]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
2010-04-08 Stan Shebs <stan@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (ptid_t currthread);
187
188 static int fromhex (int a);
189
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214
215 struct remote_state;
216 static int remote_get_trace_status (struct trace_status *ts);
217
218 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
219
220 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
221
222 static void remote_query_supported (void);
223
224 static void remote_check_symbols (struct objfile *objfile);
225
226 void _initialize_remote (void);
227
228 struct stop_reply;
229 static struct stop_reply *stop_reply_xmalloc (void);
230 static void stop_reply_xfree (struct stop_reply *);
231 static void do_stop_reply_xfree (void *arg);
232 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
233 static void push_stop_reply (struct stop_reply *);
234 static void remote_get_pending_stop_replies (void);
235 static void discard_pending_stop_replies (int pid);
236 static int peek_stop_reply (ptid_t ptid);
237
238 static void remote_async_inferior_event_handler (gdb_client_data);
239 static void remote_async_get_pending_events_handler (gdb_client_data);
240
241 static void remote_terminal_ours (void);
242
243 static int remote_read_description_p (struct target_ops *target);
244
245 /* The non-stop remote protocol provisions for one pending stop reply.
246 This is where we keep it until it is acknowledged. */
247
248 static struct stop_reply *pending_stop_reply = NULL;
249
250 /* For "remote". */
251
252 static struct cmd_list_element *remote_cmdlist;
253
254 /* For "set remote" and "show remote". */
255
256 static struct cmd_list_element *remote_set_cmdlist;
257 static struct cmd_list_element *remote_show_cmdlist;
258
259 /* Description of the remote protocol state for the currently
260 connected target. This is per-target state, and independent of the
261 selected architecture. */
262
263 struct remote_state
264 {
265 /* A buffer to use for incoming packets, and its current size. The
266 buffer is grown dynamically for larger incoming packets.
267 Outgoing packets may also be constructed in this buffer.
268 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
269 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
270 packets. */
271 char *buf;
272 long buf_size;
273
274 /* If we negotiated packet size explicitly (and thus can bypass
275 heuristics for the largest packet size that will not overflow
276 a buffer in the stub), this will be set to that packet size.
277 Otherwise zero, meaning to use the guessed size. */
278 long explicit_packet_size;
279
280 /* remote_wait is normally called when the target is running and
281 waits for a stop reply packet. But sometimes we need to call it
282 when the target is already stopped. We can send a "?" packet
283 and have remote_wait read the response. Or, if we already have
284 the response, we can stash it in BUF and tell remote_wait to
285 skip calling getpkt. This flag is set when BUF contains a
286 stop reply packet and the target is not waiting. */
287 int cached_wait_status;
288
289 /* True, if in no ack mode. That is, neither GDB nor the stub will
290 expect acks from each other. The connection is assumed to be
291 reliable. */
292 int noack_mode;
293
294 /* True if we're connected in extended remote mode. */
295 int extended;
296
297 /* True if the stub reported support for multi-process
298 extensions. */
299 int multi_process_aware;
300
301 /* True if we resumed the target and we're waiting for the target to
302 stop. In the mean time, we can't start another command/query.
303 The remote server wouldn't be ready to process it, so we'd
304 timeout waiting for a reply that would never come and eventually
305 we'd close the connection. This can happen in asynchronous mode
306 because we allow GDB commands while the target is running. */
307 int waiting_for_stop_reply;
308
309 /* True if the stub reports support for non-stop mode. */
310 int non_stop_aware;
311
312 /* True if the stub reports support for vCont;t. */
313 int support_vCont_t;
314
315 /* True if the stub reports support for conditional tracepoints. */
316 int cond_tracepoints;
317
318 /* True if the stub reports support for fast tracepoints. */
319 int fast_tracepoints;
320
321 /* True if the stub can continue running a trace while GDB is
322 disconnected. */
323 int disconnected_tracing;
324
325 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
326 responded to that. */
327 int ctrlc_pending_p;
328 };
329
330 /* Private data that we'll store in (struct thread_info)->private. */
331 struct private_thread_info
332 {
333 char *extra;
334 int core;
335 };
336
337 static void
338 free_private_thread_info (struct private_thread_info *info)
339 {
340 xfree (info->extra);
341 xfree (info);
342 }
343
344 /* Returns true if the multi-process extensions are in effect. */
345 static int
346 remote_multi_process_p (struct remote_state *rs)
347 {
348 return rs->extended && rs->multi_process_aware;
349 }
350
351 /* This data could be associated with a target, but we do not always
352 have access to the current target when we need it, so for now it is
353 static. This will be fine for as long as only one target is in use
354 at a time. */
355 static struct remote_state remote_state;
356
357 static struct remote_state *
358 get_remote_state_raw (void)
359 {
360 return &remote_state;
361 }
362
363 /* Description of the remote protocol for a given architecture. */
364
365 struct packet_reg
366 {
367 long offset; /* Offset into G packet. */
368 long regnum; /* GDB's internal register number. */
369 LONGEST pnum; /* Remote protocol register number. */
370 int in_g_packet; /* Always part of G packet. */
371 /* long size in bytes; == register_size (target_gdbarch, regnum);
372 at present. */
373 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
374 at present. */
375 };
376
377 struct remote_arch_state
378 {
379 /* Description of the remote protocol registers. */
380 long sizeof_g_packet;
381
382 /* Description of the remote protocol registers indexed by REGNUM
383 (making an array gdbarch_num_regs in size). */
384 struct packet_reg *regs;
385
386 /* This is the size (in chars) of the first response to the ``g''
387 packet. It is used as a heuristic when determining the maximum
388 size of memory-read and memory-write packets. A target will
389 typically only reserve a buffer large enough to hold the ``g''
390 packet. The size does not include packet overhead (headers and
391 trailers). */
392 long actual_register_packet_size;
393
394 /* This is the maximum size (in chars) of a non read/write packet.
395 It is also used as a cap on the size of read/write packets. */
396 long remote_packet_size;
397 };
398
399 long sizeof_pkt = 2000;
400
401 /* Utility: generate error from an incoming stub packet. */
402 static void
403 trace_error (char *buf)
404 {
405 if (*buf++ != 'E')
406 return; /* not an error msg */
407 switch (*buf)
408 {
409 case '1': /* malformed packet error */
410 if (*++buf == '0') /* general case: */
411 error (_("remote.c: error in outgoing packet."));
412 else
413 error (_("remote.c: error in outgoing packet at field #%ld."),
414 strtol (buf, NULL, 16));
415 case '2':
416 error (_("trace API error 0x%s."), ++buf);
417 default:
418 error (_("Target returns error code '%s'."), buf);
419 }
420 }
421
422 /* Utility: wait for reply from stub, while accepting "O" packets. */
423 static char *
424 remote_get_noisy_reply (char **buf_p,
425 long *sizeof_buf)
426 {
427 do /* Loop on reply from remote stub. */
428 {
429 char *buf;
430 QUIT; /* allow user to bail out with ^C */
431 getpkt (buf_p, sizeof_buf, 0);
432 buf = *buf_p;
433 if (buf[0] == 0)
434 error (_("Target does not support this command."));
435 else if (buf[0] == 'E')
436 trace_error (buf);
437 else if (buf[0] == 'O' &&
438 buf[1] != 'K')
439 remote_console_output (buf + 1); /* 'O' message from stub */
440 else
441 return buf; /* here's the actual reply */
442 }
443 while (1);
444 }
445
446 /* Handle for retreving the remote protocol data from gdbarch. */
447 static struct gdbarch_data *remote_gdbarch_data_handle;
448
449 static struct remote_arch_state *
450 get_remote_arch_state (void)
451 {
452 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
453 }
454
455 /* Fetch the global remote target state. */
456
457 static struct remote_state *
458 get_remote_state (void)
459 {
460 /* Make sure that the remote architecture state has been
461 initialized, because doing so might reallocate rs->buf. Any
462 function which calls getpkt also needs to be mindful of changes
463 to rs->buf, but this call limits the number of places which run
464 into trouble. */
465 get_remote_arch_state ();
466
467 return get_remote_state_raw ();
468 }
469
470 static int
471 compare_pnums (const void *lhs_, const void *rhs_)
472 {
473 const struct packet_reg * const *lhs = lhs_;
474 const struct packet_reg * const *rhs = rhs_;
475
476 if ((*lhs)->pnum < (*rhs)->pnum)
477 return -1;
478 else if ((*lhs)->pnum == (*rhs)->pnum)
479 return 0;
480 else
481 return 1;
482 }
483
484 static void *
485 init_remote_state (struct gdbarch *gdbarch)
486 {
487 int regnum, num_remote_regs, offset;
488 struct remote_state *rs = get_remote_state_raw ();
489 struct remote_arch_state *rsa;
490 struct packet_reg **remote_regs;
491
492 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
493
494 /* Use the architecture to build a regnum<->pnum table, which will be
495 1:1 unless a feature set specifies otherwise. */
496 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
497 gdbarch_num_regs (gdbarch),
498 struct packet_reg);
499 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502
503 if (register_size (gdbarch, regnum) == 0)
504 /* Do not try to fetch zero-sized (placeholder) registers. */
505 r->pnum = -1;
506 else
507 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
508
509 r->regnum = regnum;
510 }
511
512 /* Define the g/G packet format as the contents of each register
513 with a remote protocol number, in order of ascending protocol
514 number. */
515
516 remote_regs = alloca (gdbarch_num_regs (gdbarch)
517 * sizeof (struct packet_reg *));
518 for (num_remote_regs = 0, regnum = 0;
519 regnum < gdbarch_num_regs (gdbarch);
520 regnum++)
521 if (rsa->regs[regnum].pnum != -1)
522 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
523
524 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
525 compare_pnums);
526
527 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
528 {
529 remote_regs[regnum]->in_g_packet = 1;
530 remote_regs[regnum]->offset = offset;
531 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
532 }
533
534 /* Record the maximum possible size of the g packet - it may turn out
535 to be smaller. */
536 rsa->sizeof_g_packet = offset;
537
538 /* Default maximum number of characters in a packet body. Many
539 remote stubs have a hardwired buffer size of 400 bytes
540 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
541 as the maximum packet-size to ensure that the packet and an extra
542 NUL character can always fit in the buffer. This stops GDB
543 trashing stubs that try to squeeze an extra NUL into what is
544 already a full buffer (As of 1999-12-04 that was most stubs). */
545 rsa->remote_packet_size = 400 - 1;
546
547 /* This one is filled in when a ``g'' packet is received. */
548 rsa->actual_register_packet_size = 0;
549
550 /* Should rsa->sizeof_g_packet needs more space than the
551 default, adjust the size accordingly. Remember that each byte is
552 encoded as two characters. 32 is the overhead for the packet
553 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
554 (``$NN:G...#NN'') is a better guess, the below has been padded a
555 little. */
556 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
557 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
558
559 /* Make sure that the packet buffer is plenty big enough for
560 this architecture. */
561 if (rs->buf_size < rsa->remote_packet_size)
562 {
563 rs->buf_size = 2 * rsa->remote_packet_size;
564 rs->buf = xrealloc (rs->buf, rs->buf_size);
565 }
566
567 return rsa;
568 }
569
570 /* Return the current allowed size of a remote packet. This is
571 inferred from the current architecture, and should be used to
572 limit the length of outgoing packets. */
573 static long
574 get_remote_packet_size (void)
575 {
576 struct remote_state *rs = get_remote_state ();
577 struct remote_arch_state *rsa = get_remote_arch_state ();
578
579 if (rs->explicit_packet_size)
580 return rs->explicit_packet_size;
581
582 return rsa->remote_packet_size;
583 }
584
585 static struct packet_reg *
586 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
587 {
588 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
589 return NULL;
590 else
591 {
592 struct packet_reg *r = &rsa->regs[regnum];
593 gdb_assert (r->regnum == regnum);
594 return r;
595 }
596 }
597
598 static struct packet_reg *
599 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
600 {
601 int i;
602 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
603 {
604 struct packet_reg *r = &rsa->regs[i];
605 if (r->pnum == pnum)
606 return r;
607 }
608 return NULL;
609 }
610
611 /* FIXME: graces/2002-08-08: These variables should eventually be
612 bound to an instance of the target object (as in gdbarch-tdep()),
613 when such a thing exists. */
614
615 /* This is set to the data address of the access causing the target
616 to stop for a watchpoint. */
617 static CORE_ADDR remote_watch_data_address;
618
619 /* This is non-zero if target stopped for a watchpoint. */
620 static int remote_stopped_by_watchpoint_p;
621
622 static struct target_ops remote_ops;
623
624 static struct target_ops extended_remote_ops;
625
626 static int remote_async_mask_value = 1;
627
628 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
629 ``forever'' still use the normal timeout mechanism. This is
630 currently used by the ASYNC code to guarentee that target reads
631 during the initial connect always time-out. Once getpkt has been
632 modified to return a timeout indication and, in turn
633 remote_wait()/wait_for_inferior() have gained a timeout parameter
634 this can go away. */
635 static int wait_forever_enabled_p = 1;
636
637 /* Allow the user to specify what sequence to send to the remote
638 when he requests a program interruption: Although ^C is usually
639 what remote systems expect (this is the default, here), it is
640 sometimes preferable to send a break. On other systems such
641 as the Linux kernel, a break followed by g, which is Magic SysRq g
642 is required in order to interrupt the execution. */
643 const char interrupt_sequence_control_c[] = "Ctrl-C";
644 const char interrupt_sequence_break[] = "BREAK";
645 const char interrupt_sequence_break_g[] = "BREAK-g";
646 static const char *interrupt_sequence_modes[] =
647 {
648 interrupt_sequence_control_c,
649 interrupt_sequence_break,
650 interrupt_sequence_break_g,
651 NULL
652 };
653 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
654
655 static void
656 show_interrupt_sequence (struct ui_file *file, int from_tty,
657 struct cmd_list_element *c,
658 const char *value)
659 {
660 if (interrupt_sequence_mode == interrupt_sequence_control_c)
661 fprintf_filtered (file,
662 _("Send the ASCII ETX character (Ctrl-c) "
663 "to the remote target to interrupt the "
664 "execution of the program.\n"));
665 else if (interrupt_sequence_mode == interrupt_sequence_break)
666 fprintf_filtered (file,
667 _("send a break signal to the remote target "
668 "to interrupt the execution of the program.\n"));
669 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
670 fprintf_filtered (file,
671 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
672 "the remote target to interrupt the execution "
673 "of Linux kernel.\n"));
674 else
675 internal_error (__FILE__, __LINE__,
676 _("Invalid value for interrupt_sequence_mode: %s."),
677 interrupt_sequence_mode);
678 }
679
680 /* This boolean variable specifies whether interrupt_sequence is sent
681 to the remote target when gdb connects to it.
682 This is mostly needed when you debug the Linux kernel: The Linux kernel
683 expects BREAK g which is Magic SysRq g for connecting gdb. */
684 static int interrupt_on_connect = 0;
685
686 /* This variable is used to implement the "set/show remotebreak" commands.
687 Since these commands are now deprecated in favor of "set/show remote
688 interrupt-sequence", it no longer has any effect on the code. */
689 static int remote_break;
690
691 static void
692 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
693 {
694 if (remote_break)
695 interrupt_sequence_mode = interrupt_sequence_break;
696 else
697 interrupt_sequence_mode = interrupt_sequence_control_c;
698 }
699
700 static void
701 show_remotebreak (struct ui_file *file, int from_tty,
702 struct cmd_list_element *c,
703 const char *value)
704 {
705 }
706
707 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
708 remote_open knows that we don't have a file open when the program
709 starts. */
710 static struct serial *remote_desc = NULL;
711
712 /* This variable sets the number of bits in an address that are to be
713 sent in a memory ("M" or "m") packet. Normally, after stripping
714 leading zeros, the entire address would be sent. This variable
715 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
716 initial implementation of remote.c restricted the address sent in
717 memory packets to ``host::sizeof long'' bytes - (typically 32
718 bits). Consequently, for 64 bit targets, the upper 32 bits of an
719 address was never sent. Since fixing this bug may cause a break in
720 some remote targets this variable is principly provided to
721 facilitate backward compatibility. */
722
723 static int remote_address_size;
724
725 /* Temporary to track who currently owns the terminal. See
726 remote_terminal_* for more details. */
727
728 static int remote_async_terminal_ours_p;
729
730 /* The executable file to use for "run" on the remote side. */
731
732 static char *remote_exec_file = "";
733
734 \f
735 /* User configurable variables for the number of characters in a
736 memory read/write packet. MIN (rsa->remote_packet_size,
737 rsa->sizeof_g_packet) is the default. Some targets need smaller
738 values (fifo overruns, et.al.) and some users need larger values
739 (speed up transfers). The variables ``preferred_*'' (the user
740 request), ``current_*'' (what was actually set) and ``forced_*''
741 (Positive - a soft limit, negative - a hard limit). */
742
743 struct memory_packet_config
744 {
745 char *name;
746 long size;
747 int fixed_p;
748 };
749
750 /* Compute the current size of a read/write packet. Since this makes
751 use of ``actual_register_packet_size'' the computation is dynamic. */
752
753 static long
754 get_memory_packet_size (struct memory_packet_config *config)
755 {
756 struct remote_state *rs = get_remote_state ();
757 struct remote_arch_state *rsa = get_remote_arch_state ();
758
759 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
760 law?) that some hosts don't cope very well with large alloca()
761 calls. Eventually the alloca() code will be replaced by calls to
762 xmalloc() and make_cleanups() allowing this restriction to either
763 be lifted or removed. */
764 #ifndef MAX_REMOTE_PACKET_SIZE
765 #define MAX_REMOTE_PACKET_SIZE 16384
766 #endif
767 /* NOTE: 20 ensures we can write at least one byte. */
768 #ifndef MIN_REMOTE_PACKET_SIZE
769 #define MIN_REMOTE_PACKET_SIZE 20
770 #endif
771 long what_they_get;
772 if (config->fixed_p)
773 {
774 if (config->size <= 0)
775 what_they_get = MAX_REMOTE_PACKET_SIZE;
776 else
777 what_they_get = config->size;
778 }
779 else
780 {
781 what_they_get = get_remote_packet_size ();
782 /* Limit the packet to the size specified by the user. */
783 if (config->size > 0
784 && what_they_get > config->size)
785 what_they_get = config->size;
786
787 /* Limit it to the size of the targets ``g'' response unless we have
788 permission from the stub to use a larger packet size. */
789 if (rs->explicit_packet_size == 0
790 && rsa->actual_register_packet_size > 0
791 && what_they_get > rsa->actual_register_packet_size)
792 what_they_get = rsa->actual_register_packet_size;
793 }
794 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
795 what_they_get = MAX_REMOTE_PACKET_SIZE;
796 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
797 what_they_get = MIN_REMOTE_PACKET_SIZE;
798
799 /* Make sure there is room in the global buffer for this packet
800 (including its trailing NUL byte). */
801 if (rs->buf_size < what_they_get + 1)
802 {
803 rs->buf_size = 2 * what_they_get;
804 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
805 }
806
807 return what_they_get;
808 }
809
810 /* Update the size of a read/write packet. If they user wants
811 something really big then do a sanity check. */
812
813 static void
814 set_memory_packet_size (char *args, struct memory_packet_config *config)
815 {
816 int fixed_p = config->fixed_p;
817 long size = config->size;
818 if (args == NULL)
819 error (_("Argument required (integer, `fixed' or `limited')."));
820 else if (strcmp (args, "hard") == 0
821 || strcmp (args, "fixed") == 0)
822 fixed_p = 1;
823 else if (strcmp (args, "soft") == 0
824 || strcmp (args, "limit") == 0)
825 fixed_p = 0;
826 else
827 {
828 char *end;
829 size = strtoul (args, &end, 0);
830 if (args == end)
831 error (_("Invalid %s (bad syntax)."), config->name);
832 #if 0
833 /* Instead of explicitly capping the size of a packet to
834 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
835 instead allowed to set the size to something arbitrarily
836 large. */
837 if (size > MAX_REMOTE_PACKET_SIZE)
838 error (_("Invalid %s (too large)."), config->name);
839 #endif
840 }
841 /* Extra checks? */
842 if (fixed_p && !config->fixed_p)
843 {
844 if (! query (_("The target may not be able to correctly handle a %s\n"
845 "of %ld bytes. Change the packet size? "),
846 config->name, size))
847 error (_("Packet size not changed."));
848 }
849 /* Update the config. */
850 config->fixed_p = fixed_p;
851 config->size = size;
852 }
853
854 static void
855 show_memory_packet_size (struct memory_packet_config *config)
856 {
857 printf_filtered (_("The %s is %ld. "), config->name, config->size);
858 if (config->fixed_p)
859 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
860 get_memory_packet_size (config));
861 else
862 printf_filtered (_("Packets are limited to %ld bytes.\n"),
863 get_memory_packet_size (config));
864 }
865
866 static struct memory_packet_config memory_write_packet_config =
867 {
868 "memory-write-packet-size",
869 };
870
871 static void
872 set_memory_write_packet_size (char *args, int from_tty)
873 {
874 set_memory_packet_size (args, &memory_write_packet_config);
875 }
876
877 static void
878 show_memory_write_packet_size (char *args, int from_tty)
879 {
880 show_memory_packet_size (&memory_write_packet_config);
881 }
882
883 static long
884 get_memory_write_packet_size (void)
885 {
886 return get_memory_packet_size (&memory_write_packet_config);
887 }
888
889 static struct memory_packet_config memory_read_packet_config =
890 {
891 "memory-read-packet-size",
892 };
893
894 static void
895 set_memory_read_packet_size (char *args, int from_tty)
896 {
897 set_memory_packet_size (args, &memory_read_packet_config);
898 }
899
900 static void
901 show_memory_read_packet_size (char *args, int from_tty)
902 {
903 show_memory_packet_size (&memory_read_packet_config);
904 }
905
906 static long
907 get_memory_read_packet_size (void)
908 {
909 long size = get_memory_packet_size (&memory_read_packet_config);
910 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
911 extra buffer size argument before the memory read size can be
912 increased beyond this. */
913 if (size > get_remote_packet_size ())
914 size = get_remote_packet_size ();
915 return size;
916 }
917
918 \f
919 /* Generic configuration support for packets the stub optionally
920 supports. Allows the user to specify the use of the packet as well
921 as allowing GDB to auto-detect support in the remote stub. */
922
923 enum packet_support
924 {
925 PACKET_SUPPORT_UNKNOWN = 0,
926 PACKET_ENABLE,
927 PACKET_DISABLE
928 };
929
930 struct packet_config
931 {
932 const char *name;
933 const char *title;
934 enum auto_boolean detect;
935 enum packet_support support;
936 };
937
938 /* Analyze a packet's return value and update the packet config
939 accordingly. */
940
941 enum packet_result
942 {
943 PACKET_ERROR,
944 PACKET_OK,
945 PACKET_UNKNOWN
946 };
947
948 static void
949 update_packet_config (struct packet_config *config)
950 {
951 switch (config->detect)
952 {
953 case AUTO_BOOLEAN_TRUE:
954 config->support = PACKET_ENABLE;
955 break;
956 case AUTO_BOOLEAN_FALSE:
957 config->support = PACKET_DISABLE;
958 break;
959 case AUTO_BOOLEAN_AUTO:
960 config->support = PACKET_SUPPORT_UNKNOWN;
961 break;
962 }
963 }
964
965 static void
966 show_packet_config_cmd (struct packet_config *config)
967 {
968 char *support = "internal-error";
969 switch (config->support)
970 {
971 case PACKET_ENABLE:
972 support = "enabled";
973 break;
974 case PACKET_DISABLE:
975 support = "disabled";
976 break;
977 case PACKET_SUPPORT_UNKNOWN:
978 support = "unknown";
979 break;
980 }
981 switch (config->detect)
982 {
983 case AUTO_BOOLEAN_AUTO:
984 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
985 config->name, support);
986 break;
987 case AUTO_BOOLEAN_TRUE:
988 case AUTO_BOOLEAN_FALSE:
989 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
990 config->name, support);
991 break;
992 }
993 }
994
995 static void
996 add_packet_config_cmd (struct packet_config *config, const char *name,
997 const char *title, int legacy)
998 {
999 char *set_doc;
1000 char *show_doc;
1001 char *cmd_name;
1002
1003 config->name = name;
1004 config->title = title;
1005 config->detect = AUTO_BOOLEAN_AUTO;
1006 config->support = PACKET_SUPPORT_UNKNOWN;
1007 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1008 name, title);
1009 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1010 name, title);
1011 /* set/show TITLE-packet {auto,on,off} */
1012 cmd_name = xstrprintf ("%s-packet", title);
1013 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1014 &config->detect, set_doc, show_doc, NULL, /* help_doc */
1015 set_remote_protocol_packet_cmd,
1016 show_remote_protocol_packet_cmd,
1017 &remote_set_cmdlist, &remote_show_cmdlist);
1018 /* The command code copies the documentation strings. */
1019 xfree (set_doc);
1020 xfree (show_doc);
1021 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1022 if (legacy)
1023 {
1024 char *legacy_name;
1025 legacy_name = xstrprintf ("%s-packet", name);
1026 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1027 &remote_set_cmdlist);
1028 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1029 &remote_show_cmdlist);
1030 }
1031 }
1032
1033 static enum packet_result
1034 packet_check_result (const char *buf)
1035 {
1036 if (buf[0] != '\0')
1037 {
1038 /* The stub recognized the packet request. Check that the
1039 operation succeeded. */
1040 if (buf[0] == 'E'
1041 && isxdigit (buf[1]) && isxdigit (buf[2])
1042 && buf[3] == '\0')
1043 /* "Enn" - definitly an error. */
1044 return PACKET_ERROR;
1045
1046 /* Always treat "E." as an error. This will be used for
1047 more verbose error messages, such as E.memtypes. */
1048 if (buf[0] == 'E' && buf[1] == '.')
1049 return PACKET_ERROR;
1050
1051 /* The packet may or may not be OK. Just assume it is. */
1052 return PACKET_OK;
1053 }
1054 else
1055 /* The stub does not support the packet. */
1056 return PACKET_UNKNOWN;
1057 }
1058
1059 static enum packet_result
1060 packet_ok (const char *buf, struct packet_config *config)
1061 {
1062 enum packet_result result;
1063
1064 result = packet_check_result (buf);
1065 switch (result)
1066 {
1067 case PACKET_OK:
1068 case PACKET_ERROR:
1069 /* The stub recognized the packet request. */
1070 switch (config->support)
1071 {
1072 case PACKET_SUPPORT_UNKNOWN:
1073 if (remote_debug)
1074 fprintf_unfiltered (gdb_stdlog,
1075 "Packet %s (%s) is supported\n",
1076 config->name, config->title);
1077 config->support = PACKET_ENABLE;
1078 break;
1079 case PACKET_DISABLE:
1080 internal_error (__FILE__, __LINE__,
1081 _("packet_ok: attempt to use a disabled packet"));
1082 break;
1083 case PACKET_ENABLE:
1084 break;
1085 }
1086 break;
1087 case PACKET_UNKNOWN:
1088 /* The stub does not support the packet. */
1089 switch (config->support)
1090 {
1091 case PACKET_ENABLE:
1092 if (config->detect == AUTO_BOOLEAN_AUTO)
1093 /* If the stub previously indicated that the packet was
1094 supported then there is a protocol error.. */
1095 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1096 config->name, config->title);
1097 else
1098 /* The user set it wrong. */
1099 error (_("Enabled packet %s (%s) not recognized by stub"),
1100 config->name, config->title);
1101 break;
1102 case PACKET_SUPPORT_UNKNOWN:
1103 if (remote_debug)
1104 fprintf_unfiltered (gdb_stdlog,
1105 "Packet %s (%s) is NOT supported\n",
1106 config->name, config->title);
1107 config->support = PACKET_DISABLE;
1108 break;
1109 case PACKET_DISABLE:
1110 break;
1111 }
1112 break;
1113 }
1114
1115 return result;
1116 }
1117
1118 enum {
1119 PACKET_vCont = 0,
1120 PACKET_X,
1121 PACKET_qSymbol,
1122 PACKET_P,
1123 PACKET_p,
1124 PACKET_Z0,
1125 PACKET_Z1,
1126 PACKET_Z2,
1127 PACKET_Z3,
1128 PACKET_Z4,
1129 PACKET_vFile_open,
1130 PACKET_vFile_pread,
1131 PACKET_vFile_pwrite,
1132 PACKET_vFile_close,
1133 PACKET_vFile_unlink,
1134 PACKET_qXfer_auxv,
1135 PACKET_qXfer_features,
1136 PACKET_qXfer_libraries,
1137 PACKET_qXfer_memory_map,
1138 PACKET_qXfer_spu_read,
1139 PACKET_qXfer_spu_write,
1140 PACKET_qXfer_osdata,
1141 PACKET_qXfer_threads,
1142 PACKET_qGetTLSAddr,
1143 PACKET_qSupported,
1144 PACKET_QPassSignals,
1145 PACKET_qSearch_memory,
1146 PACKET_vAttach,
1147 PACKET_vRun,
1148 PACKET_QStartNoAckMode,
1149 PACKET_vKill,
1150 PACKET_qXfer_siginfo_read,
1151 PACKET_qXfer_siginfo_write,
1152 PACKET_qAttached,
1153 PACKET_ConditionalTracepoints,
1154 PACKET_FastTracepoints,
1155 PACKET_bc,
1156 PACKET_bs,
1157 PACKET_TracepointSource,
1158 PACKET_MAX
1159 };
1160
1161 static struct packet_config remote_protocol_packets[PACKET_MAX];
1162
1163 static void
1164 set_remote_protocol_packet_cmd (char *args, int from_tty,
1165 struct cmd_list_element *c)
1166 {
1167 struct packet_config *packet;
1168
1169 for (packet = remote_protocol_packets;
1170 packet < &remote_protocol_packets[PACKET_MAX];
1171 packet++)
1172 {
1173 if (&packet->detect == c->var)
1174 {
1175 update_packet_config (packet);
1176 return;
1177 }
1178 }
1179 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1180 c->name);
1181 }
1182
1183 static void
1184 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1185 struct cmd_list_element *c,
1186 const char *value)
1187 {
1188 struct packet_config *packet;
1189
1190 for (packet = remote_protocol_packets;
1191 packet < &remote_protocol_packets[PACKET_MAX];
1192 packet++)
1193 {
1194 if (&packet->detect == c->var)
1195 {
1196 show_packet_config_cmd (packet);
1197 return;
1198 }
1199 }
1200 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1201 c->name);
1202 }
1203
1204 /* Should we try one of the 'Z' requests? */
1205
1206 enum Z_packet_type
1207 {
1208 Z_PACKET_SOFTWARE_BP,
1209 Z_PACKET_HARDWARE_BP,
1210 Z_PACKET_WRITE_WP,
1211 Z_PACKET_READ_WP,
1212 Z_PACKET_ACCESS_WP,
1213 NR_Z_PACKET_TYPES
1214 };
1215
1216 /* For compatibility with older distributions. Provide a ``set remote
1217 Z-packet ...'' command that updates all the Z packet types. */
1218
1219 static enum auto_boolean remote_Z_packet_detect;
1220
1221 static void
1222 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1223 struct cmd_list_element *c)
1224 {
1225 int i;
1226 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1227 {
1228 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1229 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1230 }
1231 }
1232
1233 static void
1234 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1235 struct cmd_list_element *c,
1236 const char *value)
1237 {
1238 int i;
1239 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1240 {
1241 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1242 }
1243 }
1244
1245 /* Should we try the 'ThreadInfo' query packet?
1246
1247 This variable (NOT available to the user: auto-detect only!)
1248 determines whether GDB will use the new, simpler "ThreadInfo"
1249 query or the older, more complex syntax for thread queries.
1250 This is an auto-detect variable (set to true at each connect,
1251 and set to false when the target fails to recognize it). */
1252
1253 static int use_threadinfo_query;
1254 static int use_threadextra_query;
1255
1256 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1257 static struct async_signal_handler *sigint_remote_twice_token;
1258 static struct async_signal_handler *sigint_remote_token;
1259
1260 \f
1261 /* Asynchronous signal handle registered as event loop source for
1262 when we have pending events ready to be passed to the core. */
1263
1264 static struct async_event_handler *remote_async_inferior_event_token;
1265
1266 /* Asynchronous signal handle registered as event loop source for when
1267 the remote sent us a %Stop notification. The registered callback
1268 will do a vStopped sequence to pull the rest of the events out of
1269 the remote side into our event queue. */
1270
1271 static struct async_event_handler *remote_async_get_pending_events_token;
1272 \f
1273
1274 static ptid_t magic_null_ptid;
1275 static ptid_t not_sent_ptid;
1276 static ptid_t any_thread_ptid;
1277
1278 /* These are the threads which we last sent to the remote system. The
1279 TID member will be -1 for all or -2 for not sent yet. */
1280
1281 static ptid_t general_thread;
1282 static ptid_t continue_thread;
1283
1284 /* Find out if the stub attached to PID (and hence GDB should offer to
1285 detach instead of killing it when bailing out). */
1286
1287 static int
1288 remote_query_attached (int pid)
1289 {
1290 struct remote_state *rs = get_remote_state ();
1291
1292 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1293 return 0;
1294
1295 if (remote_multi_process_p (rs))
1296 sprintf (rs->buf, "qAttached:%x", pid);
1297 else
1298 sprintf (rs->buf, "qAttached");
1299
1300 putpkt (rs->buf);
1301 getpkt (&rs->buf, &rs->buf_size, 0);
1302
1303 switch (packet_ok (rs->buf,
1304 &remote_protocol_packets[PACKET_qAttached]))
1305 {
1306 case PACKET_OK:
1307 if (strcmp (rs->buf, "1") == 0)
1308 return 1;
1309 break;
1310 case PACKET_ERROR:
1311 warning (_("Remote failure reply: %s"), rs->buf);
1312 break;
1313 case PACKET_UNKNOWN:
1314 break;
1315 }
1316
1317 return 0;
1318 }
1319
1320 /* Add PID to GDB's inferior table. Since we can be connected to a
1321 remote system before before knowing about any inferior, mark the
1322 target with execution when we find the first inferior. If ATTACHED
1323 is 1, then we had just attached to this inferior. If it is 0, then
1324 we just created this inferior. If it is -1, then try querying the
1325 remote stub to find out if it had attached to the inferior or
1326 not. */
1327
1328 static struct inferior *
1329 remote_add_inferior (int pid, int attached)
1330 {
1331 struct inferior *inf;
1332
1333 /* Check whether this process we're learning about is to be
1334 considered attached, or if is to be considered to have been
1335 spawned by the stub. */
1336 if (attached == -1)
1337 attached = remote_query_attached (pid);
1338
1339 if (gdbarch_has_global_solist (target_gdbarch))
1340 {
1341 /* If the target shares code across all inferiors, then every
1342 attach adds a new inferior. */
1343 inf = add_inferior (pid);
1344
1345 /* ... and every inferior is bound to the same program space.
1346 However, each inferior may still have its own address
1347 space. */
1348 inf->aspace = maybe_new_address_space ();
1349 inf->pspace = current_program_space;
1350 }
1351 else
1352 {
1353 /* In the traditional debugging scenario, there's a 1-1 match
1354 between program/address spaces. We simply bind the inferior
1355 to the program space's address space. */
1356 inf = current_inferior ();
1357 inferior_appeared (inf, pid);
1358 }
1359
1360 inf->attach_flag = attached;
1361
1362 return inf;
1363 }
1364
1365 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1366 according to RUNNING. */
1367
1368 static void
1369 remote_add_thread (ptid_t ptid, int running)
1370 {
1371 add_thread (ptid);
1372
1373 set_executing (ptid, running);
1374 set_running (ptid, running);
1375 }
1376
1377 /* Come here when we learn about a thread id from the remote target.
1378 It may be the first time we hear about such thread, so take the
1379 opportunity to add it to GDB's thread list. In case this is the
1380 first time we're noticing its corresponding inferior, add it to
1381 GDB's inferior list as well. */
1382
1383 static void
1384 remote_notice_new_inferior (ptid_t currthread, int running)
1385 {
1386 /* If this is a new thread, add it to GDB's thread list.
1387 If we leave it up to WFI to do this, bad things will happen. */
1388
1389 if (in_thread_list (currthread) && is_exited (currthread))
1390 {
1391 /* We're seeing an event on a thread id we knew had exited.
1392 This has to be a new thread reusing the old id. Add it. */
1393 remote_add_thread (currthread, running);
1394 return;
1395 }
1396
1397 if (!in_thread_list (currthread))
1398 {
1399 struct inferior *inf = NULL;
1400 int pid = ptid_get_pid (currthread);
1401
1402 if (ptid_is_pid (inferior_ptid)
1403 && pid == ptid_get_pid (inferior_ptid))
1404 {
1405 /* inferior_ptid has no thread member yet. This can happen
1406 with the vAttach -> remote_wait,"TAAthread:" path if the
1407 stub doesn't support qC. This is the first stop reported
1408 after an attach, so this is the main thread. Update the
1409 ptid in the thread list. */
1410 if (in_thread_list (pid_to_ptid (pid)))
1411 thread_change_ptid (inferior_ptid, currthread);
1412 else
1413 {
1414 remote_add_thread (currthread, running);
1415 inferior_ptid = currthread;
1416 }
1417 return;
1418 }
1419
1420 if (ptid_equal (magic_null_ptid, inferior_ptid))
1421 {
1422 /* inferior_ptid is not set yet. This can happen with the
1423 vRun -> remote_wait,"TAAthread:" path if the stub
1424 doesn't support qC. This is the first stop reported
1425 after an attach, so this is the main thread. Update the
1426 ptid in the thread list. */
1427 thread_change_ptid (inferior_ptid, currthread);
1428 return;
1429 }
1430
1431 /* When connecting to a target remote, or to a target
1432 extended-remote which already was debugging an inferior, we
1433 may not know about it yet. Add it before adding its child
1434 thread, so notifications are emitted in a sensible order. */
1435 if (!in_inferior_list (ptid_get_pid (currthread)))
1436 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1437
1438 /* This is really a new thread. Add it. */
1439 remote_add_thread (currthread, running);
1440
1441 /* If we found a new inferior, let the common code do whatever
1442 it needs to with it (e.g., read shared libraries, insert
1443 breakpoints). */
1444 if (inf != NULL)
1445 notice_new_inferior (currthread, running, 0);
1446 }
1447 }
1448
1449 /* Return the private thread data, creating it if necessary. */
1450
1451 struct private_thread_info *
1452 demand_private_info (ptid_t ptid)
1453 {
1454 struct thread_info *info = find_thread_ptid (ptid);
1455
1456 gdb_assert (info);
1457
1458 if (!info->private)
1459 {
1460 info->private = xmalloc (sizeof (*(info->private)));
1461 info->private_dtor = free_private_thread_info;
1462 info->private->core = -1;
1463 info->private->extra = 0;
1464 }
1465
1466 return info->private;
1467 }
1468
1469 /* Call this function as a result of
1470 1) A halt indication (T packet) containing a thread id
1471 2) A direct query of currthread
1472 3) Successful execution of set thread
1473 */
1474
1475 static void
1476 record_currthread (ptid_t currthread)
1477 {
1478 general_thread = currthread;
1479 }
1480
1481 static char *last_pass_packet;
1482
1483 /* If 'QPassSignals' is supported, tell the remote stub what signals
1484 it can simply pass through to the inferior without reporting. */
1485
1486 static void
1487 remote_pass_signals (void)
1488 {
1489 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1490 {
1491 char *pass_packet, *p;
1492 int numsigs = (int) TARGET_SIGNAL_LAST;
1493 int count = 0, i;
1494
1495 gdb_assert (numsigs < 256);
1496 for (i = 0; i < numsigs; i++)
1497 {
1498 if (signal_stop_state (i) == 0
1499 && signal_print_state (i) == 0
1500 && signal_pass_state (i) == 1)
1501 count++;
1502 }
1503 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1504 strcpy (pass_packet, "QPassSignals:");
1505 p = pass_packet + strlen (pass_packet);
1506 for (i = 0; i < numsigs; i++)
1507 {
1508 if (signal_stop_state (i) == 0
1509 && signal_print_state (i) == 0
1510 && signal_pass_state (i) == 1)
1511 {
1512 if (i >= 16)
1513 *p++ = tohex (i >> 4);
1514 *p++ = tohex (i & 15);
1515 if (count)
1516 *p++ = ';';
1517 else
1518 break;
1519 count--;
1520 }
1521 }
1522 *p = 0;
1523 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1524 {
1525 struct remote_state *rs = get_remote_state ();
1526 char *buf = rs->buf;
1527
1528 putpkt (pass_packet);
1529 getpkt (&rs->buf, &rs->buf_size, 0);
1530 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1531 if (last_pass_packet)
1532 xfree (last_pass_packet);
1533 last_pass_packet = pass_packet;
1534 }
1535 else
1536 xfree (pass_packet);
1537 }
1538 }
1539
1540 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1541 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1542 thread. If GEN is set, set the general thread, if not, then set
1543 the step/continue thread. */
1544 static void
1545 set_thread (struct ptid ptid, int gen)
1546 {
1547 struct remote_state *rs = get_remote_state ();
1548 ptid_t state = gen ? general_thread : continue_thread;
1549 char *buf = rs->buf;
1550 char *endbuf = rs->buf + get_remote_packet_size ();
1551
1552 if (ptid_equal (state, ptid))
1553 return;
1554
1555 *buf++ = 'H';
1556 *buf++ = gen ? 'g' : 'c';
1557 if (ptid_equal (ptid, magic_null_ptid))
1558 xsnprintf (buf, endbuf - buf, "0");
1559 else if (ptid_equal (ptid, any_thread_ptid))
1560 xsnprintf (buf, endbuf - buf, "0");
1561 else if (ptid_equal (ptid, minus_one_ptid))
1562 xsnprintf (buf, endbuf - buf, "-1");
1563 else
1564 write_ptid (buf, endbuf, ptid);
1565 putpkt (rs->buf);
1566 getpkt (&rs->buf, &rs->buf_size, 0);
1567 if (gen)
1568 general_thread = ptid;
1569 else
1570 continue_thread = ptid;
1571 }
1572
1573 static void
1574 set_general_thread (struct ptid ptid)
1575 {
1576 set_thread (ptid, 1);
1577 }
1578
1579 static void
1580 set_continue_thread (struct ptid ptid)
1581 {
1582 set_thread (ptid, 0);
1583 }
1584
1585 /* Change the remote current process. Which thread within the process
1586 ends up selected isn't important, as long as it is the same process
1587 as what INFERIOR_PTID points to.
1588
1589 This comes from that fact that there is no explicit notion of
1590 "selected process" in the protocol. The selected process for
1591 general operations is the process the selected general thread
1592 belongs to. */
1593
1594 static void
1595 set_general_process (void)
1596 {
1597 struct remote_state *rs = get_remote_state ();
1598
1599 /* If the remote can't handle multiple processes, don't bother. */
1600 if (!remote_multi_process_p (rs))
1601 return;
1602
1603 /* We only need to change the remote current thread if it's pointing
1604 at some other process. */
1605 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1606 set_general_thread (inferior_ptid);
1607 }
1608
1609 \f
1610 /* Return nonzero if the thread PTID is still alive on the remote
1611 system. */
1612
1613 static int
1614 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1615 {
1616 struct remote_state *rs = get_remote_state ();
1617 char *p, *endp;
1618
1619 if (ptid_equal (ptid, magic_null_ptid))
1620 /* The main thread is always alive. */
1621 return 1;
1622
1623 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1624 /* The main thread is always alive. This can happen after a
1625 vAttach, if the remote side doesn't support
1626 multi-threading. */
1627 return 1;
1628
1629 p = rs->buf;
1630 endp = rs->buf + get_remote_packet_size ();
1631
1632 *p++ = 'T';
1633 write_ptid (p, endp, ptid);
1634
1635 putpkt (rs->buf);
1636 getpkt (&rs->buf, &rs->buf_size, 0);
1637 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1638 }
1639
1640 /* About these extended threadlist and threadinfo packets. They are
1641 variable length packets but, the fields within them are often fixed
1642 length. They are redundent enough to send over UDP as is the
1643 remote protocol in general. There is a matching unit test module
1644 in libstub. */
1645
1646 #define OPAQUETHREADBYTES 8
1647
1648 /* a 64 bit opaque identifier */
1649 typedef unsigned char threadref[OPAQUETHREADBYTES];
1650
1651 /* WARNING: This threadref data structure comes from the remote O.S.,
1652 libstub protocol encoding, and remote.c. it is not particularly
1653 changable. */
1654
1655 /* Right now, the internal structure is int. We want it to be bigger.
1656 Plan to fix this.
1657 */
1658
1659 typedef int gdb_threadref; /* Internal GDB thread reference. */
1660
1661 /* gdb_ext_thread_info is an internal GDB data structure which is
1662 equivalent to the reply of the remote threadinfo packet. */
1663
1664 struct gdb_ext_thread_info
1665 {
1666 threadref threadid; /* External form of thread reference. */
1667 int active; /* Has state interesting to GDB?
1668 regs, stack. */
1669 char display[256]; /* Brief state display, name,
1670 blocked/suspended. */
1671 char shortname[32]; /* To be used to name threads. */
1672 char more_display[256]; /* Long info, statistics, queue depth,
1673 whatever. */
1674 };
1675
1676 /* The volume of remote transfers can be limited by submitting
1677 a mask containing bits specifying the desired information.
1678 Use a union of these values as the 'selection' parameter to
1679 get_thread_info. FIXME: Make these TAG names more thread specific.
1680 */
1681
1682 #define TAG_THREADID 1
1683 #define TAG_EXISTS 2
1684 #define TAG_DISPLAY 4
1685 #define TAG_THREADNAME 8
1686 #define TAG_MOREDISPLAY 16
1687
1688 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1689
1690 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1691
1692 static char *unpack_nibble (char *buf, int *val);
1693
1694 static char *pack_nibble (char *buf, int nibble);
1695
1696 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1697
1698 static char *unpack_byte (char *buf, int *value);
1699
1700 static char *pack_int (char *buf, int value);
1701
1702 static char *unpack_int (char *buf, int *value);
1703
1704 static char *unpack_string (char *src, char *dest, int length);
1705
1706 static char *pack_threadid (char *pkt, threadref *id);
1707
1708 static char *unpack_threadid (char *inbuf, threadref *id);
1709
1710 void int_to_threadref (threadref *id, int value);
1711
1712 static int threadref_to_int (threadref *ref);
1713
1714 static void copy_threadref (threadref *dest, threadref *src);
1715
1716 static int threadmatch (threadref *dest, threadref *src);
1717
1718 static char *pack_threadinfo_request (char *pkt, int mode,
1719 threadref *id);
1720
1721 static int remote_unpack_thread_info_response (char *pkt,
1722 threadref *expectedref,
1723 struct gdb_ext_thread_info
1724 *info);
1725
1726
1727 static int remote_get_threadinfo (threadref *threadid,
1728 int fieldset, /*TAG mask */
1729 struct gdb_ext_thread_info *info);
1730
1731 static char *pack_threadlist_request (char *pkt, int startflag,
1732 int threadcount,
1733 threadref *nextthread);
1734
1735 static int parse_threadlist_response (char *pkt,
1736 int result_limit,
1737 threadref *original_echo,
1738 threadref *resultlist,
1739 int *doneflag);
1740
1741 static int remote_get_threadlist (int startflag,
1742 threadref *nextthread,
1743 int result_limit,
1744 int *done,
1745 int *result_count,
1746 threadref *threadlist);
1747
1748 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1749
1750 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1751 void *context, int looplimit);
1752
1753 static int remote_newthread_step (threadref *ref, void *context);
1754
1755
1756 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1757 buffer we're allowed to write to. Returns
1758 BUF+CHARACTERS_WRITTEN. */
1759
1760 static char *
1761 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1762 {
1763 int pid, tid;
1764 struct remote_state *rs = get_remote_state ();
1765
1766 if (remote_multi_process_p (rs))
1767 {
1768 pid = ptid_get_pid (ptid);
1769 if (pid < 0)
1770 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1771 else
1772 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1773 }
1774 tid = ptid_get_tid (ptid);
1775 if (tid < 0)
1776 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1777 else
1778 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1779
1780 return buf;
1781 }
1782
1783 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1784 passed the last parsed char. Returns null_ptid on error. */
1785
1786 static ptid_t
1787 read_ptid (char *buf, char **obuf)
1788 {
1789 char *p = buf;
1790 char *pp;
1791 ULONGEST pid = 0, tid = 0;
1792
1793 if (*p == 'p')
1794 {
1795 /* Multi-process ptid. */
1796 pp = unpack_varlen_hex (p + 1, &pid);
1797 if (*pp != '.')
1798 error (_("invalid remote ptid: %s\n"), p);
1799
1800 p = pp;
1801 pp = unpack_varlen_hex (p + 1, &tid);
1802 if (obuf)
1803 *obuf = pp;
1804 return ptid_build (pid, 0, tid);
1805 }
1806
1807 /* No multi-process. Just a tid. */
1808 pp = unpack_varlen_hex (p, &tid);
1809
1810 /* Since the stub is not sending a process id, then default to
1811 what's in inferior_ptid, unless it's null at this point. If so,
1812 then since there's no way to know the pid of the reported
1813 threads, use the magic number. */
1814 if (ptid_equal (inferior_ptid, null_ptid))
1815 pid = ptid_get_pid (magic_null_ptid);
1816 else
1817 pid = ptid_get_pid (inferior_ptid);
1818
1819 if (obuf)
1820 *obuf = pp;
1821 return ptid_build (pid, 0, tid);
1822 }
1823
1824 /* Encode 64 bits in 16 chars of hex. */
1825
1826 static const char hexchars[] = "0123456789abcdef";
1827
1828 static int
1829 ishex (int ch, int *val)
1830 {
1831 if ((ch >= 'a') && (ch <= 'f'))
1832 {
1833 *val = ch - 'a' + 10;
1834 return 1;
1835 }
1836 if ((ch >= 'A') && (ch <= 'F'))
1837 {
1838 *val = ch - 'A' + 10;
1839 return 1;
1840 }
1841 if ((ch >= '0') && (ch <= '9'))
1842 {
1843 *val = ch - '0';
1844 return 1;
1845 }
1846 return 0;
1847 }
1848
1849 static int
1850 stubhex (int ch)
1851 {
1852 if (ch >= 'a' && ch <= 'f')
1853 return ch - 'a' + 10;
1854 if (ch >= '0' && ch <= '9')
1855 return ch - '0';
1856 if (ch >= 'A' && ch <= 'F')
1857 return ch - 'A' + 10;
1858 return -1;
1859 }
1860
1861 static int
1862 stub_unpack_int (char *buff, int fieldlength)
1863 {
1864 int nibble;
1865 int retval = 0;
1866
1867 while (fieldlength)
1868 {
1869 nibble = stubhex (*buff++);
1870 retval |= nibble;
1871 fieldlength--;
1872 if (fieldlength)
1873 retval = retval << 4;
1874 }
1875 return retval;
1876 }
1877
1878 char *
1879 unpack_varlen_hex (char *buff, /* packet to parse */
1880 ULONGEST *result)
1881 {
1882 int nibble;
1883 ULONGEST retval = 0;
1884
1885 while (ishex (*buff, &nibble))
1886 {
1887 buff++;
1888 retval = retval << 4;
1889 retval |= nibble & 0x0f;
1890 }
1891 *result = retval;
1892 return buff;
1893 }
1894
1895 static char *
1896 unpack_nibble (char *buf, int *val)
1897 {
1898 *val = fromhex (*buf++);
1899 return buf;
1900 }
1901
1902 static char *
1903 pack_nibble (char *buf, int nibble)
1904 {
1905 *buf++ = hexchars[(nibble & 0x0f)];
1906 return buf;
1907 }
1908
1909 static char *
1910 pack_hex_byte (char *pkt, int byte)
1911 {
1912 *pkt++ = hexchars[(byte >> 4) & 0xf];
1913 *pkt++ = hexchars[(byte & 0xf)];
1914 return pkt;
1915 }
1916
1917 static char *
1918 unpack_byte (char *buf, int *value)
1919 {
1920 *value = stub_unpack_int (buf, 2);
1921 return buf + 2;
1922 }
1923
1924 static char *
1925 pack_int (char *buf, int value)
1926 {
1927 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1928 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1929 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1930 buf = pack_hex_byte (buf, (value & 0xff));
1931 return buf;
1932 }
1933
1934 static char *
1935 unpack_int (char *buf, int *value)
1936 {
1937 *value = stub_unpack_int (buf, 8);
1938 return buf + 8;
1939 }
1940
1941 #if 0 /* Currently unused, uncomment when needed. */
1942 static char *pack_string (char *pkt, char *string);
1943
1944 static char *
1945 pack_string (char *pkt, char *string)
1946 {
1947 char ch;
1948 int len;
1949
1950 len = strlen (string);
1951 if (len > 200)
1952 len = 200; /* Bigger than most GDB packets, junk??? */
1953 pkt = pack_hex_byte (pkt, len);
1954 while (len-- > 0)
1955 {
1956 ch = *string++;
1957 if ((ch == '\0') || (ch == '#'))
1958 ch = '*'; /* Protect encapsulation. */
1959 *pkt++ = ch;
1960 }
1961 return pkt;
1962 }
1963 #endif /* 0 (unused) */
1964
1965 static char *
1966 unpack_string (char *src, char *dest, int length)
1967 {
1968 while (length--)
1969 *dest++ = *src++;
1970 *dest = '\0';
1971 return src;
1972 }
1973
1974 static char *
1975 pack_threadid (char *pkt, threadref *id)
1976 {
1977 char *limit;
1978 unsigned char *altid;
1979
1980 altid = (unsigned char *) id;
1981 limit = pkt + BUF_THREAD_ID_SIZE;
1982 while (pkt < limit)
1983 pkt = pack_hex_byte (pkt, *altid++);
1984 return pkt;
1985 }
1986
1987
1988 static char *
1989 unpack_threadid (char *inbuf, threadref *id)
1990 {
1991 char *altref;
1992 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1993 int x, y;
1994
1995 altref = (char *) id;
1996
1997 while (inbuf < limit)
1998 {
1999 x = stubhex (*inbuf++);
2000 y = stubhex (*inbuf++);
2001 *altref++ = (x << 4) | y;
2002 }
2003 return inbuf;
2004 }
2005
2006 /* Externally, threadrefs are 64 bits but internally, they are still
2007 ints. This is due to a mismatch of specifications. We would like
2008 to use 64bit thread references internally. This is an adapter
2009 function. */
2010
2011 void
2012 int_to_threadref (threadref *id, int value)
2013 {
2014 unsigned char *scan;
2015
2016 scan = (unsigned char *) id;
2017 {
2018 int i = 4;
2019 while (i--)
2020 *scan++ = 0;
2021 }
2022 *scan++ = (value >> 24) & 0xff;
2023 *scan++ = (value >> 16) & 0xff;
2024 *scan++ = (value >> 8) & 0xff;
2025 *scan++ = (value & 0xff);
2026 }
2027
2028 static int
2029 threadref_to_int (threadref *ref)
2030 {
2031 int i, value = 0;
2032 unsigned char *scan;
2033
2034 scan = *ref;
2035 scan += 4;
2036 i = 4;
2037 while (i-- > 0)
2038 value = (value << 8) | ((*scan++) & 0xff);
2039 return value;
2040 }
2041
2042 static void
2043 copy_threadref (threadref *dest, threadref *src)
2044 {
2045 int i;
2046 unsigned char *csrc, *cdest;
2047
2048 csrc = (unsigned char *) src;
2049 cdest = (unsigned char *) dest;
2050 i = 8;
2051 while (i--)
2052 *cdest++ = *csrc++;
2053 }
2054
2055 static int
2056 threadmatch (threadref *dest, threadref *src)
2057 {
2058 /* Things are broken right now, so just assume we got a match. */
2059 #if 0
2060 unsigned char *srcp, *destp;
2061 int i, result;
2062 srcp = (char *) src;
2063 destp = (char *) dest;
2064
2065 result = 1;
2066 while (i-- > 0)
2067 result &= (*srcp++ == *destp++) ? 1 : 0;
2068 return result;
2069 #endif
2070 return 1;
2071 }
2072
2073 /*
2074 threadid:1, # always request threadid
2075 context_exists:2,
2076 display:4,
2077 unique_name:8,
2078 more_display:16
2079 */
2080
2081 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2082
2083 static char *
2084 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2085 {
2086 *pkt++ = 'q'; /* Info Query */
2087 *pkt++ = 'P'; /* process or thread info */
2088 pkt = pack_int (pkt, mode); /* mode */
2089 pkt = pack_threadid (pkt, id); /* threadid */
2090 *pkt = '\0'; /* terminate */
2091 return pkt;
2092 }
2093
2094 /* These values tag the fields in a thread info response packet. */
2095 /* Tagging the fields allows us to request specific fields and to
2096 add more fields as time goes by. */
2097
2098 #define TAG_THREADID 1 /* Echo the thread identifier. */
2099 #define TAG_EXISTS 2 /* Is this process defined enough to
2100 fetch registers and its stack? */
2101 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2102 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2103 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2104 the process. */
2105
2106 static int
2107 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2108 struct gdb_ext_thread_info *info)
2109 {
2110 struct remote_state *rs = get_remote_state ();
2111 int mask, length;
2112 int tag;
2113 threadref ref;
2114 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2115 int retval = 1;
2116
2117 /* info->threadid = 0; FIXME: implement zero_threadref. */
2118 info->active = 0;
2119 info->display[0] = '\0';
2120 info->shortname[0] = '\0';
2121 info->more_display[0] = '\0';
2122
2123 /* Assume the characters indicating the packet type have been
2124 stripped. */
2125 pkt = unpack_int (pkt, &mask); /* arg mask */
2126 pkt = unpack_threadid (pkt, &ref);
2127
2128 if (mask == 0)
2129 warning (_("Incomplete response to threadinfo request."));
2130 if (!threadmatch (&ref, expectedref))
2131 { /* This is an answer to a different request. */
2132 warning (_("ERROR RMT Thread info mismatch."));
2133 return 0;
2134 }
2135 copy_threadref (&info->threadid, &ref);
2136
2137 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2138
2139 /* Packets are terminated with nulls. */
2140 while ((pkt < limit) && mask && *pkt)
2141 {
2142 pkt = unpack_int (pkt, &tag); /* tag */
2143 pkt = unpack_byte (pkt, &length); /* length */
2144 if (!(tag & mask)) /* Tags out of synch with mask. */
2145 {
2146 warning (_("ERROR RMT: threadinfo tag mismatch."));
2147 retval = 0;
2148 break;
2149 }
2150 if (tag == TAG_THREADID)
2151 {
2152 if (length != 16)
2153 {
2154 warning (_("ERROR RMT: length of threadid is not 16."));
2155 retval = 0;
2156 break;
2157 }
2158 pkt = unpack_threadid (pkt, &ref);
2159 mask = mask & ~TAG_THREADID;
2160 continue;
2161 }
2162 if (tag == TAG_EXISTS)
2163 {
2164 info->active = stub_unpack_int (pkt, length);
2165 pkt += length;
2166 mask = mask & ~(TAG_EXISTS);
2167 if (length > 8)
2168 {
2169 warning (_("ERROR RMT: 'exists' length too long."));
2170 retval = 0;
2171 break;
2172 }
2173 continue;
2174 }
2175 if (tag == TAG_THREADNAME)
2176 {
2177 pkt = unpack_string (pkt, &info->shortname[0], length);
2178 mask = mask & ~TAG_THREADNAME;
2179 continue;
2180 }
2181 if (tag == TAG_DISPLAY)
2182 {
2183 pkt = unpack_string (pkt, &info->display[0], length);
2184 mask = mask & ~TAG_DISPLAY;
2185 continue;
2186 }
2187 if (tag == TAG_MOREDISPLAY)
2188 {
2189 pkt = unpack_string (pkt, &info->more_display[0], length);
2190 mask = mask & ~TAG_MOREDISPLAY;
2191 continue;
2192 }
2193 warning (_("ERROR RMT: unknown thread info tag."));
2194 break; /* Not a tag we know about. */
2195 }
2196 return retval;
2197 }
2198
2199 static int
2200 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2201 struct gdb_ext_thread_info *info)
2202 {
2203 struct remote_state *rs = get_remote_state ();
2204 int result;
2205
2206 pack_threadinfo_request (rs->buf, fieldset, threadid);
2207 putpkt (rs->buf);
2208 getpkt (&rs->buf, &rs->buf_size, 0);
2209
2210 if (rs->buf[0] == '\0')
2211 return 0;
2212
2213 result = remote_unpack_thread_info_response (rs->buf + 2,
2214 threadid, info);
2215 return result;
2216 }
2217
2218 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2219
2220 static char *
2221 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2222 threadref *nextthread)
2223 {
2224 *pkt++ = 'q'; /* info query packet */
2225 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2226 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2227 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2228 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2229 *pkt = '\0';
2230 return pkt;
2231 }
2232
2233 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2234
2235 static int
2236 parse_threadlist_response (char *pkt, int result_limit,
2237 threadref *original_echo, threadref *resultlist,
2238 int *doneflag)
2239 {
2240 struct remote_state *rs = get_remote_state ();
2241 char *limit;
2242 int count, resultcount, done;
2243
2244 resultcount = 0;
2245 /* Assume the 'q' and 'M chars have been stripped. */
2246 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2247 /* done parse past here */
2248 pkt = unpack_byte (pkt, &count); /* count field */
2249 pkt = unpack_nibble (pkt, &done);
2250 /* The first threadid is the argument threadid. */
2251 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2252 while ((count-- > 0) && (pkt < limit))
2253 {
2254 pkt = unpack_threadid (pkt, resultlist++);
2255 if (resultcount++ >= result_limit)
2256 break;
2257 }
2258 if (doneflag)
2259 *doneflag = done;
2260 return resultcount;
2261 }
2262
2263 static int
2264 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2265 int *done, int *result_count, threadref *threadlist)
2266 {
2267 struct remote_state *rs = get_remote_state ();
2268 static threadref echo_nextthread;
2269 int result = 1;
2270
2271 /* Trancate result limit to be smaller than the packet size. */
2272 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2273 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2274
2275 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2276 putpkt (rs->buf);
2277 getpkt (&rs->buf, &rs->buf_size, 0);
2278
2279 if (*rs->buf == '\0')
2280 *result_count = 0;
2281 else
2282 *result_count =
2283 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2284 threadlist, done);
2285
2286 if (!threadmatch (&echo_nextthread, nextthread))
2287 {
2288 /* FIXME: This is a good reason to drop the packet. */
2289 /* Possably, there is a duplicate response. */
2290 /* Possabilities :
2291 retransmit immediatly - race conditions
2292 retransmit after timeout - yes
2293 exit
2294 wait for packet, then exit
2295 */
2296 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2297 return 0; /* I choose simply exiting. */
2298 }
2299 if (*result_count <= 0)
2300 {
2301 if (*done != 1)
2302 {
2303 warning (_("RMT ERROR : failed to get remote thread list."));
2304 result = 0;
2305 }
2306 return result; /* break; */
2307 }
2308 if (*result_count > result_limit)
2309 {
2310 *result_count = 0;
2311 warning (_("RMT ERROR: threadlist response longer than requested."));
2312 return 0;
2313 }
2314 return result;
2315 }
2316
2317 /* This is the interface between remote and threads, remotes upper
2318 interface. */
2319
2320 /* remote_find_new_threads retrieves the thread list and for each
2321 thread in the list, looks up the thread in GDB's internal list,
2322 adding the thread if it does not already exist. This involves
2323 getting partial thread lists from the remote target so, polling the
2324 quit_flag is required. */
2325
2326
2327 /* About this many threadisds fit in a packet. */
2328
2329 #define MAXTHREADLISTRESULTS 32
2330
2331 static int
2332 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2333 int looplimit)
2334 {
2335 int done, i, result_count;
2336 int startflag = 1;
2337 int result = 1;
2338 int loopcount = 0;
2339 static threadref nextthread;
2340 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2341
2342 done = 0;
2343 while (!done)
2344 {
2345 if (loopcount++ > looplimit)
2346 {
2347 result = 0;
2348 warning (_("Remote fetch threadlist -infinite loop-."));
2349 break;
2350 }
2351 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2352 &done, &result_count, resultthreadlist))
2353 {
2354 result = 0;
2355 break;
2356 }
2357 /* Clear for later iterations. */
2358 startflag = 0;
2359 /* Setup to resume next batch of thread references, set nextthread. */
2360 if (result_count >= 1)
2361 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2362 i = 0;
2363 while (result_count--)
2364 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2365 break;
2366 }
2367 return result;
2368 }
2369
2370 static int
2371 remote_newthread_step (threadref *ref, void *context)
2372 {
2373 int pid = ptid_get_pid (inferior_ptid);
2374 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2375
2376 if (!in_thread_list (ptid))
2377 add_thread (ptid);
2378 return 1; /* continue iterator */
2379 }
2380
2381 #define CRAZY_MAX_THREADS 1000
2382
2383 static ptid_t
2384 remote_current_thread (ptid_t oldpid)
2385 {
2386 struct remote_state *rs = get_remote_state ();
2387
2388 putpkt ("qC");
2389 getpkt (&rs->buf, &rs->buf_size, 0);
2390 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2391 return read_ptid (&rs->buf[2], NULL);
2392 else
2393 return oldpid;
2394 }
2395
2396 /* Find new threads for info threads command.
2397 * Original version, using John Metzler's thread protocol.
2398 */
2399
2400 static void
2401 remote_find_new_threads (void)
2402 {
2403 remote_threadlist_iterator (remote_newthread_step, 0,
2404 CRAZY_MAX_THREADS);
2405 }
2406
2407 #if defined(HAVE_LIBEXPAT)
2408
2409 typedef struct thread_item
2410 {
2411 ptid_t ptid;
2412 char *extra;
2413 int core;
2414 } thread_item_t;
2415 DEF_VEC_O(thread_item_t);
2416
2417 struct threads_parsing_context
2418 {
2419 VEC (thread_item_t) *items;
2420 };
2421
2422 static void
2423 start_thread (struct gdb_xml_parser *parser,
2424 const struct gdb_xml_element *element,
2425 void *user_data, VEC(gdb_xml_value_s) *attributes)
2426 {
2427 struct threads_parsing_context *data = user_data;
2428
2429 struct thread_item item;
2430 char *id;
2431
2432 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2433 item.ptid = read_ptid (id, NULL);
2434
2435 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2436 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2437 else
2438 item.core = -1;
2439
2440 item.extra = 0;
2441
2442 VEC_safe_push (thread_item_t, data->items, &item);
2443 }
2444
2445 static void
2446 end_thread (struct gdb_xml_parser *parser,
2447 const struct gdb_xml_element *element,
2448 void *user_data, const char *body_text)
2449 {
2450 struct threads_parsing_context *data = user_data;
2451
2452 if (body_text && *body_text)
2453 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2454 }
2455
2456 const struct gdb_xml_attribute thread_attributes[] = {
2457 { "id", GDB_XML_AF_NONE, NULL, NULL },
2458 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2459 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2460 };
2461
2462 const struct gdb_xml_element thread_children[] = {
2463 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2464 };
2465
2466 const struct gdb_xml_element threads_children[] = {
2467 { "thread", thread_attributes, thread_children,
2468 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2469 start_thread, end_thread },
2470 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2471 };
2472
2473 const struct gdb_xml_element threads_elements[] = {
2474 { "threads", NULL, threads_children,
2475 GDB_XML_EF_NONE, NULL, NULL },
2476 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2477 };
2478
2479 #endif
2480
2481 /*
2482 * Find all threads for info threads command.
2483 * Uses new thread protocol contributed by Cisco.
2484 * Falls back and attempts to use the older method (above)
2485 * if the target doesn't respond to the new method.
2486 */
2487
2488 static void
2489 remote_threads_info (struct target_ops *ops)
2490 {
2491 struct remote_state *rs = get_remote_state ();
2492 char *bufp;
2493 ptid_t new_thread;
2494
2495 if (remote_desc == 0) /* paranoia */
2496 error (_("Command can only be used when connected to the remote target."));
2497
2498 #if defined(HAVE_LIBEXPAT)
2499 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2500 {
2501 char *xml = target_read_stralloc (&current_target,
2502 TARGET_OBJECT_THREADS, NULL);
2503
2504 struct cleanup *back_to = make_cleanup (xfree, xml);
2505 if (xml && *xml)
2506 {
2507 struct gdb_xml_parser *parser;
2508 struct threads_parsing_context context;
2509 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
2510
2511 context.items = 0;
2512 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2513 threads_elements,
2514 &context);
2515
2516 gdb_xml_use_dtd (parser, "threads.dtd");
2517
2518 if (gdb_xml_parse (parser, xml) == 0)
2519 {
2520 int i;
2521 struct thread_item *item;
2522
2523 for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2524 {
2525 if (!ptid_equal (item->ptid, null_ptid))
2526 {
2527 struct private_thread_info *info;
2528 /* In non-stop mode, we assume new found threads
2529 are running until proven otherwise with a
2530 stop reply. In all-stop, we can only get
2531 here if all threads are stopped. */
2532 int running = non_stop ? 1 : 0;
2533
2534 remote_notice_new_inferior (item->ptid, running);
2535
2536 info = demand_private_info (item->ptid);
2537 info->core = item->core;
2538 info->extra = item->extra;
2539 item->extra = 0;
2540 }
2541 xfree (item->extra);
2542 }
2543 }
2544
2545 VEC_free (thread_item_t, context.items);
2546 }
2547
2548 do_cleanups (back_to);
2549 return;
2550 }
2551 #endif
2552
2553 if (use_threadinfo_query)
2554 {
2555 putpkt ("qfThreadInfo");
2556 getpkt (&rs->buf, &rs->buf_size, 0);
2557 bufp = rs->buf;
2558 if (bufp[0] != '\0') /* q packet recognized */
2559 {
2560 while (*bufp++ == 'm') /* reply contains one or more TID */
2561 {
2562 do
2563 {
2564 new_thread = read_ptid (bufp, &bufp);
2565 if (!ptid_equal (new_thread, null_ptid))
2566 {
2567 /* In non-stop mode, we assume new found threads
2568 are running until proven otherwise with a
2569 stop reply. In all-stop, we can only get
2570 here if all threads are stopped. */
2571 int running = non_stop ? 1 : 0;
2572
2573 remote_notice_new_inferior (new_thread, running);
2574 }
2575 }
2576 while (*bufp++ == ','); /* comma-separated list */
2577 putpkt ("qsThreadInfo");
2578 getpkt (&rs->buf, &rs->buf_size, 0);
2579 bufp = rs->buf;
2580 }
2581 return; /* done */
2582 }
2583 }
2584
2585 /* Only qfThreadInfo is supported in non-stop mode. */
2586 if (non_stop)
2587 return;
2588
2589 /* Else fall back to old method based on jmetzler protocol. */
2590 use_threadinfo_query = 0;
2591 remote_find_new_threads ();
2592 return;
2593 }
2594
2595 /*
2596 * Collect a descriptive string about the given thread.
2597 * The target may say anything it wants to about the thread
2598 * (typically info about its blocked / runnable state, name, etc.).
2599 * This string will appear in the info threads display.
2600 *
2601 * Optional: targets are not required to implement this function.
2602 */
2603
2604 static char *
2605 remote_threads_extra_info (struct thread_info *tp)
2606 {
2607 struct remote_state *rs = get_remote_state ();
2608 int result;
2609 int set;
2610 threadref id;
2611 struct gdb_ext_thread_info threadinfo;
2612 static char display_buf[100]; /* arbitrary... */
2613 int n = 0; /* position in display_buf */
2614
2615 if (remote_desc == 0) /* paranoia */
2616 internal_error (__FILE__, __LINE__,
2617 _("remote_threads_extra_info"));
2618
2619 if (ptid_equal (tp->ptid, magic_null_ptid)
2620 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2621 /* This is the main thread which was added by GDB. The remote
2622 server doesn't know about it. */
2623 return NULL;
2624
2625 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2626 {
2627 struct thread_info *info = find_thread_ptid (tp->ptid);
2628 if (info && info->private)
2629 return info->private->extra;
2630 else
2631 return NULL;
2632 }
2633
2634 if (use_threadextra_query)
2635 {
2636 char *b = rs->buf;
2637 char *endb = rs->buf + get_remote_packet_size ();
2638
2639 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2640 b += strlen (b);
2641 write_ptid (b, endb, tp->ptid);
2642
2643 putpkt (rs->buf);
2644 getpkt (&rs->buf, &rs->buf_size, 0);
2645 if (rs->buf[0] != 0)
2646 {
2647 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2648 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2649 display_buf [result] = '\0';
2650 return display_buf;
2651 }
2652 }
2653
2654 /* If the above query fails, fall back to the old method. */
2655 use_threadextra_query = 0;
2656 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2657 | TAG_MOREDISPLAY | TAG_DISPLAY;
2658 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2659 if (remote_get_threadinfo (&id, set, &threadinfo))
2660 if (threadinfo.active)
2661 {
2662 if (*threadinfo.shortname)
2663 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2664 " Name: %s,", threadinfo.shortname);
2665 if (*threadinfo.display)
2666 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2667 " State: %s,", threadinfo.display);
2668 if (*threadinfo.more_display)
2669 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2670 " Priority: %s", threadinfo.more_display);
2671
2672 if (n > 0)
2673 {
2674 /* For purely cosmetic reasons, clear up trailing commas. */
2675 if (',' == display_buf[n-1])
2676 display_buf[n-1] = ' ';
2677 return display_buf;
2678 }
2679 }
2680 return NULL;
2681 }
2682 \f
2683
2684 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2685
2686 static ptid_t
2687 remote_get_ada_task_ptid (long lwp, long thread)
2688 {
2689 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2690 }
2691 \f
2692
2693 /* Restart the remote side; this is an extended protocol operation. */
2694
2695 static void
2696 extended_remote_restart (void)
2697 {
2698 struct remote_state *rs = get_remote_state ();
2699
2700 /* Send the restart command; for reasons I don't understand the
2701 remote side really expects a number after the "R". */
2702 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2703 putpkt (rs->buf);
2704
2705 remote_fileio_reset ();
2706 }
2707 \f
2708 /* Clean up connection to a remote debugger. */
2709
2710 static void
2711 remote_close (int quitting)
2712 {
2713 if (remote_desc == NULL)
2714 return; /* already closed */
2715
2716 /* Make sure we leave stdin registered in the event loop, and we
2717 don't leave the async SIGINT signal handler installed. */
2718 remote_terminal_ours ();
2719
2720 serial_close (remote_desc);
2721 remote_desc = NULL;
2722
2723 /* We don't have a connection to the remote stub anymore. Get rid
2724 of all the inferiors and their threads we were controlling. */
2725 discard_all_inferiors ();
2726
2727 /* We're no longer interested in any of these events. */
2728 discard_pending_stop_replies (-1);
2729
2730 if (remote_async_inferior_event_token)
2731 delete_async_event_handler (&remote_async_inferior_event_token);
2732 if (remote_async_get_pending_events_token)
2733 delete_async_event_handler (&remote_async_get_pending_events_token);
2734 }
2735
2736 /* Query the remote side for the text, data and bss offsets. */
2737
2738 static void
2739 get_offsets (void)
2740 {
2741 struct remote_state *rs = get_remote_state ();
2742 char *buf;
2743 char *ptr;
2744 int lose, num_segments = 0, do_sections, do_segments;
2745 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2746 struct section_offsets *offs;
2747 struct symfile_segment_data *data;
2748
2749 if (symfile_objfile == NULL)
2750 return;
2751
2752 putpkt ("qOffsets");
2753 getpkt (&rs->buf, &rs->buf_size, 0);
2754 buf = rs->buf;
2755
2756 if (buf[0] == '\000')
2757 return; /* Return silently. Stub doesn't support
2758 this command. */
2759 if (buf[0] == 'E')
2760 {
2761 warning (_("Remote failure reply: %s"), buf);
2762 return;
2763 }
2764
2765 /* Pick up each field in turn. This used to be done with scanf, but
2766 scanf will make trouble if CORE_ADDR size doesn't match
2767 conversion directives correctly. The following code will work
2768 with any size of CORE_ADDR. */
2769 text_addr = data_addr = bss_addr = 0;
2770 ptr = buf;
2771 lose = 0;
2772
2773 if (strncmp (ptr, "Text=", 5) == 0)
2774 {
2775 ptr += 5;
2776 /* Don't use strtol, could lose on big values. */
2777 while (*ptr && *ptr != ';')
2778 text_addr = (text_addr << 4) + fromhex (*ptr++);
2779
2780 if (strncmp (ptr, ";Data=", 6) == 0)
2781 {
2782 ptr += 6;
2783 while (*ptr && *ptr != ';')
2784 data_addr = (data_addr << 4) + fromhex (*ptr++);
2785 }
2786 else
2787 lose = 1;
2788
2789 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2790 {
2791 ptr += 5;
2792 while (*ptr && *ptr != ';')
2793 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2794
2795 if (bss_addr != data_addr)
2796 warning (_("Target reported unsupported offsets: %s"), buf);
2797 }
2798 else
2799 lose = 1;
2800 }
2801 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2802 {
2803 ptr += 8;
2804 /* Don't use strtol, could lose on big values. */
2805 while (*ptr && *ptr != ';')
2806 text_addr = (text_addr << 4) + fromhex (*ptr++);
2807 num_segments = 1;
2808
2809 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2810 {
2811 ptr += 9;
2812 while (*ptr && *ptr != ';')
2813 data_addr = (data_addr << 4) + fromhex (*ptr++);
2814 num_segments++;
2815 }
2816 }
2817 else
2818 lose = 1;
2819
2820 if (lose)
2821 error (_("Malformed response to offset query, %s"), buf);
2822 else if (*ptr != '\0')
2823 warning (_("Target reported unsupported offsets: %s"), buf);
2824
2825 offs = ((struct section_offsets *)
2826 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2827 memcpy (offs, symfile_objfile->section_offsets,
2828 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2829
2830 data = get_symfile_segment_data (symfile_objfile->obfd);
2831 do_segments = (data != NULL);
2832 do_sections = num_segments == 0;
2833
2834 if (num_segments > 0)
2835 {
2836 segments[0] = text_addr;
2837 segments[1] = data_addr;
2838 }
2839 /* If we have two segments, we can still try to relocate everything
2840 by assuming that the .text and .data offsets apply to the whole
2841 text and data segments. Convert the offsets given in the packet
2842 to base addresses for symfile_map_offsets_to_segments. */
2843 else if (data && data->num_segments == 2)
2844 {
2845 segments[0] = data->segment_bases[0] + text_addr;
2846 segments[1] = data->segment_bases[1] + data_addr;
2847 num_segments = 2;
2848 }
2849 /* If the object file has only one segment, assume that it is text
2850 rather than data; main programs with no writable data are rare,
2851 but programs with no code are useless. Of course the code might
2852 have ended up in the data segment... to detect that we would need
2853 the permissions here. */
2854 else if (data && data->num_segments == 1)
2855 {
2856 segments[0] = data->segment_bases[0] + text_addr;
2857 num_segments = 1;
2858 }
2859 /* There's no way to relocate by segment. */
2860 else
2861 do_segments = 0;
2862
2863 if (do_segments)
2864 {
2865 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2866 offs, num_segments, segments);
2867
2868 if (ret == 0 && !do_sections)
2869 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2870
2871 if (ret > 0)
2872 do_sections = 0;
2873 }
2874
2875 if (data)
2876 free_symfile_segment_data (data);
2877
2878 if (do_sections)
2879 {
2880 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2881
2882 /* This is a temporary kludge to force data and bss to use the same offsets
2883 because that's what nlmconv does now. The real solution requires changes
2884 to the stub and remote.c that I don't have time to do right now. */
2885
2886 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2887 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2888 }
2889
2890 objfile_relocate (symfile_objfile, offs);
2891 }
2892
2893 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2894 threads we know are stopped already. This is used during the
2895 initial remote connection in non-stop mode --- threads that are
2896 reported as already being stopped are left stopped. */
2897
2898 static int
2899 set_stop_requested_callback (struct thread_info *thread, void *data)
2900 {
2901 /* If we have a stop reply for this thread, it must be stopped. */
2902 if (peek_stop_reply (thread->ptid))
2903 set_stop_requested (thread->ptid, 1);
2904
2905 return 0;
2906 }
2907
2908 /* Stub for catch_exception. */
2909
2910 struct start_remote_args
2911 {
2912 int from_tty;
2913
2914 /* The current target. */
2915 struct target_ops *target;
2916
2917 /* Non-zero if this is an extended-remote target. */
2918 int extended_p;
2919 };
2920
2921 /* Send interrupt_sequence to remote target. */
2922 static void
2923 send_interrupt_sequence ()
2924 {
2925 if (interrupt_sequence_mode == interrupt_sequence_control_c)
2926 serial_write (remote_desc, "\x03", 1);
2927 else if (interrupt_sequence_mode == interrupt_sequence_break)
2928 serial_send_break (remote_desc);
2929 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
2930 {
2931 serial_send_break (remote_desc);
2932 serial_write (remote_desc, "g", 1);
2933 }
2934 else
2935 internal_error (__FILE__, __LINE__,
2936 _("Invalid value for interrupt_sequence_mode: %s."),
2937 interrupt_sequence_mode);
2938 }
2939
2940 static void
2941 remote_start_remote (struct ui_out *uiout, void *opaque)
2942 {
2943 struct start_remote_args *args = opaque;
2944 struct remote_state *rs = get_remote_state ();
2945 struct packet_config *noack_config;
2946 char *wait_status = NULL;
2947
2948 immediate_quit++; /* Allow user to interrupt it. */
2949
2950 /* Ack any packet which the remote side has already sent. */
2951 serial_write (remote_desc, "+", 1);
2952
2953 if (interrupt_on_connect)
2954 send_interrupt_sequence ();
2955
2956 /* The first packet we send to the target is the optional "supported
2957 packets" request. If the target can answer this, it will tell us
2958 which later probes to skip. */
2959 remote_query_supported ();
2960
2961 /* Next, we possibly activate noack mode.
2962
2963 If the QStartNoAckMode packet configuration is set to AUTO,
2964 enable noack mode if the stub reported a wish for it with
2965 qSupported.
2966
2967 If set to TRUE, then enable noack mode even if the stub didn't
2968 report it in qSupported. If the stub doesn't reply OK, the
2969 session ends with an error.
2970
2971 If FALSE, then don't activate noack mode, regardless of what the
2972 stub claimed should be the default with qSupported. */
2973
2974 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2975
2976 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2977 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2978 && noack_config->support == PACKET_ENABLE))
2979 {
2980 putpkt ("QStartNoAckMode");
2981 getpkt (&rs->buf, &rs->buf_size, 0);
2982 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2983 rs->noack_mode = 1;
2984 }
2985
2986 if (args->extended_p)
2987 {
2988 /* Tell the remote that we are using the extended protocol. */
2989 putpkt ("!");
2990 getpkt (&rs->buf, &rs->buf_size, 0);
2991 }
2992
2993 /* Next, if the target can specify a description, read it. We do
2994 this before anything involving memory or registers. */
2995 target_find_description ();
2996
2997 /* Next, now that we know something about the target, update the
2998 address spaces in the program spaces. */
2999 update_address_spaces ();
3000
3001 /* On OSs where the list of libraries is global to all
3002 processes, we fetch them early. */
3003 if (gdbarch_has_global_solist (target_gdbarch))
3004 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3005
3006 if (non_stop)
3007 {
3008 if (!rs->non_stop_aware)
3009 error (_("Non-stop mode requested, but remote does not support non-stop"));
3010
3011 putpkt ("QNonStop:1");
3012 getpkt (&rs->buf, &rs->buf_size, 0);
3013
3014 if (strcmp (rs->buf, "OK") != 0)
3015 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3016
3017 /* Find about threads and processes the stub is already
3018 controlling. We default to adding them in the running state.
3019 The '?' query below will then tell us about which threads are
3020 stopped. */
3021 remote_threads_info (args->target);
3022 }
3023 else if (rs->non_stop_aware)
3024 {
3025 /* Don't assume that the stub can operate in all-stop mode.
3026 Request it explicitely. */
3027 putpkt ("QNonStop:0");
3028 getpkt (&rs->buf, &rs->buf_size, 0);
3029
3030 if (strcmp (rs->buf, "OK") != 0)
3031 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3032 }
3033
3034 /* Check whether the target is running now. */
3035 putpkt ("?");
3036 getpkt (&rs->buf, &rs->buf_size, 0);
3037
3038 if (!non_stop)
3039 {
3040 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3041 {
3042 if (!args->extended_p)
3043 error (_("The target is not running (try extended-remote?)"));
3044
3045 /* We're connected, but not running. Drop out before we
3046 call start_remote. */
3047 return;
3048 }
3049 else
3050 {
3051 /* Save the reply for later. */
3052 wait_status = alloca (strlen (rs->buf) + 1);
3053 strcpy (wait_status, rs->buf);
3054 }
3055
3056 /* Let the stub know that we want it to return the thread. */
3057 set_continue_thread (minus_one_ptid);
3058
3059 /* Without this, some commands which require an active target
3060 (such as kill) won't work. This variable serves (at least)
3061 double duty as both the pid of the target process (if it has
3062 such), and as a flag indicating that a target is active.
3063 These functions should be split out into seperate variables,
3064 especially since GDB will someday have a notion of debugging
3065 several processes. */
3066 inferior_ptid = magic_null_ptid;
3067
3068 /* Now, if we have thread information, update inferior_ptid. */
3069 inferior_ptid = remote_current_thread (inferior_ptid);
3070
3071 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3072
3073 /* Always add the main thread. */
3074 add_thread_silent (inferior_ptid);
3075
3076 get_offsets (); /* Get text, data & bss offsets. */
3077
3078 /* If we could not find a description using qXfer, and we know
3079 how to do it some other way, try again. This is not
3080 supported for non-stop; it could be, but it is tricky if
3081 there are no stopped threads when we connect. */
3082 if (remote_read_description_p (args->target)
3083 && gdbarch_target_desc (target_gdbarch) == NULL)
3084 {
3085 target_clear_description ();
3086 target_find_description ();
3087 }
3088
3089 /* Use the previously fetched status. */
3090 gdb_assert (wait_status != NULL);
3091 strcpy (rs->buf, wait_status);
3092 rs->cached_wait_status = 1;
3093
3094 immediate_quit--;
3095 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3096 }
3097 else
3098 {
3099 /* Clear WFI global state. Do this before finding about new
3100 threads and inferiors, and setting the current inferior.
3101 Otherwise we would clear the proceed status of the current
3102 inferior when we want its stop_soon state to be preserved
3103 (see notice_new_inferior). */
3104 init_wait_for_inferior ();
3105
3106 /* In non-stop, we will either get an "OK", meaning that there
3107 are no stopped threads at this time; or, a regular stop
3108 reply. In the latter case, there may be more than one thread
3109 stopped --- we pull them all out using the vStopped
3110 mechanism. */
3111 if (strcmp (rs->buf, "OK") != 0)
3112 {
3113 struct stop_reply *stop_reply;
3114 struct cleanup *old_chain;
3115
3116 stop_reply = stop_reply_xmalloc ();
3117 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3118
3119 remote_parse_stop_reply (rs->buf, stop_reply);
3120 discard_cleanups (old_chain);
3121
3122 /* get_pending_stop_replies acks this one, and gets the rest
3123 out. */
3124 pending_stop_reply = stop_reply;
3125 remote_get_pending_stop_replies ();
3126
3127 /* Make sure that threads that were stopped remain
3128 stopped. */
3129 iterate_over_threads (set_stop_requested_callback, NULL);
3130 }
3131
3132 if (target_can_async_p ())
3133 target_async (inferior_event_handler, 0);
3134
3135 if (thread_count () == 0)
3136 {
3137 if (!args->extended_p)
3138 error (_("The target is not running (try extended-remote?)"));
3139
3140 /* We're connected, but not running. Drop out before we
3141 call start_remote. */
3142 return;
3143 }
3144
3145 /* Let the stub know that we want it to return the thread. */
3146
3147 /* Force the stub to choose a thread. */
3148 set_general_thread (null_ptid);
3149
3150 /* Query it. */
3151 inferior_ptid = remote_current_thread (minus_one_ptid);
3152 if (ptid_equal (inferior_ptid, minus_one_ptid))
3153 error (_("remote didn't report the current thread in non-stop mode"));
3154
3155 get_offsets (); /* Get text, data & bss offsets. */
3156
3157 /* In non-stop mode, any cached wait status will be stored in
3158 the stop reply queue. */
3159 gdb_assert (wait_status == NULL);
3160 }
3161
3162 /* If we connected to a live target, do some additional setup. */
3163 if (target_has_execution)
3164 {
3165 if (exec_bfd) /* No use without an exec file. */
3166 remote_check_symbols (symfile_objfile);
3167 }
3168
3169 /* Possibly the target has been engaged in a trace run started
3170 previously; find out where things are at. */
3171 if (rs->disconnected_tracing)
3172 {
3173 struct uploaded_tp *uploaded_tps = NULL;
3174 struct uploaded_tsv *uploaded_tsvs = NULL;
3175
3176 remote_get_trace_status (current_trace_status ());
3177 if (current_trace_status ()->running)
3178 printf_filtered (_("Trace is already running on the target.\n"));
3179
3180 /* Get trace state variables first, they may be checked when
3181 parsing uploaded commands. */
3182
3183 remote_upload_trace_state_variables (&uploaded_tsvs);
3184
3185 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3186
3187 remote_upload_tracepoints (&uploaded_tps);
3188
3189 merge_uploaded_tracepoints (&uploaded_tps);
3190 }
3191
3192 /* If breakpoints are global, insert them now. */
3193 if (gdbarch_has_global_breakpoints (target_gdbarch)
3194 && breakpoints_always_inserted_mode ())
3195 insert_breakpoints ();
3196 }
3197
3198 /* Open a connection to a remote debugger.
3199 NAME is the filename used for communication. */
3200
3201 static void
3202 remote_open (char *name, int from_tty)
3203 {
3204 remote_open_1 (name, from_tty, &remote_ops, 0);
3205 }
3206
3207 /* Open a connection to a remote debugger using the extended
3208 remote gdb protocol. NAME is the filename used for communication. */
3209
3210 static void
3211 extended_remote_open (char *name, int from_tty)
3212 {
3213 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3214 }
3215
3216 /* Generic code for opening a connection to a remote target. */
3217
3218 static void
3219 init_all_packet_configs (void)
3220 {
3221 int i;
3222 for (i = 0; i < PACKET_MAX; i++)
3223 update_packet_config (&remote_protocol_packets[i]);
3224 }
3225
3226 /* Symbol look-up. */
3227
3228 static void
3229 remote_check_symbols (struct objfile *objfile)
3230 {
3231 struct remote_state *rs = get_remote_state ();
3232 char *msg, *reply, *tmp;
3233 struct minimal_symbol *sym;
3234 int end;
3235
3236 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3237 return;
3238
3239 /* Make sure the remote is pointing at the right process. */
3240 set_general_process ();
3241
3242 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3243 because we need both at the same time. */
3244 msg = alloca (get_remote_packet_size ());
3245
3246 /* Invite target to request symbol lookups. */
3247
3248 putpkt ("qSymbol::");
3249 getpkt (&rs->buf, &rs->buf_size, 0);
3250 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3251 reply = rs->buf;
3252
3253 while (strncmp (reply, "qSymbol:", 8) == 0)
3254 {
3255 tmp = &reply[8];
3256 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3257 msg[end] = '\0';
3258 sym = lookup_minimal_symbol (msg, NULL, NULL);
3259 if (sym == NULL)
3260 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3261 else
3262 {
3263 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3264 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3265
3266 /* If this is a function address, return the start of code
3267 instead of any data function descriptor. */
3268 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3269 sym_addr,
3270 &current_target);
3271
3272 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3273 phex_nz (sym_addr, addr_size), &reply[8]);
3274 }
3275
3276 putpkt (msg);
3277 getpkt (&rs->buf, &rs->buf_size, 0);
3278 reply = rs->buf;
3279 }
3280 }
3281
3282 static struct serial *
3283 remote_serial_open (char *name)
3284 {
3285 static int udp_warning = 0;
3286
3287 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3288 of in ser-tcp.c, because it is the remote protocol assuming that the
3289 serial connection is reliable and not the serial connection promising
3290 to be. */
3291 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3292 {
3293 warning (_("\
3294 The remote protocol may be unreliable over UDP.\n\
3295 Some events may be lost, rendering further debugging impossible."));
3296 udp_warning = 1;
3297 }
3298
3299 return serial_open (name);
3300 }
3301
3302 /* This type describes each known response to the qSupported
3303 packet. */
3304 struct protocol_feature
3305 {
3306 /* The name of this protocol feature. */
3307 const char *name;
3308
3309 /* The default for this protocol feature. */
3310 enum packet_support default_support;
3311
3312 /* The function to call when this feature is reported, or after
3313 qSupported processing if the feature is not supported.
3314 The first argument points to this structure. The second
3315 argument indicates whether the packet requested support be
3316 enabled, disabled, or probed (or the default, if this function
3317 is being called at the end of processing and this feature was
3318 not reported). The third argument may be NULL; if not NULL, it
3319 is a NUL-terminated string taken from the packet following
3320 this feature's name and an equals sign. */
3321 void (*func) (const struct protocol_feature *, enum packet_support,
3322 const char *);
3323
3324 /* The corresponding packet for this feature. Only used if
3325 FUNC is remote_supported_packet. */
3326 int packet;
3327 };
3328
3329 static void
3330 remote_supported_packet (const struct protocol_feature *feature,
3331 enum packet_support support,
3332 const char *argument)
3333 {
3334 if (argument)
3335 {
3336 warning (_("Remote qSupported response supplied an unexpected value for"
3337 " \"%s\"."), feature->name);
3338 return;
3339 }
3340
3341 if (remote_protocol_packets[feature->packet].support
3342 == PACKET_SUPPORT_UNKNOWN)
3343 remote_protocol_packets[feature->packet].support = support;
3344 }
3345
3346 static void
3347 remote_packet_size (const struct protocol_feature *feature,
3348 enum packet_support support, const char *value)
3349 {
3350 struct remote_state *rs = get_remote_state ();
3351
3352 int packet_size;
3353 char *value_end;
3354
3355 if (support != PACKET_ENABLE)
3356 return;
3357
3358 if (value == NULL || *value == '\0')
3359 {
3360 warning (_("Remote target reported \"%s\" without a size."),
3361 feature->name);
3362 return;
3363 }
3364
3365 errno = 0;
3366 packet_size = strtol (value, &value_end, 16);
3367 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3368 {
3369 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3370 feature->name, value);
3371 return;
3372 }
3373
3374 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3375 {
3376 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3377 packet_size, MAX_REMOTE_PACKET_SIZE);
3378 packet_size = MAX_REMOTE_PACKET_SIZE;
3379 }
3380
3381 /* Record the new maximum packet size. */
3382 rs->explicit_packet_size = packet_size;
3383 }
3384
3385 static void
3386 remote_multi_process_feature (const struct protocol_feature *feature,
3387 enum packet_support support, const char *value)
3388 {
3389 struct remote_state *rs = get_remote_state ();
3390 rs->multi_process_aware = (support == PACKET_ENABLE);
3391 }
3392
3393 static void
3394 remote_non_stop_feature (const struct protocol_feature *feature,
3395 enum packet_support support, const char *value)
3396 {
3397 struct remote_state *rs = get_remote_state ();
3398 rs->non_stop_aware = (support == PACKET_ENABLE);
3399 }
3400
3401 static void
3402 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3403 enum packet_support support,
3404 const char *value)
3405 {
3406 struct remote_state *rs = get_remote_state ();
3407 rs->cond_tracepoints = (support == PACKET_ENABLE);
3408 }
3409
3410 static void
3411 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3412 enum packet_support support,
3413 const char *value)
3414 {
3415 struct remote_state *rs = get_remote_state ();
3416 rs->fast_tracepoints = (support == PACKET_ENABLE);
3417 }
3418
3419 static void
3420 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3421 enum packet_support support,
3422 const char *value)
3423 {
3424 struct remote_state *rs = get_remote_state ();
3425 rs->disconnected_tracing = (support == PACKET_ENABLE);
3426 }
3427
3428 static struct protocol_feature remote_protocol_features[] = {
3429 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3430 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3431 PACKET_qXfer_auxv },
3432 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3433 PACKET_qXfer_features },
3434 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3435 PACKET_qXfer_libraries },
3436 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3437 PACKET_qXfer_memory_map },
3438 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3439 PACKET_qXfer_spu_read },
3440 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3441 PACKET_qXfer_spu_write },
3442 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3443 PACKET_qXfer_osdata },
3444 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3445 PACKET_qXfer_threads },
3446 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3447 PACKET_QPassSignals },
3448 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3449 PACKET_QStartNoAckMode },
3450 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3451 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3452 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3453 PACKET_qXfer_siginfo_read },
3454 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3455 PACKET_qXfer_siginfo_write },
3456 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3457 PACKET_ConditionalTracepoints },
3458 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3459 PACKET_FastTracepoints },
3460 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3461 -1 },
3462 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3463 PACKET_bc },
3464 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3465 PACKET_bs },
3466 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3467 PACKET_TracepointSource },
3468 };
3469
3470 static char *remote_support_xml;
3471
3472 /* Register string appended to "xmlRegisters=" in qSupported query. */
3473
3474 void
3475 register_remote_support_xml (const char *xml ATTRIBUTE_UNUSED)
3476 {
3477 #if defined(HAVE_LIBEXPAT)
3478 if (remote_support_xml == NULL)
3479 remote_support_xml = concat ("xmlRegisters=", xml, NULL);
3480 else
3481 {
3482 char *copy = xstrdup (remote_support_xml + 13);
3483 char *p = strtok (copy, ",");
3484
3485 do
3486 {
3487 if (strcmp (p, xml) == 0)
3488 {
3489 /* already there */
3490 xfree (copy);
3491 return;
3492 }
3493 }
3494 while ((p = strtok (NULL, ",")) != NULL);
3495 xfree (copy);
3496
3497 p = concat (remote_support_xml, ",", xml, NULL);
3498 xfree (remote_support_xml);
3499 remote_support_xml = p;
3500 }
3501 #endif
3502 }
3503
3504 static char *
3505 remote_query_supported_append (char *msg, const char *append)
3506 {
3507 if (msg)
3508 {
3509 char *p = concat (msg, ";", append, NULL);
3510 xfree (msg);
3511 return p;
3512 }
3513 else
3514 return xstrdup (append);
3515 }
3516
3517 static void
3518 remote_query_supported (void)
3519 {
3520 struct remote_state *rs = get_remote_state ();
3521 char *next;
3522 int i;
3523 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3524
3525 /* The packet support flags are handled differently for this packet
3526 than for most others. We treat an error, a disabled packet, and
3527 an empty response identically: any features which must be reported
3528 to be used will be automatically disabled. An empty buffer
3529 accomplishes this, since that is also the representation for a list
3530 containing no features. */
3531
3532 rs->buf[0] = 0;
3533 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3534 {
3535 char *q = NULL;
3536 const char *qsupported = gdbarch_qsupported (target_gdbarch);
3537
3538 if (rs->extended)
3539 q = remote_query_supported_append (q, "multiprocess+");
3540
3541 if (qsupported)
3542 q = remote_query_supported_append (q, qsupported);
3543
3544 if (remote_support_xml)
3545 q = remote_query_supported_append (q, remote_support_xml);
3546
3547 if (q)
3548 {
3549 char *p = concat ("qSupported:", q, NULL);
3550 xfree (q);
3551 putpkt (p);
3552 xfree (p);
3553 }
3554 else
3555 putpkt ("qSupported");
3556
3557 getpkt (&rs->buf, &rs->buf_size, 0);
3558
3559 /* If an error occured, warn, but do not return - just reset the
3560 buffer to empty and go on to disable features. */
3561 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3562 == PACKET_ERROR)
3563 {
3564 warning (_("Remote failure reply: %s"), rs->buf);
3565 rs->buf[0] = 0;
3566 }
3567 }
3568
3569 memset (seen, 0, sizeof (seen));
3570
3571 next = rs->buf;
3572 while (*next)
3573 {
3574 enum packet_support is_supported;
3575 char *p, *end, *name_end, *value;
3576
3577 /* First separate out this item from the rest of the packet. If
3578 there's another item after this, we overwrite the separator
3579 (terminated strings are much easier to work with). */
3580 p = next;
3581 end = strchr (p, ';');
3582 if (end == NULL)
3583 {
3584 end = p + strlen (p);
3585 next = end;
3586 }
3587 else
3588 {
3589 *end = '\0';
3590 next = end + 1;
3591
3592 if (end == p)
3593 {
3594 warning (_("empty item in \"qSupported\" response"));
3595 continue;
3596 }
3597 }
3598
3599 name_end = strchr (p, '=');
3600 if (name_end)
3601 {
3602 /* This is a name=value entry. */
3603 is_supported = PACKET_ENABLE;
3604 value = name_end + 1;
3605 *name_end = '\0';
3606 }
3607 else
3608 {
3609 value = NULL;
3610 switch (end[-1])
3611 {
3612 case '+':
3613 is_supported = PACKET_ENABLE;
3614 break;
3615
3616 case '-':
3617 is_supported = PACKET_DISABLE;
3618 break;
3619
3620 case '?':
3621 is_supported = PACKET_SUPPORT_UNKNOWN;
3622 break;
3623
3624 default:
3625 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3626 continue;
3627 }
3628 end[-1] = '\0';
3629 }
3630
3631 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3632 if (strcmp (remote_protocol_features[i].name, p) == 0)
3633 {
3634 const struct protocol_feature *feature;
3635
3636 seen[i] = 1;
3637 feature = &remote_protocol_features[i];
3638 feature->func (feature, is_supported, value);
3639 break;
3640 }
3641 }
3642
3643 /* If we increased the packet size, make sure to increase the global
3644 buffer size also. We delay this until after parsing the entire
3645 qSupported packet, because this is the same buffer we were
3646 parsing. */
3647 if (rs->buf_size < rs->explicit_packet_size)
3648 {
3649 rs->buf_size = rs->explicit_packet_size;
3650 rs->buf = xrealloc (rs->buf, rs->buf_size);
3651 }
3652
3653 /* Handle the defaults for unmentioned features. */
3654 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3655 if (!seen[i])
3656 {
3657 const struct protocol_feature *feature;
3658
3659 feature = &remote_protocol_features[i];
3660 feature->func (feature, feature->default_support, NULL);
3661 }
3662 }
3663
3664
3665 static void
3666 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3667 {
3668 struct remote_state *rs = get_remote_state ();
3669
3670 if (name == 0)
3671 error (_("To open a remote debug connection, you need to specify what\n"
3672 "serial device is attached to the remote system\n"
3673 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3674
3675 /* See FIXME above. */
3676 if (!target_async_permitted)
3677 wait_forever_enabled_p = 1;
3678
3679 /* If we're connected to a running target, target_preopen will kill it.
3680 But if we're connected to a target system with no running process,
3681 then we will still be connected when it returns. Ask this question
3682 first, before target_preopen has a chance to kill anything. */
3683 if (remote_desc != NULL && !have_inferiors ())
3684 {
3685 if (!from_tty
3686 || query (_("Already connected to a remote target. Disconnect? ")))
3687 pop_target ();
3688 else
3689 error (_("Still connected."));
3690 }
3691
3692 target_preopen (from_tty);
3693
3694 unpush_target (target);
3695
3696 /* This time without a query. If we were connected to an
3697 extended-remote target and target_preopen killed the running
3698 process, we may still be connected. If we are starting "target
3699 remote" now, the extended-remote target will not have been
3700 removed by unpush_target. */
3701 if (remote_desc != NULL && !have_inferiors ())
3702 pop_target ();
3703
3704 /* Make sure we send the passed signals list the next time we resume. */
3705 xfree (last_pass_packet);
3706 last_pass_packet = NULL;
3707
3708 remote_fileio_reset ();
3709 reopen_exec_file ();
3710 reread_symbols ();
3711
3712 remote_desc = remote_serial_open (name);
3713 if (!remote_desc)
3714 perror_with_name (name);
3715
3716 if (baud_rate != -1)
3717 {
3718 if (serial_setbaudrate (remote_desc, baud_rate))
3719 {
3720 /* The requested speed could not be set. Error out to
3721 top level after closing remote_desc. Take care to
3722 set remote_desc to NULL to avoid closing remote_desc
3723 more than once. */
3724 serial_close (remote_desc);
3725 remote_desc = NULL;
3726 perror_with_name (name);
3727 }
3728 }
3729
3730 serial_raw (remote_desc);
3731
3732 /* If there is something sitting in the buffer we might take it as a
3733 response to a command, which would be bad. */
3734 serial_flush_input (remote_desc);
3735
3736 if (from_tty)
3737 {
3738 puts_filtered ("Remote debugging using ");
3739 puts_filtered (name);
3740 puts_filtered ("\n");
3741 }
3742 push_target (target); /* Switch to using remote target now. */
3743
3744 /* Register extra event sources in the event loop. */
3745 remote_async_inferior_event_token
3746 = create_async_event_handler (remote_async_inferior_event_handler,
3747 NULL);
3748 remote_async_get_pending_events_token
3749 = create_async_event_handler (remote_async_get_pending_events_handler,
3750 NULL);
3751
3752 /* Reset the target state; these things will be queried either by
3753 remote_query_supported or as they are needed. */
3754 init_all_packet_configs ();
3755 rs->cached_wait_status = 0;
3756 rs->explicit_packet_size = 0;
3757 rs->noack_mode = 0;
3758 rs->multi_process_aware = 0;
3759 rs->extended = extended_p;
3760 rs->non_stop_aware = 0;
3761 rs->waiting_for_stop_reply = 0;
3762 rs->ctrlc_pending_p = 0;
3763
3764 general_thread = not_sent_ptid;
3765 continue_thread = not_sent_ptid;
3766
3767 /* Probe for ability to use "ThreadInfo" query, as required. */
3768 use_threadinfo_query = 1;
3769 use_threadextra_query = 1;
3770
3771 if (target_async_permitted)
3772 {
3773 /* With this target we start out by owning the terminal. */
3774 remote_async_terminal_ours_p = 1;
3775
3776 /* FIXME: cagney/1999-09-23: During the initial connection it is
3777 assumed that the target is already ready and able to respond to
3778 requests. Unfortunately remote_start_remote() eventually calls
3779 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3780 around this. Eventually a mechanism that allows
3781 wait_for_inferior() to expect/get timeouts will be
3782 implemented. */
3783 wait_forever_enabled_p = 0;
3784 }
3785
3786 /* First delete any symbols previously loaded from shared libraries. */
3787 no_shared_libraries (NULL, 0);
3788
3789 /* Start afresh. */
3790 init_thread_list ();
3791
3792 /* Start the remote connection. If error() or QUIT, discard this
3793 target (we'd otherwise be in an inconsistent state) and then
3794 propogate the error on up the exception chain. This ensures that
3795 the caller doesn't stumble along blindly assuming that the
3796 function succeeded. The CLI doesn't have this problem but other
3797 UI's, such as MI do.
3798
3799 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3800 this function should return an error indication letting the
3801 caller restore the previous state. Unfortunately the command
3802 ``target remote'' is directly wired to this function making that
3803 impossible. On a positive note, the CLI side of this problem has
3804 been fixed - the function set_cmd_context() makes it possible for
3805 all the ``target ....'' commands to share a common callback
3806 function. See cli-dump.c. */
3807 {
3808 struct gdb_exception ex;
3809 struct start_remote_args args;
3810
3811 args.from_tty = from_tty;
3812 args.target = target;
3813 args.extended_p = extended_p;
3814
3815 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3816 if (ex.reason < 0)
3817 {
3818 /* Pop the partially set up target - unless something else did
3819 already before throwing the exception. */
3820 if (remote_desc != NULL)
3821 pop_target ();
3822 if (target_async_permitted)
3823 wait_forever_enabled_p = 1;
3824 throw_exception (ex);
3825 }
3826 }
3827
3828 if (target_async_permitted)
3829 wait_forever_enabled_p = 1;
3830 }
3831
3832 /* This takes a program previously attached to and detaches it. After
3833 this is done, GDB can be used to debug some other program. We
3834 better not have left any breakpoints in the target program or it'll
3835 die when it hits one. */
3836
3837 static void
3838 remote_detach_1 (char *args, int from_tty, int extended)
3839 {
3840 int pid = ptid_get_pid (inferior_ptid);
3841 struct remote_state *rs = get_remote_state ();
3842
3843 if (args)
3844 error (_("Argument given to \"detach\" when remotely debugging."));
3845
3846 if (!target_has_execution)
3847 error (_("No process to detach from."));
3848
3849 /* Tell the remote target to detach. */
3850 if (remote_multi_process_p (rs))
3851 sprintf (rs->buf, "D;%x", pid);
3852 else
3853 strcpy (rs->buf, "D");
3854
3855 putpkt (rs->buf);
3856 getpkt (&rs->buf, &rs->buf_size, 0);
3857
3858 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3859 ;
3860 else if (rs->buf[0] == '\0')
3861 error (_("Remote doesn't know how to detach"));
3862 else
3863 error (_("Can't detach process."));
3864
3865 if (from_tty)
3866 {
3867 if (remote_multi_process_p (rs))
3868 printf_filtered (_("Detached from remote %s.\n"),
3869 target_pid_to_str (pid_to_ptid (pid)));
3870 else
3871 {
3872 if (extended)
3873 puts_filtered (_("Detached from remote process.\n"));
3874 else
3875 puts_filtered (_("Ending remote debugging.\n"));
3876 }
3877 }
3878
3879 discard_pending_stop_replies (pid);
3880 target_mourn_inferior ();
3881 }
3882
3883 static void
3884 remote_detach (struct target_ops *ops, char *args, int from_tty)
3885 {
3886 remote_detach_1 (args, from_tty, 0);
3887 }
3888
3889 static void
3890 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3891 {
3892 remote_detach_1 (args, from_tty, 1);
3893 }
3894
3895 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3896
3897 static void
3898 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3899 {
3900 if (args)
3901 error (_("Argument given to \"disconnect\" when remotely debugging."));
3902
3903 /* Make sure we unpush even the extended remote targets; mourn
3904 won't do it. So call remote_mourn_1 directly instead of
3905 target_mourn_inferior. */
3906 remote_mourn_1 (target);
3907
3908 if (from_tty)
3909 puts_filtered ("Ending remote debugging.\n");
3910 }
3911
3912 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3913 be chatty about it. */
3914
3915 static void
3916 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3917 {
3918 struct remote_state *rs = get_remote_state ();
3919 int pid;
3920 char *wait_status = NULL;
3921
3922 pid = parse_pid_to_attach (args);
3923
3924 /* Remote PID can be freely equal to getpid, do not check it here the same
3925 way as in other targets. */
3926
3927 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3928 error (_("This target does not support attaching to a process"));
3929
3930 sprintf (rs->buf, "vAttach;%x", pid);
3931 putpkt (rs->buf);
3932 getpkt (&rs->buf, &rs->buf_size, 0);
3933
3934 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3935 {
3936 if (from_tty)
3937 printf_unfiltered (_("Attached to %s\n"),
3938 target_pid_to_str (pid_to_ptid (pid)));
3939
3940 if (!non_stop)
3941 {
3942 /* Save the reply for later. */
3943 wait_status = alloca (strlen (rs->buf) + 1);
3944 strcpy (wait_status, rs->buf);
3945 }
3946 else if (strcmp (rs->buf, "OK") != 0)
3947 error (_("Attaching to %s failed with: %s"),
3948 target_pid_to_str (pid_to_ptid (pid)),
3949 rs->buf);
3950 }
3951 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3952 error (_("This target does not support attaching to a process"));
3953 else
3954 error (_("Attaching to %s failed"),
3955 target_pid_to_str (pid_to_ptid (pid)));
3956
3957 set_current_inferior (remote_add_inferior (pid, 1));
3958
3959 inferior_ptid = pid_to_ptid (pid);
3960
3961 if (non_stop)
3962 {
3963 struct thread_info *thread;
3964
3965 /* Get list of threads. */
3966 remote_threads_info (target);
3967
3968 thread = first_thread_of_process (pid);
3969 if (thread)
3970 inferior_ptid = thread->ptid;
3971 else
3972 inferior_ptid = pid_to_ptid (pid);
3973
3974 /* Invalidate our notion of the remote current thread. */
3975 record_currthread (minus_one_ptid);
3976 }
3977 else
3978 {
3979 /* Now, if we have thread information, update inferior_ptid. */
3980 inferior_ptid = remote_current_thread (inferior_ptid);
3981
3982 /* Add the main thread to the thread list. */
3983 add_thread_silent (inferior_ptid);
3984 }
3985
3986 /* Next, if the target can specify a description, read it. We do
3987 this before anything involving memory or registers. */
3988 target_find_description ();
3989
3990 if (!non_stop)
3991 {
3992 /* Use the previously fetched status. */
3993 gdb_assert (wait_status != NULL);
3994
3995 if (target_can_async_p ())
3996 {
3997 struct stop_reply *stop_reply;
3998 struct cleanup *old_chain;
3999
4000 stop_reply = stop_reply_xmalloc ();
4001 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4002 remote_parse_stop_reply (wait_status, stop_reply);
4003 discard_cleanups (old_chain);
4004 push_stop_reply (stop_reply);
4005
4006 target_async (inferior_event_handler, 0);
4007 }
4008 else
4009 {
4010 gdb_assert (wait_status != NULL);
4011 strcpy (rs->buf, wait_status);
4012 rs->cached_wait_status = 1;
4013 }
4014 }
4015 else
4016 gdb_assert (wait_status == NULL);
4017 }
4018
4019 static void
4020 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4021 {
4022 extended_remote_attach_1 (ops, args, from_tty);
4023 }
4024
4025 /* Convert hex digit A to a number. */
4026
4027 static int
4028 fromhex (int a)
4029 {
4030 if (a >= '0' && a <= '9')
4031 return a - '0';
4032 else if (a >= 'a' && a <= 'f')
4033 return a - 'a' + 10;
4034 else if (a >= 'A' && a <= 'F')
4035 return a - 'A' + 10;
4036 else
4037 error (_("Reply contains invalid hex digit %d"), a);
4038 }
4039
4040 int
4041 hex2bin (const char *hex, gdb_byte *bin, int count)
4042 {
4043 int i;
4044
4045 for (i = 0; i < count; i++)
4046 {
4047 if (hex[0] == 0 || hex[1] == 0)
4048 {
4049 /* Hex string is short, or of uneven length.
4050 Return the count that has been converted so far. */
4051 return i;
4052 }
4053 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4054 hex += 2;
4055 }
4056 return i;
4057 }
4058
4059 /* Convert number NIB to a hex digit. */
4060
4061 static int
4062 tohex (int nib)
4063 {
4064 if (nib < 10)
4065 return '0' + nib;
4066 else
4067 return 'a' + nib - 10;
4068 }
4069
4070 int
4071 bin2hex (const gdb_byte *bin, char *hex, int count)
4072 {
4073 int i;
4074 /* May use a length, or a nul-terminated string as input. */
4075 if (count == 0)
4076 count = strlen ((char *) bin);
4077
4078 for (i = 0; i < count; i++)
4079 {
4080 *hex++ = tohex ((*bin >> 4) & 0xf);
4081 *hex++ = tohex (*bin++ & 0xf);
4082 }
4083 *hex = 0;
4084 return i;
4085 }
4086 \f
4087 /* Check for the availability of vCont. This function should also check
4088 the response. */
4089
4090 static void
4091 remote_vcont_probe (struct remote_state *rs)
4092 {
4093 char *buf;
4094
4095 strcpy (rs->buf, "vCont?");
4096 putpkt (rs->buf);
4097 getpkt (&rs->buf, &rs->buf_size, 0);
4098 buf = rs->buf;
4099
4100 /* Make sure that the features we assume are supported. */
4101 if (strncmp (buf, "vCont", 5) == 0)
4102 {
4103 char *p = &buf[5];
4104 int support_s, support_S, support_c, support_C;
4105
4106 support_s = 0;
4107 support_S = 0;
4108 support_c = 0;
4109 support_C = 0;
4110 rs->support_vCont_t = 0;
4111 while (p && *p == ';')
4112 {
4113 p++;
4114 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4115 support_s = 1;
4116 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4117 support_S = 1;
4118 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4119 support_c = 1;
4120 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4121 support_C = 1;
4122 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4123 rs->support_vCont_t = 1;
4124
4125 p = strchr (p, ';');
4126 }
4127
4128 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4129 BUF will make packet_ok disable the packet. */
4130 if (!support_s || !support_S || !support_c || !support_C)
4131 buf[0] = 0;
4132 }
4133
4134 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4135 }
4136
4137 /* Helper function for building "vCont" resumptions. Write a
4138 resumption to P. ENDP points to one-passed-the-end of the buffer
4139 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4140 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4141 resumed thread should be single-stepped and/or signalled. If PTID
4142 equals minus_one_ptid, then all threads are resumed; if PTID
4143 represents a process, then all threads of the process are resumed;
4144 the thread to be stepped and/or signalled is given in the global
4145 INFERIOR_PTID. */
4146
4147 static char *
4148 append_resumption (char *p, char *endp,
4149 ptid_t ptid, int step, enum target_signal siggnal)
4150 {
4151 struct remote_state *rs = get_remote_state ();
4152
4153 if (step && siggnal != TARGET_SIGNAL_0)
4154 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4155 else if (step)
4156 p += xsnprintf (p, endp - p, ";s");
4157 else if (siggnal != TARGET_SIGNAL_0)
4158 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4159 else
4160 p += xsnprintf (p, endp - p, ";c");
4161
4162 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4163 {
4164 ptid_t nptid;
4165
4166 /* All (-1) threads of process. */
4167 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4168
4169 p += xsnprintf (p, endp - p, ":");
4170 p = write_ptid (p, endp, nptid);
4171 }
4172 else if (!ptid_equal (ptid, minus_one_ptid))
4173 {
4174 p += xsnprintf (p, endp - p, ":");
4175 p = write_ptid (p, endp, ptid);
4176 }
4177
4178 return p;
4179 }
4180
4181 /* Resume the remote inferior by using a "vCont" packet. The thread
4182 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4183 resumed thread should be single-stepped and/or signalled. If PTID
4184 equals minus_one_ptid, then all threads are resumed; the thread to
4185 be stepped and/or signalled is given in the global INFERIOR_PTID.
4186 This function returns non-zero iff it resumes the inferior.
4187
4188 This function issues a strict subset of all possible vCont commands at the
4189 moment. */
4190
4191 static int
4192 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4193 {
4194 struct remote_state *rs = get_remote_state ();
4195 char *p;
4196 char *endp;
4197
4198 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4199 remote_vcont_probe (rs);
4200
4201 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4202 return 0;
4203
4204 p = rs->buf;
4205 endp = rs->buf + get_remote_packet_size ();
4206
4207 /* If we could generate a wider range of packets, we'd have to worry
4208 about overflowing BUF. Should there be a generic
4209 "multi-part-packet" packet? */
4210
4211 p += xsnprintf (p, endp - p, "vCont");
4212
4213 if (ptid_equal (ptid, magic_null_ptid))
4214 {
4215 /* MAGIC_NULL_PTID means that we don't have any active threads,
4216 so we don't have any TID numbers the inferior will
4217 understand. Make sure to only send forms that do not specify
4218 a TID. */
4219 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4220 }
4221 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4222 {
4223 /* Resume all threads (of all processes, or of a single
4224 process), with preference for INFERIOR_PTID. This assumes
4225 inferior_ptid belongs to the set of all threads we are about
4226 to resume. */
4227 if (step || siggnal != TARGET_SIGNAL_0)
4228 {
4229 /* Step inferior_ptid, with or without signal. */
4230 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4231 }
4232
4233 /* And continue others without a signal. */
4234 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4235 }
4236 else
4237 {
4238 /* Scheduler locking; resume only PTID. */
4239 p = append_resumption (p, endp, ptid, step, siggnal);
4240 }
4241
4242 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4243 putpkt (rs->buf);
4244
4245 if (non_stop)
4246 {
4247 /* In non-stop, the stub replies to vCont with "OK". The stop
4248 reply will be reported asynchronously by means of a `%Stop'
4249 notification. */
4250 getpkt (&rs->buf, &rs->buf_size, 0);
4251 if (strcmp (rs->buf, "OK") != 0)
4252 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4253 }
4254
4255 return 1;
4256 }
4257
4258 /* Tell the remote machine to resume. */
4259
4260 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4261
4262 static int last_sent_step;
4263
4264 static void
4265 remote_resume (struct target_ops *ops,
4266 ptid_t ptid, int step, enum target_signal siggnal)
4267 {
4268 struct remote_state *rs = get_remote_state ();
4269 char *buf;
4270
4271 last_sent_signal = siggnal;
4272 last_sent_step = step;
4273
4274 /* Update the inferior on signals to silently pass, if they've changed. */
4275 remote_pass_signals ();
4276
4277 /* The vCont packet doesn't need to specify threads via Hc. */
4278 /* No reverse support (yet) for vCont. */
4279 if (execution_direction != EXEC_REVERSE)
4280 if (remote_vcont_resume (ptid, step, siggnal))
4281 goto done;
4282
4283 /* All other supported resume packets do use Hc, so set the continue
4284 thread. */
4285 if (ptid_equal (ptid, minus_one_ptid))
4286 set_continue_thread (any_thread_ptid);
4287 else
4288 set_continue_thread (ptid);
4289
4290 buf = rs->buf;
4291 if (execution_direction == EXEC_REVERSE)
4292 {
4293 /* We don't pass signals to the target in reverse exec mode. */
4294 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4295 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4296 siggnal);
4297
4298 if (step
4299 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4300 error (_("Remote reverse-step not supported."));
4301 if (!step
4302 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4303 error (_("Remote reverse-continue not supported."));
4304
4305 strcpy (buf, step ? "bs" : "bc");
4306 }
4307 else if (siggnal != TARGET_SIGNAL_0)
4308 {
4309 buf[0] = step ? 'S' : 'C';
4310 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4311 buf[2] = tohex (((int) siggnal) & 0xf);
4312 buf[3] = '\0';
4313 }
4314 else
4315 strcpy (buf, step ? "s" : "c");
4316
4317 putpkt (buf);
4318
4319 done:
4320 /* We are about to start executing the inferior, let's register it
4321 with the event loop. NOTE: this is the one place where all the
4322 execution commands end up. We could alternatively do this in each
4323 of the execution commands in infcmd.c. */
4324 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4325 into infcmd.c in order to allow inferior function calls to work
4326 NOT asynchronously. */
4327 if (target_can_async_p ())
4328 target_async (inferior_event_handler, 0);
4329
4330 /* We've just told the target to resume. The remote server will
4331 wait for the inferior to stop, and then send a stop reply. In
4332 the mean time, we can't start another command/query ourselves
4333 because the stub wouldn't be ready to process it. This applies
4334 only to the base all-stop protocol, however. In non-stop (which
4335 only supports vCont), the stub replies with an "OK", and is
4336 immediate able to process further serial input. */
4337 if (!non_stop)
4338 rs->waiting_for_stop_reply = 1;
4339 }
4340 \f
4341
4342 /* Set up the signal handler for SIGINT, while the target is
4343 executing, ovewriting the 'regular' SIGINT signal handler. */
4344 static void
4345 initialize_sigint_signal_handler (void)
4346 {
4347 signal (SIGINT, handle_remote_sigint);
4348 }
4349
4350 /* Signal handler for SIGINT, while the target is executing. */
4351 static void
4352 handle_remote_sigint (int sig)
4353 {
4354 signal (sig, handle_remote_sigint_twice);
4355 mark_async_signal_handler_wrapper (sigint_remote_token);
4356 }
4357
4358 /* Signal handler for SIGINT, installed after SIGINT has already been
4359 sent once. It will take effect the second time that the user sends
4360 a ^C. */
4361 static void
4362 handle_remote_sigint_twice (int sig)
4363 {
4364 signal (sig, handle_remote_sigint);
4365 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4366 }
4367
4368 /* Perform the real interruption of the target execution, in response
4369 to a ^C. */
4370 static void
4371 async_remote_interrupt (gdb_client_data arg)
4372 {
4373 if (remote_debug)
4374 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4375
4376 target_stop (inferior_ptid);
4377 }
4378
4379 /* Perform interrupt, if the first attempt did not succeed. Just give
4380 up on the target alltogether. */
4381 void
4382 async_remote_interrupt_twice (gdb_client_data arg)
4383 {
4384 if (remote_debug)
4385 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4386
4387 interrupt_query ();
4388 }
4389
4390 /* Reinstall the usual SIGINT handlers, after the target has
4391 stopped. */
4392 static void
4393 cleanup_sigint_signal_handler (void *dummy)
4394 {
4395 signal (SIGINT, handle_sigint);
4396 }
4397
4398 /* Send ^C to target to halt it. Target will respond, and send us a
4399 packet. */
4400 static void (*ofunc) (int);
4401
4402 /* The command line interface's stop routine. This function is installed
4403 as a signal handler for SIGINT. The first time a user requests a
4404 stop, we call remote_stop to send a break or ^C. If there is no
4405 response from the target (it didn't stop when the user requested it),
4406 we ask the user if he'd like to detach from the target. */
4407 static void
4408 remote_interrupt (int signo)
4409 {
4410 /* If this doesn't work, try more severe steps. */
4411 signal (signo, remote_interrupt_twice);
4412
4413 gdb_call_async_signal_handler (sigint_remote_token, 1);
4414 }
4415
4416 /* The user typed ^C twice. */
4417
4418 static void
4419 remote_interrupt_twice (int signo)
4420 {
4421 signal (signo, ofunc);
4422 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4423 signal (signo, remote_interrupt);
4424 }
4425
4426 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4427 thread, all threads of a remote process, or all threads of all
4428 processes. */
4429
4430 static void
4431 remote_stop_ns (ptid_t ptid)
4432 {
4433 struct remote_state *rs = get_remote_state ();
4434 char *p = rs->buf;
4435 char *endp = rs->buf + get_remote_packet_size ();
4436
4437 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4438 remote_vcont_probe (rs);
4439
4440 if (!rs->support_vCont_t)
4441 error (_("Remote server does not support stopping threads"));
4442
4443 if (ptid_equal (ptid, minus_one_ptid)
4444 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4445 p += xsnprintf (p, endp - p, "vCont;t");
4446 else
4447 {
4448 ptid_t nptid;
4449
4450 p += xsnprintf (p, endp - p, "vCont;t:");
4451
4452 if (ptid_is_pid (ptid))
4453 /* All (-1) threads of process. */
4454 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4455 else
4456 {
4457 /* Small optimization: if we already have a stop reply for
4458 this thread, no use in telling the stub we want this
4459 stopped. */
4460 if (peek_stop_reply (ptid))
4461 return;
4462
4463 nptid = ptid;
4464 }
4465
4466 p = write_ptid (p, endp, nptid);
4467 }
4468
4469 /* In non-stop, we get an immediate OK reply. The stop reply will
4470 come in asynchronously by notification. */
4471 putpkt (rs->buf);
4472 getpkt (&rs->buf, &rs->buf_size, 0);
4473 if (strcmp (rs->buf, "OK") != 0)
4474 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4475 }
4476
4477 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4478 remote target. It is undefined which thread of which process
4479 reports the stop. */
4480
4481 static void
4482 remote_stop_as (ptid_t ptid)
4483 {
4484 struct remote_state *rs = get_remote_state ();
4485
4486 rs->ctrlc_pending_p = 1;
4487
4488 /* If the inferior is stopped already, but the core didn't know
4489 about it yet, just ignore the request. The cached wait status
4490 will be collected in remote_wait. */
4491 if (rs->cached_wait_status)
4492 return;
4493
4494 /* Send interrupt_sequence to remote target. */
4495 send_interrupt_sequence ();
4496 }
4497
4498 /* This is the generic stop called via the target vector. When a target
4499 interrupt is requested, either by the command line or the GUI, we
4500 will eventually end up here. */
4501
4502 static void
4503 remote_stop (ptid_t ptid)
4504 {
4505 if (remote_debug)
4506 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4507
4508 if (non_stop)
4509 remote_stop_ns (ptid);
4510 else
4511 remote_stop_as (ptid);
4512 }
4513
4514 /* Ask the user what to do when an interrupt is received. */
4515
4516 static void
4517 interrupt_query (void)
4518 {
4519 target_terminal_ours ();
4520
4521 if (target_can_async_p ())
4522 {
4523 signal (SIGINT, handle_sigint);
4524 deprecated_throw_reason (RETURN_QUIT);
4525 }
4526 else
4527 {
4528 if (query (_("Interrupted while waiting for the program.\n\
4529 Give up (and stop debugging it)? ")))
4530 {
4531 pop_target ();
4532 deprecated_throw_reason (RETURN_QUIT);
4533 }
4534 }
4535
4536 target_terminal_inferior ();
4537 }
4538
4539 /* Enable/disable target terminal ownership. Most targets can use
4540 terminal groups to control terminal ownership. Remote targets are
4541 different in that explicit transfer of ownership to/from GDB/target
4542 is required. */
4543
4544 static void
4545 remote_terminal_inferior (void)
4546 {
4547 if (!target_async_permitted)
4548 /* Nothing to do. */
4549 return;
4550
4551 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4552 idempotent. The event-loop GDB talking to an asynchronous target
4553 with a synchronous command calls this function from both
4554 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4555 transfer the terminal to the target when it shouldn't this guard
4556 can go away. */
4557 if (!remote_async_terminal_ours_p)
4558 return;
4559 delete_file_handler (input_fd);
4560 remote_async_terminal_ours_p = 0;
4561 initialize_sigint_signal_handler ();
4562 /* NOTE: At this point we could also register our selves as the
4563 recipient of all input. Any characters typed could then be
4564 passed on down to the target. */
4565 }
4566
4567 static void
4568 remote_terminal_ours (void)
4569 {
4570 if (!target_async_permitted)
4571 /* Nothing to do. */
4572 return;
4573
4574 /* See FIXME in remote_terminal_inferior. */
4575 if (remote_async_terminal_ours_p)
4576 return;
4577 cleanup_sigint_signal_handler (NULL);
4578 add_file_handler (input_fd, stdin_event_handler, 0);
4579 remote_async_terminal_ours_p = 1;
4580 }
4581
4582 void
4583 remote_console_output (char *msg)
4584 {
4585 char *p;
4586
4587 for (p = msg; p[0] && p[1]; p += 2)
4588 {
4589 char tb[2];
4590 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4591 tb[0] = c;
4592 tb[1] = 0;
4593 fputs_unfiltered (tb, gdb_stdtarg);
4594 }
4595 gdb_flush (gdb_stdtarg);
4596 }
4597
4598 typedef struct cached_reg
4599 {
4600 int num;
4601 gdb_byte data[MAX_REGISTER_SIZE];
4602 } cached_reg_t;
4603
4604 DEF_VEC_O(cached_reg_t);
4605
4606 struct stop_reply
4607 {
4608 struct stop_reply *next;
4609
4610 ptid_t ptid;
4611
4612 struct target_waitstatus ws;
4613
4614 VEC(cached_reg_t) *regcache;
4615
4616 int stopped_by_watchpoint_p;
4617 CORE_ADDR watch_data_address;
4618
4619 int solibs_changed;
4620 int replay_event;
4621
4622 int core;
4623 };
4624
4625 /* The list of already fetched and acknowledged stop events. */
4626 static struct stop_reply *stop_reply_queue;
4627
4628 static struct stop_reply *
4629 stop_reply_xmalloc (void)
4630 {
4631 struct stop_reply *r = XMALLOC (struct stop_reply);
4632 r->next = NULL;
4633 return r;
4634 }
4635
4636 static void
4637 stop_reply_xfree (struct stop_reply *r)
4638 {
4639 if (r != NULL)
4640 {
4641 VEC_free (cached_reg_t, r->regcache);
4642 xfree (r);
4643 }
4644 }
4645
4646 /* Discard all pending stop replies of inferior PID. If PID is -1,
4647 discard everything. */
4648
4649 static void
4650 discard_pending_stop_replies (int pid)
4651 {
4652 struct stop_reply *prev = NULL, *reply, *next;
4653
4654 /* Discard the in-flight notification. */
4655 if (pending_stop_reply != NULL
4656 && (pid == -1
4657 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4658 {
4659 stop_reply_xfree (pending_stop_reply);
4660 pending_stop_reply = NULL;
4661 }
4662
4663 /* Discard the stop replies we have already pulled with
4664 vStopped. */
4665 for (reply = stop_reply_queue; reply; reply = next)
4666 {
4667 next = reply->next;
4668 if (pid == -1
4669 || ptid_get_pid (reply->ptid) == pid)
4670 {
4671 if (reply == stop_reply_queue)
4672 stop_reply_queue = reply->next;
4673 else
4674 prev->next = reply->next;
4675
4676 stop_reply_xfree (reply);
4677 }
4678 else
4679 prev = reply;
4680 }
4681 }
4682
4683 /* Cleanup wrapper. */
4684
4685 static void
4686 do_stop_reply_xfree (void *arg)
4687 {
4688 struct stop_reply *r = arg;
4689 stop_reply_xfree (r);
4690 }
4691
4692 /* Look for a queued stop reply belonging to PTID. If one is found,
4693 remove it from the queue, and return it. Returns NULL if none is
4694 found. If there are still queued events left to process, tell the
4695 event loop to get back to target_wait soon. */
4696
4697 static struct stop_reply *
4698 queued_stop_reply (ptid_t ptid)
4699 {
4700 struct stop_reply *it;
4701 struct stop_reply **it_link;
4702
4703 it = stop_reply_queue;
4704 it_link = &stop_reply_queue;
4705 while (it)
4706 {
4707 if (ptid_match (it->ptid, ptid))
4708 {
4709 *it_link = it->next;
4710 it->next = NULL;
4711 break;
4712 }
4713
4714 it_link = &it->next;
4715 it = *it_link;
4716 }
4717
4718 if (stop_reply_queue)
4719 /* There's still at least an event left. */
4720 mark_async_event_handler (remote_async_inferior_event_token);
4721
4722 return it;
4723 }
4724
4725 /* Push a fully parsed stop reply in the stop reply queue. Since we
4726 know that we now have at least one queued event left to pass to the
4727 core side, tell the event loop to get back to target_wait soon. */
4728
4729 static void
4730 push_stop_reply (struct stop_reply *new_event)
4731 {
4732 struct stop_reply *event;
4733
4734 if (stop_reply_queue)
4735 {
4736 for (event = stop_reply_queue;
4737 event && event->next;
4738 event = event->next)
4739 ;
4740
4741 event->next = new_event;
4742 }
4743 else
4744 stop_reply_queue = new_event;
4745
4746 mark_async_event_handler (remote_async_inferior_event_token);
4747 }
4748
4749 /* Returns true if we have a stop reply for PTID. */
4750
4751 static int
4752 peek_stop_reply (ptid_t ptid)
4753 {
4754 struct stop_reply *it;
4755
4756 for (it = stop_reply_queue; it; it = it->next)
4757 if (ptid_equal (ptid, it->ptid))
4758 {
4759 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4760 return 1;
4761 }
4762
4763 return 0;
4764 }
4765
4766 /* Parse the stop reply in BUF. Either the function succeeds, and the
4767 result is stored in EVENT, or throws an error. */
4768
4769 static void
4770 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4771 {
4772 struct remote_arch_state *rsa = get_remote_arch_state ();
4773 ULONGEST addr;
4774 char *p;
4775
4776 event->ptid = null_ptid;
4777 event->ws.kind = TARGET_WAITKIND_IGNORE;
4778 event->ws.value.integer = 0;
4779 event->solibs_changed = 0;
4780 event->replay_event = 0;
4781 event->stopped_by_watchpoint_p = 0;
4782 event->regcache = NULL;
4783 event->core = -1;
4784
4785 switch (buf[0])
4786 {
4787 case 'T': /* Status with PC, SP, FP, ... */
4788 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4789 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4790 ss = signal number
4791 n... = register number
4792 r... = register contents
4793 */
4794
4795 p = &buf[3]; /* after Txx */
4796 while (*p)
4797 {
4798 char *p1;
4799 char *p_temp;
4800 int fieldsize;
4801 LONGEST pnum = 0;
4802
4803 /* If the packet contains a register number, save it in
4804 pnum and set p1 to point to the character following it.
4805 Otherwise p1 points to p. */
4806
4807 /* If this packet is an awatch packet, don't parse the 'a'
4808 as a register number. */
4809
4810 if (strncmp (p, "awatch", strlen("awatch")) != 0
4811 && strncmp (p, "core", strlen ("core") != 0))
4812 {
4813 /* Read the ``P'' register number. */
4814 pnum = strtol (p, &p_temp, 16);
4815 p1 = p_temp;
4816 }
4817 else
4818 p1 = p;
4819
4820 if (p1 == p) /* No register number present here. */
4821 {
4822 p1 = strchr (p, ':');
4823 if (p1 == NULL)
4824 error (_("Malformed packet(a) (missing colon): %s\n\
4825 Packet: '%s'\n"),
4826 p, buf);
4827 if (strncmp (p, "thread", p1 - p) == 0)
4828 event->ptid = read_ptid (++p1, &p);
4829 else if ((strncmp (p, "watch", p1 - p) == 0)
4830 || (strncmp (p, "rwatch", p1 - p) == 0)
4831 || (strncmp (p, "awatch", p1 - p) == 0))
4832 {
4833 event->stopped_by_watchpoint_p = 1;
4834 p = unpack_varlen_hex (++p1, &addr);
4835 event->watch_data_address = (CORE_ADDR) addr;
4836 }
4837 else if (strncmp (p, "library", p1 - p) == 0)
4838 {
4839 p1++;
4840 p_temp = p1;
4841 while (*p_temp && *p_temp != ';')
4842 p_temp++;
4843
4844 event->solibs_changed = 1;
4845 p = p_temp;
4846 }
4847 else if (strncmp (p, "replaylog", p1 - p) == 0)
4848 {
4849 /* NO_HISTORY event.
4850 p1 will indicate "begin" or "end", but
4851 it makes no difference for now, so ignore it. */
4852 event->replay_event = 1;
4853 p_temp = strchr (p1 + 1, ';');
4854 if (p_temp)
4855 p = p_temp;
4856 }
4857 else if (strncmp (p, "core", p1 - p) == 0)
4858 {
4859 ULONGEST c;
4860 p = unpack_varlen_hex (++p1, &c);
4861 event->core = c;
4862 }
4863 else
4864 {
4865 /* Silently skip unknown optional info. */
4866 p_temp = strchr (p1 + 1, ';');
4867 if (p_temp)
4868 p = p_temp;
4869 }
4870 }
4871 else
4872 {
4873 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4874 cached_reg_t cached_reg;
4875
4876 p = p1;
4877
4878 if (*p != ':')
4879 error (_("Malformed packet(b) (missing colon): %s\n\
4880 Packet: '%s'\n"),
4881 p, buf);
4882 ++p;
4883
4884 if (reg == NULL)
4885 error (_("Remote sent bad register number %s: %s\n\
4886 Packet: '%s'\n"),
4887 hex_string (pnum), p, buf);
4888
4889 cached_reg.num = reg->regnum;
4890
4891 fieldsize = hex2bin (p, cached_reg.data,
4892 register_size (target_gdbarch,
4893 reg->regnum));
4894 p += 2 * fieldsize;
4895 if (fieldsize < register_size (target_gdbarch,
4896 reg->regnum))
4897 warning (_("Remote reply is too short: %s"), buf);
4898
4899 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4900 }
4901
4902 if (*p != ';')
4903 error (_("Remote register badly formatted: %s\nhere: %s"),
4904 buf, p);
4905 ++p;
4906 }
4907 /* fall through */
4908 case 'S': /* Old style status, just signal only. */
4909 if (event->solibs_changed)
4910 event->ws.kind = TARGET_WAITKIND_LOADED;
4911 else if (event->replay_event)
4912 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4913 else
4914 {
4915 event->ws.kind = TARGET_WAITKIND_STOPPED;
4916 event->ws.value.sig = (enum target_signal)
4917 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4918 }
4919 break;
4920 case 'W': /* Target exited. */
4921 case 'X':
4922 {
4923 char *p;
4924 int pid;
4925 ULONGEST value;
4926
4927 /* GDB used to accept only 2 hex chars here. Stubs should
4928 only send more if they detect GDB supports multi-process
4929 support. */
4930 p = unpack_varlen_hex (&buf[1], &value);
4931
4932 if (buf[0] == 'W')
4933 {
4934 /* The remote process exited. */
4935 event->ws.kind = TARGET_WAITKIND_EXITED;
4936 event->ws.value.integer = value;
4937 }
4938 else
4939 {
4940 /* The remote process exited with a signal. */
4941 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4942 event->ws.value.sig = (enum target_signal) value;
4943 }
4944
4945 /* If no process is specified, assume inferior_ptid. */
4946 pid = ptid_get_pid (inferior_ptid);
4947 if (*p == '\0')
4948 ;
4949 else if (*p == ';')
4950 {
4951 p++;
4952
4953 if (p == '\0')
4954 ;
4955 else if (strncmp (p,
4956 "process:", sizeof ("process:") - 1) == 0)
4957 {
4958 ULONGEST upid;
4959 p += sizeof ("process:") - 1;
4960 unpack_varlen_hex (p, &upid);
4961 pid = upid;
4962 }
4963 else
4964 error (_("unknown stop reply packet: %s"), buf);
4965 }
4966 else
4967 error (_("unknown stop reply packet: %s"), buf);
4968 event->ptid = pid_to_ptid (pid);
4969 }
4970 break;
4971 }
4972
4973 if (non_stop && ptid_equal (event->ptid, null_ptid))
4974 error (_("No process or thread specified in stop reply: %s"), buf);
4975 }
4976
4977 /* When the stub wants to tell GDB about a new stop reply, it sends a
4978 stop notification (%Stop). Those can come it at any time, hence,
4979 we have to make sure that any pending putpkt/getpkt sequence we're
4980 making is finished, before querying the stub for more events with
4981 vStopped. E.g., if we started a vStopped sequence immediatelly
4982 upon receiving the %Stop notification, something like this could
4983 happen:
4984
4985 1.1) --> Hg 1
4986 1.2) <-- OK
4987 1.3) --> g
4988 1.4) <-- %Stop
4989 1.5) --> vStopped
4990 1.6) <-- (registers reply to step #1.3)
4991
4992 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4993 query.
4994
4995 To solve this, whenever we parse a %Stop notification sucessfully,
4996 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4997 doing whatever we were doing:
4998
4999 2.1) --> Hg 1
5000 2.2) <-- OK
5001 2.3) --> g
5002 2.4) <-- %Stop
5003 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5004 2.5) <-- (registers reply to step #2.3)
5005
5006 Eventualy after step #2.5, we return to the event loop, which
5007 notices there's an event on the
5008 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5009 associated callback --- the function below. At this point, we're
5010 always safe to start a vStopped sequence. :
5011
5012 2.6) --> vStopped
5013 2.7) <-- T05 thread:2
5014 2.8) --> vStopped
5015 2.9) --> OK
5016 */
5017
5018 static void
5019 remote_get_pending_stop_replies (void)
5020 {
5021 struct remote_state *rs = get_remote_state ();
5022
5023 if (pending_stop_reply)
5024 {
5025 /* acknowledge */
5026 putpkt ("vStopped");
5027
5028 /* Now we can rely on it. */
5029 push_stop_reply (pending_stop_reply);
5030 pending_stop_reply = NULL;
5031
5032 while (1)
5033 {
5034 getpkt (&rs->buf, &rs->buf_size, 0);
5035 if (strcmp (rs->buf, "OK") == 0)
5036 break;
5037 else
5038 {
5039 struct cleanup *old_chain;
5040 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5041
5042 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5043 remote_parse_stop_reply (rs->buf, stop_reply);
5044
5045 /* acknowledge */
5046 putpkt ("vStopped");
5047
5048 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5049 {
5050 /* Now we can rely on it. */
5051 discard_cleanups (old_chain);
5052 push_stop_reply (stop_reply);
5053 }
5054 else
5055 /* We got an unknown stop reply. */
5056 do_cleanups (old_chain);
5057 }
5058 }
5059 }
5060 }
5061
5062
5063 /* Called when it is decided that STOP_REPLY holds the info of the
5064 event that is to be returned to the core. This function always
5065 destroys STOP_REPLY. */
5066
5067 static ptid_t
5068 process_stop_reply (struct stop_reply *stop_reply,
5069 struct target_waitstatus *status)
5070 {
5071 ptid_t ptid;
5072 struct thread_info *info;
5073
5074 *status = stop_reply->ws;
5075 ptid = stop_reply->ptid;
5076
5077 /* If no thread/process was reported by the stub, assume the current
5078 inferior. */
5079 if (ptid_equal (ptid, null_ptid))
5080 ptid = inferior_ptid;
5081
5082 if (status->kind != TARGET_WAITKIND_EXITED
5083 && status->kind != TARGET_WAITKIND_SIGNALLED)
5084 {
5085 /* Expedited registers. */
5086 if (stop_reply->regcache)
5087 {
5088 struct regcache *regcache
5089 = get_thread_arch_regcache (ptid, target_gdbarch);
5090 cached_reg_t *reg;
5091 int ix;
5092
5093 for (ix = 0;
5094 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5095 ix++)
5096 regcache_raw_supply (regcache, reg->num, reg->data);
5097 VEC_free (cached_reg_t, stop_reply->regcache);
5098 }
5099
5100 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5101 remote_watch_data_address = stop_reply->watch_data_address;
5102
5103 remote_notice_new_inferior (ptid, 0);
5104 demand_private_info (ptid)->core = stop_reply->core;
5105 }
5106
5107 stop_reply_xfree (stop_reply);
5108 return ptid;
5109 }
5110
5111 /* The non-stop mode version of target_wait. */
5112
5113 static ptid_t
5114 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5115 {
5116 struct remote_state *rs = get_remote_state ();
5117 struct stop_reply *stop_reply;
5118 int ret;
5119
5120 /* If in non-stop mode, get out of getpkt even if a
5121 notification is received. */
5122
5123 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5124 0 /* forever */);
5125 while (1)
5126 {
5127 if (ret != -1)
5128 switch (rs->buf[0])
5129 {
5130 case 'E': /* Error of some sort. */
5131 /* We're out of sync with the target now. Did it continue
5132 or not? We can't tell which thread it was in non-stop,
5133 so just ignore this. */
5134 warning (_("Remote failure reply: %s"), rs->buf);
5135 break;
5136 case 'O': /* Console output. */
5137 remote_console_output (rs->buf + 1);
5138 break;
5139 default:
5140 warning (_("Invalid remote reply: %s"), rs->buf);
5141 break;
5142 }
5143
5144 /* Acknowledge a pending stop reply that may have arrived in the
5145 mean time. */
5146 if (pending_stop_reply != NULL)
5147 remote_get_pending_stop_replies ();
5148
5149 /* If indeed we noticed a stop reply, we're done. */
5150 stop_reply = queued_stop_reply (ptid);
5151 if (stop_reply != NULL)
5152 return process_stop_reply (stop_reply, status);
5153
5154 /* Still no event. If we're just polling for an event, then
5155 return to the event loop. */
5156 if (options & TARGET_WNOHANG)
5157 {
5158 status->kind = TARGET_WAITKIND_IGNORE;
5159 return minus_one_ptid;
5160 }
5161
5162 /* Otherwise do a blocking wait. */
5163 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5164 1 /* forever */);
5165 }
5166 }
5167
5168 /* Wait until the remote machine stops, then return, storing status in
5169 STATUS just as `wait' would. */
5170
5171 static ptid_t
5172 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5173 {
5174 struct remote_state *rs = get_remote_state ();
5175 ptid_t event_ptid = null_ptid;
5176 char *buf;
5177 struct stop_reply *stop_reply;
5178
5179 again:
5180
5181 status->kind = TARGET_WAITKIND_IGNORE;
5182 status->value.integer = 0;
5183
5184 stop_reply = queued_stop_reply (ptid);
5185 if (stop_reply != NULL)
5186 return process_stop_reply (stop_reply, status);
5187
5188 if (rs->cached_wait_status)
5189 /* Use the cached wait status, but only once. */
5190 rs->cached_wait_status = 0;
5191 else
5192 {
5193 int ret;
5194
5195 if (!target_is_async_p ())
5196 {
5197 ofunc = signal (SIGINT, remote_interrupt);
5198 /* If the user hit C-c before this packet, or between packets,
5199 pretend that it was hit right here. */
5200 if (quit_flag)
5201 {
5202 quit_flag = 0;
5203 remote_interrupt (SIGINT);
5204 }
5205 }
5206
5207 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5208 _never_ wait for ever -> test on target_is_async_p().
5209 However, before we do that we need to ensure that the caller
5210 knows how to take the target into/out of async mode. */
5211 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5212 if (!target_is_async_p ())
5213 signal (SIGINT, ofunc);
5214 }
5215
5216 buf = rs->buf;
5217
5218 remote_stopped_by_watchpoint_p = 0;
5219
5220 /* We got something. */
5221 rs->waiting_for_stop_reply = 0;
5222
5223 /* Assume that the target has acknowledged Ctrl-C unless we receive
5224 an 'F' or 'O' packet. */
5225 if (buf[0] != 'F' && buf[0] != 'O')
5226 rs->ctrlc_pending_p = 0;
5227
5228 switch (buf[0])
5229 {
5230 case 'E': /* Error of some sort. */
5231 /* We're out of sync with the target now. Did it continue or
5232 not? Not is more likely, so report a stop. */
5233 warning (_("Remote failure reply: %s"), buf);
5234 status->kind = TARGET_WAITKIND_STOPPED;
5235 status->value.sig = TARGET_SIGNAL_0;
5236 break;
5237 case 'F': /* File-I/O request. */
5238 remote_fileio_request (buf, rs->ctrlc_pending_p);
5239 rs->ctrlc_pending_p = 0;
5240 break;
5241 case 'T': case 'S': case 'X': case 'W':
5242 {
5243 struct stop_reply *stop_reply;
5244 struct cleanup *old_chain;
5245
5246 stop_reply = stop_reply_xmalloc ();
5247 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5248 remote_parse_stop_reply (buf, stop_reply);
5249 discard_cleanups (old_chain);
5250 event_ptid = process_stop_reply (stop_reply, status);
5251 break;
5252 }
5253 case 'O': /* Console output. */
5254 remote_console_output (buf + 1);
5255
5256 /* The target didn't really stop; keep waiting. */
5257 rs->waiting_for_stop_reply = 1;
5258
5259 break;
5260 case '\0':
5261 if (last_sent_signal != TARGET_SIGNAL_0)
5262 {
5263 /* Zero length reply means that we tried 'S' or 'C' and the
5264 remote system doesn't support it. */
5265 target_terminal_ours_for_output ();
5266 printf_filtered
5267 ("Can't send signals to this remote system. %s not sent.\n",
5268 target_signal_to_name (last_sent_signal));
5269 last_sent_signal = TARGET_SIGNAL_0;
5270 target_terminal_inferior ();
5271
5272 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5273 putpkt ((char *) buf);
5274
5275 /* We just told the target to resume, so a stop reply is in
5276 order. */
5277 rs->waiting_for_stop_reply = 1;
5278 break;
5279 }
5280 /* else fallthrough */
5281 default:
5282 warning (_("Invalid remote reply: %s"), buf);
5283 /* Keep waiting. */
5284 rs->waiting_for_stop_reply = 1;
5285 break;
5286 }
5287
5288 if (status->kind == TARGET_WAITKIND_IGNORE)
5289 {
5290 /* Nothing interesting happened. If we're doing a non-blocking
5291 poll, we're done. Otherwise, go back to waiting. */
5292 if (options & TARGET_WNOHANG)
5293 return minus_one_ptid;
5294 else
5295 goto again;
5296 }
5297 else if (status->kind != TARGET_WAITKIND_EXITED
5298 && status->kind != TARGET_WAITKIND_SIGNALLED)
5299 {
5300 if (!ptid_equal (event_ptid, null_ptid))
5301 record_currthread (event_ptid);
5302 else
5303 event_ptid = inferior_ptid;
5304 }
5305 else
5306 /* A process exit. Invalidate our notion of current thread. */
5307 record_currthread (minus_one_ptid);
5308
5309 return event_ptid;
5310 }
5311
5312 /* Wait until the remote machine stops, then return, storing status in
5313 STATUS just as `wait' would. */
5314
5315 static ptid_t
5316 remote_wait (struct target_ops *ops,
5317 ptid_t ptid, struct target_waitstatus *status, int options)
5318 {
5319 ptid_t event_ptid;
5320
5321 if (non_stop)
5322 event_ptid = remote_wait_ns (ptid, status, options);
5323 else
5324 event_ptid = remote_wait_as (ptid, status, options);
5325
5326 if (target_can_async_p ())
5327 {
5328 /* If there are are events left in the queue tell the event loop
5329 to return here. */
5330 if (stop_reply_queue)
5331 mark_async_event_handler (remote_async_inferior_event_token);
5332 }
5333
5334 return event_ptid;
5335 }
5336
5337 /* Fetch a single register using a 'p' packet. */
5338
5339 static int
5340 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5341 {
5342 struct remote_state *rs = get_remote_state ();
5343 char *buf, *p;
5344 char regp[MAX_REGISTER_SIZE];
5345 int i;
5346
5347 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5348 return 0;
5349
5350 if (reg->pnum == -1)
5351 return 0;
5352
5353 p = rs->buf;
5354 *p++ = 'p';
5355 p += hexnumstr (p, reg->pnum);
5356 *p++ = '\0';
5357 putpkt (rs->buf);
5358 getpkt (&rs->buf, &rs->buf_size, 0);
5359
5360 buf = rs->buf;
5361
5362 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5363 {
5364 case PACKET_OK:
5365 break;
5366 case PACKET_UNKNOWN:
5367 return 0;
5368 case PACKET_ERROR:
5369 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5370 gdbarch_register_name (get_regcache_arch (regcache),
5371 reg->regnum),
5372 buf);
5373 }
5374
5375 /* If this register is unfetchable, tell the regcache. */
5376 if (buf[0] == 'x')
5377 {
5378 regcache_raw_supply (regcache, reg->regnum, NULL);
5379 return 1;
5380 }
5381
5382 /* Otherwise, parse and supply the value. */
5383 p = buf;
5384 i = 0;
5385 while (p[0] != 0)
5386 {
5387 if (p[1] == 0)
5388 error (_("fetch_register_using_p: early buf termination"));
5389
5390 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5391 p += 2;
5392 }
5393 regcache_raw_supply (regcache, reg->regnum, regp);
5394 return 1;
5395 }
5396
5397 /* Fetch the registers included in the target's 'g' packet. */
5398
5399 static int
5400 send_g_packet (void)
5401 {
5402 struct remote_state *rs = get_remote_state ();
5403 int buf_len;
5404
5405 sprintf (rs->buf, "g");
5406 remote_send (&rs->buf, &rs->buf_size);
5407
5408 /* We can get out of synch in various cases. If the first character
5409 in the buffer is not a hex character, assume that has happened
5410 and try to fetch another packet to read. */
5411 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5412 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5413 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5414 && rs->buf[0] != 'x') /* New: unavailable register value. */
5415 {
5416 if (remote_debug)
5417 fprintf_unfiltered (gdb_stdlog,
5418 "Bad register packet; fetching a new packet\n");
5419 getpkt (&rs->buf, &rs->buf_size, 0);
5420 }
5421
5422 buf_len = strlen (rs->buf);
5423
5424 /* Sanity check the received packet. */
5425 if (buf_len % 2 != 0)
5426 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5427
5428 return buf_len / 2;
5429 }
5430
5431 static void
5432 process_g_packet (struct regcache *regcache)
5433 {
5434 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5435 struct remote_state *rs = get_remote_state ();
5436 struct remote_arch_state *rsa = get_remote_arch_state ();
5437 int i, buf_len;
5438 char *p;
5439 char *regs;
5440
5441 buf_len = strlen (rs->buf);
5442
5443 /* Further sanity checks, with knowledge of the architecture. */
5444 if (buf_len > 2 * rsa->sizeof_g_packet)
5445 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5446
5447 /* Save the size of the packet sent to us by the target. It is used
5448 as a heuristic when determining the max size of packets that the
5449 target can safely receive. */
5450 if (rsa->actual_register_packet_size == 0)
5451 rsa->actual_register_packet_size = buf_len;
5452
5453 /* If this is smaller than we guessed the 'g' packet would be,
5454 update our records. A 'g' reply that doesn't include a register's
5455 value implies either that the register is not available, or that
5456 the 'p' packet must be used. */
5457 if (buf_len < 2 * rsa->sizeof_g_packet)
5458 {
5459 rsa->sizeof_g_packet = buf_len / 2;
5460
5461 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5462 {
5463 if (rsa->regs[i].pnum == -1)
5464 continue;
5465
5466 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5467 rsa->regs[i].in_g_packet = 0;
5468 else
5469 rsa->regs[i].in_g_packet = 1;
5470 }
5471 }
5472
5473 regs = alloca (rsa->sizeof_g_packet);
5474
5475 /* Unimplemented registers read as all bits zero. */
5476 memset (regs, 0, rsa->sizeof_g_packet);
5477
5478 /* Reply describes registers byte by byte, each byte encoded as two
5479 hex characters. Suck them all up, then supply them to the
5480 register cacheing/storage mechanism. */
5481
5482 p = rs->buf;
5483 for (i = 0; i < rsa->sizeof_g_packet; i++)
5484 {
5485 if (p[0] == 0 || p[1] == 0)
5486 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5487 internal_error (__FILE__, __LINE__,
5488 "unexpected end of 'g' packet reply");
5489
5490 if (p[0] == 'x' && p[1] == 'x')
5491 regs[i] = 0; /* 'x' */
5492 else
5493 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5494 p += 2;
5495 }
5496
5497 {
5498 int i;
5499 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5500 {
5501 struct packet_reg *r = &rsa->regs[i];
5502 if (r->in_g_packet)
5503 {
5504 if (r->offset * 2 >= strlen (rs->buf))
5505 /* This shouldn't happen - we adjusted in_g_packet above. */
5506 internal_error (__FILE__, __LINE__,
5507 "unexpected end of 'g' packet reply");
5508 else if (rs->buf[r->offset * 2] == 'x')
5509 {
5510 gdb_assert (r->offset * 2 < strlen (rs->buf));
5511 /* The register isn't available, mark it as such (at
5512 the same time setting the value to zero). */
5513 regcache_raw_supply (regcache, r->regnum, NULL);
5514 }
5515 else
5516 regcache_raw_supply (regcache, r->regnum,
5517 regs + r->offset);
5518 }
5519 }
5520 }
5521 }
5522
5523 static void
5524 fetch_registers_using_g (struct regcache *regcache)
5525 {
5526 send_g_packet ();
5527 process_g_packet (regcache);
5528 }
5529
5530 static void
5531 remote_fetch_registers (struct target_ops *ops,
5532 struct regcache *regcache, int regnum)
5533 {
5534 struct remote_arch_state *rsa = get_remote_arch_state ();
5535 int i;
5536
5537 set_general_thread (inferior_ptid);
5538
5539 if (regnum >= 0)
5540 {
5541 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5542 gdb_assert (reg != NULL);
5543
5544 /* If this register might be in the 'g' packet, try that first -
5545 we are likely to read more than one register. If this is the
5546 first 'g' packet, we might be overly optimistic about its
5547 contents, so fall back to 'p'. */
5548 if (reg->in_g_packet)
5549 {
5550 fetch_registers_using_g (regcache);
5551 if (reg->in_g_packet)
5552 return;
5553 }
5554
5555 if (fetch_register_using_p (regcache, reg))
5556 return;
5557
5558 /* This register is not available. */
5559 regcache_raw_supply (regcache, reg->regnum, NULL);
5560
5561 return;
5562 }
5563
5564 fetch_registers_using_g (regcache);
5565
5566 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5567 if (!rsa->regs[i].in_g_packet)
5568 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5569 {
5570 /* This register is not available. */
5571 regcache_raw_supply (regcache, i, NULL);
5572 }
5573 }
5574
5575 /* Prepare to store registers. Since we may send them all (using a
5576 'G' request), we have to read out the ones we don't want to change
5577 first. */
5578
5579 static void
5580 remote_prepare_to_store (struct regcache *regcache)
5581 {
5582 struct remote_arch_state *rsa = get_remote_arch_state ();
5583 int i;
5584 gdb_byte buf[MAX_REGISTER_SIZE];
5585
5586 /* Make sure the entire registers array is valid. */
5587 switch (remote_protocol_packets[PACKET_P].support)
5588 {
5589 case PACKET_DISABLE:
5590 case PACKET_SUPPORT_UNKNOWN:
5591 /* Make sure all the necessary registers are cached. */
5592 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5593 if (rsa->regs[i].in_g_packet)
5594 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5595 break;
5596 case PACKET_ENABLE:
5597 break;
5598 }
5599 }
5600
5601 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5602 packet was not recognized. */
5603
5604 static int
5605 store_register_using_P (const struct regcache *regcache,
5606 struct packet_reg *reg)
5607 {
5608 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5609 struct remote_state *rs = get_remote_state ();
5610 /* Try storing a single register. */
5611 char *buf = rs->buf;
5612 gdb_byte regp[MAX_REGISTER_SIZE];
5613 char *p;
5614
5615 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5616 return 0;
5617
5618 if (reg->pnum == -1)
5619 return 0;
5620
5621 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5622 p = buf + strlen (buf);
5623 regcache_raw_collect (regcache, reg->regnum, regp);
5624 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5625 putpkt (rs->buf);
5626 getpkt (&rs->buf, &rs->buf_size, 0);
5627
5628 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5629 {
5630 case PACKET_OK:
5631 return 1;
5632 case PACKET_ERROR:
5633 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5634 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5635 case PACKET_UNKNOWN:
5636 return 0;
5637 default:
5638 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5639 }
5640 }
5641
5642 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5643 contents of the register cache buffer. FIXME: ignores errors. */
5644
5645 static void
5646 store_registers_using_G (const struct regcache *regcache)
5647 {
5648 struct remote_state *rs = get_remote_state ();
5649 struct remote_arch_state *rsa = get_remote_arch_state ();
5650 gdb_byte *regs;
5651 char *p;
5652
5653 /* Extract all the registers in the regcache copying them into a
5654 local buffer. */
5655 {
5656 int i;
5657 regs = alloca (rsa->sizeof_g_packet);
5658 memset (regs, 0, rsa->sizeof_g_packet);
5659 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5660 {
5661 struct packet_reg *r = &rsa->regs[i];
5662 if (r->in_g_packet)
5663 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5664 }
5665 }
5666
5667 /* Command describes registers byte by byte,
5668 each byte encoded as two hex characters. */
5669 p = rs->buf;
5670 *p++ = 'G';
5671 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5672 updated. */
5673 bin2hex (regs, p, rsa->sizeof_g_packet);
5674 putpkt (rs->buf);
5675 getpkt (&rs->buf, &rs->buf_size, 0);
5676 if (packet_check_result (rs->buf) == PACKET_ERROR)
5677 error (_("Could not write registers; remote failure reply '%s'"),
5678 rs->buf);
5679 }
5680
5681 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5682 of the register cache buffer. FIXME: ignores errors. */
5683
5684 static void
5685 remote_store_registers (struct target_ops *ops,
5686 struct regcache *regcache, int regnum)
5687 {
5688 struct remote_arch_state *rsa = get_remote_arch_state ();
5689 int i;
5690
5691 set_general_thread (inferior_ptid);
5692
5693 if (regnum >= 0)
5694 {
5695 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5696 gdb_assert (reg != NULL);
5697
5698 /* Always prefer to store registers using the 'P' packet if
5699 possible; we often change only a small number of registers.
5700 Sometimes we change a larger number; we'd need help from a
5701 higher layer to know to use 'G'. */
5702 if (store_register_using_P (regcache, reg))
5703 return;
5704
5705 /* For now, don't complain if we have no way to write the
5706 register. GDB loses track of unavailable registers too
5707 easily. Some day, this may be an error. We don't have
5708 any way to read the register, either... */
5709 if (!reg->in_g_packet)
5710 return;
5711
5712 store_registers_using_G (regcache);
5713 return;
5714 }
5715
5716 store_registers_using_G (regcache);
5717
5718 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5719 if (!rsa->regs[i].in_g_packet)
5720 if (!store_register_using_P (regcache, &rsa->regs[i]))
5721 /* See above for why we do not issue an error here. */
5722 continue;
5723 }
5724 \f
5725
5726 /* Return the number of hex digits in num. */
5727
5728 static int
5729 hexnumlen (ULONGEST num)
5730 {
5731 int i;
5732
5733 for (i = 0; num != 0; i++)
5734 num >>= 4;
5735
5736 return max (i, 1);
5737 }
5738
5739 /* Set BUF to the minimum number of hex digits representing NUM. */
5740
5741 static int
5742 hexnumstr (char *buf, ULONGEST num)
5743 {
5744 int len = hexnumlen (num);
5745 return hexnumnstr (buf, num, len);
5746 }
5747
5748
5749 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5750
5751 static int
5752 hexnumnstr (char *buf, ULONGEST num, int width)
5753 {
5754 int i;
5755
5756 buf[width] = '\0';
5757
5758 for (i = width - 1; i >= 0; i--)
5759 {
5760 buf[i] = "0123456789abcdef"[(num & 0xf)];
5761 num >>= 4;
5762 }
5763
5764 return width;
5765 }
5766
5767 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5768
5769 static CORE_ADDR
5770 remote_address_masked (CORE_ADDR addr)
5771 {
5772 int address_size = remote_address_size;
5773 /* If "remoteaddresssize" was not set, default to target address size. */
5774 if (!address_size)
5775 address_size = gdbarch_addr_bit (target_gdbarch);
5776
5777 if (address_size > 0
5778 && address_size < (sizeof (ULONGEST) * 8))
5779 {
5780 /* Only create a mask when that mask can safely be constructed
5781 in a ULONGEST variable. */
5782 ULONGEST mask = 1;
5783 mask = (mask << address_size) - 1;
5784 addr &= mask;
5785 }
5786 return addr;
5787 }
5788
5789 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5790 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5791 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5792 (which may be more than *OUT_LEN due to escape characters). The
5793 total number of bytes in the output buffer will be at most
5794 OUT_MAXLEN. */
5795
5796 static int
5797 remote_escape_output (const gdb_byte *buffer, int len,
5798 gdb_byte *out_buf, int *out_len,
5799 int out_maxlen)
5800 {
5801 int input_index, output_index;
5802
5803 output_index = 0;
5804 for (input_index = 0; input_index < len; input_index++)
5805 {
5806 gdb_byte b = buffer[input_index];
5807
5808 if (b == '$' || b == '#' || b == '}')
5809 {
5810 /* These must be escaped. */
5811 if (output_index + 2 > out_maxlen)
5812 break;
5813 out_buf[output_index++] = '}';
5814 out_buf[output_index++] = b ^ 0x20;
5815 }
5816 else
5817 {
5818 if (output_index + 1 > out_maxlen)
5819 break;
5820 out_buf[output_index++] = b;
5821 }
5822 }
5823
5824 *out_len = input_index;
5825 return output_index;
5826 }
5827
5828 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5829 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5830 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5831
5832 This function reverses remote_escape_output. It allows more
5833 escaped characters than that function does, in particular because
5834 '*' must be escaped to avoid the run-length encoding processing
5835 in reading packets. */
5836
5837 static int
5838 remote_unescape_input (const gdb_byte *buffer, int len,
5839 gdb_byte *out_buf, int out_maxlen)
5840 {
5841 int input_index, output_index;
5842 int escaped;
5843
5844 output_index = 0;
5845 escaped = 0;
5846 for (input_index = 0; input_index < len; input_index++)
5847 {
5848 gdb_byte b = buffer[input_index];
5849
5850 if (output_index + 1 > out_maxlen)
5851 {
5852 warning (_("Received too much data from remote target;"
5853 " ignoring overflow."));
5854 return output_index;
5855 }
5856
5857 if (escaped)
5858 {
5859 out_buf[output_index++] = b ^ 0x20;
5860 escaped = 0;
5861 }
5862 else if (b == '}')
5863 escaped = 1;
5864 else
5865 out_buf[output_index++] = b;
5866 }
5867
5868 if (escaped)
5869 error (_("Unmatched escape character in target response."));
5870
5871 return output_index;
5872 }
5873
5874 /* Determine whether the remote target supports binary downloading.
5875 This is accomplished by sending a no-op memory write of zero length
5876 to the target at the specified address. It does not suffice to send
5877 the whole packet, since many stubs strip the eighth bit and
5878 subsequently compute a wrong checksum, which causes real havoc with
5879 remote_write_bytes.
5880
5881 NOTE: This can still lose if the serial line is not eight-bit
5882 clean. In cases like this, the user should clear "remote
5883 X-packet". */
5884
5885 static void
5886 check_binary_download (CORE_ADDR addr)
5887 {
5888 struct remote_state *rs = get_remote_state ();
5889
5890 switch (remote_protocol_packets[PACKET_X].support)
5891 {
5892 case PACKET_DISABLE:
5893 break;
5894 case PACKET_ENABLE:
5895 break;
5896 case PACKET_SUPPORT_UNKNOWN:
5897 {
5898 char *p;
5899
5900 p = rs->buf;
5901 *p++ = 'X';
5902 p += hexnumstr (p, (ULONGEST) addr);
5903 *p++ = ',';
5904 p += hexnumstr (p, (ULONGEST) 0);
5905 *p++ = ':';
5906 *p = '\0';
5907
5908 putpkt_binary (rs->buf, (int) (p - rs->buf));
5909 getpkt (&rs->buf, &rs->buf_size, 0);
5910
5911 if (rs->buf[0] == '\0')
5912 {
5913 if (remote_debug)
5914 fprintf_unfiltered (gdb_stdlog,
5915 "binary downloading NOT suppported by target\n");
5916 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5917 }
5918 else
5919 {
5920 if (remote_debug)
5921 fprintf_unfiltered (gdb_stdlog,
5922 "binary downloading suppported by target\n");
5923 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5924 }
5925 break;
5926 }
5927 }
5928 }
5929
5930 /* Write memory data directly to the remote machine.
5931 This does not inform the data cache; the data cache uses this.
5932 HEADER is the starting part of the packet.
5933 MEMADDR is the address in the remote memory space.
5934 MYADDR is the address of the buffer in our space.
5935 LEN is the number of bytes.
5936 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5937 should send data as binary ('X'), or hex-encoded ('M').
5938
5939 The function creates packet of the form
5940 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5941
5942 where encoding of <DATA> is termined by PACKET_FORMAT.
5943
5944 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5945 are omitted.
5946
5947 Returns the number of bytes transferred, or 0 (setting errno) for
5948 error. Only transfer a single packet. */
5949
5950 static int
5951 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5952 const gdb_byte *myaddr, int len,
5953 char packet_format, int use_length)
5954 {
5955 struct remote_state *rs = get_remote_state ();
5956 char *p;
5957 char *plen = NULL;
5958 int plenlen = 0;
5959 int todo;
5960 int nr_bytes;
5961 int payload_size;
5962 int payload_length;
5963 int header_length;
5964
5965 if (packet_format != 'X' && packet_format != 'M')
5966 internal_error (__FILE__, __LINE__,
5967 "remote_write_bytes_aux: bad packet format");
5968
5969 if (len <= 0)
5970 return 0;
5971
5972 payload_size = get_memory_write_packet_size ();
5973
5974 /* The packet buffer will be large enough for the payload;
5975 get_memory_packet_size ensures this. */
5976 rs->buf[0] = '\0';
5977
5978 /* Compute the size of the actual payload by subtracting out the
5979 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5980 */
5981 payload_size -= strlen ("$,:#NN");
5982 if (!use_length)
5983 /* The comma won't be used. */
5984 payload_size += 1;
5985 header_length = strlen (header);
5986 payload_size -= header_length;
5987 payload_size -= hexnumlen (memaddr);
5988
5989 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5990
5991 strcat (rs->buf, header);
5992 p = rs->buf + strlen (header);
5993
5994 /* Compute a best guess of the number of bytes actually transfered. */
5995 if (packet_format == 'X')
5996 {
5997 /* Best guess at number of bytes that will fit. */
5998 todo = min (len, payload_size);
5999 if (use_length)
6000 payload_size -= hexnumlen (todo);
6001 todo = min (todo, payload_size);
6002 }
6003 else
6004 {
6005 /* Num bytes that will fit. */
6006 todo = min (len, payload_size / 2);
6007 if (use_length)
6008 payload_size -= hexnumlen (todo);
6009 todo = min (todo, payload_size / 2);
6010 }
6011
6012 if (todo <= 0)
6013 internal_error (__FILE__, __LINE__,
6014 _("minumum packet size too small to write data"));
6015
6016 /* If we already need another packet, then try to align the end
6017 of this packet to a useful boundary. */
6018 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6019 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6020
6021 /* Append "<memaddr>". */
6022 memaddr = remote_address_masked (memaddr);
6023 p += hexnumstr (p, (ULONGEST) memaddr);
6024
6025 if (use_length)
6026 {
6027 /* Append ",". */
6028 *p++ = ',';
6029
6030 /* Append <len>. Retain the location/size of <len>. It may need to
6031 be adjusted once the packet body has been created. */
6032 plen = p;
6033 plenlen = hexnumstr (p, (ULONGEST) todo);
6034 p += plenlen;
6035 }
6036
6037 /* Append ":". */
6038 *p++ = ':';
6039 *p = '\0';
6040
6041 /* Append the packet body. */
6042 if (packet_format == 'X')
6043 {
6044 /* Binary mode. Send target system values byte by byte, in
6045 increasing byte addresses. Only escape certain critical
6046 characters. */
6047 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6048 payload_size);
6049
6050 /* If not all TODO bytes fit, then we'll need another packet. Make
6051 a second try to keep the end of the packet aligned. Don't do
6052 this if the packet is tiny. */
6053 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6054 {
6055 int new_nr_bytes;
6056
6057 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6058 - memaddr);
6059 if (new_nr_bytes != nr_bytes)
6060 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6061 p, &nr_bytes,
6062 payload_size);
6063 }
6064
6065 p += payload_length;
6066 if (use_length && nr_bytes < todo)
6067 {
6068 /* Escape chars have filled up the buffer prematurely,
6069 and we have actually sent fewer bytes than planned.
6070 Fix-up the length field of the packet. Use the same
6071 number of characters as before. */
6072 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6073 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6074 }
6075 }
6076 else
6077 {
6078 /* Normal mode: Send target system values byte by byte, in
6079 increasing byte addresses. Each byte is encoded as a two hex
6080 value. */
6081 nr_bytes = bin2hex (myaddr, p, todo);
6082 p += 2 * nr_bytes;
6083 }
6084
6085 putpkt_binary (rs->buf, (int) (p - rs->buf));
6086 getpkt (&rs->buf, &rs->buf_size, 0);
6087
6088 if (rs->buf[0] == 'E')
6089 {
6090 /* There is no correspondance between what the remote protocol
6091 uses for errors and errno codes. We would like a cleaner way
6092 of representing errors (big enough to include errno codes,
6093 bfd_error codes, and others). But for now just return EIO. */
6094 errno = EIO;
6095 return 0;
6096 }
6097
6098 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6099 fewer bytes than we'd planned. */
6100 return nr_bytes;
6101 }
6102
6103 /* Write memory data directly to the remote machine.
6104 This does not inform the data cache; the data cache uses this.
6105 MEMADDR is the address in the remote memory space.
6106 MYADDR is the address of the buffer in our space.
6107 LEN is the number of bytes.
6108
6109 Returns number of bytes transferred, or 0 (setting errno) for
6110 error. Only transfer a single packet. */
6111
6112 int
6113 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6114 {
6115 char *packet_format = 0;
6116
6117 /* Check whether the target supports binary download. */
6118 check_binary_download (memaddr);
6119
6120 switch (remote_protocol_packets[PACKET_X].support)
6121 {
6122 case PACKET_ENABLE:
6123 packet_format = "X";
6124 break;
6125 case PACKET_DISABLE:
6126 packet_format = "M";
6127 break;
6128 case PACKET_SUPPORT_UNKNOWN:
6129 internal_error (__FILE__, __LINE__,
6130 _("remote_write_bytes: bad internal state"));
6131 default:
6132 internal_error (__FILE__, __LINE__, _("bad switch"));
6133 }
6134
6135 return remote_write_bytes_aux (packet_format,
6136 memaddr, myaddr, len, packet_format[0], 1);
6137 }
6138
6139 /* Read memory data directly from the remote machine.
6140 This does not use the data cache; the data cache uses this.
6141 MEMADDR is the address in the remote memory space.
6142 MYADDR is the address of the buffer in our space.
6143 LEN is the number of bytes.
6144
6145 Returns number of bytes transferred, or 0 for error. */
6146
6147 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6148 remote targets) shouldn't attempt to read the entire buffer.
6149 Instead it should read a single packet worth of data and then
6150 return the byte size of that packet to the caller. The caller (its
6151 caller and its callers caller ;-) already contains code for
6152 handling partial reads. */
6153
6154 int
6155 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6156 {
6157 struct remote_state *rs = get_remote_state ();
6158 int max_buf_size; /* Max size of packet output buffer. */
6159 int origlen;
6160
6161 if (len <= 0)
6162 return 0;
6163
6164 max_buf_size = get_memory_read_packet_size ();
6165 /* The packet buffer will be large enough for the payload;
6166 get_memory_packet_size ensures this. */
6167
6168 origlen = len;
6169 while (len > 0)
6170 {
6171 char *p;
6172 int todo;
6173 int i;
6174
6175 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6176
6177 /* construct "m"<memaddr>","<len>" */
6178 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6179 memaddr = remote_address_masked (memaddr);
6180 p = rs->buf;
6181 *p++ = 'm';
6182 p += hexnumstr (p, (ULONGEST) memaddr);
6183 *p++ = ',';
6184 p += hexnumstr (p, (ULONGEST) todo);
6185 *p = '\0';
6186
6187 putpkt (rs->buf);
6188 getpkt (&rs->buf, &rs->buf_size, 0);
6189
6190 if (rs->buf[0] == 'E'
6191 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6192 && rs->buf[3] == '\0')
6193 {
6194 /* There is no correspondance between what the remote
6195 protocol uses for errors and errno codes. We would like
6196 a cleaner way of representing errors (big enough to
6197 include errno codes, bfd_error codes, and others). But
6198 for now just return EIO. */
6199 errno = EIO;
6200 return 0;
6201 }
6202
6203 /* Reply describes memory byte by byte,
6204 each byte encoded as two hex characters. */
6205
6206 p = rs->buf;
6207 if ((i = hex2bin (p, myaddr, todo)) < todo)
6208 {
6209 /* Reply is short. This means that we were able to read
6210 only part of what we wanted to. */
6211 return i + (origlen - len);
6212 }
6213 myaddr += todo;
6214 memaddr += todo;
6215 len -= todo;
6216 }
6217 return origlen;
6218 }
6219 \f
6220
6221 /* Remote notification handler. */
6222
6223 static void
6224 handle_notification (char *buf, size_t length)
6225 {
6226 if (strncmp (buf, "Stop:", 5) == 0)
6227 {
6228 if (pending_stop_reply)
6229 {
6230 /* We've already parsed the in-flight stop-reply, but the
6231 stub for some reason thought we didn't, possibly due to
6232 timeout on its side. Just ignore it. */
6233 if (remote_debug)
6234 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6235 }
6236 else
6237 {
6238 struct cleanup *old_chain;
6239 struct stop_reply *reply = stop_reply_xmalloc ();
6240 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6241
6242 remote_parse_stop_reply (buf + 5, reply);
6243
6244 discard_cleanups (old_chain);
6245
6246 /* Be careful to only set it after parsing, since an error
6247 may be thrown then. */
6248 pending_stop_reply = reply;
6249
6250 /* Notify the event loop there's a stop reply to acknowledge
6251 and that there may be more events to fetch. */
6252 mark_async_event_handler (remote_async_get_pending_events_token);
6253
6254 if (remote_debug)
6255 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6256 }
6257 }
6258 else
6259 /* We ignore notifications we don't recognize, for compatibility
6260 with newer stubs. */
6261 ;
6262 }
6263
6264 \f
6265 /* Read or write LEN bytes from inferior memory at MEMADDR,
6266 transferring to or from debugger address BUFFER. Write to inferior
6267 if SHOULD_WRITE is nonzero. Returns length of data written or
6268 read; 0 for error. TARGET is unused. */
6269
6270 static int
6271 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6272 int should_write, struct mem_attrib *attrib,
6273 struct target_ops *target)
6274 {
6275 int res;
6276
6277 set_general_thread (inferior_ptid);
6278
6279 if (should_write)
6280 res = remote_write_bytes (mem_addr, buffer, mem_len);
6281 else
6282 res = remote_read_bytes (mem_addr, buffer, mem_len);
6283
6284 return res;
6285 }
6286
6287 /* Sends a packet with content determined by the printf format string
6288 FORMAT and the remaining arguments, then gets the reply. Returns
6289 whether the packet was a success, a failure, or unknown. */
6290
6291 static enum packet_result
6292 remote_send_printf (const char *format, ...)
6293 {
6294 struct remote_state *rs = get_remote_state ();
6295 int max_size = get_remote_packet_size ();
6296
6297 va_list ap;
6298 va_start (ap, format);
6299
6300 rs->buf[0] = '\0';
6301 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6302 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6303
6304 if (putpkt (rs->buf) < 0)
6305 error (_("Communication problem with target."));
6306
6307 rs->buf[0] = '\0';
6308 getpkt (&rs->buf, &rs->buf_size, 0);
6309
6310 return packet_check_result (rs->buf);
6311 }
6312
6313 static void
6314 restore_remote_timeout (void *p)
6315 {
6316 int value = *(int *)p;
6317 remote_timeout = value;
6318 }
6319
6320 /* Flash writing can take quite some time. We'll set
6321 effectively infinite timeout for flash operations.
6322 In future, we'll need to decide on a better approach. */
6323 static const int remote_flash_timeout = 1000;
6324
6325 static void
6326 remote_flash_erase (struct target_ops *ops,
6327 ULONGEST address, LONGEST length)
6328 {
6329 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6330 int saved_remote_timeout = remote_timeout;
6331 enum packet_result ret;
6332
6333 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6334 &saved_remote_timeout);
6335 remote_timeout = remote_flash_timeout;
6336
6337 ret = remote_send_printf ("vFlashErase:%s,%s",
6338 phex (address, addr_size),
6339 phex (length, 4));
6340 switch (ret)
6341 {
6342 case PACKET_UNKNOWN:
6343 error (_("Remote target does not support flash erase"));
6344 case PACKET_ERROR:
6345 error (_("Error erasing flash with vFlashErase packet"));
6346 default:
6347 break;
6348 }
6349
6350 do_cleanups (back_to);
6351 }
6352
6353 static LONGEST
6354 remote_flash_write (struct target_ops *ops,
6355 ULONGEST address, LONGEST length,
6356 const gdb_byte *data)
6357 {
6358 int saved_remote_timeout = remote_timeout;
6359 int ret;
6360 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6361 &saved_remote_timeout);
6362
6363 remote_timeout = remote_flash_timeout;
6364 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6365 do_cleanups (back_to);
6366
6367 return ret;
6368 }
6369
6370 static void
6371 remote_flash_done (struct target_ops *ops)
6372 {
6373 int saved_remote_timeout = remote_timeout;
6374 int ret;
6375 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6376 &saved_remote_timeout);
6377
6378 remote_timeout = remote_flash_timeout;
6379 ret = remote_send_printf ("vFlashDone");
6380 do_cleanups (back_to);
6381
6382 switch (ret)
6383 {
6384 case PACKET_UNKNOWN:
6385 error (_("Remote target does not support vFlashDone"));
6386 case PACKET_ERROR:
6387 error (_("Error finishing flash operation"));
6388 default:
6389 break;
6390 }
6391 }
6392
6393 static void
6394 remote_files_info (struct target_ops *ignore)
6395 {
6396 puts_filtered ("Debugging a target over a serial line.\n");
6397 }
6398 \f
6399 /* Stuff for dealing with the packets which are part of this protocol.
6400 See comment at top of file for details. */
6401
6402 /* Read a single character from the remote end. */
6403
6404 static int
6405 readchar (int timeout)
6406 {
6407 int ch;
6408
6409 ch = serial_readchar (remote_desc, timeout);
6410
6411 if (ch >= 0)
6412 return ch;
6413
6414 switch ((enum serial_rc) ch)
6415 {
6416 case SERIAL_EOF:
6417 pop_target ();
6418 error (_("Remote connection closed"));
6419 /* no return */
6420 case SERIAL_ERROR:
6421 perror_with_name (_("Remote communication error"));
6422 /* no return */
6423 case SERIAL_TIMEOUT:
6424 break;
6425 }
6426 return ch;
6427 }
6428
6429 /* Send the command in *BUF to the remote machine, and read the reply
6430 into *BUF. Report an error if we get an error reply. Resize
6431 *BUF using xrealloc if necessary to hold the result, and update
6432 *SIZEOF_BUF. */
6433
6434 static void
6435 remote_send (char **buf,
6436 long *sizeof_buf)
6437 {
6438 putpkt (*buf);
6439 getpkt (buf, sizeof_buf, 0);
6440
6441 if ((*buf)[0] == 'E')
6442 error (_("Remote failure reply: %s"), *buf);
6443 }
6444
6445 /* Return a pointer to an xmalloc'ed string representing an escaped
6446 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6447 etc. The caller is responsible for releasing the returned
6448 memory. */
6449
6450 static char *
6451 escape_buffer (const char *buf, int n)
6452 {
6453 struct cleanup *old_chain;
6454 struct ui_file *stb;
6455 char *str;
6456
6457 stb = mem_fileopen ();
6458 old_chain = make_cleanup_ui_file_delete (stb);
6459
6460 fputstrn_unfiltered (buf, n, 0, stb);
6461 str = ui_file_xstrdup (stb, NULL);
6462 do_cleanups (old_chain);
6463 return str;
6464 }
6465
6466 /* Display a null-terminated packet on stdout, for debugging, using C
6467 string notation. */
6468
6469 static void
6470 print_packet (char *buf)
6471 {
6472 puts_filtered ("\"");
6473 fputstr_filtered (buf, '"', gdb_stdout);
6474 puts_filtered ("\"");
6475 }
6476
6477 int
6478 putpkt (char *buf)
6479 {
6480 return putpkt_binary (buf, strlen (buf));
6481 }
6482
6483 /* Send a packet to the remote machine, with error checking. The data
6484 of the packet is in BUF. The string in BUF can be at most
6485 get_remote_packet_size () - 5 to account for the $, # and checksum,
6486 and for a possible /0 if we are debugging (remote_debug) and want
6487 to print the sent packet as a string. */
6488
6489 static int
6490 putpkt_binary (char *buf, int cnt)
6491 {
6492 struct remote_state *rs = get_remote_state ();
6493 int i;
6494 unsigned char csum = 0;
6495 char *buf2 = alloca (cnt + 6);
6496
6497 int ch;
6498 int tcount = 0;
6499 char *p;
6500
6501 /* Catch cases like trying to read memory or listing threads while
6502 we're waiting for a stop reply. The remote server wouldn't be
6503 ready to handle this request, so we'd hang and timeout. We don't
6504 have to worry about this in synchronous mode, because in that
6505 case it's not possible to issue a command while the target is
6506 running. This is not a problem in non-stop mode, because in that
6507 case, the stub is always ready to process serial input. */
6508 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6509 error (_("Cannot execute this command while the target is running."));
6510
6511 /* We're sending out a new packet. Make sure we don't look at a
6512 stale cached response. */
6513 rs->cached_wait_status = 0;
6514
6515 /* Copy the packet into buffer BUF2, encapsulating it
6516 and giving it a checksum. */
6517
6518 p = buf2;
6519 *p++ = '$';
6520
6521 for (i = 0; i < cnt; i++)
6522 {
6523 csum += buf[i];
6524 *p++ = buf[i];
6525 }
6526 *p++ = '#';
6527 *p++ = tohex ((csum >> 4) & 0xf);
6528 *p++ = tohex (csum & 0xf);
6529
6530 /* Send it over and over until we get a positive ack. */
6531
6532 while (1)
6533 {
6534 int started_error_output = 0;
6535
6536 if (remote_debug)
6537 {
6538 struct cleanup *old_chain;
6539 char *str;
6540
6541 *p = '\0';
6542 str = escape_buffer (buf2, p - buf2);
6543 old_chain = make_cleanup (xfree, str);
6544 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6545 gdb_flush (gdb_stdlog);
6546 do_cleanups (old_chain);
6547 }
6548 if (serial_write (remote_desc, buf2, p - buf2))
6549 perror_with_name (_("putpkt: write failed"));
6550
6551 /* If this is a no acks version of the remote protocol, send the
6552 packet and move on. */
6553 if (rs->noack_mode)
6554 break;
6555
6556 /* Read until either a timeout occurs (-2) or '+' is read.
6557 Handle any notification that arrives in the mean time. */
6558 while (1)
6559 {
6560 ch = readchar (remote_timeout);
6561
6562 if (remote_debug)
6563 {
6564 switch (ch)
6565 {
6566 case '+':
6567 case '-':
6568 case SERIAL_TIMEOUT:
6569 case '$':
6570 case '%':
6571 if (started_error_output)
6572 {
6573 putchar_unfiltered ('\n');
6574 started_error_output = 0;
6575 }
6576 }
6577 }
6578
6579 switch (ch)
6580 {
6581 case '+':
6582 if (remote_debug)
6583 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6584 return 1;
6585 case '-':
6586 if (remote_debug)
6587 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6588 case SERIAL_TIMEOUT:
6589 tcount++;
6590 if (tcount > 3)
6591 return 0;
6592 break; /* Retransmit buffer. */
6593 case '$':
6594 {
6595 if (remote_debug)
6596 fprintf_unfiltered (gdb_stdlog,
6597 "Packet instead of Ack, ignoring it\n");
6598 /* It's probably an old response sent because an ACK
6599 was lost. Gobble up the packet and ack it so it
6600 doesn't get retransmitted when we resend this
6601 packet. */
6602 skip_frame ();
6603 serial_write (remote_desc, "+", 1);
6604 continue; /* Now, go look for +. */
6605 }
6606
6607 case '%':
6608 {
6609 int val;
6610
6611 /* If we got a notification, handle it, and go back to looking
6612 for an ack. */
6613 /* We've found the start of a notification. Now
6614 collect the data. */
6615 val = read_frame (&rs->buf, &rs->buf_size);
6616 if (val >= 0)
6617 {
6618 if (remote_debug)
6619 {
6620 struct cleanup *old_chain;
6621 char *str;
6622
6623 str = escape_buffer (rs->buf, val);
6624 old_chain = make_cleanup (xfree, str);
6625 fprintf_unfiltered (gdb_stdlog,
6626 " Notification received: %s\n",
6627 str);
6628 do_cleanups (old_chain);
6629 }
6630 handle_notification (rs->buf, val);
6631 /* We're in sync now, rewait for the ack. */
6632 tcount = 0;
6633 }
6634 else
6635 {
6636 if (remote_debug)
6637 {
6638 if (!started_error_output)
6639 {
6640 started_error_output = 1;
6641 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6642 }
6643 fputc_unfiltered (ch & 0177, gdb_stdlog);
6644 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6645 }
6646 }
6647 continue;
6648 }
6649 /* fall-through */
6650 default:
6651 if (remote_debug)
6652 {
6653 if (!started_error_output)
6654 {
6655 started_error_output = 1;
6656 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6657 }
6658 fputc_unfiltered (ch & 0177, gdb_stdlog);
6659 }
6660 continue;
6661 }
6662 break; /* Here to retransmit. */
6663 }
6664
6665 #if 0
6666 /* This is wrong. If doing a long backtrace, the user should be
6667 able to get out next time we call QUIT, without anything as
6668 violent as interrupt_query. If we want to provide a way out of
6669 here without getting to the next QUIT, it should be based on
6670 hitting ^C twice as in remote_wait. */
6671 if (quit_flag)
6672 {
6673 quit_flag = 0;
6674 interrupt_query ();
6675 }
6676 #endif
6677 }
6678 return 0;
6679 }
6680
6681 /* Come here after finding the start of a frame when we expected an
6682 ack. Do our best to discard the rest of this packet. */
6683
6684 static void
6685 skip_frame (void)
6686 {
6687 int c;
6688
6689 while (1)
6690 {
6691 c = readchar (remote_timeout);
6692 switch (c)
6693 {
6694 case SERIAL_TIMEOUT:
6695 /* Nothing we can do. */
6696 return;
6697 case '#':
6698 /* Discard the two bytes of checksum and stop. */
6699 c = readchar (remote_timeout);
6700 if (c >= 0)
6701 c = readchar (remote_timeout);
6702
6703 return;
6704 case '*': /* Run length encoding. */
6705 /* Discard the repeat count. */
6706 c = readchar (remote_timeout);
6707 if (c < 0)
6708 return;
6709 break;
6710 default:
6711 /* A regular character. */
6712 break;
6713 }
6714 }
6715 }
6716
6717 /* Come here after finding the start of the frame. Collect the rest
6718 into *BUF, verifying the checksum, length, and handling run-length
6719 compression. NUL terminate the buffer. If there is not enough room,
6720 expand *BUF using xrealloc.
6721
6722 Returns -1 on error, number of characters in buffer (ignoring the
6723 trailing NULL) on success. (could be extended to return one of the
6724 SERIAL status indications). */
6725
6726 static long
6727 read_frame (char **buf_p,
6728 long *sizeof_buf)
6729 {
6730 unsigned char csum;
6731 long bc;
6732 int c;
6733 char *buf = *buf_p;
6734 struct remote_state *rs = get_remote_state ();
6735
6736 csum = 0;
6737 bc = 0;
6738
6739 while (1)
6740 {
6741 c = readchar (remote_timeout);
6742 switch (c)
6743 {
6744 case SERIAL_TIMEOUT:
6745 if (remote_debug)
6746 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6747 return -1;
6748 case '$':
6749 if (remote_debug)
6750 fputs_filtered ("Saw new packet start in middle of old one\n",
6751 gdb_stdlog);
6752 return -1; /* Start a new packet, count retries. */
6753 case '#':
6754 {
6755 unsigned char pktcsum;
6756 int check_0 = 0;
6757 int check_1 = 0;
6758
6759 buf[bc] = '\0';
6760
6761 check_0 = readchar (remote_timeout);
6762 if (check_0 >= 0)
6763 check_1 = readchar (remote_timeout);
6764
6765 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6766 {
6767 if (remote_debug)
6768 fputs_filtered ("Timeout in checksum, retrying\n",
6769 gdb_stdlog);
6770 return -1;
6771 }
6772 else if (check_0 < 0 || check_1 < 0)
6773 {
6774 if (remote_debug)
6775 fputs_filtered ("Communication error in checksum\n",
6776 gdb_stdlog);
6777 return -1;
6778 }
6779
6780 /* Don't recompute the checksum; with no ack packets we
6781 don't have any way to indicate a packet retransmission
6782 is necessary. */
6783 if (rs->noack_mode)
6784 return bc;
6785
6786 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6787 if (csum == pktcsum)
6788 return bc;
6789
6790 if (remote_debug)
6791 {
6792 struct cleanup *old_chain;
6793 char *str;
6794
6795 str = escape_buffer (buf, bc);
6796 old_chain = make_cleanup (xfree, str);
6797 fprintf_unfiltered (gdb_stdlog,
6798 "\
6799 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6800 pktcsum, csum, str);
6801 do_cleanups (old_chain);
6802 }
6803 /* Number of characters in buffer ignoring trailing
6804 NULL. */
6805 return -1;
6806 }
6807 case '*': /* Run length encoding. */
6808 {
6809 int repeat;
6810 csum += c;
6811
6812 c = readchar (remote_timeout);
6813 csum += c;
6814 repeat = c - ' ' + 3; /* Compute repeat count. */
6815
6816 /* The character before ``*'' is repeated. */
6817
6818 if (repeat > 0 && repeat <= 255 && bc > 0)
6819 {
6820 if (bc + repeat - 1 >= *sizeof_buf - 1)
6821 {
6822 /* Make some more room in the buffer. */
6823 *sizeof_buf += repeat;
6824 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6825 buf = *buf_p;
6826 }
6827
6828 memset (&buf[bc], buf[bc - 1], repeat);
6829 bc += repeat;
6830 continue;
6831 }
6832
6833 buf[bc] = '\0';
6834 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6835 return -1;
6836 }
6837 default:
6838 if (bc >= *sizeof_buf - 1)
6839 {
6840 /* Make some more room in the buffer. */
6841 *sizeof_buf *= 2;
6842 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6843 buf = *buf_p;
6844 }
6845
6846 buf[bc++] = c;
6847 csum += c;
6848 continue;
6849 }
6850 }
6851 }
6852
6853 /* Read a packet from the remote machine, with error checking, and
6854 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6855 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6856 rather than timing out; this is used (in synchronous mode) to wait
6857 for a target that is is executing user code to stop. */
6858 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6859 don't have to change all the calls to getpkt to deal with the
6860 return value, because at the moment I don't know what the right
6861 thing to do it for those. */
6862 void
6863 getpkt (char **buf,
6864 long *sizeof_buf,
6865 int forever)
6866 {
6867 int timed_out;
6868
6869 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6870 }
6871
6872
6873 /* Read a packet from the remote machine, with error checking, and
6874 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6875 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6876 rather than timing out; this is used (in synchronous mode) to wait
6877 for a target that is is executing user code to stop. If FOREVER ==
6878 0, this function is allowed to time out gracefully and return an
6879 indication of this to the caller. Otherwise return the number of
6880 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6881 enough reason to return to the caller. */
6882
6883 static int
6884 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6885 int expecting_notif)
6886 {
6887 struct remote_state *rs = get_remote_state ();
6888 int c;
6889 int tries;
6890 int timeout;
6891 int val = -1;
6892
6893 /* We're reading a new response. Make sure we don't look at a
6894 previously cached response. */
6895 rs->cached_wait_status = 0;
6896
6897 strcpy (*buf, "timeout");
6898
6899 if (forever)
6900 timeout = watchdog > 0 ? watchdog : -1;
6901 else if (expecting_notif)
6902 timeout = 0; /* There should already be a char in the buffer. If
6903 not, bail out. */
6904 else
6905 timeout = remote_timeout;
6906
6907 #define MAX_TRIES 3
6908
6909 /* Process any number of notifications, and then return when
6910 we get a packet. */
6911 for (;;)
6912 {
6913 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6914 times. */
6915 for (tries = 1; tries <= MAX_TRIES; tries++)
6916 {
6917 /* This can loop forever if the remote side sends us
6918 characters continuously, but if it pauses, we'll get
6919 SERIAL_TIMEOUT from readchar because of timeout. Then
6920 we'll count that as a retry.
6921
6922 Note that even when forever is set, we will only wait
6923 forever prior to the start of a packet. After that, we
6924 expect characters to arrive at a brisk pace. They should
6925 show up within remote_timeout intervals. */
6926 do
6927 c = readchar (timeout);
6928 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6929
6930 if (c == SERIAL_TIMEOUT)
6931 {
6932 if (expecting_notif)
6933 return -1; /* Don't complain, it's normal to not get
6934 anything in this case. */
6935
6936 if (forever) /* Watchdog went off? Kill the target. */
6937 {
6938 QUIT;
6939 pop_target ();
6940 error (_("Watchdog timeout has expired. Target detached."));
6941 }
6942 if (remote_debug)
6943 fputs_filtered ("Timed out.\n", gdb_stdlog);
6944 }
6945 else
6946 {
6947 /* We've found the start of a packet or notification.
6948 Now collect the data. */
6949 val = read_frame (buf, sizeof_buf);
6950 if (val >= 0)
6951 break;
6952 }
6953
6954 serial_write (remote_desc, "-", 1);
6955 }
6956
6957 if (tries > MAX_TRIES)
6958 {
6959 /* We have tried hard enough, and just can't receive the
6960 packet/notification. Give up. */
6961 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6962
6963 /* Skip the ack char if we're in no-ack mode. */
6964 if (!rs->noack_mode)
6965 serial_write (remote_desc, "+", 1);
6966 return -1;
6967 }
6968
6969 /* If we got an ordinary packet, return that to our caller. */
6970 if (c == '$')
6971 {
6972 if (remote_debug)
6973 {
6974 struct cleanup *old_chain;
6975 char *str;
6976
6977 str = escape_buffer (*buf, val);
6978 old_chain = make_cleanup (xfree, str);
6979 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6980 do_cleanups (old_chain);
6981 }
6982
6983 /* Skip the ack char if we're in no-ack mode. */
6984 if (!rs->noack_mode)
6985 serial_write (remote_desc, "+", 1);
6986 return val;
6987 }
6988
6989 /* If we got a notification, handle it, and go back to looking
6990 for a packet. */
6991 else
6992 {
6993 gdb_assert (c == '%');
6994
6995 if (remote_debug)
6996 {
6997 struct cleanup *old_chain;
6998 char *str;
6999
7000 str = escape_buffer (*buf, val);
7001 old_chain = make_cleanup (xfree, str);
7002 fprintf_unfiltered (gdb_stdlog,
7003 " Notification received: %s\n",
7004 str);
7005 do_cleanups (old_chain);
7006 }
7007
7008 handle_notification (*buf, val);
7009
7010 /* Notifications require no acknowledgement. */
7011
7012 if (expecting_notif)
7013 return -1;
7014 }
7015 }
7016 }
7017
7018 static int
7019 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7020 {
7021 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7022 }
7023
7024 static int
7025 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7026 {
7027 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7028 }
7029
7030 \f
7031 static void
7032 remote_kill (struct target_ops *ops)
7033 {
7034 /* Use catch_errors so the user can quit from gdb even when we
7035 aren't on speaking terms with the remote system. */
7036 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7037
7038 /* Don't wait for it to die. I'm not really sure it matters whether
7039 we do or not. For the existing stubs, kill is a noop. */
7040 target_mourn_inferior ();
7041 }
7042
7043 static int
7044 remote_vkill (int pid, struct remote_state *rs)
7045 {
7046 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7047 return -1;
7048
7049 /* Tell the remote target to detach. */
7050 sprintf (rs->buf, "vKill;%x", pid);
7051 putpkt (rs->buf);
7052 getpkt (&rs->buf, &rs->buf_size, 0);
7053
7054 if (packet_ok (rs->buf,
7055 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7056 return 0;
7057 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7058 return -1;
7059 else
7060 return 1;
7061 }
7062
7063 static void
7064 extended_remote_kill (struct target_ops *ops)
7065 {
7066 int res;
7067 int pid = ptid_get_pid (inferior_ptid);
7068 struct remote_state *rs = get_remote_state ();
7069
7070 res = remote_vkill (pid, rs);
7071 if (res == -1 && !remote_multi_process_p (rs))
7072 {
7073 /* Don't try 'k' on a multi-process aware stub -- it has no way
7074 to specify the pid. */
7075
7076 putpkt ("k");
7077 #if 0
7078 getpkt (&rs->buf, &rs->buf_size, 0);
7079 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7080 res = 1;
7081 #else
7082 /* Don't wait for it to die. I'm not really sure it matters whether
7083 we do or not. For the existing stubs, kill is a noop. */
7084 res = 0;
7085 #endif
7086 }
7087
7088 if (res != 0)
7089 error (_("Can't kill process"));
7090
7091 target_mourn_inferior ();
7092 }
7093
7094 static void
7095 remote_mourn (struct target_ops *ops)
7096 {
7097 remote_mourn_1 (ops);
7098 }
7099
7100 /* Worker function for remote_mourn. */
7101 static void
7102 remote_mourn_1 (struct target_ops *target)
7103 {
7104 unpush_target (target);
7105
7106 /* remote_close takes care of doing most of the clean up. */
7107 generic_mourn_inferior ();
7108 }
7109
7110 static void
7111 extended_remote_mourn_1 (struct target_ops *target)
7112 {
7113 struct remote_state *rs = get_remote_state ();
7114
7115 /* In case we got here due to an error, but we're going to stay
7116 connected. */
7117 rs->waiting_for_stop_reply = 0;
7118
7119 /* We're no longer interested in these events. */
7120 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7121
7122 /* If the current general thread belonged to the process we just
7123 detached from or has exited, the remote side current general
7124 thread becomes undefined. Considering a case like this:
7125
7126 - We just got here due to a detach.
7127 - The process that we're detaching from happens to immediately
7128 report a global breakpoint being hit in non-stop mode, in the
7129 same thread we had selected before.
7130 - GDB attaches to this process again.
7131 - This event happens to be the next event we handle.
7132
7133 GDB would consider that the current general thread didn't need to
7134 be set on the stub side (with Hg), since for all it knew,
7135 GENERAL_THREAD hadn't changed.
7136
7137 Notice that although in all-stop mode, the remote server always
7138 sets the current thread to the thread reporting the stop event,
7139 that doesn't happen in non-stop mode; in non-stop, the stub *must
7140 not* change the current thread when reporting a breakpoint hit,
7141 due to the decoupling of event reporting and event handling.
7142
7143 To keep things simple, we always invalidate our notion of the
7144 current thread. */
7145 record_currthread (minus_one_ptid);
7146
7147 /* Unlike "target remote", we do not want to unpush the target; then
7148 the next time the user says "run", we won't be connected. */
7149
7150 /* Call common code to mark the inferior as not running. */
7151 generic_mourn_inferior ();
7152
7153 if (!have_inferiors ())
7154 {
7155 if (!remote_multi_process_p (rs))
7156 {
7157 /* Check whether the target is running now - some remote stubs
7158 automatically restart after kill. */
7159 putpkt ("?");
7160 getpkt (&rs->buf, &rs->buf_size, 0);
7161
7162 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7163 {
7164 /* Assume that the target has been restarted. Set inferior_ptid
7165 so that bits of core GDB realizes there's something here, e.g.,
7166 so that the user can say "kill" again. */
7167 inferior_ptid = magic_null_ptid;
7168 }
7169 }
7170 }
7171 }
7172
7173 static void
7174 extended_remote_mourn (struct target_ops *ops)
7175 {
7176 extended_remote_mourn_1 (ops);
7177 }
7178
7179 static int
7180 extended_remote_run (char *args)
7181 {
7182 struct remote_state *rs = get_remote_state ();
7183 int len;
7184
7185 /* If the user has disabled vRun support, or we have detected that
7186 support is not available, do not try it. */
7187 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7188 return -1;
7189
7190 strcpy (rs->buf, "vRun;");
7191 len = strlen (rs->buf);
7192
7193 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7194 error (_("Remote file name too long for run packet"));
7195 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7196
7197 gdb_assert (args != NULL);
7198 if (*args)
7199 {
7200 struct cleanup *back_to;
7201 int i;
7202 char **argv;
7203
7204 argv = gdb_buildargv (args);
7205 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7206 for (i = 0; argv[i] != NULL; i++)
7207 {
7208 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7209 error (_("Argument list too long for run packet"));
7210 rs->buf[len++] = ';';
7211 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7212 }
7213 do_cleanups (back_to);
7214 }
7215
7216 rs->buf[len++] = '\0';
7217
7218 putpkt (rs->buf);
7219 getpkt (&rs->buf, &rs->buf_size, 0);
7220
7221 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7222 {
7223 /* We have a wait response; we don't need it, though. All is well. */
7224 return 0;
7225 }
7226 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7227 /* It wasn't disabled before, but it is now. */
7228 return -1;
7229 else
7230 {
7231 if (remote_exec_file[0] == '\0')
7232 error (_("Running the default executable on the remote target failed; "
7233 "try \"set remote exec-file\"?"));
7234 else
7235 error (_("Running \"%s\" on the remote target failed"),
7236 remote_exec_file);
7237 }
7238 }
7239
7240 /* In the extended protocol we want to be able to do things like
7241 "run" and have them basically work as expected. So we need
7242 a special create_inferior function. We support changing the
7243 executable file and the command line arguments, but not the
7244 environment. */
7245
7246 static void
7247 extended_remote_create_inferior_1 (char *exec_file, char *args,
7248 char **env, int from_tty)
7249 {
7250 /* If running asynchronously, register the target file descriptor
7251 with the event loop. */
7252 if (target_can_async_p ())
7253 target_async (inferior_event_handler, 0);
7254
7255 /* Now restart the remote server. */
7256 if (extended_remote_run (args) == -1)
7257 {
7258 /* vRun was not supported. Fail if we need it to do what the
7259 user requested. */
7260 if (remote_exec_file[0])
7261 error (_("Remote target does not support \"set remote exec-file\""));
7262 if (args[0])
7263 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7264
7265 /* Fall back to "R". */
7266 extended_remote_restart ();
7267 }
7268
7269 if (!have_inferiors ())
7270 {
7271 /* Clean up from the last time we ran, before we mark the target
7272 running again. This will mark breakpoints uninserted, and
7273 get_offsets may insert breakpoints. */
7274 init_thread_list ();
7275 init_wait_for_inferior ();
7276 }
7277
7278 /* Now mark the inferior as running before we do anything else. */
7279 inferior_ptid = magic_null_ptid;
7280
7281 /* Now, if we have thread information, update inferior_ptid. */
7282 inferior_ptid = remote_current_thread (inferior_ptid);
7283
7284 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7285 add_thread_silent (inferior_ptid);
7286
7287 /* Get updated offsets, if the stub uses qOffsets. */
7288 get_offsets ();
7289 }
7290
7291 static void
7292 extended_remote_create_inferior (struct target_ops *ops,
7293 char *exec_file, char *args,
7294 char **env, int from_tty)
7295 {
7296 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7297 }
7298 \f
7299
7300 /* Insert a breakpoint. On targets that have software breakpoint
7301 support, we ask the remote target to do the work; on targets
7302 which don't, we insert a traditional memory breakpoint. */
7303
7304 static int
7305 remote_insert_breakpoint (struct gdbarch *gdbarch,
7306 struct bp_target_info *bp_tgt)
7307 {
7308 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7309 If it succeeds, then set the support to PACKET_ENABLE. If it
7310 fails, and the user has explicitly requested the Z support then
7311 report an error, otherwise, mark it disabled and go on. */
7312
7313 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7314 {
7315 CORE_ADDR addr = bp_tgt->placed_address;
7316 struct remote_state *rs;
7317 char *p;
7318 int bpsize;
7319
7320 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7321
7322 rs = get_remote_state ();
7323 p = rs->buf;
7324
7325 *(p++) = 'Z';
7326 *(p++) = '0';
7327 *(p++) = ',';
7328 addr = (ULONGEST) remote_address_masked (addr);
7329 p += hexnumstr (p, addr);
7330 sprintf (p, ",%d", bpsize);
7331
7332 putpkt (rs->buf);
7333 getpkt (&rs->buf, &rs->buf_size, 0);
7334
7335 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7336 {
7337 case PACKET_ERROR:
7338 return -1;
7339 case PACKET_OK:
7340 bp_tgt->placed_address = addr;
7341 bp_tgt->placed_size = bpsize;
7342 return 0;
7343 case PACKET_UNKNOWN:
7344 break;
7345 }
7346 }
7347
7348 return memory_insert_breakpoint (gdbarch, bp_tgt);
7349 }
7350
7351 static int
7352 remote_remove_breakpoint (struct gdbarch *gdbarch,
7353 struct bp_target_info *bp_tgt)
7354 {
7355 CORE_ADDR addr = bp_tgt->placed_address;
7356 struct remote_state *rs = get_remote_state ();
7357
7358 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7359 {
7360 char *p = rs->buf;
7361
7362 *(p++) = 'z';
7363 *(p++) = '0';
7364 *(p++) = ',';
7365
7366 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7367 p += hexnumstr (p, addr);
7368 sprintf (p, ",%d", bp_tgt->placed_size);
7369
7370 putpkt (rs->buf);
7371 getpkt (&rs->buf, &rs->buf_size, 0);
7372
7373 return (rs->buf[0] == 'E');
7374 }
7375
7376 return memory_remove_breakpoint (gdbarch, bp_tgt);
7377 }
7378
7379 static int
7380 watchpoint_to_Z_packet (int type)
7381 {
7382 switch (type)
7383 {
7384 case hw_write:
7385 return Z_PACKET_WRITE_WP;
7386 break;
7387 case hw_read:
7388 return Z_PACKET_READ_WP;
7389 break;
7390 case hw_access:
7391 return Z_PACKET_ACCESS_WP;
7392 break;
7393 default:
7394 internal_error (__FILE__, __LINE__,
7395 _("hw_bp_to_z: bad watchpoint type %d"), type);
7396 }
7397 }
7398
7399 static int
7400 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
7401 {
7402 struct remote_state *rs = get_remote_state ();
7403 char *p;
7404 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7405
7406 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7407 return 1;
7408
7409 sprintf (rs->buf, "Z%x,", packet);
7410 p = strchr (rs->buf, '\0');
7411 addr = remote_address_masked (addr);
7412 p += hexnumstr (p, (ULONGEST) addr);
7413 sprintf (p, ",%x", len);
7414
7415 putpkt (rs->buf);
7416 getpkt (&rs->buf, &rs->buf_size, 0);
7417
7418 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7419 {
7420 case PACKET_ERROR:
7421 return -1;
7422 case PACKET_UNKNOWN:
7423 return 1;
7424 case PACKET_OK:
7425 return 0;
7426 }
7427 internal_error (__FILE__, __LINE__,
7428 _("remote_insert_watchpoint: reached end of function"));
7429 }
7430
7431
7432 static int
7433 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
7434 {
7435 struct remote_state *rs = get_remote_state ();
7436 char *p;
7437 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7438
7439 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7440 return -1;
7441
7442 sprintf (rs->buf, "z%x,", packet);
7443 p = strchr (rs->buf, '\0');
7444 addr = remote_address_masked (addr);
7445 p += hexnumstr (p, (ULONGEST) addr);
7446 sprintf (p, ",%x", len);
7447 putpkt (rs->buf);
7448 getpkt (&rs->buf, &rs->buf_size, 0);
7449
7450 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7451 {
7452 case PACKET_ERROR:
7453 case PACKET_UNKNOWN:
7454 return -1;
7455 case PACKET_OK:
7456 return 0;
7457 }
7458 internal_error (__FILE__, __LINE__,
7459 _("remote_remove_watchpoint: reached end of function"));
7460 }
7461
7462
7463 int remote_hw_watchpoint_limit = -1;
7464 int remote_hw_breakpoint_limit = -1;
7465
7466 static int
7467 remote_check_watch_resources (int type, int cnt, int ot)
7468 {
7469 if (type == bp_hardware_breakpoint)
7470 {
7471 if (remote_hw_breakpoint_limit == 0)
7472 return 0;
7473 else if (remote_hw_breakpoint_limit < 0)
7474 return 1;
7475 else if (cnt <= remote_hw_breakpoint_limit)
7476 return 1;
7477 }
7478 else
7479 {
7480 if (remote_hw_watchpoint_limit == 0)
7481 return 0;
7482 else if (remote_hw_watchpoint_limit < 0)
7483 return 1;
7484 else if (ot)
7485 return -1;
7486 else if (cnt <= remote_hw_watchpoint_limit)
7487 return 1;
7488 }
7489 return -1;
7490 }
7491
7492 static int
7493 remote_stopped_by_watchpoint (void)
7494 {
7495 return remote_stopped_by_watchpoint_p;
7496 }
7497
7498 static int
7499 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7500 {
7501 int rc = 0;
7502 if (remote_stopped_by_watchpoint ())
7503 {
7504 *addr_p = remote_watch_data_address;
7505 rc = 1;
7506 }
7507
7508 return rc;
7509 }
7510
7511
7512 static int
7513 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7514 struct bp_target_info *bp_tgt)
7515 {
7516 CORE_ADDR addr;
7517 struct remote_state *rs;
7518 char *p;
7519
7520 /* The length field should be set to the size of a breakpoint
7521 instruction, even though we aren't inserting one ourselves. */
7522
7523 gdbarch_remote_breakpoint_from_pc
7524 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7525
7526 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7527 return -1;
7528
7529 rs = get_remote_state ();
7530 p = rs->buf;
7531
7532 *(p++) = 'Z';
7533 *(p++) = '1';
7534 *(p++) = ',';
7535
7536 addr = remote_address_masked (bp_tgt->placed_address);
7537 p += hexnumstr (p, (ULONGEST) addr);
7538 sprintf (p, ",%x", bp_tgt->placed_size);
7539
7540 putpkt (rs->buf);
7541 getpkt (&rs->buf, &rs->buf_size, 0);
7542
7543 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7544 {
7545 case PACKET_ERROR:
7546 case PACKET_UNKNOWN:
7547 return -1;
7548 case PACKET_OK:
7549 return 0;
7550 }
7551 internal_error (__FILE__, __LINE__,
7552 _("remote_insert_hw_breakpoint: reached end of function"));
7553 }
7554
7555
7556 static int
7557 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7558 struct bp_target_info *bp_tgt)
7559 {
7560 CORE_ADDR addr;
7561 struct remote_state *rs = get_remote_state ();
7562 char *p = rs->buf;
7563
7564 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7565 return -1;
7566
7567 *(p++) = 'z';
7568 *(p++) = '1';
7569 *(p++) = ',';
7570
7571 addr = remote_address_masked (bp_tgt->placed_address);
7572 p += hexnumstr (p, (ULONGEST) addr);
7573 sprintf (p, ",%x", bp_tgt->placed_size);
7574
7575 putpkt (rs->buf);
7576 getpkt (&rs->buf, &rs->buf_size, 0);
7577
7578 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7579 {
7580 case PACKET_ERROR:
7581 case PACKET_UNKNOWN:
7582 return -1;
7583 case PACKET_OK:
7584 return 0;
7585 }
7586 internal_error (__FILE__, __LINE__,
7587 _("remote_remove_hw_breakpoint: reached end of function"));
7588 }
7589
7590 /* Table used by the crc32 function to calcuate the checksum. */
7591
7592 static unsigned long crc32_table[256] =
7593 {0, 0};
7594
7595 static unsigned long
7596 crc32 (const unsigned char *buf, int len, unsigned int crc)
7597 {
7598 if (!crc32_table[1])
7599 {
7600 /* Initialize the CRC table and the decoding table. */
7601 int i, j;
7602 unsigned int c;
7603
7604 for (i = 0; i < 256; i++)
7605 {
7606 for (c = i << 24, j = 8; j > 0; --j)
7607 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7608 crc32_table[i] = c;
7609 }
7610 }
7611
7612 while (len--)
7613 {
7614 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7615 buf++;
7616 }
7617 return crc;
7618 }
7619
7620 /* Verify memory using the "qCRC:" request. */
7621
7622 static int
7623 remote_verify_memory (struct target_ops *ops,
7624 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7625 {
7626 struct remote_state *rs = get_remote_state ();
7627 unsigned long host_crc, target_crc;
7628 char *tmp;
7629
7630 /* FIXME: assumes lma can fit into long. */
7631 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7632 (long) lma, (long) size);
7633 putpkt (rs->buf);
7634
7635 /* Be clever; compute the host_crc before waiting for target
7636 reply. */
7637 host_crc = crc32 (data, size, 0xffffffff);
7638
7639 getpkt (&rs->buf, &rs->buf_size, 0);
7640 if (rs->buf[0] == 'E')
7641 return -1;
7642
7643 if (rs->buf[0] != 'C')
7644 error (_("remote target does not support this operation"));
7645
7646 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7647 target_crc = target_crc * 16 + fromhex (*tmp);
7648
7649 return (host_crc == target_crc);
7650 }
7651
7652 /* compare-sections command
7653
7654 With no arguments, compares each loadable section in the exec bfd
7655 with the same memory range on the target, and reports mismatches.
7656 Useful for verifying the image on the target against the exec file. */
7657
7658 static void
7659 compare_sections_command (char *args, int from_tty)
7660 {
7661 asection *s;
7662 struct cleanup *old_chain;
7663 char *sectdata;
7664 const char *sectname;
7665 bfd_size_type size;
7666 bfd_vma lma;
7667 int matched = 0;
7668 int mismatched = 0;
7669 int res;
7670
7671 if (!exec_bfd)
7672 error (_("command cannot be used without an exec file"));
7673
7674 for (s = exec_bfd->sections; s; s = s->next)
7675 {
7676 if (!(s->flags & SEC_LOAD))
7677 continue; /* skip non-loadable section */
7678
7679 size = bfd_get_section_size (s);
7680 if (size == 0)
7681 continue; /* skip zero-length section */
7682
7683 sectname = bfd_get_section_name (exec_bfd, s);
7684 if (args && strcmp (args, sectname) != 0)
7685 continue; /* not the section selected by user */
7686
7687 matched = 1; /* do this section */
7688 lma = s->lma;
7689
7690 sectdata = xmalloc (size);
7691 old_chain = make_cleanup (xfree, sectdata);
7692 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7693
7694 res = target_verify_memory (sectdata, lma, size);
7695
7696 if (res == -1)
7697 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7698 paddress (target_gdbarch, lma),
7699 paddress (target_gdbarch, lma + size));
7700
7701 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7702 paddress (target_gdbarch, lma),
7703 paddress (target_gdbarch, lma + size));
7704 if (res)
7705 printf_filtered ("matched.\n");
7706 else
7707 {
7708 printf_filtered ("MIS-MATCHED!\n");
7709 mismatched++;
7710 }
7711
7712 do_cleanups (old_chain);
7713 }
7714 if (mismatched > 0)
7715 warning (_("One or more sections of the remote executable does not match\n\
7716 the loaded file\n"));
7717 if (args && !matched)
7718 printf_filtered (_("No loaded section named '%s'.\n"), args);
7719 }
7720
7721 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7722 into remote target. The number of bytes written to the remote
7723 target is returned, or -1 for error. */
7724
7725 static LONGEST
7726 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7727 const char *annex, const gdb_byte *writebuf,
7728 ULONGEST offset, LONGEST len,
7729 struct packet_config *packet)
7730 {
7731 int i, buf_len;
7732 ULONGEST n;
7733 struct remote_state *rs = get_remote_state ();
7734 int max_size = get_memory_write_packet_size ();
7735
7736 if (packet->support == PACKET_DISABLE)
7737 return -1;
7738
7739 /* Insert header. */
7740 i = snprintf (rs->buf, max_size,
7741 "qXfer:%s:write:%s:%s:",
7742 object_name, annex ? annex : "",
7743 phex_nz (offset, sizeof offset));
7744 max_size -= (i + 1);
7745
7746 /* Escape as much data as fits into rs->buf. */
7747 buf_len = remote_escape_output
7748 (writebuf, len, (rs->buf + i), &max_size, max_size);
7749
7750 if (putpkt_binary (rs->buf, i + buf_len) < 0
7751 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7752 || packet_ok (rs->buf, packet) != PACKET_OK)
7753 return -1;
7754
7755 unpack_varlen_hex (rs->buf, &n);
7756 return n;
7757 }
7758
7759 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7760 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7761 number of bytes read is returned, or 0 for EOF, or -1 for error.
7762 The number of bytes read may be less than LEN without indicating an
7763 EOF. PACKET is checked and updated to indicate whether the remote
7764 target supports this object. */
7765
7766 static LONGEST
7767 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7768 const char *annex,
7769 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7770 struct packet_config *packet)
7771 {
7772 static char *finished_object;
7773 static char *finished_annex;
7774 static ULONGEST finished_offset;
7775
7776 struct remote_state *rs = get_remote_state ();
7777 LONGEST i, n, packet_len;
7778
7779 if (packet->support == PACKET_DISABLE)
7780 return -1;
7781
7782 /* Check whether we've cached an end-of-object packet that matches
7783 this request. */
7784 if (finished_object)
7785 {
7786 if (strcmp (object_name, finished_object) == 0
7787 && strcmp (annex ? annex : "", finished_annex) == 0
7788 && offset == finished_offset)
7789 return 0;
7790
7791 /* Otherwise, we're now reading something different. Discard
7792 the cache. */
7793 xfree (finished_object);
7794 xfree (finished_annex);
7795 finished_object = NULL;
7796 finished_annex = NULL;
7797 }
7798
7799 /* Request only enough to fit in a single packet. The actual data
7800 may not, since we don't know how much of it will need to be escaped;
7801 the target is free to respond with slightly less data. We subtract
7802 five to account for the response type and the protocol frame. */
7803 n = min (get_remote_packet_size () - 5, len);
7804 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7805 object_name, annex ? annex : "",
7806 phex_nz (offset, sizeof offset),
7807 phex_nz (n, sizeof n));
7808 i = putpkt (rs->buf);
7809 if (i < 0)
7810 return -1;
7811
7812 rs->buf[0] = '\0';
7813 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7814 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7815 return -1;
7816
7817 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7818 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7819
7820 /* 'm' means there is (or at least might be) more data after this
7821 batch. That does not make sense unless there's at least one byte
7822 of data in this reply. */
7823 if (rs->buf[0] == 'm' && packet_len == 1)
7824 error (_("Remote qXfer reply contained no data."));
7825
7826 /* Got some data. */
7827 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7828
7829 /* 'l' is an EOF marker, possibly including a final block of data,
7830 or possibly empty. If we have the final block of a non-empty
7831 object, record this fact to bypass a subsequent partial read. */
7832 if (rs->buf[0] == 'l' && offset + i > 0)
7833 {
7834 finished_object = xstrdup (object_name);
7835 finished_annex = xstrdup (annex ? annex : "");
7836 finished_offset = offset + i;
7837 }
7838
7839 return i;
7840 }
7841
7842 static LONGEST
7843 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7844 const char *annex, gdb_byte *readbuf,
7845 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7846 {
7847 struct remote_state *rs;
7848 int i;
7849 char *p2;
7850 char query_type;
7851
7852 set_general_thread (inferior_ptid);
7853
7854 rs = get_remote_state ();
7855
7856 /* Handle memory using the standard memory routines. */
7857 if (object == TARGET_OBJECT_MEMORY)
7858 {
7859 int xfered;
7860 errno = 0;
7861
7862 /* If the remote target is connected but not running, we should
7863 pass this request down to a lower stratum (e.g. the executable
7864 file). */
7865 if (!target_has_execution)
7866 return 0;
7867
7868 if (writebuf != NULL)
7869 xfered = remote_write_bytes (offset, writebuf, len);
7870 else
7871 xfered = remote_read_bytes (offset, readbuf, len);
7872
7873 if (xfered > 0)
7874 return xfered;
7875 else if (xfered == 0 && errno == 0)
7876 return 0;
7877 else
7878 return -1;
7879 }
7880
7881 /* Handle SPU memory using qxfer packets. */
7882 if (object == TARGET_OBJECT_SPU)
7883 {
7884 if (readbuf)
7885 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7886 &remote_protocol_packets
7887 [PACKET_qXfer_spu_read]);
7888 else
7889 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7890 &remote_protocol_packets
7891 [PACKET_qXfer_spu_write]);
7892 }
7893
7894 /* Handle extra signal info using qxfer packets. */
7895 if (object == TARGET_OBJECT_SIGNAL_INFO)
7896 {
7897 if (readbuf)
7898 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7899 &remote_protocol_packets
7900 [PACKET_qXfer_siginfo_read]);
7901 else
7902 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7903 &remote_protocol_packets
7904 [PACKET_qXfer_siginfo_write]);
7905 }
7906
7907 /* Only handle flash writes. */
7908 if (writebuf != NULL)
7909 {
7910 LONGEST xfered;
7911
7912 switch (object)
7913 {
7914 case TARGET_OBJECT_FLASH:
7915 xfered = remote_flash_write (ops, offset, len, writebuf);
7916
7917 if (xfered > 0)
7918 return xfered;
7919 else if (xfered == 0 && errno == 0)
7920 return 0;
7921 else
7922 return -1;
7923
7924 default:
7925 return -1;
7926 }
7927 }
7928
7929 /* Map pre-existing objects onto letters. DO NOT do this for new
7930 objects!!! Instead specify new query packets. */
7931 switch (object)
7932 {
7933 case TARGET_OBJECT_AVR:
7934 query_type = 'R';
7935 break;
7936
7937 case TARGET_OBJECT_AUXV:
7938 gdb_assert (annex == NULL);
7939 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7940 &remote_protocol_packets[PACKET_qXfer_auxv]);
7941
7942 case TARGET_OBJECT_AVAILABLE_FEATURES:
7943 return remote_read_qxfer
7944 (ops, "features", annex, readbuf, offset, len,
7945 &remote_protocol_packets[PACKET_qXfer_features]);
7946
7947 case TARGET_OBJECT_LIBRARIES:
7948 return remote_read_qxfer
7949 (ops, "libraries", annex, readbuf, offset, len,
7950 &remote_protocol_packets[PACKET_qXfer_libraries]);
7951
7952 case TARGET_OBJECT_MEMORY_MAP:
7953 gdb_assert (annex == NULL);
7954 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7955 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7956
7957 case TARGET_OBJECT_OSDATA:
7958 /* Should only get here if we're connected. */
7959 gdb_assert (remote_desc);
7960 return remote_read_qxfer
7961 (ops, "osdata", annex, readbuf, offset, len,
7962 &remote_protocol_packets[PACKET_qXfer_osdata]);
7963
7964 case TARGET_OBJECT_THREADS:
7965 gdb_assert (annex == NULL);
7966 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
7967 &remote_protocol_packets[PACKET_qXfer_threads]);
7968
7969 default:
7970 return -1;
7971 }
7972
7973 /* Note: a zero OFFSET and LEN can be used to query the minimum
7974 buffer size. */
7975 if (offset == 0 && len == 0)
7976 return (get_remote_packet_size ());
7977 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7978 large enough let the caller deal with it. */
7979 if (len < get_remote_packet_size ())
7980 return -1;
7981 len = get_remote_packet_size ();
7982
7983 /* Except for querying the minimum buffer size, target must be open. */
7984 if (!remote_desc)
7985 error (_("remote query is only available after target open"));
7986
7987 gdb_assert (annex != NULL);
7988 gdb_assert (readbuf != NULL);
7989
7990 p2 = rs->buf;
7991 *p2++ = 'q';
7992 *p2++ = query_type;
7993
7994 /* We used one buffer char for the remote protocol q command and
7995 another for the query type. As the remote protocol encapsulation
7996 uses 4 chars plus one extra in case we are debugging
7997 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7998 string. */
7999 i = 0;
8000 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8001 {
8002 /* Bad caller may have sent forbidden characters. */
8003 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8004 *p2++ = annex[i];
8005 i++;
8006 }
8007 *p2 = '\0';
8008 gdb_assert (annex[i] == '\0');
8009
8010 i = putpkt (rs->buf);
8011 if (i < 0)
8012 return i;
8013
8014 getpkt (&rs->buf, &rs->buf_size, 0);
8015 strcpy ((char *) readbuf, rs->buf);
8016
8017 return strlen ((char *) readbuf);
8018 }
8019
8020 static int
8021 remote_search_memory (struct target_ops* ops,
8022 CORE_ADDR start_addr, ULONGEST search_space_len,
8023 const gdb_byte *pattern, ULONGEST pattern_len,
8024 CORE_ADDR *found_addrp)
8025 {
8026 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8027 struct remote_state *rs = get_remote_state ();
8028 int max_size = get_memory_write_packet_size ();
8029 struct packet_config *packet =
8030 &remote_protocol_packets[PACKET_qSearch_memory];
8031 /* number of packet bytes used to encode the pattern,
8032 this could be more than PATTERN_LEN due to escape characters */
8033 int escaped_pattern_len;
8034 /* amount of pattern that was encodable in the packet */
8035 int used_pattern_len;
8036 int i;
8037 int found;
8038 ULONGEST found_addr;
8039
8040 /* Don't go to the target if we don't have to.
8041 This is done before checking packet->support to avoid the possibility that
8042 a success for this edge case means the facility works in general. */
8043 if (pattern_len > search_space_len)
8044 return 0;
8045 if (pattern_len == 0)
8046 {
8047 *found_addrp = start_addr;
8048 return 1;
8049 }
8050
8051 /* If we already know the packet isn't supported, fall back to the simple
8052 way of searching memory. */
8053
8054 if (packet->support == PACKET_DISABLE)
8055 {
8056 /* Target doesn't provided special support, fall back and use the
8057 standard support (copy memory and do the search here). */
8058 return simple_search_memory (ops, start_addr, search_space_len,
8059 pattern, pattern_len, found_addrp);
8060 }
8061
8062 /* Insert header. */
8063 i = snprintf (rs->buf, max_size,
8064 "qSearch:memory:%s;%s;",
8065 phex_nz (start_addr, addr_size),
8066 phex_nz (search_space_len, sizeof (search_space_len)));
8067 max_size -= (i + 1);
8068
8069 /* Escape as much data as fits into rs->buf. */
8070 escaped_pattern_len =
8071 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8072 &used_pattern_len, max_size);
8073
8074 /* Bail if the pattern is too large. */
8075 if (used_pattern_len != pattern_len)
8076 error ("Pattern is too large to transmit to remote target.");
8077
8078 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8079 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8080 || packet_ok (rs->buf, packet) != PACKET_OK)
8081 {
8082 /* The request may not have worked because the command is not
8083 supported. If so, fall back to the simple way. */
8084 if (packet->support == PACKET_DISABLE)
8085 {
8086 return simple_search_memory (ops, start_addr, search_space_len,
8087 pattern, pattern_len, found_addrp);
8088 }
8089 return -1;
8090 }
8091
8092 if (rs->buf[0] == '0')
8093 found = 0;
8094 else if (rs->buf[0] == '1')
8095 {
8096 found = 1;
8097 if (rs->buf[1] != ',')
8098 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8099 unpack_varlen_hex (rs->buf + 2, &found_addr);
8100 *found_addrp = found_addr;
8101 }
8102 else
8103 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8104
8105 return found;
8106 }
8107
8108 static void
8109 remote_rcmd (char *command,
8110 struct ui_file *outbuf)
8111 {
8112 struct remote_state *rs = get_remote_state ();
8113 char *p = rs->buf;
8114
8115 if (!remote_desc)
8116 error (_("remote rcmd is only available after target open"));
8117
8118 /* Send a NULL command across as an empty command. */
8119 if (command == NULL)
8120 command = "";
8121
8122 /* The query prefix. */
8123 strcpy (rs->buf, "qRcmd,");
8124 p = strchr (rs->buf, '\0');
8125
8126 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8127 error (_("\"monitor\" command ``%s'' is too long."), command);
8128
8129 /* Encode the actual command. */
8130 bin2hex ((gdb_byte *) command, p, 0);
8131
8132 if (putpkt (rs->buf) < 0)
8133 error (_("Communication problem with target."));
8134
8135 /* get/display the response */
8136 while (1)
8137 {
8138 char *buf;
8139
8140 /* XXX - see also remote_get_noisy_reply(). */
8141 rs->buf[0] = '\0';
8142 getpkt (&rs->buf, &rs->buf_size, 0);
8143 buf = rs->buf;
8144 if (buf[0] == '\0')
8145 error (_("Target does not support this command."));
8146 if (buf[0] == 'O' && buf[1] != 'K')
8147 {
8148 remote_console_output (buf + 1); /* 'O' message from stub. */
8149 continue;
8150 }
8151 if (strcmp (buf, "OK") == 0)
8152 break;
8153 if (strlen (buf) == 3 && buf[0] == 'E'
8154 && isdigit (buf[1]) && isdigit (buf[2]))
8155 {
8156 error (_("Protocol error with Rcmd"));
8157 }
8158 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8159 {
8160 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8161 fputc_unfiltered (c, outbuf);
8162 }
8163 break;
8164 }
8165 }
8166
8167 static VEC(mem_region_s) *
8168 remote_memory_map (struct target_ops *ops)
8169 {
8170 VEC(mem_region_s) *result = NULL;
8171 char *text = target_read_stralloc (&current_target,
8172 TARGET_OBJECT_MEMORY_MAP, NULL);
8173
8174 if (text)
8175 {
8176 struct cleanup *back_to = make_cleanup (xfree, text);
8177 result = parse_memory_map (text);
8178 do_cleanups (back_to);
8179 }
8180
8181 return result;
8182 }
8183
8184 static void
8185 packet_command (char *args, int from_tty)
8186 {
8187 struct remote_state *rs = get_remote_state ();
8188
8189 if (!remote_desc)
8190 error (_("command can only be used with remote target"));
8191
8192 if (!args)
8193 error (_("remote-packet command requires packet text as argument"));
8194
8195 puts_filtered ("sending: ");
8196 print_packet (args);
8197 puts_filtered ("\n");
8198 putpkt (args);
8199
8200 getpkt (&rs->buf, &rs->buf_size, 0);
8201 puts_filtered ("received: ");
8202 print_packet (rs->buf);
8203 puts_filtered ("\n");
8204 }
8205
8206 #if 0
8207 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8208
8209 static void display_thread_info (struct gdb_ext_thread_info *info);
8210
8211 static void threadset_test_cmd (char *cmd, int tty);
8212
8213 static void threadalive_test (char *cmd, int tty);
8214
8215 static void threadlist_test_cmd (char *cmd, int tty);
8216
8217 int get_and_display_threadinfo (threadref *ref);
8218
8219 static void threadinfo_test_cmd (char *cmd, int tty);
8220
8221 static int thread_display_step (threadref *ref, void *context);
8222
8223 static void threadlist_update_test_cmd (char *cmd, int tty);
8224
8225 static void init_remote_threadtests (void);
8226
8227 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8228
8229 static void
8230 threadset_test_cmd (char *cmd, int tty)
8231 {
8232 int sample_thread = SAMPLE_THREAD;
8233
8234 printf_filtered (_("Remote threadset test\n"));
8235 set_general_thread (sample_thread);
8236 }
8237
8238
8239 static void
8240 threadalive_test (char *cmd, int tty)
8241 {
8242 int sample_thread = SAMPLE_THREAD;
8243 int pid = ptid_get_pid (inferior_ptid);
8244 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8245
8246 if (remote_thread_alive (ptid))
8247 printf_filtered ("PASS: Thread alive test\n");
8248 else
8249 printf_filtered ("FAIL: Thread alive test\n");
8250 }
8251
8252 void output_threadid (char *title, threadref *ref);
8253
8254 void
8255 output_threadid (char *title, threadref *ref)
8256 {
8257 char hexid[20];
8258
8259 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8260 hexid[16] = 0;
8261 printf_filtered ("%s %s\n", title, (&hexid[0]));
8262 }
8263
8264 static void
8265 threadlist_test_cmd (char *cmd, int tty)
8266 {
8267 int startflag = 1;
8268 threadref nextthread;
8269 int done, result_count;
8270 threadref threadlist[3];
8271
8272 printf_filtered ("Remote Threadlist test\n");
8273 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8274 &result_count, &threadlist[0]))
8275 printf_filtered ("FAIL: threadlist test\n");
8276 else
8277 {
8278 threadref *scan = threadlist;
8279 threadref *limit = scan + result_count;
8280
8281 while (scan < limit)
8282 output_threadid (" thread ", scan++);
8283 }
8284 }
8285
8286 void
8287 display_thread_info (struct gdb_ext_thread_info *info)
8288 {
8289 output_threadid ("Threadid: ", &info->threadid);
8290 printf_filtered ("Name: %s\n ", info->shortname);
8291 printf_filtered ("State: %s\n", info->display);
8292 printf_filtered ("other: %s\n\n", info->more_display);
8293 }
8294
8295 int
8296 get_and_display_threadinfo (threadref *ref)
8297 {
8298 int result;
8299 int set;
8300 struct gdb_ext_thread_info threadinfo;
8301
8302 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8303 | TAG_MOREDISPLAY | TAG_DISPLAY;
8304 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8305 display_thread_info (&threadinfo);
8306 return result;
8307 }
8308
8309 static void
8310 threadinfo_test_cmd (char *cmd, int tty)
8311 {
8312 int athread = SAMPLE_THREAD;
8313 threadref thread;
8314 int set;
8315
8316 int_to_threadref (&thread, athread);
8317 printf_filtered ("Remote Threadinfo test\n");
8318 if (!get_and_display_threadinfo (&thread))
8319 printf_filtered ("FAIL cannot get thread info\n");
8320 }
8321
8322 static int
8323 thread_display_step (threadref *ref, void *context)
8324 {
8325 /* output_threadid(" threadstep ",ref); *//* simple test */
8326 return get_and_display_threadinfo (ref);
8327 }
8328
8329 static void
8330 threadlist_update_test_cmd (char *cmd, int tty)
8331 {
8332 printf_filtered ("Remote Threadlist update test\n");
8333 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8334 }
8335
8336 static void
8337 init_remote_threadtests (void)
8338 {
8339 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8340 Fetch and print the remote list of thread identifiers, one pkt only"));
8341 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8342 _("Fetch and display info about one thread"));
8343 add_com ("tset", class_obscure, threadset_test_cmd,
8344 _("Test setting to a different thread"));
8345 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8346 _("Iterate through updating all remote thread info"));
8347 add_com ("talive", class_obscure, threadalive_test,
8348 _(" Remote thread alive test "));
8349 }
8350
8351 #endif /* 0 */
8352
8353 /* Convert a thread ID to a string. Returns the string in a static
8354 buffer. */
8355
8356 static char *
8357 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8358 {
8359 static char buf[64];
8360 struct remote_state *rs = get_remote_state ();
8361
8362 if (ptid_is_pid (ptid))
8363 {
8364 /* Printing an inferior target id. */
8365
8366 /* When multi-process extensions are off, there's no way in the
8367 remote protocol to know the remote process id, if there's any
8368 at all. There's one exception --- when we're connected with
8369 target extended-remote, and we manually attached to a process
8370 with "attach PID". We don't record anywhere a flag that
8371 allows us to distinguish that case from the case of
8372 connecting with extended-remote and the stub already being
8373 attached to a process, and reporting yes to qAttached, hence
8374 no smart special casing here. */
8375 if (!remote_multi_process_p (rs))
8376 {
8377 xsnprintf (buf, sizeof buf, "Remote target");
8378 return buf;
8379 }
8380
8381 return normal_pid_to_str (ptid);
8382 }
8383 else
8384 {
8385 if (ptid_equal (magic_null_ptid, ptid))
8386 xsnprintf (buf, sizeof buf, "Thread <main>");
8387 else if (remote_multi_process_p (rs))
8388 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8389 ptid_get_pid (ptid), ptid_get_tid (ptid));
8390 else
8391 xsnprintf (buf, sizeof buf, "Thread %ld",
8392 ptid_get_tid (ptid));
8393 return buf;
8394 }
8395 }
8396
8397 /* Get the address of the thread local variable in OBJFILE which is
8398 stored at OFFSET within the thread local storage for thread PTID. */
8399
8400 static CORE_ADDR
8401 remote_get_thread_local_address (struct target_ops *ops,
8402 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8403 {
8404 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8405 {
8406 struct remote_state *rs = get_remote_state ();
8407 char *p = rs->buf;
8408 char *endp = rs->buf + get_remote_packet_size ();
8409 enum packet_result result;
8410
8411 strcpy (p, "qGetTLSAddr:");
8412 p += strlen (p);
8413 p = write_ptid (p, endp, ptid);
8414 *p++ = ',';
8415 p += hexnumstr (p, offset);
8416 *p++ = ',';
8417 p += hexnumstr (p, lm);
8418 *p++ = '\0';
8419
8420 putpkt (rs->buf);
8421 getpkt (&rs->buf, &rs->buf_size, 0);
8422 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8423 if (result == PACKET_OK)
8424 {
8425 ULONGEST result;
8426
8427 unpack_varlen_hex (rs->buf, &result);
8428 return result;
8429 }
8430 else if (result == PACKET_UNKNOWN)
8431 throw_error (TLS_GENERIC_ERROR,
8432 _("Remote target doesn't support qGetTLSAddr packet"));
8433 else
8434 throw_error (TLS_GENERIC_ERROR,
8435 _("Remote target failed to process qGetTLSAddr request"));
8436 }
8437 else
8438 throw_error (TLS_GENERIC_ERROR,
8439 _("TLS not supported or disabled on this target"));
8440 /* Not reached. */
8441 return 0;
8442 }
8443
8444 /* Support for inferring a target description based on the current
8445 architecture and the size of a 'g' packet. While the 'g' packet
8446 can have any size (since optional registers can be left off the
8447 end), some sizes are easily recognizable given knowledge of the
8448 approximate architecture. */
8449
8450 struct remote_g_packet_guess
8451 {
8452 int bytes;
8453 const struct target_desc *tdesc;
8454 };
8455 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8456 DEF_VEC_O(remote_g_packet_guess_s);
8457
8458 struct remote_g_packet_data
8459 {
8460 VEC(remote_g_packet_guess_s) *guesses;
8461 };
8462
8463 static struct gdbarch_data *remote_g_packet_data_handle;
8464
8465 static void *
8466 remote_g_packet_data_init (struct obstack *obstack)
8467 {
8468 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8469 }
8470
8471 void
8472 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8473 const struct target_desc *tdesc)
8474 {
8475 struct remote_g_packet_data *data
8476 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8477 struct remote_g_packet_guess new_guess, *guess;
8478 int ix;
8479
8480 gdb_assert (tdesc != NULL);
8481
8482 for (ix = 0;
8483 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8484 ix++)
8485 if (guess->bytes == bytes)
8486 internal_error (__FILE__, __LINE__,
8487 "Duplicate g packet description added for size %d",
8488 bytes);
8489
8490 new_guess.bytes = bytes;
8491 new_guess.tdesc = tdesc;
8492 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8493 }
8494
8495 /* Return 1 if remote_read_description would do anything on this target
8496 and architecture, 0 otherwise. */
8497
8498 static int
8499 remote_read_description_p (struct target_ops *target)
8500 {
8501 struct remote_g_packet_data *data
8502 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8503
8504 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8505 return 1;
8506
8507 return 0;
8508 }
8509
8510 static const struct target_desc *
8511 remote_read_description (struct target_ops *target)
8512 {
8513 struct remote_g_packet_data *data
8514 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8515
8516 /* Do not try this during initial connection, when we do not know
8517 whether there is a running but stopped thread. */
8518 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8519 return NULL;
8520
8521 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8522 {
8523 struct remote_g_packet_guess *guess;
8524 int ix;
8525 int bytes = send_g_packet ();
8526
8527 for (ix = 0;
8528 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8529 ix++)
8530 if (guess->bytes == bytes)
8531 return guess->tdesc;
8532
8533 /* We discard the g packet. A minor optimization would be to
8534 hold on to it, and fill the register cache once we have selected
8535 an architecture, but it's too tricky to do safely. */
8536 }
8537
8538 return NULL;
8539 }
8540
8541 /* Remote file transfer support. This is host-initiated I/O, not
8542 target-initiated; for target-initiated, see remote-fileio.c. */
8543
8544 /* If *LEFT is at least the length of STRING, copy STRING to
8545 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8546 decrease *LEFT. Otherwise raise an error. */
8547
8548 static void
8549 remote_buffer_add_string (char **buffer, int *left, char *string)
8550 {
8551 int len = strlen (string);
8552
8553 if (len > *left)
8554 error (_("Packet too long for target."));
8555
8556 memcpy (*buffer, string, len);
8557 *buffer += len;
8558 *left -= len;
8559
8560 /* NUL-terminate the buffer as a convenience, if there is
8561 room. */
8562 if (*left)
8563 **buffer = '\0';
8564 }
8565
8566 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8567 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8568 decrease *LEFT. Otherwise raise an error. */
8569
8570 static void
8571 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8572 int len)
8573 {
8574 if (2 * len > *left)
8575 error (_("Packet too long for target."));
8576
8577 bin2hex (bytes, *buffer, len);
8578 *buffer += 2 * len;
8579 *left -= 2 * len;
8580
8581 /* NUL-terminate the buffer as a convenience, if there is
8582 room. */
8583 if (*left)
8584 **buffer = '\0';
8585 }
8586
8587 /* If *LEFT is large enough, convert VALUE to hex and add it to
8588 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8589 decrease *LEFT. Otherwise raise an error. */
8590
8591 static void
8592 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8593 {
8594 int len = hexnumlen (value);
8595
8596 if (len > *left)
8597 error (_("Packet too long for target."));
8598
8599 hexnumstr (*buffer, value);
8600 *buffer += len;
8601 *left -= len;
8602
8603 /* NUL-terminate the buffer as a convenience, if there is
8604 room. */
8605 if (*left)
8606 **buffer = '\0';
8607 }
8608
8609 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8610 value, *REMOTE_ERRNO to the remote error number or zero if none
8611 was included, and *ATTACHMENT to point to the start of the annex
8612 if any. The length of the packet isn't needed here; there may
8613 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8614
8615 Return 0 if the packet could be parsed, -1 if it could not. If
8616 -1 is returned, the other variables may not be initialized. */
8617
8618 static int
8619 remote_hostio_parse_result (char *buffer, int *retcode,
8620 int *remote_errno, char **attachment)
8621 {
8622 char *p, *p2;
8623
8624 *remote_errno = 0;
8625 *attachment = NULL;
8626
8627 if (buffer[0] != 'F')
8628 return -1;
8629
8630 errno = 0;
8631 *retcode = strtol (&buffer[1], &p, 16);
8632 if (errno != 0 || p == &buffer[1])
8633 return -1;
8634
8635 /* Check for ",errno". */
8636 if (*p == ',')
8637 {
8638 errno = 0;
8639 *remote_errno = strtol (p + 1, &p2, 16);
8640 if (errno != 0 || p + 1 == p2)
8641 return -1;
8642 p = p2;
8643 }
8644
8645 /* Check for ";attachment". If there is no attachment, the
8646 packet should end here. */
8647 if (*p == ';')
8648 {
8649 *attachment = p + 1;
8650 return 0;
8651 }
8652 else if (*p == '\0')
8653 return 0;
8654 else
8655 return -1;
8656 }
8657
8658 /* Send a prepared I/O packet to the target and read its response.
8659 The prepared packet is in the global RS->BUF before this function
8660 is called, and the answer is there when we return.
8661
8662 COMMAND_BYTES is the length of the request to send, which may include
8663 binary data. WHICH_PACKET is the packet configuration to check
8664 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8665 is set to the error number and -1 is returned. Otherwise the value
8666 returned by the function is returned.
8667
8668 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8669 attachment is expected; an error will be reported if there's a
8670 mismatch. If one is found, *ATTACHMENT will be set to point into
8671 the packet buffer and *ATTACHMENT_LEN will be set to the
8672 attachment's length. */
8673
8674 static int
8675 remote_hostio_send_command (int command_bytes, int which_packet,
8676 int *remote_errno, char **attachment,
8677 int *attachment_len)
8678 {
8679 struct remote_state *rs = get_remote_state ();
8680 int ret, bytes_read;
8681 char *attachment_tmp;
8682
8683 if (!remote_desc
8684 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8685 {
8686 *remote_errno = FILEIO_ENOSYS;
8687 return -1;
8688 }
8689
8690 putpkt_binary (rs->buf, command_bytes);
8691 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8692
8693 /* If it timed out, something is wrong. Don't try to parse the
8694 buffer. */
8695 if (bytes_read < 0)
8696 {
8697 *remote_errno = FILEIO_EINVAL;
8698 return -1;
8699 }
8700
8701 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8702 {
8703 case PACKET_ERROR:
8704 *remote_errno = FILEIO_EINVAL;
8705 return -1;
8706 case PACKET_UNKNOWN:
8707 *remote_errno = FILEIO_ENOSYS;
8708 return -1;
8709 case PACKET_OK:
8710 break;
8711 }
8712
8713 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8714 &attachment_tmp))
8715 {
8716 *remote_errno = FILEIO_EINVAL;
8717 return -1;
8718 }
8719
8720 /* Make sure we saw an attachment if and only if we expected one. */
8721 if ((attachment_tmp == NULL && attachment != NULL)
8722 || (attachment_tmp != NULL && attachment == NULL))
8723 {
8724 *remote_errno = FILEIO_EINVAL;
8725 return -1;
8726 }
8727
8728 /* If an attachment was found, it must point into the packet buffer;
8729 work out how many bytes there were. */
8730 if (attachment_tmp != NULL)
8731 {
8732 *attachment = attachment_tmp;
8733 *attachment_len = bytes_read - (*attachment - rs->buf);
8734 }
8735
8736 return ret;
8737 }
8738
8739 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8740 remote file descriptor, or -1 if an error occurs (and set
8741 *REMOTE_ERRNO). */
8742
8743 static int
8744 remote_hostio_open (const char *filename, int flags, int mode,
8745 int *remote_errno)
8746 {
8747 struct remote_state *rs = get_remote_state ();
8748 char *p = rs->buf;
8749 int left = get_remote_packet_size () - 1;
8750
8751 remote_buffer_add_string (&p, &left, "vFile:open:");
8752
8753 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8754 strlen (filename));
8755 remote_buffer_add_string (&p, &left, ",");
8756
8757 remote_buffer_add_int (&p, &left, flags);
8758 remote_buffer_add_string (&p, &left, ",");
8759
8760 remote_buffer_add_int (&p, &left, mode);
8761
8762 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8763 remote_errno, NULL, NULL);
8764 }
8765
8766 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8767 Return the number of bytes written, or -1 if an error occurs (and
8768 set *REMOTE_ERRNO). */
8769
8770 static int
8771 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8772 ULONGEST offset, int *remote_errno)
8773 {
8774 struct remote_state *rs = get_remote_state ();
8775 char *p = rs->buf;
8776 int left = get_remote_packet_size ();
8777 int out_len;
8778
8779 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8780
8781 remote_buffer_add_int (&p, &left, fd);
8782 remote_buffer_add_string (&p, &left, ",");
8783
8784 remote_buffer_add_int (&p, &left, offset);
8785 remote_buffer_add_string (&p, &left, ",");
8786
8787 p += remote_escape_output (write_buf, len, p, &out_len,
8788 get_remote_packet_size () - (p - rs->buf));
8789
8790 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8791 remote_errno, NULL, NULL);
8792 }
8793
8794 /* Read up to LEN bytes FD on the remote target into READ_BUF
8795 Return the number of bytes read, or -1 if an error occurs (and
8796 set *REMOTE_ERRNO). */
8797
8798 static int
8799 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8800 ULONGEST offset, int *remote_errno)
8801 {
8802 struct remote_state *rs = get_remote_state ();
8803 char *p = rs->buf;
8804 char *attachment;
8805 int left = get_remote_packet_size ();
8806 int ret, attachment_len;
8807 int read_len;
8808
8809 remote_buffer_add_string (&p, &left, "vFile:pread:");
8810
8811 remote_buffer_add_int (&p, &left, fd);
8812 remote_buffer_add_string (&p, &left, ",");
8813
8814 remote_buffer_add_int (&p, &left, len);
8815 remote_buffer_add_string (&p, &left, ",");
8816
8817 remote_buffer_add_int (&p, &left, offset);
8818
8819 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8820 remote_errno, &attachment,
8821 &attachment_len);
8822
8823 if (ret < 0)
8824 return ret;
8825
8826 read_len = remote_unescape_input (attachment, attachment_len,
8827 read_buf, len);
8828 if (read_len != ret)
8829 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8830
8831 return ret;
8832 }
8833
8834 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8835 (and set *REMOTE_ERRNO). */
8836
8837 static int
8838 remote_hostio_close (int fd, int *remote_errno)
8839 {
8840 struct remote_state *rs = get_remote_state ();
8841 char *p = rs->buf;
8842 int left = get_remote_packet_size () - 1;
8843
8844 remote_buffer_add_string (&p, &left, "vFile:close:");
8845
8846 remote_buffer_add_int (&p, &left, fd);
8847
8848 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8849 remote_errno, NULL, NULL);
8850 }
8851
8852 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8853 occurs (and set *REMOTE_ERRNO). */
8854
8855 static int
8856 remote_hostio_unlink (const char *filename, int *remote_errno)
8857 {
8858 struct remote_state *rs = get_remote_state ();
8859 char *p = rs->buf;
8860 int left = get_remote_packet_size () - 1;
8861
8862 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8863
8864 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8865 strlen (filename));
8866
8867 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8868 remote_errno, NULL, NULL);
8869 }
8870
8871 static int
8872 remote_fileio_errno_to_host (int errnum)
8873 {
8874 switch (errnum)
8875 {
8876 case FILEIO_EPERM:
8877 return EPERM;
8878 case FILEIO_ENOENT:
8879 return ENOENT;
8880 case FILEIO_EINTR:
8881 return EINTR;
8882 case FILEIO_EIO:
8883 return EIO;
8884 case FILEIO_EBADF:
8885 return EBADF;
8886 case FILEIO_EACCES:
8887 return EACCES;
8888 case FILEIO_EFAULT:
8889 return EFAULT;
8890 case FILEIO_EBUSY:
8891 return EBUSY;
8892 case FILEIO_EEXIST:
8893 return EEXIST;
8894 case FILEIO_ENODEV:
8895 return ENODEV;
8896 case FILEIO_ENOTDIR:
8897 return ENOTDIR;
8898 case FILEIO_EISDIR:
8899 return EISDIR;
8900 case FILEIO_EINVAL:
8901 return EINVAL;
8902 case FILEIO_ENFILE:
8903 return ENFILE;
8904 case FILEIO_EMFILE:
8905 return EMFILE;
8906 case FILEIO_EFBIG:
8907 return EFBIG;
8908 case FILEIO_ENOSPC:
8909 return ENOSPC;
8910 case FILEIO_ESPIPE:
8911 return ESPIPE;
8912 case FILEIO_EROFS:
8913 return EROFS;
8914 case FILEIO_ENOSYS:
8915 return ENOSYS;
8916 case FILEIO_ENAMETOOLONG:
8917 return ENAMETOOLONG;
8918 }
8919 return -1;
8920 }
8921
8922 static char *
8923 remote_hostio_error (int errnum)
8924 {
8925 int host_error = remote_fileio_errno_to_host (errnum);
8926
8927 if (host_error == -1)
8928 error (_("Unknown remote I/O error %d"), errnum);
8929 else
8930 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8931 }
8932
8933 static void
8934 remote_hostio_close_cleanup (void *opaque)
8935 {
8936 int fd = *(int *) opaque;
8937 int remote_errno;
8938
8939 remote_hostio_close (fd, &remote_errno);
8940 }
8941
8942
8943 static void *
8944 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8945 {
8946 const char *filename = bfd_get_filename (abfd);
8947 int fd, remote_errno;
8948 int *stream;
8949
8950 gdb_assert (remote_filename_p (filename));
8951
8952 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8953 if (fd == -1)
8954 {
8955 errno = remote_fileio_errno_to_host (remote_errno);
8956 bfd_set_error (bfd_error_system_call);
8957 return NULL;
8958 }
8959
8960 stream = xmalloc (sizeof (int));
8961 *stream = fd;
8962 return stream;
8963 }
8964
8965 static int
8966 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8967 {
8968 int fd = *(int *)stream;
8969 int remote_errno;
8970
8971 xfree (stream);
8972
8973 /* Ignore errors on close; these may happen if the remote
8974 connection was already torn down. */
8975 remote_hostio_close (fd, &remote_errno);
8976
8977 return 1;
8978 }
8979
8980 static file_ptr
8981 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8982 file_ptr nbytes, file_ptr offset)
8983 {
8984 int fd = *(int *)stream;
8985 int remote_errno;
8986 file_ptr pos, bytes;
8987
8988 pos = 0;
8989 while (nbytes > pos)
8990 {
8991 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8992 offset + pos, &remote_errno);
8993 if (bytes == 0)
8994 /* Success, but no bytes, means end-of-file. */
8995 break;
8996 if (bytes == -1)
8997 {
8998 errno = remote_fileio_errno_to_host (remote_errno);
8999 bfd_set_error (bfd_error_system_call);
9000 return -1;
9001 }
9002
9003 pos += bytes;
9004 }
9005
9006 return pos;
9007 }
9008
9009 static int
9010 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9011 {
9012 /* FIXME: We should probably implement remote_hostio_stat. */
9013 sb->st_size = INT_MAX;
9014 return 0;
9015 }
9016
9017 int
9018 remote_filename_p (const char *filename)
9019 {
9020 return strncmp (filename, "remote:", 7) == 0;
9021 }
9022
9023 bfd *
9024 remote_bfd_open (const char *remote_file, const char *target)
9025 {
9026 return bfd_openr_iovec (remote_file, target,
9027 remote_bfd_iovec_open, NULL,
9028 remote_bfd_iovec_pread,
9029 remote_bfd_iovec_close,
9030 remote_bfd_iovec_stat);
9031 }
9032
9033 void
9034 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9035 {
9036 struct cleanup *back_to, *close_cleanup;
9037 int retcode, fd, remote_errno, bytes, io_size;
9038 FILE *file;
9039 gdb_byte *buffer;
9040 int bytes_in_buffer;
9041 int saw_eof;
9042 ULONGEST offset;
9043
9044 if (!remote_desc)
9045 error (_("command can only be used with remote target"));
9046
9047 file = fopen (local_file, "rb");
9048 if (file == NULL)
9049 perror_with_name (local_file);
9050 back_to = make_cleanup_fclose (file);
9051
9052 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9053 | FILEIO_O_TRUNC),
9054 0700, &remote_errno);
9055 if (fd == -1)
9056 remote_hostio_error (remote_errno);
9057
9058 /* Send up to this many bytes at once. They won't all fit in the
9059 remote packet limit, so we'll transfer slightly fewer. */
9060 io_size = get_remote_packet_size ();
9061 buffer = xmalloc (io_size);
9062 make_cleanup (xfree, buffer);
9063
9064 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9065
9066 bytes_in_buffer = 0;
9067 saw_eof = 0;
9068 offset = 0;
9069 while (bytes_in_buffer || !saw_eof)
9070 {
9071 if (!saw_eof)
9072 {
9073 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
9074 file);
9075 if (bytes == 0)
9076 {
9077 if (ferror (file))
9078 error (_("Error reading %s."), local_file);
9079 else
9080 {
9081 /* EOF. Unless there is something still in the
9082 buffer from the last iteration, we are done. */
9083 saw_eof = 1;
9084 if (bytes_in_buffer == 0)
9085 break;
9086 }
9087 }
9088 }
9089 else
9090 bytes = 0;
9091
9092 bytes += bytes_in_buffer;
9093 bytes_in_buffer = 0;
9094
9095 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9096
9097 if (retcode < 0)
9098 remote_hostio_error (remote_errno);
9099 else if (retcode == 0)
9100 error (_("Remote write of %d bytes returned 0!"), bytes);
9101 else if (retcode < bytes)
9102 {
9103 /* Short write. Save the rest of the read data for the next
9104 write. */
9105 bytes_in_buffer = bytes - retcode;
9106 memmove (buffer, buffer + retcode, bytes_in_buffer);
9107 }
9108
9109 offset += retcode;
9110 }
9111
9112 discard_cleanups (close_cleanup);
9113 if (remote_hostio_close (fd, &remote_errno))
9114 remote_hostio_error (remote_errno);
9115
9116 if (from_tty)
9117 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9118 do_cleanups (back_to);
9119 }
9120
9121 void
9122 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9123 {
9124 struct cleanup *back_to, *close_cleanup;
9125 int fd, remote_errno, bytes, io_size;
9126 FILE *file;
9127 gdb_byte *buffer;
9128 ULONGEST offset;
9129
9130 if (!remote_desc)
9131 error (_("command can only be used with remote target"));
9132
9133 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9134 if (fd == -1)
9135 remote_hostio_error (remote_errno);
9136
9137 file = fopen (local_file, "wb");
9138 if (file == NULL)
9139 perror_with_name (local_file);
9140 back_to = make_cleanup_fclose (file);
9141
9142 /* Send up to this many bytes at once. They won't all fit in the
9143 remote packet limit, so we'll transfer slightly fewer. */
9144 io_size = get_remote_packet_size ();
9145 buffer = xmalloc (io_size);
9146 make_cleanup (xfree, buffer);
9147
9148 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9149
9150 offset = 0;
9151 while (1)
9152 {
9153 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9154 if (bytes == 0)
9155 /* Success, but no bytes, means end-of-file. */
9156 break;
9157 if (bytes == -1)
9158 remote_hostio_error (remote_errno);
9159
9160 offset += bytes;
9161
9162 bytes = fwrite (buffer, 1, bytes, file);
9163 if (bytes == 0)
9164 perror_with_name (local_file);
9165 }
9166
9167 discard_cleanups (close_cleanup);
9168 if (remote_hostio_close (fd, &remote_errno))
9169 remote_hostio_error (remote_errno);
9170
9171 if (from_tty)
9172 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9173 do_cleanups (back_to);
9174 }
9175
9176 void
9177 remote_file_delete (const char *remote_file, int from_tty)
9178 {
9179 int retcode, remote_errno;
9180
9181 if (!remote_desc)
9182 error (_("command can only be used with remote target"));
9183
9184 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9185 if (retcode == -1)
9186 remote_hostio_error (remote_errno);
9187
9188 if (from_tty)
9189 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9190 }
9191
9192 static void
9193 remote_put_command (char *args, int from_tty)
9194 {
9195 struct cleanup *back_to;
9196 char **argv;
9197
9198 if (args == NULL)
9199 error_no_arg (_("file to put"));
9200
9201 argv = gdb_buildargv (args);
9202 back_to = make_cleanup_freeargv (argv);
9203 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9204 error (_("Invalid parameters to remote put"));
9205
9206 remote_file_put (argv[0], argv[1], from_tty);
9207
9208 do_cleanups (back_to);
9209 }
9210
9211 static void
9212 remote_get_command (char *args, int from_tty)
9213 {
9214 struct cleanup *back_to;
9215 char **argv;
9216
9217 if (args == NULL)
9218 error_no_arg (_("file to get"));
9219
9220 argv = gdb_buildargv (args);
9221 back_to = make_cleanup_freeargv (argv);
9222 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9223 error (_("Invalid parameters to remote get"));
9224
9225 remote_file_get (argv[0], argv[1], from_tty);
9226
9227 do_cleanups (back_to);
9228 }
9229
9230 static void
9231 remote_delete_command (char *args, int from_tty)
9232 {
9233 struct cleanup *back_to;
9234 char **argv;
9235
9236 if (args == NULL)
9237 error_no_arg (_("file to delete"));
9238
9239 argv = gdb_buildargv (args);
9240 back_to = make_cleanup_freeargv (argv);
9241 if (argv[0] == NULL || argv[1] != NULL)
9242 error (_("Invalid parameters to remote delete"));
9243
9244 remote_file_delete (argv[0], from_tty);
9245
9246 do_cleanups (back_to);
9247 }
9248
9249 static void
9250 remote_command (char *args, int from_tty)
9251 {
9252 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9253 }
9254
9255 static int
9256 remote_can_execute_reverse (void)
9257 {
9258 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9259 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9260 return 1;
9261 else
9262 return 0;
9263 }
9264
9265 static int
9266 remote_supports_non_stop (void)
9267 {
9268 return 1;
9269 }
9270
9271 static int
9272 remote_supports_multi_process (void)
9273 {
9274 struct remote_state *rs = get_remote_state ();
9275 return remote_multi_process_p (rs);
9276 }
9277
9278 int
9279 remote_supports_cond_tracepoints (void)
9280 {
9281 struct remote_state *rs = get_remote_state ();
9282 return rs->cond_tracepoints;
9283 }
9284
9285 int
9286 remote_supports_fast_tracepoints (void)
9287 {
9288 struct remote_state *rs = get_remote_state ();
9289 return rs->fast_tracepoints;
9290 }
9291
9292 static void
9293 remote_trace_init ()
9294 {
9295 putpkt ("QTinit");
9296 remote_get_noisy_reply (&target_buf, &target_buf_size);
9297 if (strcmp (target_buf, "OK"))
9298 error (_("Target does not support this command."));
9299 }
9300
9301 static void free_actions_list (char **actions_list);
9302 static void free_actions_list_cleanup_wrapper (void *);
9303 static void
9304 free_actions_list_cleanup_wrapper (void *al)
9305 {
9306 free_actions_list (al);
9307 }
9308
9309 static void
9310 free_actions_list (char **actions_list)
9311 {
9312 int ndx;
9313
9314 if (actions_list == 0)
9315 return;
9316
9317 for (ndx = 0; actions_list[ndx]; ndx++)
9318 xfree (actions_list[ndx]);
9319
9320 xfree (actions_list);
9321 }
9322
9323 /* Recursive routine to walk through command list including loops, and
9324 download packets for each command. */
9325
9326 static void
9327 remote_download_command_source (int num, ULONGEST addr,
9328 struct command_line *cmds)
9329 {
9330 struct remote_state *rs = get_remote_state ();
9331 struct command_line *cmd;
9332
9333 for (cmd = cmds; cmd; cmd = cmd->next)
9334 {
9335 QUIT; /* allow user to bail out with ^C */
9336 strcpy (rs->buf, "QTDPsrc:");
9337 encode_source_string (num, addr, "cmd", cmd->line,
9338 rs->buf + strlen (rs->buf),
9339 rs->buf_size - strlen (rs->buf));
9340 putpkt (rs->buf);
9341 remote_get_noisy_reply (&target_buf, &target_buf_size);
9342 if (strcmp (target_buf, "OK"))
9343 warning (_("Target does not support source download."));
9344
9345 if (cmd->control_type == while_control
9346 || cmd->control_type == while_stepping_control)
9347 {
9348 remote_download_command_source (num, addr, *cmd->body_list);
9349
9350 QUIT; /* allow user to bail out with ^C */
9351 strcpy (rs->buf, "QTDPsrc:");
9352 encode_source_string (num, addr, "cmd", "end",
9353 rs->buf + strlen (rs->buf),
9354 rs->buf_size - strlen (rs->buf));
9355 putpkt (rs->buf);
9356 remote_get_noisy_reply (&target_buf, &target_buf_size);
9357 if (strcmp (target_buf, "OK"))
9358 warning (_("Target does not support source download."));
9359 }
9360 }
9361 }
9362
9363 static void
9364 remote_download_tracepoint (struct breakpoint *t)
9365 {
9366 struct bp_location *loc;
9367 CORE_ADDR tpaddr;
9368 char addrbuf[40];
9369 char buf[2048];
9370 char **tdp_actions;
9371 char **stepping_actions;
9372 int ndx;
9373 struct cleanup *old_chain = NULL;
9374 struct agent_expr *aexpr;
9375 struct cleanup *aexpr_chain = NULL;
9376 char *pkt;
9377
9378 /* Iterate over all the tracepoint locations. It's up to the target to
9379 notice multiple tracepoint packets with the same number but different
9380 addresses, and treat them as multiple locations. */
9381 for (loc = t->loc; loc; loc = loc->next)
9382 {
9383 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9384 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9385 tdp_actions);
9386 (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9387
9388 tpaddr = loc->address;
9389 sprintf_vma (addrbuf, tpaddr);
9390 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9391 addrbuf, /* address */
9392 (t->enable_state == bp_enabled ? 'E' : 'D'),
9393 t->step_count, t->pass_count);
9394 /* Fast tracepoints are mostly handled by the target, but we can
9395 tell the target how big of an instruction block should be moved
9396 around. */
9397 if (t->type == bp_fast_tracepoint)
9398 {
9399 /* Only test for support at download time; we may not know
9400 target capabilities at definition time. */
9401 if (remote_supports_fast_tracepoints ())
9402 {
9403 int isize;
9404
9405 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9406 tpaddr, &isize, NULL))
9407 sprintf (buf + strlen (buf), ":F%x", isize);
9408 else
9409 /* If it passed validation at definition but fails now,
9410 something is very wrong. */
9411 internal_error (__FILE__, __LINE__,
9412 "Fast tracepoint not valid during download");
9413 }
9414 else
9415 /* Fast tracepoints are functionally identical to regular
9416 tracepoints, so don't take lack of support as a reason to
9417 give up on the trace run. */
9418 warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9419 }
9420 /* If the tracepoint has a conditional, make it into an agent
9421 expression and append to the definition. */
9422 if (loc->cond)
9423 {
9424 /* Only test support at download time, we may not know target
9425 capabilities at definition time. */
9426 if (remote_supports_cond_tracepoints ())
9427 {
9428 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9429 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9430 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9431 pkt = buf + strlen (buf);
9432 for (ndx = 0; ndx < aexpr->len; ++ndx)
9433 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9434 *pkt = '\0';
9435 do_cleanups (aexpr_chain);
9436 }
9437 else
9438 warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9439 }
9440
9441 if (t->commands || *default_collect)
9442 strcat (buf, "-");
9443 putpkt (buf);
9444 remote_get_noisy_reply (&target_buf, &target_buf_size);
9445 if (strcmp (target_buf, "OK"))
9446 error (_("Target does not support tracepoints."));
9447
9448 /* do_single_steps (t); */
9449 if (tdp_actions)
9450 {
9451 for (ndx = 0; tdp_actions[ndx]; ndx++)
9452 {
9453 QUIT; /* allow user to bail out with ^C */
9454 sprintf (buf, "QTDP:-%x:%s:%s%c",
9455 t->number, addrbuf, /* address */
9456 tdp_actions[ndx],
9457 ((tdp_actions[ndx + 1] || stepping_actions)
9458 ? '-' : 0));
9459 putpkt (buf);
9460 remote_get_noisy_reply (&target_buf,
9461 &target_buf_size);
9462 if (strcmp (target_buf, "OK"))
9463 error (_("Error on target while setting tracepoints."));
9464 }
9465 }
9466 if (stepping_actions)
9467 {
9468 for (ndx = 0; stepping_actions[ndx]; ndx++)
9469 {
9470 QUIT; /* allow user to bail out with ^C */
9471 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9472 t->number, addrbuf, /* address */
9473 ((ndx == 0) ? "S" : ""),
9474 stepping_actions[ndx],
9475 (stepping_actions[ndx + 1] ? "-" : ""));
9476 putpkt (buf);
9477 remote_get_noisy_reply (&target_buf,
9478 &target_buf_size);
9479 if (strcmp (target_buf, "OK"))
9480 error (_("Error on target while setting tracepoints."));
9481 }
9482 }
9483
9484 if (remote_protocol_packets[PACKET_TracepointSource].support == PACKET_ENABLE)
9485 {
9486 if (t->addr_string)
9487 {
9488 strcpy (buf, "QTDPsrc:");
9489 encode_source_string (t->number, loc->address,
9490 "at", t->addr_string, buf + strlen (buf),
9491 2048 - strlen (buf));
9492
9493 putpkt (buf);
9494 remote_get_noisy_reply (&target_buf, &target_buf_size);
9495 if (strcmp (target_buf, "OK"))
9496 warning (_("Target does not support source download."));
9497 }
9498 if (t->cond_string)
9499 {
9500 strcpy (buf, "QTDPsrc:");
9501 encode_source_string (t->number, loc->address,
9502 "cond", t->cond_string, buf + strlen (buf),
9503 2048 - strlen (buf));
9504 putpkt (buf);
9505 remote_get_noisy_reply (&target_buf, &target_buf_size);
9506 if (strcmp (target_buf, "OK"))
9507 warning (_("Target does not support source download."));
9508 }
9509 remote_download_command_source (t->number, loc->address,
9510 breakpoint_commands (t));
9511 }
9512
9513 do_cleanups (old_chain);
9514 }
9515 }
9516
9517 static void
9518 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9519 {
9520 struct remote_state *rs = get_remote_state ();
9521 char *p;
9522
9523 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9524 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9525 p = rs->buf + strlen (rs->buf);
9526 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9527 error (_("Trace state variable name too long for tsv definition packet"));
9528 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9529 *p++ = '\0';
9530 putpkt (rs->buf);
9531 remote_get_noisy_reply (&target_buf, &target_buf_size);
9532 }
9533
9534 static void
9535 remote_trace_set_readonly_regions ()
9536 {
9537 asection *s;
9538 bfd_size_type size;
9539 bfd_vma lma;
9540 int anysecs = 0;
9541
9542 if (!exec_bfd)
9543 return; /* No information to give. */
9544
9545 strcpy (target_buf, "QTro");
9546 for (s = exec_bfd->sections; s; s = s->next)
9547 {
9548 char tmp1[40], tmp2[40];
9549
9550 if ((s->flags & SEC_LOAD) == 0 ||
9551 /* (s->flags & SEC_CODE) == 0 || */
9552 (s->flags & SEC_READONLY) == 0)
9553 continue;
9554
9555 anysecs = 1;
9556 lma = s->lma;
9557 size = bfd_get_section_size (s);
9558 sprintf_vma (tmp1, lma);
9559 sprintf_vma (tmp2, lma + size);
9560 sprintf (target_buf + strlen (target_buf),
9561 ":%s,%s", tmp1, tmp2);
9562 }
9563 if (anysecs)
9564 {
9565 putpkt (target_buf);
9566 getpkt (&target_buf, &target_buf_size, 0);
9567 }
9568 }
9569
9570 static void
9571 remote_trace_start ()
9572 {
9573 putpkt ("QTStart");
9574 remote_get_noisy_reply (&target_buf, &target_buf_size);
9575 if (strcmp (target_buf, "OK"))
9576 error (_("Bogus reply from target: %s"), target_buf);
9577 }
9578
9579 static int
9580 remote_get_trace_status (struct trace_status *ts)
9581 {
9582 char *p, *p1, *p_temp;
9583 ULONGEST val;
9584 /* FIXME we need to get register block size some other way */
9585 extern int trace_regblock_size;
9586 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9587
9588 putpkt ("qTStatus");
9589 getpkt (&target_buf, &target_buf_size, 0);
9590 /* FIXME should handle more variety of replies */
9591
9592 p = target_buf;
9593
9594 /* If the remote target doesn't do tracing, flag it. */
9595 if (*p == '\0')
9596 return -1;
9597
9598 /* We're working with a live target. */
9599 ts->from_file = 0;
9600
9601 /* Set some defaults. */
9602 ts->running_known = 0;
9603 ts->stop_reason = trace_stop_reason_unknown;
9604 ts->traceframe_count = -1;
9605 ts->buffer_free = 0;
9606
9607 if (*p++ != 'T')
9608 error (_("Bogus trace status reply from target: %s"), target_buf);
9609
9610 parse_trace_status (p, ts);
9611
9612 return ts->running;
9613 }
9614
9615 static void
9616 remote_trace_stop ()
9617 {
9618 putpkt ("QTStop");
9619 remote_get_noisy_reply (&target_buf, &target_buf_size);
9620 if (strcmp (target_buf, "OK"))
9621 error (_("Bogus reply from target: %s"), target_buf);
9622 }
9623
9624 static int
9625 remote_trace_find (enum trace_find_type type, int num,
9626 ULONGEST addr1, ULONGEST addr2,
9627 int *tpp)
9628 {
9629 struct remote_state *rs = get_remote_state ();
9630 char *p, *reply;
9631 int target_frameno = -1, target_tracept = -1;
9632
9633 p = rs->buf;
9634 strcpy (p, "QTFrame:");
9635 p = strchr (p, '\0');
9636 switch (type)
9637 {
9638 case tfind_number:
9639 sprintf (p, "%x", num);
9640 break;
9641 case tfind_pc:
9642 sprintf (p, "pc:%s", phex_nz (addr1, 0));
9643 break;
9644 case tfind_tp:
9645 sprintf (p, "tdp:%x", num);
9646 break;
9647 case tfind_range:
9648 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9649 break;
9650 case tfind_outside:
9651 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9652 break;
9653 default:
9654 error ("Unknown trace find type %d", type);
9655 }
9656
9657 putpkt (rs->buf);
9658 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
9659
9660 while (reply && *reply)
9661 switch (*reply)
9662 {
9663 case 'F':
9664 p = ++reply;
9665 target_frameno = (int) strtol (p, &reply, 16);
9666 if (reply == p)
9667 error (_("Unable to parse trace frame number"));
9668 if (target_frameno == -1)
9669 return -1;
9670 break;
9671 case 'T':
9672 p = ++reply;
9673 target_tracept = (int) strtol (p, &reply, 16);
9674 if (reply == p)
9675 error (_("Unable to parse tracepoint number"));
9676 break;
9677 case 'O': /* "OK"? */
9678 if (reply[1] == 'K' && reply[2] == '\0')
9679 reply += 2;
9680 else
9681 error (_("Bogus reply from target: %s"), reply);
9682 break;
9683 default:
9684 error (_("Bogus reply from target: %s"), reply);
9685 }
9686 if (tpp)
9687 *tpp = target_tracept;
9688 return target_frameno;
9689 }
9690
9691 static int
9692 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
9693 {
9694 struct remote_state *rs = get_remote_state ();
9695 char *reply;
9696 ULONGEST uval;
9697
9698 sprintf (rs->buf, "qTV:%x", tsvnum);
9699 putpkt (rs->buf);
9700 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9701 if (reply && *reply)
9702 {
9703 if (*reply == 'V')
9704 {
9705 unpack_varlen_hex (reply + 1, &uval);
9706 *val = (LONGEST) uval;
9707 return 1;
9708 }
9709 }
9710 return 0;
9711 }
9712
9713 static int
9714 remote_save_trace_data (const char *filename)
9715 {
9716 struct remote_state *rs = get_remote_state ();
9717 char *p, *reply;
9718
9719 p = rs->buf;
9720 strcpy (p, "QTSave:");
9721 p += strlen (p);
9722 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
9723 error (_("Remote file name too long for trace save packet"));
9724 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
9725 *p++ = '\0';
9726 putpkt (rs->buf);
9727 remote_get_noisy_reply (&target_buf, &target_buf_size);
9728 return 0;
9729 }
9730
9731 /* This is basically a memory transfer, but needs to be its own packet
9732 because we don't know how the target actually organizes its trace
9733 memory, plus we want to be able to ask for as much as possible, but
9734 not be unhappy if we don't get as much as we ask for. */
9735
9736 static LONGEST
9737 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
9738 {
9739 struct remote_state *rs = get_remote_state ();
9740 char *reply;
9741 char *p;
9742 int rslt;
9743
9744 p = rs->buf;
9745 strcpy (p, "qTBuffer:");
9746 p += strlen (p);
9747 p += hexnumstr (p, offset);
9748 *p++ = ',';
9749 p += hexnumstr (p, len);
9750 *p++ = '\0';
9751
9752 putpkt (rs->buf);
9753 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9754 if (reply && *reply)
9755 {
9756 /* 'l' by itself means we're at the end of the buffer and
9757 there is nothing more to get. */
9758 if (*reply == 'l')
9759 return 0;
9760
9761 /* Convert the reply into binary. Limit the number of bytes to
9762 convert according to our passed-in buffer size, rather than
9763 what was returned in the packet; if the target is
9764 unexpectedly generous and gives us a bigger reply than we
9765 asked for, we don't want to crash. */
9766 rslt = hex2bin (target_buf, buf, len);
9767 return rslt;
9768 }
9769
9770 /* Something went wrong, flag as an error. */
9771 return -1;
9772 }
9773
9774 static void
9775 remote_set_disconnected_tracing (int val)
9776 {
9777 struct remote_state *rs = get_remote_state ();
9778
9779 if (rs->disconnected_tracing)
9780 {
9781 sprintf (rs->buf, "QTDisconnected:%x", val);
9782 putpkt (rs->buf);
9783 remote_get_noisy_reply (&target_buf, &target_buf_size);
9784 if (strcmp (target_buf, "OK"))
9785 error (_("Target does not support this command."));
9786 }
9787 else if (val)
9788 warning (_("Target does not support disconnected tracing."));
9789 }
9790
9791 static int
9792 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
9793 {
9794 struct thread_info *info = find_thread_ptid (ptid);
9795 if (info && info->private)
9796 return info->private->core;
9797 return -1;
9798 }
9799
9800 static void
9801 remote_set_circular_trace_buffer (int val)
9802 {
9803 struct remote_state *rs = get_remote_state ();
9804
9805 sprintf (rs->buf, "QTBuffer:circular:%x", val);
9806 putpkt (rs->buf);
9807 remote_get_noisy_reply (&target_buf, &target_buf_size);
9808 if (strcmp (target_buf, "OK"))
9809 error (_("Target does not support this command."));
9810 }
9811
9812 static void
9813 init_remote_ops (void)
9814 {
9815 remote_ops.to_shortname = "remote";
9816 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
9817 remote_ops.to_doc =
9818 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9819 Specify the serial device it is connected to\n\
9820 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
9821 remote_ops.to_open = remote_open;
9822 remote_ops.to_close = remote_close;
9823 remote_ops.to_detach = remote_detach;
9824 remote_ops.to_disconnect = remote_disconnect;
9825 remote_ops.to_resume = remote_resume;
9826 remote_ops.to_wait = remote_wait;
9827 remote_ops.to_fetch_registers = remote_fetch_registers;
9828 remote_ops.to_store_registers = remote_store_registers;
9829 remote_ops.to_prepare_to_store = remote_prepare_to_store;
9830 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
9831 remote_ops.to_files_info = remote_files_info;
9832 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
9833 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
9834 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
9835 remote_ops.to_stopped_data_address = remote_stopped_data_address;
9836 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
9837 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
9838 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
9839 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
9840 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
9841 remote_ops.to_kill = remote_kill;
9842 remote_ops.to_load = generic_load;
9843 remote_ops.to_mourn_inferior = remote_mourn;
9844 remote_ops.to_thread_alive = remote_thread_alive;
9845 remote_ops.to_find_new_threads = remote_threads_info;
9846 remote_ops.to_pid_to_str = remote_pid_to_str;
9847 remote_ops.to_extra_thread_info = remote_threads_extra_info;
9848 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
9849 remote_ops.to_stop = remote_stop;
9850 remote_ops.to_xfer_partial = remote_xfer_partial;
9851 remote_ops.to_rcmd = remote_rcmd;
9852 remote_ops.to_log_command = serial_log_command;
9853 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
9854 remote_ops.to_stratum = process_stratum;
9855 remote_ops.to_has_all_memory = default_child_has_all_memory;
9856 remote_ops.to_has_memory = default_child_has_memory;
9857 remote_ops.to_has_stack = default_child_has_stack;
9858 remote_ops.to_has_registers = default_child_has_registers;
9859 remote_ops.to_has_execution = default_child_has_execution;
9860 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
9861 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
9862 remote_ops.to_magic = OPS_MAGIC;
9863 remote_ops.to_memory_map = remote_memory_map;
9864 remote_ops.to_flash_erase = remote_flash_erase;
9865 remote_ops.to_flash_done = remote_flash_done;
9866 remote_ops.to_read_description = remote_read_description;
9867 remote_ops.to_search_memory = remote_search_memory;
9868 remote_ops.to_can_async_p = remote_can_async_p;
9869 remote_ops.to_is_async_p = remote_is_async_p;
9870 remote_ops.to_async = remote_async;
9871 remote_ops.to_async_mask = remote_async_mask;
9872 remote_ops.to_terminal_inferior = remote_terminal_inferior;
9873 remote_ops.to_terminal_ours = remote_terminal_ours;
9874 remote_ops.to_supports_non_stop = remote_supports_non_stop;
9875 remote_ops.to_supports_multi_process = remote_supports_multi_process;
9876 remote_ops.to_trace_init = remote_trace_init;
9877 remote_ops.to_download_tracepoint = remote_download_tracepoint;
9878 remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
9879 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
9880 remote_ops.to_trace_start = remote_trace_start;
9881 remote_ops.to_get_trace_status = remote_get_trace_status;
9882 remote_ops.to_trace_stop = remote_trace_stop;
9883 remote_ops.to_trace_find = remote_trace_find;
9884 remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
9885 remote_ops.to_save_trace_data = remote_save_trace_data;
9886 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
9887 remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
9888 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
9889 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
9890 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
9891 remote_ops.to_core_of_thread = remote_core_of_thread;
9892 remote_ops.to_verify_memory = remote_verify_memory;
9893 }
9894
9895 /* Set up the extended remote vector by making a copy of the standard
9896 remote vector and adding to it. */
9897
9898 static void
9899 init_extended_remote_ops (void)
9900 {
9901 extended_remote_ops = remote_ops;
9902
9903 extended_remote_ops.to_shortname = "extended-remote";
9904 extended_remote_ops.to_longname =
9905 "Extended remote serial target in gdb-specific protocol";
9906 extended_remote_ops.to_doc =
9907 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9908 Specify the serial device it is connected to (e.g. /dev/ttya).";
9909 extended_remote_ops.to_open = extended_remote_open;
9910 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
9911 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
9912 extended_remote_ops.to_detach = extended_remote_detach;
9913 extended_remote_ops.to_attach = extended_remote_attach;
9914 extended_remote_ops.to_kill = extended_remote_kill;
9915 }
9916
9917 static int
9918 remote_can_async_p (void)
9919 {
9920 if (!target_async_permitted)
9921 /* We only enable async when the user specifically asks for it. */
9922 return 0;
9923
9924 /* We're async whenever the serial device is. */
9925 return remote_async_mask_value && serial_can_async_p (remote_desc);
9926 }
9927
9928 static int
9929 remote_is_async_p (void)
9930 {
9931 if (!target_async_permitted)
9932 /* We only enable async when the user specifically asks for it. */
9933 return 0;
9934
9935 /* We're async whenever the serial device is. */
9936 return remote_async_mask_value && serial_is_async_p (remote_desc);
9937 }
9938
9939 /* Pass the SERIAL event on and up to the client. One day this code
9940 will be able to delay notifying the client of an event until the
9941 point where an entire packet has been received. */
9942
9943 static void (*async_client_callback) (enum inferior_event_type event_type,
9944 void *context);
9945 static void *async_client_context;
9946 static serial_event_ftype remote_async_serial_handler;
9947
9948 static void
9949 remote_async_serial_handler (struct serial *scb, void *context)
9950 {
9951 /* Don't propogate error information up to the client. Instead let
9952 the client find out about the error by querying the target. */
9953 async_client_callback (INF_REG_EVENT, async_client_context);
9954 }
9955
9956 static void
9957 remote_async_inferior_event_handler (gdb_client_data data)
9958 {
9959 inferior_event_handler (INF_REG_EVENT, NULL);
9960 }
9961
9962 static void
9963 remote_async_get_pending_events_handler (gdb_client_data data)
9964 {
9965 remote_get_pending_stop_replies ();
9966 }
9967
9968 static void
9969 remote_async (void (*callback) (enum inferior_event_type event_type,
9970 void *context), void *context)
9971 {
9972 if (remote_async_mask_value == 0)
9973 internal_error (__FILE__, __LINE__,
9974 _("Calling remote_async when async is masked"));
9975
9976 if (callback != NULL)
9977 {
9978 serial_async (remote_desc, remote_async_serial_handler, NULL);
9979 async_client_callback = callback;
9980 async_client_context = context;
9981 }
9982 else
9983 serial_async (remote_desc, NULL, NULL);
9984 }
9985
9986 static int
9987 remote_async_mask (int new_mask)
9988 {
9989 int curr_mask = remote_async_mask_value;
9990 remote_async_mask_value = new_mask;
9991 return curr_mask;
9992 }
9993
9994 static void
9995 set_remote_cmd (char *args, int from_tty)
9996 {
9997 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
9998 }
9999
10000 static void
10001 show_remote_cmd (char *args, int from_tty)
10002 {
10003 /* We can't just use cmd_show_list here, because we want to skip
10004 the redundant "show remote Z-packet" and the legacy aliases. */
10005 struct cleanup *showlist_chain;
10006 struct cmd_list_element *list = remote_show_cmdlist;
10007
10008 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10009 for (; list != NULL; list = list->next)
10010 if (strcmp (list->name, "Z-packet") == 0)
10011 continue;
10012 else if (list->type == not_set_cmd)
10013 /* Alias commands are exactly like the original, except they
10014 don't have the normal type. */
10015 continue;
10016 else
10017 {
10018 struct cleanup *option_chain
10019 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10020 ui_out_field_string (uiout, "name", list->name);
10021 ui_out_text (uiout, ": ");
10022 if (list->type == show_cmd)
10023 do_setshow_command ((char *) NULL, from_tty, list);
10024 else
10025 cmd_func (list, NULL, from_tty);
10026 /* Close the tuple. */
10027 do_cleanups (option_chain);
10028 }
10029
10030 /* Close the tuple. */
10031 do_cleanups (showlist_chain);
10032 }
10033
10034
10035 /* Function to be called whenever a new objfile (shlib) is detected. */
10036 static void
10037 remote_new_objfile (struct objfile *objfile)
10038 {
10039 if (remote_desc != 0) /* Have a remote connection. */
10040 remote_check_symbols (objfile);
10041 }
10042
10043 /* Pull all the tracepoints defined on the target and create local
10044 data structures representing them. We don't want to create real
10045 tracepoints yet, we don't want to mess up the user's existing
10046 collection. */
10047
10048 static int
10049 remote_upload_tracepoints (struct uploaded_tp **utpp)
10050 {
10051 struct remote_state *rs = get_remote_state ();
10052 char *p;
10053
10054 /* Ask for a first packet of tracepoint definition. */
10055 putpkt ("qTfP");
10056 getpkt (&rs->buf, &rs->buf_size, 0);
10057 p = rs->buf;
10058 while (*p && *p != 'l')
10059 {
10060 parse_tracepoint_definition (p, utpp);
10061 /* Ask for another packet of tracepoint definition. */
10062 putpkt ("qTsP");
10063 getpkt (&rs->buf, &rs->buf_size, 0);
10064 p = rs->buf;
10065 }
10066 return 0;
10067 }
10068
10069 static int
10070 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10071 {
10072 struct remote_state *rs = get_remote_state ();
10073 char *p;
10074
10075 /* Ask for a first packet of variable definition. */
10076 putpkt ("qTfV");
10077 getpkt (&rs->buf, &rs->buf_size, 0);
10078 p = rs->buf;
10079 while (*p && *p != 'l')
10080 {
10081 parse_tsv_definition (p, utsvp);
10082 /* Ask for another packet of variable definition. */
10083 putpkt ("qTsV");
10084 getpkt (&rs->buf, &rs->buf_size, 0);
10085 p = rs->buf;
10086 }
10087 return 0;
10088 }
10089
10090 void
10091 _initialize_remote (void)
10092 {
10093 struct remote_state *rs;
10094 struct cmd_list_element *cmd;
10095 char *cmd_name;
10096
10097 /* architecture specific data */
10098 remote_gdbarch_data_handle =
10099 gdbarch_data_register_post_init (init_remote_state);
10100 remote_g_packet_data_handle =
10101 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10102
10103 /* Initialize the per-target state. At the moment there is only one
10104 of these, not one per target. Only one target is active at a
10105 time. The default buffer size is unimportant; it will be expanded
10106 whenever a larger buffer is needed. */
10107 rs = get_remote_state_raw ();
10108 rs->buf_size = 400;
10109 rs->buf = xmalloc (rs->buf_size);
10110
10111 init_remote_ops ();
10112 add_target (&remote_ops);
10113
10114 init_extended_remote_ops ();
10115 add_target (&extended_remote_ops);
10116
10117 /* Hook into new objfile notification. */
10118 observer_attach_new_objfile (remote_new_objfile);
10119
10120 /* Set up signal handlers. */
10121 sigint_remote_token =
10122 create_async_signal_handler (async_remote_interrupt, NULL);
10123 sigint_remote_twice_token =
10124 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10125
10126 #if 0
10127 init_remote_threadtests ();
10128 #endif
10129
10130 /* set/show remote ... */
10131
10132 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10133 Remote protocol specific variables\n\
10134 Configure various remote-protocol specific variables such as\n\
10135 the packets being used"),
10136 &remote_set_cmdlist, "set remote ",
10137 0 /* allow-unknown */, &setlist);
10138 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10139 Remote protocol specific variables\n\
10140 Configure various remote-protocol specific variables such as\n\
10141 the packets being used"),
10142 &remote_show_cmdlist, "show remote ",
10143 0 /* allow-unknown */, &showlist);
10144
10145 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10146 Compare section data on target to the exec file.\n\
10147 Argument is a single section name (default: all loaded sections)."),
10148 &cmdlist);
10149
10150 add_cmd ("packet", class_maintenance, packet_command, _("\
10151 Send an arbitrary packet to a remote target.\n\
10152 maintenance packet TEXT\n\
10153 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10154 this command sends the string TEXT to the inferior, and displays the\n\
10155 response packet. GDB supplies the initial `$' character, and the\n\
10156 terminating `#' character and checksum."),
10157 &maintenancelist);
10158
10159 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10160 Set whether to send break if interrupted."), _("\
10161 Show whether to send break if interrupted."), _("\
10162 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10163 set_remotebreak, show_remotebreak,
10164 &setlist, &showlist);
10165 cmd_name = "remotebreak";
10166 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10167 deprecate_cmd (cmd, "set remote interrupt-sequence");
10168 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10169 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10170 deprecate_cmd (cmd, "show remote interrupt-sequence");
10171
10172 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10173 interrupt_sequence_modes, &interrupt_sequence_mode, _("\
10174 Set interrupt sequence to remote target."), _("\
10175 Show interrupt sequence to remote target."), _("\
10176 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10177 NULL, show_interrupt_sequence,
10178 &remote_set_cmdlist,
10179 &remote_show_cmdlist);
10180
10181 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10182 &interrupt_on_connect, _("\
10183 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10184 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10185 If set, interrupt sequence is sent to remote target."),
10186 NULL, NULL,
10187 &remote_set_cmdlist, &remote_show_cmdlist);
10188
10189 /* Install commands for configuring memory read/write packets. */
10190
10191 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10192 Set the maximum number of bytes per memory write packet (deprecated)."),
10193 &setlist);
10194 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10195 Show the maximum number of bytes per memory write packet (deprecated)."),
10196 &showlist);
10197 add_cmd ("memory-write-packet-size", no_class,
10198 set_memory_write_packet_size, _("\
10199 Set the maximum number of bytes per memory-write packet.\n\
10200 Specify the number of bytes in a packet or 0 (zero) for the\n\
10201 default packet size. The actual limit is further reduced\n\
10202 dependent on the target. Specify ``fixed'' to disable the\n\
10203 further restriction and ``limit'' to enable that restriction."),
10204 &remote_set_cmdlist);
10205 add_cmd ("memory-read-packet-size", no_class,
10206 set_memory_read_packet_size, _("\
10207 Set the maximum number of bytes per memory-read packet.\n\
10208 Specify the number of bytes in a packet or 0 (zero) for the\n\
10209 default packet size. The actual limit is further reduced\n\
10210 dependent on the target. Specify ``fixed'' to disable the\n\
10211 further restriction and ``limit'' to enable that restriction."),
10212 &remote_set_cmdlist);
10213 add_cmd ("memory-write-packet-size", no_class,
10214 show_memory_write_packet_size,
10215 _("Show the maximum number of bytes per memory-write packet."),
10216 &remote_show_cmdlist);
10217 add_cmd ("memory-read-packet-size", no_class,
10218 show_memory_read_packet_size,
10219 _("Show the maximum number of bytes per memory-read packet."),
10220 &remote_show_cmdlist);
10221
10222 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10223 &remote_hw_watchpoint_limit, _("\
10224 Set the maximum number of target hardware watchpoints."), _("\
10225 Show the maximum number of target hardware watchpoints."), _("\
10226 Specify a negative limit for unlimited."),
10227 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
10228 &remote_set_cmdlist, &remote_show_cmdlist);
10229 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10230 &remote_hw_breakpoint_limit, _("\
10231 Set the maximum number of target hardware breakpoints."), _("\
10232 Show the maximum number of target hardware breakpoints."), _("\
10233 Specify a negative limit for unlimited."),
10234 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
10235 &remote_set_cmdlist, &remote_show_cmdlist);
10236
10237 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10238 &remote_address_size, _("\
10239 Set the maximum size of the address (in bits) in a memory packet."), _("\
10240 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10241 NULL,
10242 NULL, /* FIXME: i18n: */
10243 &setlist, &showlist);
10244
10245 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10246 "X", "binary-download", 1);
10247
10248 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10249 "vCont", "verbose-resume", 0);
10250
10251 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10252 "QPassSignals", "pass-signals", 0);
10253
10254 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10255 "qSymbol", "symbol-lookup", 0);
10256
10257 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10258 "P", "set-register", 1);
10259
10260 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10261 "p", "fetch-register", 1);
10262
10263 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10264 "Z0", "software-breakpoint", 0);
10265
10266 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10267 "Z1", "hardware-breakpoint", 0);
10268
10269 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10270 "Z2", "write-watchpoint", 0);
10271
10272 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10273 "Z3", "read-watchpoint", 0);
10274
10275 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10276 "Z4", "access-watchpoint", 0);
10277
10278 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10279 "qXfer:auxv:read", "read-aux-vector", 0);
10280
10281 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10282 "qXfer:features:read", "target-features", 0);
10283
10284 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10285 "qXfer:libraries:read", "library-info", 0);
10286
10287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10288 "qXfer:memory-map:read", "memory-map", 0);
10289
10290 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10291 "qXfer:spu:read", "read-spu-object", 0);
10292
10293 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10294 "qXfer:spu:write", "write-spu-object", 0);
10295
10296 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10297 "qXfer:osdata:read", "osdata", 0);
10298
10299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10300 "qXfer:threads:read", "threads", 0);
10301
10302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10303 "qXfer:siginfo:read", "read-siginfo-object", 0);
10304
10305 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10306 "qXfer:siginfo:write", "write-siginfo-object", 0);
10307
10308 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10309 "qGetTLSAddr", "get-thread-local-storage-address",
10310 0);
10311
10312 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10313 "bc", "reverse-continue", 0);
10314
10315 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10316 "bs", "reverse-step", 0);
10317
10318 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10319 "qSupported", "supported-packets", 0);
10320
10321 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10322 "qSearch:memory", "search-memory", 0);
10323
10324 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10325 "vFile:open", "hostio-open", 0);
10326
10327 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10328 "vFile:pread", "hostio-pread", 0);
10329
10330 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10331 "vFile:pwrite", "hostio-pwrite", 0);
10332
10333 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10334 "vFile:close", "hostio-close", 0);
10335
10336 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10337 "vFile:unlink", "hostio-unlink", 0);
10338
10339 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10340 "vAttach", "attach", 0);
10341
10342 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10343 "vRun", "run", 0);
10344
10345 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10346 "QStartNoAckMode", "noack", 0);
10347
10348 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10349 "vKill", "kill", 0);
10350
10351 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10352 "qAttached", "query-attached", 0);
10353
10354 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10355 "ConditionalTracepoints", "conditional-tracepoints", 0);
10356 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10357 "FastTracepoints", "fast-tracepoints", 0);
10358
10359 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10360 "TracepointSource", "TracepointSource", 0);
10361
10362 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10363 Z sub-packet has its own set and show commands, but users may
10364 have sets to this variable in their .gdbinit files (or in their
10365 documentation). */
10366 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10367 &remote_Z_packet_detect, _("\
10368 Set use of remote protocol `Z' packets"), _("\
10369 Show use of remote protocol `Z' packets "), _("\
10370 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10371 packets."),
10372 set_remote_protocol_Z_packet_cmd,
10373 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
10374 &remote_set_cmdlist, &remote_show_cmdlist);
10375
10376 add_prefix_cmd ("remote", class_files, remote_command, _("\
10377 Manipulate files on the remote system\n\
10378 Transfer files to and from the remote target system."),
10379 &remote_cmdlist, "remote ",
10380 0 /* allow-unknown */, &cmdlist);
10381
10382 add_cmd ("put", class_files, remote_put_command,
10383 _("Copy a local file to the remote system."),
10384 &remote_cmdlist);
10385
10386 add_cmd ("get", class_files, remote_get_command,
10387 _("Copy a remote file to the local system."),
10388 &remote_cmdlist);
10389
10390 add_cmd ("delete", class_files, remote_delete_command,
10391 _("Delete a remote file."),
10392 &remote_cmdlist);
10393
10394 remote_exec_file = xstrdup ("");
10395 add_setshow_string_noescape_cmd ("exec-file", class_files,
10396 &remote_exec_file, _("\
10397 Set the remote pathname for \"run\""), _("\
10398 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10399 &remote_set_cmdlist, &remote_show_cmdlist);
10400
10401 /* Eventually initialize fileio. See fileio.c */
10402 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10403
10404 /* Take advantage of the fact that the LWP field is not used, to tag
10405 special ptids with it set to != 0. */
10406 magic_null_ptid = ptid_build (42000, 1, -1);
10407 not_sent_ptid = ptid_build (42000, 1, -2);
10408 any_thread_ptid = ptid_build (42000, 1, 0);
10409
10410 target_buf_size = 2048;
10411 target_buf = xmalloc (target_buf_size);
10412 }
10413