]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Create private_inferior class hierarchy
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->private. */
443 struct private_thread_info
444 {
445 char *extra;
446 char *name;
447 int core;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector *thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 enum gdb_signal last_resume_sig;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed;
477 };
478
479 static void
480 free_private_thread_info (struct private_thread_info *info)
481 {
482 xfree (info->extra);
483 xfree (info->name);
484 delete info->thread_handle;
485 xfree (info);
486 }
487
488 /* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492 static struct remote_state *remote_state;
493
494 static struct remote_state *
495 get_remote_state_raw (void)
496 {
497 return remote_state;
498 }
499
500 /* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503 static struct remote_state *
504 new_remote_state (void)
505 {
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518 }
519
520 /* Description of the remote protocol for a given architecture. */
521
522 struct packet_reg
523 {
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532 };
533
534 struct remote_arch_state
535 {
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554 };
555
556 /* Utility: generate error from an incoming stub packet. */
557 static void
558 trace_error (char *buf)
559 {
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573 }
574
575 /* Utility: wait for reply from stub, while accepting "O" packets. */
576
577 static char *
578 remote_get_noisy_reply ()
579 {
580 struct remote_state *rs = get_remote_state ();
581
582 do /* Loop on reply from remote stub. */
583 {
584 char *buf;
585
586 QUIT; /* Allow user to bail out with ^C. */
587 getpkt (&rs->buf, &rs->buf_size, 0);
588 buf = rs->buf;
589 if (buf[0] == 'E')
590 trace_error (buf);
591 else if (startswith (buf, "qRelocInsn:"))
592 {
593 ULONGEST ul;
594 CORE_ADDR from, to, org_to;
595 const char *p, *pp;
596 int adjusted_size = 0;
597 int relocated = 0;
598
599 p = buf + strlen ("qRelocInsn:");
600 pp = unpack_varlen_hex (p, &ul);
601 if (*pp != ';')
602 error (_("invalid qRelocInsn packet: %s"), buf);
603 from = ul;
604
605 p = pp + 1;
606 unpack_varlen_hex (p, &ul);
607 to = ul;
608
609 org_to = to;
610
611 TRY
612 {
613 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
614 relocated = 1;
615 }
616 CATCH (ex, RETURN_MASK_ALL)
617 {
618 if (ex.error == MEMORY_ERROR)
619 {
620 /* Propagate memory errors silently back to the
621 target. The stub may have limited the range of
622 addresses we can write to, for example. */
623 }
624 else
625 {
626 /* Something unexpectedly bad happened. Be verbose
627 so we can tell what, and propagate the error back
628 to the stub, so it doesn't get stuck waiting for
629 a response. */
630 exception_fprintf (gdb_stderr, ex,
631 _("warning: relocating instruction: "));
632 }
633 putpkt ("E01");
634 }
635 END_CATCH
636
637 if (relocated)
638 {
639 adjusted_size = to - org_to;
640
641 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
642 putpkt (buf);
643 }
644 }
645 else if (buf[0] == 'O' && buf[1] != 'K')
646 remote_console_output (buf + 1); /* 'O' message from stub */
647 else
648 return buf; /* Here's the actual reply. */
649 }
650 while (1);
651 }
652
653 /* Handle for retreving the remote protocol data from gdbarch. */
654 static struct gdbarch_data *remote_gdbarch_data_handle;
655
656 static struct remote_arch_state *
657 get_remote_arch_state (struct gdbarch *gdbarch)
658 {
659 gdb_assert (gdbarch != NULL);
660 return ((struct remote_arch_state *)
661 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
662 }
663
664 /* Fetch the global remote target state. */
665
666 static struct remote_state *
667 get_remote_state (void)
668 {
669 /* Make sure that the remote architecture state has been
670 initialized, because doing so might reallocate rs->buf. Any
671 function which calls getpkt also needs to be mindful of changes
672 to rs->buf, but this call limits the number of places which run
673 into trouble. */
674 get_remote_arch_state (target_gdbarch ());
675
676 return get_remote_state_raw ();
677 }
678
679 /* Cleanup routine for the remote module's pspace data. */
680
681 static void
682 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
683 {
684 char *remote_exec_file = (char *) arg;
685
686 xfree (remote_exec_file);
687 }
688
689 /* Fetch the remote exec-file from the current program space. */
690
691 static const char *
692 get_remote_exec_file (void)
693 {
694 char *remote_exec_file;
695
696 remote_exec_file
697 = (char *) program_space_data (current_program_space,
698 remote_pspace_data);
699 if (remote_exec_file == NULL)
700 return "";
701
702 return remote_exec_file;
703 }
704
705 /* Set the remote exec file for PSPACE. */
706
707 static void
708 set_pspace_remote_exec_file (struct program_space *pspace,
709 char *remote_exec_file)
710 {
711 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
712
713 xfree (old_file);
714 set_program_space_data (pspace, remote_pspace_data,
715 xstrdup (remote_exec_file));
716 }
717
718 /* The "set/show remote exec-file" set command hook. */
719
720 static void
721 set_remote_exec_file (const char *ignored, int from_tty,
722 struct cmd_list_element *c)
723 {
724 gdb_assert (remote_exec_file_var != NULL);
725 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
726 }
727
728 /* The "set/show remote exec-file" show command hook. */
729
730 static void
731 show_remote_exec_file (struct ui_file *file, int from_tty,
732 struct cmd_list_element *cmd, const char *value)
733 {
734 fprintf_filtered (file, "%s\n", remote_exec_file_var);
735 }
736
737 static int
738 compare_pnums (const void *lhs_, const void *rhs_)
739 {
740 const struct packet_reg * const *lhs
741 = (const struct packet_reg * const *) lhs_;
742 const struct packet_reg * const *rhs
743 = (const struct packet_reg * const *) rhs_;
744
745 if ((*lhs)->pnum < (*rhs)->pnum)
746 return -1;
747 else if ((*lhs)->pnum == (*rhs)->pnum)
748 return 0;
749 else
750 return 1;
751 }
752
753 static int
754 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
755 {
756 int regnum, num_remote_regs, offset;
757 struct packet_reg **remote_regs;
758
759 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
760 {
761 struct packet_reg *r = &regs[regnum];
762
763 if (register_size (gdbarch, regnum) == 0)
764 /* Do not try to fetch zero-sized (placeholder) registers. */
765 r->pnum = -1;
766 else
767 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
768
769 r->regnum = regnum;
770 }
771
772 /* Define the g/G packet format as the contents of each register
773 with a remote protocol number, in order of ascending protocol
774 number. */
775
776 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
777 for (num_remote_regs = 0, regnum = 0;
778 regnum < gdbarch_num_regs (gdbarch);
779 regnum++)
780 if (regs[regnum].pnum != -1)
781 remote_regs[num_remote_regs++] = &regs[regnum];
782
783 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
784 compare_pnums);
785
786 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
787 {
788 remote_regs[regnum]->in_g_packet = 1;
789 remote_regs[regnum]->offset = offset;
790 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
791 }
792
793 return offset;
794 }
795
796 /* Given the architecture described by GDBARCH, return the remote
797 protocol register's number and the register's offset in the g/G
798 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
799 If the target does not have a mapping for REGNUM, return false,
800 otherwise, return true. */
801
802 int
803 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
804 int *pnum, int *poffset)
805 {
806 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
807
808 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
809
810 map_regcache_remote_table (gdbarch, regs.data ());
811
812 *pnum = regs[regnum].pnum;
813 *poffset = regs[regnum].offset;
814
815 return *pnum != -1;
816 }
817
818 static void *
819 init_remote_state (struct gdbarch *gdbarch)
820 {
821 struct remote_state *rs = get_remote_state_raw ();
822 struct remote_arch_state *rsa;
823
824 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
825
826 /* Use the architecture to build a regnum<->pnum table, which will be
827 1:1 unless a feature set specifies otherwise. */
828 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
829 gdbarch_num_regs (gdbarch),
830 struct packet_reg);
831
832 /* Record the maximum possible size of the g packet - it may turn out
833 to be smaller. */
834 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
835
836 /* Default maximum number of characters in a packet body. Many
837 remote stubs have a hardwired buffer size of 400 bytes
838 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
839 as the maximum packet-size to ensure that the packet and an extra
840 NUL character can always fit in the buffer. This stops GDB
841 trashing stubs that try to squeeze an extra NUL into what is
842 already a full buffer (As of 1999-12-04 that was most stubs). */
843 rsa->remote_packet_size = 400 - 1;
844
845 /* This one is filled in when a ``g'' packet is received. */
846 rsa->actual_register_packet_size = 0;
847
848 /* Should rsa->sizeof_g_packet needs more space than the
849 default, adjust the size accordingly. Remember that each byte is
850 encoded as two characters. 32 is the overhead for the packet
851 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
852 (``$NN:G...#NN'') is a better guess, the below has been padded a
853 little. */
854 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
855 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
856
857 /* Make sure that the packet buffer is plenty big enough for
858 this architecture. */
859 if (rs->buf_size < rsa->remote_packet_size)
860 {
861 rs->buf_size = 2 * rsa->remote_packet_size;
862 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
863 }
864
865 return rsa;
866 }
867
868 /* Return the current allowed size of a remote packet. This is
869 inferred from the current architecture, and should be used to
870 limit the length of outgoing packets. */
871 static long
872 get_remote_packet_size (void)
873 {
874 struct remote_state *rs = get_remote_state ();
875 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
876
877 if (rs->explicit_packet_size)
878 return rs->explicit_packet_size;
879
880 return rsa->remote_packet_size;
881 }
882
883 static struct packet_reg *
884 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
885 long regnum)
886 {
887 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
888 return NULL;
889 else
890 {
891 struct packet_reg *r = &rsa->regs[regnum];
892
893 gdb_assert (r->regnum == regnum);
894 return r;
895 }
896 }
897
898 static struct packet_reg *
899 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
900 LONGEST pnum)
901 {
902 int i;
903
904 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
905 {
906 struct packet_reg *r = &rsa->regs[i];
907
908 if (r->pnum == pnum)
909 return r;
910 }
911 return NULL;
912 }
913
914 static struct target_ops remote_ops;
915
916 static struct target_ops extended_remote_ops;
917
918 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
919 ``forever'' still use the normal timeout mechanism. This is
920 currently used by the ASYNC code to guarentee that target reads
921 during the initial connect always time-out. Once getpkt has been
922 modified to return a timeout indication and, in turn
923 remote_wait()/wait_for_inferior() have gained a timeout parameter
924 this can go away. */
925 static int wait_forever_enabled_p = 1;
926
927 /* Allow the user to specify what sequence to send to the remote
928 when he requests a program interruption: Although ^C is usually
929 what remote systems expect (this is the default, here), it is
930 sometimes preferable to send a break. On other systems such
931 as the Linux kernel, a break followed by g, which is Magic SysRq g
932 is required in order to interrupt the execution. */
933 const char interrupt_sequence_control_c[] = "Ctrl-C";
934 const char interrupt_sequence_break[] = "BREAK";
935 const char interrupt_sequence_break_g[] = "BREAK-g";
936 static const char *const interrupt_sequence_modes[] =
937 {
938 interrupt_sequence_control_c,
939 interrupt_sequence_break,
940 interrupt_sequence_break_g,
941 NULL
942 };
943 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
944
945 static void
946 show_interrupt_sequence (struct ui_file *file, int from_tty,
947 struct cmd_list_element *c,
948 const char *value)
949 {
950 if (interrupt_sequence_mode == interrupt_sequence_control_c)
951 fprintf_filtered (file,
952 _("Send the ASCII ETX character (Ctrl-c) "
953 "to the remote target to interrupt the "
954 "execution of the program.\n"));
955 else if (interrupt_sequence_mode == interrupt_sequence_break)
956 fprintf_filtered (file,
957 _("send a break signal to the remote target "
958 "to interrupt the execution of the program.\n"));
959 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
960 fprintf_filtered (file,
961 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
962 "the remote target to interrupt the execution "
963 "of Linux kernel.\n"));
964 else
965 internal_error (__FILE__, __LINE__,
966 _("Invalid value for interrupt_sequence_mode: %s."),
967 interrupt_sequence_mode);
968 }
969
970 /* This boolean variable specifies whether interrupt_sequence is sent
971 to the remote target when gdb connects to it.
972 This is mostly needed when you debug the Linux kernel: The Linux kernel
973 expects BREAK g which is Magic SysRq g for connecting gdb. */
974 static int interrupt_on_connect = 0;
975
976 /* This variable is used to implement the "set/show remotebreak" commands.
977 Since these commands are now deprecated in favor of "set/show remote
978 interrupt-sequence", it no longer has any effect on the code. */
979 static int remote_break;
980
981 static void
982 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
983 {
984 if (remote_break)
985 interrupt_sequence_mode = interrupt_sequence_break;
986 else
987 interrupt_sequence_mode = interrupt_sequence_control_c;
988 }
989
990 static void
991 show_remotebreak (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 }
996
997 /* This variable sets the number of bits in an address that are to be
998 sent in a memory ("M" or "m") packet. Normally, after stripping
999 leading zeros, the entire address would be sent. This variable
1000 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1001 initial implementation of remote.c restricted the address sent in
1002 memory packets to ``host::sizeof long'' bytes - (typically 32
1003 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1004 address was never sent. Since fixing this bug may cause a break in
1005 some remote targets this variable is principly provided to
1006 facilitate backward compatibility. */
1007
1008 static unsigned int remote_address_size;
1009
1010 \f
1011 /* User configurable variables for the number of characters in a
1012 memory read/write packet. MIN (rsa->remote_packet_size,
1013 rsa->sizeof_g_packet) is the default. Some targets need smaller
1014 values (fifo overruns, et.al.) and some users need larger values
1015 (speed up transfers). The variables ``preferred_*'' (the user
1016 request), ``current_*'' (what was actually set) and ``forced_*''
1017 (Positive - a soft limit, negative - a hard limit). */
1018
1019 struct memory_packet_config
1020 {
1021 const char *name;
1022 long size;
1023 int fixed_p;
1024 };
1025
1026 /* The default max memory-write-packet-size. The 16k is historical.
1027 (It came from older GDB's using alloca for buffers and the
1028 knowledge (folklore?) that some hosts don't cope very well with
1029 large alloca calls.) */
1030 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1031
1032 /* The minimum remote packet size for memory transfers. Ensures we
1033 can write at least one byte. */
1034 #define MIN_MEMORY_PACKET_SIZE 20
1035
1036 /* Compute the current size of a read/write packet. Since this makes
1037 use of ``actual_register_packet_size'' the computation is dynamic. */
1038
1039 static long
1040 get_memory_packet_size (struct memory_packet_config *config)
1041 {
1042 struct remote_state *rs = get_remote_state ();
1043 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1044
1045 long what_they_get;
1046 if (config->fixed_p)
1047 {
1048 if (config->size <= 0)
1049 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1050 else
1051 what_they_get = config->size;
1052 }
1053 else
1054 {
1055 what_they_get = get_remote_packet_size ();
1056 /* Limit the packet to the size specified by the user. */
1057 if (config->size > 0
1058 && what_they_get > config->size)
1059 what_they_get = config->size;
1060
1061 /* Limit it to the size of the targets ``g'' response unless we have
1062 permission from the stub to use a larger packet size. */
1063 if (rs->explicit_packet_size == 0
1064 && rsa->actual_register_packet_size > 0
1065 && what_they_get > rsa->actual_register_packet_size)
1066 what_they_get = rsa->actual_register_packet_size;
1067 }
1068 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1069 what_they_get = MIN_MEMORY_PACKET_SIZE;
1070
1071 /* Make sure there is room in the global buffer for this packet
1072 (including its trailing NUL byte). */
1073 if (rs->buf_size < what_they_get + 1)
1074 {
1075 rs->buf_size = 2 * what_they_get;
1076 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1077 }
1078
1079 return what_they_get;
1080 }
1081
1082 /* Update the size of a read/write packet. If they user wants
1083 something really big then do a sanity check. */
1084
1085 static void
1086 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1087 {
1088 int fixed_p = config->fixed_p;
1089 long size = config->size;
1090
1091 if (args == NULL)
1092 error (_("Argument required (integer, `fixed' or `limited')."));
1093 else if (strcmp (args, "hard") == 0
1094 || strcmp (args, "fixed") == 0)
1095 fixed_p = 1;
1096 else if (strcmp (args, "soft") == 0
1097 || strcmp (args, "limit") == 0)
1098 fixed_p = 0;
1099 else
1100 {
1101 char *end;
1102
1103 size = strtoul (args, &end, 0);
1104 if (args == end)
1105 error (_("Invalid %s (bad syntax)."), config->name);
1106
1107 /* Instead of explicitly capping the size of a packet to or
1108 disallowing it, the user is allowed to set the size to
1109 something arbitrarily large. */
1110 }
1111
1112 /* So that the query shows the correct value. */
1113 if (size <= 0)
1114 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1115
1116 /* Extra checks? */
1117 if (fixed_p && !config->fixed_p)
1118 {
1119 if (! query (_("The target may not be able to correctly handle a %s\n"
1120 "of %ld bytes. Change the packet size? "),
1121 config->name, size))
1122 error (_("Packet size not changed."));
1123 }
1124 /* Update the config. */
1125 config->fixed_p = fixed_p;
1126 config->size = size;
1127 }
1128
1129 static void
1130 show_memory_packet_size (struct memory_packet_config *config)
1131 {
1132 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1133 if (config->fixed_p)
1134 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1135 get_memory_packet_size (config));
1136 else
1137 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1138 get_memory_packet_size (config));
1139 }
1140
1141 static struct memory_packet_config memory_write_packet_config =
1142 {
1143 "memory-write-packet-size",
1144 };
1145
1146 static void
1147 set_memory_write_packet_size (const char *args, int from_tty)
1148 {
1149 set_memory_packet_size (args, &memory_write_packet_config);
1150 }
1151
1152 static void
1153 show_memory_write_packet_size (const char *args, int from_tty)
1154 {
1155 show_memory_packet_size (&memory_write_packet_config);
1156 }
1157
1158 static long
1159 get_memory_write_packet_size (void)
1160 {
1161 return get_memory_packet_size (&memory_write_packet_config);
1162 }
1163
1164 static struct memory_packet_config memory_read_packet_config =
1165 {
1166 "memory-read-packet-size",
1167 };
1168
1169 static void
1170 set_memory_read_packet_size (const char *args, int from_tty)
1171 {
1172 set_memory_packet_size (args, &memory_read_packet_config);
1173 }
1174
1175 static void
1176 show_memory_read_packet_size (const char *args, int from_tty)
1177 {
1178 show_memory_packet_size (&memory_read_packet_config);
1179 }
1180
1181 static long
1182 get_memory_read_packet_size (void)
1183 {
1184 long size = get_memory_packet_size (&memory_read_packet_config);
1185
1186 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1187 extra buffer size argument before the memory read size can be
1188 increased beyond this. */
1189 if (size > get_remote_packet_size ())
1190 size = get_remote_packet_size ();
1191 return size;
1192 }
1193
1194 \f
1195 /* Generic configuration support for packets the stub optionally
1196 supports. Allows the user to specify the use of the packet as well
1197 as allowing GDB to auto-detect support in the remote stub. */
1198
1199 enum packet_support
1200 {
1201 PACKET_SUPPORT_UNKNOWN = 0,
1202 PACKET_ENABLE,
1203 PACKET_DISABLE
1204 };
1205
1206 struct packet_config
1207 {
1208 const char *name;
1209 const char *title;
1210
1211 /* If auto, GDB auto-detects support for this packet or feature,
1212 either through qSupported, or by trying the packet and looking
1213 at the response. If true, GDB assumes the target supports this
1214 packet. If false, the packet is disabled. Configs that don't
1215 have an associated command always have this set to auto. */
1216 enum auto_boolean detect;
1217
1218 /* Does the target support this packet? */
1219 enum packet_support support;
1220 };
1221
1222 /* Analyze a packet's return value and update the packet config
1223 accordingly. */
1224
1225 enum packet_result
1226 {
1227 PACKET_ERROR,
1228 PACKET_OK,
1229 PACKET_UNKNOWN
1230 };
1231
1232 static enum packet_support packet_config_support (struct packet_config *config);
1233 static enum packet_support packet_support (int packet);
1234
1235 static void
1236 show_packet_config_cmd (struct packet_config *config)
1237 {
1238 const char *support = "internal-error";
1239
1240 switch (packet_config_support (config))
1241 {
1242 case PACKET_ENABLE:
1243 support = "enabled";
1244 break;
1245 case PACKET_DISABLE:
1246 support = "disabled";
1247 break;
1248 case PACKET_SUPPORT_UNKNOWN:
1249 support = "unknown";
1250 break;
1251 }
1252 switch (config->detect)
1253 {
1254 case AUTO_BOOLEAN_AUTO:
1255 printf_filtered (_("Support for the `%s' packet "
1256 "is auto-detected, currently %s.\n"),
1257 config->name, support);
1258 break;
1259 case AUTO_BOOLEAN_TRUE:
1260 case AUTO_BOOLEAN_FALSE:
1261 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1262 config->name, support);
1263 break;
1264 }
1265 }
1266
1267 static void
1268 add_packet_config_cmd (struct packet_config *config, const char *name,
1269 const char *title, int legacy)
1270 {
1271 char *set_doc;
1272 char *show_doc;
1273 char *cmd_name;
1274
1275 config->name = name;
1276 config->title = title;
1277 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1278 name, title);
1279 show_doc = xstrprintf ("Show current use of remote "
1280 "protocol `%s' (%s) packet",
1281 name, title);
1282 /* set/show TITLE-packet {auto,on,off} */
1283 cmd_name = xstrprintf ("%s-packet", title);
1284 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1285 &config->detect, set_doc,
1286 show_doc, NULL, /* help_doc */
1287 NULL,
1288 show_remote_protocol_packet_cmd,
1289 &remote_set_cmdlist, &remote_show_cmdlist);
1290 /* The command code copies the documentation strings. */
1291 xfree (set_doc);
1292 xfree (show_doc);
1293 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1294 if (legacy)
1295 {
1296 char *legacy_name;
1297
1298 legacy_name = xstrprintf ("%s-packet", name);
1299 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1300 &remote_set_cmdlist);
1301 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1302 &remote_show_cmdlist);
1303 }
1304 }
1305
1306 static enum packet_result
1307 packet_check_result (const char *buf)
1308 {
1309 if (buf[0] != '\0')
1310 {
1311 /* The stub recognized the packet request. Check that the
1312 operation succeeded. */
1313 if (buf[0] == 'E'
1314 && isxdigit (buf[1]) && isxdigit (buf[2])
1315 && buf[3] == '\0')
1316 /* "Enn" - definitly an error. */
1317 return PACKET_ERROR;
1318
1319 /* Always treat "E." as an error. This will be used for
1320 more verbose error messages, such as E.memtypes. */
1321 if (buf[0] == 'E' && buf[1] == '.')
1322 return PACKET_ERROR;
1323
1324 /* The packet may or may not be OK. Just assume it is. */
1325 return PACKET_OK;
1326 }
1327 else
1328 /* The stub does not support the packet. */
1329 return PACKET_UNKNOWN;
1330 }
1331
1332 static enum packet_result
1333 packet_ok (const char *buf, struct packet_config *config)
1334 {
1335 enum packet_result result;
1336
1337 if (config->detect != AUTO_BOOLEAN_TRUE
1338 && config->support == PACKET_DISABLE)
1339 internal_error (__FILE__, __LINE__,
1340 _("packet_ok: attempt to use a disabled packet"));
1341
1342 result = packet_check_result (buf);
1343 switch (result)
1344 {
1345 case PACKET_OK:
1346 case PACKET_ERROR:
1347 /* The stub recognized the packet request. */
1348 if (config->support == PACKET_SUPPORT_UNKNOWN)
1349 {
1350 if (remote_debug)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "Packet %s (%s) is supported\n",
1353 config->name, config->title);
1354 config->support = PACKET_ENABLE;
1355 }
1356 break;
1357 case PACKET_UNKNOWN:
1358 /* The stub does not support the packet. */
1359 if (config->detect == AUTO_BOOLEAN_AUTO
1360 && config->support == PACKET_ENABLE)
1361 {
1362 /* If the stub previously indicated that the packet was
1363 supported then there is a protocol error. */
1364 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1365 config->name, config->title);
1366 }
1367 else if (config->detect == AUTO_BOOLEAN_TRUE)
1368 {
1369 /* The user set it wrong. */
1370 error (_("Enabled packet %s (%s) not recognized by stub"),
1371 config->name, config->title);
1372 }
1373
1374 if (remote_debug)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "Packet %s (%s) is NOT supported\n",
1377 config->name, config->title);
1378 config->support = PACKET_DISABLE;
1379 break;
1380 }
1381
1382 return result;
1383 }
1384
1385 enum {
1386 PACKET_vCont = 0,
1387 PACKET_X,
1388 PACKET_qSymbol,
1389 PACKET_P,
1390 PACKET_p,
1391 PACKET_Z0,
1392 PACKET_Z1,
1393 PACKET_Z2,
1394 PACKET_Z3,
1395 PACKET_Z4,
1396 PACKET_vFile_setfs,
1397 PACKET_vFile_open,
1398 PACKET_vFile_pread,
1399 PACKET_vFile_pwrite,
1400 PACKET_vFile_close,
1401 PACKET_vFile_unlink,
1402 PACKET_vFile_readlink,
1403 PACKET_vFile_fstat,
1404 PACKET_qXfer_auxv,
1405 PACKET_qXfer_features,
1406 PACKET_qXfer_exec_file,
1407 PACKET_qXfer_libraries,
1408 PACKET_qXfer_libraries_svr4,
1409 PACKET_qXfer_memory_map,
1410 PACKET_qXfer_spu_read,
1411 PACKET_qXfer_spu_write,
1412 PACKET_qXfer_osdata,
1413 PACKET_qXfer_threads,
1414 PACKET_qXfer_statictrace_read,
1415 PACKET_qXfer_traceframe_info,
1416 PACKET_qXfer_uib,
1417 PACKET_qGetTIBAddr,
1418 PACKET_qGetTLSAddr,
1419 PACKET_qSupported,
1420 PACKET_qTStatus,
1421 PACKET_QPassSignals,
1422 PACKET_QCatchSyscalls,
1423 PACKET_QProgramSignals,
1424 PACKET_QSetWorkingDir,
1425 PACKET_QStartupWithShell,
1426 PACKET_QEnvironmentHexEncoded,
1427 PACKET_QEnvironmentReset,
1428 PACKET_QEnvironmentUnset,
1429 PACKET_qCRC,
1430 PACKET_qSearch_memory,
1431 PACKET_vAttach,
1432 PACKET_vRun,
1433 PACKET_QStartNoAckMode,
1434 PACKET_vKill,
1435 PACKET_qXfer_siginfo_read,
1436 PACKET_qXfer_siginfo_write,
1437 PACKET_qAttached,
1438
1439 /* Support for conditional tracepoints. */
1440 PACKET_ConditionalTracepoints,
1441
1442 /* Support for target-side breakpoint conditions. */
1443 PACKET_ConditionalBreakpoints,
1444
1445 /* Support for target-side breakpoint commands. */
1446 PACKET_BreakpointCommands,
1447
1448 /* Support for fast tracepoints. */
1449 PACKET_FastTracepoints,
1450
1451 /* Support for static tracepoints. */
1452 PACKET_StaticTracepoints,
1453
1454 /* Support for installing tracepoints while a trace experiment is
1455 running. */
1456 PACKET_InstallInTrace,
1457
1458 PACKET_bc,
1459 PACKET_bs,
1460 PACKET_TracepointSource,
1461 PACKET_QAllow,
1462 PACKET_qXfer_fdpic,
1463 PACKET_QDisableRandomization,
1464 PACKET_QAgent,
1465 PACKET_QTBuffer_size,
1466 PACKET_Qbtrace_off,
1467 PACKET_Qbtrace_bts,
1468 PACKET_Qbtrace_pt,
1469 PACKET_qXfer_btrace,
1470
1471 /* Support for the QNonStop packet. */
1472 PACKET_QNonStop,
1473
1474 /* Support for the QThreadEvents packet. */
1475 PACKET_QThreadEvents,
1476
1477 /* Support for multi-process extensions. */
1478 PACKET_multiprocess_feature,
1479
1480 /* Support for enabling and disabling tracepoints while a trace
1481 experiment is running. */
1482 PACKET_EnableDisableTracepoints_feature,
1483
1484 /* Support for collecting strings using the tracenz bytecode. */
1485 PACKET_tracenz_feature,
1486
1487 /* Support for continuing to run a trace experiment while GDB is
1488 disconnected. */
1489 PACKET_DisconnectedTracing_feature,
1490
1491 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1492 PACKET_augmented_libraries_svr4_read_feature,
1493
1494 /* Support for the qXfer:btrace-conf:read packet. */
1495 PACKET_qXfer_btrace_conf,
1496
1497 /* Support for the Qbtrace-conf:bts:size packet. */
1498 PACKET_Qbtrace_conf_bts_size,
1499
1500 /* Support for swbreak+ feature. */
1501 PACKET_swbreak_feature,
1502
1503 /* Support for hwbreak+ feature. */
1504 PACKET_hwbreak_feature,
1505
1506 /* Support for fork events. */
1507 PACKET_fork_event_feature,
1508
1509 /* Support for vfork events. */
1510 PACKET_vfork_event_feature,
1511
1512 /* Support for the Qbtrace-conf:pt:size packet. */
1513 PACKET_Qbtrace_conf_pt_size,
1514
1515 /* Support for exec events. */
1516 PACKET_exec_event_feature,
1517
1518 /* Support for query supported vCont actions. */
1519 PACKET_vContSupported,
1520
1521 /* Support remote CTRL-C. */
1522 PACKET_vCtrlC,
1523
1524 /* Support TARGET_WAITKIND_NO_RESUMED. */
1525 PACKET_no_resumed,
1526
1527 PACKET_MAX
1528 };
1529
1530 static struct packet_config remote_protocol_packets[PACKET_MAX];
1531
1532 /* Returns the packet's corresponding "set remote foo-packet" command
1533 state. See struct packet_config for more details. */
1534
1535 static enum auto_boolean
1536 packet_set_cmd_state (int packet)
1537 {
1538 return remote_protocol_packets[packet].detect;
1539 }
1540
1541 /* Returns whether a given packet or feature is supported. This takes
1542 into account the state of the corresponding "set remote foo-packet"
1543 command, which may be used to bypass auto-detection. */
1544
1545 static enum packet_support
1546 packet_config_support (struct packet_config *config)
1547 {
1548 switch (config->detect)
1549 {
1550 case AUTO_BOOLEAN_TRUE:
1551 return PACKET_ENABLE;
1552 case AUTO_BOOLEAN_FALSE:
1553 return PACKET_DISABLE;
1554 case AUTO_BOOLEAN_AUTO:
1555 return config->support;
1556 default:
1557 gdb_assert_not_reached (_("bad switch"));
1558 }
1559 }
1560
1561 /* Same as packet_config_support, but takes the packet's enum value as
1562 argument. */
1563
1564 static enum packet_support
1565 packet_support (int packet)
1566 {
1567 struct packet_config *config = &remote_protocol_packets[packet];
1568
1569 return packet_config_support (config);
1570 }
1571
1572 static void
1573 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1574 struct cmd_list_element *c,
1575 const char *value)
1576 {
1577 struct packet_config *packet;
1578
1579 for (packet = remote_protocol_packets;
1580 packet < &remote_protocol_packets[PACKET_MAX];
1581 packet++)
1582 {
1583 if (&packet->detect == c->var)
1584 {
1585 show_packet_config_cmd (packet);
1586 return;
1587 }
1588 }
1589 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1590 c->name);
1591 }
1592
1593 /* Should we try one of the 'Z' requests? */
1594
1595 enum Z_packet_type
1596 {
1597 Z_PACKET_SOFTWARE_BP,
1598 Z_PACKET_HARDWARE_BP,
1599 Z_PACKET_WRITE_WP,
1600 Z_PACKET_READ_WP,
1601 Z_PACKET_ACCESS_WP,
1602 NR_Z_PACKET_TYPES
1603 };
1604
1605 /* For compatibility with older distributions. Provide a ``set remote
1606 Z-packet ...'' command that updates all the Z packet types. */
1607
1608 static enum auto_boolean remote_Z_packet_detect;
1609
1610 static void
1611 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1612 struct cmd_list_element *c)
1613 {
1614 int i;
1615
1616 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1617 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1618 }
1619
1620 static void
1621 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1622 struct cmd_list_element *c,
1623 const char *value)
1624 {
1625 int i;
1626
1627 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1628 {
1629 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1630 }
1631 }
1632
1633 /* Returns true if the multi-process extensions are in effect. */
1634
1635 static int
1636 remote_multi_process_p (struct remote_state *rs)
1637 {
1638 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1639 }
1640
1641 /* Returns true if fork events are supported. */
1642
1643 static int
1644 remote_fork_event_p (struct remote_state *rs)
1645 {
1646 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1647 }
1648
1649 /* Returns true if vfork events are supported. */
1650
1651 static int
1652 remote_vfork_event_p (struct remote_state *rs)
1653 {
1654 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1655 }
1656
1657 /* Returns true if exec events are supported. */
1658
1659 static int
1660 remote_exec_event_p (struct remote_state *rs)
1661 {
1662 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1663 }
1664
1665 /* Insert fork catchpoint target routine. If fork events are enabled
1666 then return success, nothing more to do. */
1667
1668 static int
1669 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672
1673 return !remote_fork_event_p (rs);
1674 }
1675
1676 /* Remove fork catchpoint target routine. Nothing to do, just
1677 return success. */
1678
1679 static int
1680 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 return 0;
1683 }
1684
1685 /* Insert vfork catchpoint target routine. If vfork events are enabled
1686 then return success, nothing more to do. */
1687
1688 static int
1689 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1690 {
1691 struct remote_state *rs = get_remote_state ();
1692
1693 return !remote_vfork_event_p (rs);
1694 }
1695
1696 /* Remove vfork catchpoint target routine. Nothing to do, just
1697 return success. */
1698
1699 static int
1700 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 return 0;
1703 }
1704
1705 /* Insert exec catchpoint target routine. If exec events are
1706 enabled, just return success. */
1707
1708 static int
1709 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712
1713 return !remote_exec_event_p (rs);
1714 }
1715
1716 /* Remove exec catchpoint target routine. Nothing to do, just
1717 return success. */
1718
1719 static int
1720 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1721 {
1722 return 0;
1723 }
1724
1725 \f
1726 /* Asynchronous signal handle registered as event loop source for
1727 when we have pending events ready to be passed to the core. */
1728
1729 static struct async_event_handler *remote_async_inferior_event_token;
1730
1731 \f
1732
1733 static ptid_t magic_null_ptid;
1734 static ptid_t not_sent_ptid;
1735 static ptid_t any_thread_ptid;
1736
1737 /* Find out if the stub attached to PID (and hence GDB should offer to
1738 detach instead of killing it when bailing out). */
1739
1740 static int
1741 remote_query_attached (int pid)
1742 {
1743 struct remote_state *rs = get_remote_state ();
1744 size_t size = get_remote_packet_size ();
1745
1746 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1747 return 0;
1748
1749 if (remote_multi_process_p (rs))
1750 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1751 else
1752 xsnprintf (rs->buf, size, "qAttached");
1753
1754 putpkt (rs->buf);
1755 getpkt (&rs->buf, &rs->buf_size, 0);
1756
1757 switch (packet_ok (rs->buf,
1758 &remote_protocol_packets[PACKET_qAttached]))
1759 {
1760 case PACKET_OK:
1761 if (strcmp (rs->buf, "1") == 0)
1762 return 1;
1763 break;
1764 case PACKET_ERROR:
1765 warning (_("Remote failure reply: %s"), rs->buf);
1766 break;
1767 case PACKET_UNKNOWN:
1768 break;
1769 }
1770
1771 return 0;
1772 }
1773
1774 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1775 has been invented by GDB, instead of reported by the target. Since
1776 we can be connected to a remote system before before knowing about
1777 any inferior, mark the target with execution when we find the first
1778 inferior. If ATTACHED is 1, then we had just attached to this
1779 inferior. If it is 0, then we just created this inferior. If it
1780 is -1, then try querying the remote stub to find out if it had
1781 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1782 attempt to open this inferior's executable as the main executable
1783 if no main executable is open already. */
1784
1785 static struct inferior *
1786 remote_add_inferior (int fake_pid_p, int pid, int attached,
1787 int try_open_exec)
1788 {
1789 struct inferior *inf;
1790
1791 /* Check whether this process we're learning about is to be
1792 considered attached, or if is to be considered to have been
1793 spawned by the stub. */
1794 if (attached == -1)
1795 attached = remote_query_attached (pid);
1796
1797 if (gdbarch_has_global_solist (target_gdbarch ()))
1798 {
1799 /* If the target shares code across all inferiors, then every
1800 attach adds a new inferior. */
1801 inf = add_inferior (pid);
1802
1803 /* ... and every inferior is bound to the same program space.
1804 However, each inferior may still have its own address
1805 space. */
1806 inf->aspace = maybe_new_address_space ();
1807 inf->pspace = current_program_space;
1808 }
1809 else
1810 {
1811 /* In the traditional debugging scenario, there's a 1-1 match
1812 between program/address spaces. We simply bind the inferior
1813 to the program space's address space. */
1814 inf = current_inferior ();
1815 inferior_appeared (inf, pid);
1816 }
1817
1818 inf->attach_flag = attached;
1819 inf->fake_pid_p = fake_pid_p;
1820
1821 /* If no main executable is currently open then attempt to
1822 open the file that was executed to create this inferior. */
1823 if (try_open_exec && get_exec_file (0) == NULL)
1824 exec_file_locate_attach (pid, 0, 1);
1825
1826 return inf;
1827 }
1828
1829 static struct private_thread_info *
1830 get_private_info_thread (struct thread_info *info);
1831
1832 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1833 according to RUNNING. */
1834
1835 static void
1836 remote_add_thread (ptid_t ptid, int running, int executing)
1837 {
1838 struct remote_state *rs = get_remote_state ();
1839 struct thread_info *thread;
1840
1841 /* GDB historically didn't pull threads in the initial connection
1842 setup. If the remote target doesn't even have a concept of
1843 threads (e.g., a bare-metal target), even if internally we
1844 consider that a single-threaded target, mentioning a new thread
1845 might be confusing to the user. Be silent then, preserving the
1846 age old behavior. */
1847 if (rs->starting_up)
1848 thread = add_thread_silent (ptid);
1849 else
1850 thread = add_thread (ptid);
1851
1852 get_private_info_thread (thread)->vcont_resumed = executing;
1853 set_executing (ptid, executing);
1854 set_running (ptid, running);
1855 }
1856
1857 /* Come here when we learn about a thread id from the remote target.
1858 It may be the first time we hear about such thread, so take the
1859 opportunity to add it to GDB's thread list. In case this is the
1860 first time we're noticing its corresponding inferior, add it to
1861 GDB's inferior list as well. EXECUTING indicates whether the
1862 thread is (internally) executing or stopped. */
1863
1864 static void
1865 remote_notice_new_inferior (ptid_t currthread, int executing)
1866 {
1867 /* In non-stop mode, we assume new found threads are (externally)
1868 running until proven otherwise with a stop reply. In all-stop,
1869 we can only get here if all threads are stopped. */
1870 int running = target_is_non_stop_p () ? 1 : 0;
1871
1872 /* If this is a new thread, add it to GDB's thread list.
1873 If we leave it up to WFI to do this, bad things will happen. */
1874
1875 if (in_thread_list (currthread) && is_exited (currthread))
1876 {
1877 /* We're seeing an event on a thread id we knew had exited.
1878 This has to be a new thread reusing the old id. Add it. */
1879 remote_add_thread (currthread, running, executing);
1880 return;
1881 }
1882
1883 if (!in_thread_list (currthread))
1884 {
1885 struct inferior *inf = NULL;
1886 int pid = ptid_get_pid (currthread);
1887
1888 if (ptid_is_pid (inferior_ptid)
1889 && pid == ptid_get_pid (inferior_ptid))
1890 {
1891 /* inferior_ptid has no thread member yet. This can happen
1892 with the vAttach -> remote_wait,"TAAthread:" path if the
1893 stub doesn't support qC. This is the first stop reported
1894 after an attach, so this is the main thread. Update the
1895 ptid in the thread list. */
1896 if (in_thread_list (pid_to_ptid (pid)))
1897 thread_change_ptid (inferior_ptid, currthread);
1898 else
1899 {
1900 remote_add_thread (currthread, running, executing);
1901 inferior_ptid = currthread;
1902 }
1903 return;
1904 }
1905
1906 if (ptid_equal (magic_null_ptid, inferior_ptid))
1907 {
1908 /* inferior_ptid is not set yet. This can happen with the
1909 vRun -> remote_wait,"TAAthread:" path if the stub
1910 doesn't support qC. This is the first stop reported
1911 after an attach, so this is the main thread. Update the
1912 ptid in the thread list. */
1913 thread_change_ptid (inferior_ptid, currthread);
1914 return;
1915 }
1916
1917 /* When connecting to a target remote, or to a target
1918 extended-remote which already was debugging an inferior, we
1919 may not know about it yet. Add it before adding its child
1920 thread, so notifications are emitted in a sensible order. */
1921 if (!in_inferior_list (ptid_get_pid (currthread)))
1922 {
1923 struct remote_state *rs = get_remote_state ();
1924 int fake_pid_p = !remote_multi_process_p (rs);
1925
1926 inf = remote_add_inferior (fake_pid_p,
1927 ptid_get_pid (currthread), -1, 1);
1928 }
1929
1930 /* This is really a new thread. Add it. */
1931 remote_add_thread (currthread, running, executing);
1932
1933 /* If we found a new inferior, let the common code do whatever
1934 it needs to with it (e.g., read shared libraries, insert
1935 breakpoints), unless we're just setting up an all-stop
1936 connection. */
1937 if (inf != NULL)
1938 {
1939 struct remote_state *rs = get_remote_state ();
1940
1941 if (!rs->starting_up)
1942 notice_new_inferior (currthread, executing, 0);
1943 }
1944 }
1945 }
1946
1947 /* Return THREAD's private thread data, creating it if necessary. */
1948
1949 static struct private_thread_info *
1950 get_private_info_thread (struct thread_info *thread)
1951 {
1952 gdb_assert (thread != NULL);
1953
1954 if (thread->priv == NULL)
1955 {
1956 struct private_thread_info *priv = XNEW (struct private_thread_info);
1957
1958 thread->private_dtor = free_private_thread_info;
1959 thread->priv = priv;
1960
1961 priv->core = -1;
1962 priv->extra = NULL;
1963 priv->name = NULL;
1964 priv->name = NULL;
1965 priv->last_resume_step = 0;
1966 priv->last_resume_sig = GDB_SIGNAL_0;
1967 priv->vcont_resumed = 0;
1968 priv->thread_handle = nullptr;
1969 }
1970
1971 return thread->priv;
1972 }
1973
1974 /* Return PTID's private thread data, creating it if necessary. */
1975
1976 static struct private_thread_info *
1977 get_private_info_ptid (ptid_t ptid)
1978 {
1979 struct thread_info *info = find_thread_ptid (ptid);
1980
1981 return get_private_info_thread (info);
1982 }
1983
1984 /* Call this function as a result of
1985 1) A halt indication (T packet) containing a thread id
1986 2) A direct query of currthread
1987 3) Successful execution of set thread */
1988
1989 static void
1990 record_currthread (struct remote_state *rs, ptid_t currthread)
1991 {
1992 rs->general_thread = currthread;
1993 }
1994
1995 /* If 'QPassSignals' is supported, tell the remote stub what signals
1996 it can simply pass through to the inferior without reporting. */
1997
1998 static void
1999 remote_pass_signals (struct target_ops *self,
2000 int numsigs, unsigned char *pass_signals)
2001 {
2002 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2003 {
2004 char *pass_packet, *p;
2005 int count = 0, i;
2006 struct remote_state *rs = get_remote_state ();
2007
2008 gdb_assert (numsigs < 256);
2009 for (i = 0; i < numsigs; i++)
2010 {
2011 if (pass_signals[i])
2012 count++;
2013 }
2014 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2015 strcpy (pass_packet, "QPassSignals:");
2016 p = pass_packet + strlen (pass_packet);
2017 for (i = 0; i < numsigs; i++)
2018 {
2019 if (pass_signals[i])
2020 {
2021 if (i >= 16)
2022 *p++ = tohex (i >> 4);
2023 *p++ = tohex (i & 15);
2024 if (count)
2025 *p++ = ';';
2026 else
2027 break;
2028 count--;
2029 }
2030 }
2031 *p = 0;
2032 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2033 {
2034 putpkt (pass_packet);
2035 getpkt (&rs->buf, &rs->buf_size, 0);
2036 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2037 if (rs->last_pass_packet)
2038 xfree (rs->last_pass_packet);
2039 rs->last_pass_packet = pass_packet;
2040 }
2041 else
2042 xfree (pass_packet);
2043 }
2044 }
2045
2046 /* If 'QCatchSyscalls' is supported, tell the remote stub
2047 to report syscalls to GDB. */
2048
2049 static int
2050 remote_set_syscall_catchpoint (struct target_ops *self,
2051 int pid, int needed, int any_count,
2052 int table_size, int *table)
2053 {
2054 const char *catch_packet;
2055 enum packet_result result;
2056 int n_sysno = 0;
2057
2058 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2059 {
2060 /* Not supported. */
2061 return 1;
2062 }
2063
2064 if (needed && !any_count)
2065 {
2066 int i;
2067
2068 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2069 for (i = 0; i < table_size; i++)
2070 {
2071 if (table[i] != 0)
2072 n_sysno++;
2073 }
2074 }
2075
2076 if (remote_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "remote_set_syscall_catchpoint "
2080 "pid %d needed %d any_count %d n_sysno %d\n",
2081 pid, needed, any_count, n_sysno);
2082 }
2083
2084 std::string built_packet;
2085 if (needed)
2086 {
2087 /* Prepare a packet with the sysno list, assuming max 8+1
2088 characters for a sysno. If the resulting packet size is too
2089 big, fallback on the non-selective packet. */
2090 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2091 built_packet.reserve (maxpktsz);
2092 built_packet = "QCatchSyscalls:1";
2093 if (!any_count)
2094 {
2095 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2096 for (int i = 0; i < table_size; i++)
2097 {
2098 if (table[i] != 0)
2099 string_appendf (built_packet, ";%x", i);
2100 }
2101 }
2102 if (built_packet.size () > get_remote_packet_size ())
2103 {
2104 /* catch_packet too big. Fallback to less efficient
2105 non selective mode, with GDB doing the filtering. */
2106 catch_packet = "QCatchSyscalls:1";
2107 }
2108 else
2109 catch_packet = built_packet.c_str ();
2110 }
2111 else
2112 catch_packet = "QCatchSyscalls:0";
2113
2114 struct remote_state *rs = get_remote_state ();
2115
2116 putpkt (catch_packet);
2117 getpkt (&rs->buf, &rs->buf_size, 0);
2118 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2119 if (result == PACKET_OK)
2120 return 0;
2121 else
2122 return -1;
2123 }
2124
2125 /* If 'QProgramSignals' is supported, tell the remote stub what
2126 signals it should pass through to the inferior when detaching. */
2127
2128 static void
2129 remote_program_signals (struct target_ops *self,
2130 int numsigs, unsigned char *signals)
2131 {
2132 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2133 {
2134 char *packet, *p;
2135 int count = 0, i;
2136 struct remote_state *rs = get_remote_state ();
2137
2138 gdb_assert (numsigs < 256);
2139 for (i = 0; i < numsigs; i++)
2140 {
2141 if (signals[i])
2142 count++;
2143 }
2144 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2145 strcpy (packet, "QProgramSignals:");
2146 p = packet + strlen (packet);
2147 for (i = 0; i < numsigs; i++)
2148 {
2149 if (signal_pass_state (i))
2150 {
2151 if (i >= 16)
2152 *p++ = tohex (i >> 4);
2153 *p++ = tohex (i & 15);
2154 if (count)
2155 *p++ = ';';
2156 else
2157 break;
2158 count--;
2159 }
2160 }
2161 *p = 0;
2162 if (!rs->last_program_signals_packet
2163 || strcmp (rs->last_program_signals_packet, packet) != 0)
2164 {
2165 putpkt (packet);
2166 getpkt (&rs->buf, &rs->buf_size, 0);
2167 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2168 xfree (rs->last_program_signals_packet);
2169 rs->last_program_signals_packet = packet;
2170 }
2171 else
2172 xfree (packet);
2173 }
2174 }
2175
2176 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2177 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2178 thread. If GEN is set, set the general thread, if not, then set
2179 the step/continue thread. */
2180 static void
2181 set_thread (ptid_t ptid, int gen)
2182 {
2183 struct remote_state *rs = get_remote_state ();
2184 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2185 char *buf = rs->buf;
2186 char *endbuf = rs->buf + get_remote_packet_size ();
2187
2188 if (ptid_equal (state, ptid))
2189 return;
2190
2191 *buf++ = 'H';
2192 *buf++ = gen ? 'g' : 'c';
2193 if (ptid_equal (ptid, magic_null_ptid))
2194 xsnprintf (buf, endbuf - buf, "0");
2195 else if (ptid_equal (ptid, any_thread_ptid))
2196 xsnprintf (buf, endbuf - buf, "0");
2197 else if (ptid_equal (ptid, minus_one_ptid))
2198 xsnprintf (buf, endbuf - buf, "-1");
2199 else
2200 write_ptid (buf, endbuf, ptid);
2201 putpkt (rs->buf);
2202 getpkt (&rs->buf, &rs->buf_size, 0);
2203 if (gen)
2204 rs->general_thread = ptid;
2205 else
2206 rs->continue_thread = ptid;
2207 }
2208
2209 static void
2210 set_general_thread (ptid_t ptid)
2211 {
2212 set_thread (ptid, 1);
2213 }
2214
2215 static void
2216 set_continue_thread (ptid_t ptid)
2217 {
2218 set_thread (ptid, 0);
2219 }
2220
2221 /* Change the remote current process. Which thread within the process
2222 ends up selected isn't important, as long as it is the same process
2223 as what INFERIOR_PTID points to.
2224
2225 This comes from that fact that there is no explicit notion of
2226 "selected process" in the protocol. The selected process for
2227 general operations is the process the selected general thread
2228 belongs to. */
2229
2230 static void
2231 set_general_process (void)
2232 {
2233 struct remote_state *rs = get_remote_state ();
2234
2235 /* If the remote can't handle multiple processes, don't bother. */
2236 if (!remote_multi_process_p (rs))
2237 return;
2238
2239 /* We only need to change the remote current thread if it's pointing
2240 at some other process. */
2241 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2242 set_general_thread (inferior_ptid);
2243 }
2244
2245 \f
2246 /* Return nonzero if this is the main thread that we made up ourselves
2247 to model non-threaded targets as single-threaded. */
2248
2249 static int
2250 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2251 {
2252 if (ptid_equal (ptid, magic_null_ptid))
2253 /* The main thread is always alive. */
2254 return 1;
2255
2256 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2257 /* The main thread is always alive. This can happen after a
2258 vAttach, if the remote side doesn't support
2259 multi-threading. */
2260 return 1;
2261
2262 return 0;
2263 }
2264
2265 /* Return nonzero if the thread PTID is still alive on the remote
2266 system. */
2267
2268 static int
2269 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2270 {
2271 struct remote_state *rs = get_remote_state ();
2272 char *p, *endp;
2273
2274 /* Check if this is a thread that we made up ourselves to model
2275 non-threaded targets as single-threaded. */
2276 if (remote_thread_always_alive (ops, ptid))
2277 return 1;
2278
2279 p = rs->buf;
2280 endp = rs->buf + get_remote_packet_size ();
2281
2282 *p++ = 'T';
2283 write_ptid (p, endp, ptid);
2284
2285 putpkt (rs->buf);
2286 getpkt (&rs->buf, &rs->buf_size, 0);
2287 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2288 }
2289
2290 /* Return a pointer to a thread name if we know it and NULL otherwise.
2291 The thread_info object owns the memory for the name. */
2292
2293 static const char *
2294 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2295 {
2296 if (info->priv != NULL)
2297 return info->priv->name;
2298
2299 return NULL;
2300 }
2301
2302 /* About these extended threadlist and threadinfo packets. They are
2303 variable length packets but, the fields within them are often fixed
2304 length. They are redundent enough to send over UDP as is the
2305 remote protocol in general. There is a matching unit test module
2306 in libstub. */
2307
2308 /* WARNING: This threadref data structure comes from the remote O.S.,
2309 libstub protocol encoding, and remote.c. It is not particularly
2310 changable. */
2311
2312 /* Right now, the internal structure is int. We want it to be bigger.
2313 Plan to fix this. */
2314
2315 typedef int gdb_threadref; /* Internal GDB thread reference. */
2316
2317 /* gdb_ext_thread_info is an internal GDB data structure which is
2318 equivalent to the reply of the remote threadinfo packet. */
2319
2320 struct gdb_ext_thread_info
2321 {
2322 threadref threadid; /* External form of thread reference. */
2323 int active; /* Has state interesting to GDB?
2324 regs, stack. */
2325 char display[256]; /* Brief state display, name,
2326 blocked/suspended. */
2327 char shortname[32]; /* To be used to name threads. */
2328 char more_display[256]; /* Long info, statistics, queue depth,
2329 whatever. */
2330 };
2331
2332 /* The volume of remote transfers can be limited by submitting
2333 a mask containing bits specifying the desired information.
2334 Use a union of these values as the 'selection' parameter to
2335 get_thread_info. FIXME: Make these TAG names more thread specific. */
2336
2337 #define TAG_THREADID 1
2338 #define TAG_EXISTS 2
2339 #define TAG_DISPLAY 4
2340 #define TAG_THREADNAME 8
2341 #define TAG_MOREDISPLAY 16
2342
2343 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2344
2345 static char *unpack_nibble (char *buf, int *val);
2346
2347 static char *unpack_byte (char *buf, int *value);
2348
2349 static char *pack_int (char *buf, int value);
2350
2351 static char *unpack_int (char *buf, int *value);
2352
2353 static char *unpack_string (char *src, char *dest, int length);
2354
2355 static char *pack_threadid (char *pkt, threadref *id);
2356
2357 static char *unpack_threadid (char *inbuf, threadref *id);
2358
2359 void int_to_threadref (threadref *id, int value);
2360
2361 static int threadref_to_int (threadref *ref);
2362
2363 static void copy_threadref (threadref *dest, threadref *src);
2364
2365 static int threadmatch (threadref *dest, threadref *src);
2366
2367 static char *pack_threadinfo_request (char *pkt, int mode,
2368 threadref *id);
2369
2370 static int remote_unpack_thread_info_response (char *pkt,
2371 threadref *expectedref,
2372 struct gdb_ext_thread_info
2373 *info);
2374
2375
2376 static int remote_get_threadinfo (threadref *threadid,
2377 int fieldset, /*TAG mask */
2378 struct gdb_ext_thread_info *info);
2379
2380 static char *pack_threadlist_request (char *pkt, int startflag,
2381 int threadcount,
2382 threadref *nextthread);
2383
2384 static int parse_threadlist_response (char *pkt,
2385 int result_limit,
2386 threadref *original_echo,
2387 threadref *resultlist,
2388 int *doneflag);
2389
2390 static int remote_get_threadlist (int startflag,
2391 threadref *nextthread,
2392 int result_limit,
2393 int *done,
2394 int *result_count,
2395 threadref *threadlist);
2396
2397 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2398
2399 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2400 void *context, int looplimit);
2401
2402 static int remote_newthread_step (threadref *ref, void *context);
2403
2404
2405 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2406 buffer we're allowed to write to. Returns
2407 BUF+CHARACTERS_WRITTEN. */
2408
2409 static char *
2410 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2411 {
2412 int pid, tid;
2413 struct remote_state *rs = get_remote_state ();
2414
2415 if (remote_multi_process_p (rs))
2416 {
2417 pid = ptid_get_pid (ptid);
2418 if (pid < 0)
2419 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2420 else
2421 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2422 }
2423 tid = ptid_get_lwp (ptid);
2424 if (tid < 0)
2425 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2426 else
2427 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2428
2429 return buf;
2430 }
2431
2432 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2433 last parsed char. Returns null_ptid if no thread id is found, and
2434 throws an error if the thread id has an invalid format. */
2435
2436 static ptid_t
2437 read_ptid (const char *buf, const char **obuf)
2438 {
2439 const char *p = buf;
2440 const char *pp;
2441 ULONGEST pid = 0, tid = 0;
2442
2443 if (*p == 'p')
2444 {
2445 /* Multi-process ptid. */
2446 pp = unpack_varlen_hex (p + 1, &pid);
2447 if (*pp != '.')
2448 error (_("invalid remote ptid: %s"), p);
2449
2450 p = pp;
2451 pp = unpack_varlen_hex (p + 1, &tid);
2452 if (obuf)
2453 *obuf = pp;
2454 return ptid_build (pid, tid, 0);
2455 }
2456
2457 /* No multi-process. Just a tid. */
2458 pp = unpack_varlen_hex (p, &tid);
2459
2460 /* Return null_ptid when no thread id is found. */
2461 if (p == pp)
2462 {
2463 if (obuf)
2464 *obuf = pp;
2465 return null_ptid;
2466 }
2467
2468 /* Since the stub is not sending a process id, then default to
2469 what's in inferior_ptid, unless it's null at this point. If so,
2470 then since there's no way to know the pid of the reported
2471 threads, use the magic number. */
2472 if (ptid_equal (inferior_ptid, null_ptid))
2473 pid = ptid_get_pid (magic_null_ptid);
2474 else
2475 pid = ptid_get_pid (inferior_ptid);
2476
2477 if (obuf)
2478 *obuf = pp;
2479 return ptid_build (pid, tid, 0);
2480 }
2481
2482 static int
2483 stubhex (int ch)
2484 {
2485 if (ch >= 'a' && ch <= 'f')
2486 return ch - 'a' + 10;
2487 if (ch >= '0' && ch <= '9')
2488 return ch - '0';
2489 if (ch >= 'A' && ch <= 'F')
2490 return ch - 'A' + 10;
2491 return -1;
2492 }
2493
2494 static int
2495 stub_unpack_int (char *buff, int fieldlength)
2496 {
2497 int nibble;
2498 int retval = 0;
2499
2500 while (fieldlength)
2501 {
2502 nibble = stubhex (*buff++);
2503 retval |= nibble;
2504 fieldlength--;
2505 if (fieldlength)
2506 retval = retval << 4;
2507 }
2508 return retval;
2509 }
2510
2511 static char *
2512 unpack_nibble (char *buf, int *val)
2513 {
2514 *val = fromhex (*buf++);
2515 return buf;
2516 }
2517
2518 static char *
2519 unpack_byte (char *buf, int *value)
2520 {
2521 *value = stub_unpack_int (buf, 2);
2522 return buf + 2;
2523 }
2524
2525 static char *
2526 pack_int (char *buf, int value)
2527 {
2528 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2529 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2530 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2531 buf = pack_hex_byte (buf, (value & 0xff));
2532 return buf;
2533 }
2534
2535 static char *
2536 unpack_int (char *buf, int *value)
2537 {
2538 *value = stub_unpack_int (buf, 8);
2539 return buf + 8;
2540 }
2541
2542 #if 0 /* Currently unused, uncomment when needed. */
2543 static char *pack_string (char *pkt, char *string);
2544
2545 static char *
2546 pack_string (char *pkt, char *string)
2547 {
2548 char ch;
2549 int len;
2550
2551 len = strlen (string);
2552 if (len > 200)
2553 len = 200; /* Bigger than most GDB packets, junk??? */
2554 pkt = pack_hex_byte (pkt, len);
2555 while (len-- > 0)
2556 {
2557 ch = *string++;
2558 if ((ch == '\0') || (ch == '#'))
2559 ch = '*'; /* Protect encapsulation. */
2560 *pkt++ = ch;
2561 }
2562 return pkt;
2563 }
2564 #endif /* 0 (unused) */
2565
2566 static char *
2567 unpack_string (char *src, char *dest, int length)
2568 {
2569 while (length--)
2570 *dest++ = *src++;
2571 *dest = '\0';
2572 return src;
2573 }
2574
2575 static char *
2576 pack_threadid (char *pkt, threadref *id)
2577 {
2578 char *limit;
2579 unsigned char *altid;
2580
2581 altid = (unsigned char *) id;
2582 limit = pkt + BUF_THREAD_ID_SIZE;
2583 while (pkt < limit)
2584 pkt = pack_hex_byte (pkt, *altid++);
2585 return pkt;
2586 }
2587
2588
2589 static char *
2590 unpack_threadid (char *inbuf, threadref *id)
2591 {
2592 char *altref;
2593 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2594 int x, y;
2595
2596 altref = (char *) id;
2597
2598 while (inbuf < limit)
2599 {
2600 x = stubhex (*inbuf++);
2601 y = stubhex (*inbuf++);
2602 *altref++ = (x << 4) | y;
2603 }
2604 return inbuf;
2605 }
2606
2607 /* Externally, threadrefs are 64 bits but internally, they are still
2608 ints. This is due to a mismatch of specifications. We would like
2609 to use 64bit thread references internally. This is an adapter
2610 function. */
2611
2612 void
2613 int_to_threadref (threadref *id, int value)
2614 {
2615 unsigned char *scan;
2616
2617 scan = (unsigned char *) id;
2618 {
2619 int i = 4;
2620 while (i--)
2621 *scan++ = 0;
2622 }
2623 *scan++ = (value >> 24) & 0xff;
2624 *scan++ = (value >> 16) & 0xff;
2625 *scan++ = (value >> 8) & 0xff;
2626 *scan++ = (value & 0xff);
2627 }
2628
2629 static int
2630 threadref_to_int (threadref *ref)
2631 {
2632 int i, value = 0;
2633 unsigned char *scan;
2634
2635 scan = *ref;
2636 scan += 4;
2637 i = 4;
2638 while (i-- > 0)
2639 value = (value << 8) | ((*scan++) & 0xff);
2640 return value;
2641 }
2642
2643 static void
2644 copy_threadref (threadref *dest, threadref *src)
2645 {
2646 int i;
2647 unsigned char *csrc, *cdest;
2648
2649 csrc = (unsigned char *) src;
2650 cdest = (unsigned char *) dest;
2651 i = 8;
2652 while (i--)
2653 *cdest++ = *csrc++;
2654 }
2655
2656 static int
2657 threadmatch (threadref *dest, threadref *src)
2658 {
2659 /* Things are broken right now, so just assume we got a match. */
2660 #if 0
2661 unsigned char *srcp, *destp;
2662 int i, result;
2663 srcp = (char *) src;
2664 destp = (char *) dest;
2665
2666 result = 1;
2667 while (i-- > 0)
2668 result &= (*srcp++ == *destp++) ? 1 : 0;
2669 return result;
2670 #endif
2671 return 1;
2672 }
2673
2674 /*
2675 threadid:1, # always request threadid
2676 context_exists:2,
2677 display:4,
2678 unique_name:8,
2679 more_display:16
2680 */
2681
2682 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2683
2684 static char *
2685 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2686 {
2687 *pkt++ = 'q'; /* Info Query */
2688 *pkt++ = 'P'; /* process or thread info */
2689 pkt = pack_int (pkt, mode); /* mode */
2690 pkt = pack_threadid (pkt, id); /* threadid */
2691 *pkt = '\0'; /* terminate */
2692 return pkt;
2693 }
2694
2695 /* These values tag the fields in a thread info response packet. */
2696 /* Tagging the fields allows us to request specific fields and to
2697 add more fields as time goes by. */
2698
2699 #define TAG_THREADID 1 /* Echo the thread identifier. */
2700 #define TAG_EXISTS 2 /* Is this process defined enough to
2701 fetch registers and its stack? */
2702 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2703 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2704 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2705 the process. */
2706
2707 static int
2708 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2709 struct gdb_ext_thread_info *info)
2710 {
2711 struct remote_state *rs = get_remote_state ();
2712 int mask, length;
2713 int tag;
2714 threadref ref;
2715 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2716 int retval = 1;
2717
2718 /* info->threadid = 0; FIXME: implement zero_threadref. */
2719 info->active = 0;
2720 info->display[0] = '\0';
2721 info->shortname[0] = '\0';
2722 info->more_display[0] = '\0';
2723
2724 /* Assume the characters indicating the packet type have been
2725 stripped. */
2726 pkt = unpack_int (pkt, &mask); /* arg mask */
2727 pkt = unpack_threadid (pkt, &ref);
2728
2729 if (mask == 0)
2730 warning (_("Incomplete response to threadinfo request."));
2731 if (!threadmatch (&ref, expectedref))
2732 { /* This is an answer to a different request. */
2733 warning (_("ERROR RMT Thread info mismatch."));
2734 return 0;
2735 }
2736 copy_threadref (&info->threadid, &ref);
2737
2738 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2739
2740 /* Packets are terminated with nulls. */
2741 while ((pkt < limit) && mask && *pkt)
2742 {
2743 pkt = unpack_int (pkt, &tag); /* tag */
2744 pkt = unpack_byte (pkt, &length); /* length */
2745 if (!(tag & mask)) /* Tags out of synch with mask. */
2746 {
2747 warning (_("ERROR RMT: threadinfo tag mismatch."));
2748 retval = 0;
2749 break;
2750 }
2751 if (tag == TAG_THREADID)
2752 {
2753 if (length != 16)
2754 {
2755 warning (_("ERROR RMT: length of threadid is not 16."));
2756 retval = 0;
2757 break;
2758 }
2759 pkt = unpack_threadid (pkt, &ref);
2760 mask = mask & ~TAG_THREADID;
2761 continue;
2762 }
2763 if (tag == TAG_EXISTS)
2764 {
2765 info->active = stub_unpack_int (pkt, length);
2766 pkt += length;
2767 mask = mask & ~(TAG_EXISTS);
2768 if (length > 8)
2769 {
2770 warning (_("ERROR RMT: 'exists' length too long."));
2771 retval = 0;
2772 break;
2773 }
2774 continue;
2775 }
2776 if (tag == TAG_THREADNAME)
2777 {
2778 pkt = unpack_string (pkt, &info->shortname[0], length);
2779 mask = mask & ~TAG_THREADNAME;
2780 continue;
2781 }
2782 if (tag == TAG_DISPLAY)
2783 {
2784 pkt = unpack_string (pkt, &info->display[0], length);
2785 mask = mask & ~TAG_DISPLAY;
2786 continue;
2787 }
2788 if (tag == TAG_MOREDISPLAY)
2789 {
2790 pkt = unpack_string (pkt, &info->more_display[0], length);
2791 mask = mask & ~TAG_MOREDISPLAY;
2792 continue;
2793 }
2794 warning (_("ERROR RMT: unknown thread info tag."));
2795 break; /* Not a tag we know about. */
2796 }
2797 return retval;
2798 }
2799
2800 static int
2801 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2802 struct gdb_ext_thread_info *info)
2803 {
2804 struct remote_state *rs = get_remote_state ();
2805 int result;
2806
2807 pack_threadinfo_request (rs->buf, fieldset, threadid);
2808 putpkt (rs->buf);
2809 getpkt (&rs->buf, &rs->buf_size, 0);
2810
2811 if (rs->buf[0] == '\0')
2812 return 0;
2813
2814 result = remote_unpack_thread_info_response (rs->buf + 2,
2815 threadid, info);
2816 return result;
2817 }
2818
2819 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2820
2821 static char *
2822 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2823 threadref *nextthread)
2824 {
2825 *pkt++ = 'q'; /* info query packet */
2826 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2827 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2828 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2829 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2830 *pkt = '\0';
2831 return pkt;
2832 }
2833
2834 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2835
2836 static int
2837 parse_threadlist_response (char *pkt, int result_limit,
2838 threadref *original_echo, threadref *resultlist,
2839 int *doneflag)
2840 {
2841 struct remote_state *rs = get_remote_state ();
2842 char *limit;
2843 int count, resultcount, done;
2844
2845 resultcount = 0;
2846 /* Assume the 'q' and 'M chars have been stripped. */
2847 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2848 /* done parse past here */
2849 pkt = unpack_byte (pkt, &count); /* count field */
2850 pkt = unpack_nibble (pkt, &done);
2851 /* The first threadid is the argument threadid. */
2852 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2853 while ((count-- > 0) && (pkt < limit))
2854 {
2855 pkt = unpack_threadid (pkt, resultlist++);
2856 if (resultcount++ >= result_limit)
2857 break;
2858 }
2859 if (doneflag)
2860 *doneflag = done;
2861 return resultcount;
2862 }
2863
2864 /* Fetch the next batch of threads from the remote. Returns -1 if the
2865 qL packet is not supported, 0 on error and 1 on success. */
2866
2867 static int
2868 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2869 int *done, int *result_count, threadref *threadlist)
2870 {
2871 struct remote_state *rs = get_remote_state ();
2872 int result = 1;
2873
2874 /* Trancate result limit to be smaller than the packet size. */
2875 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2876 >= get_remote_packet_size ())
2877 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2878
2879 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2880 putpkt (rs->buf);
2881 getpkt (&rs->buf, &rs->buf_size, 0);
2882 if (*rs->buf == '\0')
2883 {
2884 /* Packet not supported. */
2885 return -1;
2886 }
2887
2888 *result_count =
2889 parse_threadlist_response (rs->buf + 2, result_limit,
2890 &rs->echo_nextthread, threadlist, done);
2891
2892 if (!threadmatch (&rs->echo_nextthread, nextthread))
2893 {
2894 /* FIXME: This is a good reason to drop the packet. */
2895 /* Possably, there is a duplicate response. */
2896 /* Possabilities :
2897 retransmit immediatly - race conditions
2898 retransmit after timeout - yes
2899 exit
2900 wait for packet, then exit
2901 */
2902 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2903 return 0; /* I choose simply exiting. */
2904 }
2905 if (*result_count <= 0)
2906 {
2907 if (*done != 1)
2908 {
2909 warning (_("RMT ERROR : failed to get remote thread list."));
2910 result = 0;
2911 }
2912 return result; /* break; */
2913 }
2914 if (*result_count > result_limit)
2915 {
2916 *result_count = 0;
2917 warning (_("RMT ERROR: threadlist response longer than requested."));
2918 return 0;
2919 }
2920 return result;
2921 }
2922
2923 /* Fetch the list of remote threads, with the qL packet, and call
2924 STEPFUNCTION for each thread found. Stops iterating and returns 1
2925 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2926 STEPFUNCTION returns false. If the packet is not supported,
2927 returns -1. */
2928
2929 static int
2930 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2931 int looplimit)
2932 {
2933 struct remote_state *rs = get_remote_state ();
2934 int done, i, result_count;
2935 int startflag = 1;
2936 int result = 1;
2937 int loopcount = 0;
2938
2939 done = 0;
2940 while (!done)
2941 {
2942 if (loopcount++ > looplimit)
2943 {
2944 result = 0;
2945 warning (_("Remote fetch threadlist -infinite loop-."));
2946 break;
2947 }
2948 result = remote_get_threadlist (startflag, &rs->nextthread,
2949 MAXTHREADLISTRESULTS,
2950 &done, &result_count,
2951 rs->resultthreadlist);
2952 if (result <= 0)
2953 break;
2954 /* Clear for later iterations. */
2955 startflag = 0;
2956 /* Setup to resume next batch of thread references, set nextthread. */
2957 if (result_count >= 1)
2958 copy_threadref (&rs->nextthread,
2959 &rs->resultthreadlist[result_count - 1]);
2960 i = 0;
2961 while (result_count--)
2962 {
2963 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2964 {
2965 result = 0;
2966 break;
2967 }
2968 }
2969 }
2970 return result;
2971 }
2972
2973 /* A thread found on the remote target. */
2974
2975 typedef struct thread_item
2976 {
2977 /* The thread's PTID. */
2978 ptid_t ptid;
2979
2980 /* The thread's extra info. May be NULL. */
2981 char *extra;
2982
2983 /* The thread's name. May be NULL. */
2984 char *name;
2985
2986 /* The core the thread was running on. -1 if not known. */
2987 int core;
2988
2989 /* The thread handle associated with the thread. */
2990 gdb::byte_vector *thread_handle;
2991
2992 } thread_item_t;
2993 DEF_VEC_O(thread_item_t);
2994
2995 /* Context passed around to the various methods listing remote
2996 threads. As new threads are found, they're added to the ITEMS
2997 vector. */
2998
2999 struct threads_listing_context
3000 {
3001 /* The threads found on the remote target. */
3002 VEC (thread_item_t) *items;
3003 };
3004
3005 /* Discard the contents of the constructed thread listing context. */
3006
3007 static void
3008 clear_threads_listing_context (void *p)
3009 {
3010 struct threads_listing_context *context
3011 = (struct threads_listing_context *) p;
3012 int i;
3013 struct thread_item *item;
3014
3015 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3016 {
3017 xfree (item->extra);
3018 xfree (item->name);
3019 delete item->thread_handle;
3020 }
3021
3022 VEC_free (thread_item_t, context->items);
3023 }
3024
3025 /* Remove the thread specified as the related_pid field of WS
3026 from the CONTEXT list. */
3027
3028 static void
3029 threads_listing_context_remove (struct target_waitstatus *ws,
3030 struct threads_listing_context *context)
3031 {
3032 struct thread_item *item;
3033 int i;
3034 ptid_t child_ptid = ws->value.related_pid;
3035
3036 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3037 {
3038 if (ptid_equal (item->ptid, child_ptid))
3039 {
3040 VEC_ordered_remove (thread_item_t, context->items, i);
3041 break;
3042 }
3043 }
3044 }
3045
3046 static int
3047 remote_newthread_step (threadref *ref, void *data)
3048 {
3049 struct threads_listing_context *context
3050 = (struct threads_listing_context *) data;
3051 struct thread_item item;
3052 int pid = ptid_get_pid (inferior_ptid);
3053
3054 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3055 item.core = -1;
3056 item.name = NULL;
3057 item.extra = NULL;
3058 item.thread_handle = nullptr;
3059
3060 VEC_safe_push (thread_item_t, context->items, &item);
3061
3062 return 1; /* continue iterator */
3063 }
3064
3065 #define CRAZY_MAX_THREADS 1000
3066
3067 static ptid_t
3068 remote_current_thread (ptid_t oldpid)
3069 {
3070 struct remote_state *rs = get_remote_state ();
3071
3072 putpkt ("qC");
3073 getpkt (&rs->buf, &rs->buf_size, 0);
3074 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3075 {
3076 const char *obuf;
3077 ptid_t result;
3078
3079 result = read_ptid (&rs->buf[2], &obuf);
3080 if (*obuf != '\0' && remote_debug)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "warning: garbage in qC reply\n");
3083
3084 return result;
3085 }
3086 else
3087 return oldpid;
3088 }
3089
3090 /* List remote threads using the deprecated qL packet. */
3091
3092 static int
3093 remote_get_threads_with_ql (struct target_ops *ops,
3094 struct threads_listing_context *context)
3095 {
3096 if (remote_threadlist_iterator (remote_newthread_step, context,
3097 CRAZY_MAX_THREADS) >= 0)
3098 return 1;
3099
3100 return 0;
3101 }
3102
3103 #if defined(HAVE_LIBEXPAT)
3104
3105 static void
3106 start_thread (struct gdb_xml_parser *parser,
3107 const struct gdb_xml_element *element,
3108 void *user_data, VEC(gdb_xml_value_s) *attributes)
3109 {
3110 struct threads_listing_context *data
3111 = (struct threads_listing_context *) user_data;
3112
3113 struct thread_item item;
3114 char *id;
3115 struct gdb_xml_value *attr;
3116
3117 id = (char *) xml_find_attribute (attributes, "id")->value;
3118 item.ptid = read_ptid (id, NULL);
3119
3120 attr = xml_find_attribute (attributes, "core");
3121 if (attr != NULL)
3122 item.core = *(ULONGEST *) attr->value;
3123 else
3124 item.core = -1;
3125
3126 attr = xml_find_attribute (attributes, "name");
3127 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3128
3129 attr = xml_find_attribute (attributes, "handle");
3130 if (attr != NULL)
3131 {
3132 item.thread_handle = new gdb::byte_vector
3133 (strlen ((const char *) attr->value) / 2);
3134 hex2bin ((const char *) attr->value, item.thread_handle->data (),
3135 item.thread_handle->size ());
3136 }
3137 else
3138 item.thread_handle = nullptr;
3139
3140 item.extra = 0;
3141
3142 VEC_safe_push (thread_item_t, data->items, &item);
3143 }
3144
3145 static void
3146 end_thread (struct gdb_xml_parser *parser,
3147 const struct gdb_xml_element *element,
3148 void *user_data, const char *body_text)
3149 {
3150 struct threads_listing_context *data
3151 = (struct threads_listing_context *) user_data;
3152
3153 if (body_text && *body_text)
3154 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3155 }
3156
3157 const struct gdb_xml_attribute thread_attributes[] = {
3158 { "id", GDB_XML_AF_NONE, NULL, NULL },
3159 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3160 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3161 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3162 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3163 };
3164
3165 const struct gdb_xml_element thread_children[] = {
3166 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3167 };
3168
3169 const struct gdb_xml_element threads_children[] = {
3170 { "thread", thread_attributes, thread_children,
3171 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3172 start_thread, end_thread },
3173 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3174 };
3175
3176 const struct gdb_xml_element threads_elements[] = {
3177 { "threads", NULL, threads_children,
3178 GDB_XML_EF_NONE, NULL, NULL },
3179 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3180 };
3181
3182 #endif
3183
3184 /* List remote threads using qXfer:threads:read. */
3185
3186 static int
3187 remote_get_threads_with_qxfer (struct target_ops *ops,
3188 struct threads_listing_context *context)
3189 {
3190 #if defined(HAVE_LIBEXPAT)
3191 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3192 {
3193 gdb::unique_xmalloc_ptr<char> xml
3194 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3195
3196 if (xml != NULL && *xml != '\0')
3197 {
3198 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3199 threads_elements, xml.get (), context);
3200 }
3201
3202 return 1;
3203 }
3204 #endif
3205
3206 return 0;
3207 }
3208
3209 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3210
3211 static int
3212 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3213 struct threads_listing_context *context)
3214 {
3215 struct remote_state *rs = get_remote_state ();
3216
3217 if (rs->use_threadinfo_query)
3218 {
3219 const char *bufp;
3220
3221 putpkt ("qfThreadInfo");
3222 getpkt (&rs->buf, &rs->buf_size, 0);
3223 bufp = rs->buf;
3224 if (bufp[0] != '\0') /* q packet recognized */
3225 {
3226 while (*bufp++ == 'm') /* reply contains one or more TID */
3227 {
3228 do
3229 {
3230 struct thread_item item;
3231
3232 item.ptid = read_ptid (bufp, &bufp);
3233 item.core = -1;
3234 item.name = NULL;
3235 item.extra = NULL;
3236 item.thread_handle = nullptr;
3237
3238 VEC_safe_push (thread_item_t, context->items, &item);
3239 }
3240 while (*bufp++ == ','); /* comma-separated list */
3241 putpkt ("qsThreadInfo");
3242 getpkt (&rs->buf, &rs->buf_size, 0);
3243 bufp = rs->buf;
3244 }
3245 return 1;
3246 }
3247 else
3248 {
3249 /* Packet not recognized. */
3250 rs->use_threadinfo_query = 0;
3251 }
3252 }
3253
3254 return 0;
3255 }
3256
3257 /* Implement the to_update_thread_list function for the remote
3258 targets. */
3259
3260 static void
3261 remote_update_thread_list (struct target_ops *ops)
3262 {
3263 struct threads_listing_context context;
3264 struct cleanup *old_chain;
3265 int got_list = 0;
3266
3267 context.items = NULL;
3268 old_chain = make_cleanup (clear_threads_listing_context, &context);
3269
3270 /* We have a few different mechanisms to fetch the thread list. Try
3271 them all, starting with the most preferred one first, falling
3272 back to older methods. */
3273 if (remote_get_threads_with_qxfer (ops, &context)
3274 || remote_get_threads_with_qthreadinfo (ops, &context)
3275 || remote_get_threads_with_ql (ops, &context))
3276 {
3277 int i;
3278 struct thread_item *item;
3279 struct thread_info *tp, *tmp;
3280
3281 got_list = 1;
3282
3283 if (VEC_empty (thread_item_t, context.items)
3284 && remote_thread_always_alive (ops, inferior_ptid))
3285 {
3286 /* Some targets don't really support threads, but still
3287 reply an (empty) thread list in response to the thread
3288 listing packets, instead of replying "packet not
3289 supported". Exit early so we don't delete the main
3290 thread. */
3291 do_cleanups (old_chain);
3292 return;
3293 }
3294
3295 /* CONTEXT now holds the current thread list on the remote
3296 target end. Delete GDB-side threads no longer found on the
3297 target. */
3298 ALL_THREADS_SAFE (tp, tmp)
3299 {
3300 for (i = 0;
3301 VEC_iterate (thread_item_t, context.items, i, item);
3302 ++i)
3303 {
3304 if (ptid_equal (item->ptid, tp->ptid))
3305 break;
3306 }
3307
3308 if (i == VEC_length (thread_item_t, context.items))
3309 {
3310 /* Not found. */
3311 delete_thread (tp->ptid);
3312 }
3313 }
3314
3315 /* Remove any unreported fork child threads from CONTEXT so
3316 that we don't interfere with follow fork, which is where
3317 creation of such threads is handled. */
3318 remove_new_fork_children (&context);
3319
3320 /* And now add threads we don't know about yet to our list. */
3321 for (i = 0;
3322 VEC_iterate (thread_item_t, context.items, i, item);
3323 ++i)
3324 {
3325 if (!ptid_equal (item->ptid, null_ptid))
3326 {
3327 struct private_thread_info *info;
3328 /* In non-stop mode, we assume new found threads are
3329 executing until proven otherwise with a stop reply.
3330 In all-stop, we can only get here if all threads are
3331 stopped. */
3332 int executing = target_is_non_stop_p () ? 1 : 0;
3333
3334 remote_notice_new_inferior (item->ptid, executing);
3335
3336 info = get_private_info_ptid (item->ptid);
3337 info->core = item->core;
3338 info->extra = item->extra;
3339 item->extra = NULL;
3340 info->name = item->name;
3341 item->name = NULL;
3342 info->thread_handle = item->thread_handle;
3343 item->thread_handle = nullptr;
3344 }
3345 }
3346 }
3347
3348 if (!got_list)
3349 {
3350 /* If no thread listing method is supported, then query whether
3351 each known thread is alive, one by one, with the T packet.
3352 If the target doesn't support threads at all, then this is a
3353 no-op. See remote_thread_alive. */
3354 prune_threads ();
3355 }
3356
3357 do_cleanups (old_chain);
3358 }
3359
3360 /*
3361 * Collect a descriptive string about the given thread.
3362 * The target may say anything it wants to about the thread
3363 * (typically info about its blocked / runnable state, name, etc.).
3364 * This string will appear in the info threads display.
3365 *
3366 * Optional: targets are not required to implement this function.
3367 */
3368
3369 static const char *
3370 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3371 {
3372 struct remote_state *rs = get_remote_state ();
3373 int result;
3374 int set;
3375 threadref id;
3376 struct gdb_ext_thread_info threadinfo;
3377 static char display_buf[100]; /* arbitrary... */
3378 int n = 0; /* position in display_buf */
3379
3380 if (rs->remote_desc == 0) /* paranoia */
3381 internal_error (__FILE__, __LINE__,
3382 _("remote_threads_extra_info"));
3383
3384 if (ptid_equal (tp->ptid, magic_null_ptid)
3385 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3386 /* This is the main thread which was added by GDB. The remote
3387 server doesn't know about it. */
3388 return NULL;
3389
3390 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3391 {
3392 struct thread_info *info = find_thread_ptid (tp->ptid);
3393
3394 if (info && info->priv)
3395 return info->priv->extra;
3396 else
3397 return NULL;
3398 }
3399
3400 if (rs->use_threadextra_query)
3401 {
3402 char *b = rs->buf;
3403 char *endb = rs->buf + get_remote_packet_size ();
3404
3405 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3406 b += strlen (b);
3407 write_ptid (b, endb, tp->ptid);
3408
3409 putpkt (rs->buf);
3410 getpkt (&rs->buf, &rs->buf_size, 0);
3411 if (rs->buf[0] != 0)
3412 {
3413 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3414 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3415 display_buf [result] = '\0';
3416 return display_buf;
3417 }
3418 }
3419
3420 /* If the above query fails, fall back to the old method. */
3421 rs->use_threadextra_query = 0;
3422 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3423 | TAG_MOREDISPLAY | TAG_DISPLAY;
3424 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3425 if (remote_get_threadinfo (&id, set, &threadinfo))
3426 if (threadinfo.active)
3427 {
3428 if (*threadinfo.shortname)
3429 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3430 " Name: %s,", threadinfo.shortname);
3431 if (*threadinfo.display)
3432 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3433 " State: %s,", threadinfo.display);
3434 if (*threadinfo.more_display)
3435 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3436 " Priority: %s", threadinfo.more_display);
3437
3438 if (n > 0)
3439 {
3440 /* For purely cosmetic reasons, clear up trailing commas. */
3441 if (',' == display_buf[n-1])
3442 display_buf[n-1] = ' ';
3443 return display_buf;
3444 }
3445 }
3446 return NULL;
3447 }
3448 \f
3449
3450 static int
3451 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3452 struct static_tracepoint_marker *marker)
3453 {
3454 struct remote_state *rs = get_remote_state ();
3455 char *p = rs->buf;
3456
3457 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3458 p += strlen (p);
3459 p += hexnumstr (p, addr);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, &rs->buf_size, 0);
3462 p = rs->buf;
3463
3464 if (*p == 'E')
3465 error (_("Remote failure reply: %s"), p);
3466
3467 if (*p++ == 'm')
3468 {
3469 parse_static_tracepoint_marker_definition (p, NULL, marker);
3470 return 1;
3471 }
3472
3473 return 0;
3474 }
3475
3476 static VEC(static_tracepoint_marker_p) *
3477 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3478 const char *strid)
3479 {
3480 struct remote_state *rs = get_remote_state ();
3481 VEC(static_tracepoint_marker_p) *markers = NULL;
3482 struct static_tracepoint_marker *marker = NULL;
3483 struct cleanup *old_chain;
3484 const char *p;
3485
3486 /* Ask for a first packet of static tracepoint marker
3487 definition. */
3488 putpkt ("qTfSTM");
3489 getpkt (&rs->buf, &rs->buf_size, 0);
3490 p = rs->buf;
3491 if (*p == 'E')
3492 error (_("Remote failure reply: %s"), p);
3493
3494 old_chain = make_cleanup (free_current_marker, &marker);
3495
3496 while (*p++ == 'm')
3497 {
3498 if (marker == NULL)
3499 marker = XCNEW (struct static_tracepoint_marker);
3500
3501 do
3502 {
3503 parse_static_tracepoint_marker_definition (p, &p, marker);
3504
3505 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3506 {
3507 VEC_safe_push (static_tracepoint_marker_p,
3508 markers, marker);
3509 marker = NULL;
3510 }
3511 else
3512 {
3513 release_static_tracepoint_marker (marker);
3514 memset (marker, 0, sizeof (*marker));
3515 }
3516 }
3517 while (*p++ == ','); /* comma-separated list */
3518 /* Ask for another packet of static tracepoint definition. */
3519 putpkt ("qTsSTM");
3520 getpkt (&rs->buf, &rs->buf_size, 0);
3521 p = rs->buf;
3522 }
3523
3524 do_cleanups (old_chain);
3525 return markers;
3526 }
3527
3528 \f
3529 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3530
3531 static ptid_t
3532 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3533 {
3534 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3535 }
3536 \f
3537
3538 /* Restart the remote side; this is an extended protocol operation. */
3539
3540 static void
3541 extended_remote_restart (void)
3542 {
3543 struct remote_state *rs = get_remote_state ();
3544
3545 /* Send the restart command; for reasons I don't understand the
3546 remote side really expects a number after the "R". */
3547 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3548 putpkt (rs->buf);
3549
3550 remote_fileio_reset ();
3551 }
3552 \f
3553 /* Clean up connection to a remote debugger. */
3554
3555 static void
3556 remote_close (struct target_ops *self)
3557 {
3558 struct remote_state *rs = get_remote_state ();
3559
3560 if (rs->remote_desc == NULL)
3561 return; /* already closed */
3562
3563 /* Make sure we leave stdin registered in the event loop. */
3564 remote_terminal_ours (self);
3565
3566 serial_close (rs->remote_desc);
3567 rs->remote_desc = NULL;
3568
3569 /* We don't have a connection to the remote stub anymore. Get rid
3570 of all the inferiors and their threads we were controlling.
3571 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3572 will be unable to find the thread corresponding to (pid, 0, 0). */
3573 inferior_ptid = null_ptid;
3574 discard_all_inferiors ();
3575
3576 /* We are closing the remote target, so we should discard
3577 everything of this target. */
3578 discard_pending_stop_replies_in_queue (rs);
3579
3580 if (remote_async_inferior_event_token)
3581 delete_async_event_handler (&remote_async_inferior_event_token);
3582
3583 remote_notif_state_xfree (rs->notif_state);
3584
3585 trace_reset_local_state ();
3586 }
3587
3588 /* Query the remote side for the text, data and bss offsets. */
3589
3590 static void
3591 get_offsets (void)
3592 {
3593 struct remote_state *rs = get_remote_state ();
3594 char *buf;
3595 char *ptr;
3596 int lose, num_segments = 0, do_sections, do_segments;
3597 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3598 struct section_offsets *offs;
3599 struct symfile_segment_data *data;
3600
3601 if (symfile_objfile == NULL)
3602 return;
3603
3604 putpkt ("qOffsets");
3605 getpkt (&rs->buf, &rs->buf_size, 0);
3606 buf = rs->buf;
3607
3608 if (buf[0] == '\000')
3609 return; /* Return silently. Stub doesn't support
3610 this command. */
3611 if (buf[0] == 'E')
3612 {
3613 warning (_("Remote failure reply: %s"), buf);
3614 return;
3615 }
3616
3617 /* Pick up each field in turn. This used to be done with scanf, but
3618 scanf will make trouble if CORE_ADDR size doesn't match
3619 conversion directives correctly. The following code will work
3620 with any size of CORE_ADDR. */
3621 text_addr = data_addr = bss_addr = 0;
3622 ptr = buf;
3623 lose = 0;
3624
3625 if (startswith (ptr, "Text="))
3626 {
3627 ptr += 5;
3628 /* Don't use strtol, could lose on big values. */
3629 while (*ptr && *ptr != ';')
3630 text_addr = (text_addr << 4) + fromhex (*ptr++);
3631
3632 if (startswith (ptr, ";Data="))
3633 {
3634 ptr += 6;
3635 while (*ptr && *ptr != ';')
3636 data_addr = (data_addr << 4) + fromhex (*ptr++);
3637 }
3638 else
3639 lose = 1;
3640
3641 if (!lose && startswith (ptr, ";Bss="))
3642 {
3643 ptr += 5;
3644 while (*ptr && *ptr != ';')
3645 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3646
3647 if (bss_addr != data_addr)
3648 warning (_("Target reported unsupported offsets: %s"), buf);
3649 }
3650 else
3651 lose = 1;
3652 }
3653 else if (startswith (ptr, "TextSeg="))
3654 {
3655 ptr += 8;
3656 /* Don't use strtol, could lose on big values. */
3657 while (*ptr && *ptr != ';')
3658 text_addr = (text_addr << 4) + fromhex (*ptr++);
3659 num_segments = 1;
3660
3661 if (startswith (ptr, ";DataSeg="))
3662 {
3663 ptr += 9;
3664 while (*ptr && *ptr != ';')
3665 data_addr = (data_addr << 4) + fromhex (*ptr++);
3666 num_segments++;
3667 }
3668 }
3669 else
3670 lose = 1;
3671
3672 if (lose)
3673 error (_("Malformed response to offset query, %s"), buf);
3674 else if (*ptr != '\0')
3675 warning (_("Target reported unsupported offsets: %s"), buf);
3676
3677 offs = ((struct section_offsets *)
3678 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3679 memcpy (offs, symfile_objfile->section_offsets,
3680 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3681
3682 data = get_symfile_segment_data (symfile_objfile->obfd);
3683 do_segments = (data != NULL);
3684 do_sections = num_segments == 0;
3685
3686 if (num_segments > 0)
3687 {
3688 segments[0] = text_addr;
3689 segments[1] = data_addr;
3690 }
3691 /* If we have two segments, we can still try to relocate everything
3692 by assuming that the .text and .data offsets apply to the whole
3693 text and data segments. Convert the offsets given in the packet
3694 to base addresses for symfile_map_offsets_to_segments. */
3695 else if (data && data->num_segments == 2)
3696 {
3697 segments[0] = data->segment_bases[0] + text_addr;
3698 segments[1] = data->segment_bases[1] + data_addr;
3699 num_segments = 2;
3700 }
3701 /* If the object file has only one segment, assume that it is text
3702 rather than data; main programs with no writable data are rare,
3703 but programs with no code are useless. Of course the code might
3704 have ended up in the data segment... to detect that we would need
3705 the permissions here. */
3706 else if (data && data->num_segments == 1)
3707 {
3708 segments[0] = data->segment_bases[0] + text_addr;
3709 num_segments = 1;
3710 }
3711 /* There's no way to relocate by segment. */
3712 else
3713 do_segments = 0;
3714
3715 if (do_segments)
3716 {
3717 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3718 offs, num_segments, segments);
3719
3720 if (ret == 0 && !do_sections)
3721 error (_("Can not handle qOffsets TextSeg "
3722 "response with this symbol file"));
3723
3724 if (ret > 0)
3725 do_sections = 0;
3726 }
3727
3728 if (data)
3729 free_symfile_segment_data (data);
3730
3731 if (do_sections)
3732 {
3733 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3734
3735 /* This is a temporary kludge to force data and bss to use the
3736 same offsets because that's what nlmconv does now. The real
3737 solution requires changes to the stub and remote.c that I
3738 don't have time to do right now. */
3739
3740 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3741 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3742 }
3743
3744 objfile_relocate (symfile_objfile, offs);
3745 }
3746
3747 /* Send interrupt_sequence to remote target. */
3748 static void
3749 send_interrupt_sequence (void)
3750 {
3751 struct remote_state *rs = get_remote_state ();
3752
3753 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3754 remote_serial_write ("\x03", 1);
3755 else if (interrupt_sequence_mode == interrupt_sequence_break)
3756 serial_send_break (rs->remote_desc);
3757 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3758 {
3759 serial_send_break (rs->remote_desc);
3760 remote_serial_write ("g", 1);
3761 }
3762 else
3763 internal_error (__FILE__, __LINE__,
3764 _("Invalid value for interrupt_sequence_mode: %s."),
3765 interrupt_sequence_mode);
3766 }
3767
3768
3769 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3770 and extract the PTID. Returns NULL_PTID if not found. */
3771
3772 static ptid_t
3773 stop_reply_extract_thread (char *stop_reply)
3774 {
3775 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3776 {
3777 const char *p;
3778
3779 /* Txx r:val ; r:val (...) */
3780 p = &stop_reply[3];
3781
3782 /* Look for "register" named "thread". */
3783 while (*p != '\0')
3784 {
3785 const char *p1;
3786
3787 p1 = strchr (p, ':');
3788 if (p1 == NULL)
3789 return null_ptid;
3790
3791 if (strncmp (p, "thread", p1 - p) == 0)
3792 return read_ptid (++p1, &p);
3793
3794 p1 = strchr (p, ';');
3795 if (p1 == NULL)
3796 return null_ptid;
3797 p1++;
3798
3799 p = p1;
3800 }
3801 }
3802
3803 return null_ptid;
3804 }
3805
3806 /* Determine the remote side's current thread. If we have a stop
3807 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3808 "thread" register we can extract the current thread from. If not,
3809 ask the remote which is the current thread with qC. The former
3810 method avoids a roundtrip. */
3811
3812 static ptid_t
3813 get_current_thread (char *wait_status)
3814 {
3815 ptid_t ptid = null_ptid;
3816
3817 /* Note we don't use remote_parse_stop_reply as that makes use of
3818 the target architecture, which we haven't yet fully determined at
3819 this point. */
3820 if (wait_status != NULL)
3821 ptid = stop_reply_extract_thread (wait_status);
3822 if (ptid_equal (ptid, null_ptid))
3823 ptid = remote_current_thread (inferior_ptid);
3824
3825 return ptid;
3826 }
3827
3828 /* Query the remote target for which is the current thread/process,
3829 add it to our tables, and update INFERIOR_PTID. The caller is
3830 responsible for setting the state such that the remote end is ready
3831 to return the current thread.
3832
3833 This function is called after handling the '?' or 'vRun' packets,
3834 whose response is a stop reply from which we can also try
3835 extracting the thread. If the target doesn't support the explicit
3836 qC query, we infer the current thread from that stop reply, passed
3837 in in WAIT_STATUS, which may be NULL. */
3838
3839 static void
3840 add_current_inferior_and_thread (char *wait_status)
3841 {
3842 struct remote_state *rs = get_remote_state ();
3843 int fake_pid_p = 0;
3844
3845 inferior_ptid = null_ptid;
3846
3847 /* Now, if we have thread information, update inferior_ptid. */
3848 ptid_t curr_ptid = get_current_thread (wait_status);
3849
3850 if (curr_ptid != null_ptid)
3851 {
3852 if (!remote_multi_process_p (rs))
3853 fake_pid_p = 1;
3854 }
3855 else
3856 {
3857 /* Without this, some commands which require an active target
3858 (such as kill) won't work. This variable serves (at least)
3859 double duty as both the pid of the target process (if it has
3860 such), and as a flag indicating that a target is active. */
3861 curr_ptid = magic_null_ptid;
3862 fake_pid_p = 1;
3863 }
3864
3865 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3866
3867 /* Add the main thread and switch to it. Don't try reading
3868 registers yet, since we haven't fetched the target description
3869 yet. */
3870 thread_info *tp = add_thread_silent (curr_ptid);
3871 switch_to_thread_no_regs (tp);
3872 }
3873
3874 /* Print info about a thread that was found already stopped on
3875 connection. */
3876
3877 static void
3878 print_one_stopped_thread (struct thread_info *thread)
3879 {
3880 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3881
3882 switch_to_thread (thread->ptid);
3883 stop_pc = get_frame_pc (get_current_frame ());
3884 set_current_sal_from_frame (get_current_frame ());
3885
3886 thread->suspend.waitstatus_pending_p = 0;
3887
3888 if (ws->kind == TARGET_WAITKIND_STOPPED)
3889 {
3890 enum gdb_signal sig = ws->value.sig;
3891
3892 if (signal_print_state (sig))
3893 observer_notify_signal_received (sig);
3894 }
3895 observer_notify_normal_stop (NULL, 1);
3896 }
3897
3898 /* Process all initial stop replies the remote side sent in response
3899 to the ? packet. These indicate threads that were already stopped
3900 on initial connection. We mark these threads as stopped and print
3901 their current frame before giving the user the prompt. */
3902
3903 static void
3904 process_initial_stop_replies (int from_tty)
3905 {
3906 int pending_stop_replies = stop_reply_queue_length ();
3907 struct inferior *inf;
3908 struct thread_info *thread;
3909 struct thread_info *selected = NULL;
3910 struct thread_info *lowest_stopped = NULL;
3911 struct thread_info *first = NULL;
3912
3913 /* Consume the initial pending events. */
3914 while (pending_stop_replies-- > 0)
3915 {
3916 ptid_t waiton_ptid = minus_one_ptid;
3917 ptid_t event_ptid;
3918 struct target_waitstatus ws;
3919 int ignore_event = 0;
3920 struct thread_info *thread;
3921
3922 memset (&ws, 0, sizeof (ws));
3923 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3924 if (remote_debug)
3925 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3926
3927 switch (ws.kind)
3928 {
3929 case TARGET_WAITKIND_IGNORE:
3930 case TARGET_WAITKIND_NO_RESUMED:
3931 case TARGET_WAITKIND_SIGNALLED:
3932 case TARGET_WAITKIND_EXITED:
3933 /* We shouldn't see these, but if we do, just ignore. */
3934 if (remote_debug)
3935 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3936 ignore_event = 1;
3937 break;
3938
3939 case TARGET_WAITKIND_EXECD:
3940 xfree (ws.value.execd_pathname);
3941 break;
3942 default:
3943 break;
3944 }
3945
3946 if (ignore_event)
3947 continue;
3948
3949 thread = find_thread_ptid (event_ptid);
3950
3951 if (ws.kind == TARGET_WAITKIND_STOPPED)
3952 {
3953 enum gdb_signal sig = ws.value.sig;
3954
3955 /* Stubs traditionally report SIGTRAP as initial signal,
3956 instead of signal 0. Suppress it. */
3957 if (sig == GDB_SIGNAL_TRAP)
3958 sig = GDB_SIGNAL_0;
3959 thread->suspend.stop_signal = sig;
3960 ws.value.sig = sig;
3961 }
3962
3963 thread->suspend.waitstatus = ws;
3964
3965 if (ws.kind != TARGET_WAITKIND_STOPPED
3966 || ws.value.sig != GDB_SIGNAL_0)
3967 thread->suspend.waitstatus_pending_p = 1;
3968
3969 set_executing (event_ptid, 0);
3970 set_running (event_ptid, 0);
3971 thread->priv->vcont_resumed = 0;
3972 }
3973
3974 /* "Notice" the new inferiors before anything related to
3975 registers/memory. */
3976 ALL_INFERIORS (inf)
3977 {
3978 if (inf->pid == 0)
3979 continue;
3980
3981 inf->needs_setup = 1;
3982
3983 if (non_stop)
3984 {
3985 thread = any_live_thread_of_process (inf->pid);
3986 notice_new_inferior (thread->ptid,
3987 thread->state == THREAD_RUNNING,
3988 from_tty);
3989 }
3990 }
3991
3992 /* If all-stop on top of non-stop, pause all threads. Note this
3993 records the threads' stop pc, so must be done after "noticing"
3994 the inferiors. */
3995 if (!non_stop)
3996 {
3997 stop_all_threads ();
3998
3999 /* If all threads of an inferior were already stopped, we
4000 haven't setup the inferior yet. */
4001 ALL_INFERIORS (inf)
4002 {
4003 if (inf->pid == 0)
4004 continue;
4005
4006 if (inf->needs_setup)
4007 {
4008 thread = any_live_thread_of_process (inf->pid);
4009 switch_to_thread_no_regs (thread);
4010 setup_inferior (0);
4011 }
4012 }
4013 }
4014
4015 /* Now go over all threads that are stopped, and print their current
4016 frame. If all-stop, then if there's a signalled thread, pick
4017 that as current. */
4018 ALL_NON_EXITED_THREADS (thread)
4019 {
4020 if (first == NULL)
4021 first = thread;
4022
4023 if (!non_stop)
4024 set_running (thread->ptid, 0);
4025 else if (thread->state != THREAD_STOPPED)
4026 continue;
4027
4028 if (selected == NULL
4029 && thread->suspend.waitstatus_pending_p)
4030 selected = thread;
4031
4032 if (lowest_stopped == NULL
4033 || thread->inf->num < lowest_stopped->inf->num
4034 || thread->per_inf_num < lowest_stopped->per_inf_num)
4035 lowest_stopped = thread;
4036
4037 if (non_stop)
4038 print_one_stopped_thread (thread);
4039 }
4040
4041 /* In all-stop, we only print the status of one thread, and leave
4042 others with their status pending. */
4043 if (!non_stop)
4044 {
4045 thread = selected;
4046 if (thread == NULL)
4047 thread = lowest_stopped;
4048 if (thread == NULL)
4049 thread = first;
4050
4051 print_one_stopped_thread (thread);
4052 }
4053
4054 /* For "info program". */
4055 thread = inferior_thread ();
4056 if (thread->state == THREAD_STOPPED)
4057 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4058 }
4059
4060 /* Start the remote connection and sync state. */
4061
4062 static void
4063 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4064 {
4065 struct remote_state *rs = get_remote_state ();
4066 struct packet_config *noack_config;
4067 char *wait_status = NULL;
4068
4069 /* Signal other parts that we're going through the initial setup,
4070 and so things may not be stable yet. E.g., we don't try to
4071 install tracepoints until we've relocated symbols. Also, a
4072 Ctrl-C before we're connected and synced up can't interrupt the
4073 target. Instead, it offers to drop the (potentially wedged)
4074 connection. */
4075 rs->starting_up = 1;
4076
4077 QUIT;
4078
4079 if (interrupt_on_connect)
4080 send_interrupt_sequence ();
4081
4082 /* Ack any packet which the remote side has already sent. */
4083 remote_serial_write ("+", 1);
4084
4085 /* The first packet we send to the target is the optional "supported
4086 packets" request. If the target can answer this, it will tell us
4087 which later probes to skip. */
4088 remote_query_supported ();
4089
4090 /* If the stub wants to get a QAllow, compose one and send it. */
4091 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4092 remote_set_permissions (target);
4093
4094 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4095 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4096 as a reply to known packet. For packet "vFile:setfs:" it is an
4097 invalid reply and GDB would return error in
4098 remote_hostio_set_filesystem, making remote files access impossible.
4099 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4100 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4101 {
4102 const char v_mustreplyempty[] = "vMustReplyEmpty";
4103
4104 putpkt (v_mustreplyempty);
4105 getpkt (&rs->buf, &rs->buf_size, 0);
4106 if (strcmp (rs->buf, "OK") == 0)
4107 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4108 else if (strcmp (rs->buf, "") != 0)
4109 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4110 rs->buf);
4111 }
4112
4113 /* Next, we possibly activate noack mode.
4114
4115 If the QStartNoAckMode packet configuration is set to AUTO,
4116 enable noack mode if the stub reported a wish for it with
4117 qSupported.
4118
4119 If set to TRUE, then enable noack mode even if the stub didn't
4120 report it in qSupported. If the stub doesn't reply OK, the
4121 session ends with an error.
4122
4123 If FALSE, then don't activate noack mode, regardless of what the
4124 stub claimed should be the default with qSupported. */
4125
4126 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4127 if (packet_config_support (noack_config) != PACKET_DISABLE)
4128 {
4129 putpkt ("QStartNoAckMode");
4130 getpkt (&rs->buf, &rs->buf_size, 0);
4131 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4132 rs->noack_mode = 1;
4133 }
4134
4135 if (extended_p)
4136 {
4137 /* Tell the remote that we are using the extended protocol. */
4138 putpkt ("!");
4139 getpkt (&rs->buf, &rs->buf_size, 0);
4140 }
4141
4142 /* Let the target know which signals it is allowed to pass down to
4143 the program. */
4144 update_signals_program_target ();
4145
4146 /* Next, if the target can specify a description, read it. We do
4147 this before anything involving memory or registers. */
4148 target_find_description ();
4149
4150 /* Next, now that we know something about the target, update the
4151 address spaces in the program spaces. */
4152 update_address_spaces ();
4153
4154 /* On OSs where the list of libraries is global to all
4155 processes, we fetch them early. */
4156 if (gdbarch_has_global_solist (target_gdbarch ()))
4157 solib_add (NULL, from_tty, auto_solib_add);
4158
4159 if (target_is_non_stop_p ())
4160 {
4161 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4162 error (_("Non-stop mode requested, but remote "
4163 "does not support non-stop"));
4164
4165 putpkt ("QNonStop:1");
4166 getpkt (&rs->buf, &rs->buf_size, 0);
4167
4168 if (strcmp (rs->buf, "OK") != 0)
4169 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4170
4171 /* Find about threads and processes the stub is already
4172 controlling. We default to adding them in the running state.
4173 The '?' query below will then tell us about which threads are
4174 stopped. */
4175 remote_update_thread_list (target);
4176 }
4177 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4178 {
4179 /* Don't assume that the stub can operate in all-stop mode.
4180 Request it explicitly. */
4181 putpkt ("QNonStop:0");
4182 getpkt (&rs->buf, &rs->buf_size, 0);
4183
4184 if (strcmp (rs->buf, "OK") != 0)
4185 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4186 }
4187
4188 /* Upload TSVs regardless of whether the target is running or not. The
4189 remote stub, such as GDBserver, may have some predefined or builtin
4190 TSVs, even if the target is not running. */
4191 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4192 {
4193 struct uploaded_tsv *uploaded_tsvs = NULL;
4194
4195 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4196 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4197 }
4198
4199 /* Check whether the target is running now. */
4200 putpkt ("?");
4201 getpkt (&rs->buf, &rs->buf_size, 0);
4202
4203 if (!target_is_non_stop_p ())
4204 {
4205 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4206 {
4207 if (!extended_p)
4208 error (_("The target is not running (try extended-remote?)"));
4209
4210 /* We're connected, but not running. Drop out before we
4211 call start_remote. */
4212 rs->starting_up = 0;
4213 return;
4214 }
4215 else
4216 {
4217 /* Save the reply for later. */
4218 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4219 strcpy (wait_status, rs->buf);
4220 }
4221
4222 /* Fetch thread list. */
4223 target_update_thread_list ();
4224
4225 /* Let the stub know that we want it to return the thread. */
4226 set_continue_thread (minus_one_ptid);
4227
4228 if (thread_count () == 0)
4229 {
4230 /* Target has no concept of threads at all. GDB treats
4231 non-threaded target as single-threaded; add a main
4232 thread. */
4233 add_current_inferior_and_thread (wait_status);
4234 }
4235 else
4236 {
4237 /* We have thread information; select the thread the target
4238 says should be current. If we're reconnecting to a
4239 multi-threaded program, this will ideally be the thread
4240 that last reported an event before GDB disconnected. */
4241 inferior_ptid = get_current_thread (wait_status);
4242 if (ptid_equal (inferior_ptid, null_ptid))
4243 {
4244 /* Odd... The target was able to list threads, but not
4245 tell us which thread was current (no "thread"
4246 register in T stop reply?). Just pick the first
4247 thread in the thread list then. */
4248
4249 if (remote_debug)
4250 fprintf_unfiltered (gdb_stdlog,
4251 "warning: couldn't determine remote "
4252 "current thread; picking first in list.\n");
4253
4254 inferior_ptid = thread_list->ptid;
4255 }
4256 }
4257
4258 /* init_wait_for_inferior should be called before get_offsets in order
4259 to manage `inserted' flag in bp loc in a correct state.
4260 breakpoint_init_inferior, called from init_wait_for_inferior, set
4261 `inserted' flag to 0, while before breakpoint_re_set, called from
4262 start_remote, set `inserted' flag to 1. In the initialization of
4263 inferior, breakpoint_init_inferior should be called first, and then
4264 breakpoint_re_set can be called. If this order is broken, state of
4265 `inserted' flag is wrong, and cause some problems on breakpoint
4266 manipulation. */
4267 init_wait_for_inferior ();
4268
4269 get_offsets (); /* Get text, data & bss offsets. */
4270
4271 /* If we could not find a description using qXfer, and we know
4272 how to do it some other way, try again. This is not
4273 supported for non-stop; it could be, but it is tricky if
4274 there are no stopped threads when we connect. */
4275 if (remote_read_description_p (target)
4276 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4277 {
4278 target_clear_description ();
4279 target_find_description ();
4280 }
4281
4282 /* Use the previously fetched status. */
4283 gdb_assert (wait_status != NULL);
4284 strcpy (rs->buf, wait_status);
4285 rs->cached_wait_status = 1;
4286
4287 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4288 }
4289 else
4290 {
4291 /* Clear WFI global state. Do this before finding about new
4292 threads and inferiors, and setting the current inferior.
4293 Otherwise we would clear the proceed status of the current
4294 inferior when we want its stop_soon state to be preserved
4295 (see notice_new_inferior). */
4296 init_wait_for_inferior ();
4297
4298 /* In non-stop, we will either get an "OK", meaning that there
4299 are no stopped threads at this time; or, a regular stop
4300 reply. In the latter case, there may be more than one thread
4301 stopped --- we pull them all out using the vStopped
4302 mechanism. */
4303 if (strcmp (rs->buf, "OK") != 0)
4304 {
4305 struct notif_client *notif = &notif_client_stop;
4306
4307 /* remote_notif_get_pending_replies acks this one, and gets
4308 the rest out. */
4309 rs->notif_state->pending_event[notif_client_stop.id]
4310 = remote_notif_parse (notif, rs->buf);
4311 remote_notif_get_pending_events (notif);
4312 }
4313
4314 if (thread_count () == 0)
4315 {
4316 if (!extended_p)
4317 error (_("The target is not running (try extended-remote?)"));
4318
4319 /* We're connected, but not running. Drop out before we
4320 call start_remote. */
4321 rs->starting_up = 0;
4322 return;
4323 }
4324
4325 /* In non-stop mode, any cached wait status will be stored in
4326 the stop reply queue. */
4327 gdb_assert (wait_status == NULL);
4328
4329 /* Report all signals during attach/startup. */
4330 remote_pass_signals (target, 0, NULL);
4331
4332 /* If there are already stopped threads, mark them stopped and
4333 report their stops before giving the prompt to the user. */
4334 process_initial_stop_replies (from_tty);
4335
4336 if (target_can_async_p ())
4337 target_async (1);
4338 }
4339
4340 /* If we connected to a live target, do some additional setup. */
4341 if (target_has_execution)
4342 {
4343 if (symfile_objfile) /* No use without a symbol-file. */
4344 remote_check_symbols ();
4345 }
4346
4347 /* Possibly the target has been engaged in a trace run started
4348 previously; find out where things are at. */
4349 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4350 {
4351 struct uploaded_tp *uploaded_tps = NULL;
4352
4353 if (current_trace_status ()->running)
4354 printf_filtered (_("Trace is already running on the target.\n"));
4355
4356 remote_upload_tracepoints (target, &uploaded_tps);
4357
4358 merge_uploaded_tracepoints (&uploaded_tps);
4359 }
4360
4361 /* Possibly the target has been engaged in a btrace record started
4362 previously; find out where things are at. */
4363 remote_btrace_maybe_reopen ();
4364
4365 /* The thread and inferior lists are now synchronized with the
4366 target, our symbols have been relocated, and we're merged the
4367 target's tracepoints with ours. We're done with basic start
4368 up. */
4369 rs->starting_up = 0;
4370
4371 /* Maybe breakpoints are global and need to be inserted now. */
4372 if (breakpoints_should_be_inserted_now ())
4373 insert_breakpoints ();
4374 }
4375
4376 /* Open a connection to a remote debugger.
4377 NAME is the filename used for communication. */
4378
4379 static void
4380 remote_open (const char *name, int from_tty)
4381 {
4382 remote_open_1 (name, from_tty, &remote_ops, 0);
4383 }
4384
4385 /* Open a connection to a remote debugger using the extended
4386 remote gdb protocol. NAME is the filename used for communication. */
4387
4388 static void
4389 extended_remote_open (const char *name, int from_tty)
4390 {
4391 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4392 }
4393
4394 /* Reset all packets back to "unknown support". Called when opening a
4395 new connection to a remote target. */
4396
4397 static void
4398 reset_all_packet_configs_support (void)
4399 {
4400 int i;
4401
4402 for (i = 0; i < PACKET_MAX; i++)
4403 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4404 }
4405
4406 /* Initialize all packet configs. */
4407
4408 static void
4409 init_all_packet_configs (void)
4410 {
4411 int i;
4412
4413 for (i = 0; i < PACKET_MAX; i++)
4414 {
4415 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4416 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4417 }
4418 }
4419
4420 /* Symbol look-up. */
4421
4422 static void
4423 remote_check_symbols (void)
4424 {
4425 struct remote_state *rs = get_remote_state ();
4426 char *msg, *reply, *tmp;
4427 int end;
4428 long reply_size;
4429 struct cleanup *old_chain;
4430
4431 /* The remote side has no concept of inferiors that aren't running
4432 yet, it only knows about running processes. If we're connected
4433 but our current inferior is not running, we should not invite the
4434 remote target to request symbol lookups related to its
4435 (unrelated) current process. */
4436 if (!target_has_execution)
4437 return;
4438
4439 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4440 return;
4441
4442 /* Make sure the remote is pointing at the right process. Note
4443 there's no way to select "no process". */
4444 set_general_process ();
4445
4446 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4447 because we need both at the same time. */
4448 msg = (char *) xmalloc (get_remote_packet_size ());
4449 old_chain = make_cleanup (xfree, msg);
4450 reply = (char *) xmalloc (get_remote_packet_size ());
4451 make_cleanup (free_current_contents, &reply);
4452 reply_size = get_remote_packet_size ();
4453
4454 /* Invite target to request symbol lookups. */
4455
4456 putpkt ("qSymbol::");
4457 getpkt (&reply, &reply_size, 0);
4458 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4459
4460 while (startswith (reply, "qSymbol:"))
4461 {
4462 struct bound_minimal_symbol sym;
4463
4464 tmp = &reply[8];
4465 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4466 msg[end] = '\0';
4467 sym = lookup_minimal_symbol (msg, NULL, NULL);
4468 if (sym.minsym == NULL)
4469 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4470 else
4471 {
4472 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4473 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4474
4475 /* If this is a function address, return the start of code
4476 instead of any data function descriptor. */
4477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4478 sym_addr,
4479 &current_target);
4480
4481 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4482 phex_nz (sym_addr, addr_size), &reply[8]);
4483 }
4484
4485 putpkt (msg);
4486 getpkt (&reply, &reply_size, 0);
4487 }
4488
4489 do_cleanups (old_chain);
4490 }
4491
4492 static struct serial *
4493 remote_serial_open (const char *name)
4494 {
4495 static int udp_warning = 0;
4496
4497 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4498 of in ser-tcp.c, because it is the remote protocol assuming that the
4499 serial connection is reliable and not the serial connection promising
4500 to be. */
4501 if (!udp_warning && startswith (name, "udp:"))
4502 {
4503 warning (_("The remote protocol may be unreliable over UDP.\n"
4504 "Some events may be lost, rendering further debugging "
4505 "impossible."));
4506 udp_warning = 1;
4507 }
4508
4509 return serial_open (name);
4510 }
4511
4512 /* Inform the target of our permission settings. The permission flags
4513 work without this, but if the target knows the settings, it can do
4514 a couple things. First, it can add its own check, to catch cases
4515 that somehow manage to get by the permissions checks in target
4516 methods. Second, if the target is wired to disallow particular
4517 settings (for instance, a system in the field that is not set up to
4518 be able to stop at a breakpoint), it can object to any unavailable
4519 permissions. */
4520
4521 void
4522 remote_set_permissions (struct target_ops *self)
4523 {
4524 struct remote_state *rs = get_remote_state ();
4525
4526 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4527 "WriteReg:%x;WriteMem:%x;"
4528 "InsertBreak:%x;InsertTrace:%x;"
4529 "InsertFastTrace:%x;Stop:%x",
4530 may_write_registers, may_write_memory,
4531 may_insert_breakpoints, may_insert_tracepoints,
4532 may_insert_fast_tracepoints, may_stop);
4533 putpkt (rs->buf);
4534 getpkt (&rs->buf, &rs->buf_size, 0);
4535
4536 /* If the target didn't like the packet, warn the user. Do not try
4537 to undo the user's settings, that would just be maddening. */
4538 if (strcmp (rs->buf, "OK") != 0)
4539 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4540 }
4541
4542 /* This type describes each known response to the qSupported
4543 packet. */
4544 struct protocol_feature
4545 {
4546 /* The name of this protocol feature. */
4547 const char *name;
4548
4549 /* The default for this protocol feature. */
4550 enum packet_support default_support;
4551
4552 /* The function to call when this feature is reported, or after
4553 qSupported processing if the feature is not supported.
4554 The first argument points to this structure. The second
4555 argument indicates whether the packet requested support be
4556 enabled, disabled, or probed (or the default, if this function
4557 is being called at the end of processing and this feature was
4558 not reported). The third argument may be NULL; if not NULL, it
4559 is a NUL-terminated string taken from the packet following
4560 this feature's name and an equals sign. */
4561 void (*func) (const struct protocol_feature *, enum packet_support,
4562 const char *);
4563
4564 /* The corresponding packet for this feature. Only used if
4565 FUNC is remote_supported_packet. */
4566 int packet;
4567 };
4568
4569 static void
4570 remote_supported_packet (const struct protocol_feature *feature,
4571 enum packet_support support,
4572 const char *argument)
4573 {
4574 if (argument)
4575 {
4576 warning (_("Remote qSupported response supplied an unexpected value for"
4577 " \"%s\"."), feature->name);
4578 return;
4579 }
4580
4581 remote_protocol_packets[feature->packet].support = support;
4582 }
4583
4584 static void
4585 remote_packet_size (const struct protocol_feature *feature,
4586 enum packet_support support, const char *value)
4587 {
4588 struct remote_state *rs = get_remote_state ();
4589
4590 int packet_size;
4591 char *value_end;
4592
4593 if (support != PACKET_ENABLE)
4594 return;
4595
4596 if (value == NULL || *value == '\0')
4597 {
4598 warning (_("Remote target reported \"%s\" without a size."),
4599 feature->name);
4600 return;
4601 }
4602
4603 errno = 0;
4604 packet_size = strtol (value, &value_end, 16);
4605 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4606 {
4607 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4608 feature->name, value);
4609 return;
4610 }
4611
4612 /* Record the new maximum packet size. */
4613 rs->explicit_packet_size = packet_size;
4614 }
4615
4616 static const struct protocol_feature remote_protocol_features[] = {
4617 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4618 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_qXfer_auxv },
4620 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_qXfer_exec_file },
4622 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_qXfer_features },
4624 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_libraries },
4626 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_libraries_svr4 },
4628 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4629 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4630 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4631 PACKET_qXfer_memory_map },
4632 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4633 PACKET_qXfer_spu_read },
4634 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_qXfer_spu_write },
4636 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_qXfer_osdata },
4638 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_qXfer_threads },
4640 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_qXfer_traceframe_info },
4642 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4643 PACKET_QPassSignals },
4644 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_QCatchSyscalls },
4646 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_QProgramSignals },
4648 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_QSetWorkingDir },
4650 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_QStartupWithShell },
4652 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4653 PACKET_QEnvironmentHexEncoded },
4654 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4655 PACKET_QEnvironmentReset },
4656 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4657 PACKET_QEnvironmentUnset },
4658 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4659 PACKET_QStartNoAckMode },
4660 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4661 PACKET_multiprocess_feature },
4662 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4663 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4664 PACKET_qXfer_siginfo_read },
4665 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4666 PACKET_qXfer_siginfo_write },
4667 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4668 PACKET_ConditionalTracepoints },
4669 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4670 PACKET_ConditionalBreakpoints },
4671 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4672 PACKET_BreakpointCommands },
4673 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4674 PACKET_FastTracepoints },
4675 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4676 PACKET_StaticTracepoints },
4677 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4678 PACKET_InstallInTrace},
4679 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4680 PACKET_DisconnectedTracing_feature },
4681 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4682 PACKET_bc },
4683 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4684 PACKET_bs },
4685 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4686 PACKET_TracepointSource },
4687 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4688 PACKET_QAllow },
4689 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4690 PACKET_EnableDisableTracepoints_feature },
4691 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4692 PACKET_qXfer_fdpic },
4693 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4694 PACKET_qXfer_uib },
4695 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4696 PACKET_QDisableRandomization },
4697 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4698 { "QTBuffer:size", PACKET_DISABLE,
4699 remote_supported_packet, PACKET_QTBuffer_size},
4700 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4701 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4702 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4703 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4704 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4705 PACKET_qXfer_btrace },
4706 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4707 PACKET_qXfer_btrace_conf },
4708 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4709 PACKET_Qbtrace_conf_bts_size },
4710 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4711 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4712 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4713 PACKET_fork_event_feature },
4714 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4715 PACKET_vfork_event_feature },
4716 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4717 PACKET_exec_event_feature },
4718 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4719 PACKET_Qbtrace_conf_pt_size },
4720 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4721 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4722 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4723 };
4724
4725 static char *remote_support_xml;
4726
4727 /* Register string appended to "xmlRegisters=" in qSupported query. */
4728
4729 void
4730 register_remote_support_xml (const char *xml)
4731 {
4732 #if defined(HAVE_LIBEXPAT)
4733 if (remote_support_xml == NULL)
4734 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4735 else
4736 {
4737 char *copy = xstrdup (remote_support_xml + 13);
4738 char *p = strtok (copy, ",");
4739
4740 do
4741 {
4742 if (strcmp (p, xml) == 0)
4743 {
4744 /* already there */
4745 xfree (copy);
4746 return;
4747 }
4748 }
4749 while ((p = strtok (NULL, ",")) != NULL);
4750 xfree (copy);
4751
4752 remote_support_xml = reconcat (remote_support_xml,
4753 remote_support_xml, ",", xml,
4754 (char *) NULL);
4755 }
4756 #endif
4757 }
4758
4759 static char *
4760 remote_query_supported_append (char *msg, const char *append)
4761 {
4762 if (msg)
4763 return reconcat (msg, msg, ";", append, (char *) NULL);
4764 else
4765 return xstrdup (append);
4766 }
4767
4768 static void
4769 remote_query_supported (void)
4770 {
4771 struct remote_state *rs = get_remote_state ();
4772 char *next;
4773 int i;
4774 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4775
4776 /* The packet support flags are handled differently for this packet
4777 than for most others. We treat an error, a disabled packet, and
4778 an empty response identically: any features which must be reported
4779 to be used will be automatically disabled. An empty buffer
4780 accomplishes this, since that is also the representation for a list
4781 containing no features. */
4782
4783 rs->buf[0] = 0;
4784 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4785 {
4786 char *q = NULL;
4787 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4788
4789 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4790 q = remote_query_supported_append (q, "multiprocess+");
4791
4792 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4793 q = remote_query_supported_append (q, "swbreak+");
4794 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4795 q = remote_query_supported_append (q, "hwbreak+");
4796
4797 q = remote_query_supported_append (q, "qRelocInsn+");
4798
4799 if (packet_set_cmd_state (PACKET_fork_event_feature)
4800 != AUTO_BOOLEAN_FALSE)
4801 q = remote_query_supported_append (q, "fork-events+");
4802 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4803 != AUTO_BOOLEAN_FALSE)
4804 q = remote_query_supported_append (q, "vfork-events+");
4805 if (packet_set_cmd_state (PACKET_exec_event_feature)
4806 != AUTO_BOOLEAN_FALSE)
4807 q = remote_query_supported_append (q, "exec-events+");
4808
4809 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4810 q = remote_query_supported_append (q, "vContSupported+");
4811
4812 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4813 q = remote_query_supported_append (q, "QThreadEvents+");
4814
4815 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4816 q = remote_query_supported_append (q, "no-resumed+");
4817
4818 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4819 the qSupported:xmlRegisters=i386 handling. */
4820 if (remote_support_xml != NULL)
4821 q = remote_query_supported_append (q, remote_support_xml);
4822
4823 q = reconcat (q, "qSupported:", q, (char *) NULL);
4824 putpkt (q);
4825
4826 do_cleanups (old_chain);
4827
4828 getpkt (&rs->buf, &rs->buf_size, 0);
4829
4830 /* If an error occured, warn, but do not return - just reset the
4831 buffer to empty and go on to disable features. */
4832 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4833 == PACKET_ERROR)
4834 {
4835 warning (_("Remote failure reply: %s"), rs->buf);
4836 rs->buf[0] = 0;
4837 }
4838 }
4839
4840 memset (seen, 0, sizeof (seen));
4841
4842 next = rs->buf;
4843 while (*next)
4844 {
4845 enum packet_support is_supported;
4846 char *p, *end, *name_end, *value;
4847
4848 /* First separate out this item from the rest of the packet. If
4849 there's another item after this, we overwrite the separator
4850 (terminated strings are much easier to work with). */
4851 p = next;
4852 end = strchr (p, ';');
4853 if (end == NULL)
4854 {
4855 end = p + strlen (p);
4856 next = end;
4857 }
4858 else
4859 {
4860 *end = '\0';
4861 next = end + 1;
4862
4863 if (end == p)
4864 {
4865 warning (_("empty item in \"qSupported\" response"));
4866 continue;
4867 }
4868 }
4869
4870 name_end = strchr (p, '=');
4871 if (name_end)
4872 {
4873 /* This is a name=value entry. */
4874 is_supported = PACKET_ENABLE;
4875 value = name_end + 1;
4876 *name_end = '\0';
4877 }
4878 else
4879 {
4880 value = NULL;
4881 switch (end[-1])
4882 {
4883 case '+':
4884 is_supported = PACKET_ENABLE;
4885 break;
4886
4887 case '-':
4888 is_supported = PACKET_DISABLE;
4889 break;
4890
4891 case '?':
4892 is_supported = PACKET_SUPPORT_UNKNOWN;
4893 break;
4894
4895 default:
4896 warning (_("unrecognized item \"%s\" "
4897 "in \"qSupported\" response"), p);
4898 continue;
4899 }
4900 end[-1] = '\0';
4901 }
4902
4903 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4904 if (strcmp (remote_protocol_features[i].name, p) == 0)
4905 {
4906 const struct protocol_feature *feature;
4907
4908 seen[i] = 1;
4909 feature = &remote_protocol_features[i];
4910 feature->func (feature, is_supported, value);
4911 break;
4912 }
4913 }
4914
4915 /* If we increased the packet size, make sure to increase the global
4916 buffer size also. We delay this until after parsing the entire
4917 qSupported packet, because this is the same buffer we were
4918 parsing. */
4919 if (rs->buf_size < rs->explicit_packet_size)
4920 {
4921 rs->buf_size = rs->explicit_packet_size;
4922 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4923 }
4924
4925 /* Handle the defaults for unmentioned features. */
4926 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4927 if (!seen[i])
4928 {
4929 const struct protocol_feature *feature;
4930
4931 feature = &remote_protocol_features[i];
4932 feature->func (feature, feature->default_support, NULL);
4933 }
4934 }
4935
4936 /* Serial QUIT handler for the remote serial descriptor.
4937
4938 Defers handling a Ctrl-C until we're done with the current
4939 command/response packet sequence, unless:
4940
4941 - We're setting up the connection. Don't send a remote interrupt
4942 request, as we're not fully synced yet. Quit immediately
4943 instead.
4944
4945 - The target has been resumed in the foreground
4946 (target_terminal::is_ours is false) with a synchronous resume
4947 packet, and we're blocked waiting for the stop reply, thus a
4948 Ctrl-C should be immediately sent to the target.
4949
4950 - We get a second Ctrl-C while still within the same serial read or
4951 write. In that case the serial is seemingly wedged --- offer to
4952 quit/disconnect.
4953
4954 - We see a second Ctrl-C without target response, after having
4955 previously interrupted the target. In that case the target/stub
4956 is probably wedged --- offer to quit/disconnect.
4957 */
4958
4959 static void
4960 remote_serial_quit_handler (void)
4961 {
4962 struct remote_state *rs = get_remote_state ();
4963
4964 if (check_quit_flag ())
4965 {
4966 /* If we're starting up, we're not fully synced yet. Quit
4967 immediately. */
4968 if (rs->starting_up)
4969 quit ();
4970 else if (rs->got_ctrlc_during_io)
4971 {
4972 if (query (_("The target is not responding to GDB commands.\n"
4973 "Stop debugging it? ")))
4974 remote_unpush_and_throw ();
4975 }
4976 /* If ^C has already been sent once, offer to disconnect. */
4977 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4978 interrupt_query ();
4979 /* All-stop protocol, and blocked waiting for stop reply. Send
4980 an interrupt request. */
4981 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4982 target_interrupt (inferior_ptid);
4983 else
4984 rs->got_ctrlc_during_io = 1;
4985 }
4986 }
4987
4988 /* Remove any of the remote.c targets from target stack. Upper targets depend
4989 on it so remove them first. */
4990
4991 static void
4992 remote_unpush_target (void)
4993 {
4994 pop_all_targets_at_and_above (process_stratum);
4995 }
4996
4997 static void
4998 remote_unpush_and_throw (void)
4999 {
5000 remote_unpush_target ();
5001 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5002 }
5003
5004 static void
5005 remote_open_1 (const char *name, int from_tty,
5006 struct target_ops *target, int extended_p)
5007 {
5008 struct remote_state *rs = get_remote_state ();
5009
5010 if (name == 0)
5011 error (_("To open a remote debug connection, you need to specify what\n"
5012 "serial device is attached to the remote system\n"
5013 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5014
5015 /* See FIXME above. */
5016 if (!target_async_permitted)
5017 wait_forever_enabled_p = 1;
5018
5019 /* If we're connected to a running target, target_preopen will kill it.
5020 Ask this question first, before target_preopen has a chance to kill
5021 anything. */
5022 if (rs->remote_desc != NULL && !have_inferiors ())
5023 {
5024 if (from_tty
5025 && !query (_("Already connected to a remote target. Disconnect? ")))
5026 error (_("Still connected."));
5027 }
5028
5029 /* Here the possibly existing remote target gets unpushed. */
5030 target_preopen (from_tty);
5031
5032 /* Make sure we send the passed signals list the next time we resume. */
5033 xfree (rs->last_pass_packet);
5034 rs->last_pass_packet = NULL;
5035
5036 /* Make sure we send the program signals list the next time we
5037 resume. */
5038 xfree (rs->last_program_signals_packet);
5039 rs->last_program_signals_packet = NULL;
5040
5041 remote_fileio_reset ();
5042 reopen_exec_file ();
5043 reread_symbols ();
5044
5045 rs->remote_desc = remote_serial_open (name);
5046 if (!rs->remote_desc)
5047 perror_with_name (name);
5048
5049 if (baud_rate != -1)
5050 {
5051 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5052 {
5053 /* The requested speed could not be set. Error out to
5054 top level after closing remote_desc. Take care to
5055 set remote_desc to NULL to avoid closing remote_desc
5056 more than once. */
5057 serial_close (rs->remote_desc);
5058 rs->remote_desc = NULL;
5059 perror_with_name (name);
5060 }
5061 }
5062
5063 serial_setparity (rs->remote_desc, serial_parity);
5064 serial_raw (rs->remote_desc);
5065
5066 /* If there is something sitting in the buffer we might take it as a
5067 response to a command, which would be bad. */
5068 serial_flush_input (rs->remote_desc);
5069
5070 if (from_tty)
5071 {
5072 puts_filtered ("Remote debugging using ");
5073 puts_filtered (name);
5074 puts_filtered ("\n");
5075 }
5076 push_target (target); /* Switch to using remote target now. */
5077
5078 /* Register extra event sources in the event loop. */
5079 remote_async_inferior_event_token
5080 = create_async_event_handler (remote_async_inferior_event_handler,
5081 NULL);
5082 rs->notif_state = remote_notif_state_allocate ();
5083
5084 /* Reset the target state; these things will be queried either by
5085 remote_query_supported or as they are needed. */
5086 reset_all_packet_configs_support ();
5087 rs->cached_wait_status = 0;
5088 rs->explicit_packet_size = 0;
5089 rs->noack_mode = 0;
5090 rs->extended = extended_p;
5091 rs->waiting_for_stop_reply = 0;
5092 rs->ctrlc_pending_p = 0;
5093 rs->got_ctrlc_during_io = 0;
5094
5095 rs->general_thread = not_sent_ptid;
5096 rs->continue_thread = not_sent_ptid;
5097 rs->remote_traceframe_number = -1;
5098
5099 rs->last_resume_exec_dir = EXEC_FORWARD;
5100
5101 /* Probe for ability to use "ThreadInfo" query, as required. */
5102 rs->use_threadinfo_query = 1;
5103 rs->use_threadextra_query = 1;
5104
5105 readahead_cache_invalidate ();
5106
5107 if (target_async_permitted)
5108 {
5109 /* FIXME: cagney/1999-09-23: During the initial connection it is
5110 assumed that the target is already ready and able to respond to
5111 requests. Unfortunately remote_start_remote() eventually calls
5112 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5113 around this. Eventually a mechanism that allows
5114 wait_for_inferior() to expect/get timeouts will be
5115 implemented. */
5116 wait_forever_enabled_p = 0;
5117 }
5118
5119 /* First delete any symbols previously loaded from shared libraries. */
5120 no_shared_libraries (NULL, 0);
5121
5122 /* Start afresh. */
5123 init_thread_list ();
5124
5125 /* Start the remote connection. If error() or QUIT, discard this
5126 target (we'd otherwise be in an inconsistent state) and then
5127 propogate the error on up the exception chain. This ensures that
5128 the caller doesn't stumble along blindly assuming that the
5129 function succeeded. The CLI doesn't have this problem but other
5130 UI's, such as MI do.
5131
5132 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5133 this function should return an error indication letting the
5134 caller restore the previous state. Unfortunately the command
5135 ``target remote'' is directly wired to this function making that
5136 impossible. On a positive note, the CLI side of this problem has
5137 been fixed - the function set_cmd_context() makes it possible for
5138 all the ``target ....'' commands to share a common callback
5139 function. See cli-dump.c. */
5140 {
5141
5142 TRY
5143 {
5144 remote_start_remote (from_tty, target, extended_p);
5145 }
5146 CATCH (ex, RETURN_MASK_ALL)
5147 {
5148 /* Pop the partially set up target - unless something else did
5149 already before throwing the exception. */
5150 if (rs->remote_desc != NULL)
5151 remote_unpush_target ();
5152 if (target_async_permitted)
5153 wait_forever_enabled_p = 1;
5154 throw_exception (ex);
5155 }
5156 END_CATCH
5157 }
5158
5159 remote_btrace_reset ();
5160
5161 if (target_async_permitted)
5162 wait_forever_enabled_p = 1;
5163 }
5164
5165 /* Detach the specified process. */
5166
5167 static void
5168 remote_detach_pid (int pid)
5169 {
5170 struct remote_state *rs = get_remote_state ();
5171
5172 if (remote_multi_process_p (rs))
5173 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5174 else
5175 strcpy (rs->buf, "D");
5176
5177 putpkt (rs->buf);
5178 getpkt (&rs->buf, &rs->buf_size, 0);
5179
5180 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5181 ;
5182 else if (rs->buf[0] == '\0')
5183 error (_("Remote doesn't know how to detach"));
5184 else
5185 error (_("Can't detach process."));
5186 }
5187
5188 /* This detaches a program to which we previously attached, using
5189 inferior_ptid to identify the process. After this is done, GDB
5190 can be used to debug some other program. We better not have left
5191 any breakpoints in the target program or it'll die when it hits
5192 one. */
5193
5194 static void
5195 remote_detach_1 (const char *args, int from_tty)
5196 {
5197 int pid = ptid_get_pid (inferior_ptid);
5198 struct remote_state *rs = get_remote_state ();
5199 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5200 int is_fork_parent;
5201
5202 if (args)
5203 error (_("Argument given to \"detach\" when remotely debugging."));
5204
5205 if (!target_has_execution)
5206 error (_("No process to detach from."));
5207
5208 target_announce_detach (from_tty);
5209
5210 /* Tell the remote target to detach. */
5211 remote_detach_pid (pid);
5212
5213 /* Exit only if this is the only active inferior. */
5214 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5215 puts_filtered (_("Ending remote debugging.\n"));
5216
5217 /* Check to see if we are detaching a fork parent. Note that if we
5218 are detaching a fork child, tp == NULL. */
5219 is_fork_parent = (tp != NULL
5220 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5221
5222 /* If doing detach-on-fork, we don't mourn, because that will delete
5223 breakpoints that should be available for the followed inferior. */
5224 if (!is_fork_parent)
5225 target_mourn_inferior (inferior_ptid);
5226 else
5227 {
5228 inferior_ptid = null_ptid;
5229 detach_inferior (pid);
5230 }
5231 }
5232
5233 static void
5234 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5235 {
5236 remote_detach_1 (args, from_tty);
5237 }
5238
5239 static void
5240 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5241 {
5242 remote_detach_1 (args, from_tty);
5243 }
5244
5245 /* Target follow-fork function for remote targets. On entry, and
5246 at return, the current inferior is the fork parent.
5247
5248 Note that although this is currently only used for extended-remote,
5249 it is named remote_follow_fork in anticipation of using it for the
5250 remote target as well. */
5251
5252 static int
5253 remote_follow_fork (struct target_ops *ops, int follow_child,
5254 int detach_fork)
5255 {
5256 struct remote_state *rs = get_remote_state ();
5257 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5258
5259 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5260 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5261 {
5262 /* When following the parent and detaching the child, we detach
5263 the child here. For the case of following the child and
5264 detaching the parent, the detach is done in the target-
5265 independent follow fork code in infrun.c. We can't use
5266 target_detach when detaching an unfollowed child because
5267 the client side doesn't know anything about the child. */
5268 if (detach_fork && !follow_child)
5269 {
5270 /* Detach the fork child. */
5271 ptid_t child_ptid;
5272 pid_t child_pid;
5273
5274 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5275 child_pid = ptid_get_pid (child_ptid);
5276
5277 remote_detach_pid (child_pid);
5278 detach_inferior (child_pid);
5279 }
5280 }
5281 return 0;
5282 }
5283
5284 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5285 in the program space of the new inferior. On entry and at return the
5286 current inferior is the exec'ing inferior. INF is the new exec'd
5287 inferior, which may be the same as the exec'ing inferior unless
5288 follow-exec-mode is "new". */
5289
5290 static void
5291 remote_follow_exec (struct target_ops *ops,
5292 struct inferior *inf, char *execd_pathname)
5293 {
5294 /* We know that this is a target file name, so if it has the "target:"
5295 prefix we strip it off before saving it in the program space. */
5296 if (is_target_filename (execd_pathname))
5297 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5298
5299 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5300 }
5301
5302 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5303
5304 static void
5305 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5306 {
5307 if (args)
5308 error (_("Argument given to \"disconnect\" when remotely debugging."));
5309
5310 /* Make sure we unpush even the extended remote targets. Calling
5311 target_mourn_inferior won't unpush, and remote_mourn won't
5312 unpush if there is more than one inferior left. */
5313 unpush_target (target);
5314 generic_mourn_inferior ();
5315
5316 if (from_tty)
5317 puts_filtered ("Ending remote debugging.\n");
5318 }
5319
5320 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5321 be chatty about it. */
5322
5323 static void
5324 extended_remote_attach (struct target_ops *target, const char *args,
5325 int from_tty)
5326 {
5327 struct remote_state *rs = get_remote_state ();
5328 int pid;
5329 char *wait_status = NULL;
5330
5331 pid = parse_pid_to_attach (args);
5332
5333 /* Remote PID can be freely equal to getpid, do not check it here the same
5334 way as in other targets. */
5335
5336 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5337 error (_("This target does not support attaching to a process"));
5338
5339 if (from_tty)
5340 {
5341 char *exec_file = get_exec_file (0);
5342
5343 if (exec_file)
5344 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5345 target_pid_to_str (pid_to_ptid (pid)));
5346 else
5347 printf_unfiltered (_("Attaching to %s\n"),
5348 target_pid_to_str (pid_to_ptid (pid)));
5349
5350 gdb_flush (gdb_stdout);
5351 }
5352
5353 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5354 putpkt (rs->buf);
5355 getpkt (&rs->buf, &rs->buf_size, 0);
5356
5357 switch (packet_ok (rs->buf,
5358 &remote_protocol_packets[PACKET_vAttach]))
5359 {
5360 case PACKET_OK:
5361 if (!target_is_non_stop_p ())
5362 {
5363 /* Save the reply for later. */
5364 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5365 strcpy (wait_status, rs->buf);
5366 }
5367 else if (strcmp (rs->buf, "OK") != 0)
5368 error (_("Attaching to %s failed with: %s"),
5369 target_pid_to_str (pid_to_ptid (pid)),
5370 rs->buf);
5371 break;
5372 case PACKET_UNKNOWN:
5373 error (_("This target does not support attaching to a process"));
5374 default:
5375 error (_("Attaching to %s failed"),
5376 target_pid_to_str (pid_to_ptid (pid)));
5377 }
5378
5379 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5380
5381 inferior_ptid = pid_to_ptid (pid);
5382
5383 if (target_is_non_stop_p ())
5384 {
5385 struct thread_info *thread;
5386
5387 /* Get list of threads. */
5388 remote_update_thread_list (target);
5389
5390 thread = first_thread_of_process (pid);
5391 if (thread)
5392 inferior_ptid = thread->ptid;
5393 else
5394 inferior_ptid = pid_to_ptid (pid);
5395
5396 /* Invalidate our notion of the remote current thread. */
5397 record_currthread (rs, minus_one_ptid);
5398 }
5399 else
5400 {
5401 /* Now, if we have thread information, update inferior_ptid. */
5402 inferior_ptid = remote_current_thread (inferior_ptid);
5403
5404 /* Add the main thread to the thread list. */
5405 add_thread_silent (inferior_ptid);
5406 }
5407
5408 /* Next, if the target can specify a description, read it. We do
5409 this before anything involving memory or registers. */
5410 target_find_description ();
5411
5412 if (!target_is_non_stop_p ())
5413 {
5414 /* Use the previously fetched status. */
5415 gdb_assert (wait_status != NULL);
5416
5417 if (target_can_async_p ())
5418 {
5419 struct notif_event *reply
5420 = remote_notif_parse (&notif_client_stop, wait_status);
5421
5422 push_stop_reply ((struct stop_reply *) reply);
5423
5424 target_async (1);
5425 }
5426 else
5427 {
5428 gdb_assert (wait_status != NULL);
5429 strcpy (rs->buf, wait_status);
5430 rs->cached_wait_status = 1;
5431 }
5432 }
5433 else
5434 gdb_assert (wait_status == NULL);
5435 }
5436
5437 /* Implementation of the to_post_attach method. */
5438
5439 static void
5440 extended_remote_post_attach (struct target_ops *ops, int pid)
5441 {
5442 /* Get text, data & bss offsets. */
5443 get_offsets ();
5444
5445 /* In certain cases GDB might not have had the chance to start
5446 symbol lookup up until now. This could happen if the debugged
5447 binary is not using shared libraries, the vsyscall page is not
5448 present (on Linux) and the binary itself hadn't changed since the
5449 debugging process was started. */
5450 if (symfile_objfile != NULL)
5451 remote_check_symbols();
5452 }
5453
5454 \f
5455 /* Check for the availability of vCont. This function should also check
5456 the response. */
5457
5458 static void
5459 remote_vcont_probe (struct remote_state *rs)
5460 {
5461 char *buf;
5462
5463 strcpy (rs->buf, "vCont?");
5464 putpkt (rs->buf);
5465 getpkt (&rs->buf, &rs->buf_size, 0);
5466 buf = rs->buf;
5467
5468 /* Make sure that the features we assume are supported. */
5469 if (startswith (buf, "vCont"))
5470 {
5471 char *p = &buf[5];
5472 int support_c, support_C;
5473
5474 rs->supports_vCont.s = 0;
5475 rs->supports_vCont.S = 0;
5476 support_c = 0;
5477 support_C = 0;
5478 rs->supports_vCont.t = 0;
5479 rs->supports_vCont.r = 0;
5480 while (p && *p == ';')
5481 {
5482 p++;
5483 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5484 rs->supports_vCont.s = 1;
5485 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5486 rs->supports_vCont.S = 1;
5487 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5488 support_c = 1;
5489 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5490 support_C = 1;
5491 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5492 rs->supports_vCont.t = 1;
5493 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5494 rs->supports_vCont.r = 1;
5495
5496 p = strchr (p, ';');
5497 }
5498
5499 /* If c, and C are not all supported, we can't use vCont. Clearing
5500 BUF will make packet_ok disable the packet. */
5501 if (!support_c || !support_C)
5502 buf[0] = 0;
5503 }
5504
5505 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5506 }
5507
5508 /* Helper function for building "vCont" resumptions. Write a
5509 resumption to P. ENDP points to one-passed-the-end of the buffer
5510 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5511 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5512 resumed thread should be single-stepped and/or signalled. If PTID
5513 equals minus_one_ptid, then all threads are resumed; if PTID
5514 represents a process, then all threads of the process are resumed;
5515 the thread to be stepped and/or signalled is given in the global
5516 INFERIOR_PTID. */
5517
5518 static char *
5519 append_resumption (char *p, char *endp,
5520 ptid_t ptid, int step, enum gdb_signal siggnal)
5521 {
5522 struct remote_state *rs = get_remote_state ();
5523
5524 if (step && siggnal != GDB_SIGNAL_0)
5525 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5526 else if (step
5527 /* GDB is willing to range step. */
5528 && use_range_stepping
5529 /* Target supports range stepping. */
5530 && rs->supports_vCont.r
5531 /* We don't currently support range stepping multiple
5532 threads with a wildcard (though the protocol allows it,
5533 so stubs shouldn't make an active effort to forbid
5534 it). */
5535 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5536 {
5537 struct thread_info *tp;
5538
5539 if (ptid_equal (ptid, minus_one_ptid))
5540 {
5541 /* If we don't know about the target thread's tid, then
5542 we're resuming magic_null_ptid (see caller). */
5543 tp = find_thread_ptid (magic_null_ptid);
5544 }
5545 else
5546 tp = find_thread_ptid (ptid);
5547 gdb_assert (tp != NULL);
5548
5549 if (tp->control.may_range_step)
5550 {
5551 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5552
5553 p += xsnprintf (p, endp - p, ";r%s,%s",
5554 phex_nz (tp->control.step_range_start,
5555 addr_size),
5556 phex_nz (tp->control.step_range_end,
5557 addr_size));
5558 }
5559 else
5560 p += xsnprintf (p, endp - p, ";s");
5561 }
5562 else if (step)
5563 p += xsnprintf (p, endp - p, ";s");
5564 else if (siggnal != GDB_SIGNAL_0)
5565 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5566 else
5567 p += xsnprintf (p, endp - p, ";c");
5568
5569 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5570 {
5571 ptid_t nptid;
5572
5573 /* All (-1) threads of process. */
5574 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5575
5576 p += xsnprintf (p, endp - p, ":");
5577 p = write_ptid (p, endp, nptid);
5578 }
5579 else if (!ptid_equal (ptid, minus_one_ptid))
5580 {
5581 p += xsnprintf (p, endp - p, ":");
5582 p = write_ptid (p, endp, ptid);
5583 }
5584
5585 return p;
5586 }
5587
5588 /* Clear the thread's private info on resume. */
5589
5590 static void
5591 resume_clear_thread_private_info (struct thread_info *thread)
5592 {
5593 if (thread->priv != NULL)
5594 {
5595 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5596 thread->priv->watch_data_address = 0;
5597 }
5598 }
5599
5600 /* Append a vCont continue-with-signal action for threads that have a
5601 non-zero stop signal. */
5602
5603 static char *
5604 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5605 {
5606 struct thread_info *thread;
5607
5608 ALL_NON_EXITED_THREADS (thread)
5609 if (ptid_match (thread->ptid, ptid)
5610 && !ptid_equal (inferior_ptid, thread->ptid)
5611 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5612 {
5613 p = append_resumption (p, endp, thread->ptid,
5614 0, thread->suspend.stop_signal);
5615 thread->suspend.stop_signal = GDB_SIGNAL_0;
5616 resume_clear_thread_private_info (thread);
5617 }
5618
5619 return p;
5620 }
5621
5622 /* Set the target running, using the packets that use Hc
5623 (c/s/C/S). */
5624
5625 static void
5626 remote_resume_with_hc (struct target_ops *ops,
5627 ptid_t ptid, int step, enum gdb_signal siggnal)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630 struct thread_info *thread;
5631 char *buf;
5632
5633 rs->last_sent_signal = siggnal;
5634 rs->last_sent_step = step;
5635
5636 /* The c/s/C/S resume packets use Hc, so set the continue
5637 thread. */
5638 if (ptid_equal (ptid, minus_one_ptid))
5639 set_continue_thread (any_thread_ptid);
5640 else
5641 set_continue_thread (ptid);
5642
5643 ALL_NON_EXITED_THREADS (thread)
5644 resume_clear_thread_private_info (thread);
5645
5646 buf = rs->buf;
5647 if (execution_direction == EXEC_REVERSE)
5648 {
5649 /* We don't pass signals to the target in reverse exec mode. */
5650 if (info_verbose && siggnal != GDB_SIGNAL_0)
5651 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5652 siggnal);
5653
5654 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5655 error (_("Remote reverse-step not supported."));
5656 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5657 error (_("Remote reverse-continue not supported."));
5658
5659 strcpy (buf, step ? "bs" : "bc");
5660 }
5661 else if (siggnal != GDB_SIGNAL_0)
5662 {
5663 buf[0] = step ? 'S' : 'C';
5664 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5665 buf[2] = tohex (((int) siggnal) & 0xf);
5666 buf[3] = '\0';
5667 }
5668 else
5669 strcpy (buf, step ? "s" : "c");
5670
5671 putpkt (buf);
5672 }
5673
5674 /* Resume the remote inferior by using a "vCont" packet. The thread
5675 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5676 resumed thread should be single-stepped and/or signalled. If PTID
5677 equals minus_one_ptid, then all threads are resumed; the thread to
5678 be stepped and/or signalled is given in the global INFERIOR_PTID.
5679 This function returns non-zero iff it resumes the inferior.
5680
5681 This function issues a strict subset of all possible vCont commands
5682 at the moment. */
5683
5684 static int
5685 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5686 {
5687 struct remote_state *rs = get_remote_state ();
5688 char *p;
5689 char *endp;
5690
5691 /* No reverse execution actions defined for vCont. */
5692 if (execution_direction == EXEC_REVERSE)
5693 return 0;
5694
5695 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5696 remote_vcont_probe (rs);
5697
5698 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5699 return 0;
5700
5701 p = rs->buf;
5702 endp = rs->buf + get_remote_packet_size ();
5703
5704 /* If we could generate a wider range of packets, we'd have to worry
5705 about overflowing BUF. Should there be a generic
5706 "multi-part-packet" packet? */
5707
5708 p += xsnprintf (p, endp - p, "vCont");
5709
5710 if (ptid_equal (ptid, magic_null_ptid))
5711 {
5712 /* MAGIC_NULL_PTID means that we don't have any active threads,
5713 so we don't have any TID numbers the inferior will
5714 understand. Make sure to only send forms that do not specify
5715 a TID. */
5716 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5717 }
5718 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5719 {
5720 /* Resume all threads (of all processes, or of a single
5721 process), with preference for INFERIOR_PTID. This assumes
5722 inferior_ptid belongs to the set of all threads we are about
5723 to resume. */
5724 if (step || siggnal != GDB_SIGNAL_0)
5725 {
5726 /* Step inferior_ptid, with or without signal. */
5727 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5728 }
5729
5730 /* Also pass down any pending signaled resumption for other
5731 threads not the current. */
5732 p = append_pending_thread_resumptions (p, endp, ptid);
5733
5734 /* And continue others without a signal. */
5735 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5736 }
5737 else
5738 {
5739 /* Scheduler locking; resume only PTID. */
5740 append_resumption (p, endp, ptid, step, siggnal);
5741 }
5742
5743 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5744 putpkt (rs->buf);
5745
5746 if (target_is_non_stop_p ())
5747 {
5748 /* In non-stop, the stub replies to vCont with "OK". The stop
5749 reply will be reported asynchronously by means of a `%Stop'
5750 notification. */
5751 getpkt (&rs->buf, &rs->buf_size, 0);
5752 if (strcmp (rs->buf, "OK") != 0)
5753 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5754 }
5755
5756 return 1;
5757 }
5758
5759 /* Tell the remote machine to resume. */
5760
5761 static void
5762 remote_resume (struct target_ops *ops,
5763 ptid_t ptid, int step, enum gdb_signal siggnal)
5764 {
5765 struct remote_state *rs = get_remote_state ();
5766
5767 /* When connected in non-stop mode, the core resumes threads
5768 individually. Resuming remote threads directly in target_resume
5769 would thus result in sending one packet per thread. Instead, to
5770 minimize roundtrip latency, here we just store the resume
5771 request; the actual remote resumption will be done in
5772 target_commit_resume / remote_commit_resume, where we'll be able
5773 to do vCont action coalescing. */
5774 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5775 {
5776 struct private_thread_info *remote_thr;
5777
5778 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5779 remote_thr = get_private_info_ptid (inferior_ptid);
5780 else
5781 remote_thr = get_private_info_ptid (ptid);
5782 remote_thr->last_resume_step = step;
5783 remote_thr->last_resume_sig = siggnal;
5784 return;
5785 }
5786
5787 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5788 (explained in remote-notif.c:handle_notification) so
5789 remote_notif_process is not called. We need find a place where
5790 it is safe to start a 'vNotif' sequence. It is good to do it
5791 before resuming inferior, because inferior was stopped and no RSP
5792 traffic at that moment. */
5793 if (!target_is_non_stop_p ())
5794 remote_notif_process (rs->notif_state, &notif_client_stop);
5795
5796 rs->last_resume_exec_dir = execution_direction;
5797
5798 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5799 if (!remote_resume_with_vcont (ptid, step, siggnal))
5800 remote_resume_with_hc (ops, ptid, step, siggnal);
5801
5802 /* We are about to start executing the inferior, let's register it
5803 with the event loop. NOTE: this is the one place where all the
5804 execution commands end up. We could alternatively do this in each
5805 of the execution commands in infcmd.c. */
5806 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5807 into infcmd.c in order to allow inferior function calls to work
5808 NOT asynchronously. */
5809 if (target_can_async_p ())
5810 target_async (1);
5811
5812 /* We've just told the target to resume. The remote server will
5813 wait for the inferior to stop, and then send a stop reply. In
5814 the mean time, we can't start another command/query ourselves
5815 because the stub wouldn't be ready to process it. This applies
5816 only to the base all-stop protocol, however. In non-stop (which
5817 only supports vCont), the stub replies with an "OK", and is
5818 immediate able to process further serial input. */
5819 if (!target_is_non_stop_p ())
5820 rs->waiting_for_stop_reply = 1;
5821 }
5822
5823 static void check_pending_events_prevent_wildcard_vcont
5824 (int *may_global_wildcard_vcont);
5825 static int is_pending_fork_parent_thread (struct thread_info *thread);
5826
5827 /* Private per-inferior info for target remote processes. */
5828
5829 struct remote_inferior : public private_inferior
5830 {
5831 /* Whether we can send a wildcard vCont for this process. */
5832 bool may_wildcard_vcont = true;
5833 };
5834
5835 /* Get the remote private inferior data associated to INF. */
5836
5837 static remote_inferior *
5838 get_remote_inferior (inferior *inf)
5839 {
5840 if (inf->priv == NULL)
5841 inf->priv.reset (new remote_inferior);
5842
5843 return static_cast<remote_inferior *> (inf->priv.get ());
5844 }
5845
5846 /* Structure used to track the construction of a vCont packet in the
5847 outgoing packet buffer. This is used to send multiple vCont
5848 packets if we have more actions than would fit a single packet. */
5849
5850 struct vcont_builder
5851 {
5852 /* Pointer to the first action. P points here if no action has been
5853 appended yet. */
5854 char *first_action;
5855
5856 /* Where the next action will be appended. */
5857 char *p;
5858
5859 /* The end of the buffer. Must never write past this. */
5860 char *endp;
5861 };
5862
5863 /* Prepare the outgoing buffer for a new vCont packet. */
5864
5865 static void
5866 vcont_builder_restart (struct vcont_builder *builder)
5867 {
5868 struct remote_state *rs = get_remote_state ();
5869
5870 builder->p = rs->buf;
5871 builder->endp = rs->buf + get_remote_packet_size ();
5872 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5873 builder->first_action = builder->p;
5874 }
5875
5876 /* If the vCont packet being built has any action, send it to the
5877 remote end. */
5878
5879 static void
5880 vcont_builder_flush (struct vcont_builder *builder)
5881 {
5882 struct remote_state *rs;
5883
5884 if (builder->p == builder->first_action)
5885 return;
5886
5887 rs = get_remote_state ();
5888 putpkt (rs->buf);
5889 getpkt (&rs->buf, &rs->buf_size, 0);
5890 if (strcmp (rs->buf, "OK") != 0)
5891 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5892 }
5893
5894 /* The largest action is range-stepping, with its two addresses. This
5895 is more than sufficient. If a new, bigger action is created, it'll
5896 quickly trigger a failed assertion in append_resumption (and we'll
5897 just bump this). */
5898 #define MAX_ACTION_SIZE 200
5899
5900 /* Append a new vCont action in the outgoing packet being built. If
5901 the action doesn't fit the packet along with previous actions, push
5902 what we've got so far to the remote end and start over a new vCont
5903 packet (with the new action). */
5904
5905 static void
5906 vcont_builder_push_action (struct vcont_builder *builder,
5907 ptid_t ptid, int step, enum gdb_signal siggnal)
5908 {
5909 char buf[MAX_ACTION_SIZE + 1];
5910 char *endp;
5911 size_t rsize;
5912
5913 endp = append_resumption (buf, buf + sizeof (buf),
5914 ptid, step, siggnal);
5915
5916 /* Check whether this new action would fit in the vCont packet along
5917 with previous actions. If not, send what we've got so far and
5918 start a new vCont packet. */
5919 rsize = endp - buf;
5920 if (rsize > builder->endp - builder->p)
5921 {
5922 vcont_builder_flush (builder);
5923 vcont_builder_restart (builder);
5924
5925 /* Should now fit. */
5926 gdb_assert (rsize <= builder->endp - builder->p);
5927 }
5928
5929 memcpy (builder->p, buf, rsize);
5930 builder->p += rsize;
5931 *builder->p = '\0';
5932 }
5933
5934 /* to_commit_resume implementation. */
5935
5936 static void
5937 remote_commit_resume (struct target_ops *ops)
5938 {
5939 struct remote_state *rs = get_remote_state ();
5940 struct inferior *inf;
5941 struct thread_info *tp;
5942 int any_process_wildcard;
5943 int may_global_wildcard_vcont;
5944 struct vcont_builder vcont_builder;
5945
5946 /* If connected in all-stop mode, we'd send the remote resume
5947 request directly from remote_resume. Likewise if
5948 reverse-debugging, as there are no defined vCont actions for
5949 reverse execution. */
5950 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5951 return;
5952
5953 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5954 instead of resuming all threads of each process individually.
5955 However, if any thread of a process must remain halted, we can't
5956 send wildcard resumes and must send one action per thread.
5957
5958 Care must be taken to not resume threads/processes the server
5959 side already told us are stopped, but the core doesn't know about
5960 yet, because the events are still in the vStopped notification
5961 queue. For example:
5962
5963 #1 => vCont s:p1.1;c
5964 #2 <= OK
5965 #3 <= %Stopped T05 p1.1
5966 #4 => vStopped
5967 #5 <= T05 p1.2
5968 #6 => vStopped
5969 #7 <= OK
5970 #8 (infrun handles the stop for p1.1 and continues stepping)
5971 #9 => vCont s:p1.1;c
5972
5973 The last vCont above would resume thread p1.2 by mistake, because
5974 the server has no idea that the event for p1.2 had not been
5975 handled yet.
5976
5977 The server side must similarly ignore resume actions for the
5978 thread that has a pending %Stopped notification (and any other
5979 threads with events pending), until GDB acks the notification
5980 with vStopped. Otherwise, e.g., the following case is
5981 mishandled:
5982
5983 #1 => g (or any other packet)
5984 #2 <= [registers]
5985 #3 <= %Stopped T05 p1.2
5986 #4 => vCont s:p1.1;c
5987 #5 <= OK
5988
5989 Above, the server must not resume thread p1.2. GDB can't know
5990 that p1.2 stopped until it acks the %Stopped notification, and
5991 since from GDB's perspective all threads should be running, it
5992 sends a "c" action.
5993
5994 Finally, special care must also be given to handling fork/vfork
5995 events. A (v)fork event actually tells us that two processes
5996 stopped -- the parent and the child. Until we follow the fork,
5997 we must not resume the child. Therefore, if we have a pending
5998 fork follow, we must not send a global wildcard resume action
5999 (vCont;c). We can still send process-wide wildcards though. */
6000
6001 /* Start by assuming a global wildcard (vCont;c) is possible. */
6002 may_global_wildcard_vcont = 1;
6003
6004 /* And assume every process is individually wildcard-able too. */
6005 ALL_NON_EXITED_INFERIORS (inf)
6006 {
6007 remote_inferior *priv = get_remote_inferior (inf);
6008
6009 priv->may_wildcard_vcont = true;
6010 }
6011
6012 /* Check for any pending events (not reported or processed yet) and
6013 disable process and global wildcard resumes appropriately. */
6014 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6015
6016 ALL_NON_EXITED_THREADS (tp)
6017 {
6018 /* If a thread of a process is not meant to be resumed, then we
6019 can't wildcard that process. */
6020 if (!tp->executing)
6021 {
6022 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6023
6024 /* And if we can't wildcard a process, we can't wildcard
6025 everything either. */
6026 may_global_wildcard_vcont = 0;
6027 continue;
6028 }
6029
6030 /* If a thread is the parent of an unfollowed fork, then we
6031 can't do a global wildcard, as that would resume the fork
6032 child. */
6033 if (is_pending_fork_parent_thread (tp))
6034 may_global_wildcard_vcont = 0;
6035 }
6036
6037 /* Now let's build the vCont packet(s). Actions must be appended
6038 from narrower to wider scopes (thread -> process -> global). If
6039 we end up with too many actions for a single packet vcont_builder
6040 flushes the current vCont packet to the remote side and starts a
6041 new one. */
6042 vcont_builder_restart (&vcont_builder);
6043
6044 /* Threads first. */
6045 ALL_NON_EXITED_THREADS (tp)
6046 {
6047 struct private_thread_info *remote_thr = tp->priv;
6048
6049 if (!tp->executing || remote_thr->vcont_resumed)
6050 continue;
6051
6052 gdb_assert (!thread_is_in_step_over_chain (tp));
6053
6054 if (!remote_thr->last_resume_step
6055 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6056 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6057 {
6058 /* We'll send a wildcard resume instead. */
6059 remote_thr->vcont_resumed = 1;
6060 continue;
6061 }
6062
6063 vcont_builder_push_action (&vcont_builder, tp->ptid,
6064 remote_thr->last_resume_step,
6065 remote_thr->last_resume_sig);
6066 remote_thr->vcont_resumed = 1;
6067 }
6068
6069 /* Now check whether we can send any process-wide wildcard. This is
6070 to avoid sending a global wildcard in the case nothing is
6071 supposed to be resumed. */
6072 any_process_wildcard = 0;
6073
6074 ALL_NON_EXITED_INFERIORS (inf)
6075 {
6076 if (get_remote_inferior (inf)->may_wildcard_vcont)
6077 {
6078 any_process_wildcard = 1;
6079 break;
6080 }
6081 }
6082
6083 if (any_process_wildcard)
6084 {
6085 /* If all processes are wildcard-able, then send a single "c"
6086 action, otherwise, send an "all (-1) threads of process"
6087 continue action for each running process, if any. */
6088 if (may_global_wildcard_vcont)
6089 {
6090 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6091 0, GDB_SIGNAL_0);
6092 }
6093 else
6094 {
6095 ALL_NON_EXITED_INFERIORS (inf)
6096 {
6097 if (get_remote_inferior (inf)->may_wildcard_vcont)
6098 {
6099 vcont_builder_push_action (&vcont_builder,
6100 pid_to_ptid (inf->pid),
6101 0, GDB_SIGNAL_0);
6102 }
6103 }
6104 }
6105 }
6106
6107 vcont_builder_flush (&vcont_builder);
6108 }
6109
6110 \f
6111
6112 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6113 thread, all threads of a remote process, or all threads of all
6114 processes. */
6115
6116 static void
6117 remote_stop_ns (ptid_t ptid)
6118 {
6119 struct remote_state *rs = get_remote_state ();
6120 char *p = rs->buf;
6121 char *endp = rs->buf + get_remote_packet_size ();
6122
6123 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6124 remote_vcont_probe (rs);
6125
6126 if (!rs->supports_vCont.t)
6127 error (_("Remote server does not support stopping threads"));
6128
6129 if (ptid_equal (ptid, minus_one_ptid)
6130 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6131 p += xsnprintf (p, endp - p, "vCont;t");
6132 else
6133 {
6134 ptid_t nptid;
6135
6136 p += xsnprintf (p, endp - p, "vCont;t:");
6137
6138 if (ptid_is_pid (ptid))
6139 /* All (-1) threads of process. */
6140 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6141 else
6142 {
6143 /* Small optimization: if we already have a stop reply for
6144 this thread, no use in telling the stub we want this
6145 stopped. */
6146 if (peek_stop_reply (ptid))
6147 return;
6148
6149 nptid = ptid;
6150 }
6151
6152 write_ptid (p, endp, nptid);
6153 }
6154
6155 /* In non-stop, we get an immediate OK reply. The stop reply will
6156 come in asynchronously by notification. */
6157 putpkt (rs->buf);
6158 getpkt (&rs->buf, &rs->buf_size, 0);
6159 if (strcmp (rs->buf, "OK") != 0)
6160 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6161 }
6162
6163 /* All-stop version of target_interrupt. Sends a break or a ^C to
6164 interrupt the remote target. It is undefined which thread of which
6165 process reports the interrupt. */
6166
6167 static void
6168 remote_interrupt_as (void)
6169 {
6170 struct remote_state *rs = get_remote_state ();
6171
6172 rs->ctrlc_pending_p = 1;
6173
6174 /* If the inferior is stopped already, but the core didn't know
6175 about it yet, just ignore the request. The cached wait status
6176 will be collected in remote_wait. */
6177 if (rs->cached_wait_status)
6178 return;
6179
6180 /* Send interrupt_sequence to remote target. */
6181 send_interrupt_sequence ();
6182 }
6183
6184 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6185 the remote target. It is undefined which thread of which process
6186 reports the interrupt. Throws an error if the packet is not
6187 supported by the server. */
6188
6189 static void
6190 remote_interrupt_ns (void)
6191 {
6192 struct remote_state *rs = get_remote_state ();
6193 char *p = rs->buf;
6194 char *endp = rs->buf + get_remote_packet_size ();
6195
6196 xsnprintf (p, endp - p, "vCtrlC");
6197
6198 /* In non-stop, we get an immediate OK reply. The stop reply will
6199 come in asynchronously by notification. */
6200 putpkt (rs->buf);
6201 getpkt (&rs->buf, &rs->buf_size, 0);
6202
6203 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6204 {
6205 case PACKET_OK:
6206 break;
6207 case PACKET_UNKNOWN:
6208 error (_("No support for interrupting the remote target."));
6209 case PACKET_ERROR:
6210 error (_("Interrupting target failed: %s"), rs->buf);
6211 }
6212 }
6213
6214 /* Implement the to_stop function for the remote targets. */
6215
6216 static void
6217 remote_stop (struct target_ops *self, ptid_t ptid)
6218 {
6219 if (remote_debug)
6220 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6221
6222 if (target_is_non_stop_p ())
6223 remote_stop_ns (ptid);
6224 else
6225 {
6226 /* We don't currently have a way to transparently pause the
6227 remote target in all-stop mode. Interrupt it instead. */
6228 remote_interrupt_as ();
6229 }
6230 }
6231
6232 /* Implement the to_interrupt function for the remote targets. */
6233
6234 static void
6235 remote_interrupt (struct target_ops *self, ptid_t ptid)
6236 {
6237 struct remote_state *rs = get_remote_state ();
6238
6239 if (remote_debug)
6240 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6241
6242 if (target_is_non_stop_p ())
6243 remote_interrupt_ns ();
6244 else
6245 remote_interrupt_as ();
6246 }
6247
6248 /* Implement the to_pass_ctrlc function for the remote targets. */
6249
6250 static void
6251 remote_pass_ctrlc (struct target_ops *self)
6252 {
6253 struct remote_state *rs = get_remote_state ();
6254
6255 if (remote_debug)
6256 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6257
6258 /* If we're starting up, we're not fully synced yet. Quit
6259 immediately. */
6260 if (rs->starting_up)
6261 quit ();
6262 /* If ^C has already been sent once, offer to disconnect. */
6263 else if (rs->ctrlc_pending_p)
6264 interrupt_query ();
6265 else
6266 target_interrupt (inferior_ptid);
6267 }
6268
6269 /* Ask the user what to do when an interrupt is received. */
6270
6271 static void
6272 interrupt_query (void)
6273 {
6274 struct remote_state *rs = get_remote_state ();
6275
6276 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6277 {
6278 if (query (_("The target is not responding to interrupt requests.\n"
6279 "Stop debugging it? ")))
6280 {
6281 remote_unpush_target ();
6282 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6283 }
6284 }
6285 else
6286 {
6287 if (query (_("Interrupted while waiting for the program.\n"
6288 "Give up waiting? ")))
6289 quit ();
6290 }
6291 }
6292
6293 /* Enable/disable target terminal ownership. Most targets can use
6294 terminal groups to control terminal ownership. Remote targets are
6295 different in that explicit transfer of ownership to/from GDB/target
6296 is required. */
6297
6298 static void
6299 remote_terminal_inferior (struct target_ops *self)
6300 {
6301 /* NOTE: At this point we could also register our selves as the
6302 recipient of all input. Any characters typed could then be
6303 passed on down to the target. */
6304 }
6305
6306 static void
6307 remote_terminal_ours (struct target_ops *self)
6308 {
6309 }
6310
6311 static void
6312 remote_console_output (char *msg)
6313 {
6314 char *p;
6315
6316 for (p = msg; p[0] && p[1]; p += 2)
6317 {
6318 char tb[2];
6319 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6320
6321 tb[0] = c;
6322 tb[1] = 0;
6323 fputs_unfiltered (tb, gdb_stdtarg);
6324 }
6325 gdb_flush (gdb_stdtarg);
6326 }
6327
6328 DEF_VEC_O(cached_reg_t);
6329
6330 typedef struct stop_reply
6331 {
6332 struct notif_event base;
6333
6334 /* The identifier of the thread about this event */
6335 ptid_t ptid;
6336
6337 /* The remote state this event is associated with. When the remote
6338 connection, represented by a remote_state object, is closed,
6339 all the associated stop_reply events should be released. */
6340 struct remote_state *rs;
6341
6342 struct target_waitstatus ws;
6343
6344 /* The architecture associated with the expedited registers. */
6345 gdbarch *arch;
6346
6347 /* Expedited registers. This makes remote debugging a bit more
6348 efficient for those targets that provide critical registers as
6349 part of their normal status mechanism (as another roundtrip to
6350 fetch them is avoided). */
6351 VEC(cached_reg_t) *regcache;
6352
6353 enum target_stop_reason stop_reason;
6354
6355 CORE_ADDR watch_data_address;
6356
6357 int core;
6358 } *stop_reply_p;
6359
6360 DECLARE_QUEUE_P (stop_reply_p);
6361 DEFINE_QUEUE_P (stop_reply_p);
6362 /* The list of already fetched and acknowledged stop events. This
6363 queue is used for notification Stop, and other notifications
6364 don't need queue for their events, because the notification events
6365 of Stop can't be consumed immediately, so that events should be
6366 queued first, and be consumed by remote_wait_{ns,as} one per
6367 time. Other notifications can consume their events immediately,
6368 so queue is not needed for them. */
6369 static QUEUE (stop_reply_p) *stop_reply_queue;
6370
6371 static void
6372 stop_reply_xfree (struct stop_reply *r)
6373 {
6374 notif_event_xfree ((struct notif_event *) r);
6375 }
6376
6377 /* Return the length of the stop reply queue. */
6378
6379 static int
6380 stop_reply_queue_length (void)
6381 {
6382 return QUEUE_length (stop_reply_p, stop_reply_queue);
6383 }
6384
6385 static void
6386 remote_notif_stop_parse (struct notif_client *self, char *buf,
6387 struct notif_event *event)
6388 {
6389 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6390 }
6391
6392 static void
6393 remote_notif_stop_ack (struct notif_client *self, char *buf,
6394 struct notif_event *event)
6395 {
6396 struct stop_reply *stop_reply = (struct stop_reply *) event;
6397
6398 /* acknowledge */
6399 putpkt (self->ack_command);
6400
6401 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6402 /* We got an unknown stop reply. */
6403 error (_("Unknown stop reply"));
6404
6405 push_stop_reply (stop_reply);
6406 }
6407
6408 static int
6409 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6410 {
6411 /* We can't get pending events in remote_notif_process for
6412 notification stop, and we have to do this in remote_wait_ns
6413 instead. If we fetch all queued events from stub, remote stub
6414 may exit and we have no chance to process them back in
6415 remote_wait_ns. */
6416 mark_async_event_handler (remote_async_inferior_event_token);
6417 return 0;
6418 }
6419
6420 static void
6421 stop_reply_dtr (struct notif_event *event)
6422 {
6423 struct stop_reply *r = (struct stop_reply *) event;
6424 cached_reg_t *reg;
6425 int ix;
6426
6427 for (ix = 0;
6428 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6429 ix++)
6430 xfree (reg->data);
6431
6432 VEC_free (cached_reg_t, r->regcache);
6433 }
6434
6435 static struct notif_event *
6436 remote_notif_stop_alloc_reply (void)
6437 {
6438 /* We cast to a pointer to the "base class". */
6439 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6440
6441 r->dtr = stop_reply_dtr;
6442
6443 return r;
6444 }
6445
6446 /* A client of notification Stop. */
6447
6448 struct notif_client notif_client_stop =
6449 {
6450 "Stop",
6451 "vStopped",
6452 remote_notif_stop_parse,
6453 remote_notif_stop_ack,
6454 remote_notif_stop_can_get_pending_events,
6455 remote_notif_stop_alloc_reply,
6456 REMOTE_NOTIF_STOP,
6457 };
6458
6459 /* A parameter to pass data in and out. */
6460
6461 struct queue_iter_param
6462 {
6463 void *input;
6464 struct stop_reply *output;
6465 };
6466
6467 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6468 the pid of the process that owns the threads we want to check, or
6469 -1 if we want to check all threads. */
6470
6471 static int
6472 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6473 ptid_t thread_ptid)
6474 {
6475 if (ws->kind == TARGET_WAITKIND_FORKED
6476 || ws->kind == TARGET_WAITKIND_VFORKED)
6477 {
6478 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6479 return 1;
6480 }
6481
6482 return 0;
6483 }
6484
6485 /* Return the thread's pending status used to determine whether the
6486 thread is a fork parent stopped at a fork event. */
6487
6488 static struct target_waitstatus *
6489 thread_pending_fork_status (struct thread_info *thread)
6490 {
6491 if (thread->suspend.waitstatus_pending_p)
6492 return &thread->suspend.waitstatus;
6493 else
6494 return &thread->pending_follow;
6495 }
6496
6497 /* Determine if THREAD is a pending fork parent thread. */
6498
6499 static int
6500 is_pending_fork_parent_thread (struct thread_info *thread)
6501 {
6502 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6503 int pid = -1;
6504
6505 return is_pending_fork_parent (ws, pid, thread->ptid);
6506 }
6507
6508 /* Check whether EVENT is a fork event, and if it is, remove the
6509 fork child from the context list passed in DATA. */
6510
6511 static int
6512 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6513 QUEUE_ITER (stop_reply_p) *iter,
6514 stop_reply_p event,
6515 void *data)
6516 {
6517 struct queue_iter_param *param = (struct queue_iter_param *) data;
6518 struct threads_listing_context *context
6519 = (struct threads_listing_context *) param->input;
6520
6521 if (event->ws.kind == TARGET_WAITKIND_FORKED
6522 || event->ws.kind == TARGET_WAITKIND_VFORKED
6523 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6524 threads_listing_context_remove (&event->ws, context);
6525
6526 return 1;
6527 }
6528
6529 /* If CONTEXT contains any fork child threads that have not been
6530 reported yet, remove them from the CONTEXT list. If such a
6531 thread exists it is because we are stopped at a fork catchpoint
6532 and have not yet called follow_fork, which will set up the
6533 host-side data structures for the new process. */
6534
6535 static void
6536 remove_new_fork_children (struct threads_listing_context *context)
6537 {
6538 struct thread_info * thread;
6539 int pid = -1;
6540 struct notif_client *notif = &notif_client_stop;
6541 struct queue_iter_param param;
6542
6543 /* For any threads stopped at a fork event, remove the corresponding
6544 fork child threads from the CONTEXT list. */
6545 ALL_NON_EXITED_THREADS (thread)
6546 {
6547 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6548
6549 if (is_pending_fork_parent (ws, pid, thread->ptid))
6550 {
6551 threads_listing_context_remove (ws, context);
6552 }
6553 }
6554
6555 /* Check for any pending fork events (not reported or processed yet)
6556 in process PID and remove those fork child threads from the
6557 CONTEXT list as well. */
6558 remote_notif_get_pending_events (notif);
6559 param.input = context;
6560 param.output = NULL;
6561 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6562 remove_child_of_pending_fork, &param);
6563 }
6564
6565 /* Check whether EVENT would prevent a global or process wildcard
6566 vCont action. */
6567
6568 static int
6569 check_pending_event_prevents_wildcard_vcont_callback
6570 (QUEUE (stop_reply_p) *q,
6571 QUEUE_ITER (stop_reply_p) *iter,
6572 stop_reply_p event,
6573 void *data)
6574 {
6575 struct inferior *inf;
6576 int *may_global_wildcard_vcont = (int *) data;
6577
6578 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6579 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6580 return 1;
6581
6582 if (event->ws.kind == TARGET_WAITKIND_FORKED
6583 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6584 *may_global_wildcard_vcont = 0;
6585
6586 inf = find_inferior_ptid (event->ptid);
6587
6588 /* This may be the first time we heard about this process.
6589 Regardless, we must not do a global wildcard resume, otherwise
6590 we'd resume this process too. */
6591 *may_global_wildcard_vcont = 0;
6592 if (inf != NULL)
6593 get_remote_inferior (inf)->may_wildcard_vcont = false;
6594
6595 return 1;
6596 }
6597
6598 /* Check whether any event pending in the vStopped queue would prevent
6599 a global or process wildcard vCont action. Clear
6600 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6601 and clear the event inferior's may_wildcard_vcont flag if we can't
6602 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6603
6604 static void
6605 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6606 {
6607 struct notif_client *notif = &notif_client_stop;
6608
6609 remote_notif_get_pending_events (notif);
6610 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6611 check_pending_event_prevents_wildcard_vcont_callback,
6612 may_global_wildcard);
6613 }
6614
6615 /* Remove stop replies in the queue if its pid is equal to the given
6616 inferior's pid. */
6617
6618 static int
6619 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6620 QUEUE_ITER (stop_reply_p) *iter,
6621 stop_reply_p event,
6622 void *data)
6623 {
6624 struct queue_iter_param *param = (struct queue_iter_param *) data;
6625 struct inferior *inf = (struct inferior *) param->input;
6626
6627 if (ptid_get_pid (event->ptid) == inf->pid)
6628 {
6629 stop_reply_xfree (event);
6630 QUEUE_remove_elem (stop_reply_p, q, iter);
6631 }
6632
6633 return 1;
6634 }
6635
6636 /* Discard all pending stop replies of inferior INF. */
6637
6638 static void
6639 discard_pending_stop_replies (struct inferior *inf)
6640 {
6641 struct queue_iter_param param;
6642 struct stop_reply *reply;
6643 struct remote_state *rs = get_remote_state ();
6644 struct remote_notif_state *rns = rs->notif_state;
6645
6646 /* This function can be notified when an inferior exists. When the
6647 target is not remote, the notification state is NULL. */
6648 if (rs->remote_desc == NULL)
6649 return;
6650
6651 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6652
6653 /* Discard the in-flight notification. */
6654 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6655 {
6656 stop_reply_xfree (reply);
6657 rns->pending_event[notif_client_stop.id] = NULL;
6658 }
6659
6660 param.input = inf;
6661 param.output = NULL;
6662 /* Discard the stop replies we have already pulled with
6663 vStopped. */
6664 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6665 remove_stop_reply_for_inferior, &param);
6666 }
6667
6668 /* If its remote state is equal to the given remote state,
6669 remove EVENT from the stop reply queue. */
6670
6671 static int
6672 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6673 QUEUE_ITER (stop_reply_p) *iter,
6674 stop_reply_p event,
6675 void *data)
6676 {
6677 struct queue_iter_param *param = (struct queue_iter_param *) data;
6678 struct remote_state *rs = (struct remote_state *) param->input;
6679
6680 if (event->rs == rs)
6681 {
6682 stop_reply_xfree (event);
6683 QUEUE_remove_elem (stop_reply_p, q, iter);
6684 }
6685
6686 return 1;
6687 }
6688
6689 /* Discard the stop replies for RS in stop_reply_queue. */
6690
6691 static void
6692 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6693 {
6694 struct queue_iter_param param;
6695
6696 param.input = rs;
6697 param.output = NULL;
6698 /* Discard the stop replies we have already pulled with
6699 vStopped. */
6700 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6701 remove_stop_reply_of_remote_state, &param);
6702 }
6703
6704 /* A parameter to pass data in and out. */
6705
6706 static int
6707 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6708 QUEUE_ITER (stop_reply_p) *iter,
6709 stop_reply_p event,
6710 void *data)
6711 {
6712 struct queue_iter_param *param = (struct queue_iter_param *) data;
6713 ptid_t *ptid = (ptid_t *) param->input;
6714
6715 if (ptid_match (event->ptid, *ptid))
6716 {
6717 param->output = event;
6718 QUEUE_remove_elem (stop_reply_p, q, iter);
6719 return 0;
6720 }
6721
6722 return 1;
6723 }
6724
6725 /* Remove the first reply in 'stop_reply_queue' which matches
6726 PTID. */
6727
6728 static struct stop_reply *
6729 remote_notif_remove_queued_reply (ptid_t ptid)
6730 {
6731 struct queue_iter_param param;
6732
6733 param.input = &ptid;
6734 param.output = NULL;
6735
6736 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6737 remote_notif_remove_once_on_match, &param);
6738 if (notif_debug)
6739 fprintf_unfiltered (gdb_stdlog,
6740 "notif: discard queued event: 'Stop' in %s\n",
6741 target_pid_to_str (ptid));
6742
6743 return param.output;
6744 }
6745
6746 /* Look for a queued stop reply belonging to PTID. If one is found,
6747 remove it from the queue, and return it. Returns NULL if none is
6748 found. If there are still queued events left to process, tell the
6749 event loop to get back to target_wait soon. */
6750
6751 static struct stop_reply *
6752 queued_stop_reply (ptid_t ptid)
6753 {
6754 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6755
6756 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6757 /* There's still at least an event left. */
6758 mark_async_event_handler (remote_async_inferior_event_token);
6759
6760 return r;
6761 }
6762
6763 /* Push a fully parsed stop reply in the stop reply queue. Since we
6764 know that we now have at least one queued event left to pass to the
6765 core side, tell the event loop to get back to target_wait soon. */
6766
6767 static void
6768 push_stop_reply (struct stop_reply *new_event)
6769 {
6770 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6771
6772 if (notif_debug)
6773 fprintf_unfiltered (gdb_stdlog,
6774 "notif: push 'Stop' %s to queue %d\n",
6775 target_pid_to_str (new_event->ptid),
6776 QUEUE_length (stop_reply_p,
6777 stop_reply_queue));
6778
6779 mark_async_event_handler (remote_async_inferior_event_token);
6780 }
6781
6782 static int
6783 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6784 QUEUE_ITER (stop_reply_p) *iter,
6785 struct stop_reply *event,
6786 void *data)
6787 {
6788 ptid_t *ptid = (ptid_t *) data;
6789
6790 return !(ptid_equal (*ptid, event->ptid)
6791 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6792 }
6793
6794 /* Returns true if we have a stop reply for PTID. */
6795
6796 static int
6797 peek_stop_reply (ptid_t ptid)
6798 {
6799 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6800 stop_reply_match_ptid_and_ws, &ptid);
6801 }
6802
6803 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6804 starting with P and ending with PEND matches PREFIX. */
6805
6806 static int
6807 strprefix (const char *p, const char *pend, const char *prefix)
6808 {
6809 for ( ; p < pend; p++, prefix++)
6810 if (*p != *prefix)
6811 return 0;
6812 return *prefix == '\0';
6813 }
6814
6815 /* Parse the stop reply in BUF. Either the function succeeds, and the
6816 result is stored in EVENT, or throws an error. */
6817
6818 static void
6819 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6820 {
6821 remote_arch_state *rsa = NULL;
6822 ULONGEST addr;
6823 const char *p;
6824 int skipregs = 0;
6825
6826 event->ptid = null_ptid;
6827 event->rs = get_remote_state ();
6828 event->ws.kind = TARGET_WAITKIND_IGNORE;
6829 event->ws.value.integer = 0;
6830 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6831 event->regcache = NULL;
6832 event->core = -1;
6833
6834 switch (buf[0])
6835 {
6836 case 'T': /* Status with PC, SP, FP, ... */
6837 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6838 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6839 ss = signal number
6840 n... = register number
6841 r... = register contents
6842 */
6843
6844 p = &buf[3]; /* after Txx */
6845 while (*p)
6846 {
6847 const char *p1;
6848 int fieldsize;
6849
6850 p1 = strchr (p, ':');
6851 if (p1 == NULL)
6852 error (_("Malformed packet(a) (missing colon): %s\n\
6853 Packet: '%s'\n"),
6854 p, buf);
6855 if (p == p1)
6856 error (_("Malformed packet(a) (missing register number): %s\n\
6857 Packet: '%s'\n"),
6858 p, buf);
6859
6860 /* Some "registers" are actually extended stop information.
6861 Note if you're adding a new entry here: GDB 7.9 and
6862 earlier assume that all register "numbers" that start
6863 with an hex digit are real register numbers. Make sure
6864 the server only sends such a packet if it knows the
6865 client understands it. */
6866
6867 if (strprefix (p, p1, "thread"))
6868 event->ptid = read_ptid (++p1, &p);
6869 else if (strprefix (p, p1, "syscall_entry"))
6870 {
6871 ULONGEST sysno;
6872
6873 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6874 p = unpack_varlen_hex (++p1, &sysno);
6875 event->ws.value.syscall_number = (int) sysno;
6876 }
6877 else if (strprefix (p, p1, "syscall_return"))
6878 {
6879 ULONGEST sysno;
6880
6881 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6882 p = unpack_varlen_hex (++p1, &sysno);
6883 event->ws.value.syscall_number = (int) sysno;
6884 }
6885 else if (strprefix (p, p1, "watch")
6886 || strprefix (p, p1, "rwatch")
6887 || strprefix (p, p1, "awatch"))
6888 {
6889 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6890 p = unpack_varlen_hex (++p1, &addr);
6891 event->watch_data_address = (CORE_ADDR) addr;
6892 }
6893 else if (strprefix (p, p1, "swbreak"))
6894 {
6895 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6896
6897 /* Make sure the stub doesn't forget to indicate support
6898 with qSupported. */
6899 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6900 error (_("Unexpected swbreak stop reason"));
6901
6902 /* The value part is documented as "must be empty",
6903 though we ignore it, in case we ever decide to make
6904 use of it in a backward compatible way. */
6905 p = strchrnul (p1 + 1, ';');
6906 }
6907 else if (strprefix (p, p1, "hwbreak"))
6908 {
6909 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6910
6911 /* Make sure the stub doesn't forget to indicate support
6912 with qSupported. */
6913 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6914 error (_("Unexpected hwbreak stop reason"));
6915
6916 /* See above. */
6917 p = strchrnul (p1 + 1, ';');
6918 }
6919 else if (strprefix (p, p1, "library"))
6920 {
6921 event->ws.kind = TARGET_WAITKIND_LOADED;
6922 p = strchrnul (p1 + 1, ';');
6923 }
6924 else if (strprefix (p, p1, "replaylog"))
6925 {
6926 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6927 /* p1 will indicate "begin" or "end", but it makes
6928 no difference for now, so ignore it. */
6929 p = strchrnul (p1 + 1, ';');
6930 }
6931 else if (strprefix (p, p1, "core"))
6932 {
6933 ULONGEST c;
6934
6935 p = unpack_varlen_hex (++p1, &c);
6936 event->core = c;
6937 }
6938 else if (strprefix (p, p1, "fork"))
6939 {
6940 event->ws.value.related_pid = read_ptid (++p1, &p);
6941 event->ws.kind = TARGET_WAITKIND_FORKED;
6942 }
6943 else if (strprefix (p, p1, "vfork"))
6944 {
6945 event->ws.value.related_pid = read_ptid (++p1, &p);
6946 event->ws.kind = TARGET_WAITKIND_VFORKED;
6947 }
6948 else if (strprefix (p, p1, "vforkdone"))
6949 {
6950 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6951 p = strchrnul (p1 + 1, ';');
6952 }
6953 else if (strprefix (p, p1, "exec"))
6954 {
6955 ULONGEST ignored;
6956 char pathname[PATH_MAX];
6957 int pathlen;
6958
6959 /* Determine the length of the execd pathname. */
6960 p = unpack_varlen_hex (++p1, &ignored);
6961 pathlen = (p - p1) / 2;
6962
6963 /* Save the pathname for event reporting and for
6964 the next run command. */
6965 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6966 pathname[pathlen] = '\0';
6967
6968 /* This is freed during event handling. */
6969 event->ws.value.execd_pathname = xstrdup (pathname);
6970 event->ws.kind = TARGET_WAITKIND_EXECD;
6971
6972 /* Skip the registers included in this packet, since
6973 they may be for an architecture different from the
6974 one used by the original program. */
6975 skipregs = 1;
6976 }
6977 else if (strprefix (p, p1, "create"))
6978 {
6979 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6980 p = strchrnul (p1 + 1, ';');
6981 }
6982 else
6983 {
6984 ULONGEST pnum;
6985 const char *p_temp;
6986
6987 if (skipregs)
6988 {
6989 p = strchrnul (p1 + 1, ';');
6990 p++;
6991 continue;
6992 }
6993
6994 /* Maybe a real ``P'' register number. */
6995 p_temp = unpack_varlen_hex (p, &pnum);
6996 /* If the first invalid character is the colon, we got a
6997 register number. Otherwise, it's an unknown stop
6998 reason. */
6999 if (p_temp == p1)
7000 {
7001 /* If we haven't parsed the event's thread yet, find
7002 it now, in order to find the architecture of the
7003 reported expedited registers. */
7004 if (event->ptid == null_ptid)
7005 {
7006 const char *thr = strstr (p1 + 1, ";thread:");
7007 if (thr != NULL)
7008 event->ptid = read_ptid (thr + strlen (";thread:"),
7009 NULL);
7010 else
7011 event->ptid = magic_null_ptid;
7012 }
7013
7014 if (rsa == NULL)
7015 {
7016 inferior *inf = (event->ptid == null_ptid
7017 ? NULL
7018 : find_inferior_ptid (event->ptid));
7019 /* If this is the first time we learn anything
7020 about this process, skip the registers
7021 included in this packet, since we don't yet
7022 know which architecture to use to parse them.
7023 We'll determine the architecture later when
7024 we process the stop reply and retrieve the
7025 target description, via
7026 remote_notice_new_inferior ->
7027 post_create_inferior. */
7028 if (inf == NULL)
7029 {
7030 p = strchrnul (p1 + 1, ';');
7031 p++;
7032 continue;
7033 }
7034
7035 event->arch = inf->gdbarch;
7036 rsa = get_remote_arch_state (event->arch);
7037 }
7038
7039 packet_reg *reg
7040 = packet_reg_from_pnum (event->arch, rsa, pnum);
7041 cached_reg_t cached_reg;
7042
7043 if (reg == NULL)
7044 error (_("Remote sent bad register number %s: %s\n\
7045 Packet: '%s'\n"),
7046 hex_string (pnum), p, buf);
7047
7048 cached_reg.num = reg->regnum;
7049 cached_reg.data = (gdb_byte *)
7050 xmalloc (register_size (event->arch, reg->regnum));
7051
7052 p = p1 + 1;
7053 fieldsize = hex2bin (p, cached_reg.data,
7054 register_size (event->arch, reg->regnum));
7055 p += 2 * fieldsize;
7056 if (fieldsize < register_size (event->arch, reg->regnum))
7057 warning (_("Remote reply is too short: %s"), buf);
7058
7059 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7060 }
7061 else
7062 {
7063 /* Not a number. Silently skip unknown optional
7064 info. */
7065 p = strchrnul (p1 + 1, ';');
7066 }
7067 }
7068
7069 if (*p != ';')
7070 error (_("Remote register badly formatted: %s\nhere: %s"),
7071 buf, p);
7072 ++p;
7073 }
7074
7075 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7076 break;
7077
7078 /* fall through */
7079 case 'S': /* Old style status, just signal only. */
7080 {
7081 int sig;
7082
7083 event->ws.kind = TARGET_WAITKIND_STOPPED;
7084 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7085 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7086 event->ws.value.sig = (enum gdb_signal) sig;
7087 else
7088 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7089 }
7090 break;
7091 case 'w': /* Thread exited. */
7092 {
7093 const char *p;
7094 ULONGEST value;
7095
7096 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7097 p = unpack_varlen_hex (&buf[1], &value);
7098 event->ws.value.integer = value;
7099 if (*p != ';')
7100 error (_("stop reply packet badly formatted: %s"), buf);
7101 event->ptid = read_ptid (++p, NULL);
7102 break;
7103 }
7104 case 'W': /* Target exited. */
7105 case 'X':
7106 {
7107 const char *p;
7108 int pid;
7109 ULONGEST value;
7110
7111 /* GDB used to accept only 2 hex chars here. Stubs should
7112 only send more if they detect GDB supports multi-process
7113 support. */
7114 p = unpack_varlen_hex (&buf[1], &value);
7115
7116 if (buf[0] == 'W')
7117 {
7118 /* The remote process exited. */
7119 event->ws.kind = TARGET_WAITKIND_EXITED;
7120 event->ws.value.integer = value;
7121 }
7122 else
7123 {
7124 /* The remote process exited with a signal. */
7125 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7126 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7127 event->ws.value.sig = (enum gdb_signal) value;
7128 else
7129 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7130 }
7131
7132 /* If no process is specified, assume inferior_ptid. */
7133 pid = ptid_get_pid (inferior_ptid);
7134 if (*p == '\0')
7135 ;
7136 else if (*p == ';')
7137 {
7138 p++;
7139
7140 if (*p == '\0')
7141 ;
7142 else if (startswith (p, "process:"))
7143 {
7144 ULONGEST upid;
7145
7146 p += sizeof ("process:") - 1;
7147 unpack_varlen_hex (p, &upid);
7148 pid = upid;
7149 }
7150 else
7151 error (_("unknown stop reply packet: %s"), buf);
7152 }
7153 else
7154 error (_("unknown stop reply packet: %s"), buf);
7155 event->ptid = pid_to_ptid (pid);
7156 }
7157 break;
7158 case 'N':
7159 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7160 event->ptid = minus_one_ptid;
7161 break;
7162 }
7163
7164 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7165 error (_("No process or thread specified in stop reply: %s"), buf);
7166 }
7167
7168 /* When the stub wants to tell GDB about a new notification reply, it
7169 sends a notification (%Stop, for example). Those can come it at
7170 any time, hence, we have to make sure that any pending
7171 putpkt/getpkt sequence we're making is finished, before querying
7172 the stub for more events with the corresponding ack command
7173 (vStopped, for example). E.g., if we started a vStopped sequence
7174 immediately upon receiving the notification, something like this
7175 could happen:
7176
7177 1.1) --> Hg 1
7178 1.2) <-- OK
7179 1.3) --> g
7180 1.4) <-- %Stop
7181 1.5) --> vStopped
7182 1.6) <-- (registers reply to step #1.3)
7183
7184 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7185 query.
7186
7187 To solve this, whenever we parse a %Stop notification successfully,
7188 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7189 doing whatever we were doing:
7190
7191 2.1) --> Hg 1
7192 2.2) <-- OK
7193 2.3) --> g
7194 2.4) <-- %Stop
7195 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7196 2.5) <-- (registers reply to step #2.3)
7197
7198 Eventualy after step #2.5, we return to the event loop, which
7199 notices there's an event on the
7200 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7201 associated callback --- the function below. At this point, we're
7202 always safe to start a vStopped sequence. :
7203
7204 2.6) --> vStopped
7205 2.7) <-- T05 thread:2
7206 2.8) --> vStopped
7207 2.9) --> OK
7208 */
7209
7210 void
7211 remote_notif_get_pending_events (struct notif_client *nc)
7212 {
7213 struct remote_state *rs = get_remote_state ();
7214
7215 if (rs->notif_state->pending_event[nc->id] != NULL)
7216 {
7217 if (notif_debug)
7218 fprintf_unfiltered (gdb_stdlog,
7219 "notif: process: '%s' ack pending event\n",
7220 nc->name);
7221
7222 /* acknowledge */
7223 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7224 rs->notif_state->pending_event[nc->id] = NULL;
7225
7226 while (1)
7227 {
7228 getpkt (&rs->buf, &rs->buf_size, 0);
7229 if (strcmp (rs->buf, "OK") == 0)
7230 break;
7231 else
7232 remote_notif_ack (nc, rs->buf);
7233 }
7234 }
7235 else
7236 {
7237 if (notif_debug)
7238 fprintf_unfiltered (gdb_stdlog,
7239 "notif: process: '%s' no pending reply\n",
7240 nc->name);
7241 }
7242 }
7243
7244 /* Called when it is decided that STOP_REPLY holds the info of the
7245 event that is to be returned to the core. This function always
7246 destroys STOP_REPLY. */
7247
7248 static ptid_t
7249 process_stop_reply (struct stop_reply *stop_reply,
7250 struct target_waitstatus *status)
7251 {
7252 ptid_t ptid;
7253
7254 *status = stop_reply->ws;
7255 ptid = stop_reply->ptid;
7256
7257 /* If no thread/process was reported by the stub, assume the current
7258 inferior. */
7259 if (ptid_equal (ptid, null_ptid))
7260 ptid = inferior_ptid;
7261
7262 if (status->kind != TARGET_WAITKIND_EXITED
7263 && status->kind != TARGET_WAITKIND_SIGNALLED
7264 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7265 {
7266 struct private_thread_info *remote_thr;
7267
7268 /* Expedited registers. */
7269 if (stop_reply->regcache)
7270 {
7271 struct regcache *regcache
7272 = get_thread_arch_regcache (ptid, stop_reply->arch);
7273 cached_reg_t *reg;
7274 int ix;
7275
7276 for (ix = 0;
7277 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7278 ix++)
7279 {
7280 regcache_raw_supply (regcache, reg->num, reg->data);
7281 xfree (reg->data);
7282 }
7283
7284 VEC_free (cached_reg_t, stop_reply->regcache);
7285 }
7286
7287 remote_notice_new_inferior (ptid, 0);
7288 remote_thr = get_private_info_ptid (ptid);
7289 remote_thr->core = stop_reply->core;
7290 remote_thr->stop_reason = stop_reply->stop_reason;
7291 remote_thr->watch_data_address = stop_reply->watch_data_address;
7292 remote_thr->vcont_resumed = 0;
7293 }
7294
7295 stop_reply_xfree (stop_reply);
7296 return ptid;
7297 }
7298
7299 /* The non-stop mode version of target_wait. */
7300
7301 static ptid_t
7302 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7303 {
7304 struct remote_state *rs = get_remote_state ();
7305 struct stop_reply *stop_reply;
7306 int ret;
7307 int is_notif = 0;
7308
7309 /* If in non-stop mode, get out of getpkt even if a
7310 notification is received. */
7311
7312 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7313 0 /* forever */, &is_notif);
7314 while (1)
7315 {
7316 if (ret != -1 && !is_notif)
7317 switch (rs->buf[0])
7318 {
7319 case 'E': /* Error of some sort. */
7320 /* We're out of sync with the target now. Did it continue
7321 or not? We can't tell which thread it was in non-stop,
7322 so just ignore this. */
7323 warning (_("Remote failure reply: %s"), rs->buf);
7324 break;
7325 case 'O': /* Console output. */
7326 remote_console_output (rs->buf + 1);
7327 break;
7328 default:
7329 warning (_("Invalid remote reply: %s"), rs->buf);
7330 break;
7331 }
7332
7333 /* Acknowledge a pending stop reply that may have arrived in the
7334 mean time. */
7335 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7336 remote_notif_get_pending_events (&notif_client_stop);
7337
7338 /* If indeed we noticed a stop reply, we're done. */
7339 stop_reply = queued_stop_reply (ptid);
7340 if (stop_reply != NULL)
7341 return process_stop_reply (stop_reply, status);
7342
7343 /* Still no event. If we're just polling for an event, then
7344 return to the event loop. */
7345 if (options & TARGET_WNOHANG)
7346 {
7347 status->kind = TARGET_WAITKIND_IGNORE;
7348 return minus_one_ptid;
7349 }
7350
7351 /* Otherwise do a blocking wait. */
7352 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7353 1 /* forever */, &is_notif);
7354 }
7355 }
7356
7357 /* Wait until the remote machine stops, then return, storing status in
7358 STATUS just as `wait' would. */
7359
7360 static ptid_t
7361 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7362 {
7363 struct remote_state *rs = get_remote_state ();
7364 ptid_t event_ptid = null_ptid;
7365 char *buf;
7366 struct stop_reply *stop_reply;
7367
7368 again:
7369
7370 status->kind = TARGET_WAITKIND_IGNORE;
7371 status->value.integer = 0;
7372
7373 stop_reply = queued_stop_reply (ptid);
7374 if (stop_reply != NULL)
7375 return process_stop_reply (stop_reply, status);
7376
7377 if (rs->cached_wait_status)
7378 /* Use the cached wait status, but only once. */
7379 rs->cached_wait_status = 0;
7380 else
7381 {
7382 int ret;
7383 int is_notif;
7384 int forever = ((options & TARGET_WNOHANG) == 0
7385 && wait_forever_enabled_p);
7386
7387 if (!rs->waiting_for_stop_reply)
7388 {
7389 status->kind = TARGET_WAITKIND_NO_RESUMED;
7390 return minus_one_ptid;
7391 }
7392
7393 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7394 _never_ wait for ever -> test on target_is_async_p().
7395 However, before we do that we need to ensure that the caller
7396 knows how to take the target into/out of async mode. */
7397 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7398 forever, &is_notif);
7399
7400 /* GDB gets a notification. Return to core as this event is
7401 not interesting. */
7402 if (ret != -1 && is_notif)
7403 return minus_one_ptid;
7404
7405 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7406 return minus_one_ptid;
7407 }
7408
7409 buf = rs->buf;
7410
7411 /* Assume that the target has acknowledged Ctrl-C unless we receive
7412 an 'F' or 'O' packet. */
7413 if (buf[0] != 'F' && buf[0] != 'O')
7414 rs->ctrlc_pending_p = 0;
7415
7416 switch (buf[0])
7417 {
7418 case 'E': /* Error of some sort. */
7419 /* We're out of sync with the target now. Did it continue or
7420 not? Not is more likely, so report a stop. */
7421 rs->waiting_for_stop_reply = 0;
7422
7423 warning (_("Remote failure reply: %s"), buf);
7424 status->kind = TARGET_WAITKIND_STOPPED;
7425 status->value.sig = GDB_SIGNAL_0;
7426 break;
7427 case 'F': /* File-I/O request. */
7428 /* GDB may access the inferior memory while handling the File-I/O
7429 request, but we don't want GDB accessing memory while waiting
7430 for a stop reply. See the comments in putpkt_binary. Set
7431 waiting_for_stop_reply to 0 temporarily. */
7432 rs->waiting_for_stop_reply = 0;
7433 remote_fileio_request (buf, rs->ctrlc_pending_p);
7434 rs->ctrlc_pending_p = 0;
7435 /* GDB handled the File-I/O request, and the target is running
7436 again. Keep waiting for events. */
7437 rs->waiting_for_stop_reply = 1;
7438 break;
7439 case 'N': case 'T': case 'S': case 'X': case 'W':
7440 {
7441 struct stop_reply *stop_reply;
7442
7443 /* There is a stop reply to handle. */
7444 rs->waiting_for_stop_reply = 0;
7445
7446 stop_reply
7447 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7448 rs->buf);
7449
7450 event_ptid = process_stop_reply (stop_reply, status);
7451 break;
7452 }
7453 case 'O': /* Console output. */
7454 remote_console_output (buf + 1);
7455 break;
7456 case '\0':
7457 if (rs->last_sent_signal != GDB_SIGNAL_0)
7458 {
7459 /* Zero length reply means that we tried 'S' or 'C' and the
7460 remote system doesn't support it. */
7461 target_terminal::ours_for_output ();
7462 printf_filtered
7463 ("Can't send signals to this remote system. %s not sent.\n",
7464 gdb_signal_to_name (rs->last_sent_signal));
7465 rs->last_sent_signal = GDB_SIGNAL_0;
7466 target_terminal::inferior ();
7467
7468 strcpy (buf, rs->last_sent_step ? "s" : "c");
7469 putpkt (buf);
7470 break;
7471 }
7472 /* else fallthrough */
7473 default:
7474 warning (_("Invalid remote reply: %s"), buf);
7475 break;
7476 }
7477
7478 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7479 return minus_one_ptid;
7480 else if (status->kind == TARGET_WAITKIND_IGNORE)
7481 {
7482 /* Nothing interesting happened. If we're doing a non-blocking
7483 poll, we're done. Otherwise, go back to waiting. */
7484 if (options & TARGET_WNOHANG)
7485 return minus_one_ptid;
7486 else
7487 goto again;
7488 }
7489 else if (status->kind != TARGET_WAITKIND_EXITED
7490 && status->kind != TARGET_WAITKIND_SIGNALLED)
7491 {
7492 if (!ptid_equal (event_ptid, null_ptid))
7493 record_currthread (rs, event_ptid);
7494 else
7495 event_ptid = inferior_ptid;
7496 }
7497 else
7498 /* A process exit. Invalidate our notion of current thread. */
7499 record_currthread (rs, minus_one_ptid);
7500
7501 return event_ptid;
7502 }
7503
7504 /* Wait until the remote machine stops, then return, storing status in
7505 STATUS just as `wait' would. */
7506
7507 static ptid_t
7508 remote_wait (struct target_ops *ops,
7509 ptid_t ptid, struct target_waitstatus *status, int options)
7510 {
7511 ptid_t event_ptid;
7512
7513 if (target_is_non_stop_p ())
7514 event_ptid = remote_wait_ns (ptid, status, options);
7515 else
7516 event_ptid = remote_wait_as (ptid, status, options);
7517
7518 if (target_is_async_p ())
7519 {
7520 /* If there are are events left in the queue tell the event loop
7521 to return here. */
7522 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7523 mark_async_event_handler (remote_async_inferior_event_token);
7524 }
7525
7526 return event_ptid;
7527 }
7528
7529 /* Fetch a single register using a 'p' packet. */
7530
7531 static int
7532 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7533 {
7534 struct gdbarch *gdbarch = regcache->arch ();
7535 struct remote_state *rs = get_remote_state ();
7536 char *buf, *p;
7537 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7538 int i;
7539
7540 if (packet_support (PACKET_p) == PACKET_DISABLE)
7541 return 0;
7542
7543 if (reg->pnum == -1)
7544 return 0;
7545
7546 p = rs->buf;
7547 *p++ = 'p';
7548 p += hexnumstr (p, reg->pnum);
7549 *p++ = '\0';
7550 putpkt (rs->buf);
7551 getpkt (&rs->buf, &rs->buf_size, 0);
7552
7553 buf = rs->buf;
7554
7555 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7556 {
7557 case PACKET_OK:
7558 break;
7559 case PACKET_UNKNOWN:
7560 return 0;
7561 case PACKET_ERROR:
7562 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7563 gdbarch_register_name (regcache->arch (),
7564 reg->regnum),
7565 buf);
7566 }
7567
7568 /* If this register is unfetchable, tell the regcache. */
7569 if (buf[0] == 'x')
7570 {
7571 regcache_raw_supply (regcache, reg->regnum, NULL);
7572 return 1;
7573 }
7574
7575 /* Otherwise, parse and supply the value. */
7576 p = buf;
7577 i = 0;
7578 while (p[0] != 0)
7579 {
7580 if (p[1] == 0)
7581 error (_("fetch_register_using_p: early buf termination"));
7582
7583 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7584 p += 2;
7585 }
7586 regcache_raw_supply (regcache, reg->regnum, regp);
7587 return 1;
7588 }
7589
7590 /* Fetch the registers included in the target's 'g' packet. */
7591
7592 static int
7593 send_g_packet (void)
7594 {
7595 struct remote_state *rs = get_remote_state ();
7596 int buf_len;
7597
7598 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7599 remote_send (&rs->buf, &rs->buf_size);
7600
7601 /* We can get out of synch in various cases. If the first character
7602 in the buffer is not a hex character, assume that has happened
7603 and try to fetch another packet to read. */
7604 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7605 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7606 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7607 && rs->buf[0] != 'x') /* New: unavailable register value. */
7608 {
7609 if (remote_debug)
7610 fprintf_unfiltered (gdb_stdlog,
7611 "Bad register packet; fetching a new packet\n");
7612 getpkt (&rs->buf, &rs->buf_size, 0);
7613 }
7614
7615 buf_len = strlen (rs->buf);
7616
7617 /* Sanity check the received packet. */
7618 if (buf_len % 2 != 0)
7619 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7620
7621 return buf_len / 2;
7622 }
7623
7624 static void
7625 process_g_packet (struct regcache *regcache)
7626 {
7627 struct gdbarch *gdbarch = regcache->arch ();
7628 struct remote_state *rs = get_remote_state ();
7629 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7630 int i, buf_len;
7631 char *p;
7632 char *regs;
7633
7634 buf_len = strlen (rs->buf);
7635
7636 /* Further sanity checks, with knowledge of the architecture. */
7637 if (buf_len > 2 * rsa->sizeof_g_packet)
7638 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7639 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7640
7641 /* Save the size of the packet sent to us by the target. It is used
7642 as a heuristic when determining the max size of packets that the
7643 target can safely receive. */
7644 if (rsa->actual_register_packet_size == 0)
7645 rsa->actual_register_packet_size = buf_len;
7646
7647 /* If this is smaller than we guessed the 'g' packet would be,
7648 update our records. A 'g' reply that doesn't include a register's
7649 value implies either that the register is not available, or that
7650 the 'p' packet must be used. */
7651 if (buf_len < 2 * rsa->sizeof_g_packet)
7652 {
7653 long sizeof_g_packet = buf_len / 2;
7654
7655 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7656 {
7657 long offset = rsa->regs[i].offset;
7658 long reg_size = register_size (gdbarch, i);
7659
7660 if (rsa->regs[i].pnum == -1)
7661 continue;
7662
7663 if (offset >= sizeof_g_packet)
7664 rsa->regs[i].in_g_packet = 0;
7665 else if (offset + reg_size > sizeof_g_packet)
7666 error (_("Truncated register %d in remote 'g' packet"), i);
7667 else
7668 rsa->regs[i].in_g_packet = 1;
7669 }
7670
7671 /* Looks valid enough, we can assume this is the correct length
7672 for a 'g' packet. It's important not to adjust
7673 rsa->sizeof_g_packet if we have truncated registers otherwise
7674 this "if" won't be run the next time the method is called
7675 with a packet of the same size and one of the internal errors
7676 below will trigger instead. */
7677 rsa->sizeof_g_packet = sizeof_g_packet;
7678 }
7679
7680 regs = (char *) alloca (rsa->sizeof_g_packet);
7681
7682 /* Unimplemented registers read as all bits zero. */
7683 memset (regs, 0, rsa->sizeof_g_packet);
7684
7685 /* Reply describes registers byte by byte, each byte encoded as two
7686 hex characters. Suck them all up, then supply them to the
7687 register cacheing/storage mechanism. */
7688
7689 p = rs->buf;
7690 for (i = 0; i < rsa->sizeof_g_packet; i++)
7691 {
7692 if (p[0] == 0 || p[1] == 0)
7693 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7694 internal_error (__FILE__, __LINE__,
7695 _("unexpected end of 'g' packet reply"));
7696
7697 if (p[0] == 'x' && p[1] == 'x')
7698 regs[i] = 0; /* 'x' */
7699 else
7700 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7701 p += 2;
7702 }
7703
7704 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7705 {
7706 struct packet_reg *r = &rsa->regs[i];
7707 long reg_size = register_size (gdbarch, i);
7708
7709 if (r->in_g_packet)
7710 {
7711 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7712 /* This shouldn't happen - we adjusted in_g_packet above. */
7713 internal_error (__FILE__, __LINE__,
7714 _("unexpected end of 'g' packet reply"));
7715 else if (rs->buf[r->offset * 2] == 'x')
7716 {
7717 gdb_assert (r->offset * 2 < strlen (rs->buf));
7718 /* The register isn't available, mark it as such (at
7719 the same time setting the value to zero). */
7720 regcache_raw_supply (regcache, r->regnum, NULL);
7721 }
7722 else
7723 regcache_raw_supply (regcache, r->regnum,
7724 regs + r->offset);
7725 }
7726 }
7727 }
7728
7729 static void
7730 fetch_registers_using_g (struct regcache *regcache)
7731 {
7732 send_g_packet ();
7733 process_g_packet (regcache);
7734 }
7735
7736 /* Make the remote selected traceframe match GDB's selected
7737 traceframe. */
7738
7739 static void
7740 set_remote_traceframe (void)
7741 {
7742 int newnum;
7743 struct remote_state *rs = get_remote_state ();
7744
7745 if (rs->remote_traceframe_number == get_traceframe_number ())
7746 return;
7747
7748 /* Avoid recursion, remote_trace_find calls us again. */
7749 rs->remote_traceframe_number = get_traceframe_number ();
7750
7751 newnum = target_trace_find (tfind_number,
7752 get_traceframe_number (), 0, 0, NULL);
7753
7754 /* Should not happen. If it does, all bets are off. */
7755 if (newnum != get_traceframe_number ())
7756 warning (_("could not set remote traceframe"));
7757 }
7758
7759 static void
7760 remote_fetch_registers (struct target_ops *ops,
7761 struct regcache *regcache, int regnum)
7762 {
7763 struct gdbarch *gdbarch = regcache->arch ();
7764 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7765 int i;
7766
7767 set_remote_traceframe ();
7768 set_general_thread (regcache_get_ptid (regcache));
7769
7770 if (regnum >= 0)
7771 {
7772 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7773
7774 gdb_assert (reg != NULL);
7775
7776 /* If this register might be in the 'g' packet, try that first -
7777 we are likely to read more than one register. If this is the
7778 first 'g' packet, we might be overly optimistic about its
7779 contents, so fall back to 'p'. */
7780 if (reg->in_g_packet)
7781 {
7782 fetch_registers_using_g (regcache);
7783 if (reg->in_g_packet)
7784 return;
7785 }
7786
7787 if (fetch_register_using_p (regcache, reg))
7788 return;
7789
7790 /* This register is not available. */
7791 regcache_raw_supply (regcache, reg->regnum, NULL);
7792
7793 return;
7794 }
7795
7796 fetch_registers_using_g (regcache);
7797
7798 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7799 if (!rsa->regs[i].in_g_packet)
7800 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7801 {
7802 /* This register is not available. */
7803 regcache_raw_supply (regcache, i, NULL);
7804 }
7805 }
7806
7807 /* Prepare to store registers. Since we may send them all (using a
7808 'G' request), we have to read out the ones we don't want to change
7809 first. */
7810
7811 static void
7812 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7813 {
7814 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7815 int i;
7816
7817 /* Make sure the entire registers array is valid. */
7818 switch (packet_support (PACKET_P))
7819 {
7820 case PACKET_DISABLE:
7821 case PACKET_SUPPORT_UNKNOWN:
7822 /* Make sure all the necessary registers are cached. */
7823 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7824 if (rsa->regs[i].in_g_packet)
7825 regcache_raw_update (regcache, rsa->regs[i].regnum);
7826 break;
7827 case PACKET_ENABLE:
7828 break;
7829 }
7830 }
7831
7832 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7833 packet was not recognized. */
7834
7835 static int
7836 store_register_using_P (const struct regcache *regcache,
7837 struct packet_reg *reg)
7838 {
7839 struct gdbarch *gdbarch = regcache->arch ();
7840 struct remote_state *rs = get_remote_state ();
7841 /* Try storing a single register. */
7842 char *buf = rs->buf;
7843 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7844 char *p;
7845
7846 if (packet_support (PACKET_P) == PACKET_DISABLE)
7847 return 0;
7848
7849 if (reg->pnum == -1)
7850 return 0;
7851
7852 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7853 p = buf + strlen (buf);
7854 regcache_raw_collect (regcache, reg->regnum, regp);
7855 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7856 putpkt (rs->buf);
7857 getpkt (&rs->buf, &rs->buf_size, 0);
7858
7859 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7860 {
7861 case PACKET_OK:
7862 return 1;
7863 case PACKET_ERROR:
7864 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7865 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7866 case PACKET_UNKNOWN:
7867 return 0;
7868 default:
7869 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7870 }
7871 }
7872
7873 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7874 contents of the register cache buffer. FIXME: ignores errors. */
7875
7876 static void
7877 store_registers_using_G (const struct regcache *regcache)
7878 {
7879 struct remote_state *rs = get_remote_state ();
7880 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7881 gdb_byte *regs;
7882 char *p;
7883
7884 /* Extract all the registers in the regcache copying them into a
7885 local buffer. */
7886 {
7887 int i;
7888
7889 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7890 memset (regs, 0, rsa->sizeof_g_packet);
7891 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7892 {
7893 struct packet_reg *r = &rsa->regs[i];
7894
7895 if (r->in_g_packet)
7896 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7897 }
7898 }
7899
7900 /* Command describes registers byte by byte,
7901 each byte encoded as two hex characters. */
7902 p = rs->buf;
7903 *p++ = 'G';
7904 bin2hex (regs, p, rsa->sizeof_g_packet);
7905 putpkt (rs->buf);
7906 getpkt (&rs->buf, &rs->buf_size, 0);
7907 if (packet_check_result (rs->buf) == PACKET_ERROR)
7908 error (_("Could not write registers; remote failure reply '%s'"),
7909 rs->buf);
7910 }
7911
7912 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7913 of the register cache buffer. FIXME: ignores errors. */
7914
7915 static void
7916 remote_store_registers (struct target_ops *ops,
7917 struct regcache *regcache, int regnum)
7918 {
7919 struct gdbarch *gdbarch = regcache->arch ();
7920 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7921 int i;
7922
7923 set_remote_traceframe ();
7924 set_general_thread (regcache_get_ptid (regcache));
7925
7926 if (regnum >= 0)
7927 {
7928 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7929
7930 gdb_assert (reg != NULL);
7931
7932 /* Always prefer to store registers using the 'P' packet if
7933 possible; we often change only a small number of registers.
7934 Sometimes we change a larger number; we'd need help from a
7935 higher layer to know to use 'G'. */
7936 if (store_register_using_P (regcache, reg))
7937 return;
7938
7939 /* For now, don't complain if we have no way to write the
7940 register. GDB loses track of unavailable registers too
7941 easily. Some day, this may be an error. We don't have
7942 any way to read the register, either... */
7943 if (!reg->in_g_packet)
7944 return;
7945
7946 store_registers_using_G (regcache);
7947 return;
7948 }
7949
7950 store_registers_using_G (regcache);
7951
7952 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7953 if (!rsa->regs[i].in_g_packet)
7954 if (!store_register_using_P (regcache, &rsa->regs[i]))
7955 /* See above for why we do not issue an error here. */
7956 continue;
7957 }
7958 \f
7959
7960 /* Return the number of hex digits in num. */
7961
7962 static int
7963 hexnumlen (ULONGEST num)
7964 {
7965 int i;
7966
7967 for (i = 0; num != 0; i++)
7968 num >>= 4;
7969
7970 return std::max (i, 1);
7971 }
7972
7973 /* Set BUF to the minimum number of hex digits representing NUM. */
7974
7975 static int
7976 hexnumstr (char *buf, ULONGEST num)
7977 {
7978 int len = hexnumlen (num);
7979
7980 return hexnumnstr (buf, num, len);
7981 }
7982
7983
7984 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7985
7986 static int
7987 hexnumnstr (char *buf, ULONGEST num, int width)
7988 {
7989 int i;
7990
7991 buf[width] = '\0';
7992
7993 for (i = width - 1; i >= 0; i--)
7994 {
7995 buf[i] = "0123456789abcdef"[(num & 0xf)];
7996 num >>= 4;
7997 }
7998
7999 return width;
8000 }
8001
8002 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8003
8004 static CORE_ADDR
8005 remote_address_masked (CORE_ADDR addr)
8006 {
8007 unsigned int address_size = remote_address_size;
8008
8009 /* If "remoteaddresssize" was not set, default to target address size. */
8010 if (!address_size)
8011 address_size = gdbarch_addr_bit (target_gdbarch ());
8012
8013 if (address_size > 0
8014 && address_size < (sizeof (ULONGEST) * 8))
8015 {
8016 /* Only create a mask when that mask can safely be constructed
8017 in a ULONGEST variable. */
8018 ULONGEST mask = 1;
8019
8020 mask = (mask << address_size) - 1;
8021 addr &= mask;
8022 }
8023 return addr;
8024 }
8025
8026 /* Determine whether the remote target supports binary downloading.
8027 This is accomplished by sending a no-op memory write of zero length
8028 to the target at the specified address. It does not suffice to send
8029 the whole packet, since many stubs strip the eighth bit and
8030 subsequently compute a wrong checksum, which causes real havoc with
8031 remote_write_bytes.
8032
8033 NOTE: This can still lose if the serial line is not eight-bit
8034 clean. In cases like this, the user should clear "remote
8035 X-packet". */
8036
8037 static void
8038 check_binary_download (CORE_ADDR addr)
8039 {
8040 struct remote_state *rs = get_remote_state ();
8041
8042 switch (packet_support (PACKET_X))
8043 {
8044 case PACKET_DISABLE:
8045 break;
8046 case PACKET_ENABLE:
8047 break;
8048 case PACKET_SUPPORT_UNKNOWN:
8049 {
8050 char *p;
8051
8052 p = rs->buf;
8053 *p++ = 'X';
8054 p += hexnumstr (p, (ULONGEST) addr);
8055 *p++ = ',';
8056 p += hexnumstr (p, (ULONGEST) 0);
8057 *p++ = ':';
8058 *p = '\0';
8059
8060 putpkt_binary (rs->buf, (int) (p - rs->buf));
8061 getpkt (&rs->buf, &rs->buf_size, 0);
8062
8063 if (rs->buf[0] == '\0')
8064 {
8065 if (remote_debug)
8066 fprintf_unfiltered (gdb_stdlog,
8067 "binary downloading NOT "
8068 "supported by target\n");
8069 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8070 }
8071 else
8072 {
8073 if (remote_debug)
8074 fprintf_unfiltered (gdb_stdlog,
8075 "binary downloading supported by target\n");
8076 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8077 }
8078 break;
8079 }
8080 }
8081 }
8082
8083 /* Helper function to resize the payload in order to try to get a good
8084 alignment. We try to write an amount of data such that the next write will
8085 start on an address aligned on REMOTE_ALIGN_WRITES. */
8086
8087 static int
8088 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8089 {
8090 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8091 }
8092
8093 /* Write memory data directly to the remote machine.
8094 This does not inform the data cache; the data cache uses this.
8095 HEADER is the starting part of the packet.
8096 MEMADDR is the address in the remote memory space.
8097 MYADDR is the address of the buffer in our space.
8098 LEN_UNITS is the number of addressable units to write.
8099 UNIT_SIZE is the length in bytes of an addressable unit.
8100 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8101 should send data as binary ('X'), or hex-encoded ('M').
8102
8103 The function creates packet of the form
8104 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8105
8106 where encoding of <DATA> is terminated by PACKET_FORMAT.
8107
8108 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8109 are omitted.
8110
8111 Return the transferred status, error or OK (an
8112 'enum target_xfer_status' value). Save the number of addressable units
8113 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8114
8115 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8116 exchange between gdb and the stub could look like (?? in place of the
8117 checksum):
8118
8119 -> $m1000,4#??
8120 <- aaaabbbbccccdddd
8121
8122 -> $M1000,3:eeeeffffeeee#??
8123 <- OK
8124
8125 -> $m1000,4#??
8126 <- eeeeffffeeeedddd */
8127
8128 static enum target_xfer_status
8129 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8130 const gdb_byte *myaddr, ULONGEST len_units,
8131 int unit_size, ULONGEST *xfered_len_units,
8132 char packet_format, int use_length)
8133 {
8134 struct remote_state *rs = get_remote_state ();
8135 char *p;
8136 char *plen = NULL;
8137 int plenlen = 0;
8138 int todo_units;
8139 int units_written;
8140 int payload_capacity_bytes;
8141 int payload_length_bytes;
8142
8143 if (packet_format != 'X' && packet_format != 'M')
8144 internal_error (__FILE__, __LINE__,
8145 _("remote_write_bytes_aux: bad packet format"));
8146
8147 if (len_units == 0)
8148 return TARGET_XFER_EOF;
8149
8150 payload_capacity_bytes = get_memory_write_packet_size ();
8151
8152 /* The packet buffer will be large enough for the payload;
8153 get_memory_packet_size ensures this. */
8154 rs->buf[0] = '\0';
8155
8156 /* Compute the size of the actual payload by subtracting out the
8157 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8158
8159 payload_capacity_bytes -= strlen ("$,:#NN");
8160 if (!use_length)
8161 /* The comma won't be used. */
8162 payload_capacity_bytes += 1;
8163 payload_capacity_bytes -= strlen (header);
8164 payload_capacity_bytes -= hexnumlen (memaddr);
8165
8166 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8167
8168 strcat (rs->buf, header);
8169 p = rs->buf + strlen (header);
8170
8171 /* Compute a best guess of the number of bytes actually transfered. */
8172 if (packet_format == 'X')
8173 {
8174 /* Best guess at number of bytes that will fit. */
8175 todo_units = std::min (len_units,
8176 (ULONGEST) payload_capacity_bytes / unit_size);
8177 if (use_length)
8178 payload_capacity_bytes -= hexnumlen (todo_units);
8179 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8180 }
8181 else
8182 {
8183 /* Number of bytes that will fit. */
8184 todo_units
8185 = std::min (len_units,
8186 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8187 if (use_length)
8188 payload_capacity_bytes -= hexnumlen (todo_units);
8189 todo_units = std::min (todo_units,
8190 (payload_capacity_bytes / unit_size) / 2);
8191 }
8192
8193 if (todo_units <= 0)
8194 internal_error (__FILE__, __LINE__,
8195 _("minimum packet size too small to write data"));
8196
8197 /* If we already need another packet, then try to align the end
8198 of this packet to a useful boundary. */
8199 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8200 todo_units = align_for_efficient_write (todo_units, memaddr);
8201
8202 /* Append "<memaddr>". */
8203 memaddr = remote_address_masked (memaddr);
8204 p += hexnumstr (p, (ULONGEST) memaddr);
8205
8206 if (use_length)
8207 {
8208 /* Append ",". */
8209 *p++ = ',';
8210
8211 /* Append the length and retain its location and size. It may need to be
8212 adjusted once the packet body has been created. */
8213 plen = p;
8214 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8215 p += plenlen;
8216 }
8217
8218 /* Append ":". */
8219 *p++ = ':';
8220 *p = '\0';
8221
8222 /* Append the packet body. */
8223 if (packet_format == 'X')
8224 {
8225 /* Binary mode. Send target system values byte by byte, in
8226 increasing byte addresses. Only escape certain critical
8227 characters. */
8228 payload_length_bytes =
8229 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8230 &units_written, payload_capacity_bytes);
8231
8232 /* If not all TODO units fit, then we'll need another packet. Make
8233 a second try to keep the end of the packet aligned. Don't do
8234 this if the packet is tiny. */
8235 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8236 {
8237 int new_todo_units;
8238
8239 new_todo_units = align_for_efficient_write (units_written, memaddr);
8240
8241 if (new_todo_units != units_written)
8242 payload_length_bytes =
8243 remote_escape_output (myaddr, new_todo_units, unit_size,
8244 (gdb_byte *) p, &units_written,
8245 payload_capacity_bytes);
8246 }
8247
8248 p += payload_length_bytes;
8249 if (use_length && units_written < todo_units)
8250 {
8251 /* Escape chars have filled up the buffer prematurely,
8252 and we have actually sent fewer units than planned.
8253 Fix-up the length field of the packet. Use the same
8254 number of characters as before. */
8255 plen += hexnumnstr (plen, (ULONGEST) units_written,
8256 plenlen);
8257 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8258 }
8259 }
8260 else
8261 {
8262 /* Normal mode: Send target system values byte by byte, in
8263 increasing byte addresses. Each byte is encoded as a two hex
8264 value. */
8265 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8266 units_written = todo_units;
8267 }
8268
8269 putpkt_binary (rs->buf, (int) (p - rs->buf));
8270 getpkt (&rs->buf, &rs->buf_size, 0);
8271
8272 if (rs->buf[0] == 'E')
8273 return TARGET_XFER_E_IO;
8274
8275 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8276 send fewer units than we'd planned. */
8277 *xfered_len_units = (ULONGEST) units_written;
8278 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8279 }
8280
8281 /* Write memory data directly to the remote machine.
8282 This does not inform the data cache; the data cache uses this.
8283 MEMADDR is the address in the remote memory space.
8284 MYADDR is the address of the buffer in our space.
8285 LEN is the number of bytes.
8286
8287 Return the transferred status, error or OK (an
8288 'enum target_xfer_status' value). Save the number of bytes
8289 transferred in *XFERED_LEN. Only transfer a single packet. */
8290
8291 static enum target_xfer_status
8292 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8293 int unit_size, ULONGEST *xfered_len)
8294 {
8295 const char *packet_format = NULL;
8296
8297 /* Check whether the target supports binary download. */
8298 check_binary_download (memaddr);
8299
8300 switch (packet_support (PACKET_X))
8301 {
8302 case PACKET_ENABLE:
8303 packet_format = "X";
8304 break;
8305 case PACKET_DISABLE:
8306 packet_format = "M";
8307 break;
8308 case PACKET_SUPPORT_UNKNOWN:
8309 internal_error (__FILE__, __LINE__,
8310 _("remote_write_bytes: bad internal state"));
8311 default:
8312 internal_error (__FILE__, __LINE__, _("bad switch"));
8313 }
8314
8315 return remote_write_bytes_aux (packet_format,
8316 memaddr, myaddr, len, unit_size, xfered_len,
8317 packet_format[0], 1);
8318 }
8319
8320 /* Read memory data directly from the remote machine.
8321 This does not use the data cache; the data cache uses this.
8322 MEMADDR is the address in the remote memory space.
8323 MYADDR is the address of the buffer in our space.
8324 LEN_UNITS is the number of addressable memory units to read..
8325 UNIT_SIZE is the length in bytes of an addressable unit.
8326
8327 Return the transferred status, error or OK (an
8328 'enum target_xfer_status' value). Save the number of bytes
8329 transferred in *XFERED_LEN_UNITS.
8330
8331 See the comment of remote_write_bytes_aux for an example of
8332 memory read/write exchange between gdb and the stub. */
8333
8334 static enum target_xfer_status
8335 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8336 int unit_size, ULONGEST *xfered_len_units)
8337 {
8338 struct remote_state *rs = get_remote_state ();
8339 int buf_size_bytes; /* Max size of packet output buffer. */
8340 char *p;
8341 int todo_units;
8342 int decoded_bytes;
8343
8344 buf_size_bytes = get_memory_read_packet_size ();
8345 /* The packet buffer will be large enough for the payload;
8346 get_memory_packet_size ensures this. */
8347
8348 /* Number of units that will fit. */
8349 todo_units = std::min (len_units,
8350 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8351
8352 /* Construct "m"<memaddr>","<len>". */
8353 memaddr = remote_address_masked (memaddr);
8354 p = rs->buf;
8355 *p++ = 'm';
8356 p += hexnumstr (p, (ULONGEST) memaddr);
8357 *p++ = ',';
8358 p += hexnumstr (p, (ULONGEST) todo_units);
8359 *p = '\0';
8360 putpkt (rs->buf);
8361 getpkt (&rs->buf, &rs->buf_size, 0);
8362 if (rs->buf[0] == 'E'
8363 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8364 && rs->buf[3] == '\0')
8365 return TARGET_XFER_E_IO;
8366 /* Reply describes memory byte by byte, each byte encoded as two hex
8367 characters. */
8368 p = rs->buf;
8369 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8370 /* Return what we have. Let higher layers handle partial reads. */
8371 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8372 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8373 }
8374
8375 /* Using the set of read-only target sections of remote, read live
8376 read-only memory.
8377
8378 For interface/parameters/return description see target.h,
8379 to_xfer_partial. */
8380
8381 static enum target_xfer_status
8382 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8383 ULONGEST memaddr, ULONGEST len,
8384 int unit_size, ULONGEST *xfered_len)
8385 {
8386 struct target_section *secp;
8387 struct target_section_table *table;
8388
8389 secp = target_section_by_addr (ops, memaddr);
8390 if (secp != NULL
8391 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8392 secp->the_bfd_section)
8393 & SEC_READONLY))
8394 {
8395 struct target_section *p;
8396 ULONGEST memend = memaddr + len;
8397
8398 table = target_get_section_table (ops);
8399
8400 for (p = table->sections; p < table->sections_end; p++)
8401 {
8402 if (memaddr >= p->addr)
8403 {
8404 if (memend <= p->endaddr)
8405 {
8406 /* Entire transfer is within this section. */
8407 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8408 xfered_len);
8409 }
8410 else if (memaddr >= p->endaddr)
8411 {
8412 /* This section ends before the transfer starts. */
8413 continue;
8414 }
8415 else
8416 {
8417 /* This section overlaps the transfer. Just do half. */
8418 len = p->endaddr - memaddr;
8419 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8420 xfered_len);
8421 }
8422 }
8423 }
8424 }
8425
8426 return TARGET_XFER_EOF;
8427 }
8428
8429 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8430 first if the requested memory is unavailable in traceframe.
8431 Otherwise, fall back to remote_read_bytes_1. */
8432
8433 static enum target_xfer_status
8434 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8435 gdb_byte *myaddr, ULONGEST len, int unit_size,
8436 ULONGEST *xfered_len)
8437 {
8438 if (len == 0)
8439 return TARGET_XFER_EOF;
8440
8441 if (get_traceframe_number () != -1)
8442 {
8443 std::vector<mem_range> available;
8444
8445 /* If we fail to get the set of available memory, then the
8446 target does not support querying traceframe info, and so we
8447 attempt reading from the traceframe anyway (assuming the
8448 target implements the old QTro packet then). */
8449 if (traceframe_available_memory (&available, memaddr, len))
8450 {
8451 if (available.empty () || available[0].start != memaddr)
8452 {
8453 enum target_xfer_status res;
8454
8455 /* Don't read into the traceframe's available
8456 memory. */
8457 if (!available.empty ())
8458 {
8459 LONGEST oldlen = len;
8460
8461 len = available[0].start - memaddr;
8462 gdb_assert (len <= oldlen);
8463 }
8464
8465 /* This goes through the topmost target again. */
8466 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8467 len, unit_size, xfered_len);
8468 if (res == TARGET_XFER_OK)
8469 return TARGET_XFER_OK;
8470 else
8471 {
8472 /* No use trying further, we know some memory starting
8473 at MEMADDR isn't available. */
8474 *xfered_len = len;
8475 return (*xfered_len != 0) ?
8476 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8477 }
8478 }
8479
8480 /* Don't try to read more than how much is available, in
8481 case the target implements the deprecated QTro packet to
8482 cater for older GDBs (the target's knowledge of read-only
8483 sections may be outdated by now). */
8484 len = available[0].length;
8485 }
8486 }
8487
8488 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8489 }
8490
8491 \f
8492
8493 /* Sends a packet with content determined by the printf format string
8494 FORMAT and the remaining arguments, then gets the reply. Returns
8495 whether the packet was a success, a failure, or unknown. */
8496
8497 static enum packet_result remote_send_printf (const char *format, ...)
8498 ATTRIBUTE_PRINTF (1, 2);
8499
8500 static enum packet_result
8501 remote_send_printf (const char *format, ...)
8502 {
8503 struct remote_state *rs = get_remote_state ();
8504 int max_size = get_remote_packet_size ();
8505 va_list ap;
8506
8507 va_start (ap, format);
8508
8509 rs->buf[0] = '\0';
8510 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8511 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8512
8513 if (putpkt (rs->buf) < 0)
8514 error (_("Communication problem with target."));
8515
8516 rs->buf[0] = '\0';
8517 getpkt (&rs->buf, &rs->buf_size, 0);
8518
8519 return packet_check_result (rs->buf);
8520 }
8521
8522 /* Flash writing can take quite some time. We'll set
8523 effectively infinite timeout for flash operations.
8524 In future, we'll need to decide on a better approach. */
8525 static const int remote_flash_timeout = 1000;
8526
8527 static void
8528 remote_flash_erase (struct target_ops *ops,
8529 ULONGEST address, LONGEST length)
8530 {
8531 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8532 enum packet_result ret;
8533 scoped_restore restore_timeout
8534 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8535
8536 ret = remote_send_printf ("vFlashErase:%s,%s",
8537 phex (address, addr_size),
8538 phex (length, 4));
8539 switch (ret)
8540 {
8541 case PACKET_UNKNOWN:
8542 error (_("Remote target does not support flash erase"));
8543 case PACKET_ERROR:
8544 error (_("Error erasing flash with vFlashErase packet"));
8545 default:
8546 break;
8547 }
8548 }
8549
8550 static enum target_xfer_status
8551 remote_flash_write (struct target_ops *ops, ULONGEST address,
8552 ULONGEST length, ULONGEST *xfered_len,
8553 const gdb_byte *data)
8554 {
8555 scoped_restore restore_timeout
8556 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8557 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8558 xfered_len,'X', 0);
8559 }
8560
8561 static void
8562 remote_flash_done (struct target_ops *ops)
8563 {
8564 int ret;
8565
8566 scoped_restore restore_timeout
8567 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8568
8569 ret = remote_send_printf ("vFlashDone");
8570
8571 switch (ret)
8572 {
8573 case PACKET_UNKNOWN:
8574 error (_("Remote target does not support vFlashDone"));
8575 case PACKET_ERROR:
8576 error (_("Error finishing flash operation"));
8577 default:
8578 break;
8579 }
8580 }
8581
8582 static void
8583 remote_files_info (struct target_ops *ignore)
8584 {
8585 puts_filtered ("Debugging a target over a serial line.\n");
8586 }
8587 \f
8588 /* Stuff for dealing with the packets which are part of this protocol.
8589 See comment at top of file for details. */
8590
8591 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8592 error to higher layers. Called when a serial error is detected.
8593 The exception message is STRING, followed by a colon and a blank,
8594 the system error message for errno at function entry and final dot
8595 for output compatibility with throw_perror_with_name. */
8596
8597 static void
8598 unpush_and_perror (const char *string)
8599 {
8600 int saved_errno = errno;
8601
8602 remote_unpush_target ();
8603 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8604 safe_strerror (saved_errno));
8605 }
8606
8607 /* Read a single character from the remote end. The current quit
8608 handler is overridden to avoid quitting in the middle of packet
8609 sequence, as that would break communication with the remote server.
8610 See remote_serial_quit_handler for more detail. */
8611
8612 static int
8613 readchar (int timeout)
8614 {
8615 int ch;
8616 struct remote_state *rs = get_remote_state ();
8617
8618 {
8619 scoped_restore restore_quit
8620 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8621
8622 rs->got_ctrlc_during_io = 0;
8623
8624 ch = serial_readchar (rs->remote_desc, timeout);
8625
8626 if (rs->got_ctrlc_during_io)
8627 set_quit_flag ();
8628 }
8629
8630 if (ch >= 0)
8631 return ch;
8632
8633 switch ((enum serial_rc) ch)
8634 {
8635 case SERIAL_EOF:
8636 remote_unpush_target ();
8637 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8638 /* no return */
8639 case SERIAL_ERROR:
8640 unpush_and_perror (_("Remote communication error. "
8641 "Target disconnected."));
8642 /* no return */
8643 case SERIAL_TIMEOUT:
8644 break;
8645 }
8646 return ch;
8647 }
8648
8649 /* Wrapper for serial_write that closes the target and throws if
8650 writing fails. The current quit handler is overridden to avoid
8651 quitting in the middle of packet sequence, as that would break
8652 communication with the remote server. See
8653 remote_serial_quit_handler for more detail. */
8654
8655 static void
8656 remote_serial_write (const char *str, int len)
8657 {
8658 struct remote_state *rs = get_remote_state ();
8659
8660 scoped_restore restore_quit
8661 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8662
8663 rs->got_ctrlc_during_io = 0;
8664
8665 if (serial_write (rs->remote_desc, str, len))
8666 {
8667 unpush_and_perror (_("Remote communication error. "
8668 "Target disconnected."));
8669 }
8670
8671 if (rs->got_ctrlc_during_io)
8672 set_quit_flag ();
8673 }
8674
8675 /* Send the command in *BUF to the remote machine, and read the reply
8676 into *BUF. Report an error if we get an error reply. Resize
8677 *BUF using xrealloc if necessary to hold the result, and update
8678 *SIZEOF_BUF. */
8679
8680 static void
8681 remote_send (char **buf,
8682 long *sizeof_buf)
8683 {
8684 putpkt (*buf);
8685 getpkt (buf, sizeof_buf, 0);
8686
8687 if ((*buf)[0] == 'E')
8688 error (_("Remote failure reply: %s"), *buf);
8689 }
8690
8691 /* Return a string representing an escaped version of BUF, of len N.
8692 E.g. \n is converted to \\n, \t to \\t, etc. */
8693
8694 static std::string
8695 escape_buffer (const char *buf, int n)
8696 {
8697 string_file stb;
8698
8699 stb.putstrn (buf, n, '\\');
8700 return std::move (stb.string ());
8701 }
8702
8703 /* Display a null-terminated packet on stdout, for debugging, using C
8704 string notation. */
8705
8706 static void
8707 print_packet (const char *buf)
8708 {
8709 puts_filtered ("\"");
8710 fputstr_filtered (buf, '"', gdb_stdout);
8711 puts_filtered ("\"");
8712 }
8713
8714 int
8715 putpkt (const char *buf)
8716 {
8717 return putpkt_binary (buf, strlen (buf));
8718 }
8719
8720 /* Send a packet to the remote machine, with error checking. The data
8721 of the packet is in BUF. The string in BUF can be at most
8722 get_remote_packet_size () - 5 to account for the $, # and checksum,
8723 and for a possible /0 if we are debugging (remote_debug) and want
8724 to print the sent packet as a string. */
8725
8726 static int
8727 putpkt_binary (const char *buf, int cnt)
8728 {
8729 struct remote_state *rs = get_remote_state ();
8730 int i;
8731 unsigned char csum = 0;
8732 gdb::def_vector<char> data (cnt + 6);
8733 char *buf2 = data.data ();
8734
8735 int ch;
8736 int tcount = 0;
8737 char *p;
8738
8739 /* Catch cases like trying to read memory or listing threads while
8740 we're waiting for a stop reply. The remote server wouldn't be
8741 ready to handle this request, so we'd hang and timeout. We don't
8742 have to worry about this in synchronous mode, because in that
8743 case it's not possible to issue a command while the target is
8744 running. This is not a problem in non-stop mode, because in that
8745 case, the stub is always ready to process serial input. */
8746 if (!target_is_non_stop_p ()
8747 && target_is_async_p ()
8748 && rs->waiting_for_stop_reply)
8749 {
8750 error (_("Cannot execute this command while the target is running.\n"
8751 "Use the \"interrupt\" command to stop the target\n"
8752 "and then try again."));
8753 }
8754
8755 /* We're sending out a new packet. Make sure we don't look at a
8756 stale cached response. */
8757 rs->cached_wait_status = 0;
8758
8759 /* Copy the packet into buffer BUF2, encapsulating it
8760 and giving it a checksum. */
8761
8762 p = buf2;
8763 *p++ = '$';
8764
8765 for (i = 0; i < cnt; i++)
8766 {
8767 csum += buf[i];
8768 *p++ = buf[i];
8769 }
8770 *p++ = '#';
8771 *p++ = tohex ((csum >> 4) & 0xf);
8772 *p++ = tohex (csum & 0xf);
8773
8774 /* Send it over and over until we get a positive ack. */
8775
8776 while (1)
8777 {
8778 int started_error_output = 0;
8779
8780 if (remote_debug)
8781 {
8782 *p = '\0';
8783
8784 int len = (int) (p - buf2);
8785
8786 std::string str
8787 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8788
8789 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8790
8791 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8792 {
8793 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8794 str.length () - REMOTE_DEBUG_MAX_CHAR);
8795 }
8796
8797 fprintf_unfiltered (gdb_stdlog, "...");
8798
8799 gdb_flush (gdb_stdlog);
8800 }
8801 remote_serial_write (buf2, p - buf2);
8802
8803 /* If this is a no acks version of the remote protocol, send the
8804 packet and move on. */
8805 if (rs->noack_mode)
8806 break;
8807
8808 /* Read until either a timeout occurs (-2) or '+' is read.
8809 Handle any notification that arrives in the mean time. */
8810 while (1)
8811 {
8812 ch = readchar (remote_timeout);
8813
8814 if (remote_debug)
8815 {
8816 switch (ch)
8817 {
8818 case '+':
8819 case '-':
8820 case SERIAL_TIMEOUT:
8821 case '$':
8822 case '%':
8823 if (started_error_output)
8824 {
8825 putchar_unfiltered ('\n');
8826 started_error_output = 0;
8827 }
8828 }
8829 }
8830
8831 switch (ch)
8832 {
8833 case '+':
8834 if (remote_debug)
8835 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8836 return 1;
8837 case '-':
8838 if (remote_debug)
8839 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8840 /* FALLTHROUGH */
8841 case SERIAL_TIMEOUT:
8842 tcount++;
8843 if (tcount > 3)
8844 return 0;
8845 break; /* Retransmit buffer. */
8846 case '$':
8847 {
8848 if (remote_debug)
8849 fprintf_unfiltered (gdb_stdlog,
8850 "Packet instead of Ack, ignoring it\n");
8851 /* It's probably an old response sent because an ACK
8852 was lost. Gobble up the packet and ack it so it
8853 doesn't get retransmitted when we resend this
8854 packet. */
8855 skip_frame ();
8856 remote_serial_write ("+", 1);
8857 continue; /* Now, go look for +. */
8858 }
8859
8860 case '%':
8861 {
8862 int val;
8863
8864 /* If we got a notification, handle it, and go back to looking
8865 for an ack. */
8866 /* We've found the start of a notification. Now
8867 collect the data. */
8868 val = read_frame (&rs->buf, &rs->buf_size);
8869 if (val >= 0)
8870 {
8871 if (remote_debug)
8872 {
8873 std::string str = escape_buffer (rs->buf, val);
8874
8875 fprintf_unfiltered (gdb_stdlog,
8876 " Notification received: %s\n",
8877 str.c_str ());
8878 }
8879 handle_notification (rs->notif_state, rs->buf);
8880 /* We're in sync now, rewait for the ack. */
8881 tcount = 0;
8882 }
8883 else
8884 {
8885 if (remote_debug)
8886 {
8887 if (!started_error_output)
8888 {
8889 started_error_output = 1;
8890 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8891 }
8892 fputc_unfiltered (ch & 0177, gdb_stdlog);
8893 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8894 }
8895 }
8896 continue;
8897 }
8898 /* fall-through */
8899 default:
8900 if (remote_debug)
8901 {
8902 if (!started_error_output)
8903 {
8904 started_error_output = 1;
8905 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8906 }
8907 fputc_unfiltered (ch & 0177, gdb_stdlog);
8908 }
8909 continue;
8910 }
8911 break; /* Here to retransmit. */
8912 }
8913
8914 #if 0
8915 /* This is wrong. If doing a long backtrace, the user should be
8916 able to get out next time we call QUIT, without anything as
8917 violent as interrupt_query. If we want to provide a way out of
8918 here without getting to the next QUIT, it should be based on
8919 hitting ^C twice as in remote_wait. */
8920 if (quit_flag)
8921 {
8922 quit_flag = 0;
8923 interrupt_query ();
8924 }
8925 #endif
8926 }
8927
8928 return 0;
8929 }
8930
8931 /* Come here after finding the start of a frame when we expected an
8932 ack. Do our best to discard the rest of this packet. */
8933
8934 static void
8935 skip_frame (void)
8936 {
8937 int c;
8938
8939 while (1)
8940 {
8941 c = readchar (remote_timeout);
8942 switch (c)
8943 {
8944 case SERIAL_TIMEOUT:
8945 /* Nothing we can do. */
8946 return;
8947 case '#':
8948 /* Discard the two bytes of checksum and stop. */
8949 c = readchar (remote_timeout);
8950 if (c >= 0)
8951 c = readchar (remote_timeout);
8952
8953 return;
8954 case '*': /* Run length encoding. */
8955 /* Discard the repeat count. */
8956 c = readchar (remote_timeout);
8957 if (c < 0)
8958 return;
8959 break;
8960 default:
8961 /* A regular character. */
8962 break;
8963 }
8964 }
8965 }
8966
8967 /* Come here after finding the start of the frame. Collect the rest
8968 into *BUF, verifying the checksum, length, and handling run-length
8969 compression. NUL terminate the buffer. If there is not enough room,
8970 expand *BUF using xrealloc.
8971
8972 Returns -1 on error, number of characters in buffer (ignoring the
8973 trailing NULL) on success. (could be extended to return one of the
8974 SERIAL status indications). */
8975
8976 static long
8977 read_frame (char **buf_p,
8978 long *sizeof_buf)
8979 {
8980 unsigned char csum;
8981 long bc;
8982 int c;
8983 char *buf = *buf_p;
8984 struct remote_state *rs = get_remote_state ();
8985
8986 csum = 0;
8987 bc = 0;
8988
8989 while (1)
8990 {
8991 c = readchar (remote_timeout);
8992 switch (c)
8993 {
8994 case SERIAL_TIMEOUT:
8995 if (remote_debug)
8996 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8997 return -1;
8998 case '$':
8999 if (remote_debug)
9000 fputs_filtered ("Saw new packet start in middle of old one\n",
9001 gdb_stdlog);
9002 return -1; /* Start a new packet, count retries. */
9003 case '#':
9004 {
9005 unsigned char pktcsum;
9006 int check_0 = 0;
9007 int check_1 = 0;
9008
9009 buf[bc] = '\0';
9010
9011 check_0 = readchar (remote_timeout);
9012 if (check_0 >= 0)
9013 check_1 = readchar (remote_timeout);
9014
9015 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9016 {
9017 if (remote_debug)
9018 fputs_filtered ("Timeout in checksum, retrying\n",
9019 gdb_stdlog);
9020 return -1;
9021 }
9022 else if (check_0 < 0 || check_1 < 0)
9023 {
9024 if (remote_debug)
9025 fputs_filtered ("Communication error in checksum\n",
9026 gdb_stdlog);
9027 return -1;
9028 }
9029
9030 /* Don't recompute the checksum; with no ack packets we
9031 don't have any way to indicate a packet retransmission
9032 is necessary. */
9033 if (rs->noack_mode)
9034 return bc;
9035
9036 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9037 if (csum == pktcsum)
9038 return bc;
9039
9040 if (remote_debug)
9041 {
9042 std::string str = escape_buffer (buf, bc);
9043
9044 fprintf_unfiltered (gdb_stdlog,
9045 "Bad checksum, sentsum=0x%x, "
9046 "csum=0x%x, buf=%s\n",
9047 pktcsum, csum, str.c_str ());
9048 }
9049 /* Number of characters in buffer ignoring trailing
9050 NULL. */
9051 return -1;
9052 }
9053 case '*': /* Run length encoding. */
9054 {
9055 int repeat;
9056
9057 csum += c;
9058 c = readchar (remote_timeout);
9059 csum += c;
9060 repeat = c - ' ' + 3; /* Compute repeat count. */
9061
9062 /* The character before ``*'' is repeated. */
9063
9064 if (repeat > 0 && repeat <= 255 && bc > 0)
9065 {
9066 if (bc + repeat - 1 >= *sizeof_buf - 1)
9067 {
9068 /* Make some more room in the buffer. */
9069 *sizeof_buf += repeat;
9070 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9071 buf = *buf_p;
9072 }
9073
9074 memset (&buf[bc], buf[bc - 1], repeat);
9075 bc += repeat;
9076 continue;
9077 }
9078
9079 buf[bc] = '\0';
9080 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9081 return -1;
9082 }
9083 default:
9084 if (bc >= *sizeof_buf - 1)
9085 {
9086 /* Make some more room in the buffer. */
9087 *sizeof_buf *= 2;
9088 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9089 buf = *buf_p;
9090 }
9091
9092 buf[bc++] = c;
9093 csum += c;
9094 continue;
9095 }
9096 }
9097 }
9098
9099 /* Read a packet from the remote machine, with error checking, and
9100 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9101 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9102 rather than timing out; this is used (in synchronous mode) to wait
9103 for a target that is is executing user code to stop. */
9104 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9105 don't have to change all the calls to getpkt to deal with the
9106 return value, because at the moment I don't know what the right
9107 thing to do it for those. */
9108 void
9109 getpkt (char **buf,
9110 long *sizeof_buf,
9111 int forever)
9112 {
9113 getpkt_sane (buf, sizeof_buf, forever);
9114 }
9115
9116
9117 /* Read a packet from the remote machine, with error checking, and
9118 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9119 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9120 rather than timing out; this is used (in synchronous mode) to wait
9121 for a target that is is executing user code to stop. If FOREVER ==
9122 0, this function is allowed to time out gracefully and return an
9123 indication of this to the caller. Otherwise return the number of
9124 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9125 enough reason to return to the caller. *IS_NOTIF is an output
9126 boolean that indicates whether *BUF holds a notification or not
9127 (a regular packet). */
9128
9129 static int
9130 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9131 int expecting_notif, int *is_notif)
9132 {
9133 struct remote_state *rs = get_remote_state ();
9134 int c;
9135 int tries;
9136 int timeout;
9137 int val = -1;
9138
9139 /* We're reading a new response. Make sure we don't look at a
9140 previously cached response. */
9141 rs->cached_wait_status = 0;
9142
9143 strcpy (*buf, "timeout");
9144
9145 if (forever)
9146 timeout = watchdog > 0 ? watchdog : -1;
9147 else if (expecting_notif)
9148 timeout = 0; /* There should already be a char in the buffer. If
9149 not, bail out. */
9150 else
9151 timeout = remote_timeout;
9152
9153 #define MAX_TRIES 3
9154
9155 /* Process any number of notifications, and then return when
9156 we get a packet. */
9157 for (;;)
9158 {
9159 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9160 times. */
9161 for (tries = 1; tries <= MAX_TRIES; tries++)
9162 {
9163 /* This can loop forever if the remote side sends us
9164 characters continuously, but if it pauses, we'll get
9165 SERIAL_TIMEOUT from readchar because of timeout. Then
9166 we'll count that as a retry.
9167
9168 Note that even when forever is set, we will only wait
9169 forever prior to the start of a packet. After that, we
9170 expect characters to arrive at a brisk pace. They should
9171 show up within remote_timeout intervals. */
9172 do
9173 c = readchar (timeout);
9174 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9175
9176 if (c == SERIAL_TIMEOUT)
9177 {
9178 if (expecting_notif)
9179 return -1; /* Don't complain, it's normal to not get
9180 anything in this case. */
9181
9182 if (forever) /* Watchdog went off? Kill the target. */
9183 {
9184 remote_unpush_target ();
9185 throw_error (TARGET_CLOSE_ERROR,
9186 _("Watchdog timeout has expired. "
9187 "Target detached."));
9188 }
9189 if (remote_debug)
9190 fputs_filtered ("Timed out.\n", gdb_stdlog);
9191 }
9192 else
9193 {
9194 /* We've found the start of a packet or notification.
9195 Now collect the data. */
9196 val = read_frame (buf, sizeof_buf);
9197 if (val >= 0)
9198 break;
9199 }
9200
9201 remote_serial_write ("-", 1);
9202 }
9203
9204 if (tries > MAX_TRIES)
9205 {
9206 /* We have tried hard enough, and just can't receive the
9207 packet/notification. Give up. */
9208 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9209
9210 /* Skip the ack char if we're in no-ack mode. */
9211 if (!rs->noack_mode)
9212 remote_serial_write ("+", 1);
9213 return -1;
9214 }
9215
9216 /* If we got an ordinary packet, return that to our caller. */
9217 if (c == '$')
9218 {
9219 if (remote_debug)
9220 {
9221 std::string str
9222 = escape_buffer (*buf,
9223 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9224
9225 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9226 str.c_str ());
9227
9228 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9229 {
9230 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9231 str.length () - REMOTE_DEBUG_MAX_CHAR);
9232 }
9233
9234 fprintf_unfiltered (gdb_stdlog, "\n");
9235 }
9236
9237 /* Skip the ack char if we're in no-ack mode. */
9238 if (!rs->noack_mode)
9239 remote_serial_write ("+", 1);
9240 if (is_notif != NULL)
9241 *is_notif = 0;
9242 return val;
9243 }
9244
9245 /* If we got a notification, handle it, and go back to looking
9246 for a packet. */
9247 else
9248 {
9249 gdb_assert (c == '%');
9250
9251 if (remote_debug)
9252 {
9253 std::string str = escape_buffer (*buf, val);
9254
9255 fprintf_unfiltered (gdb_stdlog,
9256 " Notification received: %s\n",
9257 str.c_str ());
9258 }
9259 if (is_notif != NULL)
9260 *is_notif = 1;
9261
9262 handle_notification (rs->notif_state, *buf);
9263
9264 /* Notifications require no acknowledgement. */
9265
9266 if (expecting_notif)
9267 return val;
9268 }
9269 }
9270 }
9271
9272 static int
9273 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9274 {
9275 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9276 }
9277
9278 static int
9279 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9280 int *is_notif)
9281 {
9282 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9283 is_notif);
9284 }
9285
9286 /* Check whether EVENT is a fork event for the process specified
9287 by the pid passed in DATA, and if it is, kill the fork child. */
9288
9289 static int
9290 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9291 QUEUE_ITER (stop_reply_p) *iter,
9292 stop_reply_p event,
9293 void *data)
9294 {
9295 struct queue_iter_param *param = (struct queue_iter_param *) data;
9296 int parent_pid = *(int *) param->input;
9297
9298 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9299 {
9300 struct remote_state *rs = get_remote_state ();
9301 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9302 int res;
9303
9304 res = remote_vkill (child_pid, rs);
9305 if (res != 0)
9306 error (_("Can't kill fork child process %d"), child_pid);
9307 }
9308
9309 return 1;
9310 }
9311
9312 /* Kill any new fork children of process PID that haven't been
9313 processed by follow_fork. */
9314
9315 static void
9316 kill_new_fork_children (int pid, struct remote_state *rs)
9317 {
9318 struct thread_info *thread;
9319 struct notif_client *notif = &notif_client_stop;
9320 struct queue_iter_param param;
9321
9322 /* Kill the fork child threads of any threads in process PID
9323 that are stopped at a fork event. */
9324 ALL_NON_EXITED_THREADS (thread)
9325 {
9326 struct target_waitstatus *ws = &thread->pending_follow;
9327
9328 if (is_pending_fork_parent (ws, pid, thread->ptid))
9329 {
9330 struct remote_state *rs = get_remote_state ();
9331 int child_pid = ptid_get_pid (ws->value.related_pid);
9332 int res;
9333
9334 res = remote_vkill (child_pid, rs);
9335 if (res != 0)
9336 error (_("Can't kill fork child process %d"), child_pid);
9337 }
9338 }
9339
9340 /* Check for any pending fork events (not reported or processed yet)
9341 in process PID and kill those fork child threads as well. */
9342 remote_notif_get_pending_events (notif);
9343 param.input = &pid;
9344 param.output = NULL;
9345 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9346 kill_child_of_pending_fork, &param);
9347 }
9348
9349 \f
9350 /* Target hook to kill the current inferior. */
9351
9352 static void
9353 remote_kill (struct target_ops *ops)
9354 {
9355 int res = -1;
9356 int pid = ptid_get_pid (inferior_ptid);
9357 struct remote_state *rs = get_remote_state ();
9358
9359 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9360 {
9361 /* If we're stopped while forking and we haven't followed yet,
9362 kill the child task. We need to do this before killing the
9363 parent task because if this is a vfork then the parent will
9364 be sleeping. */
9365 kill_new_fork_children (pid, rs);
9366
9367 res = remote_vkill (pid, rs);
9368 if (res == 0)
9369 {
9370 target_mourn_inferior (inferior_ptid);
9371 return;
9372 }
9373 }
9374
9375 /* If we are in 'target remote' mode and we are killing the only
9376 inferior, then we will tell gdbserver to exit and unpush the
9377 target. */
9378 if (res == -1 && !remote_multi_process_p (rs)
9379 && number_of_live_inferiors () == 1)
9380 {
9381 remote_kill_k ();
9382
9383 /* We've killed the remote end, we get to mourn it. If we are
9384 not in extended mode, mourning the inferior also unpushes
9385 remote_ops from the target stack, which closes the remote
9386 connection. */
9387 target_mourn_inferior (inferior_ptid);
9388
9389 return;
9390 }
9391
9392 error (_("Can't kill process"));
9393 }
9394
9395 /* Send a kill request to the target using the 'vKill' packet. */
9396
9397 static int
9398 remote_vkill (int pid, struct remote_state *rs)
9399 {
9400 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9401 return -1;
9402
9403 /* Tell the remote target to detach. */
9404 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9405 putpkt (rs->buf);
9406 getpkt (&rs->buf, &rs->buf_size, 0);
9407
9408 switch (packet_ok (rs->buf,
9409 &remote_protocol_packets[PACKET_vKill]))
9410 {
9411 case PACKET_OK:
9412 return 0;
9413 case PACKET_ERROR:
9414 return 1;
9415 case PACKET_UNKNOWN:
9416 return -1;
9417 default:
9418 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9419 }
9420 }
9421
9422 /* Send a kill request to the target using the 'k' packet. */
9423
9424 static void
9425 remote_kill_k (void)
9426 {
9427 /* Catch errors so the user can quit from gdb even when we
9428 aren't on speaking terms with the remote system. */
9429 TRY
9430 {
9431 putpkt ("k");
9432 }
9433 CATCH (ex, RETURN_MASK_ERROR)
9434 {
9435 if (ex.error == TARGET_CLOSE_ERROR)
9436 {
9437 /* If we got an (EOF) error that caused the target
9438 to go away, then we're done, that's what we wanted.
9439 "k" is susceptible to cause a premature EOF, given
9440 that the remote server isn't actually required to
9441 reply to "k", and it can happen that it doesn't
9442 even get to reply ACK to the "k". */
9443 return;
9444 }
9445
9446 /* Otherwise, something went wrong. We didn't actually kill
9447 the target. Just propagate the exception, and let the
9448 user or higher layers decide what to do. */
9449 throw_exception (ex);
9450 }
9451 END_CATCH
9452 }
9453
9454 static void
9455 remote_mourn (struct target_ops *target)
9456 {
9457 struct remote_state *rs = get_remote_state ();
9458
9459 /* In 'target remote' mode with one inferior, we close the connection. */
9460 if (!rs->extended && number_of_live_inferiors () <= 1)
9461 {
9462 unpush_target (target);
9463
9464 /* remote_close takes care of doing most of the clean up. */
9465 generic_mourn_inferior ();
9466 return;
9467 }
9468
9469 /* In case we got here due to an error, but we're going to stay
9470 connected. */
9471 rs->waiting_for_stop_reply = 0;
9472
9473 /* If the current general thread belonged to the process we just
9474 detached from or has exited, the remote side current general
9475 thread becomes undefined. Considering a case like this:
9476
9477 - We just got here due to a detach.
9478 - The process that we're detaching from happens to immediately
9479 report a global breakpoint being hit in non-stop mode, in the
9480 same thread we had selected before.
9481 - GDB attaches to this process again.
9482 - This event happens to be the next event we handle.
9483
9484 GDB would consider that the current general thread didn't need to
9485 be set on the stub side (with Hg), since for all it knew,
9486 GENERAL_THREAD hadn't changed.
9487
9488 Notice that although in all-stop mode, the remote server always
9489 sets the current thread to the thread reporting the stop event,
9490 that doesn't happen in non-stop mode; in non-stop, the stub *must
9491 not* change the current thread when reporting a breakpoint hit,
9492 due to the decoupling of event reporting and event handling.
9493
9494 To keep things simple, we always invalidate our notion of the
9495 current thread. */
9496 record_currthread (rs, minus_one_ptid);
9497
9498 /* Call common code to mark the inferior as not running. */
9499 generic_mourn_inferior ();
9500
9501 if (!have_inferiors ())
9502 {
9503 if (!remote_multi_process_p (rs))
9504 {
9505 /* Check whether the target is running now - some remote stubs
9506 automatically restart after kill. */
9507 putpkt ("?");
9508 getpkt (&rs->buf, &rs->buf_size, 0);
9509
9510 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9511 {
9512 /* Assume that the target has been restarted. Set
9513 inferior_ptid so that bits of core GDB realizes
9514 there's something here, e.g., so that the user can
9515 say "kill" again. */
9516 inferior_ptid = magic_null_ptid;
9517 }
9518 }
9519 }
9520 }
9521
9522 static int
9523 extended_remote_supports_disable_randomization (struct target_ops *self)
9524 {
9525 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9526 }
9527
9528 static void
9529 extended_remote_disable_randomization (int val)
9530 {
9531 struct remote_state *rs = get_remote_state ();
9532 char *reply;
9533
9534 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9535 val);
9536 putpkt (rs->buf);
9537 reply = remote_get_noisy_reply ();
9538 if (*reply == '\0')
9539 error (_("Target does not support QDisableRandomization."));
9540 if (strcmp (reply, "OK") != 0)
9541 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9542 }
9543
9544 static int
9545 extended_remote_run (const std::string &args)
9546 {
9547 struct remote_state *rs = get_remote_state ();
9548 int len;
9549 const char *remote_exec_file = get_remote_exec_file ();
9550
9551 /* If the user has disabled vRun support, or we have detected that
9552 support is not available, do not try it. */
9553 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9554 return -1;
9555
9556 strcpy (rs->buf, "vRun;");
9557 len = strlen (rs->buf);
9558
9559 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9560 error (_("Remote file name too long for run packet"));
9561 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9562 strlen (remote_exec_file));
9563
9564 if (!args.empty ())
9565 {
9566 int i;
9567
9568 gdb_argv argv (args.c_str ());
9569 for (i = 0; argv[i] != NULL; i++)
9570 {
9571 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9572 error (_("Argument list too long for run packet"));
9573 rs->buf[len++] = ';';
9574 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9575 strlen (argv[i]));
9576 }
9577 }
9578
9579 rs->buf[len++] = '\0';
9580
9581 putpkt (rs->buf);
9582 getpkt (&rs->buf, &rs->buf_size, 0);
9583
9584 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9585 {
9586 case PACKET_OK:
9587 /* We have a wait response. All is well. */
9588 return 0;
9589 case PACKET_UNKNOWN:
9590 return -1;
9591 case PACKET_ERROR:
9592 if (remote_exec_file[0] == '\0')
9593 error (_("Running the default executable on the remote target failed; "
9594 "try \"set remote exec-file\"?"));
9595 else
9596 error (_("Running \"%s\" on the remote target failed"),
9597 remote_exec_file);
9598 default:
9599 gdb_assert_not_reached (_("bad switch"));
9600 }
9601 }
9602
9603 /* Helper function to send set/unset environment packets. ACTION is
9604 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9605 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9606 sent. */
9607
9608 static void
9609 send_environment_packet (struct remote_state *rs,
9610 const char *action,
9611 const char *packet,
9612 const char *value)
9613 {
9614 /* Convert the environment variable to an hex string, which
9615 is the best format to be transmitted over the wire. */
9616 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9617 strlen (value));
9618
9619 xsnprintf (rs->buf, get_remote_packet_size (),
9620 "%s:%s", packet, encoded_value.c_str ());
9621
9622 putpkt (rs->buf);
9623 getpkt (&rs->buf, &rs->buf_size, 0);
9624 if (strcmp (rs->buf, "OK") != 0)
9625 warning (_("Unable to %s environment variable '%s' on remote."),
9626 action, value);
9627 }
9628
9629 /* Helper function to handle the QEnvironment* packets. */
9630
9631 static void
9632 extended_remote_environment_support (struct remote_state *rs)
9633 {
9634 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9635 {
9636 putpkt ("QEnvironmentReset");
9637 getpkt (&rs->buf, &rs->buf_size, 0);
9638 if (strcmp (rs->buf, "OK") != 0)
9639 warning (_("Unable to reset environment on remote."));
9640 }
9641
9642 gdb_environ *e = &current_inferior ()->environment;
9643
9644 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9645 for (const std::string &el : e->user_set_env ())
9646 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9647 el.c_str ());
9648
9649 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9650 for (const std::string &el : e->user_unset_env ())
9651 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9652 }
9653
9654 /* Helper function to set the current working directory for the
9655 inferior in the remote target. */
9656
9657 static void
9658 extended_remote_set_inferior_cwd (struct remote_state *rs)
9659 {
9660 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9661 {
9662 const char *inferior_cwd = get_inferior_cwd ();
9663
9664 if (inferior_cwd != NULL)
9665 {
9666 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9667 strlen (inferior_cwd));
9668
9669 xsnprintf (rs->buf, get_remote_packet_size (),
9670 "QSetWorkingDir:%s", hexpath.c_str ());
9671 }
9672 else
9673 {
9674 /* An empty inferior_cwd means that the user wants us to
9675 reset the remote server's inferior's cwd. */
9676 xsnprintf (rs->buf, get_remote_packet_size (),
9677 "QSetWorkingDir:");
9678 }
9679
9680 putpkt (rs->buf);
9681 getpkt (&rs->buf, &rs->buf_size, 0);
9682 if (packet_ok (rs->buf,
9683 &remote_protocol_packets[PACKET_QSetWorkingDir])
9684 != PACKET_OK)
9685 error (_("\
9686 Remote replied unexpectedly while setting the inferior's working\n\
9687 directory: %s"),
9688 rs->buf);
9689
9690 }
9691 }
9692
9693 /* In the extended protocol we want to be able to do things like
9694 "run" and have them basically work as expected. So we need
9695 a special create_inferior function. We support changing the
9696 executable file and the command line arguments, but not the
9697 environment. */
9698
9699 static void
9700 extended_remote_create_inferior (struct target_ops *ops,
9701 const char *exec_file,
9702 const std::string &args,
9703 char **env, int from_tty)
9704 {
9705 int run_worked;
9706 char *stop_reply;
9707 struct remote_state *rs = get_remote_state ();
9708 const char *remote_exec_file = get_remote_exec_file ();
9709
9710 /* If running asynchronously, register the target file descriptor
9711 with the event loop. */
9712 if (target_can_async_p ())
9713 target_async (1);
9714
9715 /* Disable address space randomization if requested (and supported). */
9716 if (extended_remote_supports_disable_randomization (ops))
9717 extended_remote_disable_randomization (disable_randomization);
9718
9719 /* If startup-with-shell is on, we inform gdbserver to start the
9720 remote inferior using a shell. */
9721 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9722 {
9723 xsnprintf (rs->buf, get_remote_packet_size (),
9724 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9725 putpkt (rs->buf);
9726 getpkt (&rs->buf, &rs->buf_size, 0);
9727 if (strcmp (rs->buf, "OK") != 0)
9728 error (_("\
9729 Remote replied unexpectedly while setting startup-with-shell: %s"),
9730 rs->buf);
9731 }
9732
9733 extended_remote_environment_support (rs);
9734
9735 extended_remote_set_inferior_cwd (rs);
9736
9737 /* Now restart the remote server. */
9738 run_worked = extended_remote_run (args) != -1;
9739 if (!run_worked)
9740 {
9741 /* vRun was not supported. Fail if we need it to do what the
9742 user requested. */
9743 if (remote_exec_file[0])
9744 error (_("Remote target does not support \"set remote exec-file\""));
9745 if (!args.empty ())
9746 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9747
9748 /* Fall back to "R". */
9749 extended_remote_restart ();
9750 }
9751
9752 if (!have_inferiors ())
9753 {
9754 /* Clean up from the last time we ran, before we mark the target
9755 running again. This will mark breakpoints uninserted, and
9756 get_offsets may insert breakpoints. */
9757 init_thread_list ();
9758 init_wait_for_inferior ();
9759 }
9760
9761 /* vRun's success return is a stop reply. */
9762 stop_reply = run_worked ? rs->buf : NULL;
9763 add_current_inferior_and_thread (stop_reply);
9764
9765 /* Get updated offsets, if the stub uses qOffsets. */
9766 get_offsets ();
9767 }
9768 \f
9769
9770 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9771 the list of conditions (in agent expression bytecode format), if any, the
9772 target needs to evaluate. The output is placed into the packet buffer
9773 started from BUF and ended at BUF_END. */
9774
9775 static int
9776 remote_add_target_side_condition (struct gdbarch *gdbarch,
9777 struct bp_target_info *bp_tgt, char *buf,
9778 char *buf_end)
9779 {
9780 if (bp_tgt->conditions.empty ())
9781 return 0;
9782
9783 buf += strlen (buf);
9784 xsnprintf (buf, buf_end - buf, "%s", ";");
9785 buf++;
9786
9787 /* Send conditions to the target. */
9788 for (agent_expr *aexpr : bp_tgt->conditions)
9789 {
9790 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9791 buf += strlen (buf);
9792 for (int i = 0; i < aexpr->len; ++i)
9793 buf = pack_hex_byte (buf, aexpr->buf[i]);
9794 *buf = '\0';
9795 }
9796 return 0;
9797 }
9798
9799 static void
9800 remote_add_target_side_commands (struct gdbarch *gdbarch,
9801 struct bp_target_info *bp_tgt, char *buf)
9802 {
9803 if (bp_tgt->tcommands.empty ())
9804 return;
9805
9806 buf += strlen (buf);
9807
9808 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9809 buf += strlen (buf);
9810
9811 /* Concatenate all the agent expressions that are commands into the
9812 cmds parameter. */
9813 for (agent_expr *aexpr : bp_tgt->tcommands)
9814 {
9815 sprintf (buf, "X%x,", aexpr->len);
9816 buf += strlen (buf);
9817 for (int i = 0; i < aexpr->len; ++i)
9818 buf = pack_hex_byte (buf, aexpr->buf[i]);
9819 *buf = '\0';
9820 }
9821 }
9822
9823 /* Insert a breakpoint. On targets that have software breakpoint
9824 support, we ask the remote target to do the work; on targets
9825 which don't, we insert a traditional memory breakpoint. */
9826
9827 static int
9828 remote_insert_breakpoint (struct target_ops *ops,
9829 struct gdbarch *gdbarch,
9830 struct bp_target_info *bp_tgt)
9831 {
9832 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9833 If it succeeds, then set the support to PACKET_ENABLE. If it
9834 fails, and the user has explicitly requested the Z support then
9835 report an error, otherwise, mark it disabled and go on. */
9836
9837 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9838 {
9839 CORE_ADDR addr = bp_tgt->reqstd_address;
9840 struct remote_state *rs;
9841 char *p, *endbuf;
9842 int bpsize;
9843
9844 /* Make sure the remote is pointing at the right process, if
9845 necessary. */
9846 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9847 set_general_process ();
9848
9849 rs = get_remote_state ();
9850 p = rs->buf;
9851 endbuf = rs->buf + get_remote_packet_size ();
9852
9853 *(p++) = 'Z';
9854 *(p++) = '0';
9855 *(p++) = ',';
9856 addr = (ULONGEST) remote_address_masked (addr);
9857 p += hexnumstr (p, addr);
9858 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9859
9860 if (remote_supports_cond_breakpoints (ops))
9861 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9862
9863 if (remote_can_run_breakpoint_commands (ops))
9864 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9865
9866 putpkt (rs->buf);
9867 getpkt (&rs->buf, &rs->buf_size, 0);
9868
9869 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9870 {
9871 case PACKET_ERROR:
9872 return -1;
9873 case PACKET_OK:
9874 return 0;
9875 case PACKET_UNKNOWN:
9876 break;
9877 }
9878 }
9879
9880 /* If this breakpoint has target-side commands but this stub doesn't
9881 support Z0 packets, throw error. */
9882 if (!bp_tgt->tcommands.empty ())
9883 throw_error (NOT_SUPPORTED_ERROR, _("\
9884 Target doesn't support breakpoints that have target side commands."));
9885
9886 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9887 }
9888
9889 static int
9890 remote_remove_breakpoint (struct target_ops *ops,
9891 struct gdbarch *gdbarch,
9892 struct bp_target_info *bp_tgt,
9893 enum remove_bp_reason reason)
9894 {
9895 CORE_ADDR addr = bp_tgt->placed_address;
9896 struct remote_state *rs = get_remote_state ();
9897
9898 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9899 {
9900 char *p = rs->buf;
9901 char *endbuf = rs->buf + get_remote_packet_size ();
9902
9903 /* Make sure the remote is pointing at the right process, if
9904 necessary. */
9905 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9906 set_general_process ();
9907
9908 *(p++) = 'z';
9909 *(p++) = '0';
9910 *(p++) = ',';
9911
9912 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9913 p += hexnumstr (p, addr);
9914 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9915
9916 putpkt (rs->buf);
9917 getpkt (&rs->buf, &rs->buf_size, 0);
9918
9919 return (rs->buf[0] == 'E');
9920 }
9921
9922 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9923 }
9924
9925 static enum Z_packet_type
9926 watchpoint_to_Z_packet (int type)
9927 {
9928 switch (type)
9929 {
9930 case hw_write:
9931 return Z_PACKET_WRITE_WP;
9932 break;
9933 case hw_read:
9934 return Z_PACKET_READ_WP;
9935 break;
9936 case hw_access:
9937 return Z_PACKET_ACCESS_WP;
9938 break;
9939 default:
9940 internal_error (__FILE__, __LINE__,
9941 _("hw_bp_to_z: bad watchpoint type %d"), type);
9942 }
9943 }
9944
9945 static int
9946 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9947 enum target_hw_bp_type type, struct expression *cond)
9948 {
9949 struct remote_state *rs = get_remote_state ();
9950 char *endbuf = rs->buf + get_remote_packet_size ();
9951 char *p;
9952 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9953
9954 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9955 return 1;
9956
9957 /* Make sure the remote is pointing at the right process, if
9958 necessary. */
9959 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9960 set_general_process ();
9961
9962 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9963 p = strchr (rs->buf, '\0');
9964 addr = remote_address_masked (addr);
9965 p += hexnumstr (p, (ULONGEST) addr);
9966 xsnprintf (p, endbuf - p, ",%x", len);
9967
9968 putpkt (rs->buf);
9969 getpkt (&rs->buf, &rs->buf_size, 0);
9970
9971 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9972 {
9973 case PACKET_ERROR:
9974 return -1;
9975 case PACKET_UNKNOWN:
9976 return 1;
9977 case PACKET_OK:
9978 return 0;
9979 }
9980 internal_error (__FILE__, __LINE__,
9981 _("remote_insert_watchpoint: reached end of function"));
9982 }
9983
9984 static int
9985 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9986 CORE_ADDR start, int length)
9987 {
9988 CORE_ADDR diff = remote_address_masked (addr - start);
9989
9990 return diff < length;
9991 }
9992
9993
9994 static int
9995 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9996 enum target_hw_bp_type type, struct expression *cond)
9997 {
9998 struct remote_state *rs = get_remote_state ();
9999 char *endbuf = rs->buf + get_remote_packet_size ();
10000 char *p;
10001 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10002
10003 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10004 return -1;
10005
10006 /* Make sure the remote is pointing at the right process, if
10007 necessary. */
10008 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10009 set_general_process ();
10010
10011 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10012 p = strchr (rs->buf, '\0');
10013 addr = remote_address_masked (addr);
10014 p += hexnumstr (p, (ULONGEST) addr);
10015 xsnprintf (p, endbuf - p, ",%x", len);
10016 putpkt (rs->buf);
10017 getpkt (&rs->buf, &rs->buf_size, 0);
10018
10019 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10020 {
10021 case PACKET_ERROR:
10022 case PACKET_UNKNOWN:
10023 return -1;
10024 case PACKET_OK:
10025 return 0;
10026 }
10027 internal_error (__FILE__, __LINE__,
10028 _("remote_remove_watchpoint: reached end of function"));
10029 }
10030
10031
10032 int remote_hw_watchpoint_limit = -1;
10033 int remote_hw_watchpoint_length_limit = -1;
10034 int remote_hw_breakpoint_limit = -1;
10035
10036 static int
10037 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
10038 CORE_ADDR addr, int len)
10039 {
10040 if (remote_hw_watchpoint_length_limit == 0)
10041 return 0;
10042 else if (remote_hw_watchpoint_length_limit < 0)
10043 return 1;
10044 else if (len <= remote_hw_watchpoint_length_limit)
10045 return 1;
10046 else
10047 return 0;
10048 }
10049
10050 static int
10051 remote_check_watch_resources (struct target_ops *self,
10052 enum bptype type, int cnt, int ot)
10053 {
10054 if (type == bp_hardware_breakpoint)
10055 {
10056 if (remote_hw_breakpoint_limit == 0)
10057 return 0;
10058 else if (remote_hw_breakpoint_limit < 0)
10059 return 1;
10060 else if (cnt <= remote_hw_breakpoint_limit)
10061 return 1;
10062 }
10063 else
10064 {
10065 if (remote_hw_watchpoint_limit == 0)
10066 return 0;
10067 else if (remote_hw_watchpoint_limit < 0)
10068 return 1;
10069 else if (ot)
10070 return -1;
10071 else if (cnt <= remote_hw_watchpoint_limit)
10072 return 1;
10073 }
10074 return -1;
10075 }
10076
10077 /* The to_stopped_by_sw_breakpoint method of target remote. */
10078
10079 static int
10080 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10081 {
10082 struct thread_info *thread = inferior_thread ();
10083
10084 return (thread->priv != NULL
10085 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
10086 }
10087
10088 /* The to_supports_stopped_by_sw_breakpoint method of target
10089 remote. */
10090
10091 static int
10092 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10093 {
10094 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10095 }
10096
10097 /* The to_stopped_by_hw_breakpoint method of target remote. */
10098
10099 static int
10100 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10101 {
10102 struct thread_info *thread = inferior_thread ();
10103
10104 return (thread->priv != NULL
10105 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
10106 }
10107
10108 /* The to_supports_stopped_by_hw_breakpoint method of target
10109 remote. */
10110
10111 static int
10112 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10113 {
10114 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10115 }
10116
10117 static int
10118 remote_stopped_by_watchpoint (struct target_ops *ops)
10119 {
10120 struct thread_info *thread = inferior_thread ();
10121
10122 return (thread->priv != NULL
10123 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10124 }
10125
10126 static int
10127 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10128 {
10129 struct thread_info *thread = inferior_thread ();
10130
10131 if (thread->priv != NULL
10132 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10133 {
10134 *addr_p = thread->priv->watch_data_address;
10135 return 1;
10136 }
10137
10138 return 0;
10139 }
10140
10141
10142 static int
10143 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10144 struct bp_target_info *bp_tgt)
10145 {
10146 CORE_ADDR addr = bp_tgt->reqstd_address;
10147 struct remote_state *rs;
10148 char *p, *endbuf;
10149 char *message;
10150
10151 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10152 return -1;
10153
10154 /* Make sure the remote is pointing at the right process, if
10155 necessary. */
10156 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10157 set_general_process ();
10158
10159 rs = get_remote_state ();
10160 p = rs->buf;
10161 endbuf = rs->buf + get_remote_packet_size ();
10162
10163 *(p++) = 'Z';
10164 *(p++) = '1';
10165 *(p++) = ',';
10166
10167 addr = remote_address_masked (addr);
10168 p += hexnumstr (p, (ULONGEST) addr);
10169 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10170
10171 if (remote_supports_cond_breakpoints (self))
10172 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10173
10174 if (remote_can_run_breakpoint_commands (self))
10175 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10176
10177 putpkt (rs->buf);
10178 getpkt (&rs->buf, &rs->buf_size, 0);
10179
10180 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10181 {
10182 case PACKET_ERROR:
10183 if (rs->buf[1] == '.')
10184 {
10185 message = strchr (rs->buf + 2, '.');
10186 if (message)
10187 error (_("Remote failure reply: %s"), message + 1);
10188 }
10189 return -1;
10190 case PACKET_UNKNOWN:
10191 return -1;
10192 case PACKET_OK:
10193 return 0;
10194 }
10195 internal_error (__FILE__, __LINE__,
10196 _("remote_insert_hw_breakpoint: reached end of function"));
10197 }
10198
10199
10200 static int
10201 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10202 struct bp_target_info *bp_tgt)
10203 {
10204 CORE_ADDR addr;
10205 struct remote_state *rs = get_remote_state ();
10206 char *p = rs->buf;
10207 char *endbuf = rs->buf + get_remote_packet_size ();
10208
10209 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10210 return -1;
10211
10212 /* Make sure the remote is pointing at the right process, if
10213 necessary. */
10214 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10215 set_general_process ();
10216
10217 *(p++) = 'z';
10218 *(p++) = '1';
10219 *(p++) = ',';
10220
10221 addr = remote_address_masked (bp_tgt->placed_address);
10222 p += hexnumstr (p, (ULONGEST) addr);
10223 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10224
10225 putpkt (rs->buf);
10226 getpkt (&rs->buf, &rs->buf_size, 0);
10227
10228 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10229 {
10230 case PACKET_ERROR:
10231 case PACKET_UNKNOWN:
10232 return -1;
10233 case PACKET_OK:
10234 return 0;
10235 }
10236 internal_error (__FILE__, __LINE__,
10237 _("remote_remove_hw_breakpoint: reached end of function"));
10238 }
10239
10240 /* Verify memory using the "qCRC:" request. */
10241
10242 static int
10243 remote_verify_memory (struct target_ops *ops,
10244 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10245 {
10246 struct remote_state *rs = get_remote_state ();
10247 unsigned long host_crc, target_crc;
10248 char *tmp;
10249
10250 /* It doesn't make sense to use qCRC if the remote target is
10251 connected but not running. */
10252 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10253 {
10254 enum packet_result result;
10255
10256 /* Make sure the remote is pointing at the right process. */
10257 set_general_process ();
10258
10259 /* FIXME: assumes lma can fit into long. */
10260 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10261 (long) lma, (long) size);
10262 putpkt (rs->buf);
10263
10264 /* Be clever; compute the host_crc before waiting for target
10265 reply. */
10266 host_crc = xcrc32 (data, size, 0xffffffff);
10267
10268 getpkt (&rs->buf, &rs->buf_size, 0);
10269
10270 result = packet_ok (rs->buf,
10271 &remote_protocol_packets[PACKET_qCRC]);
10272 if (result == PACKET_ERROR)
10273 return -1;
10274 else if (result == PACKET_OK)
10275 {
10276 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10277 target_crc = target_crc * 16 + fromhex (*tmp);
10278
10279 return (host_crc == target_crc);
10280 }
10281 }
10282
10283 return simple_verify_memory (ops, data, lma, size);
10284 }
10285
10286 /* compare-sections command
10287
10288 With no arguments, compares each loadable section in the exec bfd
10289 with the same memory range on the target, and reports mismatches.
10290 Useful for verifying the image on the target against the exec file. */
10291
10292 static void
10293 compare_sections_command (const char *args, int from_tty)
10294 {
10295 asection *s;
10296 gdb_byte *sectdata;
10297 const char *sectname;
10298 bfd_size_type size;
10299 bfd_vma lma;
10300 int matched = 0;
10301 int mismatched = 0;
10302 int res;
10303 int read_only = 0;
10304
10305 if (!exec_bfd)
10306 error (_("command cannot be used without an exec file"));
10307
10308 /* Make sure the remote is pointing at the right process. */
10309 set_general_process ();
10310
10311 if (args != NULL && strcmp (args, "-r") == 0)
10312 {
10313 read_only = 1;
10314 args = NULL;
10315 }
10316
10317 for (s = exec_bfd->sections; s; s = s->next)
10318 {
10319 if (!(s->flags & SEC_LOAD))
10320 continue; /* Skip non-loadable section. */
10321
10322 if (read_only && (s->flags & SEC_READONLY) == 0)
10323 continue; /* Skip writeable sections */
10324
10325 size = bfd_get_section_size (s);
10326 if (size == 0)
10327 continue; /* Skip zero-length section. */
10328
10329 sectname = bfd_get_section_name (exec_bfd, s);
10330 if (args && strcmp (args, sectname) != 0)
10331 continue; /* Not the section selected by user. */
10332
10333 matched = 1; /* Do this section. */
10334 lma = s->lma;
10335
10336 gdb::byte_vector sectdata (size);
10337 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10338
10339 res = target_verify_memory (sectdata.data (), lma, size);
10340
10341 if (res == -1)
10342 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10343 paddress (target_gdbarch (), lma),
10344 paddress (target_gdbarch (), lma + size));
10345
10346 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10347 paddress (target_gdbarch (), lma),
10348 paddress (target_gdbarch (), lma + size));
10349 if (res)
10350 printf_filtered ("matched.\n");
10351 else
10352 {
10353 printf_filtered ("MIS-MATCHED!\n");
10354 mismatched++;
10355 }
10356 }
10357 if (mismatched > 0)
10358 warning (_("One or more sections of the target image does not match\n\
10359 the loaded file\n"));
10360 if (args && !matched)
10361 printf_filtered (_("No loaded section named '%s'.\n"), args);
10362 }
10363
10364 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10365 into remote target. The number of bytes written to the remote
10366 target is returned, or -1 for error. */
10367
10368 static enum target_xfer_status
10369 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10370 const char *annex, const gdb_byte *writebuf,
10371 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10372 struct packet_config *packet)
10373 {
10374 int i, buf_len;
10375 ULONGEST n;
10376 struct remote_state *rs = get_remote_state ();
10377 int max_size = get_memory_write_packet_size ();
10378
10379 if (packet->support == PACKET_DISABLE)
10380 return TARGET_XFER_E_IO;
10381
10382 /* Insert header. */
10383 i = snprintf (rs->buf, max_size,
10384 "qXfer:%s:write:%s:%s:",
10385 object_name, annex ? annex : "",
10386 phex_nz (offset, sizeof offset));
10387 max_size -= (i + 1);
10388
10389 /* Escape as much data as fits into rs->buf. */
10390 buf_len = remote_escape_output
10391 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10392
10393 if (putpkt_binary (rs->buf, i + buf_len) < 0
10394 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10395 || packet_ok (rs->buf, packet) != PACKET_OK)
10396 return TARGET_XFER_E_IO;
10397
10398 unpack_varlen_hex (rs->buf, &n);
10399
10400 *xfered_len = n;
10401 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10402 }
10403
10404 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10405 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10406 number of bytes read is returned, or 0 for EOF, or -1 for error.
10407 The number of bytes read may be less than LEN without indicating an
10408 EOF. PACKET is checked and updated to indicate whether the remote
10409 target supports this object. */
10410
10411 static enum target_xfer_status
10412 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10413 const char *annex,
10414 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10415 ULONGEST *xfered_len,
10416 struct packet_config *packet)
10417 {
10418 struct remote_state *rs = get_remote_state ();
10419 LONGEST i, n, packet_len;
10420
10421 if (packet->support == PACKET_DISABLE)
10422 return TARGET_XFER_E_IO;
10423
10424 /* Check whether we've cached an end-of-object packet that matches
10425 this request. */
10426 if (rs->finished_object)
10427 {
10428 if (strcmp (object_name, rs->finished_object) == 0
10429 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10430 && offset == rs->finished_offset)
10431 return TARGET_XFER_EOF;
10432
10433
10434 /* Otherwise, we're now reading something different. Discard
10435 the cache. */
10436 xfree (rs->finished_object);
10437 xfree (rs->finished_annex);
10438 rs->finished_object = NULL;
10439 rs->finished_annex = NULL;
10440 }
10441
10442 /* Request only enough to fit in a single packet. The actual data
10443 may not, since we don't know how much of it will need to be escaped;
10444 the target is free to respond with slightly less data. We subtract
10445 five to account for the response type and the protocol frame. */
10446 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10447 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10448 object_name, annex ? annex : "",
10449 phex_nz (offset, sizeof offset),
10450 phex_nz (n, sizeof n));
10451 i = putpkt (rs->buf);
10452 if (i < 0)
10453 return TARGET_XFER_E_IO;
10454
10455 rs->buf[0] = '\0';
10456 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10457 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10458 return TARGET_XFER_E_IO;
10459
10460 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10461 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10462
10463 /* 'm' means there is (or at least might be) more data after this
10464 batch. That does not make sense unless there's at least one byte
10465 of data in this reply. */
10466 if (rs->buf[0] == 'm' && packet_len == 1)
10467 error (_("Remote qXfer reply contained no data."));
10468
10469 /* Got some data. */
10470 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10471 packet_len - 1, readbuf, n);
10472
10473 /* 'l' is an EOF marker, possibly including a final block of data,
10474 or possibly empty. If we have the final block of a non-empty
10475 object, record this fact to bypass a subsequent partial read. */
10476 if (rs->buf[0] == 'l' && offset + i > 0)
10477 {
10478 rs->finished_object = xstrdup (object_name);
10479 rs->finished_annex = xstrdup (annex ? annex : "");
10480 rs->finished_offset = offset + i;
10481 }
10482
10483 if (i == 0)
10484 return TARGET_XFER_EOF;
10485 else
10486 {
10487 *xfered_len = i;
10488 return TARGET_XFER_OK;
10489 }
10490 }
10491
10492 static enum target_xfer_status
10493 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10494 const char *annex, gdb_byte *readbuf,
10495 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10496 ULONGEST *xfered_len)
10497 {
10498 struct remote_state *rs;
10499 int i;
10500 char *p2;
10501 char query_type;
10502 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10503
10504 set_remote_traceframe ();
10505 set_general_thread (inferior_ptid);
10506
10507 rs = get_remote_state ();
10508
10509 /* Handle memory using the standard memory routines. */
10510 if (object == TARGET_OBJECT_MEMORY)
10511 {
10512 /* If the remote target is connected but not running, we should
10513 pass this request down to a lower stratum (e.g. the executable
10514 file). */
10515 if (!target_has_execution)
10516 return TARGET_XFER_EOF;
10517
10518 if (writebuf != NULL)
10519 return remote_write_bytes (offset, writebuf, len, unit_size,
10520 xfered_len);
10521 else
10522 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10523 xfered_len);
10524 }
10525
10526 /* Handle SPU memory using qxfer packets. */
10527 if (object == TARGET_OBJECT_SPU)
10528 {
10529 if (readbuf)
10530 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10531 xfered_len, &remote_protocol_packets
10532 [PACKET_qXfer_spu_read]);
10533 else
10534 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10535 xfered_len, &remote_protocol_packets
10536 [PACKET_qXfer_spu_write]);
10537 }
10538
10539 /* Handle extra signal info using qxfer packets. */
10540 if (object == TARGET_OBJECT_SIGNAL_INFO)
10541 {
10542 if (readbuf)
10543 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10544 xfered_len, &remote_protocol_packets
10545 [PACKET_qXfer_siginfo_read]);
10546 else
10547 return remote_write_qxfer (ops, "siginfo", annex,
10548 writebuf, offset, len, xfered_len,
10549 &remote_protocol_packets
10550 [PACKET_qXfer_siginfo_write]);
10551 }
10552
10553 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10554 {
10555 if (readbuf)
10556 return remote_read_qxfer (ops, "statictrace", annex,
10557 readbuf, offset, len, xfered_len,
10558 &remote_protocol_packets
10559 [PACKET_qXfer_statictrace_read]);
10560 else
10561 return TARGET_XFER_E_IO;
10562 }
10563
10564 /* Only handle flash writes. */
10565 if (writebuf != NULL)
10566 {
10567 switch (object)
10568 {
10569 case TARGET_OBJECT_FLASH:
10570 return remote_flash_write (ops, offset, len, xfered_len,
10571 writebuf);
10572
10573 default:
10574 return TARGET_XFER_E_IO;
10575 }
10576 }
10577
10578 /* Map pre-existing objects onto letters. DO NOT do this for new
10579 objects!!! Instead specify new query packets. */
10580 switch (object)
10581 {
10582 case TARGET_OBJECT_AVR:
10583 query_type = 'R';
10584 break;
10585
10586 case TARGET_OBJECT_AUXV:
10587 gdb_assert (annex == NULL);
10588 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10589 xfered_len,
10590 &remote_protocol_packets[PACKET_qXfer_auxv]);
10591
10592 case TARGET_OBJECT_AVAILABLE_FEATURES:
10593 return remote_read_qxfer
10594 (ops, "features", annex, readbuf, offset, len, xfered_len,
10595 &remote_protocol_packets[PACKET_qXfer_features]);
10596
10597 case TARGET_OBJECT_LIBRARIES:
10598 return remote_read_qxfer
10599 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10600 &remote_protocol_packets[PACKET_qXfer_libraries]);
10601
10602 case TARGET_OBJECT_LIBRARIES_SVR4:
10603 return remote_read_qxfer
10604 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10605 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10606
10607 case TARGET_OBJECT_MEMORY_MAP:
10608 gdb_assert (annex == NULL);
10609 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10610 xfered_len,
10611 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10612
10613 case TARGET_OBJECT_OSDATA:
10614 /* Should only get here if we're connected. */
10615 gdb_assert (rs->remote_desc);
10616 return remote_read_qxfer
10617 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10618 &remote_protocol_packets[PACKET_qXfer_osdata]);
10619
10620 case TARGET_OBJECT_THREADS:
10621 gdb_assert (annex == NULL);
10622 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10623 xfered_len,
10624 &remote_protocol_packets[PACKET_qXfer_threads]);
10625
10626 case TARGET_OBJECT_TRACEFRAME_INFO:
10627 gdb_assert (annex == NULL);
10628 return remote_read_qxfer
10629 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10630 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10631
10632 case TARGET_OBJECT_FDPIC:
10633 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10634 xfered_len,
10635 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10636
10637 case TARGET_OBJECT_OPENVMS_UIB:
10638 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10639 xfered_len,
10640 &remote_protocol_packets[PACKET_qXfer_uib]);
10641
10642 case TARGET_OBJECT_BTRACE:
10643 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10644 xfered_len,
10645 &remote_protocol_packets[PACKET_qXfer_btrace]);
10646
10647 case TARGET_OBJECT_BTRACE_CONF:
10648 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10649 len, xfered_len,
10650 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10651
10652 case TARGET_OBJECT_EXEC_FILE:
10653 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10654 len, xfered_len,
10655 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10656
10657 default:
10658 return TARGET_XFER_E_IO;
10659 }
10660
10661 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10662 large enough let the caller deal with it. */
10663 if (len < get_remote_packet_size ())
10664 return TARGET_XFER_E_IO;
10665 len = get_remote_packet_size ();
10666
10667 /* Except for querying the minimum buffer size, target must be open. */
10668 if (!rs->remote_desc)
10669 error (_("remote query is only available after target open"));
10670
10671 gdb_assert (annex != NULL);
10672 gdb_assert (readbuf != NULL);
10673
10674 p2 = rs->buf;
10675 *p2++ = 'q';
10676 *p2++ = query_type;
10677
10678 /* We used one buffer char for the remote protocol q command and
10679 another for the query type. As the remote protocol encapsulation
10680 uses 4 chars plus one extra in case we are debugging
10681 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10682 string. */
10683 i = 0;
10684 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10685 {
10686 /* Bad caller may have sent forbidden characters. */
10687 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10688 *p2++ = annex[i];
10689 i++;
10690 }
10691 *p2 = '\0';
10692 gdb_assert (annex[i] == '\0');
10693
10694 i = putpkt (rs->buf);
10695 if (i < 0)
10696 return TARGET_XFER_E_IO;
10697
10698 getpkt (&rs->buf, &rs->buf_size, 0);
10699 strcpy ((char *) readbuf, rs->buf);
10700
10701 *xfered_len = strlen ((char *) readbuf);
10702 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10703 }
10704
10705 /* Implementation of to_get_memory_xfer_limit. */
10706
10707 static ULONGEST
10708 remote_get_memory_xfer_limit (struct target_ops *ops)
10709 {
10710 return get_memory_write_packet_size ();
10711 }
10712
10713 static int
10714 remote_search_memory (struct target_ops* ops,
10715 CORE_ADDR start_addr, ULONGEST search_space_len,
10716 const gdb_byte *pattern, ULONGEST pattern_len,
10717 CORE_ADDR *found_addrp)
10718 {
10719 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10720 struct remote_state *rs = get_remote_state ();
10721 int max_size = get_memory_write_packet_size ();
10722 struct packet_config *packet =
10723 &remote_protocol_packets[PACKET_qSearch_memory];
10724 /* Number of packet bytes used to encode the pattern;
10725 this could be more than PATTERN_LEN due to escape characters. */
10726 int escaped_pattern_len;
10727 /* Amount of pattern that was encodable in the packet. */
10728 int used_pattern_len;
10729 int i;
10730 int found;
10731 ULONGEST found_addr;
10732
10733 /* Don't go to the target if we don't have to.
10734 This is done before checking packet->support to avoid the possibility that
10735 a success for this edge case means the facility works in general. */
10736 if (pattern_len > search_space_len)
10737 return 0;
10738 if (pattern_len == 0)
10739 {
10740 *found_addrp = start_addr;
10741 return 1;
10742 }
10743
10744 /* If we already know the packet isn't supported, fall back to the simple
10745 way of searching memory. */
10746
10747 if (packet_config_support (packet) == PACKET_DISABLE)
10748 {
10749 /* Target doesn't provided special support, fall back and use the
10750 standard support (copy memory and do the search here). */
10751 return simple_search_memory (ops, start_addr, search_space_len,
10752 pattern, pattern_len, found_addrp);
10753 }
10754
10755 /* Make sure the remote is pointing at the right process. */
10756 set_general_process ();
10757
10758 /* Insert header. */
10759 i = snprintf (rs->buf, max_size,
10760 "qSearch:memory:%s;%s;",
10761 phex_nz (start_addr, addr_size),
10762 phex_nz (search_space_len, sizeof (search_space_len)));
10763 max_size -= (i + 1);
10764
10765 /* Escape as much data as fits into rs->buf. */
10766 escaped_pattern_len =
10767 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10768 &used_pattern_len, max_size);
10769
10770 /* Bail if the pattern is too large. */
10771 if (used_pattern_len != pattern_len)
10772 error (_("Pattern is too large to transmit to remote target."));
10773
10774 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10775 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10776 || packet_ok (rs->buf, packet) != PACKET_OK)
10777 {
10778 /* The request may not have worked because the command is not
10779 supported. If so, fall back to the simple way. */
10780 if (packet->support == PACKET_DISABLE)
10781 {
10782 return simple_search_memory (ops, start_addr, search_space_len,
10783 pattern, pattern_len, found_addrp);
10784 }
10785 return -1;
10786 }
10787
10788 if (rs->buf[0] == '0')
10789 found = 0;
10790 else if (rs->buf[0] == '1')
10791 {
10792 found = 1;
10793 if (rs->buf[1] != ',')
10794 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10795 unpack_varlen_hex (rs->buf + 2, &found_addr);
10796 *found_addrp = found_addr;
10797 }
10798 else
10799 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10800
10801 return found;
10802 }
10803
10804 static void
10805 remote_rcmd (struct target_ops *self, const char *command,
10806 struct ui_file *outbuf)
10807 {
10808 struct remote_state *rs = get_remote_state ();
10809 char *p = rs->buf;
10810
10811 if (!rs->remote_desc)
10812 error (_("remote rcmd is only available after target open"));
10813
10814 /* Send a NULL command across as an empty command. */
10815 if (command == NULL)
10816 command = "";
10817
10818 /* The query prefix. */
10819 strcpy (rs->buf, "qRcmd,");
10820 p = strchr (rs->buf, '\0');
10821
10822 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10823 > get_remote_packet_size ())
10824 error (_("\"monitor\" command ``%s'' is too long."), command);
10825
10826 /* Encode the actual command. */
10827 bin2hex ((const gdb_byte *) command, p, strlen (command));
10828
10829 if (putpkt (rs->buf) < 0)
10830 error (_("Communication problem with target."));
10831
10832 /* get/display the response */
10833 while (1)
10834 {
10835 char *buf;
10836
10837 /* XXX - see also remote_get_noisy_reply(). */
10838 QUIT; /* Allow user to bail out with ^C. */
10839 rs->buf[0] = '\0';
10840 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10841 {
10842 /* Timeout. Continue to (try to) read responses.
10843 This is better than stopping with an error, assuming the stub
10844 is still executing the (long) monitor command.
10845 If needed, the user can interrupt gdb using C-c, obtaining
10846 an effect similar to stop on timeout. */
10847 continue;
10848 }
10849 buf = rs->buf;
10850 if (buf[0] == '\0')
10851 error (_("Target does not support this command."));
10852 if (buf[0] == 'O' && buf[1] != 'K')
10853 {
10854 remote_console_output (buf + 1); /* 'O' message from stub. */
10855 continue;
10856 }
10857 if (strcmp (buf, "OK") == 0)
10858 break;
10859 if (strlen (buf) == 3 && buf[0] == 'E'
10860 && isdigit (buf[1]) && isdigit (buf[2]))
10861 {
10862 error (_("Protocol error with Rcmd"));
10863 }
10864 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10865 {
10866 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10867
10868 fputc_unfiltered (c, outbuf);
10869 }
10870 break;
10871 }
10872 }
10873
10874 static std::vector<mem_region>
10875 remote_memory_map (struct target_ops *ops)
10876 {
10877 std::vector<mem_region> result;
10878 gdb::unique_xmalloc_ptr<char> text
10879 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10880
10881 if (text)
10882 result = parse_memory_map (text.get ());
10883
10884 return result;
10885 }
10886
10887 static void
10888 packet_command (const char *args, int from_tty)
10889 {
10890 struct remote_state *rs = get_remote_state ();
10891
10892 if (!rs->remote_desc)
10893 error (_("command can only be used with remote target"));
10894
10895 if (!args)
10896 error (_("remote-packet command requires packet text as argument"));
10897
10898 puts_filtered ("sending: ");
10899 print_packet (args);
10900 puts_filtered ("\n");
10901 putpkt (args);
10902
10903 getpkt (&rs->buf, &rs->buf_size, 0);
10904 puts_filtered ("received: ");
10905 print_packet (rs->buf);
10906 puts_filtered ("\n");
10907 }
10908
10909 #if 0
10910 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10911
10912 static void display_thread_info (struct gdb_ext_thread_info *info);
10913
10914 static void threadset_test_cmd (char *cmd, int tty);
10915
10916 static void threadalive_test (char *cmd, int tty);
10917
10918 static void threadlist_test_cmd (char *cmd, int tty);
10919
10920 int get_and_display_threadinfo (threadref *ref);
10921
10922 static void threadinfo_test_cmd (char *cmd, int tty);
10923
10924 static int thread_display_step (threadref *ref, void *context);
10925
10926 static void threadlist_update_test_cmd (char *cmd, int tty);
10927
10928 static void init_remote_threadtests (void);
10929
10930 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10931
10932 static void
10933 threadset_test_cmd (const char *cmd, int tty)
10934 {
10935 int sample_thread = SAMPLE_THREAD;
10936
10937 printf_filtered (_("Remote threadset test\n"));
10938 set_general_thread (sample_thread);
10939 }
10940
10941
10942 static void
10943 threadalive_test (const char *cmd, int tty)
10944 {
10945 int sample_thread = SAMPLE_THREAD;
10946 int pid = ptid_get_pid (inferior_ptid);
10947 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10948
10949 if (remote_thread_alive (ptid))
10950 printf_filtered ("PASS: Thread alive test\n");
10951 else
10952 printf_filtered ("FAIL: Thread alive test\n");
10953 }
10954
10955 void output_threadid (char *title, threadref *ref);
10956
10957 void
10958 output_threadid (char *title, threadref *ref)
10959 {
10960 char hexid[20];
10961
10962 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10963 hexid[16] = 0;
10964 printf_filtered ("%s %s\n", title, (&hexid[0]));
10965 }
10966
10967 static void
10968 threadlist_test_cmd (const char *cmd, int tty)
10969 {
10970 int startflag = 1;
10971 threadref nextthread;
10972 int done, result_count;
10973 threadref threadlist[3];
10974
10975 printf_filtered ("Remote Threadlist test\n");
10976 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10977 &result_count, &threadlist[0]))
10978 printf_filtered ("FAIL: threadlist test\n");
10979 else
10980 {
10981 threadref *scan = threadlist;
10982 threadref *limit = scan + result_count;
10983
10984 while (scan < limit)
10985 output_threadid (" thread ", scan++);
10986 }
10987 }
10988
10989 void
10990 display_thread_info (struct gdb_ext_thread_info *info)
10991 {
10992 output_threadid ("Threadid: ", &info->threadid);
10993 printf_filtered ("Name: %s\n ", info->shortname);
10994 printf_filtered ("State: %s\n", info->display);
10995 printf_filtered ("other: %s\n\n", info->more_display);
10996 }
10997
10998 int
10999 get_and_display_threadinfo (threadref *ref)
11000 {
11001 int result;
11002 int set;
11003 struct gdb_ext_thread_info threadinfo;
11004
11005 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11006 | TAG_MOREDISPLAY | TAG_DISPLAY;
11007 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11008 display_thread_info (&threadinfo);
11009 return result;
11010 }
11011
11012 static void
11013 threadinfo_test_cmd (const char *cmd, int tty)
11014 {
11015 int athread = SAMPLE_THREAD;
11016 threadref thread;
11017 int set;
11018
11019 int_to_threadref (&thread, athread);
11020 printf_filtered ("Remote Threadinfo test\n");
11021 if (!get_and_display_threadinfo (&thread))
11022 printf_filtered ("FAIL cannot get thread info\n");
11023 }
11024
11025 static int
11026 thread_display_step (threadref *ref, void *context)
11027 {
11028 /* output_threadid(" threadstep ",ref); *//* simple test */
11029 return get_and_display_threadinfo (ref);
11030 }
11031
11032 static void
11033 threadlist_update_test_cmd (const char *cmd, int tty)
11034 {
11035 printf_filtered ("Remote Threadlist update test\n");
11036 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11037 }
11038
11039 static void
11040 init_remote_threadtests (void)
11041 {
11042 add_com ("tlist", class_obscure, threadlist_test_cmd,
11043 _("Fetch and print the remote list of "
11044 "thread identifiers, one pkt only"));
11045 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11046 _("Fetch and display info about one thread"));
11047 add_com ("tset", class_obscure, threadset_test_cmd,
11048 _("Test setting to a different thread"));
11049 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11050 _("Iterate through updating all remote thread info"));
11051 add_com ("talive", class_obscure, threadalive_test,
11052 _(" Remote thread alive test "));
11053 }
11054
11055 #endif /* 0 */
11056
11057 /* Convert a thread ID to a string. Returns the string in a static
11058 buffer. */
11059
11060 static const char *
11061 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
11062 {
11063 static char buf[64];
11064 struct remote_state *rs = get_remote_state ();
11065
11066 if (ptid_equal (ptid, null_ptid))
11067 return normal_pid_to_str (ptid);
11068 else if (ptid_is_pid (ptid))
11069 {
11070 /* Printing an inferior target id. */
11071
11072 /* When multi-process extensions are off, there's no way in the
11073 remote protocol to know the remote process id, if there's any
11074 at all. There's one exception --- when we're connected with
11075 target extended-remote, and we manually attached to a process
11076 with "attach PID". We don't record anywhere a flag that
11077 allows us to distinguish that case from the case of
11078 connecting with extended-remote and the stub already being
11079 attached to a process, and reporting yes to qAttached, hence
11080 no smart special casing here. */
11081 if (!remote_multi_process_p (rs))
11082 {
11083 xsnprintf (buf, sizeof buf, "Remote target");
11084 return buf;
11085 }
11086
11087 return normal_pid_to_str (ptid);
11088 }
11089 else
11090 {
11091 if (ptid_equal (magic_null_ptid, ptid))
11092 xsnprintf (buf, sizeof buf, "Thread <main>");
11093 else if (remote_multi_process_p (rs))
11094 if (ptid_get_lwp (ptid) == 0)
11095 return normal_pid_to_str (ptid);
11096 else
11097 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11098 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11099 else
11100 xsnprintf (buf, sizeof buf, "Thread %ld",
11101 ptid_get_lwp (ptid));
11102 return buf;
11103 }
11104 }
11105
11106 /* Get the address of the thread local variable in OBJFILE which is
11107 stored at OFFSET within the thread local storage for thread PTID. */
11108
11109 static CORE_ADDR
11110 remote_get_thread_local_address (struct target_ops *ops,
11111 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11112 {
11113 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11114 {
11115 struct remote_state *rs = get_remote_state ();
11116 char *p = rs->buf;
11117 char *endp = rs->buf + get_remote_packet_size ();
11118 enum packet_result result;
11119
11120 strcpy (p, "qGetTLSAddr:");
11121 p += strlen (p);
11122 p = write_ptid (p, endp, ptid);
11123 *p++ = ',';
11124 p += hexnumstr (p, offset);
11125 *p++ = ',';
11126 p += hexnumstr (p, lm);
11127 *p++ = '\0';
11128
11129 putpkt (rs->buf);
11130 getpkt (&rs->buf, &rs->buf_size, 0);
11131 result = packet_ok (rs->buf,
11132 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11133 if (result == PACKET_OK)
11134 {
11135 ULONGEST result;
11136
11137 unpack_varlen_hex (rs->buf, &result);
11138 return result;
11139 }
11140 else if (result == PACKET_UNKNOWN)
11141 throw_error (TLS_GENERIC_ERROR,
11142 _("Remote target doesn't support qGetTLSAddr packet"));
11143 else
11144 throw_error (TLS_GENERIC_ERROR,
11145 _("Remote target failed to process qGetTLSAddr request"));
11146 }
11147 else
11148 throw_error (TLS_GENERIC_ERROR,
11149 _("TLS not supported or disabled on this target"));
11150 /* Not reached. */
11151 return 0;
11152 }
11153
11154 /* Provide thread local base, i.e. Thread Information Block address.
11155 Returns 1 if ptid is found and thread_local_base is non zero. */
11156
11157 static int
11158 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11159 {
11160 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11161 {
11162 struct remote_state *rs = get_remote_state ();
11163 char *p = rs->buf;
11164 char *endp = rs->buf + get_remote_packet_size ();
11165 enum packet_result result;
11166
11167 strcpy (p, "qGetTIBAddr:");
11168 p += strlen (p);
11169 p = write_ptid (p, endp, ptid);
11170 *p++ = '\0';
11171
11172 putpkt (rs->buf);
11173 getpkt (&rs->buf, &rs->buf_size, 0);
11174 result = packet_ok (rs->buf,
11175 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11176 if (result == PACKET_OK)
11177 {
11178 ULONGEST result;
11179
11180 unpack_varlen_hex (rs->buf, &result);
11181 if (addr)
11182 *addr = (CORE_ADDR) result;
11183 return 1;
11184 }
11185 else if (result == PACKET_UNKNOWN)
11186 error (_("Remote target doesn't support qGetTIBAddr packet"));
11187 else
11188 error (_("Remote target failed to process qGetTIBAddr request"));
11189 }
11190 else
11191 error (_("qGetTIBAddr not supported or disabled on this target"));
11192 /* Not reached. */
11193 return 0;
11194 }
11195
11196 /* Support for inferring a target description based on the current
11197 architecture and the size of a 'g' packet. While the 'g' packet
11198 can have any size (since optional registers can be left off the
11199 end), some sizes are easily recognizable given knowledge of the
11200 approximate architecture. */
11201
11202 struct remote_g_packet_guess
11203 {
11204 int bytes;
11205 const struct target_desc *tdesc;
11206 };
11207 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11208 DEF_VEC_O(remote_g_packet_guess_s);
11209
11210 struct remote_g_packet_data
11211 {
11212 VEC(remote_g_packet_guess_s) *guesses;
11213 };
11214
11215 static struct gdbarch_data *remote_g_packet_data_handle;
11216
11217 static void *
11218 remote_g_packet_data_init (struct obstack *obstack)
11219 {
11220 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11221 }
11222
11223 void
11224 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11225 const struct target_desc *tdesc)
11226 {
11227 struct remote_g_packet_data *data
11228 = ((struct remote_g_packet_data *)
11229 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11230 struct remote_g_packet_guess new_guess, *guess;
11231 int ix;
11232
11233 gdb_assert (tdesc != NULL);
11234
11235 for (ix = 0;
11236 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11237 ix++)
11238 if (guess->bytes == bytes)
11239 internal_error (__FILE__, __LINE__,
11240 _("Duplicate g packet description added for size %d"),
11241 bytes);
11242
11243 new_guess.bytes = bytes;
11244 new_guess.tdesc = tdesc;
11245 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11246 }
11247
11248 /* Return 1 if remote_read_description would do anything on this target
11249 and architecture, 0 otherwise. */
11250
11251 static int
11252 remote_read_description_p (struct target_ops *target)
11253 {
11254 struct remote_g_packet_data *data
11255 = ((struct remote_g_packet_data *)
11256 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11257
11258 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11259 return 1;
11260
11261 return 0;
11262 }
11263
11264 static const struct target_desc *
11265 remote_read_description (struct target_ops *target)
11266 {
11267 struct remote_g_packet_data *data
11268 = ((struct remote_g_packet_data *)
11269 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11270
11271 /* Do not try this during initial connection, when we do not know
11272 whether there is a running but stopped thread. */
11273 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11274 return target->beneath->to_read_description (target->beneath);
11275
11276 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11277 {
11278 struct remote_g_packet_guess *guess;
11279 int ix;
11280 int bytes = send_g_packet ();
11281
11282 for (ix = 0;
11283 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11284 ix++)
11285 if (guess->bytes == bytes)
11286 return guess->tdesc;
11287
11288 /* We discard the g packet. A minor optimization would be to
11289 hold on to it, and fill the register cache once we have selected
11290 an architecture, but it's too tricky to do safely. */
11291 }
11292
11293 return target->beneath->to_read_description (target->beneath);
11294 }
11295
11296 /* Remote file transfer support. This is host-initiated I/O, not
11297 target-initiated; for target-initiated, see remote-fileio.c. */
11298
11299 /* If *LEFT is at least the length of STRING, copy STRING to
11300 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11301 decrease *LEFT. Otherwise raise an error. */
11302
11303 static void
11304 remote_buffer_add_string (char **buffer, int *left, const char *string)
11305 {
11306 int len = strlen (string);
11307
11308 if (len > *left)
11309 error (_("Packet too long for target."));
11310
11311 memcpy (*buffer, string, len);
11312 *buffer += len;
11313 *left -= len;
11314
11315 /* NUL-terminate the buffer as a convenience, if there is
11316 room. */
11317 if (*left)
11318 **buffer = '\0';
11319 }
11320
11321 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11322 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11323 decrease *LEFT. Otherwise raise an error. */
11324
11325 static void
11326 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11327 int len)
11328 {
11329 if (2 * len > *left)
11330 error (_("Packet too long for target."));
11331
11332 bin2hex (bytes, *buffer, len);
11333 *buffer += 2 * len;
11334 *left -= 2 * len;
11335
11336 /* NUL-terminate the buffer as a convenience, if there is
11337 room. */
11338 if (*left)
11339 **buffer = '\0';
11340 }
11341
11342 /* If *LEFT is large enough, convert VALUE to hex and add it to
11343 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11344 decrease *LEFT. Otherwise raise an error. */
11345
11346 static void
11347 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11348 {
11349 int len = hexnumlen (value);
11350
11351 if (len > *left)
11352 error (_("Packet too long for target."));
11353
11354 hexnumstr (*buffer, value);
11355 *buffer += len;
11356 *left -= len;
11357
11358 /* NUL-terminate the buffer as a convenience, if there is
11359 room. */
11360 if (*left)
11361 **buffer = '\0';
11362 }
11363
11364 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11365 value, *REMOTE_ERRNO to the remote error number or zero if none
11366 was included, and *ATTACHMENT to point to the start of the annex
11367 if any. The length of the packet isn't needed here; there may
11368 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11369
11370 Return 0 if the packet could be parsed, -1 if it could not. If
11371 -1 is returned, the other variables may not be initialized. */
11372
11373 static int
11374 remote_hostio_parse_result (char *buffer, int *retcode,
11375 int *remote_errno, char **attachment)
11376 {
11377 char *p, *p2;
11378
11379 *remote_errno = 0;
11380 *attachment = NULL;
11381
11382 if (buffer[0] != 'F')
11383 return -1;
11384
11385 errno = 0;
11386 *retcode = strtol (&buffer[1], &p, 16);
11387 if (errno != 0 || p == &buffer[1])
11388 return -1;
11389
11390 /* Check for ",errno". */
11391 if (*p == ',')
11392 {
11393 errno = 0;
11394 *remote_errno = strtol (p + 1, &p2, 16);
11395 if (errno != 0 || p + 1 == p2)
11396 return -1;
11397 p = p2;
11398 }
11399
11400 /* Check for ";attachment". If there is no attachment, the
11401 packet should end here. */
11402 if (*p == ';')
11403 {
11404 *attachment = p + 1;
11405 return 0;
11406 }
11407 else if (*p == '\0')
11408 return 0;
11409 else
11410 return -1;
11411 }
11412
11413 /* Send a prepared I/O packet to the target and read its response.
11414 The prepared packet is in the global RS->BUF before this function
11415 is called, and the answer is there when we return.
11416
11417 COMMAND_BYTES is the length of the request to send, which may include
11418 binary data. WHICH_PACKET is the packet configuration to check
11419 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11420 is set to the error number and -1 is returned. Otherwise the value
11421 returned by the function is returned.
11422
11423 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11424 attachment is expected; an error will be reported if there's a
11425 mismatch. If one is found, *ATTACHMENT will be set to point into
11426 the packet buffer and *ATTACHMENT_LEN will be set to the
11427 attachment's length. */
11428
11429 static int
11430 remote_hostio_send_command (int command_bytes, int which_packet,
11431 int *remote_errno, char **attachment,
11432 int *attachment_len)
11433 {
11434 struct remote_state *rs = get_remote_state ();
11435 int ret, bytes_read;
11436 char *attachment_tmp;
11437
11438 if (!rs->remote_desc
11439 || packet_support (which_packet) == PACKET_DISABLE)
11440 {
11441 *remote_errno = FILEIO_ENOSYS;
11442 return -1;
11443 }
11444
11445 putpkt_binary (rs->buf, command_bytes);
11446 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11447
11448 /* If it timed out, something is wrong. Don't try to parse the
11449 buffer. */
11450 if (bytes_read < 0)
11451 {
11452 *remote_errno = FILEIO_EINVAL;
11453 return -1;
11454 }
11455
11456 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11457 {
11458 case PACKET_ERROR:
11459 *remote_errno = FILEIO_EINVAL;
11460 return -1;
11461 case PACKET_UNKNOWN:
11462 *remote_errno = FILEIO_ENOSYS;
11463 return -1;
11464 case PACKET_OK:
11465 break;
11466 }
11467
11468 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11469 &attachment_tmp))
11470 {
11471 *remote_errno = FILEIO_EINVAL;
11472 return -1;
11473 }
11474
11475 /* Make sure we saw an attachment if and only if we expected one. */
11476 if ((attachment_tmp == NULL && attachment != NULL)
11477 || (attachment_tmp != NULL && attachment == NULL))
11478 {
11479 *remote_errno = FILEIO_EINVAL;
11480 return -1;
11481 }
11482
11483 /* If an attachment was found, it must point into the packet buffer;
11484 work out how many bytes there were. */
11485 if (attachment_tmp != NULL)
11486 {
11487 *attachment = attachment_tmp;
11488 *attachment_len = bytes_read - (*attachment - rs->buf);
11489 }
11490
11491 return ret;
11492 }
11493
11494 /* Invalidate the readahead cache. */
11495
11496 static void
11497 readahead_cache_invalidate (void)
11498 {
11499 struct remote_state *rs = get_remote_state ();
11500
11501 rs->readahead_cache.fd = -1;
11502 }
11503
11504 /* Invalidate the readahead cache if it is holding data for FD. */
11505
11506 static void
11507 readahead_cache_invalidate_fd (int fd)
11508 {
11509 struct remote_state *rs = get_remote_state ();
11510
11511 if (rs->readahead_cache.fd == fd)
11512 rs->readahead_cache.fd = -1;
11513 }
11514
11515 /* Set the filesystem remote_hostio functions that take FILENAME
11516 arguments will use. Return 0 on success, or -1 if an error
11517 occurs (and set *REMOTE_ERRNO). */
11518
11519 static int
11520 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11521 {
11522 struct remote_state *rs = get_remote_state ();
11523 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11524 char *p = rs->buf;
11525 int left = get_remote_packet_size () - 1;
11526 char arg[9];
11527 int ret;
11528
11529 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11530 return 0;
11531
11532 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11533 return 0;
11534
11535 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11536
11537 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11538 remote_buffer_add_string (&p, &left, arg);
11539
11540 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11541 remote_errno, NULL, NULL);
11542
11543 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11544 return 0;
11545
11546 if (ret == 0)
11547 rs->fs_pid = required_pid;
11548
11549 return ret;
11550 }
11551
11552 /* Implementation of to_fileio_open. */
11553
11554 static int
11555 remote_hostio_open (struct target_ops *self,
11556 struct inferior *inf, const char *filename,
11557 int flags, int mode, int warn_if_slow,
11558 int *remote_errno)
11559 {
11560 struct remote_state *rs = get_remote_state ();
11561 char *p = rs->buf;
11562 int left = get_remote_packet_size () - 1;
11563
11564 if (warn_if_slow)
11565 {
11566 static int warning_issued = 0;
11567
11568 printf_unfiltered (_("Reading %s from remote target...\n"),
11569 filename);
11570
11571 if (!warning_issued)
11572 {
11573 warning (_("File transfers from remote targets can be slow."
11574 " Use \"set sysroot\" to access files locally"
11575 " instead."));
11576 warning_issued = 1;
11577 }
11578 }
11579
11580 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11581 return -1;
11582
11583 remote_buffer_add_string (&p, &left, "vFile:open:");
11584
11585 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11586 strlen (filename));
11587 remote_buffer_add_string (&p, &left, ",");
11588
11589 remote_buffer_add_int (&p, &left, flags);
11590 remote_buffer_add_string (&p, &left, ",");
11591
11592 remote_buffer_add_int (&p, &left, mode);
11593
11594 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11595 remote_errno, NULL, NULL);
11596 }
11597
11598 /* Implementation of to_fileio_pwrite. */
11599
11600 static int
11601 remote_hostio_pwrite (struct target_ops *self,
11602 int fd, const gdb_byte *write_buf, int len,
11603 ULONGEST offset, int *remote_errno)
11604 {
11605 struct remote_state *rs = get_remote_state ();
11606 char *p = rs->buf;
11607 int left = get_remote_packet_size ();
11608 int out_len;
11609
11610 readahead_cache_invalidate_fd (fd);
11611
11612 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11613
11614 remote_buffer_add_int (&p, &left, fd);
11615 remote_buffer_add_string (&p, &left, ",");
11616
11617 remote_buffer_add_int (&p, &left, offset);
11618 remote_buffer_add_string (&p, &left, ",");
11619
11620 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11621 get_remote_packet_size () - (p - rs->buf));
11622
11623 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11624 remote_errno, NULL, NULL);
11625 }
11626
11627 /* Helper for the implementation of to_fileio_pread. Read the file
11628 from the remote side with vFile:pread. */
11629
11630 static int
11631 remote_hostio_pread_vFile (struct target_ops *self,
11632 int fd, gdb_byte *read_buf, int len,
11633 ULONGEST offset, int *remote_errno)
11634 {
11635 struct remote_state *rs = get_remote_state ();
11636 char *p = rs->buf;
11637 char *attachment;
11638 int left = get_remote_packet_size ();
11639 int ret, attachment_len;
11640 int read_len;
11641
11642 remote_buffer_add_string (&p, &left, "vFile:pread:");
11643
11644 remote_buffer_add_int (&p, &left, fd);
11645 remote_buffer_add_string (&p, &left, ",");
11646
11647 remote_buffer_add_int (&p, &left, len);
11648 remote_buffer_add_string (&p, &left, ",");
11649
11650 remote_buffer_add_int (&p, &left, offset);
11651
11652 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11653 remote_errno, &attachment,
11654 &attachment_len);
11655
11656 if (ret < 0)
11657 return ret;
11658
11659 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11660 read_buf, len);
11661 if (read_len != ret)
11662 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11663
11664 return ret;
11665 }
11666
11667 /* Serve pread from the readahead cache. Returns number of bytes
11668 read, or 0 if the request can't be served from the cache. */
11669
11670 static int
11671 remote_hostio_pread_from_cache (struct remote_state *rs,
11672 int fd, gdb_byte *read_buf, size_t len,
11673 ULONGEST offset)
11674 {
11675 struct readahead_cache *cache = &rs->readahead_cache;
11676
11677 if (cache->fd == fd
11678 && cache->offset <= offset
11679 && offset < cache->offset + cache->bufsize)
11680 {
11681 ULONGEST max = cache->offset + cache->bufsize;
11682
11683 if (offset + len > max)
11684 len = max - offset;
11685
11686 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11687 return len;
11688 }
11689
11690 return 0;
11691 }
11692
11693 /* Implementation of to_fileio_pread. */
11694
11695 static int
11696 remote_hostio_pread (struct target_ops *self,
11697 int fd, gdb_byte *read_buf, int len,
11698 ULONGEST offset, int *remote_errno)
11699 {
11700 int ret;
11701 struct remote_state *rs = get_remote_state ();
11702 struct readahead_cache *cache = &rs->readahead_cache;
11703
11704 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11705 if (ret > 0)
11706 {
11707 cache->hit_count++;
11708
11709 if (remote_debug)
11710 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11711 pulongest (cache->hit_count));
11712 return ret;
11713 }
11714
11715 cache->miss_count++;
11716 if (remote_debug)
11717 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11718 pulongest (cache->miss_count));
11719
11720 cache->fd = fd;
11721 cache->offset = offset;
11722 cache->bufsize = get_remote_packet_size ();
11723 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11724
11725 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11726 cache->offset, remote_errno);
11727 if (ret <= 0)
11728 {
11729 readahead_cache_invalidate_fd (fd);
11730 return ret;
11731 }
11732
11733 cache->bufsize = ret;
11734 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11735 }
11736
11737 /* Implementation of to_fileio_close. */
11738
11739 static int
11740 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11741 {
11742 struct remote_state *rs = get_remote_state ();
11743 char *p = rs->buf;
11744 int left = get_remote_packet_size () - 1;
11745
11746 readahead_cache_invalidate_fd (fd);
11747
11748 remote_buffer_add_string (&p, &left, "vFile:close:");
11749
11750 remote_buffer_add_int (&p, &left, fd);
11751
11752 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11753 remote_errno, NULL, NULL);
11754 }
11755
11756 /* Implementation of to_fileio_unlink. */
11757
11758 static int
11759 remote_hostio_unlink (struct target_ops *self,
11760 struct inferior *inf, const char *filename,
11761 int *remote_errno)
11762 {
11763 struct remote_state *rs = get_remote_state ();
11764 char *p = rs->buf;
11765 int left = get_remote_packet_size () - 1;
11766
11767 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11768 return -1;
11769
11770 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11771
11772 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11773 strlen (filename));
11774
11775 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11776 remote_errno, NULL, NULL);
11777 }
11778
11779 /* Implementation of to_fileio_readlink. */
11780
11781 static char *
11782 remote_hostio_readlink (struct target_ops *self,
11783 struct inferior *inf, const char *filename,
11784 int *remote_errno)
11785 {
11786 struct remote_state *rs = get_remote_state ();
11787 char *p = rs->buf;
11788 char *attachment;
11789 int left = get_remote_packet_size ();
11790 int len, attachment_len;
11791 int read_len;
11792 char *ret;
11793
11794 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11795 return NULL;
11796
11797 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11798
11799 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11800 strlen (filename));
11801
11802 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11803 remote_errno, &attachment,
11804 &attachment_len);
11805
11806 if (len < 0)
11807 return NULL;
11808
11809 ret = (char *) xmalloc (len + 1);
11810
11811 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11812 (gdb_byte *) ret, len);
11813 if (read_len != len)
11814 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11815
11816 ret[len] = '\0';
11817 return ret;
11818 }
11819
11820 /* Implementation of to_fileio_fstat. */
11821
11822 static int
11823 remote_hostio_fstat (struct target_ops *self,
11824 int fd, struct stat *st,
11825 int *remote_errno)
11826 {
11827 struct remote_state *rs = get_remote_state ();
11828 char *p = rs->buf;
11829 int left = get_remote_packet_size ();
11830 int attachment_len, ret;
11831 char *attachment;
11832 struct fio_stat fst;
11833 int read_len;
11834
11835 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11836
11837 remote_buffer_add_int (&p, &left, fd);
11838
11839 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11840 remote_errno, &attachment,
11841 &attachment_len);
11842 if (ret < 0)
11843 {
11844 if (*remote_errno != FILEIO_ENOSYS)
11845 return ret;
11846
11847 /* Strictly we should return -1, ENOSYS here, but when
11848 "set sysroot remote:" was implemented in August 2008
11849 BFD's need for a stat function was sidestepped with
11850 this hack. This was not remedied until March 2015
11851 so we retain the previous behavior to avoid breaking
11852 compatibility.
11853
11854 Note that the memset is a March 2015 addition; older
11855 GDBs set st_size *and nothing else* so the structure
11856 would have garbage in all other fields. This might
11857 break something but retaining the previous behavior
11858 here would be just too wrong. */
11859
11860 memset (st, 0, sizeof (struct stat));
11861 st->st_size = INT_MAX;
11862 return 0;
11863 }
11864
11865 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11866 (gdb_byte *) &fst, sizeof (fst));
11867
11868 if (read_len != ret)
11869 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11870
11871 if (read_len != sizeof (fst))
11872 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11873 read_len, (int) sizeof (fst));
11874
11875 remote_fileio_to_host_stat (&fst, st);
11876
11877 return 0;
11878 }
11879
11880 /* Implementation of to_filesystem_is_local. */
11881
11882 static int
11883 remote_filesystem_is_local (struct target_ops *self)
11884 {
11885 /* Valgrind GDB presents itself as a remote target but works
11886 on the local filesystem: it does not implement remote get
11887 and users are not expected to set a sysroot. To handle
11888 this case we treat the remote filesystem as local if the
11889 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11890 does not support vFile:open. */
11891 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11892 {
11893 enum packet_support ps = packet_support (PACKET_vFile_open);
11894
11895 if (ps == PACKET_SUPPORT_UNKNOWN)
11896 {
11897 int fd, remote_errno;
11898
11899 /* Try opening a file to probe support. The supplied
11900 filename is irrelevant, we only care about whether
11901 the stub recognizes the packet or not. */
11902 fd = remote_hostio_open (self, NULL, "just probing",
11903 FILEIO_O_RDONLY, 0700, 0,
11904 &remote_errno);
11905
11906 if (fd >= 0)
11907 remote_hostio_close (self, fd, &remote_errno);
11908
11909 ps = packet_support (PACKET_vFile_open);
11910 }
11911
11912 if (ps == PACKET_DISABLE)
11913 {
11914 static int warning_issued = 0;
11915
11916 if (!warning_issued)
11917 {
11918 warning (_("remote target does not support file"
11919 " transfer, attempting to access files"
11920 " from local filesystem."));
11921 warning_issued = 1;
11922 }
11923
11924 return 1;
11925 }
11926 }
11927
11928 return 0;
11929 }
11930
11931 static int
11932 remote_fileio_errno_to_host (int errnum)
11933 {
11934 switch (errnum)
11935 {
11936 case FILEIO_EPERM:
11937 return EPERM;
11938 case FILEIO_ENOENT:
11939 return ENOENT;
11940 case FILEIO_EINTR:
11941 return EINTR;
11942 case FILEIO_EIO:
11943 return EIO;
11944 case FILEIO_EBADF:
11945 return EBADF;
11946 case FILEIO_EACCES:
11947 return EACCES;
11948 case FILEIO_EFAULT:
11949 return EFAULT;
11950 case FILEIO_EBUSY:
11951 return EBUSY;
11952 case FILEIO_EEXIST:
11953 return EEXIST;
11954 case FILEIO_ENODEV:
11955 return ENODEV;
11956 case FILEIO_ENOTDIR:
11957 return ENOTDIR;
11958 case FILEIO_EISDIR:
11959 return EISDIR;
11960 case FILEIO_EINVAL:
11961 return EINVAL;
11962 case FILEIO_ENFILE:
11963 return ENFILE;
11964 case FILEIO_EMFILE:
11965 return EMFILE;
11966 case FILEIO_EFBIG:
11967 return EFBIG;
11968 case FILEIO_ENOSPC:
11969 return ENOSPC;
11970 case FILEIO_ESPIPE:
11971 return ESPIPE;
11972 case FILEIO_EROFS:
11973 return EROFS;
11974 case FILEIO_ENOSYS:
11975 return ENOSYS;
11976 case FILEIO_ENAMETOOLONG:
11977 return ENAMETOOLONG;
11978 }
11979 return -1;
11980 }
11981
11982 static char *
11983 remote_hostio_error (int errnum)
11984 {
11985 int host_error = remote_fileio_errno_to_host (errnum);
11986
11987 if (host_error == -1)
11988 error (_("Unknown remote I/O error %d"), errnum);
11989 else
11990 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11991 }
11992
11993 static void
11994 remote_hostio_close_cleanup (void *opaque)
11995 {
11996 int fd = *(int *) opaque;
11997 int remote_errno;
11998
11999 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
12000 }
12001
12002 void
12003 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12004 {
12005 struct cleanup *back_to, *close_cleanup;
12006 int retcode, fd, remote_errno, bytes, io_size;
12007 gdb_byte *buffer;
12008 int bytes_in_buffer;
12009 int saw_eof;
12010 ULONGEST offset;
12011 struct remote_state *rs = get_remote_state ();
12012
12013 if (!rs->remote_desc)
12014 error (_("command can only be used with remote target"));
12015
12016 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12017 if (file == NULL)
12018 perror_with_name (local_file);
12019
12020 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12021 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12022 | FILEIO_O_TRUNC),
12023 0700, 0, &remote_errno);
12024 if (fd == -1)
12025 remote_hostio_error (remote_errno);
12026
12027 /* Send up to this many bytes at once. They won't all fit in the
12028 remote packet limit, so we'll transfer slightly fewer. */
12029 io_size = get_remote_packet_size ();
12030 buffer = (gdb_byte *) xmalloc (io_size);
12031 back_to = make_cleanup (xfree, buffer);
12032
12033 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12034
12035 bytes_in_buffer = 0;
12036 saw_eof = 0;
12037 offset = 0;
12038 while (bytes_in_buffer || !saw_eof)
12039 {
12040 if (!saw_eof)
12041 {
12042 bytes = fread (buffer + bytes_in_buffer, 1,
12043 io_size - bytes_in_buffer,
12044 file.get ());
12045 if (bytes == 0)
12046 {
12047 if (ferror (file.get ()))
12048 error (_("Error reading %s."), local_file);
12049 else
12050 {
12051 /* EOF. Unless there is something still in the
12052 buffer from the last iteration, we are done. */
12053 saw_eof = 1;
12054 if (bytes_in_buffer == 0)
12055 break;
12056 }
12057 }
12058 }
12059 else
12060 bytes = 0;
12061
12062 bytes += bytes_in_buffer;
12063 bytes_in_buffer = 0;
12064
12065 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12066 fd, buffer, bytes,
12067 offset, &remote_errno);
12068
12069 if (retcode < 0)
12070 remote_hostio_error (remote_errno);
12071 else if (retcode == 0)
12072 error (_("Remote write of %d bytes returned 0!"), bytes);
12073 else if (retcode < bytes)
12074 {
12075 /* Short write. Save the rest of the read data for the next
12076 write. */
12077 bytes_in_buffer = bytes - retcode;
12078 memmove (buffer, buffer + retcode, bytes_in_buffer);
12079 }
12080
12081 offset += retcode;
12082 }
12083
12084 discard_cleanups (close_cleanup);
12085 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12086 remote_hostio_error (remote_errno);
12087
12088 if (from_tty)
12089 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12090 do_cleanups (back_to);
12091 }
12092
12093 void
12094 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12095 {
12096 struct cleanup *back_to, *close_cleanup;
12097 int fd, remote_errno, bytes, io_size;
12098 gdb_byte *buffer;
12099 ULONGEST offset;
12100 struct remote_state *rs = get_remote_state ();
12101
12102 if (!rs->remote_desc)
12103 error (_("command can only be used with remote target"));
12104
12105 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12106 remote_file, FILEIO_O_RDONLY, 0, 0,
12107 &remote_errno);
12108 if (fd == -1)
12109 remote_hostio_error (remote_errno);
12110
12111 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12112 if (file == NULL)
12113 perror_with_name (local_file);
12114
12115 /* Send up to this many bytes at once. They won't all fit in the
12116 remote packet limit, so we'll transfer slightly fewer. */
12117 io_size = get_remote_packet_size ();
12118 buffer = (gdb_byte *) xmalloc (io_size);
12119 back_to = make_cleanup (xfree, buffer);
12120
12121 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12122
12123 offset = 0;
12124 while (1)
12125 {
12126 bytes = remote_hostio_pread (find_target_at (process_stratum),
12127 fd, buffer, io_size, offset, &remote_errno);
12128 if (bytes == 0)
12129 /* Success, but no bytes, means end-of-file. */
12130 break;
12131 if (bytes == -1)
12132 remote_hostio_error (remote_errno);
12133
12134 offset += bytes;
12135
12136 bytes = fwrite (buffer, 1, bytes, file.get ());
12137 if (bytes == 0)
12138 perror_with_name (local_file);
12139 }
12140
12141 discard_cleanups (close_cleanup);
12142 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12143 remote_hostio_error (remote_errno);
12144
12145 if (from_tty)
12146 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12147 do_cleanups (back_to);
12148 }
12149
12150 void
12151 remote_file_delete (const char *remote_file, int from_tty)
12152 {
12153 int retcode, remote_errno;
12154 struct remote_state *rs = get_remote_state ();
12155
12156 if (!rs->remote_desc)
12157 error (_("command can only be used with remote target"));
12158
12159 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12160 NULL, remote_file, &remote_errno);
12161 if (retcode == -1)
12162 remote_hostio_error (remote_errno);
12163
12164 if (from_tty)
12165 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12166 }
12167
12168 static void
12169 remote_put_command (const char *args, int from_tty)
12170 {
12171 if (args == NULL)
12172 error_no_arg (_("file to put"));
12173
12174 gdb_argv argv (args);
12175 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12176 error (_("Invalid parameters to remote put"));
12177
12178 remote_file_put (argv[0], argv[1], from_tty);
12179 }
12180
12181 static void
12182 remote_get_command (const char *args, int from_tty)
12183 {
12184 if (args == NULL)
12185 error_no_arg (_("file to get"));
12186
12187 gdb_argv argv (args);
12188 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12189 error (_("Invalid parameters to remote get"));
12190
12191 remote_file_get (argv[0], argv[1], from_tty);
12192 }
12193
12194 static void
12195 remote_delete_command (const char *args, int from_tty)
12196 {
12197 if (args == NULL)
12198 error_no_arg (_("file to delete"));
12199
12200 gdb_argv argv (args);
12201 if (argv[0] == NULL || argv[1] != NULL)
12202 error (_("Invalid parameters to remote delete"));
12203
12204 remote_file_delete (argv[0], from_tty);
12205 }
12206
12207 static void
12208 remote_command (const char *args, int from_tty)
12209 {
12210 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12211 }
12212
12213 static int
12214 remote_can_execute_reverse (struct target_ops *self)
12215 {
12216 if (packet_support (PACKET_bs) == PACKET_ENABLE
12217 || packet_support (PACKET_bc) == PACKET_ENABLE)
12218 return 1;
12219 else
12220 return 0;
12221 }
12222
12223 static int
12224 remote_supports_non_stop (struct target_ops *self)
12225 {
12226 return 1;
12227 }
12228
12229 static int
12230 remote_supports_disable_randomization (struct target_ops *self)
12231 {
12232 /* Only supported in extended mode. */
12233 return 0;
12234 }
12235
12236 static int
12237 remote_supports_multi_process (struct target_ops *self)
12238 {
12239 struct remote_state *rs = get_remote_state ();
12240
12241 return remote_multi_process_p (rs);
12242 }
12243
12244 static int
12245 remote_supports_cond_tracepoints (void)
12246 {
12247 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12248 }
12249
12250 static int
12251 remote_supports_cond_breakpoints (struct target_ops *self)
12252 {
12253 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12254 }
12255
12256 static int
12257 remote_supports_fast_tracepoints (void)
12258 {
12259 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12260 }
12261
12262 static int
12263 remote_supports_static_tracepoints (void)
12264 {
12265 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12266 }
12267
12268 static int
12269 remote_supports_install_in_trace (void)
12270 {
12271 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12272 }
12273
12274 static int
12275 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12276 {
12277 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12278 == PACKET_ENABLE);
12279 }
12280
12281 static int
12282 remote_supports_string_tracing (struct target_ops *self)
12283 {
12284 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12285 }
12286
12287 static int
12288 remote_can_run_breakpoint_commands (struct target_ops *self)
12289 {
12290 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12291 }
12292
12293 static void
12294 remote_trace_init (struct target_ops *self)
12295 {
12296 struct remote_state *rs = get_remote_state ();
12297
12298 putpkt ("QTinit");
12299 remote_get_noisy_reply ();
12300 if (strcmp (rs->buf, "OK") != 0)
12301 error (_("Target does not support this command."));
12302 }
12303
12304 /* Recursive routine to walk through command list including loops, and
12305 download packets for each command. */
12306
12307 static void
12308 remote_download_command_source (int num, ULONGEST addr,
12309 struct command_line *cmds)
12310 {
12311 struct remote_state *rs = get_remote_state ();
12312 struct command_line *cmd;
12313
12314 for (cmd = cmds; cmd; cmd = cmd->next)
12315 {
12316 QUIT; /* Allow user to bail out with ^C. */
12317 strcpy (rs->buf, "QTDPsrc:");
12318 encode_source_string (num, addr, "cmd", cmd->line,
12319 rs->buf + strlen (rs->buf),
12320 rs->buf_size - strlen (rs->buf));
12321 putpkt (rs->buf);
12322 remote_get_noisy_reply ();
12323 if (strcmp (rs->buf, "OK"))
12324 warning (_("Target does not support source download."));
12325
12326 if (cmd->control_type == while_control
12327 || cmd->control_type == while_stepping_control)
12328 {
12329 remote_download_command_source (num, addr, *cmd->body_list);
12330
12331 QUIT; /* Allow user to bail out with ^C. */
12332 strcpy (rs->buf, "QTDPsrc:");
12333 encode_source_string (num, addr, "cmd", "end",
12334 rs->buf + strlen (rs->buf),
12335 rs->buf_size - strlen (rs->buf));
12336 putpkt (rs->buf);
12337 remote_get_noisy_reply ();
12338 if (strcmp (rs->buf, "OK"))
12339 warning (_("Target does not support source download."));
12340 }
12341 }
12342 }
12343
12344 static void
12345 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12346 {
12347 #define BUF_SIZE 2048
12348
12349 CORE_ADDR tpaddr;
12350 char addrbuf[40];
12351 char buf[BUF_SIZE];
12352 std::vector<std::string> tdp_actions;
12353 std::vector<std::string> stepping_actions;
12354 char *pkt;
12355 struct breakpoint *b = loc->owner;
12356 struct tracepoint *t = (struct tracepoint *) b;
12357 struct remote_state *rs = get_remote_state ();
12358
12359 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12360
12361 tpaddr = loc->address;
12362 sprintf_vma (addrbuf, tpaddr);
12363 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12364 addrbuf, /* address */
12365 (b->enable_state == bp_enabled ? 'E' : 'D'),
12366 t->step_count, t->pass_count);
12367 /* Fast tracepoints are mostly handled by the target, but we can
12368 tell the target how big of an instruction block should be moved
12369 around. */
12370 if (b->type == bp_fast_tracepoint)
12371 {
12372 /* Only test for support at download time; we may not know
12373 target capabilities at definition time. */
12374 if (remote_supports_fast_tracepoints ())
12375 {
12376 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12377 NULL))
12378 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12379 gdb_insn_length (loc->gdbarch, tpaddr));
12380 else
12381 /* If it passed validation at definition but fails now,
12382 something is very wrong. */
12383 internal_error (__FILE__, __LINE__,
12384 _("Fast tracepoint not "
12385 "valid during download"));
12386 }
12387 else
12388 /* Fast tracepoints are functionally identical to regular
12389 tracepoints, so don't take lack of support as a reason to
12390 give up on the trace run. */
12391 warning (_("Target does not support fast tracepoints, "
12392 "downloading %d as regular tracepoint"), b->number);
12393 }
12394 else if (b->type == bp_static_tracepoint)
12395 {
12396 /* Only test for support at download time; we may not know
12397 target capabilities at definition time. */
12398 if (remote_supports_static_tracepoints ())
12399 {
12400 struct static_tracepoint_marker marker;
12401
12402 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12403 strcat (buf, ":S");
12404 else
12405 error (_("Static tracepoint not valid during download"));
12406 }
12407 else
12408 /* Fast tracepoints are functionally identical to regular
12409 tracepoints, so don't take lack of support as a reason
12410 to give up on the trace run. */
12411 error (_("Target does not support static tracepoints"));
12412 }
12413 /* If the tracepoint has a conditional, make it into an agent
12414 expression and append to the definition. */
12415 if (loc->cond)
12416 {
12417 /* Only test support at download time, we may not know target
12418 capabilities at definition time. */
12419 if (remote_supports_cond_tracepoints ())
12420 {
12421 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12422 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12423 aexpr->len);
12424 pkt = buf + strlen (buf);
12425 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12426 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12427 *pkt = '\0';
12428 }
12429 else
12430 warning (_("Target does not support conditional tracepoints, "
12431 "ignoring tp %d cond"), b->number);
12432 }
12433
12434 if (b->commands || *default_collect)
12435 strcat (buf, "-");
12436 putpkt (buf);
12437 remote_get_noisy_reply ();
12438 if (strcmp (rs->buf, "OK"))
12439 error (_("Target does not support tracepoints."));
12440
12441 /* do_single_steps (t); */
12442 for (auto action_it = tdp_actions.begin ();
12443 action_it != tdp_actions.end (); action_it++)
12444 {
12445 QUIT; /* Allow user to bail out with ^C. */
12446
12447 bool has_more = (action_it != tdp_actions.end ()
12448 || !stepping_actions.empty ());
12449
12450 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12451 b->number, addrbuf, /* address */
12452 action_it->c_str (),
12453 has_more ? '-' : 0);
12454 putpkt (buf);
12455 remote_get_noisy_reply ();
12456 if (strcmp (rs->buf, "OK"))
12457 error (_("Error on target while setting tracepoints."));
12458 }
12459
12460 for (auto action_it = stepping_actions.begin ();
12461 action_it != stepping_actions.end (); action_it++)
12462 {
12463 QUIT; /* Allow user to bail out with ^C. */
12464
12465 bool is_first = action_it == stepping_actions.begin ();
12466 bool has_more = action_it != stepping_actions.end ();
12467
12468 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12469 b->number, addrbuf, /* address */
12470 is_first ? "S" : "",
12471 action_it->c_str (),
12472 has_more ? "-" : "");
12473 putpkt (buf);
12474 remote_get_noisy_reply ();
12475 if (strcmp (rs->buf, "OK"))
12476 error (_("Error on target while setting tracepoints."));
12477 }
12478
12479 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12480 {
12481 if (b->location != NULL)
12482 {
12483 strcpy (buf, "QTDPsrc:");
12484 encode_source_string (b->number, loc->address, "at",
12485 event_location_to_string (b->location.get ()),
12486 buf + strlen (buf), 2048 - strlen (buf));
12487 putpkt (buf);
12488 remote_get_noisy_reply ();
12489 if (strcmp (rs->buf, "OK"))
12490 warning (_("Target does not support source download."));
12491 }
12492 if (b->cond_string)
12493 {
12494 strcpy (buf, "QTDPsrc:");
12495 encode_source_string (b->number, loc->address,
12496 "cond", b->cond_string, buf + strlen (buf),
12497 2048 - strlen (buf));
12498 putpkt (buf);
12499 remote_get_noisy_reply ();
12500 if (strcmp (rs->buf, "OK"))
12501 warning (_("Target does not support source download."));
12502 }
12503 remote_download_command_source (b->number, loc->address,
12504 breakpoint_commands (b));
12505 }
12506 }
12507
12508 static int
12509 remote_can_download_tracepoint (struct target_ops *self)
12510 {
12511 struct remote_state *rs = get_remote_state ();
12512 struct trace_status *ts;
12513 int status;
12514
12515 /* Don't try to install tracepoints until we've relocated our
12516 symbols, and fetched and merged the target's tracepoint list with
12517 ours. */
12518 if (rs->starting_up)
12519 return 0;
12520
12521 ts = current_trace_status ();
12522 status = remote_get_trace_status (self, ts);
12523
12524 if (status == -1 || !ts->running_known || !ts->running)
12525 return 0;
12526
12527 /* If we are in a tracing experiment, but remote stub doesn't support
12528 installing tracepoint in trace, we have to return. */
12529 if (!remote_supports_install_in_trace ())
12530 return 0;
12531
12532 return 1;
12533 }
12534
12535
12536 static void
12537 remote_download_trace_state_variable (struct target_ops *self,
12538 struct trace_state_variable *tsv)
12539 {
12540 struct remote_state *rs = get_remote_state ();
12541 char *p;
12542
12543 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12544 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12545 tsv->builtin);
12546 p = rs->buf + strlen (rs->buf);
12547 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12548 error (_("Trace state variable name too long for tsv definition packet"));
12549 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12550 *p++ = '\0';
12551 putpkt (rs->buf);
12552 remote_get_noisy_reply ();
12553 if (*rs->buf == '\0')
12554 error (_("Target does not support this command."));
12555 if (strcmp (rs->buf, "OK") != 0)
12556 error (_("Error on target while downloading trace state variable."));
12557 }
12558
12559 static void
12560 remote_enable_tracepoint (struct target_ops *self,
12561 struct bp_location *location)
12562 {
12563 struct remote_state *rs = get_remote_state ();
12564 char addr_buf[40];
12565
12566 sprintf_vma (addr_buf, location->address);
12567 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12568 location->owner->number, addr_buf);
12569 putpkt (rs->buf);
12570 remote_get_noisy_reply ();
12571 if (*rs->buf == '\0')
12572 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12573 if (strcmp (rs->buf, "OK") != 0)
12574 error (_("Error on target while enabling tracepoint."));
12575 }
12576
12577 static void
12578 remote_disable_tracepoint (struct target_ops *self,
12579 struct bp_location *location)
12580 {
12581 struct remote_state *rs = get_remote_state ();
12582 char addr_buf[40];
12583
12584 sprintf_vma (addr_buf, location->address);
12585 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12586 location->owner->number, addr_buf);
12587 putpkt (rs->buf);
12588 remote_get_noisy_reply ();
12589 if (*rs->buf == '\0')
12590 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12591 if (strcmp (rs->buf, "OK") != 0)
12592 error (_("Error on target while disabling tracepoint."));
12593 }
12594
12595 static void
12596 remote_trace_set_readonly_regions (struct target_ops *self)
12597 {
12598 asection *s;
12599 bfd *abfd = NULL;
12600 bfd_size_type size;
12601 bfd_vma vma;
12602 int anysecs = 0;
12603 int offset = 0;
12604
12605 if (!exec_bfd)
12606 return; /* No information to give. */
12607
12608 struct remote_state *rs = get_remote_state ();
12609
12610 strcpy (rs->buf, "QTro");
12611 offset = strlen (rs->buf);
12612 for (s = exec_bfd->sections; s; s = s->next)
12613 {
12614 char tmp1[40], tmp2[40];
12615 int sec_length;
12616
12617 if ((s->flags & SEC_LOAD) == 0 ||
12618 /* (s->flags & SEC_CODE) == 0 || */
12619 (s->flags & SEC_READONLY) == 0)
12620 continue;
12621
12622 anysecs = 1;
12623 vma = bfd_get_section_vma (abfd, s);
12624 size = bfd_get_section_size (s);
12625 sprintf_vma (tmp1, vma);
12626 sprintf_vma (tmp2, vma + size);
12627 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12628 if (offset + sec_length + 1 > rs->buf_size)
12629 {
12630 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12631 warning (_("\
12632 Too many sections for read-only sections definition packet."));
12633 break;
12634 }
12635 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12636 tmp1, tmp2);
12637 offset += sec_length;
12638 }
12639 if (anysecs)
12640 {
12641 putpkt (rs->buf);
12642 getpkt (&rs->buf, &rs->buf_size, 0);
12643 }
12644 }
12645
12646 static void
12647 remote_trace_start (struct target_ops *self)
12648 {
12649 struct remote_state *rs = get_remote_state ();
12650
12651 putpkt ("QTStart");
12652 remote_get_noisy_reply ();
12653 if (*rs->buf == '\0')
12654 error (_("Target does not support this command."));
12655 if (strcmp (rs->buf, "OK") != 0)
12656 error (_("Bogus reply from target: %s"), rs->buf);
12657 }
12658
12659 static int
12660 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12661 {
12662 /* Initialize it just to avoid a GCC false warning. */
12663 char *p = NULL;
12664 /* FIXME we need to get register block size some other way. */
12665 extern int trace_regblock_size;
12666 enum packet_result result;
12667 struct remote_state *rs = get_remote_state ();
12668
12669 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12670 return -1;
12671
12672 trace_regblock_size
12673 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12674
12675 putpkt ("qTStatus");
12676
12677 TRY
12678 {
12679 p = remote_get_noisy_reply ();
12680 }
12681 CATCH (ex, RETURN_MASK_ERROR)
12682 {
12683 if (ex.error != TARGET_CLOSE_ERROR)
12684 {
12685 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12686 return -1;
12687 }
12688 throw_exception (ex);
12689 }
12690 END_CATCH
12691
12692 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12693
12694 /* If the remote target doesn't do tracing, flag it. */
12695 if (result == PACKET_UNKNOWN)
12696 return -1;
12697
12698 /* We're working with a live target. */
12699 ts->filename = NULL;
12700
12701 if (*p++ != 'T')
12702 error (_("Bogus trace status reply from target: %s"), rs->buf);
12703
12704 /* Function 'parse_trace_status' sets default value of each field of
12705 'ts' at first, so we don't have to do it here. */
12706 parse_trace_status (p, ts);
12707
12708 return ts->running;
12709 }
12710
12711 static void
12712 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12713 struct uploaded_tp *utp)
12714 {
12715 struct remote_state *rs = get_remote_state ();
12716 char *reply;
12717 struct bp_location *loc;
12718 struct tracepoint *tp = (struct tracepoint *) bp;
12719 size_t size = get_remote_packet_size ();
12720
12721 if (tp)
12722 {
12723 tp->hit_count = 0;
12724 tp->traceframe_usage = 0;
12725 for (loc = tp->loc; loc; loc = loc->next)
12726 {
12727 /* If the tracepoint was never downloaded, don't go asking for
12728 any status. */
12729 if (tp->number_on_target == 0)
12730 continue;
12731 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12732 phex_nz (loc->address, 0));
12733 putpkt (rs->buf);
12734 reply = remote_get_noisy_reply ();
12735 if (reply && *reply)
12736 {
12737 if (*reply == 'V')
12738 parse_tracepoint_status (reply + 1, bp, utp);
12739 }
12740 }
12741 }
12742 else if (utp)
12743 {
12744 utp->hit_count = 0;
12745 utp->traceframe_usage = 0;
12746 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12747 phex_nz (utp->addr, 0));
12748 putpkt (rs->buf);
12749 reply = remote_get_noisy_reply ();
12750 if (reply && *reply)
12751 {
12752 if (*reply == 'V')
12753 parse_tracepoint_status (reply + 1, bp, utp);
12754 }
12755 }
12756 }
12757
12758 static void
12759 remote_trace_stop (struct target_ops *self)
12760 {
12761 struct remote_state *rs = get_remote_state ();
12762
12763 putpkt ("QTStop");
12764 remote_get_noisy_reply ();
12765 if (*rs->buf == '\0')
12766 error (_("Target does not support this command."));
12767 if (strcmp (rs->buf, "OK") != 0)
12768 error (_("Bogus reply from target: %s"), rs->buf);
12769 }
12770
12771 static int
12772 remote_trace_find (struct target_ops *self,
12773 enum trace_find_type type, int num,
12774 CORE_ADDR addr1, CORE_ADDR addr2,
12775 int *tpp)
12776 {
12777 struct remote_state *rs = get_remote_state ();
12778 char *endbuf = rs->buf + get_remote_packet_size ();
12779 char *p, *reply;
12780 int target_frameno = -1, target_tracept = -1;
12781
12782 /* Lookups other than by absolute frame number depend on the current
12783 trace selected, so make sure it is correct on the remote end
12784 first. */
12785 if (type != tfind_number)
12786 set_remote_traceframe ();
12787
12788 p = rs->buf;
12789 strcpy (p, "QTFrame:");
12790 p = strchr (p, '\0');
12791 switch (type)
12792 {
12793 case tfind_number:
12794 xsnprintf (p, endbuf - p, "%x", num);
12795 break;
12796 case tfind_pc:
12797 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12798 break;
12799 case tfind_tp:
12800 xsnprintf (p, endbuf - p, "tdp:%x", num);
12801 break;
12802 case tfind_range:
12803 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12804 phex_nz (addr2, 0));
12805 break;
12806 case tfind_outside:
12807 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12808 phex_nz (addr2, 0));
12809 break;
12810 default:
12811 error (_("Unknown trace find type %d"), type);
12812 }
12813
12814 putpkt (rs->buf);
12815 reply = remote_get_noisy_reply ();
12816 if (*reply == '\0')
12817 error (_("Target does not support this command."));
12818
12819 while (reply && *reply)
12820 switch (*reply)
12821 {
12822 case 'F':
12823 p = ++reply;
12824 target_frameno = (int) strtol (p, &reply, 16);
12825 if (reply == p)
12826 error (_("Unable to parse trace frame number"));
12827 /* Don't update our remote traceframe number cache on failure
12828 to select a remote traceframe. */
12829 if (target_frameno == -1)
12830 return -1;
12831 break;
12832 case 'T':
12833 p = ++reply;
12834 target_tracept = (int) strtol (p, &reply, 16);
12835 if (reply == p)
12836 error (_("Unable to parse tracepoint number"));
12837 break;
12838 case 'O': /* "OK"? */
12839 if (reply[1] == 'K' && reply[2] == '\0')
12840 reply += 2;
12841 else
12842 error (_("Bogus reply from target: %s"), reply);
12843 break;
12844 default:
12845 error (_("Bogus reply from target: %s"), reply);
12846 }
12847 if (tpp)
12848 *tpp = target_tracept;
12849
12850 rs->remote_traceframe_number = target_frameno;
12851 return target_frameno;
12852 }
12853
12854 static int
12855 remote_get_trace_state_variable_value (struct target_ops *self,
12856 int tsvnum, LONGEST *val)
12857 {
12858 struct remote_state *rs = get_remote_state ();
12859 char *reply;
12860 ULONGEST uval;
12861
12862 set_remote_traceframe ();
12863
12864 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12865 putpkt (rs->buf);
12866 reply = remote_get_noisy_reply ();
12867 if (reply && *reply)
12868 {
12869 if (*reply == 'V')
12870 {
12871 unpack_varlen_hex (reply + 1, &uval);
12872 *val = (LONGEST) uval;
12873 return 1;
12874 }
12875 }
12876 return 0;
12877 }
12878
12879 static int
12880 remote_save_trace_data (struct target_ops *self, const char *filename)
12881 {
12882 struct remote_state *rs = get_remote_state ();
12883 char *p, *reply;
12884
12885 p = rs->buf;
12886 strcpy (p, "QTSave:");
12887 p += strlen (p);
12888 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12889 error (_("Remote file name too long for trace save packet"));
12890 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12891 *p++ = '\0';
12892 putpkt (rs->buf);
12893 reply = remote_get_noisy_reply ();
12894 if (*reply == '\0')
12895 error (_("Target does not support this command."));
12896 if (strcmp (reply, "OK") != 0)
12897 error (_("Bogus reply from target: %s"), reply);
12898 return 0;
12899 }
12900
12901 /* This is basically a memory transfer, but needs to be its own packet
12902 because we don't know how the target actually organizes its trace
12903 memory, plus we want to be able to ask for as much as possible, but
12904 not be unhappy if we don't get as much as we ask for. */
12905
12906 static LONGEST
12907 remote_get_raw_trace_data (struct target_ops *self,
12908 gdb_byte *buf, ULONGEST offset, LONGEST len)
12909 {
12910 struct remote_state *rs = get_remote_state ();
12911 char *reply;
12912 char *p;
12913 int rslt;
12914
12915 p = rs->buf;
12916 strcpy (p, "qTBuffer:");
12917 p += strlen (p);
12918 p += hexnumstr (p, offset);
12919 *p++ = ',';
12920 p += hexnumstr (p, len);
12921 *p++ = '\0';
12922
12923 putpkt (rs->buf);
12924 reply = remote_get_noisy_reply ();
12925 if (reply && *reply)
12926 {
12927 /* 'l' by itself means we're at the end of the buffer and
12928 there is nothing more to get. */
12929 if (*reply == 'l')
12930 return 0;
12931
12932 /* Convert the reply into binary. Limit the number of bytes to
12933 convert according to our passed-in buffer size, rather than
12934 what was returned in the packet; if the target is
12935 unexpectedly generous and gives us a bigger reply than we
12936 asked for, we don't want to crash. */
12937 rslt = hex2bin (reply, buf, len);
12938 return rslt;
12939 }
12940
12941 /* Something went wrong, flag as an error. */
12942 return -1;
12943 }
12944
12945 static void
12946 remote_set_disconnected_tracing (struct target_ops *self, int val)
12947 {
12948 struct remote_state *rs = get_remote_state ();
12949
12950 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12951 {
12952 char *reply;
12953
12954 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12955 putpkt (rs->buf);
12956 reply = remote_get_noisy_reply ();
12957 if (*reply == '\0')
12958 error (_("Target does not support this command."));
12959 if (strcmp (reply, "OK") != 0)
12960 error (_("Bogus reply from target: %s"), reply);
12961 }
12962 else if (val)
12963 warning (_("Target does not support disconnected tracing."));
12964 }
12965
12966 static int
12967 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12968 {
12969 struct thread_info *info = find_thread_ptid (ptid);
12970
12971 if (info && info->priv)
12972 return info->priv->core;
12973 return -1;
12974 }
12975
12976 static void
12977 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12978 {
12979 struct remote_state *rs = get_remote_state ();
12980 char *reply;
12981
12982 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12983 putpkt (rs->buf);
12984 reply = remote_get_noisy_reply ();
12985 if (*reply == '\0')
12986 error (_("Target does not support this command."));
12987 if (strcmp (reply, "OK") != 0)
12988 error (_("Bogus reply from target: %s"), reply);
12989 }
12990
12991 static traceframe_info_up
12992 remote_traceframe_info (struct target_ops *self)
12993 {
12994 gdb::unique_xmalloc_ptr<char> text
12995 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12996 NULL);
12997 if (text != NULL)
12998 return parse_traceframe_info (text.get ());
12999
13000 return NULL;
13001 }
13002
13003 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13004 instruction on which a fast tracepoint may be placed. Returns -1
13005 if the packet is not supported, and 0 if the minimum instruction
13006 length is unknown. */
13007
13008 static int
13009 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
13010 {
13011 struct remote_state *rs = get_remote_state ();
13012 char *reply;
13013
13014 /* If we're not debugging a process yet, the IPA can't be
13015 loaded. */
13016 if (!target_has_execution)
13017 return 0;
13018
13019 /* Make sure the remote is pointing at the right process. */
13020 set_general_process ();
13021
13022 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13023 putpkt (rs->buf);
13024 reply = remote_get_noisy_reply ();
13025 if (*reply == '\0')
13026 return -1;
13027 else
13028 {
13029 ULONGEST min_insn_len;
13030
13031 unpack_varlen_hex (reply, &min_insn_len);
13032
13033 return (int) min_insn_len;
13034 }
13035 }
13036
13037 static void
13038 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
13039 {
13040 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13041 {
13042 struct remote_state *rs = get_remote_state ();
13043 char *buf = rs->buf;
13044 char *endbuf = rs->buf + get_remote_packet_size ();
13045 enum packet_result result;
13046
13047 gdb_assert (val >= 0 || val == -1);
13048 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13049 /* Send -1 as literal "-1" to avoid host size dependency. */
13050 if (val < 0)
13051 {
13052 *buf++ = '-';
13053 buf += hexnumstr (buf, (ULONGEST) -val);
13054 }
13055 else
13056 buf += hexnumstr (buf, (ULONGEST) val);
13057
13058 putpkt (rs->buf);
13059 remote_get_noisy_reply ();
13060 result = packet_ok (rs->buf,
13061 &remote_protocol_packets[PACKET_QTBuffer_size]);
13062
13063 if (result != PACKET_OK)
13064 warning (_("Bogus reply from target: %s"), rs->buf);
13065 }
13066 }
13067
13068 static int
13069 remote_set_trace_notes (struct target_ops *self,
13070 const char *user, const char *notes,
13071 const char *stop_notes)
13072 {
13073 struct remote_state *rs = get_remote_state ();
13074 char *reply;
13075 char *buf = rs->buf;
13076 char *endbuf = rs->buf + get_remote_packet_size ();
13077 int nbytes;
13078
13079 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13080 if (user)
13081 {
13082 buf += xsnprintf (buf, endbuf - buf, "user:");
13083 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13084 buf += 2 * nbytes;
13085 *buf++ = ';';
13086 }
13087 if (notes)
13088 {
13089 buf += xsnprintf (buf, endbuf - buf, "notes:");
13090 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13091 buf += 2 * nbytes;
13092 *buf++ = ';';
13093 }
13094 if (stop_notes)
13095 {
13096 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13097 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13098 buf += 2 * nbytes;
13099 *buf++ = ';';
13100 }
13101 /* Ensure the buffer is terminated. */
13102 *buf = '\0';
13103
13104 putpkt (rs->buf);
13105 reply = remote_get_noisy_reply ();
13106 if (*reply == '\0')
13107 return 0;
13108
13109 if (strcmp (reply, "OK") != 0)
13110 error (_("Bogus reply from target: %s"), reply);
13111
13112 return 1;
13113 }
13114
13115 static int
13116 remote_use_agent (struct target_ops *self, int use)
13117 {
13118 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13119 {
13120 struct remote_state *rs = get_remote_state ();
13121
13122 /* If the stub supports QAgent. */
13123 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13124 putpkt (rs->buf);
13125 getpkt (&rs->buf, &rs->buf_size, 0);
13126
13127 if (strcmp (rs->buf, "OK") == 0)
13128 {
13129 use_agent = use;
13130 return 1;
13131 }
13132 }
13133
13134 return 0;
13135 }
13136
13137 static int
13138 remote_can_use_agent (struct target_ops *self)
13139 {
13140 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13141 }
13142
13143 struct btrace_target_info
13144 {
13145 /* The ptid of the traced thread. */
13146 ptid_t ptid;
13147
13148 /* The obtained branch trace configuration. */
13149 struct btrace_config conf;
13150 };
13151
13152 /* Reset our idea of our target's btrace configuration. */
13153
13154 static void
13155 remote_btrace_reset (void)
13156 {
13157 struct remote_state *rs = get_remote_state ();
13158
13159 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13160 }
13161
13162 /* Check whether the target supports branch tracing. */
13163
13164 static int
13165 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13166 {
13167 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13168 return 0;
13169 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13170 return 0;
13171
13172 switch (format)
13173 {
13174 case BTRACE_FORMAT_NONE:
13175 return 0;
13176
13177 case BTRACE_FORMAT_BTS:
13178 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13179
13180 case BTRACE_FORMAT_PT:
13181 /* The trace is decoded on the host. Even if our target supports it,
13182 we still need to have libipt to decode the trace. */
13183 #if defined (HAVE_LIBIPT)
13184 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13185 #else /* !defined (HAVE_LIBIPT) */
13186 return 0;
13187 #endif /* !defined (HAVE_LIBIPT) */
13188 }
13189
13190 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13191 }
13192
13193 /* Synchronize the configuration with the target. */
13194
13195 static void
13196 btrace_sync_conf (const struct btrace_config *conf)
13197 {
13198 struct packet_config *packet;
13199 struct remote_state *rs;
13200 char *buf, *pos, *endbuf;
13201
13202 rs = get_remote_state ();
13203 buf = rs->buf;
13204 endbuf = buf + get_remote_packet_size ();
13205
13206 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13207 if (packet_config_support (packet) == PACKET_ENABLE
13208 && conf->bts.size != rs->btrace_config.bts.size)
13209 {
13210 pos = buf;
13211 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13212 conf->bts.size);
13213
13214 putpkt (buf);
13215 getpkt (&buf, &rs->buf_size, 0);
13216
13217 if (packet_ok (buf, packet) == PACKET_ERROR)
13218 {
13219 if (buf[0] == 'E' && buf[1] == '.')
13220 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13221 else
13222 error (_("Failed to configure the BTS buffer size."));
13223 }
13224
13225 rs->btrace_config.bts.size = conf->bts.size;
13226 }
13227
13228 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13229 if (packet_config_support (packet) == PACKET_ENABLE
13230 && conf->pt.size != rs->btrace_config.pt.size)
13231 {
13232 pos = buf;
13233 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13234 conf->pt.size);
13235
13236 putpkt (buf);
13237 getpkt (&buf, &rs->buf_size, 0);
13238
13239 if (packet_ok (buf, packet) == PACKET_ERROR)
13240 {
13241 if (buf[0] == 'E' && buf[1] == '.')
13242 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13243 else
13244 error (_("Failed to configure the trace buffer size."));
13245 }
13246
13247 rs->btrace_config.pt.size = conf->pt.size;
13248 }
13249 }
13250
13251 /* Read the current thread's btrace configuration from the target and
13252 store it into CONF. */
13253
13254 static void
13255 btrace_read_config (struct btrace_config *conf)
13256 {
13257 gdb::unique_xmalloc_ptr<char> xml
13258 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13259 if (xml != NULL)
13260 parse_xml_btrace_conf (conf, xml.get ());
13261 }
13262
13263 /* Maybe reopen target btrace. */
13264
13265 static void
13266 remote_btrace_maybe_reopen (void)
13267 {
13268 struct remote_state *rs = get_remote_state ();
13269 struct thread_info *tp;
13270 int btrace_target_pushed = 0;
13271 int warned = 0;
13272
13273 scoped_restore_current_thread restore_thread;
13274
13275 ALL_NON_EXITED_THREADS (tp)
13276 {
13277 set_general_thread (tp->ptid);
13278
13279 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13280 btrace_read_config (&rs->btrace_config);
13281
13282 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13283 continue;
13284
13285 #if !defined (HAVE_LIBIPT)
13286 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13287 {
13288 if (!warned)
13289 {
13290 warned = 1;
13291 warning (_("GDB does not support Intel Processor Trace. "
13292 "\"record\" will not work in this session."));
13293 }
13294
13295 continue;
13296 }
13297 #endif /* !defined (HAVE_LIBIPT) */
13298
13299 /* Push target, once, but before anything else happens. This way our
13300 changes to the threads will be cleaned up by unpushing the target
13301 in case btrace_read_config () throws. */
13302 if (!btrace_target_pushed)
13303 {
13304 btrace_target_pushed = 1;
13305 record_btrace_push_target ();
13306 printf_filtered (_("Target is recording using %s.\n"),
13307 btrace_format_string (rs->btrace_config.format));
13308 }
13309
13310 tp->btrace.target = XCNEW (struct btrace_target_info);
13311 tp->btrace.target->ptid = tp->ptid;
13312 tp->btrace.target->conf = rs->btrace_config;
13313 }
13314 }
13315
13316 /* Enable branch tracing. */
13317
13318 static struct btrace_target_info *
13319 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13320 const struct btrace_config *conf)
13321 {
13322 struct btrace_target_info *tinfo = NULL;
13323 struct packet_config *packet = NULL;
13324 struct remote_state *rs = get_remote_state ();
13325 char *buf = rs->buf;
13326 char *endbuf = rs->buf + get_remote_packet_size ();
13327
13328 switch (conf->format)
13329 {
13330 case BTRACE_FORMAT_BTS:
13331 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13332 break;
13333
13334 case BTRACE_FORMAT_PT:
13335 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13336 break;
13337 }
13338
13339 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13340 error (_("Target does not support branch tracing."));
13341
13342 btrace_sync_conf (conf);
13343
13344 set_general_thread (ptid);
13345
13346 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13347 putpkt (rs->buf);
13348 getpkt (&rs->buf, &rs->buf_size, 0);
13349
13350 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13351 {
13352 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13353 error (_("Could not enable branch tracing for %s: %s"),
13354 target_pid_to_str (ptid), rs->buf + 2);
13355 else
13356 error (_("Could not enable branch tracing for %s."),
13357 target_pid_to_str (ptid));
13358 }
13359
13360 tinfo = XCNEW (struct btrace_target_info);
13361 tinfo->ptid = ptid;
13362
13363 /* If we fail to read the configuration, we lose some information, but the
13364 tracing itself is not impacted. */
13365 TRY
13366 {
13367 btrace_read_config (&tinfo->conf);
13368 }
13369 CATCH (err, RETURN_MASK_ERROR)
13370 {
13371 if (err.message != NULL)
13372 warning ("%s", err.message);
13373 }
13374 END_CATCH
13375
13376 return tinfo;
13377 }
13378
13379 /* Disable branch tracing. */
13380
13381 static void
13382 remote_disable_btrace (struct target_ops *self,
13383 struct btrace_target_info *tinfo)
13384 {
13385 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13386 struct remote_state *rs = get_remote_state ();
13387 char *buf = rs->buf;
13388 char *endbuf = rs->buf + get_remote_packet_size ();
13389
13390 if (packet_config_support (packet) != PACKET_ENABLE)
13391 error (_("Target does not support branch tracing."));
13392
13393 set_general_thread (tinfo->ptid);
13394
13395 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13396 putpkt (rs->buf);
13397 getpkt (&rs->buf, &rs->buf_size, 0);
13398
13399 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13400 {
13401 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13402 error (_("Could not disable branch tracing for %s: %s"),
13403 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13404 else
13405 error (_("Could not disable branch tracing for %s."),
13406 target_pid_to_str (tinfo->ptid));
13407 }
13408
13409 xfree (tinfo);
13410 }
13411
13412 /* Teardown branch tracing. */
13413
13414 static void
13415 remote_teardown_btrace (struct target_ops *self,
13416 struct btrace_target_info *tinfo)
13417 {
13418 /* We must not talk to the target during teardown. */
13419 xfree (tinfo);
13420 }
13421
13422 /* Read the branch trace. */
13423
13424 static enum btrace_error
13425 remote_read_btrace (struct target_ops *self,
13426 struct btrace_data *btrace,
13427 struct btrace_target_info *tinfo,
13428 enum btrace_read_type type)
13429 {
13430 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13431 const char *annex;
13432
13433 if (packet_config_support (packet) != PACKET_ENABLE)
13434 error (_("Target does not support branch tracing."));
13435
13436 #if !defined(HAVE_LIBEXPAT)
13437 error (_("Cannot process branch tracing result. XML parsing not supported."));
13438 #endif
13439
13440 switch (type)
13441 {
13442 case BTRACE_READ_ALL:
13443 annex = "all";
13444 break;
13445 case BTRACE_READ_NEW:
13446 annex = "new";
13447 break;
13448 case BTRACE_READ_DELTA:
13449 annex = "delta";
13450 break;
13451 default:
13452 internal_error (__FILE__, __LINE__,
13453 _("Bad branch tracing read type: %u."),
13454 (unsigned int) type);
13455 }
13456
13457 gdb::unique_xmalloc_ptr<char> xml
13458 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13459 if (xml == NULL)
13460 return BTRACE_ERR_UNKNOWN;
13461
13462 parse_xml_btrace (btrace, xml.get ());
13463
13464 return BTRACE_ERR_NONE;
13465 }
13466
13467 static const struct btrace_config *
13468 remote_btrace_conf (struct target_ops *self,
13469 const struct btrace_target_info *tinfo)
13470 {
13471 return &tinfo->conf;
13472 }
13473
13474 static int
13475 remote_augmented_libraries_svr4_read (struct target_ops *self)
13476 {
13477 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13478 == PACKET_ENABLE);
13479 }
13480
13481 /* Implementation of to_load. */
13482
13483 static void
13484 remote_load (struct target_ops *self, const char *name, int from_tty)
13485 {
13486 generic_load (name, from_tty);
13487 }
13488
13489 /* Accepts an integer PID; returns a string representing a file that
13490 can be opened on the remote side to get the symbols for the child
13491 process. Returns NULL if the operation is not supported. */
13492
13493 static char *
13494 remote_pid_to_exec_file (struct target_ops *self, int pid)
13495 {
13496 static gdb::unique_xmalloc_ptr<char> filename;
13497 struct inferior *inf;
13498 char *annex = NULL;
13499
13500 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13501 return NULL;
13502
13503 inf = find_inferior_pid (pid);
13504 if (inf == NULL)
13505 internal_error (__FILE__, __LINE__,
13506 _("not currently attached to process %d"), pid);
13507
13508 if (!inf->fake_pid_p)
13509 {
13510 const int annex_size = 9;
13511
13512 annex = (char *) alloca (annex_size);
13513 xsnprintf (annex, annex_size, "%x", pid);
13514 }
13515
13516 filename = target_read_stralloc (&current_target,
13517 TARGET_OBJECT_EXEC_FILE, annex);
13518
13519 return filename.get ();
13520 }
13521
13522 /* Implement the to_can_do_single_step target_ops method. */
13523
13524 static int
13525 remote_can_do_single_step (struct target_ops *ops)
13526 {
13527 /* We can only tell whether target supports single step or not by
13528 supported s and S vCont actions if the stub supports vContSupported
13529 feature. If the stub doesn't support vContSupported feature,
13530 we have conservatively to think target doesn't supports single
13531 step. */
13532 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13533 {
13534 struct remote_state *rs = get_remote_state ();
13535
13536 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13537 remote_vcont_probe (rs);
13538
13539 return rs->supports_vCont.s && rs->supports_vCont.S;
13540 }
13541 else
13542 return 0;
13543 }
13544
13545 /* Implementation of the to_execution_direction method for the remote
13546 target. */
13547
13548 static enum exec_direction_kind
13549 remote_execution_direction (struct target_ops *self)
13550 {
13551 struct remote_state *rs = get_remote_state ();
13552
13553 return rs->last_resume_exec_dir;
13554 }
13555
13556 /* Return pointer to the thread_info struct which corresponds to
13557 THREAD_HANDLE (having length HANDLE_LEN). */
13558
13559 static struct thread_info *
13560 remote_thread_handle_to_thread_info (struct target_ops *ops,
13561 const gdb_byte *thread_handle,
13562 int handle_len,
13563 struct inferior *inf)
13564 {
13565 struct thread_info *tp;
13566
13567 ALL_NON_EXITED_THREADS (tp)
13568 {
13569 struct private_thread_info *priv = get_private_info_thread (tp);
13570
13571 if (tp->inf == inf && priv != NULL)
13572 {
13573 if (handle_len != priv->thread_handle->size ())
13574 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13575 handle_len, priv->thread_handle->size ());
13576 if (memcmp (thread_handle, priv->thread_handle->data (),
13577 handle_len) == 0)
13578 return tp;
13579 }
13580 }
13581
13582 return NULL;
13583 }
13584
13585 static void
13586 init_remote_ops (void)
13587 {
13588 remote_ops.to_shortname = "remote";
13589 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13590 remote_ops.to_doc =
13591 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13592 Specify the serial device it is connected to\n\
13593 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13594 remote_ops.to_open = remote_open;
13595 remote_ops.to_close = remote_close;
13596 remote_ops.to_detach = remote_detach;
13597 remote_ops.to_disconnect = remote_disconnect;
13598 remote_ops.to_resume = remote_resume;
13599 remote_ops.to_commit_resume = remote_commit_resume;
13600 remote_ops.to_wait = remote_wait;
13601 remote_ops.to_fetch_registers = remote_fetch_registers;
13602 remote_ops.to_store_registers = remote_store_registers;
13603 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13604 remote_ops.to_files_info = remote_files_info;
13605 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13606 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13607 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13608 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13609 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13610 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13611 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13612 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13613 remote_ops.to_watchpoint_addr_within_range =
13614 remote_watchpoint_addr_within_range;
13615 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13616 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13617 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13618 remote_ops.to_region_ok_for_hw_watchpoint
13619 = remote_region_ok_for_hw_watchpoint;
13620 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13621 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13622 remote_ops.to_kill = remote_kill;
13623 remote_ops.to_load = remote_load;
13624 remote_ops.to_mourn_inferior = remote_mourn;
13625 remote_ops.to_pass_signals = remote_pass_signals;
13626 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13627 remote_ops.to_program_signals = remote_program_signals;
13628 remote_ops.to_thread_alive = remote_thread_alive;
13629 remote_ops.to_thread_name = remote_thread_name;
13630 remote_ops.to_update_thread_list = remote_update_thread_list;
13631 remote_ops.to_pid_to_str = remote_pid_to_str;
13632 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13633 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13634 remote_ops.to_stop = remote_stop;
13635 remote_ops.to_interrupt = remote_interrupt;
13636 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13637 remote_ops.to_xfer_partial = remote_xfer_partial;
13638 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13639 remote_ops.to_rcmd = remote_rcmd;
13640 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13641 remote_ops.to_log_command = serial_log_command;
13642 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13643 remote_ops.to_stratum = process_stratum;
13644 remote_ops.to_has_all_memory = default_child_has_all_memory;
13645 remote_ops.to_has_memory = default_child_has_memory;
13646 remote_ops.to_has_stack = default_child_has_stack;
13647 remote_ops.to_has_registers = default_child_has_registers;
13648 remote_ops.to_has_execution = default_child_has_execution;
13649 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13650 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13651 remote_ops.to_magic = OPS_MAGIC;
13652 remote_ops.to_memory_map = remote_memory_map;
13653 remote_ops.to_flash_erase = remote_flash_erase;
13654 remote_ops.to_flash_done = remote_flash_done;
13655 remote_ops.to_read_description = remote_read_description;
13656 remote_ops.to_search_memory = remote_search_memory;
13657 remote_ops.to_can_async_p = remote_can_async_p;
13658 remote_ops.to_is_async_p = remote_is_async_p;
13659 remote_ops.to_async = remote_async;
13660 remote_ops.to_thread_events = remote_thread_events;
13661 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13662 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13663 remote_ops.to_terminal_ours = remote_terminal_ours;
13664 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13665 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13666 remote_ops.to_supports_disable_randomization
13667 = remote_supports_disable_randomization;
13668 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13669 remote_ops.to_fileio_open = remote_hostio_open;
13670 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13671 remote_ops.to_fileio_pread = remote_hostio_pread;
13672 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13673 remote_ops.to_fileio_close = remote_hostio_close;
13674 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13675 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13676 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13677 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13678 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13679 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13680 remote_ops.to_trace_init = remote_trace_init;
13681 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13682 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13683 remote_ops.to_download_trace_state_variable
13684 = remote_download_trace_state_variable;
13685 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13686 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13687 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13688 remote_ops.to_trace_start = remote_trace_start;
13689 remote_ops.to_get_trace_status = remote_get_trace_status;
13690 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13691 remote_ops.to_trace_stop = remote_trace_stop;
13692 remote_ops.to_trace_find = remote_trace_find;
13693 remote_ops.to_get_trace_state_variable_value
13694 = remote_get_trace_state_variable_value;
13695 remote_ops.to_save_trace_data = remote_save_trace_data;
13696 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13697 remote_ops.to_upload_trace_state_variables
13698 = remote_upload_trace_state_variables;
13699 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13700 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13701 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13702 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13703 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13704 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13705 remote_ops.to_core_of_thread = remote_core_of_thread;
13706 remote_ops.to_verify_memory = remote_verify_memory;
13707 remote_ops.to_get_tib_address = remote_get_tib_address;
13708 remote_ops.to_set_permissions = remote_set_permissions;
13709 remote_ops.to_static_tracepoint_marker_at
13710 = remote_static_tracepoint_marker_at;
13711 remote_ops.to_static_tracepoint_markers_by_strid
13712 = remote_static_tracepoint_markers_by_strid;
13713 remote_ops.to_traceframe_info = remote_traceframe_info;
13714 remote_ops.to_use_agent = remote_use_agent;
13715 remote_ops.to_can_use_agent = remote_can_use_agent;
13716 remote_ops.to_supports_btrace = remote_supports_btrace;
13717 remote_ops.to_enable_btrace = remote_enable_btrace;
13718 remote_ops.to_disable_btrace = remote_disable_btrace;
13719 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13720 remote_ops.to_read_btrace = remote_read_btrace;
13721 remote_ops.to_btrace_conf = remote_btrace_conf;
13722 remote_ops.to_augmented_libraries_svr4_read =
13723 remote_augmented_libraries_svr4_read;
13724 remote_ops.to_follow_fork = remote_follow_fork;
13725 remote_ops.to_follow_exec = remote_follow_exec;
13726 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13727 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13728 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13729 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13730 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13731 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13732 remote_ops.to_execution_direction = remote_execution_direction;
13733 remote_ops.to_thread_handle_to_thread_info =
13734 remote_thread_handle_to_thread_info;
13735 }
13736
13737 /* Set up the extended remote vector by making a copy of the standard
13738 remote vector and adding to it. */
13739
13740 static void
13741 init_extended_remote_ops (void)
13742 {
13743 extended_remote_ops = remote_ops;
13744
13745 extended_remote_ops.to_shortname = "extended-remote";
13746 extended_remote_ops.to_longname =
13747 "Extended remote serial target in gdb-specific protocol";
13748 extended_remote_ops.to_doc =
13749 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13750 Specify the serial device it is connected to (e.g. /dev/ttya).";
13751 extended_remote_ops.to_open = extended_remote_open;
13752 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13753 extended_remote_ops.to_detach = extended_remote_detach;
13754 extended_remote_ops.to_attach = extended_remote_attach;
13755 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13756 extended_remote_ops.to_supports_disable_randomization
13757 = extended_remote_supports_disable_randomization;
13758 }
13759
13760 static int
13761 remote_can_async_p (struct target_ops *ops)
13762 {
13763 struct remote_state *rs = get_remote_state ();
13764
13765 /* We don't go async if the user has explicitly prevented it with the
13766 "maint set target-async" command. */
13767 if (!target_async_permitted)
13768 return 0;
13769
13770 /* We're async whenever the serial device is. */
13771 return serial_can_async_p (rs->remote_desc);
13772 }
13773
13774 static int
13775 remote_is_async_p (struct target_ops *ops)
13776 {
13777 struct remote_state *rs = get_remote_state ();
13778
13779 if (!target_async_permitted)
13780 /* We only enable async when the user specifically asks for it. */
13781 return 0;
13782
13783 /* We're async whenever the serial device is. */
13784 return serial_is_async_p (rs->remote_desc);
13785 }
13786
13787 /* Pass the SERIAL event on and up to the client. One day this code
13788 will be able to delay notifying the client of an event until the
13789 point where an entire packet has been received. */
13790
13791 static serial_event_ftype remote_async_serial_handler;
13792
13793 static void
13794 remote_async_serial_handler (struct serial *scb, void *context)
13795 {
13796 /* Don't propogate error information up to the client. Instead let
13797 the client find out about the error by querying the target. */
13798 inferior_event_handler (INF_REG_EVENT, NULL);
13799 }
13800
13801 static void
13802 remote_async_inferior_event_handler (gdb_client_data data)
13803 {
13804 inferior_event_handler (INF_REG_EVENT, NULL);
13805 }
13806
13807 static void
13808 remote_async (struct target_ops *ops, int enable)
13809 {
13810 struct remote_state *rs = get_remote_state ();
13811
13812 if (enable)
13813 {
13814 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13815
13816 /* If there are pending events in the stop reply queue tell the
13817 event loop to process them. */
13818 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13819 mark_async_event_handler (remote_async_inferior_event_token);
13820 /* For simplicity, below we clear the pending events token
13821 without remembering whether it is marked, so here we always
13822 mark it. If there's actually no pending notification to
13823 process, this ends up being a no-op (other than a spurious
13824 event-loop wakeup). */
13825 if (target_is_non_stop_p ())
13826 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13827 }
13828 else
13829 {
13830 serial_async (rs->remote_desc, NULL, NULL);
13831 /* If the core is disabling async, it doesn't want to be
13832 disturbed with target events. Clear all async event sources
13833 too. */
13834 clear_async_event_handler (remote_async_inferior_event_token);
13835 if (target_is_non_stop_p ())
13836 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13837 }
13838 }
13839
13840 /* Implementation of the to_thread_events method. */
13841
13842 static void
13843 remote_thread_events (struct target_ops *ops, int enable)
13844 {
13845 struct remote_state *rs = get_remote_state ();
13846 size_t size = get_remote_packet_size ();
13847
13848 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13849 return;
13850
13851 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13852 putpkt (rs->buf);
13853 getpkt (&rs->buf, &rs->buf_size, 0);
13854
13855 switch (packet_ok (rs->buf,
13856 &remote_protocol_packets[PACKET_QThreadEvents]))
13857 {
13858 case PACKET_OK:
13859 if (strcmp (rs->buf, "OK") != 0)
13860 error (_("Remote refused setting thread events: %s"), rs->buf);
13861 break;
13862 case PACKET_ERROR:
13863 warning (_("Remote failure reply: %s"), rs->buf);
13864 break;
13865 case PACKET_UNKNOWN:
13866 break;
13867 }
13868 }
13869
13870 static void
13871 set_remote_cmd (const char *args, int from_tty)
13872 {
13873 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13874 }
13875
13876 static void
13877 show_remote_cmd (const char *args, int from_tty)
13878 {
13879 /* We can't just use cmd_show_list here, because we want to skip
13880 the redundant "show remote Z-packet" and the legacy aliases. */
13881 struct cmd_list_element *list = remote_show_cmdlist;
13882 struct ui_out *uiout = current_uiout;
13883
13884 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13885 for (; list != NULL; list = list->next)
13886 if (strcmp (list->name, "Z-packet") == 0)
13887 continue;
13888 else if (list->type == not_set_cmd)
13889 /* Alias commands are exactly like the original, except they
13890 don't have the normal type. */
13891 continue;
13892 else
13893 {
13894 ui_out_emit_tuple option_emitter (uiout, "option");
13895
13896 uiout->field_string ("name", list->name);
13897 uiout->text (": ");
13898 if (list->type == show_cmd)
13899 do_show_command (NULL, from_tty, list);
13900 else
13901 cmd_func (list, NULL, from_tty);
13902 }
13903 }
13904
13905
13906 /* Function to be called whenever a new objfile (shlib) is detected. */
13907 static void
13908 remote_new_objfile (struct objfile *objfile)
13909 {
13910 struct remote_state *rs = get_remote_state ();
13911
13912 if (rs->remote_desc != 0) /* Have a remote connection. */
13913 remote_check_symbols ();
13914 }
13915
13916 /* Pull all the tracepoints defined on the target and create local
13917 data structures representing them. We don't want to create real
13918 tracepoints yet, we don't want to mess up the user's existing
13919 collection. */
13920
13921 static int
13922 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13923 {
13924 struct remote_state *rs = get_remote_state ();
13925 char *p;
13926
13927 /* Ask for a first packet of tracepoint definition. */
13928 putpkt ("qTfP");
13929 getpkt (&rs->buf, &rs->buf_size, 0);
13930 p = rs->buf;
13931 while (*p && *p != 'l')
13932 {
13933 parse_tracepoint_definition (p, utpp);
13934 /* Ask for another packet of tracepoint definition. */
13935 putpkt ("qTsP");
13936 getpkt (&rs->buf, &rs->buf_size, 0);
13937 p = rs->buf;
13938 }
13939 return 0;
13940 }
13941
13942 static int
13943 remote_upload_trace_state_variables (struct target_ops *self,
13944 struct uploaded_tsv **utsvp)
13945 {
13946 struct remote_state *rs = get_remote_state ();
13947 char *p;
13948
13949 /* Ask for a first packet of variable definition. */
13950 putpkt ("qTfV");
13951 getpkt (&rs->buf, &rs->buf_size, 0);
13952 p = rs->buf;
13953 while (*p && *p != 'l')
13954 {
13955 parse_tsv_definition (p, utsvp);
13956 /* Ask for another packet of variable definition. */
13957 putpkt ("qTsV");
13958 getpkt (&rs->buf, &rs->buf_size, 0);
13959 p = rs->buf;
13960 }
13961 return 0;
13962 }
13963
13964 /* The "set/show range-stepping" show hook. */
13965
13966 static void
13967 show_range_stepping (struct ui_file *file, int from_tty,
13968 struct cmd_list_element *c,
13969 const char *value)
13970 {
13971 fprintf_filtered (file,
13972 _("Debugger's willingness to use range stepping "
13973 "is %s.\n"), value);
13974 }
13975
13976 /* The "set/show range-stepping" set hook. */
13977
13978 static void
13979 set_range_stepping (const char *ignore_args, int from_tty,
13980 struct cmd_list_element *c)
13981 {
13982 struct remote_state *rs = get_remote_state ();
13983
13984 /* Whene enabling, check whether range stepping is actually
13985 supported by the target, and warn if not. */
13986 if (use_range_stepping)
13987 {
13988 if (rs->remote_desc != NULL)
13989 {
13990 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13991 remote_vcont_probe (rs);
13992
13993 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13994 && rs->supports_vCont.r)
13995 return;
13996 }
13997
13998 warning (_("Range stepping is not supported by the current target"));
13999 }
14000 }
14001
14002 void
14003 _initialize_remote (void)
14004 {
14005 struct cmd_list_element *cmd;
14006 const char *cmd_name;
14007
14008 /* architecture specific data */
14009 remote_gdbarch_data_handle =
14010 gdbarch_data_register_post_init (init_remote_state);
14011 remote_g_packet_data_handle =
14012 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14013
14014 remote_pspace_data
14015 = register_program_space_data_with_cleanup (NULL,
14016 remote_pspace_data_cleanup);
14017
14018 /* Initialize the per-target state. At the moment there is only one
14019 of these, not one per target. Only one target is active at a
14020 time. */
14021 remote_state = new_remote_state ();
14022
14023 init_remote_ops ();
14024 add_target (&remote_ops);
14025
14026 init_extended_remote_ops ();
14027 add_target (&extended_remote_ops);
14028
14029 /* Hook into new objfile notification. */
14030 observer_attach_new_objfile (remote_new_objfile);
14031 /* We're no longer interested in notification events of an inferior
14032 when it exits. */
14033 observer_attach_inferior_exit (discard_pending_stop_replies);
14034
14035 #if 0
14036 init_remote_threadtests ();
14037 #endif
14038
14039 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
14040 /* set/show remote ... */
14041
14042 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14043 Remote protocol specific variables\n\
14044 Configure various remote-protocol specific variables such as\n\
14045 the packets being used"),
14046 &remote_set_cmdlist, "set remote ",
14047 0 /* allow-unknown */, &setlist);
14048 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14049 Remote protocol specific variables\n\
14050 Configure various remote-protocol specific variables such as\n\
14051 the packets being used"),
14052 &remote_show_cmdlist, "show remote ",
14053 0 /* allow-unknown */, &showlist);
14054
14055 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14056 Compare section data on target to the exec file.\n\
14057 Argument is a single section name (default: all loaded sections).\n\
14058 To compare only read-only loaded sections, specify the -r option."),
14059 &cmdlist);
14060
14061 add_cmd ("packet", class_maintenance, packet_command, _("\
14062 Send an arbitrary packet to a remote target.\n\
14063 maintenance packet TEXT\n\
14064 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14065 this command sends the string TEXT to the inferior, and displays the\n\
14066 response packet. GDB supplies the initial `$' character, and the\n\
14067 terminating `#' character and checksum."),
14068 &maintenancelist);
14069
14070 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14071 Set whether to send break if interrupted."), _("\
14072 Show whether to send break if interrupted."), _("\
14073 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14074 set_remotebreak, show_remotebreak,
14075 &setlist, &showlist);
14076 cmd_name = "remotebreak";
14077 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14078 deprecate_cmd (cmd, "set remote interrupt-sequence");
14079 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14080 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14081 deprecate_cmd (cmd, "show remote interrupt-sequence");
14082
14083 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14084 interrupt_sequence_modes, &interrupt_sequence_mode,
14085 _("\
14086 Set interrupt sequence to remote target."), _("\
14087 Show interrupt sequence to remote target."), _("\
14088 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14089 NULL, show_interrupt_sequence,
14090 &remote_set_cmdlist,
14091 &remote_show_cmdlist);
14092
14093 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14094 &interrupt_on_connect, _("\
14095 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14096 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14097 If set, interrupt sequence is sent to remote target."),
14098 NULL, NULL,
14099 &remote_set_cmdlist, &remote_show_cmdlist);
14100
14101 /* Install commands for configuring memory read/write packets. */
14102
14103 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14104 Set the maximum number of bytes per memory write packet (deprecated)."),
14105 &setlist);
14106 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14107 Show the maximum number of bytes per memory write packet (deprecated)."),
14108 &showlist);
14109 add_cmd ("memory-write-packet-size", no_class,
14110 set_memory_write_packet_size, _("\
14111 Set the maximum number of bytes per memory-write packet.\n\
14112 Specify the number of bytes in a packet or 0 (zero) for the\n\
14113 default packet size. The actual limit is further reduced\n\
14114 dependent on the target. Specify ``fixed'' to disable the\n\
14115 further restriction and ``limit'' to enable that restriction."),
14116 &remote_set_cmdlist);
14117 add_cmd ("memory-read-packet-size", no_class,
14118 set_memory_read_packet_size, _("\
14119 Set the maximum number of bytes per memory-read packet.\n\
14120 Specify the number of bytes in a packet or 0 (zero) for the\n\
14121 default packet size. The actual limit is further reduced\n\
14122 dependent on the target. Specify ``fixed'' to disable the\n\
14123 further restriction and ``limit'' to enable that restriction."),
14124 &remote_set_cmdlist);
14125 add_cmd ("memory-write-packet-size", no_class,
14126 show_memory_write_packet_size,
14127 _("Show the maximum number of bytes per memory-write packet."),
14128 &remote_show_cmdlist);
14129 add_cmd ("memory-read-packet-size", no_class,
14130 show_memory_read_packet_size,
14131 _("Show the maximum number of bytes per memory-read packet."),
14132 &remote_show_cmdlist);
14133
14134 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14135 &remote_hw_watchpoint_limit, _("\
14136 Set the maximum number of target hardware watchpoints."), _("\
14137 Show the maximum number of target hardware watchpoints."), _("\
14138 Specify a negative limit for unlimited."),
14139 NULL, NULL, /* FIXME: i18n: The maximum
14140 number of target hardware
14141 watchpoints is %s. */
14142 &remote_set_cmdlist, &remote_show_cmdlist);
14143 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14144 &remote_hw_watchpoint_length_limit, _("\
14145 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14146 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14147 Specify a negative limit for unlimited."),
14148 NULL, NULL, /* FIXME: i18n: The maximum
14149 length (in bytes) of a target
14150 hardware watchpoint is %s. */
14151 &remote_set_cmdlist, &remote_show_cmdlist);
14152 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14153 &remote_hw_breakpoint_limit, _("\
14154 Set the maximum number of target hardware breakpoints."), _("\
14155 Show the maximum number of target hardware breakpoints."), _("\
14156 Specify a negative limit for unlimited."),
14157 NULL, NULL, /* FIXME: i18n: The maximum
14158 number of target hardware
14159 breakpoints is %s. */
14160 &remote_set_cmdlist, &remote_show_cmdlist);
14161
14162 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14163 &remote_address_size, _("\
14164 Set the maximum size of the address (in bits) in a memory packet."), _("\
14165 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14166 NULL,
14167 NULL, /* FIXME: i18n: */
14168 &setlist, &showlist);
14169
14170 init_all_packet_configs ();
14171
14172 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14173 "X", "binary-download", 1);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14176 "vCont", "verbose-resume", 0);
14177
14178 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14179 "QPassSignals", "pass-signals", 0);
14180
14181 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14182 "QCatchSyscalls", "catch-syscalls", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14185 "QProgramSignals", "program-signals", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14188 "QSetWorkingDir", "set-working-dir", 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14191 "QStartupWithShell", "startup-with-shell", 0);
14192
14193 add_packet_config_cmd (&remote_protocol_packets
14194 [PACKET_QEnvironmentHexEncoded],
14195 "QEnvironmentHexEncoded", "environment-hex-encoded",
14196 0);
14197
14198 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14199 "QEnvironmentReset", "environment-reset",
14200 0);
14201
14202 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14203 "QEnvironmentUnset", "environment-unset",
14204 0);
14205
14206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14207 "qSymbol", "symbol-lookup", 0);
14208
14209 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14210 "P", "set-register", 1);
14211
14212 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14213 "p", "fetch-register", 1);
14214
14215 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14216 "Z0", "software-breakpoint", 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14219 "Z1", "hardware-breakpoint", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14222 "Z2", "write-watchpoint", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14225 "Z3", "read-watchpoint", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14228 "Z4", "access-watchpoint", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14231 "qXfer:auxv:read", "read-aux-vector", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14234 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14237 "qXfer:features:read", "target-features", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14240 "qXfer:libraries:read", "library-info", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14243 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14246 "qXfer:memory-map:read", "memory-map", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14249 "qXfer:spu:read", "read-spu-object", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14252 "qXfer:spu:write", "write-spu-object", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14255 "qXfer:osdata:read", "osdata", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14258 "qXfer:threads:read", "threads", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14261 "qXfer:siginfo:read", "read-siginfo-object", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14264 "qXfer:siginfo:write", "write-siginfo-object", 0);
14265
14266 add_packet_config_cmd
14267 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14268 "qXfer:traceframe-info:read", "traceframe-info", 0);
14269
14270 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14271 "qXfer:uib:read", "unwind-info-block", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14274 "qGetTLSAddr", "get-thread-local-storage-address",
14275 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14278 "qGetTIBAddr", "get-thread-information-block-address",
14279 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14282 "bc", "reverse-continue", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14285 "bs", "reverse-step", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14288 "qSupported", "supported-packets", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14291 "qSearch:memory", "search-memory", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14294 "qTStatus", "trace-status", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14297 "vFile:setfs", "hostio-setfs", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14300 "vFile:open", "hostio-open", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14303 "vFile:pread", "hostio-pread", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14306 "vFile:pwrite", "hostio-pwrite", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14309 "vFile:close", "hostio-close", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14312 "vFile:unlink", "hostio-unlink", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14315 "vFile:readlink", "hostio-readlink", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14318 "vFile:fstat", "hostio-fstat", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14321 "vAttach", "attach", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14324 "vRun", "run", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14327 "QStartNoAckMode", "noack", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14330 "vKill", "kill", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14333 "qAttached", "query-attached", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14336 "ConditionalTracepoints",
14337 "conditional-tracepoints", 0);
14338
14339 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14340 "ConditionalBreakpoints",
14341 "conditional-breakpoints", 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14344 "BreakpointCommands",
14345 "breakpoint-commands", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14348 "FastTracepoints", "fast-tracepoints", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14351 "TracepointSource", "TracepointSource", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14354 "QAllow", "allow", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14357 "StaticTracepoints", "static-tracepoints", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14360 "InstallInTrace", "install-in-trace", 0);
14361
14362 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14363 "qXfer:statictrace:read", "read-sdata-object", 0);
14364
14365 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14366 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14367
14368 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14369 "QDisableRandomization", "disable-randomization", 0);
14370
14371 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14372 "QAgent", "agent", 0);
14373
14374 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14375 "QTBuffer:size", "trace-buffer-size", 0);
14376
14377 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14378 "Qbtrace:off", "disable-btrace", 0);
14379
14380 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14381 "Qbtrace:bts", "enable-btrace-bts", 0);
14382
14383 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14384 "Qbtrace:pt", "enable-btrace-pt", 0);
14385
14386 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14387 "qXfer:btrace", "read-btrace", 0);
14388
14389 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14390 "qXfer:btrace-conf", "read-btrace-conf", 0);
14391
14392 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14393 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14394
14395 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14396 "multiprocess-feature", "multiprocess-feature", 0);
14397
14398 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14399 "swbreak-feature", "swbreak-feature", 0);
14400
14401 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14402 "hwbreak-feature", "hwbreak-feature", 0);
14403
14404 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14405 "fork-event-feature", "fork-event-feature", 0);
14406
14407 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14408 "vfork-event-feature", "vfork-event-feature", 0);
14409
14410 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14411 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14412
14413 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14414 "vContSupported", "verbose-resume-supported", 0);
14415
14416 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14417 "exec-event-feature", "exec-event-feature", 0);
14418
14419 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14420 "vCtrlC", "ctrl-c", 0);
14421
14422 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14423 "QThreadEvents", "thread-events", 0);
14424
14425 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14426 "N stop reply", "no-resumed-stop-reply", 0);
14427
14428 /* Assert that we've registered "set remote foo-packet" commands
14429 for all packet configs. */
14430 {
14431 int i;
14432
14433 for (i = 0; i < PACKET_MAX; i++)
14434 {
14435 /* Ideally all configs would have a command associated. Some
14436 still don't though. */
14437 int excepted;
14438
14439 switch (i)
14440 {
14441 case PACKET_QNonStop:
14442 case PACKET_EnableDisableTracepoints_feature:
14443 case PACKET_tracenz_feature:
14444 case PACKET_DisconnectedTracing_feature:
14445 case PACKET_augmented_libraries_svr4_read_feature:
14446 case PACKET_qCRC:
14447 /* Additions to this list need to be well justified:
14448 pre-existing packets are OK; new packets are not. */
14449 excepted = 1;
14450 break;
14451 default:
14452 excepted = 0;
14453 break;
14454 }
14455
14456 /* This catches both forgetting to add a config command, and
14457 forgetting to remove a packet from the exception list. */
14458 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14459 }
14460 }
14461
14462 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14463 Z sub-packet has its own set and show commands, but users may
14464 have sets to this variable in their .gdbinit files (or in their
14465 documentation). */
14466 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14467 &remote_Z_packet_detect, _("\
14468 Set use of remote protocol `Z' packets"), _("\
14469 Show use of remote protocol `Z' packets "), _("\
14470 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14471 packets."),
14472 set_remote_protocol_Z_packet_cmd,
14473 show_remote_protocol_Z_packet_cmd,
14474 /* FIXME: i18n: Use of remote protocol
14475 `Z' packets is %s. */
14476 &remote_set_cmdlist, &remote_show_cmdlist);
14477
14478 add_prefix_cmd ("remote", class_files, remote_command, _("\
14479 Manipulate files on the remote system\n\
14480 Transfer files to and from the remote target system."),
14481 &remote_cmdlist, "remote ",
14482 0 /* allow-unknown */, &cmdlist);
14483
14484 add_cmd ("put", class_files, remote_put_command,
14485 _("Copy a local file to the remote system."),
14486 &remote_cmdlist);
14487
14488 add_cmd ("get", class_files, remote_get_command,
14489 _("Copy a remote file to the local system."),
14490 &remote_cmdlist);
14491
14492 add_cmd ("delete", class_files, remote_delete_command,
14493 _("Delete a remote file."),
14494 &remote_cmdlist);
14495
14496 add_setshow_string_noescape_cmd ("exec-file", class_files,
14497 &remote_exec_file_var, _("\
14498 Set the remote pathname for \"run\""), _("\
14499 Show the remote pathname for \"run\""), NULL,
14500 set_remote_exec_file,
14501 show_remote_exec_file,
14502 &remote_set_cmdlist,
14503 &remote_show_cmdlist);
14504
14505 add_setshow_boolean_cmd ("range-stepping", class_run,
14506 &use_range_stepping, _("\
14507 Enable or disable range stepping."), _("\
14508 Show whether target-assisted range stepping is enabled."), _("\
14509 If on, and the target supports it, when stepping a source line, GDB\n\
14510 tells the target to step the corresponding range of addresses itself instead\n\
14511 of issuing multiple single-steps. This speeds up source level\n\
14512 stepping. If off, GDB always issues single-steps, even if range\n\
14513 stepping is supported by the target. The default is on."),
14514 set_range_stepping,
14515 show_range_stepping,
14516 &setlist,
14517 &showlist);
14518
14519 /* Eventually initialize fileio. See fileio.c */
14520 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14521
14522 /* Take advantage of the fact that the TID field is not used, to tag
14523 special ptids with it set to != 0. */
14524 magic_null_ptid = ptid_build (42000, -1, 1);
14525 not_sent_ptid = ptid_build (42000, -2, 1);
14526 any_thread_ptid = ptid_build (42000, 0, 1);
14527 }