]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
gdb, gdbserver: make target_waitstatus safe
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static std::string remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 set_pspace_remote_exec_file (current_program_space,
1359 remote_exec_file_var.c_str ());
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* Does the target support this packet? */
1877 enum packet_support support;
1878 };
1879
1880 static enum packet_support packet_config_support (struct packet_config *config);
1881 static enum packet_support packet_support (int packet);
1882
1883 static void
1884 show_packet_config_cmd (struct packet_config *config)
1885 {
1886 const char *support = "internal-error";
1887
1888 switch (packet_config_support (config))
1889 {
1890 case PACKET_ENABLE:
1891 support = "enabled";
1892 break;
1893 case PACKET_DISABLE:
1894 support = "disabled";
1895 break;
1896 case PACKET_SUPPORT_UNKNOWN:
1897 support = "unknown";
1898 break;
1899 }
1900 switch (config->detect)
1901 {
1902 case AUTO_BOOLEAN_AUTO:
1903 printf_filtered (_("Support for the `%s' packet "
1904 "is auto-detected, currently %s.\n"),
1905 config->name, support);
1906 break;
1907 case AUTO_BOOLEAN_TRUE:
1908 case AUTO_BOOLEAN_FALSE:
1909 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1910 config->name, support);
1911 break;
1912 }
1913 }
1914
1915 static void
1916 add_packet_config_cmd (struct packet_config *config, const char *name,
1917 const char *title, int legacy)
1918 {
1919 char *set_doc;
1920 char *show_doc;
1921 char *cmd_name;
1922
1923 config->name = name;
1924 config->title = title;
1925 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 show_doc = xstrprintf ("Show current use of remote "
1928 "protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1934 &config->detect, set_doc,
1935 show_doc, NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939
1940 /* The command code copies the documentation strings. */
1941 xfree (set_doc);
1942 xfree (show_doc);
1943
1944 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1945 if (legacy)
1946 {
1947 char *legacy_name;
1948
1949 legacy_name = xstrprintf ("%s-packet", name);
1950 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1951 &remote_set_cmdlist);
1952 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1953 &remote_show_cmdlist);
1954 }
1955 }
1956
1957 static enum packet_result
1958 packet_check_result (const char *buf)
1959 {
1960 if (buf[0] != '\0')
1961 {
1962 /* The stub recognized the packet request. Check that the
1963 operation succeeded. */
1964 if (buf[0] == 'E'
1965 && isxdigit (buf[1]) && isxdigit (buf[2])
1966 && buf[3] == '\0')
1967 /* "Enn" - definitely an error. */
1968 return PACKET_ERROR;
1969
1970 /* Always treat "E." as an error. This will be used for
1971 more verbose error messages, such as E.memtypes. */
1972 if (buf[0] == 'E' && buf[1] == '.')
1973 return PACKET_ERROR;
1974
1975 /* The packet may or may not be OK. Just assume it is. */
1976 return PACKET_OK;
1977 }
1978 else
1979 /* The stub does not support the packet. */
1980 return PACKET_UNKNOWN;
1981 }
1982
1983 static enum packet_result
1984 packet_check_result (const gdb::char_vector &buf)
1985 {
1986 return packet_check_result (buf.data ());
1987 }
1988
1989 static enum packet_result
1990 packet_ok (const char *buf, struct packet_config *config)
1991 {
1992 enum packet_result result;
1993
1994 if (config->detect != AUTO_BOOLEAN_TRUE
1995 && config->support == PACKET_DISABLE)
1996 internal_error (__FILE__, __LINE__,
1997 _("packet_ok: attempt to use a disabled packet"));
1998
1999 result = packet_check_result (buf);
2000 switch (result)
2001 {
2002 case PACKET_OK:
2003 case PACKET_ERROR:
2004 /* The stub recognized the packet request. */
2005 if (config->support == PACKET_SUPPORT_UNKNOWN)
2006 {
2007 remote_debug_printf ("Packet %s (%s) is supported",
2008 config->name, config->title);
2009 config->support = PACKET_ENABLE;
2010 }
2011 break;
2012 case PACKET_UNKNOWN:
2013 /* The stub does not support the packet. */
2014 if (config->detect == AUTO_BOOLEAN_AUTO
2015 && config->support == PACKET_ENABLE)
2016 {
2017 /* If the stub previously indicated that the packet was
2018 supported then there is a protocol error. */
2019 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2020 config->name, config->title);
2021 }
2022 else if (config->detect == AUTO_BOOLEAN_TRUE)
2023 {
2024 /* The user set it wrong. */
2025 error (_("Enabled packet %s (%s) not recognized by stub"),
2026 config->name, config->title);
2027 }
2028
2029 remote_debug_printf ("Packet %s (%s) is NOT supported",
2030 config->name, config->title);
2031 config->support = PACKET_DISABLE;
2032 break;
2033 }
2034
2035 return result;
2036 }
2037
2038 static enum packet_result
2039 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2040 {
2041 return packet_ok (buf.data (), config);
2042 }
2043
2044 enum {
2045 PACKET_vCont = 0,
2046 PACKET_X,
2047 PACKET_qSymbol,
2048 PACKET_P,
2049 PACKET_p,
2050 PACKET_Z0,
2051 PACKET_Z1,
2052 PACKET_Z2,
2053 PACKET_Z3,
2054 PACKET_Z4,
2055 PACKET_vFile_setfs,
2056 PACKET_vFile_open,
2057 PACKET_vFile_pread,
2058 PACKET_vFile_pwrite,
2059 PACKET_vFile_close,
2060 PACKET_vFile_unlink,
2061 PACKET_vFile_readlink,
2062 PACKET_vFile_fstat,
2063 PACKET_qXfer_auxv,
2064 PACKET_qXfer_features,
2065 PACKET_qXfer_exec_file,
2066 PACKET_qXfer_libraries,
2067 PACKET_qXfer_libraries_svr4,
2068 PACKET_qXfer_memory_map,
2069 PACKET_qXfer_osdata,
2070 PACKET_qXfer_threads,
2071 PACKET_qXfer_statictrace_read,
2072 PACKET_qXfer_traceframe_info,
2073 PACKET_qXfer_uib,
2074 PACKET_qGetTIBAddr,
2075 PACKET_qGetTLSAddr,
2076 PACKET_qSupported,
2077 PACKET_qTStatus,
2078 PACKET_QPassSignals,
2079 PACKET_QCatchSyscalls,
2080 PACKET_QProgramSignals,
2081 PACKET_QSetWorkingDir,
2082 PACKET_QStartupWithShell,
2083 PACKET_QEnvironmentHexEncoded,
2084 PACKET_QEnvironmentReset,
2085 PACKET_QEnvironmentUnset,
2086 PACKET_qCRC,
2087 PACKET_qSearch_memory,
2088 PACKET_vAttach,
2089 PACKET_vRun,
2090 PACKET_QStartNoAckMode,
2091 PACKET_vKill,
2092 PACKET_qXfer_siginfo_read,
2093 PACKET_qXfer_siginfo_write,
2094 PACKET_qAttached,
2095
2096 /* Support for conditional tracepoints. */
2097 PACKET_ConditionalTracepoints,
2098
2099 /* Support for target-side breakpoint conditions. */
2100 PACKET_ConditionalBreakpoints,
2101
2102 /* Support for target-side breakpoint commands. */
2103 PACKET_BreakpointCommands,
2104
2105 /* Support for fast tracepoints. */
2106 PACKET_FastTracepoints,
2107
2108 /* Support for static tracepoints. */
2109 PACKET_StaticTracepoints,
2110
2111 /* Support for installing tracepoints while a trace experiment is
2112 running. */
2113 PACKET_InstallInTrace,
2114
2115 PACKET_bc,
2116 PACKET_bs,
2117 PACKET_TracepointSource,
2118 PACKET_QAllow,
2119 PACKET_qXfer_fdpic,
2120 PACKET_QDisableRandomization,
2121 PACKET_QAgent,
2122 PACKET_QTBuffer_size,
2123 PACKET_Qbtrace_off,
2124 PACKET_Qbtrace_bts,
2125 PACKET_Qbtrace_pt,
2126 PACKET_qXfer_btrace,
2127
2128 /* Support for the QNonStop packet. */
2129 PACKET_QNonStop,
2130
2131 /* Support for the QThreadEvents packet. */
2132 PACKET_QThreadEvents,
2133
2134 /* Support for multi-process extensions. */
2135 PACKET_multiprocess_feature,
2136
2137 /* Support for enabling and disabling tracepoints while a trace
2138 experiment is running. */
2139 PACKET_EnableDisableTracepoints_feature,
2140
2141 /* Support for collecting strings using the tracenz bytecode. */
2142 PACKET_tracenz_feature,
2143
2144 /* Support for continuing to run a trace experiment while GDB is
2145 disconnected. */
2146 PACKET_DisconnectedTracing_feature,
2147
2148 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2149 PACKET_augmented_libraries_svr4_read_feature,
2150
2151 /* Support for the qXfer:btrace-conf:read packet. */
2152 PACKET_qXfer_btrace_conf,
2153
2154 /* Support for the Qbtrace-conf:bts:size packet. */
2155 PACKET_Qbtrace_conf_bts_size,
2156
2157 /* Support for swbreak+ feature. */
2158 PACKET_swbreak_feature,
2159
2160 /* Support for hwbreak+ feature. */
2161 PACKET_hwbreak_feature,
2162
2163 /* Support for fork events. */
2164 PACKET_fork_event_feature,
2165
2166 /* Support for vfork events. */
2167 PACKET_vfork_event_feature,
2168
2169 /* Support for the Qbtrace-conf:pt:size packet. */
2170 PACKET_Qbtrace_conf_pt_size,
2171
2172 /* Support for exec events. */
2173 PACKET_exec_event_feature,
2174
2175 /* Support for query supported vCont actions. */
2176 PACKET_vContSupported,
2177
2178 /* Support remote CTRL-C. */
2179 PACKET_vCtrlC,
2180
2181 /* Support TARGET_WAITKIND_NO_RESUMED. */
2182 PACKET_no_resumed,
2183
2184 /* Support for memory tagging, allocation tag fetch/store
2185 packets and the tag violation stop replies. */
2186 PACKET_memory_tagging_feature,
2187
2188 PACKET_MAX
2189 };
2190
2191 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2192 assuming all remote targets are the same server (thus all support
2193 the same packets). */
2194 static struct packet_config remote_protocol_packets[PACKET_MAX];
2195
2196 /* Returns the packet's corresponding "set remote foo-packet" command
2197 state. See struct packet_config for more details. */
2198
2199 static enum auto_boolean
2200 packet_set_cmd_state (int packet)
2201 {
2202 return remote_protocol_packets[packet].detect;
2203 }
2204
2205 /* Returns whether a given packet or feature is supported. This takes
2206 into account the state of the corresponding "set remote foo-packet"
2207 command, which may be used to bypass auto-detection. */
2208
2209 static enum packet_support
2210 packet_config_support (struct packet_config *config)
2211 {
2212 switch (config->detect)
2213 {
2214 case AUTO_BOOLEAN_TRUE:
2215 return PACKET_ENABLE;
2216 case AUTO_BOOLEAN_FALSE:
2217 return PACKET_DISABLE;
2218 case AUTO_BOOLEAN_AUTO:
2219 return config->support;
2220 default:
2221 gdb_assert_not_reached (_("bad switch"));
2222 }
2223 }
2224
2225 /* Same as packet_config_support, but takes the packet's enum value as
2226 argument. */
2227
2228 static enum packet_support
2229 packet_support (int packet)
2230 {
2231 struct packet_config *config = &remote_protocol_packets[packet];
2232
2233 return packet_config_support (config);
2234 }
2235
2236 static void
2237 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2238 struct cmd_list_element *c,
2239 const char *value)
2240 {
2241 struct packet_config *packet;
2242 gdb_assert (c->var.has_value ());
2243
2244 for (packet = remote_protocol_packets;
2245 packet < &remote_protocol_packets[PACKET_MAX];
2246 packet++)
2247 {
2248 if (&packet->detect == &c->var->get<enum auto_boolean> ())
2249 {
2250 show_packet_config_cmd (packet);
2251 return;
2252 }
2253 }
2254 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2255 c->name);
2256 }
2257
2258 /* Should we try one of the 'Z' requests? */
2259
2260 enum Z_packet_type
2261 {
2262 Z_PACKET_SOFTWARE_BP,
2263 Z_PACKET_HARDWARE_BP,
2264 Z_PACKET_WRITE_WP,
2265 Z_PACKET_READ_WP,
2266 Z_PACKET_ACCESS_WP,
2267 NR_Z_PACKET_TYPES
2268 };
2269
2270 /* For compatibility with older distributions. Provide a ``set remote
2271 Z-packet ...'' command that updates all the Z packet types. */
2272
2273 static enum auto_boolean remote_Z_packet_detect;
2274
2275 static void
2276 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2277 struct cmd_list_element *c)
2278 {
2279 int i;
2280
2281 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2282 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2283 }
2284
2285 static void
2286 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2287 struct cmd_list_element *c,
2288 const char *value)
2289 {
2290 int i;
2291
2292 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2293 {
2294 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2295 }
2296 }
2297
2298 /* Returns true if the multi-process extensions are in effect. */
2299
2300 static int
2301 remote_multi_process_p (struct remote_state *rs)
2302 {
2303 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2304 }
2305
2306 /* Returns true if fork events are supported. */
2307
2308 static int
2309 remote_fork_event_p (struct remote_state *rs)
2310 {
2311 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2312 }
2313
2314 /* Returns true if vfork events are supported. */
2315
2316 static int
2317 remote_vfork_event_p (struct remote_state *rs)
2318 {
2319 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2320 }
2321
2322 /* Returns true if exec events are supported. */
2323
2324 static int
2325 remote_exec_event_p (struct remote_state *rs)
2326 {
2327 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2328 }
2329
2330 /* Returns true if memory tagging is supported, false otherwise. */
2331
2332 static bool
2333 remote_memory_tagging_p ()
2334 {
2335 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2336 }
2337
2338 /* Insert fork catchpoint target routine. If fork events are enabled
2339 then return success, nothing more to do. */
2340
2341 int
2342 remote_target::insert_fork_catchpoint (int pid)
2343 {
2344 struct remote_state *rs = get_remote_state ();
2345
2346 return !remote_fork_event_p (rs);
2347 }
2348
2349 /* Remove fork catchpoint target routine. Nothing to do, just
2350 return success. */
2351
2352 int
2353 remote_target::remove_fork_catchpoint (int pid)
2354 {
2355 return 0;
2356 }
2357
2358 /* Insert vfork catchpoint target routine. If vfork events are enabled
2359 then return success, nothing more to do. */
2360
2361 int
2362 remote_target::insert_vfork_catchpoint (int pid)
2363 {
2364 struct remote_state *rs = get_remote_state ();
2365
2366 return !remote_vfork_event_p (rs);
2367 }
2368
2369 /* Remove vfork catchpoint target routine. Nothing to do, just
2370 return success. */
2371
2372 int
2373 remote_target::remove_vfork_catchpoint (int pid)
2374 {
2375 return 0;
2376 }
2377
2378 /* Insert exec catchpoint target routine. If exec events are
2379 enabled, just return success. */
2380
2381 int
2382 remote_target::insert_exec_catchpoint (int pid)
2383 {
2384 struct remote_state *rs = get_remote_state ();
2385
2386 return !remote_exec_event_p (rs);
2387 }
2388
2389 /* Remove exec catchpoint target routine. Nothing to do, just
2390 return success. */
2391
2392 int
2393 remote_target::remove_exec_catchpoint (int pid)
2394 {
2395 return 0;
2396 }
2397
2398 \f
2399
2400 /* Take advantage of the fact that the TID field is not used, to tag
2401 special ptids with it set to != 0. */
2402 static const ptid_t magic_null_ptid (42000, -1, 1);
2403 static const ptid_t not_sent_ptid (42000, -2, 1);
2404 static const ptid_t any_thread_ptid (42000, 0, 1);
2405
2406 /* Find out if the stub attached to PID (and hence GDB should offer to
2407 detach instead of killing it when bailing out). */
2408
2409 int
2410 remote_target::remote_query_attached (int pid)
2411 {
2412 struct remote_state *rs = get_remote_state ();
2413 size_t size = get_remote_packet_size ();
2414
2415 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2416 return 0;
2417
2418 if (remote_multi_process_p (rs))
2419 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2420 else
2421 xsnprintf (rs->buf.data (), size, "qAttached");
2422
2423 putpkt (rs->buf);
2424 getpkt (&rs->buf, 0);
2425
2426 switch (packet_ok (rs->buf,
2427 &remote_protocol_packets[PACKET_qAttached]))
2428 {
2429 case PACKET_OK:
2430 if (strcmp (rs->buf.data (), "1") == 0)
2431 return 1;
2432 break;
2433 case PACKET_ERROR:
2434 warning (_("Remote failure reply: %s"), rs->buf.data ());
2435 break;
2436 case PACKET_UNKNOWN:
2437 break;
2438 }
2439
2440 return 0;
2441 }
2442
2443 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2444 has been invented by GDB, instead of reported by the target. Since
2445 we can be connected to a remote system before before knowing about
2446 any inferior, mark the target with execution when we find the first
2447 inferior. If ATTACHED is 1, then we had just attached to this
2448 inferior. If it is 0, then we just created this inferior. If it
2449 is -1, then try querying the remote stub to find out if it had
2450 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2451 attempt to open this inferior's executable as the main executable
2452 if no main executable is open already. */
2453
2454 inferior *
2455 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2456 int try_open_exec)
2457 {
2458 struct inferior *inf;
2459
2460 /* Check whether this process we're learning about is to be
2461 considered attached, or if is to be considered to have been
2462 spawned by the stub. */
2463 if (attached == -1)
2464 attached = remote_query_attached (pid);
2465
2466 if (gdbarch_has_global_solist (target_gdbarch ()))
2467 {
2468 /* If the target shares code across all inferiors, then every
2469 attach adds a new inferior. */
2470 inf = add_inferior (pid);
2471
2472 /* ... and every inferior is bound to the same program space.
2473 However, each inferior may still have its own address
2474 space. */
2475 inf->aspace = maybe_new_address_space ();
2476 inf->pspace = current_program_space;
2477 }
2478 else
2479 {
2480 /* In the traditional debugging scenario, there's a 1-1 match
2481 between program/address spaces. We simply bind the inferior
2482 to the program space's address space. */
2483 inf = current_inferior ();
2484
2485 /* However, if the current inferior is already bound to a
2486 process, find some other empty inferior. */
2487 if (inf->pid != 0)
2488 {
2489 inf = nullptr;
2490 for (inferior *it : all_inferiors ())
2491 if (it->pid == 0)
2492 {
2493 inf = it;
2494 break;
2495 }
2496 }
2497 if (inf == nullptr)
2498 {
2499 /* Since all inferiors were already bound to a process, add
2500 a new inferior. */
2501 inf = add_inferior_with_spaces ();
2502 }
2503 switch_to_inferior_no_thread (inf);
2504 inf->push_target (this);
2505 inferior_appeared (inf, pid);
2506 }
2507
2508 inf->attach_flag = attached;
2509 inf->fake_pid_p = fake_pid_p;
2510
2511 /* If no main executable is currently open then attempt to
2512 open the file that was executed to create this inferior. */
2513 if (try_open_exec && get_exec_file (0) == NULL)
2514 exec_file_locate_attach (pid, 0, 1);
2515
2516 /* Check for exec file mismatch, and let the user solve it. */
2517 validate_exec_file (1);
2518
2519 return inf;
2520 }
2521
2522 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2523 static remote_thread_info *get_remote_thread_info (remote_target *target,
2524 ptid_t ptid);
2525
2526 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2527 according to RUNNING. */
2528
2529 thread_info *
2530 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2531 {
2532 struct remote_state *rs = get_remote_state ();
2533 struct thread_info *thread;
2534
2535 /* GDB historically didn't pull threads in the initial connection
2536 setup. If the remote target doesn't even have a concept of
2537 threads (e.g., a bare-metal target), even if internally we
2538 consider that a single-threaded target, mentioning a new thread
2539 might be confusing to the user. Be silent then, preserving the
2540 age old behavior. */
2541 if (rs->starting_up)
2542 thread = add_thread_silent (this, ptid);
2543 else
2544 thread = add_thread (this, ptid);
2545
2546 /* We start by assuming threads are resumed. That state then gets updated
2547 when we process a matching stop reply. */
2548 get_remote_thread_info (thread)->set_resumed ();
2549
2550 set_executing (this, ptid, executing);
2551 set_running (this, ptid, running);
2552
2553 return thread;
2554 }
2555
2556 /* Come here when we learn about a thread id from the remote target.
2557 It may be the first time we hear about such thread, so take the
2558 opportunity to add it to GDB's thread list. In case this is the
2559 first time we're noticing its corresponding inferior, add it to
2560 GDB's inferior list as well. EXECUTING indicates whether the
2561 thread is (internally) executing or stopped. */
2562
2563 void
2564 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2565 {
2566 /* In non-stop mode, we assume new found threads are (externally)
2567 running until proven otherwise with a stop reply. In all-stop,
2568 we can only get here if all threads are stopped. */
2569 bool running = target_is_non_stop_p ();
2570
2571 /* If this is a new thread, add it to GDB's thread list.
2572 If we leave it up to WFI to do this, bad things will happen. */
2573
2574 thread_info *tp = find_thread_ptid (this, currthread);
2575 if (tp != NULL && tp->state == THREAD_EXITED)
2576 {
2577 /* We're seeing an event on a thread id we knew had exited.
2578 This has to be a new thread reusing the old id. Add it. */
2579 remote_add_thread (currthread, running, executing);
2580 return;
2581 }
2582
2583 if (!in_thread_list (this, currthread))
2584 {
2585 struct inferior *inf = NULL;
2586 int pid = currthread.pid ();
2587
2588 if (inferior_ptid.is_pid ()
2589 && pid == inferior_ptid.pid ())
2590 {
2591 /* inferior_ptid has no thread member yet. This can happen
2592 with the vAttach -> remote_wait,"TAAthread:" path if the
2593 stub doesn't support qC. This is the first stop reported
2594 after an attach, so this is the main thread. Update the
2595 ptid in the thread list. */
2596 if (in_thread_list (this, ptid_t (pid)))
2597 thread_change_ptid (this, inferior_ptid, currthread);
2598 else
2599 {
2600 thread_info *thr
2601 = remote_add_thread (currthread, running, executing);
2602 switch_to_thread (thr);
2603 }
2604 return;
2605 }
2606
2607 if (magic_null_ptid == inferior_ptid)
2608 {
2609 /* inferior_ptid is not set yet. This can happen with the
2610 vRun -> remote_wait,"TAAthread:" path if the stub
2611 doesn't support qC. This is the first stop reported
2612 after an attach, so this is the main thread. Update the
2613 ptid in the thread list. */
2614 thread_change_ptid (this, inferior_ptid, currthread);
2615 return;
2616 }
2617
2618 /* When connecting to a target remote, or to a target
2619 extended-remote which already was debugging an inferior, we
2620 may not know about it yet. Add it before adding its child
2621 thread, so notifications are emitted in a sensible order. */
2622 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2623 {
2624 struct remote_state *rs = get_remote_state ();
2625 bool fake_pid_p = !remote_multi_process_p (rs);
2626
2627 inf = remote_add_inferior (fake_pid_p,
2628 currthread.pid (), -1, 1);
2629 }
2630
2631 /* This is really a new thread. Add it. */
2632 thread_info *new_thr
2633 = remote_add_thread (currthread, running, executing);
2634
2635 /* If we found a new inferior, let the common code do whatever
2636 it needs to with it (e.g., read shared libraries, insert
2637 breakpoints), unless we're just setting up an all-stop
2638 connection. */
2639 if (inf != NULL)
2640 {
2641 struct remote_state *rs = get_remote_state ();
2642
2643 if (!rs->starting_up)
2644 notice_new_inferior (new_thr, executing, 0);
2645 }
2646 }
2647 }
2648
2649 /* Return THREAD's private thread data, creating it if necessary. */
2650
2651 static remote_thread_info *
2652 get_remote_thread_info (thread_info *thread)
2653 {
2654 gdb_assert (thread != NULL);
2655
2656 if (thread->priv == NULL)
2657 thread->priv.reset (new remote_thread_info);
2658
2659 return static_cast<remote_thread_info *> (thread->priv.get ());
2660 }
2661
2662 /* Return PTID's private thread data, creating it if necessary. */
2663
2664 static remote_thread_info *
2665 get_remote_thread_info (remote_target *target, ptid_t ptid)
2666 {
2667 thread_info *thr = find_thread_ptid (target, ptid);
2668 return get_remote_thread_info (thr);
2669 }
2670
2671 /* Call this function as a result of
2672 1) A halt indication (T packet) containing a thread id
2673 2) A direct query of currthread
2674 3) Successful execution of set thread */
2675
2676 static void
2677 record_currthread (struct remote_state *rs, ptid_t currthread)
2678 {
2679 rs->general_thread = currthread;
2680 }
2681
2682 /* If 'QPassSignals' is supported, tell the remote stub what signals
2683 it can simply pass through to the inferior without reporting. */
2684
2685 void
2686 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2687 {
2688 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2689 {
2690 char *pass_packet, *p;
2691 int count = 0;
2692 struct remote_state *rs = get_remote_state ();
2693
2694 gdb_assert (pass_signals.size () < 256);
2695 for (size_t i = 0; i < pass_signals.size (); i++)
2696 {
2697 if (pass_signals[i])
2698 count++;
2699 }
2700 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2701 strcpy (pass_packet, "QPassSignals:");
2702 p = pass_packet + strlen (pass_packet);
2703 for (size_t i = 0; i < pass_signals.size (); i++)
2704 {
2705 if (pass_signals[i])
2706 {
2707 if (i >= 16)
2708 *p++ = tohex (i >> 4);
2709 *p++ = tohex (i & 15);
2710 if (count)
2711 *p++ = ';';
2712 else
2713 break;
2714 count--;
2715 }
2716 }
2717 *p = 0;
2718 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2719 {
2720 putpkt (pass_packet);
2721 getpkt (&rs->buf, 0);
2722 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2723 xfree (rs->last_pass_packet);
2724 rs->last_pass_packet = pass_packet;
2725 }
2726 else
2727 xfree (pass_packet);
2728 }
2729 }
2730
2731 /* If 'QCatchSyscalls' is supported, tell the remote stub
2732 to report syscalls to GDB. */
2733
2734 int
2735 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2736 gdb::array_view<const int> syscall_counts)
2737 {
2738 const char *catch_packet;
2739 enum packet_result result;
2740 int n_sysno = 0;
2741
2742 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2743 {
2744 /* Not supported. */
2745 return 1;
2746 }
2747
2748 if (needed && any_count == 0)
2749 {
2750 /* Count how many syscalls are to be caught. */
2751 for (size_t i = 0; i < syscall_counts.size (); i++)
2752 {
2753 if (syscall_counts[i] != 0)
2754 n_sysno++;
2755 }
2756 }
2757
2758 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2759 pid, needed, any_count, n_sysno);
2760
2761 std::string built_packet;
2762 if (needed)
2763 {
2764 /* Prepare a packet with the sysno list, assuming max 8+1
2765 characters for a sysno. If the resulting packet size is too
2766 big, fallback on the non-selective packet. */
2767 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2768 built_packet.reserve (maxpktsz);
2769 built_packet = "QCatchSyscalls:1";
2770 if (any_count == 0)
2771 {
2772 /* Add in each syscall to be caught. */
2773 for (size_t i = 0; i < syscall_counts.size (); i++)
2774 {
2775 if (syscall_counts[i] != 0)
2776 string_appendf (built_packet, ";%zx", i);
2777 }
2778 }
2779 if (built_packet.size () > get_remote_packet_size ())
2780 {
2781 /* catch_packet too big. Fallback to less efficient
2782 non selective mode, with GDB doing the filtering. */
2783 catch_packet = "QCatchSyscalls:1";
2784 }
2785 else
2786 catch_packet = built_packet.c_str ();
2787 }
2788 else
2789 catch_packet = "QCatchSyscalls:0";
2790
2791 struct remote_state *rs = get_remote_state ();
2792
2793 putpkt (catch_packet);
2794 getpkt (&rs->buf, 0);
2795 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2796 if (result == PACKET_OK)
2797 return 0;
2798 else
2799 return -1;
2800 }
2801
2802 /* If 'QProgramSignals' is supported, tell the remote stub what
2803 signals it should pass through to the inferior when detaching. */
2804
2805 void
2806 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2807 {
2808 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2809 {
2810 char *packet, *p;
2811 int count = 0;
2812 struct remote_state *rs = get_remote_state ();
2813
2814 gdb_assert (signals.size () < 256);
2815 for (size_t i = 0; i < signals.size (); i++)
2816 {
2817 if (signals[i])
2818 count++;
2819 }
2820 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2821 strcpy (packet, "QProgramSignals:");
2822 p = packet + strlen (packet);
2823 for (size_t i = 0; i < signals.size (); i++)
2824 {
2825 if (signal_pass_state (i))
2826 {
2827 if (i >= 16)
2828 *p++ = tohex (i >> 4);
2829 *p++ = tohex (i & 15);
2830 if (count)
2831 *p++ = ';';
2832 else
2833 break;
2834 count--;
2835 }
2836 }
2837 *p = 0;
2838 if (!rs->last_program_signals_packet
2839 || strcmp (rs->last_program_signals_packet, packet) != 0)
2840 {
2841 putpkt (packet);
2842 getpkt (&rs->buf, 0);
2843 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2844 xfree (rs->last_program_signals_packet);
2845 rs->last_program_signals_packet = packet;
2846 }
2847 else
2848 xfree (packet);
2849 }
2850 }
2851
2852 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2853 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2854 thread. If GEN is set, set the general thread, if not, then set
2855 the step/continue thread. */
2856 void
2857 remote_target::set_thread (ptid_t ptid, int gen)
2858 {
2859 struct remote_state *rs = get_remote_state ();
2860 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2861 char *buf = rs->buf.data ();
2862 char *endbuf = buf + get_remote_packet_size ();
2863
2864 if (state == ptid)
2865 return;
2866
2867 *buf++ = 'H';
2868 *buf++ = gen ? 'g' : 'c';
2869 if (ptid == magic_null_ptid)
2870 xsnprintf (buf, endbuf - buf, "0");
2871 else if (ptid == any_thread_ptid)
2872 xsnprintf (buf, endbuf - buf, "0");
2873 else if (ptid == minus_one_ptid)
2874 xsnprintf (buf, endbuf - buf, "-1");
2875 else
2876 write_ptid (buf, endbuf, ptid);
2877 putpkt (rs->buf);
2878 getpkt (&rs->buf, 0);
2879 if (gen)
2880 rs->general_thread = ptid;
2881 else
2882 rs->continue_thread = ptid;
2883 }
2884
2885 void
2886 remote_target::set_general_thread (ptid_t ptid)
2887 {
2888 set_thread (ptid, 1);
2889 }
2890
2891 void
2892 remote_target::set_continue_thread (ptid_t ptid)
2893 {
2894 set_thread (ptid, 0);
2895 }
2896
2897 /* Change the remote current process. Which thread within the process
2898 ends up selected isn't important, as long as it is the same process
2899 as what INFERIOR_PTID points to.
2900
2901 This comes from that fact that there is no explicit notion of
2902 "selected process" in the protocol. The selected process for
2903 general operations is the process the selected general thread
2904 belongs to. */
2905
2906 void
2907 remote_target::set_general_process ()
2908 {
2909 struct remote_state *rs = get_remote_state ();
2910
2911 /* If the remote can't handle multiple processes, don't bother. */
2912 if (!remote_multi_process_p (rs))
2913 return;
2914
2915 /* We only need to change the remote current thread if it's pointing
2916 at some other process. */
2917 if (rs->general_thread.pid () != inferior_ptid.pid ())
2918 set_general_thread (inferior_ptid);
2919 }
2920
2921 \f
2922 /* Return nonzero if this is the main thread that we made up ourselves
2923 to model non-threaded targets as single-threaded. */
2924
2925 static int
2926 remote_thread_always_alive (ptid_t ptid)
2927 {
2928 if (ptid == magic_null_ptid)
2929 /* The main thread is always alive. */
2930 return 1;
2931
2932 if (ptid.pid () != 0 && ptid.lwp () == 0)
2933 /* The main thread is always alive. This can happen after a
2934 vAttach, if the remote side doesn't support
2935 multi-threading. */
2936 return 1;
2937
2938 return 0;
2939 }
2940
2941 /* Return nonzero if the thread PTID is still alive on the remote
2942 system. */
2943
2944 bool
2945 remote_target::thread_alive (ptid_t ptid)
2946 {
2947 struct remote_state *rs = get_remote_state ();
2948 char *p, *endp;
2949
2950 /* Check if this is a thread that we made up ourselves to model
2951 non-threaded targets as single-threaded. */
2952 if (remote_thread_always_alive (ptid))
2953 return 1;
2954
2955 p = rs->buf.data ();
2956 endp = p + get_remote_packet_size ();
2957
2958 *p++ = 'T';
2959 write_ptid (p, endp, ptid);
2960
2961 putpkt (rs->buf);
2962 getpkt (&rs->buf, 0);
2963 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2964 }
2965
2966 /* Return a pointer to a thread name if we know it and NULL otherwise.
2967 The thread_info object owns the memory for the name. */
2968
2969 const char *
2970 remote_target::thread_name (struct thread_info *info)
2971 {
2972 if (info->priv != NULL)
2973 {
2974 const std::string &name = get_remote_thread_info (info)->name;
2975 return !name.empty () ? name.c_str () : NULL;
2976 }
2977
2978 return NULL;
2979 }
2980
2981 /* About these extended threadlist and threadinfo packets. They are
2982 variable length packets but, the fields within them are often fixed
2983 length. They are redundant enough to send over UDP as is the
2984 remote protocol in general. There is a matching unit test module
2985 in libstub. */
2986
2987 /* WARNING: This threadref data structure comes from the remote O.S.,
2988 libstub protocol encoding, and remote.c. It is not particularly
2989 changable. */
2990
2991 /* Right now, the internal structure is int. We want it to be bigger.
2992 Plan to fix this. */
2993
2994 typedef int gdb_threadref; /* Internal GDB thread reference. */
2995
2996 /* gdb_ext_thread_info is an internal GDB data structure which is
2997 equivalent to the reply of the remote threadinfo packet. */
2998
2999 struct gdb_ext_thread_info
3000 {
3001 threadref threadid; /* External form of thread reference. */
3002 int active; /* Has state interesting to GDB?
3003 regs, stack. */
3004 char display[256]; /* Brief state display, name,
3005 blocked/suspended. */
3006 char shortname[32]; /* To be used to name threads. */
3007 char more_display[256]; /* Long info, statistics, queue depth,
3008 whatever. */
3009 };
3010
3011 /* The volume of remote transfers can be limited by submitting
3012 a mask containing bits specifying the desired information.
3013 Use a union of these values as the 'selection' parameter to
3014 get_thread_info. FIXME: Make these TAG names more thread specific. */
3015
3016 #define TAG_THREADID 1
3017 #define TAG_EXISTS 2
3018 #define TAG_DISPLAY 4
3019 #define TAG_THREADNAME 8
3020 #define TAG_MOREDISPLAY 16
3021
3022 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3023
3024 static const char *unpack_nibble (const char *buf, int *val);
3025
3026 static const char *unpack_byte (const char *buf, int *value);
3027
3028 static char *pack_int (char *buf, int value);
3029
3030 static const char *unpack_int (const char *buf, int *value);
3031
3032 static const char *unpack_string (const char *src, char *dest, int length);
3033
3034 static char *pack_threadid (char *pkt, threadref *id);
3035
3036 static const char *unpack_threadid (const char *inbuf, threadref *id);
3037
3038 void int_to_threadref (threadref *id, int value);
3039
3040 static int threadref_to_int (threadref *ref);
3041
3042 static void copy_threadref (threadref *dest, threadref *src);
3043
3044 static int threadmatch (threadref *dest, threadref *src);
3045
3046 static char *pack_threadinfo_request (char *pkt, int mode,
3047 threadref *id);
3048
3049 static char *pack_threadlist_request (char *pkt, int startflag,
3050 int threadcount,
3051 threadref *nextthread);
3052
3053 static int remote_newthread_step (threadref *ref, void *context);
3054
3055
3056 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3057 buffer we're allowed to write to. Returns
3058 BUF+CHARACTERS_WRITTEN. */
3059
3060 char *
3061 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3062 {
3063 int pid, tid;
3064 struct remote_state *rs = get_remote_state ();
3065
3066 if (remote_multi_process_p (rs))
3067 {
3068 pid = ptid.pid ();
3069 if (pid < 0)
3070 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3071 else
3072 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3073 }
3074 tid = ptid.lwp ();
3075 if (tid < 0)
3076 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3077 else
3078 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3079
3080 return buf;
3081 }
3082
3083 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3084 last parsed char. Returns null_ptid if no thread id is found, and
3085 throws an error if the thread id has an invalid format. */
3086
3087 static ptid_t
3088 read_ptid (const char *buf, const char **obuf)
3089 {
3090 const char *p = buf;
3091 const char *pp;
3092 ULONGEST pid = 0, tid = 0;
3093
3094 if (*p == 'p')
3095 {
3096 /* Multi-process ptid. */
3097 pp = unpack_varlen_hex (p + 1, &pid);
3098 if (*pp != '.')
3099 error (_("invalid remote ptid: %s"), p);
3100
3101 p = pp;
3102 pp = unpack_varlen_hex (p + 1, &tid);
3103 if (obuf)
3104 *obuf = pp;
3105 return ptid_t (pid, tid);
3106 }
3107
3108 /* No multi-process. Just a tid. */
3109 pp = unpack_varlen_hex (p, &tid);
3110
3111 /* Return null_ptid when no thread id is found. */
3112 if (p == pp)
3113 {
3114 if (obuf)
3115 *obuf = pp;
3116 return null_ptid;
3117 }
3118
3119 /* Since the stub is not sending a process id, then default to
3120 what's in inferior_ptid, unless it's null at this point. If so,
3121 then since there's no way to know the pid of the reported
3122 threads, use the magic number. */
3123 if (inferior_ptid == null_ptid)
3124 pid = magic_null_ptid.pid ();
3125 else
3126 pid = inferior_ptid.pid ();
3127
3128 if (obuf)
3129 *obuf = pp;
3130 return ptid_t (pid, tid);
3131 }
3132
3133 static int
3134 stubhex (int ch)
3135 {
3136 if (ch >= 'a' && ch <= 'f')
3137 return ch - 'a' + 10;
3138 if (ch >= '0' && ch <= '9')
3139 return ch - '0';
3140 if (ch >= 'A' && ch <= 'F')
3141 return ch - 'A' + 10;
3142 return -1;
3143 }
3144
3145 static int
3146 stub_unpack_int (const char *buff, int fieldlength)
3147 {
3148 int nibble;
3149 int retval = 0;
3150
3151 while (fieldlength)
3152 {
3153 nibble = stubhex (*buff++);
3154 retval |= nibble;
3155 fieldlength--;
3156 if (fieldlength)
3157 retval = retval << 4;
3158 }
3159 return retval;
3160 }
3161
3162 static const char *
3163 unpack_nibble (const char *buf, int *val)
3164 {
3165 *val = fromhex (*buf++);
3166 return buf;
3167 }
3168
3169 static const char *
3170 unpack_byte (const char *buf, int *value)
3171 {
3172 *value = stub_unpack_int (buf, 2);
3173 return buf + 2;
3174 }
3175
3176 static char *
3177 pack_int (char *buf, int value)
3178 {
3179 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3180 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3181 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3182 buf = pack_hex_byte (buf, (value & 0xff));
3183 return buf;
3184 }
3185
3186 static const char *
3187 unpack_int (const char *buf, int *value)
3188 {
3189 *value = stub_unpack_int (buf, 8);
3190 return buf + 8;
3191 }
3192
3193 #if 0 /* Currently unused, uncomment when needed. */
3194 static char *pack_string (char *pkt, char *string);
3195
3196 static char *
3197 pack_string (char *pkt, char *string)
3198 {
3199 char ch;
3200 int len;
3201
3202 len = strlen (string);
3203 if (len > 200)
3204 len = 200; /* Bigger than most GDB packets, junk??? */
3205 pkt = pack_hex_byte (pkt, len);
3206 while (len-- > 0)
3207 {
3208 ch = *string++;
3209 if ((ch == '\0') || (ch == '#'))
3210 ch = '*'; /* Protect encapsulation. */
3211 *pkt++ = ch;
3212 }
3213 return pkt;
3214 }
3215 #endif /* 0 (unused) */
3216
3217 static const char *
3218 unpack_string (const char *src, char *dest, int length)
3219 {
3220 while (length--)
3221 *dest++ = *src++;
3222 *dest = '\0';
3223 return src;
3224 }
3225
3226 static char *
3227 pack_threadid (char *pkt, threadref *id)
3228 {
3229 char *limit;
3230 unsigned char *altid;
3231
3232 altid = (unsigned char *) id;
3233 limit = pkt + BUF_THREAD_ID_SIZE;
3234 while (pkt < limit)
3235 pkt = pack_hex_byte (pkt, *altid++);
3236 return pkt;
3237 }
3238
3239
3240 static const char *
3241 unpack_threadid (const char *inbuf, threadref *id)
3242 {
3243 char *altref;
3244 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3245 int x, y;
3246
3247 altref = (char *) id;
3248
3249 while (inbuf < limit)
3250 {
3251 x = stubhex (*inbuf++);
3252 y = stubhex (*inbuf++);
3253 *altref++ = (x << 4) | y;
3254 }
3255 return inbuf;
3256 }
3257
3258 /* Externally, threadrefs are 64 bits but internally, they are still
3259 ints. This is due to a mismatch of specifications. We would like
3260 to use 64bit thread references internally. This is an adapter
3261 function. */
3262
3263 void
3264 int_to_threadref (threadref *id, int value)
3265 {
3266 unsigned char *scan;
3267
3268 scan = (unsigned char *) id;
3269 {
3270 int i = 4;
3271 while (i--)
3272 *scan++ = 0;
3273 }
3274 *scan++ = (value >> 24) & 0xff;
3275 *scan++ = (value >> 16) & 0xff;
3276 *scan++ = (value >> 8) & 0xff;
3277 *scan++ = (value & 0xff);
3278 }
3279
3280 static int
3281 threadref_to_int (threadref *ref)
3282 {
3283 int i, value = 0;
3284 unsigned char *scan;
3285
3286 scan = *ref;
3287 scan += 4;
3288 i = 4;
3289 while (i-- > 0)
3290 value = (value << 8) | ((*scan++) & 0xff);
3291 return value;
3292 }
3293
3294 static void
3295 copy_threadref (threadref *dest, threadref *src)
3296 {
3297 int i;
3298 unsigned char *csrc, *cdest;
3299
3300 csrc = (unsigned char *) src;
3301 cdest = (unsigned char *) dest;
3302 i = 8;
3303 while (i--)
3304 *cdest++ = *csrc++;
3305 }
3306
3307 static int
3308 threadmatch (threadref *dest, threadref *src)
3309 {
3310 /* Things are broken right now, so just assume we got a match. */
3311 #if 0
3312 unsigned char *srcp, *destp;
3313 int i, result;
3314 srcp = (char *) src;
3315 destp = (char *) dest;
3316
3317 result = 1;
3318 while (i-- > 0)
3319 result &= (*srcp++ == *destp++) ? 1 : 0;
3320 return result;
3321 #endif
3322 return 1;
3323 }
3324
3325 /*
3326 threadid:1, # always request threadid
3327 context_exists:2,
3328 display:4,
3329 unique_name:8,
3330 more_display:16
3331 */
3332
3333 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3334
3335 static char *
3336 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3337 {
3338 *pkt++ = 'q'; /* Info Query */
3339 *pkt++ = 'P'; /* process or thread info */
3340 pkt = pack_int (pkt, mode); /* mode */
3341 pkt = pack_threadid (pkt, id); /* threadid */
3342 *pkt = '\0'; /* terminate */
3343 return pkt;
3344 }
3345
3346 /* These values tag the fields in a thread info response packet. */
3347 /* Tagging the fields allows us to request specific fields and to
3348 add more fields as time goes by. */
3349
3350 #define TAG_THREADID 1 /* Echo the thread identifier. */
3351 #define TAG_EXISTS 2 /* Is this process defined enough to
3352 fetch registers and its stack? */
3353 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3354 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3355 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3356 the process. */
3357
3358 int
3359 remote_target::remote_unpack_thread_info_response (const char *pkt,
3360 threadref *expectedref,
3361 gdb_ext_thread_info *info)
3362 {
3363 struct remote_state *rs = get_remote_state ();
3364 int mask, length;
3365 int tag;
3366 threadref ref;
3367 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3368 int retval = 1;
3369
3370 /* info->threadid = 0; FIXME: implement zero_threadref. */
3371 info->active = 0;
3372 info->display[0] = '\0';
3373 info->shortname[0] = '\0';
3374 info->more_display[0] = '\0';
3375
3376 /* Assume the characters indicating the packet type have been
3377 stripped. */
3378 pkt = unpack_int (pkt, &mask); /* arg mask */
3379 pkt = unpack_threadid (pkt, &ref);
3380
3381 if (mask == 0)
3382 warning (_("Incomplete response to threadinfo request."));
3383 if (!threadmatch (&ref, expectedref))
3384 { /* This is an answer to a different request. */
3385 warning (_("ERROR RMT Thread info mismatch."));
3386 return 0;
3387 }
3388 copy_threadref (&info->threadid, &ref);
3389
3390 /* Loop on tagged fields , try to bail if something goes wrong. */
3391
3392 /* Packets are terminated with nulls. */
3393 while ((pkt < limit) && mask && *pkt)
3394 {
3395 pkt = unpack_int (pkt, &tag); /* tag */
3396 pkt = unpack_byte (pkt, &length); /* length */
3397 if (!(tag & mask)) /* Tags out of synch with mask. */
3398 {
3399 warning (_("ERROR RMT: threadinfo tag mismatch."));
3400 retval = 0;
3401 break;
3402 }
3403 if (tag == TAG_THREADID)
3404 {
3405 if (length != 16)
3406 {
3407 warning (_("ERROR RMT: length of threadid is not 16."));
3408 retval = 0;
3409 break;
3410 }
3411 pkt = unpack_threadid (pkt, &ref);
3412 mask = mask & ~TAG_THREADID;
3413 continue;
3414 }
3415 if (tag == TAG_EXISTS)
3416 {
3417 info->active = stub_unpack_int (pkt, length);
3418 pkt += length;
3419 mask = mask & ~(TAG_EXISTS);
3420 if (length > 8)
3421 {
3422 warning (_("ERROR RMT: 'exists' length too long."));
3423 retval = 0;
3424 break;
3425 }
3426 continue;
3427 }
3428 if (tag == TAG_THREADNAME)
3429 {
3430 pkt = unpack_string (pkt, &info->shortname[0], length);
3431 mask = mask & ~TAG_THREADNAME;
3432 continue;
3433 }
3434 if (tag == TAG_DISPLAY)
3435 {
3436 pkt = unpack_string (pkt, &info->display[0], length);
3437 mask = mask & ~TAG_DISPLAY;
3438 continue;
3439 }
3440 if (tag == TAG_MOREDISPLAY)
3441 {
3442 pkt = unpack_string (pkt, &info->more_display[0], length);
3443 mask = mask & ~TAG_MOREDISPLAY;
3444 continue;
3445 }
3446 warning (_("ERROR RMT: unknown thread info tag."));
3447 break; /* Not a tag we know about. */
3448 }
3449 return retval;
3450 }
3451
3452 int
3453 remote_target::remote_get_threadinfo (threadref *threadid,
3454 int fieldset,
3455 gdb_ext_thread_info *info)
3456 {
3457 struct remote_state *rs = get_remote_state ();
3458 int result;
3459
3460 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3461 putpkt (rs->buf);
3462 getpkt (&rs->buf, 0);
3463
3464 if (rs->buf[0] == '\0')
3465 return 0;
3466
3467 result = remote_unpack_thread_info_response (&rs->buf[2],
3468 threadid, info);
3469 return result;
3470 }
3471
3472 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3473
3474 static char *
3475 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3476 threadref *nextthread)
3477 {
3478 *pkt++ = 'q'; /* info query packet */
3479 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3480 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3481 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3482 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3483 *pkt = '\0';
3484 return pkt;
3485 }
3486
3487 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3488
3489 int
3490 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3491 threadref *original_echo,
3492 threadref *resultlist,
3493 int *doneflag)
3494 {
3495 struct remote_state *rs = get_remote_state ();
3496 int count, resultcount, done;
3497
3498 resultcount = 0;
3499 /* Assume the 'q' and 'M chars have been stripped. */
3500 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3501 /* done parse past here */
3502 pkt = unpack_byte (pkt, &count); /* count field */
3503 pkt = unpack_nibble (pkt, &done);
3504 /* The first threadid is the argument threadid. */
3505 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3506 while ((count-- > 0) && (pkt < limit))
3507 {
3508 pkt = unpack_threadid (pkt, resultlist++);
3509 if (resultcount++ >= result_limit)
3510 break;
3511 }
3512 if (doneflag)
3513 *doneflag = done;
3514 return resultcount;
3515 }
3516
3517 /* Fetch the next batch of threads from the remote. Returns -1 if the
3518 qL packet is not supported, 0 on error and 1 on success. */
3519
3520 int
3521 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3522 int result_limit, int *done, int *result_count,
3523 threadref *threadlist)
3524 {
3525 struct remote_state *rs = get_remote_state ();
3526 int result = 1;
3527
3528 /* Truncate result limit to be smaller than the packet size. */
3529 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3530 >= get_remote_packet_size ())
3531 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3532
3533 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3534 nextthread);
3535 putpkt (rs->buf);
3536 getpkt (&rs->buf, 0);
3537 if (rs->buf[0] == '\0')
3538 {
3539 /* Packet not supported. */
3540 return -1;
3541 }
3542
3543 *result_count =
3544 parse_threadlist_response (&rs->buf[2], result_limit,
3545 &rs->echo_nextthread, threadlist, done);
3546
3547 if (!threadmatch (&rs->echo_nextthread, nextthread))
3548 {
3549 /* FIXME: This is a good reason to drop the packet. */
3550 /* Possibly, there is a duplicate response. */
3551 /* Possibilities :
3552 retransmit immediatly - race conditions
3553 retransmit after timeout - yes
3554 exit
3555 wait for packet, then exit
3556 */
3557 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3558 return 0; /* I choose simply exiting. */
3559 }
3560 if (*result_count <= 0)
3561 {
3562 if (*done != 1)
3563 {
3564 warning (_("RMT ERROR : failed to get remote thread list."));
3565 result = 0;
3566 }
3567 return result; /* break; */
3568 }
3569 if (*result_count > result_limit)
3570 {
3571 *result_count = 0;
3572 warning (_("RMT ERROR: threadlist response longer than requested."));
3573 return 0;
3574 }
3575 return result;
3576 }
3577
3578 /* Fetch the list of remote threads, with the qL packet, and call
3579 STEPFUNCTION for each thread found. Stops iterating and returns 1
3580 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3581 STEPFUNCTION returns false. If the packet is not supported,
3582 returns -1. */
3583
3584 int
3585 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3586 void *context, int looplimit)
3587 {
3588 struct remote_state *rs = get_remote_state ();
3589 int done, i, result_count;
3590 int startflag = 1;
3591 int result = 1;
3592 int loopcount = 0;
3593
3594 done = 0;
3595 while (!done)
3596 {
3597 if (loopcount++ > looplimit)
3598 {
3599 result = 0;
3600 warning (_("Remote fetch threadlist -infinite loop-."));
3601 break;
3602 }
3603 result = remote_get_threadlist (startflag, &rs->nextthread,
3604 MAXTHREADLISTRESULTS,
3605 &done, &result_count,
3606 rs->resultthreadlist);
3607 if (result <= 0)
3608 break;
3609 /* Clear for later iterations. */
3610 startflag = 0;
3611 /* Setup to resume next batch of thread references, set nextthread. */
3612 if (result_count >= 1)
3613 copy_threadref (&rs->nextthread,
3614 &rs->resultthreadlist[result_count - 1]);
3615 i = 0;
3616 while (result_count--)
3617 {
3618 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3619 {
3620 result = 0;
3621 break;
3622 }
3623 }
3624 }
3625 return result;
3626 }
3627
3628 /* A thread found on the remote target. */
3629
3630 struct thread_item
3631 {
3632 explicit thread_item (ptid_t ptid_)
3633 : ptid (ptid_)
3634 {}
3635
3636 thread_item (thread_item &&other) = default;
3637 thread_item &operator= (thread_item &&other) = default;
3638
3639 DISABLE_COPY_AND_ASSIGN (thread_item);
3640
3641 /* The thread's PTID. */
3642 ptid_t ptid;
3643
3644 /* The thread's extra info. */
3645 std::string extra;
3646
3647 /* The thread's name. */
3648 std::string name;
3649
3650 /* The core the thread was running on. -1 if not known. */
3651 int core = -1;
3652
3653 /* The thread handle associated with the thread. */
3654 gdb::byte_vector thread_handle;
3655 };
3656
3657 /* Context passed around to the various methods listing remote
3658 threads. As new threads are found, they're added to the ITEMS
3659 vector. */
3660
3661 struct threads_listing_context
3662 {
3663 /* Return true if this object contains an entry for a thread with ptid
3664 PTID. */
3665
3666 bool contains_thread (ptid_t ptid) const
3667 {
3668 auto match_ptid = [&] (const thread_item &item)
3669 {
3670 return item.ptid == ptid;
3671 };
3672
3673 auto it = std::find_if (this->items.begin (),
3674 this->items.end (),
3675 match_ptid);
3676
3677 return it != this->items.end ();
3678 }
3679
3680 /* Remove the thread with ptid PTID. */
3681
3682 void remove_thread (ptid_t ptid)
3683 {
3684 auto match_ptid = [&] (const thread_item &item)
3685 {
3686 return item.ptid == ptid;
3687 };
3688
3689 auto it = std::remove_if (this->items.begin (),
3690 this->items.end (),
3691 match_ptid);
3692
3693 if (it != this->items.end ())
3694 this->items.erase (it);
3695 }
3696
3697 /* The threads found on the remote target. */
3698 std::vector<thread_item> items;
3699 };
3700
3701 static int
3702 remote_newthread_step (threadref *ref, void *data)
3703 {
3704 struct threads_listing_context *context
3705 = (struct threads_listing_context *) data;
3706 int pid = inferior_ptid.pid ();
3707 int lwp = threadref_to_int (ref);
3708 ptid_t ptid (pid, lwp);
3709
3710 context->items.emplace_back (ptid);
3711
3712 return 1; /* continue iterator */
3713 }
3714
3715 #define CRAZY_MAX_THREADS 1000
3716
3717 ptid_t
3718 remote_target::remote_current_thread (ptid_t oldpid)
3719 {
3720 struct remote_state *rs = get_remote_state ();
3721
3722 putpkt ("qC");
3723 getpkt (&rs->buf, 0);
3724 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3725 {
3726 const char *obuf;
3727 ptid_t result;
3728
3729 result = read_ptid (&rs->buf[2], &obuf);
3730 if (*obuf != '\0')
3731 remote_debug_printf ("warning: garbage in qC reply");
3732
3733 return result;
3734 }
3735 else
3736 return oldpid;
3737 }
3738
3739 /* List remote threads using the deprecated qL packet. */
3740
3741 int
3742 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3743 {
3744 if (remote_threadlist_iterator (remote_newthread_step, context,
3745 CRAZY_MAX_THREADS) >= 0)
3746 return 1;
3747
3748 return 0;
3749 }
3750
3751 #if defined(HAVE_LIBEXPAT)
3752
3753 static void
3754 start_thread (struct gdb_xml_parser *parser,
3755 const struct gdb_xml_element *element,
3756 void *user_data,
3757 std::vector<gdb_xml_value> &attributes)
3758 {
3759 struct threads_listing_context *data
3760 = (struct threads_listing_context *) user_data;
3761 struct gdb_xml_value *attr;
3762
3763 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3764 ptid_t ptid = read_ptid (id, NULL);
3765
3766 data->items.emplace_back (ptid);
3767 thread_item &item = data->items.back ();
3768
3769 attr = xml_find_attribute (attributes, "core");
3770 if (attr != NULL)
3771 item.core = *(ULONGEST *) attr->value.get ();
3772
3773 attr = xml_find_attribute (attributes, "name");
3774 if (attr != NULL)
3775 item.name = (const char *) attr->value.get ();
3776
3777 attr = xml_find_attribute (attributes, "handle");
3778 if (attr != NULL)
3779 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3780 }
3781
3782 static void
3783 end_thread (struct gdb_xml_parser *parser,
3784 const struct gdb_xml_element *element,
3785 void *user_data, const char *body_text)
3786 {
3787 struct threads_listing_context *data
3788 = (struct threads_listing_context *) user_data;
3789
3790 if (body_text != NULL && *body_text != '\0')
3791 data->items.back ().extra = body_text;
3792 }
3793
3794 const struct gdb_xml_attribute thread_attributes[] = {
3795 { "id", GDB_XML_AF_NONE, NULL, NULL },
3796 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3797 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3798 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3799 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3800 };
3801
3802 const struct gdb_xml_element thread_children[] = {
3803 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3804 };
3805
3806 const struct gdb_xml_element threads_children[] = {
3807 { "thread", thread_attributes, thread_children,
3808 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3809 start_thread, end_thread },
3810 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3811 };
3812
3813 const struct gdb_xml_element threads_elements[] = {
3814 { "threads", NULL, threads_children,
3815 GDB_XML_EF_NONE, NULL, NULL },
3816 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3817 };
3818
3819 #endif
3820
3821 /* List remote threads using qXfer:threads:read. */
3822
3823 int
3824 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3825 {
3826 #if defined(HAVE_LIBEXPAT)
3827 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3828 {
3829 gdb::optional<gdb::char_vector> xml
3830 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3831
3832 if (xml && (*xml)[0] != '\0')
3833 {
3834 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3835 threads_elements, xml->data (), context);
3836 }
3837
3838 return 1;
3839 }
3840 #endif
3841
3842 return 0;
3843 }
3844
3845 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3846
3847 int
3848 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3849 {
3850 struct remote_state *rs = get_remote_state ();
3851
3852 if (rs->use_threadinfo_query)
3853 {
3854 const char *bufp;
3855
3856 putpkt ("qfThreadInfo");
3857 getpkt (&rs->buf, 0);
3858 bufp = rs->buf.data ();
3859 if (bufp[0] != '\0') /* q packet recognized */
3860 {
3861 while (*bufp++ == 'm') /* reply contains one or more TID */
3862 {
3863 do
3864 {
3865 ptid_t ptid = read_ptid (bufp, &bufp);
3866 context->items.emplace_back (ptid);
3867 }
3868 while (*bufp++ == ','); /* comma-separated list */
3869 putpkt ("qsThreadInfo");
3870 getpkt (&rs->buf, 0);
3871 bufp = rs->buf.data ();
3872 }
3873 return 1;
3874 }
3875 else
3876 {
3877 /* Packet not recognized. */
3878 rs->use_threadinfo_query = 0;
3879 }
3880 }
3881
3882 return 0;
3883 }
3884
3885 /* Return true if INF only has one non-exited thread. */
3886
3887 static bool
3888 has_single_non_exited_thread (inferior *inf)
3889 {
3890 int count = 0;
3891 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3892 if (++count > 1)
3893 break;
3894 return count == 1;
3895 }
3896
3897 /* Implement the to_update_thread_list function for the remote
3898 targets. */
3899
3900 void
3901 remote_target::update_thread_list ()
3902 {
3903 struct threads_listing_context context;
3904 int got_list = 0;
3905
3906 /* We have a few different mechanisms to fetch the thread list. Try
3907 them all, starting with the most preferred one first, falling
3908 back to older methods. */
3909 if (remote_get_threads_with_qxfer (&context)
3910 || remote_get_threads_with_qthreadinfo (&context)
3911 || remote_get_threads_with_ql (&context))
3912 {
3913 got_list = 1;
3914
3915 if (context.items.empty ()
3916 && remote_thread_always_alive (inferior_ptid))
3917 {
3918 /* Some targets don't really support threads, but still
3919 reply an (empty) thread list in response to the thread
3920 listing packets, instead of replying "packet not
3921 supported". Exit early so we don't delete the main
3922 thread. */
3923 return;
3924 }
3925
3926 /* CONTEXT now holds the current thread list on the remote
3927 target end. Delete GDB-side threads no longer found on the
3928 target. */
3929 for (thread_info *tp : all_threads_safe ())
3930 {
3931 if (tp->inf->process_target () != this)
3932 continue;
3933
3934 if (!context.contains_thread (tp->ptid))
3935 {
3936 /* Do not remove the thread if it is the last thread in
3937 the inferior. This situation happens when we have a
3938 pending exit process status to process. Otherwise we
3939 may end up with a seemingly live inferior (i.e. pid
3940 != 0) that has no threads. */
3941 if (has_single_non_exited_thread (tp->inf))
3942 continue;
3943
3944 /* Not found. */
3945 delete_thread (tp);
3946 }
3947 }
3948
3949 /* Remove any unreported fork child threads from CONTEXT so
3950 that we don't interfere with follow fork, which is where
3951 creation of such threads is handled. */
3952 remove_new_fork_children (&context);
3953
3954 /* And now add threads we don't know about yet to our list. */
3955 for (thread_item &item : context.items)
3956 {
3957 if (item.ptid != null_ptid)
3958 {
3959 /* In non-stop mode, we assume new found threads are
3960 executing until proven otherwise with a stop reply.
3961 In all-stop, we can only get here if all threads are
3962 stopped. */
3963 bool executing = target_is_non_stop_p ();
3964
3965 remote_notice_new_inferior (item.ptid, executing);
3966
3967 thread_info *tp = find_thread_ptid (this, item.ptid);
3968 remote_thread_info *info = get_remote_thread_info (tp);
3969 info->core = item.core;
3970 info->extra = std::move (item.extra);
3971 info->name = std::move (item.name);
3972 info->thread_handle = std::move (item.thread_handle);
3973 }
3974 }
3975 }
3976
3977 if (!got_list)
3978 {
3979 /* If no thread listing method is supported, then query whether
3980 each known thread is alive, one by one, with the T packet.
3981 If the target doesn't support threads at all, then this is a
3982 no-op. See remote_thread_alive. */
3983 prune_threads ();
3984 }
3985 }
3986
3987 /*
3988 * Collect a descriptive string about the given thread.
3989 * The target may say anything it wants to about the thread
3990 * (typically info about its blocked / runnable state, name, etc.).
3991 * This string will appear in the info threads display.
3992 *
3993 * Optional: targets are not required to implement this function.
3994 */
3995
3996 const char *
3997 remote_target::extra_thread_info (thread_info *tp)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000 int set;
4001 threadref id;
4002 struct gdb_ext_thread_info threadinfo;
4003
4004 if (rs->remote_desc == 0) /* paranoia */
4005 internal_error (__FILE__, __LINE__,
4006 _("remote_threads_extra_info"));
4007
4008 if (tp->ptid == magic_null_ptid
4009 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4010 /* This is the main thread which was added by GDB. The remote
4011 server doesn't know about it. */
4012 return NULL;
4013
4014 std::string &extra = get_remote_thread_info (tp)->extra;
4015
4016 /* If already have cached info, use it. */
4017 if (!extra.empty ())
4018 return extra.c_str ();
4019
4020 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4021 {
4022 /* If we're using qXfer:threads:read, then the extra info is
4023 included in the XML. So if we didn't have anything cached,
4024 it's because there's really no extra info. */
4025 return NULL;
4026 }
4027
4028 if (rs->use_threadextra_query)
4029 {
4030 char *b = rs->buf.data ();
4031 char *endb = b + get_remote_packet_size ();
4032
4033 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4034 b += strlen (b);
4035 write_ptid (b, endb, tp->ptid);
4036
4037 putpkt (rs->buf);
4038 getpkt (&rs->buf, 0);
4039 if (rs->buf[0] != 0)
4040 {
4041 extra.resize (strlen (rs->buf.data ()) / 2);
4042 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4043 return extra.c_str ();
4044 }
4045 }
4046
4047 /* If the above query fails, fall back to the old method. */
4048 rs->use_threadextra_query = 0;
4049 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4050 | TAG_MOREDISPLAY | TAG_DISPLAY;
4051 int_to_threadref (&id, tp->ptid.lwp ());
4052 if (remote_get_threadinfo (&id, set, &threadinfo))
4053 if (threadinfo.active)
4054 {
4055 if (*threadinfo.shortname)
4056 string_appendf (extra, " Name: %s", threadinfo.shortname);
4057 if (*threadinfo.display)
4058 {
4059 if (!extra.empty ())
4060 extra += ',';
4061 string_appendf (extra, " State: %s", threadinfo.display);
4062 }
4063 if (*threadinfo.more_display)
4064 {
4065 if (!extra.empty ())
4066 extra += ',';
4067 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4068 }
4069 return extra.c_str ();
4070 }
4071 return NULL;
4072 }
4073 \f
4074
4075 bool
4076 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4077 struct static_tracepoint_marker *marker)
4078 {
4079 struct remote_state *rs = get_remote_state ();
4080 char *p = rs->buf.data ();
4081
4082 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4083 p += strlen (p);
4084 p += hexnumstr (p, addr);
4085 putpkt (rs->buf);
4086 getpkt (&rs->buf, 0);
4087 p = rs->buf.data ();
4088
4089 if (*p == 'E')
4090 error (_("Remote failure reply: %s"), p);
4091
4092 if (*p++ == 'm')
4093 {
4094 parse_static_tracepoint_marker_definition (p, NULL, marker);
4095 return true;
4096 }
4097
4098 return false;
4099 }
4100
4101 std::vector<static_tracepoint_marker>
4102 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4103 {
4104 struct remote_state *rs = get_remote_state ();
4105 std::vector<static_tracepoint_marker> markers;
4106 const char *p;
4107 static_tracepoint_marker marker;
4108
4109 /* Ask for a first packet of static tracepoint marker
4110 definition. */
4111 putpkt ("qTfSTM");
4112 getpkt (&rs->buf, 0);
4113 p = rs->buf.data ();
4114 if (*p == 'E')
4115 error (_("Remote failure reply: %s"), p);
4116
4117 while (*p++ == 'm')
4118 {
4119 do
4120 {
4121 parse_static_tracepoint_marker_definition (p, &p, &marker);
4122
4123 if (strid == NULL || marker.str_id == strid)
4124 markers.push_back (std::move (marker));
4125 }
4126 while (*p++ == ','); /* comma-separated list */
4127 /* Ask for another packet of static tracepoint definition. */
4128 putpkt ("qTsSTM");
4129 getpkt (&rs->buf, 0);
4130 p = rs->buf.data ();
4131 }
4132
4133 return markers;
4134 }
4135
4136 \f
4137 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4138
4139 ptid_t
4140 remote_target::get_ada_task_ptid (long lwp, ULONGEST thread)
4141 {
4142 return ptid_t (inferior_ptid.pid (), lwp);
4143 }
4144 \f
4145
4146 /* Restart the remote side; this is an extended protocol operation. */
4147
4148 void
4149 remote_target::extended_remote_restart ()
4150 {
4151 struct remote_state *rs = get_remote_state ();
4152
4153 /* Send the restart command; for reasons I don't understand the
4154 remote side really expects a number after the "R". */
4155 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4156 putpkt (rs->buf);
4157
4158 remote_fileio_reset ();
4159 }
4160 \f
4161 /* Clean up connection to a remote debugger. */
4162
4163 void
4164 remote_target::close ()
4165 {
4166 /* Make sure we leave stdin registered in the event loop. */
4167 terminal_ours ();
4168
4169 trace_reset_local_state ();
4170
4171 delete this;
4172 }
4173
4174 remote_target::~remote_target ()
4175 {
4176 struct remote_state *rs = get_remote_state ();
4177
4178 /* Check for NULL because we may get here with a partially
4179 constructed target/connection. */
4180 if (rs->remote_desc == nullptr)
4181 return;
4182
4183 serial_close (rs->remote_desc);
4184
4185 /* We are destroying the remote target, so we should discard
4186 everything of this target. */
4187 discard_pending_stop_replies_in_queue ();
4188
4189 if (rs->remote_async_inferior_event_token)
4190 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4191
4192 delete rs->notif_state;
4193 }
4194
4195 /* Query the remote side for the text, data and bss offsets. */
4196
4197 void
4198 remote_target::get_offsets ()
4199 {
4200 struct remote_state *rs = get_remote_state ();
4201 char *buf;
4202 char *ptr;
4203 int lose, num_segments = 0, do_sections, do_segments;
4204 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4205
4206 if (current_program_space->symfile_object_file == NULL)
4207 return;
4208
4209 putpkt ("qOffsets");
4210 getpkt (&rs->buf, 0);
4211 buf = rs->buf.data ();
4212
4213 if (buf[0] == '\000')
4214 return; /* Return silently. Stub doesn't support
4215 this command. */
4216 if (buf[0] == 'E')
4217 {
4218 warning (_("Remote failure reply: %s"), buf);
4219 return;
4220 }
4221
4222 /* Pick up each field in turn. This used to be done with scanf, but
4223 scanf will make trouble if CORE_ADDR size doesn't match
4224 conversion directives correctly. The following code will work
4225 with any size of CORE_ADDR. */
4226 text_addr = data_addr = bss_addr = 0;
4227 ptr = buf;
4228 lose = 0;
4229
4230 if (startswith (ptr, "Text="))
4231 {
4232 ptr += 5;
4233 /* Don't use strtol, could lose on big values. */
4234 while (*ptr && *ptr != ';')
4235 text_addr = (text_addr << 4) + fromhex (*ptr++);
4236
4237 if (startswith (ptr, ";Data="))
4238 {
4239 ptr += 6;
4240 while (*ptr && *ptr != ';')
4241 data_addr = (data_addr << 4) + fromhex (*ptr++);
4242 }
4243 else
4244 lose = 1;
4245
4246 if (!lose && startswith (ptr, ";Bss="))
4247 {
4248 ptr += 5;
4249 while (*ptr && *ptr != ';')
4250 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4251
4252 if (bss_addr != data_addr)
4253 warning (_("Target reported unsupported offsets: %s"), buf);
4254 }
4255 else
4256 lose = 1;
4257 }
4258 else if (startswith (ptr, "TextSeg="))
4259 {
4260 ptr += 8;
4261 /* Don't use strtol, could lose on big values. */
4262 while (*ptr && *ptr != ';')
4263 text_addr = (text_addr << 4) + fromhex (*ptr++);
4264 num_segments = 1;
4265
4266 if (startswith (ptr, ";DataSeg="))
4267 {
4268 ptr += 9;
4269 while (*ptr && *ptr != ';')
4270 data_addr = (data_addr << 4) + fromhex (*ptr++);
4271 num_segments++;
4272 }
4273 }
4274 else
4275 lose = 1;
4276
4277 if (lose)
4278 error (_("Malformed response to offset query, %s"), buf);
4279 else if (*ptr != '\0')
4280 warning (_("Target reported unsupported offsets: %s"), buf);
4281
4282 objfile *objf = current_program_space->symfile_object_file;
4283 section_offsets offs = objf->section_offsets;
4284
4285 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4286 do_segments = (data != NULL);
4287 do_sections = num_segments == 0;
4288
4289 if (num_segments > 0)
4290 {
4291 segments[0] = text_addr;
4292 segments[1] = data_addr;
4293 }
4294 /* If we have two segments, we can still try to relocate everything
4295 by assuming that the .text and .data offsets apply to the whole
4296 text and data segments. Convert the offsets given in the packet
4297 to base addresses for symfile_map_offsets_to_segments. */
4298 else if (data != nullptr && data->segments.size () == 2)
4299 {
4300 segments[0] = data->segments[0].base + text_addr;
4301 segments[1] = data->segments[1].base + data_addr;
4302 num_segments = 2;
4303 }
4304 /* If the object file has only one segment, assume that it is text
4305 rather than data; main programs with no writable data are rare,
4306 but programs with no code are useless. Of course the code might
4307 have ended up in the data segment... to detect that we would need
4308 the permissions here. */
4309 else if (data && data->segments.size () == 1)
4310 {
4311 segments[0] = data->segments[0].base + text_addr;
4312 num_segments = 1;
4313 }
4314 /* There's no way to relocate by segment. */
4315 else
4316 do_segments = 0;
4317
4318 if (do_segments)
4319 {
4320 int ret = symfile_map_offsets_to_segments (objf->obfd,
4321 data.get (), offs,
4322 num_segments, segments);
4323
4324 if (ret == 0 && !do_sections)
4325 error (_("Can not handle qOffsets TextSeg "
4326 "response with this symbol file"));
4327
4328 if (ret > 0)
4329 do_sections = 0;
4330 }
4331
4332 if (do_sections)
4333 {
4334 offs[SECT_OFF_TEXT (objf)] = text_addr;
4335
4336 /* This is a temporary kludge to force data and bss to use the
4337 same offsets because that's what nlmconv does now. The real
4338 solution requires changes to the stub and remote.c that I
4339 don't have time to do right now. */
4340
4341 offs[SECT_OFF_DATA (objf)] = data_addr;
4342 offs[SECT_OFF_BSS (objf)] = data_addr;
4343 }
4344
4345 objfile_relocate (objf, offs);
4346 }
4347
4348 /* Send interrupt_sequence to remote target. */
4349
4350 void
4351 remote_target::send_interrupt_sequence ()
4352 {
4353 struct remote_state *rs = get_remote_state ();
4354
4355 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4356 remote_serial_write ("\x03", 1);
4357 else if (interrupt_sequence_mode == interrupt_sequence_break)
4358 serial_send_break (rs->remote_desc);
4359 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4360 {
4361 serial_send_break (rs->remote_desc);
4362 remote_serial_write ("g", 1);
4363 }
4364 else
4365 internal_error (__FILE__, __LINE__,
4366 _("Invalid value for interrupt_sequence_mode: %s."),
4367 interrupt_sequence_mode);
4368 }
4369
4370
4371 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4372 and extract the PTID. Returns NULL_PTID if not found. */
4373
4374 static ptid_t
4375 stop_reply_extract_thread (const char *stop_reply)
4376 {
4377 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4378 {
4379 const char *p;
4380
4381 /* Txx r:val ; r:val (...) */
4382 p = &stop_reply[3];
4383
4384 /* Look for "register" named "thread". */
4385 while (*p != '\0')
4386 {
4387 const char *p1;
4388
4389 p1 = strchr (p, ':');
4390 if (p1 == NULL)
4391 return null_ptid;
4392
4393 if (strncmp (p, "thread", p1 - p) == 0)
4394 return read_ptid (++p1, &p);
4395
4396 p1 = strchr (p, ';');
4397 if (p1 == NULL)
4398 return null_ptid;
4399 p1++;
4400
4401 p = p1;
4402 }
4403 }
4404
4405 return null_ptid;
4406 }
4407
4408 /* Determine the remote side's current thread. If we have a stop
4409 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4410 "thread" register we can extract the current thread from. If not,
4411 ask the remote which is the current thread with qC. The former
4412 method avoids a roundtrip. */
4413
4414 ptid_t
4415 remote_target::get_current_thread (const char *wait_status)
4416 {
4417 ptid_t ptid = null_ptid;
4418
4419 /* Note we don't use remote_parse_stop_reply as that makes use of
4420 the target architecture, which we haven't yet fully determined at
4421 this point. */
4422 if (wait_status != NULL)
4423 ptid = stop_reply_extract_thread (wait_status);
4424 if (ptid == null_ptid)
4425 ptid = remote_current_thread (inferior_ptid);
4426
4427 return ptid;
4428 }
4429
4430 /* Query the remote target for which is the current thread/process,
4431 add it to our tables, and update INFERIOR_PTID. The caller is
4432 responsible for setting the state such that the remote end is ready
4433 to return the current thread.
4434
4435 This function is called after handling the '?' or 'vRun' packets,
4436 whose response is a stop reply from which we can also try
4437 extracting the thread. If the target doesn't support the explicit
4438 qC query, we infer the current thread from that stop reply, passed
4439 in in WAIT_STATUS, which may be NULL.
4440
4441 The function returns pointer to the main thread of the inferior. */
4442
4443 thread_info *
4444 remote_target::add_current_inferior_and_thread (const char *wait_status)
4445 {
4446 struct remote_state *rs = get_remote_state ();
4447 bool fake_pid_p = false;
4448
4449 switch_to_no_thread ();
4450
4451 /* Now, if we have thread information, update the current thread's
4452 ptid. */
4453 ptid_t curr_ptid = get_current_thread (wait_status);
4454
4455 if (curr_ptid != null_ptid)
4456 {
4457 if (!remote_multi_process_p (rs))
4458 fake_pid_p = true;
4459 }
4460 else
4461 {
4462 /* Without this, some commands which require an active target
4463 (such as kill) won't work. This variable serves (at least)
4464 double duty as both the pid of the target process (if it has
4465 such), and as a flag indicating that a target is active. */
4466 curr_ptid = magic_null_ptid;
4467 fake_pid_p = true;
4468 }
4469
4470 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4471
4472 /* Add the main thread and switch to it. Don't try reading
4473 registers yet, since we haven't fetched the target description
4474 yet. */
4475 thread_info *tp = add_thread_silent (this, curr_ptid);
4476 switch_to_thread_no_regs (tp);
4477
4478 return tp;
4479 }
4480
4481 /* Print info about a thread that was found already stopped on
4482 connection. */
4483
4484 void
4485 remote_target::print_one_stopped_thread (thread_info *thread)
4486 {
4487 target_waitstatus ws;
4488
4489 /* If there is a pending waitstatus, use it. If there isn't it's because
4490 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4491 and process_initial_stop_replies decided it wasn't interesting to save
4492 and report to the core. */
4493 if (thread->has_pending_waitstatus ())
4494 {
4495 ws = thread->pending_waitstatus ();
4496 thread->clear_pending_waitstatus ();
4497 }
4498 else
4499 {
4500 ws.set_stopped (GDB_SIGNAL_0);
4501 }
4502
4503 switch_to_thread (thread);
4504 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4505 set_current_sal_from_frame (get_current_frame ());
4506
4507 /* For "info program". */
4508 set_last_target_status (this, thread->ptid, ws);
4509
4510 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4511 {
4512 enum gdb_signal sig = ws.sig ();
4513
4514 if (signal_print_state (sig))
4515 gdb::observers::signal_received.notify (sig);
4516 }
4517 gdb::observers::normal_stop.notify (NULL, 1);
4518 }
4519
4520 /* Process all initial stop replies the remote side sent in response
4521 to the ? packet. These indicate threads that were already stopped
4522 on initial connection. We mark these threads as stopped and print
4523 their current frame before giving the user the prompt. */
4524
4525 void
4526 remote_target::process_initial_stop_replies (int from_tty)
4527 {
4528 int pending_stop_replies = stop_reply_queue_length ();
4529 struct thread_info *selected = NULL;
4530 struct thread_info *lowest_stopped = NULL;
4531 struct thread_info *first = NULL;
4532
4533 /* This is only used when the target is non-stop. */
4534 gdb_assert (target_is_non_stop_p ());
4535
4536 /* Consume the initial pending events. */
4537 while (pending_stop_replies-- > 0)
4538 {
4539 ptid_t waiton_ptid = minus_one_ptid;
4540 ptid_t event_ptid;
4541 struct target_waitstatus ws;
4542 int ignore_event = 0;
4543
4544 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4545 if (remote_debug)
4546 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4547
4548 switch (ws.kind ())
4549 {
4550 case TARGET_WAITKIND_IGNORE:
4551 case TARGET_WAITKIND_NO_RESUMED:
4552 case TARGET_WAITKIND_SIGNALLED:
4553 case TARGET_WAITKIND_EXITED:
4554 /* We shouldn't see these, but if we do, just ignore. */
4555 remote_debug_printf ("event ignored");
4556 ignore_event = 1;
4557 break;
4558
4559 default:
4560 break;
4561 }
4562
4563 if (ignore_event)
4564 continue;
4565
4566 thread_info *evthread = find_thread_ptid (this, event_ptid);
4567
4568 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4569 {
4570 enum gdb_signal sig = ws.sig ();
4571
4572 /* Stubs traditionally report SIGTRAP as initial signal,
4573 instead of signal 0. Suppress it. */
4574 if (sig == GDB_SIGNAL_TRAP)
4575 sig = GDB_SIGNAL_0;
4576 evthread->set_stop_signal (sig);
4577 ws.set_stopped (sig);
4578 }
4579
4580 if (ws.kind () != TARGET_WAITKIND_STOPPED
4581 || ws.sig () != GDB_SIGNAL_0)
4582 evthread->set_pending_waitstatus (ws);
4583
4584 set_executing (this, event_ptid, false);
4585 set_running (this, event_ptid, false);
4586 get_remote_thread_info (evthread)->set_not_resumed ();
4587 }
4588
4589 /* "Notice" the new inferiors before anything related to
4590 registers/memory. */
4591 for (inferior *inf : all_non_exited_inferiors (this))
4592 {
4593 inf->needs_setup = 1;
4594
4595 if (non_stop)
4596 {
4597 thread_info *thread = any_live_thread_of_inferior (inf);
4598 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4599 from_tty);
4600 }
4601 }
4602
4603 /* If all-stop on top of non-stop, pause all threads. Note this
4604 records the threads' stop pc, so must be done after "noticing"
4605 the inferiors. */
4606 if (!non_stop)
4607 {
4608 {
4609 /* At this point, the remote target is not async. It needs to be for
4610 the poll in stop_all_threads to consider events from it, so enable
4611 it temporarily. */
4612 gdb_assert (!this->is_async_p ());
4613 SCOPE_EXIT { target_async (0); };
4614 target_async (1);
4615 stop_all_threads ();
4616 }
4617
4618 /* If all threads of an inferior were already stopped, we
4619 haven't setup the inferior yet. */
4620 for (inferior *inf : all_non_exited_inferiors (this))
4621 {
4622 if (inf->needs_setup)
4623 {
4624 thread_info *thread = any_live_thread_of_inferior (inf);
4625 switch_to_thread_no_regs (thread);
4626 setup_inferior (0);
4627 }
4628 }
4629 }
4630
4631 /* Now go over all threads that are stopped, and print their current
4632 frame. If all-stop, then if there's a signalled thread, pick
4633 that as current. */
4634 for (thread_info *thread : all_non_exited_threads (this))
4635 {
4636 if (first == NULL)
4637 first = thread;
4638
4639 if (!non_stop)
4640 thread->set_running (false);
4641 else if (thread->state != THREAD_STOPPED)
4642 continue;
4643
4644 if (selected == nullptr && thread->has_pending_waitstatus ())
4645 selected = thread;
4646
4647 if (lowest_stopped == NULL
4648 || thread->inf->num < lowest_stopped->inf->num
4649 || thread->per_inf_num < lowest_stopped->per_inf_num)
4650 lowest_stopped = thread;
4651
4652 if (non_stop)
4653 print_one_stopped_thread (thread);
4654 }
4655
4656 /* In all-stop, we only print the status of one thread, and leave
4657 others with their status pending. */
4658 if (!non_stop)
4659 {
4660 thread_info *thread = selected;
4661 if (thread == NULL)
4662 thread = lowest_stopped;
4663 if (thread == NULL)
4664 thread = first;
4665
4666 print_one_stopped_thread (thread);
4667 }
4668 }
4669
4670 /* Start the remote connection and sync state. */
4671
4672 void
4673 remote_target::start_remote (int from_tty, int extended_p)
4674 {
4675 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4676
4677 struct remote_state *rs = get_remote_state ();
4678 struct packet_config *noack_config;
4679
4680 /* Signal other parts that we're going through the initial setup,
4681 and so things may not be stable yet. E.g., we don't try to
4682 install tracepoints until we've relocated symbols. Also, a
4683 Ctrl-C before we're connected and synced up can't interrupt the
4684 target. Instead, it offers to drop the (potentially wedged)
4685 connection. */
4686 rs->starting_up = true;
4687
4688 QUIT;
4689
4690 if (interrupt_on_connect)
4691 send_interrupt_sequence ();
4692
4693 /* Ack any packet which the remote side has already sent. */
4694 remote_serial_write ("+", 1);
4695
4696 /* The first packet we send to the target is the optional "supported
4697 packets" request. If the target can answer this, it will tell us
4698 which later probes to skip. */
4699 remote_query_supported ();
4700
4701 /* If the stub wants to get a QAllow, compose one and send it. */
4702 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4703 set_permissions ();
4704
4705 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4706 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4707 as a reply to known packet. For packet "vFile:setfs:" it is an
4708 invalid reply and GDB would return error in
4709 remote_hostio_set_filesystem, making remote files access impossible.
4710 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4711 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4712 {
4713 const char v_mustreplyempty[] = "vMustReplyEmpty";
4714
4715 putpkt (v_mustreplyempty);
4716 getpkt (&rs->buf, 0);
4717 if (strcmp (rs->buf.data (), "OK") == 0)
4718 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4719 else if (strcmp (rs->buf.data (), "") != 0)
4720 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4721 rs->buf.data ());
4722 }
4723
4724 /* Next, we possibly activate noack mode.
4725
4726 If the QStartNoAckMode packet configuration is set to AUTO,
4727 enable noack mode if the stub reported a wish for it with
4728 qSupported.
4729
4730 If set to TRUE, then enable noack mode even if the stub didn't
4731 report it in qSupported. If the stub doesn't reply OK, the
4732 session ends with an error.
4733
4734 If FALSE, then don't activate noack mode, regardless of what the
4735 stub claimed should be the default with qSupported. */
4736
4737 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4738 if (packet_config_support (noack_config) != PACKET_DISABLE)
4739 {
4740 putpkt ("QStartNoAckMode");
4741 getpkt (&rs->buf, 0);
4742 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4743 rs->noack_mode = 1;
4744 }
4745
4746 if (extended_p)
4747 {
4748 /* Tell the remote that we are using the extended protocol. */
4749 putpkt ("!");
4750 getpkt (&rs->buf, 0);
4751 }
4752
4753 /* Let the target know which signals it is allowed to pass down to
4754 the program. */
4755 update_signals_program_target ();
4756
4757 /* Next, if the target can specify a description, read it. We do
4758 this before anything involving memory or registers. */
4759 target_find_description ();
4760
4761 /* Next, now that we know something about the target, update the
4762 address spaces in the program spaces. */
4763 update_address_spaces ();
4764
4765 /* On OSs where the list of libraries is global to all
4766 processes, we fetch them early. */
4767 if (gdbarch_has_global_solist (target_gdbarch ()))
4768 solib_add (NULL, from_tty, auto_solib_add);
4769
4770 if (target_is_non_stop_p ())
4771 {
4772 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4773 error (_("Non-stop mode requested, but remote "
4774 "does not support non-stop"));
4775
4776 putpkt ("QNonStop:1");
4777 getpkt (&rs->buf, 0);
4778
4779 if (strcmp (rs->buf.data (), "OK") != 0)
4780 error (_("Remote refused setting non-stop mode with: %s"),
4781 rs->buf.data ());
4782
4783 /* Find about threads and processes the stub is already
4784 controlling. We default to adding them in the running state.
4785 The '?' query below will then tell us about which threads are
4786 stopped. */
4787 this->update_thread_list ();
4788 }
4789 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4790 {
4791 /* Don't assume that the stub can operate in all-stop mode.
4792 Request it explicitly. */
4793 putpkt ("QNonStop:0");
4794 getpkt (&rs->buf, 0);
4795
4796 if (strcmp (rs->buf.data (), "OK") != 0)
4797 error (_("Remote refused setting all-stop mode with: %s"),
4798 rs->buf.data ());
4799 }
4800
4801 /* Upload TSVs regardless of whether the target is running or not. The
4802 remote stub, such as GDBserver, may have some predefined or builtin
4803 TSVs, even if the target is not running. */
4804 if (get_trace_status (current_trace_status ()) != -1)
4805 {
4806 struct uploaded_tsv *uploaded_tsvs = NULL;
4807
4808 upload_trace_state_variables (&uploaded_tsvs);
4809 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4810 }
4811
4812 /* Check whether the target is running now. */
4813 putpkt ("?");
4814 getpkt (&rs->buf, 0);
4815
4816 if (!target_is_non_stop_p ())
4817 {
4818 char *wait_status = NULL;
4819
4820 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4821 {
4822 if (!extended_p)
4823 error (_("The target is not running (try extended-remote?)"));
4824
4825 /* We're connected, but not running. Drop out before we
4826 call start_remote. */
4827 rs->starting_up = false;
4828 return;
4829 }
4830 else
4831 {
4832 /* Save the reply for later. */
4833 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4834 strcpy (wait_status, rs->buf.data ());
4835 }
4836
4837 /* Fetch thread list. */
4838 target_update_thread_list ();
4839
4840 /* Let the stub know that we want it to return the thread. */
4841 set_continue_thread (minus_one_ptid);
4842
4843 if (thread_count (this) == 0)
4844 {
4845 /* Target has no concept of threads at all. GDB treats
4846 non-threaded target as single-threaded; add a main
4847 thread. */
4848 thread_info *tp = add_current_inferior_and_thread (wait_status);
4849 get_remote_thread_info (tp)->set_resumed ();
4850 }
4851 else
4852 {
4853 /* We have thread information; select the thread the target
4854 says should be current. If we're reconnecting to a
4855 multi-threaded program, this will ideally be the thread
4856 that last reported an event before GDB disconnected. */
4857 ptid_t curr_thread = get_current_thread (wait_status);
4858 if (curr_thread == null_ptid)
4859 {
4860 /* Odd... The target was able to list threads, but not
4861 tell us which thread was current (no "thread"
4862 register in T stop reply?). Just pick the first
4863 thread in the thread list then. */
4864
4865 remote_debug_printf ("warning: couldn't determine remote "
4866 "current thread; picking first in list.");
4867
4868 for (thread_info *tp : all_non_exited_threads (this,
4869 minus_one_ptid))
4870 {
4871 switch_to_thread (tp);
4872 break;
4873 }
4874 }
4875 else
4876 switch_to_thread (find_thread_ptid (this, curr_thread));
4877 }
4878
4879 /* init_wait_for_inferior should be called before get_offsets in order
4880 to manage `inserted' flag in bp loc in a correct state.
4881 breakpoint_init_inferior, called from init_wait_for_inferior, set
4882 `inserted' flag to 0, while before breakpoint_re_set, called from
4883 start_remote, set `inserted' flag to 1. In the initialization of
4884 inferior, breakpoint_init_inferior should be called first, and then
4885 breakpoint_re_set can be called. If this order is broken, state of
4886 `inserted' flag is wrong, and cause some problems on breakpoint
4887 manipulation. */
4888 init_wait_for_inferior ();
4889
4890 get_offsets (); /* Get text, data & bss offsets. */
4891
4892 /* If we could not find a description using qXfer, and we know
4893 how to do it some other way, try again. This is not
4894 supported for non-stop; it could be, but it is tricky if
4895 there are no stopped threads when we connect. */
4896 if (remote_read_description_p (this)
4897 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4898 {
4899 target_clear_description ();
4900 target_find_description ();
4901 }
4902
4903 /* Use the previously fetched status. */
4904 gdb_assert (wait_status != NULL);
4905 strcpy (rs->buf.data (), wait_status);
4906 rs->cached_wait_status = 1;
4907
4908 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4909 }
4910 else
4911 {
4912 /* Clear WFI global state. Do this before finding about new
4913 threads and inferiors, and setting the current inferior.
4914 Otherwise we would clear the proceed status of the current
4915 inferior when we want its stop_soon state to be preserved
4916 (see notice_new_inferior). */
4917 init_wait_for_inferior ();
4918
4919 /* In non-stop, we will either get an "OK", meaning that there
4920 are no stopped threads at this time; or, a regular stop
4921 reply. In the latter case, there may be more than one thread
4922 stopped --- we pull them all out using the vStopped
4923 mechanism. */
4924 if (strcmp (rs->buf.data (), "OK") != 0)
4925 {
4926 struct notif_client *notif = &notif_client_stop;
4927
4928 /* remote_notif_get_pending_replies acks this one, and gets
4929 the rest out. */
4930 rs->notif_state->pending_event[notif_client_stop.id]
4931 = remote_notif_parse (this, notif, rs->buf.data ());
4932 remote_notif_get_pending_events (notif);
4933 }
4934
4935 if (thread_count (this) == 0)
4936 {
4937 if (!extended_p)
4938 error (_("The target is not running (try extended-remote?)"));
4939
4940 /* We're connected, but not running. Drop out before we
4941 call start_remote. */
4942 rs->starting_up = false;
4943 return;
4944 }
4945
4946 /* Report all signals during attach/startup. */
4947 pass_signals ({});
4948
4949 /* If there are already stopped threads, mark them stopped and
4950 report their stops before giving the prompt to the user. */
4951 process_initial_stop_replies (from_tty);
4952
4953 if (target_can_async_p ())
4954 target_async (1);
4955 }
4956
4957 /* If we connected to a live target, do some additional setup. */
4958 if (target_has_execution ())
4959 {
4960 /* No use without a symbol-file. */
4961 if (current_program_space->symfile_object_file)
4962 remote_check_symbols ();
4963 }
4964
4965 /* Possibly the target has been engaged in a trace run started
4966 previously; find out where things are at. */
4967 if (get_trace_status (current_trace_status ()) != -1)
4968 {
4969 struct uploaded_tp *uploaded_tps = NULL;
4970
4971 if (current_trace_status ()->running)
4972 printf_filtered (_("Trace is already running on the target.\n"));
4973
4974 upload_tracepoints (&uploaded_tps);
4975
4976 merge_uploaded_tracepoints (&uploaded_tps);
4977 }
4978
4979 /* Possibly the target has been engaged in a btrace record started
4980 previously; find out where things are at. */
4981 remote_btrace_maybe_reopen ();
4982
4983 /* The thread and inferior lists are now synchronized with the
4984 target, our symbols have been relocated, and we're merged the
4985 target's tracepoints with ours. We're done with basic start
4986 up. */
4987 rs->starting_up = false;
4988
4989 /* Maybe breakpoints are global and need to be inserted now. */
4990 if (breakpoints_should_be_inserted_now ())
4991 insert_breakpoints ();
4992 }
4993
4994 const char *
4995 remote_target::connection_string ()
4996 {
4997 remote_state *rs = get_remote_state ();
4998
4999 if (rs->remote_desc->name != NULL)
5000 return rs->remote_desc->name;
5001 else
5002 return NULL;
5003 }
5004
5005 /* Open a connection to a remote debugger.
5006 NAME is the filename used for communication. */
5007
5008 void
5009 remote_target::open (const char *name, int from_tty)
5010 {
5011 open_1 (name, from_tty, 0);
5012 }
5013
5014 /* Open a connection to a remote debugger using the extended
5015 remote gdb protocol. NAME is the filename used for communication. */
5016
5017 void
5018 extended_remote_target::open (const char *name, int from_tty)
5019 {
5020 open_1 (name, from_tty, 1 /*extended_p */);
5021 }
5022
5023 /* Reset all packets back to "unknown support". Called when opening a
5024 new connection to a remote target. */
5025
5026 static void
5027 reset_all_packet_configs_support (void)
5028 {
5029 int i;
5030
5031 for (i = 0; i < PACKET_MAX; i++)
5032 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5033 }
5034
5035 /* Initialize all packet configs. */
5036
5037 static void
5038 init_all_packet_configs (void)
5039 {
5040 int i;
5041
5042 for (i = 0; i < PACKET_MAX; i++)
5043 {
5044 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5045 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5046 }
5047 }
5048
5049 /* Symbol look-up. */
5050
5051 void
5052 remote_target::remote_check_symbols ()
5053 {
5054 char *tmp;
5055 int end;
5056
5057 /* The remote side has no concept of inferiors that aren't running
5058 yet, it only knows about running processes. If we're connected
5059 but our current inferior is not running, we should not invite the
5060 remote target to request symbol lookups related to its
5061 (unrelated) current process. */
5062 if (!target_has_execution ())
5063 return;
5064
5065 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5066 return;
5067
5068 /* Make sure the remote is pointing at the right process. Note
5069 there's no way to select "no process". */
5070 set_general_process ();
5071
5072 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5073 because we need both at the same time. */
5074 gdb::char_vector msg (get_remote_packet_size ());
5075 gdb::char_vector reply (get_remote_packet_size ());
5076
5077 /* Invite target to request symbol lookups. */
5078
5079 putpkt ("qSymbol::");
5080 getpkt (&reply, 0);
5081 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5082
5083 while (startswith (reply.data (), "qSymbol:"))
5084 {
5085 struct bound_minimal_symbol sym;
5086
5087 tmp = &reply[8];
5088 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5089 strlen (tmp) / 2);
5090 msg[end] = '\0';
5091 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5092 if (sym.minsym == NULL)
5093 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5094 &reply[8]);
5095 else
5096 {
5097 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5098 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5099
5100 /* If this is a function address, return the start of code
5101 instead of any data function descriptor. */
5102 sym_addr = gdbarch_convert_from_func_ptr_addr
5103 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5104
5105 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5106 phex_nz (sym_addr, addr_size), &reply[8]);
5107 }
5108
5109 putpkt (msg.data ());
5110 getpkt (&reply, 0);
5111 }
5112 }
5113
5114 static struct serial *
5115 remote_serial_open (const char *name)
5116 {
5117 static int udp_warning = 0;
5118
5119 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5120 of in ser-tcp.c, because it is the remote protocol assuming that the
5121 serial connection is reliable and not the serial connection promising
5122 to be. */
5123 if (!udp_warning && startswith (name, "udp:"))
5124 {
5125 warning (_("The remote protocol may be unreliable over UDP.\n"
5126 "Some events may be lost, rendering further debugging "
5127 "impossible."));
5128 udp_warning = 1;
5129 }
5130
5131 return serial_open (name);
5132 }
5133
5134 /* Inform the target of our permission settings. The permission flags
5135 work without this, but if the target knows the settings, it can do
5136 a couple things. First, it can add its own check, to catch cases
5137 that somehow manage to get by the permissions checks in target
5138 methods. Second, if the target is wired to disallow particular
5139 settings (for instance, a system in the field that is not set up to
5140 be able to stop at a breakpoint), it can object to any unavailable
5141 permissions. */
5142
5143 void
5144 remote_target::set_permissions ()
5145 {
5146 struct remote_state *rs = get_remote_state ();
5147
5148 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5149 "WriteReg:%x;WriteMem:%x;"
5150 "InsertBreak:%x;InsertTrace:%x;"
5151 "InsertFastTrace:%x;Stop:%x",
5152 may_write_registers, may_write_memory,
5153 may_insert_breakpoints, may_insert_tracepoints,
5154 may_insert_fast_tracepoints, may_stop);
5155 putpkt (rs->buf);
5156 getpkt (&rs->buf, 0);
5157
5158 /* If the target didn't like the packet, warn the user. Do not try
5159 to undo the user's settings, that would just be maddening. */
5160 if (strcmp (rs->buf.data (), "OK") != 0)
5161 warning (_("Remote refused setting permissions with: %s"),
5162 rs->buf.data ());
5163 }
5164
5165 /* This type describes each known response to the qSupported
5166 packet. */
5167 struct protocol_feature
5168 {
5169 /* The name of this protocol feature. */
5170 const char *name;
5171
5172 /* The default for this protocol feature. */
5173 enum packet_support default_support;
5174
5175 /* The function to call when this feature is reported, or after
5176 qSupported processing if the feature is not supported.
5177 The first argument points to this structure. The second
5178 argument indicates whether the packet requested support be
5179 enabled, disabled, or probed (or the default, if this function
5180 is being called at the end of processing and this feature was
5181 not reported). The third argument may be NULL; if not NULL, it
5182 is a NUL-terminated string taken from the packet following
5183 this feature's name and an equals sign. */
5184 void (*func) (remote_target *remote, const struct protocol_feature *,
5185 enum packet_support, const char *);
5186
5187 /* The corresponding packet for this feature. Only used if
5188 FUNC is remote_supported_packet. */
5189 int packet;
5190 };
5191
5192 static void
5193 remote_supported_packet (remote_target *remote,
5194 const struct protocol_feature *feature,
5195 enum packet_support support,
5196 const char *argument)
5197 {
5198 if (argument)
5199 {
5200 warning (_("Remote qSupported response supplied an unexpected value for"
5201 " \"%s\"."), feature->name);
5202 return;
5203 }
5204
5205 remote_protocol_packets[feature->packet].support = support;
5206 }
5207
5208 void
5209 remote_target::remote_packet_size (const protocol_feature *feature,
5210 enum packet_support support, const char *value)
5211 {
5212 struct remote_state *rs = get_remote_state ();
5213
5214 int packet_size;
5215 char *value_end;
5216
5217 if (support != PACKET_ENABLE)
5218 return;
5219
5220 if (value == NULL || *value == '\0')
5221 {
5222 warning (_("Remote target reported \"%s\" without a size."),
5223 feature->name);
5224 return;
5225 }
5226
5227 errno = 0;
5228 packet_size = strtol (value, &value_end, 16);
5229 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5230 {
5231 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5232 feature->name, value);
5233 return;
5234 }
5235
5236 /* Record the new maximum packet size. */
5237 rs->explicit_packet_size = packet_size;
5238 }
5239
5240 static void
5241 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5242 enum packet_support support, const char *value)
5243 {
5244 remote->remote_packet_size (feature, support, value);
5245 }
5246
5247 static const struct protocol_feature remote_protocol_features[] = {
5248 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5249 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_auxv },
5251 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_exec_file },
5253 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_qXfer_features },
5255 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_qXfer_libraries },
5257 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_qXfer_libraries_svr4 },
5259 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5260 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5261 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_qXfer_memory_map },
5263 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_qXfer_osdata },
5265 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_qXfer_threads },
5267 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_qXfer_traceframe_info },
5269 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QPassSignals },
5271 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_QCatchSyscalls },
5273 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_QProgramSignals },
5275 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_QSetWorkingDir },
5277 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_QStartupWithShell },
5279 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5280 PACKET_QEnvironmentHexEncoded },
5281 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5282 PACKET_QEnvironmentReset },
5283 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5284 PACKET_QEnvironmentUnset },
5285 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5286 PACKET_QStartNoAckMode },
5287 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5288 PACKET_multiprocess_feature },
5289 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5290 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_qXfer_siginfo_read },
5292 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_qXfer_siginfo_write },
5294 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_ConditionalTracepoints },
5296 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_ConditionalBreakpoints },
5298 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_BreakpointCommands },
5300 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_FastTracepoints },
5302 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_StaticTracepoints },
5304 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_InstallInTrace},
5306 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_DisconnectedTracing_feature },
5308 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5309 PACKET_bc },
5310 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_bs },
5312 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_TracepointSource },
5314 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_QAllow },
5316 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_EnableDisableTracepoints_feature },
5318 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5319 PACKET_qXfer_fdpic },
5320 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5321 PACKET_qXfer_uib },
5322 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5323 PACKET_QDisableRandomization },
5324 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5325 { "QTBuffer:size", PACKET_DISABLE,
5326 remote_supported_packet, PACKET_QTBuffer_size},
5327 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5328 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5329 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5330 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5331 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_qXfer_btrace },
5333 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5334 PACKET_qXfer_btrace_conf },
5335 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5336 PACKET_Qbtrace_conf_bts_size },
5337 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5338 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5339 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5340 PACKET_fork_event_feature },
5341 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5342 PACKET_vfork_event_feature },
5343 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5344 PACKET_exec_event_feature },
5345 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5346 PACKET_Qbtrace_conf_pt_size },
5347 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5348 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5349 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5350 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5351 PACKET_memory_tagging_feature },
5352 };
5353
5354 static char *remote_support_xml;
5355
5356 /* Register string appended to "xmlRegisters=" in qSupported query. */
5357
5358 void
5359 register_remote_support_xml (const char *xml)
5360 {
5361 #if defined(HAVE_LIBEXPAT)
5362 if (remote_support_xml == NULL)
5363 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5364 else
5365 {
5366 char *copy = xstrdup (remote_support_xml + 13);
5367 char *saveptr;
5368 char *p = strtok_r (copy, ",", &saveptr);
5369
5370 do
5371 {
5372 if (strcmp (p, xml) == 0)
5373 {
5374 /* already there */
5375 xfree (copy);
5376 return;
5377 }
5378 }
5379 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5380 xfree (copy);
5381
5382 remote_support_xml = reconcat (remote_support_xml,
5383 remote_support_xml, ",", xml,
5384 (char *) NULL);
5385 }
5386 #endif
5387 }
5388
5389 static void
5390 remote_query_supported_append (std::string *msg, const char *append)
5391 {
5392 if (!msg->empty ())
5393 msg->append (";");
5394 msg->append (append);
5395 }
5396
5397 void
5398 remote_target::remote_query_supported ()
5399 {
5400 struct remote_state *rs = get_remote_state ();
5401 char *next;
5402 int i;
5403 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5404
5405 /* The packet support flags are handled differently for this packet
5406 than for most others. We treat an error, a disabled packet, and
5407 an empty response identically: any features which must be reported
5408 to be used will be automatically disabled. An empty buffer
5409 accomplishes this, since that is also the representation for a list
5410 containing no features. */
5411
5412 rs->buf[0] = 0;
5413 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5414 {
5415 std::string q;
5416
5417 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5418 remote_query_supported_append (&q, "multiprocess+");
5419
5420 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5421 remote_query_supported_append (&q, "swbreak+");
5422 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5423 remote_query_supported_append (&q, "hwbreak+");
5424
5425 remote_query_supported_append (&q, "qRelocInsn+");
5426
5427 if (packet_set_cmd_state (PACKET_fork_event_feature)
5428 != AUTO_BOOLEAN_FALSE)
5429 remote_query_supported_append (&q, "fork-events+");
5430 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5431 != AUTO_BOOLEAN_FALSE)
5432 remote_query_supported_append (&q, "vfork-events+");
5433 if (packet_set_cmd_state (PACKET_exec_event_feature)
5434 != AUTO_BOOLEAN_FALSE)
5435 remote_query_supported_append (&q, "exec-events+");
5436
5437 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5438 remote_query_supported_append (&q, "vContSupported+");
5439
5440 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5441 remote_query_supported_append (&q, "QThreadEvents+");
5442
5443 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5444 remote_query_supported_append (&q, "no-resumed+");
5445
5446 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5447 != AUTO_BOOLEAN_FALSE)
5448 remote_query_supported_append (&q, "memory-tagging+");
5449
5450 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5451 the qSupported:xmlRegisters=i386 handling. */
5452 if (remote_support_xml != NULL
5453 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5454 remote_query_supported_append (&q, remote_support_xml);
5455
5456 q = "qSupported:" + q;
5457 putpkt (q.c_str ());
5458
5459 getpkt (&rs->buf, 0);
5460
5461 /* If an error occured, warn, but do not return - just reset the
5462 buffer to empty and go on to disable features. */
5463 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5464 == PACKET_ERROR)
5465 {
5466 warning (_("Remote failure reply: %s"), rs->buf.data ());
5467 rs->buf[0] = 0;
5468 }
5469 }
5470
5471 memset (seen, 0, sizeof (seen));
5472
5473 next = rs->buf.data ();
5474 while (*next)
5475 {
5476 enum packet_support is_supported;
5477 char *p, *end, *name_end, *value;
5478
5479 /* First separate out this item from the rest of the packet. If
5480 there's another item after this, we overwrite the separator
5481 (terminated strings are much easier to work with). */
5482 p = next;
5483 end = strchr (p, ';');
5484 if (end == NULL)
5485 {
5486 end = p + strlen (p);
5487 next = end;
5488 }
5489 else
5490 {
5491 *end = '\0';
5492 next = end + 1;
5493
5494 if (end == p)
5495 {
5496 warning (_("empty item in \"qSupported\" response"));
5497 continue;
5498 }
5499 }
5500
5501 name_end = strchr (p, '=');
5502 if (name_end)
5503 {
5504 /* This is a name=value entry. */
5505 is_supported = PACKET_ENABLE;
5506 value = name_end + 1;
5507 *name_end = '\0';
5508 }
5509 else
5510 {
5511 value = NULL;
5512 switch (end[-1])
5513 {
5514 case '+':
5515 is_supported = PACKET_ENABLE;
5516 break;
5517
5518 case '-':
5519 is_supported = PACKET_DISABLE;
5520 break;
5521
5522 case '?':
5523 is_supported = PACKET_SUPPORT_UNKNOWN;
5524 break;
5525
5526 default:
5527 warning (_("unrecognized item \"%s\" "
5528 "in \"qSupported\" response"), p);
5529 continue;
5530 }
5531 end[-1] = '\0';
5532 }
5533
5534 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5535 if (strcmp (remote_protocol_features[i].name, p) == 0)
5536 {
5537 const struct protocol_feature *feature;
5538
5539 seen[i] = 1;
5540 feature = &remote_protocol_features[i];
5541 feature->func (this, feature, is_supported, value);
5542 break;
5543 }
5544 }
5545
5546 /* If we increased the packet size, make sure to increase the global
5547 buffer size also. We delay this until after parsing the entire
5548 qSupported packet, because this is the same buffer we were
5549 parsing. */
5550 if (rs->buf.size () < rs->explicit_packet_size)
5551 rs->buf.resize (rs->explicit_packet_size);
5552
5553 /* Handle the defaults for unmentioned features. */
5554 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5555 if (!seen[i])
5556 {
5557 const struct protocol_feature *feature;
5558
5559 feature = &remote_protocol_features[i];
5560 feature->func (this, feature, feature->default_support, NULL);
5561 }
5562 }
5563
5564 /* Serial QUIT handler for the remote serial descriptor.
5565
5566 Defers handling a Ctrl-C until we're done with the current
5567 command/response packet sequence, unless:
5568
5569 - We're setting up the connection. Don't send a remote interrupt
5570 request, as we're not fully synced yet. Quit immediately
5571 instead.
5572
5573 - The target has been resumed in the foreground
5574 (target_terminal::is_ours is false) with a synchronous resume
5575 packet, and we're blocked waiting for the stop reply, thus a
5576 Ctrl-C should be immediately sent to the target.
5577
5578 - We get a second Ctrl-C while still within the same serial read or
5579 write. In that case the serial is seemingly wedged --- offer to
5580 quit/disconnect.
5581
5582 - We see a second Ctrl-C without target response, after having
5583 previously interrupted the target. In that case the target/stub
5584 is probably wedged --- offer to quit/disconnect.
5585 */
5586
5587 void
5588 remote_target::remote_serial_quit_handler ()
5589 {
5590 struct remote_state *rs = get_remote_state ();
5591
5592 if (check_quit_flag ())
5593 {
5594 /* If we're starting up, we're not fully synced yet. Quit
5595 immediately. */
5596 if (rs->starting_up)
5597 quit ();
5598 else if (rs->got_ctrlc_during_io)
5599 {
5600 if (query (_("The target is not responding to GDB commands.\n"
5601 "Stop debugging it? ")))
5602 remote_unpush_and_throw (this);
5603 }
5604 /* If ^C has already been sent once, offer to disconnect. */
5605 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5606 interrupt_query ();
5607 /* All-stop protocol, and blocked waiting for stop reply. Send
5608 an interrupt request. */
5609 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5610 target_interrupt ();
5611 else
5612 rs->got_ctrlc_during_io = 1;
5613 }
5614 }
5615
5616 /* The remote_target that is current while the quit handler is
5617 overridden with remote_serial_quit_handler. */
5618 static remote_target *curr_quit_handler_target;
5619
5620 static void
5621 remote_serial_quit_handler ()
5622 {
5623 curr_quit_handler_target->remote_serial_quit_handler ();
5624 }
5625
5626 /* Remove the remote target from the target stack of each inferior
5627 that is using it. Upper targets depend on it so remove them
5628 first. */
5629
5630 static void
5631 remote_unpush_target (remote_target *target)
5632 {
5633 /* We have to unpush the target from all inferiors, even those that
5634 aren't running. */
5635 scoped_restore_current_inferior restore_current_inferior;
5636
5637 for (inferior *inf : all_inferiors (target))
5638 {
5639 switch_to_inferior_no_thread (inf);
5640 pop_all_targets_at_and_above (process_stratum);
5641 generic_mourn_inferior ();
5642 }
5643
5644 /* Don't rely on target_close doing this when the target is popped
5645 from the last remote inferior above, because something may be
5646 holding a reference to the target higher up on the stack, meaning
5647 target_close won't be called yet. We lost the connection to the
5648 target, so clear these now, otherwise we may later throw
5649 TARGET_CLOSE_ERROR while trying to tell the remote target to
5650 close the file. */
5651 fileio_handles_invalidate_target (target);
5652 }
5653
5654 static void
5655 remote_unpush_and_throw (remote_target *target)
5656 {
5657 remote_unpush_target (target);
5658 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5659 }
5660
5661 void
5662 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5663 {
5664 remote_target *curr_remote = get_current_remote_target ();
5665
5666 if (name == 0)
5667 error (_("To open a remote debug connection, you need to specify what\n"
5668 "serial device is attached to the remote system\n"
5669 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5670
5671 /* If we're connected to a running target, target_preopen will kill it.
5672 Ask this question first, before target_preopen has a chance to kill
5673 anything. */
5674 if (curr_remote != NULL && !target_has_execution ())
5675 {
5676 if (from_tty
5677 && !query (_("Already connected to a remote target. Disconnect? ")))
5678 error (_("Still connected."));
5679 }
5680
5681 /* Here the possibly existing remote target gets unpushed. */
5682 target_preopen (from_tty);
5683
5684 remote_fileio_reset ();
5685 reopen_exec_file ();
5686 reread_symbols ();
5687
5688 remote_target *remote
5689 = (extended_p ? new extended_remote_target () : new remote_target ());
5690 target_ops_up target_holder (remote);
5691
5692 remote_state *rs = remote->get_remote_state ();
5693
5694 /* See FIXME above. */
5695 if (!target_async_permitted)
5696 rs->wait_forever_enabled_p = 1;
5697
5698 rs->remote_desc = remote_serial_open (name);
5699 if (!rs->remote_desc)
5700 perror_with_name (name);
5701
5702 if (baud_rate != -1)
5703 {
5704 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5705 {
5706 /* The requested speed could not be set. Error out to
5707 top level after closing remote_desc. Take care to
5708 set remote_desc to NULL to avoid closing remote_desc
5709 more than once. */
5710 serial_close (rs->remote_desc);
5711 rs->remote_desc = NULL;
5712 perror_with_name (name);
5713 }
5714 }
5715
5716 serial_setparity (rs->remote_desc, serial_parity);
5717 serial_raw (rs->remote_desc);
5718
5719 /* If there is something sitting in the buffer we might take it as a
5720 response to a command, which would be bad. */
5721 serial_flush_input (rs->remote_desc);
5722
5723 if (from_tty)
5724 {
5725 puts_filtered ("Remote debugging using ");
5726 puts_filtered (name);
5727 puts_filtered ("\n");
5728 }
5729
5730 /* Switch to using the remote target now. */
5731 current_inferior ()->push_target (std::move (target_holder));
5732
5733 /* Register extra event sources in the event loop. */
5734 rs->remote_async_inferior_event_token
5735 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5736 "remote");
5737 rs->notif_state = remote_notif_state_allocate (remote);
5738
5739 /* Reset the target state; these things will be queried either by
5740 remote_query_supported or as they are needed. */
5741 reset_all_packet_configs_support ();
5742 rs->cached_wait_status = 0;
5743 rs->explicit_packet_size = 0;
5744 rs->noack_mode = 0;
5745 rs->extended = extended_p;
5746 rs->waiting_for_stop_reply = 0;
5747 rs->ctrlc_pending_p = 0;
5748 rs->got_ctrlc_during_io = 0;
5749
5750 rs->general_thread = not_sent_ptid;
5751 rs->continue_thread = not_sent_ptid;
5752 rs->remote_traceframe_number = -1;
5753
5754 rs->last_resume_exec_dir = EXEC_FORWARD;
5755
5756 /* Probe for ability to use "ThreadInfo" query, as required. */
5757 rs->use_threadinfo_query = 1;
5758 rs->use_threadextra_query = 1;
5759
5760 rs->readahead_cache.invalidate ();
5761
5762 if (target_async_permitted)
5763 {
5764 /* FIXME: cagney/1999-09-23: During the initial connection it is
5765 assumed that the target is already ready and able to respond to
5766 requests. Unfortunately remote_start_remote() eventually calls
5767 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5768 around this. Eventually a mechanism that allows
5769 wait_for_inferior() to expect/get timeouts will be
5770 implemented. */
5771 rs->wait_forever_enabled_p = 0;
5772 }
5773
5774 /* First delete any symbols previously loaded from shared libraries. */
5775 no_shared_libraries (NULL, 0);
5776
5777 /* Start the remote connection. If error() or QUIT, discard this
5778 target (we'd otherwise be in an inconsistent state) and then
5779 propogate the error on up the exception chain. This ensures that
5780 the caller doesn't stumble along blindly assuming that the
5781 function succeeded. The CLI doesn't have this problem but other
5782 UI's, such as MI do.
5783
5784 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5785 this function should return an error indication letting the
5786 caller restore the previous state. Unfortunately the command
5787 ``target remote'' is directly wired to this function making that
5788 impossible. On a positive note, the CLI side of this problem has
5789 been fixed - the function set_cmd_context() makes it possible for
5790 all the ``target ....'' commands to share a common callback
5791 function. See cli-dump.c. */
5792 {
5793
5794 try
5795 {
5796 remote->start_remote (from_tty, extended_p);
5797 }
5798 catch (const gdb_exception &ex)
5799 {
5800 /* Pop the partially set up target - unless something else did
5801 already before throwing the exception. */
5802 if (ex.error != TARGET_CLOSE_ERROR)
5803 remote_unpush_target (remote);
5804 throw;
5805 }
5806 }
5807
5808 remote_btrace_reset (rs);
5809
5810 if (target_async_permitted)
5811 rs->wait_forever_enabled_p = 1;
5812 }
5813
5814 /* Detach the specified process. */
5815
5816 void
5817 remote_target::remote_detach_pid (int pid)
5818 {
5819 struct remote_state *rs = get_remote_state ();
5820
5821 /* This should not be necessary, but the handling for D;PID in
5822 GDBserver versions prior to 8.2 incorrectly assumes that the
5823 selected process points to the same process we're detaching,
5824 leading to misbehavior (and possibly GDBserver crashing) when it
5825 does not. Since it's easy and cheap, work around it by forcing
5826 GDBserver to select GDB's current process. */
5827 set_general_process ();
5828
5829 if (remote_multi_process_p (rs))
5830 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5831 else
5832 strcpy (rs->buf.data (), "D");
5833
5834 putpkt (rs->buf);
5835 getpkt (&rs->buf, 0);
5836
5837 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5838 ;
5839 else if (rs->buf[0] == '\0')
5840 error (_("Remote doesn't know how to detach"));
5841 else
5842 error (_("Can't detach process."));
5843 }
5844
5845 /* This detaches a program to which we previously attached, using
5846 inferior_ptid to identify the process. After this is done, GDB
5847 can be used to debug some other program. We better not have left
5848 any breakpoints in the target program or it'll die when it hits
5849 one. */
5850
5851 void
5852 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5853 {
5854 int pid = inferior_ptid.pid ();
5855 struct remote_state *rs = get_remote_state ();
5856 int is_fork_parent;
5857
5858 if (!target_has_execution ())
5859 error (_("No process to detach from."));
5860
5861 target_announce_detach (from_tty);
5862
5863 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5864 {
5865 /* If we're in breakpoints-always-inserted mode, or the inferior
5866 is running, we have to remove breakpoints before detaching.
5867 We don't do this in common code instead because not all
5868 targets support removing breakpoints while the target is
5869 running. The remote target / gdbserver does, though. */
5870 remove_breakpoints_inf (current_inferior ());
5871 }
5872
5873 /* Tell the remote target to detach. */
5874 remote_detach_pid (pid);
5875
5876 /* Exit only if this is the only active inferior. */
5877 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5878 puts_filtered (_("Ending remote debugging.\n"));
5879
5880 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5881
5882 /* Check to see if we are detaching a fork parent. Note that if we
5883 are detaching a fork child, tp == NULL. */
5884 is_fork_parent = (tp != NULL
5885 && tp->pending_follow.kind () == TARGET_WAITKIND_FORKED);
5886
5887 /* If doing detach-on-fork, we don't mourn, because that will delete
5888 breakpoints that should be available for the followed inferior. */
5889 if (!is_fork_parent)
5890 {
5891 /* Save the pid as a string before mourning, since that will
5892 unpush the remote target, and we need the string after. */
5893 std::string infpid = target_pid_to_str (ptid_t (pid));
5894
5895 target_mourn_inferior (inferior_ptid);
5896 if (print_inferior_events)
5897 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5898 inf->num, infpid.c_str ());
5899 }
5900 else
5901 {
5902 switch_to_no_thread ();
5903 detach_inferior (current_inferior ());
5904 }
5905 }
5906
5907 void
5908 remote_target::detach (inferior *inf, int from_tty)
5909 {
5910 remote_detach_1 (inf, from_tty);
5911 }
5912
5913 void
5914 extended_remote_target::detach (inferior *inf, int from_tty)
5915 {
5916 remote_detach_1 (inf, from_tty);
5917 }
5918
5919 /* Target follow-fork function for remote targets. On entry, and
5920 at return, the current inferior is the fork parent.
5921
5922 Note that although this is currently only used for extended-remote,
5923 it is named remote_follow_fork in anticipation of using it for the
5924 remote target as well. */
5925
5926 void
5927 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
5928 target_waitkind fork_kind, bool follow_child,
5929 bool detach_fork)
5930 {
5931 process_stratum_target::follow_fork (child_inf, child_ptid,
5932 fork_kind, follow_child, detach_fork);
5933
5934 struct remote_state *rs = get_remote_state ();
5935
5936 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5937 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5938 {
5939 /* When following the parent and detaching the child, we detach
5940 the child here. For the case of following the child and
5941 detaching the parent, the detach is done in the target-
5942 independent follow fork code in infrun.c. We can't use
5943 target_detach when detaching an unfollowed child because
5944 the client side doesn't know anything about the child. */
5945 if (detach_fork && !follow_child)
5946 {
5947 /* Detach the fork child. */
5948 remote_detach_pid (child_ptid.pid ());
5949 }
5950 }
5951 }
5952
5953 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5954 in the program space of the new inferior. */
5955
5956 void
5957 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5958 const char *execd_pathname)
5959 {
5960 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5961
5962 /* We know that this is a target file name, so if it has the "target:"
5963 prefix we strip it off before saving it in the program space. */
5964 if (is_target_filename (execd_pathname))
5965 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5966
5967 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5968 }
5969
5970 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5971
5972 void
5973 remote_target::disconnect (const char *args, int from_tty)
5974 {
5975 if (args)
5976 error (_("Argument given to \"disconnect\" when remotely debugging."));
5977
5978 /* Make sure we unpush even the extended remote targets. Calling
5979 target_mourn_inferior won't unpush, and
5980 remote_target::mourn_inferior won't unpush if there is more than
5981 one inferior left. */
5982 remote_unpush_target (this);
5983
5984 if (from_tty)
5985 puts_filtered ("Ending remote debugging.\n");
5986 }
5987
5988 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5989 be chatty about it. */
5990
5991 void
5992 extended_remote_target::attach (const char *args, int from_tty)
5993 {
5994 struct remote_state *rs = get_remote_state ();
5995 int pid;
5996 char *wait_status = NULL;
5997
5998 pid = parse_pid_to_attach (args);
5999
6000 /* Remote PID can be freely equal to getpid, do not check it here the same
6001 way as in other targets. */
6002
6003 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6004 error (_("This target does not support attaching to a process"));
6005
6006 if (from_tty)
6007 {
6008 const char *exec_file = get_exec_file (0);
6009
6010 if (exec_file)
6011 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6012 target_pid_to_str (ptid_t (pid)).c_str ());
6013 else
6014 printf_unfiltered (_("Attaching to %s\n"),
6015 target_pid_to_str (ptid_t (pid)).c_str ());
6016 }
6017
6018 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6019 putpkt (rs->buf);
6020 getpkt (&rs->buf, 0);
6021
6022 switch (packet_ok (rs->buf,
6023 &remote_protocol_packets[PACKET_vAttach]))
6024 {
6025 case PACKET_OK:
6026 if (!target_is_non_stop_p ())
6027 {
6028 /* Save the reply for later. */
6029 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6030 strcpy (wait_status, rs->buf.data ());
6031 }
6032 else if (strcmp (rs->buf.data (), "OK") != 0)
6033 error (_("Attaching to %s failed with: %s"),
6034 target_pid_to_str (ptid_t (pid)).c_str (),
6035 rs->buf.data ());
6036 break;
6037 case PACKET_UNKNOWN:
6038 error (_("This target does not support attaching to a process"));
6039 default:
6040 error (_("Attaching to %s failed"),
6041 target_pid_to_str (ptid_t (pid)).c_str ());
6042 }
6043
6044 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6045
6046 inferior_ptid = ptid_t (pid);
6047
6048 if (target_is_non_stop_p ())
6049 {
6050 /* Get list of threads. */
6051 update_thread_list ();
6052
6053 thread_info *thread = first_thread_of_inferior (current_inferior ());
6054 if (thread != nullptr)
6055 switch_to_thread (thread);
6056
6057 /* Invalidate our notion of the remote current thread. */
6058 record_currthread (rs, minus_one_ptid);
6059 }
6060 else
6061 {
6062 /* Now, if we have thread information, update the main thread's
6063 ptid. */
6064 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6065
6066 /* Add the main thread to the thread list. */
6067 thread_info *thr = add_thread_silent (this, curr_ptid);
6068
6069 switch_to_thread (thr);
6070
6071 /* Don't consider the thread stopped until we've processed the
6072 saved stop reply. */
6073 set_executing (this, thr->ptid, true);
6074 }
6075
6076 /* Next, if the target can specify a description, read it. We do
6077 this before anything involving memory or registers. */
6078 target_find_description ();
6079
6080 if (!target_is_non_stop_p ())
6081 {
6082 /* Use the previously fetched status. */
6083 gdb_assert (wait_status != NULL);
6084
6085 if (target_can_async_p ())
6086 {
6087 struct notif_event *reply
6088 = remote_notif_parse (this, &notif_client_stop, wait_status);
6089
6090 push_stop_reply ((struct stop_reply *) reply);
6091
6092 target_async (1);
6093 }
6094 else
6095 {
6096 gdb_assert (wait_status != NULL);
6097 strcpy (rs->buf.data (), wait_status);
6098 rs->cached_wait_status = 1;
6099 }
6100 }
6101 else
6102 {
6103 gdb_assert (wait_status == NULL);
6104
6105 gdb_assert (target_can_async_p ());
6106 target_async (1);
6107 }
6108 }
6109
6110 /* Implementation of the to_post_attach method. */
6111
6112 void
6113 extended_remote_target::post_attach (int pid)
6114 {
6115 /* Get text, data & bss offsets. */
6116 get_offsets ();
6117
6118 /* In certain cases GDB might not have had the chance to start
6119 symbol lookup up until now. This could happen if the debugged
6120 binary is not using shared libraries, the vsyscall page is not
6121 present (on Linux) and the binary itself hadn't changed since the
6122 debugging process was started. */
6123 if (current_program_space->symfile_object_file != NULL)
6124 remote_check_symbols();
6125 }
6126
6127 \f
6128 /* Check for the availability of vCont. This function should also check
6129 the response. */
6130
6131 void
6132 remote_target::remote_vcont_probe ()
6133 {
6134 remote_state *rs = get_remote_state ();
6135 char *buf;
6136
6137 strcpy (rs->buf.data (), "vCont?");
6138 putpkt (rs->buf);
6139 getpkt (&rs->buf, 0);
6140 buf = rs->buf.data ();
6141
6142 /* Make sure that the features we assume are supported. */
6143 if (startswith (buf, "vCont"))
6144 {
6145 char *p = &buf[5];
6146 int support_c, support_C;
6147
6148 rs->supports_vCont.s = 0;
6149 rs->supports_vCont.S = 0;
6150 support_c = 0;
6151 support_C = 0;
6152 rs->supports_vCont.t = 0;
6153 rs->supports_vCont.r = 0;
6154 while (p && *p == ';')
6155 {
6156 p++;
6157 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6158 rs->supports_vCont.s = 1;
6159 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6160 rs->supports_vCont.S = 1;
6161 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6162 support_c = 1;
6163 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6164 support_C = 1;
6165 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6166 rs->supports_vCont.t = 1;
6167 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6168 rs->supports_vCont.r = 1;
6169
6170 p = strchr (p, ';');
6171 }
6172
6173 /* If c, and C are not all supported, we can't use vCont. Clearing
6174 BUF will make packet_ok disable the packet. */
6175 if (!support_c || !support_C)
6176 buf[0] = 0;
6177 }
6178
6179 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6180 rs->supports_vCont_probed = true;
6181 }
6182
6183 /* Helper function for building "vCont" resumptions. Write a
6184 resumption to P. ENDP points to one-passed-the-end of the buffer
6185 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6186 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6187 resumed thread should be single-stepped and/or signalled. If PTID
6188 equals minus_one_ptid, then all threads are resumed; if PTID
6189 represents a process, then all threads of the process are resumed;
6190 the thread to be stepped and/or signalled is given in the global
6191 INFERIOR_PTID. */
6192
6193 char *
6194 remote_target::append_resumption (char *p, char *endp,
6195 ptid_t ptid, int step, gdb_signal siggnal)
6196 {
6197 struct remote_state *rs = get_remote_state ();
6198
6199 if (step && siggnal != GDB_SIGNAL_0)
6200 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6201 else if (step
6202 /* GDB is willing to range step. */
6203 && use_range_stepping
6204 /* Target supports range stepping. */
6205 && rs->supports_vCont.r
6206 /* We don't currently support range stepping multiple
6207 threads with a wildcard (though the protocol allows it,
6208 so stubs shouldn't make an active effort to forbid
6209 it). */
6210 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6211 {
6212 struct thread_info *tp;
6213
6214 if (ptid == minus_one_ptid)
6215 {
6216 /* If we don't know about the target thread's tid, then
6217 we're resuming magic_null_ptid (see caller). */
6218 tp = find_thread_ptid (this, magic_null_ptid);
6219 }
6220 else
6221 tp = find_thread_ptid (this, ptid);
6222 gdb_assert (tp != NULL);
6223
6224 if (tp->control.may_range_step)
6225 {
6226 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6227
6228 p += xsnprintf (p, endp - p, ";r%s,%s",
6229 phex_nz (tp->control.step_range_start,
6230 addr_size),
6231 phex_nz (tp->control.step_range_end,
6232 addr_size));
6233 }
6234 else
6235 p += xsnprintf (p, endp - p, ";s");
6236 }
6237 else if (step)
6238 p += xsnprintf (p, endp - p, ";s");
6239 else if (siggnal != GDB_SIGNAL_0)
6240 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6241 else
6242 p += xsnprintf (p, endp - p, ";c");
6243
6244 if (remote_multi_process_p (rs) && ptid.is_pid ())
6245 {
6246 ptid_t nptid;
6247
6248 /* All (-1) threads of process. */
6249 nptid = ptid_t (ptid.pid (), -1);
6250
6251 p += xsnprintf (p, endp - p, ":");
6252 p = write_ptid (p, endp, nptid);
6253 }
6254 else if (ptid != minus_one_ptid)
6255 {
6256 p += xsnprintf (p, endp - p, ":");
6257 p = write_ptid (p, endp, ptid);
6258 }
6259
6260 return p;
6261 }
6262
6263 /* Clear the thread's private info on resume. */
6264
6265 static void
6266 resume_clear_thread_private_info (struct thread_info *thread)
6267 {
6268 if (thread->priv != NULL)
6269 {
6270 remote_thread_info *priv = get_remote_thread_info (thread);
6271
6272 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6273 priv->watch_data_address = 0;
6274 }
6275 }
6276
6277 /* Append a vCont continue-with-signal action for threads that have a
6278 non-zero stop signal. */
6279
6280 char *
6281 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6282 ptid_t ptid)
6283 {
6284 for (thread_info *thread : all_non_exited_threads (this, ptid))
6285 if (inferior_ptid != thread->ptid
6286 && thread->stop_signal () != GDB_SIGNAL_0)
6287 {
6288 p = append_resumption (p, endp, thread->ptid,
6289 0, thread->stop_signal ());
6290 thread->set_stop_signal (GDB_SIGNAL_0);
6291 resume_clear_thread_private_info (thread);
6292 }
6293
6294 return p;
6295 }
6296
6297 /* Set the target running, using the packets that use Hc
6298 (c/s/C/S). */
6299
6300 void
6301 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6302 gdb_signal siggnal)
6303 {
6304 struct remote_state *rs = get_remote_state ();
6305 char *buf;
6306
6307 rs->last_sent_signal = siggnal;
6308 rs->last_sent_step = step;
6309
6310 /* The c/s/C/S resume packets use Hc, so set the continue
6311 thread. */
6312 if (ptid == minus_one_ptid)
6313 set_continue_thread (any_thread_ptid);
6314 else
6315 set_continue_thread (ptid);
6316
6317 for (thread_info *thread : all_non_exited_threads (this))
6318 resume_clear_thread_private_info (thread);
6319
6320 buf = rs->buf.data ();
6321 if (::execution_direction == EXEC_REVERSE)
6322 {
6323 /* We don't pass signals to the target in reverse exec mode. */
6324 if (info_verbose && siggnal != GDB_SIGNAL_0)
6325 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6326 siggnal);
6327
6328 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6329 error (_("Remote reverse-step not supported."));
6330 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6331 error (_("Remote reverse-continue not supported."));
6332
6333 strcpy (buf, step ? "bs" : "bc");
6334 }
6335 else if (siggnal != GDB_SIGNAL_0)
6336 {
6337 buf[0] = step ? 'S' : 'C';
6338 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6339 buf[2] = tohex (((int) siggnal) & 0xf);
6340 buf[3] = '\0';
6341 }
6342 else
6343 strcpy (buf, step ? "s" : "c");
6344
6345 putpkt (buf);
6346 }
6347
6348 /* Resume the remote inferior by using a "vCont" packet. The thread
6349 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6350 resumed thread should be single-stepped and/or signalled. If PTID
6351 equals minus_one_ptid, then all threads are resumed; the thread to
6352 be stepped and/or signalled is given in the global INFERIOR_PTID.
6353 This function returns non-zero iff it resumes the inferior.
6354
6355 This function issues a strict subset of all possible vCont commands
6356 at the moment. */
6357
6358 int
6359 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6360 enum gdb_signal siggnal)
6361 {
6362 struct remote_state *rs = get_remote_state ();
6363 char *p;
6364 char *endp;
6365
6366 /* No reverse execution actions defined for vCont. */
6367 if (::execution_direction == EXEC_REVERSE)
6368 return 0;
6369
6370 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6371 remote_vcont_probe ();
6372
6373 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6374 return 0;
6375
6376 p = rs->buf.data ();
6377 endp = p + get_remote_packet_size ();
6378
6379 /* If we could generate a wider range of packets, we'd have to worry
6380 about overflowing BUF. Should there be a generic
6381 "multi-part-packet" packet? */
6382
6383 p += xsnprintf (p, endp - p, "vCont");
6384
6385 if (ptid == magic_null_ptid)
6386 {
6387 /* MAGIC_NULL_PTID means that we don't have any active threads,
6388 so we don't have any TID numbers the inferior will
6389 understand. Make sure to only send forms that do not specify
6390 a TID. */
6391 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6392 }
6393 else if (ptid == minus_one_ptid || ptid.is_pid ())
6394 {
6395 /* Resume all threads (of all processes, or of a single
6396 process), with preference for INFERIOR_PTID. This assumes
6397 inferior_ptid belongs to the set of all threads we are about
6398 to resume. */
6399 if (step || siggnal != GDB_SIGNAL_0)
6400 {
6401 /* Step inferior_ptid, with or without signal. */
6402 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6403 }
6404
6405 /* Also pass down any pending signaled resumption for other
6406 threads not the current. */
6407 p = append_pending_thread_resumptions (p, endp, ptid);
6408
6409 /* And continue others without a signal. */
6410 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6411 }
6412 else
6413 {
6414 /* Scheduler locking; resume only PTID. */
6415 append_resumption (p, endp, ptid, step, siggnal);
6416 }
6417
6418 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6419 putpkt (rs->buf);
6420
6421 if (target_is_non_stop_p ())
6422 {
6423 /* In non-stop, the stub replies to vCont with "OK". The stop
6424 reply will be reported asynchronously by means of a `%Stop'
6425 notification. */
6426 getpkt (&rs->buf, 0);
6427 if (strcmp (rs->buf.data (), "OK") != 0)
6428 error (_("Unexpected vCont reply in non-stop mode: %s"),
6429 rs->buf.data ());
6430 }
6431
6432 return 1;
6433 }
6434
6435 /* Tell the remote machine to resume. */
6436
6437 void
6438 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6439 {
6440 struct remote_state *rs = get_remote_state ();
6441
6442 /* When connected in non-stop mode, the core resumes threads
6443 individually. Resuming remote threads directly in target_resume
6444 would thus result in sending one packet per thread. Instead, to
6445 minimize roundtrip latency, here we just store the resume
6446 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6447 resumption will be done in remote_target::commit_resume, where we'll be
6448 able to do vCont action coalescing. */
6449 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6450 {
6451 remote_thread_info *remote_thr;
6452
6453 if (minus_one_ptid == ptid || ptid.is_pid ())
6454 remote_thr = get_remote_thread_info (this, inferior_ptid);
6455 else
6456 remote_thr = get_remote_thread_info (this, ptid);
6457
6458 /* We don't expect the core to ask to resume an already resumed (from
6459 its point of view) thread. */
6460 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6461
6462 remote_thr->set_resumed_pending_vcont (step, siggnal);
6463 return;
6464 }
6465
6466 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6467 (explained in remote-notif.c:handle_notification) so
6468 remote_notif_process is not called. We need find a place where
6469 it is safe to start a 'vNotif' sequence. It is good to do it
6470 before resuming inferior, because inferior was stopped and no RSP
6471 traffic at that moment. */
6472 if (!target_is_non_stop_p ())
6473 remote_notif_process (rs->notif_state, &notif_client_stop);
6474
6475 rs->last_resume_exec_dir = ::execution_direction;
6476
6477 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6478 if (!remote_resume_with_vcont (ptid, step, siggnal))
6479 remote_resume_with_hc (ptid, step, siggnal);
6480
6481 /* Update resumed state tracked by the remote target. */
6482 for (thread_info *tp : all_non_exited_threads (this, ptid))
6483 get_remote_thread_info (tp)->set_resumed ();
6484
6485 /* We are about to start executing the inferior, let's register it
6486 with the event loop. NOTE: this is the one place where all the
6487 execution commands end up. We could alternatively do this in each
6488 of the execution commands in infcmd.c. */
6489 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6490 into infcmd.c in order to allow inferior function calls to work
6491 NOT asynchronously. */
6492 if (target_can_async_p ())
6493 target_async (1);
6494
6495 /* We've just told the target to resume. The remote server will
6496 wait for the inferior to stop, and then send a stop reply. In
6497 the mean time, we can't start another command/query ourselves
6498 because the stub wouldn't be ready to process it. This applies
6499 only to the base all-stop protocol, however. In non-stop (which
6500 only supports vCont), the stub replies with an "OK", and is
6501 immediate able to process further serial input. */
6502 if (!target_is_non_stop_p ())
6503 rs->waiting_for_stop_reply = 1;
6504 }
6505
6506 static int is_pending_fork_parent_thread (struct thread_info *thread);
6507
6508 /* Private per-inferior info for target remote processes. */
6509
6510 struct remote_inferior : public private_inferior
6511 {
6512 /* Whether we can send a wildcard vCont for this process. */
6513 bool may_wildcard_vcont = true;
6514 };
6515
6516 /* Get the remote private inferior data associated to INF. */
6517
6518 static remote_inferior *
6519 get_remote_inferior (inferior *inf)
6520 {
6521 if (inf->priv == NULL)
6522 inf->priv.reset (new remote_inferior);
6523
6524 return static_cast<remote_inferior *> (inf->priv.get ());
6525 }
6526
6527 struct stop_reply : public notif_event
6528 {
6529 ~stop_reply ();
6530
6531 /* The identifier of the thread about this event */
6532 ptid_t ptid;
6533
6534 /* The remote state this event is associated with. When the remote
6535 connection, represented by a remote_state object, is closed,
6536 all the associated stop_reply events should be released. */
6537 struct remote_state *rs;
6538
6539 struct target_waitstatus ws;
6540
6541 /* The architecture associated with the expedited registers. */
6542 gdbarch *arch;
6543
6544 /* Expedited registers. This makes remote debugging a bit more
6545 efficient for those targets that provide critical registers as
6546 part of their normal status mechanism (as another roundtrip to
6547 fetch them is avoided). */
6548 std::vector<cached_reg_t> regcache;
6549
6550 enum target_stop_reason stop_reason;
6551
6552 CORE_ADDR watch_data_address;
6553
6554 int core;
6555 };
6556
6557 /* Class used to track the construction of a vCont packet in the
6558 outgoing packet buffer. This is used to send multiple vCont
6559 packets if we have more actions than would fit a single packet. */
6560
6561 class vcont_builder
6562 {
6563 public:
6564 explicit vcont_builder (remote_target *remote)
6565 : m_remote (remote)
6566 {
6567 restart ();
6568 }
6569
6570 void flush ();
6571 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6572
6573 private:
6574 void restart ();
6575
6576 /* The remote target. */
6577 remote_target *m_remote;
6578
6579 /* Pointer to the first action. P points here if no action has been
6580 appended yet. */
6581 char *m_first_action;
6582
6583 /* Where the next action will be appended. */
6584 char *m_p;
6585
6586 /* The end of the buffer. Must never write past this. */
6587 char *m_endp;
6588 };
6589
6590 /* Prepare the outgoing buffer for a new vCont packet. */
6591
6592 void
6593 vcont_builder::restart ()
6594 {
6595 struct remote_state *rs = m_remote->get_remote_state ();
6596
6597 m_p = rs->buf.data ();
6598 m_endp = m_p + m_remote->get_remote_packet_size ();
6599 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6600 m_first_action = m_p;
6601 }
6602
6603 /* If the vCont packet being built has any action, send it to the
6604 remote end. */
6605
6606 void
6607 vcont_builder::flush ()
6608 {
6609 struct remote_state *rs;
6610
6611 if (m_p == m_first_action)
6612 return;
6613
6614 rs = m_remote->get_remote_state ();
6615 m_remote->putpkt (rs->buf);
6616 m_remote->getpkt (&rs->buf, 0);
6617 if (strcmp (rs->buf.data (), "OK") != 0)
6618 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6619 }
6620
6621 /* The largest action is range-stepping, with its two addresses. This
6622 is more than sufficient. If a new, bigger action is created, it'll
6623 quickly trigger a failed assertion in append_resumption (and we'll
6624 just bump this). */
6625 #define MAX_ACTION_SIZE 200
6626
6627 /* Append a new vCont action in the outgoing packet being built. If
6628 the action doesn't fit the packet along with previous actions, push
6629 what we've got so far to the remote end and start over a new vCont
6630 packet (with the new action). */
6631
6632 void
6633 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6634 {
6635 char buf[MAX_ACTION_SIZE + 1];
6636
6637 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6638 ptid, step, siggnal);
6639
6640 /* Check whether this new action would fit in the vCont packet along
6641 with previous actions. If not, send what we've got so far and
6642 start a new vCont packet. */
6643 size_t rsize = endp - buf;
6644 if (rsize > m_endp - m_p)
6645 {
6646 flush ();
6647 restart ();
6648
6649 /* Should now fit. */
6650 gdb_assert (rsize <= m_endp - m_p);
6651 }
6652
6653 memcpy (m_p, buf, rsize);
6654 m_p += rsize;
6655 *m_p = '\0';
6656 }
6657
6658 /* to_commit_resume implementation. */
6659
6660 void
6661 remote_target::commit_resumed ()
6662 {
6663 /* If connected in all-stop mode, we'd send the remote resume
6664 request directly from remote_resume. Likewise if
6665 reverse-debugging, as there are no defined vCont actions for
6666 reverse execution. */
6667 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6668 return;
6669
6670 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6671 instead of resuming all threads of each process individually.
6672 However, if any thread of a process must remain halted, we can't
6673 send wildcard resumes and must send one action per thread.
6674
6675 Care must be taken to not resume threads/processes the server
6676 side already told us are stopped, but the core doesn't know about
6677 yet, because the events are still in the vStopped notification
6678 queue. For example:
6679
6680 #1 => vCont s:p1.1;c
6681 #2 <= OK
6682 #3 <= %Stopped T05 p1.1
6683 #4 => vStopped
6684 #5 <= T05 p1.2
6685 #6 => vStopped
6686 #7 <= OK
6687 #8 (infrun handles the stop for p1.1 and continues stepping)
6688 #9 => vCont s:p1.1;c
6689
6690 The last vCont above would resume thread p1.2 by mistake, because
6691 the server has no idea that the event for p1.2 had not been
6692 handled yet.
6693
6694 The server side must similarly ignore resume actions for the
6695 thread that has a pending %Stopped notification (and any other
6696 threads with events pending), until GDB acks the notification
6697 with vStopped. Otherwise, e.g., the following case is
6698 mishandled:
6699
6700 #1 => g (or any other packet)
6701 #2 <= [registers]
6702 #3 <= %Stopped T05 p1.2
6703 #4 => vCont s:p1.1;c
6704 #5 <= OK
6705
6706 Above, the server must not resume thread p1.2. GDB can't know
6707 that p1.2 stopped until it acks the %Stopped notification, and
6708 since from GDB's perspective all threads should be running, it
6709 sends a "c" action.
6710
6711 Finally, special care must also be given to handling fork/vfork
6712 events. A (v)fork event actually tells us that two processes
6713 stopped -- the parent and the child. Until we follow the fork,
6714 we must not resume the child. Therefore, if we have a pending
6715 fork follow, we must not send a global wildcard resume action
6716 (vCont;c). We can still send process-wide wildcards though. */
6717
6718 /* Start by assuming a global wildcard (vCont;c) is possible. */
6719 bool may_global_wildcard_vcont = true;
6720
6721 /* And assume every process is individually wildcard-able too. */
6722 for (inferior *inf : all_non_exited_inferiors (this))
6723 {
6724 remote_inferior *priv = get_remote_inferior (inf);
6725
6726 priv->may_wildcard_vcont = true;
6727 }
6728
6729 /* Check for any pending events (not reported or processed yet) and
6730 disable process and global wildcard resumes appropriately. */
6731 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6732
6733 bool any_pending_vcont_resume = false;
6734
6735 for (thread_info *tp : all_non_exited_threads (this))
6736 {
6737 remote_thread_info *priv = get_remote_thread_info (tp);
6738
6739 /* If a thread of a process is not meant to be resumed, then we
6740 can't wildcard that process. */
6741 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6742 {
6743 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6744
6745 /* And if we can't wildcard a process, we can't wildcard
6746 everything either. */
6747 may_global_wildcard_vcont = false;
6748 continue;
6749 }
6750
6751 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6752 any_pending_vcont_resume = true;
6753
6754 /* If a thread is the parent of an unfollowed fork, then we
6755 can't do a global wildcard, as that would resume the fork
6756 child. */
6757 if (is_pending_fork_parent_thread (tp))
6758 may_global_wildcard_vcont = false;
6759 }
6760
6761 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6762 do. */
6763 if (!any_pending_vcont_resume)
6764 return;
6765
6766 /* Now let's build the vCont packet(s). Actions must be appended
6767 from narrower to wider scopes (thread -> process -> global). If
6768 we end up with too many actions for a single packet vcont_builder
6769 flushes the current vCont packet to the remote side and starts a
6770 new one. */
6771 struct vcont_builder vcont_builder (this);
6772
6773 /* Threads first. */
6774 for (thread_info *tp : all_non_exited_threads (this))
6775 {
6776 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6777
6778 /* If the thread was previously vCont-resumed, no need to send a specific
6779 action for it. If we didn't receive a resume request for it, don't
6780 send an action for it either. */
6781 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6782 continue;
6783
6784 gdb_assert (!thread_is_in_step_over_chain (tp));
6785
6786 /* We should never be commit-resuming a thread that has a stop reply.
6787 Otherwise, we would end up reporting a stop event for a thread while
6788 it is running on the remote target. */
6789 remote_state *rs = get_remote_state ();
6790 for (const auto &stop_reply : rs->stop_reply_queue)
6791 gdb_assert (stop_reply->ptid != tp->ptid);
6792
6793 const resumed_pending_vcont_info &info
6794 = remote_thr->resumed_pending_vcont_info ();
6795
6796 /* Check if we need to send a specific action for this thread. If not,
6797 it will be included in a wildcard resume instead. */
6798 if (info.step || info.sig != GDB_SIGNAL_0
6799 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6800 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6801
6802 remote_thr->set_resumed ();
6803 }
6804
6805 /* Now check whether we can send any process-wide wildcard. This is
6806 to avoid sending a global wildcard in the case nothing is
6807 supposed to be resumed. */
6808 bool any_process_wildcard = false;
6809
6810 for (inferior *inf : all_non_exited_inferiors (this))
6811 {
6812 if (get_remote_inferior (inf)->may_wildcard_vcont)
6813 {
6814 any_process_wildcard = true;
6815 break;
6816 }
6817 }
6818
6819 if (any_process_wildcard)
6820 {
6821 /* If all processes are wildcard-able, then send a single "c"
6822 action, otherwise, send an "all (-1) threads of process"
6823 continue action for each running process, if any. */
6824 if (may_global_wildcard_vcont)
6825 {
6826 vcont_builder.push_action (minus_one_ptid,
6827 false, GDB_SIGNAL_0);
6828 }
6829 else
6830 {
6831 for (inferior *inf : all_non_exited_inferiors (this))
6832 {
6833 if (get_remote_inferior (inf)->may_wildcard_vcont)
6834 {
6835 vcont_builder.push_action (ptid_t (inf->pid),
6836 false, GDB_SIGNAL_0);
6837 }
6838 }
6839 }
6840 }
6841
6842 vcont_builder.flush ();
6843 }
6844
6845 /* Implementation of target_has_pending_events. */
6846
6847 bool
6848 remote_target::has_pending_events ()
6849 {
6850 if (target_can_async_p ())
6851 {
6852 remote_state *rs = get_remote_state ();
6853
6854 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6855 return true;
6856
6857 /* Note that BUFCNT can be negative, indicating sticky
6858 error. */
6859 if (rs->remote_desc->bufcnt != 0)
6860 return true;
6861 }
6862 return false;
6863 }
6864
6865 \f
6866
6867 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6868 thread, all threads of a remote process, or all threads of all
6869 processes. */
6870
6871 void
6872 remote_target::remote_stop_ns (ptid_t ptid)
6873 {
6874 struct remote_state *rs = get_remote_state ();
6875 char *p = rs->buf.data ();
6876 char *endp = p + get_remote_packet_size ();
6877
6878 /* If any thread that needs to stop was resumed but pending a vCont
6879 resume, generate a phony stop_reply. However, first check
6880 whether the thread wasn't resumed with a signal. Generating a
6881 phony stop in that case would result in losing the signal. */
6882 bool needs_commit = false;
6883 for (thread_info *tp : all_non_exited_threads (this, ptid))
6884 {
6885 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6886
6887 if (remote_thr->get_resume_state ()
6888 == resume_state::RESUMED_PENDING_VCONT)
6889 {
6890 const resumed_pending_vcont_info &info
6891 = remote_thr->resumed_pending_vcont_info ();
6892 if (info.sig != GDB_SIGNAL_0)
6893 {
6894 /* This signal must be forwarded to the inferior. We
6895 could commit-resume just this thread, but its simpler
6896 to just commit-resume everything. */
6897 needs_commit = true;
6898 break;
6899 }
6900 }
6901 }
6902
6903 if (needs_commit)
6904 commit_resumed ();
6905 else
6906 for (thread_info *tp : all_non_exited_threads (this, ptid))
6907 {
6908 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6909
6910 if (remote_thr->get_resume_state ()
6911 == resume_state::RESUMED_PENDING_VCONT)
6912 {
6913 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6914 "vCont-resume (%d, %ld, %s)", tp->ptid.pid(),
6915 tp->ptid.lwp (),
6916 pulongest (tp->ptid.tid ()));
6917
6918 /* Check that the thread wasn't resumed with a signal.
6919 Generating a phony stop would result in losing the
6920 signal. */
6921 const resumed_pending_vcont_info &info
6922 = remote_thr->resumed_pending_vcont_info ();
6923 gdb_assert (info.sig == GDB_SIGNAL_0);
6924
6925 stop_reply *sr = new stop_reply ();
6926 sr->ptid = tp->ptid;
6927 sr->rs = rs;
6928 sr->ws.set_stopped (GDB_SIGNAL_0);
6929 sr->arch = tp->inf->gdbarch;
6930 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6931 sr->watch_data_address = 0;
6932 sr->core = 0;
6933 this->push_stop_reply (sr);
6934
6935 /* Pretend that this thread was actually resumed on the
6936 remote target, then stopped. If we leave it in the
6937 RESUMED_PENDING_VCONT state and the commit_resumed
6938 method is called while the stop reply is still in the
6939 queue, we'll end up reporting a stop event to the core
6940 for that thread while it is running on the remote
6941 target... that would be bad. */
6942 remote_thr->set_resumed ();
6943 }
6944 }
6945
6946 /* FIXME: This supports_vCont_probed check is a workaround until
6947 packet_support is per-connection. */
6948 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6949 || !rs->supports_vCont_probed)
6950 remote_vcont_probe ();
6951
6952 if (!rs->supports_vCont.t)
6953 error (_("Remote server does not support stopping threads"));
6954
6955 if (ptid == minus_one_ptid
6956 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6957 p += xsnprintf (p, endp - p, "vCont;t");
6958 else
6959 {
6960 ptid_t nptid;
6961
6962 p += xsnprintf (p, endp - p, "vCont;t:");
6963
6964 if (ptid.is_pid ())
6965 /* All (-1) threads of process. */
6966 nptid = ptid_t (ptid.pid (), -1);
6967 else
6968 {
6969 /* Small optimization: if we already have a stop reply for
6970 this thread, no use in telling the stub we want this
6971 stopped. */
6972 if (peek_stop_reply (ptid))
6973 return;
6974
6975 nptid = ptid;
6976 }
6977
6978 write_ptid (p, endp, nptid);
6979 }
6980
6981 /* In non-stop, we get an immediate OK reply. The stop reply will
6982 come in asynchronously by notification. */
6983 putpkt (rs->buf);
6984 getpkt (&rs->buf, 0);
6985 if (strcmp (rs->buf.data (), "OK") != 0)
6986 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6987 rs->buf.data ());
6988 }
6989
6990 /* All-stop version of target_interrupt. Sends a break or a ^C to
6991 interrupt the remote target. It is undefined which thread of which
6992 process reports the interrupt. */
6993
6994 void
6995 remote_target::remote_interrupt_as ()
6996 {
6997 struct remote_state *rs = get_remote_state ();
6998
6999 rs->ctrlc_pending_p = 1;
7000
7001 /* If the inferior is stopped already, but the core didn't know
7002 about it yet, just ignore the request. The cached wait status
7003 will be collected in remote_wait. */
7004 if (rs->cached_wait_status)
7005 return;
7006
7007 /* Send interrupt_sequence to remote target. */
7008 send_interrupt_sequence ();
7009 }
7010
7011 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7012 the remote target. It is undefined which thread of which process
7013 reports the interrupt. Throws an error if the packet is not
7014 supported by the server. */
7015
7016 void
7017 remote_target::remote_interrupt_ns ()
7018 {
7019 struct remote_state *rs = get_remote_state ();
7020 char *p = rs->buf.data ();
7021 char *endp = p + get_remote_packet_size ();
7022
7023 xsnprintf (p, endp - p, "vCtrlC");
7024
7025 /* In non-stop, we get an immediate OK reply. The stop reply will
7026 come in asynchronously by notification. */
7027 putpkt (rs->buf);
7028 getpkt (&rs->buf, 0);
7029
7030 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7031 {
7032 case PACKET_OK:
7033 break;
7034 case PACKET_UNKNOWN:
7035 error (_("No support for interrupting the remote target."));
7036 case PACKET_ERROR:
7037 error (_("Interrupting target failed: %s"), rs->buf.data ());
7038 }
7039 }
7040
7041 /* Implement the to_stop function for the remote targets. */
7042
7043 void
7044 remote_target::stop (ptid_t ptid)
7045 {
7046 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7047
7048 if (target_is_non_stop_p ())
7049 remote_stop_ns (ptid);
7050 else
7051 {
7052 /* We don't currently have a way to transparently pause the
7053 remote target in all-stop mode. Interrupt it instead. */
7054 remote_interrupt_as ();
7055 }
7056 }
7057
7058 /* Implement the to_interrupt function for the remote targets. */
7059
7060 void
7061 remote_target::interrupt ()
7062 {
7063 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7064
7065 if (target_is_non_stop_p ())
7066 remote_interrupt_ns ();
7067 else
7068 remote_interrupt_as ();
7069 }
7070
7071 /* Implement the to_pass_ctrlc function for the remote targets. */
7072
7073 void
7074 remote_target::pass_ctrlc ()
7075 {
7076 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7077
7078 struct remote_state *rs = get_remote_state ();
7079
7080 /* If we're starting up, we're not fully synced yet. Quit
7081 immediately. */
7082 if (rs->starting_up)
7083 quit ();
7084 /* If ^C has already been sent once, offer to disconnect. */
7085 else if (rs->ctrlc_pending_p)
7086 interrupt_query ();
7087 else
7088 target_interrupt ();
7089 }
7090
7091 /* Ask the user what to do when an interrupt is received. */
7092
7093 void
7094 remote_target::interrupt_query ()
7095 {
7096 struct remote_state *rs = get_remote_state ();
7097
7098 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7099 {
7100 if (query (_("The target is not responding to interrupt requests.\n"
7101 "Stop debugging it? ")))
7102 {
7103 remote_unpush_target (this);
7104 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7105 }
7106 }
7107 else
7108 {
7109 if (query (_("Interrupted while waiting for the program.\n"
7110 "Give up waiting? ")))
7111 quit ();
7112 }
7113 }
7114
7115 /* Enable/disable target terminal ownership. Most targets can use
7116 terminal groups to control terminal ownership. Remote targets are
7117 different in that explicit transfer of ownership to/from GDB/target
7118 is required. */
7119
7120 void
7121 remote_target::terminal_inferior ()
7122 {
7123 /* NOTE: At this point we could also register our selves as the
7124 recipient of all input. Any characters typed could then be
7125 passed on down to the target. */
7126 }
7127
7128 void
7129 remote_target::terminal_ours ()
7130 {
7131 }
7132
7133 static void
7134 remote_console_output (const char *msg)
7135 {
7136 const char *p;
7137
7138 for (p = msg; p[0] && p[1]; p += 2)
7139 {
7140 char tb[2];
7141 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7142
7143 tb[0] = c;
7144 tb[1] = 0;
7145 gdb_stdtarg->puts (tb);
7146 }
7147 gdb_stdtarg->flush ();
7148 }
7149
7150 /* Return the length of the stop reply queue. */
7151
7152 int
7153 remote_target::stop_reply_queue_length ()
7154 {
7155 remote_state *rs = get_remote_state ();
7156 return rs->stop_reply_queue.size ();
7157 }
7158
7159 static void
7160 remote_notif_stop_parse (remote_target *remote,
7161 struct notif_client *self, const char *buf,
7162 struct notif_event *event)
7163 {
7164 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7165 }
7166
7167 static void
7168 remote_notif_stop_ack (remote_target *remote,
7169 struct notif_client *self, const char *buf,
7170 struct notif_event *event)
7171 {
7172 struct stop_reply *stop_reply = (struct stop_reply *) event;
7173
7174 /* acknowledge */
7175 putpkt (remote, self->ack_command);
7176
7177 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7178 the notification. It was left in the queue because we need to
7179 acknowledge it and pull the rest of the notifications out. */
7180 if (stop_reply->ws.kind () != TARGET_WAITKIND_IGNORE)
7181 remote->push_stop_reply (stop_reply);
7182 }
7183
7184 static int
7185 remote_notif_stop_can_get_pending_events (remote_target *remote,
7186 struct notif_client *self)
7187 {
7188 /* We can't get pending events in remote_notif_process for
7189 notification stop, and we have to do this in remote_wait_ns
7190 instead. If we fetch all queued events from stub, remote stub
7191 may exit and we have no chance to process them back in
7192 remote_wait_ns. */
7193 remote_state *rs = remote->get_remote_state ();
7194 mark_async_event_handler (rs->remote_async_inferior_event_token);
7195 return 0;
7196 }
7197
7198 stop_reply::~stop_reply ()
7199 {
7200 for (cached_reg_t &reg : regcache)
7201 xfree (reg.data);
7202 }
7203
7204 static notif_event_up
7205 remote_notif_stop_alloc_reply ()
7206 {
7207 return notif_event_up (new struct stop_reply ());
7208 }
7209
7210 /* A client of notification Stop. */
7211
7212 struct notif_client notif_client_stop =
7213 {
7214 "Stop",
7215 "vStopped",
7216 remote_notif_stop_parse,
7217 remote_notif_stop_ack,
7218 remote_notif_stop_can_get_pending_events,
7219 remote_notif_stop_alloc_reply,
7220 REMOTE_NOTIF_STOP,
7221 };
7222
7223 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7224 the pid of the process that owns the threads we want to check, or
7225 -1 if we want to check all threads. */
7226
7227 static int
7228 is_pending_fork_parent (const target_waitstatus *ws, int event_pid,
7229 ptid_t thread_ptid)
7230 {
7231 if (ws->kind () == TARGET_WAITKIND_FORKED
7232 || ws->kind () == TARGET_WAITKIND_VFORKED)
7233 {
7234 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7235 return 1;
7236 }
7237
7238 return 0;
7239 }
7240
7241 /* Return the thread's pending status used to determine whether the
7242 thread is a fork parent stopped at a fork event. */
7243
7244 static const target_waitstatus *
7245 thread_pending_fork_status (struct thread_info *thread)
7246 {
7247 if (thread->has_pending_waitstatus ())
7248 return &thread->pending_waitstatus ();
7249 else
7250 return &thread->pending_follow;
7251 }
7252
7253 /* Determine if THREAD is a pending fork parent thread. */
7254
7255 static int
7256 is_pending_fork_parent_thread (struct thread_info *thread)
7257 {
7258 const target_waitstatus *ws = thread_pending_fork_status (thread);
7259 int pid = -1;
7260
7261 return is_pending_fork_parent (ws, pid, thread->ptid);
7262 }
7263
7264 /* If CONTEXT contains any fork child threads that have not been
7265 reported yet, remove them from the CONTEXT list. If such a
7266 thread exists it is because we are stopped at a fork catchpoint
7267 and have not yet called follow_fork, which will set up the
7268 host-side data structures for the new process. */
7269
7270 void
7271 remote_target::remove_new_fork_children (threads_listing_context *context)
7272 {
7273 int pid = -1;
7274 struct notif_client *notif = &notif_client_stop;
7275
7276 /* For any threads stopped at a fork event, remove the corresponding
7277 fork child threads from the CONTEXT list. */
7278 for (thread_info *thread : all_non_exited_threads (this))
7279 {
7280 const target_waitstatus *ws = thread_pending_fork_status (thread);
7281
7282 if (is_pending_fork_parent (ws, pid, thread->ptid))
7283 context->remove_thread (ws->child_ptid ());
7284 }
7285
7286 /* Check for any pending fork events (not reported or processed yet)
7287 in process PID and remove those fork child threads from the
7288 CONTEXT list as well. */
7289 remote_notif_get_pending_events (notif);
7290 for (auto &event : get_remote_state ()->stop_reply_queue)
7291 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7292 || event->ws.kind () == TARGET_WAITKIND_VFORKED
7293 || event->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
7294 context->remove_thread (event->ws.child_ptid ());
7295 }
7296
7297 /* Check whether any event pending in the vStopped queue would prevent a
7298 global or process wildcard vCont action. Set *may_global_wildcard to
7299 false if we can't do a global wildcard (vCont;c), and clear the event
7300 inferior's may_wildcard_vcont flag if we can't do a process-wide
7301 wildcard resume (vCont;c:pPID.-1). */
7302
7303 void
7304 remote_target::check_pending_events_prevent_wildcard_vcont
7305 (bool *may_global_wildcard)
7306 {
7307 struct notif_client *notif = &notif_client_stop;
7308
7309 remote_notif_get_pending_events (notif);
7310 for (auto &event : get_remote_state ()->stop_reply_queue)
7311 {
7312 if (event->ws.kind () == TARGET_WAITKIND_NO_RESUMED
7313 || event->ws.kind () == TARGET_WAITKIND_NO_HISTORY)
7314 continue;
7315
7316 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7317 || event->ws.kind () == TARGET_WAITKIND_VFORKED)
7318 *may_global_wildcard = false;
7319
7320 /* This may be the first time we heard about this process.
7321 Regardless, we must not do a global wildcard resume, otherwise
7322 we'd resume this process too. */
7323 *may_global_wildcard = false;
7324 if (event->ptid != null_ptid)
7325 {
7326 inferior *inf = find_inferior_ptid (this, event->ptid);
7327 if (inf != NULL)
7328 get_remote_inferior (inf)->may_wildcard_vcont = false;
7329 }
7330 }
7331 }
7332
7333 /* Discard all pending stop replies of inferior INF. */
7334
7335 void
7336 remote_target::discard_pending_stop_replies (struct inferior *inf)
7337 {
7338 struct stop_reply *reply;
7339 struct remote_state *rs = get_remote_state ();
7340 struct remote_notif_state *rns = rs->notif_state;
7341
7342 /* This function can be notified when an inferior exists. When the
7343 target is not remote, the notification state is NULL. */
7344 if (rs->remote_desc == NULL)
7345 return;
7346
7347 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7348
7349 /* Discard the in-flight notification. */
7350 if (reply != NULL && reply->ptid.pid () == inf->pid)
7351 {
7352 /* Leave the notification pending, since the server expects that
7353 we acknowledge it with vStopped. But clear its contents, so
7354 that later on when we acknowledge it, we also discard it. */
7355 reply->ws.set_ignore ();
7356
7357 if (remote_debug)
7358 fprintf_unfiltered (gdb_stdlog,
7359 "discarded in-flight notification\n");
7360 }
7361
7362 /* Discard the stop replies we have already pulled with
7363 vStopped. */
7364 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7365 rs->stop_reply_queue.end (),
7366 [=] (const stop_reply_up &event)
7367 {
7368 return event->ptid.pid () == inf->pid;
7369 });
7370 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7371 }
7372
7373 /* Discard the stop replies for RS in stop_reply_queue. */
7374
7375 void
7376 remote_target::discard_pending_stop_replies_in_queue ()
7377 {
7378 remote_state *rs = get_remote_state ();
7379
7380 /* Discard the stop replies we have already pulled with
7381 vStopped. */
7382 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7383 rs->stop_reply_queue.end (),
7384 [=] (const stop_reply_up &event)
7385 {
7386 return event->rs == rs;
7387 });
7388 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7389 }
7390
7391 /* Remove the first reply in 'stop_reply_queue' which matches
7392 PTID. */
7393
7394 struct stop_reply *
7395 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7396 {
7397 remote_state *rs = get_remote_state ();
7398
7399 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7400 rs->stop_reply_queue.end (),
7401 [=] (const stop_reply_up &event)
7402 {
7403 return event->ptid.matches (ptid);
7404 });
7405 struct stop_reply *result;
7406 if (iter == rs->stop_reply_queue.end ())
7407 result = nullptr;
7408 else
7409 {
7410 result = iter->release ();
7411 rs->stop_reply_queue.erase (iter);
7412 }
7413
7414 if (notif_debug)
7415 fprintf_unfiltered (gdb_stdlog,
7416 "notif: discard queued event: 'Stop' in %s\n",
7417 target_pid_to_str (ptid).c_str ());
7418
7419 return result;
7420 }
7421
7422 /* Look for a queued stop reply belonging to PTID. If one is found,
7423 remove it from the queue, and return it. Returns NULL if none is
7424 found. If there are still queued events left to process, tell the
7425 event loop to get back to target_wait soon. */
7426
7427 struct stop_reply *
7428 remote_target::queued_stop_reply (ptid_t ptid)
7429 {
7430 remote_state *rs = get_remote_state ();
7431 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7432
7433 if (!rs->stop_reply_queue.empty ())
7434 {
7435 /* There's still at least an event left. */
7436 mark_async_event_handler (rs->remote_async_inferior_event_token);
7437 }
7438
7439 return r;
7440 }
7441
7442 /* Push a fully parsed stop reply in the stop reply queue. Since we
7443 know that we now have at least one queued event left to pass to the
7444 core side, tell the event loop to get back to target_wait soon. */
7445
7446 void
7447 remote_target::push_stop_reply (struct stop_reply *new_event)
7448 {
7449 remote_state *rs = get_remote_state ();
7450 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7451
7452 if (notif_debug)
7453 fprintf_unfiltered (gdb_stdlog,
7454 "notif: push 'Stop' %s to queue %d\n",
7455 target_pid_to_str (new_event->ptid).c_str (),
7456 int (rs->stop_reply_queue.size ()));
7457
7458 mark_async_event_handler (rs->remote_async_inferior_event_token);
7459 }
7460
7461 /* Returns true if we have a stop reply for PTID. */
7462
7463 int
7464 remote_target::peek_stop_reply (ptid_t ptid)
7465 {
7466 remote_state *rs = get_remote_state ();
7467 for (auto &event : rs->stop_reply_queue)
7468 if (ptid == event->ptid
7469 && event->ws.kind () == TARGET_WAITKIND_STOPPED)
7470 return 1;
7471 return 0;
7472 }
7473
7474 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7475 starting with P and ending with PEND matches PREFIX. */
7476
7477 static int
7478 strprefix (const char *p, const char *pend, const char *prefix)
7479 {
7480 for ( ; p < pend; p++, prefix++)
7481 if (*p != *prefix)
7482 return 0;
7483 return *prefix == '\0';
7484 }
7485
7486 /* Parse the stop reply in BUF. Either the function succeeds, and the
7487 result is stored in EVENT, or throws an error. */
7488
7489 void
7490 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7491 {
7492 remote_arch_state *rsa = NULL;
7493 ULONGEST addr;
7494 const char *p;
7495 int skipregs = 0;
7496
7497 event->ptid = null_ptid;
7498 event->rs = get_remote_state ();
7499 event->ws.set_ignore ();
7500 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7501 event->regcache.clear ();
7502 event->core = -1;
7503
7504 switch (buf[0])
7505 {
7506 case 'T': /* Status with PC, SP, FP, ... */
7507 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7508 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7509 ss = signal number
7510 n... = register number
7511 r... = register contents
7512 */
7513
7514 p = &buf[3]; /* after Txx */
7515 while (*p)
7516 {
7517 const char *p1;
7518 int fieldsize;
7519
7520 p1 = strchr (p, ':');
7521 if (p1 == NULL)
7522 error (_("Malformed packet(a) (missing colon): %s\n\
7523 Packet: '%s'\n"),
7524 p, buf);
7525 if (p == p1)
7526 error (_("Malformed packet(a) (missing register number): %s\n\
7527 Packet: '%s'\n"),
7528 p, buf);
7529
7530 /* Some "registers" are actually extended stop information.
7531 Note if you're adding a new entry here: GDB 7.9 and
7532 earlier assume that all register "numbers" that start
7533 with an hex digit are real register numbers. Make sure
7534 the server only sends such a packet if it knows the
7535 client understands it. */
7536
7537 if (strprefix (p, p1, "thread"))
7538 event->ptid = read_ptid (++p1, &p);
7539 else if (strprefix (p, p1, "syscall_entry"))
7540 {
7541 ULONGEST sysno;
7542
7543 p = unpack_varlen_hex (++p1, &sysno);
7544 event->ws.set_syscall_entry ((int) sysno);
7545 }
7546 else if (strprefix (p, p1, "syscall_return"))
7547 {
7548 ULONGEST sysno;
7549
7550 p = unpack_varlen_hex (++p1, &sysno);
7551 event->ws.set_syscall_return ((int) sysno);
7552 }
7553 else if (strprefix (p, p1, "watch")
7554 || strprefix (p, p1, "rwatch")
7555 || strprefix (p, p1, "awatch"))
7556 {
7557 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7558 p = unpack_varlen_hex (++p1, &addr);
7559 event->watch_data_address = (CORE_ADDR) addr;
7560 }
7561 else if (strprefix (p, p1, "swbreak"))
7562 {
7563 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7564
7565 /* Make sure the stub doesn't forget to indicate support
7566 with qSupported. */
7567 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7568 error (_("Unexpected swbreak stop reason"));
7569
7570 /* The value part is documented as "must be empty",
7571 though we ignore it, in case we ever decide to make
7572 use of it in a backward compatible way. */
7573 p = strchrnul (p1 + 1, ';');
7574 }
7575 else if (strprefix (p, p1, "hwbreak"))
7576 {
7577 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7578
7579 /* Make sure the stub doesn't forget to indicate support
7580 with qSupported. */
7581 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7582 error (_("Unexpected hwbreak stop reason"));
7583
7584 /* See above. */
7585 p = strchrnul (p1 + 1, ';');
7586 }
7587 else if (strprefix (p, p1, "library"))
7588 {
7589 event->ws.set_loaded ();
7590 p = strchrnul (p1 + 1, ';');
7591 }
7592 else if (strprefix (p, p1, "replaylog"))
7593 {
7594 event->ws.set_no_history ();
7595 /* p1 will indicate "begin" or "end", but it makes
7596 no difference for now, so ignore it. */
7597 p = strchrnul (p1 + 1, ';');
7598 }
7599 else if (strprefix (p, p1, "core"))
7600 {
7601 ULONGEST c;
7602
7603 p = unpack_varlen_hex (++p1, &c);
7604 event->core = c;
7605 }
7606 else if (strprefix (p, p1, "fork"))
7607 event->ws.set_forked (read_ptid (++p1, &p));
7608 else if (strprefix (p, p1, "vfork"))
7609 event->ws.set_vforked (read_ptid (++p1, &p));
7610 else if (strprefix (p, p1, "vforkdone"))
7611 {
7612 event->ws.set_vfork_done ();
7613 p = strchrnul (p1 + 1, ';');
7614 }
7615 else if (strprefix (p, p1, "exec"))
7616 {
7617 ULONGEST ignored;
7618 int pathlen;
7619
7620 /* Determine the length of the execd pathname. */
7621 p = unpack_varlen_hex (++p1, &ignored);
7622 pathlen = (p - p1) / 2;
7623
7624 /* Save the pathname for event reporting and for
7625 the next run command. */
7626 gdb::unique_xmalloc_ptr<char> pathname
7627 ((char *) xmalloc (pathlen + 1));
7628 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7629 pathname.get ()[pathlen] = '\0';
7630
7631 /* This is freed during event handling. */
7632 event->ws.set_execd (std::move (pathname));
7633
7634 /* Skip the registers included in this packet, since
7635 they may be for an architecture different from the
7636 one used by the original program. */
7637 skipregs = 1;
7638 }
7639 else if (strprefix (p, p1, "create"))
7640 {
7641 event->ws.set_thread_created ();
7642 p = strchrnul (p1 + 1, ';');
7643 }
7644 else
7645 {
7646 ULONGEST pnum;
7647 const char *p_temp;
7648
7649 if (skipregs)
7650 {
7651 p = strchrnul (p1 + 1, ';');
7652 p++;
7653 continue;
7654 }
7655
7656 /* Maybe a real ``P'' register number. */
7657 p_temp = unpack_varlen_hex (p, &pnum);
7658 /* If the first invalid character is the colon, we got a
7659 register number. Otherwise, it's an unknown stop
7660 reason. */
7661 if (p_temp == p1)
7662 {
7663 /* If we haven't parsed the event's thread yet, find
7664 it now, in order to find the architecture of the
7665 reported expedited registers. */
7666 if (event->ptid == null_ptid)
7667 {
7668 /* If there is no thread-id information then leave
7669 the event->ptid as null_ptid. Later in
7670 process_stop_reply we will pick a suitable
7671 thread. */
7672 const char *thr = strstr (p1 + 1, ";thread:");
7673 if (thr != NULL)
7674 event->ptid = read_ptid (thr + strlen (";thread:"),
7675 NULL);
7676 }
7677
7678 if (rsa == NULL)
7679 {
7680 inferior *inf
7681 = (event->ptid == null_ptid
7682 ? NULL
7683 : find_inferior_ptid (this, event->ptid));
7684 /* If this is the first time we learn anything
7685 about this process, skip the registers
7686 included in this packet, since we don't yet
7687 know which architecture to use to parse them.
7688 We'll determine the architecture later when
7689 we process the stop reply and retrieve the
7690 target description, via
7691 remote_notice_new_inferior ->
7692 post_create_inferior. */
7693 if (inf == NULL)
7694 {
7695 p = strchrnul (p1 + 1, ';');
7696 p++;
7697 continue;
7698 }
7699
7700 event->arch = inf->gdbarch;
7701 rsa = event->rs->get_remote_arch_state (event->arch);
7702 }
7703
7704 packet_reg *reg
7705 = packet_reg_from_pnum (event->arch, rsa, pnum);
7706 cached_reg_t cached_reg;
7707
7708 if (reg == NULL)
7709 error (_("Remote sent bad register number %s: %s\n\
7710 Packet: '%s'\n"),
7711 hex_string (pnum), p, buf);
7712
7713 cached_reg.num = reg->regnum;
7714 cached_reg.data = (gdb_byte *)
7715 xmalloc (register_size (event->arch, reg->regnum));
7716
7717 p = p1 + 1;
7718 fieldsize = hex2bin (p, cached_reg.data,
7719 register_size (event->arch, reg->regnum));
7720 p += 2 * fieldsize;
7721 if (fieldsize < register_size (event->arch, reg->regnum))
7722 warning (_("Remote reply is too short: %s"), buf);
7723
7724 event->regcache.push_back (cached_reg);
7725 }
7726 else
7727 {
7728 /* Not a number. Silently skip unknown optional
7729 info. */
7730 p = strchrnul (p1 + 1, ';');
7731 }
7732 }
7733
7734 if (*p != ';')
7735 error (_("Remote register badly formatted: %s\nhere: %s"),
7736 buf, p);
7737 ++p;
7738 }
7739
7740 if (event->ws.kind () != TARGET_WAITKIND_IGNORE)
7741 break;
7742
7743 /* fall through */
7744 case 'S': /* Old style status, just signal only. */
7745 {
7746 int sig;
7747
7748 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7749 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7750 event->ws.set_stopped ((enum gdb_signal) sig);
7751 else
7752 event->ws.set_stopped (GDB_SIGNAL_UNKNOWN);
7753 }
7754 break;
7755 case 'w': /* Thread exited. */
7756 {
7757 ULONGEST value;
7758
7759 p = unpack_varlen_hex (&buf[1], &value);
7760 event->ws.set_thread_exited (value);
7761 if (*p != ';')
7762 error (_("stop reply packet badly formatted: %s"), buf);
7763 event->ptid = read_ptid (++p, NULL);
7764 break;
7765 }
7766 case 'W': /* Target exited. */
7767 case 'X':
7768 {
7769 ULONGEST value;
7770
7771 /* GDB used to accept only 2 hex chars here. Stubs should
7772 only send more if they detect GDB supports multi-process
7773 support. */
7774 p = unpack_varlen_hex (&buf[1], &value);
7775
7776 if (buf[0] == 'W')
7777 {
7778 /* The remote process exited. */
7779 event->ws.set_exited (value);
7780 }
7781 else
7782 {
7783 /* The remote process exited with a signal. */
7784 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7785 event->ws.set_signalled ((enum gdb_signal) value);
7786 else
7787 event->ws.set_signalled (GDB_SIGNAL_UNKNOWN);
7788 }
7789
7790 /* If no process is specified, return null_ptid, and let the
7791 caller figure out the right process to use. */
7792 int pid = 0;
7793 if (*p == '\0')
7794 ;
7795 else if (*p == ';')
7796 {
7797 p++;
7798
7799 if (*p == '\0')
7800 ;
7801 else if (startswith (p, "process:"))
7802 {
7803 ULONGEST upid;
7804
7805 p += sizeof ("process:") - 1;
7806 unpack_varlen_hex (p, &upid);
7807 pid = upid;
7808 }
7809 else
7810 error (_("unknown stop reply packet: %s"), buf);
7811 }
7812 else
7813 error (_("unknown stop reply packet: %s"), buf);
7814 event->ptid = ptid_t (pid);
7815 }
7816 break;
7817 case 'N':
7818 event->ws.set_no_resumed ();
7819 event->ptid = minus_one_ptid;
7820 break;
7821 }
7822 }
7823
7824 /* When the stub wants to tell GDB about a new notification reply, it
7825 sends a notification (%Stop, for example). Those can come it at
7826 any time, hence, we have to make sure that any pending
7827 putpkt/getpkt sequence we're making is finished, before querying
7828 the stub for more events with the corresponding ack command
7829 (vStopped, for example). E.g., if we started a vStopped sequence
7830 immediately upon receiving the notification, something like this
7831 could happen:
7832
7833 1.1) --> Hg 1
7834 1.2) <-- OK
7835 1.3) --> g
7836 1.4) <-- %Stop
7837 1.5) --> vStopped
7838 1.6) <-- (registers reply to step #1.3)
7839
7840 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7841 query.
7842
7843 To solve this, whenever we parse a %Stop notification successfully,
7844 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7845 doing whatever we were doing:
7846
7847 2.1) --> Hg 1
7848 2.2) <-- OK
7849 2.3) --> g
7850 2.4) <-- %Stop
7851 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7852 2.5) <-- (registers reply to step #2.3)
7853
7854 Eventually after step #2.5, we return to the event loop, which
7855 notices there's an event on the
7856 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7857 associated callback --- the function below. At this point, we're
7858 always safe to start a vStopped sequence. :
7859
7860 2.6) --> vStopped
7861 2.7) <-- T05 thread:2
7862 2.8) --> vStopped
7863 2.9) --> OK
7864 */
7865
7866 void
7867 remote_target::remote_notif_get_pending_events (notif_client *nc)
7868 {
7869 struct remote_state *rs = get_remote_state ();
7870
7871 if (rs->notif_state->pending_event[nc->id] != NULL)
7872 {
7873 if (notif_debug)
7874 fprintf_unfiltered (gdb_stdlog,
7875 "notif: process: '%s' ack pending event\n",
7876 nc->name);
7877
7878 /* acknowledge */
7879 nc->ack (this, nc, rs->buf.data (),
7880 rs->notif_state->pending_event[nc->id]);
7881 rs->notif_state->pending_event[nc->id] = NULL;
7882
7883 while (1)
7884 {
7885 getpkt (&rs->buf, 0);
7886 if (strcmp (rs->buf.data (), "OK") == 0)
7887 break;
7888 else
7889 remote_notif_ack (this, nc, rs->buf.data ());
7890 }
7891 }
7892 else
7893 {
7894 if (notif_debug)
7895 fprintf_unfiltered (gdb_stdlog,
7896 "notif: process: '%s' no pending reply\n",
7897 nc->name);
7898 }
7899 }
7900
7901 /* Wrapper around remote_target::remote_notif_get_pending_events to
7902 avoid having to export the whole remote_target class. */
7903
7904 void
7905 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7906 {
7907 remote->remote_notif_get_pending_events (nc);
7908 }
7909
7910 /* Called from process_stop_reply when the stop packet we are responding
7911 to didn't include a process-id or thread-id. STATUS is the stop event
7912 we are responding to.
7913
7914 It is the task of this function to select a suitable thread (or process)
7915 and return its ptid, this is the thread (or process) we will assume the
7916 stop event came from.
7917
7918 In some cases there isn't really any choice about which thread (or
7919 process) is selected, a basic remote with a single process containing a
7920 single thread might choose not to send any process-id or thread-id in
7921 its stop packets, this function will select and return the one and only
7922 thread.
7923
7924 However, if a target supports multiple threads (or processes) and still
7925 doesn't include a thread-id (or process-id) in its stop packet then
7926 first, this is a badly behaving target, and second, we're going to have
7927 to select a thread (or process) at random and use that. This function
7928 will print a warning to the user if it detects that there is the
7929 possibility that GDB is guessing which thread (or process) to
7930 report.
7931
7932 Note that this is called before GDB fetches the updated thread list from the
7933 target. So it's possible for the stop reply to be ambiguous and for GDB to
7934 not realize it. For example, if there's initially one thread, the target
7935 spawns a second thread, and then sends a stop reply without an id that
7936 concerns the first thread. GDB will assume the stop reply is about the
7937 first thread - the only thread it knows about - without printing a warning.
7938 Anyway, if the remote meant for the stop reply to be about the second thread,
7939 then it would be really broken, because GDB doesn't know about that thread
7940 yet. */
7941
7942 ptid_t
7943 remote_target::select_thread_for_ambiguous_stop_reply
7944 (const struct target_waitstatus *status)
7945 {
7946 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7947
7948 /* Some stop events apply to all threads in an inferior, while others
7949 only apply to a single thread. */
7950 bool process_wide_stop
7951 = (status->kind () == TARGET_WAITKIND_EXITED
7952 || status->kind () == TARGET_WAITKIND_SIGNALLED);
7953
7954 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7955
7956 thread_info *first_resumed_thread = nullptr;
7957 bool ambiguous = false;
7958
7959 /* Consider all non-exited threads of the target, find the first resumed
7960 one. */
7961 for (thread_info *thr : all_non_exited_threads (this))
7962 {
7963 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7964
7965 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7966 continue;
7967
7968 if (first_resumed_thread == nullptr)
7969 first_resumed_thread = thr;
7970 else if (!process_wide_stop
7971 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7972 ambiguous = true;
7973 }
7974
7975 remote_debug_printf ("first resumed thread is %s",
7976 pid_to_str (first_resumed_thread->ptid).c_str ());
7977 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7978
7979 gdb_assert (first_resumed_thread != nullptr);
7980
7981 /* Warn if the remote target is sending ambiguous stop replies. */
7982 if (ambiguous)
7983 {
7984 static bool warned = false;
7985
7986 if (!warned)
7987 {
7988 /* If you are seeing this warning then the remote target has
7989 stopped without specifying a thread-id, but the target
7990 does have multiple threads (or inferiors), and so GDB is
7991 having to guess which thread stopped.
7992
7993 Examples of what might cause this are the target sending
7994 and 'S' stop packet, or a 'T' stop packet and not
7995 including a thread-id.
7996
7997 Additionally, the target might send a 'W' or 'X packet
7998 without including a process-id, when the target has
7999 multiple running inferiors. */
8000 if (process_wide_stop)
8001 warning (_("multi-inferior target stopped without "
8002 "sending a process-id, using first "
8003 "non-exited inferior"));
8004 else
8005 warning (_("multi-threaded target stopped without "
8006 "sending a thread-id, using first "
8007 "non-exited thread"));
8008 warned = true;
8009 }
8010 }
8011
8012 /* If this is a stop for all threads then don't use a particular threads
8013 ptid, instead create a new ptid where only the pid field is set. */
8014 if (process_wide_stop)
8015 return ptid_t (first_resumed_thread->ptid.pid ());
8016 else
8017 return first_resumed_thread->ptid;
8018 }
8019
8020 /* Called when it is decided that STOP_REPLY holds the info of the
8021 event that is to be returned to the core. This function always
8022 destroys STOP_REPLY. */
8023
8024 ptid_t
8025 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8026 struct target_waitstatus *status)
8027 {
8028 *status = stop_reply->ws;
8029 ptid_t ptid = stop_reply->ptid;
8030
8031 /* If no thread/process was reported by the stub then select a suitable
8032 thread/process. */
8033 if (ptid == null_ptid)
8034 ptid = select_thread_for_ambiguous_stop_reply (status);
8035 gdb_assert (ptid != null_ptid);
8036
8037 if (status->kind () != TARGET_WAITKIND_EXITED
8038 && status->kind () != TARGET_WAITKIND_SIGNALLED
8039 && status->kind () != TARGET_WAITKIND_NO_RESUMED)
8040 {
8041 /* Expedited registers. */
8042 if (!stop_reply->regcache.empty ())
8043 {
8044 struct regcache *regcache
8045 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8046
8047 for (cached_reg_t &reg : stop_reply->regcache)
8048 {
8049 regcache->raw_supply (reg.num, reg.data);
8050 xfree (reg.data);
8051 }
8052
8053 stop_reply->regcache.clear ();
8054 }
8055
8056 remote_notice_new_inferior (ptid, false);
8057 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8058 remote_thr->core = stop_reply->core;
8059 remote_thr->stop_reason = stop_reply->stop_reason;
8060 remote_thr->watch_data_address = stop_reply->watch_data_address;
8061
8062 if (target_is_non_stop_p ())
8063 {
8064 /* If the target works in non-stop mode, a stop-reply indicates that
8065 only this thread stopped. */
8066 remote_thr->set_not_resumed ();
8067 }
8068 else
8069 {
8070 /* If the target works in all-stop mode, a stop-reply indicates that
8071 all the target's threads stopped. */
8072 for (thread_info *tp : all_non_exited_threads (this))
8073 get_remote_thread_info (tp)->set_not_resumed ();
8074 }
8075 }
8076
8077 delete stop_reply;
8078 return ptid;
8079 }
8080
8081 /* The non-stop mode version of target_wait. */
8082
8083 ptid_t
8084 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8085 target_wait_flags options)
8086 {
8087 struct remote_state *rs = get_remote_state ();
8088 struct stop_reply *stop_reply;
8089 int ret;
8090 int is_notif = 0;
8091
8092 /* If in non-stop mode, get out of getpkt even if a
8093 notification is received. */
8094
8095 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8096 while (1)
8097 {
8098 if (ret != -1 && !is_notif)
8099 switch (rs->buf[0])
8100 {
8101 case 'E': /* Error of some sort. */
8102 /* We're out of sync with the target now. Did it continue
8103 or not? We can't tell which thread it was in non-stop,
8104 so just ignore this. */
8105 warning (_("Remote failure reply: %s"), rs->buf.data ());
8106 break;
8107 case 'O': /* Console output. */
8108 remote_console_output (&rs->buf[1]);
8109 break;
8110 default:
8111 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8112 break;
8113 }
8114
8115 /* Acknowledge a pending stop reply that may have arrived in the
8116 mean time. */
8117 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8118 remote_notif_get_pending_events (&notif_client_stop);
8119
8120 /* If indeed we noticed a stop reply, we're done. */
8121 stop_reply = queued_stop_reply (ptid);
8122 if (stop_reply != NULL)
8123 return process_stop_reply (stop_reply, status);
8124
8125 /* Still no event. If we're just polling for an event, then
8126 return to the event loop. */
8127 if (options & TARGET_WNOHANG)
8128 {
8129 status->set_ignore ();
8130 return minus_one_ptid;
8131 }
8132
8133 /* Otherwise do a blocking wait. */
8134 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8135 }
8136 }
8137
8138 /* Return the first resumed thread. */
8139
8140 static ptid_t
8141 first_remote_resumed_thread (remote_target *target)
8142 {
8143 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8144 if (tp->resumed ())
8145 return tp->ptid;
8146 return null_ptid;
8147 }
8148
8149 /* Wait until the remote machine stops, then return, storing status in
8150 STATUS just as `wait' would. */
8151
8152 ptid_t
8153 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8154 target_wait_flags options)
8155 {
8156 struct remote_state *rs = get_remote_state ();
8157 ptid_t event_ptid = null_ptid;
8158 char *buf;
8159 struct stop_reply *stop_reply;
8160
8161 again:
8162
8163 status->set_ignore ();
8164
8165 stop_reply = queued_stop_reply (ptid);
8166 if (stop_reply != NULL)
8167 return process_stop_reply (stop_reply, status);
8168
8169 if (rs->cached_wait_status)
8170 /* Use the cached wait status, but only once. */
8171 rs->cached_wait_status = 0;
8172 else
8173 {
8174 int ret;
8175 int is_notif;
8176 int forever = ((options & TARGET_WNOHANG) == 0
8177 && rs->wait_forever_enabled_p);
8178
8179 if (!rs->waiting_for_stop_reply)
8180 {
8181 status->set_no_resumed ();
8182 return minus_one_ptid;
8183 }
8184
8185 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8186 _never_ wait for ever -> test on target_is_async_p().
8187 However, before we do that we need to ensure that the caller
8188 knows how to take the target into/out of async mode. */
8189 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8190
8191 /* GDB gets a notification. Return to core as this event is
8192 not interesting. */
8193 if (ret != -1 && is_notif)
8194 return minus_one_ptid;
8195
8196 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8197 return minus_one_ptid;
8198 }
8199
8200 buf = rs->buf.data ();
8201
8202 /* Assume that the target has acknowledged Ctrl-C unless we receive
8203 an 'F' or 'O' packet. */
8204 if (buf[0] != 'F' && buf[0] != 'O')
8205 rs->ctrlc_pending_p = 0;
8206
8207 switch (buf[0])
8208 {
8209 case 'E': /* Error of some sort. */
8210 /* We're out of sync with the target now. Did it continue or
8211 not? Not is more likely, so report a stop. */
8212 rs->waiting_for_stop_reply = 0;
8213
8214 warning (_("Remote failure reply: %s"), buf);
8215 status->set_stopped (GDB_SIGNAL_0);
8216 break;
8217 case 'F': /* File-I/O request. */
8218 /* GDB may access the inferior memory while handling the File-I/O
8219 request, but we don't want GDB accessing memory while waiting
8220 for a stop reply. See the comments in putpkt_binary. Set
8221 waiting_for_stop_reply to 0 temporarily. */
8222 rs->waiting_for_stop_reply = 0;
8223 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8224 rs->ctrlc_pending_p = 0;
8225 /* GDB handled the File-I/O request, and the target is running
8226 again. Keep waiting for events. */
8227 rs->waiting_for_stop_reply = 1;
8228 break;
8229 case 'N': case 'T': case 'S': case 'X': case 'W':
8230 {
8231 /* There is a stop reply to handle. */
8232 rs->waiting_for_stop_reply = 0;
8233
8234 stop_reply
8235 = (struct stop_reply *) remote_notif_parse (this,
8236 &notif_client_stop,
8237 rs->buf.data ());
8238
8239 event_ptid = process_stop_reply (stop_reply, status);
8240 break;
8241 }
8242 case 'O': /* Console output. */
8243 remote_console_output (buf + 1);
8244 break;
8245 case '\0':
8246 if (rs->last_sent_signal != GDB_SIGNAL_0)
8247 {
8248 /* Zero length reply means that we tried 'S' or 'C' and the
8249 remote system doesn't support it. */
8250 target_terminal::ours_for_output ();
8251 printf_filtered
8252 ("Can't send signals to this remote system. %s not sent.\n",
8253 gdb_signal_to_name (rs->last_sent_signal));
8254 rs->last_sent_signal = GDB_SIGNAL_0;
8255 target_terminal::inferior ();
8256
8257 strcpy (buf, rs->last_sent_step ? "s" : "c");
8258 putpkt (buf);
8259 break;
8260 }
8261 /* fallthrough */
8262 default:
8263 warning (_("Invalid remote reply: %s"), buf);
8264 break;
8265 }
8266
8267 if (status->kind () == TARGET_WAITKIND_NO_RESUMED)
8268 return minus_one_ptid;
8269 else if (status->kind () == TARGET_WAITKIND_IGNORE)
8270 {
8271 /* Nothing interesting happened. If we're doing a non-blocking
8272 poll, we're done. Otherwise, go back to waiting. */
8273 if (options & TARGET_WNOHANG)
8274 return minus_one_ptid;
8275 else
8276 goto again;
8277 }
8278 else if (status->kind () != TARGET_WAITKIND_EXITED
8279 && status->kind () != TARGET_WAITKIND_SIGNALLED)
8280 {
8281 if (event_ptid != null_ptid)
8282 record_currthread (rs, event_ptid);
8283 else
8284 event_ptid = first_remote_resumed_thread (this);
8285 }
8286 else
8287 {
8288 /* A process exit. Invalidate our notion of current thread. */
8289 record_currthread (rs, minus_one_ptid);
8290 /* It's possible that the packet did not include a pid. */
8291 if (event_ptid == null_ptid)
8292 event_ptid = first_remote_resumed_thread (this);
8293 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8294 if (event_ptid == null_ptid)
8295 event_ptid = magic_null_ptid;
8296 }
8297
8298 return event_ptid;
8299 }
8300
8301 /* Wait until the remote machine stops, then return, storing status in
8302 STATUS just as `wait' would. */
8303
8304 ptid_t
8305 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8306 target_wait_flags options)
8307 {
8308 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8309
8310 remote_state *rs = get_remote_state ();
8311
8312 /* Start by clearing the flag that asks for our wait method to be called,
8313 we'll mark it again at the end if needed. */
8314 if (target_is_async_p ())
8315 clear_async_event_handler (rs->remote_async_inferior_event_token);
8316
8317 ptid_t event_ptid;
8318
8319 if (target_is_non_stop_p ())
8320 event_ptid = wait_ns (ptid, status, options);
8321 else
8322 event_ptid = wait_as (ptid, status, options);
8323
8324 if (target_is_async_p ())
8325 {
8326 /* If there are events left in the queue, or unacknowledged
8327 notifications, then tell the event loop to call us again. */
8328 if (!rs->stop_reply_queue.empty ()
8329 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8330 mark_async_event_handler (rs->remote_async_inferior_event_token);
8331 }
8332
8333 return event_ptid;
8334 }
8335
8336 /* Fetch a single register using a 'p' packet. */
8337
8338 int
8339 remote_target::fetch_register_using_p (struct regcache *regcache,
8340 packet_reg *reg)
8341 {
8342 struct gdbarch *gdbarch = regcache->arch ();
8343 struct remote_state *rs = get_remote_state ();
8344 char *buf, *p;
8345 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8346 int i;
8347
8348 if (packet_support (PACKET_p) == PACKET_DISABLE)
8349 return 0;
8350
8351 if (reg->pnum == -1)
8352 return 0;
8353
8354 p = rs->buf.data ();
8355 *p++ = 'p';
8356 p += hexnumstr (p, reg->pnum);
8357 *p++ = '\0';
8358 putpkt (rs->buf);
8359 getpkt (&rs->buf, 0);
8360
8361 buf = rs->buf.data ();
8362
8363 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8364 {
8365 case PACKET_OK:
8366 break;
8367 case PACKET_UNKNOWN:
8368 return 0;
8369 case PACKET_ERROR:
8370 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8371 gdbarch_register_name (regcache->arch (),
8372 reg->regnum),
8373 buf);
8374 }
8375
8376 /* If this register is unfetchable, tell the regcache. */
8377 if (buf[0] == 'x')
8378 {
8379 regcache->raw_supply (reg->regnum, NULL);
8380 return 1;
8381 }
8382
8383 /* Otherwise, parse and supply the value. */
8384 p = buf;
8385 i = 0;
8386 while (p[0] != 0)
8387 {
8388 if (p[1] == 0)
8389 error (_("fetch_register_using_p: early buf termination"));
8390
8391 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8392 p += 2;
8393 }
8394 regcache->raw_supply (reg->regnum, regp);
8395 return 1;
8396 }
8397
8398 /* Fetch the registers included in the target's 'g' packet. */
8399
8400 int
8401 remote_target::send_g_packet ()
8402 {
8403 struct remote_state *rs = get_remote_state ();
8404 int buf_len;
8405
8406 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8407 putpkt (rs->buf);
8408 getpkt (&rs->buf, 0);
8409 if (packet_check_result (rs->buf) == PACKET_ERROR)
8410 error (_("Could not read registers; remote failure reply '%s'"),
8411 rs->buf.data ());
8412
8413 /* We can get out of synch in various cases. If the first character
8414 in the buffer is not a hex character, assume that has happened
8415 and try to fetch another packet to read. */
8416 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8417 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8418 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8419 && rs->buf[0] != 'x') /* New: unavailable register value. */
8420 {
8421 remote_debug_printf ("Bad register packet; fetching a new packet");
8422 getpkt (&rs->buf, 0);
8423 }
8424
8425 buf_len = strlen (rs->buf.data ());
8426
8427 /* Sanity check the received packet. */
8428 if (buf_len % 2 != 0)
8429 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8430
8431 return buf_len / 2;
8432 }
8433
8434 void
8435 remote_target::process_g_packet (struct regcache *regcache)
8436 {
8437 struct gdbarch *gdbarch = regcache->arch ();
8438 struct remote_state *rs = get_remote_state ();
8439 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8440 int i, buf_len;
8441 char *p;
8442 char *regs;
8443
8444 buf_len = strlen (rs->buf.data ());
8445
8446 /* Further sanity checks, with knowledge of the architecture. */
8447 if (buf_len > 2 * rsa->sizeof_g_packet)
8448 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8449 "bytes): %s"),
8450 rsa->sizeof_g_packet, buf_len / 2,
8451 rs->buf.data ());
8452
8453 /* Save the size of the packet sent to us by the target. It is used
8454 as a heuristic when determining the max size of packets that the
8455 target can safely receive. */
8456 if (rsa->actual_register_packet_size == 0)
8457 rsa->actual_register_packet_size = buf_len;
8458
8459 /* If this is smaller than we guessed the 'g' packet would be,
8460 update our records. A 'g' reply that doesn't include a register's
8461 value implies either that the register is not available, or that
8462 the 'p' packet must be used. */
8463 if (buf_len < 2 * rsa->sizeof_g_packet)
8464 {
8465 long sizeof_g_packet = buf_len / 2;
8466
8467 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8468 {
8469 long offset = rsa->regs[i].offset;
8470 long reg_size = register_size (gdbarch, i);
8471
8472 if (rsa->regs[i].pnum == -1)
8473 continue;
8474
8475 if (offset >= sizeof_g_packet)
8476 rsa->regs[i].in_g_packet = 0;
8477 else if (offset + reg_size > sizeof_g_packet)
8478 error (_("Truncated register %d in remote 'g' packet"), i);
8479 else
8480 rsa->regs[i].in_g_packet = 1;
8481 }
8482
8483 /* Looks valid enough, we can assume this is the correct length
8484 for a 'g' packet. It's important not to adjust
8485 rsa->sizeof_g_packet if we have truncated registers otherwise
8486 this "if" won't be run the next time the method is called
8487 with a packet of the same size and one of the internal errors
8488 below will trigger instead. */
8489 rsa->sizeof_g_packet = sizeof_g_packet;
8490 }
8491
8492 regs = (char *) alloca (rsa->sizeof_g_packet);
8493
8494 /* Unimplemented registers read as all bits zero. */
8495 memset (regs, 0, rsa->sizeof_g_packet);
8496
8497 /* Reply describes registers byte by byte, each byte encoded as two
8498 hex characters. Suck them all up, then supply them to the
8499 register cacheing/storage mechanism. */
8500
8501 p = rs->buf.data ();
8502 for (i = 0; i < rsa->sizeof_g_packet; i++)
8503 {
8504 if (p[0] == 0 || p[1] == 0)
8505 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8506 internal_error (__FILE__, __LINE__,
8507 _("unexpected end of 'g' packet reply"));
8508
8509 if (p[0] == 'x' && p[1] == 'x')
8510 regs[i] = 0; /* 'x' */
8511 else
8512 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8513 p += 2;
8514 }
8515
8516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8517 {
8518 struct packet_reg *r = &rsa->regs[i];
8519 long reg_size = register_size (gdbarch, i);
8520
8521 if (r->in_g_packet)
8522 {
8523 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8524 /* This shouldn't happen - we adjusted in_g_packet above. */
8525 internal_error (__FILE__, __LINE__,
8526 _("unexpected end of 'g' packet reply"));
8527 else if (rs->buf[r->offset * 2] == 'x')
8528 {
8529 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8530 /* The register isn't available, mark it as such (at
8531 the same time setting the value to zero). */
8532 regcache->raw_supply (r->regnum, NULL);
8533 }
8534 else
8535 regcache->raw_supply (r->regnum, regs + r->offset);
8536 }
8537 }
8538 }
8539
8540 void
8541 remote_target::fetch_registers_using_g (struct regcache *regcache)
8542 {
8543 send_g_packet ();
8544 process_g_packet (regcache);
8545 }
8546
8547 /* Make the remote selected traceframe match GDB's selected
8548 traceframe. */
8549
8550 void
8551 remote_target::set_remote_traceframe ()
8552 {
8553 int newnum;
8554 struct remote_state *rs = get_remote_state ();
8555
8556 if (rs->remote_traceframe_number == get_traceframe_number ())
8557 return;
8558
8559 /* Avoid recursion, remote_trace_find calls us again. */
8560 rs->remote_traceframe_number = get_traceframe_number ();
8561
8562 newnum = target_trace_find (tfind_number,
8563 get_traceframe_number (), 0, 0, NULL);
8564
8565 /* Should not happen. If it does, all bets are off. */
8566 if (newnum != get_traceframe_number ())
8567 warning (_("could not set remote traceframe"));
8568 }
8569
8570 void
8571 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8572 {
8573 struct gdbarch *gdbarch = regcache->arch ();
8574 struct remote_state *rs = get_remote_state ();
8575 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8576 int i;
8577
8578 set_remote_traceframe ();
8579 set_general_thread (regcache->ptid ());
8580
8581 if (regnum >= 0)
8582 {
8583 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8584
8585 gdb_assert (reg != NULL);
8586
8587 /* If this register might be in the 'g' packet, try that first -
8588 we are likely to read more than one register. If this is the
8589 first 'g' packet, we might be overly optimistic about its
8590 contents, so fall back to 'p'. */
8591 if (reg->in_g_packet)
8592 {
8593 fetch_registers_using_g (regcache);
8594 if (reg->in_g_packet)
8595 return;
8596 }
8597
8598 if (fetch_register_using_p (regcache, reg))
8599 return;
8600
8601 /* This register is not available. */
8602 regcache->raw_supply (reg->regnum, NULL);
8603
8604 return;
8605 }
8606
8607 fetch_registers_using_g (regcache);
8608
8609 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8610 if (!rsa->regs[i].in_g_packet)
8611 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8612 {
8613 /* This register is not available. */
8614 regcache->raw_supply (i, NULL);
8615 }
8616 }
8617
8618 /* Prepare to store registers. Since we may send them all (using a
8619 'G' request), we have to read out the ones we don't want to change
8620 first. */
8621
8622 void
8623 remote_target::prepare_to_store (struct regcache *regcache)
8624 {
8625 struct remote_state *rs = get_remote_state ();
8626 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8627 int i;
8628
8629 /* Make sure the entire registers array is valid. */
8630 switch (packet_support (PACKET_P))
8631 {
8632 case PACKET_DISABLE:
8633 case PACKET_SUPPORT_UNKNOWN:
8634 /* Make sure all the necessary registers are cached. */
8635 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8636 if (rsa->regs[i].in_g_packet)
8637 regcache->raw_update (rsa->regs[i].regnum);
8638 break;
8639 case PACKET_ENABLE:
8640 break;
8641 }
8642 }
8643
8644 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8645 packet was not recognized. */
8646
8647 int
8648 remote_target::store_register_using_P (const struct regcache *regcache,
8649 packet_reg *reg)
8650 {
8651 struct gdbarch *gdbarch = regcache->arch ();
8652 struct remote_state *rs = get_remote_state ();
8653 /* Try storing a single register. */
8654 char *buf = rs->buf.data ();
8655 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8656 char *p;
8657
8658 if (packet_support (PACKET_P) == PACKET_DISABLE)
8659 return 0;
8660
8661 if (reg->pnum == -1)
8662 return 0;
8663
8664 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8665 p = buf + strlen (buf);
8666 regcache->raw_collect (reg->regnum, regp);
8667 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8668 putpkt (rs->buf);
8669 getpkt (&rs->buf, 0);
8670
8671 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8672 {
8673 case PACKET_OK:
8674 return 1;
8675 case PACKET_ERROR:
8676 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8677 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8678 case PACKET_UNKNOWN:
8679 return 0;
8680 default:
8681 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8682 }
8683 }
8684
8685 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8686 contents of the register cache buffer. FIXME: ignores errors. */
8687
8688 void
8689 remote_target::store_registers_using_G (const struct regcache *regcache)
8690 {
8691 struct remote_state *rs = get_remote_state ();
8692 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8693 gdb_byte *regs;
8694 char *p;
8695
8696 /* Extract all the registers in the regcache copying them into a
8697 local buffer. */
8698 {
8699 int i;
8700
8701 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8702 memset (regs, 0, rsa->sizeof_g_packet);
8703 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8704 {
8705 struct packet_reg *r = &rsa->regs[i];
8706
8707 if (r->in_g_packet)
8708 regcache->raw_collect (r->regnum, regs + r->offset);
8709 }
8710 }
8711
8712 /* Command describes registers byte by byte,
8713 each byte encoded as two hex characters. */
8714 p = rs->buf.data ();
8715 *p++ = 'G';
8716 bin2hex (regs, p, rsa->sizeof_g_packet);
8717 putpkt (rs->buf);
8718 getpkt (&rs->buf, 0);
8719 if (packet_check_result (rs->buf) == PACKET_ERROR)
8720 error (_("Could not write registers; remote failure reply '%s'"),
8721 rs->buf.data ());
8722 }
8723
8724 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8725 of the register cache buffer. FIXME: ignores errors. */
8726
8727 void
8728 remote_target::store_registers (struct regcache *regcache, int regnum)
8729 {
8730 struct gdbarch *gdbarch = regcache->arch ();
8731 struct remote_state *rs = get_remote_state ();
8732 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8733 int i;
8734
8735 set_remote_traceframe ();
8736 set_general_thread (regcache->ptid ());
8737
8738 if (regnum >= 0)
8739 {
8740 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8741
8742 gdb_assert (reg != NULL);
8743
8744 /* Always prefer to store registers using the 'P' packet if
8745 possible; we often change only a small number of registers.
8746 Sometimes we change a larger number; we'd need help from a
8747 higher layer to know to use 'G'. */
8748 if (store_register_using_P (regcache, reg))
8749 return;
8750
8751 /* For now, don't complain if we have no way to write the
8752 register. GDB loses track of unavailable registers too
8753 easily. Some day, this may be an error. We don't have
8754 any way to read the register, either... */
8755 if (!reg->in_g_packet)
8756 return;
8757
8758 store_registers_using_G (regcache);
8759 return;
8760 }
8761
8762 store_registers_using_G (regcache);
8763
8764 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8765 if (!rsa->regs[i].in_g_packet)
8766 if (!store_register_using_P (regcache, &rsa->regs[i]))
8767 /* See above for why we do not issue an error here. */
8768 continue;
8769 }
8770 \f
8771
8772 /* Return the number of hex digits in num. */
8773
8774 static int
8775 hexnumlen (ULONGEST num)
8776 {
8777 int i;
8778
8779 for (i = 0; num != 0; i++)
8780 num >>= 4;
8781
8782 return std::max (i, 1);
8783 }
8784
8785 /* Set BUF to the minimum number of hex digits representing NUM. */
8786
8787 static int
8788 hexnumstr (char *buf, ULONGEST num)
8789 {
8790 int len = hexnumlen (num);
8791
8792 return hexnumnstr (buf, num, len);
8793 }
8794
8795
8796 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8797
8798 static int
8799 hexnumnstr (char *buf, ULONGEST num, int width)
8800 {
8801 int i;
8802
8803 buf[width] = '\0';
8804
8805 for (i = width - 1; i >= 0; i--)
8806 {
8807 buf[i] = "0123456789abcdef"[(num & 0xf)];
8808 num >>= 4;
8809 }
8810
8811 return width;
8812 }
8813
8814 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8815
8816 static CORE_ADDR
8817 remote_address_masked (CORE_ADDR addr)
8818 {
8819 unsigned int address_size = remote_address_size;
8820
8821 /* If "remoteaddresssize" was not set, default to target address size. */
8822 if (!address_size)
8823 address_size = gdbarch_addr_bit (target_gdbarch ());
8824
8825 if (address_size > 0
8826 && address_size < (sizeof (ULONGEST) * 8))
8827 {
8828 /* Only create a mask when that mask can safely be constructed
8829 in a ULONGEST variable. */
8830 ULONGEST mask = 1;
8831
8832 mask = (mask << address_size) - 1;
8833 addr &= mask;
8834 }
8835 return addr;
8836 }
8837
8838 /* Determine whether the remote target supports binary downloading.
8839 This is accomplished by sending a no-op memory write of zero length
8840 to the target at the specified address. It does not suffice to send
8841 the whole packet, since many stubs strip the eighth bit and
8842 subsequently compute a wrong checksum, which causes real havoc with
8843 remote_write_bytes.
8844
8845 NOTE: This can still lose if the serial line is not eight-bit
8846 clean. In cases like this, the user should clear "remote
8847 X-packet". */
8848
8849 void
8850 remote_target::check_binary_download (CORE_ADDR addr)
8851 {
8852 struct remote_state *rs = get_remote_state ();
8853
8854 switch (packet_support (PACKET_X))
8855 {
8856 case PACKET_DISABLE:
8857 break;
8858 case PACKET_ENABLE:
8859 break;
8860 case PACKET_SUPPORT_UNKNOWN:
8861 {
8862 char *p;
8863
8864 p = rs->buf.data ();
8865 *p++ = 'X';
8866 p += hexnumstr (p, (ULONGEST) addr);
8867 *p++ = ',';
8868 p += hexnumstr (p, (ULONGEST) 0);
8869 *p++ = ':';
8870 *p = '\0';
8871
8872 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8873 getpkt (&rs->buf, 0);
8874
8875 if (rs->buf[0] == '\0')
8876 {
8877 remote_debug_printf ("binary downloading NOT supported by target");
8878 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8879 }
8880 else
8881 {
8882 remote_debug_printf ("binary downloading supported by target");
8883 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8884 }
8885 break;
8886 }
8887 }
8888 }
8889
8890 /* Helper function to resize the payload in order to try to get a good
8891 alignment. We try to write an amount of data such that the next write will
8892 start on an address aligned on REMOTE_ALIGN_WRITES. */
8893
8894 static int
8895 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8896 {
8897 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8898 }
8899
8900 /* Write memory data directly to the remote machine.
8901 This does not inform the data cache; the data cache uses this.
8902 HEADER is the starting part of the packet.
8903 MEMADDR is the address in the remote memory space.
8904 MYADDR is the address of the buffer in our space.
8905 LEN_UNITS is the number of addressable units to write.
8906 UNIT_SIZE is the length in bytes of an addressable unit.
8907 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8908 should send data as binary ('X'), or hex-encoded ('M').
8909
8910 The function creates packet of the form
8911 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8912
8913 where encoding of <DATA> is terminated by PACKET_FORMAT.
8914
8915 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8916 are omitted.
8917
8918 Return the transferred status, error or OK (an
8919 'enum target_xfer_status' value). Save the number of addressable units
8920 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8921
8922 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8923 exchange between gdb and the stub could look like (?? in place of the
8924 checksum):
8925
8926 -> $m1000,4#??
8927 <- aaaabbbbccccdddd
8928
8929 -> $M1000,3:eeeeffffeeee#??
8930 <- OK
8931
8932 -> $m1000,4#??
8933 <- eeeeffffeeeedddd */
8934
8935 target_xfer_status
8936 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8937 const gdb_byte *myaddr,
8938 ULONGEST len_units,
8939 int unit_size,
8940 ULONGEST *xfered_len_units,
8941 char packet_format, int use_length)
8942 {
8943 struct remote_state *rs = get_remote_state ();
8944 char *p;
8945 char *plen = NULL;
8946 int plenlen = 0;
8947 int todo_units;
8948 int units_written;
8949 int payload_capacity_bytes;
8950 int payload_length_bytes;
8951
8952 if (packet_format != 'X' && packet_format != 'M')
8953 internal_error (__FILE__, __LINE__,
8954 _("remote_write_bytes_aux: bad packet format"));
8955
8956 if (len_units == 0)
8957 return TARGET_XFER_EOF;
8958
8959 payload_capacity_bytes = get_memory_write_packet_size ();
8960
8961 /* The packet buffer will be large enough for the payload;
8962 get_memory_packet_size ensures this. */
8963 rs->buf[0] = '\0';
8964
8965 /* Compute the size of the actual payload by subtracting out the
8966 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8967
8968 payload_capacity_bytes -= strlen ("$,:#NN");
8969 if (!use_length)
8970 /* The comma won't be used. */
8971 payload_capacity_bytes += 1;
8972 payload_capacity_bytes -= strlen (header);
8973 payload_capacity_bytes -= hexnumlen (memaddr);
8974
8975 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8976
8977 strcat (rs->buf.data (), header);
8978 p = rs->buf.data () + strlen (header);
8979
8980 /* Compute a best guess of the number of bytes actually transfered. */
8981 if (packet_format == 'X')
8982 {
8983 /* Best guess at number of bytes that will fit. */
8984 todo_units = std::min (len_units,
8985 (ULONGEST) payload_capacity_bytes / unit_size);
8986 if (use_length)
8987 payload_capacity_bytes -= hexnumlen (todo_units);
8988 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8989 }
8990 else
8991 {
8992 /* Number of bytes that will fit. */
8993 todo_units
8994 = std::min (len_units,
8995 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8996 if (use_length)
8997 payload_capacity_bytes -= hexnumlen (todo_units);
8998 todo_units = std::min (todo_units,
8999 (payload_capacity_bytes / unit_size) / 2);
9000 }
9001
9002 if (todo_units <= 0)
9003 internal_error (__FILE__, __LINE__,
9004 _("minimum packet size too small to write data"));
9005
9006 /* If we already need another packet, then try to align the end
9007 of this packet to a useful boundary. */
9008 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9009 todo_units = align_for_efficient_write (todo_units, memaddr);
9010
9011 /* Append "<memaddr>". */
9012 memaddr = remote_address_masked (memaddr);
9013 p += hexnumstr (p, (ULONGEST) memaddr);
9014
9015 if (use_length)
9016 {
9017 /* Append ",". */
9018 *p++ = ',';
9019
9020 /* Append the length and retain its location and size. It may need to be
9021 adjusted once the packet body has been created. */
9022 plen = p;
9023 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9024 p += plenlen;
9025 }
9026
9027 /* Append ":". */
9028 *p++ = ':';
9029 *p = '\0';
9030
9031 /* Append the packet body. */
9032 if (packet_format == 'X')
9033 {
9034 /* Binary mode. Send target system values byte by byte, in
9035 increasing byte addresses. Only escape certain critical
9036 characters. */
9037 payload_length_bytes =
9038 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9039 &units_written, payload_capacity_bytes);
9040
9041 /* If not all TODO units fit, then we'll need another packet. Make
9042 a second try to keep the end of the packet aligned. Don't do
9043 this if the packet is tiny. */
9044 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9045 {
9046 int new_todo_units;
9047
9048 new_todo_units = align_for_efficient_write (units_written, memaddr);
9049
9050 if (new_todo_units != units_written)
9051 payload_length_bytes =
9052 remote_escape_output (myaddr, new_todo_units, unit_size,
9053 (gdb_byte *) p, &units_written,
9054 payload_capacity_bytes);
9055 }
9056
9057 p += payload_length_bytes;
9058 if (use_length && units_written < todo_units)
9059 {
9060 /* Escape chars have filled up the buffer prematurely,
9061 and we have actually sent fewer units than planned.
9062 Fix-up the length field of the packet. Use the same
9063 number of characters as before. */
9064 plen += hexnumnstr (plen, (ULONGEST) units_written,
9065 plenlen);
9066 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9067 }
9068 }
9069 else
9070 {
9071 /* Normal mode: Send target system values byte by byte, in
9072 increasing byte addresses. Each byte is encoded as a two hex
9073 value. */
9074 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9075 units_written = todo_units;
9076 }
9077
9078 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9079 getpkt (&rs->buf, 0);
9080
9081 if (rs->buf[0] == 'E')
9082 return TARGET_XFER_E_IO;
9083
9084 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9085 send fewer units than we'd planned. */
9086 *xfered_len_units = (ULONGEST) units_written;
9087 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9088 }
9089
9090 /* Write memory data directly to the remote machine.
9091 This does not inform the data cache; the data cache uses this.
9092 MEMADDR is the address in the remote memory space.
9093 MYADDR is the address of the buffer in our space.
9094 LEN is the number of bytes.
9095
9096 Return the transferred status, error or OK (an
9097 'enum target_xfer_status' value). Save the number of bytes
9098 transferred in *XFERED_LEN. Only transfer a single packet. */
9099
9100 target_xfer_status
9101 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9102 ULONGEST len, int unit_size,
9103 ULONGEST *xfered_len)
9104 {
9105 const char *packet_format = NULL;
9106
9107 /* Check whether the target supports binary download. */
9108 check_binary_download (memaddr);
9109
9110 switch (packet_support (PACKET_X))
9111 {
9112 case PACKET_ENABLE:
9113 packet_format = "X";
9114 break;
9115 case PACKET_DISABLE:
9116 packet_format = "M";
9117 break;
9118 case PACKET_SUPPORT_UNKNOWN:
9119 internal_error (__FILE__, __LINE__,
9120 _("remote_write_bytes: bad internal state"));
9121 default:
9122 internal_error (__FILE__, __LINE__, _("bad switch"));
9123 }
9124
9125 return remote_write_bytes_aux (packet_format,
9126 memaddr, myaddr, len, unit_size, xfered_len,
9127 packet_format[0], 1);
9128 }
9129
9130 /* Read memory data directly from the remote machine.
9131 This does not use the data cache; the data cache uses this.
9132 MEMADDR is the address in the remote memory space.
9133 MYADDR is the address of the buffer in our space.
9134 LEN_UNITS is the number of addressable memory units to read..
9135 UNIT_SIZE is the length in bytes of an addressable unit.
9136
9137 Return the transferred status, error or OK (an
9138 'enum target_xfer_status' value). Save the number of bytes
9139 transferred in *XFERED_LEN_UNITS.
9140
9141 See the comment of remote_write_bytes_aux for an example of
9142 memory read/write exchange between gdb and the stub. */
9143
9144 target_xfer_status
9145 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9146 ULONGEST len_units,
9147 int unit_size, ULONGEST *xfered_len_units)
9148 {
9149 struct remote_state *rs = get_remote_state ();
9150 int buf_size_bytes; /* Max size of packet output buffer. */
9151 char *p;
9152 int todo_units;
9153 int decoded_bytes;
9154
9155 buf_size_bytes = get_memory_read_packet_size ();
9156 /* The packet buffer will be large enough for the payload;
9157 get_memory_packet_size ensures this. */
9158
9159 /* Number of units that will fit. */
9160 todo_units = std::min (len_units,
9161 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9162
9163 /* Construct "m"<memaddr>","<len>". */
9164 memaddr = remote_address_masked (memaddr);
9165 p = rs->buf.data ();
9166 *p++ = 'm';
9167 p += hexnumstr (p, (ULONGEST) memaddr);
9168 *p++ = ',';
9169 p += hexnumstr (p, (ULONGEST) todo_units);
9170 *p = '\0';
9171 putpkt (rs->buf);
9172 getpkt (&rs->buf, 0);
9173 if (rs->buf[0] == 'E'
9174 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9175 && rs->buf[3] == '\0')
9176 return TARGET_XFER_E_IO;
9177 /* Reply describes memory byte by byte, each byte encoded as two hex
9178 characters. */
9179 p = rs->buf.data ();
9180 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9181 /* Return what we have. Let higher layers handle partial reads. */
9182 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9183 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9184 }
9185
9186 /* Using the set of read-only target sections of remote, read live
9187 read-only memory.
9188
9189 For interface/parameters/return description see target.h,
9190 to_xfer_partial. */
9191
9192 target_xfer_status
9193 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9194 ULONGEST memaddr,
9195 ULONGEST len,
9196 int unit_size,
9197 ULONGEST *xfered_len)
9198 {
9199 const struct target_section *secp;
9200
9201 secp = target_section_by_addr (this, memaddr);
9202 if (secp != NULL
9203 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9204 {
9205 ULONGEST memend = memaddr + len;
9206
9207 const target_section_table *table = target_get_section_table (this);
9208 for (const target_section &p : *table)
9209 {
9210 if (memaddr >= p.addr)
9211 {
9212 if (memend <= p.endaddr)
9213 {
9214 /* Entire transfer is within this section. */
9215 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9216 xfered_len);
9217 }
9218 else if (memaddr >= p.endaddr)
9219 {
9220 /* This section ends before the transfer starts. */
9221 continue;
9222 }
9223 else
9224 {
9225 /* This section overlaps the transfer. Just do half. */
9226 len = p.endaddr - memaddr;
9227 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9228 xfered_len);
9229 }
9230 }
9231 }
9232 }
9233
9234 return TARGET_XFER_EOF;
9235 }
9236
9237 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9238 first if the requested memory is unavailable in traceframe.
9239 Otherwise, fall back to remote_read_bytes_1. */
9240
9241 target_xfer_status
9242 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9243 gdb_byte *myaddr, ULONGEST len, int unit_size,
9244 ULONGEST *xfered_len)
9245 {
9246 if (len == 0)
9247 return TARGET_XFER_EOF;
9248
9249 if (get_traceframe_number () != -1)
9250 {
9251 std::vector<mem_range> available;
9252
9253 /* If we fail to get the set of available memory, then the
9254 target does not support querying traceframe info, and so we
9255 attempt reading from the traceframe anyway (assuming the
9256 target implements the old QTro packet then). */
9257 if (traceframe_available_memory (&available, memaddr, len))
9258 {
9259 if (available.empty () || available[0].start != memaddr)
9260 {
9261 enum target_xfer_status res;
9262
9263 /* Don't read into the traceframe's available
9264 memory. */
9265 if (!available.empty ())
9266 {
9267 LONGEST oldlen = len;
9268
9269 len = available[0].start - memaddr;
9270 gdb_assert (len <= oldlen);
9271 }
9272
9273 /* This goes through the topmost target again. */
9274 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9275 len, unit_size, xfered_len);
9276 if (res == TARGET_XFER_OK)
9277 return TARGET_XFER_OK;
9278 else
9279 {
9280 /* No use trying further, we know some memory starting
9281 at MEMADDR isn't available. */
9282 *xfered_len = len;
9283 return (*xfered_len != 0) ?
9284 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9285 }
9286 }
9287
9288 /* Don't try to read more than how much is available, in
9289 case the target implements the deprecated QTro packet to
9290 cater for older GDBs (the target's knowledge of read-only
9291 sections may be outdated by now). */
9292 len = available[0].length;
9293 }
9294 }
9295
9296 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9297 }
9298
9299 \f
9300
9301 /* Sends a packet with content determined by the printf format string
9302 FORMAT and the remaining arguments, then gets the reply. Returns
9303 whether the packet was a success, a failure, or unknown. */
9304
9305 packet_result
9306 remote_target::remote_send_printf (const char *format, ...)
9307 {
9308 struct remote_state *rs = get_remote_state ();
9309 int max_size = get_remote_packet_size ();
9310 va_list ap;
9311
9312 va_start (ap, format);
9313
9314 rs->buf[0] = '\0';
9315 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9316
9317 va_end (ap);
9318
9319 if (size >= max_size)
9320 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9321
9322 if (putpkt (rs->buf) < 0)
9323 error (_("Communication problem with target."));
9324
9325 rs->buf[0] = '\0';
9326 getpkt (&rs->buf, 0);
9327
9328 return packet_check_result (rs->buf);
9329 }
9330
9331 /* Flash writing can take quite some time. We'll set
9332 effectively infinite timeout for flash operations.
9333 In future, we'll need to decide on a better approach. */
9334 static const int remote_flash_timeout = 1000;
9335
9336 void
9337 remote_target::flash_erase (ULONGEST address, LONGEST length)
9338 {
9339 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9340 enum packet_result ret;
9341 scoped_restore restore_timeout
9342 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9343
9344 ret = remote_send_printf ("vFlashErase:%s,%s",
9345 phex (address, addr_size),
9346 phex (length, 4));
9347 switch (ret)
9348 {
9349 case PACKET_UNKNOWN:
9350 error (_("Remote target does not support flash erase"));
9351 case PACKET_ERROR:
9352 error (_("Error erasing flash with vFlashErase packet"));
9353 default:
9354 break;
9355 }
9356 }
9357
9358 target_xfer_status
9359 remote_target::remote_flash_write (ULONGEST address,
9360 ULONGEST length, ULONGEST *xfered_len,
9361 const gdb_byte *data)
9362 {
9363 scoped_restore restore_timeout
9364 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9365 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9366 xfered_len,'X', 0);
9367 }
9368
9369 void
9370 remote_target::flash_done ()
9371 {
9372 int ret;
9373
9374 scoped_restore restore_timeout
9375 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9376
9377 ret = remote_send_printf ("vFlashDone");
9378
9379 switch (ret)
9380 {
9381 case PACKET_UNKNOWN:
9382 error (_("Remote target does not support vFlashDone"));
9383 case PACKET_ERROR:
9384 error (_("Error finishing flash operation"));
9385 default:
9386 break;
9387 }
9388 }
9389
9390 void
9391 remote_target::files_info ()
9392 {
9393 puts_filtered ("Debugging a target over a serial line.\n");
9394 }
9395 \f
9396 /* Stuff for dealing with the packets which are part of this protocol.
9397 See comment at top of file for details. */
9398
9399 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9400 error to higher layers. Called when a serial error is detected.
9401 The exception message is STRING, followed by a colon and a blank,
9402 the system error message for errno at function entry and final dot
9403 for output compatibility with throw_perror_with_name. */
9404
9405 static void
9406 unpush_and_perror (remote_target *target, const char *string)
9407 {
9408 int saved_errno = errno;
9409
9410 remote_unpush_target (target);
9411 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9412 safe_strerror (saved_errno));
9413 }
9414
9415 /* Read a single character from the remote end. The current quit
9416 handler is overridden to avoid quitting in the middle of packet
9417 sequence, as that would break communication with the remote server.
9418 See remote_serial_quit_handler for more detail. */
9419
9420 int
9421 remote_target::readchar (int timeout)
9422 {
9423 int ch;
9424 struct remote_state *rs = get_remote_state ();
9425
9426 {
9427 scoped_restore restore_quit_target
9428 = make_scoped_restore (&curr_quit_handler_target, this);
9429 scoped_restore restore_quit
9430 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9431
9432 rs->got_ctrlc_during_io = 0;
9433
9434 ch = serial_readchar (rs->remote_desc, timeout);
9435
9436 if (rs->got_ctrlc_during_io)
9437 set_quit_flag ();
9438 }
9439
9440 if (ch >= 0)
9441 return ch;
9442
9443 switch ((enum serial_rc) ch)
9444 {
9445 case SERIAL_EOF:
9446 remote_unpush_target (this);
9447 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9448 /* no return */
9449 case SERIAL_ERROR:
9450 unpush_and_perror (this, _("Remote communication error. "
9451 "Target disconnected."));
9452 /* no return */
9453 case SERIAL_TIMEOUT:
9454 break;
9455 }
9456 return ch;
9457 }
9458
9459 /* Wrapper for serial_write that closes the target and throws if
9460 writing fails. The current quit handler is overridden to avoid
9461 quitting in the middle of packet sequence, as that would break
9462 communication with the remote server. See
9463 remote_serial_quit_handler for more detail. */
9464
9465 void
9466 remote_target::remote_serial_write (const char *str, int len)
9467 {
9468 struct remote_state *rs = get_remote_state ();
9469
9470 scoped_restore restore_quit_target
9471 = make_scoped_restore (&curr_quit_handler_target, this);
9472 scoped_restore restore_quit
9473 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9474
9475 rs->got_ctrlc_during_io = 0;
9476
9477 if (serial_write (rs->remote_desc, str, len))
9478 {
9479 unpush_and_perror (this, _("Remote communication error. "
9480 "Target disconnected."));
9481 }
9482
9483 if (rs->got_ctrlc_during_io)
9484 set_quit_flag ();
9485 }
9486
9487 /* Return a string representing an escaped version of BUF, of len N.
9488 E.g. \n is converted to \\n, \t to \\t, etc. */
9489
9490 static std::string
9491 escape_buffer (const char *buf, int n)
9492 {
9493 string_file stb;
9494
9495 stb.putstrn (buf, n, '\\');
9496 return std::move (stb.string ());
9497 }
9498
9499 /* Display a null-terminated packet on stdout, for debugging, using C
9500 string notation. */
9501
9502 static void
9503 print_packet (const char *buf)
9504 {
9505 puts_filtered ("\"");
9506 fputstr_filtered (buf, '"', gdb_stdout);
9507 puts_filtered ("\"");
9508 }
9509
9510 int
9511 remote_target::putpkt (const char *buf)
9512 {
9513 return putpkt_binary (buf, strlen (buf));
9514 }
9515
9516 /* Wrapper around remote_target::putpkt to avoid exporting
9517 remote_target. */
9518
9519 int
9520 putpkt (remote_target *remote, const char *buf)
9521 {
9522 return remote->putpkt (buf);
9523 }
9524
9525 /* Send a packet to the remote machine, with error checking. The data
9526 of the packet is in BUF. The string in BUF can be at most
9527 get_remote_packet_size () - 5 to account for the $, # and checksum,
9528 and for a possible /0 if we are debugging (remote_debug) and want
9529 to print the sent packet as a string. */
9530
9531 int
9532 remote_target::putpkt_binary (const char *buf, int cnt)
9533 {
9534 struct remote_state *rs = get_remote_state ();
9535 int i;
9536 unsigned char csum = 0;
9537 gdb::def_vector<char> data (cnt + 6);
9538 char *buf2 = data.data ();
9539
9540 int ch;
9541 int tcount = 0;
9542 char *p;
9543
9544 /* Catch cases like trying to read memory or listing threads while
9545 we're waiting for a stop reply. The remote server wouldn't be
9546 ready to handle this request, so we'd hang and timeout. We don't
9547 have to worry about this in synchronous mode, because in that
9548 case it's not possible to issue a command while the target is
9549 running. This is not a problem in non-stop mode, because in that
9550 case, the stub is always ready to process serial input. */
9551 if (!target_is_non_stop_p ()
9552 && target_is_async_p ()
9553 && rs->waiting_for_stop_reply)
9554 {
9555 error (_("Cannot execute this command while the target is running.\n"
9556 "Use the \"interrupt\" command to stop the target\n"
9557 "and then try again."));
9558 }
9559
9560 /* We're sending out a new packet. Make sure we don't look at a
9561 stale cached response. */
9562 rs->cached_wait_status = 0;
9563
9564 /* Copy the packet into buffer BUF2, encapsulating it
9565 and giving it a checksum. */
9566
9567 p = buf2;
9568 *p++ = '$';
9569
9570 for (i = 0; i < cnt; i++)
9571 {
9572 csum += buf[i];
9573 *p++ = buf[i];
9574 }
9575 *p++ = '#';
9576 *p++ = tohex ((csum >> 4) & 0xf);
9577 *p++ = tohex (csum & 0xf);
9578
9579 /* Send it over and over until we get a positive ack. */
9580
9581 while (1)
9582 {
9583 if (remote_debug)
9584 {
9585 *p = '\0';
9586
9587 int len = (int) (p - buf2);
9588 int max_chars;
9589
9590 if (remote_packet_max_chars < 0)
9591 max_chars = len;
9592 else
9593 max_chars = remote_packet_max_chars;
9594
9595 std::string str
9596 = escape_buffer (buf2, std::min (len, max_chars));
9597
9598 if (len > max_chars)
9599 remote_debug_printf_nofunc
9600 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9601 len - max_chars);
9602 else
9603 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9604 }
9605 remote_serial_write (buf2, p - buf2);
9606
9607 /* If this is a no acks version of the remote protocol, send the
9608 packet and move on. */
9609 if (rs->noack_mode)
9610 break;
9611
9612 /* Read until either a timeout occurs (-2) or '+' is read.
9613 Handle any notification that arrives in the mean time. */
9614 while (1)
9615 {
9616 ch = readchar (remote_timeout);
9617
9618 switch (ch)
9619 {
9620 case '+':
9621 remote_debug_printf_nofunc ("Received Ack");
9622 return 1;
9623 case '-':
9624 remote_debug_printf_nofunc ("Received Nak");
9625 /* FALLTHROUGH */
9626 case SERIAL_TIMEOUT:
9627 tcount++;
9628 if (tcount > 3)
9629 return 0;
9630 break; /* Retransmit buffer. */
9631 case '$':
9632 {
9633 remote_debug_printf ("Packet instead of Ack, ignoring it");
9634 /* It's probably an old response sent because an ACK
9635 was lost. Gobble up the packet and ack it so it
9636 doesn't get retransmitted when we resend this
9637 packet. */
9638 skip_frame ();
9639 remote_serial_write ("+", 1);
9640 continue; /* Now, go look for +. */
9641 }
9642
9643 case '%':
9644 {
9645 int val;
9646
9647 /* If we got a notification, handle it, and go back to looking
9648 for an ack. */
9649 /* We've found the start of a notification. Now
9650 collect the data. */
9651 val = read_frame (&rs->buf);
9652 if (val >= 0)
9653 {
9654 remote_debug_printf_nofunc
9655 (" Notification received: %s",
9656 escape_buffer (rs->buf.data (), val).c_str ());
9657
9658 handle_notification (rs->notif_state, rs->buf.data ());
9659 /* We're in sync now, rewait for the ack. */
9660 tcount = 0;
9661 }
9662 else
9663 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9664 rs->buf.data ());
9665 continue;
9666 }
9667 /* fall-through */
9668 default:
9669 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9670 rs->buf.data ());
9671 continue;
9672 }
9673 break; /* Here to retransmit. */
9674 }
9675
9676 #if 0
9677 /* This is wrong. If doing a long backtrace, the user should be
9678 able to get out next time we call QUIT, without anything as
9679 violent as interrupt_query. If we want to provide a way out of
9680 here without getting to the next QUIT, it should be based on
9681 hitting ^C twice as in remote_wait. */
9682 if (quit_flag)
9683 {
9684 quit_flag = 0;
9685 interrupt_query ();
9686 }
9687 #endif
9688 }
9689
9690 return 0;
9691 }
9692
9693 /* Come here after finding the start of a frame when we expected an
9694 ack. Do our best to discard the rest of this packet. */
9695
9696 void
9697 remote_target::skip_frame ()
9698 {
9699 int c;
9700
9701 while (1)
9702 {
9703 c = readchar (remote_timeout);
9704 switch (c)
9705 {
9706 case SERIAL_TIMEOUT:
9707 /* Nothing we can do. */
9708 return;
9709 case '#':
9710 /* Discard the two bytes of checksum and stop. */
9711 c = readchar (remote_timeout);
9712 if (c >= 0)
9713 c = readchar (remote_timeout);
9714
9715 return;
9716 case '*': /* Run length encoding. */
9717 /* Discard the repeat count. */
9718 c = readchar (remote_timeout);
9719 if (c < 0)
9720 return;
9721 break;
9722 default:
9723 /* A regular character. */
9724 break;
9725 }
9726 }
9727 }
9728
9729 /* Come here after finding the start of the frame. Collect the rest
9730 into *BUF, verifying the checksum, length, and handling run-length
9731 compression. NUL terminate the buffer. If there is not enough room,
9732 expand *BUF.
9733
9734 Returns -1 on error, number of characters in buffer (ignoring the
9735 trailing NULL) on success. (could be extended to return one of the
9736 SERIAL status indications). */
9737
9738 long
9739 remote_target::read_frame (gdb::char_vector *buf_p)
9740 {
9741 unsigned char csum;
9742 long bc;
9743 int c;
9744 char *buf = buf_p->data ();
9745 struct remote_state *rs = get_remote_state ();
9746
9747 csum = 0;
9748 bc = 0;
9749
9750 while (1)
9751 {
9752 c = readchar (remote_timeout);
9753 switch (c)
9754 {
9755 case SERIAL_TIMEOUT:
9756 remote_debug_printf ("Timeout in mid-packet, retrying");
9757 return -1;
9758
9759 case '$':
9760 remote_debug_printf ("Saw new packet start in middle of old one");
9761 return -1; /* Start a new packet, count retries. */
9762
9763 case '#':
9764 {
9765 unsigned char pktcsum;
9766 int check_0 = 0;
9767 int check_1 = 0;
9768
9769 buf[bc] = '\0';
9770
9771 check_0 = readchar (remote_timeout);
9772 if (check_0 >= 0)
9773 check_1 = readchar (remote_timeout);
9774
9775 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9776 {
9777 remote_debug_printf ("Timeout in checksum, retrying");
9778 return -1;
9779 }
9780 else if (check_0 < 0 || check_1 < 0)
9781 {
9782 remote_debug_printf ("Communication error in checksum");
9783 return -1;
9784 }
9785
9786 /* Don't recompute the checksum; with no ack packets we
9787 don't have any way to indicate a packet retransmission
9788 is necessary. */
9789 if (rs->noack_mode)
9790 return bc;
9791
9792 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9793 if (csum == pktcsum)
9794 return bc;
9795
9796 remote_debug_printf
9797 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9798 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9799
9800 /* Number of characters in buffer ignoring trailing
9801 NULL. */
9802 return -1;
9803 }
9804 case '*': /* Run length encoding. */
9805 {
9806 int repeat;
9807
9808 csum += c;
9809 c = readchar (remote_timeout);
9810 csum += c;
9811 repeat = c - ' ' + 3; /* Compute repeat count. */
9812
9813 /* The character before ``*'' is repeated. */
9814
9815 if (repeat > 0 && repeat <= 255 && bc > 0)
9816 {
9817 if (bc + repeat - 1 >= buf_p->size () - 1)
9818 {
9819 /* Make some more room in the buffer. */
9820 buf_p->resize (buf_p->size () + repeat);
9821 buf = buf_p->data ();
9822 }
9823
9824 memset (&buf[bc], buf[bc - 1], repeat);
9825 bc += repeat;
9826 continue;
9827 }
9828
9829 buf[bc] = '\0';
9830 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9831 return -1;
9832 }
9833 default:
9834 if (bc >= buf_p->size () - 1)
9835 {
9836 /* Make some more room in the buffer. */
9837 buf_p->resize (buf_p->size () * 2);
9838 buf = buf_p->data ();
9839 }
9840
9841 buf[bc++] = c;
9842 csum += c;
9843 continue;
9844 }
9845 }
9846 }
9847
9848 /* Set this to the maximum number of seconds to wait instead of waiting forever
9849 in target_wait(). If this timer times out, then it generates an error and
9850 the command is aborted. This replaces most of the need for timeouts in the
9851 GDB test suite, and makes it possible to distinguish between a hung target
9852 and one with slow communications. */
9853
9854 static int watchdog = 0;
9855 static void
9856 show_watchdog (struct ui_file *file, int from_tty,
9857 struct cmd_list_element *c, const char *value)
9858 {
9859 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9860 }
9861
9862 /* Read a packet from the remote machine, with error checking, and
9863 store it in *BUF. Resize *BUF if necessary to hold the result. If
9864 FOREVER, wait forever rather than timing out; this is used (in
9865 synchronous mode) to wait for a target that is is executing user
9866 code to stop. */
9867 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9868 don't have to change all the calls to getpkt to deal with the
9869 return value, because at the moment I don't know what the right
9870 thing to do it for those. */
9871
9872 void
9873 remote_target::getpkt (gdb::char_vector *buf, int forever)
9874 {
9875 getpkt_sane (buf, forever);
9876 }
9877
9878
9879 /* Read a packet from the remote machine, with error checking, and
9880 store it in *BUF. Resize *BUF if necessary to hold the result. If
9881 FOREVER, wait forever rather than timing out; this is used (in
9882 synchronous mode) to wait for a target that is is executing user
9883 code to stop. If FOREVER == 0, this function is allowed to time
9884 out gracefully and return an indication of this to the caller.
9885 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9886 consider receiving a notification enough reason to return to the
9887 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9888 holds a notification or not (a regular packet). */
9889
9890 int
9891 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9892 int forever, int expecting_notif,
9893 int *is_notif)
9894 {
9895 struct remote_state *rs = get_remote_state ();
9896 int c;
9897 int tries;
9898 int timeout;
9899 int val = -1;
9900
9901 /* We're reading a new response. Make sure we don't look at a
9902 previously cached response. */
9903 rs->cached_wait_status = 0;
9904
9905 strcpy (buf->data (), "timeout");
9906
9907 if (forever)
9908 timeout = watchdog > 0 ? watchdog : -1;
9909 else if (expecting_notif)
9910 timeout = 0; /* There should already be a char in the buffer. If
9911 not, bail out. */
9912 else
9913 timeout = remote_timeout;
9914
9915 #define MAX_TRIES 3
9916
9917 /* Process any number of notifications, and then return when
9918 we get a packet. */
9919 for (;;)
9920 {
9921 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9922 times. */
9923 for (tries = 1; tries <= MAX_TRIES; tries++)
9924 {
9925 /* This can loop forever if the remote side sends us
9926 characters continuously, but if it pauses, we'll get
9927 SERIAL_TIMEOUT from readchar because of timeout. Then
9928 we'll count that as a retry.
9929
9930 Note that even when forever is set, we will only wait
9931 forever prior to the start of a packet. After that, we
9932 expect characters to arrive at a brisk pace. They should
9933 show up within remote_timeout intervals. */
9934 do
9935 c = readchar (timeout);
9936 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9937
9938 if (c == SERIAL_TIMEOUT)
9939 {
9940 if (expecting_notif)
9941 return -1; /* Don't complain, it's normal to not get
9942 anything in this case. */
9943
9944 if (forever) /* Watchdog went off? Kill the target. */
9945 {
9946 remote_unpush_target (this);
9947 throw_error (TARGET_CLOSE_ERROR,
9948 _("Watchdog timeout has expired. "
9949 "Target detached."));
9950 }
9951
9952 remote_debug_printf ("Timed out.");
9953 }
9954 else
9955 {
9956 /* We've found the start of a packet or notification.
9957 Now collect the data. */
9958 val = read_frame (buf);
9959 if (val >= 0)
9960 break;
9961 }
9962
9963 remote_serial_write ("-", 1);
9964 }
9965
9966 if (tries > MAX_TRIES)
9967 {
9968 /* We have tried hard enough, and just can't receive the
9969 packet/notification. Give up. */
9970 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9971
9972 /* Skip the ack char if we're in no-ack mode. */
9973 if (!rs->noack_mode)
9974 remote_serial_write ("+", 1);
9975 return -1;
9976 }
9977
9978 /* If we got an ordinary packet, return that to our caller. */
9979 if (c == '$')
9980 {
9981 if (remote_debug)
9982 {
9983 int max_chars;
9984
9985 if (remote_packet_max_chars < 0)
9986 max_chars = val;
9987 else
9988 max_chars = remote_packet_max_chars;
9989
9990 std::string str
9991 = escape_buffer (buf->data (),
9992 std::min (val, max_chars));
9993
9994 if (val > max_chars)
9995 remote_debug_printf_nofunc
9996 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9997 val - max_chars);
9998 else
9999 remote_debug_printf_nofunc ("Packet received: %s",
10000 str.c_str ());
10001 }
10002
10003 /* Skip the ack char if we're in no-ack mode. */
10004 if (!rs->noack_mode)
10005 remote_serial_write ("+", 1);
10006 if (is_notif != NULL)
10007 *is_notif = 0;
10008 return val;
10009 }
10010
10011 /* If we got a notification, handle it, and go back to looking
10012 for a packet. */
10013 else
10014 {
10015 gdb_assert (c == '%');
10016
10017 remote_debug_printf_nofunc
10018 (" Notification received: %s",
10019 escape_buffer (buf->data (), val).c_str ());
10020
10021 if (is_notif != NULL)
10022 *is_notif = 1;
10023
10024 handle_notification (rs->notif_state, buf->data ());
10025
10026 /* Notifications require no acknowledgement. */
10027
10028 if (expecting_notif)
10029 return val;
10030 }
10031 }
10032 }
10033
10034 int
10035 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10036 {
10037 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10038 }
10039
10040 int
10041 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10042 int *is_notif)
10043 {
10044 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10045 }
10046
10047 /* Kill any new fork children of process PID that haven't been
10048 processed by follow_fork. */
10049
10050 void
10051 remote_target::kill_new_fork_children (int pid)
10052 {
10053 remote_state *rs = get_remote_state ();
10054 struct notif_client *notif = &notif_client_stop;
10055
10056 /* Kill the fork child threads of any threads in process PID
10057 that are stopped at a fork event. */
10058 for (thread_info *thread : all_non_exited_threads (this))
10059 {
10060 struct target_waitstatus *ws = &thread->pending_follow;
10061
10062 if (is_pending_fork_parent (ws, pid, thread->ptid))
10063 {
10064 int child_pid = ws->child_ptid ().pid ();
10065 int res;
10066
10067 res = remote_vkill (child_pid);
10068 if (res != 0)
10069 error (_("Can't kill fork child process %d"), child_pid);
10070 }
10071 }
10072
10073 /* Check for any pending fork events (not reported or processed yet)
10074 in process PID and kill those fork child threads as well. */
10075 remote_notif_get_pending_events (notif);
10076 for (auto &event : rs->stop_reply_queue)
10077 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10078 {
10079 int child_pid = event->ws.child_ptid ().pid ();
10080 int res;
10081
10082 res = remote_vkill (child_pid);
10083 if (res != 0)
10084 error (_("Can't kill fork child process %d"), child_pid);
10085 }
10086 }
10087
10088 \f
10089 /* Target hook to kill the current inferior. */
10090
10091 void
10092 remote_target::kill ()
10093 {
10094 int res = -1;
10095 int pid = inferior_ptid.pid ();
10096 struct remote_state *rs = get_remote_state ();
10097
10098 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10099 {
10100 /* If we're stopped while forking and we haven't followed yet,
10101 kill the child task. We need to do this before killing the
10102 parent task because if this is a vfork then the parent will
10103 be sleeping. */
10104 kill_new_fork_children (pid);
10105
10106 res = remote_vkill (pid);
10107 if (res == 0)
10108 {
10109 target_mourn_inferior (inferior_ptid);
10110 return;
10111 }
10112 }
10113
10114 /* If we are in 'target remote' mode and we are killing the only
10115 inferior, then we will tell gdbserver to exit and unpush the
10116 target. */
10117 if (res == -1 && !remote_multi_process_p (rs)
10118 && number_of_live_inferiors (this) == 1)
10119 {
10120 remote_kill_k ();
10121
10122 /* We've killed the remote end, we get to mourn it. If we are
10123 not in extended mode, mourning the inferior also unpushes
10124 remote_ops from the target stack, which closes the remote
10125 connection. */
10126 target_mourn_inferior (inferior_ptid);
10127
10128 return;
10129 }
10130
10131 error (_("Can't kill process"));
10132 }
10133
10134 /* Send a kill request to the target using the 'vKill' packet. */
10135
10136 int
10137 remote_target::remote_vkill (int pid)
10138 {
10139 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10140 return -1;
10141
10142 remote_state *rs = get_remote_state ();
10143
10144 /* Tell the remote target to detach. */
10145 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10146 putpkt (rs->buf);
10147 getpkt (&rs->buf, 0);
10148
10149 switch (packet_ok (rs->buf,
10150 &remote_protocol_packets[PACKET_vKill]))
10151 {
10152 case PACKET_OK:
10153 return 0;
10154 case PACKET_ERROR:
10155 return 1;
10156 case PACKET_UNKNOWN:
10157 return -1;
10158 default:
10159 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10160 }
10161 }
10162
10163 /* Send a kill request to the target using the 'k' packet. */
10164
10165 void
10166 remote_target::remote_kill_k ()
10167 {
10168 /* Catch errors so the user can quit from gdb even when we
10169 aren't on speaking terms with the remote system. */
10170 try
10171 {
10172 putpkt ("k");
10173 }
10174 catch (const gdb_exception_error &ex)
10175 {
10176 if (ex.error == TARGET_CLOSE_ERROR)
10177 {
10178 /* If we got an (EOF) error that caused the target
10179 to go away, then we're done, that's what we wanted.
10180 "k" is susceptible to cause a premature EOF, given
10181 that the remote server isn't actually required to
10182 reply to "k", and it can happen that it doesn't
10183 even get to reply ACK to the "k". */
10184 return;
10185 }
10186
10187 /* Otherwise, something went wrong. We didn't actually kill
10188 the target. Just propagate the exception, and let the
10189 user or higher layers decide what to do. */
10190 throw;
10191 }
10192 }
10193
10194 void
10195 remote_target::mourn_inferior ()
10196 {
10197 struct remote_state *rs = get_remote_state ();
10198
10199 /* We're no longer interested in notification events of an inferior
10200 that exited or was killed/detached. */
10201 discard_pending_stop_replies (current_inferior ());
10202
10203 /* In 'target remote' mode with one inferior, we close the connection. */
10204 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10205 {
10206 remote_unpush_target (this);
10207 return;
10208 }
10209
10210 /* In case we got here due to an error, but we're going to stay
10211 connected. */
10212 rs->waiting_for_stop_reply = 0;
10213
10214 /* If the current general thread belonged to the process we just
10215 detached from or has exited, the remote side current general
10216 thread becomes undefined. Considering a case like this:
10217
10218 - We just got here due to a detach.
10219 - The process that we're detaching from happens to immediately
10220 report a global breakpoint being hit in non-stop mode, in the
10221 same thread we had selected before.
10222 - GDB attaches to this process again.
10223 - This event happens to be the next event we handle.
10224
10225 GDB would consider that the current general thread didn't need to
10226 be set on the stub side (with Hg), since for all it knew,
10227 GENERAL_THREAD hadn't changed.
10228
10229 Notice that although in all-stop mode, the remote server always
10230 sets the current thread to the thread reporting the stop event,
10231 that doesn't happen in non-stop mode; in non-stop, the stub *must
10232 not* change the current thread when reporting a breakpoint hit,
10233 due to the decoupling of event reporting and event handling.
10234
10235 To keep things simple, we always invalidate our notion of the
10236 current thread. */
10237 record_currthread (rs, minus_one_ptid);
10238
10239 /* Call common code to mark the inferior as not running. */
10240 generic_mourn_inferior ();
10241 }
10242
10243 bool
10244 extended_remote_target::supports_disable_randomization ()
10245 {
10246 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10247 }
10248
10249 void
10250 remote_target::extended_remote_disable_randomization (int val)
10251 {
10252 struct remote_state *rs = get_remote_state ();
10253 char *reply;
10254
10255 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10256 "QDisableRandomization:%x", val);
10257 putpkt (rs->buf);
10258 reply = remote_get_noisy_reply ();
10259 if (*reply == '\0')
10260 error (_("Target does not support QDisableRandomization."));
10261 if (strcmp (reply, "OK") != 0)
10262 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10263 }
10264
10265 int
10266 remote_target::extended_remote_run (const std::string &args)
10267 {
10268 struct remote_state *rs = get_remote_state ();
10269 int len;
10270 const char *remote_exec_file = get_remote_exec_file ();
10271
10272 /* If the user has disabled vRun support, or we have detected that
10273 support is not available, do not try it. */
10274 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10275 return -1;
10276
10277 strcpy (rs->buf.data (), "vRun;");
10278 len = strlen (rs->buf.data ());
10279
10280 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10281 error (_("Remote file name too long for run packet"));
10282 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10283 strlen (remote_exec_file));
10284
10285 if (!args.empty ())
10286 {
10287 int i;
10288
10289 gdb_argv argv (args.c_str ());
10290 for (i = 0; argv[i] != NULL; i++)
10291 {
10292 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10293 error (_("Argument list too long for run packet"));
10294 rs->buf[len++] = ';';
10295 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10296 strlen (argv[i]));
10297 }
10298 }
10299
10300 rs->buf[len++] = '\0';
10301
10302 putpkt (rs->buf);
10303 getpkt (&rs->buf, 0);
10304
10305 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10306 {
10307 case PACKET_OK:
10308 /* We have a wait response. All is well. */
10309 return 0;
10310 case PACKET_UNKNOWN:
10311 return -1;
10312 case PACKET_ERROR:
10313 if (remote_exec_file[0] == '\0')
10314 error (_("Running the default executable on the remote target failed; "
10315 "try \"set remote exec-file\"?"));
10316 else
10317 error (_("Running \"%s\" on the remote target failed"),
10318 remote_exec_file);
10319 default:
10320 gdb_assert_not_reached (_("bad switch"));
10321 }
10322 }
10323
10324 /* Helper function to send set/unset environment packets. ACTION is
10325 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10326 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10327 sent. */
10328
10329 void
10330 remote_target::send_environment_packet (const char *action,
10331 const char *packet,
10332 const char *value)
10333 {
10334 remote_state *rs = get_remote_state ();
10335
10336 /* Convert the environment variable to an hex string, which
10337 is the best format to be transmitted over the wire. */
10338 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10339 strlen (value));
10340
10341 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10342 "%s:%s", packet, encoded_value.c_str ());
10343
10344 putpkt (rs->buf);
10345 getpkt (&rs->buf, 0);
10346 if (strcmp (rs->buf.data (), "OK") != 0)
10347 warning (_("Unable to %s environment variable '%s' on remote."),
10348 action, value);
10349 }
10350
10351 /* Helper function to handle the QEnvironment* packets. */
10352
10353 void
10354 remote_target::extended_remote_environment_support ()
10355 {
10356 remote_state *rs = get_remote_state ();
10357
10358 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10359 {
10360 putpkt ("QEnvironmentReset");
10361 getpkt (&rs->buf, 0);
10362 if (strcmp (rs->buf.data (), "OK") != 0)
10363 warning (_("Unable to reset environment on remote."));
10364 }
10365
10366 gdb_environ *e = &current_inferior ()->environment;
10367
10368 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10369 for (const std::string &el : e->user_set_env ())
10370 send_environment_packet ("set", "QEnvironmentHexEncoded",
10371 el.c_str ());
10372
10373 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10374 for (const std::string &el : e->user_unset_env ())
10375 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10376 }
10377
10378 /* Helper function to set the current working directory for the
10379 inferior in the remote target. */
10380
10381 void
10382 remote_target::extended_remote_set_inferior_cwd ()
10383 {
10384 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10385 {
10386 const std::string &inferior_cwd = current_inferior ()->cwd ();
10387 remote_state *rs = get_remote_state ();
10388
10389 if (!inferior_cwd.empty ())
10390 {
10391 std::string hexpath
10392 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10393 inferior_cwd.size ());
10394
10395 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10396 "QSetWorkingDir:%s", hexpath.c_str ());
10397 }
10398 else
10399 {
10400 /* An empty inferior_cwd means that the user wants us to
10401 reset the remote server's inferior's cwd. */
10402 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10403 "QSetWorkingDir:");
10404 }
10405
10406 putpkt (rs->buf);
10407 getpkt (&rs->buf, 0);
10408 if (packet_ok (rs->buf,
10409 &remote_protocol_packets[PACKET_QSetWorkingDir])
10410 != PACKET_OK)
10411 error (_("\
10412 Remote replied unexpectedly while setting the inferior's working\n\
10413 directory: %s"),
10414 rs->buf.data ());
10415
10416 }
10417 }
10418
10419 /* In the extended protocol we want to be able to do things like
10420 "run" and have them basically work as expected. So we need
10421 a special create_inferior function. We support changing the
10422 executable file and the command line arguments, but not the
10423 environment. */
10424
10425 void
10426 extended_remote_target::create_inferior (const char *exec_file,
10427 const std::string &args,
10428 char **env, int from_tty)
10429 {
10430 int run_worked;
10431 char *stop_reply;
10432 struct remote_state *rs = get_remote_state ();
10433 const char *remote_exec_file = get_remote_exec_file ();
10434
10435 /* If running asynchronously, register the target file descriptor
10436 with the event loop. */
10437 if (target_can_async_p ())
10438 target_async (1);
10439
10440 /* Disable address space randomization if requested (and supported). */
10441 if (supports_disable_randomization ())
10442 extended_remote_disable_randomization (disable_randomization);
10443
10444 /* If startup-with-shell is on, we inform gdbserver to start the
10445 remote inferior using a shell. */
10446 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10447 {
10448 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10449 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10450 putpkt (rs->buf);
10451 getpkt (&rs->buf, 0);
10452 if (strcmp (rs->buf.data (), "OK") != 0)
10453 error (_("\
10454 Remote replied unexpectedly while setting startup-with-shell: %s"),
10455 rs->buf.data ());
10456 }
10457
10458 extended_remote_environment_support ();
10459
10460 extended_remote_set_inferior_cwd ();
10461
10462 /* Now restart the remote server. */
10463 run_worked = extended_remote_run (args) != -1;
10464 if (!run_worked)
10465 {
10466 /* vRun was not supported. Fail if we need it to do what the
10467 user requested. */
10468 if (remote_exec_file[0])
10469 error (_("Remote target does not support \"set remote exec-file\""));
10470 if (!args.empty ())
10471 error (_("Remote target does not support \"set args\" or run ARGS"));
10472
10473 /* Fall back to "R". */
10474 extended_remote_restart ();
10475 }
10476
10477 /* vRun's success return is a stop reply. */
10478 stop_reply = run_worked ? rs->buf.data () : NULL;
10479 add_current_inferior_and_thread (stop_reply);
10480
10481 /* Get updated offsets, if the stub uses qOffsets. */
10482 get_offsets ();
10483 }
10484 \f
10485
10486 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10487 the list of conditions (in agent expression bytecode format), if any, the
10488 target needs to evaluate. The output is placed into the packet buffer
10489 started from BUF and ended at BUF_END. */
10490
10491 static int
10492 remote_add_target_side_condition (struct gdbarch *gdbarch,
10493 struct bp_target_info *bp_tgt, char *buf,
10494 char *buf_end)
10495 {
10496 if (bp_tgt->conditions.empty ())
10497 return 0;
10498
10499 buf += strlen (buf);
10500 xsnprintf (buf, buf_end - buf, "%s", ";");
10501 buf++;
10502
10503 /* Send conditions to the target. */
10504 for (agent_expr *aexpr : bp_tgt->conditions)
10505 {
10506 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10507 buf += strlen (buf);
10508 for (int i = 0; i < aexpr->len; ++i)
10509 buf = pack_hex_byte (buf, aexpr->buf[i]);
10510 *buf = '\0';
10511 }
10512 return 0;
10513 }
10514
10515 static void
10516 remote_add_target_side_commands (struct gdbarch *gdbarch,
10517 struct bp_target_info *bp_tgt, char *buf)
10518 {
10519 if (bp_tgt->tcommands.empty ())
10520 return;
10521
10522 buf += strlen (buf);
10523
10524 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10525 buf += strlen (buf);
10526
10527 /* Concatenate all the agent expressions that are commands into the
10528 cmds parameter. */
10529 for (agent_expr *aexpr : bp_tgt->tcommands)
10530 {
10531 sprintf (buf, "X%x,", aexpr->len);
10532 buf += strlen (buf);
10533 for (int i = 0; i < aexpr->len; ++i)
10534 buf = pack_hex_byte (buf, aexpr->buf[i]);
10535 *buf = '\0';
10536 }
10537 }
10538
10539 /* Insert a breakpoint. On targets that have software breakpoint
10540 support, we ask the remote target to do the work; on targets
10541 which don't, we insert a traditional memory breakpoint. */
10542
10543 int
10544 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10545 struct bp_target_info *bp_tgt)
10546 {
10547 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10548 If it succeeds, then set the support to PACKET_ENABLE. If it
10549 fails, and the user has explicitly requested the Z support then
10550 report an error, otherwise, mark it disabled and go on. */
10551
10552 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10553 {
10554 CORE_ADDR addr = bp_tgt->reqstd_address;
10555 struct remote_state *rs;
10556 char *p, *endbuf;
10557
10558 /* Make sure the remote is pointing at the right process, if
10559 necessary. */
10560 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10561 set_general_process ();
10562
10563 rs = get_remote_state ();
10564 p = rs->buf.data ();
10565 endbuf = p + get_remote_packet_size ();
10566
10567 *(p++) = 'Z';
10568 *(p++) = '0';
10569 *(p++) = ',';
10570 addr = (ULONGEST) remote_address_masked (addr);
10571 p += hexnumstr (p, addr);
10572 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10573
10574 if (supports_evaluation_of_breakpoint_conditions ())
10575 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10576
10577 if (can_run_breakpoint_commands ())
10578 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10579
10580 putpkt (rs->buf);
10581 getpkt (&rs->buf, 0);
10582
10583 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10584 {
10585 case PACKET_ERROR:
10586 return -1;
10587 case PACKET_OK:
10588 return 0;
10589 case PACKET_UNKNOWN:
10590 break;
10591 }
10592 }
10593
10594 /* If this breakpoint has target-side commands but this stub doesn't
10595 support Z0 packets, throw error. */
10596 if (!bp_tgt->tcommands.empty ())
10597 throw_error (NOT_SUPPORTED_ERROR, _("\
10598 Target doesn't support breakpoints that have target side commands."));
10599
10600 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10601 }
10602
10603 int
10604 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10605 struct bp_target_info *bp_tgt,
10606 enum remove_bp_reason reason)
10607 {
10608 CORE_ADDR addr = bp_tgt->placed_address;
10609 struct remote_state *rs = get_remote_state ();
10610
10611 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10612 {
10613 char *p = rs->buf.data ();
10614 char *endbuf = p + get_remote_packet_size ();
10615
10616 /* Make sure the remote is pointing at the right process, if
10617 necessary. */
10618 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10619 set_general_process ();
10620
10621 *(p++) = 'z';
10622 *(p++) = '0';
10623 *(p++) = ',';
10624
10625 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10626 p += hexnumstr (p, addr);
10627 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10628
10629 putpkt (rs->buf);
10630 getpkt (&rs->buf, 0);
10631
10632 return (rs->buf[0] == 'E');
10633 }
10634
10635 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10636 }
10637
10638 static enum Z_packet_type
10639 watchpoint_to_Z_packet (int type)
10640 {
10641 switch (type)
10642 {
10643 case hw_write:
10644 return Z_PACKET_WRITE_WP;
10645 break;
10646 case hw_read:
10647 return Z_PACKET_READ_WP;
10648 break;
10649 case hw_access:
10650 return Z_PACKET_ACCESS_WP;
10651 break;
10652 default:
10653 internal_error (__FILE__, __LINE__,
10654 _("hw_bp_to_z: bad watchpoint type %d"), type);
10655 }
10656 }
10657
10658 int
10659 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10660 enum target_hw_bp_type type, struct expression *cond)
10661 {
10662 struct remote_state *rs = get_remote_state ();
10663 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10664 char *p;
10665 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10666
10667 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10668 return 1;
10669
10670 /* Make sure the remote is pointing at the right process, if
10671 necessary. */
10672 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10673 set_general_process ();
10674
10675 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10676 p = strchr (rs->buf.data (), '\0');
10677 addr = remote_address_masked (addr);
10678 p += hexnumstr (p, (ULONGEST) addr);
10679 xsnprintf (p, endbuf - p, ",%x", len);
10680
10681 putpkt (rs->buf);
10682 getpkt (&rs->buf, 0);
10683
10684 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10685 {
10686 case PACKET_ERROR:
10687 return -1;
10688 case PACKET_UNKNOWN:
10689 return 1;
10690 case PACKET_OK:
10691 return 0;
10692 }
10693 internal_error (__FILE__, __LINE__,
10694 _("remote_insert_watchpoint: reached end of function"));
10695 }
10696
10697 bool
10698 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10699 CORE_ADDR start, int length)
10700 {
10701 CORE_ADDR diff = remote_address_masked (addr - start);
10702
10703 return diff < length;
10704 }
10705
10706
10707 int
10708 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10709 enum target_hw_bp_type type, struct expression *cond)
10710 {
10711 struct remote_state *rs = get_remote_state ();
10712 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10713 char *p;
10714 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10715
10716 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10717 return -1;
10718
10719 /* Make sure the remote is pointing at the right process, if
10720 necessary. */
10721 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10722 set_general_process ();
10723
10724 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10725 p = strchr (rs->buf.data (), '\0');
10726 addr = remote_address_masked (addr);
10727 p += hexnumstr (p, (ULONGEST) addr);
10728 xsnprintf (p, endbuf - p, ",%x", len);
10729 putpkt (rs->buf);
10730 getpkt (&rs->buf, 0);
10731
10732 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10733 {
10734 case PACKET_ERROR:
10735 case PACKET_UNKNOWN:
10736 return -1;
10737 case PACKET_OK:
10738 return 0;
10739 }
10740 internal_error (__FILE__, __LINE__,
10741 _("remote_remove_watchpoint: reached end of function"));
10742 }
10743
10744
10745 static int remote_hw_watchpoint_limit = -1;
10746 static int remote_hw_watchpoint_length_limit = -1;
10747 static int remote_hw_breakpoint_limit = -1;
10748
10749 int
10750 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10751 {
10752 if (remote_hw_watchpoint_length_limit == 0)
10753 return 0;
10754 else if (remote_hw_watchpoint_length_limit < 0)
10755 return 1;
10756 else if (len <= remote_hw_watchpoint_length_limit)
10757 return 1;
10758 else
10759 return 0;
10760 }
10761
10762 int
10763 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10764 {
10765 if (type == bp_hardware_breakpoint)
10766 {
10767 if (remote_hw_breakpoint_limit == 0)
10768 return 0;
10769 else if (remote_hw_breakpoint_limit < 0)
10770 return 1;
10771 else if (cnt <= remote_hw_breakpoint_limit)
10772 return 1;
10773 }
10774 else
10775 {
10776 if (remote_hw_watchpoint_limit == 0)
10777 return 0;
10778 else if (remote_hw_watchpoint_limit < 0)
10779 return 1;
10780 else if (ot)
10781 return -1;
10782 else if (cnt <= remote_hw_watchpoint_limit)
10783 return 1;
10784 }
10785 return -1;
10786 }
10787
10788 /* The to_stopped_by_sw_breakpoint method of target remote. */
10789
10790 bool
10791 remote_target::stopped_by_sw_breakpoint ()
10792 {
10793 struct thread_info *thread = inferior_thread ();
10794
10795 return (thread->priv != NULL
10796 && (get_remote_thread_info (thread)->stop_reason
10797 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10798 }
10799
10800 /* The to_supports_stopped_by_sw_breakpoint method of target
10801 remote. */
10802
10803 bool
10804 remote_target::supports_stopped_by_sw_breakpoint ()
10805 {
10806 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10807 }
10808
10809 /* The to_stopped_by_hw_breakpoint method of target remote. */
10810
10811 bool
10812 remote_target::stopped_by_hw_breakpoint ()
10813 {
10814 struct thread_info *thread = inferior_thread ();
10815
10816 return (thread->priv != NULL
10817 && (get_remote_thread_info (thread)->stop_reason
10818 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10819 }
10820
10821 /* The to_supports_stopped_by_hw_breakpoint method of target
10822 remote. */
10823
10824 bool
10825 remote_target::supports_stopped_by_hw_breakpoint ()
10826 {
10827 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10828 }
10829
10830 bool
10831 remote_target::stopped_by_watchpoint ()
10832 {
10833 struct thread_info *thread = inferior_thread ();
10834
10835 return (thread->priv != NULL
10836 && (get_remote_thread_info (thread)->stop_reason
10837 == TARGET_STOPPED_BY_WATCHPOINT));
10838 }
10839
10840 bool
10841 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10842 {
10843 struct thread_info *thread = inferior_thread ();
10844
10845 if (thread->priv != NULL
10846 && (get_remote_thread_info (thread)->stop_reason
10847 == TARGET_STOPPED_BY_WATCHPOINT))
10848 {
10849 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10850 return true;
10851 }
10852
10853 return false;
10854 }
10855
10856
10857 int
10858 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10859 struct bp_target_info *bp_tgt)
10860 {
10861 CORE_ADDR addr = bp_tgt->reqstd_address;
10862 struct remote_state *rs;
10863 char *p, *endbuf;
10864 char *message;
10865
10866 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10867 return -1;
10868
10869 /* Make sure the remote is pointing at the right process, if
10870 necessary. */
10871 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10872 set_general_process ();
10873
10874 rs = get_remote_state ();
10875 p = rs->buf.data ();
10876 endbuf = p + get_remote_packet_size ();
10877
10878 *(p++) = 'Z';
10879 *(p++) = '1';
10880 *(p++) = ',';
10881
10882 addr = remote_address_masked (addr);
10883 p += hexnumstr (p, (ULONGEST) addr);
10884 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10885
10886 if (supports_evaluation_of_breakpoint_conditions ())
10887 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10888
10889 if (can_run_breakpoint_commands ())
10890 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10891
10892 putpkt (rs->buf);
10893 getpkt (&rs->buf, 0);
10894
10895 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10896 {
10897 case PACKET_ERROR:
10898 if (rs->buf[1] == '.')
10899 {
10900 message = strchr (&rs->buf[2], '.');
10901 if (message)
10902 error (_("Remote failure reply: %s"), message + 1);
10903 }
10904 return -1;
10905 case PACKET_UNKNOWN:
10906 return -1;
10907 case PACKET_OK:
10908 return 0;
10909 }
10910 internal_error (__FILE__, __LINE__,
10911 _("remote_insert_hw_breakpoint: reached end of function"));
10912 }
10913
10914
10915 int
10916 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10917 struct bp_target_info *bp_tgt)
10918 {
10919 CORE_ADDR addr;
10920 struct remote_state *rs = get_remote_state ();
10921 char *p = rs->buf.data ();
10922 char *endbuf = p + get_remote_packet_size ();
10923
10924 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10925 return -1;
10926
10927 /* Make sure the remote is pointing at the right process, if
10928 necessary. */
10929 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10930 set_general_process ();
10931
10932 *(p++) = 'z';
10933 *(p++) = '1';
10934 *(p++) = ',';
10935
10936 addr = remote_address_masked (bp_tgt->placed_address);
10937 p += hexnumstr (p, (ULONGEST) addr);
10938 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10939
10940 putpkt (rs->buf);
10941 getpkt (&rs->buf, 0);
10942
10943 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10944 {
10945 case PACKET_ERROR:
10946 case PACKET_UNKNOWN:
10947 return -1;
10948 case PACKET_OK:
10949 return 0;
10950 }
10951 internal_error (__FILE__, __LINE__,
10952 _("remote_remove_hw_breakpoint: reached end of function"));
10953 }
10954
10955 /* Verify memory using the "qCRC:" request. */
10956
10957 int
10958 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10959 {
10960 struct remote_state *rs = get_remote_state ();
10961 unsigned long host_crc, target_crc;
10962 char *tmp;
10963
10964 /* It doesn't make sense to use qCRC if the remote target is
10965 connected but not running. */
10966 if (target_has_execution ()
10967 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10968 {
10969 enum packet_result result;
10970
10971 /* Make sure the remote is pointing at the right process. */
10972 set_general_process ();
10973
10974 /* FIXME: assumes lma can fit into long. */
10975 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10976 (long) lma, (long) size);
10977 putpkt (rs->buf);
10978
10979 /* Be clever; compute the host_crc before waiting for target
10980 reply. */
10981 host_crc = xcrc32 (data, size, 0xffffffff);
10982
10983 getpkt (&rs->buf, 0);
10984
10985 result = packet_ok (rs->buf,
10986 &remote_protocol_packets[PACKET_qCRC]);
10987 if (result == PACKET_ERROR)
10988 return -1;
10989 else if (result == PACKET_OK)
10990 {
10991 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10992 target_crc = target_crc * 16 + fromhex (*tmp);
10993
10994 return (host_crc == target_crc);
10995 }
10996 }
10997
10998 return simple_verify_memory (this, data, lma, size);
10999 }
11000
11001 /* compare-sections command
11002
11003 With no arguments, compares each loadable section in the exec bfd
11004 with the same memory range on the target, and reports mismatches.
11005 Useful for verifying the image on the target against the exec file. */
11006
11007 static void
11008 compare_sections_command (const char *args, int from_tty)
11009 {
11010 asection *s;
11011 const char *sectname;
11012 bfd_size_type size;
11013 bfd_vma lma;
11014 int matched = 0;
11015 int mismatched = 0;
11016 int res;
11017 int read_only = 0;
11018
11019 if (!current_program_space->exec_bfd ())
11020 error (_("command cannot be used without an exec file"));
11021
11022 if (args != NULL && strcmp (args, "-r") == 0)
11023 {
11024 read_only = 1;
11025 args = NULL;
11026 }
11027
11028 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11029 {
11030 if (!(s->flags & SEC_LOAD))
11031 continue; /* Skip non-loadable section. */
11032
11033 if (read_only && (s->flags & SEC_READONLY) == 0)
11034 continue; /* Skip writeable sections */
11035
11036 size = bfd_section_size (s);
11037 if (size == 0)
11038 continue; /* Skip zero-length section. */
11039
11040 sectname = bfd_section_name (s);
11041 if (args && strcmp (args, sectname) != 0)
11042 continue; /* Not the section selected by user. */
11043
11044 matched = 1; /* Do this section. */
11045 lma = s->lma;
11046
11047 gdb::byte_vector sectdata (size);
11048 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11049 sectdata.data (), 0, size);
11050
11051 res = target_verify_memory (sectdata.data (), lma, size);
11052
11053 if (res == -1)
11054 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11055 paddress (target_gdbarch (), lma),
11056 paddress (target_gdbarch (), lma + size));
11057
11058 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11059 paddress (target_gdbarch (), lma),
11060 paddress (target_gdbarch (), lma + size));
11061 if (res)
11062 printf_filtered ("matched.\n");
11063 else
11064 {
11065 printf_filtered ("MIS-MATCHED!\n");
11066 mismatched++;
11067 }
11068 }
11069 if (mismatched > 0)
11070 warning (_("One or more sections of the target image does not match\n\
11071 the loaded file\n"));
11072 if (args && !matched)
11073 printf_filtered (_("No loaded section named '%s'.\n"), args);
11074 }
11075
11076 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11077 into remote target. The number of bytes written to the remote
11078 target is returned, or -1 for error. */
11079
11080 target_xfer_status
11081 remote_target::remote_write_qxfer (const char *object_name,
11082 const char *annex, const gdb_byte *writebuf,
11083 ULONGEST offset, LONGEST len,
11084 ULONGEST *xfered_len,
11085 struct packet_config *packet)
11086 {
11087 int i, buf_len;
11088 ULONGEST n;
11089 struct remote_state *rs = get_remote_state ();
11090 int max_size = get_memory_write_packet_size ();
11091
11092 if (packet_config_support (packet) == PACKET_DISABLE)
11093 return TARGET_XFER_E_IO;
11094
11095 /* Insert header. */
11096 i = snprintf (rs->buf.data (), max_size,
11097 "qXfer:%s:write:%s:%s:",
11098 object_name, annex ? annex : "",
11099 phex_nz (offset, sizeof offset));
11100 max_size -= (i + 1);
11101
11102 /* Escape as much data as fits into rs->buf. */
11103 buf_len = remote_escape_output
11104 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11105
11106 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11107 || getpkt_sane (&rs->buf, 0) < 0
11108 || packet_ok (rs->buf, packet) != PACKET_OK)
11109 return TARGET_XFER_E_IO;
11110
11111 unpack_varlen_hex (rs->buf.data (), &n);
11112
11113 *xfered_len = n;
11114 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11115 }
11116
11117 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11118 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11119 number of bytes read is returned, or 0 for EOF, or -1 for error.
11120 The number of bytes read may be less than LEN without indicating an
11121 EOF. PACKET is checked and updated to indicate whether the remote
11122 target supports this object. */
11123
11124 target_xfer_status
11125 remote_target::remote_read_qxfer (const char *object_name,
11126 const char *annex,
11127 gdb_byte *readbuf, ULONGEST offset,
11128 LONGEST len,
11129 ULONGEST *xfered_len,
11130 struct packet_config *packet)
11131 {
11132 struct remote_state *rs = get_remote_state ();
11133 LONGEST i, n, packet_len;
11134
11135 if (packet_config_support (packet) == PACKET_DISABLE)
11136 return TARGET_XFER_E_IO;
11137
11138 /* Check whether we've cached an end-of-object packet that matches
11139 this request. */
11140 if (rs->finished_object)
11141 {
11142 if (strcmp (object_name, rs->finished_object) == 0
11143 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11144 && offset == rs->finished_offset)
11145 return TARGET_XFER_EOF;
11146
11147
11148 /* Otherwise, we're now reading something different. Discard
11149 the cache. */
11150 xfree (rs->finished_object);
11151 xfree (rs->finished_annex);
11152 rs->finished_object = NULL;
11153 rs->finished_annex = NULL;
11154 }
11155
11156 /* Request only enough to fit in a single packet. The actual data
11157 may not, since we don't know how much of it will need to be escaped;
11158 the target is free to respond with slightly less data. We subtract
11159 five to account for the response type and the protocol frame. */
11160 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11161 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11162 "qXfer:%s:read:%s:%s,%s",
11163 object_name, annex ? annex : "",
11164 phex_nz (offset, sizeof offset),
11165 phex_nz (n, sizeof n));
11166 i = putpkt (rs->buf);
11167 if (i < 0)
11168 return TARGET_XFER_E_IO;
11169
11170 rs->buf[0] = '\0';
11171 packet_len = getpkt_sane (&rs->buf, 0);
11172 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11173 return TARGET_XFER_E_IO;
11174
11175 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11176 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11177
11178 /* 'm' means there is (or at least might be) more data after this
11179 batch. That does not make sense unless there's at least one byte
11180 of data in this reply. */
11181 if (rs->buf[0] == 'm' && packet_len == 1)
11182 error (_("Remote qXfer reply contained no data."));
11183
11184 /* Got some data. */
11185 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11186 packet_len - 1, readbuf, n);
11187
11188 /* 'l' is an EOF marker, possibly including a final block of data,
11189 or possibly empty. If we have the final block of a non-empty
11190 object, record this fact to bypass a subsequent partial read. */
11191 if (rs->buf[0] == 'l' && offset + i > 0)
11192 {
11193 rs->finished_object = xstrdup (object_name);
11194 rs->finished_annex = xstrdup (annex ? annex : "");
11195 rs->finished_offset = offset + i;
11196 }
11197
11198 if (i == 0)
11199 return TARGET_XFER_EOF;
11200 else
11201 {
11202 *xfered_len = i;
11203 return TARGET_XFER_OK;
11204 }
11205 }
11206
11207 enum target_xfer_status
11208 remote_target::xfer_partial (enum target_object object,
11209 const char *annex, gdb_byte *readbuf,
11210 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11211 ULONGEST *xfered_len)
11212 {
11213 struct remote_state *rs;
11214 int i;
11215 char *p2;
11216 char query_type;
11217 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11218
11219 set_remote_traceframe ();
11220 set_general_thread (inferior_ptid);
11221
11222 rs = get_remote_state ();
11223
11224 /* Handle memory using the standard memory routines. */
11225 if (object == TARGET_OBJECT_MEMORY)
11226 {
11227 /* If the remote target is connected but not running, we should
11228 pass this request down to a lower stratum (e.g. the executable
11229 file). */
11230 if (!target_has_execution ())
11231 return TARGET_XFER_EOF;
11232
11233 if (writebuf != NULL)
11234 return remote_write_bytes (offset, writebuf, len, unit_size,
11235 xfered_len);
11236 else
11237 return remote_read_bytes (offset, readbuf, len, unit_size,
11238 xfered_len);
11239 }
11240
11241 /* Handle extra signal info using qxfer packets. */
11242 if (object == TARGET_OBJECT_SIGNAL_INFO)
11243 {
11244 if (readbuf)
11245 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11246 xfered_len, &remote_protocol_packets
11247 [PACKET_qXfer_siginfo_read]);
11248 else
11249 return remote_write_qxfer ("siginfo", annex,
11250 writebuf, offset, len, xfered_len,
11251 &remote_protocol_packets
11252 [PACKET_qXfer_siginfo_write]);
11253 }
11254
11255 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11256 {
11257 if (readbuf)
11258 return remote_read_qxfer ("statictrace", annex,
11259 readbuf, offset, len, xfered_len,
11260 &remote_protocol_packets
11261 [PACKET_qXfer_statictrace_read]);
11262 else
11263 return TARGET_XFER_E_IO;
11264 }
11265
11266 /* Only handle flash writes. */
11267 if (writebuf != NULL)
11268 {
11269 switch (object)
11270 {
11271 case TARGET_OBJECT_FLASH:
11272 return remote_flash_write (offset, len, xfered_len,
11273 writebuf);
11274
11275 default:
11276 return TARGET_XFER_E_IO;
11277 }
11278 }
11279
11280 /* Map pre-existing objects onto letters. DO NOT do this for new
11281 objects!!! Instead specify new query packets. */
11282 switch (object)
11283 {
11284 case TARGET_OBJECT_AVR:
11285 query_type = 'R';
11286 break;
11287
11288 case TARGET_OBJECT_AUXV:
11289 gdb_assert (annex == NULL);
11290 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11291 xfered_len,
11292 &remote_protocol_packets[PACKET_qXfer_auxv]);
11293
11294 case TARGET_OBJECT_AVAILABLE_FEATURES:
11295 return remote_read_qxfer
11296 ("features", annex, readbuf, offset, len, xfered_len,
11297 &remote_protocol_packets[PACKET_qXfer_features]);
11298
11299 case TARGET_OBJECT_LIBRARIES:
11300 return remote_read_qxfer
11301 ("libraries", annex, readbuf, offset, len, xfered_len,
11302 &remote_protocol_packets[PACKET_qXfer_libraries]);
11303
11304 case TARGET_OBJECT_LIBRARIES_SVR4:
11305 return remote_read_qxfer
11306 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11307 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11308
11309 case TARGET_OBJECT_MEMORY_MAP:
11310 gdb_assert (annex == NULL);
11311 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11312 xfered_len,
11313 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11314
11315 case TARGET_OBJECT_OSDATA:
11316 /* Should only get here if we're connected. */
11317 gdb_assert (rs->remote_desc);
11318 return remote_read_qxfer
11319 ("osdata", annex, readbuf, offset, len, xfered_len,
11320 &remote_protocol_packets[PACKET_qXfer_osdata]);
11321
11322 case TARGET_OBJECT_THREADS:
11323 gdb_assert (annex == NULL);
11324 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11325 xfered_len,
11326 &remote_protocol_packets[PACKET_qXfer_threads]);
11327
11328 case TARGET_OBJECT_TRACEFRAME_INFO:
11329 gdb_assert (annex == NULL);
11330 return remote_read_qxfer
11331 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11332 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11333
11334 case TARGET_OBJECT_FDPIC:
11335 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11336 xfered_len,
11337 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11338
11339 case TARGET_OBJECT_OPENVMS_UIB:
11340 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11341 xfered_len,
11342 &remote_protocol_packets[PACKET_qXfer_uib]);
11343
11344 case TARGET_OBJECT_BTRACE:
11345 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11346 xfered_len,
11347 &remote_protocol_packets[PACKET_qXfer_btrace]);
11348
11349 case TARGET_OBJECT_BTRACE_CONF:
11350 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11351 len, xfered_len,
11352 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11353
11354 case TARGET_OBJECT_EXEC_FILE:
11355 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11356 len, xfered_len,
11357 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11358
11359 default:
11360 return TARGET_XFER_E_IO;
11361 }
11362
11363 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11364 large enough let the caller deal with it. */
11365 if (len < get_remote_packet_size ())
11366 return TARGET_XFER_E_IO;
11367 len = get_remote_packet_size ();
11368
11369 /* Except for querying the minimum buffer size, target must be open. */
11370 if (!rs->remote_desc)
11371 error (_("remote query is only available after target open"));
11372
11373 gdb_assert (annex != NULL);
11374 gdb_assert (readbuf != NULL);
11375
11376 p2 = rs->buf.data ();
11377 *p2++ = 'q';
11378 *p2++ = query_type;
11379
11380 /* We used one buffer char for the remote protocol q command and
11381 another for the query type. As the remote protocol encapsulation
11382 uses 4 chars plus one extra in case we are debugging
11383 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11384 string. */
11385 i = 0;
11386 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11387 {
11388 /* Bad caller may have sent forbidden characters. */
11389 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11390 *p2++ = annex[i];
11391 i++;
11392 }
11393 *p2 = '\0';
11394 gdb_assert (annex[i] == '\0');
11395
11396 i = putpkt (rs->buf);
11397 if (i < 0)
11398 return TARGET_XFER_E_IO;
11399
11400 getpkt (&rs->buf, 0);
11401 strcpy ((char *) readbuf, rs->buf.data ());
11402
11403 *xfered_len = strlen ((char *) readbuf);
11404 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11405 }
11406
11407 /* Implementation of to_get_memory_xfer_limit. */
11408
11409 ULONGEST
11410 remote_target::get_memory_xfer_limit ()
11411 {
11412 return get_memory_write_packet_size ();
11413 }
11414
11415 int
11416 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11417 const gdb_byte *pattern, ULONGEST pattern_len,
11418 CORE_ADDR *found_addrp)
11419 {
11420 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11421 struct remote_state *rs = get_remote_state ();
11422 int max_size = get_memory_write_packet_size ();
11423 struct packet_config *packet =
11424 &remote_protocol_packets[PACKET_qSearch_memory];
11425 /* Number of packet bytes used to encode the pattern;
11426 this could be more than PATTERN_LEN due to escape characters. */
11427 int escaped_pattern_len;
11428 /* Amount of pattern that was encodable in the packet. */
11429 int used_pattern_len;
11430 int i;
11431 int found;
11432 ULONGEST found_addr;
11433
11434 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11435 {
11436 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11437 == len);
11438 };
11439
11440 /* Don't go to the target if we don't have to. This is done before
11441 checking packet_config_support to avoid the possibility that a
11442 success for this edge case means the facility works in
11443 general. */
11444 if (pattern_len > search_space_len)
11445 return 0;
11446 if (pattern_len == 0)
11447 {
11448 *found_addrp = start_addr;
11449 return 1;
11450 }
11451
11452 /* If we already know the packet isn't supported, fall back to the simple
11453 way of searching memory. */
11454
11455 if (packet_config_support (packet) == PACKET_DISABLE)
11456 {
11457 /* Target doesn't provided special support, fall back and use the
11458 standard support (copy memory and do the search here). */
11459 return simple_search_memory (read_memory, start_addr, search_space_len,
11460 pattern, pattern_len, found_addrp);
11461 }
11462
11463 /* Make sure the remote is pointing at the right process. */
11464 set_general_process ();
11465
11466 /* Insert header. */
11467 i = snprintf (rs->buf.data (), max_size,
11468 "qSearch:memory:%s;%s;",
11469 phex_nz (start_addr, addr_size),
11470 phex_nz (search_space_len, sizeof (search_space_len)));
11471 max_size -= (i + 1);
11472
11473 /* Escape as much data as fits into rs->buf. */
11474 escaped_pattern_len =
11475 remote_escape_output (pattern, pattern_len, 1,
11476 (gdb_byte *) rs->buf.data () + i,
11477 &used_pattern_len, max_size);
11478
11479 /* Bail if the pattern is too large. */
11480 if (used_pattern_len != pattern_len)
11481 error (_("Pattern is too large to transmit to remote target."));
11482
11483 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11484 || getpkt_sane (&rs->buf, 0) < 0
11485 || packet_ok (rs->buf, packet) != PACKET_OK)
11486 {
11487 /* The request may not have worked because the command is not
11488 supported. If so, fall back to the simple way. */
11489 if (packet_config_support (packet) == PACKET_DISABLE)
11490 {
11491 return simple_search_memory (read_memory, start_addr, search_space_len,
11492 pattern, pattern_len, found_addrp);
11493 }
11494 return -1;
11495 }
11496
11497 if (rs->buf[0] == '0')
11498 found = 0;
11499 else if (rs->buf[0] == '1')
11500 {
11501 found = 1;
11502 if (rs->buf[1] != ',')
11503 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11504 unpack_varlen_hex (&rs->buf[2], &found_addr);
11505 *found_addrp = found_addr;
11506 }
11507 else
11508 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11509
11510 return found;
11511 }
11512
11513 void
11514 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11515 {
11516 struct remote_state *rs = get_remote_state ();
11517 char *p = rs->buf.data ();
11518
11519 if (!rs->remote_desc)
11520 error (_("remote rcmd is only available after target open"));
11521
11522 /* Send a NULL command across as an empty command. */
11523 if (command == NULL)
11524 command = "";
11525
11526 /* The query prefix. */
11527 strcpy (rs->buf.data (), "qRcmd,");
11528 p = strchr (rs->buf.data (), '\0');
11529
11530 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11531 > get_remote_packet_size ())
11532 error (_("\"monitor\" command ``%s'' is too long."), command);
11533
11534 /* Encode the actual command. */
11535 bin2hex ((const gdb_byte *) command, p, strlen (command));
11536
11537 if (putpkt (rs->buf) < 0)
11538 error (_("Communication problem with target."));
11539
11540 /* get/display the response */
11541 while (1)
11542 {
11543 char *buf;
11544
11545 /* XXX - see also remote_get_noisy_reply(). */
11546 QUIT; /* Allow user to bail out with ^C. */
11547 rs->buf[0] = '\0';
11548 if (getpkt_sane (&rs->buf, 0) == -1)
11549 {
11550 /* Timeout. Continue to (try to) read responses.
11551 This is better than stopping with an error, assuming the stub
11552 is still executing the (long) monitor command.
11553 If needed, the user can interrupt gdb using C-c, obtaining
11554 an effect similar to stop on timeout. */
11555 continue;
11556 }
11557 buf = rs->buf.data ();
11558 if (buf[0] == '\0')
11559 error (_("Target does not support this command."));
11560 if (buf[0] == 'O' && buf[1] != 'K')
11561 {
11562 remote_console_output (buf + 1); /* 'O' message from stub. */
11563 continue;
11564 }
11565 if (strcmp (buf, "OK") == 0)
11566 break;
11567 if (strlen (buf) == 3 && buf[0] == 'E'
11568 && isdigit (buf[1]) && isdigit (buf[2]))
11569 {
11570 error (_("Protocol error with Rcmd"));
11571 }
11572 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11573 {
11574 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11575
11576 fputc_unfiltered (c, outbuf);
11577 }
11578 break;
11579 }
11580 }
11581
11582 std::vector<mem_region>
11583 remote_target::memory_map ()
11584 {
11585 std::vector<mem_region> result;
11586 gdb::optional<gdb::char_vector> text
11587 = target_read_stralloc (current_inferior ()->top_target (),
11588 TARGET_OBJECT_MEMORY_MAP, NULL);
11589
11590 if (text)
11591 result = parse_memory_map (text->data ());
11592
11593 return result;
11594 }
11595
11596 static void
11597 packet_command (const char *args, int from_tty)
11598 {
11599 remote_target *remote = get_current_remote_target ();
11600
11601 if (remote == nullptr)
11602 error (_("command can only be used with remote target"));
11603
11604 remote->packet_command (args, from_tty);
11605 }
11606
11607 void
11608 remote_target::packet_command (const char *args, int from_tty)
11609 {
11610 if (!args)
11611 error (_("remote-packet command requires packet text as argument"));
11612
11613 puts_filtered ("sending: ");
11614 print_packet (args);
11615 puts_filtered ("\n");
11616 putpkt (args);
11617
11618 remote_state *rs = get_remote_state ();
11619
11620 getpkt (&rs->buf, 0);
11621 puts_filtered ("received: ");
11622 print_packet (rs->buf.data ());
11623 puts_filtered ("\n");
11624 }
11625
11626 #if 0
11627 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11628
11629 static void display_thread_info (struct gdb_ext_thread_info *info);
11630
11631 static void threadset_test_cmd (char *cmd, int tty);
11632
11633 static void threadalive_test (char *cmd, int tty);
11634
11635 static void threadlist_test_cmd (char *cmd, int tty);
11636
11637 int get_and_display_threadinfo (threadref *ref);
11638
11639 static void threadinfo_test_cmd (char *cmd, int tty);
11640
11641 static int thread_display_step (threadref *ref, void *context);
11642
11643 static void threadlist_update_test_cmd (char *cmd, int tty);
11644
11645 static void init_remote_threadtests (void);
11646
11647 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11648
11649 static void
11650 threadset_test_cmd (const char *cmd, int tty)
11651 {
11652 int sample_thread = SAMPLE_THREAD;
11653
11654 printf_filtered (_("Remote threadset test\n"));
11655 set_general_thread (sample_thread);
11656 }
11657
11658
11659 static void
11660 threadalive_test (const char *cmd, int tty)
11661 {
11662 int sample_thread = SAMPLE_THREAD;
11663 int pid = inferior_ptid.pid ();
11664 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11665
11666 if (remote_thread_alive (ptid))
11667 printf_filtered ("PASS: Thread alive test\n");
11668 else
11669 printf_filtered ("FAIL: Thread alive test\n");
11670 }
11671
11672 void output_threadid (char *title, threadref *ref);
11673
11674 void
11675 output_threadid (char *title, threadref *ref)
11676 {
11677 char hexid[20];
11678
11679 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11680 hexid[16] = 0;
11681 printf_filtered ("%s %s\n", title, (&hexid[0]));
11682 }
11683
11684 static void
11685 threadlist_test_cmd (const char *cmd, int tty)
11686 {
11687 int startflag = 1;
11688 threadref nextthread;
11689 int done, result_count;
11690 threadref threadlist[3];
11691
11692 printf_filtered ("Remote Threadlist test\n");
11693 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11694 &result_count, &threadlist[0]))
11695 printf_filtered ("FAIL: threadlist test\n");
11696 else
11697 {
11698 threadref *scan = threadlist;
11699 threadref *limit = scan + result_count;
11700
11701 while (scan < limit)
11702 output_threadid (" thread ", scan++);
11703 }
11704 }
11705
11706 void
11707 display_thread_info (struct gdb_ext_thread_info *info)
11708 {
11709 output_threadid ("Threadid: ", &info->threadid);
11710 printf_filtered ("Name: %s\n ", info->shortname);
11711 printf_filtered ("State: %s\n", info->display);
11712 printf_filtered ("other: %s\n\n", info->more_display);
11713 }
11714
11715 int
11716 get_and_display_threadinfo (threadref *ref)
11717 {
11718 int result;
11719 int set;
11720 struct gdb_ext_thread_info threadinfo;
11721
11722 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11723 | TAG_MOREDISPLAY | TAG_DISPLAY;
11724 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11725 display_thread_info (&threadinfo);
11726 return result;
11727 }
11728
11729 static void
11730 threadinfo_test_cmd (const char *cmd, int tty)
11731 {
11732 int athread = SAMPLE_THREAD;
11733 threadref thread;
11734 int set;
11735
11736 int_to_threadref (&thread, athread);
11737 printf_filtered ("Remote Threadinfo test\n");
11738 if (!get_and_display_threadinfo (&thread))
11739 printf_filtered ("FAIL cannot get thread info\n");
11740 }
11741
11742 static int
11743 thread_display_step (threadref *ref, void *context)
11744 {
11745 /* output_threadid(" threadstep ",ref); *//* simple test */
11746 return get_and_display_threadinfo (ref);
11747 }
11748
11749 static void
11750 threadlist_update_test_cmd (const char *cmd, int tty)
11751 {
11752 printf_filtered ("Remote Threadlist update test\n");
11753 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11754 }
11755
11756 static void
11757 init_remote_threadtests (void)
11758 {
11759 add_com ("tlist", class_obscure, threadlist_test_cmd,
11760 _("Fetch and print the remote list of "
11761 "thread identifiers, one pkt only."));
11762 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11763 _("Fetch and display info about one thread."));
11764 add_com ("tset", class_obscure, threadset_test_cmd,
11765 _("Test setting to a different thread."));
11766 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11767 _("Iterate through updating all remote thread info."));
11768 add_com ("talive", class_obscure, threadalive_test,
11769 _("Remote thread alive test."));
11770 }
11771
11772 #endif /* 0 */
11773
11774 /* Convert a thread ID to a string. */
11775
11776 std::string
11777 remote_target::pid_to_str (ptid_t ptid)
11778 {
11779 struct remote_state *rs = get_remote_state ();
11780
11781 if (ptid == null_ptid)
11782 return normal_pid_to_str (ptid);
11783 else if (ptid.is_pid ())
11784 {
11785 /* Printing an inferior target id. */
11786
11787 /* When multi-process extensions are off, there's no way in the
11788 remote protocol to know the remote process id, if there's any
11789 at all. There's one exception --- when we're connected with
11790 target extended-remote, and we manually attached to a process
11791 with "attach PID". We don't record anywhere a flag that
11792 allows us to distinguish that case from the case of
11793 connecting with extended-remote and the stub already being
11794 attached to a process, and reporting yes to qAttached, hence
11795 no smart special casing here. */
11796 if (!remote_multi_process_p (rs))
11797 return "Remote target";
11798
11799 return normal_pid_to_str (ptid);
11800 }
11801 else
11802 {
11803 if (magic_null_ptid == ptid)
11804 return "Thread <main>";
11805 else if (remote_multi_process_p (rs))
11806 if (ptid.lwp () == 0)
11807 return normal_pid_to_str (ptid);
11808 else
11809 return string_printf ("Thread %d.%ld",
11810 ptid.pid (), ptid.lwp ());
11811 else
11812 return string_printf ("Thread %ld", ptid.lwp ());
11813 }
11814 }
11815
11816 /* Get the address of the thread local variable in OBJFILE which is
11817 stored at OFFSET within the thread local storage for thread PTID. */
11818
11819 CORE_ADDR
11820 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11821 CORE_ADDR offset)
11822 {
11823 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11824 {
11825 struct remote_state *rs = get_remote_state ();
11826 char *p = rs->buf.data ();
11827 char *endp = p + get_remote_packet_size ();
11828 enum packet_result result;
11829
11830 strcpy (p, "qGetTLSAddr:");
11831 p += strlen (p);
11832 p = write_ptid (p, endp, ptid);
11833 *p++ = ',';
11834 p += hexnumstr (p, offset);
11835 *p++ = ',';
11836 p += hexnumstr (p, lm);
11837 *p++ = '\0';
11838
11839 putpkt (rs->buf);
11840 getpkt (&rs->buf, 0);
11841 result = packet_ok (rs->buf,
11842 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11843 if (result == PACKET_OK)
11844 {
11845 ULONGEST addr;
11846
11847 unpack_varlen_hex (rs->buf.data (), &addr);
11848 return addr;
11849 }
11850 else if (result == PACKET_UNKNOWN)
11851 throw_error (TLS_GENERIC_ERROR,
11852 _("Remote target doesn't support qGetTLSAddr packet"));
11853 else
11854 throw_error (TLS_GENERIC_ERROR,
11855 _("Remote target failed to process qGetTLSAddr request"));
11856 }
11857 else
11858 throw_error (TLS_GENERIC_ERROR,
11859 _("TLS not supported or disabled on this target"));
11860 /* Not reached. */
11861 return 0;
11862 }
11863
11864 /* Provide thread local base, i.e. Thread Information Block address.
11865 Returns 1 if ptid is found and thread_local_base is non zero. */
11866
11867 bool
11868 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11869 {
11870 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11871 {
11872 struct remote_state *rs = get_remote_state ();
11873 char *p = rs->buf.data ();
11874 char *endp = p + get_remote_packet_size ();
11875 enum packet_result result;
11876
11877 strcpy (p, "qGetTIBAddr:");
11878 p += strlen (p);
11879 p = write_ptid (p, endp, ptid);
11880 *p++ = '\0';
11881
11882 putpkt (rs->buf);
11883 getpkt (&rs->buf, 0);
11884 result = packet_ok (rs->buf,
11885 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11886 if (result == PACKET_OK)
11887 {
11888 ULONGEST val;
11889 unpack_varlen_hex (rs->buf.data (), &val);
11890 if (addr)
11891 *addr = (CORE_ADDR) val;
11892 return true;
11893 }
11894 else if (result == PACKET_UNKNOWN)
11895 error (_("Remote target doesn't support qGetTIBAddr packet"));
11896 else
11897 error (_("Remote target failed to process qGetTIBAddr request"));
11898 }
11899 else
11900 error (_("qGetTIBAddr not supported or disabled on this target"));
11901 /* Not reached. */
11902 return false;
11903 }
11904
11905 /* Support for inferring a target description based on the current
11906 architecture and the size of a 'g' packet. While the 'g' packet
11907 can have any size (since optional registers can be left off the
11908 end), some sizes are easily recognizable given knowledge of the
11909 approximate architecture. */
11910
11911 struct remote_g_packet_guess
11912 {
11913 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11914 : bytes (bytes_),
11915 tdesc (tdesc_)
11916 {
11917 }
11918
11919 int bytes;
11920 const struct target_desc *tdesc;
11921 };
11922
11923 struct remote_g_packet_data : public allocate_on_obstack
11924 {
11925 std::vector<remote_g_packet_guess> guesses;
11926 };
11927
11928 static struct gdbarch_data *remote_g_packet_data_handle;
11929
11930 static void *
11931 remote_g_packet_data_init (struct obstack *obstack)
11932 {
11933 return new (obstack) remote_g_packet_data;
11934 }
11935
11936 void
11937 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11938 const struct target_desc *tdesc)
11939 {
11940 struct remote_g_packet_data *data
11941 = ((struct remote_g_packet_data *)
11942 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11943
11944 gdb_assert (tdesc != NULL);
11945
11946 for (const remote_g_packet_guess &guess : data->guesses)
11947 if (guess.bytes == bytes)
11948 internal_error (__FILE__, __LINE__,
11949 _("Duplicate g packet description added for size %d"),
11950 bytes);
11951
11952 data->guesses.emplace_back (bytes, tdesc);
11953 }
11954
11955 /* Return true if remote_read_description would do anything on this target
11956 and architecture, false otherwise. */
11957
11958 static bool
11959 remote_read_description_p (struct target_ops *target)
11960 {
11961 struct remote_g_packet_data *data
11962 = ((struct remote_g_packet_data *)
11963 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11964
11965 return !data->guesses.empty ();
11966 }
11967
11968 const struct target_desc *
11969 remote_target::read_description ()
11970 {
11971 struct remote_g_packet_data *data
11972 = ((struct remote_g_packet_data *)
11973 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11974
11975 /* Do not try this during initial connection, when we do not know
11976 whether there is a running but stopped thread. */
11977 if (!target_has_execution () || inferior_ptid == null_ptid)
11978 return beneath ()->read_description ();
11979
11980 if (!data->guesses.empty ())
11981 {
11982 int bytes = send_g_packet ();
11983
11984 for (const remote_g_packet_guess &guess : data->guesses)
11985 if (guess.bytes == bytes)
11986 return guess.tdesc;
11987
11988 /* We discard the g packet. A minor optimization would be to
11989 hold on to it, and fill the register cache once we have selected
11990 an architecture, but it's too tricky to do safely. */
11991 }
11992
11993 return beneath ()->read_description ();
11994 }
11995
11996 /* Remote file transfer support. This is host-initiated I/O, not
11997 target-initiated; for target-initiated, see remote-fileio.c. */
11998
11999 /* If *LEFT is at least the length of STRING, copy STRING to
12000 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12001 decrease *LEFT. Otherwise raise an error. */
12002
12003 static void
12004 remote_buffer_add_string (char **buffer, int *left, const char *string)
12005 {
12006 int len = strlen (string);
12007
12008 if (len > *left)
12009 error (_("Packet too long for target."));
12010
12011 memcpy (*buffer, string, len);
12012 *buffer += len;
12013 *left -= len;
12014
12015 /* NUL-terminate the buffer as a convenience, if there is
12016 room. */
12017 if (*left)
12018 **buffer = '\0';
12019 }
12020
12021 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12022 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12023 decrease *LEFT. Otherwise raise an error. */
12024
12025 static void
12026 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12027 int len)
12028 {
12029 if (2 * len > *left)
12030 error (_("Packet too long for target."));
12031
12032 bin2hex (bytes, *buffer, len);
12033 *buffer += 2 * len;
12034 *left -= 2 * len;
12035
12036 /* NUL-terminate the buffer as a convenience, if there is
12037 room. */
12038 if (*left)
12039 **buffer = '\0';
12040 }
12041
12042 /* If *LEFT is large enough, convert VALUE to hex and add it to
12043 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12044 decrease *LEFT. Otherwise raise an error. */
12045
12046 static void
12047 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12048 {
12049 int len = hexnumlen (value);
12050
12051 if (len > *left)
12052 error (_("Packet too long for target."));
12053
12054 hexnumstr (*buffer, value);
12055 *buffer += len;
12056 *left -= len;
12057
12058 /* NUL-terminate the buffer as a convenience, if there is
12059 room. */
12060 if (*left)
12061 **buffer = '\0';
12062 }
12063
12064 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12065 value, *REMOTE_ERRNO to the remote error number or zero if none
12066 was included, and *ATTACHMENT to point to the start of the annex
12067 if any. The length of the packet isn't needed here; there may
12068 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12069
12070 Return 0 if the packet could be parsed, -1 if it could not. If
12071 -1 is returned, the other variables may not be initialized. */
12072
12073 static int
12074 remote_hostio_parse_result (const char *buffer, int *retcode,
12075 int *remote_errno, const char **attachment)
12076 {
12077 char *p, *p2;
12078
12079 *remote_errno = 0;
12080 *attachment = NULL;
12081
12082 if (buffer[0] != 'F')
12083 return -1;
12084
12085 errno = 0;
12086 *retcode = strtol (&buffer[1], &p, 16);
12087 if (errno != 0 || p == &buffer[1])
12088 return -1;
12089
12090 /* Check for ",errno". */
12091 if (*p == ',')
12092 {
12093 errno = 0;
12094 *remote_errno = strtol (p + 1, &p2, 16);
12095 if (errno != 0 || p + 1 == p2)
12096 return -1;
12097 p = p2;
12098 }
12099
12100 /* Check for ";attachment". If there is no attachment, the
12101 packet should end here. */
12102 if (*p == ';')
12103 {
12104 *attachment = p + 1;
12105 return 0;
12106 }
12107 else if (*p == '\0')
12108 return 0;
12109 else
12110 return -1;
12111 }
12112
12113 /* Send a prepared I/O packet to the target and read its response.
12114 The prepared packet is in the global RS->BUF before this function
12115 is called, and the answer is there when we return.
12116
12117 COMMAND_BYTES is the length of the request to send, which may include
12118 binary data. WHICH_PACKET is the packet configuration to check
12119 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12120 is set to the error number and -1 is returned. Otherwise the value
12121 returned by the function is returned.
12122
12123 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12124 attachment is expected; an error will be reported if there's a
12125 mismatch. If one is found, *ATTACHMENT will be set to point into
12126 the packet buffer and *ATTACHMENT_LEN will be set to the
12127 attachment's length. */
12128
12129 int
12130 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12131 int *remote_errno, const char **attachment,
12132 int *attachment_len)
12133 {
12134 struct remote_state *rs = get_remote_state ();
12135 int ret, bytes_read;
12136 const char *attachment_tmp;
12137
12138 if (packet_support (which_packet) == PACKET_DISABLE)
12139 {
12140 *remote_errno = FILEIO_ENOSYS;
12141 return -1;
12142 }
12143
12144 putpkt_binary (rs->buf.data (), command_bytes);
12145 bytes_read = getpkt_sane (&rs->buf, 0);
12146
12147 /* If it timed out, something is wrong. Don't try to parse the
12148 buffer. */
12149 if (bytes_read < 0)
12150 {
12151 *remote_errno = FILEIO_EINVAL;
12152 return -1;
12153 }
12154
12155 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12156 {
12157 case PACKET_ERROR:
12158 *remote_errno = FILEIO_EINVAL;
12159 return -1;
12160 case PACKET_UNKNOWN:
12161 *remote_errno = FILEIO_ENOSYS;
12162 return -1;
12163 case PACKET_OK:
12164 break;
12165 }
12166
12167 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12168 &attachment_tmp))
12169 {
12170 *remote_errno = FILEIO_EINVAL;
12171 return -1;
12172 }
12173
12174 /* Make sure we saw an attachment if and only if we expected one. */
12175 if ((attachment_tmp == NULL && attachment != NULL)
12176 || (attachment_tmp != NULL && attachment == NULL))
12177 {
12178 *remote_errno = FILEIO_EINVAL;
12179 return -1;
12180 }
12181
12182 /* If an attachment was found, it must point into the packet buffer;
12183 work out how many bytes there were. */
12184 if (attachment_tmp != NULL)
12185 {
12186 *attachment = attachment_tmp;
12187 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12188 }
12189
12190 return ret;
12191 }
12192
12193 /* See declaration.h. */
12194
12195 void
12196 readahead_cache::invalidate ()
12197 {
12198 this->fd = -1;
12199 }
12200
12201 /* See declaration.h. */
12202
12203 void
12204 readahead_cache::invalidate_fd (int fd)
12205 {
12206 if (this->fd == fd)
12207 this->fd = -1;
12208 }
12209
12210 /* Set the filesystem remote_hostio functions that take FILENAME
12211 arguments will use. Return 0 on success, or -1 if an error
12212 occurs (and set *REMOTE_ERRNO). */
12213
12214 int
12215 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12216 int *remote_errno)
12217 {
12218 struct remote_state *rs = get_remote_state ();
12219 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12220 char *p = rs->buf.data ();
12221 int left = get_remote_packet_size () - 1;
12222 char arg[9];
12223 int ret;
12224
12225 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12226 return 0;
12227
12228 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12229 return 0;
12230
12231 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12232
12233 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12234 remote_buffer_add_string (&p, &left, arg);
12235
12236 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12237 remote_errno, NULL, NULL);
12238
12239 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12240 return 0;
12241
12242 if (ret == 0)
12243 rs->fs_pid = required_pid;
12244
12245 return ret;
12246 }
12247
12248 /* Implementation of to_fileio_open. */
12249
12250 int
12251 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12252 int flags, int mode, int warn_if_slow,
12253 int *remote_errno)
12254 {
12255 struct remote_state *rs = get_remote_state ();
12256 char *p = rs->buf.data ();
12257 int left = get_remote_packet_size () - 1;
12258
12259 if (warn_if_slow)
12260 {
12261 static int warning_issued = 0;
12262
12263 printf_unfiltered (_("Reading %s from remote target...\n"),
12264 filename);
12265
12266 if (!warning_issued)
12267 {
12268 warning (_("File transfers from remote targets can be slow."
12269 " Use \"set sysroot\" to access files locally"
12270 " instead."));
12271 warning_issued = 1;
12272 }
12273 }
12274
12275 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12276 return -1;
12277
12278 remote_buffer_add_string (&p, &left, "vFile:open:");
12279
12280 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12281 strlen (filename));
12282 remote_buffer_add_string (&p, &left, ",");
12283
12284 remote_buffer_add_int (&p, &left, flags);
12285 remote_buffer_add_string (&p, &left, ",");
12286
12287 remote_buffer_add_int (&p, &left, mode);
12288
12289 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12290 remote_errno, NULL, NULL);
12291 }
12292
12293 int
12294 remote_target::fileio_open (struct inferior *inf, const char *filename,
12295 int flags, int mode, int warn_if_slow,
12296 int *remote_errno)
12297 {
12298 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12299 remote_errno);
12300 }
12301
12302 /* Implementation of to_fileio_pwrite. */
12303
12304 int
12305 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12306 ULONGEST offset, int *remote_errno)
12307 {
12308 struct remote_state *rs = get_remote_state ();
12309 char *p = rs->buf.data ();
12310 int left = get_remote_packet_size ();
12311 int out_len;
12312
12313 rs->readahead_cache.invalidate_fd (fd);
12314
12315 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12316
12317 remote_buffer_add_int (&p, &left, fd);
12318 remote_buffer_add_string (&p, &left, ",");
12319
12320 remote_buffer_add_int (&p, &left, offset);
12321 remote_buffer_add_string (&p, &left, ",");
12322
12323 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12324 (get_remote_packet_size ()
12325 - (p - rs->buf.data ())));
12326
12327 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12328 remote_errno, NULL, NULL);
12329 }
12330
12331 int
12332 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12333 ULONGEST offset, int *remote_errno)
12334 {
12335 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12336 }
12337
12338 /* Helper for the implementation of to_fileio_pread. Read the file
12339 from the remote side with vFile:pread. */
12340
12341 int
12342 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12343 ULONGEST offset, int *remote_errno)
12344 {
12345 struct remote_state *rs = get_remote_state ();
12346 char *p = rs->buf.data ();
12347 const char *attachment;
12348 int left = get_remote_packet_size ();
12349 int ret, attachment_len;
12350 int read_len;
12351
12352 remote_buffer_add_string (&p, &left, "vFile:pread:");
12353
12354 remote_buffer_add_int (&p, &left, fd);
12355 remote_buffer_add_string (&p, &left, ",");
12356
12357 remote_buffer_add_int (&p, &left, len);
12358 remote_buffer_add_string (&p, &left, ",");
12359
12360 remote_buffer_add_int (&p, &left, offset);
12361
12362 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12363 remote_errno, &attachment,
12364 &attachment_len);
12365
12366 if (ret < 0)
12367 return ret;
12368
12369 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12370 read_buf, len);
12371 if (read_len != ret)
12372 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12373
12374 return ret;
12375 }
12376
12377 /* See declaration.h. */
12378
12379 int
12380 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12381 ULONGEST offset)
12382 {
12383 if (this->fd == fd
12384 && this->offset <= offset
12385 && offset < this->offset + this->bufsize)
12386 {
12387 ULONGEST max = this->offset + this->bufsize;
12388
12389 if (offset + len > max)
12390 len = max - offset;
12391
12392 memcpy (read_buf, this->buf + offset - this->offset, len);
12393 return len;
12394 }
12395
12396 return 0;
12397 }
12398
12399 /* Implementation of to_fileio_pread. */
12400
12401 int
12402 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12403 ULONGEST offset, int *remote_errno)
12404 {
12405 int ret;
12406 struct remote_state *rs = get_remote_state ();
12407 readahead_cache *cache = &rs->readahead_cache;
12408
12409 ret = cache->pread (fd, read_buf, len, offset);
12410 if (ret > 0)
12411 {
12412 cache->hit_count++;
12413
12414 remote_debug_printf ("readahead cache hit %s",
12415 pulongest (cache->hit_count));
12416 return ret;
12417 }
12418
12419 cache->miss_count++;
12420
12421 remote_debug_printf ("readahead cache miss %s",
12422 pulongest (cache->miss_count));
12423
12424 cache->fd = fd;
12425 cache->offset = offset;
12426 cache->bufsize = get_remote_packet_size ();
12427 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12428
12429 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12430 cache->offset, remote_errno);
12431 if (ret <= 0)
12432 {
12433 cache->invalidate_fd (fd);
12434 return ret;
12435 }
12436
12437 cache->bufsize = ret;
12438 return cache->pread (fd, read_buf, len, offset);
12439 }
12440
12441 int
12442 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12443 ULONGEST offset, int *remote_errno)
12444 {
12445 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12446 }
12447
12448 /* Implementation of to_fileio_close. */
12449
12450 int
12451 remote_target::remote_hostio_close (int fd, int *remote_errno)
12452 {
12453 struct remote_state *rs = get_remote_state ();
12454 char *p = rs->buf.data ();
12455 int left = get_remote_packet_size () - 1;
12456
12457 rs->readahead_cache.invalidate_fd (fd);
12458
12459 remote_buffer_add_string (&p, &left, "vFile:close:");
12460
12461 remote_buffer_add_int (&p, &left, fd);
12462
12463 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12464 remote_errno, NULL, NULL);
12465 }
12466
12467 int
12468 remote_target::fileio_close (int fd, int *remote_errno)
12469 {
12470 return remote_hostio_close (fd, remote_errno);
12471 }
12472
12473 /* Implementation of to_fileio_unlink. */
12474
12475 int
12476 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12477 int *remote_errno)
12478 {
12479 struct remote_state *rs = get_remote_state ();
12480 char *p = rs->buf.data ();
12481 int left = get_remote_packet_size () - 1;
12482
12483 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12484 return -1;
12485
12486 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12487
12488 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12489 strlen (filename));
12490
12491 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12492 remote_errno, NULL, NULL);
12493 }
12494
12495 int
12496 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12497 int *remote_errno)
12498 {
12499 return remote_hostio_unlink (inf, filename, remote_errno);
12500 }
12501
12502 /* Implementation of to_fileio_readlink. */
12503
12504 gdb::optional<std::string>
12505 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12506 int *remote_errno)
12507 {
12508 struct remote_state *rs = get_remote_state ();
12509 char *p = rs->buf.data ();
12510 const char *attachment;
12511 int left = get_remote_packet_size ();
12512 int len, attachment_len;
12513 int read_len;
12514
12515 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12516 return {};
12517
12518 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12519
12520 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12521 strlen (filename));
12522
12523 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12524 remote_errno, &attachment,
12525 &attachment_len);
12526
12527 if (len < 0)
12528 return {};
12529
12530 std::string ret (len, '\0');
12531
12532 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12533 (gdb_byte *) &ret[0], len);
12534 if (read_len != len)
12535 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12536
12537 return ret;
12538 }
12539
12540 /* Implementation of to_fileio_fstat. */
12541
12542 int
12543 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12544 {
12545 struct remote_state *rs = get_remote_state ();
12546 char *p = rs->buf.data ();
12547 int left = get_remote_packet_size ();
12548 int attachment_len, ret;
12549 const char *attachment;
12550 struct fio_stat fst;
12551 int read_len;
12552
12553 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12554
12555 remote_buffer_add_int (&p, &left, fd);
12556
12557 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12558 remote_errno, &attachment,
12559 &attachment_len);
12560 if (ret < 0)
12561 {
12562 if (*remote_errno != FILEIO_ENOSYS)
12563 return ret;
12564
12565 /* Strictly we should return -1, ENOSYS here, but when
12566 "set sysroot remote:" was implemented in August 2008
12567 BFD's need for a stat function was sidestepped with
12568 this hack. This was not remedied until March 2015
12569 so we retain the previous behavior to avoid breaking
12570 compatibility.
12571
12572 Note that the memset is a March 2015 addition; older
12573 GDBs set st_size *and nothing else* so the structure
12574 would have garbage in all other fields. This might
12575 break something but retaining the previous behavior
12576 here would be just too wrong. */
12577
12578 memset (st, 0, sizeof (struct stat));
12579 st->st_size = INT_MAX;
12580 return 0;
12581 }
12582
12583 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12584 (gdb_byte *) &fst, sizeof (fst));
12585
12586 if (read_len != ret)
12587 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12588
12589 if (read_len != sizeof (fst))
12590 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12591 read_len, (int) sizeof (fst));
12592
12593 remote_fileio_to_host_stat (&fst, st);
12594
12595 return 0;
12596 }
12597
12598 /* Implementation of to_filesystem_is_local. */
12599
12600 bool
12601 remote_target::filesystem_is_local ()
12602 {
12603 /* Valgrind GDB presents itself as a remote target but works
12604 on the local filesystem: it does not implement remote get
12605 and users are not expected to set a sysroot. To handle
12606 this case we treat the remote filesystem as local if the
12607 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12608 does not support vFile:open. */
12609 if (gdb_sysroot == TARGET_SYSROOT_PREFIX)
12610 {
12611 enum packet_support ps = packet_support (PACKET_vFile_open);
12612
12613 if (ps == PACKET_SUPPORT_UNKNOWN)
12614 {
12615 int fd, remote_errno;
12616
12617 /* Try opening a file to probe support. The supplied
12618 filename is irrelevant, we only care about whether
12619 the stub recognizes the packet or not. */
12620 fd = remote_hostio_open (NULL, "just probing",
12621 FILEIO_O_RDONLY, 0700, 0,
12622 &remote_errno);
12623
12624 if (fd >= 0)
12625 remote_hostio_close (fd, &remote_errno);
12626
12627 ps = packet_support (PACKET_vFile_open);
12628 }
12629
12630 if (ps == PACKET_DISABLE)
12631 {
12632 static int warning_issued = 0;
12633
12634 if (!warning_issued)
12635 {
12636 warning (_("remote target does not support file"
12637 " transfer, attempting to access files"
12638 " from local filesystem."));
12639 warning_issued = 1;
12640 }
12641
12642 return true;
12643 }
12644 }
12645
12646 return false;
12647 }
12648
12649 static int
12650 remote_fileio_errno_to_host (int errnum)
12651 {
12652 switch (errnum)
12653 {
12654 case FILEIO_EPERM:
12655 return EPERM;
12656 case FILEIO_ENOENT:
12657 return ENOENT;
12658 case FILEIO_EINTR:
12659 return EINTR;
12660 case FILEIO_EIO:
12661 return EIO;
12662 case FILEIO_EBADF:
12663 return EBADF;
12664 case FILEIO_EACCES:
12665 return EACCES;
12666 case FILEIO_EFAULT:
12667 return EFAULT;
12668 case FILEIO_EBUSY:
12669 return EBUSY;
12670 case FILEIO_EEXIST:
12671 return EEXIST;
12672 case FILEIO_ENODEV:
12673 return ENODEV;
12674 case FILEIO_ENOTDIR:
12675 return ENOTDIR;
12676 case FILEIO_EISDIR:
12677 return EISDIR;
12678 case FILEIO_EINVAL:
12679 return EINVAL;
12680 case FILEIO_ENFILE:
12681 return ENFILE;
12682 case FILEIO_EMFILE:
12683 return EMFILE;
12684 case FILEIO_EFBIG:
12685 return EFBIG;
12686 case FILEIO_ENOSPC:
12687 return ENOSPC;
12688 case FILEIO_ESPIPE:
12689 return ESPIPE;
12690 case FILEIO_EROFS:
12691 return EROFS;
12692 case FILEIO_ENOSYS:
12693 return ENOSYS;
12694 case FILEIO_ENAMETOOLONG:
12695 return ENAMETOOLONG;
12696 }
12697 return -1;
12698 }
12699
12700 static char *
12701 remote_hostio_error (int errnum)
12702 {
12703 int host_error = remote_fileio_errno_to_host (errnum);
12704
12705 if (host_error == -1)
12706 error (_("Unknown remote I/O error %d"), errnum);
12707 else
12708 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12709 }
12710
12711 /* A RAII wrapper around a remote file descriptor. */
12712
12713 class scoped_remote_fd
12714 {
12715 public:
12716 scoped_remote_fd (remote_target *remote, int fd)
12717 : m_remote (remote), m_fd (fd)
12718 {
12719 }
12720
12721 ~scoped_remote_fd ()
12722 {
12723 if (m_fd != -1)
12724 {
12725 try
12726 {
12727 int remote_errno;
12728 m_remote->remote_hostio_close (m_fd, &remote_errno);
12729 }
12730 catch (...)
12731 {
12732 /* Swallow exception before it escapes the dtor. If
12733 something goes wrong, likely the connection is gone,
12734 and there's nothing else that can be done. */
12735 }
12736 }
12737 }
12738
12739 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12740
12741 /* Release ownership of the file descriptor, and return it. */
12742 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12743 {
12744 int fd = m_fd;
12745 m_fd = -1;
12746 return fd;
12747 }
12748
12749 /* Return the owned file descriptor. */
12750 int get () const noexcept
12751 {
12752 return m_fd;
12753 }
12754
12755 private:
12756 /* The remote target. */
12757 remote_target *m_remote;
12758
12759 /* The owned remote I/O file descriptor. */
12760 int m_fd;
12761 };
12762
12763 void
12764 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12765 {
12766 remote_target *remote = get_current_remote_target ();
12767
12768 if (remote == nullptr)
12769 error (_("command can only be used with remote target"));
12770
12771 remote->remote_file_put (local_file, remote_file, from_tty);
12772 }
12773
12774 void
12775 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12776 int from_tty)
12777 {
12778 int retcode, remote_errno, bytes, io_size;
12779 int bytes_in_buffer;
12780 int saw_eof;
12781 ULONGEST offset;
12782
12783 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12784 if (file == NULL)
12785 perror_with_name (local_file);
12786
12787 scoped_remote_fd fd
12788 (this, remote_hostio_open (NULL,
12789 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12790 | FILEIO_O_TRUNC),
12791 0700, 0, &remote_errno));
12792 if (fd.get () == -1)
12793 remote_hostio_error (remote_errno);
12794
12795 /* Send up to this many bytes at once. They won't all fit in the
12796 remote packet limit, so we'll transfer slightly fewer. */
12797 io_size = get_remote_packet_size ();
12798 gdb::byte_vector buffer (io_size);
12799
12800 bytes_in_buffer = 0;
12801 saw_eof = 0;
12802 offset = 0;
12803 while (bytes_in_buffer || !saw_eof)
12804 {
12805 if (!saw_eof)
12806 {
12807 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12808 io_size - bytes_in_buffer,
12809 file.get ());
12810 if (bytes == 0)
12811 {
12812 if (ferror (file.get ()))
12813 error (_("Error reading %s."), local_file);
12814 else
12815 {
12816 /* EOF. Unless there is something still in the
12817 buffer from the last iteration, we are done. */
12818 saw_eof = 1;
12819 if (bytes_in_buffer == 0)
12820 break;
12821 }
12822 }
12823 }
12824 else
12825 bytes = 0;
12826
12827 bytes += bytes_in_buffer;
12828 bytes_in_buffer = 0;
12829
12830 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12831 offset, &remote_errno);
12832
12833 if (retcode < 0)
12834 remote_hostio_error (remote_errno);
12835 else if (retcode == 0)
12836 error (_("Remote write of %d bytes returned 0!"), bytes);
12837 else if (retcode < bytes)
12838 {
12839 /* Short write. Save the rest of the read data for the next
12840 write. */
12841 bytes_in_buffer = bytes - retcode;
12842 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12843 }
12844
12845 offset += retcode;
12846 }
12847
12848 if (remote_hostio_close (fd.release (), &remote_errno))
12849 remote_hostio_error (remote_errno);
12850
12851 if (from_tty)
12852 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12853 }
12854
12855 void
12856 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12857 {
12858 remote_target *remote = get_current_remote_target ();
12859
12860 if (remote == nullptr)
12861 error (_("command can only be used with remote target"));
12862
12863 remote->remote_file_get (remote_file, local_file, from_tty);
12864 }
12865
12866 void
12867 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12868 int from_tty)
12869 {
12870 int remote_errno, bytes, io_size;
12871 ULONGEST offset;
12872
12873 scoped_remote_fd fd
12874 (this, remote_hostio_open (NULL,
12875 remote_file, FILEIO_O_RDONLY, 0, 0,
12876 &remote_errno));
12877 if (fd.get () == -1)
12878 remote_hostio_error (remote_errno);
12879
12880 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12881 if (file == NULL)
12882 perror_with_name (local_file);
12883
12884 /* Send up to this many bytes at once. They won't all fit in the
12885 remote packet limit, so we'll transfer slightly fewer. */
12886 io_size = get_remote_packet_size ();
12887 gdb::byte_vector buffer (io_size);
12888
12889 offset = 0;
12890 while (1)
12891 {
12892 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12893 &remote_errno);
12894 if (bytes == 0)
12895 /* Success, but no bytes, means end-of-file. */
12896 break;
12897 if (bytes == -1)
12898 remote_hostio_error (remote_errno);
12899
12900 offset += bytes;
12901
12902 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12903 if (bytes == 0)
12904 perror_with_name (local_file);
12905 }
12906
12907 if (remote_hostio_close (fd.release (), &remote_errno))
12908 remote_hostio_error (remote_errno);
12909
12910 if (from_tty)
12911 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12912 }
12913
12914 void
12915 remote_file_delete (const char *remote_file, int from_tty)
12916 {
12917 remote_target *remote = get_current_remote_target ();
12918
12919 if (remote == nullptr)
12920 error (_("command can only be used with remote target"));
12921
12922 remote->remote_file_delete (remote_file, from_tty);
12923 }
12924
12925 void
12926 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12927 {
12928 int retcode, remote_errno;
12929
12930 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12931 if (retcode == -1)
12932 remote_hostio_error (remote_errno);
12933
12934 if (from_tty)
12935 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12936 }
12937
12938 static void
12939 remote_put_command (const char *args, int from_tty)
12940 {
12941 if (args == NULL)
12942 error_no_arg (_("file to put"));
12943
12944 gdb_argv argv (args);
12945 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12946 error (_("Invalid parameters to remote put"));
12947
12948 remote_file_put (argv[0], argv[1], from_tty);
12949 }
12950
12951 static void
12952 remote_get_command (const char *args, int from_tty)
12953 {
12954 if (args == NULL)
12955 error_no_arg (_("file to get"));
12956
12957 gdb_argv argv (args);
12958 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12959 error (_("Invalid parameters to remote get"));
12960
12961 remote_file_get (argv[0], argv[1], from_tty);
12962 }
12963
12964 static void
12965 remote_delete_command (const char *args, int from_tty)
12966 {
12967 if (args == NULL)
12968 error_no_arg (_("file to delete"));
12969
12970 gdb_argv argv (args);
12971 if (argv[0] == NULL || argv[1] != NULL)
12972 error (_("Invalid parameters to remote delete"));
12973
12974 remote_file_delete (argv[0], from_tty);
12975 }
12976
12977 bool
12978 remote_target::can_execute_reverse ()
12979 {
12980 if (packet_support (PACKET_bs) == PACKET_ENABLE
12981 || packet_support (PACKET_bc) == PACKET_ENABLE)
12982 return true;
12983 else
12984 return false;
12985 }
12986
12987 bool
12988 remote_target::supports_non_stop ()
12989 {
12990 return true;
12991 }
12992
12993 bool
12994 remote_target::supports_disable_randomization ()
12995 {
12996 /* Only supported in extended mode. */
12997 return false;
12998 }
12999
13000 bool
13001 remote_target::supports_multi_process ()
13002 {
13003 struct remote_state *rs = get_remote_state ();
13004
13005 return remote_multi_process_p (rs);
13006 }
13007
13008 static int
13009 remote_supports_cond_tracepoints ()
13010 {
13011 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13012 }
13013
13014 bool
13015 remote_target::supports_evaluation_of_breakpoint_conditions ()
13016 {
13017 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13018 }
13019
13020 static int
13021 remote_supports_fast_tracepoints ()
13022 {
13023 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13024 }
13025
13026 static int
13027 remote_supports_static_tracepoints ()
13028 {
13029 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13030 }
13031
13032 static int
13033 remote_supports_install_in_trace ()
13034 {
13035 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13036 }
13037
13038 bool
13039 remote_target::supports_enable_disable_tracepoint ()
13040 {
13041 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13042 == PACKET_ENABLE);
13043 }
13044
13045 bool
13046 remote_target::supports_string_tracing ()
13047 {
13048 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13049 }
13050
13051 bool
13052 remote_target::can_run_breakpoint_commands ()
13053 {
13054 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13055 }
13056
13057 void
13058 remote_target::trace_init ()
13059 {
13060 struct remote_state *rs = get_remote_state ();
13061
13062 putpkt ("QTinit");
13063 remote_get_noisy_reply ();
13064 if (strcmp (rs->buf.data (), "OK") != 0)
13065 error (_("Target does not support this command."));
13066 }
13067
13068 /* Recursive routine to walk through command list including loops, and
13069 download packets for each command. */
13070
13071 void
13072 remote_target::remote_download_command_source (int num, ULONGEST addr,
13073 struct command_line *cmds)
13074 {
13075 struct remote_state *rs = get_remote_state ();
13076 struct command_line *cmd;
13077
13078 for (cmd = cmds; cmd; cmd = cmd->next)
13079 {
13080 QUIT; /* Allow user to bail out with ^C. */
13081 strcpy (rs->buf.data (), "QTDPsrc:");
13082 encode_source_string (num, addr, "cmd", cmd->line,
13083 rs->buf.data () + strlen (rs->buf.data ()),
13084 rs->buf.size () - strlen (rs->buf.data ()));
13085 putpkt (rs->buf);
13086 remote_get_noisy_reply ();
13087 if (strcmp (rs->buf.data (), "OK"))
13088 warning (_("Target does not support source download."));
13089
13090 if (cmd->control_type == while_control
13091 || cmd->control_type == while_stepping_control)
13092 {
13093 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13094
13095 QUIT; /* Allow user to bail out with ^C. */
13096 strcpy (rs->buf.data (), "QTDPsrc:");
13097 encode_source_string (num, addr, "cmd", "end",
13098 rs->buf.data () + strlen (rs->buf.data ()),
13099 rs->buf.size () - strlen (rs->buf.data ()));
13100 putpkt (rs->buf);
13101 remote_get_noisy_reply ();
13102 if (strcmp (rs->buf.data (), "OK"))
13103 warning (_("Target does not support source download."));
13104 }
13105 }
13106 }
13107
13108 void
13109 remote_target::download_tracepoint (struct bp_location *loc)
13110 {
13111 CORE_ADDR tpaddr;
13112 char addrbuf[40];
13113 std::vector<std::string> tdp_actions;
13114 std::vector<std::string> stepping_actions;
13115 char *pkt;
13116 struct breakpoint *b = loc->owner;
13117 struct tracepoint *t = (struct tracepoint *) b;
13118 struct remote_state *rs = get_remote_state ();
13119 int ret;
13120 const char *err_msg = _("Tracepoint packet too large for target.");
13121 size_t size_left;
13122
13123 /* We use a buffer other than rs->buf because we'll build strings
13124 across multiple statements, and other statements in between could
13125 modify rs->buf. */
13126 gdb::char_vector buf (get_remote_packet_size ());
13127
13128 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13129
13130 tpaddr = loc->address;
13131 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13132 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13133 b->number, addrbuf, /* address */
13134 (b->enable_state == bp_enabled ? 'E' : 'D'),
13135 t->step_count, t->pass_count);
13136
13137 if (ret < 0 || ret >= buf.size ())
13138 error ("%s", err_msg);
13139
13140 /* Fast tracepoints are mostly handled by the target, but we can
13141 tell the target how big of an instruction block should be moved
13142 around. */
13143 if (b->type == bp_fast_tracepoint)
13144 {
13145 /* Only test for support at download time; we may not know
13146 target capabilities at definition time. */
13147 if (remote_supports_fast_tracepoints ())
13148 {
13149 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13150 NULL))
13151 {
13152 size_left = buf.size () - strlen (buf.data ());
13153 ret = snprintf (buf.data () + strlen (buf.data ()),
13154 size_left, ":F%x",
13155 gdb_insn_length (loc->gdbarch, tpaddr));
13156
13157 if (ret < 0 || ret >= size_left)
13158 error ("%s", err_msg);
13159 }
13160 else
13161 /* If it passed validation at definition but fails now,
13162 something is very wrong. */
13163 internal_error (__FILE__, __LINE__,
13164 _("Fast tracepoint not "
13165 "valid during download"));
13166 }
13167 else
13168 /* Fast tracepoints are functionally identical to regular
13169 tracepoints, so don't take lack of support as a reason to
13170 give up on the trace run. */
13171 warning (_("Target does not support fast tracepoints, "
13172 "downloading %d as regular tracepoint"), b->number);
13173 }
13174 else if (b->type == bp_static_tracepoint)
13175 {
13176 /* Only test for support at download time; we may not know
13177 target capabilities at definition time. */
13178 if (remote_supports_static_tracepoints ())
13179 {
13180 struct static_tracepoint_marker marker;
13181
13182 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13183 {
13184 size_left = buf.size () - strlen (buf.data ());
13185 ret = snprintf (buf.data () + strlen (buf.data ()),
13186 size_left, ":S");
13187
13188 if (ret < 0 || ret >= size_left)
13189 error ("%s", err_msg);
13190 }
13191 else
13192 error (_("Static tracepoint not valid during download"));
13193 }
13194 else
13195 /* Fast tracepoints are functionally identical to regular
13196 tracepoints, so don't take lack of support as a reason
13197 to give up on the trace run. */
13198 error (_("Target does not support static tracepoints"));
13199 }
13200 /* If the tracepoint has a conditional, make it into an agent
13201 expression and append to the definition. */
13202 if (loc->cond)
13203 {
13204 /* Only test support at download time, we may not know target
13205 capabilities at definition time. */
13206 if (remote_supports_cond_tracepoints ())
13207 {
13208 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13209 loc->cond.get ());
13210
13211 size_left = buf.size () - strlen (buf.data ());
13212
13213 ret = snprintf (buf.data () + strlen (buf.data ()),
13214 size_left, ":X%x,", aexpr->len);
13215
13216 if (ret < 0 || ret >= size_left)
13217 error ("%s", err_msg);
13218
13219 size_left = buf.size () - strlen (buf.data ());
13220
13221 /* Two bytes to encode each aexpr byte, plus the terminating
13222 null byte. */
13223 if (aexpr->len * 2 + 1 > size_left)
13224 error ("%s", err_msg);
13225
13226 pkt = buf.data () + strlen (buf.data ());
13227
13228 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13229 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13230 *pkt = '\0';
13231 }
13232 else
13233 warning (_("Target does not support conditional tracepoints, "
13234 "ignoring tp %d cond"), b->number);
13235 }
13236
13237 if (b->commands || !default_collect.empty ())
13238 {
13239 size_left = buf.size () - strlen (buf.data ());
13240
13241 ret = snprintf (buf.data () + strlen (buf.data ()),
13242 size_left, "-");
13243
13244 if (ret < 0 || ret >= size_left)
13245 error ("%s", err_msg);
13246 }
13247
13248 putpkt (buf.data ());
13249 remote_get_noisy_reply ();
13250 if (strcmp (rs->buf.data (), "OK"))
13251 error (_("Target does not support tracepoints."));
13252
13253 /* do_single_steps (t); */
13254 for (auto action_it = tdp_actions.begin ();
13255 action_it != tdp_actions.end (); action_it++)
13256 {
13257 QUIT; /* Allow user to bail out with ^C. */
13258
13259 bool has_more = ((action_it + 1) != tdp_actions.end ()
13260 || !stepping_actions.empty ());
13261
13262 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13263 b->number, addrbuf, /* address */
13264 action_it->c_str (),
13265 has_more ? '-' : 0);
13266
13267 if (ret < 0 || ret >= buf.size ())
13268 error ("%s", err_msg);
13269
13270 putpkt (buf.data ());
13271 remote_get_noisy_reply ();
13272 if (strcmp (rs->buf.data (), "OK"))
13273 error (_("Error on target while setting tracepoints."));
13274 }
13275
13276 for (auto action_it = stepping_actions.begin ();
13277 action_it != stepping_actions.end (); action_it++)
13278 {
13279 QUIT; /* Allow user to bail out with ^C. */
13280
13281 bool is_first = action_it == stepping_actions.begin ();
13282 bool has_more = (action_it + 1) != stepping_actions.end ();
13283
13284 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13285 b->number, addrbuf, /* address */
13286 is_first ? "S" : "",
13287 action_it->c_str (),
13288 has_more ? "-" : "");
13289
13290 if (ret < 0 || ret >= buf.size ())
13291 error ("%s", err_msg);
13292
13293 putpkt (buf.data ());
13294 remote_get_noisy_reply ();
13295 if (strcmp (rs->buf.data (), "OK"))
13296 error (_("Error on target while setting tracepoints."));
13297 }
13298
13299 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13300 {
13301 if (b->location != NULL)
13302 {
13303 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13304
13305 if (ret < 0 || ret >= buf.size ())
13306 error ("%s", err_msg);
13307
13308 encode_source_string (b->number, loc->address, "at",
13309 event_location_to_string (b->location.get ()),
13310 buf.data () + strlen (buf.data ()),
13311 buf.size () - strlen (buf.data ()));
13312 putpkt (buf.data ());
13313 remote_get_noisy_reply ();
13314 if (strcmp (rs->buf.data (), "OK"))
13315 warning (_("Target does not support source download."));
13316 }
13317 if (b->cond_string)
13318 {
13319 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13320
13321 if (ret < 0 || ret >= buf.size ())
13322 error ("%s", err_msg);
13323
13324 encode_source_string (b->number, loc->address,
13325 "cond", b->cond_string.get (),
13326 buf.data () + strlen (buf.data ()),
13327 buf.size () - strlen (buf.data ()));
13328 putpkt (buf.data ());
13329 remote_get_noisy_reply ();
13330 if (strcmp (rs->buf.data (), "OK"))
13331 warning (_("Target does not support source download."));
13332 }
13333 remote_download_command_source (b->number, loc->address,
13334 breakpoint_commands (b));
13335 }
13336 }
13337
13338 bool
13339 remote_target::can_download_tracepoint ()
13340 {
13341 struct remote_state *rs = get_remote_state ();
13342 struct trace_status *ts;
13343 int status;
13344
13345 /* Don't try to install tracepoints until we've relocated our
13346 symbols, and fetched and merged the target's tracepoint list with
13347 ours. */
13348 if (rs->starting_up)
13349 return false;
13350
13351 ts = current_trace_status ();
13352 status = get_trace_status (ts);
13353
13354 if (status == -1 || !ts->running_known || !ts->running)
13355 return false;
13356
13357 /* If we are in a tracing experiment, but remote stub doesn't support
13358 installing tracepoint in trace, we have to return. */
13359 if (!remote_supports_install_in_trace ())
13360 return false;
13361
13362 return true;
13363 }
13364
13365
13366 void
13367 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13368 {
13369 struct remote_state *rs = get_remote_state ();
13370 char *p;
13371
13372 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13373 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13374 tsv.builtin);
13375 p = rs->buf.data () + strlen (rs->buf.data ());
13376 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13377 >= get_remote_packet_size ())
13378 error (_("Trace state variable name too long for tsv definition packet"));
13379 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13380 *p++ = '\0';
13381 putpkt (rs->buf);
13382 remote_get_noisy_reply ();
13383 if (rs->buf[0] == '\0')
13384 error (_("Target does not support this command."));
13385 if (strcmp (rs->buf.data (), "OK") != 0)
13386 error (_("Error on target while downloading trace state variable."));
13387 }
13388
13389 void
13390 remote_target::enable_tracepoint (struct bp_location *location)
13391 {
13392 struct remote_state *rs = get_remote_state ();
13393
13394 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13395 location->owner->number,
13396 phex (location->address, sizeof (CORE_ADDR)));
13397 putpkt (rs->buf);
13398 remote_get_noisy_reply ();
13399 if (rs->buf[0] == '\0')
13400 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13401 if (strcmp (rs->buf.data (), "OK") != 0)
13402 error (_("Error on target while enabling tracepoint."));
13403 }
13404
13405 void
13406 remote_target::disable_tracepoint (struct bp_location *location)
13407 {
13408 struct remote_state *rs = get_remote_state ();
13409
13410 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13411 location->owner->number,
13412 phex (location->address, sizeof (CORE_ADDR)));
13413 putpkt (rs->buf);
13414 remote_get_noisy_reply ();
13415 if (rs->buf[0] == '\0')
13416 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13417 if (strcmp (rs->buf.data (), "OK") != 0)
13418 error (_("Error on target while disabling tracepoint."));
13419 }
13420
13421 void
13422 remote_target::trace_set_readonly_regions ()
13423 {
13424 asection *s;
13425 bfd_size_type size;
13426 bfd_vma vma;
13427 int anysecs = 0;
13428 int offset = 0;
13429
13430 if (!current_program_space->exec_bfd ())
13431 return; /* No information to give. */
13432
13433 struct remote_state *rs = get_remote_state ();
13434
13435 strcpy (rs->buf.data (), "QTro");
13436 offset = strlen (rs->buf.data ());
13437 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13438 {
13439 char tmp1[40], tmp2[40];
13440 int sec_length;
13441
13442 if ((s->flags & SEC_LOAD) == 0 ||
13443 /* (s->flags & SEC_CODE) == 0 || */
13444 (s->flags & SEC_READONLY) == 0)
13445 continue;
13446
13447 anysecs = 1;
13448 vma = bfd_section_vma (s);
13449 size = bfd_section_size (s);
13450 sprintf_vma (tmp1, vma);
13451 sprintf_vma (tmp2, vma + size);
13452 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13453 if (offset + sec_length + 1 > rs->buf.size ())
13454 {
13455 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13456 warning (_("\
13457 Too many sections for read-only sections definition packet."));
13458 break;
13459 }
13460 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13461 tmp1, tmp2);
13462 offset += sec_length;
13463 }
13464 if (anysecs)
13465 {
13466 putpkt (rs->buf);
13467 getpkt (&rs->buf, 0);
13468 }
13469 }
13470
13471 void
13472 remote_target::trace_start ()
13473 {
13474 struct remote_state *rs = get_remote_state ();
13475
13476 putpkt ("QTStart");
13477 remote_get_noisy_reply ();
13478 if (rs->buf[0] == '\0')
13479 error (_("Target does not support this command."));
13480 if (strcmp (rs->buf.data (), "OK") != 0)
13481 error (_("Bogus reply from target: %s"), rs->buf.data ());
13482 }
13483
13484 int
13485 remote_target::get_trace_status (struct trace_status *ts)
13486 {
13487 /* Initialize it just to avoid a GCC false warning. */
13488 char *p = NULL;
13489 enum packet_result result;
13490 struct remote_state *rs = get_remote_state ();
13491
13492 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13493 return -1;
13494
13495 /* FIXME we need to get register block size some other way. */
13496 trace_regblock_size
13497 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13498
13499 putpkt ("qTStatus");
13500
13501 try
13502 {
13503 p = remote_get_noisy_reply ();
13504 }
13505 catch (const gdb_exception_error &ex)
13506 {
13507 if (ex.error != TARGET_CLOSE_ERROR)
13508 {
13509 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13510 return -1;
13511 }
13512 throw;
13513 }
13514
13515 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13516
13517 /* If the remote target doesn't do tracing, flag it. */
13518 if (result == PACKET_UNKNOWN)
13519 return -1;
13520
13521 /* We're working with a live target. */
13522 ts->filename = NULL;
13523
13524 if (*p++ != 'T')
13525 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13526
13527 /* Function 'parse_trace_status' sets default value of each field of
13528 'ts' at first, so we don't have to do it here. */
13529 parse_trace_status (p, ts);
13530
13531 return ts->running;
13532 }
13533
13534 void
13535 remote_target::get_tracepoint_status (struct breakpoint *bp,
13536 struct uploaded_tp *utp)
13537 {
13538 struct remote_state *rs = get_remote_state ();
13539 char *reply;
13540 struct tracepoint *tp = (struct tracepoint *) bp;
13541 size_t size = get_remote_packet_size ();
13542
13543 if (tp)
13544 {
13545 tp->hit_count = 0;
13546 tp->traceframe_usage = 0;
13547 for (bp_location *loc : tp->locations ())
13548 {
13549 /* If the tracepoint was never downloaded, don't go asking for
13550 any status. */
13551 if (tp->number_on_target == 0)
13552 continue;
13553 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13554 phex_nz (loc->address, 0));
13555 putpkt (rs->buf);
13556 reply = remote_get_noisy_reply ();
13557 if (reply && *reply)
13558 {
13559 if (*reply == 'V')
13560 parse_tracepoint_status (reply + 1, bp, utp);
13561 }
13562 }
13563 }
13564 else if (utp)
13565 {
13566 utp->hit_count = 0;
13567 utp->traceframe_usage = 0;
13568 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13569 phex_nz (utp->addr, 0));
13570 putpkt (rs->buf);
13571 reply = remote_get_noisy_reply ();
13572 if (reply && *reply)
13573 {
13574 if (*reply == 'V')
13575 parse_tracepoint_status (reply + 1, bp, utp);
13576 }
13577 }
13578 }
13579
13580 void
13581 remote_target::trace_stop ()
13582 {
13583 struct remote_state *rs = get_remote_state ();
13584
13585 putpkt ("QTStop");
13586 remote_get_noisy_reply ();
13587 if (rs->buf[0] == '\0')
13588 error (_("Target does not support this command."));
13589 if (strcmp (rs->buf.data (), "OK") != 0)
13590 error (_("Bogus reply from target: %s"), rs->buf.data ());
13591 }
13592
13593 int
13594 remote_target::trace_find (enum trace_find_type type, int num,
13595 CORE_ADDR addr1, CORE_ADDR addr2,
13596 int *tpp)
13597 {
13598 struct remote_state *rs = get_remote_state ();
13599 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13600 char *p, *reply;
13601 int target_frameno = -1, target_tracept = -1;
13602
13603 /* Lookups other than by absolute frame number depend on the current
13604 trace selected, so make sure it is correct on the remote end
13605 first. */
13606 if (type != tfind_number)
13607 set_remote_traceframe ();
13608
13609 p = rs->buf.data ();
13610 strcpy (p, "QTFrame:");
13611 p = strchr (p, '\0');
13612 switch (type)
13613 {
13614 case tfind_number:
13615 xsnprintf (p, endbuf - p, "%x", num);
13616 break;
13617 case tfind_pc:
13618 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13619 break;
13620 case tfind_tp:
13621 xsnprintf (p, endbuf - p, "tdp:%x", num);
13622 break;
13623 case tfind_range:
13624 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13625 phex_nz (addr2, 0));
13626 break;
13627 case tfind_outside:
13628 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13629 phex_nz (addr2, 0));
13630 break;
13631 default:
13632 error (_("Unknown trace find type %d"), type);
13633 }
13634
13635 putpkt (rs->buf);
13636 reply = remote_get_noisy_reply ();
13637 if (*reply == '\0')
13638 error (_("Target does not support this command."));
13639
13640 while (reply && *reply)
13641 switch (*reply)
13642 {
13643 case 'F':
13644 p = ++reply;
13645 target_frameno = (int) strtol (p, &reply, 16);
13646 if (reply == p)
13647 error (_("Unable to parse trace frame number"));
13648 /* Don't update our remote traceframe number cache on failure
13649 to select a remote traceframe. */
13650 if (target_frameno == -1)
13651 return -1;
13652 break;
13653 case 'T':
13654 p = ++reply;
13655 target_tracept = (int) strtol (p, &reply, 16);
13656 if (reply == p)
13657 error (_("Unable to parse tracepoint number"));
13658 break;
13659 case 'O': /* "OK"? */
13660 if (reply[1] == 'K' && reply[2] == '\0')
13661 reply += 2;
13662 else
13663 error (_("Bogus reply from target: %s"), reply);
13664 break;
13665 default:
13666 error (_("Bogus reply from target: %s"), reply);
13667 }
13668 if (tpp)
13669 *tpp = target_tracept;
13670
13671 rs->remote_traceframe_number = target_frameno;
13672 return target_frameno;
13673 }
13674
13675 bool
13676 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13677 {
13678 struct remote_state *rs = get_remote_state ();
13679 char *reply;
13680 ULONGEST uval;
13681
13682 set_remote_traceframe ();
13683
13684 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13685 putpkt (rs->buf);
13686 reply = remote_get_noisy_reply ();
13687 if (reply && *reply)
13688 {
13689 if (*reply == 'V')
13690 {
13691 unpack_varlen_hex (reply + 1, &uval);
13692 *val = (LONGEST) uval;
13693 return true;
13694 }
13695 }
13696 return false;
13697 }
13698
13699 int
13700 remote_target::save_trace_data (const char *filename)
13701 {
13702 struct remote_state *rs = get_remote_state ();
13703 char *p, *reply;
13704
13705 p = rs->buf.data ();
13706 strcpy (p, "QTSave:");
13707 p += strlen (p);
13708 if ((p - rs->buf.data ()) + strlen (filename) * 2
13709 >= get_remote_packet_size ())
13710 error (_("Remote file name too long for trace save packet"));
13711 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13712 *p++ = '\0';
13713 putpkt (rs->buf);
13714 reply = remote_get_noisy_reply ();
13715 if (*reply == '\0')
13716 error (_("Target does not support this command."));
13717 if (strcmp (reply, "OK") != 0)
13718 error (_("Bogus reply from target: %s"), reply);
13719 return 0;
13720 }
13721
13722 /* This is basically a memory transfer, but needs to be its own packet
13723 because we don't know how the target actually organizes its trace
13724 memory, plus we want to be able to ask for as much as possible, but
13725 not be unhappy if we don't get as much as we ask for. */
13726
13727 LONGEST
13728 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13729 {
13730 struct remote_state *rs = get_remote_state ();
13731 char *reply;
13732 char *p;
13733 int rslt;
13734
13735 p = rs->buf.data ();
13736 strcpy (p, "qTBuffer:");
13737 p += strlen (p);
13738 p += hexnumstr (p, offset);
13739 *p++ = ',';
13740 p += hexnumstr (p, len);
13741 *p++ = '\0';
13742
13743 putpkt (rs->buf);
13744 reply = remote_get_noisy_reply ();
13745 if (reply && *reply)
13746 {
13747 /* 'l' by itself means we're at the end of the buffer and
13748 there is nothing more to get. */
13749 if (*reply == 'l')
13750 return 0;
13751
13752 /* Convert the reply into binary. Limit the number of bytes to
13753 convert according to our passed-in buffer size, rather than
13754 what was returned in the packet; if the target is
13755 unexpectedly generous and gives us a bigger reply than we
13756 asked for, we don't want to crash. */
13757 rslt = hex2bin (reply, buf, len);
13758 return rslt;
13759 }
13760
13761 /* Something went wrong, flag as an error. */
13762 return -1;
13763 }
13764
13765 void
13766 remote_target::set_disconnected_tracing (int val)
13767 {
13768 struct remote_state *rs = get_remote_state ();
13769
13770 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13771 {
13772 char *reply;
13773
13774 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13775 "QTDisconnected:%x", val);
13776 putpkt (rs->buf);
13777 reply = remote_get_noisy_reply ();
13778 if (*reply == '\0')
13779 error (_("Target does not support this command."));
13780 if (strcmp (reply, "OK") != 0)
13781 error (_("Bogus reply from target: %s"), reply);
13782 }
13783 else if (val)
13784 warning (_("Target does not support disconnected tracing."));
13785 }
13786
13787 int
13788 remote_target::core_of_thread (ptid_t ptid)
13789 {
13790 thread_info *info = find_thread_ptid (this, ptid);
13791
13792 if (info != NULL && info->priv != NULL)
13793 return get_remote_thread_info (info)->core;
13794
13795 return -1;
13796 }
13797
13798 void
13799 remote_target::set_circular_trace_buffer (int val)
13800 {
13801 struct remote_state *rs = get_remote_state ();
13802 char *reply;
13803
13804 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13805 "QTBuffer:circular:%x", val);
13806 putpkt (rs->buf);
13807 reply = remote_get_noisy_reply ();
13808 if (*reply == '\0')
13809 error (_("Target does not support this command."));
13810 if (strcmp (reply, "OK") != 0)
13811 error (_("Bogus reply from target: %s"), reply);
13812 }
13813
13814 traceframe_info_up
13815 remote_target::traceframe_info ()
13816 {
13817 gdb::optional<gdb::char_vector> text
13818 = target_read_stralloc (current_inferior ()->top_target (),
13819 TARGET_OBJECT_TRACEFRAME_INFO,
13820 NULL);
13821 if (text)
13822 return parse_traceframe_info (text->data ());
13823
13824 return NULL;
13825 }
13826
13827 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13828 instruction on which a fast tracepoint may be placed. Returns -1
13829 if the packet is not supported, and 0 if the minimum instruction
13830 length is unknown. */
13831
13832 int
13833 remote_target::get_min_fast_tracepoint_insn_len ()
13834 {
13835 struct remote_state *rs = get_remote_state ();
13836 char *reply;
13837
13838 /* If we're not debugging a process yet, the IPA can't be
13839 loaded. */
13840 if (!target_has_execution ())
13841 return 0;
13842
13843 /* Make sure the remote is pointing at the right process. */
13844 set_general_process ();
13845
13846 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13847 putpkt (rs->buf);
13848 reply = remote_get_noisy_reply ();
13849 if (*reply == '\0')
13850 return -1;
13851 else
13852 {
13853 ULONGEST min_insn_len;
13854
13855 unpack_varlen_hex (reply, &min_insn_len);
13856
13857 return (int) min_insn_len;
13858 }
13859 }
13860
13861 void
13862 remote_target::set_trace_buffer_size (LONGEST val)
13863 {
13864 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13865 {
13866 struct remote_state *rs = get_remote_state ();
13867 char *buf = rs->buf.data ();
13868 char *endbuf = buf + get_remote_packet_size ();
13869 enum packet_result result;
13870
13871 gdb_assert (val >= 0 || val == -1);
13872 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13873 /* Send -1 as literal "-1" to avoid host size dependency. */
13874 if (val < 0)
13875 {
13876 *buf++ = '-';
13877 buf += hexnumstr (buf, (ULONGEST) -val);
13878 }
13879 else
13880 buf += hexnumstr (buf, (ULONGEST) val);
13881
13882 putpkt (rs->buf);
13883 remote_get_noisy_reply ();
13884 result = packet_ok (rs->buf,
13885 &remote_protocol_packets[PACKET_QTBuffer_size]);
13886
13887 if (result != PACKET_OK)
13888 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13889 }
13890 }
13891
13892 bool
13893 remote_target::set_trace_notes (const char *user, const char *notes,
13894 const char *stop_notes)
13895 {
13896 struct remote_state *rs = get_remote_state ();
13897 char *reply;
13898 char *buf = rs->buf.data ();
13899 char *endbuf = buf + get_remote_packet_size ();
13900 int nbytes;
13901
13902 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13903 if (user)
13904 {
13905 buf += xsnprintf (buf, endbuf - buf, "user:");
13906 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13907 buf += 2 * nbytes;
13908 *buf++ = ';';
13909 }
13910 if (notes)
13911 {
13912 buf += xsnprintf (buf, endbuf - buf, "notes:");
13913 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13914 buf += 2 * nbytes;
13915 *buf++ = ';';
13916 }
13917 if (stop_notes)
13918 {
13919 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13920 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13921 buf += 2 * nbytes;
13922 *buf++ = ';';
13923 }
13924 /* Ensure the buffer is terminated. */
13925 *buf = '\0';
13926
13927 putpkt (rs->buf);
13928 reply = remote_get_noisy_reply ();
13929 if (*reply == '\0')
13930 return false;
13931
13932 if (strcmp (reply, "OK") != 0)
13933 error (_("Bogus reply from target: %s"), reply);
13934
13935 return true;
13936 }
13937
13938 bool
13939 remote_target::use_agent (bool use)
13940 {
13941 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13942 {
13943 struct remote_state *rs = get_remote_state ();
13944
13945 /* If the stub supports QAgent. */
13946 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13947 putpkt (rs->buf);
13948 getpkt (&rs->buf, 0);
13949
13950 if (strcmp (rs->buf.data (), "OK") == 0)
13951 {
13952 ::use_agent = use;
13953 return true;
13954 }
13955 }
13956
13957 return false;
13958 }
13959
13960 bool
13961 remote_target::can_use_agent ()
13962 {
13963 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13964 }
13965
13966 struct btrace_target_info
13967 {
13968 /* The ptid of the traced thread. */
13969 ptid_t ptid;
13970
13971 /* The obtained branch trace configuration. */
13972 struct btrace_config conf;
13973 };
13974
13975 /* Reset our idea of our target's btrace configuration. */
13976
13977 static void
13978 remote_btrace_reset (remote_state *rs)
13979 {
13980 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13981 }
13982
13983 /* Synchronize the configuration with the target. */
13984
13985 void
13986 remote_target::btrace_sync_conf (const btrace_config *conf)
13987 {
13988 struct packet_config *packet;
13989 struct remote_state *rs;
13990 char *buf, *pos, *endbuf;
13991
13992 rs = get_remote_state ();
13993 buf = rs->buf.data ();
13994 endbuf = buf + get_remote_packet_size ();
13995
13996 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13997 if (packet_config_support (packet) == PACKET_ENABLE
13998 && conf->bts.size != rs->btrace_config.bts.size)
13999 {
14000 pos = buf;
14001 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14002 conf->bts.size);
14003
14004 putpkt (buf);
14005 getpkt (&rs->buf, 0);
14006
14007 if (packet_ok (buf, packet) == PACKET_ERROR)
14008 {
14009 if (buf[0] == 'E' && buf[1] == '.')
14010 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14011 else
14012 error (_("Failed to configure the BTS buffer size."));
14013 }
14014
14015 rs->btrace_config.bts.size = conf->bts.size;
14016 }
14017
14018 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14019 if (packet_config_support (packet) == PACKET_ENABLE
14020 && conf->pt.size != rs->btrace_config.pt.size)
14021 {
14022 pos = buf;
14023 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14024 conf->pt.size);
14025
14026 putpkt (buf);
14027 getpkt (&rs->buf, 0);
14028
14029 if (packet_ok (buf, packet) == PACKET_ERROR)
14030 {
14031 if (buf[0] == 'E' && buf[1] == '.')
14032 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14033 else
14034 error (_("Failed to configure the trace buffer size."));
14035 }
14036
14037 rs->btrace_config.pt.size = conf->pt.size;
14038 }
14039 }
14040
14041 /* Read the current thread's btrace configuration from the target and
14042 store it into CONF. */
14043
14044 static void
14045 btrace_read_config (struct btrace_config *conf)
14046 {
14047 gdb::optional<gdb::char_vector> xml
14048 = target_read_stralloc (current_inferior ()->top_target (),
14049 TARGET_OBJECT_BTRACE_CONF, "");
14050 if (xml)
14051 parse_xml_btrace_conf (conf, xml->data ());
14052 }
14053
14054 /* Maybe reopen target btrace. */
14055
14056 void
14057 remote_target::remote_btrace_maybe_reopen ()
14058 {
14059 struct remote_state *rs = get_remote_state ();
14060 int btrace_target_pushed = 0;
14061 #if !defined (HAVE_LIBIPT)
14062 int warned = 0;
14063 #endif
14064
14065 /* Don't bother walking the entirety of the remote thread list when
14066 we know the feature isn't supported by the remote. */
14067 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14068 return;
14069
14070 scoped_restore_current_thread restore_thread;
14071
14072 for (thread_info *tp : all_non_exited_threads (this))
14073 {
14074 set_general_thread (tp->ptid);
14075
14076 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14077 btrace_read_config (&rs->btrace_config);
14078
14079 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14080 continue;
14081
14082 #if !defined (HAVE_LIBIPT)
14083 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14084 {
14085 if (!warned)
14086 {
14087 warned = 1;
14088 warning (_("Target is recording using Intel Processor Trace "
14089 "but support was disabled at compile time."));
14090 }
14091
14092 continue;
14093 }
14094 #endif /* !defined (HAVE_LIBIPT) */
14095
14096 /* Push target, once, but before anything else happens. This way our
14097 changes to the threads will be cleaned up by unpushing the target
14098 in case btrace_read_config () throws. */
14099 if (!btrace_target_pushed)
14100 {
14101 btrace_target_pushed = 1;
14102 record_btrace_push_target ();
14103 printf_filtered (_("Target is recording using %s.\n"),
14104 btrace_format_string (rs->btrace_config.format));
14105 }
14106
14107 tp->btrace.target = XCNEW (struct btrace_target_info);
14108 tp->btrace.target->ptid = tp->ptid;
14109 tp->btrace.target->conf = rs->btrace_config;
14110 }
14111 }
14112
14113 /* Enable branch tracing. */
14114
14115 struct btrace_target_info *
14116 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14117 {
14118 struct btrace_target_info *tinfo = NULL;
14119 struct packet_config *packet = NULL;
14120 struct remote_state *rs = get_remote_state ();
14121 char *buf = rs->buf.data ();
14122 char *endbuf = buf + get_remote_packet_size ();
14123
14124 switch (conf->format)
14125 {
14126 case BTRACE_FORMAT_BTS:
14127 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14128 break;
14129
14130 case BTRACE_FORMAT_PT:
14131 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14132 break;
14133 }
14134
14135 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14136 error (_("Target does not support branch tracing."));
14137
14138 btrace_sync_conf (conf);
14139
14140 set_general_thread (ptid);
14141
14142 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14143 putpkt (rs->buf);
14144 getpkt (&rs->buf, 0);
14145
14146 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14147 {
14148 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14149 error (_("Could not enable branch tracing for %s: %s"),
14150 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14151 else
14152 error (_("Could not enable branch tracing for %s."),
14153 target_pid_to_str (ptid).c_str ());
14154 }
14155
14156 tinfo = XCNEW (struct btrace_target_info);
14157 tinfo->ptid = ptid;
14158
14159 /* If we fail to read the configuration, we lose some information, but the
14160 tracing itself is not impacted. */
14161 try
14162 {
14163 btrace_read_config (&tinfo->conf);
14164 }
14165 catch (const gdb_exception_error &err)
14166 {
14167 if (err.message != NULL)
14168 warning ("%s", err.what ());
14169 }
14170
14171 return tinfo;
14172 }
14173
14174 /* Disable branch tracing. */
14175
14176 void
14177 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14178 {
14179 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14180 struct remote_state *rs = get_remote_state ();
14181 char *buf = rs->buf.data ();
14182 char *endbuf = buf + get_remote_packet_size ();
14183
14184 if (packet_config_support (packet) != PACKET_ENABLE)
14185 error (_("Target does not support branch tracing."));
14186
14187 set_general_thread (tinfo->ptid);
14188
14189 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14190 putpkt (rs->buf);
14191 getpkt (&rs->buf, 0);
14192
14193 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14194 {
14195 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14196 error (_("Could not disable branch tracing for %s: %s"),
14197 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14198 else
14199 error (_("Could not disable branch tracing for %s."),
14200 target_pid_to_str (tinfo->ptid).c_str ());
14201 }
14202
14203 xfree (tinfo);
14204 }
14205
14206 /* Teardown branch tracing. */
14207
14208 void
14209 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14210 {
14211 /* We must not talk to the target during teardown. */
14212 xfree (tinfo);
14213 }
14214
14215 /* Read the branch trace. */
14216
14217 enum btrace_error
14218 remote_target::read_btrace (struct btrace_data *btrace,
14219 struct btrace_target_info *tinfo,
14220 enum btrace_read_type type)
14221 {
14222 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14223 const char *annex;
14224
14225 if (packet_config_support (packet) != PACKET_ENABLE)
14226 error (_("Target does not support branch tracing."));
14227
14228 #if !defined(HAVE_LIBEXPAT)
14229 error (_("Cannot process branch tracing result. XML parsing not supported."));
14230 #endif
14231
14232 switch (type)
14233 {
14234 case BTRACE_READ_ALL:
14235 annex = "all";
14236 break;
14237 case BTRACE_READ_NEW:
14238 annex = "new";
14239 break;
14240 case BTRACE_READ_DELTA:
14241 annex = "delta";
14242 break;
14243 default:
14244 internal_error (__FILE__, __LINE__,
14245 _("Bad branch tracing read type: %u."),
14246 (unsigned int) type);
14247 }
14248
14249 gdb::optional<gdb::char_vector> xml
14250 = target_read_stralloc (current_inferior ()->top_target (),
14251 TARGET_OBJECT_BTRACE, annex);
14252 if (!xml)
14253 return BTRACE_ERR_UNKNOWN;
14254
14255 parse_xml_btrace (btrace, xml->data ());
14256
14257 return BTRACE_ERR_NONE;
14258 }
14259
14260 const struct btrace_config *
14261 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14262 {
14263 return &tinfo->conf;
14264 }
14265
14266 bool
14267 remote_target::augmented_libraries_svr4_read ()
14268 {
14269 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14270 == PACKET_ENABLE);
14271 }
14272
14273 /* Implementation of to_load. */
14274
14275 void
14276 remote_target::load (const char *name, int from_tty)
14277 {
14278 generic_load (name, from_tty);
14279 }
14280
14281 /* Accepts an integer PID; returns a string representing a file that
14282 can be opened on the remote side to get the symbols for the child
14283 process. Returns NULL if the operation is not supported. */
14284
14285 char *
14286 remote_target::pid_to_exec_file (int pid)
14287 {
14288 static gdb::optional<gdb::char_vector> filename;
14289 char *annex = NULL;
14290
14291 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14292 return NULL;
14293
14294 inferior *inf = find_inferior_pid (this, pid);
14295 if (inf == NULL)
14296 internal_error (__FILE__, __LINE__,
14297 _("not currently attached to process %d"), pid);
14298
14299 if (!inf->fake_pid_p)
14300 {
14301 const int annex_size = 9;
14302
14303 annex = (char *) alloca (annex_size);
14304 xsnprintf (annex, annex_size, "%x", pid);
14305 }
14306
14307 filename = target_read_stralloc (current_inferior ()->top_target (),
14308 TARGET_OBJECT_EXEC_FILE, annex);
14309
14310 return filename ? filename->data () : nullptr;
14311 }
14312
14313 /* Implement the to_can_do_single_step target_ops method. */
14314
14315 int
14316 remote_target::can_do_single_step ()
14317 {
14318 /* We can only tell whether target supports single step or not by
14319 supported s and S vCont actions if the stub supports vContSupported
14320 feature. If the stub doesn't support vContSupported feature,
14321 we have conservatively to think target doesn't supports single
14322 step. */
14323 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14324 {
14325 struct remote_state *rs = get_remote_state ();
14326
14327 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14328 remote_vcont_probe ();
14329
14330 return rs->supports_vCont.s && rs->supports_vCont.S;
14331 }
14332 else
14333 return 0;
14334 }
14335
14336 /* Implementation of the to_execution_direction method for the remote
14337 target. */
14338
14339 enum exec_direction_kind
14340 remote_target::execution_direction ()
14341 {
14342 struct remote_state *rs = get_remote_state ();
14343
14344 return rs->last_resume_exec_dir;
14345 }
14346
14347 /* Return pointer to the thread_info struct which corresponds to
14348 THREAD_HANDLE (having length HANDLE_LEN). */
14349
14350 thread_info *
14351 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14352 int handle_len,
14353 inferior *inf)
14354 {
14355 for (thread_info *tp : all_non_exited_threads (this))
14356 {
14357 remote_thread_info *priv = get_remote_thread_info (tp);
14358
14359 if (tp->inf == inf && priv != NULL)
14360 {
14361 if (handle_len != priv->thread_handle.size ())
14362 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14363 handle_len, priv->thread_handle.size ());
14364 if (memcmp (thread_handle, priv->thread_handle.data (),
14365 handle_len) == 0)
14366 return tp;
14367 }
14368 }
14369
14370 return NULL;
14371 }
14372
14373 gdb::byte_vector
14374 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14375 {
14376 remote_thread_info *priv = get_remote_thread_info (tp);
14377 return priv->thread_handle;
14378 }
14379
14380 bool
14381 remote_target::can_async_p ()
14382 {
14383 struct remote_state *rs = get_remote_state ();
14384
14385 /* We don't go async if the user has explicitly prevented it with the
14386 "maint set target-async" command. */
14387 if (!target_async_permitted)
14388 return false;
14389
14390 /* We're async whenever the serial device is. */
14391 return serial_can_async_p (rs->remote_desc);
14392 }
14393
14394 bool
14395 remote_target::is_async_p ()
14396 {
14397 struct remote_state *rs = get_remote_state ();
14398
14399 if (!target_async_permitted)
14400 /* We only enable async when the user specifically asks for it. */
14401 return false;
14402
14403 /* We're async whenever the serial device is. */
14404 return serial_is_async_p (rs->remote_desc);
14405 }
14406
14407 /* Pass the SERIAL event on and up to the client. One day this code
14408 will be able to delay notifying the client of an event until the
14409 point where an entire packet has been received. */
14410
14411 static serial_event_ftype remote_async_serial_handler;
14412
14413 static void
14414 remote_async_serial_handler (struct serial *scb, void *context)
14415 {
14416 /* Don't propogate error information up to the client. Instead let
14417 the client find out about the error by querying the target. */
14418 inferior_event_handler (INF_REG_EVENT);
14419 }
14420
14421 static void
14422 remote_async_inferior_event_handler (gdb_client_data data)
14423 {
14424 inferior_event_handler (INF_REG_EVENT);
14425 }
14426
14427 int
14428 remote_target::async_wait_fd ()
14429 {
14430 struct remote_state *rs = get_remote_state ();
14431 return rs->remote_desc->fd;
14432 }
14433
14434 void
14435 remote_target::async (int enable)
14436 {
14437 struct remote_state *rs = get_remote_state ();
14438
14439 if (enable)
14440 {
14441 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14442
14443 /* If there are pending events in the stop reply queue tell the
14444 event loop to process them. */
14445 if (!rs->stop_reply_queue.empty ())
14446 mark_async_event_handler (rs->remote_async_inferior_event_token);
14447 /* For simplicity, below we clear the pending events token
14448 without remembering whether it is marked, so here we always
14449 mark it. If there's actually no pending notification to
14450 process, this ends up being a no-op (other than a spurious
14451 event-loop wakeup). */
14452 if (target_is_non_stop_p ())
14453 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14454 }
14455 else
14456 {
14457 serial_async (rs->remote_desc, NULL, NULL);
14458 /* If the core is disabling async, it doesn't want to be
14459 disturbed with target events. Clear all async event sources
14460 too. */
14461 clear_async_event_handler (rs->remote_async_inferior_event_token);
14462 if (target_is_non_stop_p ())
14463 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14464 }
14465 }
14466
14467 /* Implementation of the to_thread_events method. */
14468
14469 void
14470 remote_target::thread_events (int enable)
14471 {
14472 struct remote_state *rs = get_remote_state ();
14473 size_t size = get_remote_packet_size ();
14474
14475 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14476 return;
14477
14478 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14479 putpkt (rs->buf);
14480 getpkt (&rs->buf, 0);
14481
14482 switch (packet_ok (rs->buf,
14483 &remote_protocol_packets[PACKET_QThreadEvents]))
14484 {
14485 case PACKET_OK:
14486 if (strcmp (rs->buf.data (), "OK") != 0)
14487 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14488 break;
14489 case PACKET_ERROR:
14490 warning (_("Remote failure reply: %s"), rs->buf.data ());
14491 break;
14492 case PACKET_UNKNOWN:
14493 break;
14494 }
14495 }
14496
14497 static void
14498 show_remote_cmd (const char *args, int from_tty)
14499 {
14500 /* We can't just use cmd_show_list here, because we want to skip
14501 the redundant "show remote Z-packet" and the legacy aliases. */
14502 struct cmd_list_element *list = remote_show_cmdlist;
14503 struct ui_out *uiout = current_uiout;
14504
14505 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14506 for (; list != NULL; list = list->next)
14507 if (strcmp (list->name, "Z-packet") == 0)
14508 continue;
14509 else if (list->type == not_set_cmd)
14510 /* Alias commands are exactly like the original, except they
14511 don't have the normal type. */
14512 continue;
14513 else
14514 {
14515 ui_out_emit_tuple option_emitter (uiout, "option");
14516
14517 uiout->field_string ("name", list->name);
14518 uiout->text (": ");
14519 if (list->type == show_cmd)
14520 do_show_command (NULL, from_tty, list);
14521 else
14522 cmd_func (list, NULL, from_tty);
14523 }
14524 }
14525
14526
14527 /* Function to be called whenever a new objfile (shlib) is detected. */
14528 static void
14529 remote_new_objfile (struct objfile *objfile)
14530 {
14531 remote_target *remote = get_current_remote_target ();
14532
14533 /* First, check whether the current inferior's process target is a remote
14534 target. */
14535 if (remote == nullptr)
14536 return;
14537
14538 /* When we are attaching or handling a fork child and the shared library
14539 subsystem reads the list of loaded libraries, we receive new objfile
14540 events in between each found library. The libraries are read in an
14541 undefined order, so if we gave the remote side a chance to look up
14542 symbols between each objfile, we might give it an inconsistent picture
14543 of the inferior. It could appear that a library A appears loaded but
14544 a library B does not, even though library A requires library B. That
14545 would present a state that couldn't normally exist in the inferior.
14546
14547 So, skip these events, we'll give the remote a chance to look up symbols
14548 once all the loaded libraries and their symbols are known to GDB. */
14549 if (current_inferior ()->in_initial_library_scan)
14550 return;
14551
14552 remote->remote_check_symbols ();
14553 }
14554
14555 /* Pull all the tracepoints defined on the target and create local
14556 data structures representing them. We don't want to create real
14557 tracepoints yet, we don't want to mess up the user's existing
14558 collection. */
14559
14560 int
14561 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14562 {
14563 struct remote_state *rs = get_remote_state ();
14564 char *p;
14565
14566 /* Ask for a first packet of tracepoint definition. */
14567 putpkt ("qTfP");
14568 getpkt (&rs->buf, 0);
14569 p = rs->buf.data ();
14570 while (*p && *p != 'l')
14571 {
14572 parse_tracepoint_definition (p, utpp);
14573 /* Ask for another packet of tracepoint definition. */
14574 putpkt ("qTsP");
14575 getpkt (&rs->buf, 0);
14576 p = rs->buf.data ();
14577 }
14578 return 0;
14579 }
14580
14581 int
14582 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14583 {
14584 struct remote_state *rs = get_remote_state ();
14585 char *p;
14586
14587 /* Ask for a first packet of variable definition. */
14588 putpkt ("qTfV");
14589 getpkt (&rs->buf, 0);
14590 p = rs->buf.data ();
14591 while (*p && *p != 'l')
14592 {
14593 parse_tsv_definition (p, utsvp);
14594 /* Ask for another packet of variable definition. */
14595 putpkt ("qTsV");
14596 getpkt (&rs->buf, 0);
14597 p = rs->buf.data ();
14598 }
14599 return 0;
14600 }
14601
14602 /* The "set/show range-stepping" show hook. */
14603
14604 static void
14605 show_range_stepping (struct ui_file *file, int from_tty,
14606 struct cmd_list_element *c,
14607 const char *value)
14608 {
14609 fprintf_filtered (file,
14610 _("Debugger's willingness to use range stepping "
14611 "is %s.\n"), value);
14612 }
14613
14614 /* Return true if the vCont;r action is supported by the remote
14615 stub. */
14616
14617 bool
14618 remote_target::vcont_r_supported ()
14619 {
14620 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14621 remote_vcont_probe ();
14622
14623 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14624 && get_remote_state ()->supports_vCont.r);
14625 }
14626
14627 /* The "set/show range-stepping" set hook. */
14628
14629 static void
14630 set_range_stepping (const char *ignore_args, int from_tty,
14631 struct cmd_list_element *c)
14632 {
14633 /* When enabling, check whether range stepping is actually supported
14634 by the target, and warn if not. */
14635 if (use_range_stepping)
14636 {
14637 remote_target *remote = get_current_remote_target ();
14638 if (remote == NULL
14639 || !remote->vcont_r_supported ())
14640 warning (_("Range stepping is not supported by the current target"));
14641 }
14642 }
14643
14644 static void
14645 show_remote_debug (struct ui_file *file, int from_tty,
14646 struct cmd_list_element *c, const char *value)
14647 {
14648 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14649 value);
14650 }
14651
14652 static void
14653 show_remote_timeout (struct ui_file *file, int from_tty,
14654 struct cmd_list_element *c, const char *value)
14655 {
14656 fprintf_filtered (file,
14657 _("Timeout limit to wait for target to respond is %s.\n"),
14658 value);
14659 }
14660
14661 /* Implement the "supports_memory_tagging" target_ops method. */
14662
14663 bool
14664 remote_target::supports_memory_tagging ()
14665 {
14666 return remote_memory_tagging_p ();
14667 }
14668
14669 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14670
14671 static void
14672 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14673 size_t len, int type)
14674 {
14675 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14676
14677 std::string request = string_printf ("qMemTags:%s,%s:%s",
14678 phex_nz (address, addr_size),
14679 phex_nz (len, sizeof (len)),
14680 phex_nz (type, sizeof (type)));
14681
14682 strcpy (packet.data (), request.c_str ());
14683 }
14684
14685 /* Parse the qMemTags packet reply into TAGS.
14686
14687 Return true if successful, false otherwise. */
14688
14689 static bool
14690 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14691 gdb::byte_vector &tags)
14692 {
14693 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14694 return false;
14695
14696 /* Copy the tag data. */
14697 tags = hex2bin (reply.data () + 1);
14698
14699 return true;
14700 }
14701
14702 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14703
14704 static void
14705 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14706 size_t len, int type,
14707 const gdb::byte_vector &tags)
14708 {
14709 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14710
14711 /* Put together the main packet, address and length. */
14712 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14713 phex_nz (address, addr_size),
14714 phex_nz (len, sizeof (len)),
14715 phex_nz (type, sizeof (type)));
14716 request += bin2hex (tags.data (), tags.size ());
14717
14718 /* Check if we have exceeded the maximum packet size. */
14719 if (packet.size () < request.length ())
14720 error (_("Contents too big for packet QMemTags."));
14721
14722 strcpy (packet.data (), request.c_str ());
14723 }
14724
14725 /* Implement the "fetch_memtags" target_ops method. */
14726
14727 bool
14728 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14729 gdb::byte_vector &tags, int type)
14730 {
14731 /* Make sure the qMemTags packet is supported. */
14732 if (!remote_memory_tagging_p ())
14733 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14734
14735 struct remote_state *rs = get_remote_state ();
14736
14737 create_fetch_memtags_request (rs->buf, address, len, type);
14738
14739 putpkt (rs->buf);
14740 getpkt (&rs->buf, 0);
14741
14742 return parse_fetch_memtags_reply (rs->buf, tags);
14743 }
14744
14745 /* Implement the "store_memtags" target_ops method. */
14746
14747 bool
14748 remote_target::store_memtags (CORE_ADDR address, size_t len,
14749 const gdb::byte_vector &tags, int type)
14750 {
14751 /* Make sure the QMemTags packet is supported. */
14752 if (!remote_memory_tagging_p ())
14753 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14754
14755 struct remote_state *rs = get_remote_state ();
14756
14757 create_store_memtags_request (rs->buf, address, len, type, tags);
14758
14759 putpkt (rs->buf);
14760 getpkt (&rs->buf, 0);
14761
14762 /* Verify if the request was successful. */
14763 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14764 }
14765
14766 /* Return true if remote target T is non-stop. */
14767
14768 bool
14769 remote_target_is_non_stop_p (remote_target *t)
14770 {
14771 scoped_restore_current_thread restore_thread;
14772 switch_to_target_no_thread (t);
14773
14774 return target_is_non_stop_p ();
14775 }
14776
14777 #if GDB_SELF_TEST
14778
14779 namespace selftests {
14780
14781 static void
14782 test_memory_tagging_functions ()
14783 {
14784 remote_target remote;
14785
14786 struct packet_config *config
14787 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14788
14789 scoped_restore restore_memtag_support_
14790 = make_scoped_restore (&config->support);
14791
14792 /* Test memory tagging packet support. */
14793 config->support = PACKET_SUPPORT_UNKNOWN;
14794 SELF_CHECK (remote.supports_memory_tagging () == false);
14795 config->support = PACKET_DISABLE;
14796 SELF_CHECK (remote.supports_memory_tagging () == false);
14797 config->support = PACKET_ENABLE;
14798 SELF_CHECK (remote.supports_memory_tagging () == true);
14799
14800 /* Setup testing. */
14801 gdb::char_vector packet;
14802 gdb::byte_vector tags, bv;
14803 std::string expected, reply;
14804 packet.resize (32000);
14805
14806 /* Test creating a qMemTags request. */
14807
14808 expected = "qMemTags:0,0:0";
14809 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14810 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14811
14812 expected = "qMemTags:deadbeef,10:1";
14813 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14814 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14815
14816 /* Test parsing a qMemTags reply. */
14817
14818 /* Error reply, tags vector unmodified. */
14819 reply = "E00";
14820 strcpy (packet.data (), reply.c_str ());
14821 tags.resize (0);
14822 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14823 SELF_CHECK (tags.size () == 0);
14824
14825 /* Valid reply, tags vector updated. */
14826 tags.resize (0);
14827 bv.resize (0);
14828
14829 for (int i = 0; i < 5; i++)
14830 bv.push_back (i);
14831
14832 reply = "m" + bin2hex (bv.data (), bv.size ());
14833 strcpy (packet.data (), reply.c_str ());
14834
14835 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14836 SELF_CHECK (tags.size () == 5);
14837
14838 for (int i = 0; i < 5; i++)
14839 SELF_CHECK (tags[i] == i);
14840
14841 /* Test creating a QMemTags request. */
14842
14843 /* Empty tag data. */
14844 tags.resize (0);
14845 expected = "QMemTags:0,0:0:";
14846 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14847 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14848 expected.length ()) == 0);
14849
14850 /* Non-empty tag data. */
14851 tags.resize (0);
14852 for (int i = 0; i < 5; i++)
14853 tags.push_back (i);
14854 expected = "QMemTags:deadbeef,ff:1:0001020304";
14855 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14856 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14857 expected.length ()) == 0);
14858 }
14859
14860 } // namespace selftests
14861 #endif /* GDB_SELF_TEST */
14862
14863 void _initialize_remote ();
14864 void
14865 _initialize_remote ()
14866 {
14867 /* architecture specific data */
14868 remote_g_packet_data_handle =
14869 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14870
14871 add_target (remote_target_info, remote_target::open);
14872 add_target (extended_remote_target_info, extended_remote_target::open);
14873
14874 /* Hook into new objfile notification. */
14875 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14876
14877 #if 0
14878 init_remote_threadtests ();
14879 #endif
14880
14881 /* set/show remote ... */
14882
14883 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14884 Remote protocol specific variables.\n\
14885 Configure various remote-protocol specific variables such as\n\
14886 the packets being used."),
14887 &remote_set_cmdlist,
14888 0 /* allow-unknown */, &setlist);
14889 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14890 Remote protocol specific variables.\n\
14891 Configure various remote-protocol specific variables such as\n\
14892 the packets being used."),
14893 &remote_show_cmdlist,
14894 0 /* allow-unknown */, &showlist);
14895
14896 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14897 Compare section data on target to the exec file.\n\
14898 Argument is a single section name (default: all loaded sections).\n\
14899 To compare only read-only loaded sections, specify the -r option."),
14900 &cmdlist);
14901
14902 add_cmd ("packet", class_maintenance, packet_command, _("\
14903 Send an arbitrary packet to a remote target.\n\
14904 maintenance packet TEXT\n\
14905 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14906 this command sends the string TEXT to the inferior, and displays the\n\
14907 response packet. GDB supplies the initial `$' character, and the\n\
14908 terminating `#' character and checksum."),
14909 &maintenancelist);
14910
14911 set_show_commands remotebreak_cmds
14912 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14913 Set whether to send break if interrupted."), _("\
14914 Show whether to send break if interrupted."), _("\
14915 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14916 set_remotebreak, show_remotebreak,
14917 &setlist, &showlist);
14918 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14919 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14920
14921 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14922 interrupt_sequence_modes, &interrupt_sequence_mode,
14923 _("\
14924 Set interrupt sequence to remote target."), _("\
14925 Show interrupt sequence to remote target."), _("\
14926 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14927 NULL, show_interrupt_sequence,
14928 &remote_set_cmdlist,
14929 &remote_show_cmdlist);
14930
14931 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14932 &interrupt_on_connect, _("\
14933 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14934 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14935 If set, interrupt sequence is sent to remote target."),
14936 NULL, NULL,
14937 &remote_set_cmdlist, &remote_show_cmdlist);
14938
14939 /* Install commands for configuring memory read/write packets. */
14940
14941 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14942 Set the maximum number of bytes per memory write packet (deprecated)."),
14943 &setlist);
14944 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14945 Show the maximum number of bytes per memory write packet (deprecated)."),
14946 &showlist);
14947 add_cmd ("memory-write-packet-size", no_class,
14948 set_memory_write_packet_size, _("\
14949 Set the maximum number of bytes per memory-write packet.\n\
14950 Specify the number of bytes in a packet or 0 (zero) for the\n\
14951 default packet size. The actual limit is further reduced\n\
14952 dependent on the target. Specify ``fixed'' to disable the\n\
14953 further restriction and ``limit'' to enable that restriction."),
14954 &remote_set_cmdlist);
14955 add_cmd ("memory-read-packet-size", no_class,
14956 set_memory_read_packet_size, _("\
14957 Set the maximum number of bytes per memory-read packet.\n\
14958 Specify the number of bytes in a packet or 0 (zero) for the\n\
14959 default packet size. The actual limit is further reduced\n\
14960 dependent on the target. Specify ``fixed'' to disable the\n\
14961 further restriction and ``limit'' to enable that restriction."),
14962 &remote_set_cmdlist);
14963 add_cmd ("memory-write-packet-size", no_class,
14964 show_memory_write_packet_size,
14965 _("Show the maximum number of bytes per memory-write packet."),
14966 &remote_show_cmdlist);
14967 add_cmd ("memory-read-packet-size", no_class,
14968 show_memory_read_packet_size,
14969 _("Show the maximum number of bytes per memory-read packet."),
14970 &remote_show_cmdlist);
14971
14972 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14973 &remote_hw_watchpoint_limit, _("\
14974 Set the maximum number of target hardware watchpoints."), _("\
14975 Show the maximum number of target hardware watchpoints."), _("\
14976 Specify \"unlimited\" for unlimited hardware watchpoints."),
14977 NULL, show_hardware_watchpoint_limit,
14978 &remote_set_cmdlist,
14979 &remote_show_cmdlist);
14980 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14981 no_class,
14982 &remote_hw_watchpoint_length_limit, _("\
14983 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14984 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14985 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14986 NULL, show_hardware_watchpoint_length_limit,
14987 &remote_set_cmdlist, &remote_show_cmdlist);
14988 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14989 &remote_hw_breakpoint_limit, _("\
14990 Set the maximum number of target hardware breakpoints."), _("\
14991 Show the maximum number of target hardware breakpoints."), _("\
14992 Specify \"unlimited\" for unlimited hardware breakpoints."),
14993 NULL, show_hardware_breakpoint_limit,
14994 &remote_set_cmdlist, &remote_show_cmdlist);
14995
14996 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14997 &remote_address_size, _("\
14998 Set the maximum size of the address (in bits) in a memory packet."), _("\
14999 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15000 NULL,
15001 NULL, /* FIXME: i18n: */
15002 &setlist, &showlist);
15003
15004 init_all_packet_configs ();
15005
15006 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15007 "X", "binary-download", 1);
15008
15009 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15010 "vCont", "verbose-resume", 0);
15011
15012 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15013 "QPassSignals", "pass-signals", 0);
15014
15015 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15016 "QCatchSyscalls", "catch-syscalls", 0);
15017
15018 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15019 "QProgramSignals", "program-signals", 0);
15020
15021 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15022 "QSetWorkingDir", "set-working-dir", 0);
15023
15024 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15025 "QStartupWithShell", "startup-with-shell", 0);
15026
15027 add_packet_config_cmd (&remote_protocol_packets
15028 [PACKET_QEnvironmentHexEncoded],
15029 "QEnvironmentHexEncoded", "environment-hex-encoded",
15030 0);
15031
15032 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15033 "QEnvironmentReset", "environment-reset",
15034 0);
15035
15036 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15037 "QEnvironmentUnset", "environment-unset",
15038 0);
15039
15040 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15041 "qSymbol", "symbol-lookup", 0);
15042
15043 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15044 "P", "set-register", 1);
15045
15046 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15047 "p", "fetch-register", 1);
15048
15049 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15050 "Z0", "software-breakpoint", 0);
15051
15052 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15053 "Z1", "hardware-breakpoint", 0);
15054
15055 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15056 "Z2", "write-watchpoint", 0);
15057
15058 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15059 "Z3", "read-watchpoint", 0);
15060
15061 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15062 "Z4", "access-watchpoint", 0);
15063
15064 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15065 "qXfer:auxv:read", "read-aux-vector", 0);
15066
15067 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15068 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15069
15070 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15071 "qXfer:features:read", "target-features", 0);
15072
15073 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15074 "qXfer:libraries:read", "library-info", 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15077 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15080 "qXfer:memory-map:read", "memory-map", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15083 "qXfer:osdata:read", "osdata", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15086 "qXfer:threads:read", "threads", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15089 "qXfer:siginfo:read", "read-siginfo-object", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15092 "qXfer:siginfo:write", "write-siginfo-object", 0);
15093
15094 add_packet_config_cmd
15095 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15096 "qXfer:traceframe-info:read", "traceframe-info", 0);
15097
15098 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15099 "qXfer:uib:read", "unwind-info-block", 0);
15100
15101 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15102 "qGetTLSAddr", "get-thread-local-storage-address",
15103 0);
15104
15105 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15106 "qGetTIBAddr", "get-thread-information-block-address",
15107 0);
15108
15109 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15110 "bc", "reverse-continue", 0);
15111
15112 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15113 "bs", "reverse-step", 0);
15114
15115 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15116 "qSupported", "supported-packets", 0);
15117
15118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15119 "qSearch:memory", "search-memory", 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15122 "qTStatus", "trace-status", 0);
15123
15124 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15125 "vFile:setfs", "hostio-setfs", 0);
15126
15127 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15128 "vFile:open", "hostio-open", 0);
15129
15130 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15131 "vFile:pread", "hostio-pread", 0);
15132
15133 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15134 "vFile:pwrite", "hostio-pwrite", 0);
15135
15136 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15137 "vFile:close", "hostio-close", 0);
15138
15139 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15140 "vFile:unlink", "hostio-unlink", 0);
15141
15142 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15143 "vFile:readlink", "hostio-readlink", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15146 "vFile:fstat", "hostio-fstat", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15149 "vAttach", "attach", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15152 "vRun", "run", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15155 "QStartNoAckMode", "noack", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15158 "vKill", "kill", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15161 "qAttached", "query-attached", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15164 "ConditionalTracepoints",
15165 "conditional-tracepoints", 0);
15166
15167 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15168 "ConditionalBreakpoints",
15169 "conditional-breakpoints", 0);
15170
15171 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15172 "BreakpointCommands",
15173 "breakpoint-commands", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15176 "FastTracepoints", "fast-tracepoints", 0);
15177
15178 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15179 "TracepointSource", "TracepointSource", 0);
15180
15181 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15182 "QAllow", "allow", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15185 "StaticTracepoints", "static-tracepoints", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15188 "InstallInTrace", "install-in-trace", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15191 "qXfer:statictrace:read", "read-sdata-object", 0);
15192
15193 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15194 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15197 "QDisableRandomization", "disable-randomization", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15200 "QAgent", "agent", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15203 "QTBuffer:size", "trace-buffer-size", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15206 "Qbtrace:off", "disable-btrace", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15209 "Qbtrace:bts", "enable-btrace-bts", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15212 "Qbtrace:pt", "enable-btrace-pt", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15215 "qXfer:btrace", "read-btrace", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15218 "qXfer:btrace-conf", "read-btrace-conf", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15221 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15222
15223 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15224 "multiprocess-feature", "multiprocess-feature", 0);
15225
15226 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15227 "swbreak-feature", "swbreak-feature", 0);
15228
15229 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15230 "hwbreak-feature", "hwbreak-feature", 0);
15231
15232 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15233 "fork-event-feature", "fork-event-feature", 0);
15234
15235 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15236 "vfork-event-feature", "vfork-event-feature", 0);
15237
15238 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15239 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15240
15241 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15242 "vContSupported", "verbose-resume-supported", 0);
15243
15244 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15245 "exec-event-feature", "exec-event-feature", 0);
15246
15247 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15248 "vCtrlC", "ctrl-c", 0);
15249
15250 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15251 "QThreadEvents", "thread-events", 0);
15252
15253 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15254 "N stop reply", "no-resumed-stop-reply", 0);
15255
15256 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15257 "memory-tagging-feature", "memory-tagging-feature", 0);
15258
15259 /* Assert that we've registered "set remote foo-packet" commands
15260 for all packet configs. */
15261 {
15262 int i;
15263
15264 for (i = 0; i < PACKET_MAX; i++)
15265 {
15266 /* Ideally all configs would have a command associated. Some
15267 still don't though. */
15268 int excepted;
15269
15270 switch (i)
15271 {
15272 case PACKET_QNonStop:
15273 case PACKET_EnableDisableTracepoints_feature:
15274 case PACKET_tracenz_feature:
15275 case PACKET_DisconnectedTracing_feature:
15276 case PACKET_augmented_libraries_svr4_read_feature:
15277 case PACKET_qCRC:
15278 /* Additions to this list need to be well justified:
15279 pre-existing packets are OK; new packets are not. */
15280 excepted = 1;
15281 break;
15282 default:
15283 excepted = 0;
15284 break;
15285 }
15286
15287 /* This catches both forgetting to add a config command, and
15288 forgetting to remove a packet from the exception list. */
15289 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15290 }
15291 }
15292
15293 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15294 Z sub-packet has its own set and show commands, but users may
15295 have sets to this variable in their .gdbinit files (or in their
15296 documentation). */
15297 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15298 &remote_Z_packet_detect, _("\
15299 Set use of remote protocol `Z' packets."), _("\
15300 Show use of remote protocol `Z' packets."), _("\
15301 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15302 packets."),
15303 set_remote_protocol_Z_packet_cmd,
15304 show_remote_protocol_Z_packet_cmd,
15305 /* FIXME: i18n: Use of remote protocol
15306 `Z' packets is %s. */
15307 &remote_set_cmdlist, &remote_show_cmdlist);
15308
15309 add_basic_prefix_cmd ("remote", class_files, _("\
15310 Manipulate files on the remote system.\n\
15311 Transfer files to and from the remote target system."),
15312 &remote_cmdlist,
15313 0 /* allow-unknown */, &cmdlist);
15314
15315 add_cmd ("put", class_files, remote_put_command,
15316 _("Copy a local file to the remote system."),
15317 &remote_cmdlist);
15318
15319 add_cmd ("get", class_files, remote_get_command,
15320 _("Copy a remote file to the local system."),
15321 &remote_cmdlist);
15322
15323 add_cmd ("delete", class_files, remote_delete_command,
15324 _("Delete a remote file."),
15325 &remote_cmdlist);
15326
15327 add_setshow_string_noescape_cmd ("exec-file", class_files,
15328 &remote_exec_file_var, _("\
15329 Set the remote pathname for \"run\"."), _("\
15330 Show the remote pathname for \"run\"."), NULL,
15331 set_remote_exec_file,
15332 show_remote_exec_file,
15333 &remote_set_cmdlist,
15334 &remote_show_cmdlist);
15335
15336 add_setshow_boolean_cmd ("range-stepping", class_run,
15337 &use_range_stepping, _("\
15338 Enable or disable range stepping."), _("\
15339 Show whether target-assisted range stepping is enabled."), _("\
15340 If on, and the target supports it, when stepping a source line, GDB\n\
15341 tells the target to step the corresponding range of addresses itself instead\n\
15342 of issuing multiple single-steps. This speeds up source level\n\
15343 stepping. If off, GDB always issues single-steps, even if range\n\
15344 stepping is supported by the target. The default is on."),
15345 set_range_stepping,
15346 show_range_stepping,
15347 &setlist,
15348 &showlist);
15349
15350 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15351 Set watchdog timer."), _("\
15352 Show watchdog timer."), _("\
15353 When non-zero, this timeout is used instead of waiting forever for a target\n\
15354 to finish a low-level step or continue operation. If the specified amount\n\
15355 of time passes without a response from the target, an error occurs."),
15356 NULL,
15357 show_watchdog,
15358 &setlist, &showlist);
15359
15360 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15361 &remote_packet_max_chars, _("\
15362 Set the maximum number of characters to display for each remote packet."), _("\
15363 Show the maximum number of characters to display for each remote packet."), _("\
15364 Specify \"unlimited\" to display all the characters."),
15365 NULL, show_remote_packet_max_chars,
15366 &setdebuglist, &showdebuglist);
15367
15368 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15369 _("Set debugging of remote protocol."),
15370 _("Show debugging of remote protocol."),
15371 _("\
15372 When enabled, each packet sent or received with the remote target\n\
15373 is displayed."),
15374 NULL,
15375 show_remote_debug,
15376 &setdebuglist, &showdebuglist);
15377
15378 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15379 &remote_timeout, _("\
15380 Set timeout limit to wait for target to respond."), _("\
15381 Show timeout limit to wait for target to respond."), _("\
15382 This value is used to set the time limit for gdb to wait for a response\n\
15383 from the target."),
15384 NULL,
15385 show_remote_timeout,
15386 &setlist, &showlist);
15387
15388 /* Eventually initialize fileio. See fileio.c */
15389 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15390
15391 #if GDB_SELF_TEST
15392 selftests::register_test ("remote_memory_tagging",
15393 selftests::test_memory_tagging_functions);
15394 #endif
15395 }