3930 if (!non_stop)
3931 {
3932 /* Use the previously fetched status. */
3933 gdb_assert (wait_status != NULL);
3934
3935 if (target_can_async_p ())
3936 {
3937 struct stop_reply *stop_reply;
3938 struct cleanup *old_chain;
3939
3940 stop_reply = stop_reply_xmalloc ();
3941 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3942 remote_parse_stop_reply (wait_status, stop_reply);
3943 discard_cleanups (old_chain);
3944 push_stop_reply (stop_reply);
3945
3946 target_async (inferior_event_handler, 0);
3947 }
3948 else
3949 {
3950 gdb_assert (wait_status != NULL);
3951 strcpy (rs->buf, wait_status);
3952 rs->cached_wait_status = 1;
3953 }
3954 }
3955 else
3956 gdb_assert (wait_status == NULL);
3957 }
3958
3959 static void
3960 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3961 {
3962 extended_remote_attach_1 (ops, args, from_tty);
3963 }
3964
3965 /* Convert hex digit A to a number. */
3966
3967 static int
3968 fromhex (int a)
3969 {
3970 if (a >= '0' && a <= '9')
3971 return a - '0';
3972 else if (a >= 'a' && a <= 'f')
3973 return a - 'a' + 10;
3974 else if (a >= 'A' && a <= 'F')
3975 return a - 'A' + 10;
3976 else
3977 error (_("Reply contains invalid hex digit %d"), a);
3978 }
3979
3980 int
3981 hex2bin (const char *hex, gdb_byte *bin, int count)
3982 {
3983 int i;
3984
3985 for (i = 0; i < count; i++)
3986 {
3987 if (hex[0] == 0 || hex[1] == 0)
3988 {
3989 /* Hex string is short, or of uneven length.
3990 Return the count that has been converted so far. */
3991 return i;
3992 }
3993 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3994 hex += 2;
3995 }
3996 return i;
3997 }
3998
3999 /* Convert number NIB to a hex digit. */
4000
4001 static int
4002 tohex (int nib)
4003 {
4004 if (nib < 10)
4005 return '0' + nib;
4006 else
4007 return 'a' + nib - 10;
4008 }
4009
4010 int
4011 bin2hex (const gdb_byte *bin, char *hex, int count)
4012 {
4013 int i;
4014 /* May use a length, or a nul-terminated string as input. */
4015 if (count == 0)
4016 count = strlen ((char *) bin);
4017
4018 for (i = 0; i < count; i++)
4019 {
4020 *hex++ = tohex ((*bin >> 4) & 0xf);
4021 *hex++ = tohex (*bin++ & 0xf);
4022 }
4023 *hex = 0;
4024 return i;
4025 }
4026 \f
4027 /* Check for the availability of vCont. This function should also check
4028 the response. */
4029
4030 static void
4031 remote_vcont_probe (struct remote_state *rs)
4032 {
4033 char *buf;
4034
4035 strcpy (rs->buf, "vCont?");
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, &rs->buf_size, 0);
4038 buf = rs->buf;
4039
4040 /* Make sure that the features we assume are supported. */
4041 if (strncmp (buf, "vCont", 5) == 0)
4042 {
4043 char *p = &buf[5];
4044 int support_s, support_S, support_c, support_C;
4045
4046 support_s = 0;
4047 support_S = 0;
4048 support_c = 0;
4049 support_C = 0;
4050 rs->support_vCont_t = 0;
4051 while (p && *p == ';')
4052 {
4053 p++;
4054 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4055 support_s = 1;
4056 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4057 support_S = 1;
4058 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4059 support_c = 1;
4060 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4061 support_C = 1;
4062 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4063 rs->support_vCont_t = 1;
4064
4065 p = strchr (p, ';');
4066 }
4067
4068 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4069 BUF will make packet_ok disable the packet. */
4070 if (!support_s || !support_S || !support_c || !support_C)
4071 buf[0] = 0;
4072 }
4073
4074 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4075 }
4076
4077 /* Helper function for building "vCont" resumptions. Write a
4078 resumption to P. ENDP points to one-passed-the-end of the buffer
4079 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4080 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4081 resumed thread should be single-stepped and/or signalled. If PTID
4082 equals minus_one_ptid, then all threads are resumed; if PTID
4083 represents a process, then all threads of the process are resumed;
4084 the thread to be stepped and/or signalled is given in the global
4085 INFERIOR_PTID. */
4086
4087 static char *
4088 append_resumption (char *p, char *endp,
4089 ptid_t ptid, int step, enum target_signal siggnal)
4090 {
4091 struct remote_state *rs = get_remote_state ();
4092
4093 if (step && siggnal != TARGET_SIGNAL_0)
4094 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4095 else if (step)
4096 p += xsnprintf (p, endp - p, ";s");
4097 else if (siggnal != TARGET_SIGNAL_0)
4098 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4099 else
4100 p += xsnprintf (p, endp - p, ";c");
4101
4102 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4103 {
4104 ptid_t nptid;
4105
4106 /* All (-1) threads of process. */
4107 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4108
4109 p += xsnprintf (p, endp - p, ":");
4110 p = write_ptid (p, endp, nptid);
4111 }
4112 else if (!ptid_equal (ptid, minus_one_ptid))
4113 {
4114 p += xsnprintf (p, endp - p, ":");
4115 p = write_ptid (p, endp, ptid);
4116 }
4117
4118 return p;
4119 }
4120
4121 /* Resume the remote inferior by using a "vCont" packet. The thread
4122 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4123 resumed thread should be single-stepped and/or signalled. If PTID
4124 equals minus_one_ptid, then all threads are resumed; the thread to
4125 be stepped and/or signalled is given in the global INFERIOR_PTID.
4126 This function returns non-zero iff it resumes the inferior.
4127
4128 This function issues a strict subset of all possible vCont commands at the
4129 moment. */
4130
4131 static int
4132 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4133 {
4134 struct remote_state *rs = get_remote_state ();
4135 char *p;
4136 char *endp;
4137
4138 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4139 remote_vcont_probe (rs);
4140
4141 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4142 return 0;
4143
4144 p = rs->buf;
4145 endp = rs->buf + get_remote_packet_size ();
4146
4147 /* If we could generate a wider range of packets, we'd have to worry
4148 about overflowing BUF. Should there be a generic
4149 "multi-part-packet" packet? */
4150
4151 p += xsnprintf (p, endp - p, "vCont");
4152
4153 if (ptid_equal (ptid, magic_null_ptid))
4154 {
4155 /* MAGIC_NULL_PTID means that we don't have any active threads,
4156 so we don't have any TID numbers the inferior will
4157 understand. Make sure to only send forms that do not specify
4158 a TID. */
4159 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4160 }
4161 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4162 {
4163 /* Resume all threads (of all processes, or of a single
4164 process), with preference for INFERIOR_PTID. This assumes
4165 inferior_ptid belongs to the set of all threads we are about
4166 to resume. */
4167 if (step || siggnal != TARGET_SIGNAL_0)
4168 {
4169 /* Step inferior_ptid, with or without signal. */
4170 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4171 }
4172
4173 /* And continue others without a signal. */
4174 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4175 }
4176 else
4177 {
4178 /* Scheduler locking; resume only PTID. */
4179 p = append_resumption (p, endp, ptid, step, siggnal);
4180 }
4181
4182 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4183 putpkt (rs->buf);
4184
4185 if (non_stop)
4186 {
4187 /* In non-stop, the stub replies to vCont with "OK". The stop
4188 reply will be reported asynchronously by means of a `%Stop'
4189 notification. */
4190 getpkt (&rs->buf, &rs->buf_size, 0);
4191 if (strcmp (rs->buf, "OK") != 0)
4192 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4193 }
4194
4195 return 1;
4196 }
4197
4198 /* Tell the remote machine to resume. */
4199
4200 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4201
4202 static int last_sent_step;
4203
4204 static void
4205 remote_resume (struct target_ops *ops,
4206 ptid_t ptid, int step, enum target_signal siggnal)
4207 {
4208 struct remote_state *rs = get_remote_state ();
4209 char *buf;
4210
4211 last_sent_signal = siggnal;
4212 last_sent_step = step;
4213
4214 /* Update the inferior on signals to silently pass, if they've changed. */
4215 remote_pass_signals ();
4216
4217 /* The vCont packet doesn't need to specify threads via Hc. */
4218 /* No reverse support (yet) for vCont. */
4219 if (execution_direction != EXEC_REVERSE)
4220 if (remote_vcont_resume (ptid, step, siggnal))
4221 goto done;
4222
4223 /* All other supported resume packets do use Hc, so set the continue
4224 thread. */
4225 if (ptid_equal (ptid, minus_one_ptid))
4226 set_continue_thread (any_thread_ptid);
4227 else
4228 set_continue_thread (ptid);
4229
4230 buf = rs->buf;
4231 if (execution_direction == EXEC_REVERSE)
4232 {
4233 /* We don't pass signals to the target in reverse exec mode. */
4234 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4235 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4236 siggnal);
4237
4238 if (step
4239 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4240 error (_("Remote reverse-step not supported."));
4241 if (!step
4242 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4243 error (_("Remote reverse-continue not supported."));
4244
4245 strcpy (buf, step ? "bs" : "bc");
4246 }
4247 else if (siggnal != TARGET_SIGNAL_0)
4248 {
4249 buf[0] = step ? 'S' : 'C';
4250 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4251 buf[2] = tohex (((int) siggnal) & 0xf);
4252 buf[3] = '\0';
4253 }
4254 else
4255 strcpy (buf, step ? "s" : "c");
4256
4257 putpkt (buf);
4258
4259 done:
4260 /* We are about to start executing the inferior, let's register it
4261 with the event loop. NOTE: this is the one place where all the
4262 execution commands end up. We could alternatively do this in each
4263 of the execution commands in infcmd.c. */
4264 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4265 into infcmd.c in order to allow inferior function calls to work
4266 NOT asynchronously. */
4267 if (target_can_async_p ())
4268 target_async (inferior_event_handler, 0);
4269
4270 /* We've just told the target to resume. The remote server will
4271 wait for the inferior to stop, and then send a stop reply. In
4272 the mean time, we can't start another command/query ourselves
4273 because the stub wouldn't be ready to process it. This applies
4274 only to the base all-stop protocol, however. In non-stop (which
4275 only supports vCont), the stub replies with an "OK", and is
4276 immediate able to process further serial input. */
4277 if (!non_stop)
4278 rs->waiting_for_stop_reply = 1;
4279 }
4280 \f
4281
4282 /* Set up the signal handler for SIGINT, while the target is
4283 executing, ovewriting the 'regular' SIGINT signal handler. */
4284 static void
4285 initialize_sigint_signal_handler (void)
4286 {
4287 signal (SIGINT, handle_remote_sigint);
4288 }
4289
4290 /* Signal handler for SIGINT, while the target is executing. */
4291 static void
4292 handle_remote_sigint (int sig)
4293 {
4294 signal (sig, handle_remote_sigint_twice);
4295 mark_async_signal_handler_wrapper (sigint_remote_token);
4296 }
4297
4298 /* Signal handler for SIGINT, installed after SIGINT has already been
4299 sent once. It will take effect the second time that the user sends
4300 a ^C. */
4301 static void
4302 handle_remote_sigint_twice (int sig)
4303 {
4304 signal (sig, handle_remote_sigint);
4305 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4306 }
4307
4308 /* Perform the real interruption of the target execution, in response
4309 to a ^C. */
4310 static void
4311 async_remote_interrupt (gdb_client_data arg)
4312 {
4313 if (remote_debug)
4314 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4315
4316 target_stop (inferior_ptid);
4317 }
4318
4319 /* Perform interrupt, if the first attempt did not succeed. Just give
4320 up on the target alltogether. */
4321 void
4322 async_remote_interrupt_twice (gdb_client_data arg)
4323 {
4324 if (remote_debug)
4325 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4326
4327 interrupt_query ();
4328 }
4329
4330 /* Reinstall the usual SIGINT handlers, after the target has
4331 stopped. */
4332 static void
4333 cleanup_sigint_signal_handler (void *dummy)
4334 {
4335 signal (SIGINT, handle_sigint);
4336 }
4337
4338 /* Send ^C to target to halt it. Target will respond, and send us a
4339 packet. */
4340 static void (*ofunc) (int);
4341
4342 /* The command line interface's stop routine. This function is installed
4343 as a signal handler for SIGINT. The first time a user requests a
4344 stop, we call remote_stop to send a break or ^C. If there is no
4345 response from the target (it didn't stop when the user requested it),
4346 we ask the user if he'd like to detach from the target. */
4347 static void
4348 remote_interrupt (int signo)
4349 {
4350 /* If this doesn't work, try more severe steps. */
4351 signal (signo, remote_interrupt_twice);
4352
4353 gdb_call_async_signal_handler (sigint_remote_token, 1);
4354 }
4355
4356 /* The user typed ^C twice. */
4357
4358 static void
4359 remote_interrupt_twice (int signo)
4360 {
4361 signal (signo, ofunc);
4362 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4363 signal (signo, remote_interrupt);
4364 }
4365
4366 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4367 thread, all threads of a remote process, or all threads of all
4368 processes. */
4369
4370 static void
4371 remote_stop_ns (ptid_t ptid)
4372 {
4373 struct remote_state *rs = get_remote_state ();
4374 char *p = rs->buf;
4375 char *endp = rs->buf + get_remote_packet_size ();
4376
4377 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4378 remote_vcont_probe (rs);
4379
4380 if (!rs->support_vCont_t)
4381 error (_("Remote server does not support stopping threads"));
4382
4383 if (ptid_equal (ptid, minus_one_ptid)
4384 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4385 p += xsnprintf (p, endp - p, "vCont;t");
4386 else
4387 {
4388 ptid_t nptid;
4389
4390 p += xsnprintf (p, endp - p, "vCont;t:");
4391
4392 if (ptid_is_pid (ptid))
4393 /* All (-1) threads of process. */
4394 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4395 else
4396 {
4397 /* Small optimization: if we already have a stop reply for
4398 this thread, no use in telling the stub we want this
4399 stopped. */
4400 if (peek_stop_reply (ptid))
4401 return;
4402
4403 nptid = ptid;
4404 }
4405
4406 p = write_ptid (p, endp, nptid);
4407 }
4408
4409 /* In non-stop, we get an immediate OK reply. The stop reply will
4410 come in asynchronously by notification. */
4411 putpkt (rs->buf);
4412 getpkt (&rs->buf, &rs->buf_size, 0);
4413 if (strcmp (rs->buf, "OK") != 0)
4414 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4415 }
4416
4417 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4418 remote target. It is undefined which thread of which process
4419 reports the stop. */
4420
4421 static void
4422 remote_stop_as (ptid_t ptid)
4423 {
4424 struct remote_state *rs = get_remote_state ();
4425
4426 rs->ctrlc_pending_p = 1;
4427
4428 /* If the inferior is stopped already, but the core didn't know
4429 about it yet, just ignore the request. The cached wait status
4430 will be collected in remote_wait. */
4431 if (rs->cached_wait_status)
4432 return;
4433
4434 /* Send interrupt_sequence to remote target. */
4435 send_interrupt_sequence ();
4436 }
4437
4438 /* This is the generic stop called via the target vector. When a target
4439 interrupt is requested, either by the command line or the GUI, we
4440 will eventually end up here. */
4441
4442 static void
4443 remote_stop (ptid_t ptid)
4444 {
4445 if (remote_debug)
4446 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4447
4448 if (non_stop)
4449 remote_stop_ns (ptid);
4450 else
4451 remote_stop_as (ptid);
4452 }
4453
4454 /* Ask the user what to do when an interrupt is received. */
4455
4456 static void
4457 interrupt_query (void)
4458 {
4459 target_terminal_ours ();
4460
4461 if (target_can_async_p ())
4462 {
4463 signal (SIGINT, handle_sigint);
4464 deprecated_throw_reason (RETURN_QUIT);
4465 }
4466 else
4467 {
4468 if (query (_("Interrupted while waiting for the program.\n\
4469 Give up (and stop debugging it)? ")))
4470 {
4471 pop_target ();
4472 deprecated_throw_reason (RETURN_QUIT);
4473 }
4474 }
4475
4476 target_terminal_inferior ();
4477 }
4478
4479 /* Enable/disable target terminal ownership. Most targets can use
4480 terminal groups to control terminal ownership. Remote targets are
4481 different in that explicit transfer of ownership to/from GDB/target
4482 is required. */
4483
4484 static void
4485 remote_terminal_inferior (void)
4486 {
4487 if (!target_async_permitted)
4488 /* Nothing to do. */
4489 return;
4490
4491 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4492 idempotent. The event-loop GDB talking to an asynchronous target
4493 with a synchronous command calls this function from both
4494 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4495 transfer the terminal to the target when it shouldn't this guard
4496 can go away. */
4497 if (!remote_async_terminal_ours_p)
4498 return;
4499 delete_file_handler (input_fd);
4500 remote_async_terminal_ours_p = 0;
4501 initialize_sigint_signal_handler ();
4502 /* NOTE: At this point we could also register our selves as the
4503 recipient of all input. Any characters typed could then be
4504 passed on down to the target. */
4505 }
4506
4507 static void
4508 remote_terminal_ours (void)
4509 {
4510 if (!target_async_permitted)
4511 /* Nothing to do. */
4512 return;
4513
4514 /* See FIXME in remote_terminal_inferior. */
4515 if (remote_async_terminal_ours_p)
4516 return;
4517 cleanup_sigint_signal_handler (NULL);
4518 add_file_handler (input_fd, stdin_event_handler, 0);
4519 remote_async_terminal_ours_p = 1;
4520 }
4521
4522 void
4523 remote_console_output (char *msg)
4524 {
4525 char *p;
4526
4527 for (p = msg; p[0] && p[1]; p += 2)
4528 {
4529 char tb[2];
4530 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4531 tb[0] = c;
4532 tb[1] = 0;
4533 fputs_unfiltered (tb, gdb_stdtarg);
4534 }
4535 gdb_flush (gdb_stdtarg);
4536 }
4537
4538 typedef struct cached_reg
4539 {
4540 int num;
4541 gdb_byte data[MAX_REGISTER_SIZE];
4542 } cached_reg_t;
4543
4544 DEF_VEC_O(cached_reg_t);
4545
4546 struct stop_reply
4547 {
4548 struct stop_reply *next;
4549
4550 ptid_t ptid;
4551
4552 struct target_waitstatus ws;
4553
4554 VEC(cached_reg_t) *regcache;
4555
4556 int stopped_by_watchpoint_p;
4557 CORE_ADDR watch_data_address;
4558
4559 int solibs_changed;
4560 int replay_event;
4561
4562 int core;
4563 };
4564
4565 /* The list of already fetched and acknowledged stop events. */
4566 static struct stop_reply *stop_reply_queue;
4567
4568 static struct stop_reply *
4569 stop_reply_xmalloc (void)
4570 {
4571 struct stop_reply *r = XMALLOC (struct stop_reply);
4572 r->next = NULL;
4573 return r;
4574 }
4575
4576 static void
4577 stop_reply_xfree (struct stop_reply *r)
4578 {
4579 if (r != NULL)
4580 {
4581 VEC_free (cached_reg_t, r->regcache);
4582 xfree (r);
4583 }
4584 }
4585
4586 /* Discard all pending stop replies of inferior PID. If PID is -1,
4587 discard everything. */
4588
4589 static void
4590 discard_pending_stop_replies (int pid)
4591 {
4592 struct stop_reply *prev = NULL, *reply, *next;
4593
4594 /* Discard the in-flight notification. */
4595 if (pending_stop_reply != NULL
4596 && (pid == -1
4597 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4598 {
4599 stop_reply_xfree (pending_stop_reply);
4600 pending_stop_reply = NULL;
4601 }
4602
4603 /* Discard the stop replies we have already pulled with
4604 vStopped. */
4605 for (reply = stop_reply_queue; reply; reply = next)
4606 {
4607 next = reply->next;
4608 if (pid == -1
4609 || ptid_get_pid (reply->ptid) == pid)
4610 {
4611 if (reply == stop_reply_queue)
4612 stop_reply_queue = reply->next;
4613 else
4614 prev->next = reply->next;
4615
4616 stop_reply_xfree (reply);
4617 }
4618 else
4619 prev = reply;
4620 }
4621 }
4622
4623 /* Cleanup wrapper. */
4624
4625 static void
4626 do_stop_reply_xfree (void *arg)
4627 {
4628 struct stop_reply *r = arg;
4629 stop_reply_xfree (r);
4630 }
4631
4632 /* Look for a queued stop reply belonging to PTID. If one is found,
4633 remove it from the queue, and return it. Returns NULL if none is
4634 found. If there are still queued events left to process, tell the
4635 event loop to get back to target_wait soon. */
4636
4637 static struct stop_reply *
4638 queued_stop_reply (ptid_t ptid)
4639 {
4640 struct stop_reply *it;
4641 struct stop_reply **it_link;
4642
4643 it = stop_reply_queue;
4644 it_link = &stop_reply_queue;
4645 while (it)
4646 {
4647 if (ptid_match (it->ptid, ptid))
4648 {
4649 *it_link = it->next;
4650 it->next = NULL;
4651 break;
4652 }
4653
4654 it_link = &it->next;
4655 it = *it_link;
4656 }
4657
4658 if (stop_reply_queue)
4659 /* There's still at least an event left. */
4660 mark_async_event_handler (remote_async_inferior_event_token);
4661
4662 return it;
4663 }
4664
4665 /* Push a fully parsed stop reply in the stop reply queue. Since we
4666 know that we now have at least one queued event left to pass to the
4667 core side, tell the event loop to get back to target_wait soon. */
4668
4669 static void
4670 push_stop_reply (struct stop_reply *new_event)
4671 {
4672 struct stop_reply *event;
4673
4674 if (stop_reply_queue)
4675 {
4676 for (event = stop_reply_queue;
4677 event && event->next;
4678 event = event->next)
4679 ;
4680
4681 event->next = new_event;
4682 }
4683 else
4684 stop_reply_queue = new_event;
4685
4686 mark_async_event_handler (remote_async_inferior_event_token);
4687 }
4688
4689 /* Returns true if we have a stop reply for PTID. */
4690
4691 static int
4692 peek_stop_reply (ptid_t ptid)
4693 {
4694 struct stop_reply *it;
4695
4696 for (it = stop_reply_queue; it; it = it->next)
4697 if (ptid_equal (ptid, it->ptid))
4698 {
4699 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4700 return 1;
4701 }
4702
4703 return 0;
4704 }
4705
4706 /* Parse the stop reply in BUF. Either the function succeeds, and the
4707 result is stored in EVENT, or throws an error. */
4708
4709 static void
4710 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4711 {
4712 struct remote_arch_state *rsa = get_remote_arch_state ();
4713 ULONGEST addr;
4714 char *p;
4715
4716 event->ptid = null_ptid;
4717 event->ws.kind = TARGET_WAITKIND_IGNORE;
4718 event->ws.value.integer = 0;
4719 event->solibs_changed = 0;
4720 event->replay_event = 0;
4721 event->stopped_by_watchpoint_p = 0;
4722 event->regcache = NULL;
4723 event->core = -1;
4724
4725 switch (buf[0])
4726 {
4727 case 'T': /* Status with PC, SP, FP, ... */
4728 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4729 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4730 ss = signal number
4731 n... = register number
4732 r... = register contents
4733 */
4734
4735 p = &buf[3]; /* after Txx */
4736 while (*p)
4737 {
4738 char *p1;
4739 char *p_temp;
4740 int fieldsize;
4741 LONGEST pnum = 0;
4742
4743 /* If the packet contains a register number, save it in
4744 pnum and set p1 to point to the character following it.
4745 Otherwise p1 points to p. */
4746
4747 /* If this packet is an awatch packet, don't parse the 'a'
4748 as a register number. */
4749
4750 if (strncmp (p, "awatch", strlen("awatch")) != 0
4751 && strncmp (p, "core", strlen ("core") != 0))
4752 {
4753 /* Read the ``P'' register number. */
4754 pnum = strtol (p, &p_temp, 16);
4755 p1 = p_temp;
4756 }
4757 else
4758 p1 = p;
4759
4760 if (p1 == p) /* No register number present here. */
4761 {
4762 p1 = strchr (p, ':');
4763 if (p1 == NULL)
4764 error (_("Malformed packet(a) (missing colon): %s\n\
4765 Packet: '%s'\n"),
4766 p, buf);
4767 if (strncmp (p, "thread", p1 - p) == 0)
4768 event->ptid = read_ptid (++p1, &p);
4769 else if ((strncmp (p, "watch", p1 - p) == 0)
4770 || (strncmp (p, "rwatch", p1 - p) == 0)
4771 || (strncmp (p, "awatch", p1 - p) == 0))
4772 {
4773 event->stopped_by_watchpoint_p = 1;
4774 p = unpack_varlen_hex (++p1, &addr);
4775 event->watch_data_address = (CORE_ADDR) addr;
4776 }
4777 else if (strncmp (p, "library", p1 - p) == 0)
4778 {
4779 p1++;
4780 p_temp = p1;
4781 while (*p_temp && *p_temp != ';')
4782 p_temp++;
4783
4784 event->solibs_changed = 1;
4785 p = p_temp;
4786 }
4787 else if (strncmp (p, "replaylog", p1 - p) == 0)
4788 {
4789 /* NO_HISTORY event.
4790 p1 will indicate "begin" or "end", but
4791 it makes no difference for now, so ignore it. */
4792 event->replay_event = 1;
4793 p_temp = strchr (p1 + 1, ';');
4794 if (p_temp)
4795 p = p_temp;
4796 }
4797 else if (strncmp (p, "core", p1 - p) == 0)
4798 {
4799 ULONGEST c;
4800 p = unpack_varlen_hex (++p1, &c);
4801 event->core = c;
4802 }
4803 else
4804 {
4805 /* Silently skip unknown optional info. */
4806 p_temp = strchr (p1 + 1, ';');
4807 if (p_temp)
4808 p = p_temp;
4809 }
4810 }
4811 else
4812 {
4813 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4814 cached_reg_t cached_reg;
4815
4816 p = p1;
4817
4818 if (*p != ':')
4819 error (_("Malformed packet(b) (missing colon): %s\n\
4820 Packet: '%s'\n"),
4821 p, buf);
4822 ++p;
4823
4824 if (reg == NULL)
4825 error (_("Remote sent bad register number %s: %s\n\
4826 Packet: '%s'\n"),
4827 phex_nz (pnum, 0), p, buf);
4828
4829 cached_reg.num = reg->regnum;
4830
4831 fieldsize = hex2bin (p, cached_reg.data,
4832 register_size (target_gdbarch,
4833 reg->regnum));
4834 p += 2 * fieldsize;
4835 if (fieldsize < register_size (target_gdbarch,
4836 reg->regnum))
4837 warning (_("Remote reply is too short: %s"), buf);
4838
4839 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4840 }
4841
4842 if (*p != ';')
4843 error (_("Remote register badly formatted: %s\nhere: %s"),
4844 buf, p);
4845 ++p;
4846 }
4847 /* fall through */
4848 case 'S': /* Old style status, just signal only. */
4849 if (event->solibs_changed)
4850 event->ws.kind = TARGET_WAITKIND_LOADED;
4851 else if (event->replay_event)
4852 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4853 else
4854 {
4855 event->ws.kind = TARGET_WAITKIND_STOPPED;
4856 event->ws.value.sig = (enum target_signal)
4857 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4858 }
4859 break;
4860 case 'W': /* Target exited. */
4861 case 'X':
4862 {
4863 char *p;
4864 int pid;
4865 ULONGEST value;
4866
4867 /* GDB used to accept only 2 hex chars here. Stubs should
4868 only send more if they detect GDB supports multi-process
4869 support. */
4870 p = unpack_varlen_hex (&buf[1], &value);
4871
4872 if (buf[0] == 'W')
4873 {
4874 /* The remote process exited. */
4875 event->ws.kind = TARGET_WAITKIND_EXITED;
4876 event->ws.value.integer = value;
4877 }
4878 else
4879 {
4880 /* The remote process exited with a signal. */
4881 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4882 event->ws.value.sig = (enum target_signal) value;
4883 }
4884
4885 /* If no process is specified, assume inferior_ptid. */
4886 pid = ptid_get_pid (inferior_ptid);
4887 if (*p == '\0')
4888 ;
4889 else if (*p == ';')
4890 {
4891 p++;
4892
4893 if (p == '\0')
4894 ;
4895 else if (strncmp (p,
4896 "process:", sizeof ("process:") - 1) == 0)
4897 {
4898 ULONGEST upid;
4899 p += sizeof ("process:") - 1;
4900 unpack_varlen_hex (p, &upid);
4901 pid = upid;
4902 }
4903 else
4904 error (_("unknown stop reply packet: %s"), buf);
4905 }
4906 else
4907 error (_("unknown stop reply packet: %s"), buf);
4908 event->ptid = pid_to_ptid (pid);
4909 }
4910 break;
4911 }
4912
4913 if (non_stop && ptid_equal (event->ptid, null_ptid))
4914 error (_("No process or thread specified in stop reply: %s"), buf);
4915 }
4916
4917 /* When the stub wants to tell GDB about a new stop reply, it sends a
4918 stop notification (%Stop). Those can come it at any time, hence,
4919 we have to make sure that any pending putpkt/getpkt sequence we're
4920 making is finished, before querying the stub for more events with
4921 vStopped. E.g., if we started a vStopped sequence immediatelly
4922 upon receiving the %Stop notification, something like this could
4923 happen:
4924
4925 1.1) --> Hg 1
4926 1.2) <-- OK
4927 1.3) --> g
4928 1.4) <-- %Stop
4929 1.5) --> vStopped
4930 1.6) <-- (registers reply to step #1.3)
4931
4932 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4933 query.
4934
4935 To solve this, whenever we parse a %Stop notification sucessfully,
4936 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4937 doing whatever we were doing:
4938
4939 2.1) --> Hg 1
4940 2.2) <-- OK
4941 2.3) --> g
4942 2.4) <-- %Stop
4943 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4944 2.5) <-- (registers reply to step #2.3)
4945
4946 Eventualy after step #2.5, we return to the event loop, which
4947 notices there's an event on the
4948 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4949 associated callback --- the function below. At this point, we're
4950 always safe to start a vStopped sequence. :
4951
4952 2.6) --> vStopped
4953 2.7) <-- T05 thread:2
4954 2.8) --> vStopped
4955 2.9) --> OK
4956 */
4957
4958 static void
4959 remote_get_pending_stop_replies (void)
4960 {
4961 struct remote_state *rs = get_remote_state ();
4962
4963 if (pending_stop_reply)
4964 {
4965 /* acknowledge */
4966 putpkt ("vStopped");
4967
4968 /* Now we can rely on it. */
4969 push_stop_reply (pending_stop_reply);
4970 pending_stop_reply = NULL;
4971
4972 while (1)
4973 {
4974 getpkt (&rs->buf, &rs->buf_size, 0);
4975 if (strcmp (rs->buf, "OK") == 0)
4976 break;
4977 else
4978 {
4979 struct cleanup *old_chain;
4980 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4981
4982 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4983 remote_parse_stop_reply (rs->buf, stop_reply);
4984
4985 /* acknowledge */
4986 putpkt ("vStopped");
4987
4988 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4989 {
4990 /* Now we can rely on it. */
4991 discard_cleanups (old_chain);
4992 push_stop_reply (stop_reply);
4993 }
4994 else
4995 /* We got an unknown stop reply. */
4996 do_cleanups (old_chain);
4997 }
4998 }
4999 }
5000 }
5001
5002
5003 /* Called when it is decided that STOP_REPLY holds the info of the
5004 event that is to be returned to the core. This function always
5005 destroys STOP_REPLY. */
5006
5007 static ptid_t
5008 process_stop_reply (struct stop_reply *stop_reply,
5009 struct target_waitstatus *status)
5010 {
5011 ptid_t ptid;
5012 struct thread_info *info;
5013
5014 *status = stop_reply->ws;
5015 ptid = stop_reply->ptid;
5016
5017 /* If no thread/process was reported by the stub, assume the current
5018 inferior. */
5019 if (ptid_equal (ptid, null_ptid))
5020 ptid = inferior_ptid;
5021
5022 if (status->kind != TARGET_WAITKIND_EXITED
5023 && status->kind != TARGET_WAITKIND_SIGNALLED)
5024 {
5025 /* Expedited registers. */
5026 if (stop_reply->regcache)
5027 {
5028 struct regcache *regcache
5029 = get_thread_arch_regcache (ptid, target_gdbarch);
5030 cached_reg_t *reg;
5031 int ix;
5032
5033 for (ix = 0;
5034 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5035 ix++)
5036 regcache_raw_supply (regcache, reg->num, reg->data);
5037 VEC_free (cached_reg_t, stop_reply->regcache);
5038 }
5039
5040 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5041 remote_watch_data_address = stop_reply->watch_data_address;
5042
5043 remote_notice_new_inferior (ptid, 0);
5044 demand_private_info (ptid)->core = stop_reply->core;
5045 }
5046
5047 stop_reply_xfree (stop_reply);
5048 return ptid;
5049 }
5050
5051 /* The non-stop mode version of target_wait. */
5052
5053 static ptid_t
5054 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5055 {
5056 struct remote_state *rs = get_remote_state ();
5057 struct stop_reply *stop_reply;
5058 int ret;
5059
5060 /* If in non-stop mode, get out of getpkt even if a
5061 notification is received. */
5062
5063 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5064 0 /* forever */);
5065 while (1)
5066 {
5067 if (ret != -1)
5068 switch (rs->buf[0])
5069 {
5070 case 'E': /* Error of some sort. */
5071 /* We're out of sync with the target now. Did it continue
5072 or not? We can't tell which thread it was in non-stop,
5073 so just ignore this. */
5074 warning (_("Remote failure reply: %s"), rs->buf);
5075 break;
5076 case 'O': /* Console output. */
5077 remote_console_output (rs->buf + 1);
5078 break;
5079 default:
5080 warning (_("Invalid remote reply: %s"), rs->buf);
5081 break;
5082 }
5083
5084 /* Acknowledge a pending stop reply that may have arrived in the
5085 mean time. */
5086 if (pending_stop_reply != NULL)
5087 remote_get_pending_stop_replies ();
5088
5089 /* If indeed we noticed a stop reply, we're done. */
5090 stop_reply = queued_stop_reply (ptid);
5091 if (stop_reply != NULL)
5092 return process_stop_reply (stop_reply, status);
5093
5094 /* Still no event. If we're just polling for an event, then
5095 return to the event loop. */
5096 if (options & TARGET_WNOHANG)
5097 {
5098 status->kind = TARGET_WAITKIND_IGNORE;
5099 return minus_one_ptid;
5100 }
5101
5102 /* Otherwise do a blocking wait. */
5103 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5104 1 /* forever */);
5105 }
5106 }
5107
5108 /* Wait until the remote machine stops, then return, storing status in
5109 STATUS just as `wait' would. */
5110
5111 static ptid_t
5112 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5113 {
5114 struct remote_state *rs = get_remote_state ();
5115 ptid_t event_ptid = null_ptid;
5116 char *buf;
5117 struct stop_reply *stop_reply;
5118
5119 again:
5120
5121 status->kind = TARGET_WAITKIND_IGNORE;
5122 status->value.integer = 0;
5123
5124 stop_reply = queued_stop_reply (ptid);
5125 if (stop_reply != NULL)
5126 return process_stop_reply (stop_reply, status);
5127
5128 if (rs->cached_wait_status)
5129 /* Use the cached wait status, but only once. */
5130 rs->cached_wait_status = 0;
5131 else
5132 {
5133 int ret;
5134
5135 if (!target_is_async_p ())
5136 {
5137 ofunc = signal (SIGINT, remote_interrupt);
5138 /* If the user hit C-c before this packet, or between packets,
5139 pretend that it was hit right here. */
5140 if (quit_flag)
5141 {
5142 quit_flag = 0;
5143 remote_interrupt (SIGINT);
5144 }
5145 }
5146
5147 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5148 _never_ wait for ever -> test on target_is_async_p().
5149 However, before we do that we need to ensure that the caller
5150 knows how to take the target into/out of async mode. */
5151 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5152 if (!target_is_async_p ())
5153 signal (SIGINT, ofunc);
5154 }
5155
5156 buf = rs->buf;
5157
5158 remote_stopped_by_watchpoint_p = 0;
5159
5160 /* We got something. */
5161 rs->waiting_for_stop_reply = 0;
5162
5163 /* Assume that the target has acknowledged Ctrl-C unless we receive
5164 an 'F' or 'O' packet. */
5165 if (buf[0] != 'F' && buf[0] != 'O')
5166 rs->ctrlc_pending_p = 0;
5167
5168 switch (buf[0])
5169 {
5170 case 'E': /* Error of some sort. */
5171 /* We're out of sync with the target now. Did it continue or
5172 not? Not is more likely, so report a stop. */
5173 warning (_("Remote failure reply: %s"), buf);
5174 status->kind = TARGET_WAITKIND_STOPPED;
5175 status->value.sig = TARGET_SIGNAL_0;
5176 break;
5177 case 'F': /* File-I/O request. */
5178 remote_fileio_request (buf, rs->ctrlc_pending_p);
5179 rs->ctrlc_pending_p = 0;
5180 break;
5181 case 'T': case 'S': case 'X': case 'W':
5182 {
5183 struct stop_reply *stop_reply;
5184 struct cleanup *old_chain;
5185
5186 stop_reply = stop_reply_xmalloc ();
5187 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5188 remote_parse_stop_reply (buf, stop_reply);
5189 discard_cleanups (old_chain);
5190 event_ptid = process_stop_reply (stop_reply, status);
5191 break;
5192 }
5193 case 'O': /* Console output. */
5194 remote_console_output (buf + 1);
5195
5196 /* The target didn't really stop; keep waiting. */
5197 rs->waiting_for_stop_reply = 1;
5198
5199 break;
5200 case '\0':
5201 if (last_sent_signal != TARGET_SIGNAL_0)
5202 {
5203 /* Zero length reply means that we tried 'S' or 'C' and the
5204 remote system doesn't support it. */
5205 target_terminal_ours_for_output ();
5206 printf_filtered
5207 ("Can't send signals to this remote system. %s not sent.\n",
5208 target_signal_to_name (last_sent_signal));
5209 last_sent_signal = TARGET_SIGNAL_0;
5210 target_terminal_inferior ();
5211
5212 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5213 putpkt ((char *) buf);
5214
5215 /* We just told the target to resume, so a stop reply is in
5216 order. */
5217 rs->waiting_for_stop_reply = 1;
5218 break;
5219 }
5220 /* else fallthrough */
5221 default:
5222 warning (_("Invalid remote reply: %s"), buf);
5223 /* Keep waiting. */
5224 rs->waiting_for_stop_reply = 1;
5225 break;
5226 }
5227
5228 if (status->kind == TARGET_WAITKIND_IGNORE)
5229 {
5230 /* Nothing interesting happened. If we're doing a non-blocking
5231 poll, we're done. Otherwise, go back to waiting. */
5232 if (options & TARGET_WNOHANG)
5233 return minus_one_ptid;
5234 else
5235 goto again;
5236 }
5237 else if (status->kind != TARGET_WAITKIND_EXITED
5238 && status->kind != TARGET_WAITKIND_SIGNALLED)
5239 {
5240 if (!ptid_equal (event_ptid, null_ptid))
5241 record_currthread (event_ptid);
5242 else
5243 event_ptid = inferior_ptid;
5244 }
5245 else
5246 /* A process exit. Invalidate our notion of current thread. */
5247 record_currthread (minus_one_ptid);
5248
5249 return event_ptid;
5250 }
5251
5252 /* Wait until the remote machine stops, then return, storing status in
5253 STATUS just as `wait' would. */
5254
5255 static ptid_t
5256 remote_wait (struct target_ops *ops,
5257 ptid_t ptid, struct target_waitstatus *status, int options)
5258 {
5259 ptid_t event_ptid;
5260
5261 if (non_stop)
5262 event_ptid = remote_wait_ns (ptid, status, options);
5263 else
5264 event_ptid = remote_wait_as (ptid, status, options);
5265
5266 if (target_can_async_p ())
5267 {
5268 /* If there are are events left in the queue tell the event loop
5269 to return here. */
5270 if (stop_reply_queue)
5271 mark_async_event_handler (remote_async_inferior_event_token);
5272 }
5273
5274 return event_ptid;
5275 }
5276
5277 /* Fetch a single register using a 'p' packet. */
5278
5279 static int
5280 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5281 {
5282 struct remote_state *rs = get_remote_state ();
5283 char *buf, *p;
5284 char regp[MAX_REGISTER_SIZE];
5285 int i;
5286
5287 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5288 return 0;
5289
5290 if (reg->pnum == -1)
5291 return 0;
5292
5293 p = rs->buf;
5294 *p++ = 'p';
5295 p += hexnumstr (p, reg->pnum);
5296 *p++ = '\0';
5297 putpkt (rs->buf);
5298 getpkt (&rs->buf, &rs->buf_size, 0);
5299
5300 buf = rs->buf;
5301
5302 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5303 {
5304 case PACKET_OK:
5305 break;
5306 case PACKET_UNKNOWN:
5307 return 0;
5308 case PACKET_ERROR:
5309 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5310 gdbarch_register_name (get_regcache_arch (regcache),
5311 reg->regnum),
5312 buf);
5313 }
5314
5315 /* If this register is unfetchable, tell the regcache. */
5316 if (buf[0] == 'x')
5317 {
5318 regcache_raw_supply (regcache, reg->regnum, NULL);
5319 return 1;
5320 }
5321
5322 /* Otherwise, parse and supply the value. */
5323 p = buf;
5324 i = 0;
5325 while (p[0] != 0)
5326 {
5327 if (p[1] == 0)
5328 error (_("fetch_register_using_p: early buf termination"));
5329
5330 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5331 p += 2;
5332 }
5333 regcache_raw_supply (regcache, reg->regnum, regp);
5334 return 1;
5335 }
5336
5337 /* Fetch the registers included in the target's 'g' packet. */
5338
5339 static int
5340 send_g_packet (void)
5341 {
5342 struct remote_state *rs = get_remote_state ();
5343 int buf_len;
5344
5345 sprintf (rs->buf, "g");
5346 remote_send (&rs->buf, &rs->buf_size);
5347
5348 /* We can get out of synch in various cases. If the first character
5349 in the buffer is not a hex character, assume that has happened
5350 and try to fetch another packet to read. */
5351 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5352 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5353 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5354 && rs->buf[0] != 'x') /* New: unavailable register value. */
5355 {
5356 if (remote_debug)
5357 fprintf_unfiltered (gdb_stdlog,
5358 "Bad register packet; fetching a new packet\n");
5359 getpkt (&rs->buf, &rs->buf_size, 0);
5360 }
5361
5362 buf_len = strlen (rs->buf);
5363
5364 /* Sanity check the received packet. */
5365 if (buf_len % 2 != 0)
5366 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5367
5368 return buf_len / 2;
5369 }
5370
5371 static void
5372 process_g_packet (struct regcache *regcache)
5373 {
5374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5375 struct remote_state *rs = get_remote_state ();
5376 struct remote_arch_state *rsa = get_remote_arch_state ();
5377 int i, buf_len;
5378 char *p;
5379 char *regs;
5380
5381 buf_len = strlen (rs->buf);
5382
5383 /* Further sanity checks, with knowledge of the architecture. */
5384 if (buf_len > 2 * rsa->sizeof_g_packet)
5385 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5386
5387 /* Save the size of the packet sent to us by the target. It is used
5388 as a heuristic when determining the max size of packets that the
5389 target can safely receive. */
5390 if (rsa->actual_register_packet_size == 0)
5391 rsa->actual_register_packet_size = buf_len;
5392
5393 /* If this is smaller than we guessed the 'g' packet would be,
5394 update our records. A 'g' reply that doesn't include a register's
5395 value implies either that the register is not available, or that
5396 the 'p' packet must be used. */
5397 if (buf_len < 2 * rsa->sizeof_g_packet)
5398 {
5399 rsa->sizeof_g_packet = buf_len / 2;
5400
5401 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5402 {
5403 if (rsa->regs[i].pnum == -1)
5404 continue;
5405
5406 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5407 rsa->regs[i].in_g_packet = 0;
5408 else
5409 rsa->regs[i].in_g_packet = 1;
5410 }
5411 }
5412
5413 regs = alloca (rsa->sizeof_g_packet);
5414
5415 /* Unimplemented registers read as all bits zero. */
5416 memset (regs, 0, rsa->sizeof_g_packet);
5417
5418 /* Reply describes registers byte by byte, each byte encoded as two
5419 hex characters. Suck them all up, then supply them to the
5420 register cacheing/storage mechanism. */
5421
5422 p = rs->buf;
5423 for (i = 0; i < rsa->sizeof_g_packet; i++)
5424 {
5425 if (p[0] == 0 || p[1] == 0)
5426 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5427 internal_error (__FILE__, __LINE__,
5428 "unexpected end of 'g' packet reply");
5429
5430 if (p[0] == 'x' && p[1] == 'x')
5431 regs[i] = 0; /* 'x' */
5432 else
5433 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5434 p += 2;
5435 }
5436
5437 {
5438 int i;
5439 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5440 {
5441 struct packet_reg *r = &rsa->regs[i];
5442 if (r->in_g_packet)
5443 {
5444 if (r->offset * 2 >= strlen (rs->buf))
5445 /* This shouldn't happen - we adjusted in_g_packet above. */
5446 internal_error (__FILE__, __LINE__,
5447 "unexpected end of 'g' packet reply");
5448 else if (rs->buf[r->offset * 2] == 'x')
5449 {
5450 gdb_assert (r->offset * 2 < strlen (rs->buf));
5451 /* The register isn't available, mark it as such (at
5452 the same time setting the value to zero). */
5453 regcache_raw_supply (regcache, r->regnum, NULL);
5454 }
5455 else
5456 regcache_raw_supply (regcache, r->regnum,
5457 regs + r->offset);
5458 }
5459 }
5460 }
5461 }
5462
5463 static void
5464 fetch_registers_using_g (struct regcache *regcache)
5465 {
5466 send_g_packet ();
5467 process_g_packet (regcache);
5468 }
5469
5470 static void
5471 remote_fetch_registers (struct target_ops *ops,
5472 struct regcache *regcache, int regnum)
5473 {
5474 struct remote_arch_state *rsa = get_remote_arch_state ();
5475 int i;
5476
5477 set_general_thread (inferior_ptid);
5478
5479 if (regnum >= 0)
5480 {
5481 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5482 gdb_assert (reg != NULL);
5483
5484 /* If this register might be in the 'g' packet, try that first -
5485 we are likely to read more than one register. If this is the
5486 first 'g' packet, we might be overly optimistic about its
5487 contents, so fall back to 'p'. */
5488 if (reg->in_g_packet)
5489 {
5490 fetch_registers_using_g (regcache);
5491 if (reg->in_g_packet)
5492 return;
5493 }
5494
5495 if (fetch_register_using_p (regcache, reg))
5496 return;
5497
5498 /* This register is not available. */
5499 regcache_raw_supply (regcache, reg->regnum, NULL);
5500
5501 return;
5502 }
5503
5504 fetch_registers_using_g (regcache);
5505
5506 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5507 if (!rsa->regs[i].in_g_packet)
5508 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5509 {
5510 /* This register is not available. */
5511 regcache_raw_supply (regcache, i, NULL);
5512 }
5513 }
5514
5515 /* Prepare to store registers. Since we may send them all (using a
5516 'G' request), we have to read out the ones we don't want to change
5517 first. */
5518
5519 static void
5520 remote_prepare_to_store (struct regcache *regcache)
5521 {
5522 struct remote_arch_state *rsa = get_remote_arch_state ();
5523 int i;
5524 gdb_byte buf[MAX_REGISTER_SIZE];
5525
5526 /* Make sure the entire registers array is valid. */
5527 switch (remote_protocol_packets[PACKET_P].support)
5528 {
5529 case PACKET_DISABLE:
5530 case PACKET_SUPPORT_UNKNOWN:
5531 /* Make sure all the necessary registers are cached. */
5532 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5533 if (rsa->regs[i].in_g_packet)
5534 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5535 break;
5536 case PACKET_ENABLE:
5537 break;
5538 }
5539 }
5540
5541 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5542 packet was not recognized. */
5543
5544 static int
5545 store_register_using_P (const struct regcache *regcache,
5546 struct packet_reg *reg)
5547 {
5548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5549 struct remote_state *rs = get_remote_state ();
5550 /* Try storing a single register. */
5551 char *buf = rs->buf;
5552 gdb_byte regp[MAX_REGISTER_SIZE];
5553 char *p;
5554
5555 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5556 return 0;
5557
5558 if (reg->pnum == -1)
5559 return 0;
5560
5561 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5562 p = buf + strlen (buf);
5563 regcache_raw_collect (regcache, reg->regnum, regp);
5564 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5565 putpkt (rs->buf);
5566 getpkt (&rs->buf, &rs->buf_size, 0);
5567
5568 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5569 {
5570 case PACKET_OK:
5571 return 1;
5572 case PACKET_ERROR:
5573 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5574 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5575 case PACKET_UNKNOWN:
5576 return 0;
5577 default:
5578 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5579 }
5580 }
5581
5582 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5583 contents of the register cache buffer. FIXME: ignores errors. */
5584
5585 static void
5586 store_registers_using_G (const struct regcache *regcache)
5587 {
5588 struct remote_state *rs = get_remote_state ();
5589 struct remote_arch_state *rsa = get_remote_arch_state ();
5590 gdb_byte *regs;
5591 char *p;
5592
5593 /* Extract all the registers in the regcache copying them into a
5594 local buffer. */
5595 {
5596 int i;
5597 regs = alloca (rsa->sizeof_g_packet);
5598 memset (regs, 0, rsa->sizeof_g_packet);
5599 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5600 {
5601 struct packet_reg *r = &rsa->regs[i];
5602 if (r->in_g_packet)
5603 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5604 }
5605 }
5606
5607 /* Command describes registers byte by byte,
5608 each byte encoded as two hex characters. */
5609 p = rs->buf;
5610 *p++ = 'G';
5611 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5612 updated. */
5613 bin2hex (regs, p, rsa->sizeof_g_packet);
5614 putpkt (rs->buf);
5615 getpkt (&rs->buf, &rs->buf_size, 0);
5616 if (packet_check_result (rs->buf) == PACKET_ERROR)
5617 error (_("Could not write registers; remote failure reply '%s'"),
5618 rs->buf);
5619 }
5620
5621 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5622 of the register cache buffer. FIXME: ignores errors. */
5623
5624 static void
5625 remote_store_registers (struct target_ops *ops,
5626 struct regcache *regcache, int regnum)
5627 {
5628 struct remote_arch_state *rsa = get_remote_arch_state ();
5629 int i;
5630
5631 set_general_thread (inferior_ptid);
5632
5633 if (regnum >= 0)
5634 {
5635 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5636 gdb_assert (reg != NULL);
5637
5638 /* Always prefer to store registers using the 'P' packet if
5639 possible; we often change only a small number of registers.
5640 Sometimes we change a larger number; we'd need help from a
5641 higher layer to know to use 'G'. */
5642 if (store_register_using_P (regcache, reg))
5643 return;
5644
5645 /* For now, don't complain if we have no way to write the
5646 register. GDB loses track of unavailable registers too
5647 easily. Some day, this may be an error. We don't have
5648 any way to read the register, either... */
5649 if (!reg->in_g_packet)
5650 return;
5651
5652 store_registers_using_G (regcache);
5653 return;
5654 }
5655
5656 store_registers_using_G (regcache);
5657
5658 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5659 if (!rsa->regs[i].in_g_packet)
5660 if (!store_register_using_P (regcache, &rsa->regs[i]))
5661 /* See above for why we do not issue an error here. */
5662 continue;
5663 }
5664 \f
5665
5666 /* Return the number of hex digits in num. */
5667
5668 static int
5669 hexnumlen (ULONGEST num)
5670 {
5671 int i;
5672
5673 for (i = 0; num != 0; i++)
5674 num >>= 4;
5675
5676 return max (i, 1);
5677 }
5678
5679 /* Set BUF to the minimum number of hex digits representing NUM. */
5680
5681 static int
5682 hexnumstr (char *buf, ULONGEST num)
5683 {
5684 int len = hexnumlen (num);
5685 return hexnumnstr (buf, num, len);
5686 }
5687
5688
5689 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5690
5691 static int
5692 hexnumnstr (char *buf, ULONGEST num, int width)
5693 {
5694 int i;
5695
5696 buf[width] = '\0';
5697
5698 for (i = width - 1; i >= 0; i--)
5699 {
5700 buf[i] = "0123456789abcdef"[(num & 0xf)];
5701 num >>= 4;
5702 }
5703
5704 return width;
5705 }
5706
5707 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5708
5709 static CORE_ADDR
5710 remote_address_masked (CORE_ADDR addr)
5711 {
5712 int address_size = remote_address_size;
5713 /* If "remoteaddresssize" was not set, default to target address size. */
5714 if (!address_size)
5715 address_size = gdbarch_addr_bit (target_gdbarch);
5716
5717 if (address_size > 0
5718 && address_size < (sizeof (ULONGEST) * 8))
5719 {
5720 /* Only create a mask when that mask can safely be constructed
5721 in a ULONGEST variable. */
5722 ULONGEST mask = 1;
5723 mask = (mask << address_size) - 1;
5724 addr &= mask;
5725 }
5726 return addr;
5727 }
5728
5729 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5730 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5731 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5732 (which may be more than *OUT_LEN due to escape characters). The
5733 total number of bytes in the output buffer will be at most
5734 OUT_MAXLEN. */
5735
5736 static int
5737 remote_escape_output (const gdb_byte *buffer, int len,
5738 gdb_byte *out_buf, int *out_len,
5739 int out_maxlen)
5740 {
5741 int input_index, output_index;
5742
5743 output_index = 0;
5744 for (input_index = 0; input_index < len; input_index++)
5745 {
5746 gdb_byte b = buffer[input_index];
5747
5748 if (b == '$' || b == '#' || b == '}')
5749 {
5750 /* These must be escaped. */
5751 if (output_index + 2 > out_maxlen)
5752 break;
5753 out_buf[output_index++] = '}';
5754 out_buf[output_index++] = b ^ 0x20;
5755 }
5756 else
5757 {
5758 if (output_index + 1 > out_maxlen)
5759 break;
5760 out_buf[output_index++] = b;
5761 }
5762 }
5763
5764 *out_len = input_index;
5765 return output_index;
5766 }
5767
5768 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5769 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5770 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5771
5772 This function reverses remote_escape_output. It allows more
5773 escaped characters than that function does, in particular because
5774 '*' must be escaped to avoid the run-length encoding processing
5775 in reading packets. */
5776
5777 static int
5778 remote_unescape_input (const gdb_byte *buffer, int len,
5779 gdb_byte *out_buf, int out_maxlen)
5780 {
5781 int input_index, output_index;
5782 int escaped;
5783
5784 output_index = 0;
5785 escaped = 0;
5786 for (input_index = 0; input_index < len; input_index++)
5787 {
5788 gdb_byte b = buffer[input_index];
5789
5790 if (output_index + 1 > out_maxlen)
5791 {
5792 warning (_("Received too much data from remote target;"
5793 " ignoring overflow."));
5794 return output_index;
5795 }
5796
5797 if (escaped)
5798 {
5799 out_buf[output_index++] = b ^ 0x20;
5800 escaped = 0;
5801 }
5802 else if (b == '}')
5803 escaped = 1;
5804 else
5805 out_buf[output_index++] = b;
5806 }
5807
5808 if (escaped)
5809 error (_("Unmatched escape character in target response."));
5810
5811 return output_index;
5812 }
5813
5814 /* Determine whether the remote target supports binary downloading.
5815 This is accomplished by sending a no-op memory write of zero length
5816 to the target at the specified address. It does not suffice to send
5817 the whole packet, since many stubs strip the eighth bit and
5818 subsequently compute a wrong checksum, which causes real havoc with
5819 remote_write_bytes.
5820
5821 NOTE: This can still lose if the serial line is not eight-bit
5822 clean. In cases like this, the user should clear "remote
5823 X-packet". */
5824
5825 static void
5826 check_binary_download (CORE_ADDR addr)
5827 {
5828 struct remote_state *rs = get_remote_state ();
5829
5830 switch (remote_protocol_packets[PACKET_X].support)
5831 {
5832 case PACKET_DISABLE:
5833 break;
5834 case PACKET_ENABLE:
5835 break;
5836 case PACKET_SUPPORT_UNKNOWN:
5837 {
5838 char *p;
5839
5840 p = rs->buf;
5841 *p++ = 'X';
5842 p += hexnumstr (p, (ULONGEST) addr);
5843 *p++ = ',';
5844 p += hexnumstr (p, (ULONGEST) 0);
5845 *p++ = ':';
5846 *p = '\0';
5847
5848 putpkt_binary (rs->buf, (int) (p - rs->buf));
5849 getpkt (&rs->buf, &rs->buf_size, 0);
5850
5851 if (rs->buf[0] == '\0')
5852 {
5853 if (remote_debug)
5854 fprintf_unfiltered (gdb_stdlog,
5855 "binary downloading NOT suppported by target\n");
5856 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5857 }
5858 else
5859 {
5860 if (remote_debug)
5861 fprintf_unfiltered (gdb_stdlog,
5862 "binary downloading suppported by target\n");
5863 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5864 }
5865 break;
5866 }
5867 }
5868 }
5869
5870 /* Write memory data directly to the remote machine.
5871 This does not inform the data cache; the data cache uses this.
5872 HEADER is the starting part of the packet.
5873 MEMADDR is the address in the remote memory space.
5874 MYADDR is the address of the buffer in our space.
5875 LEN is the number of bytes.
5876 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5877 should send data as binary ('X'), or hex-encoded ('M').
5878
5879 The function creates packet of the form
5880 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5881
5882 where encoding of <DATA> is termined by PACKET_FORMAT.
5883
5884 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5885 are omitted.
5886
5887 Returns the number of bytes transferred, or 0 (setting errno) for
5888 error. Only transfer a single packet. */
5889
5890 static int
5891 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5892 const gdb_byte *myaddr, int len,
5893 char packet_format, int use_length)
5894 {
5895 struct remote_state *rs = get_remote_state ();
5896 char *p;
5897 char *plen = NULL;
5898 int plenlen = 0;
5899 int todo;
5900 int nr_bytes;
5901 int payload_size;
5902 int payload_length;
5903 int header_length;
5904
5905 if (packet_format != 'X' && packet_format != 'M')
5906 internal_error (__FILE__, __LINE__,
5907 "remote_write_bytes_aux: bad packet format");
5908
5909 if (len <= 0)
5910 return 0;
5911
5912 payload_size = get_memory_write_packet_size ();
5913
5914 /* The packet buffer will be large enough for the payload;
5915 get_memory_packet_size ensures this. */
5916 rs->buf[0] = '\0';
5917
5918 /* Compute the size of the actual payload by subtracting out the
5919 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5920 */
5921 payload_size -= strlen ("$,:#NN");
5922 if (!use_length)
5923 /* The comma won't be used. */
5924 payload_size += 1;
5925 header_length = strlen (header);
5926 payload_size -= header_length;
5927 payload_size -= hexnumlen (memaddr);
5928
5929 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5930
5931 strcat (rs->buf, header);
5932 p = rs->buf + strlen (header);
5933
5934 /* Compute a best guess of the number of bytes actually transfered. */
5935 if (packet_format == 'X')
5936 {
5937 /* Best guess at number of bytes that will fit. */
5938 todo = min (len, payload_size);
5939 if (use_length)
5940 payload_size -= hexnumlen (todo);
5941 todo = min (todo, payload_size);
5942 }
5943 else
5944 {
5945 /* Num bytes that will fit. */
5946 todo = min (len, payload_size / 2);
5947 if (use_length)
5948 payload_size -= hexnumlen (todo);
5949 todo = min (todo, payload_size / 2);
5950 }
5951
5952 if (todo <= 0)
5953 internal_error (__FILE__, __LINE__,
5954 _("minumum packet size too small to write data"));
5955
5956 /* If we already need another packet, then try to align the end
5957 of this packet to a useful boundary. */
5958 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5959 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5960
5961 /* Append "<memaddr>". */
5962 memaddr = remote_address_masked (memaddr);
5963 p += hexnumstr (p, (ULONGEST) memaddr);
5964
5965 if (use_length)
5966 {
5967 /* Append ",". */
5968 *p++ = ',';
5969
5970 /* Append <len>. Retain the location/size of <len>. It may need to
5971 be adjusted once the packet body has been created. */
5972 plen = p;
5973 plenlen = hexnumstr (p, (ULONGEST) todo);
5974 p += plenlen;
5975 }
5976
5977 /* Append ":". */
5978 *p++ = ':';
5979 *p = '\0';
5980
5981 /* Append the packet body. */
5982 if (packet_format == 'X')
5983 {
5984 /* Binary mode. Send target system values byte by byte, in
5985 increasing byte addresses. Only escape certain critical
5986 characters. */
5987 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5988 payload_size);
5989
5990 /* If not all TODO bytes fit, then we'll need another packet. Make
5991 a second try to keep the end of the packet aligned. Don't do
5992 this if the packet is tiny. */
5993 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5994 {
5995 int new_nr_bytes;
5996
5997 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5998 - memaddr);
5999 if (new_nr_bytes != nr_bytes)
6000 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6001 p, &nr_bytes,
6002 payload_size);
6003 }
6004
6005 p += payload_length;
6006 if (use_length && nr_bytes < todo)
6007 {
6008 /* Escape chars have filled up the buffer prematurely,
6009 and we have actually sent fewer bytes than planned.
6010 Fix-up the length field of the packet. Use the same
6011 number of characters as before. */
6012 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6013 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6014 }
6015 }
6016 else
6017 {
6018 /* Normal mode: Send target system values byte by byte, in
6019 increasing byte addresses. Each byte is encoded as a two hex
6020 value. */
6021 nr_bytes = bin2hex (myaddr, p, todo);
6022 p += 2 * nr_bytes;
6023 }
6024
6025 putpkt_binary (rs->buf, (int) (p - rs->buf));
6026 getpkt (&rs->buf, &rs->buf_size, 0);
6027
6028 if (rs->buf[0] == 'E')
6029 {
6030 /* There is no correspondance between what the remote protocol
6031 uses for errors and errno codes. We would like a cleaner way
6032 of representing errors (big enough to include errno codes,
6033 bfd_error codes, and others). But for now just return EIO. */
6034 errno = EIO;
6035 return 0;
6036 }
6037
6038 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6039 fewer bytes than we'd planned. */
6040 return nr_bytes;
6041 }
6042
6043 /* Write memory data directly to the remote machine.
6044 This does not inform the data cache; the data cache uses this.
6045 MEMADDR is the address in the remote memory space.
6046 MYADDR is the address of the buffer in our space.
6047 LEN is the number of bytes.
6048
6049 Returns number of bytes transferred, or 0 (setting errno) for
6050 error. Only transfer a single packet. */
6051
6052 int
6053 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6054 {
6055 char *packet_format = 0;
6056
6057 /* Check whether the target supports binary download. */
6058 check_binary_download (memaddr);
6059
6060 switch (remote_protocol_packets[PACKET_X].support)
6061 {
6062 case PACKET_ENABLE:
6063 packet_format = "X";
6064 break;
6065 case PACKET_DISABLE:
6066 packet_format = "M";
6067 break;
6068 case PACKET_SUPPORT_UNKNOWN:
6069 internal_error (__FILE__, __LINE__,
6070 _("remote_write_bytes: bad internal state"));
6071 default:
6072 internal_error (__FILE__, __LINE__, _("bad switch"));
6073 }
6074
6075 return remote_write_bytes_aux (packet_format,
6076 memaddr, myaddr, len, packet_format[0], 1);
6077 }
6078
6079 /* Read memory data directly from the remote machine.
6080 This does not use the data cache; the data cache uses this.
6081 MEMADDR is the address in the remote memory space.
6082 MYADDR is the address of the buffer in our space.
6083 LEN is the number of bytes.
6084
6085 Returns number of bytes transferred, or 0 for error. */
6086
6087 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6088 remote targets) shouldn't attempt to read the entire buffer.
6089 Instead it should read a single packet worth of data and then
6090 return the byte size of that packet to the caller. The caller (its
6091 caller and its callers caller ;-) already contains code for
6092 handling partial reads. */
6093
6094 int
6095 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6096 {
6097 struct remote_state *rs = get_remote_state ();
6098 int max_buf_size; /* Max size of packet output buffer. */
6099 int origlen;
6100
6101 if (len <= 0)
6102 return 0;
6103
6104 max_buf_size = get_memory_read_packet_size ();
6105 /* The packet buffer will be large enough for the payload;
6106 get_memory_packet_size ensures this. */
6107
6108 origlen = len;
6109 while (len > 0)
6110 {
6111 char *p;
6112 int todo;
6113 int i;
6114
6115 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6116
6117 /* construct "m"<memaddr>","<len>" */
6118 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6119 memaddr = remote_address_masked (memaddr);
6120 p = rs->buf;
6121 *p++ = 'm';
6122 p += hexnumstr (p, (ULONGEST) memaddr);
6123 *p++ = ',';
6124 p += hexnumstr (p, (ULONGEST) todo);
6125 *p = '\0';
6126
6127 putpkt (rs->buf);
6128 getpkt (&rs->buf, &rs->buf_size, 0);
6129
6130 if (rs->buf[0] == 'E'
6131 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6132 && rs->buf[3] == '\0')
6133 {
6134 /* There is no correspondance between what the remote
6135 protocol uses for errors and errno codes. We would like
6136 a cleaner way of representing errors (big enough to
6137 include errno codes, bfd_error codes, and others). But
6138 for now just return EIO. */
6139 errno = EIO;
6140 return 0;
6141 }
6142
6143 /* Reply describes memory byte by byte,
6144 each byte encoded as two hex characters. */
6145
6146 p = rs->buf;
6147 if ((i = hex2bin (p, myaddr, todo)) < todo)
6148 {
6149 /* Reply is short. This means that we were able to read
6150 only part of what we wanted to. */
6151 return i + (origlen - len);
6152 }
6153 myaddr += todo;
6154 memaddr += todo;
6155 len -= todo;
6156 }
6157 return origlen;
6158 }
6159 \f
6160
6161 /* Remote notification handler. */
6162
6163 static void
6164 handle_notification (char *buf, size_t length)
6165 {
6166 if (strncmp (buf, "Stop:", 5) == 0)
6167 {
6168 if (pending_stop_reply)
6169 {
6170 /* We've already parsed the in-flight stop-reply, but the
6171 stub for some reason thought we didn't, possibly due to
6172 timeout on its side. Just ignore it. */
6173 if (remote_debug)
6174 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6175 }
6176 else
6177 {
6178 struct cleanup *old_chain;
6179 struct stop_reply *reply = stop_reply_xmalloc ();
6180 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6181
6182 remote_parse_stop_reply (buf + 5, reply);
6183
6184 discard_cleanups (old_chain);
6185
6186 /* Be careful to only set it after parsing, since an error
6187 may be thrown then. */
6188 pending_stop_reply = reply;
6189
6190 /* Notify the event loop there's a stop reply to acknowledge
6191 and that there may be more events to fetch. */
6192 mark_async_event_handler (remote_async_get_pending_events_token);
6193
6194 if (remote_debug)
6195 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6196 }
6197 }
6198 else
6199 /* We ignore notifications we don't recognize, for compatibility
6200 with newer stubs. */
6201 ;
6202 }
6203
6204 \f
6205 /* Read or write LEN bytes from inferior memory at MEMADDR,
6206 transferring to or from debugger address BUFFER. Write to inferior
6207 if SHOULD_WRITE is nonzero. Returns length of data written or
6208 read; 0 for error. TARGET is unused. */
6209
6210 static int
6211 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6212 int should_write, struct mem_attrib *attrib,
6213 struct target_ops *target)
6214 {
6215 int res;
6216
6217 set_general_thread (inferior_ptid);
6218
6219 if (should_write)
6220 res = remote_write_bytes (mem_addr, buffer, mem_len);
6221 else
6222 res = remote_read_bytes (mem_addr, buffer, mem_len);
6223
6224 return res;
6225 }
6226
6227 /* Sends a packet with content determined by the printf format string
6228 FORMAT and the remaining arguments, then gets the reply. Returns
6229 whether the packet was a success, a failure, or unknown. */
6230
6231 static enum packet_result
6232 remote_send_printf (const char *format, ...)
6233 {
6234 struct remote_state *rs = get_remote_state ();
6235 int max_size = get_remote_packet_size ();
6236
6237 va_list ap;
6238 va_start (ap, format);
6239
6240 rs->buf[0] = '\0';
6241 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6242 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6243
6244 if (putpkt (rs->buf) < 0)
6245 error (_("Communication problem with target."));
6246
6247 rs->buf[0] = '\0';
6248 getpkt (&rs->buf, &rs->buf_size, 0);
6249
6250 return packet_check_result (rs->buf);
6251 }
6252
6253 static void
6254 restore_remote_timeout (void *p)
6255 {
6256 int value = *(int *)p;
6257 remote_timeout = value;
6258 }
6259
6260 /* Flash writing can take quite some time. We'll set
6261 effectively infinite timeout for flash operations.
6262 In future, we'll need to decide on a better approach. */
6263 static const int remote_flash_timeout = 1000;
6264
6265 static void
6266 remote_flash_erase (struct target_ops *ops,
6267 ULONGEST address, LONGEST length)
6268 {
6269 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6270 int saved_remote_timeout = remote_timeout;
6271 enum packet_result ret;
6272
6273 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6274 &saved_remote_timeout);
6275 remote_timeout = remote_flash_timeout;
6276
6277 ret = remote_send_printf ("vFlashErase:%s,%s",
6278 phex (address, addr_size),
6279 phex (length, 4));
6280 switch (ret)
6281 {
6282 case PACKET_UNKNOWN:
6283 error (_("Remote target does not support flash erase"));
6284 case PACKET_ERROR:
6285 error (_("Error erasing flash with vFlashErase packet"));
6286 default:
6287 break;
6288 }
6289
6290 do_cleanups (back_to);
6291 }
6292
6293 static LONGEST
6294 remote_flash_write (struct target_ops *ops,
6295 ULONGEST address, LONGEST length,
6296 const gdb_byte *data)
6297 {
6298 int saved_remote_timeout = remote_timeout;
6299 int ret;
6300 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6301 &saved_remote_timeout);
6302
6303 remote_timeout = remote_flash_timeout;
6304 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6305 do_cleanups (back_to);
6306
6307 return ret;
6308 }
6309
6310 static void
6311 remote_flash_done (struct target_ops *ops)
6312 {
6313 int saved_remote_timeout = remote_timeout;
6314 int ret;
6315 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6316 &saved_remote_timeout);
6317
6318 remote_timeout = remote_flash_timeout;
6319 ret = remote_send_printf ("vFlashDone");
6320 do_cleanups (back_to);
6321
6322 switch (ret)
6323 {
6324 case PACKET_UNKNOWN:
6325 error (_("Remote target does not support vFlashDone"));
6326 case PACKET_ERROR:
6327 error (_("Error finishing flash operation"));
6328 default:
6329 break;
6330 }
6331 }
6332
6333 static void
6334 remote_files_info (struct target_ops *ignore)
6335 {
6336 puts_filtered ("Debugging a target over a serial line.\n");
6337 }
6338 \f
6339 /* Stuff for dealing with the packets which are part of this protocol.
6340 See comment at top of file for details. */
6341
6342 /* Read a single character from the remote end. */
6343
6344 static int
6345 readchar (int timeout)
6346 {
6347 int ch;
6348
6349 ch = serial_readchar (remote_desc, timeout);
6350
6351 if (ch >= 0)
6352 return ch;
6353
6354 switch ((enum serial_rc) ch)
6355 {
6356 case SERIAL_EOF:
6357 pop_target ();
6358 error (_("Remote connection closed"));
6359 /* no return */
6360 case SERIAL_ERROR:
6361 perror_with_name (_("Remote communication error"));
6362 /* no return */
6363 case SERIAL_TIMEOUT:
6364 break;
6365 }
6366 return ch;
6367 }
6368
6369 /* Send the command in *BUF to the remote machine, and read the reply
6370 into *BUF. Report an error if we get an error reply. Resize
6371 *BUF using xrealloc if necessary to hold the result, and update
6372 *SIZEOF_BUF. */
6373
6374 static void
6375 remote_send (char **buf,
6376 long *sizeof_buf)
6377 {
6378 putpkt (*buf);
6379 getpkt (buf, sizeof_buf, 0);
6380
6381 if ((*buf)[0] == 'E')
6382 error (_("Remote failure reply: %s"), *buf);
6383 }
6384
6385 /* Return a pointer to an xmalloc'ed string representing an escaped
6386 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6387 etc. The caller is responsible for releasing the returned
6388 memory. */
6389
6390 static char *
6391 escape_buffer (const char *buf, int n)
6392 {
6393 struct cleanup *old_chain;
6394 struct ui_file *stb;
6395 char *str;
6396
6397 stb = mem_fileopen ();
6398 old_chain = make_cleanup_ui_file_delete (stb);
6399
6400 fputstrn_unfiltered (buf, n, 0, stb);
6401 str = ui_file_xstrdup (stb, NULL);
6402 do_cleanups (old_chain);
6403 return str;
6404 }
6405
6406 /* Display a null-terminated packet on stdout, for debugging, using C
6407 string notation. */
6408
6409 static void
6410 print_packet (char *buf)
6411 {
6412 puts_filtered ("\"");
6413 fputstr_filtered (buf, '"', gdb_stdout);
6414 puts_filtered ("\"");
6415 }
6416
6417 int
6418 putpkt (char *buf)
6419 {
6420 return putpkt_binary (buf, strlen (buf));
6421 }
6422
6423 /* Send a packet to the remote machine, with error checking. The data
6424 of the packet is in BUF. The string in BUF can be at most
6425 get_remote_packet_size () - 5 to account for the $, # and checksum,
6426 and for a possible /0 if we are debugging (remote_debug) and want
6427 to print the sent packet as a string. */
6428
6429 static int
6430 putpkt_binary (char *buf, int cnt)
6431 {
6432 struct remote_state *rs = get_remote_state ();
6433 int i;
6434 unsigned char csum = 0;
6435 char *buf2 = alloca (cnt + 6);
6436
6437 int ch;
6438 int tcount = 0;
6439 char *p;
6440
6441 /* Catch cases like trying to read memory or listing threads while
6442 we're waiting for a stop reply. The remote server wouldn't be
6443 ready to handle this request, so we'd hang and timeout. We don't
6444 have to worry about this in synchronous mode, because in that
6445 case it's not possible to issue a command while the target is
6446 running. This is not a problem in non-stop mode, because in that
6447 case, the stub is always ready to process serial input. */
6448 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6449 error (_("Cannot execute this command while the target is running."));
6450
6451 /* We're sending out a new packet. Make sure we don't look at a
6452 stale cached response. */
6453 rs->cached_wait_status = 0;
6454
6455 /* Copy the packet into buffer BUF2, encapsulating it
6456 and giving it a checksum. */
6457
6458 p = buf2;
6459 *p++ = '$';
6460
6461 for (i = 0; i < cnt; i++)
6462 {
6463 csum += buf[i];
6464 *p++ = buf[i];
6465 }
6466 *p++ = '#';
6467 *p++ = tohex ((csum >> 4) & 0xf);
6468 *p++ = tohex (csum & 0xf);
6469
6470 /* Send it over and over until we get a positive ack. */
6471
6472 while (1)
6473 {
6474 int started_error_output = 0;
6475
6476 if (remote_debug)
6477 {
6478 struct cleanup *old_chain;
6479 char *str;
6480
6481 *p = '\0';
6482 str = escape_buffer (buf2, p - buf2);
6483 old_chain = make_cleanup (xfree, str);
6484 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6485 gdb_flush (gdb_stdlog);
6486 do_cleanups (old_chain);
6487 }
6488 if (serial_write (remote_desc, buf2, p - buf2))
6489 perror_with_name (_("putpkt: write failed"));
6490
6491 /* If this is a no acks version of the remote protocol, send the
6492 packet and move on. */
6493 if (rs->noack_mode)
6494 break;
6495
6496 /* Read until either a timeout occurs (-2) or '+' is read.
6497 Handle any notification that arrives in the mean time. */
6498 while (1)
6499 {
6500 ch = readchar (remote_timeout);
6501
6502 if (remote_debug)
6503 {
6504 switch (ch)
6505 {
6506 case '+':
6507 case '-':
6508 case SERIAL_TIMEOUT:
6509 case '$':
6510 case '%':
6511 if (started_error_output)
6512 {
6513 putchar_unfiltered ('\n');
6514 started_error_output = 0;
6515 }
6516 }
6517 }
6518
6519 switch (ch)
6520 {
6521 case '+':
6522 if (remote_debug)
6523 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6524 return 1;
6525 case '-':
6526 if (remote_debug)
6527 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6528 case SERIAL_TIMEOUT:
6529 tcount++;
6530 if (tcount > 3)
6531 return 0;
6532 break; /* Retransmit buffer. */
6533 case '$':
6534 {
6535 if (remote_debug)
6536 fprintf_unfiltered (gdb_stdlog,
6537 "Packet instead of Ack, ignoring it\n");
6538 /* It's probably an old response sent because an ACK
6539 was lost. Gobble up the packet and ack it so it
6540 doesn't get retransmitted when we resend this
6541 packet. */
6542 skip_frame ();
6543 serial_write (remote_desc, "+", 1);
6544 continue; /* Now, go look for +. */
6545 }
6546
6547 case '%':
6548 {
6549 int val;
6550
6551 /* If we got a notification, handle it, and go back to looking
6552 for an ack. */
6553 /* We've found the start of a notification. Now
6554 collect the data. */
6555 val = read_frame (&rs->buf, &rs->buf_size);
6556 if (val >= 0)
6557 {
6558 if (remote_debug)
6559 {
6560 struct cleanup *old_chain;
6561 char *str;
6562
6563 str = escape_buffer (rs->buf, val);
6564 old_chain = make_cleanup (xfree, str);
6565 fprintf_unfiltered (gdb_stdlog,
6566 " Notification received: %s\n",
6567 str);
6568 do_cleanups (old_chain);
6569 }
6570 handle_notification (rs->buf, val);
6571 /* We're in sync now, rewait for the ack. */
6572 tcount = 0;
6573 }
6574 else
6575 {
6576 if (remote_debug)
6577 {
6578 if (!started_error_output)
6579 {
6580 started_error_output = 1;
6581 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6582 }
6583 fputc_unfiltered (ch & 0177, gdb_stdlog);
6584 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6585 }
6586 }
6587 continue;
6588 }
6589 /* fall-through */
6590 default:
6591 if (remote_debug)
6592 {
6593 if (!started_error_output)
6594 {
6595 started_error_output = 1;
6596 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6597 }
6598 fputc_unfiltered (ch & 0177, gdb_stdlog);
6599 }
6600 continue;
6601 }
6602 break; /* Here to retransmit. */
6603 }
6604
6605 #if 0
6606 /* This is wrong. If doing a long backtrace, the user should be
6607 able to get out next time we call QUIT, without anything as
6608 violent as interrupt_query. If we want to provide a way out of
6609 here without getting to the next QUIT, it should be based on
6610 hitting ^C twice as in remote_wait. */
6611 if (quit_flag)
6612 {
6613 quit_flag = 0;
6614 interrupt_query ();
6615 }
6616 #endif
6617 }
6618 return 0;
6619 }
6620
6621 /* Come here after finding the start of a frame when we expected an
6622 ack. Do our best to discard the rest of this packet. */
6623
6624 static void
6625 skip_frame (void)
6626 {
6627 int c;
6628
6629 while (1)
6630 {
6631 c = readchar (remote_timeout);
6632 switch (c)
6633 {
6634 case SERIAL_TIMEOUT:
6635 /* Nothing we can do. */
6636 return;
6637 case '#':
6638 /* Discard the two bytes of checksum and stop. */
6639 c = readchar (remote_timeout);
6640 if (c >= 0)
6641 c = readchar (remote_timeout);
6642
6643 return;
6644 case '*': /* Run length encoding. */
6645 /* Discard the repeat count. */
6646 c = readchar (remote_timeout);
6647 if (c < 0)
6648 return;
6649 break;
6650 default:
6651 /* A regular character. */
6652 break;
6653 }
6654 }
6655 }
6656
6657 /* Come here after finding the start of the frame. Collect the rest
6658 into *BUF, verifying the checksum, length, and handling run-length
6659 compression. NUL terminate the buffer. If there is not enough room,
6660 expand *BUF using xrealloc.
6661
6662 Returns -1 on error, number of characters in buffer (ignoring the
6663 trailing NULL) on success. (could be extended to return one of the
6664 SERIAL status indications). */
6665
6666 static long
6667 read_frame (char **buf_p,
6668 long *sizeof_buf)
6669 {
6670 unsigned char csum;
6671 long bc;
6672 int c;
6673 char *buf = *buf_p;
6674 struct remote_state *rs = get_remote_state ();
6675
6676 csum = 0;
6677 bc = 0;
6678
6679 while (1)
6680 {
6681 c = readchar (remote_timeout);
6682 switch (c)
6683 {
6684 case SERIAL_TIMEOUT:
6685 if (remote_debug)
6686 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6687 return -1;
6688 case '$':
6689 if (remote_debug)
6690 fputs_filtered ("Saw new packet start in middle of old one\n",
6691 gdb_stdlog);
6692 return -1; /* Start a new packet, count retries. */
6693 case '#':
6694 {
6695 unsigned char pktcsum;
6696 int check_0 = 0;
6697 int check_1 = 0;
6698
6699 buf[bc] = '\0';
6700
6701 check_0 = readchar (remote_timeout);
6702 if (check_0 >= 0)
6703 check_1 = readchar (remote_timeout);
6704
6705 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6706 {
6707 if (remote_debug)
6708 fputs_filtered ("Timeout in checksum, retrying\n",
6709 gdb_stdlog);
6710 return -1;
6711 }
6712 else if (check_0 < 0 || check_1 < 0)
6713 {
6714 if (remote_debug)
6715 fputs_filtered ("Communication error in checksum\n",
6716 gdb_stdlog);
6717 return -1;
6718 }
6719
6720 /* Don't recompute the checksum; with no ack packets we
6721 don't have any way to indicate a packet retransmission
6722 is necessary. */
6723 if (rs->noack_mode)
6724 return bc;
6725
6726 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6727 if (csum == pktcsum)
6728 return bc;
6729
6730 if (remote_debug)
6731 {
6732 struct cleanup *old_chain;
6733 char *str;
6734
6735 str = escape_buffer (buf, bc);
6736 old_chain = make_cleanup (xfree, str);
6737 fprintf_unfiltered (gdb_stdlog,
6738 "\
6739 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6740 pktcsum, csum, str);
6741 do_cleanups (old_chain);
6742 }
6743 /* Number of characters in buffer ignoring trailing
6744 NULL. */
6745 return -1;
6746 }
6747 case '*': /* Run length encoding. */
6748 {
6749 int repeat;
6750 csum += c;
6751
6752 c = readchar (remote_timeout);
6753 csum += c;
6754 repeat = c - ' ' + 3; /* Compute repeat count. */
6755
6756 /* The character before ``*'' is repeated. */
6757
6758 if (repeat > 0 && repeat <= 255 && bc > 0)
6759 {
6760 if (bc + repeat - 1 >= *sizeof_buf - 1)
6761 {
6762 /* Make some more room in the buffer. */
6763 *sizeof_buf += repeat;
6764 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6765 buf = *buf_p;
6766 }
6767
6768 memset (&buf[bc], buf[bc - 1], repeat);
6769 bc += repeat;
6770 continue;
6771 }
6772
6773 buf[bc] = '\0';
6774 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6775 return -1;
6776 }
6777 default:
6778 if (bc >= *sizeof_buf - 1)
6779 {
6780 /* Make some more room in the buffer. */
6781 *sizeof_buf *= 2;
6782 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6783 buf = *buf_p;
6784 }
6785
6786 buf[bc++] = c;
6787 csum += c;
6788 continue;
6789 }
6790 }
6791 }
6792
6793 /* Read a packet from the remote machine, with error checking, and
6794 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6795 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6796 rather than timing out; this is used (in synchronous mode) to wait
6797 for a target that is is executing user code to stop. */
6798 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6799 don't have to change all the calls to getpkt to deal with the
6800 return value, because at the moment I don't know what the right
6801 thing to do it for those. */
6802 void
6803 getpkt (char **buf,
6804 long *sizeof_buf,
6805 int forever)
6806 {
6807 int timed_out;
6808
6809 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6810 }
6811
6812
6813 /* Read a packet from the remote machine, with error checking, and
6814 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6815 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6816 rather than timing out; this is used (in synchronous mode) to wait
6817 for a target that is is executing user code to stop. If FOREVER ==
6818 0, this function is allowed to time out gracefully and return an
6819 indication of this to the caller. Otherwise return the number of
6820 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6821 enough reason to return to the caller. */
6822
6823 static int
6824 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6825 int expecting_notif)
6826 {
6827 struct remote_state *rs = get_remote_state ();
6828 int c;
6829 int tries;
6830 int timeout;
6831 int val = -1;
6832
6833 /* We're reading a new response. Make sure we don't look at a
6834 previously cached response. */
6835 rs->cached_wait_status = 0;
6836
6837 strcpy (*buf, "timeout");
6838
6839 if (forever)
6840 timeout = watchdog > 0 ? watchdog : -1;
6841 else if (expecting_notif)
6842 timeout = 0; /* There should already be a char in the buffer. If
6843 not, bail out. */
6844 else
6845 timeout = remote_timeout;
6846
6847 #define MAX_TRIES 3
6848
6849 /* Process any number of notifications, and then return when
6850 we get a packet. */
6851 for (;;)
6852 {
6853 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6854 times. */
6855 for (tries = 1; tries <= MAX_TRIES; tries++)
6856 {
6857 /* This can loop forever if the remote side sends us
6858 characters continuously, but if it pauses, we'll get
6859 SERIAL_TIMEOUT from readchar because of timeout. Then
6860 we'll count that as a retry.
6861
6862 Note that even when forever is set, we will only wait
6863 forever prior to the start of a packet. After that, we
6864 expect characters to arrive at a brisk pace. They should
6865 show up within remote_timeout intervals. */
6866 do
6867 c = readchar (timeout);
6868 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6869
6870 if (c == SERIAL_TIMEOUT)
6871 {
6872 if (expecting_notif)
6873 return -1; /* Don't complain, it's normal to not get
6874 anything in this case. */
6875
6876 if (forever) /* Watchdog went off? Kill the target. */
6877 {
6878 QUIT;
6879 pop_target ();
6880 error (_("Watchdog timeout has expired. Target detached."));
6881 }
6882 if (remote_debug)
6883 fputs_filtered ("Timed out.\n", gdb_stdlog);
6884 }
6885 else
6886 {
6887 /* We've found the start of a packet or notification.
6888 Now collect the data. */
6889 val = read_frame (buf, sizeof_buf);
6890 if (val >= 0)
6891 break;
6892 }
6893
6894 serial_write (remote_desc, "-", 1);
6895 }
6896
6897 if (tries > MAX_TRIES)
6898 {
6899 /* We have tried hard enough, and just can't receive the
6900 packet/notification. Give up. */
6901 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6902
6903 /* Skip the ack char if we're in no-ack mode. */
6904 if (!rs->noack_mode)
6905 serial_write (remote_desc, "+", 1);
6906 return -1;
6907 }
6908
6909 /* If we got an ordinary packet, return that to our caller. */
6910 if (c == '$')
6911 {
6912 if (remote_debug)
6913 {
6914 struct cleanup *old_chain;
6915 char *str;
6916
6917 str = escape_buffer (*buf, val);
6918 old_chain = make_cleanup (xfree, str);
6919 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6920 do_cleanups (old_chain);
6921 }
6922
6923 /* Skip the ack char if we're in no-ack mode. */
6924 if (!rs->noack_mode)
6925 serial_write (remote_desc, "+", 1);
6926 return val;
6927 }
6928
6929 /* If we got a notification, handle it, and go back to looking
6930 for a packet. */
6931 else
6932 {
6933 gdb_assert (c == '%');
6934
6935 if (remote_debug)
6936 {
6937 struct cleanup *old_chain;
6938 char *str;
6939
6940 str = escape_buffer (*buf, val);
6941 old_chain = make_cleanup (xfree, str);
6942 fprintf_unfiltered (gdb_stdlog,
6943 " Notification received: %s\n",
6944 str);
6945 do_cleanups (old_chain);
6946 }
6947
6948 handle_notification (*buf, val);
6949
6950 /* Notifications require no acknowledgement. */
6951
6952 if (expecting_notif)
6953 return -1;
6954 }
6955 }
6956 }
6957
6958 static int
6959 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6960 {
6961 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6962 }
6963
6964 static int
6965 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6966 {
6967 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6968 }
6969
6970 \f
6971 static void
6972 remote_kill (struct target_ops *ops)
6973 {
6974 /* Use catch_errors so the user can quit from gdb even when we
6975 aren't on speaking terms with the remote system. */
6976 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6977
6978 /* Don't wait for it to die. I'm not really sure it matters whether
6979 we do or not. For the existing stubs, kill is a noop. */
6980 target_mourn_inferior ();
6981 }
6982
6983 static int
6984 remote_vkill (int pid, struct remote_state *rs)
6985 {
6986 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6987 return -1;
6988
6989 /* Tell the remote target to detach. */
6990 sprintf (rs->buf, "vKill;%x", pid);
6991 putpkt (rs->buf);
6992 getpkt (&rs->buf, &rs->buf_size, 0);
6993
6994 if (packet_ok (rs->buf,
6995 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6996 return 0;
6997 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6998 return -1;
6999 else
7000 return 1;
7001 }
7002
7003 static void
7004 extended_remote_kill (struct target_ops *ops)
7005 {
7006 int res;
7007 int pid = ptid_get_pid (inferior_ptid);
7008 struct remote_state *rs = get_remote_state ();
7009
7010 res = remote_vkill (pid, rs);
7011 if (res == -1 && !remote_multi_process_p (rs))
7012 {
7013 /* Don't try 'k' on a multi-process aware stub -- it has no way
7014 to specify the pid. */
7015
7016 putpkt ("k");
7017 #if 0
7018 getpkt (&rs->buf, &rs->buf_size, 0);
7019 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7020 res = 1;
7021 #else
7022 /* Don't wait for it to die. I'm not really sure it matters whether
7023 we do or not. For the existing stubs, kill is a noop. */
7024 res = 0;
7025 #endif
7026 }
7027
7028 if (res != 0)
7029 error (_("Can't kill process"));
7030
7031 target_mourn_inferior ();
7032 }
7033
7034 static void
7035 remote_mourn (struct target_ops *ops)
7036 {
7037 remote_mourn_1 (ops);
7038 }
7039
7040 /* Worker function for remote_mourn. */
7041 static void
7042 remote_mourn_1 (struct target_ops *target)
7043 {
7044 unpush_target (target);
7045
7046 /* remote_close takes care of doing most of the clean up. */
7047 generic_mourn_inferior ();
7048 }
7049
7050 static void
7051 extended_remote_mourn_1 (struct target_ops *target)
7052 {
7053 struct remote_state *rs = get_remote_state ();
7054
7055 /* In case we got here due to an error, but we're going to stay
7056 connected. */
7057 rs->waiting_for_stop_reply = 0;
7058
7059 /* We're no longer interested in these events. */
7060 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7061
7062 /* If the current general thread belonged to the process we just
7063 detached from or has exited, the remote side current general
7064 thread becomes undefined. Considering a case like this:
7065
7066 - We just got here due to a detach.
7067 - The process that we're detaching from happens to immediately
7068 report a global breakpoint being hit in non-stop mode, in the
7069 same thread we had selected before.
7070 - GDB attaches to this process again.
7071 - This event happens to be the next event we handle.
7072
7073 GDB would consider that the current general thread didn't need to
7074 be set on the stub side (with Hg), since for all it knew,
7075 GENERAL_THREAD hadn't changed.
7076
7077 Notice that although in all-stop mode, the remote server always
7078 sets the current thread to the thread reporting the stop event,
7079 that doesn't happen in non-stop mode; in non-stop, the stub *must
7080 not* change the current thread when reporting a breakpoint hit,
7081 due to the decoupling of event reporting and event handling.
7082
7083 To keep things simple, we always invalidate our notion of the
7084 current thread. */
7085 record_currthread (minus_one_ptid);
7086
7087 /* Unlike "target remote", we do not want to unpush the target; then
7088 the next time the user says "run", we won't be connected. */
7089
7090 /* Call common code to mark the inferior as not running. */
7091 generic_mourn_inferior ();
7092
7093 if (!have_inferiors ())
7094 {
7095 if (!remote_multi_process_p (rs))
7096 {
7097 /* Check whether the target is running now - some remote stubs
7098 automatically restart after kill. */
7099 putpkt ("?");
7100 getpkt (&rs->buf, &rs->buf_size, 0);
7101
7102 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7103 {
7104 /* Assume that the target has been restarted. Set inferior_ptid
7105 so that bits of core GDB realizes there's something here, e.g.,
7106 so that the user can say "kill" again. */
7107 inferior_ptid = magic_null_ptid;
7108 }
7109 }
7110 }
7111 }
7112
7113 static void
7114 extended_remote_mourn (struct target_ops *ops)
7115 {
7116 extended_remote_mourn_1 (ops);
7117 }
7118
7119 static int
7120 extended_remote_run (char *args)
7121 {
7122 struct remote_state *rs = get_remote_state ();
7123 int len;
7124
7125 /* If the user has disabled vRun support, or we have detected that
7126 support is not available, do not try it. */
7127 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7128 return -1;
7129
7130 strcpy (rs->buf, "vRun;");
7131 len = strlen (rs->buf);
7132
7133 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7134 error (_("Remote file name too long for run packet"));
7135 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7136
7137 gdb_assert (args != NULL);
7138 if (*args)
7139 {
7140 struct cleanup *back_to;
7141 int i;
7142 char **argv;
7143
7144 argv = gdb_buildargv (args);
7145 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7146 for (i = 0; argv[i] != NULL; i++)
7147 {
7148 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7149 error (_("Argument list too long for run packet"));
7150 rs->buf[len++] = ';';
7151 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7152 }
7153 do_cleanups (back_to);
7154 }
7155
7156 rs->buf[len++] = '\0';
7157
7158 putpkt (rs->buf);
7159 getpkt (&rs->buf, &rs->buf_size, 0);
7160
7161 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7162 {
7163 /* We have a wait response; we don't need it, though. All is well. */
7164 return 0;
7165 }
7166 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7167 /* It wasn't disabled before, but it is now. */
7168 return -1;
7169 else
7170 {
7171 if (remote_exec_file[0] == '\0')
7172 error (_("Running the default executable on the remote target failed; "
7173 "try \"set remote exec-file\"?"));
7174 else
7175 error (_("Running \"%s\" on the remote target failed"),
7176 remote_exec_file);
7177 }
7178 }
7179
7180 /* In the extended protocol we want to be able to do things like
7181 "run" and have them basically work as expected. So we need
7182 a special create_inferior function. We support changing the
7183 executable file and the command line arguments, but not the
7184 environment. */
7185
7186 static void
7187 extended_remote_create_inferior_1 (char *exec_file, char *args,
7188 char **env, int from_tty)
7189 {
7190 /* If running asynchronously, register the target file descriptor
7191 with the event loop. */
7192 if (target_can_async_p ())
7193 target_async (inferior_event_handler, 0);
7194
7195 /* Now restart the remote server. */
7196 if (extended_remote_run (args) == -1)
7197 {
7198 /* vRun was not supported. Fail if we need it to do what the
7199 user requested. */
7200 if (remote_exec_file[0])
7201 error (_("Remote target does not support \"set remote exec-file\""));
7202 if (args[0])
7203 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7204
7205 /* Fall back to "R". */
7206 extended_remote_restart ();
7207 }
7208
7209 if (!have_inferiors ())
7210 {
7211 /* Clean up from the last time we ran, before we mark the target
7212 running again. This will mark breakpoints uninserted, and
7213 get_offsets may insert breakpoints. */
7214 init_thread_list ();
7215 init_wait_for_inferior ();
7216 }
7217
7218 /* Now mark the inferior as running before we do anything else. */
7219 inferior_ptid = magic_null_ptid;
7220
7221 /* Now, if we have thread information, update inferior_ptid. */
7222 inferior_ptid = remote_current_thread (inferior_ptid);
7223
7224 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7225 add_thread_silent (inferior_ptid);
7226
7227 /* Get updated offsets, if the stub uses qOffsets. */
7228 get_offsets ();
7229 }
7230
7231 static void
7232 extended_remote_create_inferior (struct target_ops *ops,
7233 char *exec_file, char *args,
7234 char **env, int from_tty)
7235 {
7236 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7237 }
7238 \f
7239
7240 /* Insert a breakpoint. On targets that have software breakpoint
7241 support, we ask the remote target to do the work; on targets
7242 which don't, we insert a traditional memory breakpoint. */
7243
7244 static int
7245 remote_insert_breakpoint (struct gdbarch *gdbarch,
7246 struct bp_target_info *bp_tgt)
7247 {
7248 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7249 If it succeeds, then set the support to PACKET_ENABLE. If it
7250 fails, and the user has explicitly requested the Z support then
7251 report an error, otherwise, mark it disabled and go on. */
7252
7253 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7254 {
7255 CORE_ADDR addr = bp_tgt->placed_address;
7256 struct remote_state *rs;
7257 char *p;
7258 int bpsize;
7259
7260 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7261
7262 rs = get_remote_state ();
7263 p = rs->buf;
7264
7265 *(p++) = 'Z';
7266 *(p++) = '0';
7267 *(p++) = ',';
7268 addr = (ULONGEST) remote_address_masked (addr);
7269 p += hexnumstr (p, addr);
7270 sprintf (p, ",%d", bpsize);
7271
7272 putpkt (rs->buf);
7273 getpkt (&rs->buf, &rs->buf_size, 0);
7274
7275 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7276 {
7277 case PACKET_ERROR:
7278 return -1;
7279 case PACKET_OK:
7280 bp_tgt->placed_address = addr;
7281 bp_tgt->placed_size = bpsize;
7282 return 0;
7283 case PACKET_UNKNOWN:
7284 break;
7285 }
7286 }
7287
7288 return memory_insert_breakpoint (gdbarch, bp_tgt);
7289 }
7290
7291 static int
7292 remote_remove_breakpoint (struct gdbarch *gdbarch,
7293 struct bp_target_info *bp_tgt)
7294 {
7295 CORE_ADDR addr = bp_tgt->placed_address;
7296 struct remote_state *rs = get_remote_state ();
7297
7298 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7299 {
7300 char *p = rs->buf;
7301
7302 *(p++) = 'z';
7303 *(p++) = '0';
7304 *(p++) = ',';
7305
7306 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7307 p += hexnumstr (p, addr);
7308 sprintf (p, ",%d", bp_tgt->placed_size);
7309
7310 putpkt (rs->buf);
7311 getpkt (&rs->buf, &rs->buf_size, 0);
7312
7313 return (rs->buf[0] == 'E');
7314 }
7315
7316 return memory_remove_breakpoint (gdbarch, bp_tgt);
7317 }
7318
7319 static int
7320 watchpoint_to_Z_packet (int type)
7321 {
7322 switch (type)
7323 {
7324 case hw_write:
7325 return Z_PACKET_WRITE_WP;
7326 break;
7327 case hw_read:
7328 return Z_PACKET_READ_WP;
7329 break;
7330 case hw_access:
7331 return Z_PACKET_ACCESS_WP;
7332 break;
7333 default:
7334 internal_error (__FILE__, __LINE__,
7335 _("hw_bp_to_z: bad watchpoint type %d"), type);
7336 }
7337 }
7338
7339 static int
7340 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
7341 {
7342 struct remote_state *rs = get_remote_state ();
7343 char *p;
7344 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7345
7346 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7347 return 1;
7348
7349 sprintf (rs->buf, "Z%x,", packet);
7350 p = strchr (rs->buf, '\0');
7351 addr = remote_address_masked (addr);
7352 p += hexnumstr (p, (ULONGEST) addr);
7353 sprintf (p, ",%x", len);
7354
7355 putpkt (rs->buf);
7356 getpkt (&rs->buf, &rs->buf_size, 0);
7357
7358 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7359 {
7360 case PACKET_ERROR:
7361 return -1;
7362 case PACKET_UNKNOWN:
7363 return 1;
7364 case PACKET_OK:
7365 return 0;
7366 }
7367 internal_error (__FILE__, __LINE__,
7368 _("remote_insert_watchpoint: reached end of function"));
7369 }
7370
7371
7372 static int
7373 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
7374 {
7375 struct remote_state *rs = get_remote_state ();
7376 char *p;
7377 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7378
7379 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7380 return -1;
7381
7382 sprintf (rs->buf, "z%x,", packet);
7383 p = strchr (rs->buf, '\0');
7384 addr = remote_address_masked (addr);
7385 p += hexnumstr (p, (ULONGEST) addr);
7386 sprintf (p, ",%x", len);
7387 putpkt (rs->buf);
7388 getpkt (&rs->buf, &rs->buf_size, 0);
7389
7390 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7391 {
7392 case PACKET_ERROR:
7393 case PACKET_UNKNOWN:
7394 return -1;
7395 case PACKET_OK:
7396 return 0;
7397 }
7398 internal_error (__FILE__, __LINE__,
7399 _("remote_remove_watchpoint: reached end of function"));
7400 }
7401
7402
7403 int remote_hw_watchpoint_limit = -1;
7404 int remote_hw_breakpoint_limit = -1;
7405
7406 static int
7407 remote_check_watch_resources (int type, int cnt, int ot)
7408 {
7409 if (type == bp_hardware_breakpoint)
7410 {
7411 if (remote_hw_breakpoint_limit == 0)
7412 return 0;
7413 else if (remote_hw_breakpoint_limit < 0)
7414 return 1;
7415 else if (cnt <= remote_hw_breakpoint_limit)
7416 return 1;
7417 }
7418 else
7419 {
7420 if (remote_hw_watchpoint_limit == 0)
7421 return 0;
7422 else if (remote_hw_watchpoint_limit < 0)
7423 return 1;
7424 else if (ot)
7425 return -1;
7426 else if (cnt <= remote_hw_watchpoint_limit)
7427 return 1;
7428 }
7429 return -1;
7430 }
7431
7432 static int
7433 remote_stopped_by_watchpoint (void)
7434 {
7435 return remote_stopped_by_watchpoint_p;
7436 }
7437
7438 static int
7439 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7440 {
7441 int rc = 0;
7442 if (remote_stopped_by_watchpoint ())
7443 {
7444 *addr_p = remote_watch_data_address;
7445 rc = 1;
7446 }
7447
7448 return rc;
7449 }
7450
7451
7452 static int
7453 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7454 struct bp_target_info *bp_tgt)
7455 {
7456 CORE_ADDR addr;
7457 struct remote_state *rs;
7458 char *p;
7459
7460 /* The length field should be set to the size of a breakpoint
7461 instruction, even though we aren't inserting one ourselves. */
7462
7463 gdbarch_remote_breakpoint_from_pc
7464 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7465
7466 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7467 return -1;
7468
7469 rs = get_remote_state ();
7470 p = rs->buf;
7471
7472 *(p++) = 'Z';
7473 *(p++) = '1';
7474 *(p++) = ',';
7475
7476 addr = remote_address_masked (bp_tgt->placed_address);
7477 p += hexnumstr (p, (ULONGEST) addr);
7478 sprintf (p, ",%x", bp_tgt->placed_size);
7479
7480 putpkt (rs->buf);
7481 getpkt (&rs->buf, &rs->buf_size, 0);
7482
7483 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7484 {
7485 case PACKET_ERROR:
7486 case PACKET_UNKNOWN:
7487 return -1;
7488 case PACKET_OK:
7489 return 0;
7490 }
7491 internal_error (__FILE__, __LINE__,
7492 _("remote_insert_hw_breakpoint: reached end of function"));
7493 }
7494
7495
7496 static int
7497 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7498 struct bp_target_info *bp_tgt)
7499 {
7500 CORE_ADDR addr;
7501 struct remote_state *rs = get_remote_state ();
7502 char *p = rs->buf;
7503
7504 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7505 return -1;
7506
7507 *(p++) = 'z';
7508 *(p++) = '1';
7509 *(p++) = ',';
7510
7511 addr = remote_address_masked (bp_tgt->placed_address);
7512 p += hexnumstr (p, (ULONGEST) addr);
7513 sprintf (p, ",%x", bp_tgt->placed_size);
7514
7515 putpkt (rs->buf);
7516 getpkt (&rs->buf, &rs->buf_size, 0);
7517
7518 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7519 {
7520 case PACKET_ERROR:
7521 case PACKET_UNKNOWN:
7522 return -1;
7523 case PACKET_OK:
7524 return 0;
7525 }
7526 internal_error (__FILE__, __LINE__,
7527 _("remote_remove_hw_breakpoint: reached end of function"));
7528 }
7529
7530 /* Table used by the crc32 function to calcuate the checksum. */
7531
7532 static unsigned long crc32_table[256] =
7533 {0, 0};
7534
7535 static unsigned long
7536 crc32 (unsigned char *buf, int len, unsigned int crc)
7537 {
7538 if (!crc32_table[1])
7539 {
7540 /* Initialize the CRC table and the decoding table. */
7541 int i, j;
7542 unsigned int c;
7543
7544 for (i = 0; i < 256; i++)
7545 {
7546 for (c = i << 24, j = 8; j > 0; --j)
7547 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7548 crc32_table[i] = c;
7549 }
7550 }
7551
7552 while (len--)
7553 {
7554 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7555 buf++;
7556 }
7557 return crc;
7558 }
7559
7560 /* compare-sections command
7561
7562 With no arguments, compares each loadable section in the exec bfd
7563 with the same memory range on the target, and reports mismatches.
7564 Useful for verifying the image on the target against the exec file.
7565 Depends on the target understanding the new "qCRC:" request. */
7566
7567 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7568 target method (target verify memory) and generic version of the
7569 actual command. This will allow other high-level code (especially
7570 generic_load()) to make use of this target functionality. */
7571
7572 static void
7573 compare_sections_command (char *args, int from_tty)
7574 {
7575 struct remote_state *rs = get_remote_state ();
7576 asection *s;
7577 unsigned long host_crc, target_crc;
7578 struct cleanup *old_chain;
7579 char *tmp;
7580 char *sectdata;
7581 const char *sectname;
7582 bfd_size_type size;
7583 bfd_vma lma;
7584 int matched = 0;
7585 int mismatched = 0;
7586
7587 if (!exec_bfd)
7588 error (_("command cannot be used without an exec file"));
7589 if (!current_target.to_shortname ||
7590 strcmp (current_target.to_shortname, "remote") != 0)
7591 error (_("command can only be used with remote target"));
7592
7593 for (s = exec_bfd->sections; s; s = s->next)
7594 {
7595 if (!(s->flags & SEC_LOAD))
7596 continue; /* skip non-loadable section */
7597
7598 size = bfd_get_section_size (s);
7599 if (size == 0)
7600 continue; /* skip zero-length section */
7601
7602 sectname = bfd_get_section_name (exec_bfd, s);
7603 if (args && strcmp (args, sectname) != 0)
7604 continue; /* not the section selected by user */
7605
7606 matched = 1; /* do this section */
7607 lma = s->lma;
7608 /* FIXME: assumes lma can fit into long. */
7609 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7610 (long) lma, (long) size);
7611 putpkt (rs->buf);
7612
7613 /* Be clever; compute the host_crc before waiting for target
7614 reply. */
7615 sectdata = xmalloc (size);
7616 old_chain = make_cleanup (xfree, sectdata);
7617 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7618 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7619
7620 getpkt (&rs->buf, &rs->buf_size, 0);
7621 if (rs->buf[0] == 'E')
7622 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7623 paddress (target_gdbarch, lma),
7624 paddress (target_gdbarch, lma + size));
7625 if (rs->buf[0] != 'C')
7626 error (_("remote target does not support this operation"));
7627
7628 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7629 target_crc = target_crc * 16 + fromhex (*tmp);
7630
7631 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7632 paddress (target_gdbarch, lma),
7633 paddress (target_gdbarch, lma + size));
7634 if (host_crc == target_crc)
7635 printf_filtered ("matched.\n");
7636 else
7637 {
7638 printf_filtered ("MIS-MATCHED!\n");
7639 mismatched++;
7640 }
7641
7642 do_cleanups (old_chain);
7643 }
7644 if (mismatched > 0)
7645 warning (_("One or more sections of the remote executable does not match\n\
7646 the loaded file\n"));
7647 if (args && !matched)
7648 printf_filtered (_("No loaded section named '%s'.\n"), args);
7649 }
7650
7651 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7652 into remote target. The number of bytes written to the remote
7653 target is returned, or -1 for error. */
7654
7655 static LONGEST
7656 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7657 const char *annex, const gdb_byte *writebuf,
7658 ULONGEST offset, LONGEST len,
7659 struct packet_config *packet)
7660 {
7661 int i, buf_len;
7662 ULONGEST n;
7663 struct remote_state *rs = get_remote_state ();
7664 int max_size = get_memory_write_packet_size ();
7665
7666 if (packet->support == PACKET_DISABLE)
7667 return -1;
7668
7669 /* Insert header. */
7670 i = snprintf (rs->buf, max_size,
7671 "qXfer:%s:write:%s:%s:",
7672 object_name, annex ? annex : "",
7673 phex_nz (offset, sizeof offset));
7674 max_size -= (i + 1);
7675
7676 /* Escape as much data as fits into rs->buf. */
7677 buf_len = remote_escape_output
7678 (writebuf, len, (rs->buf + i), &max_size, max_size);
7679
7680 if (putpkt_binary (rs->buf, i + buf_len) < 0
7681 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7682 || packet_ok (rs->buf, packet) != PACKET_OK)
7683 return -1;
7684
7685 unpack_varlen_hex (rs->buf, &n);
7686 return n;
7687 }
7688
7689 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7690 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7691 number of bytes read is returned, or 0 for EOF, or -1 for error.
7692 The number of bytes read may be less than LEN without indicating an
7693 EOF. PACKET is checked and updated to indicate whether the remote
7694 target supports this object. */
7695
7696 static LONGEST
7697 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7698 const char *annex,
7699 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7700 struct packet_config *packet)
7701 {
7702 static char *finished_object;
7703 static char *finished_annex;
7704 static ULONGEST finished_offset;
7705
7706 struct remote_state *rs = get_remote_state ();
7707 LONGEST i, n, packet_len;
7708
7709 if (packet->support == PACKET_DISABLE)
7710 return -1;
7711
7712 /* Check whether we've cached an end-of-object packet that matches
7713 this request. */
7714 if (finished_object)
7715 {
7716 if (strcmp (object_name, finished_object) == 0
7717 && strcmp (annex ? annex : "", finished_annex) == 0
7718 && offset == finished_offset)
7719 return 0;
7720
7721 /* Otherwise, we're now reading something different. Discard
7722 the cache. */
7723 xfree (finished_object);
7724 xfree (finished_annex);
7725 finished_object = NULL;
7726 finished_annex = NULL;
7727 }
7728
7729 /* Request only enough to fit in a single packet. The actual data
7730 may not, since we don't know how much of it will need to be escaped;
7731 the target is free to respond with slightly less data. We subtract
7732 five to account for the response type and the protocol frame. */
7733 n = min (get_remote_packet_size () - 5, len);
7734 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7735 object_name, annex ? annex : "",
7736 phex_nz (offset, sizeof offset),
7737 phex_nz (n, sizeof n));
7738 i = putpkt (rs->buf);
7739 if (i < 0)
7740 return -1;
7741
7742 rs->buf[0] = '\0';
7743 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7744 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7745 return -1;
7746
7747 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7748 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7749
7750 /* 'm' means there is (or at least might be) more data after this
7751 batch. That does not make sense unless there's at least one byte
7752 of data in this reply. */
7753 if (rs->buf[0] == 'm' && packet_len == 1)
7754 error (_("Remote qXfer reply contained no data."));
7755
7756 /* Got some data. */
7757 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7758
7759 /* 'l' is an EOF marker, possibly including a final block of data,
7760 or possibly empty. If we have the final block of a non-empty
7761 object, record this fact to bypass a subsequent partial read. */
7762 if (rs->buf[0] == 'l' && offset + i > 0)
7763 {
7764 finished_object = xstrdup (object_name);
7765 finished_annex = xstrdup (annex ? annex : "");
7766 finished_offset = offset + i;
7767 }
7768
7769 return i;
7770 }
7771
7772 static LONGEST
7773 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7774 const char *annex, gdb_byte *readbuf,
7775 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7776 {
7777 struct remote_state *rs;
7778 int i;
7779 char *p2;
7780 char query_type;
7781
7782 set_general_thread (inferior_ptid);
7783
7784 rs = get_remote_state ();
7785
7786 /* Handle memory using the standard memory routines. */
7787 if (object == TARGET_OBJECT_MEMORY)
7788 {
7789 int xfered;
7790 errno = 0;
7791
7792 /* If the remote target is connected but not running, we should
7793 pass this request down to a lower stratum (e.g. the executable
7794 file). */
7795 if (!target_has_execution)
7796 return 0;
7797
7798 if (writebuf != NULL)
7799 xfered = remote_write_bytes (offset, writebuf, len);
7800 else
7801 xfered = remote_read_bytes (offset, readbuf, len);
7802
7803 if (xfered > 0)
7804 return xfered;
7805 else if (xfered == 0 && errno == 0)
7806 return 0;
7807 else
7808 return -1;
7809 }
7810
7811 /* Handle SPU memory using qxfer packets. */
7812 if (object == TARGET_OBJECT_SPU)
7813 {
7814 if (readbuf)
7815 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7816 &remote_protocol_packets
7817 [PACKET_qXfer_spu_read]);
7818 else
7819 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7820 &remote_protocol_packets
7821 [PACKET_qXfer_spu_write]);
7822 }
7823
7824 /* Handle extra signal info using qxfer packets. */
7825 if (object == TARGET_OBJECT_SIGNAL_INFO)
7826 {
7827 if (readbuf)
7828 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7829 &remote_protocol_packets
7830 [PACKET_qXfer_siginfo_read]);
7831 else
7832 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7833 &remote_protocol_packets
7834 [PACKET_qXfer_siginfo_write]);
7835 }
7836
7837 /* Only handle flash writes. */
7838 if (writebuf != NULL)
7839 {
7840 LONGEST xfered;
7841
7842 switch (object)
7843 {
7844 case TARGET_OBJECT_FLASH:
7845 xfered = remote_flash_write (ops, offset, len, writebuf);
7846
7847 if (xfered > 0)
7848 return xfered;
7849 else if (xfered == 0 && errno == 0)
7850 return 0;
7851 else
7852 return -1;
7853
7854 default:
7855 return -1;
7856 }
7857 }
7858
7859 /* Map pre-existing objects onto letters. DO NOT do this for new
7860 objects!!! Instead specify new query packets. */
7861 switch (object)
7862 {
7863 case TARGET_OBJECT_AVR:
7864 query_type = 'R';
7865 break;
7866
7867 case TARGET_OBJECT_AUXV:
7868 gdb_assert (annex == NULL);
7869 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7870 &remote_protocol_packets[PACKET_qXfer_auxv]);
7871
7872 case TARGET_OBJECT_AVAILABLE_FEATURES:
7873 return remote_read_qxfer
7874 (ops, "features", annex, readbuf, offset, len,
7875 &remote_protocol_packets[PACKET_qXfer_features]);
7876
7877 case TARGET_OBJECT_LIBRARIES:
7878 return remote_read_qxfer
7879 (ops, "libraries", annex, readbuf, offset, len,
7880 &remote_protocol_packets[PACKET_qXfer_libraries]);
7881
7882 case TARGET_OBJECT_MEMORY_MAP:
7883 gdb_assert (annex == NULL);
7884 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7885 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7886
7887 case TARGET_OBJECT_OSDATA:
7888 /* Should only get here if we're connected. */
7889 gdb_assert (remote_desc);
7890 return remote_read_qxfer
7891 (ops, "osdata", annex, readbuf, offset, len,
7892 &remote_protocol_packets[PACKET_qXfer_osdata]);
7893
7894 case TARGET_OBJECT_THREADS:
7895 gdb_assert (annex == NULL);
7896 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
7897 &remote_protocol_packets[PACKET_qXfer_threads]);
7898
7899 default:
7900 return -1;
7901 }
7902
7903 /* Note: a zero OFFSET and LEN can be used to query the minimum
7904 buffer size. */
7905 if (offset == 0 && len == 0)
7906 return (get_remote_packet_size ());
7907 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7908 large enough let the caller deal with it. */
7909 if (len < get_remote_packet_size ())
7910 return -1;
7911 len = get_remote_packet_size ();
7912
7913 /* Except for querying the minimum buffer size, target must be open. */
7914 if (!remote_desc)
7915 error (_("remote query is only available after target open"));
7916
7917 gdb_assert (annex != NULL);
7918 gdb_assert (readbuf != NULL);
7919
7920 p2 = rs->buf;
7921 *p2++ = 'q';
7922 *p2++ = query_type;
7923
7924 /* We used one buffer char for the remote protocol q command and
7925 another for the query type. As the remote protocol encapsulation
7926 uses 4 chars plus one extra in case we are debugging
7927 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7928 string. */
7929 i = 0;
7930 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7931 {
7932 /* Bad caller may have sent forbidden characters. */
7933 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7934 *p2++ = annex[i];
7935 i++;
7936 }
7937 *p2 = '\0';
7938 gdb_assert (annex[i] == '\0');
7939
7940 i = putpkt (rs->buf);
7941 if (i < 0)
7942 return i;
7943
7944 getpkt (&rs->buf, &rs->buf_size, 0);
7945 strcpy ((char *) readbuf, rs->buf);
7946
7947 return strlen ((char *) readbuf);
7948 }
7949
7950 static int
7951 remote_search_memory (struct target_ops* ops,
7952 CORE_ADDR start_addr, ULONGEST search_space_len,
7953 const gdb_byte *pattern, ULONGEST pattern_len,
7954 CORE_ADDR *found_addrp)
7955 {
7956 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
7957 struct remote_state *rs = get_remote_state ();
7958 int max_size = get_memory_write_packet_size ();
7959 struct packet_config *packet =
7960 &remote_protocol_packets[PACKET_qSearch_memory];
7961 /* number of packet bytes used to encode the pattern,
7962 this could be more than PATTERN_LEN due to escape characters */
7963 int escaped_pattern_len;
7964 /* amount of pattern that was encodable in the packet */
7965 int used_pattern_len;
7966 int i;
7967 int found;
7968 ULONGEST found_addr;
7969
7970 /* Don't go to the target if we don't have to.
7971 This is done before checking packet->support to avoid the possibility that
7972 a success for this edge case means the facility works in general. */
7973 if (pattern_len > search_space_len)
7974 return 0;
7975 if (pattern_len == 0)
7976 {
7977 *found_addrp = start_addr;
7978 return 1;
7979 }
7980
7981 /* If we already know the packet isn't supported, fall back to the simple
7982 way of searching memory. */
7983
7984 if (packet->support == PACKET_DISABLE)
7985 {
7986 /* Target doesn't provided special support, fall back and use the
7987 standard support (copy memory and do the search here). */
7988 return simple_search_memory (ops, start_addr, search_space_len,
7989 pattern, pattern_len, found_addrp);
7990 }
7991
7992 /* Insert header. */
7993 i = snprintf (rs->buf, max_size,
7994 "qSearch:memory:%s;%s;",
7995 phex_nz (start_addr, addr_size),
7996 phex_nz (search_space_len, sizeof (search_space_len)));
7997 max_size -= (i + 1);
7998
7999 /* Escape as much data as fits into rs->buf. */
8000 escaped_pattern_len =
8001 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8002 &used_pattern_len, max_size);
8003
8004 /* Bail if the pattern is too large. */
8005 if (used_pattern_len != pattern_len)
8006 error ("Pattern is too large to transmit to remote target.");
8007
8008 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8009 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8010 || packet_ok (rs->buf, packet) != PACKET_OK)
8011 {
8012 /* The request may not have worked because the command is not
8013 supported. If so, fall back to the simple way. */
8014 if (packet->support == PACKET_DISABLE)
8015 {
8016 return simple_search_memory (ops, start_addr, search_space_len,
8017 pattern, pattern_len, found_addrp);
8018 }
8019 return -1;
8020 }
8021
8022 if (rs->buf[0] == '0')
8023 found = 0;
8024 else if (rs->buf[0] == '1')
8025 {
8026 found = 1;
8027 if (rs->buf[1] != ',')
8028 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8029 unpack_varlen_hex (rs->buf + 2, &found_addr);
8030 *found_addrp = found_addr;
8031 }
8032 else
8033 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8034
8035 return found;
8036 }
8037
8038 static void
8039 remote_rcmd (char *command,
8040 struct ui_file *outbuf)
8041 {
8042 struct remote_state *rs = get_remote_state ();
8043 char *p = rs->buf;
8044
8045 if (!remote_desc)
8046 error (_("remote rcmd is only available after target open"));
8047
8048 /* Send a NULL command across as an empty command. */
8049 if (command == NULL)
8050 command = "";
8051
8052 /* The query prefix. */
8053 strcpy (rs->buf, "qRcmd,");
8054 p = strchr (rs->buf, '\0');
8055
8056 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8057 error (_("\"monitor\" command ``%s'' is too long."), command);
8058
8059 /* Encode the actual command. */
8060 bin2hex ((gdb_byte *) command, p, 0);
8061
8062 if (putpkt (rs->buf) < 0)
8063 error (_("Communication problem with target."));
8064
8065 /* get/display the response */
8066 while (1)
8067 {
8068 char *buf;
8069
8070 /* XXX - see also remote_get_noisy_reply(). */
8071 rs->buf[0] = '\0';
8072 getpkt (&rs->buf, &rs->buf_size, 0);
8073 buf = rs->buf;
8074 if (buf[0] == '\0')
8075 error (_("Target does not support this command."));
8076 if (buf[0] == 'O' && buf[1] != 'K')
8077 {
8078 remote_console_output (buf + 1); /* 'O' message from stub. */
8079 continue;
8080 }
8081 if (strcmp (buf, "OK") == 0)
8082 break;
8083 if (strlen (buf) == 3 && buf[0] == 'E'
8084 && isdigit (buf[1]) && isdigit (buf[2]))
8085 {
8086 error (_("Protocol error with Rcmd"));
8087 }
8088 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8089 {
8090 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8091 fputc_unfiltered (c, outbuf);
8092 }
8093 break;
8094 }
8095 }
8096
8097 static VEC(mem_region_s) *
8098 remote_memory_map (struct target_ops *ops)
8099 {
8100 VEC(mem_region_s) *result = NULL;
8101 char *text = target_read_stralloc (&current_target,
8102 TARGET_OBJECT_MEMORY_MAP, NULL);
8103
8104 if (text)
8105 {
8106 struct cleanup *back_to = make_cleanup (xfree, text);
8107 result = parse_memory_map (text);
8108 do_cleanups (back_to);
8109 }
8110
8111 return result;
8112 }
8113
8114 static void
8115 packet_command (char *args, int from_tty)
8116 {
8117 struct remote_state *rs = get_remote_state ();
8118
8119 if (!remote_desc)
8120 error (_("command can only be used with remote target"));
8121
8122 if (!args)
8123 error (_("remote-packet command requires packet text as argument"));
8124
8125 puts_filtered ("sending: ");
8126 print_packet (args);
8127 puts_filtered ("\n");
8128 putpkt (args);
8129
8130 getpkt (&rs->buf, &rs->buf_size, 0);
8131 puts_filtered ("received: ");
8132 print_packet (rs->buf);
8133 puts_filtered ("\n");
8134 }
8135
8136 #if 0
8137 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8138
8139 static void display_thread_info (struct gdb_ext_thread_info *info);
8140
8141 static void threadset_test_cmd (char *cmd, int tty);
8142
8143 static void threadalive_test (char *cmd, int tty);
8144
8145 static void threadlist_test_cmd (char *cmd, int tty);
8146
8147 int get_and_display_threadinfo (threadref *ref);
8148
8149 static void threadinfo_test_cmd (char *cmd, int tty);
8150
8151 static int thread_display_step (threadref *ref, void *context);
8152
8153 static void threadlist_update_test_cmd (char *cmd, int tty);
8154
8155 static void init_remote_threadtests (void);
8156
8157 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8158
8159 static void
8160 threadset_test_cmd (char *cmd, int tty)
8161 {
8162 int sample_thread = SAMPLE_THREAD;
8163
8164 printf_filtered (_("Remote threadset test\n"));
8165 set_general_thread (sample_thread);
8166 }
8167
8168
8169 static void
8170 threadalive_test (char *cmd, int tty)
8171 {
8172 int sample_thread = SAMPLE_THREAD;
8173 int pid = ptid_get_pid (inferior_ptid);
8174 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8175
8176 if (remote_thread_alive (ptid))
8177 printf_filtered ("PASS: Thread alive test\n");
8178 else
8179 printf_filtered ("FAIL: Thread alive test\n");
8180 }
8181
8182 void output_threadid (char *title, threadref *ref);
8183
8184 void
8185 output_threadid (char *title, threadref *ref)
8186 {
8187 char hexid[20];
8188
8189 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8190 hexid[16] = 0;
8191 printf_filtered ("%s %s\n", title, (&hexid[0]));
8192 }
8193
8194 static void
8195 threadlist_test_cmd (char *cmd, int tty)
8196 {
8197 int startflag = 1;
8198 threadref nextthread;
8199 int done, result_count;
8200 threadref threadlist[3];
8201
8202 printf_filtered ("Remote Threadlist test\n");
8203 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8204 &result_count, &threadlist[0]))
8205 printf_filtered ("FAIL: threadlist test\n");
8206 else
8207 {
8208 threadref *scan = threadlist;
8209 threadref *limit = scan + result_count;
8210
8211 while (scan < limit)
8212 output_threadid (" thread ", scan++);
8213 }
8214 }
8215
8216 void
8217 display_thread_info (struct gdb_ext_thread_info *info)
8218 {
8219 output_threadid ("Threadid: ", &info->threadid);
8220 printf_filtered ("Name: %s\n ", info->shortname);
8221 printf_filtered ("State: %s\n", info->display);
8222 printf_filtered ("other: %s\n\n", info->more_display);
8223 }
8224
8225 int
8226 get_and_display_threadinfo (threadref *ref)
8227 {
8228 int result;
8229 int set;
8230 struct gdb_ext_thread_info threadinfo;
8231
8232 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8233 | TAG_MOREDISPLAY | TAG_DISPLAY;
8234 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8235 display_thread_info (&threadinfo);
8236 return result;
8237 }
8238
8239 static void
8240 threadinfo_test_cmd (char *cmd, int tty)
8241 {
8242 int athread = SAMPLE_THREAD;
8243 threadref thread;
8244 int set;
8245
8246 int_to_threadref (&thread, athread);
8247 printf_filtered ("Remote Threadinfo test\n");
8248 if (!get_and_display_threadinfo (&thread))
8249 printf_filtered ("FAIL cannot get thread info\n");
8250 }
8251
8252 static int
8253 thread_display_step (threadref *ref, void *context)
8254 {
8255 /* output_threadid(" threadstep ",ref); *//* simple test */
8256 return get_and_display_threadinfo (ref);
8257 }
8258
8259 static void
8260 threadlist_update_test_cmd (char *cmd, int tty)
8261 {
8262 printf_filtered ("Remote Threadlist update test\n");
8263 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8264 }
8265
8266 static void
8267 init_remote_threadtests (void)
8268 {
8269 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8270 Fetch and print the remote list of thread identifiers, one pkt only"));
8271 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8272 _("Fetch and display info about one thread"));
8273 add_com ("tset", class_obscure, threadset_test_cmd,
8274 _("Test setting to a different thread"));
8275 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8276 _("Iterate through updating all remote thread info"));
8277 add_com ("talive", class_obscure, threadalive_test,
8278 _(" Remote thread alive test "));
8279 }
8280
8281 #endif /* 0 */
8282
8283 /* Convert a thread ID to a string. Returns the string in a static
8284 buffer. */
8285
8286 static char *
8287 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8288 {
8289 static char buf[64];
8290 struct remote_state *rs = get_remote_state ();
8291
8292 if (ptid_is_pid (ptid))
8293 {
8294 /* Printing an inferior target id. */
8295
8296 /* When multi-process extensions are off, there's no way in the
8297 remote protocol to know the remote process id, if there's any
8298 at all. There's one exception --- when we're connected with
8299 target extended-remote, and we manually attached to a process
8300 with "attach PID". We don't record anywhere a flag that
8301 allows us to distinguish that case from the case of
8302 connecting with extended-remote and the stub already being
8303 attached to a process, and reporting yes to qAttached, hence
8304 no smart special casing here. */
8305 if (!remote_multi_process_p (rs))
8306 {
8307 xsnprintf (buf, sizeof buf, "Remote target");
8308 return buf;
8309 }
8310
8311 return normal_pid_to_str (ptid);
8312 }
8313 else
8314 {
8315 if (ptid_equal (magic_null_ptid, ptid))
8316 xsnprintf (buf, sizeof buf, "Thread <main>");
8317 else if (remote_multi_process_p (rs))
8318 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8319 ptid_get_pid (ptid), ptid_get_tid (ptid));
8320 else
8321 xsnprintf (buf, sizeof buf, "Thread %ld",
8322 ptid_get_tid (ptid));
8323 return buf;
8324 }
8325 }
8326
8327 /* Get the address of the thread local variable in OBJFILE which is
8328 stored at OFFSET within the thread local storage for thread PTID. */
8329
8330 static CORE_ADDR
8331 remote_get_thread_local_address (struct target_ops *ops,
8332 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8333 {
8334 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8335 {
8336 struct remote_state *rs = get_remote_state ();
8337 char *p = rs->buf;
8338 char *endp = rs->buf + get_remote_packet_size ();
8339 enum packet_result result;
8340
8341 strcpy (p, "qGetTLSAddr:");
8342 p += strlen (p);
8343 p = write_ptid (p, endp, ptid);
8344 *p++ = ',';
8345 p += hexnumstr (p, offset);
8346 *p++ = ',';
8347 p += hexnumstr (p, lm);
8348 *p++ = '\0';
8349
8350 putpkt (rs->buf);
8351 getpkt (&rs->buf, &rs->buf_size, 0);
8352 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8353 if (result == PACKET_OK)
8354 {
8355 ULONGEST result;
8356
8357 unpack_varlen_hex (rs->buf, &result);
8358 return result;
8359 }
8360 else if (result == PACKET_UNKNOWN)
8361 throw_error (TLS_GENERIC_ERROR,
8362 _("Remote target doesn't support qGetTLSAddr packet"));
8363 else
8364 throw_error (TLS_GENERIC_ERROR,
8365 _("Remote target failed to process qGetTLSAddr request"));
8366 }
8367 else
8368 throw_error (TLS_GENERIC_ERROR,
8369 _("TLS not supported or disabled on this target"));
8370 /* Not reached. */
8371 return 0;
8372 }
8373
8374 /* Support for inferring a target description based on the current
8375 architecture and the size of a 'g' packet. While the 'g' packet
8376 can have any size (since optional registers can be left off the
8377 end), some sizes are easily recognizable given knowledge of the
8378 approximate architecture. */
8379
8380 struct remote_g_packet_guess
8381 {
8382 int bytes;
8383 const struct target_desc *tdesc;
8384 };
8385 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8386 DEF_VEC_O(remote_g_packet_guess_s);
8387
8388 struct remote_g_packet_data
8389 {
8390 VEC(remote_g_packet_guess_s) *guesses;
8391 };
8392
8393 static struct gdbarch_data *remote_g_packet_data_handle;
8394
8395 static void *
8396 remote_g_packet_data_init (struct obstack *obstack)
8397 {
8398 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8399 }
8400
8401 void
8402 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8403 const struct target_desc *tdesc)
8404 {
8405 struct remote_g_packet_data *data
8406 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8407 struct remote_g_packet_guess new_guess, *guess;
8408 int ix;
8409
8410 gdb_assert (tdesc != NULL);
8411
8412 for (ix = 0;
8413 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8414 ix++)
8415 if (guess->bytes == bytes)
8416 internal_error (__FILE__, __LINE__,
8417 "Duplicate g packet description added for size %d",
8418 bytes);
8419
8420 new_guess.bytes = bytes;
8421 new_guess.tdesc = tdesc;
8422 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8423 }
8424
8425 /* Return 1 if remote_read_description would do anything on this target
8426 and architecture, 0 otherwise. */
8427
8428 static int
8429 remote_read_description_p (struct target_ops *target)
8430 {
8431 struct remote_g_packet_data *data
8432 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8433
8434 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8435 return 1;
8436
8437 return 0;
8438 }
8439
8440 static const struct target_desc *
8441 remote_read_description (struct target_ops *target)
8442 {
8443 struct remote_g_packet_data *data
8444 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8445
8446 /* Do not try this during initial connection, when we do not know
8447 whether there is a running but stopped thread. */
8448 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8449 return NULL;
8450
8451 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8452 {
8453 struct remote_g_packet_guess *guess;
8454 int ix;
8455 int bytes = send_g_packet ();
8456
8457 for (ix = 0;
8458 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8459 ix++)
8460 if (guess->bytes == bytes)
8461 return guess->tdesc;
8462
8463 /* We discard the g packet. A minor optimization would be to
8464 hold on to it, and fill the register cache once we have selected
8465 an architecture, but it's too tricky to do safely. */
8466 }
8467
8468 return NULL;
8469 }
8470
8471 /* Remote file transfer support. This is host-initiated I/O, not
8472 target-initiated; for target-initiated, see remote-fileio.c. */
8473
8474 /* If *LEFT is at least the length of STRING, copy STRING to
8475 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8476 decrease *LEFT. Otherwise raise an error. */
8477
8478 static void
8479 remote_buffer_add_string (char **buffer, int *left, char *string)
8480 {
8481 int len = strlen (string);
8482
8483 if (len > *left)
8484 error (_("Packet too long for target."));
8485
8486 memcpy (*buffer, string, len);
8487 *buffer += len;
8488 *left -= len;
8489
8490 /* NUL-terminate the buffer as a convenience, if there is
8491 room. */
8492 if (*left)
8493 **buffer = '\0';
8494 }
8495
8496 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8497 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8498 decrease *LEFT. Otherwise raise an error. */
8499
8500 static void
8501 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8502 int len)
8503 {
8504 if (2 * len > *left)
8505 error (_("Packet too long for target."));
8506
8507 bin2hex (bytes, *buffer, len);
8508 *buffer += 2 * len;
8509 *left -= 2 * len;
8510
8511 /* NUL-terminate the buffer as a convenience, if there is
8512 room. */
8513 if (*left)
8514 **buffer = '\0';
8515 }
8516
8517 /* If *LEFT is large enough, convert VALUE to hex and add it to
8518 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8519 decrease *LEFT. Otherwise raise an error. */
8520
8521 static void
8522 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8523 {
8524 int len = hexnumlen (value);
8525
8526 if (len > *left)
8527 error (_("Packet too long for target."));
8528
8529 hexnumstr (*buffer, value);
8530 *buffer += len;
8531 *left -= len;
8532
8533 /* NUL-terminate the buffer as a convenience, if there is
8534 room. */
8535 if (*left)
8536 **buffer = '\0';
8537 }
8538
8539 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8540 value, *REMOTE_ERRNO to the remote error number or zero if none
8541 was included, and *ATTACHMENT to point to the start of the annex
8542 if any. The length of the packet isn't needed here; there may
8543 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8544
8545 Return 0 if the packet could be parsed, -1 if it could not. If
8546 -1 is returned, the other variables may not be initialized. */
8547
8548 static int
8549 remote_hostio_parse_result (char *buffer, int *retcode,
8550 int *remote_errno, char **attachment)
8551 {
8552 char *p, *p2;
8553
8554 *remote_errno = 0;
8555 *attachment = NULL;
8556
8557 if (buffer[0] != 'F')
8558 return -1;
8559
8560 errno = 0;
8561 *retcode = strtol (&buffer[1], &p, 16);
8562 if (errno != 0 || p == &buffer[1])
8563 return -1;
8564
8565 /* Check for ",errno". */
8566 if (*p == ',')
8567 {
8568 errno = 0;
8569 *remote_errno = strtol (p + 1, &p2, 16);
8570 if (errno != 0 || p + 1 == p2)
8571 return -1;
8572 p = p2;
8573 }
8574
8575 /* Check for ";attachment". If there is no attachment, the
8576 packet should end here. */
8577 if (*p == ';')
8578 {
8579 *attachment = p + 1;
8580 return 0;
8581 }
8582 else if (*p == '\0')
8583 return 0;
8584 else
8585 return -1;
8586 }
8587
8588 /* Send a prepared I/O packet to the target and read its response.
8589 The prepared packet is in the global RS->BUF before this function
8590 is called, and the answer is there when we return.
8591
8592 COMMAND_BYTES is the length of the request to send, which may include
8593 binary data. WHICH_PACKET is the packet configuration to check
8594 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8595 is set to the error number and -1 is returned. Otherwise the value
8596 returned by the function is returned.
8597
8598 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8599 attachment is expected; an error will be reported if there's a
8600 mismatch. If one is found, *ATTACHMENT will be set to point into
8601 the packet buffer and *ATTACHMENT_LEN will be set to the
8602 attachment's length. */
8603
8604 static int
8605 remote_hostio_send_command (int command_bytes, int which_packet,
8606 int *remote_errno, char **attachment,
8607 int *attachment_len)
8608 {
8609 struct remote_state *rs = get_remote_state ();
8610 int ret, bytes_read;
8611 char *attachment_tmp;
8612
8613 if (!remote_desc
8614 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8615 {
8616 *remote_errno = FILEIO_ENOSYS;
8617 return -1;
8618 }
8619
8620 putpkt_binary (rs->buf, command_bytes);
8621 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8622
8623 /* If it timed out, something is wrong. Don't try to parse the
8624 buffer. */
8625 if (bytes_read < 0)
8626 {
8627 *remote_errno = FILEIO_EINVAL;
8628 return -1;
8629 }
8630
8631 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8632 {
8633 case PACKET_ERROR:
8634 *remote_errno = FILEIO_EINVAL;
8635 return -1;
8636 case PACKET_UNKNOWN:
8637 *remote_errno = FILEIO_ENOSYS;
8638 return -1;
8639 case PACKET_OK:
8640 break;
8641 }
8642
8643 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8644 &attachment_tmp))
8645 {
8646 *remote_errno = FILEIO_EINVAL;
8647 return -1;
8648 }
8649
8650 /* Make sure we saw an attachment if and only if we expected one. */
8651 if ((attachment_tmp == NULL && attachment != NULL)
8652 || (attachment_tmp != NULL && attachment == NULL))
8653 {
8654 *remote_errno = FILEIO_EINVAL;
8655 return -1;
8656 }
8657
8658 /* If an attachment was found, it must point into the packet buffer;
8659 work out how many bytes there were. */
8660 if (attachment_tmp != NULL)
8661 {
8662 *attachment = attachment_tmp;
8663 *attachment_len = bytes_read - (*attachment - rs->buf);
8664 }
8665
8666 return ret;
8667 }
8668
8669 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8670 remote file descriptor, or -1 if an error occurs (and set
8671 *REMOTE_ERRNO). */
8672
8673 static int
8674 remote_hostio_open (const char *filename, int flags, int mode,
8675 int *remote_errno)
8676 {
8677 struct remote_state *rs = get_remote_state ();
8678 char *p = rs->buf;
8679 int left = get_remote_packet_size () - 1;
8680
8681 remote_buffer_add_string (&p, &left, "vFile:open:");
8682
8683 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8684 strlen (filename));
8685 remote_buffer_add_string (&p, &left, ",");
8686
8687 remote_buffer_add_int (&p, &left, flags);
8688 remote_buffer_add_string (&p, &left, ",");
8689
8690 remote_buffer_add_int (&p, &left, mode);
8691
8692 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8693 remote_errno, NULL, NULL);
8694 }
8695
8696 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8697 Return the number of bytes written, or -1 if an error occurs (and
8698 set *REMOTE_ERRNO). */
8699
8700 static int
8701 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8702 ULONGEST offset, int *remote_errno)
8703 {
8704 struct remote_state *rs = get_remote_state ();
8705 char *p = rs->buf;
8706 int left = get_remote_packet_size ();
8707 int out_len;
8708
8709 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8710
8711 remote_buffer_add_int (&p, &left, fd);
8712 remote_buffer_add_string (&p, &left, ",");
8713
8714 remote_buffer_add_int (&p, &left, offset);
8715 remote_buffer_add_string (&p, &left, ",");
8716
8717 p += remote_escape_output (write_buf, len, p, &out_len,
8718 get_remote_packet_size () - (p - rs->buf));
8719
8720 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8721 remote_errno, NULL, NULL);
8722 }
8723
8724 /* Read up to LEN bytes FD on the remote target into READ_BUF
8725 Return the number of bytes read, or -1 if an error occurs (and
8726 set *REMOTE_ERRNO). */
8727
8728 static int
8729 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8730 ULONGEST offset, int *remote_errno)
8731 {
8732 struct remote_state *rs = get_remote_state ();
8733 char *p = rs->buf;
8734 char *attachment;
8735 int left = get_remote_packet_size ();
8736 int ret, attachment_len;
8737 int read_len;
8738
8739 remote_buffer_add_string (&p, &left, "vFile:pread:");
8740
8741 remote_buffer_add_int (&p, &left, fd);
8742 remote_buffer_add_string (&p, &left, ",");
8743
8744 remote_buffer_add_int (&p, &left, len);
8745 remote_buffer_add_string (&p, &left, ",");
8746
8747 remote_buffer_add_int (&p, &left, offset);
8748
8749 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8750 remote_errno, &attachment,
8751 &attachment_len);
8752
8753 if (ret < 0)
8754 return ret;
8755
8756 read_len = remote_unescape_input (attachment, attachment_len,
8757 read_buf, len);
8758 if (read_len != ret)
8759 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8760
8761 return ret;
8762 }
8763
8764 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8765 (and set *REMOTE_ERRNO). */
8766
8767 static int
8768 remote_hostio_close (int fd, int *remote_errno)
8769 {
8770 struct remote_state *rs = get_remote_state ();
8771 char *p = rs->buf;
8772 int left = get_remote_packet_size () - 1;
8773
8774 remote_buffer_add_string (&p, &left, "vFile:close:");
8775
8776 remote_buffer_add_int (&p, &left, fd);
8777
8778 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8779 remote_errno, NULL, NULL);
8780 }
8781
8782 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8783 occurs (and set *REMOTE_ERRNO). */
8784
8785 static int
8786 remote_hostio_unlink (const char *filename, int *remote_errno)
8787 {
8788 struct remote_state *rs = get_remote_state ();
8789 char *p = rs->buf;
8790 int left = get_remote_packet_size () - 1;
8791
8792 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8793
8794 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8795 strlen (filename));
8796
8797 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8798 remote_errno, NULL, NULL);
8799 }
8800
8801 static int
8802 remote_fileio_errno_to_host (int errnum)
8803 {
8804 switch (errnum)
8805 {
8806 case FILEIO_EPERM:
8807 return EPERM;
8808 case FILEIO_ENOENT:
8809 return ENOENT;
8810 case FILEIO_EINTR:
8811 return EINTR;
8812 case FILEIO_EIO:
8813 return EIO;
8814 case FILEIO_EBADF:
8815 return EBADF;
8816 case FILEIO_EACCES:
8817 return EACCES;
8818 case FILEIO_EFAULT:
8819 return EFAULT;
8820 case FILEIO_EBUSY:
8821 return EBUSY;
8822 case FILEIO_EEXIST:
8823 return EEXIST;
8824 case FILEIO_ENODEV:
8825 return ENODEV;
8826 case FILEIO_ENOTDIR:
8827 return ENOTDIR;
8828 case FILEIO_EISDIR:
8829 return EISDIR;
8830 case FILEIO_EINVAL:
8831 return EINVAL;
8832 case FILEIO_ENFILE:
8833 return ENFILE;
8834 case FILEIO_EMFILE:
8835 return EMFILE;
8836 case FILEIO_EFBIG:
8837 return EFBIG;
8838 case FILEIO_ENOSPC:
8839 return ENOSPC;
8840 case FILEIO_ESPIPE:
8841 return ESPIPE;
8842 case FILEIO_EROFS:
8843 return EROFS;
8844 case FILEIO_ENOSYS:
8845 return ENOSYS;
8846 case FILEIO_ENAMETOOLONG:
8847 return ENAMETOOLONG;
8848 }
8849 return -1;
8850 }
8851
8852 static char *
8853 remote_hostio_error (int errnum)
8854 {
8855 int host_error = remote_fileio_errno_to_host (errnum);
8856
8857 if (host_error == -1)
8858 error (_("Unknown remote I/O error %d"), errnum);
8859 else
8860 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8861 }
8862
8863 static void
8864 remote_hostio_close_cleanup (void *opaque)
8865 {
8866 int fd = *(int *) opaque;
8867 int remote_errno;
8868
8869 remote_hostio_close (fd, &remote_errno);
8870 }
8871
8872
8873 static void *
8874 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8875 {
8876 const char *filename = bfd_get_filename (abfd);
8877 int fd, remote_errno;
8878 int *stream;
8879
8880 gdb_assert (remote_filename_p (filename));
8881
8882 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8883 if (fd == -1)
8884 {
8885 errno = remote_fileio_errno_to_host (remote_errno);
8886 bfd_set_error (bfd_error_system_call);
8887 return NULL;
8888 }
8889
8890 stream = xmalloc (sizeof (int));
8891 *stream = fd;
8892 return stream;
8893 }
8894
8895 static int
8896 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8897 {
8898 int fd = *(int *)stream;
8899 int remote_errno;
8900
8901 xfree (stream);
8902
8903 /* Ignore errors on close; these may happen if the remote
8904 connection was already torn down. */
8905 remote_hostio_close (fd, &remote_errno);
8906
8907 return 1;
8908 }
8909
8910 static file_ptr
8911 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8912 file_ptr nbytes, file_ptr offset)
8913 {
8914 int fd = *(int *)stream;
8915 int remote_errno;
8916 file_ptr pos, bytes;
8917
8918 pos = 0;
8919 while (nbytes > pos)
8920 {
8921 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8922 offset + pos, &remote_errno);
8923 if (bytes == 0)
8924 /* Success, but no bytes, means end-of-file. */
8925 break;
8926 if (bytes == -1)
8927 {
8928 errno = remote_fileio_errno_to_host (remote_errno);
8929 bfd_set_error (bfd_error_system_call);
8930 return -1;
8931 }
8932
8933 pos += bytes;
8934 }
8935
8936 return pos;
8937 }
8938
8939 static int
8940 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8941 {
8942 /* FIXME: We should probably implement remote_hostio_stat. */
8943 sb->st_size = INT_MAX;
8944 return 0;
8945 }
8946
8947 int
8948 remote_filename_p (const char *filename)
8949 {
8950 return strncmp (filename, "remote:", 7) == 0;
8951 }
8952
8953 bfd *
8954 remote_bfd_open (const char *remote_file, const char *target)
8955 {
8956 return bfd_openr_iovec (remote_file, target,
8957 remote_bfd_iovec_open, NULL,
8958 remote_bfd_iovec_pread,
8959 remote_bfd_iovec_close,
8960 remote_bfd_iovec_stat);
8961 }
8962
8963 void
8964 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8965 {
8966 struct cleanup *back_to, *close_cleanup;
8967 int retcode, fd, remote_errno, bytes, io_size;
8968 FILE *file;
8969 gdb_byte *buffer;
8970 int bytes_in_buffer;
8971 int saw_eof;
8972 ULONGEST offset;
8973
8974 if (!remote_desc)
8975 error (_("command can only be used with remote target"));
8976
8977 file = fopen (local_file, "rb");
8978 if (file == NULL)
8979 perror_with_name (local_file);
8980 back_to = make_cleanup_fclose (file);
8981
8982 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8983 | FILEIO_O_TRUNC),
8984 0700, &remote_errno);
8985 if (fd == -1)
8986 remote_hostio_error (remote_errno);
8987
8988 /* Send up to this many bytes at once. They won't all fit in the
8989 remote packet limit, so we'll transfer slightly fewer. */
8990 io_size = get_remote_packet_size ();
8991 buffer = xmalloc (io_size);
8992 make_cleanup (xfree, buffer);
8993
8994 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8995
8996 bytes_in_buffer = 0;
8997 saw_eof = 0;
8998 offset = 0;
8999 while (bytes_in_buffer || !saw_eof)
9000 {
9001 if (!saw_eof)
9002 {
9003 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
9004 file);
9005 if (bytes == 0)
9006 {
9007 if (ferror (file))
9008 error (_("Error reading %s."), local_file);
9009 else
9010 {
9011 /* EOF. Unless there is something still in the
9012 buffer from the last iteration, we are done. */
9013 saw_eof = 1;
9014 if (bytes_in_buffer == 0)
9015 break;
9016 }
9017 }
9018 }
9019 else
9020 bytes = 0;
9021
9022 bytes += bytes_in_buffer;
9023 bytes_in_buffer = 0;
9024
9025 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9026
9027 if (retcode < 0)
9028 remote_hostio_error (remote_errno);
9029 else if (retcode == 0)
9030 error (_("Remote write of %d bytes returned 0!"), bytes);
9031 else if (retcode < bytes)
9032 {
9033 /* Short write. Save the rest of the read data for the next
9034 write. */
9035 bytes_in_buffer = bytes - retcode;
9036 memmove (buffer, buffer + retcode, bytes_in_buffer);
9037 }
9038
9039 offset += retcode;
9040 }
9041
9042 discard_cleanups (close_cleanup);
9043 if (remote_hostio_close (fd, &remote_errno))
9044 remote_hostio_error (remote_errno);
9045
9046 if (from_tty)
9047 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9048 do_cleanups (back_to);
9049 }
9050
9051 void
9052 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9053 {
9054 struct cleanup *back_to, *close_cleanup;
9055 int fd, remote_errno, bytes, io_size;
9056 FILE *file;
9057 gdb_byte *buffer;
9058 ULONGEST offset;
9059
9060 if (!remote_desc)
9061 error (_("command can only be used with remote target"));
9062
9063 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9064 if (fd == -1)
9065 remote_hostio_error (remote_errno);
9066
9067 file = fopen (local_file, "wb");
9068 if (file == NULL)
9069 perror_with_name (local_file);
9070 back_to = make_cleanup_fclose (file);
9071
9072 /* Send up to this many bytes at once. They won't all fit in the
9073 remote packet limit, so we'll transfer slightly fewer. */
9074 io_size = get_remote_packet_size ();
9075 buffer = xmalloc (io_size);
9076 make_cleanup (xfree, buffer);
9077
9078 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9079
9080 offset = 0;
9081 while (1)
9082 {
9083 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9084 if (bytes == 0)
9085 /* Success, but no bytes, means end-of-file. */
9086 break;
9087 if (bytes == -1)
9088 remote_hostio_error (remote_errno);
9089
9090 offset += bytes;
9091
9092 bytes = fwrite (buffer, 1, bytes, file);
9093 if (bytes == 0)
9094 perror_with_name (local_file);
9095 }
9096
9097 discard_cleanups (close_cleanup);
9098 if (remote_hostio_close (fd, &remote_errno))
9099 remote_hostio_error (remote_errno);
9100
9101 if (from_tty)
9102 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9103 do_cleanups (back_to);
9104 }
9105
9106 void
9107 remote_file_delete (const char *remote_file, int from_tty)
9108 {
9109 int retcode, remote_errno;
9110
9111 if (!remote_desc)
9112 error (_("command can only be used with remote target"));
9113
9114 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9115 if (retcode == -1)
9116 remote_hostio_error (remote_errno);
9117
9118 if (from_tty)
9119 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9120 }
9121
9122 static void
9123 remote_put_command (char *args, int from_tty)
9124 {
9125 struct cleanup *back_to;
9126 char **argv;
9127
9128 if (args == NULL)
9129 error_no_arg (_("file to put"));
9130
9131 argv = gdb_buildargv (args);
9132 back_to = make_cleanup_freeargv (argv);
9133 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9134 error (_("Invalid parameters to remote put"));
9135
9136 remote_file_put (argv[0], argv[1], from_tty);
9137
9138 do_cleanups (back_to);
9139 }
9140
9141 static void
9142 remote_get_command (char *args, int from_tty)
9143 {
9144 struct cleanup *back_to;
9145 char **argv;
9146
9147 if (args == NULL)
9148 error_no_arg (_("file to get"));
9149
9150 argv = gdb_buildargv (args);
9151 back_to = make_cleanup_freeargv (argv);
9152 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9153 error (_("Invalid parameters to remote get"));
9154
9155 remote_file_get (argv[0], argv[1], from_tty);
9156
9157 do_cleanups (back_to);
9158 }
9159
9160 static void
9161 remote_delete_command (char *args, int from_tty)
9162 {
9163 struct cleanup *back_to;
9164 char **argv;
9165
9166 if (args == NULL)
9167 error_no_arg (_("file to delete"));
9168
9169 argv = gdb_buildargv (args);
9170 back_to = make_cleanup_freeargv (argv);
9171 if (argv[0] == NULL || argv[1] != NULL)
9172 error (_("Invalid parameters to remote delete"));
9173
9174 remote_file_delete (argv[0], from_tty);
9175
9176 do_cleanups (back_to);
9177 }
9178
9179 static void
9180 remote_command (char *args, int from_tty)
9181 {
9182 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9183 }
9184
9185 static int
9186 remote_can_execute_reverse (void)
9187 {
9188 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9189 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9190 return 1;
9191 else
9192 return 0;
9193 }
9194
9195 static int
9196 remote_supports_non_stop (void)
9197 {
9198 return 1;
9199 }
9200
9201 static int
9202 remote_supports_multi_process (void)
9203 {
9204 struct remote_state *rs = get_remote_state ();
9205 return remote_multi_process_p (rs);
9206 }
9207
9208 int
9209 remote_supports_cond_tracepoints (void)
9210 {
9211 struct remote_state *rs = get_remote_state ();
9212 return rs->cond_tracepoints;
9213 }
9214
9215 int
9216 remote_supports_fast_tracepoints (void)
9217 {
9218 struct remote_state *rs = get_remote_state ();
9219 return rs->fast_tracepoints;
9220 }
9221
9222 static void
9223 remote_trace_init ()
9224 {
9225 putpkt ("QTinit");
9226 remote_get_noisy_reply (&target_buf, &target_buf_size);
9227 if (strcmp (target_buf, "OK"))
9228 error (_("Target does not support this command."));
9229 }
9230
9231 static void free_actions_list (char **actions_list);
9232 static void free_actions_list_cleanup_wrapper (void *);
9233 static void
9234 free_actions_list_cleanup_wrapper (void *al)
9235 {
9236 free_actions_list (al);
9237 }
9238
9239 static void
9240 free_actions_list (char **actions_list)
9241 {
9242 int ndx;
9243
9244 if (actions_list == 0)
9245 return;
9246
9247 for (ndx = 0; actions_list[ndx]; ndx++)
9248 xfree (actions_list[ndx]);
9249
9250 xfree (actions_list);
9251 }
9252
9253 static void
9254 remote_download_tracepoint (struct breakpoint *t)
9255 {
9256 CORE_ADDR tpaddr;
9257 char tmp[40];
9258 char buf[2048];
9259 char **tdp_actions;
9260 char **stepping_actions;
9261 int ndx;
9262 struct cleanup *old_chain = NULL;
9263 struct agent_expr *aexpr;
9264 struct cleanup *aexpr_chain = NULL;
9265 char *pkt;
9266
9267 encode_actions (t, &tdp_actions, &stepping_actions);
9268 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9269 tdp_actions);
9270 (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9271
9272 tpaddr = t->loc->address;
9273 sprintf_vma (tmp, (t->loc ? tpaddr : 0));
9274 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9275 tmp, /* address */
9276 (t->enable_state == bp_enabled ? 'E' : 'D'),
9277 t->step_count, t->pass_count);
9278 /* Fast tracepoints are mostly handled by the target, but we can
9279 tell the target how big of an instruction block should be moved
9280 around. */
9281 if (t->type == bp_fast_tracepoint)
9282 {
9283 /* Only test for support at download time; we may not know
9284 target capabilities at definition time. */
9285 if (remote_supports_fast_tracepoints ())
9286 {
9287 int isize;
9288
9289 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9290 tpaddr, &isize, NULL))
9291 sprintf (buf + strlen (buf), ":F%x", isize);
9292 else
9293 /* If it passed validation at definition but fails now,
9294 something is very wrong. */
9295 internal_error (__FILE__, __LINE__,
9296 "Fast tracepoint not valid during download");
9297 }
9298 else
9299 /* Fast tracepoints are functionally identical to regular
9300 tracepoints, so don't take lack of support as a reason to
9301 give up on the trace run. */
9302 warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9303 }
9304 /* If the tracepoint has a conditional, make it into an agent
9305 expression and append to the definition. */
9306 if (t->loc->cond)
9307 {
9308 /* Only test support at download time, we may not know target
9309 capabilities at definition time. */
9310 if (remote_supports_cond_tracepoints ())
9311 {
9312 aexpr = gen_eval_for_expr (t->loc->address, t->loc->cond);
9313 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9314 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9315 pkt = buf + strlen (buf);
9316 for (ndx = 0; ndx < aexpr->len; ++ndx)
9317 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9318 *pkt = '\0';
9319 do_cleanups (aexpr_chain);
9320 }
9321 else
9322 warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9323 }
9324
9325 if (t->actions || *default_collect)
9326 strcat (buf, "-");
9327 putpkt (buf);
9328 remote_get_noisy_reply (&target_buf, &target_buf_size);
9329 if (strcmp (target_buf, "OK"))
9330 error (_("Target does not support tracepoints."));
9331
9332 if (!t->actions && !*default_collect)
9333 return;
9334
9335 /* do_single_steps (t); */
9336 if (tdp_actions)
9337 {
9338 for (ndx = 0; tdp_actions[ndx]; ndx++)
9339 {
9340 QUIT; /* allow user to bail out with ^C */
9341 sprintf (buf, "QTDP:-%x:%s:%s%c",
9342 t->number, tmp, /* address */
9343 tdp_actions[ndx],
9344 ((tdp_actions[ndx + 1] || stepping_actions)
9345 ? '-' : 0));
9346 putpkt (buf);
9347 remote_get_noisy_reply (&target_buf,
9348 &target_buf_size);
9349 if (strcmp (target_buf, "OK"))
9350 error (_("Error on target while setting tracepoints."));
9351 }
9352 }
9353 if (stepping_actions)
9354 {
9355 for (ndx = 0; stepping_actions[ndx]; ndx++)
9356 {
9357 QUIT; /* allow user to bail out with ^C */
9358 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9359 t->number, tmp, /* address */
9360 ((ndx == 0) ? "S" : ""),
9361 stepping_actions[ndx],
9362 (stepping_actions[ndx + 1] ? "-" : ""));
9363 putpkt (buf);
9364 remote_get_noisy_reply (&target_buf,
9365 &target_buf_size);
9366 if (strcmp (target_buf, "OK"))
9367 error (_("Error on target while setting tracepoints."));
9368 }
9369 }
9370 do_cleanups (old_chain);
9371 return;
9372 }
9373
9374 static void
9375 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9376 {
9377 struct remote_state *rs = get_remote_state ();
9378 char *p;
9379
9380 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9381 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9382 p = rs->buf + strlen (rs->buf);
9383 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9384 error (_("Trace state variable name too long for tsv definition packet"));
9385 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9386 *p++ = '\0';
9387 putpkt (rs->buf);
9388 remote_get_noisy_reply (&target_buf, &target_buf_size);
9389 }
9390
9391 static void
9392 remote_trace_set_readonly_regions ()
9393 {
9394 asection *s;
9395 bfd_size_type size;
9396 bfd_vma lma;
9397 int anysecs = 0;
9398
9399 if (!exec_bfd)
9400 return; /* No information to give. */
9401
9402 strcpy (target_buf, "QTro");
9403 for (s = exec_bfd->sections; s; s = s->next)
9404 {
9405 char tmp1[40], tmp2[40];
9406
9407 if ((s->flags & SEC_LOAD) == 0 ||
9408 /* (s->flags & SEC_CODE) == 0 || */
9409 (s->flags & SEC_READONLY) == 0)
9410 continue;
9411
9412 anysecs = 1;
9413 lma = s->lma;
9414 size = bfd_get_section_size (s);
9415 sprintf_vma (tmp1, lma);
9416 sprintf_vma (tmp2, lma + size);
9417 sprintf (target_buf + strlen (target_buf),
9418 ":%s,%s", tmp1, tmp2);
9419 }
9420 if (anysecs)
9421 {
9422 putpkt (target_buf);
9423 getpkt (&target_buf, &target_buf_size, 0);
9424 }
9425 }
9426
9427 static void
9428 remote_trace_start ()
9429 {
9430 putpkt ("QTStart");
9431 remote_get_noisy_reply (&target_buf, &target_buf_size);
9432 if (strcmp (target_buf, "OK"))
9433 error (_("Bogus reply from target: %s"), target_buf);
9434 }
9435
9436 static int
9437 remote_get_trace_status (struct trace_status *ts)
9438 {
9439 char *p, *p1, *p_temp;
9440 ULONGEST val;
9441 /* FIXME we need to get register block size some other way */
9442 extern int trace_regblock_size;
9443 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9444
9445 putpkt ("qTStatus");
9446 getpkt (&target_buf, &target_buf_size, 0);
9447 /* FIXME should handle more variety of replies */
9448
9449 p = target_buf;
9450
9451 /* If the remote target doesn't do tracing, flag it. */
9452 if (*p == '\0')
9453 return -1;
9454
9455 /* We're working with a live target. */
9456 ts->from_file = 0;
9457
9458 /* Set some defaults. */
9459 ts->running_known = 0;
9460 ts->stop_reason = trace_stop_reason_unknown;
9461 ts->traceframe_count = -1;
9462 ts->buffer_free = 0;
9463
9464 if (*p++ != 'T')
9465 error (_("Bogus trace status reply from target: %s"), target_buf);
9466
9467 parse_trace_status (p, ts);
9468
9469 return ts->running;
9470 }
9471
9472 static void
9473 remote_trace_stop ()
9474 {
9475 putpkt ("QTStop");
9476 remote_get_noisy_reply (&target_buf, &target_buf_size);
9477 if (strcmp (target_buf, "OK"))
9478 error (_("Bogus reply from target: %s"), target_buf);
9479 }
9480
9481 static int
9482 remote_trace_find (enum trace_find_type type, int num,
9483 ULONGEST addr1, ULONGEST addr2,
9484 int *tpp)
9485 {
9486 struct remote_state *rs = get_remote_state ();
9487 char *p, *reply;
9488 int target_frameno = -1, target_tracept = -1;
9489
9490 p = rs->buf;
9491 strcpy (p, "QTFrame:");
9492 p = strchr (p, '\0');
9493 switch (type)
9494 {
9495 case tfind_number:
9496 sprintf (p, "%x", num);
9497 break;
9498 case tfind_pc:
9499 sprintf (p, "pc:%s", phex_nz (addr1, 0));
9500 break;
9501 case tfind_tp:
9502 sprintf (p, "tdp:%x", num);
9503 break;
9504 case tfind_range:
9505 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9506 break;
9507 case tfind_outside:
9508 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9509 break;
9510 default:
9511 error ("Unknown trace find type %d", type);
9512 }
9513
9514 putpkt (rs->buf);
9515 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
9516
9517 while (reply && *reply)
9518 switch (*reply)
9519 {
9520 case 'F':
9521 if ((target_frameno = (int) strtol (++reply, &reply, 16)) == -1)
9522 error (_("Target failed to find requested trace frame."));
9523 break;
9524 case 'T':
9525 if ((target_tracept = (int) strtol (++reply, &reply, 16)) == -1)
9526 error (_("Target failed to find requested trace frame."));
9527 break;
9528 case 'O': /* "OK"? */
9529 if (reply[1] == 'K' && reply[2] == '\0')
9530 reply += 2;
9531 else
9532 error (_("Bogus reply from target: %s"), reply);
9533 break;
9534 default:
9535 error (_("Bogus reply from target: %s"), reply);
9536 }
9537 if (tpp)
9538 *tpp = target_tracept;
9539 return target_frameno;
9540 }
9541
9542 static int
9543 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
9544 {
9545 struct remote_state *rs = get_remote_state ();
9546 char *reply;
9547 ULONGEST uval;
9548
9549 sprintf (rs->buf, "qTV:%x", tsvnum);
9550 putpkt (rs->buf);
9551 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9552 if (reply && *reply)
9553 {
9554 if (*reply == 'V')
9555 {
9556 unpack_varlen_hex (reply + 1, &uval);
9557 *val = (LONGEST) uval;
9558 return 1;
9559 }
9560 }
9561 return 0;
9562 }
9563
9564 static int
9565 remote_save_trace_data (char *filename)
9566 {
9567 struct remote_state *rs = get_remote_state ();
9568 char *p, *reply;
9569
9570 p = rs->buf;
9571 strcpy (p, "QTSave:");
9572 p += strlen (p);
9573 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
9574 error (_("Remote file name too long for trace save packet"));
9575 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
9576 *p++ = '\0';
9577 putpkt (rs->buf);
9578 remote_get_noisy_reply (&target_buf, &target_buf_size);
9579 return 0;
9580 }
9581
9582 /* This is basically a memory transfer, but needs to be its own packet
9583 because we don't know how the target actually organizes its trace
9584 memory, plus we want to be able to ask for as much as possible, but
9585 not be unhappy if we don't get as much as we ask for. */
9586
9587 static LONGEST
9588 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
9589 {
9590 struct remote_state *rs = get_remote_state ();
9591 char *reply;
9592 char *p;
9593 int rslt;
9594
9595 p = rs->buf;
9596 strcpy (p, "qTBuffer:");
9597 p += strlen (p);
9598 p += hexnumstr (p, offset);
9599 *p++ = ',';
9600 p += hexnumstr (p, len);
9601 *p++ = '\0';
9602
9603 putpkt (rs->buf);
9604 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9605 if (reply && *reply)
9606 {
9607 /* 'l' by itself means we're at the end of the buffer and
9608 there is nothing more to get. */
9609 if (*reply == 'l')
9610 return 0;
9611
9612 /* Convert the reply into binary. Limit the number of bytes to
9613 convert according to our passed-in buffer size, rather than
9614 what was returned in the packet; if the target is
9615 unexpectedly generous and gives us a bigger reply than we
9616 asked for, we don't want to crash. */
9617 rslt = hex2bin (target_buf, buf, len);
9618 return rslt;
9619 }
9620
9621 /* Something went wrong, flag as an error. */
9622 return -1;
9623 }
9624
9625 static void
9626 remote_set_disconnected_tracing (int val)
9627 {
9628 struct remote_state *rs = get_remote_state ();
9629
9630 sprintf (rs->buf, "QTDisconnected:%x", val);
9631 putpkt (rs->buf);
9632 remote_get_noisy_reply (&target_buf, &target_buf_size);
9633 if (strcmp (target_buf, "OK"))
9634 error (_("Target does not support this command."));
9635 }
9636
9637 static int
9638 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
9639 {
9640 struct thread_info *info = find_thread_ptid (ptid);
9641 if (info && info->private)
9642 return info->private->core;
9643 return -1;
9644 }
9645
9646 static void
9647 init_remote_ops (void)
9648 {
9649 remote_ops.to_shortname = "remote";
9650 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
9651 remote_ops.to_doc =
9652 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9653 Specify the serial device it is connected to\n\
9654 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
9655 remote_ops.to_open = remote_open;
9656 remote_ops.to_close = remote_close;
9657 remote_ops.to_detach = remote_detach;
9658 remote_ops.to_disconnect = remote_disconnect;
9659 remote_ops.to_resume = remote_resume;
9660 remote_ops.to_wait = remote_wait;
9661 remote_ops.to_fetch_registers = remote_fetch_registers;
9662 remote_ops.to_store_registers = remote_store_registers;
9663 remote_ops.to_prepare_to_store = remote_prepare_to_store;
9664 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
9665 remote_ops.to_files_info = remote_files_info;
9666 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
9667 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
9668 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
9669 remote_ops.to_stopped_data_address = remote_stopped_data_address;
9670 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
9671 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
9672 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
9673 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
9674 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
9675 remote_ops.to_kill = remote_kill;
9676 remote_ops.to_load = generic_load;
9677 remote_ops.to_mourn_inferior = remote_mourn;
9678 remote_ops.to_thread_alive = remote_thread_alive;
9679 remote_ops.to_find_new_threads = remote_threads_info;
9680 remote_ops.to_pid_to_str = remote_pid_to_str;
9681 remote_ops.to_extra_thread_info = remote_threads_extra_info;
9682 remote_ops.to_stop = remote_stop;
9683 remote_ops.to_xfer_partial = remote_xfer_partial;
9684 remote_ops.to_rcmd = remote_rcmd;
9685 remote_ops.to_log_command = serial_log_command;
9686 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
9687 remote_ops.to_stratum = process_stratum;
9688 remote_ops.to_has_all_memory = default_child_has_all_memory;
9689 remote_ops.to_has_memory = default_child_has_memory;
9690 remote_ops.to_has_stack = default_child_has_stack;
9691 remote_ops.to_has_registers = default_child_has_registers;
9692 remote_ops.to_has_execution = default_child_has_execution;
9693 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
9694 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
9695 remote_ops.to_magic = OPS_MAGIC;
9696 remote_ops.to_memory_map = remote_memory_map;
9697 remote_ops.to_flash_erase = remote_flash_erase;
9698 remote_ops.to_flash_done = remote_flash_done;
9699 remote_ops.to_read_description = remote_read_description;
9700 remote_ops.to_search_memory = remote_search_memory;
9701 remote_ops.to_can_async_p = remote_can_async_p;
9702 remote_ops.to_is_async_p = remote_is_async_p;
9703 remote_ops.to_async = remote_async;
9704 remote_ops.to_async_mask = remote_async_mask;
9705 remote_ops.to_terminal_inferior = remote_terminal_inferior;
9706 remote_ops.to_terminal_ours = remote_terminal_ours;
9707 remote_ops.to_supports_non_stop = remote_supports_non_stop;
9708 remote_ops.to_supports_multi_process = remote_supports_multi_process;
9709 remote_ops.to_trace_init = remote_trace_init;
9710 remote_ops.to_download_tracepoint = remote_download_tracepoint;
9711 remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
9712 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
9713 remote_ops.to_trace_start = remote_trace_start;
9714 remote_ops.to_get_trace_status = remote_get_trace_status;
9715 remote_ops.to_trace_stop = remote_trace_stop;
9716 remote_ops.to_trace_find = remote_trace_find;
9717 remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
9718 remote_ops.to_save_trace_data = remote_save_trace_data;
9719 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
9720 remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
9721 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
9722 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
9723 remote_ops.to_core_of_thread = remote_core_of_thread;
9724 }
9725
9726 /* Set up the extended remote vector by making a copy of the standard
9727 remote vector and adding to it. */
9728
9729 static void
9730 init_extended_remote_ops (void)
9731 {
9732 extended_remote_ops = remote_ops;
9733
9734 extended_remote_ops.to_shortname = "extended-remote";
9735 extended_remote_ops.to_longname =
9736 "Extended remote serial target in gdb-specific protocol";
9737 extended_remote_ops.to_doc =
9738 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9739 Specify the serial device it is connected to (e.g. /dev/ttya).";
9740 extended_remote_ops.to_open = extended_remote_open;
9741 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
9742 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
9743 extended_remote_ops.to_detach = extended_remote_detach;
9744 extended_remote_ops.to_attach = extended_remote_attach;
9745 extended_remote_ops.to_kill = extended_remote_kill;
9746 }
9747
9748 static int
9749 remote_can_async_p (void)
9750 {
9751 if (!target_async_permitted)
9752 /* We only enable async when the user specifically asks for it. */
9753 return 0;
9754
9755 /* We're async whenever the serial device is. */
9756 return remote_async_mask_value && serial_can_async_p (remote_desc);
9757 }
9758
9759 static int
9760 remote_is_async_p (void)
9761 {
9762 if (!target_async_permitted)
9763 /* We only enable async when the user specifically asks for it. */
9764 return 0;
9765
9766 /* We're async whenever the serial device is. */
9767 return remote_async_mask_value && serial_is_async_p (remote_desc);
9768 }
9769
9770 /* Pass the SERIAL event on and up to the client. One day this code
9771 will be able to delay notifying the client of an event until the
9772 point where an entire packet has been received. */
9773
9774 static void (*async_client_callback) (enum inferior_event_type event_type,
9775 void *context);
9776 static void *async_client_context;
9777 static serial_event_ftype remote_async_serial_handler;
9778
9779 static void
9780 remote_async_serial_handler (struct serial *scb, void *context)
9781 {
9782 /* Don't propogate error information up to the client. Instead let
9783 the client find out about the error by querying the target. */
9784 async_client_callback (INF_REG_EVENT, async_client_context);
9785 }
9786
9787 static void
9788 remote_async_inferior_event_handler (gdb_client_data data)
9789 {
9790 inferior_event_handler (INF_REG_EVENT, NULL);
9791 }
9792
9793 static void
9794 remote_async_get_pending_events_handler (gdb_client_data data)
9795 {
9796 remote_get_pending_stop_replies ();
9797 }
9798
9799 static void
9800 remote_async (void (*callback) (enum inferior_event_type event_type,
9801 void *context), void *context)
9802 {
9803 if (remote_async_mask_value == 0)
9804 internal_error (__FILE__, __LINE__,
9805 _("Calling remote_async when async is masked"));
9806
9807 if (callback != NULL)
9808 {
9809 serial_async (remote_desc, remote_async_serial_handler, NULL);
9810 async_client_callback = callback;
9811 async_client_context = context;
9812 }
9813 else
9814 serial_async (remote_desc, NULL, NULL);
9815 }
9816
9817 static int
9818 remote_async_mask (int new_mask)
9819 {
9820 int curr_mask = remote_async_mask_value;
9821 remote_async_mask_value = new_mask;
9822 return curr_mask;
9823 }
9824
9825 static void
9826 set_remote_cmd (char *args, int from_tty)
9827 {
9828 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
9829 }
9830
9831 static void
9832 show_remote_cmd (char *args, int from_tty)
9833 {
9834 /* We can't just use cmd_show_list here, because we want to skip
9835 the redundant "show remote Z-packet" and the legacy aliases. */
9836 struct cleanup *showlist_chain;
9837 struct cmd_list_element *list = remote_show_cmdlist;
9838
9839 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
9840 for (; list != NULL; list = list->next)
9841 if (strcmp (list->name, "Z-packet") == 0)
9842 continue;
9843 else if (list->type == not_set_cmd)
9844 /* Alias commands are exactly like the original, except they
9845 don't have the normal type. */
9846 continue;
9847 else
9848 {
9849 struct cleanup *option_chain
9850 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
9851 ui_out_field_string (uiout, "name", list->name);
9852 ui_out_text (uiout, ": ");
9853 if (list->type == show_cmd)
9854 do_setshow_command ((char *) NULL, from_tty, list);
9855 else
9856 cmd_func (list, NULL, from_tty);
9857 /* Close the tuple. */
9858 do_cleanups (option_chain);
9859 }
9860
9861 /* Close the tuple. */
9862 do_cleanups (showlist_chain);
9863 }
9864
9865
9866 /* Function to be called whenever a new objfile (shlib) is detected. */
9867 static void
9868 remote_new_objfile (struct objfile *objfile)
9869 {
9870 if (remote_desc != 0) /* Have a remote connection. */
9871 remote_check_symbols (objfile);
9872 }
9873
9874 /* Pull all the tracepoints defined on the target and create local
9875 data structures representing them. We don't want to create real
9876 tracepoints yet, we don't want to mess up the user's existing
9877 collection. */
9878
9879 static int
9880 remote_upload_tracepoints (struct uploaded_tp **utpp)
9881 {
9882 struct remote_state *rs = get_remote_state ();
9883 char *p;
9884
9885 /* Ask for a first packet of tracepoint definition. */
9886 putpkt ("qTfP");
9887 getpkt (&rs->buf, &rs->buf_size, 0);
9888 p = rs->buf;
9889 while (*p && *p != 'l')
9890 {
9891 parse_tracepoint_definition (p, utpp);
9892 /* Ask for another packet of tracepoint definition. */
9893 putpkt ("qTsP");
9894 getpkt (&rs->buf, &rs->buf_size, 0);
9895 p = rs->buf;
9896 }
9897 return 0;
9898 }
9899
9900 static int
9901 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
9902 {
9903 struct remote_state *rs = get_remote_state ();
9904 char *p;
9905
9906 /* Ask for a first packet of variable definition. */
9907 putpkt ("qTfV");
9908 getpkt (&rs->buf, &rs->buf_size, 0);
9909 p = rs->buf;
9910 while (*p && *p != 'l')
9911 {
9912 parse_tsv_definition (p, utsvp);
9913 /* Ask for another packet of variable definition. */
9914 putpkt ("qTsV");
9915 getpkt (&rs->buf, &rs->buf_size, 0);
9916 p = rs->buf;
9917 }
9918 return 0;
9919 }
9920
9921 void
9922 _initialize_remote (void)
9923 {
9924 struct remote_state *rs;
9925 struct cmd_list_element *cmd;
9926 char *cmd_name;
9927
9928 /* architecture specific data */
9929 remote_gdbarch_data_handle =
9930 gdbarch_data_register_post_init (init_remote_state);
9931 remote_g_packet_data_handle =
9932 gdbarch_data_register_pre_init (remote_g_packet_data_init);
9933
9934 /* Initialize the per-target state. At the moment there is only one
9935 of these, not one per target. Only one target is active at a
9936 time. The default buffer size is unimportant; it will be expanded
9937 whenever a larger buffer is needed. */
9938 rs = get_remote_state_raw ();
9939 rs->buf_size = 400;
9940 rs->buf = xmalloc (rs->buf_size);
9941
9942 init_remote_ops ();
9943 add_target (&remote_ops);
9944
9945 init_extended_remote_ops ();
9946 add_target (&extended_remote_ops);
9947
9948 /* Hook into new objfile notification. */
9949 observer_attach_new_objfile (remote_new_objfile);
9950
9951 /* Set up signal handlers. */
9952 sigint_remote_token =
9953 create_async_signal_handler (async_remote_interrupt, NULL);
9954 sigint_remote_twice_token =
9955 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9956
9957 #if 0
9958 init_remote_threadtests ();
9959 #endif
9960
9961 /* set/show remote ... */
9962
9963 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9964 Remote protocol specific variables\n\
9965 Configure various remote-protocol specific variables such as\n\
9966 the packets being used"),
9967 &remote_set_cmdlist, "set remote ",
9968 0 /* allow-unknown */, &setlist);
9969 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9970 Remote protocol specific variables\n\
9971 Configure various remote-protocol specific variables such as\n\
9972 the packets being used"),
9973 &remote_show_cmdlist, "show remote ",
9974 0 /* allow-unknown */, &showlist);
9975
9976 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9977 Compare section data on target to the exec file.\n\
9978 Argument is a single section name (default: all loaded sections)."),
9979 &cmdlist);
9980
9981 add_cmd ("packet", class_maintenance, packet_command, _("\
9982 Send an arbitrary packet to a remote target.\n\
9983 maintenance packet TEXT\n\
9984 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9985 this command sends the string TEXT to the inferior, and displays the\n\
9986 response packet. GDB supplies the initial `$' character, and the\n\
9987 terminating `#' character and checksum."),
9988 &maintenancelist);
9989
9990 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9991 Set whether to send break if interrupted."), _("\
9992 Show whether to send break if interrupted."), _("\
9993 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9994 set_remotebreak, show_remotebreak,
9995 &setlist, &showlist);
9996 cmd_name = "remotebreak";
9997 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
9998 deprecate_cmd (cmd, "set remote interrupt-sequence");
9999 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10000 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10001 deprecate_cmd (cmd, "show remote interrupt-sequence");
10002
10003 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10004 interrupt_sequence_modes, &interrupt_sequence_mode, _("\
10005 Set interrupt sequence to remote target."), _("\
10006 Show interrupt sequence to remote target."), _("\
10007 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10008 NULL, show_interrupt_sequence,
10009 &remote_set_cmdlist,
10010 &remote_show_cmdlist);
10011
10012 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10013 &interrupt_on_connect, _("\
10014 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10015 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10016 If set, interrupt sequence is sent to remote target."),
10017 NULL, NULL,
10018 &remote_set_cmdlist, &remote_show_cmdlist);
10019
10020 /* Install commands for configuring memory read/write packets. */
10021
10022 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10023 Set the maximum number of bytes per memory write packet (deprecated)."),
10024 &setlist);
10025 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10026 Show the maximum number of bytes per memory write packet (deprecated)."),
10027 &showlist);
10028 add_cmd ("memory-write-packet-size", no_class,
10029 set_memory_write_packet_size, _("\
10030 Set the maximum number of bytes per memory-write packet.\n\
10031 Specify the number of bytes in a packet or 0 (zero) for the\n\
10032 default packet size. The actual limit is further reduced\n\
10033 dependent on the target. Specify ``fixed'' to disable the\n\
10034 further restriction and ``limit'' to enable that restriction."),
10035 &remote_set_cmdlist);
10036 add_cmd ("memory-read-packet-size", no_class,
10037 set_memory_read_packet_size, _("\
10038 Set the maximum number of bytes per memory-read packet.\n\
10039 Specify the number of bytes in a packet or 0 (zero) for the\n\
10040 default packet size. The actual limit is further reduced\n\
10041 dependent on the target. Specify ``fixed'' to disable the\n\
10042 further restriction and ``limit'' to enable that restriction."),
10043 &remote_set_cmdlist);
10044 add_cmd ("memory-write-packet-size", no_class,
10045 show_memory_write_packet_size,
10046 _("Show the maximum number of bytes per memory-write packet."),
10047 &remote_show_cmdlist);
10048 add_cmd ("memory-read-packet-size", no_class,
10049 show_memory_read_packet_size,
10050 _("Show the maximum number of bytes per memory-read packet."),
10051 &remote_show_cmdlist);
10052
10053 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10054 &remote_hw_watchpoint_limit, _("\
10055 Set the maximum number of target hardware watchpoints."), _("\
10056 Show the maximum number of target hardware watchpoints."), _("\
10057 Specify a negative limit for unlimited."),
10058 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
10059 &remote_set_cmdlist, &remote_show_cmdlist);
10060 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10061 &remote_hw_breakpoint_limit, _("\
10062 Set the maximum number of target hardware breakpoints."), _("\
10063 Show the maximum number of target hardware breakpoints."), _("\
10064 Specify a negative limit for unlimited."),
10065 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
10066 &remote_set_cmdlist, &remote_show_cmdlist);
10067
10068 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10069 &remote_address_size, _("\
10070 Set the maximum size of the address (in bits) in a memory packet."), _("\
10071 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10072 NULL,
10073 NULL, /* FIXME: i18n: */
10074 &setlist, &showlist);
10075
10076 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10077 "X", "binary-download", 1);
10078
10079 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10080 "vCont", "verbose-resume", 0);
10081
10082 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10083 "QPassSignals", "pass-signals", 0);
10084
10085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10086 "qSymbol", "symbol-lookup", 0);
10087
10088 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10089 "P", "set-register", 1);
10090
10091 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10092 "p", "fetch-register", 1);
10093
10094 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10095 "Z0", "software-breakpoint", 0);
10096
10097 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10098 "Z1", "hardware-breakpoint", 0);
10099
10100 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10101 "Z2", "write-watchpoint", 0);
10102
10103 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10104 "Z3", "read-watchpoint", 0);
10105
10106 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10107 "Z4", "access-watchpoint", 0);
10108
10109 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10110 "qXfer:auxv:read", "read-aux-vector", 0);
10111
10112 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10113 "qXfer:features:read", "target-features", 0);
10114
10115 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10116 "qXfer:libraries:read", "library-info", 0);
10117
10118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10119 "qXfer:memory-map:read", "memory-map", 0);
10120
10121 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10122 "qXfer:spu:read", "read-spu-object", 0);
10123
10124 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10125 "qXfer:spu:write", "write-spu-object", 0);
10126
10127 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10128 "qXfer:osdata:read", "osdata", 0);
10129
10130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10131 "qXfer:threads:read", "threads", 0);
10132
10133 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10134 "qXfer:siginfo:read", "read-siginfo-object", 0);
10135
10136 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10137 "qXfer:siginfo:write", "write-siginfo-object", 0);
10138
10139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10140 "qGetTLSAddr", "get-thread-local-storage-address",
10141 0);
10142
10143 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10144 "bc", "reverse-continue", 0);
10145
10146 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10147 "bs", "reverse-step", 0);
10148
10149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10150 "qSupported", "supported-packets", 0);
10151
10152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10153 "qSearch:memory", "search-memory", 0);
10154
10155 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10156 "vFile:open", "hostio-open", 0);
10157
10158 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10159 "vFile:pread", "hostio-pread", 0);
10160
10161 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10162 "vFile:pwrite", "hostio-pwrite", 0);
10163
10164 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10165 "vFile:close", "hostio-close", 0);
10166
10167 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10168 "vFile:unlink", "hostio-unlink", 0);
10169
10170 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10171 "vAttach", "attach", 0);
10172
10173 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10174 "vRun", "run", 0);
10175
10176 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10177 "QStartNoAckMode", "noack", 0);
10178
10179 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10180 "vKill", "kill", 0);
10181
10182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10183 "qAttached", "query-attached", 0);
10184
10185 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10186 "ConditionalTracepoints", "conditional-tracepoints", 0);
10187 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10188 "FastTracepoints", "fast-tracepoints", 0);
10189
10190 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10191 Z sub-packet has its own set and show commands, but users may
10192 have sets to this variable in their .gdbinit files (or in their
10193 documentation). */
10194 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10195 &remote_Z_packet_detect, _("\
10196 Set use of remote protocol `Z' packets"), _("\
10197 Show use of remote protocol `Z' packets "), _("\
10198 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10199 packets."),
10200 set_remote_protocol_Z_packet_cmd,
10201 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
10202 &remote_set_cmdlist, &remote_show_cmdlist);
10203
10204 add_prefix_cmd ("remote", class_files, remote_command, _("\
10205 Manipulate files on the remote system\n\
10206 Transfer files to and from the remote target system."),
10207 &remote_cmdlist, "remote ",
10208 0 /* allow-unknown */, &cmdlist);
10209
10210 add_cmd ("put", class_files, remote_put_command,
10211 _("Copy a local file to the remote system."),
10212 &remote_cmdlist);
10213
10214 add_cmd ("get", class_files, remote_get_command,
10215 _("Copy a remote file to the local system."),
10216 &remote_cmdlist);
10217
10218 add_cmd ("delete", class_files, remote_delete_command,
10219 _("Delete a remote file."),
10220 &remote_cmdlist);
10221
10222 remote_exec_file = xstrdup ("");
10223 add_setshow_string_noescape_cmd ("exec-file", class_files,
10224 &remote_exec_file, _("\
10225 Set the remote pathname for \"run\""), _("\
10226 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10227 &remote_set_cmdlist, &remote_show_cmdlist);
10228
10229 /* Eventually initialize fileio. See fileio.c */
10230 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10231
10232 /* Take advantage of the fact that the LWP field is not used, to tag
10233 special ptids with it set to != 0. */
10234 magic_null_ptid = ptid_build (42000, 1, -1);
10235 not_sent_ptid = ptid_build (42000, 1, -2);
10236 any_thread_ptid = ptid_build (42000, 1, 0);
10237
10238 target_buf_size = 2048;
10239 target_buf = xmalloc (target_buf_size);
10240 }