]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* remote.c (remote_get_thread_info): If the remote doesn't support
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void remote_files_info (struct target_ops *ignore);
89
90 static void remote_prepare_to_store (struct regcache *regcache);
91
92 static void remote_fetch_registers (struct regcache *regcache, int regno);
93
94 static void remote_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97
98 static void extended_remote_open (char *name, int from_tty);
99
100 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
101
102 static void remote_close (int quitting);
103
104 static void remote_store_registers (struct regcache *regcache, int regno);
105
106 static void remote_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char **buf, long *sizeof_buf_p);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120
121 static void remote_kill (void);
122
123 static int tohex (int nib);
124
125 static int remote_can_async_p (void);
126
127 static int remote_is_async_p (void);
128
129 static void remote_async (void (*callback) (enum inferior_event_type event_type,
130 void *context), void *context);
131
132 static int remote_async_mask (int new_mask);
133
134 static void remote_detach (char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static int remote_thread_alive (ptid_t);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (ptid_t);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static unsigned long crc32 (unsigned char *, int, unsigned int);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static void remote_find_new_threads (void);
184
185 static void record_currthread (ptid_t currthread);
186
187 static int fromhex (int a);
188
189 static int hex2bin (const char *hex, gdb_byte *bin, int count);
190
191 static int bin2hex (const gdb_byte *bin, char *hex, int count);
192
193 static int putpkt_binary (char *buf, int cnt);
194
195 static void check_binary_download (CORE_ADDR addr);
196
197 struct packet_config;
198
199 static void show_packet_config_cmd (struct packet_config *config);
200
201 static void update_packet_config (struct packet_config *config);
202
203 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
204 struct cmd_list_element *c);
205
206 static void show_remote_protocol_packet_cmd (struct ui_file *file,
207 int from_tty,
208 struct cmd_list_element *c,
209 const char *value);
210
211 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
212 static ptid_t read_ptid (char *buf, char **obuf);
213
214 void _initialize_remote (void);
215
216 /* For "remote". */
217
218 static struct cmd_list_element *remote_cmdlist;
219
220 /* For "set remote" and "show remote". */
221
222 static struct cmd_list_element *remote_set_cmdlist;
223 static struct cmd_list_element *remote_show_cmdlist;
224
225 /* Description of the remote protocol state for the currently
226 connected target. This is per-target state, and independent of the
227 selected architecture. */
228
229 struct remote_state
230 {
231 /* A buffer to use for incoming packets, and its current size. The
232 buffer is grown dynamically for larger incoming packets.
233 Outgoing packets may also be constructed in this buffer.
234 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
235 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
236 packets. */
237 char *buf;
238 long buf_size;
239
240 /* If we negotiated packet size explicitly (and thus can bypass
241 heuristics for the largest packet size that will not overflow
242 a buffer in the stub), this will be set to that packet size.
243 Otherwise zero, meaning to use the guessed size. */
244 long explicit_packet_size;
245
246 /* remote_wait is normally called when the target is running and
247 waits for a stop reply packet. But sometimes we need to call it
248 when the target is already stopped. We can send a "?" packet
249 and have remote_wait read the response. Or, if we already have
250 the response, we can stash it in BUF and tell remote_wait to
251 skip calling getpkt. This flag is set when BUF contains a
252 stop reply packet and the target is not waiting. */
253 int cached_wait_status;
254
255 /* True, if in no ack mode. That is, neither GDB nor the stub will
256 expect acks from each other. The connection is assumed to be
257 reliable. */
258 int noack_mode;
259
260 /* True if we're connected in extended remote mode. */
261 int extended;
262
263 /* True if the stub reported support for multi-process
264 extensions. */
265 int multi_process_aware;
266 };
267
268 /* Returns true if the multi-process extensions are in effect. */
269 static int
270 remote_multi_process_p (struct remote_state *rs)
271 {
272 return rs->extended && rs->multi_process_aware;
273 }
274
275 /* This data could be associated with a target, but we do not always
276 have access to the current target when we need it, so for now it is
277 static. This will be fine for as long as only one target is in use
278 at a time. */
279 static struct remote_state remote_state;
280
281 static struct remote_state *
282 get_remote_state_raw (void)
283 {
284 return &remote_state;
285 }
286
287 /* Description of the remote protocol for a given architecture. */
288
289 struct packet_reg
290 {
291 long offset; /* Offset into G packet. */
292 long regnum; /* GDB's internal register number. */
293 LONGEST pnum; /* Remote protocol register number. */
294 int in_g_packet; /* Always part of G packet. */
295 /* long size in bytes; == register_size (target_gdbarch, regnum);
296 at present. */
297 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
298 at present. */
299 };
300
301 struct remote_arch_state
302 {
303 /* Description of the remote protocol registers. */
304 long sizeof_g_packet;
305
306 /* Description of the remote protocol registers indexed by REGNUM
307 (making an array gdbarch_num_regs in size). */
308 struct packet_reg *regs;
309
310 /* This is the size (in chars) of the first response to the ``g''
311 packet. It is used as a heuristic when determining the maximum
312 size of memory-read and memory-write packets. A target will
313 typically only reserve a buffer large enough to hold the ``g''
314 packet. The size does not include packet overhead (headers and
315 trailers). */
316 long actual_register_packet_size;
317
318 /* This is the maximum size (in chars) of a non read/write packet.
319 It is also used as a cap on the size of read/write packets. */
320 long remote_packet_size;
321 };
322
323
324 /* Handle for retreving the remote protocol data from gdbarch. */
325 static struct gdbarch_data *remote_gdbarch_data_handle;
326
327 static struct remote_arch_state *
328 get_remote_arch_state (void)
329 {
330 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
331 }
332
333 /* Fetch the global remote target state. */
334
335 static struct remote_state *
336 get_remote_state (void)
337 {
338 /* Make sure that the remote architecture state has been
339 initialized, because doing so might reallocate rs->buf. Any
340 function which calls getpkt also needs to be mindful of changes
341 to rs->buf, but this call limits the number of places which run
342 into trouble. */
343 get_remote_arch_state ();
344
345 return get_remote_state_raw ();
346 }
347
348 static int
349 compare_pnums (const void *lhs_, const void *rhs_)
350 {
351 const struct packet_reg * const *lhs = lhs_;
352 const struct packet_reg * const *rhs = rhs_;
353
354 if ((*lhs)->pnum < (*rhs)->pnum)
355 return -1;
356 else if ((*lhs)->pnum == (*rhs)->pnum)
357 return 0;
358 else
359 return 1;
360 }
361
362 static void *
363 init_remote_state (struct gdbarch *gdbarch)
364 {
365 int regnum, num_remote_regs, offset;
366 struct remote_state *rs = get_remote_state_raw ();
367 struct remote_arch_state *rsa;
368 struct packet_reg **remote_regs;
369
370 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
371
372 /* Use the architecture to build a regnum<->pnum table, which will be
373 1:1 unless a feature set specifies otherwise. */
374 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
375 gdbarch_num_regs (gdbarch),
376 struct packet_reg);
377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
378 {
379 struct packet_reg *r = &rsa->regs[regnum];
380
381 if (register_size (gdbarch, regnum) == 0)
382 /* Do not try to fetch zero-sized (placeholder) registers. */
383 r->pnum = -1;
384 else
385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
386
387 r->regnum = regnum;
388 }
389
390 /* Define the g/G packet format as the contents of each register
391 with a remote protocol number, in order of ascending protocol
392 number. */
393
394 remote_regs = alloca (gdbarch_num_regs (gdbarch)
395 * sizeof (struct packet_reg *));
396 for (num_remote_regs = 0, regnum = 0;
397 regnum < gdbarch_num_regs (gdbarch);
398 regnum++)
399 if (rsa->regs[regnum].pnum != -1)
400 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
401
402 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
403 compare_pnums);
404
405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
406 {
407 remote_regs[regnum]->in_g_packet = 1;
408 remote_regs[regnum]->offset = offset;
409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
410 }
411
412 /* Record the maximum possible size of the g packet - it may turn out
413 to be smaller. */
414 rsa->sizeof_g_packet = offset;
415
416 /* Default maximum number of characters in a packet body. Many
417 remote stubs have a hardwired buffer size of 400 bytes
418 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
419 as the maximum packet-size to ensure that the packet and an extra
420 NUL character can always fit in the buffer. This stops GDB
421 trashing stubs that try to squeeze an extra NUL into what is
422 already a full buffer (As of 1999-12-04 that was most stubs). */
423 rsa->remote_packet_size = 400 - 1;
424
425 /* This one is filled in when a ``g'' packet is received. */
426 rsa->actual_register_packet_size = 0;
427
428 /* Should rsa->sizeof_g_packet needs more space than the
429 default, adjust the size accordingly. Remember that each byte is
430 encoded as two characters. 32 is the overhead for the packet
431 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
432 (``$NN:G...#NN'') is a better guess, the below has been padded a
433 little. */
434 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
435 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
436
437 /* Make sure that the packet buffer is plenty big enough for
438 this architecture. */
439 if (rs->buf_size < rsa->remote_packet_size)
440 {
441 rs->buf_size = 2 * rsa->remote_packet_size;
442 rs->buf = xrealloc (rs->buf, rs->buf_size);
443 }
444
445 return rsa;
446 }
447
448 /* Return the current allowed size of a remote packet. This is
449 inferred from the current architecture, and should be used to
450 limit the length of outgoing packets. */
451 static long
452 get_remote_packet_size (void)
453 {
454 struct remote_state *rs = get_remote_state ();
455 struct remote_arch_state *rsa = get_remote_arch_state ();
456
457 if (rs->explicit_packet_size)
458 return rs->explicit_packet_size;
459
460 return rsa->remote_packet_size;
461 }
462
463 static struct packet_reg *
464 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
465 {
466 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
467 return NULL;
468 else
469 {
470 struct packet_reg *r = &rsa->regs[regnum];
471 gdb_assert (r->regnum == regnum);
472 return r;
473 }
474 }
475
476 static struct packet_reg *
477 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
478 {
479 int i;
480 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
481 {
482 struct packet_reg *r = &rsa->regs[i];
483 if (r->pnum == pnum)
484 return r;
485 }
486 return NULL;
487 }
488
489 /* FIXME: graces/2002-08-08: These variables should eventually be
490 bound to an instance of the target object (as in gdbarch-tdep()),
491 when such a thing exists. */
492
493 /* This is set to the data address of the access causing the target
494 to stop for a watchpoint. */
495 static CORE_ADDR remote_watch_data_address;
496
497 /* This is non-zero if target stopped for a watchpoint. */
498 static int remote_stopped_by_watchpoint_p;
499
500 static struct target_ops remote_ops;
501
502 static struct target_ops extended_remote_ops;
503
504 static int remote_async_mask_value = 1;
505
506 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
507 ``forever'' still use the normal timeout mechanism. This is
508 currently used by the ASYNC code to guarentee that target reads
509 during the initial connect always time-out. Once getpkt has been
510 modified to return a timeout indication and, in turn
511 remote_wait()/wait_for_inferior() have gained a timeout parameter
512 this can go away. */
513 static int wait_forever_enabled_p = 1;
514
515
516 /* This variable chooses whether to send a ^C or a break when the user
517 requests program interruption. Although ^C is usually what remote
518 systems expect, and that is the default here, sometimes a break is
519 preferable instead. */
520
521 static int remote_break;
522
523 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
524 remote_open knows that we don't have a file open when the program
525 starts. */
526 static struct serial *remote_desc = NULL;
527
528 /* This variable sets the number of bits in an address that are to be
529 sent in a memory ("M" or "m") packet. Normally, after stripping
530 leading zeros, the entire address would be sent. This variable
531 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
532 initial implementation of remote.c restricted the address sent in
533 memory packets to ``host::sizeof long'' bytes - (typically 32
534 bits). Consequently, for 64 bit targets, the upper 32 bits of an
535 address was never sent. Since fixing this bug may cause a break in
536 some remote targets this variable is principly provided to
537 facilitate backward compatibility. */
538
539 static int remote_address_size;
540
541 /* Temporary to track who currently owns the terminal. See
542 remote_terminal_* for more details. */
543
544 static int remote_async_terminal_ours_p;
545
546 /* The executable file to use for "run" on the remote side. */
547
548 static char *remote_exec_file = "";
549
550 \f
551 /* User configurable variables for the number of characters in a
552 memory read/write packet. MIN (rsa->remote_packet_size,
553 rsa->sizeof_g_packet) is the default. Some targets need smaller
554 values (fifo overruns, et.al.) and some users need larger values
555 (speed up transfers). The variables ``preferred_*'' (the user
556 request), ``current_*'' (what was actually set) and ``forced_*''
557 (Positive - a soft limit, negative - a hard limit). */
558
559 struct memory_packet_config
560 {
561 char *name;
562 long size;
563 int fixed_p;
564 };
565
566 /* Compute the current size of a read/write packet. Since this makes
567 use of ``actual_register_packet_size'' the computation is dynamic. */
568
569 static long
570 get_memory_packet_size (struct memory_packet_config *config)
571 {
572 struct remote_state *rs = get_remote_state ();
573 struct remote_arch_state *rsa = get_remote_arch_state ();
574
575 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
576 law?) that some hosts don't cope very well with large alloca()
577 calls. Eventually the alloca() code will be replaced by calls to
578 xmalloc() and make_cleanups() allowing this restriction to either
579 be lifted or removed. */
580 #ifndef MAX_REMOTE_PACKET_SIZE
581 #define MAX_REMOTE_PACKET_SIZE 16384
582 #endif
583 /* NOTE: 20 ensures we can write at least one byte. */
584 #ifndef MIN_REMOTE_PACKET_SIZE
585 #define MIN_REMOTE_PACKET_SIZE 20
586 #endif
587 long what_they_get;
588 if (config->fixed_p)
589 {
590 if (config->size <= 0)
591 what_they_get = MAX_REMOTE_PACKET_SIZE;
592 else
593 what_they_get = config->size;
594 }
595 else
596 {
597 what_they_get = get_remote_packet_size ();
598 /* Limit the packet to the size specified by the user. */
599 if (config->size > 0
600 && what_they_get > config->size)
601 what_they_get = config->size;
602
603 /* Limit it to the size of the targets ``g'' response unless we have
604 permission from the stub to use a larger packet size. */
605 if (rs->explicit_packet_size == 0
606 && rsa->actual_register_packet_size > 0
607 && what_they_get > rsa->actual_register_packet_size)
608 what_they_get = rsa->actual_register_packet_size;
609 }
610 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
611 what_they_get = MAX_REMOTE_PACKET_SIZE;
612 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
613 what_they_get = MIN_REMOTE_PACKET_SIZE;
614
615 /* Make sure there is room in the global buffer for this packet
616 (including its trailing NUL byte). */
617 if (rs->buf_size < what_they_get + 1)
618 {
619 rs->buf_size = 2 * what_they_get;
620 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
621 }
622
623 return what_they_get;
624 }
625
626 /* Update the size of a read/write packet. If they user wants
627 something really big then do a sanity check. */
628
629 static void
630 set_memory_packet_size (char *args, struct memory_packet_config *config)
631 {
632 int fixed_p = config->fixed_p;
633 long size = config->size;
634 if (args == NULL)
635 error (_("Argument required (integer, `fixed' or `limited')."));
636 else if (strcmp (args, "hard") == 0
637 || strcmp (args, "fixed") == 0)
638 fixed_p = 1;
639 else if (strcmp (args, "soft") == 0
640 || strcmp (args, "limit") == 0)
641 fixed_p = 0;
642 else
643 {
644 char *end;
645 size = strtoul (args, &end, 0);
646 if (args == end)
647 error (_("Invalid %s (bad syntax)."), config->name);
648 #if 0
649 /* Instead of explicitly capping the size of a packet to
650 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
651 instead allowed to set the size to something arbitrarily
652 large. */
653 if (size > MAX_REMOTE_PACKET_SIZE)
654 error (_("Invalid %s (too large)."), config->name);
655 #endif
656 }
657 /* Extra checks? */
658 if (fixed_p && !config->fixed_p)
659 {
660 if (! query (_("The target may not be able to correctly handle a %s\n"
661 "of %ld bytes. Change the packet size? "),
662 config->name, size))
663 error (_("Packet size not changed."));
664 }
665 /* Update the config. */
666 config->fixed_p = fixed_p;
667 config->size = size;
668 }
669
670 static void
671 show_memory_packet_size (struct memory_packet_config *config)
672 {
673 printf_filtered (_("The %s is %ld. "), config->name, config->size);
674 if (config->fixed_p)
675 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
676 get_memory_packet_size (config));
677 else
678 printf_filtered (_("Packets are limited to %ld bytes.\n"),
679 get_memory_packet_size (config));
680 }
681
682 static struct memory_packet_config memory_write_packet_config =
683 {
684 "memory-write-packet-size",
685 };
686
687 static void
688 set_memory_write_packet_size (char *args, int from_tty)
689 {
690 set_memory_packet_size (args, &memory_write_packet_config);
691 }
692
693 static void
694 show_memory_write_packet_size (char *args, int from_tty)
695 {
696 show_memory_packet_size (&memory_write_packet_config);
697 }
698
699 static long
700 get_memory_write_packet_size (void)
701 {
702 return get_memory_packet_size (&memory_write_packet_config);
703 }
704
705 static struct memory_packet_config memory_read_packet_config =
706 {
707 "memory-read-packet-size",
708 };
709
710 static void
711 set_memory_read_packet_size (char *args, int from_tty)
712 {
713 set_memory_packet_size (args, &memory_read_packet_config);
714 }
715
716 static void
717 show_memory_read_packet_size (char *args, int from_tty)
718 {
719 show_memory_packet_size (&memory_read_packet_config);
720 }
721
722 static long
723 get_memory_read_packet_size (void)
724 {
725 long size = get_memory_packet_size (&memory_read_packet_config);
726 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
727 extra buffer size argument before the memory read size can be
728 increased beyond this. */
729 if (size > get_remote_packet_size ())
730 size = get_remote_packet_size ();
731 return size;
732 }
733
734 \f
735 /* Generic configuration support for packets the stub optionally
736 supports. Allows the user to specify the use of the packet as well
737 as allowing GDB to auto-detect support in the remote stub. */
738
739 enum packet_support
740 {
741 PACKET_SUPPORT_UNKNOWN = 0,
742 PACKET_ENABLE,
743 PACKET_DISABLE
744 };
745
746 struct packet_config
747 {
748 const char *name;
749 const char *title;
750 enum auto_boolean detect;
751 enum packet_support support;
752 };
753
754 /* Analyze a packet's return value and update the packet config
755 accordingly. */
756
757 enum packet_result
758 {
759 PACKET_ERROR,
760 PACKET_OK,
761 PACKET_UNKNOWN
762 };
763
764 static void
765 update_packet_config (struct packet_config *config)
766 {
767 switch (config->detect)
768 {
769 case AUTO_BOOLEAN_TRUE:
770 config->support = PACKET_ENABLE;
771 break;
772 case AUTO_BOOLEAN_FALSE:
773 config->support = PACKET_DISABLE;
774 break;
775 case AUTO_BOOLEAN_AUTO:
776 config->support = PACKET_SUPPORT_UNKNOWN;
777 break;
778 }
779 }
780
781 static void
782 show_packet_config_cmd (struct packet_config *config)
783 {
784 char *support = "internal-error";
785 switch (config->support)
786 {
787 case PACKET_ENABLE:
788 support = "enabled";
789 break;
790 case PACKET_DISABLE:
791 support = "disabled";
792 break;
793 case PACKET_SUPPORT_UNKNOWN:
794 support = "unknown";
795 break;
796 }
797 switch (config->detect)
798 {
799 case AUTO_BOOLEAN_AUTO:
800 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
801 config->name, support);
802 break;
803 case AUTO_BOOLEAN_TRUE:
804 case AUTO_BOOLEAN_FALSE:
805 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
806 config->name, support);
807 break;
808 }
809 }
810
811 static void
812 add_packet_config_cmd (struct packet_config *config, const char *name,
813 const char *title, int legacy)
814 {
815 char *set_doc;
816 char *show_doc;
817 char *cmd_name;
818
819 config->name = name;
820 config->title = title;
821 config->detect = AUTO_BOOLEAN_AUTO;
822 config->support = PACKET_SUPPORT_UNKNOWN;
823 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
824 name, title);
825 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
826 name, title);
827 /* set/show TITLE-packet {auto,on,off} */
828 cmd_name = xstrprintf ("%s-packet", title);
829 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
830 &config->detect, set_doc, show_doc, NULL, /* help_doc */
831 set_remote_protocol_packet_cmd,
832 show_remote_protocol_packet_cmd,
833 &remote_set_cmdlist, &remote_show_cmdlist);
834 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
835 if (legacy)
836 {
837 char *legacy_name;
838 legacy_name = xstrprintf ("%s-packet", name);
839 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
840 &remote_set_cmdlist);
841 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
842 &remote_show_cmdlist);
843 }
844 }
845
846 static enum packet_result
847 packet_check_result (const char *buf)
848 {
849 if (buf[0] != '\0')
850 {
851 /* The stub recognized the packet request. Check that the
852 operation succeeded. */
853 if (buf[0] == 'E'
854 && isxdigit (buf[1]) && isxdigit (buf[2])
855 && buf[3] == '\0')
856 /* "Enn" - definitly an error. */
857 return PACKET_ERROR;
858
859 /* Always treat "E." as an error. This will be used for
860 more verbose error messages, such as E.memtypes. */
861 if (buf[0] == 'E' && buf[1] == '.')
862 return PACKET_ERROR;
863
864 /* The packet may or may not be OK. Just assume it is. */
865 return PACKET_OK;
866 }
867 else
868 /* The stub does not support the packet. */
869 return PACKET_UNKNOWN;
870 }
871
872 static enum packet_result
873 packet_ok (const char *buf, struct packet_config *config)
874 {
875 enum packet_result result;
876
877 result = packet_check_result (buf);
878 switch (result)
879 {
880 case PACKET_OK:
881 case PACKET_ERROR:
882 /* The stub recognized the packet request. */
883 switch (config->support)
884 {
885 case PACKET_SUPPORT_UNKNOWN:
886 if (remote_debug)
887 fprintf_unfiltered (gdb_stdlog,
888 "Packet %s (%s) is supported\n",
889 config->name, config->title);
890 config->support = PACKET_ENABLE;
891 break;
892 case PACKET_DISABLE:
893 internal_error (__FILE__, __LINE__,
894 _("packet_ok: attempt to use a disabled packet"));
895 break;
896 case PACKET_ENABLE:
897 break;
898 }
899 break;
900 case PACKET_UNKNOWN:
901 /* The stub does not support the packet. */
902 switch (config->support)
903 {
904 case PACKET_ENABLE:
905 if (config->detect == AUTO_BOOLEAN_AUTO)
906 /* If the stub previously indicated that the packet was
907 supported then there is a protocol error.. */
908 error (_("Protocol error: %s (%s) conflicting enabled responses."),
909 config->name, config->title);
910 else
911 /* The user set it wrong. */
912 error (_("Enabled packet %s (%s) not recognized by stub"),
913 config->name, config->title);
914 break;
915 case PACKET_SUPPORT_UNKNOWN:
916 if (remote_debug)
917 fprintf_unfiltered (gdb_stdlog,
918 "Packet %s (%s) is NOT supported\n",
919 config->name, config->title);
920 config->support = PACKET_DISABLE;
921 break;
922 case PACKET_DISABLE:
923 break;
924 }
925 break;
926 }
927
928 return result;
929 }
930
931 enum {
932 PACKET_vCont = 0,
933 PACKET_X,
934 PACKET_qSymbol,
935 PACKET_P,
936 PACKET_p,
937 PACKET_Z0,
938 PACKET_Z1,
939 PACKET_Z2,
940 PACKET_Z3,
941 PACKET_Z4,
942 PACKET_vFile_open,
943 PACKET_vFile_pread,
944 PACKET_vFile_pwrite,
945 PACKET_vFile_close,
946 PACKET_vFile_unlink,
947 PACKET_qXfer_auxv,
948 PACKET_qXfer_features,
949 PACKET_qXfer_libraries,
950 PACKET_qXfer_memory_map,
951 PACKET_qXfer_spu_read,
952 PACKET_qXfer_spu_write,
953 PACKET_qGetTLSAddr,
954 PACKET_qSupported,
955 PACKET_QPassSignals,
956 PACKET_qSearch_memory,
957 PACKET_vAttach,
958 PACKET_vRun,
959 PACKET_QStartNoAckMode,
960 PACKET_vKill,
961 PACKET_MAX
962 };
963
964 static struct packet_config remote_protocol_packets[PACKET_MAX];
965
966 static void
967 set_remote_protocol_packet_cmd (char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 struct packet_config *packet;
971
972 for (packet = remote_protocol_packets;
973 packet < &remote_protocol_packets[PACKET_MAX];
974 packet++)
975 {
976 if (&packet->detect == c->var)
977 {
978 update_packet_config (packet);
979 return;
980 }
981 }
982 internal_error (__FILE__, __LINE__, "Could not find config for %s",
983 c->name);
984 }
985
986 static void
987 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
988 struct cmd_list_element *c,
989 const char *value)
990 {
991 struct packet_config *packet;
992
993 for (packet = remote_protocol_packets;
994 packet < &remote_protocol_packets[PACKET_MAX];
995 packet++)
996 {
997 if (&packet->detect == c->var)
998 {
999 show_packet_config_cmd (packet);
1000 return;
1001 }
1002 }
1003 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1004 c->name);
1005 }
1006
1007 /* Should we try one of the 'Z' requests? */
1008
1009 enum Z_packet_type
1010 {
1011 Z_PACKET_SOFTWARE_BP,
1012 Z_PACKET_HARDWARE_BP,
1013 Z_PACKET_WRITE_WP,
1014 Z_PACKET_READ_WP,
1015 Z_PACKET_ACCESS_WP,
1016 NR_Z_PACKET_TYPES
1017 };
1018
1019 /* For compatibility with older distributions. Provide a ``set remote
1020 Z-packet ...'' command that updates all the Z packet types. */
1021
1022 static enum auto_boolean remote_Z_packet_detect;
1023
1024 static void
1025 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1026 struct cmd_list_element *c)
1027 {
1028 int i;
1029 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1030 {
1031 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1032 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1033 }
1034 }
1035
1036 static void
1037 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1038 struct cmd_list_element *c,
1039 const char *value)
1040 {
1041 int i;
1042 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1043 {
1044 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1045 }
1046 }
1047
1048 /* Should we try the 'ThreadInfo' query packet?
1049
1050 This variable (NOT available to the user: auto-detect only!)
1051 determines whether GDB will use the new, simpler "ThreadInfo"
1052 query or the older, more complex syntax for thread queries.
1053 This is an auto-detect variable (set to true at each connect,
1054 and set to false when the target fails to recognize it). */
1055
1056 static int use_threadinfo_query;
1057 static int use_threadextra_query;
1058
1059 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1060 static struct async_signal_handler *sigint_remote_twice_token;
1061 static struct async_signal_handler *sigint_remote_token;
1062
1063 \f
1064
1065 static ptid_t magic_null_ptid;
1066 static ptid_t not_sent_ptid;
1067 static ptid_t any_thread_ptid;
1068
1069 /* These are the threads which we last sent to the remote system. The
1070 TID member will be -1 for all or -2 for not sent yet. */
1071
1072 static ptid_t general_thread;
1073 static ptid_t continue_thread;
1074
1075
1076 /* Call this function as a result of
1077 1) A halt indication (T packet) containing a thread id
1078 2) A direct query of currthread
1079 3) Successful execution of set thread
1080 */
1081
1082 static void
1083 record_currthread (ptid_t currthread)
1084 {
1085 general_thread = currthread;
1086
1087 /* If this is a new thread, add it to GDB's thread list.
1088 If we leave it up to WFI to do this, bad things will happen. */
1089
1090 if (in_thread_list (currthread) && is_exited (currthread))
1091 {
1092 /* We're seeing an event on a thread id we knew had exited.
1093 This has to be a new thread reusing the old id. Add it. */
1094 add_thread (currthread);
1095 return;
1096 }
1097
1098 if (!in_thread_list (currthread))
1099 {
1100 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1101 {
1102 /* inferior_ptid has no thread member yet. This can happen
1103 with the vAttach -> remote_wait,"TAAthread:" path if the
1104 stub doesn't support qC. This is the first stop reported
1105 after an attach, so this is the main thread. Update the
1106 ptid in the thread list. */
1107 thread_change_ptid (inferior_ptid, currthread);
1108 return;
1109 }
1110
1111 if (ptid_equal (magic_null_ptid, inferior_ptid))
1112 {
1113 /* inferior_ptid is not set yet. This can happen with the
1114 vRun -> remote_wait,"TAAthread:" path if the stub
1115 doesn't support qC. This is the first stop reported
1116 after an attach, so this is the main thread. Update the
1117 ptid in the thread list. */
1118 thread_change_ptid (inferior_ptid, currthread);
1119 return;
1120 }
1121
1122 /* This is really a new thread. Add it. */
1123 add_thread (currthread);
1124 }
1125
1126 if (!in_inferior_list (ptid_get_pid (currthread)))
1127 /* When connecting to a target remote, or to a target
1128 extended-remote which already was debugging an inferior, we may
1129 not know about it yet --- add it. */
1130 add_inferior (ptid_get_pid (currthread));
1131 }
1132
1133 static char *last_pass_packet;
1134
1135 /* If 'QPassSignals' is supported, tell the remote stub what signals
1136 it can simply pass through to the inferior without reporting. */
1137
1138 static void
1139 remote_pass_signals (void)
1140 {
1141 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1142 {
1143 char *pass_packet, *p;
1144 int numsigs = (int) TARGET_SIGNAL_LAST;
1145 int count = 0, i;
1146
1147 gdb_assert (numsigs < 256);
1148 for (i = 0; i < numsigs; i++)
1149 {
1150 if (signal_stop_state (i) == 0
1151 && signal_print_state (i) == 0
1152 && signal_pass_state (i) == 1)
1153 count++;
1154 }
1155 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1156 strcpy (pass_packet, "QPassSignals:");
1157 p = pass_packet + strlen (pass_packet);
1158 for (i = 0; i < numsigs; i++)
1159 {
1160 if (signal_stop_state (i) == 0
1161 && signal_print_state (i) == 0
1162 && signal_pass_state (i) == 1)
1163 {
1164 if (i >= 16)
1165 *p++ = tohex (i >> 4);
1166 *p++ = tohex (i & 15);
1167 if (count)
1168 *p++ = ';';
1169 else
1170 break;
1171 count--;
1172 }
1173 }
1174 *p = 0;
1175 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1176 {
1177 struct remote_state *rs = get_remote_state ();
1178 char *buf = rs->buf;
1179
1180 putpkt (pass_packet);
1181 getpkt (&rs->buf, &rs->buf_size, 0);
1182 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1183 if (last_pass_packet)
1184 xfree (last_pass_packet);
1185 last_pass_packet = pass_packet;
1186 }
1187 else
1188 xfree (pass_packet);
1189 }
1190 }
1191
1192 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1193 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1194 thread. If GEN is set, set the general thread, if not, then set
1195 the step/continue thread. */
1196 static void
1197 set_thread (struct ptid ptid, int gen)
1198 {
1199 struct remote_state *rs = get_remote_state ();
1200 ptid_t state = gen ? general_thread : continue_thread;
1201 char *buf = rs->buf;
1202 char *endbuf = rs->buf + get_remote_packet_size ();
1203
1204 if (ptid_equal (state, ptid))
1205 return;
1206
1207 *buf++ = 'H';
1208 *buf++ = gen ? 'g' : 'c';
1209 if (ptid_equal (ptid, magic_null_ptid))
1210 xsnprintf (buf, endbuf - buf, "0");
1211 else if (ptid_equal (ptid, any_thread_ptid))
1212 xsnprintf (buf, endbuf - buf, "0");
1213 else if (ptid_equal (ptid, minus_one_ptid))
1214 xsnprintf (buf, endbuf - buf, "-1");
1215 else
1216 write_ptid (buf, endbuf, ptid);
1217 putpkt (rs->buf);
1218 getpkt (&rs->buf, &rs->buf_size, 0);
1219 if (gen)
1220 general_thread = ptid;
1221 else
1222 continue_thread = ptid;
1223 }
1224
1225 static void
1226 set_general_thread (struct ptid ptid)
1227 {
1228 set_thread (ptid, 1);
1229 }
1230
1231 static void
1232 set_continue_thread (struct ptid ptid)
1233 {
1234 set_thread (ptid, 0);
1235 }
1236
1237 \f
1238 /* Return nonzero if the thread PTID is still alive on the remote
1239 system. */
1240
1241 static int
1242 remote_thread_alive (ptid_t ptid)
1243 {
1244 struct remote_state *rs = get_remote_state ();
1245 int tid = ptid_get_tid (ptid);
1246 char *p, *endp;
1247
1248 if (ptid_equal (ptid, magic_null_ptid))
1249 /* The main thread is always alive. */
1250 return 1;
1251
1252 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1253 /* The main thread is always alive. This can happen after a
1254 vAttach, if the remote side doesn't support
1255 multi-threading. */
1256 return 1;
1257
1258 p = rs->buf;
1259 endp = rs->buf + get_remote_packet_size ();
1260
1261 *p++ = 'T';
1262 write_ptid (p, endp, ptid);
1263
1264 putpkt (rs->buf);
1265 getpkt (&rs->buf, &rs->buf_size, 0);
1266 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1267 }
1268
1269 /* About these extended threadlist and threadinfo packets. They are
1270 variable length packets but, the fields within them are often fixed
1271 length. They are redundent enough to send over UDP as is the
1272 remote protocol in general. There is a matching unit test module
1273 in libstub. */
1274
1275 #define OPAQUETHREADBYTES 8
1276
1277 /* a 64 bit opaque identifier */
1278 typedef unsigned char threadref[OPAQUETHREADBYTES];
1279
1280 /* WARNING: This threadref data structure comes from the remote O.S.,
1281 libstub protocol encoding, and remote.c. it is not particularly
1282 changable. */
1283
1284 /* Right now, the internal structure is int. We want it to be bigger.
1285 Plan to fix this.
1286 */
1287
1288 typedef int gdb_threadref; /* Internal GDB thread reference. */
1289
1290 /* gdb_ext_thread_info is an internal GDB data structure which is
1291 equivalent to the reply of the remote threadinfo packet. */
1292
1293 struct gdb_ext_thread_info
1294 {
1295 threadref threadid; /* External form of thread reference. */
1296 int active; /* Has state interesting to GDB?
1297 regs, stack. */
1298 char display[256]; /* Brief state display, name,
1299 blocked/suspended. */
1300 char shortname[32]; /* To be used to name threads. */
1301 char more_display[256]; /* Long info, statistics, queue depth,
1302 whatever. */
1303 };
1304
1305 /* The volume of remote transfers can be limited by submitting
1306 a mask containing bits specifying the desired information.
1307 Use a union of these values as the 'selection' parameter to
1308 get_thread_info. FIXME: Make these TAG names more thread specific.
1309 */
1310
1311 #define TAG_THREADID 1
1312 #define TAG_EXISTS 2
1313 #define TAG_DISPLAY 4
1314 #define TAG_THREADNAME 8
1315 #define TAG_MOREDISPLAY 16
1316
1317 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1318
1319 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1320
1321 static char *unpack_nibble (char *buf, int *val);
1322
1323 static char *pack_nibble (char *buf, int nibble);
1324
1325 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1326
1327 static char *unpack_byte (char *buf, int *value);
1328
1329 static char *pack_int (char *buf, int value);
1330
1331 static char *unpack_int (char *buf, int *value);
1332
1333 static char *unpack_string (char *src, char *dest, int length);
1334
1335 static char *pack_threadid (char *pkt, threadref *id);
1336
1337 static char *unpack_threadid (char *inbuf, threadref *id);
1338
1339 void int_to_threadref (threadref *id, int value);
1340
1341 static int threadref_to_int (threadref *ref);
1342
1343 static void copy_threadref (threadref *dest, threadref *src);
1344
1345 static int threadmatch (threadref *dest, threadref *src);
1346
1347 static char *pack_threadinfo_request (char *pkt, int mode,
1348 threadref *id);
1349
1350 static int remote_unpack_thread_info_response (char *pkt,
1351 threadref *expectedref,
1352 struct gdb_ext_thread_info
1353 *info);
1354
1355
1356 static int remote_get_threadinfo (threadref *threadid,
1357 int fieldset, /*TAG mask */
1358 struct gdb_ext_thread_info *info);
1359
1360 static char *pack_threadlist_request (char *pkt, int startflag,
1361 int threadcount,
1362 threadref *nextthread);
1363
1364 static int parse_threadlist_response (char *pkt,
1365 int result_limit,
1366 threadref *original_echo,
1367 threadref *resultlist,
1368 int *doneflag);
1369
1370 static int remote_get_threadlist (int startflag,
1371 threadref *nextthread,
1372 int result_limit,
1373 int *done,
1374 int *result_count,
1375 threadref *threadlist);
1376
1377 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1378
1379 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1380 void *context, int looplimit);
1381
1382 static int remote_newthread_step (threadref *ref, void *context);
1383
1384
1385 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1386 buffer we're allowed to write to. Returns
1387 BUF+CHARACTERS_WRITTEN. */
1388
1389 static char *
1390 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1391 {
1392 int pid, tid;
1393 struct remote_state *rs = get_remote_state ();
1394
1395 if (remote_multi_process_p (rs))
1396 {
1397 pid = ptid_get_pid (ptid);
1398 if (pid < 0)
1399 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1400 else
1401 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1402 }
1403 tid = ptid_get_tid (ptid);
1404 if (tid < 0)
1405 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1406 else
1407 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1408
1409 return buf;
1410 }
1411
1412 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1413 passed the last parsed char. Returns null_ptid on error. */
1414
1415 static ptid_t
1416 read_ptid (char *buf, char **obuf)
1417 {
1418 char *p = buf;
1419 char *pp;
1420 ULONGEST pid = 0, tid = 0;
1421 ptid_t ptid;
1422
1423 if (*p == 'p')
1424 {
1425 /* Multi-process ptid. */
1426 pp = unpack_varlen_hex (p + 1, &pid);
1427 if (*pp != '.')
1428 error (_("invalid remote ptid: %s\n"), p);
1429
1430 p = pp;
1431 pp = unpack_varlen_hex (p + 1, &tid);
1432 if (obuf)
1433 *obuf = pp;
1434 return ptid_build (pid, 0, tid);
1435 }
1436
1437 /* No multi-process. Just a tid. */
1438 pp = unpack_varlen_hex (p, &tid);
1439
1440 /* Since the stub is not sending a process id, then default to
1441 what's in inferior_ptid. */
1442 pid = ptid_get_pid (inferior_ptid);
1443
1444 if (obuf)
1445 *obuf = pp;
1446 return ptid_build (pid, 0, tid);
1447 }
1448
1449 /* Encode 64 bits in 16 chars of hex. */
1450
1451 static const char hexchars[] = "0123456789abcdef";
1452
1453 static int
1454 ishex (int ch, int *val)
1455 {
1456 if ((ch >= 'a') && (ch <= 'f'))
1457 {
1458 *val = ch - 'a' + 10;
1459 return 1;
1460 }
1461 if ((ch >= 'A') && (ch <= 'F'))
1462 {
1463 *val = ch - 'A' + 10;
1464 return 1;
1465 }
1466 if ((ch >= '0') && (ch <= '9'))
1467 {
1468 *val = ch - '0';
1469 return 1;
1470 }
1471 return 0;
1472 }
1473
1474 static int
1475 stubhex (int ch)
1476 {
1477 if (ch >= 'a' && ch <= 'f')
1478 return ch - 'a' + 10;
1479 if (ch >= '0' && ch <= '9')
1480 return ch - '0';
1481 if (ch >= 'A' && ch <= 'F')
1482 return ch - 'A' + 10;
1483 return -1;
1484 }
1485
1486 static int
1487 stub_unpack_int (char *buff, int fieldlength)
1488 {
1489 int nibble;
1490 int retval = 0;
1491
1492 while (fieldlength)
1493 {
1494 nibble = stubhex (*buff++);
1495 retval |= nibble;
1496 fieldlength--;
1497 if (fieldlength)
1498 retval = retval << 4;
1499 }
1500 return retval;
1501 }
1502
1503 char *
1504 unpack_varlen_hex (char *buff, /* packet to parse */
1505 ULONGEST *result)
1506 {
1507 int nibble;
1508 ULONGEST retval = 0;
1509
1510 while (ishex (*buff, &nibble))
1511 {
1512 buff++;
1513 retval = retval << 4;
1514 retval |= nibble & 0x0f;
1515 }
1516 *result = retval;
1517 return buff;
1518 }
1519
1520 static char *
1521 unpack_nibble (char *buf, int *val)
1522 {
1523 *val = fromhex (*buf++);
1524 return buf;
1525 }
1526
1527 static char *
1528 pack_nibble (char *buf, int nibble)
1529 {
1530 *buf++ = hexchars[(nibble & 0x0f)];
1531 return buf;
1532 }
1533
1534 static char *
1535 pack_hex_byte (char *pkt, int byte)
1536 {
1537 *pkt++ = hexchars[(byte >> 4) & 0xf];
1538 *pkt++ = hexchars[(byte & 0xf)];
1539 return pkt;
1540 }
1541
1542 static char *
1543 unpack_byte (char *buf, int *value)
1544 {
1545 *value = stub_unpack_int (buf, 2);
1546 return buf + 2;
1547 }
1548
1549 static char *
1550 pack_int (char *buf, int value)
1551 {
1552 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1553 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1554 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1555 buf = pack_hex_byte (buf, (value & 0xff));
1556 return buf;
1557 }
1558
1559 static char *
1560 unpack_int (char *buf, int *value)
1561 {
1562 *value = stub_unpack_int (buf, 8);
1563 return buf + 8;
1564 }
1565
1566 #if 0 /* Currently unused, uncomment when needed. */
1567 static char *pack_string (char *pkt, char *string);
1568
1569 static char *
1570 pack_string (char *pkt, char *string)
1571 {
1572 char ch;
1573 int len;
1574
1575 len = strlen (string);
1576 if (len > 200)
1577 len = 200; /* Bigger than most GDB packets, junk??? */
1578 pkt = pack_hex_byte (pkt, len);
1579 while (len-- > 0)
1580 {
1581 ch = *string++;
1582 if ((ch == '\0') || (ch == '#'))
1583 ch = '*'; /* Protect encapsulation. */
1584 *pkt++ = ch;
1585 }
1586 return pkt;
1587 }
1588 #endif /* 0 (unused) */
1589
1590 static char *
1591 unpack_string (char *src, char *dest, int length)
1592 {
1593 while (length--)
1594 *dest++ = *src++;
1595 *dest = '\0';
1596 return src;
1597 }
1598
1599 static char *
1600 pack_threadid (char *pkt, threadref *id)
1601 {
1602 char *limit;
1603 unsigned char *altid;
1604
1605 altid = (unsigned char *) id;
1606 limit = pkt + BUF_THREAD_ID_SIZE;
1607 while (pkt < limit)
1608 pkt = pack_hex_byte (pkt, *altid++);
1609 return pkt;
1610 }
1611
1612
1613 static char *
1614 unpack_threadid (char *inbuf, threadref *id)
1615 {
1616 char *altref;
1617 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1618 int x, y;
1619
1620 altref = (char *) id;
1621
1622 while (inbuf < limit)
1623 {
1624 x = stubhex (*inbuf++);
1625 y = stubhex (*inbuf++);
1626 *altref++ = (x << 4) | y;
1627 }
1628 return inbuf;
1629 }
1630
1631 /* Externally, threadrefs are 64 bits but internally, they are still
1632 ints. This is due to a mismatch of specifications. We would like
1633 to use 64bit thread references internally. This is an adapter
1634 function. */
1635
1636 void
1637 int_to_threadref (threadref *id, int value)
1638 {
1639 unsigned char *scan;
1640
1641 scan = (unsigned char *) id;
1642 {
1643 int i = 4;
1644 while (i--)
1645 *scan++ = 0;
1646 }
1647 *scan++ = (value >> 24) & 0xff;
1648 *scan++ = (value >> 16) & 0xff;
1649 *scan++ = (value >> 8) & 0xff;
1650 *scan++ = (value & 0xff);
1651 }
1652
1653 static int
1654 threadref_to_int (threadref *ref)
1655 {
1656 int i, value = 0;
1657 unsigned char *scan;
1658
1659 scan = *ref;
1660 scan += 4;
1661 i = 4;
1662 while (i-- > 0)
1663 value = (value << 8) | ((*scan++) & 0xff);
1664 return value;
1665 }
1666
1667 static void
1668 copy_threadref (threadref *dest, threadref *src)
1669 {
1670 int i;
1671 unsigned char *csrc, *cdest;
1672
1673 csrc = (unsigned char *) src;
1674 cdest = (unsigned char *) dest;
1675 i = 8;
1676 while (i--)
1677 *cdest++ = *csrc++;
1678 }
1679
1680 static int
1681 threadmatch (threadref *dest, threadref *src)
1682 {
1683 /* Things are broken right now, so just assume we got a match. */
1684 #if 0
1685 unsigned char *srcp, *destp;
1686 int i, result;
1687 srcp = (char *) src;
1688 destp = (char *) dest;
1689
1690 result = 1;
1691 while (i-- > 0)
1692 result &= (*srcp++ == *destp++) ? 1 : 0;
1693 return result;
1694 #endif
1695 return 1;
1696 }
1697
1698 /*
1699 threadid:1, # always request threadid
1700 context_exists:2,
1701 display:4,
1702 unique_name:8,
1703 more_display:16
1704 */
1705
1706 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1707
1708 static char *
1709 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1710 {
1711 *pkt++ = 'q'; /* Info Query */
1712 *pkt++ = 'P'; /* process or thread info */
1713 pkt = pack_int (pkt, mode); /* mode */
1714 pkt = pack_threadid (pkt, id); /* threadid */
1715 *pkt = '\0'; /* terminate */
1716 return pkt;
1717 }
1718
1719 /* These values tag the fields in a thread info response packet. */
1720 /* Tagging the fields allows us to request specific fields and to
1721 add more fields as time goes by. */
1722
1723 #define TAG_THREADID 1 /* Echo the thread identifier. */
1724 #define TAG_EXISTS 2 /* Is this process defined enough to
1725 fetch registers and its stack? */
1726 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1727 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1728 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1729 the process. */
1730
1731 static int
1732 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1733 struct gdb_ext_thread_info *info)
1734 {
1735 struct remote_state *rs = get_remote_state ();
1736 int mask, length;
1737 int tag;
1738 threadref ref;
1739 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1740 int retval = 1;
1741
1742 /* info->threadid = 0; FIXME: implement zero_threadref. */
1743 info->active = 0;
1744 info->display[0] = '\0';
1745 info->shortname[0] = '\0';
1746 info->more_display[0] = '\0';
1747
1748 /* Assume the characters indicating the packet type have been
1749 stripped. */
1750 pkt = unpack_int (pkt, &mask); /* arg mask */
1751 pkt = unpack_threadid (pkt, &ref);
1752
1753 if (mask == 0)
1754 warning (_("Incomplete response to threadinfo request."));
1755 if (!threadmatch (&ref, expectedref))
1756 { /* This is an answer to a different request. */
1757 warning (_("ERROR RMT Thread info mismatch."));
1758 return 0;
1759 }
1760 copy_threadref (&info->threadid, &ref);
1761
1762 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1763
1764 /* Packets are terminated with nulls. */
1765 while ((pkt < limit) && mask && *pkt)
1766 {
1767 pkt = unpack_int (pkt, &tag); /* tag */
1768 pkt = unpack_byte (pkt, &length); /* length */
1769 if (!(tag & mask)) /* Tags out of synch with mask. */
1770 {
1771 warning (_("ERROR RMT: threadinfo tag mismatch."));
1772 retval = 0;
1773 break;
1774 }
1775 if (tag == TAG_THREADID)
1776 {
1777 if (length != 16)
1778 {
1779 warning (_("ERROR RMT: length of threadid is not 16."));
1780 retval = 0;
1781 break;
1782 }
1783 pkt = unpack_threadid (pkt, &ref);
1784 mask = mask & ~TAG_THREADID;
1785 continue;
1786 }
1787 if (tag == TAG_EXISTS)
1788 {
1789 info->active = stub_unpack_int (pkt, length);
1790 pkt += length;
1791 mask = mask & ~(TAG_EXISTS);
1792 if (length > 8)
1793 {
1794 warning (_("ERROR RMT: 'exists' length too long."));
1795 retval = 0;
1796 break;
1797 }
1798 continue;
1799 }
1800 if (tag == TAG_THREADNAME)
1801 {
1802 pkt = unpack_string (pkt, &info->shortname[0], length);
1803 mask = mask & ~TAG_THREADNAME;
1804 continue;
1805 }
1806 if (tag == TAG_DISPLAY)
1807 {
1808 pkt = unpack_string (pkt, &info->display[0], length);
1809 mask = mask & ~TAG_DISPLAY;
1810 continue;
1811 }
1812 if (tag == TAG_MOREDISPLAY)
1813 {
1814 pkt = unpack_string (pkt, &info->more_display[0], length);
1815 mask = mask & ~TAG_MOREDISPLAY;
1816 continue;
1817 }
1818 warning (_("ERROR RMT: unknown thread info tag."));
1819 break; /* Not a tag we know about. */
1820 }
1821 return retval;
1822 }
1823
1824 static int
1825 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1826 struct gdb_ext_thread_info *info)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 int result;
1830
1831 pack_threadinfo_request (rs->buf, fieldset, threadid);
1832 putpkt (rs->buf);
1833 getpkt (&rs->buf, &rs->buf_size, 0);
1834
1835 if (rs->buf[0] == '\0')
1836 return 0;
1837
1838 result = remote_unpack_thread_info_response (rs->buf + 2,
1839 threadid, info);
1840 return result;
1841 }
1842
1843 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1844
1845 static char *
1846 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1847 threadref *nextthread)
1848 {
1849 *pkt++ = 'q'; /* info query packet */
1850 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1851 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1852 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1853 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1854 *pkt = '\0';
1855 return pkt;
1856 }
1857
1858 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1859
1860 static int
1861 parse_threadlist_response (char *pkt, int result_limit,
1862 threadref *original_echo, threadref *resultlist,
1863 int *doneflag)
1864 {
1865 struct remote_state *rs = get_remote_state ();
1866 char *limit;
1867 int count, resultcount, done;
1868
1869 resultcount = 0;
1870 /* Assume the 'q' and 'M chars have been stripped. */
1871 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1872 /* done parse past here */
1873 pkt = unpack_byte (pkt, &count); /* count field */
1874 pkt = unpack_nibble (pkt, &done);
1875 /* The first threadid is the argument threadid. */
1876 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1877 while ((count-- > 0) && (pkt < limit))
1878 {
1879 pkt = unpack_threadid (pkt, resultlist++);
1880 if (resultcount++ >= result_limit)
1881 break;
1882 }
1883 if (doneflag)
1884 *doneflag = done;
1885 return resultcount;
1886 }
1887
1888 static int
1889 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1890 int *done, int *result_count, threadref *threadlist)
1891 {
1892 struct remote_state *rs = get_remote_state ();
1893 static threadref echo_nextthread;
1894 int result = 1;
1895
1896 /* Trancate result limit to be smaller than the packet size. */
1897 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1898 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1899
1900 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1901 putpkt (rs->buf);
1902 getpkt (&rs->buf, &rs->buf_size, 0);
1903
1904 if (*rs->buf == '\0')
1905 *result_count = 0;
1906 else
1907 *result_count =
1908 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1909 threadlist, done);
1910
1911 if (!threadmatch (&echo_nextthread, nextthread))
1912 {
1913 /* FIXME: This is a good reason to drop the packet. */
1914 /* Possably, there is a duplicate response. */
1915 /* Possabilities :
1916 retransmit immediatly - race conditions
1917 retransmit after timeout - yes
1918 exit
1919 wait for packet, then exit
1920 */
1921 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1922 return 0; /* I choose simply exiting. */
1923 }
1924 if (*result_count <= 0)
1925 {
1926 if (*done != 1)
1927 {
1928 warning (_("RMT ERROR : failed to get remote thread list."));
1929 result = 0;
1930 }
1931 return result; /* break; */
1932 }
1933 if (*result_count > result_limit)
1934 {
1935 *result_count = 0;
1936 warning (_("RMT ERROR: threadlist response longer than requested."));
1937 return 0;
1938 }
1939 return result;
1940 }
1941
1942 /* This is the interface between remote and threads, remotes upper
1943 interface. */
1944
1945 /* remote_find_new_threads retrieves the thread list and for each
1946 thread in the list, looks up the thread in GDB's internal list,
1947 adding the thread if it does not already exist. This involves
1948 getting partial thread lists from the remote target so, polling the
1949 quit_flag is required. */
1950
1951
1952 /* About this many threadisds fit in a packet. */
1953
1954 #define MAXTHREADLISTRESULTS 32
1955
1956 static int
1957 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1958 int looplimit)
1959 {
1960 int done, i, result_count;
1961 int startflag = 1;
1962 int result = 1;
1963 int loopcount = 0;
1964 static threadref nextthread;
1965 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1966
1967 done = 0;
1968 while (!done)
1969 {
1970 if (loopcount++ > looplimit)
1971 {
1972 result = 0;
1973 warning (_("Remote fetch threadlist -infinite loop-."));
1974 break;
1975 }
1976 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1977 &done, &result_count, resultthreadlist))
1978 {
1979 result = 0;
1980 break;
1981 }
1982 /* Clear for later iterations. */
1983 startflag = 0;
1984 /* Setup to resume next batch of thread references, set nextthread. */
1985 if (result_count >= 1)
1986 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1987 i = 0;
1988 while (result_count--)
1989 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1990 break;
1991 }
1992 return result;
1993 }
1994
1995 static int
1996 remote_newthread_step (threadref *ref, void *context)
1997 {
1998 int pid = ptid_get_pid (inferior_ptid);
1999 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2000
2001 if (!in_thread_list (ptid))
2002 add_thread (ptid);
2003 return 1; /* continue iterator */
2004 }
2005
2006 #define CRAZY_MAX_THREADS 1000
2007
2008 static ptid_t
2009 remote_current_thread (ptid_t oldpid)
2010 {
2011 struct remote_state *rs = get_remote_state ();
2012 char *p = rs->buf;
2013 int tid;
2014 int pid;
2015
2016 putpkt ("qC");
2017 getpkt (&rs->buf, &rs->buf_size, 0);
2018 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2019 return read_ptid (&rs->buf[2], NULL);
2020 else
2021 return oldpid;
2022 }
2023
2024 /* Find new threads for info threads command.
2025 * Original version, using John Metzler's thread protocol.
2026 */
2027
2028 static void
2029 remote_find_new_threads (void)
2030 {
2031 remote_threadlist_iterator (remote_newthread_step, 0,
2032 CRAZY_MAX_THREADS);
2033 }
2034
2035 /*
2036 * Find all threads for info threads command.
2037 * Uses new thread protocol contributed by Cisco.
2038 * Falls back and attempts to use the older method (above)
2039 * if the target doesn't respond to the new method.
2040 */
2041
2042 static void
2043 remote_threads_info (void)
2044 {
2045 struct remote_state *rs = get_remote_state ();
2046 char *bufp;
2047 ptid_t new_thread;
2048
2049 if (remote_desc == 0) /* paranoia */
2050 error (_("Command can only be used when connected to the remote target."));
2051
2052 if (use_threadinfo_query)
2053 {
2054 putpkt ("qfThreadInfo");
2055 getpkt (&rs->buf, &rs->buf_size, 0);
2056 bufp = rs->buf;
2057 if (bufp[0] != '\0') /* q packet recognized */
2058 {
2059 while (*bufp++ == 'm') /* reply contains one or more TID */
2060 {
2061 do
2062 {
2063 new_thread = read_ptid (bufp, &bufp);
2064 if (!ptid_equal (new_thread, null_ptid)
2065 && !in_thread_list (new_thread))
2066 {
2067 if (!in_inferior_list (ptid_get_pid (new_thread)))
2068 /* When connected to a multi-process aware
2069 stub, "info threads" may show up threads of
2070 inferiors we didn't know about yet. Add
2071 them. */
2072 add_inferior (ptid_get_pid (new_thread));
2073
2074 add_thread (new_thread);
2075 }
2076 }
2077 while (*bufp++ == ','); /* comma-separated list */
2078 putpkt ("qsThreadInfo");
2079 getpkt (&rs->buf, &rs->buf_size, 0);
2080 bufp = rs->buf;
2081 }
2082 return; /* done */
2083 }
2084 }
2085
2086 /* Else fall back to old method based on jmetzler protocol. */
2087 use_threadinfo_query = 0;
2088 remote_find_new_threads ();
2089 return;
2090 }
2091
2092 /*
2093 * Collect a descriptive string about the given thread.
2094 * The target may say anything it wants to about the thread
2095 * (typically info about its blocked / runnable state, name, etc.).
2096 * This string will appear in the info threads display.
2097 *
2098 * Optional: targets are not required to implement this function.
2099 */
2100
2101 static char *
2102 remote_threads_extra_info (struct thread_info *tp)
2103 {
2104 struct remote_state *rs = get_remote_state ();
2105 int result;
2106 int set;
2107 threadref id;
2108 struct gdb_ext_thread_info threadinfo;
2109 static char display_buf[100]; /* arbitrary... */
2110 int n = 0; /* position in display_buf */
2111
2112 if (remote_desc == 0) /* paranoia */
2113 internal_error (__FILE__, __LINE__,
2114 _("remote_threads_extra_info"));
2115
2116 if (ptid_equal (tp->ptid, magic_null_ptid)
2117 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2118 /* This is the main thread which was added by GDB. The remote
2119 server doesn't know about it. */
2120 return NULL;
2121
2122 if (use_threadextra_query)
2123 {
2124 char *b = rs->buf;
2125 char *endb = rs->buf + get_remote_packet_size ();
2126
2127 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2128 b += strlen (b);
2129 write_ptid (b, endb, tp->ptid);
2130
2131 putpkt (rs->buf);
2132 getpkt (&rs->buf, &rs->buf_size, 0);
2133 if (rs->buf[0] != 0)
2134 {
2135 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2136 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2137 display_buf [result] = '\0';
2138 return display_buf;
2139 }
2140 }
2141
2142 /* If the above query fails, fall back to the old method. */
2143 use_threadextra_query = 0;
2144 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2145 | TAG_MOREDISPLAY | TAG_DISPLAY;
2146 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2147 if (remote_get_threadinfo (&id, set, &threadinfo))
2148 if (threadinfo.active)
2149 {
2150 if (*threadinfo.shortname)
2151 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2152 " Name: %s,", threadinfo.shortname);
2153 if (*threadinfo.display)
2154 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2155 " State: %s,", threadinfo.display);
2156 if (*threadinfo.more_display)
2157 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2158 " Priority: %s", threadinfo.more_display);
2159
2160 if (n > 0)
2161 {
2162 /* For purely cosmetic reasons, clear up trailing commas. */
2163 if (',' == display_buf[n-1])
2164 display_buf[n-1] = ' ';
2165 return display_buf;
2166 }
2167 }
2168 return NULL;
2169 }
2170 \f
2171
2172 /* Restart the remote side; this is an extended protocol operation. */
2173
2174 static void
2175 extended_remote_restart (void)
2176 {
2177 struct remote_state *rs = get_remote_state ();
2178
2179 /* Send the restart command; for reasons I don't understand the
2180 remote side really expects a number after the "R". */
2181 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2182 putpkt (rs->buf);
2183
2184 remote_fileio_reset ();
2185 }
2186 \f
2187 /* Clean up connection to a remote debugger. */
2188
2189 static void
2190 remote_close (int quitting)
2191 {
2192 if (remote_desc)
2193 serial_close (remote_desc);
2194 remote_desc = NULL;
2195 }
2196
2197 /* Query the remote side for the text, data and bss offsets. */
2198
2199 static void
2200 get_offsets (void)
2201 {
2202 struct remote_state *rs = get_remote_state ();
2203 char *buf;
2204 char *ptr;
2205 int lose, num_segments = 0, do_sections, do_segments;
2206 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2207 struct section_offsets *offs;
2208 struct symfile_segment_data *data;
2209
2210 if (symfile_objfile == NULL)
2211 return;
2212
2213 putpkt ("qOffsets");
2214 getpkt (&rs->buf, &rs->buf_size, 0);
2215 buf = rs->buf;
2216
2217 if (buf[0] == '\000')
2218 return; /* Return silently. Stub doesn't support
2219 this command. */
2220 if (buf[0] == 'E')
2221 {
2222 warning (_("Remote failure reply: %s"), buf);
2223 return;
2224 }
2225
2226 /* Pick up each field in turn. This used to be done with scanf, but
2227 scanf will make trouble if CORE_ADDR size doesn't match
2228 conversion directives correctly. The following code will work
2229 with any size of CORE_ADDR. */
2230 text_addr = data_addr = bss_addr = 0;
2231 ptr = buf;
2232 lose = 0;
2233
2234 if (strncmp (ptr, "Text=", 5) == 0)
2235 {
2236 ptr += 5;
2237 /* Don't use strtol, could lose on big values. */
2238 while (*ptr && *ptr != ';')
2239 text_addr = (text_addr << 4) + fromhex (*ptr++);
2240
2241 if (strncmp (ptr, ";Data=", 6) == 0)
2242 {
2243 ptr += 6;
2244 while (*ptr && *ptr != ';')
2245 data_addr = (data_addr << 4) + fromhex (*ptr++);
2246 }
2247 else
2248 lose = 1;
2249
2250 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2251 {
2252 ptr += 5;
2253 while (*ptr && *ptr != ';')
2254 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2255
2256 if (bss_addr != data_addr)
2257 warning (_("Target reported unsupported offsets: %s"), buf);
2258 }
2259 else
2260 lose = 1;
2261 }
2262 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2263 {
2264 ptr += 8;
2265 /* Don't use strtol, could lose on big values. */
2266 while (*ptr && *ptr != ';')
2267 text_addr = (text_addr << 4) + fromhex (*ptr++);
2268 num_segments = 1;
2269
2270 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2271 {
2272 ptr += 9;
2273 while (*ptr && *ptr != ';')
2274 data_addr = (data_addr << 4) + fromhex (*ptr++);
2275 num_segments++;
2276 }
2277 }
2278 else
2279 lose = 1;
2280
2281 if (lose)
2282 error (_("Malformed response to offset query, %s"), buf);
2283 else if (*ptr != '\0')
2284 warning (_("Target reported unsupported offsets: %s"), buf);
2285
2286 offs = ((struct section_offsets *)
2287 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2288 memcpy (offs, symfile_objfile->section_offsets,
2289 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2290
2291 data = get_symfile_segment_data (symfile_objfile->obfd);
2292 do_segments = (data != NULL);
2293 do_sections = num_segments == 0;
2294
2295 if (num_segments > 0)
2296 {
2297 segments[0] = text_addr;
2298 segments[1] = data_addr;
2299 }
2300 /* If we have two segments, we can still try to relocate everything
2301 by assuming that the .text and .data offsets apply to the whole
2302 text and data segments. Convert the offsets given in the packet
2303 to base addresses for symfile_map_offsets_to_segments. */
2304 else if (data && data->num_segments == 2)
2305 {
2306 segments[0] = data->segment_bases[0] + text_addr;
2307 segments[1] = data->segment_bases[1] + data_addr;
2308 num_segments = 2;
2309 }
2310 /* If the object file has only one segment, assume that it is text
2311 rather than data; main programs with no writable data are rare,
2312 but programs with no code are useless. Of course the code might
2313 have ended up in the data segment... to detect that we would need
2314 the permissions here. */
2315 else if (data && data->num_segments == 1)
2316 {
2317 segments[0] = data->segment_bases[0] + text_addr;
2318 num_segments = 1;
2319 }
2320 /* There's no way to relocate by segment. */
2321 else
2322 do_segments = 0;
2323
2324 if (do_segments)
2325 {
2326 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2327 offs, num_segments, segments);
2328
2329 if (ret == 0 && !do_sections)
2330 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2331
2332 if (ret > 0)
2333 do_sections = 0;
2334 }
2335
2336 if (data)
2337 free_symfile_segment_data (data);
2338
2339 if (do_sections)
2340 {
2341 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2342
2343 /* This is a temporary kludge to force data and bss to use the same offsets
2344 because that's what nlmconv does now. The real solution requires changes
2345 to the stub and remote.c that I don't have time to do right now. */
2346
2347 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2348 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2349 }
2350
2351 objfile_relocate (symfile_objfile, offs);
2352 }
2353
2354 /* Stub for catch_exception. */
2355
2356 struct start_remote_args
2357 {
2358 int from_tty;
2359
2360 /* The current target. */
2361 struct target_ops *target;
2362
2363 /* Non-zero if this is an extended-remote target. */
2364 int extended_p;
2365 };
2366
2367 static void
2368 remote_start_remote (struct ui_out *uiout, void *opaque)
2369 {
2370 struct remote_state *rs = get_remote_state ();
2371 struct start_remote_args *args = opaque;
2372 char *wait_status = NULL;
2373
2374 immediate_quit++; /* Allow user to interrupt it. */
2375
2376 /* Check whether the target is running now. */
2377 putpkt ("?");
2378 getpkt (&rs->buf, &rs->buf_size, 0);
2379
2380 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2381 {
2382 if (args->extended_p)
2383 {
2384 /* We're connected, but not running. Drop out before we
2385 call start_remote. */
2386 target_mark_exited (args->target);
2387 return;
2388 }
2389 else
2390 error (_("The target is not running (try extended-remote?)"));
2391 }
2392 else
2393 {
2394 if (args->extended_p)
2395 target_mark_running (args->target);
2396
2397 /* Save the reply for later. */
2398 wait_status = alloca (strlen (rs->buf) + 1);
2399 strcpy (wait_status, rs->buf);
2400 }
2401
2402 /* Start afresh. */
2403 init_thread_list ();
2404
2405 /* Let the stub know that we want it to return the thread. */
2406 set_continue_thread (minus_one_ptid);
2407
2408 /* Without this, some commands which require an active target
2409 (such as kill) won't work. This variable serves (at least)
2410 double duty as both the pid of the target process (if it has
2411 such), and as a flag indicating that a target is active.
2412 These functions should be split out into seperate variables,
2413 especially since GDB will someday have a notion of debugging
2414 several processes. */
2415 inferior_ptid = magic_null_ptid;
2416
2417 /* Now, if we have thread information, update inferior_ptid. */
2418 inferior_ptid = remote_current_thread (inferior_ptid);
2419
2420 add_inferior (ptid_get_pid (inferior_ptid));
2421
2422 /* Always add the main thread. */
2423 add_thread_silent (inferior_ptid);
2424
2425 get_offsets (); /* Get text, data & bss offsets. */
2426
2427 /* Use the previously fetched status. */
2428 gdb_assert (wait_status != NULL);
2429 strcpy (rs->buf, wait_status);
2430 rs->cached_wait_status = 1;
2431
2432 immediate_quit--;
2433 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2434 }
2435
2436 /* Open a connection to a remote debugger.
2437 NAME is the filename used for communication. */
2438
2439 static void
2440 remote_open (char *name, int from_tty)
2441 {
2442 remote_open_1 (name, from_tty, &remote_ops, 0);
2443 }
2444
2445 /* Open a connection to a remote debugger using the extended
2446 remote gdb protocol. NAME is the filename used for communication. */
2447
2448 static void
2449 extended_remote_open (char *name, int from_tty)
2450 {
2451 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2452 }
2453
2454 /* Generic code for opening a connection to a remote target. */
2455
2456 static void
2457 init_all_packet_configs (void)
2458 {
2459 int i;
2460 for (i = 0; i < PACKET_MAX; i++)
2461 update_packet_config (&remote_protocol_packets[i]);
2462 }
2463
2464 /* Symbol look-up. */
2465
2466 static void
2467 remote_check_symbols (struct objfile *objfile)
2468 {
2469 struct remote_state *rs = get_remote_state ();
2470 char *msg, *reply, *tmp;
2471 struct minimal_symbol *sym;
2472 int end;
2473
2474 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2475 return;
2476
2477 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2478 because we need both at the same time. */
2479 msg = alloca (get_remote_packet_size ());
2480
2481 /* Invite target to request symbol lookups. */
2482
2483 putpkt ("qSymbol::");
2484 getpkt (&rs->buf, &rs->buf_size, 0);
2485 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2486 reply = rs->buf;
2487
2488 while (strncmp (reply, "qSymbol:", 8) == 0)
2489 {
2490 tmp = &reply[8];
2491 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2492 msg[end] = '\0';
2493 sym = lookup_minimal_symbol (msg, NULL, NULL);
2494 if (sym == NULL)
2495 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2496 else
2497 {
2498 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2499
2500 /* If this is a function address, return the start of code
2501 instead of any data function descriptor. */
2502 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2503 sym_addr,
2504 &current_target);
2505
2506 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2507 paddr_nz (sym_addr), &reply[8]);
2508 }
2509
2510 putpkt (msg);
2511 getpkt (&rs->buf, &rs->buf_size, 0);
2512 reply = rs->buf;
2513 }
2514 }
2515
2516 static struct serial *
2517 remote_serial_open (char *name)
2518 {
2519 static int udp_warning = 0;
2520
2521 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2522 of in ser-tcp.c, because it is the remote protocol assuming that the
2523 serial connection is reliable and not the serial connection promising
2524 to be. */
2525 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2526 {
2527 warning (_("\
2528 The remote protocol may be unreliable over UDP.\n\
2529 Some events may be lost, rendering further debugging impossible."));
2530 udp_warning = 1;
2531 }
2532
2533 return serial_open (name);
2534 }
2535
2536 /* This type describes each known response to the qSupported
2537 packet. */
2538 struct protocol_feature
2539 {
2540 /* The name of this protocol feature. */
2541 const char *name;
2542
2543 /* The default for this protocol feature. */
2544 enum packet_support default_support;
2545
2546 /* The function to call when this feature is reported, or after
2547 qSupported processing if the feature is not supported.
2548 The first argument points to this structure. The second
2549 argument indicates whether the packet requested support be
2550 enabled, disabled, or probed (or the default, if this function
2551 is being called at the end of processing and this feature was
2552 not reported). The third argument may be NULL; if not NULL, it
2553 is a NUL-terminated string taken from the packet following
2554 this feature's name and an equals sign. */
2555 void (*func) (const struct protocol_feature *, enum packet_support,
2556 const char *);
2557
2558 /* The corresponding packet for this feature. Only used if
2559 FUNC is remote_supported_packet. */
2560 int packet;
2561 };
2562
2563 static void
2564 remote_supported_packet (const struct protocol_feature *feature,
2565 enum packet_support support,
2566 const char *argument)
2567 {
2568 if (argument)
2569 {
2570 warning (_("Remote qSupported response supplied an unexpected value for"
2571 " \"%s\"."), feature->name);
2572 return;
2573 }
2574
2575 if (remote_protocol_packets[feature->packet].support
2576 == PACKET_SUPPORT_UNKNOWN)
2577 remote_protocol_packets[feature->packet].support = support;
2578 }
2579
2580 static void
2581 remote_packet_size (const struct protocol_feature *feature,
2582 enum packet_support support, const char *value)
2583 {
2584 struct remote_state *rs = get_remote_state ();
2585
2586 int packet_size;
2587 char *value_end;
2588
2589 if (support != PACKET_ENABLE)
2590 return;
2591
2592 if (value == NULL || *value == '\0')
2593 {
2594 warning (_("Remote target reported \"%s\" without a size."),
2595 feature->name);
2596 return;
2597 }
2598
2599 errno = 0;
2600 packet_size = strtol (value, &value_end, 16);
2601 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2602 {
2603 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2604 feature->name, value);
2605 return;
2606 }
2607
2608 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2609 {
2610 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2611 packet_size, MAX_REMOTE_PACKET_SIZE);
2612 packet_size = MAX_REMOTE_PACKET_SIZE;
2613 }
2614
2615 /* Record the new maximum packet size. */
2616 rs->explicit_packet_size = packet_size;
2617 }
2618
2619 static void
2620 remote_multi_process_feature (const struct protocol_feature *feature,
2621 enum packet_support support, const char *value)
2622 {
2623 struct remote_state *rs = get_remote_state ();
2624 rs->multi_process_aware = (support == PACKET_ENABLE);
2625 }
2626
2627 static struct protocol_feature remote_protocol_features[] = {
2628 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2629 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2630 PACKET_qXfer_auxv },
2631 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2632 PACKET_qXfer_features },
2633 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2634 PACKET_qXfer_libraries },
2635 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2636 PACKET_qXfer_memory_map },
2637 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2638 PACKET_qXfer_spu_read },
2639 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2640 PACKET_qXfer_spu_write },
2641 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2642 PACKET_QPassSignals },
2643 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2644 PACKET_QStartNoAckMode },
2645 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2646 };
2647
2648 static void
2649 remote_query_supported (void)
2650 {
2651 struct remote_state *rs = get_remote_state ();
2652 char *next;
2653 int i;
2654 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2655
2656 /* The packet support flags are handled differently for this packet
2657 than for most others. We treat an error, a disabled packet, and
2658 an empty response identically: any features which must be reported
2659 to be used will be automatically disabled. An empty buffer
2660 accomplishes this, since that is also the representation for a list
2661 containing no features. */
2662
2663 rs->buf[0] = 0;
2664 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2665 {
2666 if (rs->extended)
2667 putpkt ("qSupported:multiprocess+");
2668 else
2669 putpkt ("qSupported");
2670
2671 getpkt (&rs->buf, &rs->buf_size, 0);
2672
2673 /* If an error occured, warn, but do not return - just reset the
2674 buffer to empty and go on to disable features. */
2675 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2676 == PACKET_ERROR)
2677 {
2678 warning (_("Remote failure reply: %s"), rs->buf);
2679 rs->buf[0] = 0;
2680 }
2681 }
2682
2683 memset (seen, 0, sizeof (seen));
2684
2685 next = rs->buf;
2686 while (*next)
2687 {
2688 enum packet_support is_supported;
2689 char *p, *end, *name_end, *value;
2690
2691 /* First separate out this item from the rest of the packet. If
2692 there's another item after this, we overwrite the separator
2693 (terminated strings are much easier to work with). */
2694 p = next;
2695 end = strchr (p, ';');
2696 if (end == NULL)
2697 {
2698 end = p + strlen (p);
2699 next = end;
2700 }
2701 else
2702 {
2703 *end = '\0';
2704 next = end + 1;
2705
2706 if (end == p)
2707 {
2708 warning (_("empty item in \"qSupported\" response"));
2709 continue;
2710 }
2711 }
2712
2713 name_end = strchr (p, '=');
2714 if (name_end)
2715 {
2716 /* This is a name=value entry. */
2717 is_supported = PACKET_ENABLE;
2718 value = name_end + 1;
2719 *name_end = '\0';
2720 }
2721 else
2722 {
2723 value = NULL;
2724 switch (end[-1])
2725 {
2726 case '+':
2727 is_supported = PACKET_ENABLE;
2728 break;
2729
2730 case '-':
2731 is_supported = PACKET_DISABLE;
2732 break;
2733
2734 case '?':
2735 is_supported = PACKET_SUPPORT_UNKNOWN;
2736 break;
2737
2738 default:
2739 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2740 continue;
2741 }
2742 end[-1] = '\0';
2743 }
2744
2745 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2746 if (strcmp (remote_protocol_features[i].name, p) == 0)
2747 {
2748 const struct protocol_feature *feature;
2749
2750 seen[i] = 1;
2751 feature = &remote_protocol_features[i];
2752 feature->func (feature, is_supported, value);
2753 break;
2754 }
2755 }
2756
2757 /* If we increased the packet size, make sure to increase the global
2758 buffer size also. We delay this until after parsing the entire
2759 qSupported packet, because this is the same buffer we were
2760 parsing. */
2761 if (rs->buf_size < rs->explicit_packet_size)
2762 {
2763 rs->buf_size = rs->explicit_packet_size;
2764 rs->buf = xrealloc (rs->buf, rs->buf_size);
2765 }
2766
2767 /* Handle the defaults for unmentioned features. */
2768 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2769 if (!seen[i])
2770 {
2771 const struct protocol_feature *feature;
2772
2773 feature = &remote_protocol_features[i];
2774 feature->func (feature, feature->default_support, NULL);
2775 }
2776 }
2777
2778
2779 static void
2780 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2781 {
2782 struct remote_state *rs = get_remote_state ();
2783 struct packet_config *noack_config;
2784
2785 if (name == 0)
2786 error (_("To open a remote debug connection, you need to specify what\n"
2787 "serial device is attached to the remote system\n"
2788 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2789
2790 /* See FIXME above. */
2791 if (!target_async_permitted)
2792 wait_forever_enabled_p = 1;
2793
2794 /* If we're connected to a running target, target_preopen will kill it.
2795 But if we're connected to a target system with no running process,
2796 then we will still be connected when it returns. Ask this question
2797 first, before target_preopen has a chance to kill anything. */
2798 if (remote_desc != NULL && !target_has_execution)
2799 {
2800 if (!from_tty
2801 || query (_("Already connected to a remote target. Disconnect? ")))
2802 pop_target ();
2803 else
2804 error (_("Still connected."));
2805 }
2806
2807 target_preopen (from_tty);
2808
2809 unpush_target (target);
2810
2811 /* This time without a query. If we were connected to an
2812 extended-remote target and target_preopen killed the running
2813 process, we may still be connected. If we are starting "target
2814 remote" now, the extended-remote target will not have been
2815 removed by unpush_target. */
2816 if (remote_desc != NULL && !target_has_execution)
2817 pop_target ();
2818
2819 /* Make sure we send the passed signals list the next time we resume. */
2820 xfree (last_pass_packet);
2821 last_pass_packet = NULL;
2822
2823 remote_fileio_reset ();
2824 reopen_exec_file ();
2825 reread_symbols ();
2826
2827 remote_desc = remote_serial_open (name);
2828 if (!remote_desc)
2829 perror_with_name (name);
2830
2831 if (baud_rate != -1)
2832 {
2833 if (serial_setbaudrate (remote_desc, baud_rate))
2834 {
2835 /* The requested speed could not be set. Error out to
2836 top level after closing remote_desc. Take care to
2837 set remote_desc to NULL to avoid closing remote_desc
2838 more than once. */
2839 serial_close (remote_desc);
2840 remote_desc = NULL;
2841 perror_with_name (name);
2842 }
2843 }
2844
2845 serial_raw (remote_desc);
2846
2847 /* If there is something sitting in the buffer we might take it as a
2848 response to a command, which would be bad. */
2849 serial_flush_input (remote_desc);
2850
2851 if (from_tty)
2852 {
2853 puts_filtered ("Remote debugging using ");
2854 puts_filtered (name);
2855 puts_filtered ("\n");
2856 }
2857 push_target (target); /* Switch to using remote target now. */
2858
2859 /* Assume that the target is running, unless we learn otherwise. */
2860 target_mark_running (target);
2861
2862 /* Reset the target state; these things will be queried either by
2863 remote_query_supported or as they are needed. */
2864 init_all_packet_configs ();
2865 rs->explicit_packet_size = 0;
2866 rs->noack_mode = 0;
2867 rs->multi_process_aware = 0;
2868 rs->extended = extended_p;
2869
2870 general_thread = not_sent_ptid;
2871 continue_thread = not_sent_ptid;
2872
2873 /* Probe for ability to use "ThreadInfo" query, as required. */
2874 use_threadinfo_query = 1;
2875 use_threadextra_query = 1;
2876
2877 /* Ack any packet which the remote side has already sent. */
2878 serial_write (remote_desc, "+", 1);
2879
2880 /* The first packet we send to the target is the optional "supported
2881 packets" request. If the target can answer this, it will tell us
2882 which later probes to skip. */
2883 remote_query_supported ();
2884
2885 /* Next, we possibly activate noack mode.
2886
2887 If the QStartNoAckMode packet configuration is set to AUTO,
2888 enable noack mode if the stub reported a wish for it with
2889 qSupported.
2890
2891 If set to TRUE, then enable noack mode even if the stub didn't
2892 report it in qSupported. If the stub doesn't reply OK, the
2893 session ends with an error.
2894
2895 If FALSE, then don't activate noack mode, regardless of what the
2896 stub claimed should be the default with qSupported. */
2897
2898 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2899
2900 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2901 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2902 && noack_config->support == PACKET_ENABLE))
2903 {
2904 putpkt ("QStartNoAckMode");
2905 getpkt (&rs->buf, &rs->buf_size, 0);
2906 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2907 rs->noack_mode = 1;
2908 }
2909
2910 /* Next, if the target can specify a description, read it. We do
2911 this before anything involving memory or registers. */
2912 target_find_description ();
2913
2914 if (target_async_permitted)
2915 {
2916 /* With this target we start out by owning the terminal. */
2917 remote_async_terminal_ours_p = 1;
2918
2919 /* FIXME: cagney/1999-09-23: During the initial connection it is
2920 assumed that the target is already ready and able to respond to
2921 requests. Unfortunately remote_start_remote() eventually calls
2922 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2923 around this. Eventually a mechanism that allows
2924 wait_for_inferior() to expect/get timeouts will be
2925 implemented. */
2926 wait_forever_enabled_p = 0;
2927 }
2928
2929 /* First delete any symbols previously loaded from shared libraries. */
2930 no_shared_libraries (NULL, 0);
2931
2932 /* Start the remote connection. If error() or QUIT, discard this
2933 target (we'd otherwise be in an inconsistent state) and then
2934 propogate the error on up the exception chain. This ensures that
2935 the caller doesn't stumble along blindly assuming that the
2936 function succeeded. The CLI doesn't have this problem but other
2937 UI's, such as MI do.
2938
2939 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2940 this function should return an error indication letting the
2941 caller restore the previous state. Unfortunately the command
2942 ``target remote'' is directly wired to this function making that
2943 impossible. On a positive note, the CLI side of this problem has
2944 been fixed - the function set_cmd_context() makes it possible for
2945 all the ``target ....'' commands to share a common callback
2946 function. See cli-dump.c. */
2947 {
2948 struct gdb_exception ex;
2949 struct start_remote_args args;
2950
2951 args.from_tty = from_tty;
2952 args.target = target;
2953 args.extended_p = extended_p;
2954
2955 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2956 if (ex.reason < 0)
2957 {
2958 pop_target ();
2959 if (target_async_permitted)
2960 wait_forever_enabled_p = 1;
2961 throw_exception (ex);
2962 }
2963 }
2964
2965 if (target_async_permitted)
2966 wait_forever_enabled_p = 1;
2967
2968 if (extended_p)
2969 {
2970 /* Tell the remote that we are using the extended protocol. */
2971 putpkt ("!");
2972 getpkt (&rs->buf, &rs->buf_size, 0);
2973 }
2974
2975 /* If we connected to a live target, do some additional setup. */
2976 if (target_has_execution)
2977 {
2978 if (exec_bfd) /* No use without an exec file. */
2979 remote_check_symbols (symfile_objfile);
2980 }
2981 }
2982
2983 /* This takes a program previously attached to and detaches it. After
2984 this is done, GDB can be used to debug some other program. We
2985 better not have left any breakpoints in the target program or it'll
2986 die when it hits one. */
2987
2988 static void
2989 remote_detach_1 (char *args, int from_tty, int extended)
2990 {
2991 int pid = ptid_get_pid (inferior_ptid);
2992 struct remote_state *rs = get_remote_state ();
2993
2994 if (args)
2995 error (_("Argument given to \"detach\" when remotely debugging."));
2996
2997 if (!target_has_execution)
2998 error (_("No process to detach from."));
2999
3000 /* Tell the remote target to detach. */
3001 if (remote_multi_process_p (rs))
3002 sprintf (rs->buf, "D;%x", pid);
3003 else
3004 strcpy (rs->buf, "D");
3005
3006 putpkt (rs->buf);
3007 getpkt (&rs->buf, &rs->buf_size, 0);
3008
3009 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3010 ;
3011 else if (rs->buf[0] == '\0')
3012 error (_("Remote doesn't know how to detach"));
3013 else
3014 error (_("Can't detach process."));
3015
3016 /* Unregister the file descriptor from the event loop. */
3017 if (target_is_async_p ())
3018 serial_async (remote_desc, NULL, 0);
3019
3020 if (from_tty)
3021 {
3022 if (remote_multi_process_p (rs))
3023 printf_filtered (_("Detached from remote %s.\n"),
3024 target_pid_to_str (pid_to_ptid (pid)));
3025 else
3026 {
3027 if (extended)
3028 puts_filtered (_("Detached from remote process.\n"));
3029 else
3030 puts_filtered (_("Ending remote debugging.\n"));
3031 }
3032 }
3033
3034 detach_inferior (pid);
3035 target_mourn_inferior ();
3036 }
3037
3038 static void
3039 remote_detach (char *args, int from_tty)
3040 {
3041 remote_detach_1 (args, from_tty, 0);
3042 }
3043
3044 static void
3045 extended_remote_detach (char *args, int from_tty)
3046 {
3047 remote_detach_1 (args, from_tty, 1);
3048 }
3049
3050 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3051
3052 static void
3053 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3054 {
3055 if (args)
3056 error (_("Argument given to \"disconnect\" when remotely debugging."));
3057
3058 /* Unregister the file descriptor from the event loop. */
3059 if (target_is_async_p ())
3060 serial_async (remote_desc, NULL, 0);
3061
3062 /* Make sure we unpush even the extended remote targets; mourn
3063 won't do it. So call remote_mourn_1 directly instead of
3064 target_mourn_inferior. */
3065 remote_mourn_1 (target);
3066
3067 if (from_tty)
3068 puts_filtered ("Ending remote debugging.\n");
3069 }
3070
3071 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3072 be chatty about it. */
3073
3074 static void
3075 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3076 {
3077 struct remote_state *rs = get_remote_state ();
3078 int pid;
3079 char *dummy;
3080 char *wait_status = NULL;
3081 struct inferior *inf;
3082
3083 if (!args)
3084 error_no_arg (_("process-id to attach"));
3085
3086 dummy = args;
3087 pid = strtol (args, &dummy, 0);
3088 /* Some targets don't set errno on errors, grrr! */
3089 if (pid == 0 && args == dummy)
3090 error (_("Illegal process-id: %s."), args);
3091
3092 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3093 error (_("This target does not support attaching to a process"));
3094
3095 sprintf (rs->buf, "vAttach;%x", pid);
3096 putpkt (rs->buf);
3097 getpkt (&rs->buf, &rs->buf_size, 0);
3098
3099 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3100 {
3101 if (from_tty)
3102 printf_unfiltered (_("Attached to %s\n"),
3103 target_pid_to_str (pid_to_ptid (pid)));
3104
3105 /* Save the reply for later. */
3106 wait_status = alloca (strlen (rs->buf) + 1);
3107 strcpy (wait_status, rs->buf);
3108 }
3109 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3110 error (_("This target does not support attaching to a process"));
3111 else
3112 error (_("Attaching to %s failed"),
3113 target_pid_to_str (pid_to_ptid (pid)));
3114
3115 target_mark_running (target);
3116 inferior_ptid = pid_to_ptid (pid);
3117
3118 /* Now, if we have thread information, update inferior_ptid. */
3119 inferior_ptid = remote_current_thread (inferior_ptid);
3120
3121 inf = add_inferior (pid);
3122 inf->attach_flag = 1;
3123
3124 /* Now, add the main thread to the thread list. */
3125 add_thread_silent (inferior_ptid);
3126
3127 /* Next, if the target can specify a description, read it. We do
3128 this before anything involving memory or registers. */
3129 target_find_description ();
3130
3131 /* Use the previously fetched status. */
3132 gdb_assert (wait_status != NULL);
3133 strcpy (rs->buf, wait_status);
3134 rs->cached_wait_status = 1;
3135 }
3136
3137 static void
3138 extended_remote_attach (char *args, int from_tty)
3139 {
3140 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
3141 }
3142
3143 /* Convert hex digit A to a number. */
3144
3145 static int
3146 fromhex (int a)
3147 {
3148 if (a >= '0' && a <= '9')
3149 return a - '0';
3150 else if (a >= 'a' && a <= 'f')
3151 return a - 'a' + 10;
3152 else if (a >= 'A' && a <= 'F')
3153 return a - 'A' + 10;
3154 else
3155 error (_("Reply contains invalid hex digit %d"), a);
3156 }
3157
3158 static int
3159 hex2bin (const char *hex, gdb_byte *bin, int count)
3160 {
3161 int i;
3162
3163 for (i = 0; i < count; i++)
3164 {
3165 if (hex[0] == 0 || hex[1] == 0)
3166 {
3167 /* Hex string is short, or of uneven length.
3168 Return the count that has been converted so far. */
3169 return i;
3170 }
3171 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3172 hex += 2;
3173 }
3174 return i;
3175 }
3176
3177 /* Convert number NIB to a hex digit. */
3178
3179 static int
3180 tohex (int nib)
3181 {
3182 if (nib < 10)
3183 return '0' + nib;
3184 else
3185 return 'a' + nib - 10;
3186 }
3187
3188 static int
3189 bin2hex (const gdb_byte *bin, char *hex, int count)
3190 {
3191 int i;
3192 /* May use a length, or a nul-terminated string as input. */
3193 if (count == 0)
3194 count = strlen ((char *) bin);
3195
3196 for (i = 0; i < count; i++)
3197 {
3198 *hex++ = tohex ((*bin >> 4) & 0xf);
3199 *hex++ = tohex (*bin++ & 0xf);
3200 }
3201 *hex = 0;
3202 return i;
3203 }
3204 \f
3205 /* Check for the availability of vCont. This function should also check
3206 the response. */
3207
3208 static void
3209 remote_vcont_probe (struct remote_state *rs)
3210 {
3211 char *buf;
3212
3213 strcpy (rs->buf, "vCont?");
3214 putpkt (rs->buf);
3215 getpkt (&rs->buf, &rs->buf_size, 0);
3216 buf = rs->buf;
3217
3218 /* Make sure that the features we assume are supported. */
3219 if (strncmp (buf, "vCont", 5) == 0)
3220 {
3221 char *p = &buf[5];
3222 int support_s, support_S, support_c, support_C;
3223
3224 support_s = 0;
3225 support_S = 0;
3226 support_c = 0;
3227 support_C = 0;
3228 while (p && *p == ';')
3229 {
3230 p++;
3231 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3232 support_s = 1;
3233 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3234 support_S = 1;
3235 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3236 support_c = 1;
3237 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3238 support_C = 1;
3239
3240 p = strchr (p, ';');
3241 }
3242
3243 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3244 BUF will make packet_ok disable the packet. */
3245 if (!support_s || !support_S || !support_c || !support_C)
3246 buf[0] = 0;
3247 }
3248
3249 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3250 }
3251
3252 /* Resume the remote inferior by using a "vCont" packet. The thread
3253 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3254 resumed thread should be single-stepped and/or signalled. If PTID
3255 equals minus_one_ptid, then all threads are resumed; the thread to
3256 be stepped and/or signalled is given in the global INFERIOR_PTID.
3257 This function returns non-zero iff it resumes the inferior.
3258
3259 This function issues a strict subset of all possible vCont commands at the
3260 moment. */
3261
3262 static int
3263 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3264 {
3265 struct remote_state *rs = get_remote_state ();
3266 char *p;
3267 char *endp;
3268
3269 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3270 remote_vcont_probe (rs);
3271
3272 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3273 return 0;
3274
3275 p = rs->buf;
3276 endp = rs->buf + get_remote_packet_size ();
3277
3278 /* If we could generate a wider range of packets, we'd have to worry
3279 about overflowing BUF. Should there be a generic
3280 "multi-part-packet" packet? */
3281
3282 if (ptid_equal (ptid, magic_null_ptid))
3283 {
3284 /* MAGIC_NULL_PTID means that we don't have any active threads,
3285 so we don't have any TID numbers the inferior will
3286 understand. Make sure to only send forms that do not specify
3287 a TID. */
3288 if (step && siggnal != TARGET_SIGNAL_0)
3289 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3290 else if (step)
3291 xsnprintf (p, endp - p, "vCont;s");
3292 else if (siggnal != TARGET_SIGNAL_0)
3293 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3294 else
3295 xsnprintf (p, endp - p, "vCont;c");
3296 }
3297 else if (ptid_equal (ptid, minus_one_ptid))
3298 {
3299 /* Resume all threads, with preference for INFERIOR_PTID. */
3300 if (step && siggnal != TARGET_SIGNAL_0)
3301 {
3302 /* Step inferior_ptid with signal. */
3303 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3304 p = write_ptid (p, endp, inferior_ptid);
3305 /* And continue others. */
3306 p += xsnprintf (p, endp - p, ";c");
3307 }
3308 else if (step)
3309 {
3310 /* Step inferior_ptid. */
3311 p += xsnprintf (p, endp - p, "vCont;s:");
3312 p = write_ptid (p, endp, inferior_ptid);
3313 /* And continue others. */
3314 p += xsnprintf (p, endp - p, ";c");
3315 }
3316 else if (siggnal != TARGET_SIGNAL_0)
3317 {
3318 /* Continue inferior_ptid with signal. */
3319 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3320 p = write_ptid (p, endp, inferior_ptid);
3321 /* And continue others. */
3322 p += xsnprintf (p, endp - p, ";c");
3323 }
3324 else
3325 xsnprintf (p, endp - p, "vCont;c");
3326 }
3327 else
3328 {
3329 /* Scheduler locking; resume only PTID. */
3330 if (step && siggnal != TARGET_SIGNAL_0)
3331 {
3332 /* Step ptid with signal. */
3333 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3334 p = write_ptid (p, endp, ptid);
3335 }
3336 else if (step)
3337 {
3338 /* Step ptid. */
3339 p += xsnprintf (p, endp - p, "vCont;s:");
3340 p = write_ptid (p, endp, ptid);
3341 }
3342 else if (siggnal != TARGET_SIGNAL_0)
3343 {
3344 /* Continue ptid with signal. */
3345 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3346 p = write_ptid (p, endp, ptid);
3347 }
3348 else
3349 {
3350 /* Continue ptid. */
3351 p += xsnprintf (p, endp - p, "vCont;c:");
3352 p = write_ptid (p, endp, ptid);
3353 }
3354 }
3355
3356 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3357 putpkt (rs->buf);
3358
3359 return 1;
3360 }
3361
3362 /* Tell the remote machine to resume. */
3363
3364 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3365
3366 static int last_sent_step;
3367
3368 static void
3369 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3370 {
3371 struct remote_state *rs = get_remote_state ();
3372 char *buf;
3373
3374 last_sent_signal = siggnal;
3375 last_sent_step = step;
3376
3377 /* Update the inferior on signals to silently pass, if they've changed. */
3378 remote_pass_signals ();
3379
3380 /* The vCont packet doesn't need to specify threads via Hc. */
3381 if (remote_vcont_resume (ptid, step, siggnal))
3382 goto done;
3383
3384 /* All other supported resume packets do use Hc, so set the continue
3385 thread. */
3386 if (ptid_equal (ptid, minus_one_ptid))
3387 set_continue_thread (any_thread_ptid);
3388 else
3389 set_continue_thread (ptid);
3390
3391 buf = rs->buf;
3392 if (siggnal != TARGET_SIGNAL_0)
3393 {
3394 buf[0] = step ? 'S' : 'C';
3395 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3396 buf[2] = tohex (((int) siggnal) & 0xf);
3397 buf[3] = '\0';
3398 }
3399 else
3400 strcpy (buf, step ? "s" : "c");
3401
3402 putpkt (buf);
3403
3404 done:
3405 /* We are about to start executing the inferior, let's register it
3406 with the event loop. NOTE: this is the one place where all the
3407 execution commands end up. We could alternatively do this in each
3408 of the execution commands in infcmd.c. */
3409 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3410 into infcmd.c in order to allow inferior function calls to work
3411 NOT asynchronously. */
3412 if (target_can_async_p ())
3413 target_async (inferior_event_handler, 0);
3414 }
3415 \f
3416
3417 /* Set up the signal handler for SIGINT, while the target is
3418 executing, ovewriting the 'regular' SIGINT signal handler. */
3419 static void
3420 initialize_sigint_signal_handler (void)
3421 {
3422 signal (SIGINT, handle_remote_sigint);
3423 }
3424
3425 /* Signal handler for SIGINT, while the target is executing. */
3426 static void
3427 handle_remote_sigint (int sig)
3428 {
3429 signal (sig, handle_remote_sigint_twice);
3430 mark_async_signal_handler_wrapper (sigint_remote_token);
3431 }
3432
3433 /* Signal handler for SIGINT, installed after SIGINT has already been
3434 sent once. It will take effect the second time that the user sends
3435 a ^C. */
3436 static void
3437 handle_remote_sigint_twice (int sig)
3438 {
3439 signal (sig, handle_remote_sigint);
3440 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3441 }
3442
3443 /* Perform the real interruption of the target execution, in response
3444 to a ^C. */
3445 static void
3446 async_remote_interrupt (gdb_client_data arg)
3447 {
3448 if (remote_debug)
3449 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3450
3451 target_stop (inferior_ptid);
3452 }
3453
3454 /* Perform interrupt, if the first attempt did not succeed. Just give
3455 up on the target alltogether. */
3456 void
3457 async_remote_interrupt_twice (gdb_client_data arg)
3458 {
3459 if (remote_debug)
3460 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3461
3462 interrupt_query ();
3463 }
3464
3465 /* Reinstall the usual SIGINT handlers, after the target has
3466 stopped. */
3467 static void
3468 cleanup_sigint_signal_handler (void *dummy)
3469 {
3470 signal (SIGINT, handle_sigint);
3471 }
3472
3473 /* Send ^C to target to halt it. Target will respond, and send us a
3474 packet. */
3475 static void (*ofunc) (int);
3476
3477 /* The command line interface's stop routine. This function is installed
3478 as a signal handler for SIGINT. The first time a user requests a
3479 stop, we call remote_stop to send a break or ^C. If there is no
3480 response from the target (it didn't stop when the user requested it),
3481 we ask the user if he'd like to detach from the target. */
3482 static void
3483 remote_interrupt (int signo)
3484 {
3485 /* If this doesn't work, try more severe steps. */
3486 signal (signo, remote_interrupt_twice);
3487
3488 gdb_call_async_signal_handler (sigint_remote_token, 1);
3489 }
3490
3491 /* The user typed ^C twice. */
3492
3493 static void
3494 remote_interrupt_twice (int signo)
3495 {
3496 signal (signo, ofunc);
3497 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3498 signal (signo, remote_interrupt);
3499 }
3500
3501 /* This is the generic stop called via the target vector. When a target
3502 interrupt is requested, either by the command line or the GUI, we
3503 will eventually end up here. */
3504 static void
3505 remote_stop (ptid_t ptid)
3506 {
3507 /* Send a break or a ^C, depending on user preference. */
3508 if (remote_debug)
3509 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3510
3511 if (remote_break)
3512 serial_send_break (remote_desc);
3513 else
3514 serial_write (remote_desc, "\003", 1);
3515 }
3516
3517 /* Ask the user what to do when an interrupt is received. */
3518
3519 static void
3520 interrupt_query (void)
3521 {
3522 target_terminal_ours ();
3523
3524 if (query ("Interrupted while waiting for the program.\n\
3525 Give up (and stop debugging it)? "))
3526 {
3527 target_mourn_inferior ();
3528 signal (SIGINT, handle_sigint);
3529 deprecated_throw_reason (RETURN_QUIT);
3530 }
3531
3532 target_terminal_inferior ();
3533 }
3534
3535 /* Enable/disable target terminal ownership. Most targets can use
3536 terminal groups to control terminal ownership. Remote targets are
3537 different in that explicit transfer of ownership to/from GDB/target
3538 is required. */
3539
3540 static void
3541 remote_terminal_inferior (void)
3542 {
3543 if (!target_async_permitted)
3544 /* Nothing to do. */
3545 return;
3546
3547 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3548 sync_execution here. This function should only be called when
3549 GDB is resuming the inferior in the forground. A background
3550 resume (``run&'') should leave GDB in control of the terminal and
3551 consequently should not call this code. */
3552 if (!sync_execution)
3553 return;
3554 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3555 calls target_terminal_*() idenpotent. The event-loop GDB talking
3556 to an asynchronous target with a synchronous command calls this
3557 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3558 stops trying to transfer the terminal to the target when it
3559 shouldn't this guard can go away. */
3560 if (!remote_async_terminal_ours_p)
3561 return;
3562 delete_file_handler (input_fd);
3563 remote_async_terminal_ours_p = 0;
3564 initialize_sigint_signal_handler ();
3565 /* NOTE: At this point we could also register our selves as the
3566 recipient of all input. Any characters typed could then be
3567 passed on down to the target. */
3568 }
3569
3570 static void
3571 remote_terminal_ours (void)
3572 {
3573 if (!target_async_permitted)
3574 /* Nothing to do. */
3575 return;
3576
3577 /* See FIXME in remote_terminal_inferior. */
3578 if (!sync_execution)
3579 return;
3580 /* See FIXME in remote_terminal_inferior. */
3581 if (remote_async_terminal_ours_p)
3582 return;
3583 cleanup_sigint_signal_handler (NULL);
3584 add_file_handler (input_fd, stdin_event_handler, 0);
3585 remote_async_terminal_ours_p = 1;
3586 }
3587
3588 void
3589 remote_console_output (char *msg)
3590 {
3591 char *p;
3592
3593 for (p = msg; p[0] && p[1]; p += 2)
3594 {
3595 char tb[2];
3596 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3597 tb[0] = c;
3598 tb[1] = 0;
3599 fputs_unfiltered (tb, gdb_stdtarg);
3600 }
3601 gdb_flush (gdb_stdtarg);
3602 }
3603
3604 /* Wait until the remote machine stops, then return,
3605 storing status in STATUS just as `wait' would. */
3606
3607 static ptid_t
3608 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3609 {
3610 struct remote_state *rs = get_remote_state ();
3611 struct remote_arch_state *rsa = get_remote_arch_state ();
3612 ptid_t event_ptid = null_ptid;
3613 ULONGEST addr;
3614 int solibs_changed = 0;
3615
3616 status->kind = TARGET_WAITKIND_EXITED;
3617 status->value.integer = 0;
3618
3619 while (1)
3620 {
3621 char *buf, *p;
3622
3623 if (rs->cached_wait_status)
3624 /* Use the cached wait status, but only once. */
3625 rs->cached_wait_status = 0;
3626 else
3627 {
3628 if (!target_is_async_p ())
3629 {
3630 ofunc = signal (SIGINT, remote_interrupt);
3631 /* If the user hit C-c before this packet, or between packets,
3632 pretend that it was hit right here. */
3633 if (quit_flag)
3634 {
3635 quit_flag = 0;
3636 remote_interrupt (SIGINT);
3637 }
3638 }
3639 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3640 _never_ wait for ever -> test on target_is_async_p().
3641 However, before we do that we need to ensure that the caller
3642 knows how to take the target into/out of async mode. */
3643 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3644 if (!target_is_async_p ())
3645 signal (SIGINT, ofunc);
3646 }
3647
3648 buf = rs->buf;
3649
3650 remote_stopped_by_watchpoint_p = 0;
3651
3652 switch (buf[0])
3653 {
3654 case 'E': /* Error of some sort. */
3655 /* We're out of sync with the target now. Did it continue or not?
3656 Not is more likely, so report a stop. */
3657 warning (_("Remote failure reply: %s"), buf);
3658 status->kind = TARGET_WAITKIND_STOPPED;
3659 status->value.sig = TARGET_SIGNAL_0;
3660 goto got_status;
3661 case 'F': /* File-I/O request. */
3662 remote_fileio_request (buf);
3663 continue;
3664 case 'T': /* Status with PC, SP, FP, ... */
3665 {
3666 gdb_byte regs[MAX_REGISTER_SIZE];
3667
3668 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3669 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3670 ss = signal number
3671 n... = register number
3672 r... = register contents
3673 */
3674 p = &buf[3]; /* after Txx */
3675
3676 while (*p)
3677 {
3678 char *p1;
3679 char *p_temp;
3680 int fieldsize;
3681 LONGEST pnum = 0;
3682
3683 /* If the packet contains a register number, save it
3684 in pnum and set p1 to point to the character
3685 following it. Otherwise p1 points to p. */
3686
3687 /* If this packet is an awatch packet, don't parse the
3688 'a' as a register number. */
3689
3690 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3691 {
3692 /* Read the ``P'' register number. */
3693 pnum = strtol (p, &p_temp, 16);
3694 p1 = p_temp;
3695 }
3696 else
3697 p1 = p;
3698
3699 if (p1 == p) /* No register number present here. */
3700 {
3701 p1 = strchr (p, ':');
3702 if (p1 == NULL)
3703 error (_("Malformed packet(a) (missing colon): %s\n\
3704 Packet: '%s'\n"),
3705 p, buf);
3706 if (strncmp (p, "thread", p1 - p) == 0)
3707 event_ptid = read_ptid (++p1, &p);
3708 else if ((strncmp (p, "watch", p1 - p) == 0)
3709 || (strncmp (p, "rwatch", p1 - p) == 0)
3710 || (strncmp (p, "awatch", p1 - p) == 0))
3711 {
3712 remote_stopped_by_watchpoint_p = 1;
3713 p = unpack_varlen_hex (++p1, &addr);
3714 remote_watch_data_address = (CORE_ADDR)addr;
3715 }
3716 else if (strncmp (p, "library", p1 - p) == 0)
3717 {
3718 p1++;
3719 p_temp = p1;
3720 while (*p_temp && *p_temp != ';')
3721 p_temp++;
3722
3723 solibs_changed = 1;
3724 p = p_temp;
3725 }
3726 else
3727 {
3728 /* Silently skip unknown optional info. */
3729 p_temp = strchr (p1 + 1, ';');
3730 if (p_temp)
3731 p = p_temp;
3732 }
3733 }
3734 else
3735 {
3736 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3737 p = p1;
3738
3739 if (*p != ':')
3740 error (_("Malformed packet(b) (missing colon): %s\n\
3741 Packet: '%s'\n"),
3742 p, buf);
3743 ++p;
3744
3745 if (reg == NULL)
3746 error (_("Remote sent bad register number %s: %s\n\
3747 Packet: '%s'\n"),
3748 phex_nz (pnum, 0), p, buf);
3749
3750 fieldsize = hex2bin (p, regs,
3751 register_size (target_gdbarch,
3752 reg->regnum));
3753 p += 2 * fieldsize;
3754 if (fieldsize < register_size (target_gdbarch,
3755 reg->regnum))
3756 warning (_("Remote reply is too short: %s"), buf);
3757 regcache_raw_supply (get_current_regcache (),
3758 reg->regnum, regs);
3759 }
3760
3761 if (*p != ';')
3762 error (_("Remote register badly formatted: %s\nhere: %s"),
3763 buf, p);
3764 ++p;
3765 }
3766 }
3767 /* fall through */
3768 case 'S': /* Old style status, just signal only. */
3769 if (solibs_changed)
3770 status->kind = TARGET_WAITKIND_LOADED;
3771 else
3772 {
3773 status->kind = TARGET_WAITKIND_STOPPED;
3774 status->value.sig = (enum target_signal)
3775 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3776 }
3777 goto got_status;
3778 case 'W': /* Target exited. */
3779 case 'X':
3780 {
3781 char *p;
3782 int pid;
3783 ULONGEST value;
3784
3785 /* GDB used to accept only 2 hex chars here. Stubs should
3786 only send more if they detect GDB supports
3787 multi-process support. */
3788 p = unpack_varlen_hex (&buf[1], &value);
3789
3790 if (buf[0] == 'W')
3791 {
3792 /* The remote process exited. */
3793 status->kind = TARGET_WAITKIND_EXITED;
3794 status->value.integer = value;
3795 }
3796 else
3797 {
3798 /* The remote process exited with a signal. */
3799 status->kind = TARGET_WAITKIND_SIGNALLED;
3800 status->value.sig = (enum target_signal) value;
3801 }
3802
3803 /* If no process is specified, assume inferior_ptid. */
3804 pid = ptid_get_pid (inferior_ptid);
3805 if (*p == '\0')
3806 ;
3807 else if (*p == ';')
3808 {
3809 p++;
3810
3811 if (p == '\0')
3812 ;
3813 else if (strncmp (p,
3814 "process:", sizeof ("process:") - 1) == 0)
3815 {
3816 ULONGEST upid;
3817 p += sizeof ("process:") - 1;
3818 unpack_varlen_hex (p, &upid);
3819 pid = upid;
3820 }
3821 else
3822 error (_("unknown stop reply packet: %s"), buf);
3823 }
3824 else
3825 error (_("unknown stop reply packet: %s"), buf);
3826 event_ptid = ptid_build (pid, 0, 0);
3827 goto got_status;
3828 }
3829 case 'O': /* Console output. */
3830 remote_console_output (buf + 1);
3831 if (target_can_async_p ())
3832 {
3833 /* Return immediately to the event loop. The event loop
3834 will still be waiting on the inferior afterwards. */
3835 status->kind = TARGET_WAITKIND_IGNORE;
3836 goto got_status;
3837 }
3838 else
3839 continue;
3840 case '\0':
3841 if (last_sent_signal != TARGET_SIGNAL_0)
3842 {
3843 /* Zero length reply means that we tried 'S' or 'C' and
3844 the remote system doesn't support it. */
3845 target_terminal_ours_for_output ();
3846 printf_filtered
3847 ("Can't send signals to this remote system. %s not sent.\n",
3848 target_signal_to_name (last_sent_signal));
3849 last_sent_signal = TARGET_SIGNAL_0;
3850 target_terminal_inferior ();
3851
3852 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3853 putpkt ((char *) buf);
3854 continue;
3855 }
3856 /* else fallthrough */
3857 default:
3858 warning (_("Invalid remote reply: %s"), buf);
3859 continue;
3860 }
3861 }
3862 got_status:
3863 if (status->kind == TARGET_WAITKIND_EXITED
3864 || status->kind == TARGET_WAITKIND_SIGNALLED)
3865 {
3866 int pid = ptid_get_pid (event_ptid);
3867 delete_inferior (pid);
3868 }
3869 else
3870 {
3871 if (!ptid_equal (event_ptid, null_ptid))
3872 record_currthread (event_ptid);
3873 else
3874 event_ptid = inferior_ptid;
3875 }
3876
3877 return event_ptid;
3878 }
3879
3880 /* Fetch a single register using a 'p' packet. */
3881
3882 static int
3883 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3884 {
3885 struct remote_state *rs = get_remote_state ();
3886 char *buf, *p;
3887 char regp[MAX_REGISTER_SIZE];
3888 int i;
3889
3890 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3891 return 0;
3892
3893 if (reg->pnum == -1)
3894 return 0;
3895
3896 p = rs->buf;
3897 *p++ = 'p';
3898 p += hexnumstr (p, reg->pnum);
3899 *p++ = '\0';
3900 remote_send (&rs->buf, &rs->buf_size);
3901
3902 buf = rs->buf;
3903
3904 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3905 {
3906 case PACKET_OK:
3907 break;
3908 case PACKET_UNKNOWN:
3909 return 0;
3910 case PACKET_ERROR:
3911 error (_("Could not fetch register \"%s\""),
3912 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3913 }
3914
3915 /* If this register is unfetchable, tell the regcache. */
3916 if (buf[0] == 'x')
3917 {
3918 regcache_raw_supply (regcache, reg->regnum, NULL);
3919 return 1;
3920 }
3921
3922 /* Otherwise, parse and supply the value. */
3923 p = buf;
3924 i = 0;
3925 while (p[0] != 0)
3926 {
3927 if (p[1] == 0)
3928 error (_("fetch_register_using_p: early buf termination"));
3929
3930 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3931 p += 2;
3932 }
3933 regcache_raw_supply (regcache, reg->regnum, regp);
3934 return 1;
3935 }
3936
3937 /* Fetch the registers included in the target's 'g' packet. */
3938
3939 static int
3940 send_g_packet (void)
3941 {
3942 struct remote_state *rs = get_remote_state ();
3943 int i, buf_len;
3944 char *p;
3945 char *regs;
3946
3947 sprintf (rs->buf, "g");
3948 remote_send (&rs->buf, &rs->buf_size);
3949
3950 /* We can get out of synch in various cases. If the first character
3951 in the buffer is not a hex character, assume that has happened
3952 and try to fetch another packet to read. */
3953 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3954 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3955 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3956 && rs->buf[0] != 'x') /* New: unavailable register value. */
3957 {
3958 if (remote_debug)
3959 fprintf_unfiltered (gdb_stdlog,
3960 "Bad register packet; fetching a new packet\n");
3961 getpkt (&rs->buf, &rs->buf_size, 0);
3962 }
3963
3964 buf_len = strlen (rs->buf);
3965
3966 /* Sanity check the received packet. */
3967 if (buf_len % 2 != 0)
3968 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3969
3970 return buf_len / 2;
3971 }
3972
3973 static void
3974 process_g_packet (struct regcache *regcache)
3975 {
3976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3977 struct remote_state *rs = get_remote_state ();
3978 struct remote_arch_state *rsa = get_remote_arch_state ();
3979 int i, buf_len;
3980 char *p;
3981 char *regs;
3982
3983 buf_len = strlen (rs->buf);
3984
3985 /* Further sanity checks, with knowledge of the architecture. */
3986 if (buf_len > 2 * rsa->sizeof_g_packet)
3987 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3988
3989 /* Save the size of the packet sent to us by the target. It is used
3990 as a heuristic when determining the max size of packets that the
3991 target can safely receive. */
3992 if (rsa->actual_register_packet_size == 0)
3993 rsa->actual_register_packet_size = buf_len;
3994
3995 /* If this is smaller than we guessed the 'g' packet would be,
3996 update our records. A 'g' reply that doesn't include a register's
3997 value implies either that the register is not available, or that
3998 the 'p' packet must be used. */
3999 if (buf_len < 2 * rsa->sizeof_g_packet)
4000 {
4001 rsa->sizeof_g_packet = buf_len / 2;
4002
4003 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4004 {
4005 if (rsa->regs[i].pnum == -1)
4006 continue;
4007
4008 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4009 rsa->regs[i].in_g_packet = 0;
4010 else
4011 rsa->regs[i].in_g_packet = 1;
4012 }
4013 }
4014
4015 regs = alloca (rsa->sizeof_g_packet);
4016
4017 /* Unimplemented registers read as all bits zero. */
4018 memset (regs, 0, rsa->sizeof_g_packet);
4019
4020 /* Reply describes registers byte by byte, each byte encoded as two
4021 hex characters. Suck them all up, then supply them to the
4022 register cacheing/storage mechanism. */
4023
4024 p = rs->buf;
4025 for (i = 0; i < rsa->sizeof_g_packet; i++)
4026 {
4027 if (p[0] == 0 || p[1] == 0)
4028 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4029 internal_error (__FILE__, __LINE__,
4030 "unexpected end of 'g' packet reply");
4031
4032 if (p[0] == 'x' && p[1] == 'x')
4033 regs[i] = 0; /* 'x' */
4034 else
4035 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4036 p += 2;
4037 }
4038
4039 {
4040 int i;
4041 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4042 {
4043 struct packet_reg *r = &rsa->regs[i];
4044 if (r->in_g_packet)
4045 {
4046 if (r->offset * 2 >= strlen (rs->buf))
4047 /* This shouldn't happen - we adjusted in_g_packet above. */
4048 internal_error (__FILE__, __LINE__,
4049 "unexpected end of 'g' packet reply");
4050 else if (rs->buf[r->offset * 2] == 'x')
4051 {
4052 gdb_assert (r->offset * 2 < strlen (rs->buf));
4053 /* The register isn't available, mark it as such (at
4054 the same time setting the value to zero). */
4055 regcache_raw_supply (regcache, r->regnum, NULL);
4056 }
4057 else
4058 regcache_raw_supply (regcache, r->regnum,
4059 regs + r->offset);
4060 }
4061 }
4062 }
4063 }
4064
4065 static void
4066 fetch_registers_using_g (struct regcache *regcache)
4067 {
4068 send_g_packet ();
4069 process_g_packet (regcache);
4070 }
4071
4072 static void
4073 remote_fetch_registers (struct regcache *regcache, int regnum)
4074 {
4075 struct remote_state *rs = get_remote_state ();
4076 struct remote_arch_state *rsa = get_remote_arch_state ();
4077 int i;
4078
4079 set_general_thread (inferior_ptid);
4080
4081 if (regnum >= 0)
4082 {
4083 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4084 gdb_assert (reg != NULL);
4085
4086 /* If this register might be in the 'g' packet, try that first -
4087 we are likely to read more than one register. If this is the
4088 first 'g' packet, we might be overly optimistic about its
4089 contents, so fall back to 'p'. */
4090 if (reg->in_g_packet)
4091 {
4092 fetch_registers_using_g (regcache);
4093 if (reg->in_g_packet)
4094 return;
4095 }
4096
4097 if (fetch_register_using_p (regcache, reg))
4098 return;
4099
4100 /* This register is not available. */
4101 regcache_raw_supply (regcache, reg->regnum, NULL);
4102
4103 return;
4104 }
4105
4106 fetch_registers_using_g (regcache);
4107
4108 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4109 if (!rsa->regs[i].in_g_packet)
4110 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4111 {
4112 /* This register is not available. */
4113 regcache_raw_supply (regcache, i, NULL);
4114 }
4115 }
4116
4117 /* Prepare to store registers. Since we may send them all (using a
4118 'G' request), we have to read out the ones we don't want to change
4119 first. */
4120
4121 static void
4122 remote_prepare_to_store (struct regcache *regcache)
4123 {
4124 struct remote_arch_state *rsa = get_remote_arch_state ();
4125 int i;
4126 gdb_byte buf[MAX_REGISTER_SIZE];
4127
4128 /* Make sure the entire registers array is valid. */
4129 switch (remote_protocol_packets[PACKET_P].support)
4130 {
4131 case PACKET_DISABLE:
4132 case PACKET_SUPPORT_UNKNOWN:
4133 /* Make sure all the necessary registers are cached. */
4134 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4135 if (rsa->regs[i].in_g_packet)
4136 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4137 break;
4138 case PACKET_ENABLE:
4139 break;
4140 }
4141 }
4142
4143 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4144 packet was not recognized. */
4145
4146 static int
4147 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4148 {
4149 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4150 struct remote_state *rs = get_remote_state ();
4151 struct remote_arch_state *rsa = get_remote_arch_state ();
4152 /* Try storing a single register. */
4153 char *buf = rs->buf;
4154 gdb_byte regp[MAX_REGISTER_SIZE];
4155 char *p;
4156
4157 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4158 return 0;
4159
4160 if (reg->pnum == -1)
4161 return 0;
4162
4163 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4164 p = buf + strlen (buf);
4165 regcache_raw_collect (regcache, reg->regnum, regp);
4166 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4167 remote_send (&rs->buf, &rs->buf_size);
4168
4169 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4170 {
4171 case PACKET_OK:
4172 return 1;
4173 case PACKET_ERROR:
4174 error (_("Could not write register \"%s\""),
4175 gdbarch_register_name (gdbarch, reg->regnum));
4176 case PACKET_UNKNOWN:
4177 return 0;
4178 default:
4179 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4180 }
4181 }
4182
4183 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4184 contents of the register cache buffer. FIXME: ignores errors. */
4185
4186 static void
4187 store_registers_using_G (const struct regcache *regcache)
4188 {
4189 struct remote_state *rs = get_remote_state ();
4190 struct remote_arch_state *rsa = get_remote_arch_state ();
4191 gdb_byte *regs;
4192 char *p;
4193
4194 /* Extract all the registers in the regcache copying them into a
4195 local buffer. */
4196 {
4197 int i;
4198 regs = alloca (rsa->sizeof_g_packet);
4199 memset (regs, 0, rsa->sizeof_g_packet);
4200 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4201 {
4202 struct packet_reg *r = &rsa->regs[i];
4203 if (r->in_g_packet)
4204 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4205 }
4206 }
4207
4208 /* Command describes registers byte by byte,
4209 each byte encoded as two hex characters. */
4210 p = rs->buf;
4211 *p++ = 'G';
4212 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4213 updated. */
4214 bin2hex (regs, p, rsa->sizeof_g_packet);
4215 remote_send (&rs->buf, &rs->buf_size);
4216 }
4217
4218 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4219 of the register cache buffer. FIXME: ignores errors. */
4220
4221 static void
4222 remote_store_registers (struct regcache *regcache, int regnum)
4223 {
4224 struct remote_state *rs = get_remote_state ();
4225 struct remote_arch_state *rsa = get_remote_arch_state ();
4226 int i;
4227
4228 set_general_thread (inferior_ptid);
4229
4230 if (regnum >= 0)
4231 {
4232 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4233 gdb_assert (reg != NULL);
4234
4235 /* Always prefer to store registers using the 'P' packet if
4236 possible; we often change only a small number of registers.
4237 Sometimes we change a larger number; we'd need help from a
4238 higher layer to know to use 'G'. */
4239 if (store_register_using_P (regcache, reg))
4240 return;
4241
4242 /* For now, don't complain if we have no way to write the
4243 register. GDB loses track of unavailable registers too
4244 easily. Some day, this may be an error. We don't have
4245 any way to read the register, either... */
4246 if (!reg->in_g_packet)
4247 return;
4248
4249 store_registers_using_G (regcache);
4250 return;
4251 }
4252
4253 store_registers_using_G (regcache);
4254
4255 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4256 if (!rsa->regs[i].in_g_packet)
4257 if (!store_register_using_P (regcache, &rsa->regs[i]))
4258 /* See above for why we do not issue an error here. */
4259 continue;
4260 }
4261 \f
4262
4263 /* Return the number of hex digits in num. */
4264
4265 static int
4266 hexnumlen (ULONGEST num)
4267 {
4268 int i;
4269
4270 for (i = 0; num != 0; i++)
4271 num >>= 4;
4272
4273 return max (i, 1);
4274 }
4275
4276 /* Set BUF to the minimum number of hex digits representing NUM. */
4277
4278 static int
4279 hexnumstr (char *buf, ULONGEST num)
4280 {
4281 int len = hexnumlen (num);
4282 return hexnumnstr (buf, num, len);
4283 }
4284
4285
4286 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4287
4288 static int
4289 hexnumnstr (char *buf, ULONGEST num, int width)
4290 {
4291 int i;
4292
4293 buf[width] = '\0';
4294
4295 for (i = width - 1; i >= 0; i--)
4296 {
4297 buf[i] = "0123456789abcdef"[(num & 0xf)];
4298 num >>= 4;
4299 }
4300
4301 return width;
4302 }
4303
4304 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4305
4306 static CORE_ADDR
4307 remote_address_masked (CORE_ADDR addr)
4308 {
4309 int address_size = remote_address_size;
4310 /* If "remoteaddresssize" was not set, default to target address size. */
4311 if (!address_size)
4312 address_size = gdbarch_addr_bit (target_gdbarch);
4313
4314 if (address_size > 0
4315 && address_size < (sizeof (ULONGEST) * 8))
4316 {
4317 /* Only create a mask when that mask can safely be constructed
4318 in a ULONGEST variable. */
4319 ULONGEST mask = 1;
4320 mask = (mask << address_size) - 1;
4321 addr &= mask;
4322 }
4323 return addr;
4324 }
4325
4326 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4327 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4328 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4329 (which may be more than *OUT_LEN due to escape characters). The
4330 total number of bytes in the output buffer will be at most
4331 OUT_MAXLEN. */
4332
4333 static int
4334 remote_escape_output (const gdb_byte *buffer, int len,
4335 gdb_byte *out_buf, int *out_len,
4336 int out_maxlen)
4337 {
4338 int input_index, output_index;
4339
4340 output_index = 0;
4341 for (input_index = 0; input_index < len; input_index++)
4342 {
4343 gdb_byte b = buffer[input_index];
4344
4345 if (b == '$' || b == '#' || b == '}')
4346 {
4347 /* These must be escaped. */
4348 if (output_index + 2 > out_maxlen)
4349 break;
4350 out_buf[output_index++] = '}';
4351 out_buf[output_index++] = b ^ 0x20;
4352 }
4353 else
4354 {
4355 if (output_index + 1 > out_maxlen)
4356 break;
4357 out_buf[output_index++] = b;
4358 }
4359 }
4360
4361 *out_len = input_index;
4362 return output_index;
4363 }
4364
4365 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4366 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4367 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4368
4369 This function reverses remote_escape_output. It allows more
4370 escaped characters than that function does, in particular because
4371 '*' must be escaped to avoid the run-length encoding processing
4372 in reading packets. */
4373
4374 static int
4375 remote_unescape_input (const gdb_byte *buffer, int len,
4376 gdb_byte *out_buf, int out_maxlen)
4377 {
4378 int input_index, output_index;
4379 int escaped;
4380
4381 output_index = 0;
4382 escaped = 0;
4383 for (input_index = 0; input_index < len; input_index++)
4384 {
4385 gdb_byte b = buffer[input_index];
4386
4387 if (output_index + 1 > out_maxlen)
4388 {
4389 warning (_("Received too much data from remote target;"
4390 " ignoring overflow."));
4391 return output_index;
4392 }
4393
4394 if (escaped)
4395 {
4396 out_buf[output_index++] = b ^ 0x20;
4397 escaped = 0;
4398 }
4399 else if (b == '}')
4400 escaped = 1;
4401 else
4402 out_buf[output_index++] = b;
4403 }
4404
4405 if (escaped)
4406 error (_("Unmatched escape character in target response."));
4407
4408 return output_index;
4409 }
4410
4411 /* Determine whether the remote target supports binary downloading.
4412 This is accomplished by sending a no-op memory write of zero length
4413 to the target at the specified address. It does not suffice to send
4414 the whole packet, since many stubs strip the eighth bit and
4415 subsequently compute a wrong checksum, which causes real havoc with
4416 remote_write_bytes.
4417
4418 NOTE: This can still lose if the serial line is not eight-bit
4419 clean. In cases like this, the user should clear "remote
4420 X-packet". */
4421
4422 static void
4423 check_binary_download (CORE_ADDR addr)
4424 {
4425 struct remote_state *rs = get_remote_state ();
4426
4427 switch (remote_protocol_packets[PACKET_X].support)
4428 {
4429 case PACKET_DISABLE:
4430 break;
4431 case PACKET_ENABLE:
4432 break;
4433 case PACKET_SUPPORT_UNKNOWN:
4434 {
4435 char *p;
4436
4437 p = rs->buf;
4438 *p++ = 'X';
4439 p += hexnumstr (p, (ULONGEST) addr);
4440 *p++ = ',';
4441 p += hexnumstr (p, (ULONGEST) 0);
4442 *p++ = ':';
4443 *p = '\0';
4444
4445 putpkt_binary (rs->buf, (int) (p - rs->buf));
4446 getpkt (&rs->buf, &rs->buf_size, 0);
4447
4448 if (rs->buf[0] == '\0')
4449 {
4450 if (remote_debug)
4451 fprintf_unfiltered (gdb_stdlog,
4452 "binary downloading NOT suppported by target\n");
4453 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4454 }
4455 else
4456 {
4457 if (remote_debug)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "binary downloading suppported by target\n");
4460 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4461 }
4462 break;
4463 }
4464 }
4465 }
4466
4467 /* Write memory data directly to the remote machine.
4468 This does not inform the data cache; the data cache uses this.
4469 HEADER is the starting part of the packet.
4470 MEMADDR is the address in the remote memory space.
4471 MYADDR is the address of the buffer in our space.
4472 LEN is the number of bytes.
4473 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4474 should send data as binary ('X'), or hex-encoded ('M').
4475
4476 The function creates packet of the form
4477 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4478
4479 where encoding of <DATA> is termined by PACKET_FORMAT.
4480
4481 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4482 are omitted.
4483
4484 Returns the number of bytes transferred, or 0 (setting errno) for
4485 error. Only transfer a single packet. */
4486
4487 static int
4488 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4489 const gdb_byte *myaddr, int len,
4490 char packet_format, int use_length)
4491 {
4492 struct remote_state *rs = get_remote_state ();
4493 char *p;
4494 char *plen = NULL;
4495 int plenlen = 0;
4496 int todo;
4497 int nr_bytes;
4498 int payload_size;
4499 int payload_length;
4500 int header_length;
4501
4502 if (packet_format != 'X' && packet_format != 'M')
4503 internal_error (__FILE__, __LINE__,
4504 "remote_write_bytes_aux: bad packet format");
4505
4506 if (len <= 0)
4507 return 0;
4508
4509 payload_size = get_memory_write_packet_size ();
4510
4511 /* The packet buffer will be large enough for the payload;
4512 get_memory_packet_size ensures this. */
4513 rs->buf[0] = '\0';
4514
4515 /* Compute the size of the actual payload by subtracting out the
4516 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4517 */
4518 payload_size -= strlen ("$,:#NN");
4519 if (!use_length)
4520 /* The comma won't be used. */
4521 payload_size += 1;
4522 header_length = strlen (header);
4523 payload_size -= header_length;
4524 payload_size -= hexnumlen (memaddr);
4525
4526 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4527
4528 strcat (rs->buf, header);
4529 p = rs->buf + strlen (header);
4530
4531 /* Compute a best guess of the number of bytes actually transfered. */
4532 if (packet_format == 'X')
4533 {
4534 /* Best guess at number of bytes that will fit. */
4535 todo = min (len, payload_size);
4536 if (use_length)
4537 payload_size -= hexnumlen (todo);
4538 todo = min (todo, payload_size);
4539 }
4540 else
4541 {
4542 /* Num bytes that will fit. */
4543 todo = min (len, payload_size / 2);
4544 if (use_length)
4545 payload_size -= hexnumlen (todo);
4546 todo = min (todo, payload_size / 2);
4547 }
4548
4549 if (todo <= 0)
4550 internal_error (__FILE__, __LINE__,
4551 _("minumum packet size too small to write data"));
4552
4553 /* If we already need another packet, then try to align the end
4554 of this packet to a useful boundary. */
4555 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4556 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4557
4558 /* Append "<memaddr>". */
4559 memaddr = remote_address_masked (memaddr);
4560 p += hexnumstr (p, (ULONGEST) memaddr);
4561
4562 if (use_length)
4563 {
4564 /* Append ",". */
4565 *p++ = ',';
4566
4567 /* Append <len>. Retain the location/size of <len>. It may need to
4568 be adjusted once the packet body has been created. */
4569 plen = p;
4570 plenlen = hexnumstr (p, (ULONGEST) todo);
4571 p += plenlen;
4572 }
4573
4574 /* Append ":". */
4575 *p++ = ':';
4576 *p = '\0';
4577
4578 /* Append the packet body. */
4579 if (packet_format == 'X')
4580 {
4581 /* Binary mode. Send target system values byte by byte, in
4582 increasing byte addresses. Only escape certain critical
4583 characters. */
4584 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4585 payload_size);
4586
4587 /* If not all TODO bytes fit, then we'll need another packet. Make
4588 a second try to keep the end of the packet aligned. Don't do
4589 this if the packet is tiny. */
4590 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4591 {
4592 int new_nr_bytes;
4593
4594 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4595 - memaddr);
4596 if (new_nr_bytes != nr_bytes)
4597 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4598 p, &nr_bytes,
4599 payload_size);
4600 }
4601
4602 p += payload_length;
4603 if (use_length && nr_bytes < todo)
4604 {
4605 /* Escape chars have filled up the buffer prematurely,
4606 and we have actually sent fewer bytes than planned.
4607 Fix-up the length field of the packet. Use the same
4608 number of characters as before. */
4609 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4610 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4611 }
4612 }
4613 else
4614 {
4615 /* Normal mode: Send target system values byte by byte, in
4616 increasing byte addresses. Each byte is encoded as a two hex
4617 value. */
4618 nr_bytes = bin2hex (myaddr, p, todo);
4619 p += 2 * nr_bytes;
4620 }
4621
4622 putpkt_binary (rs->buf, (int) (p - rs->buf));
4623 getpkt (&rs->buf, &rs->buf_size, 0);
4624
4625 if (rs->buf[0] == 'E')
4626 {
4627 /* There is no correspondance between what the remote protocol
4628 uses for errors and errno codes. We would like a cleaner way
4629 of representing errors (big enough to include errno codes,
4630 bfd_error codes, and others). But for now just return EIO. */
4631 errno = EIO;
4632 return 0;
4633 }
4634
4635 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4636 fewer bytes than we'd planned. */
4637 return nr_bytes;
4638 }
4639
4640 /* Write memory data directly to the remote machine.
4641 This does not inform the data cache; the data cache uses this.
4642 MEMADDR is the address in the remote memory space.
4643 MYADDR is the address of the buffer in our space.
4644 LEN is the number of bytes.
4645
4646 Returns number of bytes transferred, or 0 (setting errno) for
4647 error. Only transfer a single packet. */
4648
4649 int
4650 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4651 {
4652 char *packet_format = 0;
4653
4654 /* Check whether the target supports binary download. */
4655 check_binary_download (memaddr);
4656
4657 switch (remote_protocol_packets[PACKET_X].support)
4658 {
4659 case PACKET_ENABLE:
4660 packet_format = "X";
4661 break;
4662 case PACKET_DISABLE:
4663 packet_format = "M";
4664 break;
4665 case PACKET_SUPPORT_UNKNOWN:
4666 internal_error (__FILE__, __LINE__,
4667 _("remote_write_bytes: bad internal state"));
4668 default:
4669 internal_error (__FILE__, __LINE__, _("bad switch"));
4670 }
4671
4672 return remote_write_bytes_aux (packet_format,
4673 memaddr, myaddr, len, packet_format[0], 1);
4674 }
4675
4676 /* Read memory data directly from the remote machine.
4677 This does not use the data cache; the data cache uses this.
4678 MEMADDR is the address in the remote memory space.
4679 MYADDR is the address of the buffer in our space.
4680 LEN is the number of bytes.
4681
4682 Returns number of bytes transferred, or 0 for error. */
4683
4684 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4685 remote targets) shouldn't attempt to read the entire buffer.
4686 Instead it should read a single packet worth of data and then
4687 return the byte size of that packet to the caller. The caller (its
4688 caller and its callers caller ;-) already contains code for
4689 handling partial reads. */
4690
4691 int
4692 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4693 {
4694 struct remote_state *rs = get_remote_state ();
4695 int max_buf_size; /* Max size of packet output buffer. */
4696 int origlen;
4697
4698 if (len <= 0)
4699 return 0;
4700
4701 max_buf_size = get_memory_read_packet_size ();
4702 /* The packet buffer will be large enough for the payload;
4703 get_memory_packet_size ensures this. */
4704
4705 origlen = len;
4706 while (len > 0)
4707 {
4708 char *p;
4709 int todo;
4710 int i;
4711
4712 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4713
4714 /* construct "m"<memaddr>","<len>" */
4715 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4716 memaddr = remote_address_masked (memaddr);
4717 p = rs->buf;
4718 *p++ = 'm';
4719 p += hexnumstr (p, (ULONGEST) memaddr);
4720 *p++ = ',';
4721 p += hexnumstr (p, (ULONGEST) todo);
4722 *p = '\0';
4723
4724 putpkt (rs->buf);
4725 getpkt (&rs->buf, &rs->buf_size, 0);
4726
4727 if (rs->buf[0] == 'E'
4728 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4729 && rs->buf[3] == '\0')
4730 {
4731 /* There is no correspondance between what the remote
4732 protocol uses for errors and errno codes. We would like
4733 a cleaner way of representing errors (big enough to
4734 include errno codes, bfd_error codes, and others). But
4735 for now just return EIO. */
4736 errno = EIO;
4737 return 0;
4738 }
4739
4740 /* Reply describes memory byte by byte,
4741 each byte encoded as two hex characters. */
4742
4743 p = rs->buf;
4744 if ((i = hex2bin (p, myaddr, todo)) < todo)
4745 {
4746 /* Reply is short. This means that we were able to read
4747 only part of what we wanted to. */
4748 return i + (origlen - len);
4749 }
4750 myaddr += todo;
4751 memaddr += todo;
4752 len -= todo;
4753 }
4754 return origlen;
4755 }
4756 \f
4757 /* Read or write LEN bytes from inferior memory at MEMADDR,
4758 transferring to or from debugger address BUFFER. Write to inferior
4759 if SHOULD_WRITE is nonzero. Returns length of data written or
4760 read; 0 for error. TARGET is unused. */
4761
4762 static int
4763 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4764 int should_write, struct mem_attrib *attrib,
4765 struct target_ops *target)
4766 {
4767 int res;
4768
4769 set_general_thread (inferior_ptid);
4770
4771 if (should_write)
4772 res = remote_write_bytes (mem_addr, buffer, mem_len);
4773 else
4774 res = remote_read_bytes (mem_addr, buffer, mem_len);
4775
4776 return res;
4777 }
4778
4779 /* Sends a packet with content determined by the printf format string
4780 FORMAT and the remaining arguments, then gets the reply. Returns
4781 whether the packet was a success, a failure, or unknown. */
4782
4783 enum packet_result
4784 remote_send_printf (const char *format, ...)
4785 {
4786 struct remote_state *rs = get_remote_state ();
4787 int max_size = get_remote_packet_size ();
4788
4789 va_list ap;
4790 va_start (ap, format);
4791
4792 rs->buf[0] = '\0';
4793 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4794 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4795
4796 if (putpkt (rs->buf) < 0)
4797 error (_("Communication problem with target."));
4798
4799 rs->buf[0] = '\0';
4800 getpkt (&rs->buf, &rs->buf_size, 0);
4801
4802 return packet_check_result (rs->buf);
4803 }
4804
4805 static void
4806 restore_remote_timeout (void *p)
4807 {
4808 int value = *(int *)p;
4809 remote_timeout = value;
4810 }
4811
4812 /* Flash writing can take quite some time. We'll set
4813 effectively infinite timeout for flash operations.
4814 In future, we'll need to decide on a better approach. */
4815 static const int remote_flash_timeout = 1000;
4816
4817 static void
4818 remote_flash_erase (struct target_ops *ops,
4819 ULONGEST address, LONGEST length)
4820 {
4821 int saved_remote_timeout = remote_timeout;
4822 enum packet_result ret;
4823
4824 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4825 &saved_remote_timeout);
4826 remote_timeout = remote_flash_timeout;
4827
4828 ret = remote_send_printf ("vFlashErase:%s,%s",
4829 paddr (address),
4830 phex (length, 4));
4831 switch (ret)
4832 {
4833 case PACKET_UNKNOWN:
4834 error (_("Remote target does not support flash erase"));
4835 case PACKET_ERROR:
4836 error (_("Error erasing flash with vFlashErase packet"));
4837 default:
4838 break;
4839 }
4840
4841 do_cleanups (back_to);
4842 }
4843
4844 static LONGEST
4845 remote_flash_write (struct target_ops *ops,
4846 ULONGEST address, LONGEST length,
4847 const gdb_byte *data)
4848 {
4849 int saved_remote_timeout = remote_timeout;
4850 int ret;
4851 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4852 &saved_remote_timeout);
4853
4854 remote_timeout = remote_flash_timeout;
4855 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4856 do_cleanups (back_to);
4857
4858 return ret;
4859 }
4860
4861 static void
4862 remote_flash_done (struct target_ops *ops)
4863 {
4864 int saved_remote_timeout = remote_timeout;
4865 int ret;
4866 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4867 &saved_remote_timeout);
4868
4869 remote_timeout = remote_flash_timeout;
4870 ret = remote_send_printf ("vFlashDone");
4871 do_cleanups (back_to);
4872
4873 switch (ret)
4874 {
4875 case PACKET_UNKNOWN:
4876 error (_("Remote target does not support vFlashDone"));
4877 case PACKET_ERROR:
4878 error (_("Error finishing flash operation"));
4879 default:
4880 break;
4881 }
4882 }
4883
4884 static void
4885 remote_files_info (struct target_ops *ignore)
4886 {
4887 puts_filtered ("Debugging a target over a serial line.\n");
4888 }
4889 \f
4890 /* Stuff for dealing with the packets which are part of this protocol.
4891 See comment at top of file for details. */
4892
4893 /* Read a single character from the remote end. */
4894
4895 static int
4896 readchar (int timeout)
4897 {
4898 int ch;
4899
4900 ch = serial_readchar (remote_desc, timeout);
4901
4902 if (ch >= 0)
4903 return ch;
4904
4905 switch ((enum serial_rc) ch)
4906 {
4907 case SERIAL_EOF:
4908 target_mourn_inferior ();
4909 error (_("Remote connection closed"));
4910 /* no return */
4911 case SERIAL_ERROR:
4912 perror_with_name (_("Remote communication error"));
4913 /* no return */
4914 case SERIAL_TIMEOUT:
4915 break;
4916 }
4917 return ch;
4918 }
4919
4920 /* Send the command in *BUF to the remote machine, and read the reply
4921 into *BUF. Report an error if we get an error reply. Resize
4922 *BUF using xrealloc if necessary to hold the result, and update
4923 *SIZEOF_BUF. */
4924
4925 static void
4926 remote_send (char **buf,
4927 long *sizeof_buf)
4928 {
4929 putpkt (*buf);
4930 getpkt (buf, sizeof_buf, 0);
4931
4932 if ((*buf)[0] == 'E')
4933 error (_("Remote failure reply: %s"), *buf);
4934 }
4935
4936 /* Display a null-terminated packet on stdout, for debugging, using C
4937 string notation. */
4938
4939 static void
4940 print_packet (char *buf)
4941 {
4942 puts_filtered ("\"");
4943 fputstr_filtered (buf, '"', gdb_stdout);
4944 puts_filtered ("\"");
4945 }
4946
4947 int
4948 putpkt (char *buf)
4949 {
4950 return putpkt_binary (buf, strlen (buf));
4951 }
4952
4953 /* Send a packet to the remote machine, with error checking. The data
4954 of the packet is in BUF. The string in BUF can be at most
4955 get_remote_packet_size () - 5 to account for the $, # and checksum,
4956 and for a possible /0 if we are debugging (remote_debug) and want
4957 to print the sent packet as a string. */
4958
4959 static int
4960 putpkt_binary (char *buf, int cnt)
4961 {
4962 struct remote_state *rs = get_remote_state ();
4963 int i;
4964 unsigned char csum = 0;
4965 char *buf2 = alloca (cnt + 6);
4966
4967 int ch;
4968 int tcount = 0;
4969 char *p;
4970
4971 /* We're sending out a new packet. Make sure we don't look at a
4972 stale cached response. */
4973 rs->cached_wait_status = 0;
4974
4975 /* Copy the packet into buffer BUF2, encapsulating it
4976 and giving it a checksum. */
4977
4978 p = buf2;
4979 *p++ = '$';
4980
4981 for (i = 0; i < cnt; i++)
4982 {
4983 csum += buf[i];
4984 *p++ = buf[i];
4985 }
4986 *p++ = '#';
4987 *p++ = tohex ((csum >> 4) & 0xf);
4988 *p++ = tohex (csum & 0xf);
4989
4990 /* Send it over and over until we get a positive ack. */
4991
4992 while (1)
4993 {
4994 int started_error_output = 0;
4995
4996 if (remote_debug)
4997 {
4998 *p = '\0';
4999 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
5000 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
5001 fprintf_unfiltered (gdb_stdlog, "...");
5002 gdb_flush (gdb_stdlog);
5003 }
5004 if (serial_write (remote_desc, buf2, p - buf2))
5005 perror_with_name (_("putpkt: write failed"));
5006
5007 /* If this is a no acks version of the remote protocol, send the
5008 packet and move on. */
5009 if (rs->noack_mode)
5010 break;
5011
5012 /* Read until either a timeout occurs (-2) or '+' is read. */
5013 while (1)
5014 {
5015 ch = readchar (remote_timeout);
5016
5017 if (remote_debug)
5018 {
5019 switch (ch)
5020 {
5021 case '+':
5022 case '-':
5023 case SERIAL_TIMEOUT:
5024 case '$':
5025 if (started_error_output)
5026 {
5027 putchar_unfiltered ('\n');
5028 started_error_output = 0;
5029 }
5030 }
5031 }
5032
5033 switch (ch)
5034 {
5035 case '+':
5036 if (remote_debug)
5037 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5038 return 1;
5039 case '-':
5040 if (remote_debug)
5041 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5042 case SERIAL_TIMEOUT:
5043 tcount++;
5044 if (tcount > 3)
5045 return 0;
5046 break; /* Retransmit buffer. */
5047 case '$':
5048 {
5049 if (remote_debug)
5050 fprintf_unfiltered (gdb_stdlog,
5051 "Packet instead of Ack, ignoring it\n");
5052 /* It's probably an old response sent because an ACK
5053 was lost. Gobble up the packet and ack it so it
5054 doesn't get retransmitted when we resend this
5055 packet. */
5056 skip_frame ();
5057 serial_write (remote_desc, "+", 1);
5058 continue; /* Now, go look for +. */
5059 }
5060 default:
5061 if (remote_debug)
5062 {
5063 if (!started_error_output)
5064 {
5065 started_error_output = 1;
5066 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
5067 }
5068 fputc_unfiltered (ch & 0177, gdb_stdlog);
5069 }
5070 continue;
5071 }
5072 break; /* Here to retransmit. */
5073 }
5074
5075 #if 0
5076 /* This is wrong. If doing a long backtrace, the user should be
5077 able to get out next time we call QUIT, without anything as
5078 violent as interrupt_query. If we want to provide a way out of
5079 here without getting to the next QUIT, it should be based on
5080 hitting ^C twice as in remote_wait. */
5081 if (quit_flag)
5082 {
5083 quit_flag = 0;
5084 interrupt_query ();
5085 }
5086 #endif
5087 }
5088 return 0;
5089 }
5090
5091 /* Come here after finding the start of a frame when we expected an
5092 ack. Do our best to discard the rest of this packet. */
5093
5094 static void
5095 skip_frame (void)
5096 {
5097 int c;
5098
5099 while (1)
5100 {
5101 c = readchar (remote_timeout);
5102 switch (c)
5103 {
5104 case SERIAL_TIMEOUT:
5105 /* Nothing we can do. */
5106 return;
5107 case '#':
5108 /* Discard the two bytes of checksum and stop. */
5109 c = readchar (remote_timeout);
5110 if (c >= 0)
5111 c = readchar (remote_timeout);
5112
5113 return;
5114 case '*': /* Run length encoding. */
5115 /* Discard the repeat count. */
5116 c = readchar (remote_timeout);
5117 if (c < 0)
5118 return;
5119 break;
5120 default:
5121 /* A regular character. */
5122 break;
5123 }
5124 }
5125 }
5126
5127 /* Come here after finding the start of the frame. Collect the rest
5128 into *BUF, verifying the checksum, length, and handling run-length
5129 compression. NUL terminate the buffer. If there is not enough room,
5130 expand *BUF using xrealloc.
5131
5132 Returns -1 on error, number of characters in buffer (ignoring the
5133 trailing NULL) on success. (could be extended to return one of the
5134 SERIAL status indications). */
5135
5136 static long
5137 read_frame (char **buf_p,
5138 long *sizeof_buf)
5139 {
5140 unsigned char csum;
5141 long bc;
5142 int c;
5143 char *buf = *buf_p;
5144 struct remote_state *rs = get_remote_state ();
5145
5146 csum = 0;
5147 bc = 0;
5148
5149 while (1)
5150 {
5151 c = readchar (remote_timeout);
5152 switch (c)
5153 {
5154 case SERIAL_TIMEOUT:
5155 if (remote_debug)
5156 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5157 return -1;
5158 case '$':
5159 if (remote_debug)
5160 fputs_filtered ("Saw new packet start in middle of old one\n",
5161 gdb_stdlog);
5162 return -1; /* Start a new packet, count retries. */
5163 case '#':
5164 {
5165 unsigned char pktcsum;
5166 int check_0 = 0;
5167 int check_1 = 0;
5168
5169 buf[bc] = '\0';
5170
5171 check_0 = readchar (remote_timeout);
5172 if (check_0 >= 0)
5173 check_1 = readchar (remote_timeout);
5174
5175 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5176 {
5177 if (remote_debug)
5178 fputs_filtered ("Timeout in checksum, retrying\n",
5179 gdb_stdlog);
5180 return -1;
5181 }
5182 else if (check_0 < 0 || check_1 < 0)
5183 {
5184 if (remote_debug)
5185 fputs_filtered ("Communication error in checksum\n",
5186 gdb_stdlog);
5187 return -1;
5188 }
5189
5190 /* Don't recompute the checksum; with no ack packets we
5191 don't have any way to indicate a packet retransmission
5192 is necessary. */
5193 if (rs->noack_mode)
5194 return bc;
5195
5196 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5197 if (csum == pktcsum)
5198 return bc;
5199
5200 if (remote_debug)
5201 {
5202 fprintf_filtered (gdb_stdlog,
5203 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5204 pktcsum, csum);
5205 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5206 fputs_filtered ("\n", gdb_stdlog);
5207 }
5208 /* Number of characters in buffer ignoring trailing
5209 NULL. */
5210 return -1;
5211 }
5212 case '*': /* Run length encoding. */
5213 {
5214 int repeat;
5215 csum += c;
5216
5217 c = readchar (remote_timeout);
5218 csum += c;
5219 repeat = c - ' ' + 3; /* Compute repeat count. */
5220
5221 /* The character before ``*'' is repeated. */
5222
5223 if (repeat > 0 && repeat <= 255 && bc > 0)
5224 {
5225 if (bc + repeat - 1 >= *sizeof_buf - 1)
5226 {
5227 /* Make some more room in the buffer. */
5228 *sizeof_buf += repeat;
5229 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5230 buf = *buf_p;
5231 }
5232
5233 memset (&buf[bc], buf[bc - 1], repeat);
5234 bc += repeat;
5235 continue;
5236 }
5237
5238 buf[bc] = '\0';
5239 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5240 return -1;
5241 }
5242 default:
5243 if (bc >= *sizeof_buf - 1)
5244 {
5245 /* Make some more room in the buffer. */
5246 *sizeof_buf *= 2;
5247 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5248 buf = *buf_p;
5249 }
5250
5251 buf[bc++] = c;
5252 csum += c;
5253 continue;
5254 }
5255 }
5256 }
5257
5258 /* Read a packet from the remote machine, with error checking, and
5259 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5260 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5261 rather than timing out; this is used (in synchronous mode) to wait
5262 for a target that is is executing user code to stop. */
5263 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5264 don't have to change all the calls to getpkt to deal with the
5265 return value, because at the moment I don't know what the right
5266 thing to do it for those. */
5267 void
5268 getpkt (char **buf,
5269 long *sizeof_buf,
5270 int forever)
5271 {
5272 int timed_out;
5273
5274 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5275 }
5276
5277
5278 /* Read a packet from the remote machine, with error checking, and
5279 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5280 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5281 rather than timing out; this is used (in synchronous mode) to wait
5282 for a target that is is executing user code to stop. If FOREVER ==
5283 0, this function is allowed to time out gracefully and return an
5284 indication of this to the caller. Otherwise return the number
5285 of bytes read. */
5286 static int
5287 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5288 {
5289 struct remote_state *rs = get_remote_state ();
5290 int c;
5291 int tries;
5292 int timeout;
5293 int val;
5294
5295 /* We're reading a new response. Make sure we don't look at a
5296 previously cached response. */
5297 rs->cached_wait_status = 0;
5298
5299 strcpy (*buf, "timeout");
5300
5301 if (forever)
5302 {
5303 timeout = watchdog > 0 ? watchdog : -1;
5304 }
5305
5306 else
5307 timeout = remote_timeout;
5308
5309 #define MAX_TRIES 3
5310
5311 for (tries = 1; tries <= MAX_TRIES; tries++)
5312 {
5313 /* This can loop forever if the remote side sends us characters
5314 continuously, but if it pauses, we'll get a zero from
5315 readchar because of timeout. Then we'll count that as a
5316 retry. */
5317
5318 /* Note that we will only wait forever prior to the start of a
5319 packet. After that, we expect characters to arrive at a
5320 brisk pace. They should show up within remote_timeout
5321 intervals. */
5322
5323 do
5324 {
5325 c = readchar (timeout);
5326
5327 if (c == SERIAL_TIMEOUT)
5328 {
5329 if (forever) /* Watchdog went off? Kill the target. */
5330 {
5331 QUIT;
5332 target_mourn_inferior ();
5333 error (_("Watchdog timeout has expired. Target detached."));
5334 }
5335 if (remote_debug)
5336 fputs_filtered ("Timed out.\n", gdb_stdlog);
5337 goto retry;
5338 }
5339 }
5340 while (c != '$');
5341
5342 /* We've found the start of a packet, now collect the data. */
5343
5344 val = read_frame (buf, sizeof_buf);
5345
5346 if (val >= 0)
5347 {
5348 if (remote_debug)
5349 {
5350 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5351 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5352 fprintf_unfiltered (gdb_stdlog, "\n");
5353 }
5354
5355 /* Skip the ack char if we're in no-ack mode. */
5356 if (!rs->noack_mode)
5357 serial_write (remote_desc, "+", 1);
5358 return val;
5359 }
5360
5361 /* Try the whole thing again. */
5362 retry:
5363 /* Skip the nack char if we're in no-ack mode. */
5364 if (!rs->noack_mode)
5365 serial_write (remote_desc, "-", 1);
5366 }
5367
5368 /* We have tried hard enough, and just can't receive the packet.
5369 Give up. */
5370
5371 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5372
5373 /* Skip the ack char if we're in no-ack mode. */
5374 if (!rs->noack_mode)
5375 serial_write (remote_desc, "+", 1);
5376 return -1;
5377 }
5378 \f
5379 static void
5380 remote_kill (void)
5381 {
5382 /* Unregister the file descriptor from the event loop. */
5383 if (target_is_async_p ())
5384 serial_async (remote_desc, NULL, 0);
5385
5386 /* Use catch_errors so the user can quit from gdb even when we
5387 aren't on speaking terms with the remote system. */
5388 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5389
5390 /* Don't wait for it to die. I'm not really sure it matters whether
5391 we do or not. For the existing stubs, kill is a noop. */
5392 target_mourn_inferior ();
5393 }
5394
5395 static int
5396 remote_vkill (int pid, struct remote_state *rs)
5397 {
5398 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
5399 return -1;
5400
5401 /* Tell the remote target to detach. */
5402 sprintf (rs->buf, "vKill;%x", pid);
5403 putpkt (rs->buf);
5404 getpkt (&rs->buf, &rs->buf_size, 0);
5405
5406 if (packet_ok (rs->buf,
5407 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
5408 return 0;
5409 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
5410 return -1;
5411 else
5412 return 1;
5413 }
5414
5415 static void
5416 extended_remote_kill (void)
5417 {
5418 int res;
5419 int pid = ptid_get_pid (inferior_ptid);
5420 struct remote_state *rs = get_remote_state ();
5421
5422 res = remote_vkill (pid, rs);
5423 if (res == -1 && !remote_multi_process_p (rs))
5424 {
5425 /* Don't try 'k' on a multi-process aware stub -- it has no way
5426 to specify the pid. */
5427
5428 putpkt ("k");
5429 #if 0
5430 getpkt (&rs->buf, &rs->buf_size, 0);
5431 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
5432 res = 1;
5433 #else
5434 /* Don't wait for it to die. I'm not really sure it matters whether
5435 we do or not. For the existing stubs, kill is a noop. */
5436 res = 0;
5437 #endif
5438 }
5439
5440 if (res != 0)
5441 error (_("Can't kill process"));
5442
5443 delete_inferior (pid);
5444 target_mourn_inferior ();
5445 }
5446
5447 static void
5448 remote_mourn (void)
5449 {
5450 remote_mourn_1 (&remote_ops);
5451 }
5452
5453 /* Worker function for remote_mourn. */
5454 static void
5455 remote_mourn_1 (struct target_ops *target)
5456 {
5457 /* Get rid of all the inferiors and their threads we were
5458 controlling. */
5459 discard_all_inferiors ();
5460
5461 unpush_target (target);
5462 generic_mourn_inferior ();
5463 }
5464
5465 static int
5466 select_new_thread_callback (struct thread_info *th, void* data)
5467 {
5468 if (!ptid_equal (th->ptid, minus_one_ptid))
5469 {
5470 switch_to_thread (th->ptid);
5471 printf_filtered (_("[Switching to %s]\n"),
5472 target_pid_to_str (inferior_ptid));
5473 return 1;
5474 }
5475 return 0;
5476 }
5477
5478 static void
5479 extended_remote_mourn_1 (struct target_ops *target)
5480 {
5481 struct remote_state *rs = get_remote_state ();
5482
5483 /* Unlike "target remote", we do not want to unpush the target; then
5484 the next time the user says "run", we won't be connected. */
5485
5486 if (have_inferiors ())
5487 {
5488 extern void nullify_last_target_wait_ptid ();
5489 /* Multi-process case. The current process has exited, but
5490 there are other processes to debug. Switch to the first
5491 available. */
5492 iterate_over_threads (select_new_thread_callback, NULL);
5493 nullify_last_target_wait_ptid ();
5494 }
5495 else
5496 {
5497 struct remote_state *rs = get_remote_state ();
5498
5499 /* Call common code to mark the inferior as not running. */
5500 generic_mourn_inferior ();
5501 if (!remote_multi_process_p (rs))
5502 {
5503 /* Check whether the target is running now - some remote stubs
5504 automatically restart after kill. */
5505 putpkt ("?");
5506 getpkt (&rs->buf, &rs->buf_size, 0);
5507
5508 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5509 {
5510 /* Assume that the target has been restarted. Set inferior_ptid
5511 so that bits of core GDB realizes there's something here, e.g.,
5512 so that the user can say "kill" again. */
5513 inferior_ptid = magic_null_ptid;
5514 }
5515 else
5516 {
5517 /* Mark this (still pushed) target as not executable until we
5518 restart it. */
5519 target_mark_exited (target);
5520 }
5521 }
5522 else
5523 /* Always remove execution if this was the last process. */
5524 target_mark_exited (target);
5525 }
5526 }
5527
5528 static void
5529 extended_remote_mourn (void)
5530 {
5531 extended_remote_mourn_1 (&extended_remote_ops);
5532 }
5533
5534 static int
5535 extended_remote_run (char *args)
5536 {
5537 struct remote_state *rs = get_remote_state ();
5538 char *p;
5539 int len;
5540
5541 /* If the user has disabled vRun support, or we have detected that
5542 support is not available, do not try it. */
5543 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5544 return -1;
5545
5546 strcpy (rs->buf, "vRun;");
5547 len = strlen (rs->buf);
5548
5549 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5550 error (_("Remote file name too long for run packet"));
5551 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5552
5553 gdb_assert (args != NULL);
5554 if (*args)
5555 {
5556 struct cleanup *back_to;
5557 int i;
5558 char **argv;
5559
5560 argv = gdb_buildargv (args);
5561 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5562 for (i = 0; argv[i] != NULL; i++)
5563 {
5564 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5565 error (_("Argument list too long for run packet"));
5566 rs->buf[len++] = ';';
5567 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5568 }
5569 do_cleanups (back_to);
5570 }
5571
5572 rs->buf[len++] = '\0';
5573
5574 putpkt (rs->buf);
5575 getpkt (&rs->buf, &rs->buf_size, 0);
5576
5577 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5578 {
5579 /* We have a wait response; we don't need it, though. All is well. */
5580 return 0;
5581 }
5582 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5583 /* It wasn't disabled before, but it is now. */
5584 return -1;
5585 else
5586 {
5587 if (remote_exec_file[0] == '\0')
5588 error (_("Running the default executable on the remote target failed; "
5589 "try \"set remote exec-file\"?"));
5590 else
5591 error (_("Running \"%s\" on the remote target failed"),
5592 remote_exec_file);
5593 }
5594 }
5595
5596 /* In the extended protocol we want to be able to do things like
5597 "run" and have them basically work as expected. So we need
5598 a special create_inferior function. We support changing the
5599 executable file and the command line arguments, but not the
5600 environment. */
5601
5602 static void
5603 extended_remote_create_inferior_1 (char *exec_file, char *args,
5604 char **env, int from_tty)
5605 {
5606 /* If running asynchronously, register the target file descriptor
5607 with the event loop. */
5608 if (target_can_async_p ())
5609 target_async (inferior_event_handler, 0);
5610
5611 /* Now restart the remote server. */
5612 if (extended_remote_run (args) == -1)
5613 {
5614 /* vRun was not supported. Fail if we need it to do what the
5615 user requested. */
5616 if (remote_exec_file[0])
5617 error (_("Remote target does not support \"set remote exec-file\""));
5618 if (args[0])
5619 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5620
5621 /* Fall back to "R". */
5622 extended_remote_restart ();
5623 }
5624
5625 /* Clean up from the last time we ran, before we mark the target
5626 running again. This will mark breakpoints uninserted, and
5627 get_offsets may insert breakpoints. */
5628 init_thread_list ();
5629 init_wait_for_inferior ();
5630
5631 /* Now mark the inferior as running before we do anything else. */
5632 inferior_ptid = magic_null_ptid;
5633
5634 add_inferior (ptid_get_pid (inferior_ptid));
5635 add_thread_silent (inferior_ptid);
5636
5637 target_mark_running (&extended_remote_ops);
5638
5639 /* Get updated offsets, if the stub uses qOffsets. */
5640 get_offsets ();
5641 }
5642
5643 static void
5644 extended_remote_create_inferior (char *exec_file, char *args,
5645 char **env, int from_tty)
5646 {
5647 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5648 }
5649 \f
5650
5651 /* Insert a breakpoint. On targets that have software breakpoint
5652 support, we ask the remote target to do the work; on targets
5653 which don't, we insert a traditional memory breakpoint. */
5654
5655 static int
5656 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5657 {
5658 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5659 If it succeeds, then set the support to PACKET_ENABLE. If it
5660 fails, and the user has explicitly requested the Z support then
5661 report an error, otherwise, mark it disabled and go on. */
5662
5663 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5664 {
5665 CORE_ADDR addr = bp_tgt->placed_address;
5666 struct remote_state *rs;
5667 char *p;
5668 int bpsize;
5669
5670 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
5671
5672 rs = get_remote_state ();
5673 p = rs->buf;
5674
5675 *(p++) = 'Z';
5676 *(p++) = '0';
5677 *(p++) = ',';
5678 addr = (ULONGEST) remote_address_masked (addr);
5679 p += hexnumstr (p, addr);
5680 sprintf (p, ",%d", bpsize);
5681
5682 putpkt (rs->buf);
5683 getpkt (&rs->buf, &rs->buf_size, 0);
5684
5685 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5686 {
5687 case PACKET_ERROR:
5688 return -1;
5689 case PACKET_OK:
5690 bp_tgt->placed_address = addr;
5691 bp_tgt->placed_size = bpsize;
5692 return 0;
5693 case PACKET_UNKNOWN:
5694 break;
5695 }
5696 }
5697
5698 return memory_insert_breakpoint (bp_tgt);
5699 }
5700
5701 static int
5702 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5703 {
5704 CORE_ADDR addr = bp_tgt->placed_address;
5705 struct remote_state *rs = get_remote_state ();
5706 int bp_size;
5707
5708 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5709 {
5710 char *p = rs->buf;
5711
5712 *(p++) = 'z';
5713 *(p++) = '0';
5714 *(p++) = ',';
5715
5716 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5717 p += hexnumstr (p, addr);
5718 sprintf (p, ",%d", bp_tgt->placed_size);
5719
5720 putpkt (rs->buf);
5721 getpkt (&rs->buf, &rs->buf_size, 0);
5722
5723 return (rs->buf[0] == 'E');
5724 }
5725
5726 return memory_remove_breakpoint (bp_tgt);
5727 }
5728
5729 static int
5730 watchpoint_to_Z_packet (int type)
5731 {
5732 switch (type)
5733 {
5734 case hw_write:
5735 return Z_PACKET_WRITE_WP;
5736 break;
5737 case hw_read:
5738 return Z_PACKET_READ_WP;
5739 break;
5740 case hw_access:
5741 return Z_PACKET_ACCESS_WP;
5742 break;
5743 default:
5744 internal_error (__FILE__, __LINE__,
5745 _("hw_bp_to_z: bad watchpoint type %d"), type);
5746 }
5747 }
5748
5749 static int
5750 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5751 {
5752 struct remote_state *rs = get_remote_state ();
5753 char *p;
5754 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5755
5756 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5757 return -1;
5758
5759 sprintf (rs->buf, "Z%x,", packet);
5760 p = strchr (rs->buf, '\0');
5761 addr = remote_address_masked (addr);
5762 p += hexnumstr (p, (ULONGEST) addr);
5763 sprintf (p, ",%x", len);
5764
5765 putpkt (rs->buf);
5766 getpkt (&rs->buf, &rs->buf_size, 0);
5767
5768 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5769 {
5770 case PACKET_ERROR:
5771 case PACKET_UNKNOWN:
5772 return -1;
5773 case PACKET_OK:
5774 return 0;
5775 }
5776 internal_error (__FILE__, __LINE__,
5777 _("remote_insert_watchpoint: reached end of function"));
5778 }
5779
5780
5781 static int
5782 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5783 {
5784 struct remote_state *rs = get_remote_state ();
5785 char *p;
5786 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5787
5788 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5789 return -1;
5790
5791 sprintf (rs->buf, "z%x,", packet);
5792 p = strchr (rs->buf, '\0');
5793 addr = remote_address_masked (addr);
5794 p += hexnumstr (p, (ULONGEST) addr);
5795 sprintf (p, ",%x", len);
5796 putpkt (rs->buf);
5797 getpkt (&rs->buf, &rs->buf_size, 0);
5798
5799 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5800 {
5801 case PACKET_ERROR:
5802 case PACKET_UNKNOWN:
5803 return -1;
5804 case PACKET_OK:
5805 return 0;
5806 }
5807 internal_error (__FILE__, __LINE__,
5808 _("remote_remove_watchpoint: reached end of function"));
5809 }
5810
5811
5812 int remote_hw_watchpoint_limit = -1;
5813 int remote_hw_breakpoint_limit = -1;
5814
5815 static int
5816 remote_check_watch_resources (int type, int cnt, int ot)
5817 {
5818 if (type == bp_hardware_breakpoint)
5819 {
5820 if (remote_hw_breakpoint_limit == 0)
5821 return 0;
5822 else if (remote_hw_breakpoint_limit < 0)
5823 return 1;
5824 else if (cnt <= remote_hw_breakpoint_limit)
5825 return 1;
5826 }
5827 else
5828 {
5829 if (remote_hw_watchpoint_limit == 0)
5830 return 0;
5831 else if (remote_hw_watchpoint_limit < 0)
5832 return 1;
5833 else if (ot)
5834 return -1;
5835 else if (cnt <= remote_hw_watchpoint_limit)
5836 return 1;
5837 }
5838 return -1;
5839 }
5840
5841 static int
5842 remote_stopped_by_watchpoint (void)
5843 {
5844 return remote_stopped_by_watchpoint_p;
5845 }
5846
5847 static int
5848 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5849 {
5850 int rc = 0;
5851 if (remote_stopped_by_watchpoint ())
5852 {
5853 *addr_p = remote_watch_data_address;
5854 rc = 1;
5855 }
5856
5857 return rc;
5858 }
5859
5860
5861 static int
5862 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5863 {
5864 CORE_ADDR addr;
5865 struct remote_state *rs;
5866 char *p;
5867
5868 /* The length field should be set to the size of a breakpoint
5869 instruction, even though we aren't inserting one ourselves. */
5870
5871 gdbarch_breakpoint_from_pc
5872 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5873
5874 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5875 return -1;
5876
5877 rs = get_remote_state ();
5878 p = rs->buf;
5879
5880 *(p++) = 'Z';
5881 *(p++) = '1';
5882 *(p++) = ',';
5883
5884 addr = remote_address_masked (bp_tgt->placed_address);
5885 p += hexnumstr (p, (ULONGEST) addr);
5886 sprintf (p, ",%x", bp_tgt->placed_size);
5887
5888 putpkt (rs->buf);
5889 getpkt (&rs->buf, &rs->buf_size, 0);
5890
5891 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5892 {
5893 case PACKET_ERROR:
5894 case PACKET_UNKNOWN:
5895 return -1;
5896 case PACKET_OK:
5897 return 0;
5898 }
5899 internal_error (__FILE__, __LINE__,
5900 _("remote_insert_hw_breakpoint: reached end of function"));
5901 }
5902
5903
5904 static int
5905 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5906 {
5907 CORE_ADDR addr;
5908 struct remote_state *rs = get_remote_state ();
5909 char *p = rs->buf;
5910
5911 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5912 return -1;
5913
5914 *(p++) = 'z';
5915 *(p++) = '1';
5916 *(p++) = ',';
5917
5918 addr = remote_address_masked (bp_tgt->placed_address);
5919 p += hexnumstr (p, (ULONGEST) addr);
5920 sprintf (p, ",%x", bp_tgt->placed_size);
5921
5922 putpkt (rs->buf);
5923 getpkt (&rs->buf, &rs->buf_size, 0);
5924
5925 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5926 {
5927 case PACKET_ERROR:
5928 case PACKET_UNKNOWN:
5929 return -1;
5930 case PACKET_OK:
5931 return 0;
5932 }
5933 internal_error (__FILE__, __LINE__,
5934 _("remote_remove_hw_breakpoint: reached end of function"));
5935 }
5936
5937 /* Some targets are only capable of doing downloads, and afterwards
5938 they switch to the remote serial protocol. This function provides
5939 a clean way to get from the download target to the remote target.
5940 It's basically just a wrapper so that we don't have to expose any
5941 of the internal workings of remote.c.
5942
5943 Prior to calling this routine, you should shutdown the current
5944 target code, else you will get the "A program is being debugged
5945 already..." message. Usually a call to pop_target() suffices. */
5946
5947 void
5948 push_remote_target (char *name, int from_tty)
5949 {
5950 printf_filtered (_("Switching to remote protocol\n"));
5951 remote_open (name, from_tty);
5952 }
5953
5954 /* Table used by the crc32 function to calcuate the checksum. */
5955
5956 static unsigned long crc32_table[256] =
5957 {0, 0};
5958
5959 static unsigned long
5960 crc32 (unsigned char *buf, int len, unsigned int crc)
5961 {
5962 if (!crc32_table[1])
5963 {
5964 /* Initialize the CRC table and the decoding table. */
5965 int i, j;
5966 unsigned int c;
5967
5968 for (i = 0; i < 256; i++)
5969 {
5970 for (c = i << 24, j = 8; j > 0; --j)
5971 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5972 crc32_table[i] = c;
5973 }
5974 }
5975
5976 while (len--)
5977 {
5978 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5979 buf++;
5980 }
5981 return crc;
5982 }
5983
5984 /* compare-sections command
5985
5986 With no arguments, compares each loadable section in the exec bfd
5987 with the same memory range on the target, and reports mismatches.
5988 Useful for verifying the image on the target against the exec file.
5989 Depends on the target understanding the new "qCRC:" request. */
5990
5991 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5992 target method (target verify memory) and generic version of the
5993 actual command. This will allow other high-level code (especially
5994 generic_load()) to make use of this target functionality. */
5995
5996 static void
5997 compare_sections_command (char *args, int from_tty)
5998 {
5999 struct remote_state *rs = get_remote_state ();
6000 asection *s;
6001 unsigned long host_crc, target_crc;
6002 extern bfd *exec_bfd;
6003 struct cleanup *old_chain;
6004 char *tmp;
6005 char *sectdata;
6006 const char *sectname;
6007 bfd_size_type size;
6008 bfd_vma lma;
6009 int matched = 0;
6010 int mismatched = 0;
6011
6012 if (!exec_bfd)
6013 error (_("command cannot be used without an exec file"));
6014 if (!current_target.to_shortname ||
6015 strcmp (current_target.to_shortname, "remote") != 0)
6016 error (_("command can only be used with remote target"));
6017
6018 for (s = exec_bfd->sections; s; s = s->next)
6019 {
6020 if (!(s->flags & SEC_LOAD))
6021 continue; /* skip non-loadable section */
6022
6023 size = bfd_get_section_size (s);
6024 if (size == 0)
6025 continue; /* skip zero-length section */
6026
6027 sectname = bfd_get_section_name (exec_bfd, s);
6028 if (args && strcmp (args, sectname) != 0)
6029 continue; /* not the section selected by user */
6030
6031 matched = 1; /* do this section */
6032 lma = s->lma;
6033 /* FIXME: assumes lma can fit into long. */
6034 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
6035 (long) lma, (long) size);
6036 putpkt (rs->buf);
6037
6038 /* Be clever; compute the host_crc before waiting for target
6039 reply. */
6040 sectdata = xmalloc (size);
6041 old_chain = make_cleanup (xfree, sectdata);
6042 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
6043 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
6044
6045 getpkt (&rs->buf, &rs->buf_size, 0);
6046 if (rs->buf[0] == 'E')
6047 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
6048 sectname, paddr (lma), paddr (lma + size));
6049 if (rs->buf[0] != 'C')
6050 error (_("remote target does not support this operation"));
6051
6052 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
6053 target_crc = target_crc * 16 + fromhex (*tmp);
6054
6055 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
6056 sectname, paddr (lma), paddr (lma + size));
6057 if (host_crc == target_crc)
6058 printf_filtered ("matched.\n");
6059 else
6060 {
6061 printf_filtered ("MIS-MATCHED!\n");
6062 mismatched++;
6063 }
6064
6065 do_cleanups (old_chain);
6066 }
6067 if (mismatched > 0)
6068 warning (_("One or more sections of the remote executable does not match\n\
6069 the loaded file\n"));
6070 if (args && !matched)
6071 printf_filtered (_("No loaded section named '%s'.\n"), args);
6072 }
6073
6074 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
6075 into remote target. The number of bytes written to the remote
6076 target is returned, or -1 for error. */
6077
6078 static LONGEST
6079 remote_write_qxfer (struct target_ops *ops, const char *object_name,
6080 const char *annex, const gdb_byte *writebuf,
6081 ULONGEST offset, LONGEST len,
6082 struct packet_config *packet)
6083 {
6084 int i, buf_len;
6085 ULONGEST n;
6086 gdb_byte *wbuf;
6087 struct remote_state *rs = get_remote_state ();
6088 int max_size = get_memory_write_packet_size ();
6089
6090 if (packet->support == PACKET_DISABLE)
6091 return -1;
6092
6093 /* Insert header. */
6094 i = snprintf (rs->buf, max_size,
6095 "qXfer:%s:write:%s:%s:",
6096 object_name, annex ? annex : "",
6097 phex_nz (offset, sizeof offset));
6098 max_size -= (i + 1);
6099
6100 /* Escape as much data as fits into rs->buf. */
6101 buf_len = remote_escape_output
6102 (writebuf, len, (rs->buf + i), &max_size, max_size);
6103
6104 if (putpkt_binary (rs->buf, i + buf_len) < 0
6105 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6106 || packet_ok (rs->buf, packet) != PACKET_OK)
6107 return -1;
6108
6109 unpack_varlen_hex (rs->buf, &n);
6110 return n;
6111 }
6112
6113 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
6114 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
6115 number of bytes read is returned, or 0 for EOF, or -1 for error.
6116 The number of bytes read may be less than LEN without indicating an
6117 EOF. PACKET is checked and updated to indicate whether the remote
6118 target supports this object. */
6119
6120 static LONGEST
6121 remote_read_qxfer (struct target_ops *ops, const char *object_name,
6122 const char *annex,
6123 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
6124 struct packet_config *packet)
6125 {
6126 static char *finished_object;
6127 static char *finished_annex;
6128 static ULONGEST finished_offset;
6129
6130 struct remote_state *rs = get_remote_state ();
6131 unsigned int total = 0;
6132 LONGEST i, n, packet_len;
6133
6134 if (packet->support == PACKET_DISABLE)
6135 return -1;
6136
6137 /* Check whether we've cached an end-of-object packet that matches
6138 this request. */
6139 if (finished_object)
6140 {
6141 if (strcmp (object_name, finished_object) == 0
6142 && strcmp (annex ? annex : "", finished_annex) == 0
6143 && offset == finished_offset)
6144 return 0;
6145
6146 /* Otherwise, we're now reading something different. Discard
6147 the cache. */
6148 xfree (finished_object);
6149 xfree (finished_annex);
6150 finished_object = NULL;
6151 finished_annex = NULL;
6152 }
6153
6154 /* Request only enough to fit in a single packet. The actual data
6155 may not, since we don't know how much of it will need to be escaped;
6156 the target is free to respond with slightly less data. We subtract
6157 five to account for the response type and the protocol frame. */
6158 n = min (get_remote_packet_size () - 5, len);
6159 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6160 object_name, annex ? annex : "",
6161 phex_nz (offset, sizeof offset),
6162 phex_nz (n, sizeof n));
6163 i = putpkt (rs->buf);
6164 if (i < 0)
6165 return -1;
6166
6167 rs->buf[0] = '\0';
6168 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6169 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6170 return -1;
6171
6172 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6173 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6174
6175 /* 'm' means there is (or at least might be) more data after this
6176 batch. That does not make sense unless there's at least one byte
6177 of data in this reply. */
6178 if (rs->buf[0] == 'm' && packet_len == 1)
6179 error (_("Remote qXfer reply contained no data."));
6180
6181 /* Got some data. */
6182 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6183
6184 /* 'l' is an EOF marker, possibly including a final block of data,
6185 or possibly empty. If we have the final block of a non-empty
6186 object, record this fact to bypass a subsequent partial read. */
6187 if (rs->buf[0] == 'l' && offset + i > 0)
6188 {
6189 finished_object = xstrdup (object_name);
6190 finished_annex = xstrdup (annex ? annex : "");
6191 finished_offset = offset + i;
6192 }
6193
6194 return i;
6195 }
6196
6197 static LONGEST
6198 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6199 const char *annex, gdb_byte *readbuf,
6200 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6201 {
6202 struct remote_state *rs;
6203 int i;
6204 char *p2;
6205 char query_type;
6206
6207 set_general_thread (inferior_ptid);
6208
6209 rs = get_remote_state ();
6210
6211 /* Handle memory using the standard memory routines. */
6212 if (object == TARGET_OBJECT_MEMORY)
6213 {
6214 int xfered;
6215 errno = 0;
6216
6217 /* If the remote target is connected but not running, we should
6218 pass this request down to a lower stratum (e.g. the executable
6219 file). */
6220 if (!target_has_execution)
6221 return 0;
6222
6223 if (writebuf != NULL)
6224 xfered = remote_write_bytes (offset, writebuf, len);
6225 else
6226 xfered = remote_read_bytes (offset, readbuf, len);
6227
6228 if (xfered > 0)
6229 return xfered;
6230 else if (xfered == 0 && errno == 0)
6231 return 0;
6232 else
6233 return -1;
6234 }
6235
6236 /* Handle SPU memory using qxfer packets. */
6237 if (object == TARGET_OBJECT_SPU)
6238 {
6239 if (readbuf)
6240 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6241 &remote_protocol_packets
6242 [PACKET_qXfer_spu_read]);
6243 else
6244 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6245 &remote_protocol_packets
6246 [PACKET_qXfer_spu_write]);
6247 }
6248
6249 /* Only handle flash writes. */
6250 if (writebuf != NULL)
6251 {
6252 LONGEST xfered;
6253
6254 switch (object)
6255 {
6256 case TARGET_OBJECT_FLASH:
6257 xfered = remote_flash_write (ops, offset, len, writebuf);
6258
6259 if (xfered > 0)
6260 return xfered;
6261 else if (xfered == 0 && errno == 0)
6262 return 0;
6263 else
6264 return -1;
6265
6266 default:
6267 return -1;
6268 }
6269 }
6270
6271 /* Map pre-existing objects onto letters. DO NOT do this for new
6272 objects!!! Instead specify new query packets. */
6273 switch (object)
6274 {
6275 case TARGET_OBJECT_AVR:
6276 query_type = 'R';
6277 break;
6278
6279 case TARGET_OBJECT_AUXV:
6280 gdb_assert (annex == NULL);
6281 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6282 &remote_protocol_packets[PACKET_qXfer_auxv]);
6283
6284 case TARGET_OBJECT_AVAILABLE_FEATURES:
6285 return remote_read_qxfer
6286 (ops, "features", annex, readbuf, offset, len,
6287 &remote_protocol_packets[PACKET_qXfer_features]);
6288
6289 case TARGET_OBJECT_LIBRARIES:
6290 return remote_read_qxfer
6291 (ops, "libraries", annex, readbuf, offset, len,
6292 &remote_protocol_packets[PACKET_qXfer_libraries]);
6293
6294 case TARGET_OBJECT_MEMORY_MAP:
6295 gdb_assert (annex == NULL);
6296 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6297 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6298
6299 default:
6300 return -1;
6301 }
6302
6303 /* Note: a zero OFFSET and LEN can be used to query the minimum
6304 buffer size. */
6305 if (offset == 0 && len == 0)
6306 return (get_remote_packet_size ());
6307 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6308 large enough let the caller deal with it. */
6309 if (len < get_remote_packet_size ())
6310 return -1;
6311 len = get_remote_packet_size ();
6312
6313 /* Except for querying the minimum buffer size, target must be open. */
6314 if (!remote_desc)
6315 error (_("remote query is only available after target open"));
6316
6317 gdb_assert (annex != NULL);
6318 gdb_assert (readbuf != NULL);
6319
6320 p2 = rs->buf;
6321 *p2++ = 'q';
6322 *p2++ = query_type;
6323
6324 /* We used one buffer char for the remote protocol q command and
6325 another for the query type. As the remote protocol encapsulation
6326 uses 4 chars plus one extra in case we are debugging
6327 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6328 string. */
6329 i = 0;
6330 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6331 {
6332 /* Bad caller may have sent forbidden characters. */
6333 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6334 *p2++ = annex[i];
6335 i++;
6336 }
6337 *p2 = '\0';
6338 gdb_assert (annex[i] == '\0');
6339
6340 i = putpkt (rs->buf);
6341 if (i < 0)
6342 return i;
6343
6344 getpkt (&rs->buf, &rs->buf_size, 0);
6345 strcpy ((char *) readbuf, rs->buf);
6346
6347 return strlen ((char *) readbuf);
6348 }
6349
6350 static int
6351 remote_search_memory (struct target_ops* ops,
6352 CORE_ADDR start_addr, ULONGEST search_space_len,
6353 const gdb_byte *pattern, ULONGEST pattern_len,
6354 CORE_ADDR *found_addrp)
6355 {
6356 struct remote_state *rs = get_remote_state ();
6357 int max_size = get_memory_write_packet_size ();
6358 struct packet_config *packet =
6359 &remote_protocol_packets[PACKET_qSearch_memory];
6360 /* number of packet bytes used to encode the pattern,
6361 this could be more than PATTERN_LEN due to escape characters */
6362 int escaped_pattern_len;
6363 /* amount of pattern that was encodable in the packet */
6364 int used_pattern_len;
6365 int i;
6366 int found;
6367 ULONGEST found_addr;
6368
6369 /* Don't go to the target if we don't have to.
6370 This is done before checking packet->support to avoid the possibility that
6371 a success for this edge case means the facility works in general. */
6372 if (pattern_len > search_space_len)
6373 return 0;
6374 if (pattern_len == 0)
6375 {
6376 *found_addrp = start_addr;
6377 return 1;
6378 }
6379
6380 /* If we already know the packet isn't supported, fall back to the simple
6381 way of searching memory. */
6382
6383 if (packet->support == PACKET_DISABLE)
6384 {
6385 /* Target doesn't provided special support, fall back and use the
6386 standard support (copy memory and do the search here). */
6387 return simple_search_memory (ops, start_addr, search_space_len,
6388 pattern, pattern_len, found_addrp);
6389 }
6390
6391 /* Insert header. */
6392 i = snprintf (rs->buf, max_size,
6393 "qSearch:memory:%s;%s;",
6394 paddr_nz (start_addr),
6395 phex_nz (search_space_len, sizeof (search_space_len)));
6396 max_size -= (i + 1);
6397
6398 /* Escape as much data as fits into rs->buf. */
6399 escaped_pattern_len =
6400 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6401 &used_pattern_len, max_size);
6402
6403 /* Bail if the pattern is too large. */
6404 if (used_pattern_len != pattern_len)
6405 error ("Pattern is too large to transmit to remote target.");
6406
6407 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6408 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6409 || packet_ok (rs->buf, packet) != PACKET_OK)
6410 {
6411 /* The request may not have worked because the command is not
6412 supported. If so, fall back to the simple way. */
6413 if (packet->support == PACKET_DISABLE)
6414 {
6415 return simple_search_memory (ops, start_addr, search_space_len,
6416 pattern, pattern_len, found_addrp);
6417 }
6418 return -1;
6419 }
6420
6421 if (rs->buf[0] == '0')
6422 found = 0;
6423 else if (rs->buf[0] == '1')
6424 {
6425 found = 1;
6426 if (rs->buf[1] != ',')
6427 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6428 unpack_varlen_hex (rs->buf + 2, &found_addr);
6429 *found_addrp = found_addr;
6430 }
6431 else
6432 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6433
6434 return found;
6435 }
6436
6437 static void
6438 remote_rcmd (char *command,
6439 struct ui_file *outbuf)
6440 {
6441 struct remote_state *rs = get_remote_state ();
6442 char *p = rs->buf;
6443
6444 if (!remote_desc)
6445 error (_("remote rcmd is only available after target open"));
6446
6447 /* Send a NULL command across as an empty command. */
6448 if (command == NULL)
6449 command = "";
6450
6451 /* The query prefix. */
6452 strcpy (rs->buf, "qRcmd,");
6453 p = strchr (rs->buf, '\0');
6454
6455 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6456 error (_("\"monitor\" command ``%s'' is too long."), command);
6457
6458 /* Encode the actual command. */
6459 bin2hex ((gdb_byte *) command, p, 0);
6460
6461 if (putpkt (rs->buf) < 0)
6462 error (_("Communication problem with target."));
6463
6464 /* get/display the response */
6465 while (1)
6466 {
6467 char *buf;
6468
6469 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6470 rs->buf[0] = '\0';
6471 getpkt (&rs->buf, &rs->buf_size, 0);
6472 buf = rs->buf;
6473 if (buf[0] == '\0')
6474 error (_("Target does not support this command."));
6475 if (buf[0] == 'O' && buf[1] != 'K')
6476 {
6477 remote_console_output (buf + 1); /* 'O' message from stub. */
6478 continue;
6479 }
6480 if (strcmp (buf, "OK") == 0)
6481 break;
6482 if (strlen (buf) == 3 && buf[0] == 'E'
6483 && isdigit (buf[1]) && isdigit (buf[2]))
6484 {
6485 error (_("Protocol error with Rcmd"));
6486 }
6487 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6488 {
6489 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6490 fputc_unfiltered (c, outbuf);
6491 }
6492 break;
6493 }
6494 }
6495
6496 static VEC(mem_region_s) *
6497 remote_memory_map (struct target_ops *ops)
6498 {
6499 VEC(mem_region_s) *result = NULL;
6500 char *text = target_read_stralloc (&current_target,
6501 TARGET_OBJECT_MEMORY_MAP, NULL);
6502
6503 if (text)
6504 {
6505 struct cleanup *back_to = make_cleanup (xfree, text);
6506 result = parse_memory_map (text);
6507 do_cleanups (back_to);
6508 }
6509
6510 return result;
6511 }
6512
6513 static void
6514 packet_command (char *args, int from_tty)
6515 {
6516 struct remote_state *rs = get_remote_state ();
6517
6518 if (!remote_desc)
6519 error (_("command can only be used with remote target"));
6520
6521 if (!args)
6522 error (_("remote-packet command requires packet text as argument"));
6523
6524 puts_filtered ("sending: ");
6525 print_packet (args);
6526 puts_filtered ("\n");
6527 putpkt (args);
6528
6529 getpkt (&rs->buf, &rs->buf_size, 0);
6530 puts_filtered ("received: ");
6531 print_packet (rs->buf);
6532 puts_filtered ("\n");
6533 }
6534
6535 #if 0
6536 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6537
6538 static void display_thread_info (struct gdb_ext_thread_info *info);
6539
6540 static void threadset_test_cmd (char *cmd, int tty);
6541
6542 static void threadalive_test (char *cmd, int tty);
6543
6544 static void threadlist_test_cmd (char *cmd, int tty);
6545
6546 int get_and_display_threadinfo (threadref *ref);
6547
6548 static void threadinfo_test_cmd (char *cmd, int tty);
6549
6550 static int thread_display_step (threadref *ref, void *context);
6551
6552 static void threadlist_update_test_cmd (char *cmd, int tty);
6553
6554 static void init_remote_threadtests (void);
6555
6556 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6557
6558 static void
6559 threadset_test_cmd (char *cmd, int tty)
6560 {
6561 int sample_thread = SAMPLE_THREAD;
6562
6563 printf_filtered (_("Remote threadset test\n"));
6564 set_general_thread (sample_thread);
6565 }
6566
6567
6568 static void
6569 threadalive_test (char *cmd, int tty)
6570 {
6571 int sample_thread = SAMPLE_THREAD;
6572 int pid = ptid_get_pid (inferior_ptid);
6573 ptid_t ptid = ptid_build (pid, 0, sample_thread);
6574
6575 if (remote_thread_alive (ptid))
6576 printf_filtered ("PASS: Thread alive test\n");
6577 else
6578 printf_filtered ("FAIL: Thread alive test\n");
6579 }
6580
6581 void output_threadid (char *title, threadref *ref);
6582
6583 void
6584 output_threadid (char *title, threadref *ref)
6585 {
6586 char hexid[20];
6587
6588 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6589 hexid[16] = 0;
6590 printf_filtered ("%s %s\n", title, (&hexid[0]));
6591 }
6592
6593 static void
6594 threadlist_test_cmd (char *cmd, int tty)
6595 {
6596 int startflag = 1;
6597 threadref nextthread;
6598 int done, result_count;
6599 threadref threadlist[3];
6600
6601 printf_filtered ("Remote Threadlist test\n");
6602 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6603 &result_count, &threadlist[0]))
6604 printf_filtered ("FAIL: threadlist test\n");
6605 else
6606 {
6607 threadref *scan = threadlist;
6608 threadref *limit = scan + result_count;
6609
6610 while (scan < limit)
6611 output_threadid (" thread ", scan++);
6612 }
6613 }
6614
6615 void
6616 display_thread_info (struct gdb_ext_thread_info *info)
6617 {
6618 output_threadid ("Threadid: ", &info->threadid);
6619 printf_filtered ("Name: %s\n ", info->shortname);
6620 printf_filtered ("State: %s\n", info->display);
6621 printf_filtered ("other: %s\n\n", info->more_display);
6622 }
6623
6624 int
6625 get_and_display_threadinfo (threadref *ref)
6626 {
6627 int result;
6628 int set;
6629 struct gdb_ext_thread_info threadinfo;
6630
6631 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6632 | TAG_MOREDISPLAY | TAG_DISPLAY;
6633 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6634 display_thread_info (&threadinfo);
6635 return result;
6636 }
6637
6638 static void
6639 threadinfo_test_cmd (char *cmd, int tty)
6640 {
6641 int athread = SAMPLE_THREAD;
6642 threadref thread;
6643 int set;
6644
6645 int_to_threadref (&thread, athread);
6646 printf_filtered ("Remote Threadinfo test\n");
6647 if (!get_and_display_threadinfo (&thread))
6648 printf_filtered ("FAIL cannot get thread info\n");
6649 }
6650
6651 static int
6652 thread_display_step (threadref *ref, void *context)
6653 {
6654 /* output_threadid(" threadstep ",ref); *//* simple test */
6655 return get_and_display_threadinfo (ref);
6656 }
6657
6658 static void
6659 threadlist_update_test_cmd (char *cmd, int tty)
6660 {
6661 printf_filtered ("Remote Threadlist update test\n");
6662 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6663 }
6664
6665 static void
6666 init_remote_threadtests (void)
6667 {
6668 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6669 Fetch and print the remote list of thread identifiers, one pkt only"));
6670 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6671 _("Fetch and display info about one thread"));
6672 add_com ("tset", class_obscure, threadset_test_cmd,
6673 _("Test setting to a different thread"));
6674 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6675 _("Iterate through updating all remote thread info"));
6676 add_com ("talive", class_obscure, threadalive_test,
6677 _(" Remote thread alive test "));
6678 }
6679
6680 #endif /* 0 */
6681
6682 /* Convert a thread ID to a string. Returns the string in a static
6683 buffer. */
6684
6685 static char *
6686 remote_pid_to_str (ptid_t ptid)
6687 {
6688 static char buf[64];
6689 struct remote_state *rs = get_remote_state ();
6690
6691 if (ptid_equal (magic_null_ptid, ptid))
6692 {
6693 xsnprintf (buf, sizeof buf, "Thread <main>");
6694 return buf;
6695 }
6696 else if (remote_multi_process_p (rs)
6697 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
6698 {
6699 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
6700 ptid_get_pid (ptid), ptid_get_tid (ptid));
6701 return buf;
6702 }
6703 else if (ptid_get_tid (ptid) != 0)
6704 {
6705 xsnprintf (buf, sizeof buf, "Thread %ld",
6706 ptid_get_tid (ptid));
6707 return buf;
6708 }
6709
6710 return normal_pid_to_str (ptid);
6711 }
6712
6713 /* Get the address of the thread local variable in OBJFILE which is
6714 stored at OFFSET within the thread local storage for thread PTID. */
6715
6716 static CORE_ADDR
6717 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6718 {
6719 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6720 {
6721 struct remote_state *rs = get_remote_state ();
6722 char *p = rs->buf;
6723 char *endp = rs->buf + get_remote_packet_size ();
6724 enum packet_result result;
6725
6726 strcpy (p, "qGetTLSAddr:");
6727 p += strlen (p);
6728 p = write_ptid (p, endp, ptid);
6729 *p++ = ',';
6730 p += hexnumstr (p, offset);
6731 *p++ = ',';
6732 p += hexnumstr (p, lm);
6733 *p++ = '\0';
6734
6735 putpkt (rs->buf);
6736 getpkt (&rs->buf, &rs->buf_size, 0);
6737 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6738 if (result == PACKET_OK)
6739 {
6740 ULONGEST result;
6741
6742 unpack_varlen_hex (rs->buf, &result);
6743 return result;
6744 }
6745 else if (result == PACKET_UNKNOWN)
6746 throw_error (TLS_GENERIC_ERROR,
6747 _("Remote target doesn't support qGetTLSAddr packet"));
6748 else
6749 throw_error (TLS_GENERIC_ERROR,
6750 _("Remote target failed to process qGetTLSAddr request"));
6751 }
6752 else
6753 throw_error (TLS_GENERIC_ERROR,
6754 _("TLS not supported or disabled on this target"));
6755 /* Not reached. */
6756 return 0;
6757 }
6758
6759 /* Support for inferring a target description based on the current
6760 architecture and the size of a 'g' packet. While the 'g' packet
6761 can have any size (since optional registers can be left off the
6762 end), some sizes are easily recognizable given knowledge of the
6763 approximate architecture. */
6764
6765 struct remote_g_packet_guess
6766 {
6767 int bytes;
6768 const struct target_desc *tdesc;
6769 };
6770 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6771 DEF_VEC_O(remote_g_packet_guess_s);
6772
6773 struct remote_g_packet_data
6774 {
6775 VEC(remote_g_packet_guess_s) *guesses;
6776 };
6777
6778 static struct gdbarch_data *remote_g_packet_data_handle;
6779
6780 static void *
6781 remote_g_packet_data_init (struct obstack *obstack)
6782 {
6783 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6784 }
6785
6786 void
6787 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6788 const struct target_desc *tdesc)
6789 {
6790 struct remote_g_packet_data *data
6791 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6792 struct remote_g_packet_guess new_guess, *guess;
6793 int ix;
6794
6795 gdb_assert (tdesc != NULL);
6796
6797 for (ix = 0;
6798 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6799 ix++)
6800 if (guess->bytes == bytes)
6801 internal_error (__FILE__, __LINE__,
6802 "Duplicate g packet description added for size %d",
6803 bytes);
6804
6805 new_guess.bytes = bytes;
6806 new_guess.tdesc = tdesc;
6807 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6808 }
6809
6810 static const struct target_desc *
6811 remote_read_description (struct target_ops *target)
6812 {
6813 struct remote_g_packet_data *data
6814 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
6815
6816 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6817 {
6818 struct remote_g_packet_guess *guess;
6819 int ix;
6820 int bytes = send_g_packet ();
6821
6822 for (ix = 0;
6823 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6824 ix++)
6825 if (guess->bytes == bytes)
6826 return guess->tdesc;
6827
6828 /* We discard the g packet. A minor optimization would be to
6829 hold on to it, and fill the register cache once we have selected
6830 an architecture, but it's too tricky to do safely. */
6831 }
6832
6833 return NULL;
6834 }
6835
6836 /* Remote file transfer support. This is host-initiated I/O, not
6837 target-initiated; for target-initiated, see remote-fileio.c. */
6838
6839 /* If *LEFT is at least the length of STRING, copy STRING to
6840 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6841 decrease *LEFT. Otherwise raise an error. */
6842
6843 static void
6844 remote_buffer_add_string (char **buffer, int *left, char *string)
6845 {
6846 int len = strlen (string);
6847
6848 if (len > *left)
6849 error (_("Packet too long for target."));
6850
6851 memcpy (*buffer, string, len);
6852 *buffer += len;
6853 *left -= len;
6854
6855 /* NUL-terminate the buffer as a convenience, if there is
6856 room. */
6857 if (*left)
6858 **buffer = '\0';
6859 }
6860
6861 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6862 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6863 decrease *LEFT. Otherwise raise an error. */
6864
6865 static void
6866 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6867 int len)
6868 {
6869 if (2 * len > *left)
6870 error (_("Packet too long for target."));
6871
6872 bin2hex (bytes, *buffer, len);
6873 *buffer += 2 * len;
6874 *left -= 2 * len;
6875
6876 /* NUL-terminate the buffer as a convenience, if there is
6877 room. */
6878 if (*left)
6879 **buffer = '\0';
6880 }
6881
6882 /* If *LEFT is large enough, convert VALUE to hex and add it to
6883 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6884 decrease *LEFT. Otherwise raise an error. */
6885
6886 static void
6887 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6888 {
6889 int len = hexnumlen (value);
6890
6891 if (len > *left)
6892 error (_("Packet too long for target."));
6893
6894 hexnumstr (*buffer, value);
6895 *buffer += len;
6896 *left -= len;
6897
6898 /* NUL-terminate the buffer as a convenience, if there is
6899 room. */
6900 if (*left)
6901 **buffer = '\0';
6902 }
6903
6904 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6905 value, *REMOTE_ERRNO to the remote error number or zero if none
6906 was included, and *ATTACHMENT to point to the start of the annex
6907 if any. The length of the packet isn't needed here; there may
6908 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6909
6910 Return 0 if the packet could be parsed, -1 if it could not. If
6911 -1 is returned, the other variables may not be initialized. */
6912
6913 static int
6914 remote_hostio_parse_result (char *buffer, int *retcode,
6915 int *remote_errno, char **attachment)
6916 {
6917 char *p, *p2;
6918
6919 *remote_errno = 0;
6920 *attachment = NULL;
6921
6922 if (buffer[0] != 'F')
6923 return -1;
6924
6925 errno = 0;
6926 *retcode = strtol (&buffer[1], &p, 16);
6927 if (errno != 0 || p == &buffer[1])
6928 return -1;
6929
6930 /* Check for ",errno". */
6931 if (*p == ',')
6932 {
6933 errno = 0;
6934 *remote_errno = strtol (p + 1, &p2, 16);
6935 if (errno != 0 || p + 1 == p2)
6936 return -1;
6937 p = p2;
6938 }
6939
6940 /* Check for ";attachment". If there is no attachment, the
6941 packet should end here. */
6942 if (*p == ';')
6943 {
6944 *attachment = p + 1;
6945 return 0;
6946 }
6947 else if (*p == '\0')
6948 return 0;
6949 else
6950 return -1;
6951 }
6952
6953 /* Send a prepared I/O packet to the target and read its response.
6954 The prepared packet is in the global RS->BUF before this function
6955 is called, and the answer is there when we return.
6956
6957 COMMAND_BYTES is the length of the request to send, which may include
6958 binary data. WHICH_PACKET is the packet configuration to check
6959 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6960 is set to the error number and -1 is returned. Otherwise the value
6961 returned by the function is returned.
6962
6963 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6964 attachment is expected; an error will be reported if there's a
6965 mismatch. If one is found, *ATTACHMENT will be set to point into
6966 the packet buffer and *ATTACHMENT_LEN will be set to the
6967 attachment's length. */
6968
6969 static int
6970 remote_hostio_send_command (int command_bytes, int which_packet,
6971 int *remote_errno, char **attachment,
6972 int *attachment_len)
6973 {
6974 struct remote_state *rs = get_remote_state ();
6975 int ret, bytes_read;
6976 char *attachment_tmp;
6977
6978 if (!remote_desc
6979 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6980 {
6981 *remote_errno = FILEIO_ENOSYS;
6982 return -1;
6983 }
6984
6985 putpkt_binary (rs->buf, command_bytes);
6986 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6987
6988 /* If it timed out, something is wrong. Don't try to parse the
6989 buffer. */
6990 if (bytes_read < 0)
6991 {
6992 *remote_errno = FILEIO_EINVAL;
6993 return -1;
6994 }
6995
6996 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6997 {
6998 case PACKET_ERROR:
6999 *remote_errno = FILEIO_EINVAL;
7000 return -1;
7001 case PACKET_UNKNOWN:
7002 *remote_errno = FILEIO_ENOSYS;
7003 return -1;
7004 case PACKET_OK:
7005 break;
7006 }
7007
7008 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
7009 &attachment_tmp))
7010 {
7011 *remote_errno = FILEIO_EINVAL;
7012 return -1;
7013 }
7014
7015 /* Make sure we saw an attachment if and only if we expected one. */
7016 if ((attachment_tmp == NULL && attachment != NULL)
7017 || (attachment_tmp != NULL && attachment == NULL))
7018 {
7019 *remote_errno = FILEIO_EINVAL;
7020 return -1;
7021 }
7022
7023 /* If an attachment was found, it must point into the packet buffer;
7024 work out how many bytes there were. */
7025 if (attachment_tmp != NULL)
7026 {
7027 *attachment = attachment_tmp;
7028 *attachment_len = bytes_read - (*attachment - rs->buf);
7029 }
7030
7031 return ret;
7032 }
7033
7034 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
7035 remote file descriptor, or -1 if an error occurs (and set
7036 *REMOTE_ERRNO). */
7037
7038 static int
7039 remote_hostio_open (const char *filename, int flags, int mode,
7040 int *remote_errno)
7041 {
7042 struct remote_state *rs = get_remote_state ();
7043 char *p = rs->buf;
7044 int left = get_remote_packet_size () - 1;
7045
7046 remote_buffer_add_string (&p, &left, "vFile:open:");
7047
7048 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
7049 strlen (filename));
7050 remote_buffer_add_string (&p, &left, ",");
7051
7052 remote_buffer_add_int (&p, &left, flags);
7053 remote_buffer_add_string (&p, &left, ",");
7054
7055 remote_buffer_add_int (&p, &left, mode);
7056
7057 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
7058 remote_errno, NULL, NULL);
7059 }
7060
7061 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
7062 Return the number of bytes written, or -1 if an error occurs (and
7063 set *REMOTE_ERRNO). */
7064
7065 static int
7066 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
7067 ULONGEST offset, int *remote_errno)
7068 {
7069 struct remote_state *rs = get_remote_state ();
7070 char *p = rs->buf;
7071 int left = get_remote_packet_size ();
7072 int out_len;
7073
7074 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
7075
7076 remote_buffer_add_int (&p, &left, fd);
7077 remote_buffer_add_string (&p, &left, ",");
7078
7079 remote_buffer_add_int (&p, &left, offset);
7080 remote_buffer_add_string (&p, &left, ",");
7081
7082 p += remote_escape_output (write_buf, len, p, &out_len,
7083 get_remote_packet_size () - (p - rs->buf));
7084
7085 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
7086 remote_errno, NULL, NULL);
7087 }
7088
7089 /* Read up to LEN bytes FD on the remote target into READ_BUF
7090 Return the number of bytes read, or -1 if an error occurs (and
7091 set *REMOTE_ERRNO). */
7092
7093 static int
7094 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
7095 ULONGEST offset, int *remote_errno)
7096 {
7097 struct remote_state *rs = get_remote_state ();
7098 char *p = rs->buf;
7099 char *attachment;
7100 int left = get_remote_packet_size ();
7101 int ret, attachment_len;
7102 int read_len;
7103
7104 remote_buffer_add_string (&p, &left, "vFile:pread:");
7105
7106 remote_buffer_add_int (&p, &left, fd);
7107 remote_buffer_add_string (&p, &left, ",");
7108
7109 remote_buffer_add_int (&p, &left, len);
7110 remote_buffer_add_string (&p, &left, ",");
7111
7112 remote_buffer_add_int (&p, &left, offset);
7113
7114 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
7115 remote_errno, &attachment,
7116 &attachment_len);
7117
7118 if (ret < 0)
7119 return ret;
7120
7121 read_len = remote_unescape_input (attachment, attachment_len,
7122 read_buf, len);
7123 if (read_len != ret)
7124 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
7125
7126 return ret;
7127 }
7128
7129 /* Close FD on the remote target. Return 0, or -1 if an error occurs
7130 (and set *REMOTE_ERRNO). */
7131
7132 static int
7133 remote_hostio_close (int fd, int *remote_errno)
7134 {
7135 struct remote_state *rs = get_remote_state ();
7136 char *p = rs->buf;
7137 int left = get_remote_packet_size () - 1;
7138
7139 remote_buffer_add_string (&p, &left, "vFile:close:");
7140
7141 remote_buffer_add_int (&p, &left, fd);
7142
7143 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
7144 remote_errno, NULL, NULL);
7145 }
7146
7147 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
7148 occurs (and set *REMOTE_ERRNO). */
7149
7150 static int
7151 remote_hostio_unlink (const char *filename, int *remote_errno)
7152 {
7153 struct remote_state *rs = get_remote_state ();
7154 char *p = rs->buf;
7155 int left = get_remote_packet_size () - 1;
7156
7157 remote_buffer_add_string (&p, &left, "vFile:unlink:");
7158
7159 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
7160 strlen (filename));
7161
7162 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
7163 remote_errno, NULL, NULL);
7164 }
7165
7166 static int
7167 remote_fileio_errno_to_host (int errnum)
7168 {
7169 switch (errnum)
7170 {
7171 case FILEIO_EPERM:
7172 return EPERM;
7173 case FILEIO_ENOENT:
7174 return ENOENT;
7175 case FILEIO_EINTR:
7176 return EINTR;
7177 case FILEIO_EIO:
7178 return EIO;
7179 case FILEIO_EBADF:
7180 return EBADF;
7181 case FILEIO_EACCES:
7182 return EACCES;
7183 case FILEIO_EFAULT:
7184 return EFAULT;
7185 case FILEIO_EBUSY:
7186 return EBUSY;
7187 case FILEIO_EEXIST:
7188 return EEXIST;
7189 case FILEIO_ENODEV:
7190 return ENODEV;
7191 case FILEIO_ENOTDIR:
7192 return ENOTDIR;
7193 case FILEIO_EISDIR:
7194 return EISDIR;
7195 case FILEIO_EINVAL:
7196 return EINVAL;
7197 case FILEIO_ENFILE:
7198 return ENFILE;
7199 case FILEIO_EMFILE:
7200 return EMFILE;
7201 case FILEIO_EFBIG:
7202 return EFBIG;
7203 case FILEIO_ENOSPC:
7204 return ENOSPC;
7205 case FILEIO_ESPIPE:
7206 return ESPIPE;
7207 case FILEIO_EROFS:
7208 return EROFS;
7209 case FILEIO_ENOSYS:
7210 return ENOSYS;
7211 case FILEIO_ENAMETOOLONG:
7212 return ENAMETOOLONG;
7213 }
7214 return -1;
7215 }
7216
7217 static char *
7218 remote_hostio_error (int errnum)
7219 {
7220 int host_error = remote_fileio_errno_to_host (errnum);
7221
7222 if (host_error == -1)
7223 error (_("Unknown remote I/O error %d"), errnum);
7224 else
7225 error (_("Remote I/O error: %s"), safe_strerror (host_error));
7226 }
7227
7228 static void
7229 fclose_cleanup (void *file)
7230 {
7231 fclose (file);
7232 }
7233
7234 static void
7235 remote_hostio_close_cleanup (void *opaque)
7236 {
7237 int fd = *(int *) opaque;
7238 int remote_errno;
7239
7240 remote_hostio_close (fd, &remote_errno);
7241 }
7242
7243
7244 static void *
7245 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
7246 {
7247 const char *filename = bfd_get_filename (abfd);
7248 int fd, remote_errno;
7249 int *stream;
7250
7251 gdb_assert (remote_filename_p (filename));
7252
7253 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
7254 if (fd == -1)
7255 {
7256 errno = remote_fileio_errno_to_host (remote_errno);
7257 bfd_set_error (bfd_error_system_call);
7258 return NULL;
7259 }
7260
7261 stream = xmalloc (sizeof (int));
7262 *stream = fd;
7263 return stream;
7264 }
7265
7266 static int
7267 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
7268 {
7269 int fd = *(int *)stream;
7270 int remote_errno;
7271
7272 xfree (stream);
7273
7274 /* Ignore errors on close; these may happen if the remote
7275 connection was already torn down. */
7276 remote_hostio_close (fd, &remote_errno);
7277
7278 return 1;
7279 }
7280
7281 static file_ptr
7282 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
7283 file_ptr nbytes, file_ptr offset)
7284 {
7285 int fd = *(int *)stream;
7286 int remote_errno;
7287 file_ptr pos, bytes;
7288
7289 pos = 0;
7290 while (nbytes > pos)
7291 {
7292 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
7293 offset + pos, &remote_errno);
7294 if (bytes == 0)
7295 /* Success, but no bytes, means end-of-file. */
7296 break;
7297 if (bytes == -1)
7298 {
7299 errno = remote_fileio_errno_to_host (remote_errno);
7300 bfd_set_error (bfd_error_system_call);
7301 return -1;
7302 }
7303
7304 pos += bytes;
7305 }
7306
7307 return pos;
7308 }
7309
7310 static int
7311 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
7312 {
7313 /* FIXME: We should probably implement remote_hostio_stat. */
7314 sb->st_size = INT_MAX;
7315 return 0;
7316 }
7317
7318 int
7319 remote_filename_p (const char *filename)
7320 {
7321 return strncmp (filename, "remote:", 7) == 0;
7322 }
7323
7324 bfd *
7325 remote_bfd_open (const char *remote_file, const char *target)
7326 {
7327 return bfd_openr_iovec (remote_file, target,
7328 remote_bfd_iovec_open, NULL,
7329 remote_bfd_iovec_pread,
7330 remote_bfd_iovec_close,
7331 remote_bfd_iovec_stat);
7332 }
7333
7334 void
7335 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
7336 {
7337 struct cleanup *back_to, *close_cleanup;
7338 int retcode, fd, remote_errno, bytes, io_size;
7339 FILE *file;
7340 gdb_byte *buffer;
7341 int bytes_in_buffer;
7342 int saw_eof;
7343 ULONGEST offset;
7344
7345 if (!remote_desc)
7346 error (_("command can only be used with remote target"));
7347
7348 file = fopen (local_file, "rb");
7349 if (file == NULL)
7350 perror_with_name (local_file);
7351 back_to = make_cleanup (fclose_cleanup, file);
7352
7353 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7354 | FILEIO_O_TRUNC),
7355 0700, &remote_errno);
7356 if (fd == -1)
7357 remote_hostio_error (remote_errno);
7358
7359 /* Send up to this many bytes at once. They won't all fit in the
7360 remote packet limit, so we'll transfer slightly fewer. */
7361 io_size = get_remote_packet_size ();
7362 buffer = xmalloc (io_size);
7363 make_cleanup (xfree, buffer);
7364
7365 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7366
7367 bytes_in_buffer = 0;
7368 saw_eof = 0;
7369 offset = 0;
7370 while (bytes_in_buffer || !saw_eof)
7371 {
7372 if (!saw_eof)
7373 {
7374 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7375 file);
7376 if (bytes == 0)
7377 {
7378 if (ferror (file))
7379 error (_("Error reading %s."), local_file);
7380 else
7381 {
7382 /* EOF. Unless there is something still in the
7383 buffer from the last iteration, we are done. */
7384 saw_eof = 1;
7385 if (bytes_in_buffer == 0)
7386 break;
7387 }
7388 }
7389 }
7390 else
7391 bytes = 0;
7392
7393 bytes += bytes_in_buffer;
7394 bytes_in_buffer = 0;
7395
7396 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7397
7398 if (retcode < 0)
7399 remote_hostio_error (remote_errno);
7400 else if (retcode == 0)
7401 error (_("Remote write of %d bytes returned 0!"), bytes);
7402 else if (retcode < bytes)
7403 {
7404 /* Short write. Save the rest of the read data for the next
7405 write. */
7406 bytes_in_buffer = bytes - retcode;
7407 memmove (buffer, buffer + retcode, bytes_in_buffer);
7408 }
7409
7410 offset += retcode;
7411 }
7412
7413 discard_cleanups (close_cleanup);
7414 if (remote_hostio_close (fd, &remote_errno))
7415 remote_hostio_error (remote_errno);
7416
7417 if (from_tty)
7418 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7419 do_cleanups (back_to);
7420 }
7421
7422 void
7423 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7424 {
7425 struct cleanup *back_to, *close_cleanup;
7426 int retcode, fd, remote_errno, bytes, io_size;
7427 FILE *file;
7428 gdb_byte *buffer;
7429 ULONGEST offset;
7430
7431 if (!remote_desc)
7432 error (_("command can only be used with remote target"));
7433
7434 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7435 if (fd == -1)
7436 remote_hostio_error (remote_errno);
7437
7438 file = fopen (local_file, "wb");
7439 if (file == NULL)
7440 perror_with_name (local_file);
7441 back_to = make_cleanup (fclose_cleanup, file);
7442
7443 /* Send up to this many bytes at once. They won't all fit in the
7444 remote packet limit, so we'll transfer slightly fewer. */
7445 io_size = get_remote_packet_size ();
7446 buffer = xmalloc (io_size);
7447 make_cleanup (xfree, buffer);
7448
7449 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7450
7451 offset = 0;
7452 while (1)
7453 {
7454 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7455 if (bytes == 0)
7456 /* Success, but no bytes, means end-of-file. */
7457 break;
7458 if (bytes == -1)
7459 remote_hostio_error (remote_errno);
7460
7461 offset += bytes;
7462
7463 bytes = fwrite (buffer, 1, bytes, file);
7464 if (bytes == 0)
7465 perror_with_name (local_file);
7466 }
7467
7468 discard_cleanups (close_cleanup);
7469 if (remote_hostio_close (fd, &remote_errno))
7470 remote_hostio_error (remote_errno);
7471
7472 if (from_tty)
7473 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7474 do_cleanups (back_to);
7475 }
7476
7477 void
7478 remote_file_delete (const char *remote_file, int from_tty)
7479 {
7480 int retcode, remote_errno;
7481
7482 if (!remote_desc)
7483 error (_("command can only be used with remote target"));
7484
7485 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7486 if (retcode == -1)
7487 remote_hostio_error (remote_errno);
7488
7489 if (from_tty)
7490 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7491 }
7492
7493 static void
7494 remote_put_command (char *args, int from_tty)
7495 {
7496 struct cleanup *back_to;
7497 char **argv;
7498
7499 if (args == NULL)
7500 error_no_arg (_("file to put"));
7501
7502 argv = gdb_buildargv (args);
7503 back_to = make_cleanup_freeargv (argv);
7504 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7505 error (_("Invalid parameters to remote put"));
7506
7507 remote_file_put (argv[0], argv[1], from_tty);
7508
7509 do_cleanups (back_to);
7510 }
7511
7512 static void
7513 remote_get_command (char *args, int from_tty)
7514 {
7515 struct cleanup *back_to;
7516 char **argv;
7517
7518 if (args == NULL)
7519 error_no_arg (_("file to get"));
7520
7521 argv = gdb_buildargv (args);
7522 back_to = make_cleanup_freeargv (argv);
7523 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7524 error (_("Invalid parameters to remote get"));
7525
7526 remote_file_get (argv[0], argv[1], from_tty);
7527
7528 do_cleanups (back_to);
7529 }
7530
7531 static void
7532 remote_delete_command (char *args, int from_tty)
7533 {
7534 struct cleanup *back_to;
7535 char **argv;
7536
7537 if (args == NULL)
7538 error_no_arg (_("file to delete"));
7539
7540 argv = gdb_buildargv (args);
7541 back_to = make_cleanup_freeargv (argv);
7542 if (argv[0] == NULL || argv[1] != NULL)
7543 error (_("Invalid parameters to remote delete"));
7544
7545 remote_file_delete (argv[0], from_tty);
7546
7547 do_cleanups (back_to);
7548 }
7549
7550 static void
7551 remote_command (char *args, int from_tty)
7552 {
7553 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7554 }
7555
7556 static void
7557 init_remote_ops (void)
7558 {
7559 remote_ops.to_shortname = "remote";
7560 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7561 remote_ops.to_doc =
7562 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7563 Specify the serial device it is connected to\n\
7564 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7565 remote_ops.to_open = remote_open;
7566 remote_ops.to_close = remote_close;
7567 remote_ops.to_detach = remote_detach;
7568 remote_ops.to_disconnect = remote_disconnect;
7569 remote_ops.to_resume = remote_resume;
7570 remote_ops.to_wait = remote_wait;
7571 remote_ops.to_fetch_registers = remote_fetch_registers;
7572 remote_ops.to_store_registers = remote_store_registers;
7573 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7574 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7575 remote_ops.to_files_info = remote_files_info;
7576 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7577 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7578 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7579 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7580 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7581 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7582 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7583 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7584 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7585 remote_ops.to_kill = remote_kill;
7586 remote_ops.to_load = generic_load;
7587 remote_ops.to_mourn_inferior = remote_mourn;
7588 remote_ops.to_thread_alive = remote_thread_alive;
7589 remote_ops.to_find_new_threads = remote_threads_info;
7590 remote_ops.to_pid_to_str = remote_pid_to_str;
7591 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7592 remote_ops.to_stop = remote_stop;
7593 remote_ops.to_xfer_partial = remote_xfer_partial;
7594 remote_ops.to_rcmd = remote_rcmd;
7595 remote_ops.to_log_command = serial_log_command;
7596 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7597 remote_ops.to_stratum = process_stratum;
7598 remote_ops.to_has_all_memory = 1;
7599 remote_ops.to_has_memory = 1;
7600 remote_ops.to_has_stack = 1;
7601 remote_ops.to_has_registers = 1;
7602 remote_ops.to_has_execution = 1;
7603 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7604 remote_ops.to_magic = OPS_MAGIC;
7605 remote_ops.to_memory_map = remote_memory_map;
7606 remote_ops.to_flash_erase = remote_flash_erase;
7607 remote_ops.to_flash_done = remote_flash_done;
7608 remote_ops.to_read_description = remote_read_description;
7609 remote_ops.to_search_memory = remote_search_memory;
7610 remote_ops.to_can_async_p = remote_can_async_p;
7611 remote_ops.to_is_async_p = remote_is_async_p;
7612 remote_ops.to_async = remote_async;
7613 remote_ops.to_async_mask = remote_async_mask;
7614 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7615 remote_ops.to_terminal_ours = remote_terminal_ours;
7616 }
7617
7618 /* Set up the extended remote vector by making a copy of the standard
7619 remote vector and adding to it. */
7620
7621 static void
7622 init_extended_remote_ops (void)
7623 {
7624 extended_remote_ops = remote_ops;
7625
7626 extended_remote_ops.to_shortname = "extended-remote";
7627 extended_remote_ops.to_longname =
7628 "Extended remote serial target in gdb-specific protocol";
7629 extended_remote_ops.to_doc =
7630 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7631 Specify the serial device it is connected to (e.g. /dev/ttya).";
7632 extended_remote_ops.to_open = extended_remote_open;
7633 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7634 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7635 extended_remote_ops.to_detach = extended_remote_detach;
7636 extended_remote_ops.to_attach = extended_remote_attach;
7637 extended_remote_ops.to_kill = extended_remote_kill;
7638 }
7639
7640 static int
7641 remote_can_async_p (void)
7642 {
7643 if (!target_async_permitted)
7644 /* We only enable async when the user specifically asks for it. */
7645 return 0;
7646
7647 /* We're async whenever the serial device is. */
7648 return remote_async_mask_value && serial_can_async_p (remote_desc);
7649 }
7650
7651 static int
7652 remote_is_async_p (void)
7653 {
7654 if (!target_async_permitted)
7655 /* We only enable async when the user specifically asks for it. */
7656 return 0;
7657
7658 /* We're async whenever the serial device is. */
7659 return remote_async_mask_value && serial_is_async_p (remote_desc);
7660 }
7661
7662 /* Pass the SERIAL event on and up to the client. One day this code
7663 will be able to delay notifying the client of an event until the
7664 point where an entire packet has been received. */
7665
7666 static void (*async_client_callback) (enum inferior_event_type event_type,
7667 void *context);
7668 static void *async_client_context;
7669 static serial_event_ftype remote_async_serial_handler;
7670
7671 static void
7672 remote_async_serial_handler (struct serial *scb, void *context)
7673 {
7674 /* Don't propogate error information up to the client. Instead let
7675 the client find out about the error by querying the target. */
7676 async_client_callback (INF_REG_EVENT, async_client_context);
7677 }
7678
7679 static void
7680 remote_async (void (*callback) (enum inferior_event_type event_type,
7681 void *context), void *context)
7682 {
7683 if (remote_async_mask_value == 0)
7684 internal_error (__FILE__, __LINE__,
7685 _("Calling remote_async when async is masked"));
7686
7687 if (callback != NULL)
7688 {
7689 serial_async (remote_desc, remote_async_serial_handler, NULL);
7690 async_client_callback = callback;
7691 async_client_context = context;
7692 }
7693 else
7694 serial_async (remote_desc, NULL, NULL);
7695 }
7696
7697 static int
7698 remote_async_mask (int new_mask)
7699 {
7700 int curr_mask = remote_async_mask_value;
7701 remote_async_mask_value = new_mask;
7702 return curr_mask;
7703 }
7704
7705 static void
7706 set_remote_cmd (char *args, int from_tty)
7707 {
7708 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7709 }
7710
7711 static void
7712 show_remote_cmd (char *args, int from_tty)
7713 {
7714 /* We can't just use cmd_show_list here, because we want to skip
7715 the redundant "show remote Z-packet" and the legacy aliases. */
7716 struct cleanup *showlist_chain;
7717 struct cmd_list_element *list = remote_show_cmdlist;
7718
7719 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7720 for (; list != NULL; list = list->next)
7721 if (strcmp (list->name, "Z-packet") == 0)
7722 continue;
7723 else if (list->type == not_set_cmd)
7724 /* Alias commands are exactly like the original, except they
7725 don't have the normal type. */
7726 continue;
7727 else
7728 {
7729 struct cleanup *option_chain
7730 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7731 ui_out_field_string (uiout, "name", list->name);
7732 ui_out_text (uiout, ": ");
7733 if (list->type == show_cmd)
7734 do_setshow_command ((char *) NULL, from_tty, list);
7735 else
7736 cmd_func (list, NULL, from_tty);
7737 /* Close the tuple. */
7738 do_cleanups (option_chain);
7739 }
7740
7741 /* Close the tuple. */
7742 do_cleanups (showlist_chain);
7743 }
7744
7745
7746 /* Function to be called whenever a new objfile (shlib) is detected. */
7747 static void
7748 remote_new_objfile (struct objfile *objfile)
7749 {
7750 if (remote_desc != 0) /* Have a remote connection. */
7751 remote_check_symbols (objfile);
7752 }
7753
7754 void
7755 _initialize_remote (void)
7756 {
7757 struct remote_state *rs;
7758
7759 /* architecture specific data */
7760 remote_gdbarch_data_handle =
7761 gdbarch_data_register_post_init (init_remote_state);
7762 remote_g_packet_data_handle =
7763 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7764
7765 /* Initialize the per-target state. At the moment there is only one
7766 of these, not one per target. Only one target is active at a
7767 time. The default buffer size is unimportant; it will be expanded
7768 whenever a larger buffer is needed. */
7769 rs = get_remote_state_raw ();
7770 rs->buf_size = 400;
7771 rs->buf = xmalloc (rs->buf_size);
7772
7773 init_remote_ops ();
7774 add_target (&remote_ops);
7775
7776 init_extended_remote_ops ();
7777 add_target (&extended_remote_ops);
7778
7779 /* Hook into new objfile notification. */
7780 observer_attach_new_objfile (remote_new_objfile);
7781
7782 /* Set up signal handlers. */
7783 sigint_remote_token =
7784 create_async_signal_handler (async_remote_interrupt, NULL);
7785 sigint_remote_twice_token =
7786 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7787
7788 #if 0
7789 init_remote_threadtests ();
7790 #endif
7791
7792 /* set/show remote ... */
7793
7794 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7795 Remote protocol specific variables\n\
7796 Configure various remote-protocol specific variables such as\n\
7797 the packets being used"),
7798 &remote_set_cmdlist, "set remote ",
7799 0 /* allow-unknown */, &setlist);
7800 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7801 Remote protocol specific variables\n\
7802 Configure various remote-protocol specific variables such as\n\
7803 the packets being used"),
7804 &remote_show_cmdlist, "show remote ",
7805 0 /* allow-unknown */, &showlist);
7806
7807 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7808 Compare section data on target to the exec file.\n\
7809 Argument is a single section name (default: all loaded sections)."),
7810 &cmdlist);
7811
7812 add_cmd ("packet", class_maintenance, packet_command, _("\
7813 Send an arbitrary packet to a remote target.\n\
7814 maintenance packet TEXT\n\
7815 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7816 this command sends the string TEXT to the inferior, and displays the\n\
7817 response packet. GDB supplies the initial `$' character, and the\n\
7818 terminating `#' character and checksum."),
7819 &maintenancelist);
7820
7821 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7822 Set whether to send break if interrupted."), _("\
7823 Show whether to send break if interrupted."), _("\
7824 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7825 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7826 &setlist, &showlist);
7827
7828 /* Install commands for configuring memory read/write packets. */
7829
7830 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7831 Set the maximum number of bytes per memory write packet (deprecated)."),
7832 &setlist);
7833 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7834 Show the maximum number of bytes per memory write packet (deprecated)."),
7835 &showlist);
7836 add_cmd ("memory-write-packet-size", no_class,
7837 set_memory_write_packet_size, _("\
7838 Set the maximum number of bytes per memory-write packet.\n\
7839 Specify the number of bytes in a packet or 0 (zero) for the\n\
7840 default packet size. The actual limit is further reduced\n\
7841 dependent on the target. Specify ``fixed'' to disable the\n\
7842 further restriction and ``limit'' to enable that restriction."),
7843 &remote_set_cmdlist);
7844 add_cmd ("memory-read-packet-size", no_class,
7845 set_memory_read_packet_size, _("\
7846 Set the maximum number of bytes per memory-read packet.\n\
7847 Specify the number of bytes in a packet or 0 (zero) for the\n\
7848 default packet size. The actual limit is further reduced\n\
7849 dependent on the target. Specify ``fixed'' to disable the\n\
7850 further restriction and ``limit'' to enable that restriction."),
7851 &remote_set_cmdlist);
7852 add_cmd ("memory-write-packet-size", no_class,
7853 show_memory_write_packet_size,
7854 _("Show the maximum number of bytes per memory-write packet."),
7855 &remote_show_cmdlist);
7856 add_cmd ("memory-read-packet-size", no_class,
7857 show_memory_read_packet_size,
7858 _("Show the maximum number of bytes per memory-read packet."),
7859 &remote_show_cmdlist);
7860
7861 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7862 &remote_hw_watchpoint_limit, _("\
7863 Set the maximum number of target hardware watchpoints."), _("\
7864 Show the maximum number of target hardware watchpoints."), _("\
7865 Specify a negative limit for unlimited."),
7866 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7867 &remote_set_cmdlist, &remote_show_cmdlist);
7868 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7869 &remote_hw_breakpoint_limit, _("\
7870 Set the maximum number of target hardware breakpoints."), _("\
7871 Show the maximum number of target hardware breakpoints."), _("\
7872 Specify a negative limit for unlimited."),
7873 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7874 &remote_set_cmdlist, &remote_show_cmdlist);
7875
7876 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7877 &remote_address_size, _("\
7878 Set the maximum size of the address (in bits) in a memory packet."), _("\
7879 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7880 NULL,
7881 NULL, /* FIXME: i18n: */
7882 &setlist, &showlist);
7883
7884 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7885 "X", "binary-download", 1);
7886
7887 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7888 "vCont", "verbose-resume", 0);
7889
7890 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7891 "QPassSignals", "pass-signals", 0);
7892
7893 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7894 "qSymbol", "symbol-lookup", 0);
7895
7896 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7897 "P", "set-register", 1);
7898
7899 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7900 "p", "fetch-register", 1);
7901
7902 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7903 "Z0", "software-breakpoint", 0);
7904
7905 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7906 "Z1", "hardware-breakpoint", 0);
7907
7908 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7909 "Z2", "write-watchpoint", 0);
7910
7911 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7912 "Z3", "read-watchpoint", 0);
7913
7914 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7915 "Z4", "access-watchpoint", 0);
7916
7917 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7918 "qXfer:auxv:read", "read-aux-vector", 0);
7919
7920 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7921 "qXfer:features:read", "target-features", 0);
7922
7923 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7924 "qXfer:libraries:read", "library-info", 0);
7925
7926 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7927 "qXfer:memory-map:read", "memory-map", 0);
7928
7929 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7930 "qXfer:spu:read", "read-spu-object", 0);
7931
7932 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7933 "qXfer:spu:write", "write-spu-object", 0);
7934
7935 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7936 "qGetTLSAddr", "get-thread-local-storage-address",
7937 0);
7938
7939 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7940 "qSupported", "supported-packets", 0);
7941
7942 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7943 "qSearch:memory", "search-memory", 0);
7944
7945 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7946 "vFile:open", "hostio-open", 0);
7947
7948 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7949 "vFile:pread", "hostio-pread", 0);
7950
7951 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7952 "vFile:pwrite", "hostio-pwrite", 0);
7953
7954 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7955 "vFile:close", "hostio-close", 0);
7956
7957 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7958 "vFile:unlink", "hostio-unlink", 0);
7959
7960 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7961 "vAttach", "attach", 0);
7962
7963 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7964 "vRun", "run", 0);
7965
7966 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
7967 "QStartNoAckMode", "noack", 0);
7968
7969 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
7970 "vKill", "kill", 0);
7971
7972 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7973 Z sub-packet has its own set and show commands, but users may
7974 have sets to this variable in their .gdbinit files (or in their
7975 documentation). */
7976 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7977 &remote_Z_packet_detect, _("\
7978 Set use of remote protocol `Z' packets"), _("\
7979 Show use of remote protocol `Z' packets "), _("\
7980 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7981 packets."),
7982 set_remote_protocol_Z_packet_cmd,
7983 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7984 &remote_set_cmdlist, &remote_show_cmdlist);
7985
7986 add_prefix_cmd ("remote", class_files, remote_command, _("\
7987 Manipulate files on the remote system\n\
7988 Transfer files to and from the remote target system."),
7989 &remote_cmdlist, "remote ",
7990 0 /* allow-unknown */, &cmdlist);
7991
7992 add_cmd ("put", class_files, remote_put_command,
7993 _("Copy a local file to the remote system."),
7994 &remote_cmdlist);
7995
7996 add_cmd ("get", class_files, remote_get_command,
7997 _("Copy a remote file to the local system."),
7998 &remote_cmdlist);
7999
8000 add_cmd ("delete", class_files, remote_delete_command,
8001 _("Delete a remote file."),
8002 &remote_cmdlist);
8003
8004 remote_exec_file = xstrdup ("");
8005 add_setshow_string_noescape_cmd ("exec-file", class_files,
8006 &remote_exec_file, _("\
8007 Set the remote pathname for \"run\""), _("\
8008 Show the remote pathname for \"run\""), NULL, NULL, NULL,
8009 &remote_set_cmdlist, &remote_show_cmdlist);
8010
8011 /* Eventually initialize fileio. See fileio.c */
8012 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
8013
8014 /* Take advantage of the fact that the LWP field is not used, to tag
8015 special ptids with it set to != 0. */
8016 magic_null_ptid = ptid_build (42000, 1, -1);
8017 not_sent_ptid = ptid_build (42000, 1, -2);
8018 any_thread_ptid = ptid_build (42000, 1, 0);
8019 }