]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* corelow.c (get_core_registers): Adjust.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (void);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_MAX
996 };
997
998 static struct packet_config remote_protocol_packets[PACKET_MAX];
999
1000 static void
1001 set_remote_protocol_packet_cmd (char *args, int from_tty,
1002 struct cmd_list_element *c)
1003 {
1004 struct packet_config *packet;
1005
1006 for (packet = remote_protocol_packets;
1007 packet < &remote_protocol_packets[PACKET_MAX];
1008 packet++)
1009 {
1010 if (&packet->detect == c->var)
1011 {
1012 update_packet_config (packet);
1013 return;
1014 }
1015 }
1016 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1017 c->name);
1018 }
1019
1020 static void
1021 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1022 struct cmd_list_element *c,
1023 const char *value)
1024 {
1025 struct packet_config *packet;
1026
1027 for (packet = remote_protocol_packets;
1028 packet < &remote_protocol_packets[PACKET_MAX];
1029 packet++)
1030 {
1031 if (&packet->detect == c->var)
1032 {
1033 show_packet_config_cmd (packet);
1034 return;
1035 }
1036 }
1037 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1038 c->name);
1039 }
1040
1041 /* Should we try one of the 'Z' requests? */
1042
1043 enum Z_packet_type
1044 {
1045 Z_PACKET_SOFTWARE_BP,
1046 Z_PACKET_HARDWARE_BP,
1047 Z_PACKET_WRITE_WP,
1048 Z_PACKET_READ_WP,
1049 Z_PACKET_ACCESS_WP,
1050 NR_Z_PACKET_TYPES
1051 };
1052
1053 /* For compatibility with older distributions. Provide a ``set remote
1054 Z-packet ...'' command that updates all the Z packet types. */
1055
1056 static enum auto_boolean remote_Z_packet_detect;
1057
1058 static void
1059 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1060 struct cmd_list_element *c)
1061 {
1062 int i;
1063 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1064 {
1065 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1066 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1067 }
1068 }
1069
1070 static void
1071 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1072 struct cmd_list_element *c,
1073 const char *value)
1074 {
1075 int i;
1076 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1077 {
1078 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1079 }
1080 }
1081
1082 /* Should we try the 'ThreadInfo' query packet?
1083
1084 This variable (NOT available to the user: auto-detect only!)
1085 determines whether GDB will use the new, simpler "ThreadInfo"
1086 query or the older, more complex syntax for thread queries.
1087 This is an auto-detect variable (set to true at each connect,
1088 and set to false when the target fails to recognize it). */
1089
1090 static int use_threadinfo_query;
1091 static int use_threadextra_query;
1092
1093 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1094 static struct async_signal_handler *sigint_remote_twice_token;
1095 static struct async_signal_handler *sigint_remote_token;
1096
1097 \f
1098 /* Asynchronous signal handle registered as event loop source for
1099 when we have pending events ready to be passed to the core. */
1100
1101 static struct async_event_handler *remote_async_inferior_event_token;
1102
1103 /* Asynchronous signal handle registered as event loop source for when
1104 the remote sent us a %Stop notification. The registered callback
1105 will do a vStopped sequence to pull the rest of the events out of
1106 the remote side into our event queue. */
1107
1108 static struct async_event_handler *remote_async_get_pending_events_token;
1109 \f
1110
1111 static ptid_t magic_null_ptid;
1112 static ptid_t not_sent_ptid;
1113 static ptid_t any_thread_ptid;
1114
1115 /* These are the threads which we last sent to the remote system. The
1116 TID member will be -1 for all or -2 for not sent yet. */
1117
1118 static ptid_t general_thread;
1119 static ptid_t continue_thread;
1120
1121 static void
1122 notice_new_inferiors (ptid_t currthread)
1123 {
1124 /* If this is a new thread, add it to GDB's thread list.
1125 If we leave it up to WFI to do this, bad things will happen. */
1126
1127 if (in_thread_list (currthread) && is_exited (currthread))
1128 {
1129 /* We're seeing an event on a thread id we knew had exited.
1130 This has to be a new thread reusing the old id. Add it. */
1131 add_thread (currthread);
1132 return;
1133 }
1134
1135 if (!in_thread_list (currthread))
1136 {
1137 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1138 {
1139 /* inferior_ptid has no thread member yet. This can happen
1140 with the vAttach -> remote_wait,"TAAthread:" path if the
1141 stub doesn't support qC. This is the first stop reported
1142 after an attach, so this is the main thread. Update the
1143 ptid in the thread list. */
1144 thread_change_ptid (inferior_ptid, currthread);
1145 return;
1146 }
1147
1148 if (ptid_equal (magic_null_ptid, inferior_ptid))
1149 {
1150 /* inferior_ptid is not set yet. This can happen with the
1151 vRun -> remote_wait,"TAAthread:" path if the stub
1152 doesn't support qC. This is the first stop reported
1153 after an attach, so this is the main thread. Update the
1154 ptid in the thread list. */
1155 thread_change_ptid (inferior_ptid, currthread);
1156 return;
1157 }
1158
1159 /* When connecting to a target remote, or to a target
1160 extended-remote which already was debugging an inferior, we
1161 may not know about it yet. Add it before adding its child
1162 thread, so notifications are emitted in a sensible order. */
1163 if (!in_inferior_list (ptid_get_pid (currthread)))
1164 add_inferior (ptid_get_pid (currthread));
1165
1166 /* This is really a new thread. Add it. */
1167 add_thread (currthread);
1168 }
1169 }
1170
1171 /* Call this function as a result of
1172 1) A halt indication (T packet) containing a thread id
1173 2) A direct query of currthread
1174 3) Successful execution of set thread
1175 */
1176
1177 static void
1178 record_currthread (ptid_t currthread)
1179 {
1180 general_thread = currthread;
1181
1182 if (ptid_equal (currthread, minus_one_ptid))
1183 /* We're just invalidating the local thread mirror. */
1184 return;
1185
1186 notice_new_inferiors (currthread);
1187 }
1188
1189 static char *last_pass_packet;
1190
1191 /* If 'QPassSignals' is supported, tell the remote stub what signals
1192 it can simply pass through to the inferior without reporting. */
1193
1194 static void
1195 remote_pass_signals (void)
1196 {
1197 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1198 {
1199 char *pass_packet, *p;
1200 int numsigs = (int) TARGET_SIGNAL_LAST;
1201 int count = 0, i;
1202
1203 gdb_assert (numsigs < 256);
1204 for (i = 0; i < numsigs; i++)
1205 {
1206 if (signal_stop_state (i) == 0
1207 && signal_print_state (i) == 0
1208 && signal_pass_state (i) == 1)
1209 count++;
1210 }
1211 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1212 strcpy (pass_packet, "QPassSignals:");
1213 p = pass_packet + strlen (pass_packet);
1214 for (i = 0; i < numsigs; i++)
1215 {
1216 if (signal_stop_state (i) == 0
1217 && signal_print_state (i) == 0
1218 && signal_pass_state (i) == 1)
1219 {
1220 if (i >= 16)
1221 *p++ = tohex (i >> 4);
1222 *p++ = tohex (i & 15);
1223 if (count)
1224 *p++ = ';';
1225 else
1226 break;
1227 count--;
1228 }
1229 }
1230 *p = 0;
1231 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1232 {
1233 struct remote_state *rs = get_remote_state ();
1234 char *buf = rs->buf;
1235
1236 putpkt (pass_packet);
1237 getpkt (&rs->buf, &rs->buf_size, 0);
1238 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1239 if (last_pass_packet)
1240 xfree (last_pass_packet);
1241 last_pass_packet = pass_packet;
1242 }
1243 else
1244 xfree (pass_packet);
1245 }
1246 }
1247
1248 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1249 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1250 thread. If GEN is set, set the general thread, if not, then set
1251 the step/continue thread. */
1252 static void
1253 set_thread (struct ptid ptid, int gen)
1254 {
1255 struct remote_state *rs = get_remote_state ();
1256 ptid_t state = gen ? general_thread : continue_thread;
1257 char *buf = rs->buf;
1258 char *endbuf = rs->buf + get_remote_packet_size ();
1259
1260 if (ptid_equal (state, ptid))
1261 return;
1262
1263 *buf++ = 'H';
1264 *buf++ = gen ? 'g' : 'c';
1265 if (ptid_equal (ptid, magic_null_ptid))
1266 xsnprintf (buf, endbuf - buf, "0");
1267 else if (ptid_equal (ptid, any_thread_ptid))
1268 xsnprintf (buf, endbuf - buf, "0");
1269 else if (ptid_equal (ptid, minus_one_ptid))
1270 xsnprintf (buf, endbuf - buf, "-1");
1271 else
1272 write_ptid (buf, endbuf, ptid);
1273 putpkt (rs->buf);
1274 getpkt (&rs->buf, &rs->buf_size, 0);
1275 if (gen)
1276 general_thread = ptid;
1277 else
1278 continue_thread = ptid;
1279 }
1280
1281 static void
1282 set_general_thread (struct ptid ptid)
1283 {
1284 set_thread (ptid, 1);
1285 }
1286
1287 static void
1288 set_continue_thread (struct ptid ptid)
1289 {
1290 set_thread (ptid, 0);
1291 }
1292
1293 /* Change the remote current process. Which thread within the process
1294 ends up selected isn't important, as long as it is the same process
1295 as what INFERIOR_PTID points to.
1296
1297 This comes from that fact that there is no explicit notion of
1298 "selected process" in the protocol. The selected process for
1299 general operations is the process the selected general thread
1300 belongs to. */
1301
1302 static void
1303 set_general_process (void)
1304 {
1305 struct remote_state *rs = get_remote_state ();
1306
1307 /* If the remote can't handle multiple processes, don't bother. */
1308 if (!remote_multi_process_p (rs))
1309 return;
1310
1311 /* We only need to change the remote current thread if it's pointing
1312 at some other process. */
1313 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1314 set_general_thread (inferior_ptid);
1315 }
1316
1317 \f
1318 /* Return nonzero if the thread PTID is still alive on the remote
1319 system. */
1320
1321 static int
1322 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1323 {
1324 struct remote_state *rs = get_remote_state ();
1325 int tid = ptid_get_tid (ptid);
1326 char *p, *endp;
1327
1328 if (ptid_equal (ptid, magic_null_ptid))
1329 /* The main thread is always alive. */
1330 return 1;
1331
1332 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1333 /* The main thread is always alive. This can happen after a
1334 vAttach, if the remote side doesn't support
1335 multi-threading. */
1336 return 1;
1337
1338 p = rs->buf;
1339 endp = rs->buf + get_remote_packet_size ();
1340
1341 *p++ = 'T';
1342 write_ptid (p, endp, ptid);
1343
1344 putpkt (rs->buf);
1345 getpkt (&rs->buf, &rs->buf_size, 0);
1346 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1347 }
1348
1349 /* About these extended threadlist and threadinfo packets. They are
1350 variable length packets but, the fields within them are often fixed
1351 length. They are redundent enough to send over UDP as is the
1352 remote protocol in general. There is a matching unit test module
1353 in libstub. */
1354
1355 #define OPAQUETHREADBYTES 8
1356
1357 /* a 64 bit opaque identifier */
1358 typedef unsigned char threadref[OPAQUETHREADBYTES];
1359
1360 /* WARNING: This threadref data structure comes from the remote O.S.,
1361 libstub protocol encoding, and remote.c. it is not particularly
1362 changable. */
1363
1364 /* Right now, the internal structure is int. We want it to be bigger.
1365 Plan to fix this.
1366 */
1367
1368 typedef int gdb_threadref; /* Internal GDB thread reference. */
1369
1370 /* gdb_ext_thread_info is an internal GDB data structure which is
1371 equivalent to the reply of the remote threadinfo packet. */
1372
1373 struct gdb_ext_thread_info
1374 {
1375 threadref threadid; /* External form of thread reference. */
1376 int active; /* Has state interesting to GDB?
1377 regs, stack. */
1378 char display[256]; /* Brief state display, name,
1379 blocked/suspended. */
1380 char shortname[32]; /* To be used to name threads. */
1381 char more_display[256]; /* Long info, statistics, queue depth,
1382 whatever. */
1383 };
1384
1385 /* The volume of remote transfers can be limited by submitting
1386 a mask containing bits specifying the desired information.
1387 Use a union of these values as the 'selection' parameter to
1388 get_thread_info. FIXME: Make these TAG names more thread specific.
1389 */
1390
1391 #define TAG_THREADID 1
1392 #define TAG_EXISTS 2
1393 #define TAG_DISPLAY 4
1394 #define TAG_THREADNAME 8
1395 #define TAG_MOREDISPLAY 16
1396
1397 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1398
1399 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1400
1401 static char *unpack_nibble (char *buf, int *val);
1402
1403 static char *pack_nibble (char *buf, int nibble);
1404
1405 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1406
1407 static char *unpack_byte (char *buf, int *value);
1408
1409 static char *pack_int (char *buf, int value);
1410
1411 static char *unpack_int (char *buf, int *value);
1412
1413 static char *unpack_string (char *src, char *dest, int length);
1414
1415 static char *pack_threadid (char *pkt, threadref *id);
1416
1417 static char *unpack_threadid (char *inbuf, threadref *id);
1418
1419 void int_to_threadref (threadref *id, int value);
1420
1421 static int threadref_to_int (threadref *ref);
1422
1423 static void copy_threadref (threadref *dest, threadref *src);
1424
1425 static int threadmatch (threadref *dest, threadref *src);
1426
1427 static char *pack_threadinfo_request (char *pkt, int mode,
1428 threadref *id);
1429
1430 static int remote_unpack_thread_info_response (char *pkt,
1431 threadref *expectedref,
1432 struct gdb_ext_thread_info
1433 *info);
1434
1435
1436 static int remote_get_threadinfo (threadref *threadid,
1437 int fieldset, /*TAG mask */
1438 struct gdb_ext_thread_info *info);
1439
1440 static char *pack_threadlist_request (char *pkt, int startflag,
1441 int threadcount,
1442 threadref *nextthread);
1443
1444 static int parse_threadlist_response (char *pkt,
1445 int result_limit,
1446 threadref *original_echo,
1447 threadref *resultlist,
1448 int *doneflag);
1449
1450 static int remote_get_threadlist (int startflag,
1451 threadref *nextthread,
1452 int result_limit,
1453 int *done,
1454 int *result_count,
1455 threadref *threadlist);
1456
1457 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1458
1459 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1460 void *context, int looplimit);
1461
1462 static int remote_newthread_step (threadref *ref, void *context);
1463
1464
1465 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1466 buffer we're allowed to write to. Returns
1467 BUF+CHARACTERS_WRITTEN. */
1468
1469 static char *
1470 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1471 {
1472 int pid, tid;
1473 struct remote_state *rs = get_remote_state ();
1474
1475 if (remote_multi_process_p (rs))
1476 {
1477 pid = ptid_get_pid (ptid);
1478 if (pid < 0)
1479 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1480 else
1481 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1482 }
1483 tid = ptid_get_tid (ptid);
1484 if (tid < 0)
1485 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1486 else
1487 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1488
1489 return buf;
1490 }
1491
1492 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1493 passed the last parsed char. Returns null_ptid on error. */
1494
1495 static ptid_t
1496 read_ptid (char *buf, char **obuf)
1497 {
1498 char *p = buf;
1499 char *pp;
1500 ULONGEST pid = 0, tid = 0;
1501 ptid_t ptid;
1502
1503 if (*p == 'p')
1504 {
1505 /* Multi-process ptid. */
1506 pp = unpack_varlen_hex (p + 1, &pid);
1507 if (*pp != '.')
1508 error (_("invalid remote ptid: %s\n"), p);
1509
1510 p = pp;
1511 pp = unpack_varlen_hex (p + 1, &tid);
1512 if (obuf)
1513 *obuf = pp;
1514 return ptid_build (pid, 0, tid);
1515 }
1516
1517 /* No multi-process. Just a tid. */
1518 pp = unpack_varlen_hex (p, &tid);
1519
1520 /* Since the stub is not sending a process id, then default to
1521 what's in inferior_ptid, unless it's null at this point. If so,
1522 then since there's no way to know the pid of the reported
1523 threads, use the magic number. */
1524 if (ptid_equal (inferior_ptid, null_ptid))
1525 pid = ptid_get_pid (magic_null_ptid);
1526 else
1527 pid = ptid_get_pid (inferior_ptid);
1528
1529 if (obuf)
1530 *obuf = pp;
1531 return ptid_build (pid, 0, tid);
1532 }
1533
1534 /* Encode 64 bits in 16 chars of hex. */
1535
1536 static const char hexchars[] = "0123456789abcdef";
1537
1538 static int
1539 ishex (int ch, int *val)
1540 {
1541 if ((ch >= 'a') && (ch <= 'f'))
1542 {
1543 *val = ch - 'a' + 10;
1544 return 1;
1545 }
1546 if ((ch >= 'A') && (ch <= 'F'))
1547 {
1548 *val = ch - 'A' + 10;
1549 return 1;
1550 }
1551 if ((ch >= '0') && (ch <= '9'))
1552 {
1553 *val = ch - '0';
1554 return 1;
1555 }
1556 return 0;
1557 }
1558
1559 static int
1560 stubhex (int ch)
1561 {
1562 if (ch >= 'a' && ch <= 'f')
1563 return ch - 'a' + 10;
1564 if (ch >= '0' && ch <= '9')
1565 return ch - '0';
1566 if (ch >= 'A' && ch <= 'F')
1567 return ch - 'A' + 10;
1568 return -1;
1569 }
1570
1571 static int
1572 stub_unpack_int (char *buff, int fieldlength)
1573 {
1574 int nibble;
1575 int retval = 0;
1576
1577 while (fieldlength)
1578 {
1579 nibble = stubhex (*buff++);
1580 retval |= nibble;
1581 fieldlength--;
1582 if (fieldlength)
1583 retval = retval << 4;
1584 }
1585 return retval;
1586 }
1587
1588 char *
1589 unpack_varlen_hex (char *buff, /* packet to parse */
1590 ULONGEST *result)
1591 {
1592 int nibble;
1593 ULONGEST retval = 0;
1594
1595 while (ishex (*buff, &nibble))
1596 {
1597 buff++;
1598 retval = retval << 4;
1599 retval |= nibble & 0x0f;
1600 }
1601 *result = retval;
1602 return buff;
1603 }
1604
1605 static char *
1606 unpack_nibble (char *buf, int *val)
1607 {
1608 *val = fromhex (*buf++);
1609 return buf;
1610 }
1611
1612 static char *
1613 pack_nibble (char *buf, int nibble)
1614 {
1615 *buf++ = hexchars[(nibble & 0x0f)];
1616 return buf;
1617 }
1618
1619 static char *
1620 pack_hex_byte (char *pkt, int byte)
1621 {
1622 *pkt++ = hexchars[(byte >> 4) & 0xf];
1623 *pkt++ = hexchars[(byte & 0xf)];
1624 return pkt;
1625 }
1626
1627 static char *
1628 unpack_byte (char *buf, int *value)
1629 {
1630 *value = stub_unpack_int (buf, 2);
1631 return buf + 2;
1632 }
1633
1634 static char *
1635 pack_int (char *buf, int value)
1636 {
1637 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1638 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1639 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1640 buf = pack_hex_byte (buf, (value & 0xff));
1641 return buf;
1642 }
1643
1644 static char *
1645 unpack_int (char *buf, int *value)
1646 {
1647 *value = stub_unpack_int (buf, 8);
1648 return buf + 8;
1649 }
1650
1651 #if 0 /* Currently unused, uncomment when needed. */
1652 static char *pack_string (char *pkt, char *string);
1653
1654 static char *
1655 pack_string (char *pkt, char *string)
1656 {
1657 char ch;
1658 int len;
1659
1660 len = strlen (string);
1661 if (len > 200)
1662 len = 200; /* Bigger than most GDB packets, junk??? */
1663 pkt = pack_hex_byte (pkt, len);
1664 while (len-- > 0)
1665 {
1666 ch = *string++;
1667 if ((ch == '\0') || (ch == '#'))
1668 ch = '*'; /* Protect encapsulation. */
1669 *pkt++ = ch;
1670 }
1671 return pkt;
1672 }
1673 #endif /* 0 (unused) */
1674
1675 static char *
1676 unpack_string (char *src, char *dest, int length)
1677 {
1678 while (length--)
1679 *dest++ = *src++;
1680 *dest = '\0';
1681 return src;
1682 }
1683
1684 static char *
1685 pack_threadid (char *pkt, threadref *id)
1686 {
1687 char *limit;
1688 unsigned char *altid;
1689
1690 altid = (unsigned char *) id;
1691 limit = pkt + BUF_THREAD_ID_SIZE;
1692 while (pkt < limit)
1693 pkt = pack_hex_byte (pkt, *altid++);
1694 return pkt;
1695 }
1696
1697
1698 static char *
1699 unpack_threadid (char *inbuf, threadref *id)
1700 {
1701 char *altref;
1702 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1703 int x, y;
1704
1705 altref = (char *) id;
1706
1707 while (inbuf < limit)
1708 {
1709 x = stubhex (*inbuf++);
1710 y = stubhex (*inbuf++);
1711 *altref++ = (x << 4) | y;
1712 }
1713 return inbuf;
1714 }
1715
1716 /* Externally, threadrefs are 64 bits but internally, they are still
1717 ints. This is due to a mismatch of specifications. We would like
1718 to use 64bit thread references internally. This is an adapter
1719 function. */
1720
1721 void
1722 int_to_threadref (threadref *id, int value)
1723 {
1724 unsigned char *scan;
1725
1726 scan = (unsigned char *) id;
1727 {
1728 int i = 4;
1729 while (i--)
1730 *scan++ = 0;
1731 }
1732 *scan++ = (value >> 24) & 0xff;
1733 *scan++ = (value >> 16) & 0xff;
1734 *scan++ = (value >> 8) & 0xff;
1735 *scan++ = (value & 0xff);
1736 }
1737
1738 static int
1739 threadref_to_int (threadref *ref)
1740 {
1741 int i, value = 0;
1742 unsigned char *scan;
1743
1744 scan = *ref;
1745 scan += 4;
1746 i = 4;
1747 while (i-- > 0)
1748 value = (value << 8) | ((*scan++) & 0xff);
1749 return value;
1750 }
1751
1752 static void
1753 copy_threadref (threadref *dest, threadref *src)
1754 {
1755 int i;
1756 unsigned char *csrc, *cdest;
1757
1758 csrc = (unsigned char *) src;
1759 cdest = (unsigned char *) dest;
1760 i = 8;
1761 while (i--)
1762 *cdest++ = *csrc++;
1763 }
1764
1765 static int
1766 threadmatch (threadref *dest, threadref *src)
1767 {
1768 /* Things are broken right now, so just assume we got a match. */
1769 #if 0
1770 unsigned char *srcp, *destp;
1771 int i, result;
1772 srcp = (char *) src;
1773 destp = (char *) dest;
1774
1775 result = 1;
1776 while (i-- > 0)
1777 result &= (*srcp++ == *destp++) ? 1 : 0;
1778 return result;
1779 #endif
1780 return 1;
1781 }
1782
1783 /*
1784 threadid:1, # always request threadid
1785 context_exists:2,
1786 display:4,
1787 unique_name:8,
1788 more_display:16
1789 */
1790
1791 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1792
1793 static char *
1794 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1795 {
1796 *pkt++ = 'q'; /* Info Query */
1797 *pkt++ = 'P'; /* process or thread info */
1798 pkt = pack_int (pkt, mode); /* mode */
1799 pkt = pack_threadid (pkt, id); /* threadid */
1800 *pkt = '\0'; /* terminate */
1801 return pkt;
1802 }
1803
1804 /* These values tag the fields in a thread info response packet. */
1805 /* Tagging the fields allows us to request specific fields and to
1806 add more fields as time goes by. */
1807
1808 #define TAG_THREADID 1 /* Echo the thread identifier. */
1809 #define TAG_EXISTS 2 /* Is this process defined enough to
1810 fetch registers and its stack? */
1811 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1812 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1813 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1814 the process. */
1815
1816 static int
1817 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1818 struct gdb_ext_thread_info *info)
1819 {
1820 struct remote_state *rs = get_remote_state ();
1821 int mask, length;
1822 int tag;
1823 threadref ref;
1824 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1825 int retval = 1;
1826
1827 /* info->threadid = 0; FIXME: implement zero_threadref. */
1828 info->active = 0;
1829 info->display[0] = '\0';
1830 info->shortname[0] = '\0';
1831 info->more_display[0] = '\0';
1832
1833 /* Assume the characters indicating the packet type have been
1834 stripped. */
1835 pkt = unpack_int (pkt, &mask); /* arg mask */
1836 pkt = unpack_threadid (pkt, &ref);
1837
1838 if (mask == 0)
1839 warning (_("Incomplete response to threadinfo request."));
1840 if (!threadmatch (&ref, expectedref))
1841 { /* This is an answer to a different request. */
1842 warning (_("ERROR RMT Thread info mismatch."));
1843 return 0;
1844 }
1845 copy_threadref (&info->threadid, &ref);
1846
1847 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1848
1849 /* Packets are terminated with nulls. */
1850 while ((pkt < limit) && mask && *pkt)
1851 {
1852 pkt = unpack_int (pkt, &tag); /* tag */
1853 pkt = unpack_byte (pkt, &length); /* length */
1854 if (!(tag & mask)) /* Tags out of synch with mask. */
1855 {
1856 warning (_("ERROR RMT: threadinfo tag mismatch."));
1857 retval = 0;
1858 break;
1859 }
1860 if (tag == TAG_THREADID)
1861 {
1862 if (length != 16)
1863 {
1864 warning (_("ERROR RMT: length of threadid is not 16."));
1865 retval = 0;
1866 break;
1867 }
1868 pkt = unpack_threadid (pkt, &ref);
1869 mask = mask & ~TAG_THREADID;
1870 continue;
1871 }
1872 if (tag == TAG_EXISTS)
1873 {
1874 info->active = stub_unpack_int (pkt, length);
1875 pkt += length;
1876 mask = mask & ~(TAG_EXISTS);
1877 if (length > 8)
1878 {
1879 warning (_("ERROR RMT: 'exists' length too long."));
1880 retval = 0;
1881 break;
1882 }
1883 continue;
1884 }
1885 if (tag == TAG_THREADNAME)
1886 {
1887 pkt = unpack_string (pkt, &info->shortname[0], length);
1888 mask = mask & ~TAG_THREADNAME;
1889 continue;
1890 }
1891 if (tag == TAG_DISPLAY)
1892 {
1893 pkt = unpack_string (pkt, &info->display[0], length);
1894 mask = mask & ~TAG_DISPLAY;
1895 continue;
1896 }
1897 if (tag == TAG_MOREDISPLAY)
1898 {
1899 pkt = unpack_string (pkt, &info->more_display[0], length);
1900 mask = mask & ~TAG_MOREDISPLAY;
1901 continue;
1902 }
1903 warning (_("ERROR RMT: unknown thread info tag."));
1904 break; /* Not a tag we know about. */
1905 }
1906 return retval;
1907 }
1908
1909 static int
1910 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1911 struct gdb_ext_thread_info *info)
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int result;
1915
1916 pack_threadinfo_request (rs->buf, fieldset, threadid);
1917 putpkt (rs->buf);
1918 getpkt (&rs->buf, &rs->buf_size, 0);
1919
1920 if (rs->buf[0] == '\0')
1921 return 0;
1922
1923 result = remote_unpack_thread_info_response (rs->buf + 2,
1924 threadid, info);
1925 return result;
1926 }
1927
1928 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1929
1930 static char *
1931 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1932 threadref *nextthread)
1933 {
1934 *pkt++ = 'q'; /* info query packet */
1935 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1936 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1937 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1938 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1939 *pkt = '\0';
1940 return pkt;
1941 }
1942
1943 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1944
1945 static int
1946 parse_threadlist_response (char *pkt, int result_limit,
1947 threadref *original_echo, threadref *resultlist,
1948 int *doneflag)
1949 {
1950 struct remote_state *rs = get_remote_state ();
1951 char *limit;
1952 int count, resultcount, done;
1953
1954 resultcount = 0;
1955 /* Assume the 'q' and 'M chars have been stripped. */
1956 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1957 /* done parse past here */
1958 pkt = unpack_byte (pkt, &count); /* count field */
1959 pkt = unpack_nibble (pkt, &done);
1960 /* The first threadid is the argument threadid. */
1961 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1962 while ((count-- > 0) && (pkt < limit))
1963 {
1964 pkt = unpack_threadid (pkt, resultlist++);
1965 if (resultcount++ >= result_limit)
1966 break;
1967 }
1968 if (doneflag)
1969 *doneflag = done;
1970 return resultcount;
1971 }
1972
1973 static int
1974 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1975 int *done, int *result_count, threadref *threadlist)
1976 {
1977 struct remote_state *rs = get_remote_state ();
1978 static threadref echo_nextthread;
1979 int result = 1;
1980
1981 /* Trancate result limit to be smaller than the packet size. */
1982 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1983 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1984
1985 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1986 putpkt (rs->buf);
1987 getpkt (&rs->buf, &rs->buf_size, 0);
1988
1989 if (*rs->buf == '\0')
1990 *result_count = 0;
1991 else
1992 *result_count =
1993 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1994 threadlist, done);
1995
1996 if (!threadmatch (&echo_nextthread, nextthread))
1997 {
1998 /* FIXME: This is a good reason to drop the packet. */
1999 /* Possably, there is a duplicate response. */
2000 /* Possabilities :
2001 retransmit immediatly - race conditions
2002 retransmit after timeout - yes
2003 exit
2004 wait for packet, then exit
2005 */
2006 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2007 return 0; /* I choose simply exiting. */
2008 }
2009 if (*result_count <= 0)
2010 {
2011 if (*done != 1)
2012 {
2013 warning (_("RMT ERROR : failed to get remote thread list."));
2014 result = 0;
2015 }
2016 return result; /* break; */
2017 }
2018 if (*result_count > result_limit)
2019 {
2020 *result_count = 0;
2021 warning (_("RMT ERROR: threadlist response longer than requested."));
2022 return 0;
2023 }
2024 return result;
2025 }
2026
2027 /* This is the interface between remote and threads, remotes upper
2028 interface. */
2029
2030 /* remote_find_new_threads retrieves the thread list and for each
2031 thread in the list, looks up the thread in GDB's internal list,
2032 adding the thread if it does not already exist. This involves
2033 getting partial thread lists from the remote target so, polling the
2034 quit_flag is required. */
2035
2036
2037 /* About this many threadisds fit in a packet. */
2038
2039 #define MAXTHREADLISTRESULTS 32
2040
2041 static int
2042 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2043 int looplimit)
2044 {
2045 int done, i, result_count;
2046 int startflag = 1;
2047 int result = 1;
2048 int loopcount = 0;
2049 static threadref nextthread;
2050 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2051
2052 done = 0;
2053 while (!done)
2054 {
2055 if (loopcount++ > looplimit)
2056 {
2057 result = 0;
2058 warning (_("Remote fetch threadlist -infinite loop-."));
2059 break;
2060 }
2061 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2062 &done, &result_count, resultthreadlist))
2063 {
2064 result = 0;
2065 break;
2066 }
2067 /* Clear for later iterations. */
2068 startflag = 0;
2069 /* Setup to resume next batch of thread references, set nextthread. */
2070 if (result_count >= 1)
2071 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2072 i = 0;
2073 while (result_count--)
2074 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2075 break;
2076 }
2077 return result;
2078 }
2079
2080 static int
2081 remote_newthread_step (threadref *ref, void *context)
2082 {
2083 int pid = ptid_get_pid (inferior_ptid);
2084 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2085
2086 if (!in_thread_list (ptid))
2087 add_thread (ptid);
2088 return 1; /* continue iterator */
2089 }
2090
2091 #define CRAZY_MAX_THREADS 1000
2092
2093 static ptid_t
2094 remote_current_thread (ptid_t oldpid)
2095 {
2096 struct remote_state *rs = get_remote_state ();
2097 char *p = rs->buf;
2098 int tid;
2099 int pid;
2100
2101 putpkt ("qC");
2102 getpkt (&rs->buf, &rs->buf_size, 0);
2103 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2104 return read_ptid (&rs->buf[2], NULL);
2105 else
2106 return oldpid;
2107 }
2108
2109 /* Find new threads for info threads command.
2110 * Original version, using John Metzler's thread protocol.
2111 */
2112
2113 static void
2114 remote_find_new_threads (void)
2115 {
2116 remote_threadlist_iterator (remote_newthread_step, 0,
2117 CRAZY_MAX_THREADS);
2118 }
2119
2120 /*
2121 * Find all threads for info threads command.
2122 * Uses new thread protocol contributed by Cisco.
2123 * Falls back and attempts to use the older method (above)
2124 * if the target doesn't respond to the new method.
2125 */
2126
2127 static void
2128 remote_threads_info (struct target_ops *ops)
2129 {
2130 struct remote_state *rs = get_remote_state ();
2131 char *bufp;
2132 ptid_t new_thread;
2133
2134 if (remote_desc == 0) /* paranoia */
2135 error (_("Command can only be used when connected to the remote target."));
2136
2137 if (use_threadinfo_query)
2138 {
2139 putpkt ("qfThreadInfo");
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 bufp = rs->buf;
2142 if (bufp[0] != '\0') /* q packet recognized */
2143 {
2144 while (*bufp++ == 'm') /* reply contains one or more TID */
2145 {
2146 do
2147 {
2148 new_thread = read_ptid (bufp, &bufp);
2149 if (!ptid_equal (new_thread, null_ptid)
2150 && (!in_thread_list (new_thread)
2151 || is_exited (new_thread)))
2152 {
2153 /* When connected to a multi-process aware stub,
2154 "info threads" may show up threads of
2155 inferiors we didn't know about yet. Add them
2156 now, and before adding any of its child
2157 threads, so notifications are emitted in a
2158 sensible order. */
2159 if (!in_inferior_list (ptid_get_pid (new_thread)))
2160 add_inferior (ptid_get_pid (new_thread));
2161
2162 add_thread (new_thread);
2163
2164 /* In non-stop mode, we assume new found threads
2165 are running until we proven otherwise with a
2166 stop reply. In all-stop, we can only get
2167 here if all threads are stopped. */
2168 set_executing (new_thread, non_stop ? 1 : 0);
2169 set_running (new_thread, non_stop ? 1 : 0);
2170 }
2171 }
2172 while (*bufp++ == ','); /* comma-separated list */
2173 putpkt ("qsThreadInfo");
2174 getpkt (&rs->buf, &rs->buf_size, 0);
2175 bufp = rs->buf;
2176 }
2177 return; /* done */
2178 }
2179 }
2180
2181 /* Only qfThreadInfo is supported in non-stop mode. */
2182 if (non_stop)
2183 return;
2184
2185 /* Else fall back to old method based on jmetzler protocol. */
2186 use_threadinfo_query = 0;
2187 remote_find_new_threads ();
2188 return;
2189 }
2190
2191 /*
2192 * Collect a descriptive string about the given thread.
2193 * The target may say anything it wants to about the thread
2194 * (typically info about its blocked / runnable state, name, etc.).
2195 * This string will appear in the info threads display.
2196 *
2197 * Optional: targets are not required to implement this function.
2198 */
2199
2200 static char *
2201 remote_threads_extra_info (struct thread_info *tp)
2202 {
2203 struct remote_state *rs = get_remote_state ();
2204 int result;
2205 int set;
2206 threadref id;
2207 struct gdb_ext_thread_info threadinfo;
2208 static char display_buf[100]; /* arbitrary... */
2209 int n = 0; /* position in display_buf */
2210
2211 if (remote_desc == 0) /* paranoia */
2212 internal_error (__FILE__, __LINE__,
2213 _("remote_threads_extra_info"));
2214
2215 if (ptid_equal (tp->ptid, magic_null_ptid)
2216 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2217 /* This is the main thread which was added by GDB. The remote
2218 server doesn't know about it. */
2219 return NULL;
2220
2221 if (use_threadextra_query)
2222 {
2223 char *b = rs->buf;
2224 char *endb = rs->buf + get_remote_packet_size ();
2225
2226 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2227 b += strlen (b);
2228 write_ptid (b, endb, tp->ptid);
2229
2230 putpkt (rs->buf);
2231 getpkt (&rs->buf, &rs->buf_size, 0);
2232 if (rs->buf[0] != 0)
2233 {
2234 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2235 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2236 display_buf [result] = '\0';
2237 return display_buf;
2238 }
2239 }
2240
2241 /* If the above query fails, fall back to the old method. */
2242 use_threadextra_query = 0;
2243 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2244 | TAG_MOREDISPLAY | TAG_DISPLAY;
2245 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2246 if (remote_get_threadinfo (&id, set, &threadinfo))
2247 if (threadinfo.active)
2248 {
2249 if (*threadinfo.shortname)
2250 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2251 " Name: %s,", threadinfo.shortname);
2252 if (*threadinfo.display)
2253 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2254 " State: %s,", threadinfo.display);
2255 if (*threadinfo.more_display)
2256 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2257 " Priority: %s", threadinfo.more_display);
2258
2259 if (n > 0)
2260 {
2261 /* For purely cosmetic reasons, clear up trailing commas. */
2262 if (',' == display_buf[n-1])
2263 display_buf[n-1] = ' ';
2264 return display_buf;
2265 }
2266 }
2267 return NULL;
2268 }
2269 \f
2270
2271 /* Restart the remote side; this is an extended protocol operation. */
2272
2273 static void
2274 extended_remote_restart (void)
2275 {
2276 struct remote_state *rs = get_remote_state ();
2277
2278 /* Send the restart command; for reasons I don't understand the
2279 remote side really expects a number after the "R". */
2280 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2281 putpkt (rs->buf);
2282
2283 remote_fileio_reset ();
2284 }
2285 \f
2286 /* Clean up connection to a remote debugger. */
2287
2288 static void
2289 remote_close (int quitting)
2290 {
2291 if (remote_desc == NULL)
2292 return; /* already closed */
2293
2294 /* Make sure we leave stdin registered in the event loop, and we
2295 don't leave the async SIGINT signal handler installed. */
2296 remote_terminal_ours ();
2297
2298 serial_close (remote_desc);
2299 remote_desc = NULL;
2300
2301 /* We don't have a connection to the remote stub anymore. Get rid
2302 of all the inferiors and their threads we were controlling. */
2303 discard_all_inferiors ();
2304
2305 /* We're no longer interested in any of these events. */
2306 discard_pending_stop_replies (-1);
2307
2308 if (remote_async_inferior_event_token)
2309 delete_async_event_handler (&remote_async_inferior_event_token);
2310 if (remote_async_get_pending_events_token)
2311 delete_async_event_handler (&remote_async_get_pending_events_token);
2312
2313 generic_mourn_inferior ();
2314 }
2315
2316 /* Query the remote side for the text, data and bss offsets. */
2317
2318 static void
2319 get_offsets (void)
2320 {
2321 struct remote_state *rs = get_remote_state ();
2322 char *buf;
2323 char *ptr;
2324 int lose, num_segments = 0, do_sections, do_segments;
2325 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2326 struct section_offsets *offs;
2327 struct symfile_segment_data *data;
2328
2329 if (symfile_objfile == NULL)
2330 return;
2331
2332 putpkt ("qOffsets");
2333 getpkt (&rs->buf, &rs->buf_size, 0);
2334 buf = rs->buf;
2335
2336 if (buf[0] == '\000')
2337 return; /* Return silently. Stub doesn't support
2338 this command. */
2339 if (buf[0] == 'E')
2340 {
2341 warning (_("Remote failure reply: %s"), buf);
2342 return;
2343 }
2344
2345 /* Pick up each field in turn. This used to be done with scanf, but
2346 scanf will make trouble if CORE_ADDR size doesn't match
2347 conversion directives correctly. The following code will work
2348 with any size of CORE_ADDR. */
2349 text_addr = data_addr = bss_addr = 0;
2350 ptr = buf;
2351 lose = 0;
2352
2353 if (strncmp (ptr, "Text=", 5) == 0)
2354 {
2355 ptr += 5;
2356 /* Don't use strtol, could lose on big values. */
2357 while (*ptr && *ptr != ';')
2358 text_addr = (text_addr << 4) + fromhex (*ptr++);
2359
2360 if (strncmp (ptr, ";Data=", 6) == 0)
2361 {
2362 ptr += 6;
2363 while (*ptr && *ptr != ';')
2364 data_addr = (data_addr << 4) + fromhex (*ptr++);
2365 }
2366 else
2367 lose = 1;
2368
2369 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2370 {
2371 ptr += 5;
2372 while (*ptr && *ptr != ';')
2373 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2374
2375 if (bss_addr != data_addr)
2376 warning (_("Target reported unsupported offsets: %s"), buf);
2377 }
2378 else
2379 lose = 1;
2380 }
2381 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2382 {
2383 ptr += 8;
2384 /* Don't use strtol, could lose on big values. */
2385 while (*ptr && *ptr != ';')
2386 text_addr = (text_addr << 4) + fromhex (*ptr++);
2387 num_segments = 1;
2388
2389 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2390 {
2391 ptr += 9;
2392 while (*ptr && *ptr != ';')
2393 data_addr = (data_addr << 4) + fromhex (*ptr++);
2394 num_segments++;
2395 }
2396 }
2397 else
2398 lose = 1;
2399
2400 if (lose)
2401 error (_("Malformed response to offset query, %s"), buf);
2402 else if (*ptr != '\0')
2403 warning (_("Target reported unsupported offsets: %s"), buf);
2404
2405 offs = ((struct section_offsets *)
2406 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2407 memcpy (offs, symfile_objfile->section_offsets,
2408 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2409
2410 data = get_symfile_segment_data (symfile_objfile->obfd);
2411 do_segments = (data != NULL);
2412 do_sections = num_segments == 0;
2413
2414 if (num_segments > 0)
2415 {
2416 segments[0] = text_addr;
2417 segments[1] = data_addr;
2418 }
2419 /* If we have two segments, we can still try to relocate everything
2420 by assuming that the .text and .data offsets apply to the whole
2421 text and data segments. Convert the offsets given in the packet
2422 to base addresses for symfile_map_offsets_to_segments. */
2423 else if (data && data->num_segments == 2)
2424 {
2425 segments[0] = data->segment_bases[0] + text_addr;
2426 segments[1] = data->segment_bases[1] + data_addr;
2427 num_segments = 2;
2428 }
2429 /* If the object file has only one segment, assume that it is text
2430 rather than data; main programs with no writable data are rare,
2431 but programs with no code are useless. Of course the code might
2432 have ended up in the data segment... to detect that we would need
2433 the permissions here. */
2434 else if (data && data->num_segments == 1)
2435 {
2436 segments[0] = data->segment_bases[0] + text_addr;
2437 num_segments = 1;
2438 }
2439 /* There's no way to relocate by segment. */
2440 else
2441 do_segments = 0;
2442
2443 if (do_segments)
2444 {
2445 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2446 offs, num_segments, segments);
2447
2448 if (ret == 0 && !do_sections)
2449 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2450
2451 if (ret > 0)
2452 do_sections = 0;
2453 }
2454
2455 if (data)
2456 free_symfile_segment_data (data);
2457
2458 if (do_sections)
2459 {
2460 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2461
2462 /* This is a temporary kludge to force data and bss to use the same offsets
2463 because that's what nlmconv does now. The real solution requires changes
2464 to the stub and remote.c that I don't have time to do right now. */
2465
2466 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2467 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2468 }
2469
2470 objfile_relocate (symfile_objfile, offs);
2471 }
2472
2473 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2474 threads we know are stopped already. This is used during the
2475 initial remote connection in non-stop mode --- threads that are
2476 reported as already being stopped are left stopped. */
2477
2478 static int
2479 set_stop_requested_callback (struct thread_info *thread, void *data)
2480 {
2481 /* If we have a stop reply for this thread, it must be stopped. */
2482 if (peek_stop_reply (thread->ptid))
2483 set_stop_requested (thread->ptid, 1);
2484
2485 return 0;
2486 }
2487
2488 /* Stub for catch_exception. */
2489
2490 struct start_remote_args
2491 {
2492 int from_tty;
2493
2494 /* The current target. */
2495 struct target_ops *target;
2496
2497 /* Non-zero if this is an extended-remote target. */
2498 int extended_p;
2499 };
2500
2501 static void
2502 remote_start_remote (struct ui_out *uiout, void *opaque)
2503 {
2504 struct start_remote_args *args = opaque;
2505 struct remote_state *rs = get_remote_state ();
2506 struct packet_config *noack_config;
2507 char *wait_status = NULL;
2508
2509 immediate_quit++; /* Allow user to interrupt it. */
2510
2511 /* Ack any packet which the remote side has already sent. */
2512 serial_write (remote_desc, "+", 1);
2513
2514 /* The first packet we send to the target is the optional "supported
2515 packets" request. If the target can answer this, it will tell us
2516 which later probes to skip. */
2517 remote_query_supported ();
2518
2519 /* Next, we possibly activate noack mode.
2520
2521 If the QStartNoAckMode packet configuration is set to AUTO,
2522 enable noack mode if the stub reported a wish for it with
2523 qSupported.
2524
2525 If set to TRUE, then enable noack mode even if the stub didn't
2526 report it in qSupported. If the stub doesn't reply OK, the
2527 session ends with an error.
2528
2529 If FALSE, then don't activate noack mode, regardless of what the
2530 stub claimed should be the default with qSupported. */
2531
2532 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2533
2534 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2535 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2536 && noack_config->support == PACKET_ENABLE))
2537 {
2538 putpkt ("QStartNoAckMode");
2539 getpkt (&rs->buf, &rs->buf_size, 0);
2540 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2541 rs->noack_mode = 1;
2542 }
2543
2544 if (args->extended_p)
2545 {
2546 /* Tell the remote that we are using the extended protocol. */
2547 putpkt ("!");
2548 getpkt (&rs->buf, &rs->buf_size, 0);
2549 }
2550
2551 /* Next, if the target can specify a description, read it. We do
2552 this before anything involving memory or registers. */
2553 target_find_description ();
2554
2555 /* On OSs where the list of libraries is global to all
2556 processes, we fetch them early. */
2557 if (gdbarch_has_global_solist (target_gdbarch))
2558 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2559
2560 if (non_stop)
2561 {
2562 if (!rs->non_stop_aware)
2563 error (_("Non-stop mode requested, but remote does not support non-stop"));
2564
2565 putpkt ("QNonStop:1");
2566 getpkt (&rs->buf, &rs->buf_size, 0);
2567
2568 if (strcmp (rs->buf, "OK") != 0)
2569 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2570
2571 /* Find about threads and processes the stub is already
2572 controlling. We default to adding them in the running state.
2573 The '?' query below will then tell us about which threads are
2574 stopped. */
2575 remote_threads_info (args->target);
2576 }
2577 else if (rs->non_stop_aware)
2578 {
2579 /* Don't assume that the stub can operate in all-stop mode.
2580 Request it explicitely. */
2581 putpkt ("QNonStop:0");
2582 getpkt (&rs->buf, &rs->buf_size, 0);
2583
2584 if (strcmp (rs->buf, "OK") != 0)
2585 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2586 }
2587
2588 /* Check whether the target is running now. */
2589 putpkt ("?");
2590 getpkt (&rs->buf, &rs->buf_size, 0);
2591
2592 if (!non_stop)
2593 {
2594 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2595 {
2596 if (args->extended_p)
2597 {
2598 /* We're connected, but not running. Drop out before we
2599 call start_remote. */
2600 target_mark_exited (args->target);
2601 return;
2602 }
2603 else
2604 error (_("The target is not running (try extended-remote?)"));
2605 }
2606 else
2607 {
2608 if (args->extended_p)
2609 target_mark_running (args->target);
2610
2611 /* Save the reply for later. */
2612 wait_status = alloca (strlen (rs->buf) + 1);
2613 strcpy (wait_status, rs->buf);
2614 }
2615
2616 /* Let the stub know that we want it to return the thread. */
2617 set_continue_thread (minus_one_ptid);
2618
2619 /* Without this, some commands which require an active target
2620 (such as kill) won't work. This variable serves (at least)
2621 double duty as both the pid of the target process (if it has
2622 such), and as a flag indicating that a target is active.
2623 These functions should be split out into seperate variables,
2624 especially since GDB will someday have a notion of debugging
2625 several processes. */
2626 inferior_ptid = magic_null_ptid;
2627
2628 /* Now, if we have thread information, update inferior_ptid. */
2629 inferior_ptid = remote_current_thread (inferior_ptid);
2630
2631 add_inferior (ptid_get_pid (inferior_ptid));
2632
2633 /* Always add the main thread. */
2634 add_thread_silent (inferior_ptid);
2635
2636 get_offsets (); /* Get text, data & bss offsets. */
2637
2638 /* If we could not find a description using qXfer, and we know
2639 how to do it some other way, try again. This is not
2640 supported for non-stop; it could be, but it is tricky if
2641 there are no stopped threads when we connect. */
2642 if (remote_read_description_p (args->target)
2643 && gdbarch_target_desc (target_gdbarch) == NULL)
2644 {
2645 target_clear_description ();
2646 target_find_description ();
2647 }
2648
2649 /* Use the previously fetched status. */
2650 gdb_assert (wait_status != NULL);
2651 strcpy (rs->buf, wait_status);
2652 rs->cached_wait_status = 1;
2653
2654 immediate_quit--;
2655 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2656 }
2657 else
2658 {
2659 /* In non-stop, we will either get an "OK", meaning that there
2660 are no stopped threads at this time; or, a regular stop
2661 reply. In the latter case, there may be more than one thread
2662 stopped --- we pull them all out using the vStopped
2663 mechanism. */
2664 if (strcmp (rs->buf, "OK") != 0)
2665 {
2666 struct stop_reply *stop_reply;
2667 struct cleanup *old_chain;
2668
2669 stop_reply = stop_reply_xmalloc ();
2670 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2671
2672 remote_parse_stop_reply (rs->buf, stop_reply);
2673 discard_cleanups (old_chain);
2674
2675 /* get_pending_stop_replies acks this one, and gets the rest
2676 out. */
2677 pending_stop_reply = stop_reply;
2678 remote_get_pending_stop_replies ();
2679
2680 /* Make sure that threads that were stopped remain
2681 stopped. */
2682 iterate_over_threads (set_stop_requested_callback, NULL);
2683 }
2684
2685 if (target_can_async_p ())
2686 target_async (inferior_event_handler, 0);
2687
2688 if (thread_count () == 0)
2689 {
2690 if (args->extended_p)
2691 {
2692 /* We're connected, but not running. Drop out before we
2693 call start_remote. */
2694 target_mark_exited (args->target);
2695 return;
2696 }
2697 else
2698 error (_("The target is not running (try extended-remote?)"));
2699 }
2700
2701 if (args->extended_p)
2702 target_mark_running (args->target);
2703
2704 /* Let the stub know that we want it to return the thread. */
2705
2706 /* Force the stub to choose a thread. */
2707 set_general_thread (null_ptid);
2708
2709 /* Query it. */
2710 inferior_ptid = remote_current_thread (minus_one_ptid);
2711 if (ptid_equal (inferior_ptid, minus_one_ptid))
2712 error (_("remote didn't report the current thread in non-stop mode"));
2713
2714 get_offsets (); /* Get text, data & bss offsets. */
2715
2716 /* In non-stop mode, any cached wait status will be stored in
2717 the stop reply queue. */
2718 gdb_assert (wait_status == NULL);
2719 }
2720
2721 /* If we connected to a live target, do some additional setup. */
2722 if (target_has_execution)
2723 {
2724 if (exec_bfd) /* No use without an exec file. */
2725 remote_check_symbols (symfile_objfile);
2726 }
2727
2728 /* If code is shared between processes, then breakpoints are global
2729 too; Insert them now. */
2730 if (gdbarch_has_global_solist (target_gdbarch)
2731 && breakpoints_always_inserted_mode ())
2732 insert_breakpoints ();
2733 }
2734
2735 /* Open a connection to a remote debugger.
2736 NAME is the filename used for communication. */
2737
2738 static void
2739 remote_open (char *name, int from_tty)
2740 {
2741 remote_open_1 (name, from_tty, &remote_ops, 0);
2742 }
2743
2744 /* Open a connection to a remote debugger using the extended
2745 remote gdb protocol. NAME is the filename used for communication. */
2746
2747 static void
2748 extended_remote_open (char *name, int from_tty)
2749 {
2750 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2751 }
2752
2753 /* Generic code for opening a connection to a remote target. */
2754
2755 static void
2756 init_all_packet_configs (void)
2757 {
2758 int i;
2759 for (i = 0; i < PACKET_MAX; i++)
2760 update_packet_config (&remote_protocol_packets[i]);
2761 }
2762
2763 /* Symbol look-up. */
2764
2765 static void
2766 remote_check_symbols (struct objfile *objfile)
2767 {
2768 struct remote_state *rs = get_remote_state ();
2769 char *msg, *reply, *tmp;
2770 struct minimal_symbol *sym;
2771 int end;
2772
2773 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2774 return;
2775
2776 /* Make sure the remote is pointing at the right process. */
2777 set_general_process ();
2778
2779 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2780 because we need both at the same time. */
2781 msg = alloca (get_remote_packet_size ());
2782
2783 /* Invite target to request symbol lookups. */
2784
2785 putpkt ("qSymbol::");
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2788 reply = rs->buf;
2789
2790 while (strncmp (reply, "qSymbol:", 8) == 0)
2791 {
2792 tmp = &reply[8];
2793 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2794 msg[end] = '\0';
2795 sym = lookup_minimal_symbol (msg, NULL, NULL);
2796 if (sym == NULL)
2797 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2798 else
2799 {
2800 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2801
2802 /* If this is a function address, return the start of code
2803 instead of any data function descriptor. */
2804 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2805 sym_addr,
2806 &current_target);
2807
2808 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2809 paddr_nz (sym_addr), &reply[8]);
2810 }
2811
2812 putpkt (msg);
2813 getpkt (&rs->buf, &rs->buf_size, 0);
2814 reply = rs->buf;
2815 }
2816 }
2817
2818 static struct serial *
2819 remote_serial_open (char *name)
2820 {
2821 static int udp_warning = 0;
2822
2823 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2824 of in ser-tcp.c, because it is the remote protocol assuming that the
2825 serial connection is reliable and not the serial connection promising
2826 to be. */
2827 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2828 {
2829 warning (_("\
2830 The remote protocol may be unreliable over UDP.\n\
2831 Some events may be lost, rendering further debugging impossible."));
2832 udp_warning = 1;
2833 }
2834
2835 return serial_open (name);
2836 }
2837
2838 /* This type describes each known response to the qSupported
2839 packet. */
2840 struct protocol_feature
2841 {
2842 /* The name of this protocol feature. */
2843 const char *name;
2844
2845 /* The default for this protocol feature. */
2846 enum packet_support default_support;
2847
2848 /* The function to call when this feature is reported, or after
2849 qSupported processing if the feature is not supported.
2850 The first argument points to this structure. The second
2851 argument indicates whether the packet requested support be
2852 enabled, disabled, or probed (or the default, if this function
2853 is being called at the end of processing and this feature was
2854 not reported). The third argument may be NULL; if not NULL, it
2855 is a NUL-terminated string taken from the packet following
2856 this feature's name and an equals sign. */
2857 void (*func) (const struct protocol_feature *, enum packet_support,
2858 const char *);
2859
2860 /* The corresponding packet for this feature. Only used if
2861 FUNC is remote_supported_packet. */
2862 int packet;
2863 };
2864
2865 static void
2866 remote_supported_packet (const struct protocol_feature *feature,
2867 enum packet_support support,
2868 const char *argument)
2869 {
2870 if (argument)
2871 {
2872 warning (_("Remote qSupported response supplied an unexpected value for"
2873 " \"%s\"."), feature->name);
2874 return;
2875 }
2876
2877 if (remote_protocol_packets[feature->packet].support
2878 == PACKET_SUPPORT_UNKNOWN)
2879 remote_protocol_packets[feature->packet].support = support;
2880 }
2881
2882 static void
2883 remote_packet_size (const struct protocol_feature *feature,
2884 enum packet_support support, const char *value)
2885 {
2886 struct remote_state *rs = get_remote_state ();
2887
2888 int packet_size;
2889 char *value_end;
2890
2891 if (support != PACKET_ENABLE)
2892 return;
2893
2894 if (value == NULL || *value == '\0')
2895 {
2896 warning (_("Remote target reported \"%s\" without a size."),
2897 feature->name);
2898 return;
2899 }
2900
2901 errno = 0;
2902 packet_size = strtol (value, &value_end, 16);
2903 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2904 {
2905 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2906 feature->name, value);
2907 return;
2908 }
2909
2910 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2911 {
2912 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2913 packet_size, MAX_REMOTE_PACKET_SIZE);
2914 packet_size = MAX_REMOTE_PACKET_SIZE;
2915 }
2916
2917 /* Record the new maximum packet size. */
2918 rs->explicit_packet_size = packet_size;
2919 }
2920
2921 static void
2922 remote_multi_process_feature (const struct protocol_feature *feature,
2923 enum packet_support support, const char *value)
2924 {
2925 struct remote_state *rs = get_remote_state ();
2926 rs->multi_process_aware = (support == PACKET_ENABLE);
2927 }
2928
2929 static void
2930 remote_non_stop_feature (const struct protocol_feature *feature,
2931 enum packet_support support, const char *value)
2932 {
2933 struct remote_state *rs = get_remote_state ();
2934 rs->non_stop_aware = (support == PACKET_ENABLE);
2935 }
2936
2937 static struct protocol_feature remote_protocol_features[] = {
2938 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2939 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2940 PACKET_qXfer_auxv },
2941 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2942 PACKET_qXfer_features },
2943 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2944 PACKET_qXfer_libraries },
2945 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2946 PACKET_qXfer_memory_map },
2947 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2948 PACKET_qXfer_spu_read },
2949 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2950 PACKET_qXfer_spu_write },
2951 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
2952 PACKET_qXfer_osdata },
2953 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2954 PACKET_QPassSignals },
2955 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2956 PACKET_QStartNoAckMode },
2957 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2958 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2959 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
2960 PACKET_qXfer_siginfo_read },
2961 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
2962 PACKET_qXfer_siginfo_write },
2963 };
2964
2965 static void
2966 remote_query_supported (void)
2967 {
2968 struct remote_state *rs = get_remote_state ();
2969 char *next;
2970 int i;
2971 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2972
2973 /* The packet support flags are handled differently for this packet
2974 than for most others. We treat an error, a disabled packet, and
2975 an empty response identically: any features which must be reported
2976 to be used will be automatically disabled. An empty buffer
2977 accomplishes this, since that is also the representation for a list
2978 containing no features. */
2979
2980 rs->buf[0] = 0;
2981 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2982 {
2983 if (rs->extended)
2984 putpkt ("qSupported:multiprocess+");
2985 else
2986 putpkt ("qSupported");
2987
2988 getpkt (&rs->buf, &rs->buf_size, 0);
2989
2990 /* If an error occured, warn, but do not return - just reset the
2991 buffer to empty and go on to disable features. */
2992 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2993 == PACKET_ERROR)
2994 {
2995 warning (_("Remote failure reply: %s"), rs->buf);
2996 rs->buf[0] = 0;
2997 }
2998 }
2999
3000 memset (seen, 0, sizeof (seen));
3001
3002 next = rs->buf;
3003 while (*next)
3004 {
3005 enum packet_support is_supported;
3006 char *p, *end, *name_end, *value;
3007
3008 /* First separate out this item from the rest of the packet. If
3009 there's another item after this, we overwrite the separator
3010 (terminated strings are much easier to work with). */
3011 p = next;
3012 end = strchr (p, ';');
3013 if (end == NULL)
3014 {
3015 end = p + strlen (p);
3016 next = end;
3017 }
3018 else
3019 {
3020 *end = '\0';
3021 next = end + 1;
3022
3023 if (end == p)
3024 {
3025 warning (_("empty item in \"qSupported\" response"));
3026 continue;
3027 }
3028 }
3029
3030 name_end = strchr (p, '=');
3031 if (name_end)
3032 {
3033 /* This is a name=value entry. */
3034 is_supported = PACKET_ENABLE;
3035 value = name_end + 1;
3036 *name_end = '\0';
3037 }
3038 else
3039 {
3040 value = NULL;
3041 switch (end[-1])
3042 {
3043 case '+':
3044 is_supported = PACKET_ENABLE;
3045 break;
3046
3047 case '-':
3048 is_supported = PACKET_DISABLE;
3049 break;
3050
3051 case '?':
3052 is_supported = PACKET_SUPPORT_UNKNOWN;
3053 break;
3054
3055 default:
3056 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3057 continue;
3058 }
3059 end[-1] = '\0';
3060 }
3061
3062 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3063 if (strcmp (remote_protocol_features[i].name, p) == 0)
3064 {
3065 const struct protocol_feature *feature;
3066
3067 seen[i] = 1;
3068 feature = &remote_protocol_features[i];
3069 feature->func (feature, is_supported, value);
3070 break;
3071 }
3072 }
3073
3074 /* If we increased the packet size, make sure to increase the global
3075 buffer size also. We delay this until after parsing the entire
3076 qSupported packet, because this is the same buffer we were
3077 parsing. */
3078 if (rs->buf_size < rs->explicit_packet_size)
3079 {
3080 rs->buf_size = rs->explicit_packet_size;
3081 rs->buf = xrealloc (rs->buf, rs->buf_size);
3082 }
3083
3084 /* Handle the defaults for unmentioned features. */
3085 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3086 if (!seen[i])
3087 {
3088 const struct protocol_feature *feature;
3089
3090 feature = &remote_protocol_features[i];
3091 feature->func (feature, feature->default_support, NULL);
3092 }
3093 }
3094
3095
3096 static void
3097 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3098 {
3099 struct remote_state *rs = get_remote_state ();
3100
3101 if (name == 0)
3102 error (_("To open a remote debug connection, you need to specify what\n"
3103 "serial device is attached to the remote system\n"
3104 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3105
3106 /* See FIXME above. */
3107 if (!target_async_permitted)
3108 wait_forever_enabled_p = 1;
3109
3110 /* If we're connected to a running target, target_preopen will kill it.
3111 But if we're connected to a target system with no running process,
3112 then we will still be connected when it returns. Ask this question
3113 first, before target_preopen has a chance to kill anything. */
3114 if (remote_desc != NULL && !target_has_execution)
3115 {
3116 if (!from_tty
3117 || query (_("Already connected to a remote target. Disconnect? ")))
3118 pop_target ();
3119 else
3120 error (_("Still connected."));
3121 }
3122
3123 target_preopen (from_tty);
3124
3125 unpush_target (target);
3126
3127 /* This time without a query. If we were connected to an
3128 extended-remote target and target_preopen killed the running
3129 process, we may still be connected. If we are starting "target
3130 remote" now, the extended-remote target will not have been
3131 removed by unpush_target. */
3132 if (remote_desc != NULL && !target_has_execution)
3133 pop_target ();
3134
3135 /* Make sure we send the passed signals list the next time we resume. */
3136 xfree (last_pass_packet);
3137 last_pass_packet = NULL;
3138
3139 remote_fileio_reset ();
3140 reopen_exec_file ();
3141 reread_symbols ();
3142
3143 remote_desc = remote_serial_open (name);
3144 if (!remote_desc)
3145 perror_with_name (name);
3146
3147 if (baud_rate != -1)
3148 {
3149 if (serial_setbaudrate (remote_desc, baud_rate))
3150 {
3151 /* The requested speed could not be set. Error out to
3152 top level after closing remote_desc. Take care to
3153 set remote_desc to NULL to avoid closing remote_desc
3154 more than once. */
3155 serial_close (remote_desc);
3156 remote_desc = NULL;
3157 perror_with_name (name);
3158 }
3159 }
3160
3161 serial_raw (remote_desc);
3162
3163 /* If there is something sitting in the buffer we might take it as a
3164 response to a command, which would be bad. */
3165 serial_flush_input (remote_desc);
3166
3167 if (from_tty)
3168 {
3169 puts_filtered ("Remote debugging using ");
3170 puts_filtered (name);
3171 puts_filtered ("\n");
3172 }
3173 push_target (target); /* Switch to using remote target now. */
3174
3175 /* Assume that the target is not running, until we learn otherwise. */
3176 if (extended_p)
3177 target_mark_exited (target);
3178
3179 /* Register extra event sources in the event loop. */
3180 remote_async_inferior_event_token
3181 = create_async_event_handler (remote_async_inferior_event_handler,
3182 NULL);
3183 remote_async_get_pending_events_token
3184 = create_async_event_handler (remote_async_get_pending_events_handler,
3185 NULL);
3186
3187 /* Reset the target state; these things will be queried either by
3188 remote_query_supported or as they are needed. */
3189 init_all_packet_configs ();
3190 rs->cached_wait_status = 0;
3191 rs->explicit_packet_size = 0;
3192 rs->noack_mode = 0;
3193 rs->multi_process_aware = 0;
3194 rs->extended = extended_p;
3195 rs->non_stop_aware = 0;
3196 rs->waiting_for_stop_reply = 0;
3197
3198 general_thread = not_sent_ptid;
3199 continue_thread = not_sent_ptid;
3200
3201 /* Probe for ability to use "ThreadInfo" query, as required. */
3202 use_threadinfo_query = 1;
3203 use_threadextra_query = 1;
3204
3205 if (target_async_permitted)
3206 {
3207 /* With this target we start out by owning the terminal. */
3208 remote_async_terminal_ours_p = 1;
3209
3210 /* FIXME: cagney/1999-09-23: During the initial connection it is
3211 assumed that the target is already ready and able to respond to
3212 requests. Unfortunately remote_start_remote() eventually calls
3213 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3214 around this. Eventually a mechanism that allows
3215 wait_for_inferior() to expect/get timeouts will be
3216 implemented. */
3217 wait_forever_enabled_p = 0;
3218 }
3219
3220 /* First delete any symbols previously loaded from shared libraries. */
3221 no_shared_libraries (NULL, 0);
3222
3223 /* Start afresh. */
3224 init_thread_list ();
3225
3226 /* Start the remote connection. If error() or QUIT, discard this
3227 target (we'd otherwise be in an inconsistent state) and then
3228 propogate the error on up the exception chain. This ensures that
3229 the caller doesn't stumble along blindly assuming that the
3230 function succeeded. The CLI doesn't have this problem but other
3231 UI's, such as MI do.
3232
3233 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3234 this function should return an error indication letting the
3235 caller restore the previous state. Unfortunately the command
3236 ``target remote'' is directly wired to this function making that
3237 impossible. On a positive note, the CLI side of this problem has
3238 been fixed - the function set_cmd_context() makes it possible for
3239 all the ``target ....'' commands to share a common callback
3240 function. See cli-dump.c. */
3241 {
3242 struct gdb_exception ex;
3243 struct start_remote_args args;
3244
3245 args.from_tty = from_tty;
3246 args.target = target;
3247 args.extended_p = extended_p;
3248
3249 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3250 if (ex.reason < 0)
3251 {
3252 /* Pop the partially set up target - unless something else did
3253 already before throwing the exception. */
3254 if (remote_desc != NULL)
3255 pop_target ();
3256 if (target_async_permitted)
3257 wait_forever_enabled_p = 1;
3258 throw_exception (ex);
3259 }
3260 }
3261
3262 if (target_async_permitted)
3263 wait_forever_enabled_p = 1;
3264 }
3265
3266 /* This takes a program previously attached to and detaches it. After
3267 this is done, GDB can be used to debug some other program. We
3268 better not have left any breakpoints in the target program or it'll
3269 die when it hits one. */
3270
3271 static void
3272 remote_detach_1 (char *args, int from_tty, int extended)
3273 {
3274 int pid = ptid_get_pid (inferior_ptid);
3275 struct remote_state *rs = get_remote_state ();
3276
3277 if (args)
3278 error (_("Argument given to \"detach\" when remotely debugging."));
3279
3280 if (!target_has_execution)
3281 error (_("No process to detach from."));
3282
3283 /* Tell the remote target to detach. */
3284 if (remote_multi_process_p (rs))
3285 sprintf (rs->buf, "D;%x", pid);
3286 else
3287 strcpy (rs->buf, "D");
3288
3289 putpkt (rs->buf);
3290 getpkt (&rs->buf, &rs->buf_size, 0);
3291
3292 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3293 ;
3294 else if (rs->buf[0] == '\0')
3295 error (_("Remote doesn't know how to detach"));
3296 else
3297 error (_("Can't detach process."));
3298
3299 if (from_tty)
3300 {
3301 if (remote_multi_process_p (rs))
3302 printf_filtered (_("Detached from remote %s.\n"),
3303 target_pid_to_str (pid_to_ptid (pid)));
3304 else
3305 {
3306 if (extended)
3307 puts_filtered (_("Detached from remote process.\n"));
3308 else
3309 puts_filtered (_("Ending remote debugging.\n"));
3310 }
3311 }
3312
3313 discard_pending_stop_replies (pid);
3314 target_mourn_inferior ();
3315 }
3316
3317 static void
3318 remote_detach (struct target_ops *ops, char *args, int from_tty)
3319 {
3320 remote_detach_1 (args, from_tty, 0);
3321 }
3322
3323 static void
3324 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3325 {
3326 remote_detach_1 (args, from_tty, 1);
3327 }
3328
3329 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3330
3331 static void
3332 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3333 {
3334 if (args)
3335 error (_("Argument given to \"disconnect\" when remotely debugging."));
3336
3337 /* Make sure we unpush even the extended remote targets; mourn
3338 won't do it. So call remote_mourn_1 directly instead of
3339 target_mourn_inferior. */
3340 remote_mourn_1 (target);
3341
3342 if (from_tty)
3343 puts_filtered ("Ending remote debugging.\n");
3344 }
3345
3346 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3347 be chatty about it. */
3348
3349 static void
3350 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3351 {
3352 struct remote_state *rs = get_remote_state ();
3353 int pid;
3354 char *dummy;
3355 char *wait_status = NULL;
3356 struct inferior *inf;
3357
3358 if (!args)
3359 error_no_arg (_("process-id to attach"));
3360
3361 dummy = args;
3362 pid = strtol (args, &dummy, 0);
3363 /* Some targets don't set errno on errors, grrr! */
3364 if (pid == 0 && args == dummy)
3365 error (_("Illegal process-id: %s."), args);
3366
3367 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3368 error (_("This target does not support attaching to a process"));
3369
3370 sprintf (rs->buf, "vAttach;%x", pid);
3371 putpkt (rs->buf);
3372 getpkt (&rs->buf, &rs->buf_size, 0);
3373
3374 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3375 {
3376 if (from_tty)
3377 printf_unfiltered (_("Attached to %s\n"),
3378 target_pid_to_str (pid_to_ptid (pid)));
3379
3380 if (!non_stop)
3381 {
3382 /* Save the reply for later. */
3383 wait_status = alloca (strlen (rs->buf) + 1);
3384 strcpy (wait_status, rs->buf);
3385 }
3386 else if (strcmp (rs->buf, "OK") != 0)
3387 error (_("Attaching to %s failed with: %s"),
3388 target_pid_to_str (pid_to_ptid (pid)),
3389 rs->buf);
3390 }
3391 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3392 error (_("This target does not support attaching to a process"));
3393 else
3394 error (_("Attaching to %s failed"),
3395 target_pid_to_str (pid_to_ptid (pid)));
3396
3397 target_mark_running (target);
3398 inferior_ptid = pid_to_ptid (pid);
3399
3400 /* Now, if we have thread information, update inferior_ptid. */
3401 inferior_ptid = remote_current_thread (inferior_ptid);
3402
3403 inf = add_inferior (pid);
3404 inf->attach_flag = 1;
3405
3406 if (non_stop)
3407 /* Get list of threads. */
3408 remote_threads_info (target);
3409 else
3410 /* Add the main thread to the thread list. */
3411 add_thread_silent (inferior_ptid);
3412
3413 /* Next, if the target can specify a description, read it. We do
3414 this before anything involving memory or registers. */
3415 target_find_description ();
3416
3417 if (!non_stop)
3418 {
3419 /* Use the previously fetched status. */
3420 gdb_assert (wait_status != NULL);
3421
3422 if (target_can_async_p ())
3423 {
3424 struct stop_reply *stop_reply;
3425 struct cleanup *old_chain;
3426
3427 stop_reply = stop_reply_xmalloc ();
3428 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3429 remote_parse_stop_reply (wait_status, stop_reply);
3430 discard_cleanups (old_chain);
3431 push_stop_reply (stop_reply);
3432
3433 target_async (inferior_event_handler, 0);
3434 }
3435 else
3436 {
3437 gdb_assert (wait_status != NULL);
3438 strcpy (rs->buf, wait_status);
3439 rs->cached_wait_status = 1;
3440 }
3441 }
3442 else
3443 gdb_assert (wait_status == NULL);
3444 }
3445
3446 static void
3447 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3448 {
3449 extended_remote_attach_1 (ops, args, from_tty);
3450 }
3451
3452 /* Convert hex digit A to a number. */
3453
3454 static int
3455 fromhex (int a)
3456 {
3457 if (a >= '0' && a <= '9')
3458 return a - '0';
3459 else if (a >= 'a' && a <= 'f')
3460 return a - 'a' + 10;
3461 else if (a >= 'A' && a <= 'F')
3462 return a - 'A' + 10;
3463 else
3464 error (_("Reply contains invalid hex digit %d"), a);
3465 }
3466
3467 static int
3468 hex2bin (const char *hex, gdb_byte *bin, int count)
3469 {
3470 int i;
3471
3472 for (i = 0; i < count; i++)
3473 {
3474 if (hex[0] == 0 || hex[1] == 0)
3475 {
3476 /* Hex string is short, or of uneven length.
3477 Return the count that has been converted so far. */
3478 return i;
3479 }
3480 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3481 hex += 2;
3482 }
3483 return i;
3484 }
3485
3486 /* Convert number NIB to a hex digit. */
3487
3488 static int
3489 tohex (int nib)
3490 {
3491 if (nib < 10)
3492 return '0' + nib;
3493 else
3494 return 'a' + nib - 10;
3495 }
3496
3497 static int
3498 bin2hex (const gdb_byte *bin, char *hex, int count)
3499 {
3500 int i;
3501 /* May use a length, or a nul-terminated string as input. */
3502 if (count == 0)
3503 count = strlen ((char *) bin);
3504
3505 for (i = 0; i < count; i++)
3506 {
3507 *hex++ = tohex ((*bin >> 4) & 0xf);
3508 *hex++ = tohex (*bin++ & 0xf);
3509 }
3510 *hex = 0;
3511 return i;
3512 }
3513 \f
3514 /* Check for the availability of vCont. This function should also check
3515 the response. */
3516
3517 static void
3518 remote_vcont_probe (struct remote_state *rs)
3519 {
3520 char *buf;
3521
3522 strcpy (rs->buf, "vCont?");
3523 putpkt (rs->buf);
3524 getpkt (&rs->buf, &rs->buf_size, 0);
3525 buf = rs->buf;
3526
3527 /* Make sure that the features we assume are supported. */
3528 if (strncmp (buf, "vCont", 5) == 0)
3529 {
3530 char *p = &buf[5];
3531 int support_s, support_S, support_c, support_C;
3532
3533 support_s = 0;
3534 support_S = 0;
3535 support_c = 0;
3536 support_C = 0;
3537 rs->support_vCont_t = 0;
3538 while (p && *p == ';')
3539 {
3540 p++;
3541 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3542 support_s = 1;
3543 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3544 support_S = 1;
3545 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3546 support_c = 1;
3547 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3548 support_C = 1;
3549 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3550 rs->support_vCont_t = 1;
3551
3552 p = strchr (p, ';');
3553 }
3554
3555 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3556 BUF will make packet_ok disable the packet. */
3557 if (!support_s || !support_S || !support_c || !support_C)
3558 buf[0] = 0;
3559 }
3560
3561 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3562 }
3563
3564 /* Resume the remote inferior by using a "vCont" packet. The thread
3565 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3566 resumed thread should be single-stepped and/or signalled. If PTID
3567 equals minus_one_ptid, then all threads are resumed; the thread to
3568 be stepped and/or signalled is given in the global INFERIOR_PTID.
3569 This function returns non-zero iff it resumes the inferior.
3570
3571 This function issues a strict subset of all possible vCont commands at the
3572 moment. */
3573
3574 static int
3575 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3576 {
3577 struct remote_state *rs = get_remote_state ();
3578 char *p;
3579 char *endp;
3580
3581 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3582 remote_vcont_probe (rs);
3583
3584 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3585 return 0;
3586
3587 p = rs->buf;
3588 endp = rs->buf + get_remote_packet_size ();
3589
3590 /* If we could generate a wider range of packets, we'd have to worry
3591 about overflowing BUF. Should there be a generic
3592 "multi-part-packet" packet? */
3593
3594 if (ptid_equal (ptid, magic_null_ptid))
3595 {
3596 /* MAGIC_NULL_PTID means that we don't have any active threads,
3597 so we don't have any TID numbers the inferior will
3598 understand. Make sure to only send forms that do not specify
3599 a TID. */
3600 if (step && siggnal != TARGET_SIGNAL_0)
3601 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3602 else if (step)
3603 xsnprintf (p, endp - p, "vCont;s");
3604 else if (siggnal != TARGET_SIGNAL_0)
3605 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3606 else
3607 xsnprintf (p, endp - p, "vCont;c");
3608 }
3609 else if (ptid_equal (ptid, minus_one_ptid))
3610 {
3611 /* Resume all threads, with preference for INFERIOR_PTID. */
3612 if (step && siggnal != TARGET_SIGNAL_0)
3613 {
3614 /* Step inferior_ptid with signal. */
3615 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3616 p = write_ptid (p, endp, inferior_ptid);
3617 /* And continue others. */
3618 p += xsnprintf (p, endp - p, ";c");
3619 }
3620 else if (step)
3621 {
3622 /* Step inferior_ptid. */
3623 p += xsnprintf (p, endp - p, "vCont;s:");
3624 p = write_ptid (p, endp, inferior_ptid);
3625 /* And continue others. */
3626 p += xsnprintf (p, endp - p, ";c");
3627 }
3628 else if (siggnal != TARGET_SIGNAL_0)
3629 {
3630 /* Continue inferior_ptid with signal. */
3631 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3632 p = write_ptid (p, endp, inferior_ptid);
3633 /* And continue others. */
3634 p += xsnprintf (p, endp - p, ";c");
3635 }
3636 else
3637 xsnprintf (p, endp - p, "vCont;c");
3638 }
3639 else
3640 {
3641 /* Scheduler locking; resume only PTID. */
3642 if (step && siggnal != TARGET_SIGNAL_0)
3643 {
3644 /* Step ptid with signal. */
3645 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3646 p = write_ptid (p, endp, ptid);
3647 }
3648 else if (step)
3649 {
3650 /* Step ptid. */
3651 p += xsnprintf (p, endp - p, "vCont;s:");
3652 p = write_ptid (p, endp, ptid);
3653 }
3654 else if (siggnal != TARGET_SIGNAL_0)
3655 {
3656 /* Continue ptid with signal. */
3657 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3658 p = write_ptid (p, endp, ptid);
3659 }
3660 else
3661 {
3662 /* Continue ptid. */
3663 p += xsnprintf (p, endp - p, "vCont;c:");
3664 p = write_ptid (p, endp, ptid);
3665 }
3666 }
3667
3668 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3669 putpkt (rs->buf);
3670
3671 if (non_stop)
3672 {
3673 /* In non-stop, the stub replies to vCont with "OK". The stop
3674 reply will be reported asynchronously by means of a `%Stop'
3675 notification. */
3676 getpkt (&rs->buf, &rs->buf_size, 0);
3677 if (strcmp (rs->buf, "OK") != 0)
3678 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3679 }
3680
3681 return 1;
3682 }
3683
3684 /* Tell the remote machine to resume. */
3685
3686 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3687
3688 static int last_sent_step;
3689
3690 static void
3691 remote_resume (struct target_ops *ops,
3692 ptid_t ptid, int step, enum target_signal siggnal)
3693 {
3694 struct remote_state *rs = get_remote_state ();
3695 char *buf;
3696
3697 last_sent_signal = siggnal;
3698 last_sent_step = step;
3699
3700 /* Update the inferior on signals to silently pass, if they've changed. */
3701 remote_pass_signals ();
3702
3703 /* The vCont packet doesn't need to specify threads via Hc. */
3704 if (remote_vcont_resume (ptid, step, siggnal))
3705 goto done;
3706
3707 /* All other supported resume packets do use Hc, so set the continue
3708 thread. */
3709 if (ptid_equal (ptid, minus_one_ptid))
3710 set_continue_thread (any_thread_ptid);
3711 else
3712 set_continue_thread (ptid);
3713
3714 buf = rs->buf;
3715 if (execution_direction == EXEC_REVERSE)
3716 {
3717 /* We don't pass signals to the target in reverse exec mode. */
3718 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3719 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3720 siggnal);
3721 strcpy (buf, step ? "bs" : "bc");
3722 }
3723 else if (siggnal != TARGET_SIGNAL_0)
3724 {
3725 buf[0] = step ? 'S' : 'C';
3726 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3727 buf[2] = tohex (((int) siggnal) & 0xf);
3728 buf[3] = '\0';
3729 }
3730 else
3731 strcpy (buf, step ? "s" : "c");
3732
3733 putpkt (buf);
3734
3735 done:
3736 /* We are about to start executing the inferior, let's register it
3737 with the event loop. NOTE: this is the one place where all the
3738 execution commands end up. We could alternatively do this in each
3739 of the execution commands in infcmd.c. */
3740 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3741 into infcmd.c in order to allow inferior function calls to work
3742 NOT asynchronously. */
3743 if (target_can_async_p ())
3744 target_async (inferior_event_handler, 0);
3745
3746 /* We've just told the target to resume. The remote server will
3747 wait for the inferior to stop, and then send a stop reply. In
3748 the mean time, we can't start another command/query ourselves
3749 because the stub wouldn't be ready to process it. This applies
3750 only to the base all-stop protocol, however. In non-stop (which
3751 only supports vCont), the stub replies with an "OK", and is
3752 immediate able to process further serial input. */
3753 if (!non_stop)
3754 rs->waiting_for_stop_reply = 1;
3755 }
3756 \f
3757
3758 /* Set up the signal handler for SIGINT, while the target is
3759 executing, ovewriting the 'regular' SIGINT signal handler. */
3760 static void
3761 initialize_sigint_signal_handler (void)
3762 {
3763 signal (SIGINT, handle_remote_sigint);
3764 }
3765
3766 /* Signal handler for SIGINT, while the target is executing. */
3767 static void
3768 handle_remote_sigint (int sig)
3769 {
3770 signal (sig, handle_remote_sigint_twice);
3771 mark_async_signal_handler_wrapper (sigint_remote_token);
3772 }
3773
3774 /* Signal handler for SIGINT, installed after SIGINT has already been
3775 sent once. It will take effect the second time that the user sends
3776 a ^C. */
3777 static void
3778 handle_remote_sigint_twice (int sig)
3779 {
3780 signal (sig, handle_remote_sigint);
3781 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3782 }
3783
3784 /* Perform the real interruption of the target execution, in response
3785 to a ^C. */
3786 static void
3787 async_remote_interrupt (gdb_client_data arg)
3788 {
3789 if (remote_debug)
3790 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3791
3792 target_stop (inferior_ptid);
3793 }
3794
3795 /* Perform interrupt, if the first attempt did not succeed. Just give
3796 up on the target alltogether. */
3797 void
3798 async_remote_interrupt_twice (gdb_client_data arg)
3799 {
3800 if (remote_debug)
3801 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3802
3803 interrupt_query ();
3804 }
3805
3806 /* Reinstall the usual SIGINT handlers, after the target has
3807 stopped. */
3808 static void
3809 cleanup_sigint_signal_handler (void *dummy)
3810 {
3811 signal (SIGINT, handle_sigint);
3812 }
3813
3814 /* Send ^C to target to halt it. Target will respond, and send us a
3815 packet. */
3816 static void (*ofunc) (int);
3817
3818 /* The command line interface's stop routine. This function is installed
3819 as a signal handler for SIGINT. The first time a user requests a
3820 stop, we call remote_stop to send a break or ^C. If there is no
3821 response from the target (it didn't stop when the user requested it),
3822 we ask the user if he'd like to detach from the target. */
3823 static void
3824 remote_interrupt (int signo)
3825 {
3826 /* If this doesn't work, try more severe steps. */
3827 signal (signo, remote_interrupt_twice);
3828
3829 gdb_call_async_signal_handler (sigint_remote_token, 1);
3830 }
3831
3832 /* The user typed ^C twice. */
3833
3834 static void
3835 remote_interrupt_twice (int signo)
3836 {
3837 signal (signo, ofunc);
3838 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3839 signal (signo, remote_interrupt);
3840 }
3841
3842 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3843 thread, all threads of a remote process, or all threads of all
3844 processes. */
3845
3846 static void
3847 remote_stop_ns (ptid_t ptid)
3848 {
3849 struct remote_state *rs = get_remote_state ();
3850 char *p = rs->buf;
3851 char *endp = rs->buf + get_remote_packet_size ();
3852 struct stop_reply *reply, *next;
3853
3854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3855 remote_vcont_probe (rs);
3856
3857 if (!rs->support_vCont_t)
3858 error (_("Remote server does not support stopping threads"));
3859
3860 if (ptid_equal (ptid, minus_one_ptid))
3861 p += xsnprintf (p, endp - p, "vCont;t");
3862 else
3863 {
3864 ptid_t nptid;
3865
3866 /* Step inferior_ptid. */
3867 p += xsnprintf (p, endp - p, "vCont;t:");
3868
3869 if (ptid_is_pid (ptid))
3870 /* All (-1) threads of process. */
3871 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3872 else
3873 {
3874 /* Small optimization: if we already have a stop reply for
3875 this thread, no use in telling the stub we want this
3876 stopped. */
3877 if (peek_stop_reply (ptid))
3878 return;
3879
3880 nptid = ptid;
3881 }
3882
3883 p = write_ptid (p, endp, nptid);
3884 }
3885
3886 /* In non-stop, we get an immediate OK reply. The stop reply will
3887 come in asynchronously by notification. */
3888 putpkt (rs->buf);
3889 getpkt (&rs->buf, &rs->buf_size, 0);
3890 if (strcmp (rs->buf, "OK") != 0)
3891 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3892 }
3893
3894 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3895 remote target. It is undefined which thread of which process
3896 reports the stop. */
3897
3898 static void
3899 remote_stop_as (ptid_t ptid)
3900 {
3901 struct remote_state *rs = get_remote_state ();
3902
3903 /* If the inferior is stopped already, but the core didn't know
3904 about it yet, just ignore the request. The cached wait status
3905 will be collected in remote_wait. */
3906 if (rs->cached_wait_status)
3907 return;
3908
3909 /* Send a break or a ^C, depending on user preference. */
3910
3911 if (remote_break)
3912 serial_send_break (remote_desc);
3913 else
3914 serial_write (remote_desc, "\003", 1);
3915 }
3916
3917 /* This is the generic stop called via the target vector. When a target
3918 interrupt is requested, either by the command line or the GUI, we
3919 will eventually end up here. */
3920
3921 static void
3922 remote_stop (ptid_t ptid)
3923 {
3924 if (remote_debug)
3925 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3926
3927 if (non_stop)
3928 remote_stop_ns (ptid);
3929 else
3930 remote_stop_as (ptid);
3931 }
3932
3933 /* Ask the user what to do when an interrupt is received. */
3934
3935 static void
3936 interrupt_query (void)
3937 {
3938 target_terminal_ours ();
3939
3940 if (target_can_async_p ())
3941 {
3942 signal (SIGINT, handle_sigint);
3943 deprecated_throw_reason (RETURN_QUIT);
3944 }
3945 else
3946 {
3947 if (query ("Interrupted while waiting for the program.\n\
3948 Give up (and stop debugging it)? "))
3949 {
3950 pop_target ();
3951 deprecated_throw_reason (RETURN_QUIT);
3952 }
3953 }
3954
3955 target_terminal_inferior ();
3956 }
3957
3958 /* Enable/disable target terminal ownership. Most targets can use
3959 terminal groups to control terminal ownership. Remote targets are
3960 different in that explicit transfer of ownership to/from GDB/target
3961 is required. */
3962
3963 static void
3964 remote_terminal_inferior (void)
3965 {
3966 if (!target_async_permitted)
3967 /* Nothing to do. */
3968 return;
3969
3970 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3971 sync_execution here. This function should only be called when
3972 GDB is resuming the inferior in the forground. A background
3973 resume (``run&'') should leave GDB in control of the terminal and
3974 consequently should not call this code. */
3975 if (!sync_execution)
3976 return;
3977 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3978 calls target_terminal_*() idenpotent. The event-loop GDB talking
3979 to an asynchronous target with a synchronous command calls this
3980 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3981 stops trying to transfer the terminal to the target when it
3982 shouldn't this guard can go away. */
3983 if (!remote_async_terminal_ours_p)
3984 return;
3985 delete_file_handler (input_fd);
3986 remote_async_terminal_ours_p = 0;
3987 initialize_sigint_signal_handler ();
3988 /* NOTE: At this point we could also register our selves as the
3989 recipient of all input. Any characters typed could then be
3990 passed on down to the target. */
3991 }
3992
3993 static void
3994 remote_terminal_ours (void)
3995 {
3996 if (!target_async_permitted)
3997 /* Nothing to do. */
3998 return;
3999
4000 /* See FIXME in remote_terminal_inferior. */
4001 if (!sync_execution)
4002 return;
4003 /* See FIXME in remote_terminal_inferior. */
4004 if (remote_async_terminal_ours_p)
4005 return;
4006 cleanup_sigint_signal_handler (NULL);
4007 add_file_handler (input_fd, stdin_event_handler, 0);
4008 remote_async_terminal_ours_p = 1;
4009 }
4010
4011 void
4012 remote_console_output (char *msg)
4013 {
4014 char *p;
4015
4016 for (p = msg; p[0] && p[1]; p += 2)
4017 {
4018 char tb[2];
4019 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4020 tb[0] = c;
4021 tb[1] = 0;
4022 fputs_unfiltered (tb, gdb_stdtarg);
4023 }
4024 gdb_flush (gdb_stdtarg);
4025 }
4026
4027 typedef struct cached_reg
4028 {
4029 int num;
4030 gdb_byte data[MAX_REGISTER_SIZE];
4031 } cached_reg_t;
4032
4033 DEF_VEC_O(cached_reg_t);
4034
4035 struct stop_reply
4036 {
4037 struct stop_reply *next;
4038
4039 ptid_t ptid;
4040
4041 struct target_waitstatus ws;
4042
4043 VEC(cached_reg_t) *regcache;
4044
4045 int stopped_by_watchpoint_p;
4046 CORE_ADDR watch_data_address;
4047
4048 int solibs_changed;
4049 int replay_event;
4050 };
4051
4052 /* The list of already fetched and acknowledged stop events. */
4053 static struct stop_reply *stop_reply_queue;
4054
4055 static struct stop_reply *
4056 stop_reply_xmalloc (void)
4057 {
4058 struct stop_reply *r = XMALLOC (struct stop_reply);
4059 r->next = NULL;
4060 return r;
4061 }
4062
4063 static void
4064 stop_reply_xfree (struct stop_reply *r)
4065 {
4066 if (r != NULL)
4067 {
4068 VEC_free (cached_reg_t, r->regcache);
4069 xfree (r);
4070 }
4071 }
4072
4073 /* Discard all pending stop replies of inferior PID. If PID is -1,
4074 discard everything. */
4075
4076 static void
4077 discard_pending_stop_replies (int pid)
4078 {
4079 struct stop_reply *prev = NULL, *reply, *next;
4080
4081 /* Discard the in-flight notification. */
4082 if (pending_stop_reply != NULL
4083 && (pid == -1
4084 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4085 {
4086 stop_reply_xfree (pending_stop_reply);
4087 pending_stop_reply = NULL;
4088 }
4089
4090 /* Discard the stop replies we have already pulled with
4091 vStopped. */
4092 for (reply = stop_reply_queue; reply; reply = next)
4093 {
4094 next = reply->next;
4095 if (pid == -1
4096 || ptid_get_pid (reply->ptid) == pid)
4097 {
4098 if (reply == stop_reply_queue)
4099 stop_reply_queue = reply->next;
4100 else
4101 prev->next = reply->next;
4102
4103 stop_reply_xfree (reply);
4104 }
4105 else
4106 prev = reply;
4107 }
4108 }
4109
4110 /* Cleanup wrapper. */
4111
4112 static void
4113 do_stop_reply_xfree (void *arg)
4114 {
4115 struct stop_reply *r = arg;
4116 stop_reply_xfree (r);
4117 }
4118
4119 /* Look for a queued stop reply belonging to PTID. If one is found,
4120 remove it from the queue, and return it. Returns NULL if none is
4121 found. If there are still queued events left to process, tell the
4122 event loop to get back to target_wait soon. */
4123
4124 static struct stop_reply *
4125 queued_stop_reply (ptid_t ptid)
4126 {
4127 struct stop_reply *it, *prev;
4128 struct stop_reply head;
4129
4130 head.next = stop_reply_queue;
4131 prev = &head;
4132
4133 it = head.next;
4134
4135 if (!ptid_equal (ptid, minus_one_ptid))
4136 for (; it; prev = it, it = it->next)
4137 if (ptid_equal (ptid, it->ptid))
4138 break;
4139
4140 if (it)
4141 {
4142 prev->next = it->next;
4143 it->next = NULL;
4144 }
4145
4146 stop_reply_queue = head.next;
4147
4148 if (stop_reply_queue)
4149 /* There's still at least an event left. */
4150 mark_async_event_handler (remote_async_inferior_event_token);
4151
4152 return it;
4153 }
4154
4155 /* Push a fully parsed stop reply in the stop reply queue. Since we
4156 know that we now have at least one queued event left to pass to the
4157 core side, tell the event loop to get back to target_wait soon. */
4158
4159 static void
4160 push_stop_reply (struct stop_reply *new_event)
4161 {
4162 struct stop_reply *event;
4163
4164 if (stop_reply_queue)
4165 {
4166 for (event = stop_reply_queue;
4167 event && event->next;
4168 event = event->next)
4169 ;
4170
4171 event->next = new_event;
4172 }
4173 else
4174 stop_reply_queue = new_event;
4175
4176 mark_async_event_handler (remote_async_inferior_event_token);
4177 }
4178
4179 /* Returns true if we have a stop reply for PTID. */
4180
4181 static int
4182 peek_stop_reply (ptid_t ptid)
4183 {
4184 struct stop_reply *it;
4185
4186 for (it = stop_reply_queue; it; it = it->next)
4187 if (ptid_equal (ptid, it->ptid))
4188 {
4189 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4190 return 1;
4191 }
4192
4193 return 0;
4194 }
4195
4196 /* Parse the stop reply in BUF. Either the function succeeds, and the
4197 result is stored in EVENT, or throws an error. */
4198
4199 static void
4200 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4201 {
4202 struct remote_arch_state *rsa = get_remote_arch_state ();
4203 ULONGEST addr;
4204 char *p;
4205
4206 event->ptid = null_ptid;
4207 event->ws.kind = TARGET_WAITKIND_IGNORE;
4208 event->ws.value.integer = 0;
4209 event->solibs_changed = 0;
4210 event->replay_event = 0;
4211 event->stopped_by_watchpoint_p = 0;
4212 event->regcache = NULL;
4213
4214 switch (buf[0])
4215 {
4216 case 'T': /* Status with PC, SP, FP, ... */
4217 {
4218 gdb_byte regs[MAX_REGISTER_SIZE];
4219
4220 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4221 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4222 ss = signal number
4223 n... = register number
4224 r... = register contents
4225 */
4226
4227 p = &buf[3]; /* after Txx */
4228 while (*p)
4229 {
4230 char *p1;
4231 char *p_temp;
4232 int fieldsize;
4233 LONGEST pnum = 0;
4234
4235 /* If the packet contains a register number, save it in
4236 pnum and set p1 to point to the character following it.
4237 Otherwise p1 points to p. */
4238
4239 /* If this packet is an awatch packet, don't parse the 'a'
4240 as a register number. */
4241
4242 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4243 {
4244 /* Read the ``P'' register number. */
4245 pnum = strtol (p, &p_temp, 16);
4246 p1 = p_temp;
4247 }
4248 else
4249 p1 = p;
4250
4251 if (p1 == p) /* No register number present here. */
4252 {
4253 p1 = strchr (p, ':');
4254 if (p1 == NULL)
4255 error (_("Malformed packet(a) (missing colon): %s\n\
4256 Packet: '%s'\n"),
4257 p, buf);
4258 if (strncmp (p, "thread", p1 - p) == 0)
4259 event->ptid = read_ptid (++p1, &p);
4260 else if ((strncmp (p, "watch", p1 - p) == 0)
4261 || (strncmp (p, "rwatch", p1 - p) == 0)
4262 || (strncmp (p, "awatch", p1 - p) == 0))
4263 {
4264 event->stopped_by_watchpoint_p = 1;
4265 p = unpack_varlen_hex (++p1, &addr);
4266 event->watch_data_address = (CORE_ADDR) addr;
4267 }
4268 else if (strncmp (p, "library", p1 - p) == 0)
4269 {
4270 p1++;
4271 p_temp = p1;
4272 while (*p_temp && *p_temp != ';')
4273 p_temp++;
4274
4275 event->solibs_changed = 1;
4276 p = p_temp;
4277 }
4278 else if (strncmp (p, "replaylog", p1 - p) == 0)
4279 {
4280 /* NO_HISTORY event.
4281 p1 will indicate "begin" or "end", but
4282 it makes no difference for now, so ignore it. */
4283 event->replay_event = 1;
4284 p_temp = strchr (p1 + 1, ';');
4285 if (p_temp)
4286 p = p_temp;
4287 }
4288 else
4289 {
4290 /* Silently skip unknown optional info. */
4291 p_temp = strchr (p1 + 1, ';');
4292 if (p_temp)
4293 p = p_temp;
4294 }
4295 }
4296 else
4297 {
4298 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4299 cached_reg_t cached_reg;
4300
4301 p = p1;
4302
4303 if (*p != ':')
4304 error (_("Malformed packet(b) (missing colon): %s\n\
4305 Packet: '%s'\n"),
4306 p, buf);
4307 ++p;
4308
4309 if (reg == NULL)
4310 error (_("Remote sent bad register number %s: %s\n\
4311 Packet: '%s'\n"),
4312 phex_nz (pnum, 0), p, buf);
4313
4314 cached_reg.num = reg->regnum;
4315
4316 fieldsize = hex2bin (p, cached_reg.data,
4317 register_size (target_gdbarch,
4318 reg->regnum));
4319 p += 2 * fieldsize;
4320 if (fieldsize < register_size (target_gdbarch,
4321 reg->regnum))
4322 warning (_("Remote reply is too short: %s"), buf);
4323
4324 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4325 }
4326
4327 if (*p != ';')
4328 error (_("Remote register badly formatted: %s\nhere: %s"),
4329 buf, p);
4330 ++p;
4331 }
4332 }
4333 /* fall through */
4334 case 'S': /* Old style status, just signal only. */
4335 if (event->solibs_changed)
4336 event->ws.kind = TARGET_WAITKIND_LOADED;
4337 else if (event->replay_event)
4338 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4339 else
4340 {
4341 event->ws.kind = TARGET_WAITKIND_STOPPED;
4342 event->ws.value.sig = (enum target_signal)
4343 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4344 }
4345 break;
4346 case 'W': /* Target exited. */
4347 case 'X':
4348 {
4349 char *p;
4350 int pid;
4351 ULONGEST value;
4352
4353 /* GDB used to accept only 2 hex chars here. Stubs should
4354 only send more if they detect GDB supports multi-process
4355 support. */
4356 p = unpack_varlen_hex (&buf[1], &value);
4357
4358 if (buf[0] == 'W')
4359 {
4360 /* The remote process exited. */
4361 event->ws.kind = TARGET_WAITKIND_EXITED;
4362 event->ws.value.integer = value;
4363 }
4364 else
4365 {
4366 /* The remote process exited with a signal. */
4367 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4368 event->ws.value.sig = (enum target_signal) value;
4369 }
4370
4371 /* If no process is specified, assume inferior_ptid. */
4372 pid = ptid_get_pid (inferior_ptid);
4373 if (*p == '\0')
4374 ;
4375 else if (*p == ';')
4376 {
4377 p++;
4378
4379 if (p == '\0')
4380 ;
4381 else if (strncmp (p,
4382 "process:", sizeof ("process:") - 1) == 0)
4383 {
4384 ULONGEST upid;
4385 p += sizeof ("process:") - 1;
4386 unpack_varlen_hex (p, &upid);
4387 pid = upid;
4388 }
4389 else
4390 error (_("unknown stop reply packet: %s"), buf);
4391 }
4392 else
4393 error (_("unknown stop reply packet: %s"), buf);
4394 event->ptid = pid_to_ptid (pid);
4395 }
4396 break;
4397 }
4398
4399 if (non_stop && ptid_equal (event->ptid, null_ptid))
4400 error (_("No process or thread specified in stop reply: %s"), buf);
4401 }
4402
4403 /* When the stub wants to tell GDB about a new stop reply, it sends a
4404 stop notification (%Stop). Those can come it at any time, hence,
4405 we have to make sure that any pending putpkt/getpkt sequence we're
4406 making is finished, before querying the stub for more events with
4407 vStopped. E.g., if we started a vStopped sequence immediatelly
4408 upon receiving the %Stop notification, something like this could
4409 happen:
4410
4411 1.1) --> Hg 1
4412 1.2) <-- OK
4413 1.3) --> g
4414 1.4) <-- %Stop
4415 1.5) --> vStopped
4416 1.6) <-- (registers reply to step #1.3)
4417
4418 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4419 query.
4420
4421 To solve this, whenever we parse a %Stop notification sucessfully,
4422 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4423 doing whatever we were doing:
4424
4425 2.1) --> Hg 1
4426 2.2) <-- OK
4427 2.3) --> g
4428 2.4) <-- %Stop
4429 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4430 2.5) <-- (registers reply to step #2.3)
4431
4432 Eventualy after step #2.5, we return to the event loop, which
4433 notices there's an event on the
4434 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4435 associated callback --- the function below. At this point, we're
4436 always safe to start a vStopped sequence. :
4437
4438 2.6) --> vStopped
4439 2.7) <-- T05 thread:2
4440 2.8) --> vStopped
4441 2.9) --> OK
4442 */
4443
4444 static void
4445 remote_get_pending_stop_replies (void)
4446 {
4447 struct remote_state *rs = get_remote_state ();
4448 int ret;
4449
4450 if (pending_stop_reply)
4451 {
4452 /* acknowledge */
4453 putpkt ("vStopped");
4454
4455 /* Now we can rely on it. */
4456 push_stop_reply (pending_stop_reply);
4457 pending_stop_reply = NULL;
4458
4459 while (1)
4460 {
4461 getpkt (&rs->buf, &rs->buf_size, 0);
4462 if (strcmp (rs->buf, "OK") == 0)
4463 break;
4464 else
4465 {
4466 struct cleanup *old_chain;
4467 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4468
4469 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4470 remote_parse_stop_reply (rs->buf, stop_reply);
4471
4472 /* acknowledge */
4473 putpkt ("vStopped");
4474
4475 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4476 {
4477 /* Now we can rely on it. */
4478 discard_cleanups (old_chain);
4479 push_stop_reply (stop_reply);
4480 }
4481 else
4482 /* We got an unknown stop reply. */
4483 do_cleanups (old_chain);
4484 }
4485 }
4486 }
4487 }
4488
4489
4490 /* Called when it is decided that STOP_REPLY holds the info of the
4491 event that is to be returned to the core. This function always
4492 destroys STOP_REPLY. */
4493
4494 static ptid_t
4495 process_stop_reply (struct stop_reply *stop_reply,
4496 struct target_waitstatus *status)
4497 {
4498 ptid_t ptid;
4499
4500 *status = stop_reply->ws;
4501 ptid = stop_reply->ptid;
4502
4503 /* If no thread/process was reported by the stub, assume the current
4504 inferior. */
4505 if (ptid_equal (ptid, null_ptid))
4506 ptid = inferior_ptid;
4507
4508 if (status->kind != TARGET_WAITKIND_EXITED
4509 && status->kind != TARGET_WAITKIND_SIGNALLED)
4510 {
4511 notice_new_inferiors (ptid);
4512
4513 /* Expedited registers. */
4514 if (stop_reply->regcache)
4515 {
4516 cached_reg_t *reg;
4517 int ix;
4518
4519 for (ix = 0;
4520 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4521 ix++)
4522 regcache_raw_supply (get_thread_regcache (ptid),
4523 reg->num, reg->data);
4524 VEC_free (cached_reg_t, stop_reply->regcache);
4525 }
4526
4527 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4528 remote_watch_data_address = stop_reply->watch_data_address;
4529 }
4530
4531 stop_reply_xfree (stop_reply);
4532 return ptid;
4533 }
4534
4535 /* The non-stop mode version of target_wait. */
4536
4537 static ptid_t
4538 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4539 {
4540 struct remote_state *rs = get_remote_state ();
4541 struct remote_arch_state *rsa = get_remote_arch_state ();
4542 ptid_t event_ptid = null_ptid;
4543 struct stop_reply *stop_reply;
4544 int ret;
4545
4546 /* If in non-stop mode, get out of getpkt even if a
4547 notification is received. */
4548
4549 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4550 0 /* forever */);
4551 while (1)
4552 {
4553 if (ret != -1)
4554 switch (rs->buf[0])
4555 {
4556 case 'E': /* Error of some sort. */
4557 /* We're out of sync with the target now. Did it continue
4558 or not? We can't tell which thread it was in non-stop,
4559 so just ignore this. */
4560 warning (_("Remote failure reply: %s"), rs->buf);
4561 break;
4562 case 'O': /* Console output. */
4563 remote_console_output (rs->buf + 1);
4564 break;
4565 default:
4566 warning (_("Invalid remote reply: %s"), rs->buf);
4567 break;
4568 }
4569
4570 /* Acknowledge a pending stop reply that may have arrived in the
4571 mean time. */
4572 if (pending_stop_reply != NULL)
4573 remote_get_pending_stop_replies ();
4574
4575 /* If indeed we noticed a stop reply, we're done. */
4576 stop_reply = queued_stop_reply (ptid);
4577 if (stop_reply != NULL)
4578 return process_stop_reply (stop_reply, status);
4579
4580 /* Still no event. If we're in asynchronous mode, then just
4581 return to the event loop. */
4582 if (remote_is_async_p ())
4583 {
4584 status->kind = TARGET_WAITKIND_IGNORE;
4585 return minus_one_ptid;
4586 }
4587
4588 /* Otherwise, asynchronous mode is masked, so do a blocking
4589 wait. */
4590 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4591 1 /* forever */);
4592 }
4593 }
4594
4595 /* Wait until the remote machine stops, then return, storing status in
4596 STATUS just as `wait' would. */
4597
4598 static ptid_t
4599 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4600 {
4601 struct remote_state *rs = get_remote_state ();
4602 struct remote_arch_state *rsa = get_remote_arch_state ();
4603 ptid_t event_ptid = null_ptid;
4604 ULONGEST addr;
4605 int solibs_changed = 0;
4606 char *buf, *p;
4607 struct stop_reply *stop_reply;
4608
4609 status->kind = TARGET_WAITKIND_IGNORE;
4610 status->value.integer = 0;
4611
4612 stop_reply = queued_stop_reply (ptid);
4613 if (stop_reply != NULL)
4614 return process_stop_reply (stop_reply, status);
4615
4616 if (rs->cached_wait_status)
4617 /* Use the cached wait status, but only once. */
4618 rs->cached_wait_status = 0;
4619 else
4620 {
4621 int ret;
4622
4623 if (!target_is_async_p ())
4624 {
4625 ofunc = signal (SIGINT, remote_interrupt);
4626 /* If the user hit C-c before this packet, or between packets,
4627 pretend that it was hit right here. */
4628 if (quit_flag)
4629 {
4630 quit_flag = 0;
4631 remote_interrupt (SIGINT);
4632 }
4633 }
4634
4635 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4636 _never_ wait for ever -> test on target_is_async_p().
4637 However, before we do that we need to ensure that the caller
4638 knows how to take the target into/out of async mode. */
4639 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4640 if (!target_is_async_p ())
4641 signal (SIGINT, ofunc);
4642 }
4643
4644 buf = rs->buf;
4645
4646 remote_stopped_by_watchpoint_p = 0;
4647
4648 /* We got something. */
4649 rs->waiting_for_stop_reply = 0;
4650
4651 switch (buf[0])
4652 {
4653 case 'E': /* Error of some sort. */
4654 /* We're out of sync with the target now. Did it continue or
4655 not? Not is more likely, so report a stop. */
4656 warning (_("Remote failure reply: %s"), buf);
4657 status->kind = TARGET_WAITKIND_STOPPED;
4658 status->value.sig = TARGET_SIGNAL_0;
4659 break;
4660 case 'F': /* File-I/O request. */
4661 remote_fileio_request (buf);
4662 break;
4663 case 'T': case 'S': case 'X': case 'W':
4664 {
4665 struct stop_reply *stop_reply;
4666 struct cleanup *old_chain;
4667
4668 stop_reply = stop_reply_xmalloc ();
4669 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4670 remote_parse_stop_reply (buf, stop_reply);
4671 discard_cleanups (old_chain);
4672 event_ptid = process_stop_reply (stop_reply, status);
4673 break;
4674 }
4675 case 'O': /* Console output. */
4676 remote_console_output (buf + 1);
4677
4678 /* The target didn't really stop; keep waiting. */
4679 rs->waiting_for_stop_reply = 1;
4680
4681 break;
4682 case '\0':
4683 if (last_sent_signal != TARGET_SIGNAL_0)
4684 {
4685 /* Zero length reply means that we tried 'S' or 'C' and the
4686 remote system doesn't support it. */
4687 target_terminal_ours_for_output ();
4688 printf_filtered
4689 ("Can't send signals to this remote system. %s not sent.\n",
4690 target_signal_to_name (last_sent_signal));
4691 last_sent_signal = TARGET_SIGNAL_0;
4692 target_terminal_inferior ();
4693
4694 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4695 putpkt ((char *) buf);
4696
4697 /* We just told the target to resume, so a stop reply is in
4698 order. */
4699 rs->waiting_for_stop_reply = 1;
4700 break;
4701 }
4702 /* else fallthrough */
4703 default:
4704 warning (_("Invalid remote reply: %s"), buf);
4705 /* Keep waiting. */
4706 rs->waiting_for_stop_reply = 1;
4707 break;
4708 }
4709
4710 if (status->kind == TARGET_WAITKIND_IGNORE)
4711 /* Nothing interesting happened. */
4712 return minus_one_ptid;
4713 else if (status->kind != TARGET_WAITKIND_EXITED
4714 && status->kind != TARGET_WAITKIND_SIGNALLED)
4715 {
4716 if (!ptid_equal (event_ptid, null_ptid))
4717 record_currthread (event_ptid);
4718 else
4719 event_ptid = inferior_ptid;
4720 }
4721 else
4722 /* A process exit. Invalidate our notion of current thread. */
4723 record_currthread (minus_one_ptid);
4724
4725 return event_ptid;
4726 }
4727
4728 /* Wait until the remote machine stops, then return, storing status in
4729 STATUS just as `wait' would. */
4730
4731 static ptid_t
4732 remote_wait (struct target_ops *ops,
4733 ptid_t ptid, struct target_waitstatus *status)
4734 {
4735 ptid_t event_ptid;
4736
4737 if (non_stop)
4738 event_ptid = remote_wait_ns (ptid, status);
4739 else
4740 {
4741 /* In synchronous mode, keep waiting until the target stops. In
4742 asynchronous mode, always return to the event loop. */
4743
4744 do
4745 {
4746 event_ptid = remote_wait_as (ptid, status);
4747 }
4748 while (status->kind == TARGET_WAITKIND_IGNORE
4749 && !target_can_async_p ());
4750 }
4751
4752 if (target_can_async_p ())
4753 {
4754 /* If there are are events left in the queue tell the event loop
4755 to return here. */
4756 if (stop_reply_queue)
4757 mark_async_event_handler (remote_async_inferior_event_token);
4758 }
4759
4760 return event_ptid;
4761 }
4762
4763 /* Fetch a single register using a 'p' packet. */
4764
4765 static int
4766 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4767 {
4768 struct remote_state *rs = get_remote_state ();
4769 char *buf, *p;
4770 char regp[MAX_REGISTER_SIZE];
4771 int i;
4772
4773 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4774 return 0;
4775
4776 if (reg->pnum == -1)
4777 return 0;
4778
4779 p = rs->buf;
4780 *p++ = 'p';
4781 p += hexnumstr (p, reg->pnum);
4782 *p++ = '\0';
4783 remote_send (&rs->buf, &rs->buf_size);
4784
4785 buf = rs->buf;
4786
4787 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4788 {
4789 case PACKET_OK:
4790 break;
4791 case PACKET_UNKNOWN:
4792 return 0;
4793 case PACKET_ERROR:
4794 error (_("Could not fetch register \"%s\""),
4795 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4796 }
4797
4798 /* If this register is unfetchable, tell the regcache. */
4799 if (buf[0] == 'x')
4800 {
4801 regcache_raw_supply (regcache, reg->regnum, NULL);
4802 return 1;
4803 }
4804
4805 /* Otherwise, parse and supply the value. */
4806 p = buf;
4807 i = 0;
4808 while (p[0] != 0)
4809 {
4810 if (p[1] == 0)
4811 error (_("fetch_register_using_p: early buf termination"));
4812
4813 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4814 p += 2;
4815 }
4816 regcache_raw_supply (regcache, reg->regnum, regp);
4817 return 1;
4818 }
4819
4820 /* Fetch the registers included in the target's 'g' packet. */
4821
4822 static int
4823 send_g_packet (void)
4824 {
4825 struct remote_state *rs = get_remote_state ();
4826 int i, buf_len;
4827 char *p;
4828 char *regs;
4829
4830 sprintf (rs->buf, "g");
4831 remote_send (&rs->buf, &rs->buf_size);
4832
4833 /* We can get out of synch in various cases. If the first character
4834 in the buffer is not a hex character, assume that has happened
4835 and try to fetch another packet to read. */
4836 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4837 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4838 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4839 && rs->buf[0] != 'x') /* New: unavailable register value. */
4840 {
4841 if (remote_debug)
4842 fprintf_unfiltered (gdb_stdlog,
4843 "Bad register packet; fetching a new packet\n");
4844 getpkt (&rs->buf, &rs->buf_size, 0);
4845 }
4846
4847 buf_len = strlen (rs->buf);
4848
4849 /* Sanity check the received packet. */
4850 if (buf_len % 2 != 0)
4851 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4852
4853 return buf_len / 2;
4854 }
4855
4856 static void
4857 process_g_packet (struct regcache *regcache)
4858 {
4859 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4860 struct remote_state *rs = get_remote_state ();
4861 struct remote_arch_state *rsa = get_remote_arch_state ();
4862 int i, buf_len;
4863 char *p;
4864 char *regs;
4865
4866 buf_len = strlen (rs->buf);
4867
4868 /* Further sanity checks, with knowledge of the architecture. */
4869 if (buf_len > 2 * rsa->sizeof_g_packet)
4870 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4871
4872 /* Save the size of the packet sent to us by the target. It is used
4873 as a heuristic when determining the max size of packets that the
4874 target can safely receive. */
4875 if (rsa->actual_register_packet_size == 0)
4876 rsa->actual_register_packet_size = buf_len;
4877
4878 /* If this is smaller than we guessed the 'g' packet would be,
4879 update our records. A 'g' reply that doesn't include a register's
4880 value implies either that the register is not available, or that
4881 the 'p' packet must be used. */
4882 if (buf_len < 2 * rsa->sizeof_g_packet)
4883 {
4884 rsa->sizeof_g_packet = buf_len / 2;
4885
4886 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4887 {
4888 if (rsa->regs[i].pnum == -1)
4889 continue;
4890
4891 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4892 rsa->regs[i].in_g_packet = 0;
4893 else
4894 rsa->regs[i].in_g_packet = 1;
4895 }
4896 }
4897
4898 regs = alloca (rsa->sizeof_g_packet);
4899
4900 /* Unimplemented registers read as all bits zero. */
4901 memset (regs, 0, rsa->sizeof_g_packet);
4902
4903 /* Reply describes registers byte by byte, each byte encoded as two
4904 hex characters. Suck them all up, then supply them to the
4905 register cacheing/storage mechanism. */
4906
4907 p = rs->buf;
4908 for (i = 0; i < rsa->sizeof_g_packet; i++)
4909 {
4910 if (p[0] == 0 || p[1] == 0)
4911 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4912 internal_error (__FILE__, __LINE__,
4913 "unexpected end of 'g' packet reply");
4914
4915 if (p[0] == 'x' && p[1] == 'x')
4916 regs[i] = 0; /* 'x' */
4917 else
4918 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4919 p += 2;
4920 }
4921
4922 {
4923 int i;
4924 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4925 {
4926 struct packet_reg *r = &rsa->regs[i];
4927 if (r->in_g_packet)
4928 {
4929 if (r->offset * 2 >= strlen (rs->buf))
4930 /* This shouldn't happen - we adjusted in_g_packet above. */
4931 internal_error (__FILE__, __LINE__,
4932 "unexpected end of 'g' packet reply");
4933 else if (rs->buf[r->offset * 2] == 'x')
4934 {
4935 gdb_assert (r->offset * 2 < strlen (rs->buf));
4936 /* The register isn't available, mark it as such (at
4937 the same time setting the value to zero). */
4938 regcache_raw_supply (regcache, r->regnum, NULL);
4939 }
4940 else
4941 regcache_raw_supply (regcache, r->regnum,
4942 regs + r->offset);
4943 }
4944 }
4945 }
4946 }
4947
4948 static void
4949 fetch_registers_using_g (struct regcache *regcache)
4950 {
4951 send_g_packet ();
4952 process_g_packet (regcache);
4953 }
4954
4955 static void
4956 remote_fetch_registers (struct target_ops *ops,
4957 struct regcache *regcache, int regnum)
4958 {
4959 struct remote_state *rs = get_remote_state ();
4960 struct remote_arch_state *rsa = get_remote_arch_state ();
4961 int i;
4962
4963 set_general_thread (inferior_ptid);
4964
4965 if (regnum >= 0)
4966 {
4967 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4968 gdb_assert (reg != NULL);
4969
4970 /* If this register might be in the 'g' packet, try that first -
4971 we are likely to read more than one register. If this is the
4972 first 'g' packet, we might be overly optimistic about its
4973 contents, so fall back to 'p'. */
4974 if (reg->in_g_packet)
4975 {
4976 fetch_registers_using_g (regcache);
4977 if (reg->in_g_packet)
4978 return;
4979 }
4980
4981 if (fetch_register_using_p (regcache, reg))
4982 return;
4983
4984 /* This register is not available. */
4985 regcache_raw_supply (regcache, reg->regnum, NULL);
4986
4987 return;
4988 }
4989
4990 fetch_registers_using_g (regcache);
4991
4992 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4993 if (!rsa->regs[i].in_g_packet)
4994 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4995 {
4996 /* This register is not available. */
4997 regcache_raw_supply (regcache, i, NULL);
4998 }
4999 }
5000
5001 /* Prepare to store registers. Since we may send them all (using a
5002 'G' request), we have to read out the ones we don't want to change
5003 first. */
5004
5005 static void
5006 remote_prepare_to_store (struct regcache *regcache)
5007 {
5008 struct remote_arch_state *rsa = get_remote_arch_state ();
5009 int i;
5010 gdb_byte buf[MAX_REGISTER_SIZE];
5011
5012 /* Make sure the entire registers array is valid. */
5013 switch (remote_protocol_packets[PACKET_P].support)
5014 {
5015 case PACKET_DISABLE:
5016 case PACKET_SUPPORT_UNKNOWN:
5017 /* Make sure all the necessary registers are cached. */
5018 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5019 if (rsa->regs[i].in_g_packet)
5020 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5021 break;
5022 case PACKET_ENABLE:
5023 break;
5024 }
5025 }
5026
5027 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5028 packet was not recognized. */
5029
5030 static int
5031 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5032 {
5033 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5034 struct remote_state *rs = get_remote_state ();
5035 struct remote_arch_state *rsa = get_remote_arch_state ();
5036 /* Try storing a single register. */
5037 char *buf = rs->buf;
5038 gdb_byte regp[MAX_REGISTER_SIZE];
5039 char *p;
5040
5041 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5042 return 0;
5043
5044 if (reg->pnum == -1)
5045 return 0;
5046
5047 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5048 p = buf + strlen (buf);
5049 regcache_raw_collect (regcache, reg->regnum, regp);
5050 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5051 remote_send (&rs->buf, &rs->buf_size);
5052
5053 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5054 {
5055 case PACKET_OK:
5056 return 1;
5057 case PACKET_ERROR:
5058 error (_("Could not write register \"%s\""),
5059 gdbarch_register_name (gdbarch, reg->regnum));
5060 case PACKET_UNKNOWN:
5061 return 0;
5062 default:
5063 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5064 }
5065 }
5066
5067 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5068 contents of the register cache buffer. FIXME: ignores errors. */
5069
5070 static void
5071 store_registers_using_G (const struct regcache *regcache)
5072 {
5073 struct remote_state *rs = get_remote_state ();
5074 struct remote_arch_state *rsa = get_remote_arch_state ();
5075 gdb_byte *regs;
5076 char *p;
5077
5078 /* Extract all the registers in the regcache copying them into a
5079 local buffer. */
5080 {
5081 int i;
5082 regs = alloca (rsa->sizeof_g_packet);
5083 memset (regs, 0, rsa->sizeof_g_packet);
5084 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5085 {
5086 struct packet_reg *r = &rsa->regs[i];
5087 if (r->in_g_packet)
5088 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5089 }
5090 }
5091
5092 /* Command describes registers byte by byte,
5093 each byte encoded as two hex characters. */
5094 p = rs->buf;
5095 *p++ = 'G';
5096 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5097 updated. */
5098 bin2hex (regs, p, rsa->sizeof_g_packet);
5099 remote_send (&rs->buf, &rs->buf_size);
5100 }
5101
5102 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5103 of the register cache buffer. FIXME: ignores errors. */
5104
5105 static void
5106 remote_store_registers (struct target_ops *ops,
5107 struct regcache *regcache, int regnum)
5108 {
5109 struct remote_state *rs = get_remote_state ();
5110 struct remote_arch_state *rsa = get_remote_arch_state ();
5111 int i;
5112
5113 set_general_thread (inferior_ptid);
5114
5115 if (regnum >= 0)
5116 {
5117 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5118 gdb_assert (reg != NULL);
5119
5120 /* Always prefer to store registers using the 'P' packet if
5121 possible; we often change only a small number of registers.
5122 Sometimes we change a larger number; we'd need help from a
5123 higher layer to know to use 'G'. */
5124 if (store_register_using_P (regcache, reg))
5125 return;
5126
5127 /* For now, don't complain if we have no way to write the
5128 register. GDB loses track of unavailable registers too
5129 easily. Some day, this may be an error. We don't have
5130 any way to read the register, either... */
5131 if (!reg->in_g_packet)
5132 return;
5133
5134 store_registers_using_G (regcache);
5135 return;
5136 }
5137
5138 store_registers_using_G (regcache);
5139
5140 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5141 if (!rsa->regs[i].in_g_packet)
5142 if (!store_register_using_P (regcache, &rsa->regs[i]))
5143 /* See above for why we do not issue an error here. */
5144 continue;
5145 }
5146 \f
5147
5148 /* Return the number of hex digits in num. */
5149
5150 static int
5151 hexnumlen (ULONGEST num)
5152 {
5153 int i;
5154
5155 for (i = 0; num != 0; i++)
5156 num >>= 4;
5157
5158 return max (i, 1);
5159 }
5160
5161 /* Set BUF to the minimum number of hex digits representing NUM. */
5162
5163 static int
5164 hexnumstr (char *buf, ULONGEST num)
5165 {
5166 int len = hexnumlen (num);
5167 return hexnumnstr (buf, num, len);
5168 }
5169
5170
5171 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5172
5173 static int
5174 hexnumnstr (char *buf, ULONGEST num, int width)
5175 {
5176 int i;
5177
5178 buf[width] = '\0';
5179
5180 for (i = width - 1; i >= 0; i--)
5181 {
5182 buf[i] = "0123456789abcdef"[(num & 0xf)];
5183 num >>= 4;
5184 }
5185
5186 return width;
5187 }
5188
5189 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5190
5191 static CORE_ADDR
5192 remote_address_masked (CORE_ADDR addr)
5193 {
5194 int address_size = remote_address_size;
5195 /* If "remoteaddresssize" was not set, default to target address size. */
5196 if (!address_size)
5197 address_size = gdbarch_addr_bit (target_gdbarch);
5198
5199 if (address_size > 0
5200 && address_size < (sizeof (ULONGEST) * 8))
5201 {
5202 /* Only create a mask when that mask can safely be constructed
5203 in a ULONGEST variable. */
5204 ULONGEST mask = 1;
5205 mask = (mask << address_size) - 1;
5206 addr &= mask;
5207 }
5208 return addr;
5209 }
5210
5211 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5212 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5213 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5214 (which may be more than *OUT_LEN due to escape characters). The
5215 total number of bytes in the output buffer will be at most
5216 OUT_MAXLEN. */
5217
5218 static int
5219 remote_escape_output (const gdb_byte *buffer, int len,
5220 gdb_byte *out_buf, int *out_len,
5221 int out_maxlen)
5222 {
5223 int input_index, output_index;
5224
5225 output_index = 0;
5226 for (input_index = 0; input_index < len; input_index++)
5227 {
5228 gdb_byte b = buffer[input_index];
5229
5230 if (b == '$' || b == '#' || b == '}')
5231 {
5232 /* These must be escaped. */
5233 if (output_index + 2 > out_maxlen)
5234 break;
5235 out_buf[output_index++] = '}';
5236 out_buf[output_index++] = b ^ 0x20;
5237 }
5238 else
5239 {
5240 if (output_index + 1 > out_maxlen)
5241 break;
5242 out_buf[output_index++] = b;
5243 }
5244 }
5245
5246 *out_len = input_index;
5247 return output_index;
5248 }
5249
5250 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5251 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5252 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5253
5254 This function reverses remote_escape_output. It allows more
5255 escaped characters than that function does, in particular because
5256 '*' must be escaped to avoid the run-length encoding processing
5257 in reading packets. */
5258
5259 static int
5260 remote_unescape_input (const gdb_byte *buffer, int len,
5261 gdb_byte *out_buf, int out_maxlen)
5262 {
5263 int input_index, output_index;
5264 int escaped;
5265
5266 output_index = 0;
5267 escaped = 0;
5268 for (input_index = 0; input_index < len; input_index++)
5269 {
5270 gdb_byte b = buffer[input_index];
5271
5272 if (output_index + 1 > out_maxlen)
5273 {
5274 warning (_("Received too much data from remote target;"
5275 " ignoring overflow."));
5276 return output_index;
5277 }
5278
5279 if (escaped)
5280 {
5281 out_buf[output_index++] = b ^ 0x20;
5282 escaped = 0;
5283 }
5284 else if (b == '}')
5285 escaped = 1;
5286 else
5287 out_buf[output_index++] = b;
5288 }
5289
5290 if (escaped)
5291 error (_("Unmatched escape character in target response."));
5292
5293 return output_index;
5294 }
5295
5296 /* Determine whether the remote target supports binary downloading.
5297 This is accomplished by sending a no-op memory write of zero length
5298 to the target at the specified address. It does not suffice to send
5299 the whole packet, since many stubs strip the eighth bit and
5300 subsequently compute a wrong checksum, which causes real havoc with
5301 remote_write_bytes.
5302
5303 NOTE: This can still lose if the serial line is not eight-bit
5304 clean. In cases like this, the user should clear "remote
5305 X-packet". */
5306
5307 static void
5308 check_binary_download (CORE_ADDR addr)
5309 {
5310 struct remote_state *rs = get_remote_state ();
5311
5312 switch (remote_protocol_packets[PACKET_X].support)
5313 {
5314 case PACKET_DISABLE:
5315 break;
5316 case PACKET_ENABLE:
5317 break;
5318 case PACKET_SUPPORT_UNKNOWN:
5319 {
5320 char *p;
5321
5322 p = rs->buf;
5323 *p++ = 'X';
5324 p += hexnumstr (p, (ULONGEST) addr);
5325 *p++ = ',';
5326 p += hexnumstr (p, (ULONGEST) 0);
5327 *p++ = ':';
5328 *p = '\0';
5329
5330 putpkt_binary (rs->buf, (int) (p - rs->buf));
5331 getpkt (&rs->buf, &rs->buf_size, 0);
5332
5333 if (rs->buf[0] == '\0')
5334 {
5335 if (remote_debug)
5336 fprintf_unfiltered (gdb_stdlog,
5337 "binary downloading NOT suppported by target\n");
5338 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5339 }
5340 else
5341 {
5342 if (remote_debug)
5343 fprintf_unfiltered (gdb_stdlog,
5344 "binary downloading suppported by target\n");
5345 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5346 }
5347 break;
5348 }
5349 }
5350 }
5351
5352 /* Write memory data directly to the remote machine.
5353 This does not inform the data cache; the data cache uses this.
5354 HEADER is the starting part of the packet.
5355 MEMADDR is the address in the remote memory space.
5356 MYADDR is the address of the buffer in our space.
5357 LEN is the number of bytes.
5358 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5359 should send data as binary ('X'), or hex-encoded ('M').
5360
5361 The function creates packet of the form
5362 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5363
5364 where encoding of <DATA> is termined by PACKET_FORMAT.
5365
5366 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5367 are omitted.
5368
5369 Returns the number of bytes transferred, or 0 (setting errno) for
5370 error. Only transfer a single packet. */
5371
5372 static int
5373 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5374 const gdb_byte *myaddr, int len,
5375 char packet_format, int use_length)
5376 {
5377 struct remote_state *rs = get_remote_state ();
5378 char *p;
5379 char *plen = NULL;
5380 int plenlen = 0;
5381 int todo;
5382 int nr_bytes;
5383 int payload_size;
5384 int payload_length;
5385 int header_length;
5386
5387 if (packet_format != 'X' && packet_format != 'M')
5388 internal_error (__FILE__, __LINE__,
5389 "remote_write_bytes_aux: bad packet format");
5390
5391 if (len <= 0)
5392 return 0;
5393
5394 payload_size = get_memory_write_packet_size ();
5395
5396 /* The packet buffer will be large enough for the payload;
5397 get_memory_packet_size ensures this. */
5398 rs->buf[0] = '\0';
5399
5400 /* Compute the size of the actual payload by subtracting out the
5401 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5402 */
5403 payload_size -= strlen ("$,:#NN");
5404 if (!use_length)
5405 /* The comma won't be used. */
5406 payload_size += 1;
5407 header_length = strlen (header);
5408 payload_size -= header_length;
5409 payload_size -= hexnumlen (memaddr);
5410
5411 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5412
5413 strcat (rs->buf, header);
5414 p = rs->buf + strlen (header);
5415
5416 /* Compute a best guess of the number of bytes actually transfered. */
5417 if (packet_format == 'X')
5418 {
5419 /* Best guess at number of bytes that will fit. */
5420 todo = min (len, payload_size);
5421 if (use_length)
5422 payload_size -= hexnumlen (todo);
5423 todo = min (todo, payload_size);
5424 }
5425 else
5426 {
5427 /* Num bytes that will fit. */
5428 todo = min (len, payload_size / 2);
5429 if (use_length)
5430 payload_size -= hexnumlen (todo);
5431 todo = min (todo, payload_size / 2);
5432 }
5433
5434 if (todo <= 0)
5435 internal_error (__FILE__, __LINE__,
5436 _("minumum packet size too small to write data"));
5437
5438 /* If we already need another packet, then try to align the end
5439 of this packet to a useful boundary. */
5440 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5441 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5442
5443 /* Append "<memaddr>". */
5444 memaddr = remote_address_masked (memaddr);
5445 p += hexnumstr (p, (ULONGEST) memaddr);
5446
5447 if (use_length)
5448 {
5449 /* Append ",". */
5450 *p++ = ',';
5451
5452 /* Append <len>. Retain the location/size of <len>. It may need to
5453 be adjusted once the packet body has been created. */
5454 plen = p;
5455 plenlen = hexnumstr (p, (ULONGEST) todo);
5456 p += plenlen;
5457 }
5458
5459 /* Append ":". */
5460 *p++ = ':';
5461 *p = '\0';
5462
5463 /* Append the packet body. */
5464 if (packet_format == 'X')
5465 {
5466 /* Binary mode. Send target system values byte by byte, in
5467 increasing byte addresses. Only escape certain critical
5468 characters. */
5469 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5470 payload_size);
5471
5472 /* If not all TODO bytes fit, then we'll need another packet. Make
5473 a second try to keep the end of the packet aligned. Don't do
5474 this if the packet is tiny. */
5475 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5476 {
5477 int new_nr_bytes;
5478
5479 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5480 - memaddr);
5481 if (new_nr_bytes != nr_bytes)
5482 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5483 p, &nr_bytes,
5484 payload_size);
5485 }
5486
5487 p += payload_length;
5488 if (use_length && nr_bytes < todo)
5489 {
5490 /* Escape chars have filled up the buffer prematurely,
5491 and we have actually sent fewer bytes than planned.
5492 Fix-up the length field of the packet. Use the same
5493 number of characters as before. */
5494 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5495 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5496 }
5497 }
5498 else
5499 {
5500 /* Normal mode: Send target system values byte by byte, in
5501 increasing byte addresses. Each byte is encoded as a two hex
5502 value. */
5503 nr_bytes = bin2hex (myaddr, p, todo);
5504 p += 2 * nr_bytes;
5505 }
5506
5507 putpkt_binary (rs->buf, (int) (p - rs->buf));
5508 getpkt (&rs->buf, &rs->buf_size, 0);
5509
5510 if (rs->buf[0] == 'E')
5511 {
5512 /* There is no correspondance between what the remote protocol
5513 uses for errors and errno codes. We would like a cleaner way
5514 of representing errors (big enough to include errno codes,
5515 bfd_error codes, and others). But for now just return EIO. */
5516 errno = EIO;
5517 return 0;
5518 }
5519
5520 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5521 fewer bytes than we'd planned. */
5522 return nr_bytes;
5523 }
5524
5525 /* Write memory data directly to the remote machine.
5526 This does not inform the data cache; the data cache uses this.
5527 MEMADDR is the address in the remote memory space.
5528 MYADDR is the address of the buffer in our space.
5529 LEN is the number of bytes.
5530
5531 Returns number of bytes transferred, or 0 (setting errno) for
5532 error. Only transfer a single packet. */
5533
5534 int
5535 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5536 {
5537 char *packet_format = 0;
5538
5539 /* Check whether the target supports binary download. */
5540 check_binary_download (memaddr);
5541
5542 switch (remote_protocol_packets[PACKET_X].support)
5543 {
5544 case PACKET_ENABLE:
5545 packet_format = "X";
5546 break;
5547 case PACKET_DISABLE:
5548 packet_format = "M";
5549 break;
5550 case PACKET_SUPPORT_UNKNOWN:
5551 internal_error (__FILE__, __LINE__,
5552 _("remote_write_bytes: bad internal state"));
5553 default:
5554 internal_error (__FILE__, __LINE__, _("bad switch"));
5555 }
5556
5557 return remote_write_bytes_aux (packet_format,
5558 memaddr, myaddr, len, packet_format[0], 1);
5559 }
5560
5561 /* Read memory data directly from the remote machine.
5562 This does not use the data cache; the data cache uses this.
5563 MEMADDR is the address in the remote memory space.
5564 MYADDR is the address of the buffer in our space.
5565 LEN is the number of bytes.
5566
5567 Returns number of bytes transferred, or 0 for error. */
5568
5569 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5570 remote targets) shouldn't attempt to read the entire buffer.
5571 Instead it should read a single packet worth of data and then
5572 return the byte size of that packet to the caller. The caller (its
5573 caller and its callers caller ;-) already contains code for
5574 handling partial reads. */
5575
5576 int
5577 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5578 {
5579 struct remote_state *rs = get_remote_state ();
5580 int max_buf_size; /* Max size of packet output buffer. */
5581 int origlen;
5582
5583 if (len <= 0)
5584 return 0;
5585
5586 max_buf_size = get_memory_read_packet_size ();
5587 /* The packet buffer will be large enough for the payload;
5588 get_memory_packet_size ensures this. */
5589
5590 origlen = len;
5591 while (len > 0)
5592 {
5593 char *p;
5594 int todo;
5595 int i;
5596
5597 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5598
5599 /* construct "m"<memaddr>","<len>" */
5600 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5601 memaddr = remote_address_masked (memaddr);
5602 p = rs->buf;
5603 *p++ = 'm';
5604 p += hexnumstr (p, (ULONGEST) memaddr);
5605 *p++ = ',';
5606 p += hexnumstr (p, (ULONGEST) todo);
5607 *p = '\0';
5608
5609 putpkt (rs->buf);
5610 getpkt (&rs->buf, &rs->buf_size, 0);
5611
5612 if (rs->buf[0] == 'E'
5613 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5614 && rs->buf[3] == '\0')
5615 {
5616 /* There is no correspondance between what the remote
5617 protocol uses for errors and errno codes. We would like
5618 a cleaner way of representing errors (big enough to
5619 include errno codes, bfd_error codes, and others). But
5620 for now just return EIO. */
5621 errno = EIO;
5622 return 0;
5623 }
5624
5625 /* Reply describes memory byte by byte,
5626 each byte encoded as two hex characters. */
5627
5628 p = rs->buf;
5629 if ((i = hex2bin (p, myaddr, todo)) < todo)
5630 {
5631 /* Reply is short. This means that we were able to read
5632 only part of what we wanted to. */
5633 return i + (origlen - len);
5634 }
5635 myaddr += todo;
5636 memaddr += todo;
5637 len -= todo;
5638 }
5639 return origlen;
5640 }
5641 \f
5642
5643 /* Remote notification handler. */
5644
5645 static void
5646 handle_notification (char *buf, size_t length)
5647 {
5648 if (strncmp (buf, "Stop:", 5) == 0)
5649 {
5650 if (pending_stop_reply)
5651 /* We've already parsed the in-flight stop-reply, but the stub
5652 for some reason thought we didn't, possibly due to timeout
5653 on its side. Just ignore it. */
5654 ;
5655 else
5656 {
5657 struct cleanup *old_chain;
5658 struct stop_reply *reply = stop_reply_xmalloc ();
5659 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5660
5661 remote_parse_stop_reply (buf + 5, reply);
5662
5663 discard_cleanups (old_chain);
5664
5665 /* Be careful to only set it after parsing, since an error
5666 may be thrown then. */
5667 pending_stop_reply = reply;
5668
5669 /* Notify the event loop there's a stop reply to acknowledge
5670 and that there may be more events to fetch. */
5671 mark_async_event_handler (remote_async_get_pending_events_token);
5672 }
5673 }
5674 else
5675 /* We ignore notifications we don't recognize, for compatibility
5676 with newer stubs. */
5677 ;
5678 }
5679
5680 \f
5681 /* Read or write LEN bytes from inferior memory at MEMADDR,
5682 transferring to or from debugger address BUFFER. Write to inferior
5683 if SHOULD_WRITE is nonzero. Returns length of data written or
5684 read; 0 for error. TARGET is unused. */
5685
5686 static int
5687 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5688 int should_write, struct mem_attrib *attrib,
5689 struct target_ops *target)
5690 {
5691 int res;
5692
5693 set_general_thread (inferior_ptid);
5694
5695 if (should_write)
5696 res = remote_write_bytes (mem_addr, buffer, mem_len);
5697 else
5698 res = remote_read_bytes (mem_addr, buffer, mem_len);
5699
5700 return res;
5701 }
5702
5703 /* Sends a packet with content determined by the printf format string
5704 FORMAT and the remaining arguments, then gets the reply. Returns
5705 whether the packet was a success, a failure, or unknown. */
5706
5707 static enum packet_result
5708 remote_send_printf (const char *format, ...)
5709 {
5710 struct remote_state *rs = get_remote_state ();
5711 int max_size = get_remote_packet_size ();
5712
5713 va_list ap;
5714 va_start (ap, format);
5715
5716 rs->buf[0] = '\0';
5717 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5718 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5719
5720 if (putpkt (rs->buf) < 0)
5721 error (_("Communication problem with target."));
5722
5723 rs->buf[0] = '\0';
5724 getpkt (&rs->buf, &rs->buf_size, 0);
5725
5726 return packet_check_result (rs->buf);
5727 }
5728
5729 static void
5730 restore_remote_timeout (void *p)
5731 {
5732 int value = *(int *)p;
5733 remote_timeout = value;
5734 }
5735
5736 /* Flash writing can take quite some time. We'll set
5737 effectively infinite timeout for flash operations.
5738 In future, we'll need to decide on a better approach. */
5739 static const int remote_flash_timeout = 1000;
5740
5741 static void
5742 remote_flash_erase (struct target_ops *ops,
5743 ULONGEST address, LONGEST length)
5744 {
5745 int saved_remote_timeout = remote_timeout;
5746 enum packet_result ret;
5747
5748 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5749 &saved_remote_timeout);
5750 remote_timeout = remote_flash_timeout;
5751
5752 ret = remote_send_printf ("vFlashErase:%s,%s",
5753 paddr (address),
5754 phex (length, 4));
5755 switch (ret)
5756 {
5757 case PACKET_UNKNOWN:
5758 error (_("Remote target does not support flash erase"));
5759 case PACKET_ERROR:
5760 error (_("Error erasing flash with vFlashErase packet"));
5761 default:
5762 break;
5763 }
5764
5765 do_cleanups (back_to);
5766 }
5767
5768 static LONGEST
5769 remote_flash_write (struct target_ops *ops,
5770 ULONGEST address, LONGEST length,
5771 const gdb_byte *data)
5772 {
5773 int saved_remote_timeout = remote_timeout;
5774 int ret;
5775 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5776 &saved_remote_timeout);
5777
5778 remote_timeout = remote_flash_timeout;
5779 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5780 do_cleanups (back_to);
5781
5782 return ret;
5783 }
5784
5785 static void
5786 remote_flash_done (struct target_ops *ops)
5787 {
5788 int saved_remote_timeout = remote_timeout;
5789 int ret;
5790 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5791 &saved_remote_timeout);
5792
5793 remote_timeout = remote_flash_timeout;
5794 ret = remote_send_printf ("vFlashDone");
5795 do_cleanups (back_to);
5796
5797 switch (ret)
5798 {
5799 case PACKET_UNKNOWN:
5800 error (_("Remote target does not support vFlashDone"));
5801 case PACKET_ERROR:
5802 error (_("Error finishing flash operation"));
5803 default:
5804 break;
5805 }
5806 }
5807
5808 static void
5809 remote_files_info (struct target_ops *ignore)
5810 {
5811 puts_filtered ("Debugging a target over a serial line.\n");
5812 }
5813 \f
5814 /* Stuff for dealing with the packets which are part of this protocol.
5815 See comment at top of file for details. */
5816
5817 /* Read a single character from the remote end. */
5818
5819 static int
5820 readchar (int timeout)
5821 {
5822 int ch;
5823
5824 ch = serial_readchar (remote_desc, timeout);
5825
5826 if (ch >= 0)
5827 return ch;
5828
5829 switch ((enum serial_rc) ch)
5830 {
5831 case SERIAL_EOF:
5832 pop_target ();
5833 error (_("Remote connection closed"));
5834 /* no return */
5835 case SERIAL_ERROR:
5836 perror_with_name (_("Remote communication error"));
5837 /* no return */
5838 case SERIAL_TIMEOUT:
5839 break;
5840 }
5841 return ch;
5842 }
5843
5844 /* Send the command in *BUF to the remote machine, and read the reply
5845 into *BUF. Report an error if we get an error reply. Resize
5846 *BUF using xrealloc if necessary to hold the result, and update
5847 *SIZEOF_BUF. */
5848
5849 static void
5850 remote_send (char **buf,
5851 long *sizeof_buf)
5852 {
5853 putpkt (*buf);
5854 getpkt (buf, sizeof_buf, 0);
5855
5856 if ((*buf)[0] == 'E')
5857 error (_("Remote failure reply: %s"), *buf);
5858 }
5859
5860 /* Return a pointer to an xmalloc'ed string representing an escaped
5861 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5862 etc. The caller is responsible for releasing the returned
5863 memory. */
5864
5865 static char *
5866 escape_buffer (const char *buf, int n)
5867 {
5868 struct cleanup *old_chain;
5869 struct ui_file *stb;
5870 char *str;
5871 long length;
5872
5873 stb = mem_fileopen ();
5874 old_chain = make_cleanup_ui_file_delete (stb);
5875
5876 fputstrn_unfiltered (buf, n, 0, stb);
5877 str = ui_file_xstrdup (stb, &length);
5878 do_cleanups (old_chain);
5879 return str;
5880 }
5881
5882 /* Display a null-terminated packet on stdout, for debugging, using C
5883 string notation. */
5884
5885 static void
5886 print_packet (char *buf)
5887 {
5888 puts_filtered ("\"");
5889 fputstr_filtered (buf, '"', gdb_stdout);
5890 puts_filtered ("\"");
5891 }
5892
5893 int
5894 putpkt (char *buf)
5895 {
5896 return putpkt_binary (buf, strlen (buf));
5897 }
5898
5899 /* Send a packet to the remote machine, with error checking. The data
5900 of the packet is in BUF. The string in BUF can be at most
5901 get_remote_packet_size () - 5 to account for the $, # and checksum,
5902 and for a possible /0 if we are debugging (remote_debug) and want
5903 to print the sent packet as a string. */
5904
5905 static int
5906 putpkt_binary (char *buf, int cnt)
5907 {
5908 struct remote_state *rs = get_remote_state ();
5909 int i;
5910 unsigned char csum = 0;
5911 char *buf2 = alloca (cnt + 6);
5912
5913 int ch;
5914 int tcount = 0;
5915 char *p;
5916
5917 /* Catch cases like trying to read memory or listing threads while
5918 we're waiting for a stop reply. The remote server wouldn't be
5919 ready to handle this request, so we'd hang and timeout. We don't
5920 have to worry about this in synchronous mode, because in that
5921 case it's not possible to issue a command while the target is
5922 running. This is not a problem in non-stop mode, because in that
5923 case, the stub is always ready to process serial input. */
5924 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5925 error (_("Cannot execute this command while the target is running."));
5926
5927 /* We're sending out a new packet. Make sure we don't look at a
5928 stale cached response. */
5929 rs->cached_wait_status = 0;
5930
5931 /* Copy the packet into buffer BUF2, encapsulating it
5932 and giving it a checksum. */
5933
5934 p = buf2;
5935 *p++ = '$';
5936
5937 for (i = 0; i < cnt; i++)
5938 {
5939 csum += buf[i];
5940 *p++ = buf[i];
5941 }
5942 *p++ = '#';
5943 *p++ = tohex ((csum >> 4) & 0xf);
5944 *p++ = tohex (csum & 0xf);
5945
5946 /* Send it over and over until we get a positive ack. */
5947
5948 while (1)
5949 {
5950 int started_error_output = 0;
5951
5952 if (remote_debug)
5953 {
5954 struct cleanup *old_chain;
5955 char *str;
5956
5957 *p = '\0';
5958 str = escape_buffer (buf2, p - buf2);
5959 old_chain = make_cleanup (xfree, str);
5960 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
5961 gdb_flush (gdb_stdlog);
5962 do_cleanups (old_chain);
5963 }
5964 if (serial_write (remote_desc, buf2, p - buf2))
5965 perror_with_name (_("putpkt: write failed"));
5966
5967 /* If this is a no acks version of the remote protocol, send the
5968 packet and move on. */
5969 if (rs->noack_mode)
5970 break;
5971
5972 /* Read until either a timeout occurs (-2) or '+' is read.
5973 Handle any notification that arrives in the mean time. */
5974 while (1)
5975 {
5976 ch = readchar (remote_timeout);
5977
5978 if (remote_debug)
5979 {
5980 switch (ch)
5981 {
5982 case '+':
5983 case '-':
5984 case SERIAL_TIMEOUT:
5985 case '$':
5986 case '%':
5987 if (started_error_output)
5988 {
5989 putchar_unfiltered ('\n');
5990 started_error_output = 0;
5991 }
5992 }
5993 }
5994
5995 switch (ch)
5996 {
5997 case '+':
5998 if (remote_debug)
5999 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6000 return 1;
6001 case '-':
6002 if (remote_debug)
6003 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6004 case SERIAL_TIMEOUT:
6005 tcount++;
6006 if (tcount > 3)
6007 return 0;
6008 break; /* Retransmit buffer. */
6009 case '$':
6010 {
6011 if (remote_debug)
6012 fprintf_unfiltered (gdb_stdlog,
6013 "Packet instead of Ack, ignoring it\n");
6014 /* It's probably an old response sent because an ACK
6015 was lost. Gobble up the packet and ack it so it
6016 doesn't get retransmitted when we resend this
6017 packet. */
6018 skip_frame ();
6019 serial_write (remote_desc, "+", 1);
6020 continue; /* Now, go look for +. */
6021 }
6022
6023 case '%':
6024 {
6025 int val;
6026
6027 /* If we got a notification, handle it, and go back to looking
6028 for an ack. */
6029 /* We've found the start of a notification. Now
6030 collect the data. */
6031 val = read_frame (&rs->buf, &rs->buf_size);
6032 if (val >= 0)
6033 {
6034 if (remote_debug)
6035 {
6036 struct cleanup *old_chain;
6037 char *str;
6038
6039 str = escape_buffer (rs->buf, val);
6040 old_chain = make_cleanup (xfree, str);
6041 fprintf_unfiltered (gdb_stdlog,
6042 " Notification received: %s\n",
6043 str);
6044 do_cleanups (old_chain);
6045 }
6046 handle_notification (rs->buf, val);
6047 /* We're in sync now, rewait for the ack. */
6048 tcount = 0;
6049 }
6050 else
6051 {
6052 if (remote_debug)
6053 {
6054 if (!started_error_output)
6055 {
6056 started_error_output = 1;
6057 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6058 }
6059 fputc_unfiltered (ch & 0177, gdb_stdlog);
6060 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6061 }
6062 }
6063 continue;
6064 }
6065 /* fall-through */
6066 default:
6067 if (remote_debug)
6068 {
6069 if (!started_error_output)
6070 {
6071 started_error_output = 1;
6072 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6073 }
6074 fputc_unfiltered (ch & 0177, gdb_stdlog);
6075 }
6076 continue;
6077 }
6078 break; /* Here to retransmit. */
6079 }
6080
6081 #if 0
6082 /* This is wrong. If doing a long backtrace, the user should be
6083 able to get out next time we call QUIT, without anything as
6084 violent as interrupt_query. If we want to provide a way out of
6085 here without getting to the next QUIT, it should be based on
6086 hitting ^C twice as in remote_wait. */
6087 if (quit_flag)
6088 {
6089 quit_flag = 0;
6090 interrupt_query ();
6091 }
6092 #endif
6093 }
6094 return 0;
6095 }
6096
6097 /* Come here after finding the start of a frame when we expected an
6098 ack. Do our best to discard the rest of this packet. */
6099
6100 static void
6101 skip_frame (void)
6102 {
6103 int c;
6104
6105 while (1)
6106 {
6107 c = readchar (remote_timeout);
6108 switch (c)
6109 {
6110 case SERIAL_TIMEOUT:
6111 /* Nothing we can do. */
6112 return;
6113 case '#':
6114 /* Discard the two bytes of checksum and stop. */
6115 c = readchar (remote_timeout);
6116 if (c >= 0)
6117 c = readchar (remote_timeout);
6118
6119 return;
6120 case '*': /* Run length encoding. */
6121 /* Discard the repeat count. */
6122 c = readchar (remote_timeout);
6123 if (c < 0)
6124 return;
6125 break;
6126 default:
6127 /* A regular character. */
6128 break;
6129 }
6130 }
6131 }
6132
6133 /* Come here after finding the start of the frame. Collect the rest
6134 into *BUF, verifying the checksum, length, and handling run-length
6135 compression. NUL terminate the buffer. If there is not enough room,
6136 expand *BUF using xrealloc.
6137
6138 Returns -1 on error, number of characters in buffer (ignoring the
6139 trailing NULL) on success. (could be extended to return one of the
6140 SERIAL status indications). */
6141
6142 static long
6143 read_frame (char **buf_p,
6144 long *sizeof_buf)
6145 {
6146 unsigned char csum;
6147 long bc;
6148 int c;
6149 char *buf = *buf_p;
6150 struct remote_state *rs = get_remote_state ();
6151
6152 csum = 0;
6153 bc = 0;
6154
6155 while (1)
6156 {
6157 c = readchar (remote_timeout);
6158 switch (c)
6159 {
6160 case SERIAL_TIMEOUT:
6161 if (remote_debug)
6162 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6163 return -1;
6164 case '$':
6165 if (remote_debug)
6166 fputs_filtered ("Saw new packet start in middle of old one\n",
6167 gdb_stdlog);
6168 return -1; /* Start a new packet, count retries. */
6169 case '#':
6170 {
6171 unsigned char pktcsum;
6172 int check_0 = 0;
6173 int check_1 = 0;
6174
6175 buf[bc] = '\0';
6176
6177 check_0 = readchar (remote_timeout);
6178 if (check_0 >= 0)
6179 check_1 = readchar (remote_timeout);
6180
6181 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6182 {
6183 if (remote_debug)
6184 fputs_filtered ("Timeout in checksum, retrying\n",
6185 gdb_stdlog);
6186 return -1;
6187 }
6188 else if (check_0 < 0 || check_1 < 0)
6189 {
6190 if (remote_debug)
6191 fputs_filtered ("Communication error in checksum\n",
6192 gdb_stdlog);
6193 return -1;
6194 }
6195
6196 /* Don't recompute the checksum; with no ack packets we
6197 don't have any way to indicate a packet retransmission
6198 is necessary. */
6199 if (rs->noack_mode)
6200 return bc;
6201
6202 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6203 if (csum == pktcsum)
6204 return bc;
6205
6206 if (remote_debug)
6207 {
6208 struct cleanup *old_chain;
6209 char *str;
6210
6211 str = escape_buffer (buf, bc);
6212 old_chain = make_cleanup (xfree, str);
6213 fprintf_unfiltered (gdb_stdlog,
6214 "\
6215 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6216 pktcsum, csum, str);
6217 do_cleanups (old_chain);
6218 }
6219 /* Number of characters in buffer ignoring trailing
6220 NULL. */
6221 return -1;
6222 }
6223 case '*': /* Run length encoding. */
6224 {
6225 int repeat;
6226 csum += c;
6227
6228 c = readchar (remote_timeout);
6229 csum += c;
6230 repeat = c - ' ' + 3; /* Compute repeat count. */
6231
6232 /* The character before ``*'' is repeated. */
6233
6234 if (repeat > 0 && repeat <= 255 && bc > 0)
6235 {
6236 if (bc + repeat - 1 >= *sizeof_buf - 1)
6237 {
6238 /* Make some more room in the buffer. */
6239 *sizeof_buf += repeat;
6240 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6241 buf = *buf_p;
6242 }
6243
6244 memset (&buf[bc], buf[bc - 1], repeat);
6245 bc += repeat;
6246 continue;
6247 }
6248
6249 buf[bc] = '\0';
6250 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6251 return -1;
6252 }
6253 default:
6254 if (bc >= *sizeof_buf - 1)
6255 {
6256 /* Make some more room in the buffer. */
6257 *sizeof_buf *= 2;
6258 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6259 buf = *buf_p;
6260 }
6261
6262 buf[bc++] = c;
6263 csum += c;
6264 continue;
6265 }
6266 }
6267 }
6268
6269 /* Read a packet from the remote machine, with error checking, and
6270 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6271 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6272 rather than timing out; this is used (in synchronous mode) to wait
6273 for a target that is is executing user code to stop. */
6274 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6275 don't have to change all the calls to getpkt to deal with the
6276 return value, because at the moment I don't know what the right
6277 thing to do it for those. */
6278 void
6279 getpkt (char **buf,
6280 long *sizeof_buf,
6281 int forever)
6282 {
6283 int timed_out;
6284
6285 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6286 }
6287
6288
6289 /* Read a packet from the remote machine, with error checking, and
6290 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6291 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6292 rather than timing out; this is used (in synchronous mode) to wait
6293 for a target that is is executing user code to stop. If FOREVER ==
6294 0, this function is allowed to time out gracefully and return an
6295 indication of this to the caller. Otherwise return the number of
6296 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6297 enough reason to return to the caller. */
6298
6299 static int
6300 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6301 int expecting_notif)
6302 {
6303 struct remote_state *rs = get_remote_state ();
6304 int c;
6305 int tries;
6306 int timeout;
6307 int val;
6308
6309 /* We're reading a new response. Make sure we don't look at a
6310 previously cached response. */
6311 rs->cached_wait_status = 0;
6312
6313 strcpy (*buf, "timeout");
6314
6315 if (forever)
6316 timeout = watchdog > 0 ? watchdog : -1;
6317 else if (expecting_notif)
6318 timeout = 0; /* There should already be a char in the buffer. If
6319 not, bail out. */
6320 else
6321 timeout = remote_timeout;
6322
6323 #define MAX_TRIES 3
6324
6325 /* Process any number of notifications, and then return when
6326 we get a packet. */
6327 for (;;)
6328 {
6329 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6330 times. */
6331 for (tries = 1; tries <= MAX_TRIES; tries++)
6332 {
6333 /* This can loop forever if the remote side sends us
6334 characters continuously, but if it pauses, we'll get
6335 SERIAL_TIMEOUT from readchar because of timeout. Then
6336 we'll count that as a retry.
6337
6338 Note that even when forever is set, we will only wait
6339 forever prior to the start of a packet. After that, we
6340 expect characters to arrive at a brisk pace. They should
6341 show up within remote_timeout intervals. */
6342 do
6343 c = readchar (timeout);
6344 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6345
6346 if (c == SERIAL_TIMEOUT)
6347 {
6348 if (expecting_notif)
6349 return -1; /* Don't complain, it's normal to not get
6350 anything in this case. */
6351
6352 if (forever) /* Watchdog went off? Kill the target. */
6353 {
6354 QUIT;
6355 pop_target ();
6356 error (_("Watchdog timeout has expired. Target detached."));
6357 }
6358 if (remote_debug)
6359 fputs_filtered ("Timed out.\n", gdb_stdlog);
6360 }
6361 else
6362 {
6363 /* We've found the start of a packet or notification.
6364 Now collect the data. */
6365 val = read_frame (buf, sizeof_buf);
6366 if (val >= 0)
6367 break;
6368 }
6369
6370 serial_write (remote_desc, "-", 1);
6371 }
6372
6373 if (tries > MAX_TRIES)
6374 {
6375 /* We have tried hard enough, and just can't receive the
6376 packet/notification. Give up. */
6377 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6378
6379 /* Skip the ack char if we're in no-ack mode. */
6380 if (!rs->noack_mode)
6381 serial_write (remote_desc, "+", 1);
6382 return -1;
6383 }
6384
6385 /* If we got an ordinary packet, return that to our caller. */
6386 if (c == '$')
6387 {
6388 if (remote_debug)
6389 {
6390 struct cleanup *old_chain;
6391 char *str;
6392
6393 str = escape_buffer (*buf, val);
6394 old_chain = make_cleanup (xfree, str);
6395 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6396 do_cleanups (old_chain);
6397 }
6398
6399 /* Skip the ack char if we're in no-ack mode. */
6400 if (!rs->noack_mode)
6401 serial_write (remote_desc, "+", 1);
6402 return val;
6403 }
6404
6405 /* If we got a notification, handle it, and go back to looking
6406 for a packet. */
6407 else
6408 {
6409 gdb_assert (c == '%');
6410
6411 if (remote_debug)
6412 {
6413 struct cleanup *old_chain;
6414 char *str;
6415
6416 str = escape_buffer (*buf, val);
6417 old_chain = make_cleanup (xfree, str);
6418 fprintf_unfiltered (gdb_stdlog,
6419 " Notification received: %s\n",
6420 str);
6421 do_cleanups (old_chain);
6422 }
6423
6424 handle_notification (*buf, val);
6425
6426 /* Notifications require no acknowledgement. */
6427
6428 if (expecting_notif)
6429 return -1;
6430 }
6431 }
6432 }
6433
6434 static int
6435 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6436 {
6437 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6438 }
6439
6440 static int
6441 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6442 {
6443 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6444 }
6445
6446 \f
6447 static void
6448 remote_kill (void)
6449 {
6450 /* Use catch_errors so the user can quit from gdb even when we
6451 aren't on speaking terms with the remote system. */
6452 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6453
6454 /* Don't wait for it to die. I'm not really sure it matters whether
6455 we do or not. For the existing stubs, kill is a noop. */
6456 target_mourn_inferior ();
6457 }
6458
6459 static int
6460 remote_vkill (int pid, struct remote_state *rs)
6461 {
6462 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6463 return -1;
6464
6465 /* Tell the remote target to detach. */
6466 sprintf (rs->buf, "vKill;%x", pid);
6467 putpkt (rs->buf);
6468 getpkt (&rs->buf, &rs->buf_size, 0);
6469
6470 if (packet_ok (rs->buf,
6471 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6472 return 0;
6473 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6474 return -1;
6475 else
6476 return 1;
6477 }
6478
6479 static void
6480 extended_remote_kill (void)
6481 {
6482 int res;
6483 int pid = ptid_get_pid (inferior_ptid);
6484 struct remote_state *rs = get_remote_state ();
6485
6486 res = remote_vkill (pid, rs);
6487 if (res == -1 && !remote_multi_process_p (rs))
6488 {
6489 /* Don't try 'k' on a multi-process aware stub -- it has no way
6490 to specify the pid. */
6491
6492 putpkt ("k");
6493 #if 0
6494 getpkt (&rs->buf, &rs->buf_size, 0);
6495 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6496 res = 1;
6497 #else
6498 /* Don't wait for it to die. I'm not really sure it matters whether
6499 we do or not. For the existing stubs, kill is a noop. */
6500 res = 0;
6501 #endif
6502 }
6503
6504 if (res != 0)
6505 error (_("Can't kill process"));
6506
6507 target_mourn_inferior ();
6508 }
6509
6510 static void
6511 remote_mourn (struct target_ops *ops)
6512 {
6513 remote_mourn_1 (ops);
6514 }
6515
6516 /* Worker function for remote_mourn. */
6517 static void
6518 remote_mourn_1 (struct target_ops *target)
6519 {
6520 unpush_target (target);
6521
6522 /* remote_close takes care of cleaning up. */
6523 }
6524
6525 static int
6526 select_new_thread_callback (struct thread_info *th, void* data)
6527 {
6528 if (!is_exited (th->ptid))
6529 {
6530 switch_to_thread (th->ptid);
6531 printf_filtered (_("[Switching to %s]\n"),
6532 target_pid_to_str (inferior_ptid));
6533 return 1;
6534 }
6535 return 0;
6536 }
6537
6538 static void
6539 extended_remote_mourn_1 (struct target_ops *target)
6540 {
6541 struct remote_state *rs = get_remote_state ();
6542
6543 /* In case we got here due to an error, but we're going to stay
6544 connected. */
6545 rs->waiting_for_stop_reply = 0;
6546
6547 /* We're no longer interested in these events. */
6548 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6549
6550 /* If the current general thread belonged to the process we just
6551 detached from or has exited, the remote side current general
6552 thread becomes undefined. Considering a case like this:
6553
6554 - We just got here due to a detach.
6555 - The process that we're detaching from happens to immediately
6556 report a global breakpoint being hit in non-stop mode, in the
6557 same thread we had selected before.
6558 - GDB attaches to this process again.
6559 - This event happens to be the next event we handle.
6560
6561 GDB would consider that the current general thread didn't need to
6562 be set on the stub side (with Hg), since for all it knew,
6563 GENERAL_THREAD hadn't changed.
6564
6565 Notice that although in all-stop mode, the remote server always
6566 sets the current thread to the thread reporting the stop event,
6567 that doesn't happen in non-stop mode; in non-stop, the stub *must
6568 not* change the current thread when reporting a breakpoint hit,
6569 due to the decoupling of event reporting and event handling.
6570
6571 To keep things simple, we always invalidate our notion of the
6572 current thread. */
6573 record_currthread (minus_one_ptid);
6574
6575 /* Unlike "target remote", we do not want to unpush the target; then
6576 the next time the user says "run", we won't be connected. */
6577
6578 /* Call common code to mark the inferior as not running. */
6579 generic_mourn_inferior ();
6580
6581 if (have_inferiors ())
6582 {
6583 extern void nullify_last_target_wait_ptid ();
6584 /* Multi-process case. The current process has exited, but
6585 there are other processes to debug. Switch to the first
6586 available. */
6587 iterate_over_threads (select_new_thread_callback, NULL);
6588 nullify_last_target_wait_ptid ();
6589 }
6590 else
6591 {
6592 if (!remote_multi_process_p (rs))
6593 {
6594 /* Check whether the target is running now - some remote stubs
6595 automatically restart after kill. */
6596 putpkt ("?");
6597 getpkt (&rs->buf, &rs->buf_size, 0);
6598
6599 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6600 {
6601 /* Assume that the target has been restarted. Set inferior_ptid
6602 so that bits of core GDB realizes there's something here, e.g.,
6603 so that the user can say "kill" again. */
6604 inferior_ptid = magic_null_ptid;
6605 }
6606 else
6607 {
6608 /* Mark this (still pushed) target as not executable until we
6609 restart it. */
6610 target_mark_exited (target);
6611 }
6612 }
6613 else
6614 /* Always remove execution if this was the last process. */
6615 target_mark_exited (target);
6616 }
6617 }
6618
6619 static void
6620 extended_remote_mourn (struct target_ops *ops)
6621 {
6622 extended_remote_mourn_1 (ops);
6623 }
6624
6625 static int
6626 extended_remote_run (char *args)
6627 {
6628 struct remote_state *rs = get_remote_state ();
6629 char *p;
6630 int len;
6631
6632 /* If the user has disabled vRun support, or we have detected that
6633 support is not available, do not try it. */
6634 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6635 return -1;
6636
6637 strcpy (rs->buf, "vRun;");
6638 len = strlen (rs->buf);
6639
6640 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6641 error (_("Remote file name too long for run packet"));
6642 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6643
6644 gdb_assert (args != NULL);
6645 if (*args)
6646 {
6647 struct cleanup *back_to;
6648 int i;
6649 char **argv;
6650
6651 argv = gdb_buildargv (args);
6652 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6653 for (i = 0; argv[i] != NULL; i++)
6654 {
6655 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6656 error (_("Argument list too long for run packet"));
6657 rs->buf[len++] = ';';
6658 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6659 }
6660 do_cleanups (back_to);
6661 }
6662
6663 rs->buf[len++] = '\0';
6664
6665 putpkt (rs->buf);
6666 getpkt (&rs->buf, &rs->buf_size, 0);
6667
6668 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6669 {
6670 /* We have a wait response; we don't need it, though. All is well. */
6671 return 0;
6672 }
6673 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6674 /* It wasn't disabled before, but it is now. */
6675 return -1;
6676 else
6677 {
6678 if (remote_exec_file[0] == '\0')
6679 error (_("Running the default executable on the remote target failed; "
6680 "try \"set remote exec-file\"?"));
6681 else
6682 error (_("Running \"%s\" on the remote target failed"),
6683 remote_exec_file);
6684 }
6685 }
6686
6687 /* In the extended protocol we want to be able to do things like
6688 "run" and have them basically work as expected. So we need
6689 a special create_inferior function. We support changing the
6690 executable file and the command line arguments, but not the
6691 environment. */
6692
6693 static void
6694 extended_remote_create_inferior_1 (char *exec_file, char *args,
6695 char **env, int from_tty)
6696 {
6697 /* If running asynchronously, register the target file descriptor
6698 with the event loop. */
6699 if (target_can_async_p ())
6700 target_async (inferior_event_handler, 0);
6701
6702 /* Now restart the remote server. */
6703 if (extended_remote_run (args) == -1)
6704 {
6705 /* vRun was not supported. Fail if we need it to do what the
6706 user requested. */
6707 if (remote_exec_file[0])
6708 error (_("Remote target does not support \"set remote exec-file\""));
6709 if (args[0])
6710 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6711
6712 /* Fall back to "R". */
6713 extended_remote_restart ();
6714 }
6715
6716 /* Clean up from the last time we ran, before we mark the target
6717 running again. This will mark breakpoints uninserted, and
6718 get_offsets may insert breakpoints. */
6719 init_thread_list ();
6720 init_wait_for_inferior ();
6721
6722 /* Now mark the inferior as running before we do anything else. */
6723 inferior_ptid = magic_null_ptid;
6724
6725 /* Now, if we have thread information, update inferior_ptid. */
6726 inferior_ptid = remote_current_thread (inferior_ptid);
6727
6728 add_inferior (ptid_get_pid (inferior_ptid));
6729 add_thread_silent (inferior_ptid);
6730
6731 target_mark_running (&extended_remote_ops);
6732
6733 /* Get updated offsets, if the stub uses qOffsets. */
6734 get_offsets ();
6735 }
6736
6737 static void
6738 extended_remote_create_inferior (struct target_ops *ops,
6739 char *exec_file, char *args,
6740 char **env, int from_tty)
6741 {
6742 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6743 }
6744 \f
6745
6746 /* Insert a breakpoint. On targets that have software breakpoint
6747 support, we ask the remote target to do the work; on targets
6748 which don't, we insert a traditional memory breakpoint. */
6749
6750 static int
6751 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6752 {
6753 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6754 If it succeeds, then set the support to PACKET_ENABLE. If it
6755 fails, and the user has explicitly requested the Z support then
6756 report an error, otherwise, mark it disabled and go on. */
6757
6758 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6759 {
6760 CORE_ADDR addr = bp_tgt->placed_address;
6761 struct remote_state *rs;
6762 char *p;
6763 int bpsize;
6764
6765 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6766
6767 rs = get_remote_state ();
6768 p = rs->buf;
6769
6770 *(p++) = 'Z';
6771 *(p++) = '0';
6772 *(p++) = ',';
6773 addr = (ULONGEST) remote_address_masked (addr);
6774 p += hexnumstr (p, addr);
6775 sprintf (p, ",%d", bpsize);
6776
6777 putpkt (rs->buf);
6778 getpkt (&rs->buf, &rs->buf_size, 0);
6779
6780 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6781 {
6782 case PACKET_ERROR:
6783 return -1;
6784 case PACKET_OK:
6785 bp_tgt->placed_address = addr;
6786 bp_tgt->placed_size = bpsize;
6787 return 0;
6788 case PACKET_UNKNOWN:
6789 break;
6790 }
6791 }
6792
6793 return memory_insert_breakpoint (bp_tgt);
6794 }
6795
6796 static int
6797 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6798 {
6799 CORE_ADDR addr = bp_tgt->placed_address;
6800 struct remote_state *rs = get_remote_state ();
6801 int bp_size;
6802
6803 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6804 {
6805 char *p = rs->buf;
6806
6807 *(p++) = 'z';
6808 *(p++) = '0';
6809 *(p++) = ',';
6810
6811 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6812 p += hexnumstr (p, addr);
6813 sprintf (p, ",%d", bp_tgt->placed_size);
6814
6815 putpkt (rs->buf);
6816 getpkt (&rs->buf, &rs->buf_size, 0);
6817
6818 return (rs->buf[0] == 'E');
6819 }
6820
6821 return memory_remove_breakpoint (bp_tgt);
6822 }
6823
6824 static int
6825 watchpoint_to_Z_packet (int type)
6826 {
6827 switch (type)
6828 {
6829 case hw_write:
6830 return Z_PACKET_WRITE_WP;
6831 break;
6832 case hw_read:
6833 return Z_PACKET_READ_WP;
6834 break;
6835 case hw_access:
6836 return Z_PACKET_ACCESS_WP;
6837 break;
6838 default:
6839 internal_error (__FILE__, __LINE__,
6840 _("hw_bp_to_z: bad watchpoint type %d"), type);
6841 }
6842 }
6843
6844 static int
6845 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6846 {
6847 struct remote_state *rs = get_remote_state ();
6848 char *p;
6849 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6850
6851 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6852 return -1;
6853
6854 sprintf (rs->buf, "Z%x,", packet);
6855 p = strchr (rs->buf, '\0');
6856 addr = remote_address_masked (addr);
6857 p += hexnumstr (p, (ULONGEST) addr);
6858 sprintf (p, ",%x", len);
6859
6860 putpkt (rs->buf);
6861 getpkt (&rs->buf, &rs->buf_size, 0);
6862
6863 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6864 {
6865 case PACKET_ERROR:
6866 case PACKET_UNKNOWN:
6867 return -1;
6868 case PACKET_OK:
6869 return 0;
6870 }
6871 internal_error (__FILE__, __LINE__,
6872 _("remote_insert_watchpoint: reached end of function"));
6873 }
6874
6875
6876 static int
6877 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6878 {
6879 struct remote_state *rs = get_remote_state ();
6880 char *p;
6881 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6882
6883 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6884 return -1;
6885
6886 sprintf (rs->buf, "z%x,", packet);
6887 p = strchr (rs->buf, '\0');
6888 addr = remote_address_masked (addr);
6889 p += hexnumstr (p, (ULONGEST) addr);
6890 sprintf (p, ",%x", len);
6891 putpkt (rs->buf);
6892 getpkt (&rs->buf, &rs->buf_size, 0);
6893
6894 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6895 {
6896 case PACKET_ERROR:
6897 case PACKET_UNKNOWN:
6898 return -1;
6899 case PACKET_OK:
6900 return 0;
6901 }
6902 internal_error (__FILE__, __LINE__,
6903 _("remote_remove_watchpoint: reached end of function"));
6904 }
6905
6906
6907 int remote_hw_watchpoint_limit = -1;
6908 int remote_hw_breakpoint_limit = -1;
6909
6910 static int
6911 remote_check_watch_resources (int type, int cnt, int ot)
6912 {
6913 if (type == bp_hardware_breakpoint)
6914 {
6915 if (remote_hw_breakpoint_limit == 0)
6916 return 0;
6917 else if (remote_hw_breakpoint_limit < 0)
6918 return 1;
6919 else if (cnt <= remote_hw_breakpoint_limit)
6920 return 1;
6921 }
6922 else
6923 {
6924 if (remote_hw_watchpoint_limit == 0)
6925 return 0;
6926 else if (remote_hw_watchpoint_limit < 0)
6927 return 1;
6928 else if (ot)
6929 return -1;
6930 else if (cnt <= remote_hw_watchpoint_limit)
6931 return 1;
6932 }
6933 return -1;
6934 }
6935
6936 static int
6937 remote_stopped_by_watchpoint (void)
6938 {
6939 return remote_stopped_by_watchpoint_p;
6940 }
6941
6942 static int
6943 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6944 {
6945 int rc = 0;
6946 if (remote_stopped_by_watchpoint ())
6947 {
6948 *addr_p = remote_watch_data_address;
6949 rc = 1;
6950 }
6951
6952 return rc;
6953 }
6954
6955
6956 static int
6957 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6958 {
6959 CORE_ADDR addr;
6960 struct remote_state *rs;
6961 char *p;
6962
6963 /* The length field should be set to the size of a breakpoint
6964 instruction, even though we aren't inserting one ourselves. */
6965
6966 gdbarch_breakpoint_from_pc
6967 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6968
6969 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6970 return -1;
6971
6972 rs = get_remote_state ();
6973 p = rs->buf;
6974
6975 *(p++) = 'Z';
6976 *(p++) = '1';
6977 *(p++) = ',';
6978
6979 addr = remote_address_masked (bp_tgt->placed_address);
6980 p += hexnumstr (p, (ULONGEST) addr);
6981 sprintf (p, ",%x", bp_tgt->placed_size);
6982
6983 putpkt (rs->buf);
6984 getpkt (&rs->buf, &rs->buf_size, 0);
6985
6986 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6987 {
6988 case PACKET_ERROR:
6989 case PACKET_UNKNOWN:
6990 return -1;
6991 case PACKET_OK:
6992 return 0;
6993 }
6994 internal_error (__FILE__, __LINE__,
6995 _("remote_insert_hw_breakpoint: reached end of function"));
6996 }
6997
6998
6999 static int
7000 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7001 {
7002 CORE_ADDR addr;
7003 struct remote_state *rs = get_remote_state ();
7004 char *p = rs->buf;
7005
7006 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7007 return -1;
7008
7009 *(p++) = 'z';
7010 *(p++) = '1';
7011 *(p++) = ',';
7012
7013 addr = remote_address_masked (bp_tgt->placed_address);
7014 p += hexnumstr (p, (ULONGEST) addr);
7015 sprintf (p, ",%x", bp_tgt->placed_size);
7016
7017 putpkt (rs->buf);
7018 getpkt (&rs->buf, &rs->buf_size, 0);
7019
7020 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7021 {
7022 case PACKET_ERROR:
7023 case PACKET_UNKNOWN:
7024 return -1;
7025 case PACKET_OK:
7026 return 0;
7027 }
7028 internal_error (__FILE__, __LINE__,
7029 _("remote_remove_hw_breakpoint: reached end of function"));
7030 }
7031
7032 /* Table used by the crc32 function to calcuate the checksum. */
7033
7034 static unsigned long crc32_table[256] =
7035 {0, 0};
7036
7037 static unsigned long
7038 crc32 (unsigned char *buf, int len, unsigned int crc)
7039 {
7040 if (!crc32_table[1])
7041 {
7042 /* Initialize the CRC table and the decoding table. */
7043 int i, j;
7044 unsigned int c;
7045
7046 for (i = 0; i < 256; i++)
7047 {
7048 for (c = i << 24, j = 8; j > 0; --j)
7049 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7050 crc32_table[i] = c;
7051 }
7052 }
7053
7054 while (len--)
7055 {
7056 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7057 buf++;
7058 }
7059 return crc;
7060 }
7061
7062 /* compare-sections command
7063
7064 With no arguments, compares each loadable section in the exec bfd
7065 with the same memory range on the target, and reports mismatches.
7066 Useful for verifying the image on the target against the exec file.
7067 Depends on the target understanding the new "qCRC:" request. */
7068
7069 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7070 target method (target verify memory) and generic version of the
7071 actual command. This will allow other high-level code (especially
7072 generic_load()) to make use of this target functionality. */
7073
7074 static void
7075 compare_sections_command (char *args, int from_tty)
7076 {
7077 struct remote_state *rs = get_remote_state ();
7078 asection *s;
7079 unsigned long host_crc, target_crc;
7080 extern bfd *exec_bfd;
7081 struct cleanup *old_chain;
7082 char *tmp;
7083 char *sectdata;
7084 const char *sectname;
7085 bfd_size_type size;
7086 bfd_vma lma;
7087 int matched = 0;
7088 int mismatched = 0;
7089
7090 if (!exec_bfd)
7091 error (_("command cannot be used without an exec file"));
7092 if (!current_target.to_shortname ||
7093 strcmp (current_target.to_shortname, "remote") != 0)
7094 error (_("command can only be used with remote target"));
7095
7096 for (s = exec_bfd->sections; s; s = s->next)
7097 {
7098 if (!(s->flags & SEC_LOAD))
7099 continue; /* skip non-loadable section */
7100
7101 size = bfd_get_section_size (s);
7102 if (size == 0)
7103 continue; /* skip zero-length section */
7104
7105 sectname = bfd_get_section_name (exec_bfd, s);
7106 if (args && strcmp (args, sectname) != 0)
7107 continue; /* not the section selected by user */
7108
7109 matched = 1; /* do this section */
7110 lma = s->lma;
7111 /* FIXME: assumes lma can fit into long. */
7112 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7113 (long) lma, (long) size);
7114 putpkt (rs->buf);
7115
7116 /* Be clever; compute the host_crc before waiting for target
7117 reply. */
7118 sectdata = xmalloc (size);
7119 old_chain = make_cleanup (xfree, sectdata);
7120 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7121 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7122
7123 getpkt (&rs->buf, &rs->buf_size, 0);
7124 if (rs->buf[0] == 'E')
7125 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7126 sectname, paddr (lma), paddr (lma + size));
7127 if (rs->buf[0] != 'C')
7128 error (_("remote target does not support this operation"));
7129
7130 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7131 target_crc = target_crc * 16 + fromhex (*tmp);
7132
7133 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7134 sectname, paddr (lma), paddr (lma + size));
7135 if (host_crc == target_crc)
7136 printf_filtered ("matched.\n");
7137 else
7138 {
7139 printf_filtered ("MIS-MATCHED!\n");
7140 mismatched++;
7141 }
7142
7143 do_cleanups (old_chain);
7144 }
7145 if (mismatched > 0)
7146 warning (_("One or more sections of the remote executable does not match\n\
7147 the loaded file\n"));
7148 if (args && !matched)
7149 printf_filtered (_("No loaded section named '%s'.\n"), args);
7150 }
7151
7152 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7153 into remote target. The number of bytes written to the remote
7154 target is returned, or -1 for error. */
7155
7156 static LONGEST
7157 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7158 const char *annex, const gdb_byte *writebuf,
7159 ULONGEST offset, LONGEST len,
7160 struct packet_config *packet)
7161 {
7162 int i, buf_len;
7163 ULONGEST n;
7164 gdb_byte *wbuf;
7165 struct remote_state *rs = get_remote_state ();
7166 int max_size = get_memory_write_packet_size ();
7167
7168 if (packet->support == PACKET_DISABLE)
7169 return -1;
7170
7171 /* Insert header. */
7172 i = snprintf (rs->buf, max_size,
7173 "qXfer:%s:write:%s:%s:",
7174 object_name, annex ? annex : "",
7175 phex_nz (offset, sizeof offset));
7176 max_size -= (i + 1);
7177
7178 /* Escape as much data as fits into rs->buf. */
7179 buf_len = remote_escape_output
7180 (writebuf, len, (rs->buf + i), &max_size, max_size);
7181
7182 if (putpkt_binary (rs->buf, i + buf_len) < 0
7183 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7184 || packet_ok (rs->buf, packet) != PACKET_OK)
7185 return -1;
7186
7187 unpack_varlen_hex (rs->buf, &n);
7188 return n;
7189 }
7190
7191 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7192 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7193 number of bytes read is returned, or 0 for EOF, or -1 for error.
7194 The number of bytes read may be less than LEN without indicating an
7195 EOF. PACKET is checked and updated to indicate whether the remote
7196 target supports this object. */
7197
7198 static LONGEST
7199 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7200 const char *annex,
7201 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7202 struct packet_config *packet)
7203 {
7204 static char *finished_object;
7205 static char *finished_annex;
7206 static ULONGEST finished_offset;
7207
7208 struct remote_state *rs = get_remote_state ();
7209 unsigned int total = 0;
7210 LONGEST i, n, packet_len;
7211
7212 if (packet->support == PACKET_DISABLE)
7213 return -1;
7214
7215 /* Check whether we've cached an end-of-object packet that matches
7216 this request. */
7217 if (finished_object)
7218 {
7219 if (strcmp (object_name, finished_object) == 0
7220 && strcmp (annex ? annex : "", finished_annex) == 0
7221 && offset == finished_offset)
7222 return 0;
7223
7224 /* Otherwise, we're now reading something different. Discard
7225 the cache. */
7226 xfree (finished_object);
7227 xfree (finished_annex);
7228 finished_object = NULL;
7229 finished_annex = NULL;
7230 }
7231
7232 /* Request only enough to fit in a single packet. The actual data
7233 may not, since we don't know how much of it will need to be escaped;
7234 the target is free to respond with slightly less data. We subtract
7235 five to account for the response type and the protocol frame. */
7236 n = min (get_remote_packet_size () - 5, len);
7237 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7238 object_name, annex ? annex : "",
7239 phex_nz (offset, sizeof offset),
7240 phex_nz (n, sizeof n));
7241 i = putpkt (rs->buf);
7242 if (i < 0)
7243 return -1;
7244
7245 rs->buf[0] = '\0';
7246 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7247 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7248 return -1;
7249
7250 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7251 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7252
7253 /* 'm' means there is (or at least might be) more data after this
7254 batch. That does not make sense unless there's at least one byte
7255 of data in this reply. */
7256 if (rs->buf[0] == 'm' && packet_len == 1)
7257 error (_("Remote qXfer reply contained no data."));
7258
7259 /* Got some data. */
7260 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7261
7262 /* 'l' is an EOF marker, possibly including a final block of data,
7263 or possibly empty. If we have the final block of a non-empty
7264 object, record this fact to bypass a subsequent partial read. */
7265 if (rs->buf[0] == 'l' && offset + i > 0)
7266 {
7267 finished_object = xstrdup (object_name);
7268 finished_annex = xstrdup (annex ? annex : "");
7269 finished_offset = offset + i;
7270 }
7271
7272 return i;
7273 }
7274
7275 static LONGEST
7276 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7277 const char *annex, gdb_byte *readbuf,
7278 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7279 {
7280 struct remote_state *rs;
7281 int i;
7282 char *p2;
7283 char query_type;
7284
7285 set_general_thread (inferior_ptid);
7286
7287 rs = get_remote_state ();
7288
7289 /* Handle memory using the standard memory routines. */
7290 if (object == TARGET_OBJECT_MEMORY)
7291 {
7292 int xfered;
7293 errno = 0;
7294
7295 /* If the remote target is connected but not running, we should
7296 pass this request down to a lower stratum (e.g. the executable
7297 file). */
7298 if (!target_has_execution)
7299 return 0;
7300
7301 if (writebuf != NULL)
7302 xfered = remote_write_bytes (offset, writebuf, len);
7303 else
7304 xfered = remote_read_bytes (offset, readbuf, len);
7305
7306 if (xfered > 0)
7307 return xfered;
7308 else if (xfered == 0 && errno == 0)
7309 return 0;
7310 else
7311 return -1;
7312 }
7313
7314 /* Handle SPU memory using qxfer packets. */
7315 if (object == TARGET_OBJECT_SPU)
7316 {
7317 if (readbuf)
7318 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7319 &remote_protocol_packets
7320 [PACKET_qXfer_spu_read]);
7321 else
7322 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7323 &remote_protocol_packets
7324 [PACKET_qXfer_spu_write]);
7325 }
7326
7327 /* Handle extra signal info using qxfer packets. */
7328 if (object == TARGET_OBJECT_SIGNAL_INFO)
7329 {
7330 if (readbuf)
7331 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7332 &remote_protocol_packets
7333 [PACKET_qXfer_siginfo_read]);
7334 else
7335 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7336 &remote_protocol_packets
7337 [PACKET_qXfer_siginfo_write]);
7338 }
7339
7340 /* Only handle flash writes. */
7341 if (writebuf != NULL)
7342 {
7343 LONGEST xfered;
7344
7345 switch (object)
7346 {
7347 case TARGET_OBJECT_FLASH:
7348 xfered = remote_flash_write (ops, offset, len, writebuf);
7349
7350 if (xfered > 0)
7351 return xfered;
7352 else if (xfered == 0 && errno == 0)
7353 return 0;
7354 else
7355 return -1;
7356
7357 default:
7358 return -1;
7359 }
7360 }
7361
7362 /* Map pre-existing objects onto letters. DO NOT do this for new
7363 objects!!! Instead specify new query packets. */
7364 switch (object)
7365 {
7366 case TARGET_OBJECT_AVR:
7367 query_type = 'R';
7368 break;
7369
7370 case TARGET_OBJECT_AUXV:
7371 gdb_assert (annex == NULL);
7372 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7373 &remote_protocol_packets[PACKET_qXfer_auxv]);
7374
7375 case TARGET_OBJECT_AVAILABLE_FEATURES:
7376 return remote_read_qxfer
7377 (ops, "features", annex, readbuf, offset, len,
7378 &remote_protocol_packets[PACKET_qXfer_features]);
7379
7380 case TARGET_OBJECT_LIBRARIES:
7381 return remote_read_qxfer
7382 (ops, "libraries", annex, readbuf, offset, len,
7383 &remote_protocol_packets[PACKET_qXfer_libraries]);
7384
7385 case TARGET_OBJECT_MEMORY_MAP:
7386 gdb_assert (annex == NULL);
7387 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7388 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7389
7390 case TARGET_OBJECT_OSDATA:
7391 /* Should only get here if we're connected. */
7392 gdb_assert (remote_desc);
7393 return remote_read_qxfer
7394 (ops, "osdata", annex, readbuf, offset, len,
7395 &remote_protocol_packets[PACKET_qXfer_osdata]);
7396
7397 default:
7398 return -1;
7399 }
7400
7401 /* Note: a zero OFFSET and LEN can be used to query the minimum
7402 buffer size. */
7403 if (offset == 0 && len == 0)
7404 return (get_remote_packet_size ());
7405 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7406 large enough let the caller deal with it. */
7407 if (len < get_remote_packet_size ())
7408 return -1;
7409 len = get_remote_packet_size ();
7410
7411 /* Except for querying the minimum buffer size, target must be open. */
7412 if (!remote_desc)
7413 error (_("remote query is only available after target open"));
7414
7415 gdb_assert (annex != NULL);
7416 gdb_assert (readbuf != NULL);
7417
7418 p2 = rs->buf;
7419 *p2++ = 'q';
7420 *p2++ = query_type;
7421
7422 /* We used one buffer char for the remote protocol q command and
7423 another for the query type. As the remote protocol encapsulation
7424 uses 4 chars plus one extra in case we are debugging
7425 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7426 string. */
7427 i = 0;
7428 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7429 {
7430 /* Bad caller may have sent forbidden characters. */
7431 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7432 *p2++ = annex[i];
7433 i++;
7434 }
7435 *p2 = '\0';
7436 gdb_assert (annex[i] == '\0');
7437
7438 i = putpkt (rs->buf);
7439 if (i < 0)
7440 return i;
7441
7442 getpkt (&rs->buf, &rs->buf_size, 0);
7443 strcpy ((char *) readbuf, rs->buf);
7444
7445 return strlen ((char *) readbuf);
7446 }
7447
7448 static int
7449 remote_search_memory (struct target_ops* ops,
7450 CORE_ADDR start_addr, ULONGEST search_space_len,
7451 const gdb_byte *pattern, ULONGEST pattern_len,
7452 CORE_ADDR *found_addrp)
7453 {
7454 struct remote_state *rs = get_remote_state ();
7455 int max_size = get_memory_write_packet_size ();
7456 struct packet_config *packet =
7457 &remote_protocol_packets[PACKET_qSearch_memory];
7458 /* number of packet bytes used to encode the pattern,
7459 this could be more than PATTERN_LEN due to escape characters */
7460 int escaped_pattern_len;
7461 /* amount of pattern that was encodable in the packet */
7462 int used_pattern_len;
7463 int i;
7464 int found;
7465 ULONGEST found_addr;
7466
7467 /* Don't go to the target if we don't have to.
7468 This is done before checking packet->support to avoid the possibility that
7469 a success for this edge case means the facility works in general. */
7470 if (pattern_len > search_space_len)
7471 return 0;
7472 if (pattern_len == 0)
7473 {
7474 *found_addrp = start_addr;
7475 return 1;
7476 }
7477
7478 /* If we already know the packet isn't supported, fall back to the simple
7479 way of searching memory. */
7480
7481 if (packet->support == PACKET_DISABLE)
7482 {
7483 /* Target doesn't provided special support, fall back and use the
7484 standard support (copy memory and do the search here). */
7485 return simple_search_memory (ops, start_addr, search_space_len,
7486 pattern, pattern_len, found_addrp);
7487 }
7488
7489 /* Insert header. */
7490 i = snprintf (rs->buf, max_size,
7491 "qSearch:memory:%s;%s;",
7492 paddr_nz (start_addr),
7493 phex_nz (search_space_len, sizeof (search_space_len)));
7494 max_size -= (i + 1);
7495
7496 /* Escape as much data as fits into rs->buf. */
7497 escaped_pattern_len =
7498 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7499 &used_pattern_len, max_size);
7500
7501 /* Bail if the pattern is too large. */
7502 if (used_pattern_len != pattern_len)
7503 error ("Pattern is too large to transmit to remote target.");
7504
7505 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7506 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7507 || packet_ok (rs->buf, packet) != PACKET_OK)
7508 {
7509 /* The request may not have worked because the command is not
7510 supported. If so, fall back to the simple way. */
7511 if (packet->support == PACKET_DISABLE)
7512 {
7513 return simple_search_memory (ops, start_addr, search_space_len,
7514 pattern, pattern_len, found_addrp);
7515 }
7516 return -1;
7517 }
7518
7519 if (rs->buf[0] == '0')
7520 found = 0;
7521 else if (rs->buf[0] == '1')
7522 {
7523 found = 1;
7524 if (rs->buf[1] != ',')
7525 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7526 unpack_varlen_hex (rs->buf + 2, &found_addr);
7527 *found_addrp = found_addr;
7528 }
7529 else
7530 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7531
7532 return found;
7533 }
7534
7535 static void
7536 remote_rcmd (char *command,
7537 struct ui_file *outbuf)
7538 {
7539 struct remote_state *rs = get_remote_state ();
7540 char *p = rs->buf;
7541
7542 if (!remote_desc)
7543 error (_("remote rcmd is only available after target open"));
7544
7545 /* Send a NULL command across as an empty command. */
7546 if (command == NULL)
7547 command = "";
7548
7549 /* The query prefix. */
7550 strcpy (rs->buf, "qRcmd,");
7551 p = strchr (rs->buf, '\0');
7552
7553 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7554 error (_("\"monitor\" command ``%s'' is too long."), command);
7555
7556 /* Encode the actual command. */
7557 bin2hex ((gdb_byte *) command, p, 0);
7558
7559 if (putpkt (rs->buf) < 0)
7560 error (_("Communication problem with target."));
7561
7562 /* get/display the response */
7563 while (1)
7564 {
7565 char *buf;
7566
7567 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7568 rs->buf[0] = '\0';
7569 getpkt (&rs->buf, &rs->buf_size, 0);
7570 buf = rs->buf;
7571 if (buf[0] == '\0')
7572 error (_("Target does not support this command."));
7573 if (buf[0] == 'O' && buf[1] != 'K')
7574 {
7575 remote_console_output (buf + 1); /* 'O' message from stub. */
7576 continue;
7577 }
7578 if (strcmp (buf, "OK") == 0)
7579 break;
7580 if (strlen (buf) == 3 && buf[0] == 'E'
7581 && isdigit (buf[1]) && isdigit (buf[2]))
7582 {
7583 error (_("Protocol error with Rcmd"));
7584 }
7585 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7586 {
7587 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7588 fputc_unfiltered (c, outbuf);
7589 }
7590 break;
7591 }
7592 }
7593
7594 static VEC(mem_region_s) *
7595 remote_memory_map (struct target_ops *ops)
7596 {
7597 VEC(mem_region_s) *result = NULL;
7598 char *text = target_read_stralloc (&current_target,
7599 TARGET_OBJECT_MEMORY_MAP, NULL);
7600
7601 if (text)
7602 {
7603 struct cleanup *back_to = make_cleanup (xfree, text);
7604 result = parse_memory_map (text);
7605 do_cleanups (back_to);
7606 }
7607
7608 return result;
7609 }
7610
7611 static void
7612 packet_command (char *args, int from_tty)
7613 {
7614 struct remote_state *rs = get_remote_state ();
7615
7616 if (!remote_desc)
7617 error (_("command can only be used with remote target"));
7618
7619 if (!args)
7620 error (_("remote-packet command requires packet text as argument"));
7621
7622 puts_filtered ("sending: ");
7623 print_packet (args);
7624 puts_filtered ("\n");
7625 putpkt (args);
7626
7627 getpkt (&rs->buf, &rs->buf_size, 0);
7628 puts_filtered ("received: ");
7629 print_packet (rs->buf);
7630 puts_filtered ("\n");
7631 }
7632
7633 #if 0
7634 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7635
7636 static void display_thread_info (struct gdb_ext_thread_info *info);
7637
7638 static void threadset_test_cmd (char *cmd, int tty);
7639
7640 static void threadalive_test (char *cmd, int tty);
7641
7642 static void threadlist_test_cmd (char *cmd, int tty);
7643
7644 int get_and_display_threadinfo (threadref *ref);
7645
7646 static void threadinfo_test_cmd (char *cmd, int tty);
7647
7648 static int thread_display_step (threadref *ref, void *context);
7649
7650 static void threadlist_update_test_cmd (char *cmd, int tty);
7651
7652 static void init_remote_threadtests (void);
7653
7654 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7655
7656 static void
7657 threadset_test_cmd (char *cmd, int tty)
7658 {
7659 int sample_thread = SAMPLE_THREAD;
7660
7661 printf_filtered (_("Remote threadset test\n"));
7662 set_general_thread (sample_thread);
7663 }
7664
7665
7666 static void
7667 threadalive_test (char *cmd, int tty)
7668 {
7669 int sample_thread = SAMPLE_THREAD;
7670 int pid = ptid_get_pid (inferior_ptid);
7671 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7672
7673 if (remote_thread_alive (ptid))
7674 printf_filtered ("PASS: Thread alive test\n");
7675 else
7676 printf_filtered ("FAIL: Thread alive test\n");
7677 }
7678
7679 void output_threadid (char *title, threadref *ref);
7680
7681 void
7682 output_threadid (char *title, threadref *ref)
7683 {
7684 char hexid[20];
7685
7686 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7687 hexid[16] = 0;
7688 printf_filtered ("%s %s\n", title, (&hexid[0]));
7689 }
7690
7691 static void
7692 threadlist_test_cmd (char *cmd, int tty)
7693 {
7694 int startflag = 1;
7695 threadref nextthread;
7696 int done, result_count;
7697 threadref threadlist[3];
7698
7699 printf_filtered ("Remote Threadlist test\n");
7700 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7701 &result_count, &threadlist[0]))
7702 printf_filtered ("FAIL: threadlist test\n");
7703 else
7704 {
7705 threadref *scan = threadlist;
7706 threadref *limit = scan + result_count;
7707
7708 while (scan < limit)
7709 output_threadid (" thread ", scan++);
7710 }
7711 }
7712
7713 void
7714 display_thread_info (struct gdb_ext_thread_info *info)
7715 {
7716 output_threadid ("Threadid: ", &info->threadid);
7717 printf_filtered ("Name: %s\n ", info->shortname);
7718 printf_filtered ("State: %s\n", info->display);
7719 printf_filtered ("other: %s\n\n", info->more_display);
7720 }
7721
7722 int
7723 get_and_display_threadinfo (threadref *ref)
7724 {
7725 int result;
7726 int set;
7727 struct gdb_ext_thread_info threadinfo;
7728
7729 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7730 | TAG_MOREDISPLAY | TAG_DISPLAY;
7731 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7732 display_thread_info (&threadinfo);
7733 return result;
7734 }
7735
7736 static void
7737 threadinfo_test_cmd (char *cmd, int tty)
7738 {
7739 int athread = SAMPLE_THREAD;
7740 threadref thread;
7741 int set;
7742
7743 int_to_threadref (&thread, athread);
7744 printf_filtered ("Remote Threadinfo test\n");
7745 if (!get_and_display_threadinfo (&thread))
7746 printf_filtered ("FAIL cannot get thread info\n");
7747 }
7748
7749 static int
7750 thread_display_step (threadref *ref, void *context)
7751 {
7752 /* output_threadid(" threadstep ",ref); *//* simple test */
7753 return get_and_display_threadinfo (ref);
7754 }
7755
7756 static void
7757 threadlist_update_test_cmd (char *cmd, int tty)
7758 {
7759 printf_filtered ("Remote Threadlist update test\n");
7760 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7761 }
7762
7763 static void
7764 init_remote_threadtests (void)
7765 {
7766 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7767 Fetch and print the remote list of thread identifiers, one pkt only"));
7768 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7769 _("Fetch and display info about one thread"));
7770 add_com ("tset", class_obscure, threadset_test_cmd,
7771 _("Test setting to a different thread"));
7772 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7773 _("Iterate through updating all remote thread info"));
7774 add_com ("talive", class_obscure, threadalive_test,
7775 _(" Remote thread alive test "));
7776 }
7777
7778 #endif /* 0 */
7779
7780 /* Convert a thread ID to a string. Returns the string in a static
7781 buffer. */
7782
7783 static char *
7784 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7785 {
7786 static char buf[64];
7787 struct remote_state *rs = get_remote_state ();
7788
7789 if (ptid_equal (magic_null_ptid, ptid))
7790 {
7791 xsnprintf (buf, sizeof buf, "Thread <main>");
7792 return buf;
7793 }
7794 else if (remote_multi_process_p (rs)
7795 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7796 {
7797 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7798 ptid_get_pid (ptid), ptid_get_tid (ptid));
7799 return buf;
7800 }
7801 else if (ptid_get_tid (ptid) != 0)
7802 {
7803 xsnprintf (buf, sizeof buf, "Thread %ld",
7804 ptid_get_tid (ptid));
7805 return buf;
7806 }
7807
7808 return normal_pid_to_str (ptid);
7809 }
7810
7811 /* Get the address of the thread local variable in OBJFILE which is
7812 stored at OFFSET within the thread local storage for thread PTID. */
7813
7814 static CORE_ADDR
7815 remote_get_thread_local_address (struct target_ops *ops,
7816 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7817 {
7818 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7819 {
7820 struct remote_state *rs = get_remote_state ();
7821 char *p = rs->buf;
7822 char *endp = rs->buf + get_remote_packet_size ();
7823 enum packet_result result;
7824
7825 strcpy (p, "qGetTLSAddr:");
7826 p += strlen (p);
7827 p = write_ptid (p, endp, ptid);
7828 *p++ = ',';
7829 p += hexnumstr (p, offset);
7830 *p++ = ',';
7831 p += hexnumstr (p, lm);
7832 *p++ = '\0';
7833
7834 putpkt (rs->buf);
7835 getpkt (&rs->buf, &rs->buf_size, 0);
7836 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7837 if (result == PACKET_OK)
7838 {
7839 ULONGEST result;
7840
7841 unpack_varlen_hex (rs->buf, &result);
7842 return result;
7843 }
7844 else if (result == PACKET_UNKNOWN)
7845 throw_error (TLS_GENERIC_ERROR,
7846 _("Remote target doesn't support qGetTLSAddr packet"));
7847 else
7848 throw_error (TLS_GENERIC_ERROR,
7849 _("Remote target failed to process qGetTLSAddr request"));
7850 }
7851 else
7852 throw_error (TLS_GENERIC_ERROR,
7853 _("TLS not supported or disabled on this target"));
7854 /* Not reached. */
7855 return 0;
7856 }
7857
7858 /* Support for inferring a target description based on the current
7859 architecture and the size of a 'g' packet. While the 'g' packet
7860 can have any size (since optional registers can be left off the
7861 end), some sizes are easily recognizable given knowledge of the
7862 approximate architecture. */
7863
7864 struct remote_g_packet_guess
7865 {
7866 int bytes;
7867 const struct target_desc *tdesc;
7868 };
7869 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7870 DEF_VEC_O(remote_g_packet_guess_s);
7871
7872 struct remote_g_packet_data
7873 {
7874 VEC(remote_g_packet_guess_s) *guesses;
7875 };
7876
7877 static struct gdbarch_data *remote_g_packet_data_handle;
7878
7879 static void *
7880 remote_g_packet_data_init (struct obstack *obstack)
7881 {
7882 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7883 }
7884
7885 void
7886 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7887 const struct target_desc *tdesc)
7888 {
7889 struct remote_g_packet_data *data
7890 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7891 struct remote_g_packet_guess new_guess, *guess;
7892 int ix;
7893
7894 gdb_assert (tdesc != NULL);
7895
7896 for (ix = 0;
7897 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7898 ix++)
7899 if (guess->bytes == bytes)
7900 internal_error (__FILE__, __LINE__,
7901 "Duplicate g packet description added for size %d",
7902 bytes);
7903
7904 new_guess.bytes = bytes;
7905 new_guess.tdesc = tdesc;
7906 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7907 }
7908
7909 /* Return 1 if remote_read_description would do anything on this target
7910 and architecture, 0 otherwise. */
7911
7912 static int
7913 remote_read_description_p (struct target_ops *target)
7914 {
7915 struct remote_g_packet_data *data
7916 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7917
7918 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7919 return 1;
7920
7921 return 0;
7922 }
7923
7924 static const struct target_desc *
7925 remote_read_description (struct target_ops *target)
7926 {
7927 struct remote_g_packet_data *data
7928 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7929
7930 /* Do not try this during initial connection, when we do not know
7931 whether there is a running but stopped thread. */
7932 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
7933 return NULL;
7934
7935 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7936 {
7937 struct remote_g_packet_guess *guess;
7938 int ix;
7939 int bytes = send_g_packet ();
7940
7941 for (ix = 0;
7942 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7943 ix++)
7944 if (guess->bytes == bytes)
7945 return guess->tdesc;
7946
7947 /* We discard the g packet. A minor optimization would be to
7948 hold on to it, and fill the register cache once we have selected
7949 an architecture, but it's too tricky to do safely. */
7950 }
7951
7952 return NULL;
7953 }
7954
7955 /* Remote file transfer support. This is host-initiated I/O, not
7956 target-initiated; for target-initiated, see remote-fileio.c. */
7957
7958 /* If *LEFT is at least the length of STRING, copy STRING to
7959 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7960 decrease *LEFT. Otherwise raise an error. */
7961
7962 static void
7963 remote_buffer_add_string (char **buffer, int *left, char *string)
7964 {
7965 int len = strlen (string);
7966
7967 if (len > *left)
7968 error (_("Packet too long for target."));
7969
7970 memcpy (*buffer, string, len);
7971 *buffer += len;
7972 *left -= len;
7973
7974 /* NUL-terminate the buffer as a convenience, if there is
7975 room. */
7976 if (*left)
7977 **buffer = '\0';
7978 }
7979
7980 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7981 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7982 decrease *LEFT. Otherwise raise an error. */
7983
7984 static void
7985 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7986 int len)
7987 {
7988 if (2 * len > *left)
7989 error (_("Packet too long for target."));
7990
7991 bin2hex (bytes, *buffer, len);
7992 *buffer += 2 * len;
7993 *left -= 2 * len;
7994
7995 /* NUL-terminate the buffer as a convenience, if there is
7996 room. */
7997 if (*left)
7998 **buffer = '\0';
7999 }
8000
8001 /* If *LEFT is large enough, convert VALUE to hex and add it to
8002 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8003 decrease *LEFT. Otherwise raise an error. */
8004
8005 static void
8006 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8007 {
8008 int len = hexnumlen (value);
8009
8010 if (len > *left)
8011 error (_("Packet too long for target."));
8012
8013 hexnumstr (*buffer, value);
8014 *buffer += len;
8015 *left -= len;
8016
8017 /* NUL-terminate the buffer as a convenience, if there is
8018 room. */
8019 if (*left)
8020 **buffer = '\0';
8021 }
8022
8023 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8024 value, *REMOTE_ERRNO to the remote error number or zero if none
8025 was included, and *ATTACHMENT to point to the start of the annex
8026 if any. The length of the packet isn't needed here; there may
8027 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8028
8029 Return 0 if the packet could be parsed, -1 if it could not. If
8030 -1 is returned, the other variables may not be initialized. */
8031
8032 static int
8033 remote_hostio_parse_result (char *buffer, int *retcode,
8034 int *remote_errno, char **attachment)
8035 {
8036 char *p, *p2;
8037
8038 *remote_errno = 0;
8039 *attachment = NULL;
8040
8041 if (buffer[0] != 'F')
8042 return -1;
8043
8044 errno = 0;
8045 *retcode = strtol (&buffer[1], &p, 16);
8046 if (errno != 0 || p == &buffer[1])
8047 return -1;
8048
8049 /* Check for ",errno". */
8050 if (*p == ',')
8051 {
8052 errno = 0;
8053 *remote_errno = strtol (p + 1, &p2, 16);
8054 if (errno != 0 || p + 1 == p2)
8055 return -1;
8056 p = p2;
8057 }
8058
8059 /* Check for ";attachment". If there is no attachment, the
8060 packet should end here. */
8061 if (*p == ';')
8062 {
8063 *attachment = p + 1;
8064 return 0;
8065 }
8066 else if (*p == '\0')
8067 return 0;
8068 else
8069 return -1;
8070 }
8071
8072 /* Send a prepared I/O packet to the target and read its response.
8073 The prepared packet is in the global RS->BUF before this function
8074 is called, and the answer is there when we return.
8075
8076 COMMAND_BYTES is the length of the request to send, which may include
8077 binary data. WHICH_PACKET is the packet configuration to check
8078 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8079 is set to the error number and -1 is returned. Otherwise the value
8080 returned by the function is returned.
8081
8082 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8083 attachment is expected; an error will be reported if there's a
8084 mismatch. If one is found, *ATTACHMENT will be set to point into
8085 the packet buffer and *ATTACHMENT_LEN will be set to the
8086 attachment's length. */
8087
8088 static int
8089 remote_hostio_send_command (int command_bytes, int which_packet,
8090 int *remote_errno, char **attachment,
8091 int *attachment_len)
8092 {
8093 struct remote_state *rs = get_remote_state ();
8094 int ret, bytes_read;
8095 char *attachment_tmp;
8096
8097 if (!remote_desc
8098 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8099 {
8100 *remote_errno = FILEIO_ENOSYS;
8101 return -1;
8102 }
8103
8104 putpkt_binary (rs->buf, command_bytes);
8105 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8106
8107 /* If it timed out, something is wrong. Don't try to parse the
8108 buffer. */
8109 if (bytes_read < 0)
8110 {
8111 *remote_errno = FILEIO_EINVAL;
8112 return -1;
8113 }
8114
8115 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8116 {
8117 case PACKET_ERROR:
8118 *remote_errno = FILEIO_EINVAL;
8119 return -1;
8120 case PACKET_UNKNOWN:
8121 *remote_errno = FILEIO_ENOSYS;
8122 return -1;
8123 case PACKET_OK:
8124 break;
8125 }
8126
8127 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8128 &attachment_tmp))
8129 {
8130 *remote_errno = FILEIO_EINVAL;
8131 return -1;
8132 }
8133
8134 /* Make sure we saw an attachment if and only if we expected one. */
8135 if ((attachment_tmp == NULL && attachment != NULL)
8136 || (attachment_tmp != NULL && attachment == NULL))
8137 {
8138 *remote_errno = FILEIO_EINVAL;
8139 return -1;
8140 }
8141
8142 /* If an attachment was found, it must point into the packet buffer;
8143 work out how many bytes there were. */
8144 if (attachment_tmp != NULL)
8145 {
8146 *attachment = attachment_tmp;
8147 *attachment_len = bytes_read - (*attachment - rs->buf);
8148 }
8149
8150 return ret;
8151 }
8152
8153 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8154 remote file descriptor, or -1 if an error occurs (and set
8155 *REMOTE_ERRNO). */
8156
8157 static int
8158 remote_hostio_open (const char *filename, int flags, int mode,
8159 int *remote_errno)
8160 {
8161 struct remote_state *rs = get_remote_state ();
8162 char *p = rs->buf;
8163 int left = get_remote_packet_size () - 1;
8164
8165 remote_buffer_add_string (&p, &left, "vFile:open:");
8166
8167 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8168 strlen (filename));
8169 remote_buffer_add_string (&p, &left, ",");
8170
8171 remote_buffer_add_int (&p, &left, flags);
8172 remote_buffer_add_string (&p, &left, ",");
8173
8174 remote_buffer_add_int (&p, &left, mode);
8175
8176 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8177 remote_errno, NULL, NULL);
8178 }
8179
8180 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8181 Return the number of bytes written, or -1 if an error occurs (and
8182 set *REMOTE_ERRNO). */
8183
8184 static int
8185 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8186 ULONGEST offset, int *remote_errno)
8187 {
8188 struct remote_state *rs = get_remote_state ();
8189 char *p = rs->buf;
8190 int left = get_remote_packet_size ();
8191 int out_len;
8192
8193 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8194
8195 remote_buffer_add_int (&p, &left, fd);
8196 remote_buffer_add_string (&p, &left, ",");
8197
8198 remote_buffer_add_int (&p, &left, offset);
8199 remote_buffer_add_string (&p, &left, ",");
8200
8201 p += remote_escape_output (write_buf, len, p, &out_len,
8202 get_remote_packet_size () - (p - rs->buf));
8203
8204 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8205 remote_errno, NULL, NULL);
8206 }
8207
8208 /* Read up to LEN bytes FD on the remote target into READ_BUF
8209 Return the number of bytes read, or -1 if an error occurs (and
8210 set *REMOTE_ERRNO). */
8211
8212 static int
8213 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8214 ULONGEST offset, int *remote_errno)
8215 {
8216 struct remote_state *rs = get_remote_state ();
8217 char *p = rs->buf;
8218 char *attachment;
8219 int left = get_remote_packet_size ();
8220 int ret, attachment_len;
8221 int read_len;
8222
8223 remote_buffer_add_string (&p, &left, "vFile:pread:");
8224
8225 remote_buffer_add_int (&p, &left, fd);
8226 remote_buffer_add_string (&p, &left, ",");
8227
8228 remote_buffer_add_int (&p, &left, len);
8229 remote_buffer_add_string (&p, &left, ",");
8230
8231 remote_buffer_add_int (&p, &left, offset);
8232
8233 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8234 remote_errno, &attachment,
8235 &attachment_len);
8236
8237 if (ret < 0)
8238 return ret;
8239
8240 read_len = remote_unescape_input (attachment, attachment_len,
8241 read_buf, len);
8242 if (read_len != ret)
8243 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8244
8245 return ret;
8246 }
8247
8248 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8249 (and set *REMOTE_ERRNO). */
8250
8251 static int
8252 remote_hostio_close (int fd, int *remote_errno)
8253 {
8254 struct remote_state *rs = get_remote_state ();
8255 char *p = rs->buf;
8256 int left = get_remote_packet_size () - 1;
8257
8258 remote_buffer_add_string (&p, &left, "vFile:close:");
8259
8260 remote_buffer_add_int (&p, &left, fd);
8261
8262 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8263 remote_errno, NULL, NULL);
8264 }
8265
8266 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8267 occurs (and set *REMOTE_ERRNO). */
8268
8269 static int
8270 remote_hostio_unlink (const char *filename, int *remote_errno)
8271 {
8272 struct remote_state *rs = get_remote_state ();
8273 char *p = rs->buf;
8274 int left = get_remote_packet_size () - 1;
8275
8276 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8277
8278 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8279 strlen (filename));
8280
8281 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8282 remote_errno, NULL, NULL);
8283 }
8284
8285 static int
8286 remote_fileio_errno_to_host (int errnum)
8287 {
8288 switch (errnum)
8289 {
8290 case FILEIO_EPERM:
8291 return EPERM;
8292 case FILEIO_ENOENT:
8293 return ENOENT;
8294 case FILEIO_EINTR:
8295 return EINTR;
8296 case FILEIO_EIO:
8297 return EIO;
8298 case FILEIO_EBADF:
8299 return EBADF;
8300 case FILEIO_EACCES:
8301 return EACCES;
8302 case FILEIO_EFAULT:
8303 return EFAULT;
8304 case FILEIO_EBUSY:
8305 return EBUSY;
8306 case FILEIO_EEXIST:
8307 return EEXIST;
8308 case FILEIO_ENODEV:
8309 return ENODEV;
8310 case FILEIO_ENOTDIR:
8311 return ENOTDIR;
8312 case FILEIO_EISDIR:
8313 return EISDIR;
8314 case FILEIO_EINVAL:
8315 return EINVAL;
8316 case FILEIO_ENFILE:
8317 return ENFILE;
8318 case FILEIO_EMFILE:
8319 return EMFILE;
8320 case FILEIO_EFBIG:
8321 return EFBIG;
8322 case FILEIO_ENOSPC:
8323 return ENOSPC;
8324 case FILEIO_ESPIPE:
8325 return ESPIPE;
8326 case FILEIO_EROFS:
8327 return EROFS;
8328 case FILEIO_ENOSYS:
8329 return ENOSYS;
8330 case FILEIO_ENAMETOOLONG:
8331 return ENAMETOOLONG;
8332 }
8333 return -1;
8334 }
8335
8336 static char *
8337 remote_hostio_error (int errnum)
8338 {
8339 int host_error = remote_fileio_errno_to_host (errnum);
8340
8341 if (host_error == -1)
8342 error (_("Unknown remote I/O error %d"), errnum);
8343 else
8344 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8345 }
8346
8347 static void
8348 remote_hostio_close_cleanup (void *opaque)
8349 {
8350 int fd = *(int *) opaque;
8351 int remote_errno;
8352
8353 remote_hostio_close (fd, &remote_errno);
8354 }
8355
8356
8357 static void *
8358 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8359 {
8360 const char *filename = bfd_get_filename (abfd);
8361 int fd, remote_errno;
8362 int *stream;
8363
8364 gdb_assert (remote_filename_p (filename));
8365
8366 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8367 if (fd == -1)
8368 {
8369 errno = remote_fileio_errno_to_host (remote_errno);
8370 bfd_set_error (bfd_error_system_call);
8371 return NULL;
8372 }
8373
8374 stream = xmalloc (sizeof (int));
8375 *stream = fd;
8376 return stream;
8377 }
8378
8379 static int
8380 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8381 {
8382 int fd = *(int *)stream;
8383 int remote_errno;
8384
8385 xfree (stream);
8386
8387 /* Ignore errors on close; these may happen if the remote
8388 connection was already torn down. */
8389 remote_hostio_close (fd, &remote_errno);
8390
8391 return 1;
8392 }
8393
8394 static file_ptr
8395 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8396 file_ptr nbytes, file_ptr offset)
8397 {
8398 int fd = *(int *)stream;
8399 int remote_errno;
8400 file_ptr pos, bytes;
8401
8402 pos = 0;
8403 while (nbytes > pos)
8404 {
8405 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8406 offset + pos, &remote_errno);
8407 if (bytes == 0)
8408 /* Success, but no bytes, means end-of-file. */
8409 break;
8410 if (bytes == -1)
8411 {
8412 errno = remote_fileio_errno_to_host (remote_errno);
8413 bfd_set_error (bfd_error_system_call);
8414 return -1;
8415 }
8416
8417 pos += bytes;
8418 }
8419
8420 return pos;
8421 }
8422
8423 static int
8424 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8425 {
8426 /* FIXME: We should probably implement remote_hostio_stat. */
8427 sb->st_size = INT_MAX;
8428 return 0;
8429 }
8430
8431 int
8432 remote_filename_p (const char *filename)
8433 {
8434 return strncmp (filename, "remote:", 7) == 0;
8435 }
8436
8437 bfd *
8438 remote_bfd_open (const char *remote_file, const char *target)
8439 {
8440 return bfd_openr_iovec (remote_file, target,
8441 remote_bfd_iovec_open, NULL,
8442 remote_bfd_iovec_pread,
8443 remote_bfd_iovec_close,
8444 remote_bfd_iovec_stat);
8445 }
8446
8447 void
8448 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8449 {
8450 struct cleanup *back_to, *close_cleanup;
8451 int retcode, fd, remote_errno, bytes, io_size;
8452 FILE *file;
8453 gdb_byte *buffer;
8454 int bytes_in_buffer;
8455 int saw_eof;
8456 ULONGEST offset;
8457
8458 if (!remote_desc)
8459 error (_("command can only be used with remote target"));
8460
8461 file = fopen (local_file, "rb");
8462 if (file == NULL)
8463 perror_with_name (local_file);
8464 back_to = make_cleanup_fclose (file);
8465
8466 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8467 | FILEIO_O_TRUNC),
8468 0700, &remote_errno);
8469 if (fd == -1)
8470 remote_hostio_error (remote_errno);
8471
8472 /* Send up to this many bytes at once. They won't all fit in the
8473 remote packet limit, so we'll transfer slightly fewer. */
8474 io_size = get_remote_packet_size ();
8475 buffer = xmalloc (io_size);
8476 make_cleanup (xfree, buffer);
8477
8478 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8479
8480 bytes_in_buffer = 0;
8481 saw_eof = 0;
8482 offset = 0;
8483 while (bytes_in_buffer || !saw_eof)
8484 {
8485 if (!saw_eof)
8486 {
8487 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8488 file);
8489 if (bytes == 0)
8490 {
8491 if (ferror (file))
8492 error (_("Error reading %s."), local_file);
8493 else
8494 {
8495 /* EOF. Unless there is something still in the
8496 buffer from the last iteration, we are done. */
8497 saw_eof = 1;
8498 if (bytes_in_buffer == 0)
8499 break;
8500 }
8501 }
8502 }
8503 else
8504 bytes = 0;
8505
8506 bytes += bytes_in_buffer;
8507 bytes_in_buffer = 0;
8508
8509 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8510
8511 if (retcode < 0)
8512 remote_hostio_error (remote_errno);
8513 else if (retcode == 0)
8514 error (_("Remote write of %d bytes returned 0!"), bytes);
8515 else if (retcode < bytes)
8516 {
8517 /* Short write. Save the rest of the read data for the next
8518 write. */
8519 bytes_in_buffer = bytes - retcode;
8520 memmove (buffer, buffer + retcode, bytes_in_buffer);
8521 }
8522
8523 offset += retcode;
8524 }
8525
8526 discard_cleanups (close_cleanup);
8527 if (remote_hostio_close (fd, &remote_errno))
8528 remote_hostio_error (remote_errno);
8529
8530 if (from_tty)
8531 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8532 do_cleanups (back_to);
8533 }
8534
8535 void
8536 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8537 {
8538 struct cleanup *back_to, *close_cleanup;
8539 int retcode, fd, remote_errno, bytes, io_size;
8540 FILE *file;
8541 gdb_byte *buffer;
8542 ULONGEST offset;
8543
8544 if (!remote_desc)
8545 error (_("command can only be used with remote target"));
8546
8547 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8548 if (fd == -1)
8549 remote_hostio_error (remote_errno);
8550
8551 file = fopen (local_file, "wb");
8552 if (file == NULL)
8553 perror_with_name (local_file);
8554 back_to = make_cleanup_fclose (file);
8555
8556 /* Send up to this many bytes at once. They won't all fit in the
8557 remote packet limit, so we'll transfer slightly fewer. */
8558 io_size = get_remote_packet_size ();
8559 buffer = xmalloc (io_size);
8560 make_cleanup (xfree, buffer);
8561
8562 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8563
8564 offset = 0;
8565 while (1)
8566 {
8567 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8568 if (bytes == 0)
8569 /* Success, but no bytes, means end-of-file. */
8570 break;
8571 if (bytes == -1)
8572 remote_hostio_error (remote_errno);
8573
8574 offset += bytes;
8575
8576 bytes = fwrite (buffer, 1, bytes, file);
8577 if (bytes == 0)
8578 perror_with_name (local_file);
8579 }
8580
8581 discard_cleanups (close_cleanup);
8582 if (remote_hostio_close (fd, &remote_errno))
8583 remote_hostio_error (remote_errno);
8584
8585 if (from_tty)
8586 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8587 do_cleanups (back_to);
8588 }
8589
8590 void
8591 remote_file_delete (const char *remote_file, int from_tty)
8592 {
8593 int retcode, remote_errno;
8594
8595 if (!remote_desc)
8596 error (_("command can only be used with remote target"));
8597
8598 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8599 if (retcode == -1)
8600 remote_hostio_error (remote_errno);
8601
8602 if (from_tty)
8603 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8604 }
8605
8606 static void
8607 remote_put_command (char *args, int from_tty)
8608 {
8609 struct cleanup *back_to;
8610 char **argv;
8611
8612 if (args == NULL)
8613 error_no_arg (_("file to put"));
8614
8615 argv = gdb_buildargv (args);
8616 back_to = make_cleanup_freeargv (argv);
8617 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8618 error (_("Invalid parameters to remote put"));
8619
8620 remote_file_put (argv[0], argv[1], from_tty);
8621
8622 do_cleanups (back_to);
8623 }
8624
8625 static void
8626 remote_get_command (char *args, int from_tty)
8627 {
8628 struct cleanup *back_to;
8629 char **argv;
8630
8631 if (args == NULL)
8632 error_no_arg (_("file to get"));
8633
8634 argv = gdb_buildargv (args);
8635 back_to = make_cleanup_freeargv (argv);
8636 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8637 error (_("Invalid parameters to remote get"));
8638
8639 remote_file_get (argv[0], argv[1], from_tty);
8640
8641 do_cleanups (back_to);
8642 }
8643
8644 static void
8645 remote_delete_command (char *args, int from_tty)
8646 {
8647 struct cleanup *back_to;
8648 char **argv;
8649
8650 if (args == NULL)
8651 error_no_arg (_("file to delete"));
8652
8653 argv = gdb_buildargv (args);
8654 back_to = make_cleanup_freeargv (argv);
8655 if (argv[0] == NULL || argv[1] != NULL)
8656 error (_("Invalid parameters to remote delete"));
8657
8658 remote_file_delete (argv[0], from_tty);
8659
8660 do_cleanups (back_to);
8661 }
8662
8663 static void
8664 remote_command (char *args, int from_tty)
8665 {
8666 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8667 }
8668
8669 static int remote_target_can_reverse = 1;
8670
8671 static int
8672 remote_can_execute_reverse (void)
8673 {
8674 return remote_target_can_reverse;
8675 }
8676
8677 static int
8678 remote_supports_non_stop (void)
8679 {
8680 return 1;
8681 }
8682
8683 static int
8684 remote_supports_multi_process (void)
8685 {
8686 struct remote_state *rs = get_remote_state ();
8687 return remote_multi_process_p (rs);
8688 }
8689
8690 static void
8691 init_remote_ops (void)
8692 {
8693 remote_ops.to_shortname = "remote";
8694 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8695 remote_ops.to_doc =
8696 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8697 Specify the serial device it is connected to\n\
8698 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8699 remote_ops.to_open = remote_open;
8700 remote_ops.to_close = remote_close;
8701 remote_ops.to_detach = remote_detach;
8702 remote_ops.to_disconnect = remote_disconnect;
8703 remote_ops.to_resume = remote_resume;
8704 remote_ops.to_wait = remote_wait;
8705 remote_ops.to_fetch_registers = remote_fetch_registers;
8706 remote_ops.to_store_registers = remote_store_registers;
8707 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8708 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8709 remote_ops.to_files_info = remote_files_info;
8710 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8711 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8712 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8713 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8714 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8715 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8716 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8717 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8718 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8719 remote_ops.to_kill = remote_kill;
8720 remote_ops.to_load = generic_load;
8721 remote_ops.to_mourn_inferior = remote_mourn;
8722 remote_ops.to_thread_alive = remote_thread_alive;
8723 remote_ops.to_find_new_threads = remote_threads_info;
8724 remote_ops.to_pid_to_str = remote_pid_to_str;
8725 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8726 remote_ops.to_stop = remote_stop;
8727 remote_ops.to_xfer_partial = remote_xfer_partial;
8728 remote_ops.to_rcmd = remote_rcmd;
8729 remote_ops.to_log_command = serial_log_command;
8730 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8731 remote_ops.to_stratum = process_stratum;
8732 remote_ops.to_has_all_memory = 1;
8733 remote_ops.to_has_memory = 1;
8734 remote_ops.to_has_stack = 1;
8735 remote_ops.to_has_registers = 1;
8736 remote_ops.to_has_execution = 1;
8737 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8738 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8739 remote_ops.to_magic = OPS_MAGIC;
8740 remote_ops.to_memory_map = remote_memory_map;
8741 remote_ops.to_flash_erase = remote_flash_erase;
8742 remote_ops.to_flash_done = remote_flash_done;
8743 remote_ops.to_read_description = remote_read_description;
8744 remote_ops.to_search_memory = remote_search_memory;
8745 remote_ops.to_can_async_p = remote_can_async_p;
8746 remote_ops.to_is_async_p = remote_is_async_p;
8747 remote_ops.to_async = remote_async;
8748 remote_ops.to_async_mask = remote_async_mask;
8749 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8750 remote_ops.to_terminal_ours = remote_terminal_ours;
8751 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8752 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8753 }
8754
8755 /* Set up the extended remote vector by making a copy of the standard
8756 remote vector and adding to it. */
8757
8758 static void
8759 init_extended_remote_ops (void)
8760 {
8761 extended_remote_ops = remote_ops;
8762
8763 extended_remote_ops.to_shortname = "extended-remote";
8764 extended_remote_ops.to_longname =
8765 "Extended remote serial target in gdb-specific protocol";
8766 extended_remote_ops.to_doc =
8767 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8768 Specify the serial device it is connected to (e.g. /dev/ttya).";
8769 extended_remote_ops.to_open = extended_remote_open;
8770 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8771 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8772 extended_remote_ops.to_detach = extended_remote_detach;
8773 extended_remote_ops.to_attach = extended_remote_attach;
8774 extended_remote_ops.to_kill = extended_remote_kill;
8775 }
8776
8777 static int
8778 remote_can_async_p (void)
8779 {
8780 if (!target_async_permitted)
8781 /* We only enable async when the user specifically asks for it. */
8782 return 0;
8783
8784 /* We're async whenever the serial device is. */
8785 return remote_async_mask_value && serial_can_async_p (remote_desc);
8786 }
8787
8788 static int
8789 remote_is_async_p (void)
8790 {
8791 if (!target_async_permitted)
8792 /* We only enable async when the user specifically asks for it. */
8793 return 0;
8794
8795 /* We're async whenever the serial device is. */
8796 return remote_async_mask_value && serial_is_async_p (remote_desc);
8797 }
8798
8799 /* Pass the SERIAL event on and up to the client. One day this code
8800 will be able to delay notifying the client of an event until the
8801 point where an entire packet has been received. */
8802
8803 static void (*async_client_callback) (enum inferior_event_type event_type,
8804 void *context);
8805 static void *async_client_context;
8806 static serial_event_ftype remote_async_serial_handler;
8807
8808 static void
8809 remote_async_serial_handler (struct serial *scb, void *context)
8810 {
8811 /* Don't propogate error information up to the client. Instead let
8812 the client find out about the error by querying the target. */
8813 async_client_callback (INF_REG_EVENT, async_client_context);
8814 }
8815
8816 static void
8817 remote_async_inferior_event_handler (gdb_client_data data)
8818 {
8819 inferior_event_handler (INF_REG_EVENT, NULL);
8820 }
8821
8822 static void
8823 remote_async_get_pending_events_handler (gdb_client_data data)
8824 {
8825 remote_get_pending_stop_replies ();
8826 }
8827
8828 static void
8829 remote_async (void (*callback) (enum inferior_event_type event_type,
8830 void *context), void *context)
8831 {
8832 if (remote_async_mask_value == 0)
8833 internal_error (__FILE__, __LINE__,
8834 _("Calling remote_async when async is masked"));
8835
8836 if (callback != NULL)
8837 {
8838 serial_async (remote_desc, remote_async_serial_handler, NULL);
8839 async_client_callback = callback;
8840 async_client_context = context;
8841 }
8842 else
8843 serial_async (remote_desc, NULL, NULL);
8844 }
8845
8846 static int
8847 remote_async_mask (int new_mask)
8848 {
8849 int curr_mask = remote_async_mask_value;
8850 remote_async_mask_value = new_mask;
8851 return curr_mask;
8852 }
8853
8854 static void
8855 set_remote_cmd (char *args, int from_tty)
8856 {
8857 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8858 }
8859
8860 static void
8861 show_remote_cmd (char *args, int from_tty)
8862 {
8863 /* We can't just use cmd_show_list here, because we want to skip
8864 the redundant "show remote Z-packet" and the legacy aliases. */
8865 struct cleanup *showlist_chain;
8866 struct cmd_list_element *list = remote_show_cmdlist;
8867
8868 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8869 for (; list != NULL; list = list->next)
8870 if (strcmp (list->name, "Z-packet") == 0)
8871 continue;
8872 else if (list->type == not_set_cmd)
8873 /* Alias commands are exactly like the original, except they
8874 don't have the normal type. */
8875 continue;
8876 else
8877 {
8878 struct cleanup *option_chain
8879 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8880 ui_out_field_string (uiout, "name", list->name);
8881 ui_out_text (uiout, ": ");
8882 if (list->type == show_cmd)
8883 do_setshow_command ((char *) NULL, from_tty, list);
8884 else
8885 cmd_func (list, NULL, from_tty);
8886 /* Close the tuple. */
8887 do_cleanups (option_chain);
8888 }
8889
8890 /* Close the tuple. */
8891 do_cleanups (showlist_chain);
8892 }
8893
8894
8895 /* Function to be called whenever a new objfile (shlib) is detected. */
8896 static void
8897 remote_new_objfile (struct objfile *objfile)
8898 {
8899 if (remote_desc != 0) /* Have a remote connection. */
8900 remote_check_symbols (objfile);
8901 }
8902
8903 void
8904 _initialize_remote (void)
8905 {
8906 struct remote_state *rs;
8907
8908 /* architecture specific data */
8909 remote_gdbarch_data_handle =
8910 gdbarch_data_register_post_init (init_remote_state);
8911 remote_g_packet_data_handle =
8912 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8913
8914 /* Initialize the per-target state. At the moment there is only one
8915 of these, not one per target. Only one target is active at a
8916 time. The default buffer size is unimportant; it will be expanded
8917 whenever a larger buffer is needed. */
8918 rs = get_remote_state_raw ();
8919 rs->buf_size = 400;
8920 rs->buf = xmalloc (rs->buf_size);
8921
8922 init_remote_ops ();
8923 add_target (&remote_ops);
8924
8925 init_extended_remote_ops ();
8926 add_target (&extended_remote_ops);
8927
8928 /* Hook into new objfile notification. */
8929 observer_attach_new_objfile (remote_new_objfile);
8930
8931 /* Set up signal handlers. */
8932 sigint_remote_token =
8933 create_async_signal_handler (async_remote_interrupt, NULL);
8934 sigint_remote_twice_token =
8935 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8936
8937 #if 0
8938 init_remote_threadtests ();
8939 #endif
8940
8941 /* set/show remote ... */
8942
8943 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8944 Remote protocol specific variables\n\
8945 Configure various remote-protocol specific variables such as\n\
8946 the packets being used"),
8947 &remote_set_cmdlist, "set remote ",
8948 0 /* allow-unknown */, &setlist);
8949 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8950 Remote protocol specific variables\n\
8951 Configure various remote-protocol specific variables such as\n\
8952 the packets being used"),
8953 &remote_show_cmdlist, "show remote ",
8954 0 /* allow-unknown */, &showlist);
8955
8956 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8957 Compare section data on target to the exec file.\n\
8958 Argument is a single section name (default: all loaded sections)."),
8959 &cmdlist);
8960
8961 add_cmd ("packet", class_maintenance, packet_command, _("\
8962 Send an arbitrary packet to a remote target.\n\
8963 maintenance packet TEXT\n\
8964 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8965 this command sends the string TEXT to the inferior, and displays the\n\
8966 response packet. GDB supplies the initial `$' character, and the\n\
8967 terminating `#' character and checksum."),
8968 &maintenancelist);
8969
8970 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8971 Set whether to send break if interrupted."), _("\
8972 Show whether to send break if interrupted."), _("\
8973 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8974 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8975 &setlist, &showlist);
8976
8977 /* Install commands for configuring memory read/write packets. */
8978
8979 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8980 Set the maximum number of bytes per memory write packet (deprecated)."),
8981 &setlist);
8982 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8983 Show the maximum number of bytes per memory write packet (deprecated)."),
8984 &showlist);
8985 add_cmd ("memory-write-packet-size", no_class,
8986 set_memory_write_packet_size, _("\
8987 Set the maximum number of bytes per memory-write packet.\n\
8988 Specify the number of bytes in a packet or 0 (zero) for the\n\
8989 default packet size. The actual limit is further reduced\n\
8990 dependent on the target. Specify ``fixed'' to disable the\n\
8991 further restriction and ``limit'' to enable that restriction."),
8992 &remote_set_cmdlist);
8993 add_cmd ("memory-read-packet-size", no_class,
8994 set_memory_read_packet_size, _("\
8995 Set the maximum number of bytes per memory-read packet.\n\
8996 Specify the number of bytes in a packet or 0 (zero) for the\n\
8997 default packet size. The actual limit is further reduced\n\
8998 dependent on the target. Specify ``fixed'' to disable the\n\
8999 further restriction and ``limit'' to enable that restriction."),
9000 &remote_set_cmdlist);
9001 add_cmd ("memory-write-packet-size", no_class,
9002 show_memory_write_packet_size,
9003 _("Show the maximum number of bytes per memory-write packet."),
9004 &remote_show_cmdlist);
9005 add_cmd ("memory-read-packet-size", no_class,
9006 show_memory_read_packet_size,
9007 _("Show the maximum number of bytes per memory-read packet."),
9008 &remote_show_cmdlist);
9009
9010 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9011 &remote_hw_watchpoint_limit, _("\
9012 Set the maximum number of target hardware watchpoints."), _("\
9013 Show the maximum number of target hardware watchpoints."), _("\
9014 Specify a negative limit for unlimited."),
9015 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9016 &remote_set_cmdlist, &remote_show_cmdlist);
9017 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9018 &remote_hw_breakpoint_limit, _("\
9019 Set the maximum number of target hardware breakpoints."), _("\
9020 Show the maximum number of target hardware breakpoints."), _("\
9021 Specify a negative limit for unlimited."),
9022 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9023 &remote_set_cmdlist, &remote_show_cmdlist);
9024
9025 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9026 &remote_address_size, _("\
9027 Set the maximum size of the address (in bits) in a memory packet."), _("\
9028 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9029 NULL,
9030 NULL, /* FIXME: i18n: */
9031 &setlist, &showlist);
9032
9033 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9034 "X", "binary-download", 1);
9035
9036 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9037 "vCont", "verbose-resume", 0);
9038
9039 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9040 "QPassSignals", "pass-signals", 0);
9041
9042 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9043 "qSymbol", "symbol-lookup", 0);
9044
9045 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9046 "P", "set-register", 1);
9047
9048 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9049 "p", "fetch-register", 1);
9050
9051 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9052 "Z0", "software-breakpoint", 0);
9053
9054 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9055 "Z1", "hardware-breakpoint", 0);
9056
9057 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9058 "Z2", "write-watchpoint", 0);
9059
9060 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9061 "Z3", "read-watchpoint", 0);
9062
9063 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9064 "Z4", "access-watchpoint", 0);
9065
9066 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9067 "qXfer:auxv:read", "read-aux-vector", 0);
9068
9069 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9070 "qXfer:features:read", "target-features", 0);
9071
9072 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9073 "qXfer:libraries:read", "library-info", 0);
9074
9075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9076 "qXfer:memory-map:read", "memory-map", 0);
9077
9078 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9079 "qXfer:spu:read", "read-spu-object", 0);
9080
9081 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9082 "qXfer:spu:write", "write-spu-object", 0);
9083
9084 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9085 "qXfer:osdata:read", "osdata", 0);
9086
9087 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9088 "qXfer:siginfo:read", "read-siginfo-object", 0);
9089
9090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9091 "qXfer:siginfo:write", "write-siginfo-object", 0);
9092
9093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9094 "qGetTLSAddr", "get-thread-local-storage-address",
9095 0);
9096
9097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9098 "qSupported", "supported-packets", 0);
9099
9100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9101 "qSearch:memory", "search-memory", 0);
9102
9103 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9104 "vFile:open", "hostio-open", 0);
9105
9106 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9107 "vFile:pread", "hostio-pread", 0);
9108
9109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9110 "vFile:pwrite", "hostio-pwrite", 0);
9111
9112 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9113 "vFile:close", "hostio-close", 0);
9114
9115 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9116 "vFile:unlink", "hostio-unlink", 0);
9117
9118 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9119 "vAttach", "attach", 0);
9120
9121 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9122 "vRun", "run", 0);
9123
9124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9125 "QStartNoAckMode", "noack", 0);
9126
9127 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9128 "vKill", "kill", 0);
9129
9130 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9131 Z sub-packet has its own set and show commands, but users may
9132 have sets to this variable in their .gdbinit files (or in their
9133 documentation). */
9134 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9135 &remote_Z_packet_detect, _("\
9136 Set use of remote protocol `Z' packets"), _("\
9137 Show use of remote protocol `Z' packets "), _("\
9138 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9139 packets."),
9140 set_remote_protocol_Z_packet_cmd,
9141 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9142 &remote_set_cmdlist, &remote_show_cmdlist);
9143
9144 add_prefix_cmd ("remote", class_files, remote_command, _("\
9145 Manipulate files on the remote system\n\
9146 Transfer files to and from the remote target system."),
9147 &remote_cmdlist, "remote ",
9148 0 /* allow-unknown */, &cmdlist);
9149
9150 add_cmd ("put", class_files, remote_put_command,
9151 _("Copy a local file to the remote system."),
9152 &remote_cmdlist);
9153
9154 add_cmd ("get", class_files, remote_get_command,
9155 _("Copy a remote file to the local system."),
9156 &remote_cmdlist);
9157
9158 add_cmd ("delete", class_files, remote_delete_command,
9159 _("Delete a remote file."),
9160 &remote_cmdlist);
9161
9162 remote_exec_file = xstrdup ("");
9163 add_setshow_string_noescape_cmd ("exec-file", class_files,
9164 &remote_exec_file, _("\
9165 Set the remote pathname for \"run\""), _("\
9166 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9167 &remote_set_cmdlist, &remote_show_cmdlist);
9168
9169 /* Eventually initialize fileio. See fileio.c */
9170 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9171
9172 /* Take advantage of the fact that the LWP field is not used, to tag
9173 special ptids with it set to != 0. */
9174 magic_null_ptid = ptid_build (42000, 1, -1);
9175 not_sent_ptid = ptid_build (42000, 1, -2);
9176 any_thread_ptid = ptid_build (42000, 1, 0);
9177 }