]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Fix backwards compatibility with old GDBservers (PR remote/22597)
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::unique_xmalloc_ptr<char> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml != NULL && *xml != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml.get (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static int
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return 1;
3405 }
3406
3407 return 0;
3408 }
3409
3410 static VEC(static_tracepoint_marker_p) *
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 VEC(static_tracepoint_marker_p) *markers = NULL;
3416 struct static_tracepoint_marker *marker = NULL;
3417 struct cleanup *old_chain;
3418 const char *p;
3419
3420 /* Ask for a first packet of static tracepoint marker
3421 definition. */
3422 putpkt ("qTfSTM");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424 p = rs->buf;
3425 if (*p == 'E')
3426 error (_("Remote failure reply: %s"), p);
3427
3428 old_chain = make_cleanup (free_current_marker, &marker);
3429
3430 while (*p++ == 'm')
3431 {
3432 if (marker == NULL)
3433 marker = XCNEW (struct static_tracepoint_marker);
3434
3435 do
3436 {
3437 parse_static_tracepoint_marker_definition (p, &p, marker);
3438
3439 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3440 {
3441 VEC_safe_push (static_tracepoint_marker_p,
3442 markers, marker);
3443 marker = NULL;
3444 }
3445 else
3446 {
3447 release_static_tracepoint_marker (marker);
3448 memset (marker, 0, sizeof (*marker));
3449 }
3450 }
3451 while (*p++ == ','); /* comma-separated list */
3452 /* Ask for another packet of static tracepoint definition. */
3453 putpkt ("qTsSTM");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455 p = rs->buf;
3456 }
3457
3458 do_cleanups (old_chain);
3459 return markers;
3460 }
3461
3462 \f
3463 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3464
3465 static ptid_t
3466 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3467 {
3468 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3469 }
3470 \f
3471
3472 /* Restart the remote side; this is an extended protocol operation. */
3473
3474 static void
3475 extended_remote_restart (void)
3476 {
3477 struct remote_state *rs = get_remote_state ();
3478
3479 /* Send the restart command; for reasons I don't understand the
3480 remote side really expects a number after the "R". */
3481 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3482 putpkt (rs->buf);
3483
3484 remote_fileio_reset ();
3485 }
3486 \f
3487 /* Clean up connection to a remote debugger. */
3488
3489 static void
3490 remote_close (struct target_ops *self)
3491 {
3492 struct remote_state *rs = get_remote_state ();
3493
3494 if (rs->remote_desc == NULL)
3495 return; /* already closed */
3496
3497 /* Make sure we leave stdin registered in the event loop. */
3498 remote_terminal_ours (self);
3499
3500 serial_close (rs->remote_desc);
3501 rs->remote_desc = NULL;
3502
3503 /* We don't have a connection to the remote stub anymore. Get rid
3504 of all the inferiors and their threads we were controlling.
3505 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3506 will be unable to find the thread corresponding to (pid, 0, 0). */
3507 inferior_ptid = null_ptid;
3508 discard_all_inferiors ();
3509
3510 /* We are closing the remote target, so we should discard
3511 everything of this target. */
3512 discard_pending_stop_replies_in_queue (rs);
3513
3514 if (remote_async_inferior_event_token)
3515 delete_async_event_handler (&remote_async_inferior_event_token);
3516
3517 remote_notif_state_xfree (rs->notif_state);
3518
3519 trace_reset_local_state ();
3520 }
3521
3522 /* Query the remote side for the text, data and bss offsets. */
3523
3524 static void
3525 get_offsets (void)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 char *buf;
3529 char *ptr;
3530 int lose, num_segments = 0, do_sections, do_segments;
3531 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3532 struct section_offsets *offs;
3533 struct symfile_segment_data *data;
3534
3535 if (symfile_objfile == NULL)
3536 return;
3537
3538 putpkt ("qOffsets");
3539 getpkt (&rs->buf, &rs->buf_size, 0);
3540 buf = rs->buf;
3541
3542 if (buf[0] == '\000')
3543 return; /* Return silently. Stub doesn't support
3544 this command. */
3545 if (buf[0] == 'E')
3546 {
3547 warning (_("Remote failure reply: %s"), buf);
3548 return;
3549 }
3550
3551 /* Pick up each field in turn. This used to be done with scanf, but
3552 scanf will make trouble if CORE_ADDR size doesn't match
3553 conversion directives correctly. The following code will work
3554 with any size of CORE_ADDR. */
3555 text_addr = data_addr = bss_addr = 0;
3556 ptr = buf;
3557 lose = 0;
3558
3559 if (startswith (ptr, "Text="))
3560 {
3561 ptr += 5;
3562 /* Don't use strtol, could lose on big values. */
3563 while (*ptr && *ptr != ';')
3564 text_addr = (text_addr << 4) + fromhex (*ptr++);
3565
3566 if (startswith (ptr, ";Data="))
3567 {
3568 ptr += 6;
3569 while (*ptr && *ptr != ';')
3570 data_addr = (data_addr << 4) + fromhex (*ptr++);
3571 }
3572 else
3573 lose = 1;
3574
3575 if (!lose && startswith (ptr, ";Bss="))
3576 {
3577 ptr += 5;
3578 while (*ptr && *ptr != ';')
3579 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3580
3581 if (bss_addr != data_addr)
3582 warning (_("Target reported unsupported offsets: %s"), buf);
3583 }
3584 else
3585 lose = 1;
3586 }
3587 else if (startswith (ptr, "TextSeg="))
3588 {
3589 ptr += 8;
3590 /* Don't use strtol, could lose on big values. */
3591 while (*ptr && *ptr != ';')
3592 text_addr = (text_addr << 4) + fromhex (*ptr++);
3593 num_segments = 1;
3594
3595 if (startswith (ptr, ";DataSeg="))
3596 {
3597 ptr += 9;
3598 while (*ptr && *ptr != ';')
3599 data_addr = (data_addr << 4) + fromhex (*ptr++);
3600 num_segments++;
3601 }
3602 }
3603 else
3604 lose = 1;
3605
3606 if (lose)
3607 error (_("Malformed response to offset query, %s"), buf);
3608 else if (*ptr != '\0')
3609 warning (_("Target reported unsupported offsets: %s"), buf);
3610
3611 offs = ((struct section_offsets *)
3612 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3613 memcpy (offs, symfile_objfile->section_offsets,
3614 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3615
3616 data = get_symfile_segment_data (symfile_objfile->obfd);
3617 do_segments = (data != NULL);
3618 do_sections = num_segments == 0;
3619
3620 if (num_segments > 0)
3621 {
3622 segments[0] = text_addr;
3623 segments[1] = data_addr;
3624 }
3625 /* If we have two segments, we can still try to relocate everything
3626 by assuming that the .text and .data offsets apply to the whole
3627 text and data segments. Convert the offsets given in the packet
3628 to base addresses for symfile_map_offsets_to_segments. */
3629 else if (data && data->num_segments == 2)
3630 {
3631 segments[0] = data->segment_bases[0] + text_addr;
3632 segments[1] = data->segment_bases[1] + data_addr;
3633 num_segments = 2;
3634 }
3635 /* If the object file has only one segment, assume that it is text
3636 rather than data; main programs with no writable data are rare,
3637 but programs with no code are useless. Of course the code might
3638 have ended up in the data segment... to detect that we would need
3639 the permissions here. */
3640 else if (data && data->num_segments == 1)
3641 {
3642 segments[0] = data->segment_bases[0] + text_addr;
3643 num_segments = 1;
3644 }
3645 /* There's no way to relocate by segment. */
3646 else
3647 do_segments = 0;
3648
3649 if (do_segments)
3650 {
3651 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3652 offs, num_segments, segments);
3653
3654 if (ret == 0 && !do_sections)
3655 error (_("Can not handle qOffsets TextSeg "
3656 "response with this symbol file"));
3657
3658 if (ret > 0)
3659 do_sections = 0;
3660 }
3661
3662 if (data)
3663 free_symfile_segment_data (data);
3664
3665 if (do_sections)
3666 {
3667 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3668
3669 /* This is a temporary kludge to force data and bss to use the
3670 same offsets because that's what nlmconv does now. The real
3671 solution requires changes to the stub and remote.c that I
3672 don't have time to do right now. */
3673
3674 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3675 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3676 }
3677
3678 objfile_relocate (symfile_objfile, offs);
3679 }
3680
3681 /* Send interrupt_sequence to remote target. */
3682 static void
3683 send_interrupt_sequence (void)
3684 {
3685 struct remote_state *rs = get_remote_state ();
3686
3687 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3688 remote_serial_write ("\x03", 1);
3689 else if (interrupt_sequence_mode == interrupt_sequence_break)
3690 serial_send_break (rs->remote_desc);
3691 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3692 {
3693 serial_send_break (rs->remote_desc);
3694 remote_serial_write ("g", 1);
3695 }
3696 else
3697 internal_error (__FILE__, __LINE__,
3698 _("Invalid value for interrupt_sequence_mode: %s."),
3699 interrupt_sequence_mode);
3700 }
3701
3702
3703 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3704 and extract the PTID. Returns NULL_PTID if not found. */
3705
3706 static ptid_t
3707 stop_reply_extract_thread (char *stop_reply)
3708 {
3709 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3710 {
3711 const char *p;
3712
3713 /* Txx r:val ; r:val (...) */
3714 p = &stop_reply[3];
3715
3716 /* Look for "register" named "thread". */
3717 while (*p != '\0')
3718 {
3719 const char *p1;
3720
3721 p1 = strchr (p, ':');
3722 if (p1 == NULL)
3723 return null_ptid;
3724
3725 if (strncmp (p, "thread", p1 - p) == 0)
3726 return read_ptid (++p1, &p);
3727
3728 p1 = strchr (p, ';');
3729 if (p1 == NULL)
3730 return null_ptid;
3731 p1++;
3732
3733 p = p1;
3734 }
3735 }
3736
3737 return null_ptid;
3738 }
3739
3740 /* Determine the remote side's current thread. If we have a stop
3741 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3742 "thread" register we can extract the current thread from. If not,
3743 ask the remote which is the current thread with qC. The former
3744 method avoids a roundtrip. */
3745
3746 static ptid_t
3747 get_current_thread (char *wait_status)
3748 {
3749 ptid_t ptid = null_ptid;
3750
3751 /* Note we don't use remote_parse_stop_reply as that makes use of
3752 the target architecture, which we haven't yet fully determined at
3753 this point. */
3754 if (wait_status != NULL)
3755 ptid = stop_reply_extract_thread (wait_status);
3756 if (ptid_equal (ptid, null_ptid))
3757 ptid = remote_current_thread (inferior_ptid);
3758
3759 return ptid;
3760 }
3761
3762 /* Query the remote target for which is the current thread/process,
3763 add it to our tables, and update INFERIOR_PTID. The caller is
3764 responsible for setting the state such that the remote end is ready
3765 to return the current thread.
3766
3767 This function is called after handling the '?' or 'vRun' packets,
3768 whose response is a stop reply from which we can also try
3769 extracting the thread. If the target doesn't support the explicit
3770 qC query, we infer the current thread from that stop reply, passed
3771 in in WAIT_STATUS, which may be NULL. */
3772
3773 static void
3774 add_current_inferior_and_thread (char *wait_status)
3775 {
3776 struct remote_state *rs = get_remote_state ();
3777 int fake_pid_p = 0;
3778
3779 inferior_ptid = null_ptid;
3780
3781 /* Now, if we have thread information, update inferior_ptid. */
3782 ptid_t curr_ptid = get_current_thread (wait_status);
3783
3784 if (curr_ptid != null_ptid)
3785 {
3786 if (!remote_multi_process_p (rs))
3787 fake_pid_p = 1;
3788 }
3789 else
3790 {
3791 /* Without this, some commands which require an active target
3792 (such as kill) won't work. This variable serves (at least)
3793 double duty as both the pid of the target process (if it has
3794 such), and as a flag indicating that a target is active. */
3795 curr_ptid = magic_null_ptid;
3796 fake_pid_p = 1;
3797 }
3798
3799 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3800
3801 /* Add the main thread and switch to it. Don't try reading
3802 registers yet, since we haven't fetched the target description
3803 yet. */
3804 thread_info *tp = add_thread_silent (curr_ptid);
3805 switch_to_thread_no_regs (tp);
3806 }
3807
3808 /* Print info about a thread that was found already stopped on
3809 connection. */
3810
3811 static void
3812 print_one_stopped_thread (struct thread_info *thread)
3813 {
3814 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3815
3816 switch_to_thread (thread->ptid);
3817 stop_pc = get_frame_pc (get_current_frame ());
3818 set_current_sal_from_frame (get_current_frame ());
3819
3820 thread->suspend.waitstatus_pending_p = 0;
3821
3822 if (ws->kind == TARGET_WAITKIND_STOPPED)
3823 {
3824 enum gdb_signal sig = ws->value.sig;
3825
3826 if (signal_print_state (sig))
3827 observer_notify_signal_received (sig);
3828 }
3829 observer_notify_normal_stop (NULL, 1);
3830 }
3831
3832 /* Process all initial stop replies the remote side sent in response
3833 to the ? packet. These indicate threads that were already stopped
3834 on initial connection. We mark these threads as stopped and print
3835 their current frame before giving the user the prompt. */
3836
3837 static void
3838 process_initial_stop_replies (int from_tty)
3839 {
3840 int pending_stop_replies = stop_reply_queue_length ();
3841 struct inferior *inf;
3842 struct thread_info *thread;
3843 struct thread_info *selected = NULL;
3844 struct thread_info *lowest_stopped = NULL;
3845 struct thread_info *first = NULL;
3846
3847 /* Consume the initial pending events. */
3848 while (pending_stop_replies-- > 0)
3849 {
3850 ptid_t waiton_ptid = minus_one_ptid;
3851 ptid_t event_ptid;
3852 struct target_waitstatus ws;
3853 int ignore_event = 0;
3854 struct thread_info *thread;
3855
3856 memset (&ws, 0, sizeof (ws));
3857 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3858 if (remote_debug)
3859 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3860
3861 switch (ws.kind)
3862 {
3863 case TARGET_WAITKIND_IGNORE:
3864 case TARGET_WAITKIND_NO_RESUMED:
3865 case TARGET_WAITKIND_SIGNALLED:
3866 case TARGET_WAITKIND_EXITED:
3867 /* We shouldn't see these, but if we do, just ignore. */
3868 if (remote_debug)
3869 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3870 ignore_event = 1;
3871 break;
3872
3873 case TARGET_WAITKIND_EXECD:
3874 xfree (ws.value.execd_pathname);
3875 break;
3876 default:
3877 break;
3878 }
3879
3880 if (ignore_event)
3881 continue;
3882
3883 thread = find_thread_ptid (event_ptid);
3884
3885 if (ws.kind == TARGET_WAITKIND_STOPPED)
3886 {
3887 enum gdb_signal sig = ws.value.sig;
3888
3889 /* Stubs traditionally report SIGTRAP as initial signal,
3890 instead of signal 0. Suppress it. */
3891 if (sig == GDB_SIGNAL_TRAP)
3892 sig = GDB_SIGNAL_0;
3893 thread->suspend.stop_signal = sig;
3894 ws.value.sig = sig;
3895 }
3896
3897 thread->suspend.waitstatus = ws;
3898
3899 if (ws.kind != TARGET_WAITKIND_STOPPED
3900 || ws.value.sig != GDB_SIGNAL_0)
3901 thread->suspend.waitstatus_pending_p = 1;
3902
3903 set_executing (event_ptid, 0);
3904 set_running (event_ptid, 0);
3905 get_remote_thread_info (thread)->vcont_resumed = 0;
3906 }
3907
3908 /* "Notice" the new inferiors before anything related to
3909 registers/memory. */
3910 ALL_INFERIORS (inf)
3911 {
3912 if (inf->pid == 0)
3913 continue;
3914
3915 inf->needs_setup = 1;
3916
3917 if (non_stop)
3918 {
3919 thread = any_live_thread_of_process (inf->pid);
3920 notice_new_inferior (thread->ptid,
3921 thread->state == THREAD_RUNNING,
3922 from_tty);
3923 }
3924 }
3925
3926 /* If all-stop on top of non-stop, pause all threads. Note this
3927 records the threads' stop pc, so must be done after "noticing"
3928 the inferiors. */
3929 if (!non_stop)
3930 {
3931 stop_all_threads ();
3932
3933 /* If all threads of an inferior were already stopped, we
3934 haven't setup the inferior yet. */
3935 ALL_INFERIORS (inf)
3936 {
3937 if (inf->pid == 0)
3938 continue;
3939
3940 if (inf->needs_setup)
3941 {
3942 thread = any_live_thread_of_process (inf->pid);
3943 switch_to_thread_no_regs (thread);
3944 setup_inferior (0);
3945 }
3946 }
3947 }
3948
3949 /* Now go over all threads that are stopped, and print their current
3950 frame. If all-stop, then if there's a signalled thread, pick
3951 that as current. */
3952 ALL_NON_EXITED_THREADS (thread)
3953 {
3954 if (first == NULL)
3955 first = thread;
3956
3957 if (!non_stop)
3958 set_running (thread->ptid, 0);
3959 else if (thread->state != THREAD_STOPPED)
3960 continue;
3961
3962 if (selected == NULL
3963 && thread->suspend.waitstatus_pending_p)
3964 selected = thread;
3965
3966 if (lowest_stopped == NULL
3967 || thread->inf->num < lowest_stopped->inf->num
3968 || thread->per_inf_num < lowest_stopped->per_inf_num)
3969 lowest_stopped = thread;
3970
3971 if (non_stop)
3972 print_one_stopped_thread (thread);
3973 }
3974
3975 /* In all-stop, we only print the status of one thread, and leave
3976 others with their status pending. */
3977 if (!non_stop)
3978 {
3979 thread = selected;
3980 if (thread == NULL)
3981 thread = lowest_stopped;
3982 if (thread == NULL)
3983 thread = first;
3984
3985 print_one_stopped_thread (thread);
3986 }
3987
3988 /* For "info program". */
3989 thread = inferior_thread ();
3990 if (thread->state == THREAD_STOPPED)
3991 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3992 }
3993
3994 /* Start the remote connection and sync state. */
3995
3996 static void
3997 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000 struct packet_config *noack_config;
4001 char *wait_status = NULL;
4002
4003 /* Signal other parts that we're going through the initial setup,
4004 and so things may not be stable yet. E.g., we don't try to
4005 install tracepoints until we've relocated symbols. Also, a
4006 Ctrl-C before we're connected and synced up can't interrupt the
4007 target. Instead, it offers to drop the (potentially wedged)
4008 connection. */
4009 rs->starting_up = 1;
4010
4011 QUIT;
4012
4013 if (interrupt_on_connect)
4014 send_interrupt_sequence ();
4015
4016 /* Ack any packet which the remote side has already sent. */
4017 remote_serial_write ("+", 1);
4018
4019 /* The first packet we send to the target is the optional "supported
4020 packets" request. If the target can answer this, it will tell us
4021 which later probes to skip. */
4022 remote_query_supported ();
4023
4024 /* If the stub wants to get a QAllow, compose one and send it. */
4025 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4026 remote_set_permissions (target);
4027
4028 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4029 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4030 as a reply to known packet. For packet "vFile:setfs:" it is an
4031 invalid reply and GDB would return error in
4032 remote_hostio_set_filesystem, making remote files access impossible.
4033 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4034 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4035 {
4036 const char v_mustreplyempty[] = "vMustReplyEmpty";
4037
4038 putpkt (v_mustreplyempty);
4039 getpkt (&rs->buf, &rs->buf_size, 0);
4040 if (strcmp (rs->buf, "OK") == 0)
4041 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4042 else if (strcmp (rs->buf, "") != 0)
4043 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4044 rs->buf);
4045 }
4046
4047 /* Next, we possibly activate noack mode.
4048
4049 If the QStartNoAckMode packet configuration is set to AUTO,
4050 enable noack mode if the stub reported a wish for it with
4051 qSupported.
4052
4053 If set to TRUE, then enable noack mode even if the stub didn't
4054 report it in qSupported. If the stub doesn't reply OK, the
4055 session ends with an error.
4056
4057 If FALSE, then don't activate noack mode, regardless of what the
4058 stub claimed should be the default with qSupported. */
4059
4060 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4061 if (packet_config_support (noack_config) != PACKET_DISABLE)
4062 {
4063 putpkt ("QStartNoAckMode");
4064 getpkt (&rs->buf, &rs->buf_size, 0);
4065 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4066 rs->noack_mode = 1;
4067 }
4068
4069 if (extended_p)
4070 {
4071 /* Tell the remote that we are using the extended protocol. */
4072 putpkt ("!");
4073 getpkt (&rs->buf, &rs->buf_size, 0);
4074 }
4075
4076 /* Let the target know which signals it is allowed to pass down to
4077 the program. */
4078 update_signals_program_target ();
4079
4080 /* Next, if the target can specify a description, read it. We do
4081 this before anything involving memory or registers. */
4082 target_find_description ();
4083
4084 /* Next, now that we know something about the target, update the
4085 address spaces in the program spaces. */
4086 update_address_spaces ();
4087
4088 /* On OSs where the list of libraries is global to all
4089 processes, we fetch them early. */
4090 if (gdbarch_has_global_solist (target_gdbarch ()))
4091 solib_add (NULL, from_tty, auto_solib_add);
4092
4093 if (target_is_non_stop_p ())
4094 {
4095 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4096 error (_("Non-stop mode requested, but remote "
4097 "does not support non-stop"));
4098
4099 putpkt ("QNonStop:1");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4104
4105 /* Find about threads and processes the stub is already
4106 controlling. We default to adding them in the running state.
4107 The '?' query below will then tell us about which threads are
4108 stopped. */
4109 remote_update_thread_list (target);
4110 }
4111 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4112 {
4113 /* Don't assume that the stub can operate in all-stop mode.
4114 Request it explicitly. */
4115 putpkt ("QNonStop:0");
4116 getpkt (&rs->buf, &rs->buf_size, 0);
4117
4118 if (strcmp (rs->buf, "OK") != 0)
4119 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4120 }
4121
4122 /* Upload TSVs regardless of whether the target is running or not. The
4123 remote stub, such as GDBserver, may have some predefined or builtin
4124 TSVs, even if the target is not running. */
4125 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4126 {
4127 struct uploaded_tsv *uploaded_tsvs = NULL;
4128
4129 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4130 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4131 }
4132
4133 /* Check whether the target is running now. */
4134 putpkt ("?");
4135 getpkt (&rs->buf, &rs->buf_size, 0);
4136
4137 if (!target_is_non_stop_p ())
4138 {
4139 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4140 {
4141 if (!extended_p)
4142 error (_("The target is not running (try extended-remote?)"));
4143
4144 /* We're connected, but not running. Drop out before we
4145 call start_remote. */
4146 rs->starting_up = 0;
4147 return;
4148 }
4149 else
4150 {
4151 /* Save the reply for later. */
4152 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4153 strcpy (wait_status, rs->buf);
4154 }
4155
4156 /* Fetch thread list. */
4157 target_update_thread_list ();
4158
4159 /* Let the stub know that we want it to return the thread. */
4160 set_continue_thread (minus_one_ptid);
4161
4162 if (thread_count () == 0)
4163 {
4164 /* Target has no concept of threads at all. GDB treats
4165 non-threaded target as single-threaded; add a main
4166 thread. */
4167 add_current_inferior_and_thread (wait_status);
4168 }
4169 else
4170 {
4171 /* We have thread information; select the thread the target
4172 says should be current. If we're reconnecting to a
4173 multi-threaded program, this will ideally be the thread
4174 that last reported an event before GDB disconnected. */
4175 inferior_ptid = get_current_thread (wait_status);
4176 if (ptid_equal (inferior_ptid, null_ptid))
4177 {
4178 /* Odd... The target was able to list threads, but not
4179 tell us which thread was current (no "thread"
4180 register in T stop reply?). Just pick the first
4181 thread in the thread list then. */
4182
4183 if (remote_debug)
4184 fprintf_unfiltered (gdb_stdlog,
4185 "warning: couldn't determine remote "
4186 "current thread; picking first in list.\n");
4187
4188 inferior_ptid = thread_list->ptid;
4189 }
4190 }
4191
4192 /* init_wait_for_inferior should be called before get_offsets in order
4193 to manage `inserted' flag in bp loc in a correct state.
4194 breakpoint_init_inferior, called from init_wait_for_inferior, set
4195 `inserted' flag to 0, while before breakpoint_re_set, called from
4196 start_remote, set `inserted' flag to 1. In the initialization of
4197 inferior, breakpoint_init_inferior should be called first, and then
4198 breakpoint_re_set can be called. If this order is broken, state of
4199 `inserted' flag is wrong, and cause some problems on breakpoint
4200 manipulation. */
4201 init_wait_for_inferior ();
4202
4203 get_offsets (); /* Get text, data & bss offsets. */
4204
4205 /* If we could not find a description using qXfer, and we know
4206 how to do it some other way, try again. This is not
4207 supported for non-stop; it could be, but it is tricky if
4208 there are no stopped threads when we connect. */
4209 if (remote_read_description_p (target)
4210 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4211 {
4212 target_clear_description ();
4213 target_find_description ();
4214 }
4215
4216 /* Use the previously fetched status. */
4217 gdb_assert (wait_status != NULL);
4218 strcpy (rs->buf, wait_status);
4219 rs->cached_wait_status = 1;
4220
4221 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4222 }
4223 else
4224 {
4225 /* Clear WFI global state. Do this before finding about new
4226 threads and inferiors, and setting the current inferior.
4227 Otherwise we would clear the proceed status of the current
4228 inferior when we want its stop_soon state to be preserved
4229 (see notice_new_inferior). */
4230 init_wait_for_inferior ();
4231
4232 /* In non-stop, we will either get an "OK", meaning that there
4233 are no stopped threads at this time; or, a regular stop
4234 reply. In the latter case, there may be more than one thread
4235 stopped --- we pull them all out using the vStopped
4236 mechanism. */
4237 if (strcmp (rs->buf, "OK") != 0)
4238 {
4239 struct notif_client *notif = &notif_client_stop;
4240
4241 /* remote_notif_get_pending_replies acks this one, and gets
4242 the rest out. */
4243 rs->notif_state->pending_event[notif_client_stop.id]
4244 = remote_notif_parse (notif, rs->buf);
4245 remote_notif_get_pending_events (notif);
4246 }
4247
4248 if (thread_count () == 0)
4249 {
4250 if (!extended_p)
4251 error (_("The target is not running (try extended-remote?)"));
4252
4253 /* We're connected, but not running. Drop out before we
4254 call start_remote. */
4255 rs->starting_up = 0;
4256 return;
4257 }
4258
4259 /* In non-stop mode, any cached wait status will be stored in
4260 the stop reply queue. */
4261 gdb_assert (wait_status == NULL);
4262
4263 /* Report all signals during attach/startup. */
4264 remote_pass_signals (target, 0, NULL);
4265
4266 /* If there are already stopped threads, mark them stopped and
4267 report their stops before giving the prompt to the user. */
4268 process_initial_stop_replies (from_tty);
4269
4270 if (target_can_async_p ())
4271 target_async (1);
4272 }
4273
4274 /* If we connected to a live target, do some additional setup. */
4275 if (target_has_execution)
4276 {
4277 if (symfile_objfile) /* No use without a symbol-file. */
4278 remote_check_symbols ();
4279 }
4280
4281 /* Possibly the target has been engaged in a trace run started
4282 previously; find out where things are at. */
4283 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4284 {
4285 struct uploaded_tp *uploaded_tps = NULL;
4286
4287 if (current_trace_status ()->running)
4288 printf_filtered (_("Trace is already running on the target.\n"));
4289
4290 remote_upload_tracepoints (target, &uploaded_tps);
4291
4292 merge_uploaded_tracepoints (&uploaded_tps);
4293 }
4294
4295 /* Possibly the target has been engaged in a btrace record started
4296 previously; find out where things are at. */
4297 remote_btrace_maybe_reopen ();
4298
4299 /* The thread and inferior lists are now synchronized with the
4300 target, our symbols have been relocated, and we're merged the
4301 target's tracepoints with ours. We're done with basic start
4302 up. */
4303 rs->starting_up = 0;
4304
4305 /* Maybe breakpoints are global and need to be inserted now. */
4306 if (breakpoints_should_be_inserted_now ())
4307 insert_breakpoints ();
4308 }
4309
4310 /* Open a connection to a remote debugger.
4311 NAME is the filename used for communication. */
4312
4313 static void
4314 remote_open (const char *name, int from_tty)
4315 {
4316 remote_open_1 (name, from_tty, &remote_ops, 0);
4317 }
4318
4319 /* Open a connection to a remote debugger using the extended
4320 remote gdb protocol. NAME is the filename used for communication. */
4321
4322 static void
4323 extended_remote_open (const char *name, int from_tty)
4324 {
4325 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4326 }
4327
4328 /* Reset all packets back to "unknown support". Called when opening a
4329 new connection to a remote target. */
4330
4331 static void
4332 reset_all_packet_configs_support (void)
4333 {
4334 int i;
4335
4336 for (i = 0; i < PACKET_MAX; i++)
4337 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4338 }
4339
4340 /* Initialize all packet configs. */
4341
4342 static void
4343 init_all_packet_configs (void)
4344 {
4345 int i;
4346
4347 for (i = 0; i < PACKET_MAX; i++)
4348 {
4349 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4350 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4351 }
4352 }
4353
4354 /* Symbol look-up. */
4355
4356 static void
4357 remote_check_symbols (void)
4358 {
4359 char *msg, *reply, *tmp;
4360 int end;
4361 long reply_size;
4362 struct cleanup *old_chain;
4363
4364 /* The remote side has no concept of inferiors that aren't running
4365 yet, it only knows about running processes. If we're connected
4366 but our current inferior is not running, we should not invite the
4367 remote target to request symbol lookups related to its
4368 (unrelated) current process. */
4369 if (!target_has_execution)
4370 return;
4371
4372 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4373 return;
4374
4375 /* Make sure the remote is pointing at the right process. Note
4376 there's no way to select "no process". */
4377 set_general_process ();
4378
4379 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4380 because we need both at the same time. */
4381 msg = (char *) xmalloc (get_remote_packet_size ());
4382 old_chain = make_cleanup (xfree, msg);
4383 reply = (char *) xmalloc (get_remote_packet_size ());
4384 make_cleanup (free_current_contents, &reply);
4385 reply_size = get_remote_packet_size ();
4386
4387 /* Invite target to request symbol lookups. */
4388
4389 putpkt ("qSymbol::");
4390 getpkt (&reply, &reply_size, 0);
4391 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4392
4393 while (startswith (reply, "qSymbol:"))
4394 {
4395 struct bound_minimal_symbol sym;
4396
4397 tmp = &reply[8];
4398 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4399 msg[end] = '\0';
4400 sym = lookup_minimal_symbol (msg, NULL, NULL);
4401 if (sym.minsym == NULL)
4402 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4403 else
4404 {
4405 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4406 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4407
4408 /* If this is a function address, return the start of code
4409 instead of any data function descriptor. */
4410 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4411 sym_addr,
4412 &current_target);
4413
4414 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4415 phex_nz (sym_addr, addr_size), &reply[8]);
4416 }
4417
4418 putpkt (msg);
4419 getpkt (&reply, &reply_size, 0);
4420 }
4421
4422 do_cleanups (old_chain);
4423 }
4424
4425 static struct serial *
4426 remote_serial_open (const char *name)
4427 {
4428 static int udp_warning = 0;
4429
4430 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4431 of in ser-tcp.c, because it is the remote protocol assuming that the
4432 serial connection is reliable and not the serial connection promising
4433 to be. */
4434 if (!udp_warning && startswith (name, "udp:"))
4435 {
4436 warning (_("The remote protocol may be unreliable over UDP.\n"
4437 "Some events may be lost, rendering further debugging "
4438 "impossible."));
4439 udp_warning = 1;
4440 }
4441
4442 return serial_open (name);
4443 }
4444
4445 /* Inform the target of our permission settings. The permission flags
4446 work without this, but if the target knows the settings, it can do
4447 a couple things. First, it can add its own check, to catch cases
4448 that somehow manage to get by the permissions checks in target
4449 methods. Second, if the target is wired to disallow particular
4450 settings (for instance, a system in the field that is not set up to
4451 be able to stop at a breakpoint), it can object to any unavailable
4452 permissions. */
4453
4454 void
4455 remote_set_permissions (struct target_ops *self)
4456 {
4457 struct remote_state *rs = get_remote_state ();
4458
4459 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4460 "WriteReg:%x;WriteMem:%x;"
4461 "InsertBreak:%x;InsertTrace:%x;"
4462 "InsertFastTrace:%x;Stop:%x",
4463 may_write_registers, may_write_memory,
4464 may_insert_breakpoints, may_insert_tracepoints,
4465 may_insert_fast_tracepoints, may_stop);
4466 putpkt (rs->buf);
4467 getpkt (&rs->buf, &rs->buf_size, 0);
4468
4469 /* If the target didn't like the packet, warn the user. Do not try
4470 to undo the user's settings, that would just be maddening. */
4471 if (strcmp (rs->buf, "OK") != 0)
4472 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4473 }
4474
4475 /* This type describes each known response to the qSupported
4476 packet. */
4477 struct protocol_feature
4478 {
4479 /* The name of this protocol feature. */
4480 const char *name;
4481
4482 /* The default for this protocol feature. */
4483 enum packet_support default_support;
4484
4485 /* The function to call when this feature is reported, or after
4486 qSupported processing if the feature is not supported.
4487 The first argument points to this structure. The second
4488 argument indicates whether the packet requested support be
4489 enabled, disabled, or probed (or the default, if this function
4490 is being called at the end of processing and this feature was
4491 not reported). The third argument may be NULL; if not NULL, it
4492 is a NUL-terminated string taken from the packet following
4493 this feature's name and an equals sign. */
4494 void (*func) (const struct protocol_feature *, enum packet_support,
4495 const char *);
4496
4497 /* The corresponding packet for this feature. Only used if
4498 FUNC is remote_supported_packet. */
4499 int packet;
4500 };
4501
4502 static void
4503 remote_supported_packet (const struct protocol_feature *feature,
4504 enum packet_support support,
4505 const char *argument)
4506 {
4507 if (argument)
4508 {
4509 warning (_("Remote qSupported response supplied an unexpected value for"
4510 " \"%s\"."), feature->name);
4511 return;
4512 }
4513
4514 remote_protocol_packets[feature->packet].support = support;
4515 }
4516
4517 static void
4518 remote_packet_size (const struct protocol_feature *feature,
4519 enum packet_support support, const char *value)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522
4523 int packet_size;
4524 char *value_end;
4525
4526 if (support != PACKET_ENABLE)
4527 return;
4528
4529 if (value == NULL || *value == '\0')
4530 {
4531 warning (_("Remote target reported \"%s\" without a size."),
4532 feature->name);
4533 return;
4534 }
4535
4536 errno = 0;
4537 packet_size = strtol (value, &value_end, 16);
4538 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4539 {
4540 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4541 feature->name, value);
4542 return;
4543 }
4544
4545 /* Record the new maximum packet size. */
4546 rs->explicit_packet_size = packet_size;
4547 }
4548
4549 static const struct protocol_feature remote_protocol_features[] = {
4550 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4551 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_auxv },
4553 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_exec_file },
4555 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_features },
4557 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_libraries },
4559 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_qXfer_libraries_svr4 },
4561 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4562 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4563 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_qXfer_memory_map },
4565 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_qXfer_spu_read },
4567 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_qXfer_spu_write },
4569 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_qXfer_osdata },
4571 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_qXfer_threads },
4573 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_qXfer_traceframe_info },
4575 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QPassSignals },
4577 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_QCatchSyscalls },
4579 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_QProgramSignals },
4581 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_QSetWorkingDir },
4583 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_QStartupWithShell },
4585 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4586 PACKET_QEnvironmentHexEncoded },
4587 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_QEnvironmentReset },
4589 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_QEnvironmentUnset },
4591 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_QStartNoAckMode },
4593 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_multiprocess_feature },
4595 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4596 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_qXfer_siginfo_read },
4598 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_qXfer_siginfo_write },
4600 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_ConditionalTracepoints },
4602 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_ConditionalBreakpoints },
4604 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_BreakpointCommands },
4606 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_FastTracepoints },
4608 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_StaticTracepoints },
4610 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_InstallInTrace},
4612 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_DisconnectedTracing_feature },
4614 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_bc },
4616 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_bs },
4618 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_TracepointSource },
4620 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_QAllow },
4622 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_EnableDisableTracepoints_feature },
4624 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_fdpic },
4626 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_uib },
4628 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_QDisableRandomization },
4630 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4631 { "QTBuffer:size", PACKET_DISABLE,
4632 remote_supported_packet, PACKET_QTBuffer_size},
4633 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4634 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4635 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4636 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4637 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4638 PACKET_qXfer_btrace },
4639 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4640 PACKET_qXfer_btrace_conf },
4641 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_Qbtrace_conf_bts_size },
4643 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4644 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4645 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4646 PACKET_fork_event_feature },
4647 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4648 PACKET_vfork_event_feature },
4649 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4650 PACKET_exec_event_feature },
4651 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4652 PACKET_Qbtrace_conf_pt_size },
4653 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4654 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4655 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4656 };
4657
4658 static char *remote_support_xml;
4659
4660 /* Register string appended to "xmlRegisters=" in qSupported query. */
4661
4662 void
4663 register_remote_support_xml (const char *xml)
4664 {
4665 #if defined(HAVE_LIBEXPAT)
4666 if (remote_support_xml == NULL)
4667 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4668 else
4669 {
4670 char *copy = xstrdup (remote_support_xml + 13);
4671 char *p = strtok (copy, ",");
4672
4673 do
4674 {
4675 if (strcmp (p, xml) == 0)
4676 {
4677 /* already there */
4678 xfree (copy);
4679 return;
4680 }
4681 }
4682 while ((p = strtok (NULL, ",")) != NULL);
4683 xfree (copy);
4684
4685 remote_support_xml = reconcat (remote_support_xml,
4686 remote_support_xml, ",", xml,
4687 (char *) NULL);
4688 }
4689 #endif
4690 }
4691
4692 static char *
4693 remote_query_supported_append (char *msg, const char *append)
4694 {
4695 if (msg)
4696 return reconcat (msg, msg, ";", append, (char *) NULL);
4697 else
4698 return xstrdup (append);
4699 }
4700
4701 static void
4702 remote_query_supported (void)
4703 {
4704 struct remote_state *rs = get_remote_state ();
4705 char *next;
4706 int i;
4707 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4708
4709 /* The packet support flags are handled differently for this packet
4710 than for most others. We treat an error, a disabled packet, and
4711 an empty response identically: any features which must be reported
4712 to be used will be automatically disabled. An empty buffer
4713 accomplishes this, since that is also the representation for a list
4714 containing no features. */
4715
4716 rs->buf[0] = 0;
4717 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4718 {
4719 char *q = NULL;
4720 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4721
4722 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4723 q = remote_query_supported_append (q, "multiprocess+");
4724
4725 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4726 q = remote_query_supported_append (q, "swbreak+");
4727 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4728 q = remote_query_supported_append (q, "hwbreak+");
4729
4730 q = remote_query_supported_append (q, "qRelocInsn+");
4731
4732 if (packet_set_cmd_state (PACKET_fork_event_feature)
4733 != AUTO_BOOLEAN_FALSE)
4734 q = remote_query_supported_append (q, "fork-events+");
4735 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4736 != AUTO_BOOLEAN_FALSE)
4737 q = remote_query_supported_append (q, "vfork-events+");
4738 if (packet_set_cmd_state (PACKET_exec_event_feature)
4739 != AUTO_BOOLEAN_FALSE)
4740 q = remote_query_supported_append (q, "exec-events+");
4741
4742 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4743 q = remote_query_supported_append (q, "vContSupported+");
4744
4745 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4746 q = remote_query_supported_append (q, "QThreadEvents+");
4747
4748 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4749 q = remote_query_supported_append (q, "no-resumed+");
4750
4751 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4752 the qSupported:xmlRegisters=i386 handling. */
4753 if (remote_support_xml != NULL
4754 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4755 q = remote_query_supported_append (q, remote_support_xml);
4756
4757 q = reconcat (q, "qSupported:", q, (char *) NULL);
4758 putpkt (q);
4759
4760 do_cleanups (old_chain);
4761
4762 getpkt (&rs->buf, &rs->buf_size, 0);
4763
4764 /* If an error occured, warn, but do not return - just reset the
4765 buffer to empty and go on to disable features. */
4766 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4767 == PACKET_ERROR)
4768 {
4769 warning (_("Remote failure reply: %s"), rs->buf);
4770 rs->buf[0] = 0;
4771 }
4772 }
4773
4774 memset (seen, 0, sizeof (seen));
4775
4776 next = rs->buf;
4777 while (*next)
4778 {
4779 enum packet_support is_supported;
4780 char *p, *end, *name_end, *value;
4781
4782 /* First separate out this item from the rest of the packet. If
4783 there's another item after this, we overwrite the separator
4784 (terminated strings are much easier to work with). */
4785 p = next;
4786 end = strchr (p, ';');
4787 if (end == NULL)
4788 {
4789 end = p + strlen (p);
4790 next = end;
4791 }
4792 else
4793 {
4794 *end = '\0';
4795 next = end + 1;
4796
4797 if (end == p)
4798 {
4799 warning (_("empty item in \"qSupported\" response"));
4800 continue;
4801 }
4802 }
4803
4804 name_end = strchr (p, '=');
4805 if (name_end)
4806 {
4807 /* This is a name=value entry. */
4808 is_supported = PACKET_ENABLE;
4809 value = name_end + 1;
4810 *name_end = '\0';
4811 }
4812 else
4813 {
4814 value = NULL;
4815 switch (end[-1])
4816 {
4817 case '+':
4818 is_supported = PACKET_ENABLE;
4819 break;
4820
4821 case '-':
4822 is_supported = PACKET_DISABLE;
4823 break;
4824
4825 case '?':
4826 is_supported = PACKET_SUPPORT_UNKNOWN;
4827 break;
4828
4829 default:
4830 warning (_("unrecognized item \"%s\" "
4831 "in \"qSupported\" response"), p);
4832 continue;
4833 }
4834 end[-1] = '\0';
4835 }
4836
4837 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4838 if (strcmp (remote_protocol_features[i].name, p) == 0)
4839 {
4840 const struct protocol_feature *feature;
4841
4842 seen[i] = 1;
4843 feature = &remote_protocol_features[i];
4844 feature->func (feature, is_supported, value);
4845 break;
4846 }
4847 }
4848
4849 /* If we increased the packet size, make sure to increase the global
4850 buffer size also. We delay this until after parsing the entire
4851 qSupported packet, because this is the same buffer we were
4852 parsing. */
4853 if (rs->buf_size < rs->explicit_packet_size)
4854 {
4855 rs->buf_size = rs->explicit_packet_size;
4856 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4857 }
4858
4859 /* Handle the defaults for unmentioned features. */
4860 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4861 if (!seen[i])
4862 {
4863 const struct protocol_feature *feature;
4864
4865 feature = &remote_protocol_features[i];
4866 feature->func (feature, feature->default_support, NULL);
4867 }
4868 }
4869
4870 /* Serial QUIT handler for the remote serial descriptor.
4871
4872 Defers handling a Ctrl-C until we're done with the current
4873 command/response packet sequence, unless:
4874
4875 - We're setting up the connection. Don't send a remote interrupt
4876 request, as we're not fully synced yet. Quit immediately
4877 instead.
4878
4879 - The target has been resumed in the foreground
4880 (target_terminal::is_ours is false) with a synchronous resume
4881 packet, and we're blocked waiting for the stop reply, thus a
4882 Ctrl-C should be immediately sent to the target.
4883
4884 - We get a second Ctrl-C while still within the same serial read or
4885 write. In that case the serial is seemingly wedged --- offer to
4886 quit/disconnect.
4887
4888 - We see a second Ctrl-C without target response, after having
4889 previously interrupted the target. In that case the target/stub
4890 is probably wedged --- offer to quit/disconnect.
4891 */
4892
4893 static void
4894 remote_serial_quit_handler (void)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897
4898 if (check_quit_flag ())
4899 {
4900 /* If we're starting up, we're not fully synced yet. Quit
4901 immediately. */
4902 if (rs->starting_up)
4903 quit ();
4904 else if (rs->got_ctrlc_during_io)
4905 {
4906 if (query (_("The target is not responding to GDB commands.\n"
4907 "Stop debugging it? ")))
4908 remote_unpush_and_throw ();
4909 }
4910 /* If ^C has already been sent once, offer to disconnect. */
4911 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4912 interrupt_query ();
4913 /* All-stop protocol, and blocked waiting for stop reply. Send
4914 an interrupt request. */
4915 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4916 target_interrupt (inferior_ptid);
4917 else
4918 rs->got_ctrlc_during_io = 1;
4919 }
4920 }
4921
4922 /* Remove any of the remote.c targets from target stack. Upper targets depend
4923 on it so remove them first. */
4924
4925 static void
4926 remote_unpush_target (void)
4927 {
4928 pop_all_targets_at_and_above (process_stratum);
4929 }
4930
4931 static void
4932 remote_unpush_and_throw (void)
4933 {
4934 remote_unpush_target ();
4935 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4936 }
4937
4938 static void
4939 remote_open_1 (const char *name, int from_tty,
4940 struct target_ops *target, int extended_p)
4941 {
4942 struct remote_state *rs = get_remote_state ();
4943
4944 if (name == 0)
4945 error (_("To open a remote debug connection, you need to specify what\n"
4946 "serial device is attached to the remote system\n"
4947 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4948
4949 /* See FIXME above. */
4950 if (!target_async_permitted)
4951 wait_forever_enabled_p = 1;
4952
4953 /* If we're connected to a running target, target_preopen will kill it.
4954 Ask this question first, before target_preopen has a chance to kill
4955 anything. */
4956 if (rs->remote_desc != NULL && !have_inferiors ())
4957 {
4958 if (from_tty
4959 && !query (_("Already connected to a remote target. Disconnect? ")))
4960 error (_("Still connected."));
4961 }
4962
4963 /* Here the possibly existing remote target gets unpushed. */
4964 target_preopen (from_tty);
4965
4966 /* Make sure we send the passed signals list the next time we resume. */
4967 xfree (rs->last_pass_packet);
4968 rs->last_pass_packet = NULL;
4969
4970 /* Make sure we send the program signals list the next time we
4971 resume. */
4972 xfree (rs->last_program_signals_packet);
4973 rs->last_program_signals_packet = NULL;
4974
4975 remote_fileio_reset ();
4976 reopen_exec_file ();
4977 reread_symbols ();
4978
4979 rs->remote_desc = remote_serial_open (name);
4980 if (!rs->remote_desc)
4981 perror_with_name (name);
4982
4983 if (baud_rate != -1)
4984 {
4985 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4986 {
4987 /* The requested speed could not be set. Error out to
4988 top level after closing remote_desc. Take care to
4989 set remote_desc to NULL to avoid closing remote_desc
4990 more than once. */
4991 serial_close (rs->remote_desc);
4992 rs->remote_desc = NULL;
4993 perror_with_name (name);
4994 }
4995 }
4996
4997 serial_setparity (rs->remote_desc, serial_parity);
4998 serial_raw (rs->remote_desc);
4999
5000 /* If there is something sitting in the buffer we might take it as a
5001 response to a command, which would be bad. */
5002 serial_flush_input (rs->remote_desc);
5003
5004 if (from_tty)
5005 {
5006 puts_filtered ("Remote debugging using ");
5007 puts_filtered (name);
5008 puts_filtered ("\n");
5009 }
5010 push_target (target); /* Switch to using remote target now. */
5011
5012 /* Register extra event sources in the event loop. */
5013 remote_async_inferior_event_token
5014 = create_async_event_handler (remote_async_inferior_event_handler,
5015 NULL);
5016 rs->notif_state = remote_notif_state_allocate ();
5017
5018 /* Reset the target state; these things will be queried either by
5019 remote_query_supported or as they are needed. */
5020 reset_all_packet_configs_support ();
5021 rs->cached_wait_status = 0;
5022 rs->explicit_packet_size = 0;
5023 rs->noack_mode = 0;
5024 rs->extended = extended_p;
5025 rs->waiting_for_stop_reply = 0;
5026 rs->ctrlc_pending_p = 0;
5027 rs->got_ctrlc_during_io = 0;
5028
5029 rs->general_thread = not_sent_ptid;
5030 rs->continue_thread = not_sent_ptid;
5031 rs->remote_traceframe_number = -1;
5032
5033 rs->last_resume_exec_dir = EXEC_FORWARD;
5034
5035 /* Probe for ability to use "ThreadInfo" query, as required. */
5036 rs->use_threadinfo_query = 1;
5037 rs->use_threadextra_query = 1;
5038
5039 readahead_cache_invalidate ();
5040
5041 if (target_async_permitted)
5042 {
5043 /* FIXME: cagney/1999-09-23: During the initial connection it is
5044 assumed that the target is already ready and able to respond to
5045 requests. Unfortunately remote_start_remote() eventually calls
5046 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5047 around this. Eventually a mechanism that allows
5048 wait_for_inferior() to expect/get timeouts will be
5049 implemented. */
5050 wait_forever_enabled_p = 0;
5051 }
5052
5053 /* First delete any symbols previously loaded from shared libraries. */
5054 no_shared_libraries (NULL, 0);
5055
5056 /* Start afresh. */
5057 init_thread_list ();
5058
5059 /* Start the remote connection. If error() or QUIT, discard this
5060 target (we'd otherwise be in an inconsistent state) and then
5061 propogate the error on up the exception chain. This ensures that
5062 the caller doesn't stumble along blindly assuming that the
5063 function succeeded. The CLI doesn't have this problem but other
5064 UI's, such as MI do.
5065
5066 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5067 this function should return an error indication letting the
5068 caller restore the previous state. Unfortunately the command
5069 ``target remote'' is directly wired to this function making that
5070 impossible. On a positive note, the CLI side of this problem has
5071 been fixed - the function set_cmd_context() makes it possible for
5072 all the ``target ....'' commands to share a common callback
5073 function. See cli-dump.c. */
5074 {
5075
5076 TRY
5077 {
5078 remote_start_remote (from_tty, target, extended_p);
5079 }
5080 CATCH (ex, RETURN_MASK_ALL)
5081 {
5082 /* Pop the partially set up target - unless something else did
5083 already before throwing the exception. */
5084 if (rs->remote_desc != NULL)
5085 remote_unpush_target ();
5086 if (target_async_permitted)
5087 wait_forever_enabled_p = 1;
5088 throw_exception (ex);
5089 }
5090 END_CATCH
5091 }
5092
5093 remote_btrace_reset ();
5094
5095 if (target_async_permitted)
5096 wait_forever_enabled_p = 1;
5097 }
5098
5099 /* Detach the specified process. */
5100
5101 static void
5102 remote_detach_pid (int pid)
5103 {
5104 struct remote_state *rs = get_remote_state ();
5105
5106 if (remote_multi_process_p (rs))
5107 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5108 else
5109 strcpy (rs->buf, "D");
5110
5111 putpkt (rs->buf);
5112 getpkt (&rs->buf, &rs->buf_size, 0);
5113
5114 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5115 ;
5116 else if (rs->buf[0] == '\0')
5117 error (_("Remote doesn't know how to detach"));
5118 else
5119 error (_("Can't detach process."));
5120 }
5121
5122 /* This detaches a program to which we previously attached, using
5123 inferior_ptid to identify the process. After this is done, GDB
5124 can be used to debug some other program. We better not have left
5125 any breakpoints in the target program or it'll die when it hits
5126 one. */
5127
5128 static void
5129 remote_detach_1 (const char *args, int from_tty)
5130 {
5131 int pid = ptid_get_pid (inferior_ptid);
5132 struct remote_state *rs = get_remote_state ();
5133 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5134 int is_fork_parent;
5135
5136 if (args)
5137 error (_("Argument given to \"detach\" when remotely debugging."));
5138
5139 if (!target_has_execution)
5140 error (_("No process to detach from."));
5141
5142 target_announce_detach (from_tty);
5143
5144 /* Tell the remote target to detach. */
5145 remote_detach_pid (pid);
5146
5147 /* Exit only if this is the only active inferior. */
5148 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5149 puts_filtered (_("Ending remote debugging.\n"));
5150
5151 /* Check to see if we are detaching a fork parent. Note that if we
5152 are detaching a fork child, tp == NULL. */
5153 is_fork_parent = (tp != NULL
5154 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5155
5156 /* If doing detach-on-fork, we don't mourn, because that will delete
5157 breakpoints that should be available for the followed inferior. */
5158 if (!is_fork_parent)
5159 target_mourn_inferior (inferior_ptid);
5160 else
5161 {
5162 inferior_ptid = null_ptid;
5163 detach_inferior (pid);
5164 }
5165 }
5166
5167 static void
5168 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5169 {
5170 remote_detach_1 (args, from_tty);
5171 }
5172
5173 static void
5174 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5175 {
5176 remote_detach_1 (args, from_tty);
5177 }
5178
5179 /* Target follow-fork function for remote targets. On entry, and
5180 at return, the current inferior is the fork parent.
5181
5182 Note that although this is currently only used for extended-remote,
5183 it is named remote_follow_fork in anticipation of using it for the
5184 remote target as well. */
5185
5186 static int
5187 remote_follow_fork (struct target_ops *ops, int follow_child,
5188 int detach_fork)
5189 {
5190 struct remote_state *rs = get_remote_state ();
5191 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5192
5193 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5194 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5195 {
5196 /* When following the parent and detaching the child, we detach
5197 the child here. For the case of following the child and
5198 detaching the parent, the detach is done in the target-
5199 independent follow fork code in infrun.c. We can't use
5200 target_detach when detaching an unfollowed child because
5201 the client side doesn't know anything about the child. */
5202 if (detach_fork && !follow_child)
5203 {
5204 /* Detach the fork child. */
5205 ptid_t child_ptid;
5206 pid_t child_pid;
5207
5208 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5209 child_pid = ptid_get_pid (child_ptid);
5210
5211 remote_detach_pid (child_pid);
5212 detach_inferior (child_pid);
5213 }
5214 }
5215 return 0;
5216 }
5217
5218 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5219 in the program space of the new inferior. On entry and at return the
5220 current inferior is the exec'ing inferior. INF is the new exec'd
5221 inferior, which may be the same as the exec'ing inferior unless
5222 follow-exec-mode is "new". */
5223
5224 static void
5225 remote_follow_exec (struct target_ops *ops,
5226 struct inferior *inf, char *execd_pathname)
5227 {
5228 /* We know that this is a target file name, so if it has the "target:"
5229 prefix we strip it off before saving it in the program space. */
5230 if (is_target_filename (execd_pathname))
5231 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5232
5233 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5234 }
5235
5236 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5237
5238 static void
5239 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5240 {
5241 if (args)
5242 error (_("Argument given to \"disconnect\" when remotely debugging."));
5243
5244 /* Make sure we unpush even the extended remote targets. Calling
5245 target_mourn_inferior won't unpush, and remote_mourn won't
5246 unpush if there is more than one inferior left. */
5247 unpush_target (target);
5248 generic_mourn_inferior ();
5249
5250 if (from_tty)
5251 puts_filtered ("Ending remote debugging.\n");
5252 }
5253
5254 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5255 be chatty about it. */
5256
5257 static void
5258 extended_remote_attach (struct target_ops *target, const char *args,
5259 int from_tty)
5260 {
5261 struct remote_state *rs = get_remote_state ();
5262 int pid;
5263 char *wait_status = NULL;
5264
5265 pid = parse_pid_to_attach (args);
5266
5267 /* Remote PID can be freely equal to getpid, do not check it here the same
5268 way as in other targets. */
5269
5270 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5271 error (_("This target does not support attaching to a process"));
5272
5273 if (from_tty)
5274 {
5275 char *exec_file = get_exec_file (0);
5276
5277 if (exec_file)
5278 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5279 target_pid_to_str (pid_to_ptid (pid)));
5280 else
5281 printf_unfiltered (_("Attaching to %s\n"),
5282 target_pid_to_str (pid_to_ptid (pid)));
5283
5284 gdb_flush (gdb_stdout);
5285 }
5286
5287 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5288 putpkt (rs->buf);
5289 getpkt (&rs->buf, &rs->buf_size, 0);
5290
5291 switch (packet_ok (rs->buf,
5292 &remote_protocol_packets[PACKET_vAttach]))
5293 {
5294 case PACKET_OK:
5295 if (!target_is_non_stop_p ())
5296 {
5297 /* Save the reply for later. */
5298 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5299 strcpy (wait_status, rs->buf);
5300 }
5301 else if (strcmp (rs->buf, "OK") != 0)
5302 error (_("Attaching to %s failed with: %s"),
5303 target_pid_to_str (pid_to_ptid (pid)),
5304 rs->buf);
5305 break;
5306 case PACKET_UNKNOWN:
5307 error (_("This target does not support attaching to a process"));
5308 default:
5309 error (_("Attaching to %s failed"),
5310 target_pid_to_str (pid_to_ptid (pid)));
5311 }
5312
5313 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5314
5315 inferior_ptid = pid_to_ptid (pid);
5316
5317 if (target_is_non_stop_p ())
5318 {
5319 struct thread_info *thread;
5320
5321 /* Get list of threads. */
5322 remote_update_thread_list (target);
5323
5324 thread = first_thread_of_process (pid);
5325 if (thread)
5326 inferior_ptid = thread->ptid;
5327 else
5328 inferior_ptid = pid_to_ptid (pid);
5329
5330 /* Invalidate our notion of the remote current thread. */
5331 record_currthread (rs, minus_one_ptid);
5332 }
5333 else
5334 {
5335 /* Now, if we have thread information, update inferior_ptid. */
5336 inferior_ptid = remote_current_thread (inferior_ptid);
5337
5338 /* Add the main thread to the thread list. */
5339 add_thread_silent (inferior_ptid);
5340 }
5341
5342 /* Next, if the target can specify a description, read it. We do
5343 this before anything involving memory or registers. */
5344 target_find_description ();
5345
5346 if (!target_is_non_stop_p ())
5347 {
5348 /* Use the previously fetched status. */
5349 gdb_assert (wait_status != NULL);
5350
5351 if (target_can_async_p ())
5352 {
5353 struct notif_event *reply
5354 = remote_notif_parse (&notif_client_stop, wait_status);
5355
5356 push_stop_reply ((struct stop_reply *) reply);
5357
5358 target_async (1);
5359 }
5360 else
5361 {
5362 gdb_assert (wait_status != NULL);
5363 strcpy (rs->buf, wait_status);
5364 rs->cached_wait_status = 1;
5365 }
5366 }
5367 else
5368 gdb_assert (wait_status == NULL);
5369 }
5370
5371 /* Implementation of the to_post_attach method. */
5372
5373 static void
5374 extended_remote_post_attach (struct target_ops *ops, int pid)
5375 {
5376 /* Get text, data & bss offsets. */
5377 get_offsets ();
5378
5379 /* In certain cases GDB might not have had the chance to start
5380 symbol lookup up until now. This could happen if the debugged
5381 binary is not using shared libraries, the vsyscall page is not
5382 present (on Linux) and the binary itself hadn't changed since the
5383 debugging process was started. */
5384 if (symfile_objfile != NULL)
5385 remote_check_symbols();
5386 }
5387
5388 \f
5389 /* Check for the availability of vCont. This function should also check
5390 the response. */
5391
5392 static void
5393 remote_vcont_probe (struct remote_state *rs)
5394 {
5395 char *buf;
5396
5397 strcpy (rs->buf, "vCont?");
5398 putpkt (rs->buf);
5399 getpkt (&rs->buf, &rs->buf_size, 0);
5400 buf = rs->buf;
5401
5402 /* Make sure that the features we assume are supported. */
5403 if (startswith (buf, "vCont"))
5404 {
5405 char *p = &buf[5];
5406 int support_c, support_C;
5407
5408 rs->supports_vCont.s = 0;
5409 rs->supports_vCont.S = 0;
5410 support_c = 0;
5411 support_C = 0;
5412 rs->supports_vCont.t = 0;
5413 rs->supports_vCont.r = 0;
5414 while (p && *p == ';')
5415 {
5416 p++;
5417 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 rs->supports_vCont.s = 1;
5419 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5420 rs->supports_vCont.S = 1;
5421 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5422 support_c = 1;
5423 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5424 support_C = 1;
5425 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5426 rs->supports_vCont.t = 1;
5427 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5428 rs->supports_vCont.r = 1;
5429
5430 p = strchr (p, ';');
5431 }
5432
5433 /* If c, and C are not all supported, we can't use vCont. Clearing
5434 BUF will make packet_ok disable the packet. */
5435 if (!support_c || !support_C)
5436 buf[0] = 0;
5437 }
5438
5439 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5440 }
5441
5442 /* Helper function for building "vCont" resumptions. Write a
5443 resumption to P. ENDP points to one-passed-the-end of the buffer
5444 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5445 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5446 resumed thread should be single-stepped and/or signalled. If PTID
5447 equals minus_one_ptid, then all threads are resumed; if PTID
5448 represents a process, then all threads of the process are resumed;
5449 the thread to be stepped and/or signalled is given in the global
5450 INFERIOR_PTID. */
5451
5452 static char *
5453 append_resumption (char *p, char *endp,
5454 ptid_t ptid, int step, enum gdb_signal siggnal)
5455 {
5456 struct remote_state *rs = get_remote_state ();
5457
5458 if (step && siggnal != GDB_SIGNAL_0)
5459 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5460 else if (step
5461 /* GDB is willing to range step. */
5462 && use_range_stepping
5463 /* Target supports range stepping. */
5464 && rs->supports_vCont.r
5465 /* We don't currently support range stepping multiple
5466 threads with a wildcard (though the protocol allows it,
5467 so stubs shouldn't make an active effort to forbid
5468 it). */
5469 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5470 {
5471 struct thread_info *tp;
5472
5473 if (ptid_equal (ptid, minus_one_ptid))
5474 {
5475 /* If we don't know about the target thread's tid, then
5476 we're resuming magic_null_ptid (see caller). */
5477 tp = find_thread_ptid (magic_null_ptid);
5478 }
5479 else
5480 tp = find_thread_ptid (ptid);
5481 gdb_assert (tp != NULL);
5482
5483 if (tp->control.may_range_step)
5484 {
5485 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5486
5487 p += xsnprintf (p, endp - p, ";r%s,%s",
5488 phex_nz (tp->control.step_range_start,
5489 addr_size),
5490 phex_nz (tp->control.step_range_end,
5491 addr_size));
5492 }
5493 else
5494 p += xsnprintf (p, endp - p, ";s");
5495 }
5496 else if (step)
5497 p += xsnprintf (p, endp - p, ";s");
5498 else if (siggnal != GDB_SIGNAL_0)
5499 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5500 else
5501 p += xsnprintf (p, endp - p, ";c");
5502
5503 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5504 {
5505 ptid_t nptid;
5506
5507 /* All (-1) threads of process. */
5508 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5509
5510 p += xsnprintf (p, endp - p, ":");
5511 p = write_ptid (p, endp, nptid);
5512 }
5513 else if (!ptid_equal (ptid, minus_one_ptid))
5514 {
5515 p += xsnprintf (p, endp - p, ":");
5516 p = write_ptid (p, endp, ptid);
5517 }
5518
5519 return p;
5520 }
5521
5522 /* Clear the thread's private info on resume. */
5523
5524 static void
5525 resume_clear_thread_private_info (struct thread_info *thread)
5526 {
5527 if (thread->priv != NULL)
5528 {
5529 remote_thread_info *priv = get_remote_thread_info (thread);
5530
5531 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5532 priv->watch_data_address = 0;
5533 }
5534 }
5535
5536 /* Append a vCont continue-with-signal action for threads that have a
5537 non-zero stop signal. */
5538
5539 static char *
5540 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5541 {
5542 struct thread_info *thread;
5543
5544 ALL_NON_EXITED_THREADS (thread)
5545 if (ptid_match (thread->ptid, ptid)
5546 && !ptid_equal (inferior_ptid, thread->ptid)
5547 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5548 {
5549 p = append_resumption (p, endp, thread->ptid,
5550 0, thread->suspend.stop_signal);
5551 thread->suspend.stop_signal = GDB_SIGNAL_0;
5552 resume_clear_thread_private_info (thread);
5553 }
5554
5555 return p;
5556 }
5557
5558 /* Set the target running, using the packets that use Hc
5559 (c/s/C/S). */
5560
5561 static void
5562 remote_resume_with_hc (struct target_ops *ops,
5563 ptid_t ptid, int step, enum gdb_signal siggnal)
5564 {
5565 struct remote_state *rs = get_remote_state ();
5566 struct thread_info *thread;
5567 char *buf;
5568
5569 rs->last_sent_signal = siggnal;
5570 rs->last_sent_step = step;
5571
5572 /* The c/s/C/S resume packets use Hc, so set the continue
5573 thread. */
5574 if (ptid_equal (ptid, minus_one_ptid))
5575 set_continue_thread (any_thread_ptid);
5576 else
5577 set_continue_thread (ptid);
5578
5579 ALL_NON_EXITED_THREADS (thread)
5580 resume_clear_thread_private_info (thread);
5581
5582 buf = rs->buf;
5583 if (execution_direction == EXEC_REVERSE)
5584 {
5585 /* We don't pass signals to the target in reverse exec mode. */
5586 if (info_verbose && siggnal != GDB_SIGNAL_0)
5587 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5588 siggnal);
5589
5590 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5591 error (_("Remote reverse-step not supported."));
5592 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5593 error (_("Remote reverse-continue not supported."));
5594
5595 strcpy (buf, step ? "bs" : "bc");
5596 }
5597 else if (siggnal != GDB_SIGNAL_0)
5598 {
5599 buf[0] = step ? 'S' : 'C';
5600 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5601 buf[2] = tohex (((int) siggnal) & 0xf);
5602 buf[3] = '\0';
5603 }
5604 else
5605 strcpy (buf, step ? "s" : "c");
5606
5607 putpkt (buf);
5608 }
5609
5610 /* Resume the remote inferior by using a "vCont" packet. The thread
5611 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5612 resumed thread should be single-stepped and/or signalled. If PTID
5613 equals minus_one_ptid, then all threads are resumed; the thread to
5614 be stepped and/or signalled is given in the global INFERIOR_PTID.
5615 This function returns non-zero iff it resumes the inferior.
5616
5617 This function issues a strict subset of all possible vCont commands
5618 at the moment. */
5619
5620 static int
5621 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5622 {
5623 struct remote_state *rs = get_remote_state ();
5624 char *p;
5625 char *endp;
5626
5627 /* No reverse execution actions defined for vCont. */
5628 if (execution_direction == EXEC_REVERSE)
5629 return 0;
5630
5631 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5632 remote_vcont_probe (rs);
5633
5634 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5635 return 0;
5636
5637 p = rs->buf;
5638 endp = rs->buf + get_remote_packet_size ();
5639
5640 /* If we could generate a wider range of packets, we'd have to worry
5641 about overflowing BUF. Should there be a generic
5642 "multi-part-packet" packet? */
5643
5644 p += xsnprintf (p, endp - p, "vCont");
5645
5646 if (ptid_equal (ptid, magic_null_ptid))
5647 {
5648 /* MAGIC_NULL_PTID means that we don't have any active threads,
5649 so we don't have any TID numbers the inferior will
5650 understand. Make sure to only send forms that do not specify
5651 a TID. */
5652 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5653 }
5654 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5655 {
5656 /* Resume all threads (of all processes, or of a single
5657 process), with preference for INFERIOR_PTID. This assumes
5658 inferior_ptid belongs to the set of all threads we are about
5659 to resume. */
5660 if (step || siggnal != GDB_SIGNAL_0)
5661 {
5662 /* Step inferior_ptid, with or without signal. */
5663 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5664 }
5665
5666 /* Also pass down any pending signaled resumption for other
5667 threads not the current. */
5668 p = append_pending_thread_resumptions (p, endp, ptid);
5669
5670 /* And continue others without a signal. */
5671 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5672 }
5673 else
5674 {
5675 /* Scheduler locking; resume only PTID. */
5676 append_resumption (p, endp, ptid, step, siggnal);
5677 }
5678
5679 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5680 putpkt (rs->buf);
5681
5682 if (target_is_non_stop_p ())
5683 {
5684 /* In non-stop, the stub replies to vCont with "OK". The stop
5685 reply will be reported asynchronously by means of a `%Stop'
5686 notification. */
5687 getpkt (&rs->buf, &rs->buf_size, 0);
5688 if (strcmp (rs->buf, "OK") != 0)
5689 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5690 }
5691
5692 return 1;
5693 }
5694
5695 /* Tell the remote machine to resume. */
5696
5697 static void
5698 remote_resume (struct target_ops *ops,
5699 ptid_t ptid, int step, enum gdb_signal siggnal)
5700 {
5701 struct remote_state *rs = get_remote_state ();
5702
5703 /* When connected in non-stop mode, the core resumes threads
5704 individually. Resuming remote threads directly in target_resume
5705 would thus result in sending one packet per thread. Instead, to
5706 minimize roundtrip latency, here we just store the resume
5707 request; the actual remote resumption will be done in
5708 target_commit_resume / remote_commit_resume, where we'll be able
5709 to do vCont action coalescing. */
5710 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5711 {
5712 remote_thread_info *remote_thr;
5713
5714 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5715 remote_thr = get_remote_thread_info (inferior_ptid);
5716 else
5717 remote_thr = get_remote_thread_info (ptid);
5718
5719 remote_thr->last_resume_step = step;
5720 remote_thr->last_resume_sig = siggnal;
5721 return;
5722 }
5723
5724 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5725 (explained in remote-notif.c:handle_notification) so
5726 remote_notif_process is not called. We need find a place where
5727 it is safe to start a 'vNotif' sequence. It is good to do it
5728 before resuming inferior, because inferior was stopped and no RSP
5729 traffic at that moment. */
5730 if (!target_is_non_stop_p ())
5731 remote_notif_process (rs->notif_state, &notif_client_stop);
5732
5733 rs->last_resume_exec_dir = execution_direction;
5734
5735 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5736 if (!remote_resume_with_vcont (ptid, step, siggnal))
5737 remote_resume_with_hc (ops, ptid, step, siggnal);
5738
5739 /* We are about to start executing the inferior, let's register it
5740 with the event loop. NOTE: this is the one place where all the
5741 execution commands end up. We could alternatively do this in each
5742 of the execution commands in infcmd.c. */
5743 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5744 into infcmd.c in order to allow inferior function calls to work
5745 NOT asynchronously. */
5746 if (target_can_async_p ())
5747 target_async (1);
5748
5749 /* We've just told the target to resume. The remote server will
5750 wait for the inferior to stop, and then send a stop reply. In
5751 the mean time, we can't start another command/query ourselves
5752 because the stub wouldn't be ready to process it. This applies
5753 only to the base all-stop protocol, however. In non-stop (which
5754 only supports vCont), the stub replies with an "OK", and is
5755 immediate able to process further serial input. */
5756 if (!target_is_non_stop_p ())
5757 rs->waiting_for_stop_reply = 1;
5758 }
5759
5760 static void check_pending_events_prevent_wildcard_vcont
5761 (int *may_global_wildcard_vcont);
5762 static int is_pending_fork_parent_thread (struct thread_info *thread);
5763
5764 /* Private per-inferior info for target remote processes. */
5765
5766 struct remote_inferior : public private_inferior
5767 {
5768 /* Whether we can send a wildcard vCont for this process. */
5769 bool may_wildcard_vcont = true;
5770 };
5771
5772 /* Get the remote private inferior data associated to INF. */
5773
5774 static remote_inferior *
5775 get_remote_inferior (inferior *inf)
5776 {
5777 if (inf->priv == NULL)
5778 inf->priv.reset (new remote_inferior);
5779
5780 return static_cast<remote_inferior *> (inf->priv.get ());
5781 }
5782
5783 /* Structure used to track the construction of a vCont packet in the
5784 outgoing packet buffer. This is used to send multiple vCont
5785 packets if we have more actions than would fit a single packet. */
5786
5787 struct vcont_builder
5788 {
5789 /* Pointer to the first action. P points here if no action has been
5790 appended yet. */
5791 char *first_action;
5792
5793 /* Where the next action will be appended. */
5794 char *p;
5795
5796 /* The end of the buffer. Must never write past this. */
5797 char *endp;
5798 };
5799
5800 /* Prepare the outgoing buffer for a new vCont packet. */
5801
5802 static void
5803 vcont_builder_restart (struct vcont_builder *builder)
5804 {
5805 struct remote_state *rs = get_remote_state ();
5806
5807 builder->p = rs->buf;
5808 builder->endp = rs->buf + get_remote_packet_size ();
5809 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5810 builder->first_action = builder->p;
5811 }
5812
5813 /* If the vCont packet being built has any action, send it to the
5814 remote end. */
5815
5816 static void
5817 vcont_builder_flush (struct vcont_builder *builder)
5818 {
5819 struct remote_state *rs;
5820
5821 if (builder->p == builder->first_action)
5822 return;
5823
5824 rs = get_remote_state ();
5825 putpkt (rs->buf);
5826 getpkt (&rs->buf, &rs->buf_size, 0);
5827 if (strcmp (rs->buf, "OK") != 0)
5828 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5829 }
5830
5831 /* The largest action is range-stepping, with its two addresses. This
5832 is more than sufficient. If a new, bigger action is created, it'll
5833 quickly trigger a failed assertion in append_resumption (and we'll
5834 just bump this). */
5835 #define MAX_ACTION_SIZE 200
5836
5837 /* Append a new vCont action in the outgoing packet being built. If
5838 the action doesn't fit the packet along with previous actions, push
5839 what we've got so far to the remote end and start over a new vCont
5840 packet (with the new action). */
5841
5842 static void
5843 vcont_builder_push_action (struct vcont_builder *builder,
5844 ptid_t ptid, int step, enum gdb_signal siggnal)
5845 {
5846 char buf[MAX_ACTION_SIZE + 1];
5847 char *endp;
5848 size_t rsize;
5849
5850 endp = append_resumption (buf, buf + sizeof (buf),
5851 ptid, step, siggnal);
5852
5853 /* Check whether this new action would fit in the vCont packet along
5854 with previous actions. If not, send what we've got so far and
5855 start a new vCont packet. */
5856 rsize = endp - buf;
5857 if (rsize > builder->endp - builder->p)
5858 {
5859 vcont_builder_flush (builder);
5860 vcont_builder_restart (builder);
5861
5862 /* Should now fit. */
5863 gdb_assert (rsize <= builder->endp - builder->p);
5864 }
5865
5866 memcpy (builder->p, buf, rsize);
5867 builder->p += rsize;
5868 *builder->p = '\0';
5869 }
5870
5871 /* to_commit_resume implementation. */
5872
5873 static void
5874 remote_commit_resume (struct target_ops *ops)
5875 {
5876 struct inferior *inf;
5877 struct thread_info *tp;
5878 int any_process_wildcard;
5879 int may_global_wildcard_vcont;
5880 struct vcont_builder vcont_builder;
5881
5882 /* If connected in all-stop mode, we'd send the remote resume
5883 request directly from remote_resume. Likewise if
5884 reverse-debugging, as there are no defined vCont actions for
5885 reverse execution. */
5886 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5887 return;
5888
5889 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5890 instead of resuming all threads of each process individually.
5891 However, if any thread of a process must remain halted, we can't
5892 send wildcard resumes and must send one action per thread.
5893
5894 Care must be taken to not resume threads/processes the server
5895 side already told us are stopped, but the core doesn't know about
5896 yet, because the events are still in the vStopped notification
5897 queue. For example:
5898
5899 #1 => vCont s:p1.1;c
5900 #2 <= OK
5901 #3 <= %Stopped T05 p1.1
5902 #4 => vStopped
5903 #5 <= T05 p1.2
5904 #6 => vStopped
5905 #7 <= OK
5906 #8 (infrun handles the stop for p1.1 and continues stepping)
5907 #9 => vCont s:p1.1;c
5908
5909 The last vCont above would resume thread p1.2 by mistake, because
5910 the server has no idea that the event for p1.2 had not been
5911 handled yet.
5912
5913 The server side must similarly ignore resume actions for the
5914 thread that has a pending %Stopped notification (and any other
5915 threads with events pending), until GDB acks the notification
5916 with vStopped. Otherwise, e.g., the following case is
5917 mishandled:
5918
5919 #1 => g (or any other packet)
5920 #2 <= [registers]
5921 #3 <= %Stopped T05 p1.2
5922 #4 => vCont s:p1.1;c
5923 #5 <= OK
5924
5925 Above, the server must not resume thread p1.2. GDB can't know
5926 that p1.2 stopped until it acks the %Stopped notification, and
5927 since from GDB's perspective all threads should be running, it
5928 sends a "c" action.
5929
5930 Finally, special care must also be given to handling fork/vfork
5931 events. A (v)fork event actually tells us that two processes
5932 stopped -- the parent and the child. Until we follow the fork,
5933 we must not resume the child. Therefore, if we have a pending
5934 fork follow, we must not send a global wildcard resume action
5935 (vCont;c). We can still send process-wide wildcards though. */
5936
5937 /* Start by assuming a global wildcard (vCont;c) is possible. */
5938 may_global_wildcard_vcont = 1;
5939
5940 /* And assume every process is individually wildcard-able too. */
5941 ALL_NON_EXITED_INFERIORS (inf)
5942 {
5943 remote_inferior *priv = get_remote_inferior (inf);
5944
5945 priv->may_wildcard_vcont = true;
5946 }
5947
5948 /* Check for any pending events (not reported or processed yet) and
5949 disable process and global wildcard resumes appropriately. */
5950 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5951
5952 ALL_NON_EXITED_THREADS (tp)
5953 {
5954 /* If a thread of a process is not meant to be resumed, then we
5955 can't wildcard that process. */
5956 if (!tp->executing)
5957 {
5958 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5959
5960 /* And if we can't wildcard a process, we can't wildcard
5961 everything either. */
5962 may_global_wildcard_vcont = 0;
5963 continue;
5964 }
5965
5966 /* If a thread is the parent of an unfollowed fork, then we
5967 can't do a global wildcard, as that would resume the fork
5968 child. */
5969 if (is_pending_fork_parent_thread (tp))
5970 may_global_wildcard_vcont = 0;
5971 }
5972
5973 /* Now let's build the vCont packet(s). Actions must be appended
5974 from narrower to wider scopes (thread -> process -> global). If
5975 we end up with too many actions for a single packet vcont_builder
5976 flushes the current vCont packet to the remote side and starts a
5977 new one. */
5978 vcont_builder_restart (&vcont_builder);
5979
5980 /* Threads first. */
5981 ALL_NON_EXITED_THREADS (tp)
5982 {
5983 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5984
5985 if (!tp->executing || remote_thr->vcont_resumed)
5986 continue;
5987
5988 gdb_assert (!thread_is_in_step_over_chain (tp));
5989
5990 if (!remote_thr->last_resume_step
5991 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5992 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5993 {
5994 /* We'll send a wildcard resume instead. */
5995 remote_thr->vcont_resumed = 1;
5996 continue;
5997 }
5998
5999 vcont_builder_push_action (&vcont_builder, tp->ptid,
6000 remote_thr->last_resume_step,
6001 remote_thr->last_resume_sig);
6002 remote_thr->vcont_resumed = 1;
6003 }
6004
6005 /* Now check whether we can send any process-wide wildcard. This is
6006 to avoid sending a global wildcard in the case nothing is
6007 supposed to be resumed. */
6008 any_process_wildcard = 0;
6009
6010 ALL_NON_EXITED_INFERIORS (inf)
6011 {
6012 if (get_remote_inferior (inf)->may_wildcard_vcont)
6013 {
6014 any_process_wildcard = 1;
6015 break;
6016 }
6017 }
6018
6019 if (any_process_wildcard)
6020 {
6021 /* If all processes are wildcard-able, then send a single "c"
6022 action, otherwise, send an "all (-1) threads of process"
6023 continue action for each running process, if any. */
6024 if (may_global_wildcard_vcont)
6025 {
6026 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6027 0, GDB_SIGNAL_0);
6028 }
6029 else
6030 {
6031 ALL_NON_EXITED_INFERIORS (inf)
6032 {
6033 if (get_remote_inferior (inf)->may_wildcard_vcont)
6034 {
6035 vcont_builder_push_action (&vcont_builder,
6036 pid_to_ptid (inf->pid),
6037 0, GDB_SIGNAL_0);
6038 }
6039 }
6040 }
6041 }
6042
6043 vcont_builder_flush (&vcont_builder);
6044 }
6045
6046 \f
6047
6048 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6049 thread, all threads of a remote process, or all threads of all
6050 processes. */
6051
6052 static void
6053 remote_stop_ns (ptid_t ptid)
6054 {
6055 struct remote_state *rs = get_remote_state ();
6056 char *p = rs->buf;
6057 char *endp = rs->buf + get_remote_packet_size ();
6058
6059 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6060 remote_vcont_probe (rs);
6061
6062 if (!rs->supports_vCont.t)
6063 error (_("Remote server does not support stopping threads"));
6064
6065 if (ptid_equal (ptid, minus_one_ptid)
6066 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6067 p += xsnprintf (p, endp - p, "vCont;t");
6068 else
6069 {
6070 ptid_t nptid;
6071
6072 p += xsnprintf (p, endp - p, "vCont;t:");
6073
6074 if (ptid_is_pid (ptid))
6075 /* All (-1) threads of process. */
6076 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6077 else
6078 {
6079 /* Small optimization: if we already have a stop reply for
6080 this thread, no use in telling the stub we want this
6081 stopped. */
6082 if (peek_stop_reply (ptid))
6083 return;
6084
6085 nptid = ptid;
6086 }
6087
6088 write_ptid (p, endp, nptid);
6089 }
6090
6091 /* In non-stop, we get an immediate OK reply. The stop reply will
6092 come in asynchronously by notification. */
6093 putpkt (rs->buf);
6094 getpkt (&rs->buf, &rs->buf_size, 0);
6095 if (strcmp (rs->buf, "OK") != 0)
6096 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6097 }
6098
6099 /* All-stop version of target_interrupt. Sends a break or a ^C to
6100 interrupt the remote target. It is undefined which thread of which
6101 process reports the interrupt. */
6102
6103 static void
6104 remote_interrupt_as (void)
6105 {
6106 struct remote_state *rs = get_remote_state ();
6107
6108 rs->ctrlc_pending_p = 1;
6109
6110 /* If the inferior is stopped already, but the core didn't know
6111 about it yet, just ignore the request. The cached wait status
6112 will be collected in remote_wait. */
6113 if (rs->cached_wait_status)
6114 return;
6115
6116 /* Send interrupt_sequence to remote target. */
6117 send_interrupt_sequence ();
6118 }
6119
6120 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6121 the remote target. It is undefined which thread of which process
6122 reports the interrupt. Throws an error if the packet is not
6123 supported by the server. */
6124
6125 static void
6126 remote_interrupt_ns (void)
6127 {
6128 struct remote_state *rs = get_remote_state ();
6129 char *p = rs->buf;
6130 char *endp = rs->buf + get_remote_packet_size ();
6131
6132 xsnprintf (p, endp - p, "vCtrlC");
6133
6134 /* In non-stop, we get an immediate OK reply. The stop reply will
6135 come in asynchronously by notification. */
6136 putpkt (rs->buf);
6137 getpkt (&rs->buf, &rs->buf_size, 0);
6138
6139 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6140 {
6141 case PACKET_OK:
6142 break;
6143 case PACKET_UNKNOWN:
6144 error (_("No support for interrupting the remote target."));
6145 case PACKET_ERROR:
6146 error (_("Interrupting target failed: %s"), rs->buf);
6147 }
6148 }
6149
6150 /* Implement the to_stop function for the remote targets. */
6151
6152 static void
6153 remote_stop (struct target_ops *self, ptid_t ptid)
6154 {
6155 if (remote_debug)
6156 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6157
6158 if (target_is_non_stop_p ())
6159 remote_stop_ns (ptid);
6160 else
6161 {
6162 /* We don't currently have a way to transparently pause the
6163 remote target in all-stop mode. Interrupt it instead. */
6164 remote_interrupt_as ();
6165 }
6166 }
6167
6168 /* Implement the to_interrupt function for the remote targets. */
6169
6170 static void
6171 remote_interrupt (struct target_ops *self, ptid_t ptid)
6172 {
6173 if (remote_debug)
6174 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6175
6176 if (target_is_non_stop_p ())
6177 remote_interrupt_ns ();
6178 else
6179 remote_interrupt_as ();
6180 }
6181
6182 /* Implement the to_pass_ctrlc function for the remote targets. */
6183
6184 static void
6185 remote_pass_ctrlc (struct target_ops *self)
6186 {
6187 struct remote_state *rs = get_remote_state ();
6188
6189 if (remote_debug)
6190 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6191
6192 /* If we're starting up, we're not fully synced yet. Quit
6193 immediately. */
6194 if (rs->starting_up)
6195 quit ();
6196 /* If ^C has already been sent once, offer to disconnect. */
6197 else if (rs->ctrlc_pending_p)
6198 interrupt_query ();
6199 else
6200 target_interrupt (inferior_ptid);
6201 }
6202
6203 /* Ask the user what to do when an interrupt is received. */
6204
6205 static void
6206 interrupt_query (void)
6207 {
6208 struct remote_state *rs = get_remote_state ();
6209
6210 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6211 {
6212 if (query (_("The target is not responding to interrupt requests.\n"
6213 "Stop debugging it? ")))
6214 {
6215 remote_unpush_target ();
6216 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6217 }
6218 }
6219 else
6220 {
6221 if (query (_("Interrupted while waiting for the program.\n"
6222 "Give up waiting? ")))
6223 quit ();
6224 }
6225 }
6226
6227 /* Enable/disable target terminal ownership. Most targets can use
6228 terminal groups to control terminal ownership. Remote targets are
6229 different in that explicit transfer of ownership to/from GDB/target
6230 is required. */
6231
6232 static void
6233 remote_terminal_inferior (struct target_ops *self)
6234 {
6235 /* NOTE: At this point we could also register our selves as the
6236 recipient of all input. Any characters typed could then be
6237 passed on down to the target. */
6238 }
6239
6240 static void
6241 remote_terminal_ours (struct target_ops *self)
6242 {
6243 }
6244
6245 static void
6246 remote_console_output (char *msg)
6247 {
6248 char *p;
6249
6250 for (p = msg; p[0] && p[1]; p += 2)
6251 {
6252 char tb[2];
6253 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6254
6255 tb[0] = c;
6256 tb[1] = 0;
6257 fputs_unfiltered (tb, gdb_stdtarg);
6258 }
6259 gdb_flush (gdb_stdtarg);
6260 }
6261
6262 DEF_VEC_O(cached_reg_t);
6263
6264 typedef struct stop_reply
6265 {
6266 struct notif_event base;
6267
6268 /* The identifier of the thread about this event */
6269 ptid_t ptid;
6270
6271 /* The remote state this event is associated with. When the remote
6272 connection, represented by a remote_state object, is closed,
6273 all the associated stop_reply events should be released. */
6274 struct remote_state *rs;
6275
6276 struct target_waitstatus ws;
6277
6278 /* The architecture associated with the expedited registers. */
6279 gdbarch *arch;
6280
6281 /* Expedited registers. This makes remote debugging a bit more
6282 efficient for those targets that provide critical registers as
6283 part of their normal status mechanism (as another roundtrip to
6284 fetch them is avoided). */
6285 VEC(cached_reg_t) *regcache;
6286
6287 enum target_stop_reason stop_reason;
6288
6289 CORE_ADDR watch_data_address;
6290
6291 int core;
6292 } *stop_reply_p;
6293
6294 DECLARE_QUEUE_P (stop_reply_p);
6295 DEFINE_QUEUE_P (stop_reply_p);
6296 /* The list of already fetched and acknowledged stop events. This
6297 queue is used for notification Stop, and other notifications
6298 don't need queue for their events, because the notification events
6299 of Stop can't be consumed immediately, so that events should be
6300 queued first, and be consumed by remote_wait_{ns,as} one per
6301 time. Other notifications can consume their events immediately,
6302 so queue is not needed for them. */
6303 static QUEUE (stop_reply_p) *stop_reply_queue;
6304
6305 static void
6306 stop_reply_xfree (struct stop_reply *r)
6307 {
6308 notif_event_xfree ((struct notif_event *) r);
6309 }
6310
6311 /* Return the length of the stop reply queue. */
6312
6313 static int
6314 stop_reply_queue_length (void)
6315 {
6316 return QUEUE_length (stop_reply_p, stop_reply_queue);
6317 }
6318
6319 static void
6320 remote_notif_stop_parse (struct notif_client *self, char *buf,
6321 struct notif_event *event)
6322 {
6323 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6324 }
6325
6326 static void
6327 remote_notif_stop_ack (struct notif_client *self, char *buf,
6328 struct notif_event *event)
6329 {
6330 struct stop_reply *stop_reply = (struct stop_reply *) event;
6331
6332 /* acknowledge */
6333 putpkt (self->ack_command);
6334
6335 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6336 /* We got an unknown stop reply. */
6337 error (_("Unknown stop reply"));
6338
6339 push_stop_reply (stop_reply);
6340 }
6341
6342 static int
6343 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6344 {
6345 /* We can't get pending events in remote_notif_process for
6346 notification stop, and we have to do this in remote_wait_ns
6347 instead. If we fetch all queued events from stub, remote stub
6348 may exit and we have no chance to process them back in
6349 remote_wait_ns. */
6350 mark_async_event_handler (remote_async_inferior_event_token);
6351 return 0;
6352 }
6353
6354 static void
6355 stop_reply_dtr (struct notif_event *event)
6356 {
6357 struct stop_reply *r = (struct stop_reply *) event;
6358 cached_reg_t *reg;
6359 int ix;
6360
6361 for (ix = 0;
6362 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6363 ix++)
6364 xfree (reg->data);
6365
6366 VEC_free (cached_reg_t, r->regcache);
6367 }
6368
6369 static struct notif_event *
6370 remote_notif_stop_alloc_reply (void)
6371 {
6372 /* We cast to a pointer to the "base class". */
6373 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6374
6375 r->dtr = stop_reply_dtr;
6376
6377 return r;
6378 }
6379
6380 /* A client of notification Stop. */
6381
6382 struct notif_client notif_client_stop =
6383 {
6384 "Stop",
6385 "vStopped",
6386 remote_notif_stop_parse,
6387 remote_notif_stop_ack,
6388 remote_notif_stop_can_get_pending_events,
6389 remote_notif_stop_alloc_reply,
6390 REMOTE_NOTIF_STOP,
6391 };
6392
6393 /* A parameter to pass data in and out. */
6394
6395 struct queue_iter_param
6396 {
6397 void *input;
6398 struct stop_reply *output;
6399 };
6400
6401 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6402 the pid of the process that owns the threads we want to check, or
6403 -1 if we want to check all threads. */
6404
6405 static int
6406 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6407 ptid_t thread_ptid)
6408 {
6409 if (ws->kind == TARGET_WAITKIND_FORKED
6410 || ws->kind == TARGET_WAITKIND_VFORKED)
6411 {
6412 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6413 return 1;
6414 }
6415
6416 return 0;
6417 }
6418
6419 /* Return the thread's pending status used to determine whether the
6420 thread is a fork parent stopped at a fork event. */
6421
6422 static struct target_waitstatus *
6423 thread_pending_fork_status (struct thread_info *thread)
6424 {
6425 if (thread->suspend.waitstatus_pending_p)
6426 return &thread->suspend.waitstatus;
6427 else
6428 return &thread->pending_follow;
6429 }
6430
6431 /* Determine if THREAD is a pending fork parent thread. */
6432
6433 static int
6434 is_pending_fork_parent_thread (struct thread_info *thread)
6435 {
6436 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6437 int pid = -1;
6438
6439 return is_pending_fork_parent (ws, pid, thread->ptid);
6440 }
6441
6442 /* Check whether EVENT is a fork event, and if it is, remove the
6443 fork child from the context list passed in DATA. */
6444
6445 static int
6446 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6447 QUEUE_ITER (stop_reply_p) *iter,
6448 stop_reply_p event,
6449 void *data)
6450 {
6451 struct queue_iter_param *param = (struct queue_iter_param *) data;
6452 struct threads_listing_context *context
6453 = (struct threads_listing_context *) param->input;
6454
6455 if (event->ws.kind == TARGET_WAITKIND_FORKED
6456 || event->ws.kind == TARGET_WAITKIND_VFORKED
6457 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6458 context->remove_thread (event->ws.value.related_pid);
6459
6460 return 1;
6461 }
6462
6463 /* If CONTEXT contains any fork child threads that have not been
6464 reported yet, remove them from the CONTEXT list. If such a
6465 thread exists it is because we are stopped at a fork catchpoint
6466 and have not yet called follow_fork, which will set up the
6467 host-side data structures for the new process. */
6468
6469 static void
6470 remove_new_fork_children (struct threads_listing_context *context)
6471 {
6472 struct thread_info * thread;
6473 int pid = -1;
6474 struct notif_client *notif = &notif_client_stop;
6475 struct queue_iter_param param;
6476
6477 /* For any threads stopped at a fork event, remove the corresponding
6478 fork child threads from the CONTEXT list. */
6479 ALL_NON_EXITED_THREADS (thread)
6480 {
6481 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6482
6483 if (is_pending_fork_parent (ws, pid, thread->ptid))
6484 context->remove_thread (ws->value.related_pid);
6485 }
6486
6487 /* Check for any pending fork events (not reported or processed yet)
6488 in process PID and remove those fork child threads from the
6489 CONTEXT list as well. */
6490 remote_notif_get_pending_events (notif);
6491 param.input = context;
6492 param.output = NULL;
6493 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6494 remove_child_of_pending_fork, &param);
6495 }
6496
6497 /* Check whether EVENT would prevent a global or process wildcard
6498 vCont action. */
6499
6500 static int
6501 check_pending_event_prevents_wildcard_vcont_callback
6502 (QUEUE (stop_reply_p) *q,
6503 QUEUE_ITER (stop_reply_p) *iter,
6504 stop_reply_p event,
6505 void *data)
6506 {
6507 struct inferior *inf;
6508 int *may_global_wildcard_vcont = (int *) data;
6509
6510 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6511 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6512 return 1;
6513
6514 if (event->ws.kind == TARGET_WAITKIND_FORKED
6515 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6516 *may_global_wildcard_vcont = 0;
6517
6518 inf = find_inferior_ptid (event->ptid);
6519
6520 /* This may be the first time we heard about this process.
6521 Regardless, we must not do a global wildcard resume, otherwise
6522 we'd resume this process too. */
6523 *may_global_wildcard_vcont = 0;
6524 if (inf != NULL)
6525 get_remote_inferior (inf)->may_wildcard_vcont = false;
6526
6527 return 1;
6528 }
6529
6530 /* Check whether any event pending in the vStopped queue would prevent
6531 a global or process wildcard vCont action. Clear
6532 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6533 and clear the event inferior's may_wildcard_vcont flag if we can't
6534 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6535
6536 static void
6537 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6538 {
6539 struct notif_client *notif = &notif_client_stop;
6540
6541 remote_notif_get_pending_events (notif);
6542 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6543 check_pending_event_prevents_wildcard_vcont_callback,
6544 may_global_wildcard);
6545 }
6546
6547 /* Remove stop replies in the queue if its pid is equal to the given
6548 inferior's pid. */
6549
6550 static int
6551 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6552 QUEUE_ITER (stop_reply_p) *iter,
6553 stop_reply_p event,
6554 void *data)
6555 {
6556 struct queue_iter_param *param = (struct queue_iter_param *) data;
6557 struct inferior *inf = (struct inferior *) param->input;
6558
6559 if (ptid_get_pid (event->ptid) == inf->pid)
6560 {
6561 stop_reply_xfree (event);
6562 QUEUE_remove_elem (stop_reply_p, q, iter);
6563 }
6564
6565 return 1;
6566 }
6567
6568 /* Discard all pending stop replies of inferior INF. */
6569
6570 static void
6571 discard_pending_stop_replies (struct inferior *inf)
6572 {
6573 struct queue_iter_param param;
6574 struct stop_reply *reply;
6575 struct remote_state *rs = get_remote_state ();
6576 struct remote_notif_state *rns = rs->notif_state;
6577
6578 /* This function can be notified when an inferior exists. When the
6579 target is not remote, the notification state is NULL. */
6580 if (rs->remote_desc == NULL)
6581 return;
6582
6583 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6584
6585 /* Discard the in-flight notification. */
6586 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6587 {
6588 stop_reply_xfree (reply);
6589 rns->pending_event[notif_client_stop.id] = NULL;
6590 }
6591
6592 param.input = inf;
6593 param.output = NULL;
6594 /* Discard the stop replies we have already pulled with
6595 vStopped. */
6596 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6597 remove_stop_reply_for_inferior, &param);
6598 }
6599
6600 /* If its remote state is equal to the given remote state,
6601 remove EVENT from the stop reply queue. */
6602
6603 static int
6604 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6605 QUEUE_ITER (stop_reply_p) *iter,
6606 stop_reply_p event,
6607 void *data)
6608 {
6609 struct queue_iter_param *param = (struct queue_iter_param *) data;
6610 struct remote_state *rs = (struct remote_state *) param->input;
6611
6612 if (event->rs == rs)
6613 {
6614 stop_reply_xfree (event);
6615 QUEUE_remove_elem (stop_reply_p, q, iter);
6616 }
6617
6618 return 1;
6619 }
6620
6621 /* Discard the stop replies for RS in stop_reply_queue. */
6622
6623 static void
6624 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6625 {
6626 struct queue_iter_param param;
6627
6628 param.input = rs;
6629 param.output = NULL;
6630 /* Discard the stop replies we have already pulled with
6631 vStopped. */
6632 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6633 remove_stop_reply_of_remote_state, &param);
6634 }
6635
6636 /* A parameter to pass data in and out. */
6637
6638 static int
6639 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6640 QUEUE_ITER (stop_reply_p) *iter,
6641 stop_reply_p event,
6642 void *data)
6643 {
6644 struct queue_iter_param *param = (struct queue_iter_param *) data;
6645 ptid_t *ptid = (ptid_t *) param->input;
6646
6647 if (ptid_match (event->ptid, *ptid))
6648 {
6649 param->output = event;
6650 QUEUE_remove_elem (stop_reply_p, q, iter);
6651 return 0;
6652 }
6653
6654 return 1;
6655 }
6656
6657 /* Remove the first reply in 'stop_reply_queue' which matches
6658 PTID. */
6659
6660 static struct stop_reply *
6661 remote_notif_remove_queued_reply (ptid_t ptid)
6662 {
6663 struct queue_iter_param param;
6664
6665 param.input = &ptid;
6666 param.output = NULL;
6667
6668 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6669 remote_notif_remove_once_on_match, &param);
6670 if (notif_debug)
6671 fprintf_unfiltered (gdb_stdlog,
6672 "notif: discard queued event: 'Stop' in %s\n",
6673 target_pid_to_str (ptid));
6674
6675 return param.output;
6676 }
6677
6678 /* Look for a queued stop reply belonging to PTID. If one is found,
6679 remove it from the queue, and return it. Returns NULL if none is
6680 found. If there are still queued events left to process, tell the
6681 event loop to get back to target_wait soon. */
6682
6683 static struct stop_reply *
6684 queued_stop_reply (ptid_t ptid)
6685 {
6686 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6687
6688 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6689 /* There's still at least an event left. */
6690 mark_async_event_handler (remote_async_inferior_event_token);
6691
6692 return r;
6693 }
6694
6695 /* Push a fully parsed stop reply in the stop reply queue. Since we
6696 know that we now have at least one queued event left to pass to the
6697 core side, tell the event loop to get back to target_wait soon. */
6698
6699 static void
6700 push_stop_reply (struct stop_reply *new_event)
6701 {
6702 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6703
6704 if (notif_debug)
6705 fprintf_unfiltered (gdb_stdlog,
6706 "notif: push 'Stop' %s to queue %d\n",
6707 target_pid_to_str (new_event->ptid),
6708 QUEUE_length (stop_reply_p,
6709 stop_reply_queue));
6710
6711 mark_async_event_handler (remote_async_inferior_event_token);
6712 }
6713
6714 static int
6715 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6716 QUEUE_ITER (stop_reply_p) *iter,
6717 struct stop_reply *event,
6718 void *data)
6719 {
6720 ptid_t *ptid = (ptid_t *) data;
6721
6722 return !(ptid_equal (*ptid, event->ptid)
6723 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6724 }
6725
6726 /* Returns true if we have a stop reply for PTID. */
6727
6728 static int
6729 peek_stop_reply (ptid_t ptid)
6730 {
6731 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6732 stop_reply_match_ptid_and_ws, &ptid);
6733 }
6734
6735 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6736 starting with P and ending with PEND matches PREFIX. */
6737
6738 static int
6739 strprefix (const char *p, const char *pend, const char *prefix)
6740 {
6741 for ( ; p < pend; p++, prefix++)
6742 if (*p != *prefix)
6743 return 0;
6744 return *prefix == '\0';
6745 }
6746
6747 /* Parse the stop reply in BUF. Either the function succeeds, and the
6748 result is stored in EVENT, or throws an error. */
6749
6750 static void
6751 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6752 {
6753 remote_arch_state *rsa = NULL;
6754 ULONGEST addr;
6755 const char *p;
6756 int skipregs = 0;
6757
6758 event->ptid = null_ptid;
6759 event->rs = get_remote_state ();
6760 event->ws.kind = TARGET_WAITKIND_IGNORE;
6761 event->ws.value.integer = 0;
6762 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6763 event->regcache = NULL;
6764 event->core = -1;
6765
6766 switch (buf[0])
6767 {
6768 case 'T': /* Status with PC, SP, FP, ... */
6769 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6770 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6771 ss = signal number
6772 n... = register number
6773 r... = register contents
6774 */
6775
6776 p = &buf[3]; /* after Txx */
6777 while (*p)
6778 {
6779 const char *p1;
6780 int fieldsize;
6781
6782 p1 = strchr (p, ':');
6783 if (p1 == NULL)
6784 error (_("Malformed packet(a) (missing colon): %s\n\
6785 Packet: '%s'\n"),
6786 p, buf);
6787 if (p == p1)
6788 error (_("Malformed packet(a) (missing register number): %s\n\
6789 Packet: '%s'\n"),
6790 p, buf);
6791
6792 /* Some "registers" are actually extended stop information.
6793 Note if you're adding a new entry here: GDB 7.9 and
6794 earlier assume that all register "numbers" that start
6795 with an hex digit are real register numbers. Make sure
6796 the server only sends such a packet if it knows the
6797 client understands it. */
6798
6799 if (strprefix (p, p1, "thread"))
6800 event->ptid = read_ptid (++p1, &p);
6801 else if (strprefix (p, p1, "syscall_entry"))
6802 {
6803 ULONGEST sysno;
6804
6805 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6806 p = unpack_varlen_hex (++p1, &sysno);
6807 event->ws.value.syscall_number = (int) sysno;
6808 }
6809 else if (strprefix (p, p1, "syscall_return"))
6810 {
6811 ULONGEST sysno;
6812
6813 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6814 p = unpack_varlen_hex (++p1, &sysno);
6815 event->ws.value.syscall_number = (int) sysno;
6816 }
6817 else if (strprefix (p, p1, "watch")
6818 || strprefix (p, p1, "rwatch")
6819 || strprefix (p, p1, "awatch"))
6820 {
6821 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6822 p = unpack_varlen_hex (++p1, &addr);
6823 event->watch_data_address = (CORE_ADDR) addr;
6824 }
6825 else if (strprefix (p, p1, "swbreak"))
6826 {
6827 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6828
6829 /* Make sure the stub doesn't forget to indicate support
6830 with qSupported. */
6831 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6832 error (_("Unexpected swbreak stop reason"));
6833
6834 /* The value part is documented as "must be empty",
6835 though we ignore it, in case we ever decide to make
6836 use of it in a backward compatible way. */
6837 p = strchrnul (p1 + 1, ';');
6838 }
6839 else if (strprefix (p, p1, "hwbreak"))
6840 {
6841 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6842
6843 /* Make sure the stub doesn't forget to indicate support
6844 with qSupported. */
6845 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6846 error (_("Unexpected hwbreak stop reason"));
6847
6848 /* See above. */
6849 p = strchrnul (p1 + 1, ';');
6850 }
6851 else if (strprefix (p, p1, "library"))
6852 {
6853 event->ws.kind = TARGET_WAITKIND_LOADED;
6854 p = strchrnul (p1 + 1, ';');
6855 }
6856 else if (strprefix (p, p1, "replaylog"))
6857 {
6858 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6859 /* p1 will indicate "begin" or "end", but it makes
6860 no difference for now, so ignore it. */
6861 p = strchrnul (p1 + 1, ';');
6862 }
6863 else if (strprefix (p, p1, "core"))
6864 {
6865 ULONGEST c;
6866
6867 p = unpack_varlen_hex (++p1, &c);
6868 event->core = c;
6869 }
6870 else if (strprefix (p, p1, "fork"))
6871 {
6872 event->ws.value.related_pid = read_ptid (++p1, &p);
6873 event->ws.kind = TARGET_WAITKIND_FORKED;
6874 }
6875 else if (strprefix (p, p1, "vfork"))
6876 {
6877 event->ws.value.related_pid = read_ptid (++p1, &p);
6878 event->ws.kind = TARGET_WAITKIND_VFORKED;
6879 }
6880 else if (strprefix (p, p1, "vforkdone"))
6881 {
6882 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6883 p = strchrnul (p1 + 1, ';');
6884 }
6885 else if (strprefix (p, p1, "exec"))
6886 {
6887 ULONGEST ignored;
6888 char pathname[PATH_MAX];
6889 int pathlen;
6890
6891 /* Determine the length of the execd pathname. */
6892 p = unpack_varlen_hex (++p1, &ignored);
6893 pathlen = (p - p1) / 2;
6894
6895 /* Save the pathname for event reporting and for
6896 the next run command. */
6897 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6898 pathname[pathlen] = '\0';
6899
6900 /* This is freed during event handling. */
6901 event->ws.value.execd_pathname = xstrdup (pathname);
6902 event->ws.kind = TARGET_WAITKIND_EXECD;
6903
6904 /* Skip the registers included in this packet, since
6905 they may be for an architecture different from the
6906 one used by the original program. */
6907 skipregs = 1;
6908 }
6909 else if (strprefix (p, p1, "create"))
6910 {
6911 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6912 p = strchrnul (p1 + 1, ';');
6913 }
6914 else
6915 {
6916 ULONGEST pnum;
6917 const char *p_temp;
6918
6919 if (skipregs)
6920 {
6921 p = strchrnul (p1 + 1, ';');
6922 p++;
6923 continue;
6924 }
6925
6926 /* Maybe a real ``P'' register number. */
6927 p_temp = unpack_varlen_hex (p, &pnum);
6928 /* If the first invalid character is the colon, we got a
6929 register number. Otherwise, it's an unknown stop
6930 reason. */
6931 if (p_temp == p1)
6932 {
6933 /* If we haven't parsed the event's thread yet, find
6934 it now, in order to find the architecture of the
6935 reported expedited registers. */
6936 if (event->ptid == null_ptid)
6937 {
6938 const char *thr = strstr (p1 + 1, ";thread:");
6939 if (thr != NULL)
6940 event->ptid = read_ptid (thr + strlen (";thread:"),
6941 NULL);
6942 else
6943 {
6944 /* Either the current thread hasn't changed,
6945 or the inferior is not multi-threaded.
6946 The event must be for the thread we last
6947 set as (or learned as being) current. */
6948 event->ptid = event->rs->general_thread;
6949 }
6950 }
6951
6952 if (rsa == NULL)
6953 {
6954 inferior *inf = (event->ptid == null_ptid
6955 ? NULL
6956 : find_inferior_ptid (event->ptid));
6957 /* If this is the first time we learn anything
6958 about this process, skip the registers
6959 included in this packet, since we don't yet
6960 know which architecture to use to parse them.
6961 We'll determine the architecture later when
6962 we process the stop reply and retrieve the
6963 target description, via
6964 remote_notice_new_inferior ->
6965 post_create_inferior. */
6966 if (inf == NULL)
6967 {
6968 p = strchrnul (p1 + 1, ';');
6969 p++;
6970 continue;
6971 }
6972
6973 event->arch = inf->gdbarch;
6974 rsa = get_remote_arch_state (event->arch);
6975 }
6976
6977 packet_reg *reg
6978 = packet_reg_from_pnum (event->arch, rsa, pnum);
6979 cached_reg_t cached_reg;
6980
6981 if (reg == NULL)
6982 error (_("Remote sent bad register number %s: %s\n\
6983 Packet: '%s'\n"),
6984 hex_string (pnum), p, buf);
6985
6986 cached_reg.num = reg->regnum;
6987 cached_reg.data = (gdb_byte *)
6988 xmalloc (register_size (event->arch, reg->regnum));
6989
6990 p = p1 + 1;
6991 fieldsize = hex2bin (p, cached_reg.data,
6992 register_size (event->arch, reg->regnum));
6993 p += 2 * fieldsize;
6994 if (fieldsize < register_size (event->arch, reg->regnum))
6995 warning (_("Remote reply is too short: %s"), buf);
6996
6997 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6998 }
6999 else
7000 {
7001 /* Not a number. Silently skip unknown optional
7002 info. */
7003 p = strchrnul (p1 + 1, ';');
7004 }
7005 }
7006
7007 if (*p != ';')
7008 error (_("Remote register badly formatted: %s\nhere: %s"),
7009 buf, p);
7010 ++p;
7011 }
7012
7013 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7014 break;
7015
7016 /* fall through */
7017 case 'S': /* Old style status, just signal only. */
7018 {
7019 int sig;
7020
7021 event->ws.kind = TARGET_WAITKIND_STOPPED;
7022 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7023 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7024 event->ws.value.sig = (enum gdb_signal) sig;
7025 else
7026 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7027 }
7028 break;
7029 case 'w': /* Thread exited. */
7030 {
7031 const char *p;
7032 ULONGEST value;
7033
7034 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7035 p = unpack_varlen_hex (&buf[1], &value);
7036 event->ws.value.integer = value;
7037 if (*p != ';')
7038 error (_("stop reply packet badly formatted: %s"), buf);
7039 event->ptid = read_ptid (++p, NULL);
7040 break;
7041 }
7042 case 'W': /* Target exited. */
7043 case 'X':
7044 {
7045 const char *p;
7046 int pid;
7047 ULONGEST value;
7048
7049 /* GDB used to accept only 2 hex chars here. Stubs should
7050 only send more if they detect GDB supports multi-process
7051 support. */
7052 p = unpack_varlen_hex (&buf[1], &value);
7053
7054 if (buf[0] == 'W')
7055 {
7056 /* The remote process exited. */
7057 event->ws.kind = TARGET_WAITKIND_EXITED;
7058 event->ws.value.integer = value;
7059 }
7060 else
7061 {
7062 /* The remote process exited with a signal. */
7063 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7064 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7065 event->ws.value.sig = (enum gdb_signal) value;
7066 else
7067 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7068 }
7069
7070 /* If no process is specified, assume inferior_ptid. */
7071 pid = ptid_get_pid (inferior_ptid);
7072 if (*p == '\0')
7073 ;
7074 else if (*p == ';')
7075 {
7076 p++;
7077
7078 if (*p == '\0')
7079 ;
7080 else if (startswith (p, "process:"))
7081 {
7082 ULONGEST upid;
7083
7084 p += sizeof ("process:") - 1;
7085 unpack_varlen_hex (p, &upid);
7086 pid = upid;
7087 }
7088 else
7089 error (_("unknown stop reply packet: %s"), buf);
7090 }
7091 else
7092 error (_("unknown stop reply packet: %s"), buf);
7093 event->ptid = pid_to_ptid (pid);
7094 }
7095 break;
7096 case 'N':
7097 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7098 event->ptid = minus_one_ptid;
7099 break;
7100 }
7101
7102 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7103 error (_("No process or thread specified in stop reply: %s"), buf);
7104 }
7105
7106 /* When the stub wants to tell GDB about a new notification reply, it
7107 sends a notification (%Stop, for example). Those can come it at
7108 any time, hence, we have to make sure that any pending
7109 putpkt/getpkt sequence we're making is finished, before querying
7110 the stub for more events with the corresponding ack command
7111 (vStopped, for example). E.g., if we started a vStopped sequence
7112 immediately upon receiving the notification, something like this
7113 could happen:
7114
7115 1.1) --> Hg 1
7116 1.2) <-- OK
7117 1.3) --> g
7118 1.4) <-- %Stop
7119 1.5) --> vStopped
7120 1.6) <-- (registers reply to step #1.3)
7121
7122 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7123 query.
7124
7125 To solve this, whenever we parse a %Stop notification successfully,
7126 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7127 doing whatever we were doing:
7128
7129 2.1) --> Hg 1
7130 2.2) <-- OK
7131 2.3) --> g
7132 2.4) <-- %Stop
7133 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7134 2.5) <-- (registers reply to step #2.3)
7135
7136 Eventualy after step #2.5, we return to the event loop, which
7137 notices there's an event on the
7138 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7139 associated callback --- the function below. At this point, we're
7140 always safe to start a vStopped sequence. :
7141
7142 2.6) --> vStopped
7143 2.7) <-- T05 thread:2
7144 2.8) --> vStopped
7145 2.9) --> OK
7146 */
7147
7148 void
7149 remote_notif_get_pending_events (struct notif_client *nc)
7150 {
7151 struct remote_state *rs = get_remote_state ();
7152
7153 if (rs->notif_state->pending_event[nc->id] != NULL)
7154 {
7155 if (notif_debug)
7156 fprintf_unfiltered (gdb_stdlog,
7157 "notif: process: '%s' ack pending event\n",
7158 nc->name);
7159
7160 /* acknowledge */
7161 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7162 rs->notif_state->pending_event[nc->id] = NULL;
7163
7164 while (1)
7165 {
7166 getpkt (&rs->buf, &rs->buf_size, 0);
7167 if (strcmp (rs->buf, "OK") == 0)
7168 break;
7169 else
7170 remote_notif_ack (nc, rs->buf);
7171 }
7172 }
7173 else
7174 {
7175 if (notif_debug)
7176 fprintf_unfiltered (gdb_stdlog,
7177 "notif: process: '%s' no pending reply\n",
7178 nc->name);
7179 }
7180 }
7181
7182 /* Called when it is decided that STOP_REPLY holds the info of the
7183 event that is to be returned to the core. This function always
7184 destroys STOP_REPLY. */
7185
7186 static ptid_t
7187 process_stop_reply (struct stop_reply *stop_reply,
7188 struct target_waitstatus *status)
7189 {
7190 ptid_t ptid;
7191
7192 *status = stop_reply->ws;
7193 ptid = stop_reply->ptid;
7194
7195 /* If no thread/process was reported by the stub, assume the current
7196 inferior. */
7197 if (ptid_equal (ptid, null_ptid))
7198 ptid = inferior_ptid;
7199
7200 if (status->kind != TARGET_WAITKIND_EXITED
7201 && status->kind != TARGET_WAITKIND_SIGNALLED
7202 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7203 {
7204 /* Expedited registers. */
7205 if (stop_reply->regcache)
7206 {
7207 struct regcache *regcache
7208 = get_thread_arch_regcache (ptid, stop_reply->arch);
7209 cached_reg_t *reg;
7210 int ix;
7211
7212 for (ix = 0;
7213 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7214 ix++)
7215 {
7216 regcache_raw_supply (regcache, reg->num, reg->data);
7217 xfree (reg->data);
7218 }
7219
7220 VEC_free (cached_reg_t, stop_reply->regcache);
7221 }
7222
7223 remote_notice_new_inferior (ptid, 0);
7224 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7225 remote_thr->core = stop_reply->core;
7226 remote_thr->stop_reason = stop_reply->stop_reason;
7227 remote_thr->watch_data_address = stop_reply->watch_data_address;
7228 remote_thr->vcont_resumed = 0;
7229 }
7230
7231 stop_reply_xfree (stop_reply);
7232 return ptid;
7233 }
7234
7235 /* The non-stop mode version of target_wait. */
7236
7237 static ptid_t
7238 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7239 {
7240 struct remote_state *rs = get_remote_state ();
7241 struct stop_reply *stop_reply;
7242 int ret;
7243 int is_notif = 0;
7244
7245 /* If in non-stop mode, get out of getpkt even if a
7246 notification is received. */
7247
7248 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7249 0 /* forever */, &is_notif);
7250 while (1)
7251 {
7252 if (ret != -1 && !is_notif)
7253 switch (rs->buf[0])
7254 {
7255 case 'E': /* Error of some sort. */
7256 /* We're out of sync with the target now. Did it continue
7257 or not? We can't tell which thread it was in non-stop,
7258 so just ignore this. */
7259 warning (_("Remote failure reply: %s"), rs->buf);
7260 break;
7261 case 'O': /* Console output. */
7262 remote_console_output (rs->buf + 1);
7263 break;
7264 default:
7265 warning (_("Invalid remote reply: %s"), rs->buf);
7266 break;
7267 }
7268
7269 /* Acknowledge a pending stop reply that may have arrived in the
7270 mean time. */
7271 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7272 remote_notif_get_pending_events (&notif_client_stop);
7273
7274 /* If indeed we noticed a stop reply, we're done. */
7275 stop_reply = queued_stop_reply (ptid);
7276 if (stop_reply != NULL)
7277 return process_stop_reply (stop_reply, status);
7278
7279 /* Still no event. If we're just polling for an event, then
7280 return to the event loop. */
7281 if (options & TARGET_WNOHANG)
7282 {
7283 status->kind = TARGET_WAITKIND_IGNORE;
7284 return minus_one_ptid;
7285 }
7286
7287 /* Otherwise do a blocking wait. */
7288 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7289 1 /* forever */, &is_notif);
7290 }
7291 }
7292
7293 /* Wait until the remote machine stops, then return, storing status in
7294 STATUS just as `wait' would. */
7295
7296 static ptid_t
7297 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7298 {
7299 struct remote_state *rs = get_remote_state ();
7300 ptid_t event_ptid = null_ptid;
7301 char *buf;
7302 struct stop_reply *stop_reply;
7303
7304 again:
7305
7306 status->kind = TARGET_WAITKIND_IGNORE;
7307 status->value.integer = 0;
7308
7309 stop_reply = queued_stop_reply (ptid);
7310 if (stop_reply != NULL)
7311 return process_stop_reply (stop_reply, status);
7312
7313 if (rs->cached_wait_status)
7314 /* Use the cached wait status, but only once. */
7315 rs->cached_wait_status = 0;
7316 else
7317 {
7318 int ret;
7319 int is_notif;
7320 int forever = ((options & TARGET_WNOHANG) == 0
7321 && wait_forever_enabled_p);
7322
7323 if (!rs->waiting_for_stop_reply)
7324 {
7325 status->kind = TARGET_WAITKIND_NO_RESUMED;
7326 return minus_one_ptid;
7327 }
7328
7329 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7330 _never_ wait for ever -> test on target_is_async_p().
7331 However, before we do that we need to ensure that the caller
7332 knows how to take the target into/out of async mode. */
7333 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7334 forever, &is_notif);
7335
7336 /* GDB gets a notification. Return to core as this event is
7337 not interesting. */
7338 if (ret != -1 && is_notif)
7339 return minus_one_ptid;
7340
7341 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7342 return minus_one_ptid;
7343 }
7344
7345 buf = rs->buf;
7346
7347 /* Assume that the target has acknowledged Ctrl-C unless we receive
7348 an 'F' or 'O' packet. */
7349 if (buf[0] != 'F' && buf[0] != 'O')
7350 rs->ctrlc_pending_p = 0;
7351
7352 switch (buf[0])
7353 {
7354 case 'E': /* Error of some sort. */
7355 /* We're out of sync with the target now. Did it continue or
7356 not? Not is more likely, so report a stop. */
7357 rs->waiting_for_stop_reply = 0;
7358
7359 warning (_("Remote failure reply: %s"), buf);
7360 status->kind = TARGET_WAITKIND_STOPPED;
7361 status->value.sig = GDB_SIGNAL_0;
7362 break;
7363 case 'F': /* File-I/O request. */
7364 /* GDB may access the inferior memory while handling the File-I/O
7365 request, but we don't want GDB accessing memory while waiting
7366 for a stop reply. See the comments in putpkt_binary. Set
7367 waiting_for_stop_reply to 0 temporarily. */
7368 rs->waiting_for_stop_reply = 0;
7369 remote_fileio_request (buf, rs->ctrlc_pending_p);
7370 rs->ctrlc_pending_p = 0;
7371 /* GDB handled the File-I/O request, and the target is running
7372 again. Keep waiting for events. */
7373 rs->waiting_for_stop_reply = 1;
7374 break;
7375 case 'N': case 'T': case 'S': case 'X': case 'W':
7376 {
7377 struct stop_reply *stop_reply;
7378
7379 /* There is a stop reply to handle. */
7380 rs->waiting_for_stop_reply = 0;
7381
7382 stop_reply
7383 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7384 rs->buf);
7385
7386 event_ptid = process_stop_reply (stop_reply, status);
7387 break;
7388 }
7389 case 'O': /* Console output. */
7390 remote_console_output (buf + 1);
7391 break;
7392 case '\0':
7393 if (rs->last_sent_signal != GDB_SIGNAL_0)
7394 {
7395 /* Zero length reply means that we tried 'S' or 'C' and the
7396 remote system doesn't support it. */
7397 target_terminal::ours_for_output ();
7398 printf_filtered
7399 ("Can't send signals to this remote system. %s not sent.\n",
7400 gdb_signal_to_name (rs->last_sent_signal));
7401 rs->last_sent_signal = GDB_SIGNAL_0;
7402 target_terminal::inferior ();
7403
7404 strcpy (buf, rs->last_sent_step ? "s" : "c");
7405 putpkt (buf);
7406 break;
7407 }
7408 /* else fallthrough */
7409 default:
7410 warning (_("Invalid remote reply: %s"), buf);
7411 break;
7412 }
7413
7414 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7415 return minus_one_ptid;
7416 else if (status->kind == TARGET_WAITKIND_IGNORE)
7417 {
7418 /* Nothing interesting happened. If we're doing a non-blocking
7419 poll, we're done. Otherwise, go back to waiting. */
7420 if (options & TARGET_WNOHANG)
7421 return minus_one_ptid;
7422 else
7423 goto again;
7424 }
7425 else if (status->kind != TARGET_WAITKIND_EXITED
7426 && status->kind != TARGET_WAITKIND_SIGNALLED)
7427 {
7428 if (!ptid_equal (event_ptid, null_ptid))
7429 record_currthread (rs, event_ptid);
7430 else
7431 event_ptid = inferior_ptid;
7432 }
7433 else
7434 /* A process exit. Invalidate our notion of current thread. */
7435 record_currthread (rs, minus_one_ptid);
7436
7437 return event_ptid;
7438 }
7439
7440 /* Wait until the remote machine stops, then return, storing status in
7441 STATUS just as `wait' would. */
7442
7443 static ptid_t
7444 remote_wait (struct target_ops *ops,
7445 ptid_t ptid, struct target_waitstatus *status, int options)
7446 {
7447 ptid_t event_ptid;
7448
7449 if (target_is_non_stop_p ())
7450 event_ptid = remote_wait_ns (ptid, status, options);
7451 else
7452 event_ptid = remote_wait_as (ptid, status, options);
7453
7454 if (target_is_async_p ())
7455 {
7456 /* If there are are events left in the queue tell the event loop
7457 to return here. */
7458 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7459 mark_async_event_handler (remote_async_inferior_event_token);
7460 }
7461
7462 return event_ptid;
7463 }
7464
7465 /* Fetch a single register using a 'p' packet. */
7466
7467 static int
7468 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7469 {
7470 struct gdbarch *gdbarch = regcache->arch ();
7471 struct remote_state *rs = get_remote_state ();
7472 char *buf, *p;
7473 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7474 int i;
7475
7476 if (packet_support (PACKET_p) == PACKET_DISABLE)
7477 return 0;
7478
7479 if (reg->pnum == -1)
7480 return 0;
7481
7482 p = rs->buf;
7483 *p++ = 'p';
7484 p += hexnumstr (p, reg->pnum);
7485 *p++ = '\0';
7486 putpkt (rs->buf);
7487 getpkt (&rs->buf, &rs->buf_size, 0);
7488
7489 buf = rs->buf;
7490
7491 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7492 {
7493 case PACKET_OK:
7494 break;
7495 case PACKET_UNKNOWN:
7496 return 0;
7497 case PACKET_ERROR:
7498 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7499 gdbarch_register_name (regcache->arch (),
7500 reg->regnum),
7501 buf);
7502 }
7503
7504 /* If this register is unfetchable, tell the regcache. */
7505 if (buf[0] == 'x')
7506 {
7507 regcache_raw_supply (regcache, reg->regnum, NULL);
7508 return 1;
7509 }
7510
7511 /* Otherwise, parse and supply the value. */
7512 p = buf;
7513 i = 0;
7514 while (p[0] != 0)
7515 {
7516 if (p[1] == 0)
7517 error (_("fetch_register_using_p: early buf termination"));
7518
7519 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7520 p += 2;
7521 }
7522 regcache_raw_supply (regcache, reg->regnum, regp);
7523 return 1;
7524 }
7525
7526 /* Fetch the registers included in the target's 'g' packet. */
7527
7528 static int
7529 send_g_packet (void)
7530 {
7531 struct remote_state *rs = get_remote_state ();
7532 int buf_len;
7533
7534 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7535 remote_send (&rs->buf, &rs->buf_size);
7536
7537 /* We can get out of synch in various cases. If the first character
7538 in the buffer is not a hex character, assume that has happened
7539 and try to fetch another packet to read. */
7540 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7541 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7542 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7543 && rs->buf[0] != 'x') /* New: unavailable register value. */
7544 {
7545 if (remote_debug)
7546 fprintf_unfiltered (gdb_stdlog,
7547 "Bad register packet; fetching a new packet\n");
7548 getpkt (&rs->buf, &rs->buf_size, 0);
7549 }
7550
7551 buf_len = strlen (rs->buf);
7552
7553 /* Sanity check the received packet. */
7554 if (buf_len % 2 != 0)
7555 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7556
7557 return buf_len / 2;
7558 }
7559
7560 static void
7561 process_g_packet (struct regcache *regcache)
7562 {
7563 struct gdbarch *gdbarch = regcache->arch ();
7564 struct remote_state *rs = get_remote_state ();
7565 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7566 int i, buf_len;
7567 char *p;
7568 char *regs;
7569
7570 buf_len = strlen (rs->buf);
7571
7572 /* Further sanity checks, with knowledge of the architecture. */
7573 if (buf_len > 2 * rsa->sizeof_g_packet)
7574 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7575 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7576
7577 /* Save the size of the packet sent to us by the target. It is used
7578 as a heuristic when determining the max size of packets that the
7579 target can safely receive. */
7580 if (rsa->actual_register_packet_size == 0)
7581 rsa->actual_register_packet_size = buf_len;
7582
7583 /* If this is smaller than we guessed the 'g' packet would be,
7584 update our records. A 'g' reply that doesn't include a register's
7585 value implies either that the register is not available, or that
7586 the 'p' packet must be used. */
7587 if (buf_len < 2 * rsa->sizeof_g_packet)
7588 {
7589 long sizeof_g_packet = buf_len / 2;
7590
7591 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7592 {
7593 long offset = rsa->regs[i].offset;
7594 long reg_size = register_size (gdbarch, i);
7595
7596 if (rsa->regs[i].pnum == -1)
7597 continue;
7598
7599 if (offset >= sizeof_g_packet)
7600 rsa->regs[i].in_g_packet = 0;
7601 else if (offset + reg_size > sizeof_g_packet)
7602 error (_("Truncated register %d in remote 'g' packet"), i);
7603 else
7604 rsa->regs[i].in_g_packet = 1;
7605 }
7606
7607 /* Looks valid enough, we can assume this is the correct length
7608 for a 'g' packet. It's important not to adjust
7609 rsa->sizeof_g_packet if we have truncated registers otherwise
7610 this "if" won't be run the next time the method is called
7611 with a packet of the same size and one of the internal errors
7612 below will trigger instead. */
7613 rsa->sizeof_g_packet = sizeof_g_packet;
7614 }
7615
7616 regs = (char *) alloca (rsa->sizeof_g_packet);
7617
7618 /* Unimplemented registers read as all bits zero. */
7619 memset (regs, 0, rsa->sizeof_g_packet);
7620
7621 /* Reply describes registers byte by byte, each byte encoded as two
7622 hex characters. Suck them all up, then supply them to the
7623 register cacheing/storage mechanism. */
7624
7625 p = rs->buf;
7626 for (i = 0; i < rsa->sizeof_g_packet; i++)
7627 {
7628 if (p[0] == 0 || p[1] == 0)
7629 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7630 internal_error (__FILE__, __LINE__,
7631 _("unexpected end of 'g' packet reply"));
7632
7633 if (p[0] == 'x' && p[1] == 'x')
7634 regs[i] = 0; /* 'x' */
7635 else
7636 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7637 p += 2;
7638 }
7639
7640 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7641 {
7642 struct packet_reg *r = &rsa->regs[i];
7643 long reg_size = register_size (gdbarch, i);
7644
7645 if (r->in_g_packet)
7646 {
7647 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7648 /* This shouldn't happen - we adjusted in_g_packet above. */
7649 internal_error (__FILE__, __LINE__,
7650 _("unexpected end of 'g' packet reply"));
7651 else if (rs->buf[r->offset * 2] == 'x')
7652 {
7653 gdb_assert (r->offset * 2 < strlen (rs->buf));
7654 /* The register isn't available, mark it as such (at
7655 the same time setting the value to zero). */
7656 regcache_raw_supply (regcache, r->regnum, NULL);
7657 }
7658 else
7659 regcache_raw_supply (regcache, r->regnum,
7660 regs + r->offset);
7661 }
7662 }
7663 }
7664
7665 static void
7666 fetch_registers_using_g (struct regcache *regcache)
7667 {
7668 send_g_packet ();
7669 process_g_packet (regcache);
7670 }
7671
7672 /* Make the remote selected traceframe match GDB's selected
7673 traceframe. */
7674
7675 static void
7676 set_remote_traceframe (void)
7677 {
7678 int newnum;
7679 struct remote_state *rs = get_remote_state ();
7680
7681 if (rs->remote_traceframe_number == get_traceframe_number ())
7682 return;
7683
7684 /* Avoid recursion, remote_trace_find calls us again. */
7685 rs->remote_traceframe_number = get_traceframe_number ();
7686
7687 newnum = target_trace_find (tfind_number,
7688 get_traceframe_number (), 0, 0, NULL);
7689
7690 /* Should not happen. If it does, all bets are off. */
7691 if (newnum != get_traceframe_number ())
7692 warning (_("could not set remote traceframe"));
7693 }
7694
7695 static void
7696 remote_fetch_registers (struct target_ops *ops,
7697 struct regcache *regcache, int regnum)
7698 {
7699 struct gdbarch *gdbarch = regcache->arch ();
7700 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7701 int i;
7702
7703 set_remote_traceframe ();
7704 set_general_thread (regcache_get_ptid (regcache));
7705
7706 if (regnum >= 0)
7707 {
7708 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7709
7710 gdb_assert (reg != NULL);
7711
7712 /* If this register might be in the 'g' packet, try that first -
7713 we are likely to read more than one register. If this is the
7714 first 'g' packet, we might be overly optimistic about its
7715 contents, so fall back to 'p'. */
7716 if (reg->in_g_packet)
7717 {
7718 fetch_registers_using_g (regcache);
7719 if (reg->in_g_packet)
7720 return;
7721 }
7722
7723 if (fetch_register_using_p (regcache, reg))
7724 return;
7725
7726 /* This register is not available. */
7727 regcache_raw_supply (regcache, reg->regnum, NULL);
7728
7729 return;
7730 }
7731
7732 fetch_registers_using_g (regcache);
7733
7734 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7735 if (!rsa->regs[i].in_g_packet)
7736 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7737 {
7738 /* This register is not available. */
7739 regcache_raw_supply (regcache, i, NULL);
7740 }
7741 }
7742
7743 /* Prepare to store registers. Since we may send them all (using a
7744 'G' request), we have to read out the ones we don't want to change
7745 first. */
7746
7747 static void
7748 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7749 {
7750 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7751 int i;
7752
7753 /* Make sure the entire registers array is valid. */
7754 switch (packet_support (PACKET_P))
7755 {
7756 case PACKET_DISABLE:
7757 case PACKET_SUPPORT_UNKNOWN:
7758 /* Make sure all the necessary registers are cached. */
7759 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7760 if (rsa->regs[i].in_g_packet)
7761 regcache_raw_update (regcache, rsa->regs[i].regnum);
7762 break;
7763 case PACKET_ENABLE:
7764 break;
7765 }
7766 }
7767
7768 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7769 packet was not recognized. */
7770
7771 static int
7772 store_register_using_P (const struct regcache *regcache,
7773 struct packet_reg *reg)
7774 {
7775 struct gdbarch *gdbarch = regcache->arch ();
7776 struct remote_state *rs = get_remote_state ();
7777 /* Try storing a single register. */
7778 char *buf = rs->buf;
7779 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7780 char *p;
7781
7782 if (packet_support (PACKET_P) == PACKET_DISABLE)
7783 return 0;
7784
7785 if (reg->pnum == -1)
7786 return 0;
7787
7788 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7789 p = buf + strlen (buf);
7790 regcache_raw_collect (regcache, reg->regnum, regp);
7791 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7792 putpkt (rs->buf);
7793 getpkt (&rs->buf, &rs->buf_size, 0);
7794
7795 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7796 {
7797 case PACKET_OK:
7798 return 1;
7799 case PACKET_ERROR:
7800 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7801 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7802 case PACKET_UNKNOWN:
7803 return 0;
7804 default:
7805 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7806 }
7807 }
7808
7809 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7810 contents of the register cache buffer. FIXME: ignores errors. */
7811
7812 static void
7813 store_registers_using_G (const struct regcache *regcache)
7814 {
7815 struct remote_state *rs = get_remote_state ();
7816 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7817 gdb_byte *regs;
7818 char *p;
7819
7820 /* Extract all the registers in the regcache copying them into a
7821 local buffer. */
7822 {
7823 int i;
7824
7825 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7826 memset (regs, 0, rsa->sizeof_g_packet);
7827 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7828 {
7829 struct packet_reg *r = &rsa->regs[i];
7830
7831 if (r->in_g_packet)
7832 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7833 }
7834 }
7835
7836 /* Command describes registers byte by byte,
7837 each byte encoded as two hex characters. */
7838 p = rs->buf;
7839 *p++ = 'G';
7840 bin2hex (regs, p, rsa->sizeof_g_packet);
7841 putpkt (rs->buf);
7842 getpkt (&rs->buf, &rs->buf_size, 0);
7843 if (packet_check_result (rs->buf) == PACKET_ERROR)
7844 error (_("Could not write registers; remote failure reply '%s'"),
7845 rs->buf);
7846 }
7847
7848 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7849 of the register cache buffer. FIXME: ignores errors. */
7850
7851 static void
7852 remote_store_registers (struct target_ops *ops,
7853 struct regcache *regcache, int regnum)
7854 {
7855 struct gdbarch *gdbarch = regcache->arch ();
7856 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7857 int i;
7858
7859 set_remote_traceframe ();
7860 set_general_thread (regcache_get_ptid (regcache));
7861
7862 if (regnum >= 0)
7863 {
7864 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7865
7866 gdb_assert (reg != NULL);
7867
7868 /* Always prefer to store registers using the 'P' packet if
7869 possible; we often change only a small number of registers.
7870 Sometimes we change a larger number; we'd need help from a
7871 higher layer to know to use 'G'. */
7872 if (store_register_using_P (regcache, reg))
7873 return;
7874
7875 /* For now, don't complain if we have no way to write the
7876 register. GDB loses track of unavailable registers too
7877 easily. Some day, this may be an error. We don't have
7878 any way to read the register, either... */
7879 if (!reg->in_g_packet)
7880 return;
7881
7882 store_registers_using_G (regcache);
7883 return;
7884 }
7885
7886 store_registers_using_G (regcache);
7887
7888 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7889 if (!rsa->regs[i].in_g_packet)
7890 if (!store_register_using_P (regcache, &rsa->regs[i]))
7891 /* See above for why we do not issue an error here. */
7892 continue;
7893 }
7894 \f
7895
7896 /* Return the number of hex digits in num. */
7897
7898 static int
7899 hexnumlen (ULONGEST num)
7900 {
7901 int i;
7902
7903 for (i = 0; num != 0; i++)
7904 num >>= 4;
7905
7906 return std::max (i, 1);
7907 }
7908
7909 /* Set BUF to the minimum number of hex digits representing NUM. */
7910
7911 static int
7912 hexnumstr (char *buf, ULONGEST num)
7913 {
7914 int len = hexnumlen (num);
7915
7916 return hexnumnstr (buf, num, len);
7917 }
7918
7919
7920 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7921
7922 static int
7923 hexnumnstr (char *buf, ULONGEST num, int width)
7924 {
7925 int i;
7926
7927 buf[width] = '\0';
7928
7929 for (i = width - 1; i >= 0; i--)
7930 {
7931 buf[i] = "0123456789abcdef"[(num & 0xf)];
7932 num >>= 4;
7933 }
7934
7935 return width;
7936 }
7937
7938 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7939
7940 static CORE_ADDR
7941 remote_address_masked (CORE_ADDR addr)
7942 {
7943 unsigned int address_size = remote_address_size;
7944
7945 /* If "remoteaddresssize" was not set, default to target address size. */
7946 if (!address_size)
7947 address_size = gdbarch_addr_bit (target_gdbarch ());
7948
7949 if (address_size > 0
7950 && address_size < (sizeof (ULONGEST) * 8))
7951 {
7952 /* Only create a mask when that mask can safely be constructed
7953 in a ULONGEST variable. */
7954 ULONGEST mask = 1;
7955
7956 mask = (mask << address_size) - 1;
7957 addr &= mask;
7958 }
7959 return addr;
7960 }
7961
7962 /* Determine whether the remote target supports binary downloading.
7963 This is accomplished by sending a no-op memory write of zero length
7964 to the target at the specified address. It does not suffice to send
7965 the whole packet, since many stubs strip the eighth bit and
7966 subsequently compute a wrong checksum, which causes real havoc with
7967 remote_write_bytes.
7968
7969 NOTE: This can still lose if the serial line is not eight-bit
7970 clean. In cases like this, the user should clear "remote
7971 X-packet". */
7972
7973 static void
7974 check_binary_download (CORE_ADDR addr)
7975 {
7976 struct remote_state *rs = get_remote_state ();
7977
7978 switch (packet_support (PACKET_X))
7979 {
7980 case PACKET_DISABLE:
7981 break;
7982 case PACKET_ENABLE:
7983 break;
7984 case PACKET_SUPPORT_UNKNOWN:
7985 {
7986 char *p;
7987
7988 p = rs->buf;
7989 *p++ = 'X';
7990 p += hexnumstr (p, (ULONGEST) addr);
7991 *p++ = ',';
7992 p += hexnumstr (p, (ULONGEST) 0);
7993 *p++ = ':';
7994 *p = '\0';
7995
7996 putpkt_binary (rs->buf, (int) (p - rs->buf));
7997 getpkt (&rs->buf, &rs->buf_size, 0);
7998
7999 if (rs->buf[0] == '\0')
8000 {
8001 if (remote_debug)
8002 fprintf_unfiltered (gdb_stdlog,
8003 "binary downloading NOT "
8004 "supported by target\n");
8005 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8006 }
8007 else
8008 {
8009 if (remote_debug)
8010 fprintf_unfiltered (gdb_stdlog,
8011 "binary downloading supported by target\n");
8012 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8013 }
8014 break;
8015 }
8016 }
8017 }
8018
8019 /* Helper function to resize the payload in order to try to get a good
8020 alignment. We try to write an amount of data such that the next write will
8021 start on an address aligned on REMOTE_ALIGN_WRITES. */
8022
8023 static int
8024 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8025 {
8026 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8027 }
8028
8029 /* Write memory data directly to the remote machine.
8030 This does not inform the data cache; the data cache uses this.
8031 HEADER is the starting part of the packet.
8032 MEMADDR is the address in the remote memory space.
8033 MYADDR is the address of the buffer in our space.
8034 LEN_UNITS is the number of addressable units to write.
8035 UNIT_SIZE is the length in bytes of an addressable unit.
8036 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8037 should send data as binary ('X'), or hex-encoded ('M').
8038
8039 The function creates packet of the form
8040 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8041
8042 where encoding of <DATA> is terminated by PACKET_FORMAT.
8043
8044 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8045 are omitted.
8046
8047 Return the transferred status, error or OK (an
8048 'enum target_xfer_status' value). Save the number of addressable units
8049 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8050
8051 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8052 exchange between gdb and the stub could look like (?? in place of the
8053 checksum):
8054
8055 -> $m1000,4#??
8056 <- aaaabbbbccccdddd
8057
8058 -> $M1000,3:eeeeffffeeee#??
8059 <- OK
8060
8061 -> $m1000,4#??
8062 <- eeeeffffeeeedddd */
8063
8064 static enum target_xfer_status
8065 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8066 const gdb_byte *myaddr, ULONGEST len_units,
8067 int unit_size, ULONGEST *xfered_len_units,
8068 char packet_format, int use_length)
8069 {
8070 struct remote_state *rs = get_remote_state ();
8071 char *p;
8072 char *plen = NULL;
8073 int plenlen = 0;
8074 int todo_units;
8075 int units_written;
8076 int payload_capacity_bytes;
8077 int payload_length_bytes;
8078
8079 if (packet_format != 'X' && packet_format != 'M')
8080 internal_error (__FILE__, __LINE__,
8081 _("remote_write_bytes_aux: bad packet format"));
8082
8083 if (len_units == 0)
8084 return TARGET_XFER_EOF;
8085
8086 payload_capacity_bytes = get_memory_write_packet_size ();
8087
8088 /* The packet buffer will be large enough for the payload;
8089 get_memory_packet_size ensures this. */
8090 rs->buf[0] = '\0';
8091
8092 /* Compute the size of the actual payload by subtracting out the
8093 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8094
8095 payload_capacity_bytes -= strlen ("$,:#NN");
8096 if (!use_length)
8097 /* The comma won't be used. */
8098 payload_capacity_bytes += 1;
8099 payload_capacity_bytes -= strlen (header);
8100 payload_capacity_bytes -= hexnumlen (memaddr);
8101
8102 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8103
8104 strcat (rs->buf, header);
8105 p = rs->buf + strlen (header);
8106
8107 /* Compute a best guess of the number of bytes actually transfered. */
8108 if (packet_format == 'X')
8109 {
8110 /* Best guess at number of bytes that will fit. */
8111 todo_units = std::min (len_units,
8112 (ULONGEST) payload_capacity_bytes / unit_size);
8113 if (use_length)
8114 payload_capacity_bytes -= hexnumlen (todo_units);
8115 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8116 }
8117 else
8118 {
8119 /* Number of bytes that will fit. */
8120 todo_units
8121 = std::min (len_units,
8122 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8123 if (use_length)
8124 payload_capacity_bytes -= hexnumlen (todo_units);
8125 todo_units = std::min (todo_units,
8126 (payload_capacity_bytes / unit_size) / 2);
8127 }
8128
8129 if (todo_units <= 0)
8130 internal_error (__FILE__, __LINE__,
8131 _("minimum packet size too small to write data"));
8132
8133 /* If we already need another packet, then try to align the end
8134 of this packet to a useful boundary. */
8135 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8136 todo_units = align_for_efficient_write (todo_units, memaddr);
8137
8138 /* Append "<memaddr>". */
8139 memaddr = remote_address_masked (memaddr);
8140 p += hexnumstr (p, (ULONGEST) memaddr);
8141
8142 if (use_length)
8143 {
8144 /* Append ",". */
8145 *p++ = ',';
8146
8147 /* Append the length and retain its location and size. It may need to be
8148 adjusted once the packet body has been created. */
8149 plen = p;
8150 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8151 p += plenlen;
8152 }
8153
8154 /* Append ":". */
8155 *p++ = ':';
8156 *p = '\0';
8157
8158 /* Append the packet body. */
8159 if (packet_format == 'X')
8160 {
8161 /* Binary mode. Send target system values byte by byte, in
8162 increasing byte addresses. Only escape certain critical
8163 characters. */
8164 payload_length_bytes =
8165 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8166 &units_written, payload_capacity_bytes);
8167
8168 /* If not all TODO units fit, then we'll need another packet. Make
8169 a second try to keep the end of the packet aligned. Don't do
8170 this if the packet is tiny. */
8171 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8172 {
8173 int new_todo_units;
8174
8175 new_todo_units = align_for_efficient_write (units_written, memaddr);
8176
8177 if (new_todo_units != units_written)
8178 payload_length_bytes =
8179 remote_escape_output (myaddr, new_todo_units, unit_size,
8180 (gdb_byte *) p, &units_written,
8181 payload_capacity_bytes);
8182 }
8183
8184 p += payload_length_bytes;
8185 if (use_length && units_written < todo_units)
8186 {
8187 /* Escape chars have filled up the buffer prematurely,
8188 and we have actually sent fewer units than planned.
8189 Fix-up the length field of the packet. Use the same
8190 number of characters as before. */
8191 plen += hexnumnstr (plen, (ULONGEST) units_written,
8192 plenlen);
8193 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8194 }
8195 }
8196 else
8197 {
8198 /* Normal mode: Send target system values byte by byte, in
8199 increasing byte addresses. Each byte is encoded as a two hex
8200 value. */
8201 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8202 units_written = todo_units;
8203 }
8204
8205 putpkt_binary (rs->buf, (int) (p - rs->buf));
8206 getpkt (&rs->buf, &rs->buf_size, 0);
8207
8208 if (rs->buf[0] == 'E')
8209 return TARGET_XFER_E_IO;
8210
8211 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8212 send fewer units than we'd planned. */
8213 *xfered_len_units = (ULONGEST) units_written;
8214 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8215 }
8216
8217 /* Write memory data directly to the remote machine.
8218 This does not inform the data cache; the data cache uses this.
8219 MEMADDR is the address in the remote memory space.
8220 MYADDR is the address of the buffer in our space.
8221 LEN is the number of bytes.
8222
8223 Return the transferred status, error or OK (an
8224 'enum target_xfer_status' value). Save the number of bytes
8225 transferred in *XFERED_LEN. Only transfer a single packet. */
8226
8227 static enum target_xfer_status
8228 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8229 int unit_size, ULONGEST *xfered_len)
8230 {
8231 const char *packet_format = NULL;
8232
8233 /* Check whether the target supports binary download. */
8234 check_binary_download (memaddr);
8235
8236 switch (packet_support (PACKET_X))
8237 {
8238 case PACKET_ENABLE:
8239 packet_format = "X";
8240 break;
8241 case PACKET_DISABLE:
8242 packet_format = "M";
8243 break;
8244 case PACKET_SUPPORT_UNKNOWN:
8245 internal_error (__FILE__, __LINE__,
8246 _("remote_write_bytes: bad internal state"));
8247 default:
8248 internal_error (__FILE__, __LINE__, _("bad switch"));
8249 }
8250
8251 return remote_write_bytes_aux (packet_format,
8252 memaddr, myaddr, len, unit_size, xfered_len,
8253 packet_format[0], 1);
8254 }
8255
8256 /* Read memory data directly from the remote machine.
8257 This does not use the data cache; the data cache uses this.
8258 MEMADDR is the address in the remote memory space.
8259 MYADDR is the address of the buffer in our space.
8260 LEN_UNITS is the number of addressable memory units to read..
8261 UNIT_SIZE is the length in bytes of an addressable unit.
8262
8263 Return the transferred status, error or OK (an
8264 'enum target_xfer_status' value). Save the number of bytes
8265 transferred in *XFERED_LEN_UNITS.
8266
8267 See the comment of remote_write_bytes_aux for an example of
8268 memory read/write exchange between gdb and the stub. */
8269
8270 static enum target_xfer_status
8271 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8272 int unit_size, ULONGEST *xfered_len_units)
8273 {
8274 struct remote_state *rs = get_remote_state ();
8275 int buf_size_bytes; /* Max size of packet output buffer. */
8276 char *p;
8277 int todo_units;
8278 int decoded_bytes;
8279
8280 buf_size_bytes = get_memory_read_packet_size ();
8281 /* The packet buffer will be large enough for the payload;
8282 get_memory_packet_size ensures this. */
8283
8284 /* Number of units that will fit. */
8285 todo_units = std::min (len_units,
8286 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8287
8288 /* Construct "m"<memaddr>","<len>". */
8289 memaddr = remote_address_masked (memaddr);
8290 p = rs->buf;
8291 *p++ = 'm';
8292 p += hexnumstr (p, (ULONGEST) memaddr);
8293 *p++ = ',';
8294 p += hexnumstr (p, (ULONGEST) todo_units);
8295 *p = '\0';
8296 putpkt (rs->buf);
8297 getpkt (&rs->buf, &rs->buf_size, 0);
8298 if (rs->buf[0] == 'E'
8299 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8300 && rs->buf[3] == '\0')
8301 return TARGET_XFER_E_IO;
8302 /* Reply describes memory byte by byte, each byte encoded as two hex
8303 characters. */
8304 p = rs->buf;
8305 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8306 /* Return what we have. Let higher layers handle partial reads. */
8307 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8308 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8309 }
8310
8311 /* Using the set of read-only target sections of remote, read live
8312 read-only memory.
8313
8314 For interface/parameters/return description see target.h,
8315 to_xfer_partial. */
8316
8317 static enum target_xfer_status
8318 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8319 ULONGEST memaddr, ULONGEST len,
8320 int unit_size, ULONGEST *xfered_len)
8321 {
8322 struct target_section *secp;
8323 struct target_section_table *table;
8324
8325 secp = target_section_by_addr (ops, memaddr);
8326 if (secp != NULL
8327 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8328 secp->the_bfd_section)
8329 & SEC_READONLY))
8330 {
8331 struct target_section *p;
8332 ULONGEST memend = memaddr + len;
8333
8334 table = target_get_section_table (ops);
8335
8336 for (p = table->sections; p < table->sections_end; p++)
8337 {
8338 if (memaddr >= p->addr)
8339 {
8340 if (memend <= p->endaddr)
8341 {
8342 /* Entire transfer is within this section. */
8343 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8344 xfered_len);
8345 }
8346 else if (memaddr >= p->endaddr)
8347 {
8348 /* This section ends before the transfer starts. */
8349 continue;
8350 }
8351 else
8352 {
8353 /* This section overlaps the transfer. Just do half. */
8354 len = p->endaddr - memaddr;
8355 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8356 xfered_len);
8357 }
8358 }
8359 }
8360 }
8361
8362 return TARGET_XFER_EOF;
8363 }
8364
8365 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8366 first if the requested memory is unavailable in traceframe.
8367 Otherwise, fall back to remote_read_bytes_1. */
8368
8369 static enum target_xfer_status
8370 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8371 gdb_byte *myaddr, ULONGEST len, int unit_size,
8372 ULONGEST *xfered_len)
8373 {
8374 if (len == 0)
8375 return TARGET_XFER_EOF;
8376
8377 if (get_traceframe_number () != -1)
8378 {
8379 std::vector<mem_range> available;
8380
8381 /* If we fail to get the set of available memory, then the
8382 target does not support querying traceframe info, and so we
8383 attempt reading from the traceframe anyway (assuming the
8384 target implements the old QTro packet then). */
8385 if (traceframe_available_memory (&available, memaddr, len))
8386 {
8387 if (available.empty () || available[0].start != memaddr)
8388 {
8389 enum target_xfer_status res;
8390
8391 /* Don't read into the traceframe's available
8392 memory. */
8393 if (!available.empty ())
8394 {
8395 LONGEST oldlen = len;
8396
8397 len = available[0].start - memaddr;
8398 gdb_assert (len <= oldlen);
8399 }
8400
8401 /* This goes through the topmost target again. */
8402 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8403 len, unit_size, xfered_len);
8404 if (res == TARGET_XFER_OK)
8405 return TARGET_XFER_OK;
8406 else
8407 {
8408 /* No use trying further, we know some memory starting
8409 at MEMADDR isn't available. */
8410 *xfered_len = len;
8411 return (*xfered_len != 0) ?
8412 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8413 }
8414 }
8415
8416 /* Don't try to read more than how much is available, in
8417 case the target implements the deprecated QTro packet to
8418 cater for older GDBs (the target's knowledge of read-only
8419 sections may be outdated by now). */
8420 len = available[0].length;
8421 }
8422 }
8423
8424 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8425 }
8426
8427 \f
8428
8429 /* Sends a packet with content determined by the printf format string
8430 FORMAT and the remaining arguments, then gets the reply. Returns
8431 whether the packet was a success, a failure, or unknown. */
8432
8433 static enum packet_result remote_send_printf (const char *format, ...)
8434 ATTRIBUTE_PRINTF (1, 2);
8435
8436 static enum packet_result
8437 remote_send_printf (const char *format, ...)
8438 {
8439 struct remote_state *rs = get_remote_state ();
8440 int max_size = get_remote_packet_size ();
8441 va_list ap;
8442
8443 va_start (ap, format);
8444
8445 rs->buf[0] = '\0';
8446 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8447 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8448
8449 if (putpkt (rs->buf) < 0)
8450 error (_("Communication problem with target."));
8451
8452 rs->buf[0] = '\0';
8453 getpkt (&rs->buf, &rs->buf_size, 0);
8454
8455 return packet_check_result (rs->buf);
8456 }
8457
8458 /* Flash writing can take quite some time. We'll set
8459 effectively infinite timeout for flash operations.
8460 In future, we'll need to decide on a better approach. */
8461 static const int remote_flash_timeout = 1000;
8462
8463 static void
8464 remote_flash_erase (struct target_ops *ops,
8465 ULONGEST address, LONGEST length)
8466 {
8467 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8468 enum packet_result ret;
8469 scoped_restore restore_timeout
8470 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8471
8472 ret = remote_send_printf ("vFlashErase:%s,%s",
8473 phex (address, addr_size),
8474 phex (length, 4));
8475 switch (ret)
8476 {
8477 case PACKET_UNKNOWN:
8478 error (_("Remote target does not support flash erase"));
8479 case PACKET_ERROR:
8480 error (_("Error erasing flash with vFlashErase packet"));
8481 default:
8482 break;
8483 }
8484 }
8485
8486 static enum target_xfer_status
8487 remote_flash_write (struct target_ops *ops, ULONGEST address,
8488 ULONGEST length, ULONGEST *xfered_len,
8489 const gdb_byte *data)
8490 {
8491 scoped_restore restore_timeout
8492 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8493 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8494 xfered_len,'X', 0);
8495 }
8496
8497 static void
8498 remote_flash_done (struct target_ops *ops)
8499 {
8500 int ret;
8501
8502 scoped_restore restore_timeout
8503 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8504
8505 ret = remote_send_printf ("vFlashDone");
8506
8507 switch (ret)
8508 {
8509 case PACKET_UNKNOWN:
8510 error (_("Remote target does not support vFlashDone"));
8511 case PACKET_ERROR:
8512 error (_("Error finishing flash operation"));
8513 default:
8514 break;
8515 }
8516 }
8517
8518 static void
8519 remote_files_info (struct target_ops *ignore)
8520 {
8521 puts_filtered ("Debugging a target over a serial line.\n");
8522 }
8523 \f
8524 /* Stuff for dealing with the packets which are part of this protocol.
8525 See comment at top of file for details. */
8526
8527 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8528 error to higher layers. Called when a serial error is detected.
8529 The exception message is STRING, followed by a colon and a blank,
8530 the system error message for errno at function entry and final dot
8531 for output compatibility with throw_perror_with_name. */
8532
8533 static void
8534 unpush_and_perror (const char *string)
8535 {
8536 int saved_errno = errno;
8537
8538 remote_unpush_target ();
8539 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8540 safe_strerror (saved_errno));
8541 }
8542
8543 /* Read a single character from the remote end. The current quit
8544 handler is overridden to avoid quitting in the middle of packet
8545 sequence, as that would break communication with the remote server.
8546 See remote_serial_quit_handler for more detail. */
8547
8548 static int
8549 readchar (int timeout)
8550 {
8551 int ch;
8552 struct remote_state *rs = get_remote_state ();
8553
8554 {
8555 scoped_restore restore_quit
8556 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8557
8558 rs->got_ctrlc_during_io = 0;
8559
8560 ch = serial_readchar (rs->remote_desc, timeout);
8561
8562 if (rs->got_ctrlc_during_io)
8563 set_quit_flag ();
8564 }
8565
8566 if (ch >= 0)
8567 return ch;
8568
8569 switch ((enum serial_rc) ch)
8570 {
8571 case SERIAL_EOF:
8572 remote_unpush_target ();
8573 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8574 /* no return */
8575 case SERIAL_ERROR:
8576 unpush_and_perror (_("Remote communication error. "
8577 "Target disconnected."));
8578 /* no return */
8579 case SERIAL_TIMEOUT:
8580 break;
8581 }
8582 return ch;
8583 }
8584
8585 /* Wrapper for serial_write that closes the target and throws if
8586 writing fails. The current quit handler is overridden to avoid
8587 quitting in the middle of packet sequence, as that would break
8588 communication with the remote server. See
8589 remote_serial_quit_handler for more detail. */
8590
8591 static void
8592 remote_serial_write (const char *str, int len)
8593 {
8594 struct remote_state *rs = get_remote_state ();
8595
8596 scoped_restore restore_quit
8597 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8598
8599 rs->got_ctrlc_during_io = 0;
8600
8601 if (serial_write (rs->remote_desc, str, len))
8602 {
8603 unpush_and_perror (_("Remote communication error. "
8604 "Target disconnected."));
8605 }
8606
8607 if (rs->got_ctrlc_during_io)
8608 set_quit_flag ();
8609 }
8610
8611 /* Send the command in *BUF to the remote machine, and read the reply
8612 into *BUF. Report an error if we get an error reply. Resize
8613 *BUF using xrealloc if necessary to hold the result, and update
8614 *SIZEOF_BUF. */
8615
8616 static void
8617 remote_send (char **buf,
8618 long *sizeof_buf)
8619 {
8620 putpkt (*buf);
8621 getpkt (buf, sizeof_buf, 0);
8622
8623 if ((*buf)[0] == 'E')
8624 error (_("Remote failure reply: %s"), *buf);
8625 }
8626
8627 /* Return a string representing an escaped version of BUF, of len N.
8628 E.g. \n is converted to \\n, \t to \\t, etc. */
8629
8630 static std::string
8631 escape_buffer (const char *buf, int n)
8632 {
8633 string_file stb;
8634
8635 stb.putstrn (buf, n, '\\');
8636 return std::move (stb.string ());
8637 }
8638
8639 /* Display a null-terminated packet on stdout, for debugging, using C
8640 string notation. */
8641
8642 static void
8643 print_packet (const char *buf)
8644 {
8645 puts_filtered ("\"");
8646 fputstr_filtered (buf, '"', gdb_stdout);
8647 puts_filtered ("\"");
8648 }
8649
8650 int
8651 putpkt (const char *buf)
8652 {
8653 return putpkt_binary (buf, strlen (buf));
8654 }
8655
8656 /* Send a packet to the remote machine, with error checking. The data
8657 of the packet is in BUF. The string in BUF can be at most
8658 get_remote_packet_size () - 5 to account for the $, # and checksum,
8659 and for a possible /0 if we are debugging (remote_debug) and want
8660 to print the sent packet as a string. */
8661
8662 static int
8663 putpkt_binary (const char *buf, int cnt)
8664 {
8665 struct remote_state *rs = get_remote_state ();
8666 int i;
8667 unsigned char csum = 0;
8668 gdb::def_vector<char> data (cnt + 6);
8669 char *buf2 = data.data ();
8670
8671 int ch;
8672 int tcount = 0;
8673 char *p;
8674
8675 /* Catch cases like trying to read memory or listing threads while
8676 we're waiting for a stop reply. The remote server wouldn't be
8677 ready to handle this request, so we'd hang and timeout. We don't
8678 have to worry about this in synchronous mode, because in that
8679 case it's not possible to issue a command while the target is
8680 running. This is not a problem in non-stop mode, because in that
8681 case, the stub is always ready to process serial input. */
8682 if (!target_is_non_stop_p ()
8683 && target_is_async_p ()
8684 && rs->waiting_for_stop_reply)
8685 {
8686 error (_("Cannot execute this command while the target is running.\n"
8687 "Use the \"interrupt\" command to stop the target\n"
8688 "and then try again."));
8689 }
8690
8691 /* We're sending out a new packet. Make sure we don't look at a
8692 stale cached response. */
8693 rs->cached_wait_status = 0;
8694
8695 /* Copy the packet into buffer BUF2, encapsulating it
8696 and giving it a checksum. */
8697
8698 p = buf2;
8699 *p++ = '$';
8700
8701 for (i = 0; i < cnt; i++)
8702 {
8703 csum += buf[i];
8704 *p++ = buf[i];
8705 }
8706 *p++ = '#';
8707 *p++ = tohex ((csum >> 4) & 0xf);
8708 *p++ = tohex (csum & 0xf);
8709
8710 /* Send it over and over until we get a positive ack. */
8711
8712 while (1)
8713 {
8714 int started_error_output = 0;
8715
8716 if (remote_debug)
8717 {
8718 *p = '\0';
8719
8720 int len = (int) (p - buf2);
8721
8722 std::string str
8723 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8724
8725 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8726
8727 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8728 {
8729 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8730 str.length () - REMOTE_DEBUG_MAX_CHAR);
8731 }
8732
8733 fprintf_unfiltered (gdb_stdlog, "...");
8734
8735 gdb_flush (gdb_stdlog);
8736 }
8737 remote_serial_write (buf2, p - buf2);
8738
8739 /* If this is a no acks version of the remote protocol, send the
8740 packet and move on. */
8741 if (rs->noack_mode)
8742 break;
8743
8744 /* Read until either a timeout occurs (-2) or '+' is read.
8745 Handle any notification that arrives in the mean time. */
8746 while (1)
8747 {
8748 ch = readchar (remote_timeout);
8749
8750 if (remote_debug)
8751 {
8752 switch (ch)
8753 {
8754 case '+':
8755 case '-':
8756 case SERIAL_TIMEOUT:
8757 case '$':
8758 case '%':
8759 if (started_error_output)
8760 {
8761 putchar_unfiltered ('\n');
8762 started_error_output = 0;
8763 }
8764 }
8765 }
8766
8767 switch (ch)
8768 {
8769 case '+':
8770 if (remote_debug)
8771 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8772 return 1;
8773 case '-':
8774 if (remote_debug)
8775 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8776 /* FALLTHROUGH */
8777 case SERIAL_TIMEOUT:
8778 tcount++;
8779 if (tcount > 3)
8780 return 0;
8781 break; /* Retransmit buffer. */
8782 case '$':
8783 {
8784 if (remote_debug)
8785 fprintf_unfiltered (gdb_stdlog,
8786 "Packet instead of Ack, ignoring it\n");
8787 /* It's probably an old response sent because an ACK
8788 was lost. Gobble up the packet and ack it so it
8789 doesn't get retransmitted when we resend this
8790 packet. */
8791 skip_frame ();
8792 remote_serial_write ("+", 1);
8793 continue; /* Now, go look for +. */
8794 }
8795
8796 case '%':
8797 {
8798 int val;
8799
8800 /* If we got a notification, handle it, and go back to looking
8801 for an ack. */
8802 /* We've found the start of a notification. Now
8803 collect the data. */
8804 val = read_frame (&rs->buf, &rs->buf_size);
8805 if (val >= 0)
8806 {
8807 if (remote_debug)
8808 {
8809 std::string str = escape_buffer (rs->buf, val);
8810
8811 fprintf_unfiltered (gdb_stdlog,
8812 " Notification received: %s\n",
8813 str.c_str ());
8814 }
8815 handle_notification (rs->notif_state, rs->buf);
8816 /* We're in sync now, rewait for the ack. */
8817 tcount = 0;
8818 }
8819 else
8820 {
8821 if (remote_debug)
8822 {
8823 if (!started_error_output)
8824 {
8825 started_error_output = 1;
8826 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8827 }
8828 fputc_unfiltered (ch & 0177, gdb_stdlog);
8829 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8830 }
8831 }
8832 continue;
8833 }
8834 /* fall-through */
8835 default:
8836 if (remote_debug)
8837 {
8838 if (!started_error_output)
8839 {
8840 started_error_output = 1;
8841 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8842 }
8843 fputc_unfiltered (ch & 0177, gdb_stdlog);
8844 }
8845 continue;
8846 }
8847 break; /* Here to retransmit. */
8848 }
8849
8850 #if 0
8851 /* This is wrong. If doing a long backtrace, the user should be
8852 able to get out next time we call QUIT, without anything as
8853 violent as interrupt_query. If we want to provide a way out of
8854 here without getting to the next QUIT, it should be based on
8855 hitting ^C twice as in remote_wait. */
8856 if (quit_flag)
8857 {
8858 quit_flag = 0;
8859 interrupt_query ();
8860 }
8861 #endif
8862 }
8863
8864 return 0;
8865 }
8866
8867 /* Come here after finding the start of a frame when we expected an
8868 ack. Do our best to discard the rest of this packet. */
8869
8870 static void
8871 skip_frame (void)
8872 {
8873 int c;
8874
8875 while (1)
8876 {
8877 c = readchar (remote_timeout);
8878 switch (c)
8879 {
8880 case SERIAL_TIMEOUT:
8881 /* Nothing we can do. */
8882 return;
8883 case '#':
8884 /* Discard the two bytes of checksum and stop. */
8885 c = readchar (remote_timeout);
8886 if (c >= 0)
8887 c = readchar (remote_timeout);
8888
8889 return;
8890 case '*': /* Run length encoding. */
8891 /* Discard the repeat count. */
8892 c = readchar (remote_timeout);
8893 if (c < 0)
8894 return;
8895 break;
8896 default:
8897 /* A regular character. */
8898 break;
8899 }
8900 }
8901 }
8902
8903 /* Come here after finding the start of the frame. Collect the rest
8904 into *BUF, verifying the checksum, length, and handling run-length
8905 compression. NUL terminate the buffer. If there is not enough room,
8906 expand *BUF using xrealloc.
8907
8908 Returns -1 on error, number of characters in buffer (ignoring the
8909 trailing NULL) on success. (could be extended to return one of the
8910 SERIAL status indications). */
8911
8912 static long
8913 read_frame (char **buf_p,
8914 long *sizeof_buf)
8915 {
8916 unsigned char csum;
8917 long bc;
8918 int c;
8919 char *buf = *buf_p;
8920 struct remote_state *rs = get_remote_state ();
8921
8922 csum = 0;
8923 bc = 0;
8924
8925 while (1)
8926 {
8927 c = readchar (remote_timeout);
8928 switch (c)
8929 {
8930 case SERIAL_TIMEOUT:
8931 if (remote_debug)
8932 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8933 return -1;
8934 case '$':
8935 if (remote_debug)
8936 fputs_filtered ("Saw new packet start in middle of old one\n",
8937 gdb_stdlog);
8938 return -1; /* Start a new packet, count retries. */
8939 case '#':
8940 {
8941 unsigned char pktcsum;
8942 int check_0 = 0;
8943 int check_1 = 0;
8944
8945 buf[bc] = '\0';
8946
8947 check_0 = readchar (remote_timeout);
8948 if (check_0 >= 0)
8949 check_1 = readchar (remote_timeout);
8950
8951 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8952 {
8953 if (remote_debug)
8954 fputs_filtered ("Timeout in checksum, retrying\n",
8955 gdb_stdlog);
8956 return -1;
8957 }
8958 else if (check_0 < 0 || check_1 < 0)
8959 {
8960 if (remote_debug)
8961 fputs_filtered ("Communication error in checksum\n",
8962 gdb_stdlog);
8963 return -1;
8964 }
8965
8966 /* Don't recompute the checksum; with no ack packets we
8967 don't have any way to indicate a packet retransmission
8968 is necessary. */
8969 if (rs->noack_mode)
8970 return bc;
8971
8972 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8973 if (csum == pktcsum)
8974 return bc;
8975
8976 if (remote_debug)
8977 {
8978 std::string str = escape_buffer (buf, bc);
8979
8980 fprintf_unfiltered (gdb_stdlog,
8981 "Bad checksum, sentsum=0x%x, "
8982 "csum=0x%x, buf=%s\n",
8983 pktcsum, csum, str.c_str ());
8984 }
8985 /* Number of characters in buffer ignoring trailing
8986 NULL. */
8987 return -1;
8988 }
8989 case '*': /* Run length encoding. */
8990 {
8991 int repeat;
8992
8993 csum += c;
8994 c = readchar (remote_timeout);
8995 csum += c;
8996 repeat = c - ' ' + 3; /* Compute repeat count. */
8997
8998 /* The character before ``*'' is repeated. */
8999
9000 if (repeat > 0 && repeat <= 255 && bc > 0)
9001 {
9002 if (bc + repeat - 1 >= *sizeof_buf - 1)
9003 {
9004 /* Make some more room in the buffer. */
9005 *sizeof_buf += repeat;
9006 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9007 buf = *buf_p;
9008 }
9009
9010 memset (&buf[bc], buf[bc - 1], repeat);
9011 bc += repeat;
9012 continue;
9013 }
9014
9015 buf[bc] = '\0';
9016 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9017 return -1;
9018 }
9019 default:
9020 if (bc >= *sizeof_buf - 1)
9021 {
9022 /* Make some more room in the buffer. */
9023 *sizeof_buf *= 2;
9024 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9025 buf = *buf_p;
9026 }
9027
9028 buf[bc++] = c;
9029 csum += c;
9030 continue;
9031 }
9032 }
9033 }
9034
9035 /* Read a packet from the remote machine, with error checking, and
9036 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9037 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9038 rather than timing out; this is used (in synchronous mode) to wait
9039 for a target that is is executing user code to stop. */
9040 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9041 don't have to change all the calls to getpkt to deal with the
9042 return value, because at the moment I don't know what the right
9043 thing to do it for those. */
9044 void
9045 getpkt (char **buf,
9046 long *sizeof_buf,
9047 int forever)
9048 {
9049 getpkt_sane (buf, sizeof_buf, forever);
9050 }
9051
9052
9053 /* Read a packet from the remote machine, with error checking, and
9054 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9055 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9056 rather than timing out; this is used (in synchronous mode) to wait
9057 for a target that is is executing user code to stop. If FOREVER ==
9058 0, this function is allowed to time out gracefully and return an
9059 indication of this to the caller. Otherwise return the number of
9060 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9061 enough reason to return to the caller. *IS_NOTIF is an output
9062 boolean that indicates whether *BUF holds a notification or not
9063 (a regular packet). */
9064
9065 static int
9066 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9067 int expecting_notif, int *is_notif)
9068 {
9069 struct remote_state *rs = get_remote_state ();
9070 int c;
9071 int tries;
9072 int timeout;
9073 int val = -1;
9074
9075 /* We're reading a new response. Make sure we don't look at a
9076 previously cached response. */
9077 rs->cached_wait_status = 0;
9078
9079 strcpy (*buf, "timeout");
9080
9081 if (forever)
9082 timeout = watchdog > 0 ? watchdog : -1;
9083 else if (expecting_notif)
9084 timeout = 0; /* There should already be a char in the buffer. If
9085 not, bail out. */
9086 else
9087 timeout = remote_timeout;
9088
9089 #define MAX_TRIES 3
9090
9091 /* Process any number of notifications, and then return when
9092 we get a packet. */
9093 for (;;)
9094 {
9095 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9096 times. */
9097 for (tries = 1; tries <= MAX_TRIES; tries++)
9098 {
9099 /* This can loop forever if the remote side sends us
9100 characters continuously, but if it pauses, we'll get
9101 SERIAL_TIMEOUT from readchar because of timeout. Then
9102 we'll count that as a retry.
9103
9104 Note that even when forever is set, we will only wait
9105 forever prior to the start of a packet. After that, we
9106 expect characters to arrive at a brisk pace. They should
9107 show up within remote_timeout intervals. */
9108 do
9109 c = readchar (timeout);
9110 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9111
9112 if (c == SERIAL_TIMEOUT)
9113 {
9114 if (expecting_notif)
9115 return -1; /* Don't complain, it's normal to not get
9116 anything in this case. */
9117
9118 if (forever) /* Watchdog went off? Kill the target. */
9119 {
9120 remote_unpush_target ();
9121 throw_error (TARGET_CLOSE_ERROR,
9122 _("Watchdog timeout has expired. "
9123 "Target detached."));
9124 }
9125 if (remote_debug)
9126 fputs_filtered ("Timed out.\n", gdb_stdlog);
9127 }
9128 else
9129 {
9130 /* We've found the start of a packet or notification.
9131 Now collect the data. */
9132 val = read_frame (buf, sizeof_buf);
9133 if (val >= 0)
9134 break;
9135 }
9136
9137 remote_serial_write ("-", 1);
9138 }
9139
9140 if (tries > MAX_TRIES)
9141 {
9142 /* We have tried hard enough, and just can't receive the
9143 packet/notification. Give up. */
9144 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9145
9146 /* Skip the ack char if we're in no-ack mode. */
9147 if (!rs->noack_mode)
9148 remote_serial_write ("+", 1);
9149 return -1;
9150 }
9151
9152 /* If we got an ordinary packet, return that to our caller. */
9153 if (c == '$')
9154 {
9155 if (remote_debug)
9156 {
9157 std::string str
9158 = escape_buffer (*buf,
9159 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9160
9161 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9162 str.c_str ());
9163
9164 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9165 {
9166 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9167 str.length () - REMOTE_DEBUG_MAX_CHAR);
9168 }
9169
9170 fprintf_unfiltered (gdb_stdlog, "\n");
9171 }
9172
9173 /* Skip the ack char if we're in no-ack mode. */
9174 if (!rs->noack_mode)
9175 remote_serial_write ("+", 1);
9176 if (is_notif != NULL)
9177 *is_notif = 0;
9178 return val;
9179 }
9180
9181 /* If we got a notification, handle it, and go back to looking
9182 for a packet. */
9183 else
9184 {
9185 gdb_assert (c == '%');
9186
9187 if (remote_debug)
9188 {
9189 std::string str = escape_buffer (*buf, val);
9190
9191 fprintf_unfiltered (gdb_stdlog,
9192 " Notification received: %s\n",
9193 str.c_str ());
9194 }
9195 if (is_notif != NULL)
9196 *is_notif = 1;
9197
9198 handle_notification (rs->notif_state, *buf);
9199
9200 /* Notifications require no acknowledgement. */
9201
9202 if (expecting_notif)
9203 return val;
9204 }
9205 }
9206 }
9207
9208 static int
9209 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9210 {
9211 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9212 }
9213
9214 static int
9215 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9216 int *is_notif)
9217 {
9218 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9219 is_notif);
9220 }
9221
9222 /* Check whether EVENT is a fork event for the process specified
9223 by the pid passed in DATA, and if it is, kill the fork child. */
9224
9225 static int
9226 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9227 QUEUE_ITER (stop_reply_p) *iter,
9228 stop_reply_p event,
9229 void *data)
9230 {
9231 struct queue_iter_param *param = (struct queue_iter_param *) data;
9232 int parent_pid = *(int *) param->input;
9233
9234 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9235 {
9236 struct remote_state *rs = get_remote_state ();
9237 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9238 int res;
9239
9240 res = remote_vkill (child_pid, rs);
9241 if (res != 0)
9242 error (_("Can't kill fork child process %d"), child_pid);
9243 }
9244
9245 return 1;
9246 }
9247
9248 /* Kill any new fork children of process PID that haven't been
9249 processed by follow_fork. */
9250
9251 static void
9252 kill_new_fork_children (int pid, struct remote_state *rs)
9253 {
9254 struct thread_info *thread;
9255 struct notif_client *notif = &notif_client_stop;
9256 struct queue_iter_param param;
9257
9258 /* Kill the fork child threads of any threads in process PID
9259 that are stopped at a fork event. */
9260 ALL_NON_EXITED_THREADS (thread)
9261 {
9262 struct target_waitstatus *ws = &thread->pending_follow;
9263
9264 if (is_pending_fork_parent (ws, pid, thread->ptid))
9265 {
9266 struct remote_state *rs = get_remote_state ();
9267 int child_pid = ptid_get_pid (ws->value.related_pid);
9268 int res;
9269
9270 res = remote_vkill (child_pid, rs);
9271 if (res != 0)
9272 error (_("Can't kill fork child process %d"), child_pid);
9273 }
9274 }
9275
9276 /* Check for any pending fork events (not reported or processed yet)
9277 in process PID and kill those fork child threads as well. */
9278 remote_notif_get_pending_events (notif);
9279 param.input = &pid;
9280 param.output = NULL;
9281 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9282 kill_child_of_pending_fork, &param);
9283 }
9284
9285 \f
9286 /* Target hook to kill the current inferior. */
9287
9288 static void
9289 remote_kill (struct target_ops *ops)
9290 {
9291 int res = -1;
9292 int pid = ptid_get_pid (inferior_ptid);
9293 struct remote_state *rs = get_remote_state ();
9294
9295 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9296 {
9297 /* If we're stopped while forking and we haven't followed yet,
9298 kill the child task. We need to do this before killing the
9299 parent task because if this is a vfork then the parent will
9300 be sleeping. */
9301 kill_new_fork_children (pid, rs);
9302
9303 res = remote_vkill (pid, rs);
9304 if (res == 0)
9305 {
9306 target_mourn_inferior (inferior_ptid);
9307 return;
9308 }
9309 }
9310
9311 /* If we are in 'target remote' mode and we are killing the only
9312 inferior, then we will tell gdbserver to exit and unpush the
9313 target. */
9314 if (res == -1 && !remote_multi_process_p (rs)
9315 && number_of_live_inferiors () == 1)
9316 {
9317 remote_kill_k ();
9318
9319 /* We've killed the remote end, we get to mourn it. If we are
9320 not in extended mode, mourning the inferior also unpushes
9321 remote_ops from the target stack, which closes the remote
9322 connection. */
9323 target_mourn_inferior (inferior_ptid);
9324
9325 return;
9326 }
9327
9328 error (_("Can't kill process"));
9329 }
9330
9331 /* Send a kill request to the target using the 'vKill' packet. */
9332
9333 static int
9334 remote_vkill (int pid, struct remote_state *rs)
9335 {
9336 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9337 return -1;
9338
9339 /* Tell the remote target to detach. */
9340 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9341 putpkt (rs->buf);
9342 getpkt (&rs->buf, &rs->buf_size, 0);
9343
9344 switch (packet_ok (rs->buf,
9345 &remote_protocol_packets[PACKET_vKill]))
9346 {
9347 case PACKET_OK:
9348 return 0;
9349 case PACKET_ERROR:
9350 return 1;
9351 case PACKET_UNKNOWN:
9352 return -1;
9353 default:
9354 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9355 }
9356 }
9357
9358 /* Send a kill request to the target using the 'k' packet. */
9359
9360 static void
9361 remote_kill_k (void)
9362 {
9363 /* Catch errors so the user can quit from gdb even when we
9364 aren't on speaking terms with the remote system. */
9365 TRY
9366 {
9367 putpkt ("k");
9368 }
9369 CATCH (ex, RETURN_MASK_ERROR)
9370 {
9371 if (ex.error == TARGET_CLOSE_ERROR)
9372 {
9373 /* If we got an (EOF) error that caused the target
9374 to go away, then we're done, that's what we wanted.
9375 "k" is susceptible to cause a premature EOF, given
9376 that the remote server isn't actually required to
9377 reply to "k", and it can happen that it doesn't
9378 even get to reply ACK to the "k". */
9379 return;
9380 }
9381
9382 /* Otherwise, something went wrong. We didn't actually kill
9383 the target. Just propagate the exception, and let the
9384 user or higher layers decide what to do. */
9385 throw_exception (ex);
9386 }
9387 END_CATCH
9388 }
9389
9390 static void
9391 remote_mourn (struct target_ops *target)
9392 {
9393 struct remote_state *rs = get_remote_state ();
9394
9395 /* In 'target remote' mode with one inferior, we close the connection. */
9396 if (!rs->extended && number_of_live_inferiors () <= 1)
9397 {
9398 unpush_target (target);
9399
9400 /* remote_close takes care of doing most of the clean up. */
9401 generic_mourn_inferior ();
9402 return;
9403 }
9404
9405 /* In case we got here due to an error, but we're going to stay
9406 connected. */
9407 rs->waiting_for_stop_reply = 0;
9408
9409 /* If the current general thread belonged to the process we just
9410 detached from or has exited, the remote side current general
9411 thread becomes undefined. Considering a case like this:
9412
9413 - We just got here due to a detach.
9414 - The process that we're detaching from happens to immediately
9415 report a global breakpoint being hit in non-stop mode, in the
9416 same thread we had selected before.
9417 - GDB attaches to this process again.
9418 - This event happens to be the next event we handle.
9419
9420 GDB would consider that the current general thread didn't need to
9421 be set on the stub side (with Hg), since for all it knew,
9422 GENERAL_THREAD hadn't changed.
9423
9424 Notice that although in all-stop mode, the remote server always
9425 sets the current thread to the thread reporting the stop event,
9426 that doesn't happen in non-stop mode; in non-stop, the stub *must
9427 not* change the current thread when reporting a breakpoint hit,
9428 due to the decoupling of event reporting and event handling.
9429
9430 To keep things simple, we always invalidate our notion of the
9431 current thread. */
9432 record_currthread (rs, minus_one_ptid);
9433
9434 /* Call common code to mark the inferior as not running. */
9435 generic_mourn_inferior ();
9436
9437 if (!have_inferiors ())
9438 {
9439 if (!remote_multi_process_p (rs))
9440 {
9441 /* Check whether the target is running now - some remote stubs
9442 automatically restart after kill. */
9443 putpkt ("?");
9444 getpkt (&rs->buf, &rs->buf_size, 0);
9445
9446 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9447 {
9448 /* Assume that the target has been restarted. Set
9449 inferior_ptid so that bits of core GDB realizes
9450 there's something here, e.g., so that the user can
9451 say "kill" again. */
9452 inferior_ptid = magic_null_ptid;
9453 }
9454 }
9455 }
9456 }
9457
9458 static int
9459 extended_remote_supports_disable_randomization (struct target_ops *self)
9460 {
9461 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9462 }
9463
9464 static void
9465 extended_remote_disable_randomization (int val)
9466 {
9467 struct remote_state *rs = get_remote_state ();
9468 char *reply;
9469
9470 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9471 val);
9472 putpkt (rs->buf);
9473 reply = remote_get_noisy_reply ();
9474 if (*reply == '\0')
9475 error (_("Target does not support QDisableRandomization."));
9476 if (strcmp (reply, "OK") != 0)
9477 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9478 }
9479
9480 static int
9481 extended_remote_run (const std::string &args)
9482 {
9483 struct remote_state *rs = get_remote_state ();
9484 int len;
9485 const char *remote_exec_file = get_remote_exec_file ();
9486
9487 /* If the user has disabled vRun support, or we have detected that
9488 support is not available, do not try it. */
9489 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9490 return -1;
9491
9492 strcpy (rs->buf, "vRun;");
9493 len = strlen (rs->buf);
9494
9495 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9496 error (_("Remote file name too long for run packet"));
9497 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9498 strlen (remote_exec_file));
9499
9500 if (!args.empty ())
9501 {
9502 int i;
9503
9504 gdb_argv argv (args.c_str ());
9505 for (i = 0; argv[i] != NULL; i++)
9506 {
9507 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9508 error (_("Argument list too long for run packet"));
9509 rs->buf[len++] = ';';
9510 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9511 strlen (argv[i]));
9512 }
9513 }
9514
9515 rs->buf[len++] = '\0';
9516
9517 putpkt (rs->buf);
9518 getpkt (&rs->buf, &rs->buf_size, 0);
9519
9520 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9521 {
9522 case PACKET_OK:
9523 /* We have a wait response. All is well. */
9524 return 0;
9525 case PACKET_UNKNOWN:
9526 return -1;
9527 case PACKET_ERROR:
9528 if (remote_exec_file[0] == '\0')
9529 error (_("Running the default executable on the remote target failed; "
9530 "try \"set remote exec-file\"?"));
9531 else
9532 error (_("Running \"%s\" on the remote target failed"),
9533 remote_exec_file);
9534 default:
9535 gdb_assert_not_reached (_("bad switch"));
9536 }
9537 }
9538
9539 /* Helper function to send set/unset environment packets. ACTION is
9540 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9541 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9542 sent. */
9543
9544 static void
9545 send_environment_packet (struct remote_state *rs,
9546 const char *action,
9547 const char *packet,
9548 const char *value)
9549 {
9550 /* Convert the environment variable to an hex string, which
9551 is the best format to be transmitted over the wire. */
9552 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9553 strlen (value));
9554
9555 xsnprintf (rs->buf, get_remote_packet_size (),
9556 "%s:%s", packet, encoded_value.c_str ());
9557
9558 putpkt (rs->buf);
9559 getpkt (&rs->buf, &rs->buf_size, 0);
9560 if (strcmp (rs->buf, "OK") != 0)
9561 warning (_("Unable to %s environment variable '%s' on remote."),
9562 action, value);
9563 }
9564
9565 /* Helper function to handle the QEnvironment* packets. */
9566
9567 static void
9568 extended_remote_environment_support (struct remote_state *rs)
9569 {
9570 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9571 {
9572 putpkt ("QEnvironmentReset");
9573 getpkt (&rs->buf, &rs->buf_size, 0);
9574 if (strcmp (rs->buf, "OK") != 0)
9575 warning (_("Unable to reset environment on remote."));
9576 }
9577
9578 gdb_environ *e = &current_inferior ()->environment;
9579
9580 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9581 for (const std::string &el : e->user_set_env ())
9582 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9583 el.c_str ());
9584
9585 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9586 for (const std::string &el : e->user_unset_env ())
9587 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9588 }
9589
9590 /* Helper function to set the current working directory for the
9591 inferior in the remote target. */
9592
9593 static void
9594 extended_remote_set_inferior_cwd (struct remote_state *rs)
9595 {
9596 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9597 {
9598 const char *inferior_cwd = get_inferior_cwd ();
9599
9600 if (inferior_cwd != NULL)
9601 {
9602 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9603 strlen (inferior_cwd));
9604
9605 xsnprintf (rs->buf, get_remote_packet_size (),
9606 "QSetWorkingDir:%s", hexpath.c_str ());
9607 }
9608 else
9609 {
9610 /* An empty inferior_cwd means that the user wants us to
9611 reset the remote server's inferior's cwd. */
9612 xsnprintf (rs->buf, get_remote_packet_size (),
9613 "QSetWorkingDir:");
9614 }
9615
9616 putpkt (rs->buf);
9617 getpkt (&rs->buf, &rs->buf_size, 0);
9618 if (packet_ok (rs->buf,
9619 &remote_protocol_packets[PACKET_QSetWorkingDir])
9620 != PACKET_OK)
9621 error (_("\
9622 Remote replied unexpectedly while setting the inferior's working\n\
9623 directory: %s"),
9624 rs->buf);
9625
9626 }
9627 }
9628
9629 /* In the extended protocol we want to be able to do things like
9630 "run" and have them basically work as expected. So we need
9631 a special create_inferior function. We support changing the
9632 executable file and the command line arguments, but not the
9633 environment. */
9634
9635 static void
9636 extended_remote_create_inferior (struct target_ops *ops,
9637 const char *exec_file,
9638 const std::string &args,
9639 char **env, int from_tty)
9640 {
9641 int run_worked;
9642 char *stop_reply;
9643 struct remote_state *rs = get_remote_state ();
9644 const char *remote_exec_file = get_remote_exec_file ();
9645
9646 /* If running asynchronously, register the target file descriptor
9647 with the event loop. */
9648 if (target_can_async_p ())
9649 target_async (1);
9650
9651 /* Disable address space randomization if requested (and supported). */
9652 if (extended_remote_supports_disable_randomization (ops))
9653 extended_remote_disable_randomization (disable_randomization);
9654
9655 /* If startup-with-shell is on, we inform gdbserver to start the
9656 remote inferior using a shell. */
9657 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9658 {
9659 xsnprintf (rs->buf, get_remote_packet_size (),
9660 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9661 putpkt (rs->buf);
9662 getpkt (&rs->buf, &rs->buf_size, 0);
9663 if (strcmp (rs->buf, "OK") != 0)
9664 error (_("\
9665 Remote replied unexpectedly while setting startup-with-shell: %s"),
9666 rs->buf);
9667 }
9668
9669 extended_remote_environment_support (rs);
9670
9671 extended_remote_set_inferior_cwd (rs);
9672
9673 /* Now restart the remote server. */
9674 run_worked = extended_remote_run (args) != -1;
9675 if (!run_worked)
9676 {
9677 /* vRun was not supported. Fail if we need it to do what the
9678 user requested. */
9679 if (remote_exec_file[0])
9680 error (_("Remote target does not support \"set remote exec-file\""));
9681 if (!args.empty ())
9682 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9683
9684 /* Fall back to "R". */
9685 extended_remote_restart ();
9686 }
9687
9688 if (!have_inferiors ())
9689 {
9690 /* Clean up from the last time we ran, before we mark the target
9691 running again. This will mark breakpoints uninserted, and
9692 get_offsets may insert breakpoints. */
9693 init_thread_list ();
9694 init_wait_for_inferior ();
9695 }
9696
9697 /* vRun's success return is a stop reply. */
9698 stop_reply = run_worked ? rs->buf : NULL;
9699 add_current_inferior_and_thread (stop_reply);
9700
9701 /* Get updated offsets, if the stub uses qOffsets. */
9702 get_offsets ();
9703 }
9704 \f
9705
9706 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9707 the list of conditions (in agent expression bytecode format), if any, the
9708 target needs to evaluate. The output is placed into the packet buffer
9709 started from BUF and ended at BUF_END. */
9710
9711 static int
9712 remote_add_target_side_condition (struct gdbarch *gdbarch,
9713 struct bp_target_info *bp_tgt, char *buf,
9714 char *buf_end)
9715 {
9716 if (bp_tgt->conditions.empty ())
9717 return 0;
9718
9719 buf += strlen (buf);
9720 xsnprintf (buf, buf_end - buf, "%s", ";");
9721 buf++;
9722
9723 /* Send conditions to the target. */
9724 for (agent_expr *aexpr : bp_tgt->conditions)
9725 {
9726 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9727 buf += strlen (buf);
9728 for (int i = 0; i < aexpr->len; ++i)
9729 buf = pack_hex_byte (buf, aexpr->buf[i]);
9730 *buf = '\0';
9731 }
9732 return 0;
9733 }
9734
9735 static void
9736 remote_add_target_side_commands (struct gdbarch *gdbarch,
9737 struct bp_target_info *bp_tgt, char *buf)
9738 {
9739 if (bp_tgt->tcommands.empty ())
9740 return;
9741
9742 buf += strlen (buf);
9743
9744 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9745 buf += strlen (buf);
9746
9747 /* Concatenate all the agent expressions that are commands into the
9748 cmds parameter. */
9749 for (agent_expr *aexpr : bp_tgt->tcommands)
9750 {
9751 sprintf (buf, "X%x,", aexpr->len);
9752 buf += strlen (buf);
9753 for (int i = 0; i < aexpr->len; ++i)
9754 buf = pack_hex_byte (buf, aexpr->buf[i]);
9755 *buf = '\0';
9756 }
9757 }
9758
9759 /* Insert a breakpoint. On targets that have software breakpoint
9760 support, we ask the remote target to do the work; on targets
9761 which don't, we insert a traditional memory breakpoint. */
9762
9763 static int
9764 remote_insert_breakpoint (struct target_ops *ops,
9765 struct gdbarch *gdbarch,
9766 struct bp_target_info *bp_tgt)
9767 {
9768 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9769 If it succeeds, then set the support to PACKET_ENABLE. If it
9770 fails, and the user has explicitly requested the Z support then
9771 report an error, otherwise, mark it disabled and go on. */
9772
9773 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9774 {
9775 CORE_ADDR addr = bp_tgt->reqstd_address;
9776 struct remote_state *rs;
9777 char *p, *endbuf;
9778
9779 /* Make sure the remote is pointing at the right process, if
9780 necessary. */
9781 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9782 set_general_process ();
9783
9784 rs = get_remote_state ();
9785 p = rs->buf;
9786 endbuf = rs->buf + get_remote_packet_size ();
9787
9788 *(p++) = 'Z';
9789 *(p++) = '0';
9790 *(p++) = ',';
9791 addr = (ULONGEST) remote_address_masked (addr);
9792 p += hexnumstr (p, addr);
9793 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9794
9795 if (remote_supports_cond_breakpoints (ops))
9796 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9797
9798 if (remote_can_run_breakpoint_commands (ops))
9799 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9800
9801 putpkt (rs->buf);
9802 getpkt (&rs->buf, &rs->buf_size, 0);
9803
9804 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9805 {
9806 case PACKET_ERROR:
9807 return -1;
9808 case PACKET_OK:
9809 return 0;
9810 case PACKET_UNKNOWN:
9811 break;
9812 }
9813 }
9814
9815 /* If this breakpoint has target-side commands but this stub doesn't
9816 support Z0 packets, throw error. */
9817 if (!bp_tgt->tcommands.empty ())
9818 throw_error (NOT_SUPPORTED_ERROR, _("\
9819 Target doesn't support breakpoints that have target side commands."));
9820
9821 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9822 }
9823
9824 static int
9825 remote_remove_breakpoint (struct target_ops *ops,
9826 struct gdbarch *gdbarch,
9827 struct bp_target_info *bp_tgt,
9828 enum remove_bp_reason reason)
9829 {
9830 CORE_ADDR addr = bp_tgt->placed_address;
9831 struct remote_state *rs = get_remote_state ();
9832
9833 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9834 {
9835 char *p = rs->buf;
9836 char *endbuf = rs->buf + get_remote_packet_size ();
9837
9838 /* Make sure the remote is pointing at the right process, if
9839 necessary. */
9840 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9841 set_general_process ();
9842
9843 *(p++) = 'z';
9844 *(p++) = '0';
9845 *(p++) = ',';
9846
9847 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9848 p += hexnumstr (p, addr);
9849 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9850
9851 putpkt (rs->buf);
9852 getpkt (&rs->buf, &rs->buf_size, 0);
9853
9854 return (rs->buf[0] == 'E');
9855 }
9856
9857 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9858 }
9859
9860 static enum Z_packet_type
9861 watchpoint_to_Z_packet (int type)
9862 {
9863 switch (type)
9864 {
9865 case hw_write:
9866 return Z_PACKET_WRITE_WP;
9867 break;
9868 case hw_read:
9869 return Z_PACKET_READ_WP;
9870 break;
9871 case hw_access:
9872 return Z_PACKET_ACCESS_WP;
9873 break;
9874 default:
9875 internal_error (__FILE__, __LINE__,
9876 _("hw_bp_to_z: bad watchpoint type %d"), type);
9877 }
9878 }
9879
9880 static int
9881 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9882 enum target_hw_bp_type type, struct expression *cond)
9883 {
9884 struct remote_state *rs = get_remote_state ();
9885 char *endbuf = rs->buf + get_remote_packet_size ();
9886 char *p;
9887 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9888
9889 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9890 return 1;
9891
9892 /* Make sure the remote is pointing at the right process, if
9893 necessary. */
9894 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9895 set_general_process ();
9896
9897 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9898 p = strchr (rs->buf, '\0');
9899 addr = remote_address_masked (addr);
9900 p += hexnumstr (p, (ULONGEST) addr);
9901 xsnprintf (p, endbuf - p, ",%x", len);
9902
9903 putpkt (rs->buf);
9904 getpkt (&rs->buf, &rs->buf_size, 0);
9905
9906 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9907 {
9908 case PACKET_ERROR:
9909 return -1;
9910 case PACKET_UNKNOWN:
9911 return 1;
9912 case PACKET_OK:
9913 return 0;
9914 }
9915 internal_error (__FILE__, __LINE__,
9916 _("remote_insert_watchpoint: reached end of function"));
9917 }
9918
9919 static int
9920 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9921 CORE_ADDR start, int length)
9922 {
9923 CORE_ADDR diff = remote_address_masked (addr - start);
9924
9925 return diff < length;
9926 }
9927
9928
9929 static int
9930 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9931 enum target_hw_bp_type type, struct expression *cond)
9932 {
9933 struct remote_state *rs = get_remote_state ();
9934 char *endbuf = rs->buf + get_remote_packet_size ();
9935 char *p;
9936 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9937
9938 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9939 return -1;
9940
9941 /* Make sure the remote is pointing at the right process, if
9942 necessary. */
9943 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9944 set_general_process ();
9945
9946 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9947 p = strchr (rs->buf, '\0');
9948 addr = remote_address_masked (addr);
9949 p += hexnumstr (p, (ULONGEST) addr);
9950 xsnprintf (p, endbuf - p, ",%x", len);
9951 putpkt (rs->buf);
9952 getpkt (&rs->buf, &rs->buf_size, 0);
9953
9954 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9955 {
9956 case PACKET_ERROR:
9957 case PACKET_UNKNOWN:
9958 return -1;
9959 case PACKET_OK:
9960 return 0;
9961 }
9962 internal_error (__FILE__, __LINE__,
9963 _("remote_remove_watchpoint: reached end of function"));
9964 }
9965
9966
9967 int remote_hw_watchpoint_limit = -1;
9968 int remote_hw_watchpoint_length_limit = -1;
9969 int remote_hw_breakpoint_limit = -1;
9970
9971 static int
9972 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9973 CORE_ADDR addr, int len)
9974 {
9975 if (remote_hw_watchpoint_length_limit == 0)
9976 return 0;
9977 else if (remote_hw_watchpoint_length_limit < 0)
9978 return 1;
9979 else if (len <= remote_hw_watchpoint_length_limit)
9980 return 1;
9981 else
9982 return 0;
9983 }
9984
9985 static int
9986 remote_check_watch_resources (struct target_ops *self,
9987 enum bptype type, int cnt, int ot)
9988 {
9989 if (type == bp_hardware_breakpoint)
9990 {
9991 if (remote_hw_breakpoint_limit == 0)
9992 return 0;
9993 else if (remote_hw_breakpoint_limit < 0)
9994 return 1;
9995 else if (cnt <= remote_hw_breakpoint_limit)
9996 return 1;
9997 }
9998 else
9999 {
10000 if (remote_hw_watchpoint_limit == 0)
10001 return 0;
10002 else if (remote_hw_watchpoint_limit < 0)
10003 return 1;
10004 else if (ot)
10005 return -1;
10006 else if (cnt <= remote_hw_watchpoint_limit)
10007 return 1;
10008 }
10009 return -1;
10010 }
10011
10012 /* The to_stopped_by_sw_breakpoint method of target remote. */
10013
10014 static int
10015 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10016 {
10017 struct thread_info *thread = inferior_thread ();
10018
10019 return (thread->priv != NULL
10020 && (get_remote_thread_info (thread)->stop_reason
10021 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10022 }
10023
10024 /* The to_supports_stopped_by_sw_breakpoint method of target
10025 remote. */
10026
10027 static int
10028 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10029 {
10030 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10031 }
10032
10033 /* The to_stopped_by_hw_breakpoint method of target remote. */
10034
10035 static int
10036 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10037 {
10038 struct thread_info *thread = inferior_thread ();
10039
10040 return (thread->priv != NULL
10041 && (get_remote_thread_info (thread)->stop_reason
10042 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10043 }
10044
10045 /* The to_supports_stopped_by_hw_breakpoint method of target
10046 remote. */
10047
10048 static int
10049 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10050 {
10051 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10052 }
10053
10054 static int
10055 remote_stopped_by_watchpoint (struct target_ops *ops)
10056 {
10057 struct thread_info *thread = inferior_thread ();
10058
10059 return (thread->priv != NULL
10060 && (get_remote_thread_info (thread)->stop_reason
10061 == TARGET_STOPPED_BY_WATCHPOINT));
10062 }
10063
10064 static int
10065 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10066 {
10067 struct thread_info *thread = inferior_thread ();
10068
10069 if (thread->priv != NULL
10070 && (get_remote_thread_info (thread)->stop_reason
10071 == TARGET_STOPPED_BY_WATCHPOINT))
10072 {
10073 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10074 return 1;
10075 }
10076
10077 return 0;
10078 }
10079
10080
10081 static int
10082 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10083 struct bp_target_info *bp_tgt)
10084 {
10085 CORE_ADDR addr = bp_tgt->reqstd_address;
10086 struct remote_state *rs;
10087 char *p, *endbuf;
10088 char *message;
10089
10090 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10091 return -1;
10092
10093 /* Make sure the remote is pointing at the right process, if
10094 necessary. */
10095 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10096 set_general_process ();
10097
10098 rs = get_remote_state ();
10099 p = rs->buf;
10100 endbuf = rs->buf + get_remote_packet_size ();
10101
10102 *(p++) = 'Z';
10103 *(p++) = '1';
10104 *(p++) = ',';
10105
10106 addr = remote_address_masked (addr);
10107 p += hexnumstr (p, (ULONGEST) addr);
10108 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10109
10110 if (remote_supports_cond_breakpoints (self))
10111 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10112
10113 if (remote_can_run_breakpoint_commands (self))
10114 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10115
10116 putpkt (rs->buf);
10117 getpkt (&rs->buf, &rs->buf_size, 0);
10118
10119 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10120 {
10121 case PACKET_ERROR:
10122 if (rs->buf[1] == '.')
10123 {
10124 message = strchr (rs->buf + 2, '.');
10125 if (message)
10126 error (_("Remote failure reply: %s"), message + 1);
10127 }
10128 return -1;
10129 case PACKET_UNKNOWN:
10130 return -1;
10131 case PACKET_OK:
10132 return 0;
10133 }
10134 internal_error (__FILE__, __LINE__,
10135 _("remote_insert_hw_breakpoint: reached end of function"));
10136 }
10137
10138
10139 static int
10140 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10141 struct bp_target_info *bp_tgt)
10142 {
10143 CORE_ADDR addr;
10144 struct remote_state *rs = get_remote_state ();
10145 char *p = rs->buf;
10146 char *endbuf = rs->buf + get_remote_packet_size ();
10147
10148 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10149 return -1;
10150
10151 /* Make sure the remote is pointing at the right process, if
10152 necessary. */
10153 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10154 set_general_process ();
10155
10156 *(p++) = 'z';
10157 *(p++) = '1';
10158 *(p++) = ',';
10159
10160 addr = remote_address_masked (bp_tgt->placed_address);
10161 p += hexnumstr (p, (ULONGEST) addr);
10162 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10163
10164 putpkt (rs->buf);
10165 getpkt (&rs->buf, &rs->buf_size, 0);
10166
10167 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10168 {
10169 case PACKET_ERROR:
10170 case PACKET_UNKNOWN:
10171 return -1;
10172 case PACKET_OK:
10173 return 0;
10174 }
10175 internal_error (__FILE__, __LINE__,
10176 _("remote_remove_hw_breakpoint: reached end of function"));
10177 }
10178
10179 /* Verify memory using the "qCRC:" request. */
10180
10181 static int
10182 remote_verify_memory (struct target_ops *ops,
10183 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10184 {
10185 struct remote_state *rs = get_remote_state ();
10186 unsigned long host_crc, target_crc;
10187 char *tmp;
10188
10189 /* It doesn't make sense to use qCRC if the remote target is
10190 connected but not running. */
10191 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10192 {
10193 enum packet_result result;
10194
10195 /* Make sure the remote is pointing at the right process. */
10196 set_general_process ();
10197
10198 /* FIXME: assumes lma can fit into long. */
10199 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10200 (long) lma, (long) size);
10201 putpkt (rs->buf);
10202
10203 /* Be clever; compute the host_crc before waiting for target
10204 reply. */
10205 host_crc = xcrc32 (data, size, 0xffffffff);
10206
10207 getpkt (&rs->buf, &rs->buf_size, 0);
10208
10209 result = packet_ok (rs->buf,
10210 &remote_protocol_packets[PACKET_qCRC]);
10211 if (result == PACKET_ERROR)
10212 return -1;
10213 else if (result == PACKET_OK)
10214 {
10215 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10216 target_crc = target_crc * 16 + fromhex (*tmp);
10217
10218 return (host_crc == target_crc);
10219 }
10220 }
10221
10222 return simple_verify_memory (ops, data, lma, size);
10223 }
10224
10225 /* compare-sections command
10226
10227 With no arguments, compares each loadable section in the exec bfd
10228 with the same memory range on the target, and reports mismatches.
10229 Useful for verifying the image on the target against the exec file. */
10230
10231 static void
10232 compare_sections_command (const char *args, int from_tty)
10233 {
10234 asection *s;
10235 const char *sectname;
10236 bfd_size_type size;
10237 bfd_vma lma;
10238 int matched = 0;
10239 int mismatched = 0;
10240 int res;
10241 int read_only = 0;
10242
10243 if (!exec_bfd)
10244 error (_("command cannot be used without an exec file"));
10245
10246 /* Make sure the remote is pointing at the right process. */
10247 set_general_process ();
10248
10249 if (args != NULL && strcmp (args, "-r") == 0)
10250 {
10251 read_only = 1;
10252 args = NULL;
10253 }
10254
10255 for (s = exec_bfd->sections; s; s = s->next)
10256 {
10257 if (!(s->flags & SEC_LOAD))
10258 continue; /* Skip non-loadable section. */
10259
10260 if (read_only && (s->flags & SEC_READONLY) == 0)
10261 continue; /* Skip writeable sections */
10262
10263 size = bfd_get_section_size (s);
10264 if (size == 0)
10265 continue; /* Skip zero-length section. */
10266
10267 sectname = bfd_get_section_name (exec_bfd, s);
10268 if (args && strcmp (args, sectname) != 0)
10269 continue; /* Not the section selected by user. */
10270
10271 matched = 1; /* Do this section. */
10272 lma = s->lma;
10273
10274 gdb::byte_vector sectdata (size);
10275 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10276
10277 res = target_verify_memory (sectdata.data (), lma, size);
10278
10279 if (res == -1)
10280 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10281 paddress (target_gdbarch (), lma),
10282 paddress (target_gdbarch (), lma + size));
10283
10284 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10285 paddress (target_gdbarch (), lma),
10286 paddress (target_gdbarch (), lma + size));
10287 if (res)
10288 printf_filtered ("matched.\n");
10289 else
10290 {
10291 printf_filtered ("MIS-MATCHED!\n");
10292 mismatched++;
10293 }
10294 }
10295 if (mismatched > 0)
10296 warning (_("One or more sections of the target image does not match\n\
10297 the loaded file\n"));
10298 if (args && !matched)
10299 printf_filtered (_("No loaded section named '%s'.\n"), args);
10300 }
10301
10302 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10303 into remote target. The number of bytes written to the remote
10304 target is returned, or -1 for error. */
10305
10306 static enum target_xfer_status
10307 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10308 const char *annex, const gdb_byte *writebuf,
10309 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10310 struct packet_config *packet)
10311 {
10312 int i, buf_len;
10313 ULONGEST n;
10314 struct remote_state *rs = get_remote_state ();
10315 int max_size = get_memory_write_packet_size ();
10316
10317 if (packet_config_support (packet) == PACKET_DISABLE)
10318 return TARGET_XFER_E_IO;
10319
10320 /* Insert header. */
10321 i = snprintf (rs->buf, max_size,
10322 "qXfer:%s:write:%s:%s:",
10323 object_name, annex ? annex : "",
10324 phex_nz (offset, sizeof offset));
10325 max_size -= (i + 1);
10326
10327 /* Escape as much data as fits into rs->buf. */
10328 buf_len = remote_escape_output
10329 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10330
10331 if (putpkt_binary (rs->buf, i + buf_len) < 0
10332 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10333 || packet_ok (rs->buf, packet) != PACKET_OK)
10334 return TARGET_XFER_E_IO;
10335
10336 unpack_varlen_hex (rs->buf, &n);
10337
10338 *xfered_len = n;
10339 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10340 }
10341
10342 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10343 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10344 number of bytes read is returned, or 0 for EOF, or -1 for error.
10345 The number of bytes read may be less than LEN without indicating an
10346 EOF. PACKET is checked and updated to indicate whether the remote
10347 target supports this object. */
10348
10349 static enum target_xfer_status
10350 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10351 const char *annex,
10352 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10353 ULONGEST *xfered_len,
10354 struct packet_config *packet)
10355 {
10356 struct remote_state *rs = get_remote_state ();
10357 LONGEST i, n, packet_len;
10358
10359 if (packet_config_support (packet) == PACKET_DISABLE)
10360 return TARGET_XFER_E_IO;
10361
10362 /* Check whether we've cached an end-of-object packet that matches
10363 this request. */
10364 if (rs->finished_object)
10365 {
10366 if (strcmp (object_name, rs->finished_object) == 0
10367 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10368 && offset == rs->finished_offset)
10369 return TARGET_XFER_EOF;
10370
10371
10372 /* Otherwise, we're now reading something different. Discard
10373 the cache. */
10374 xfree (rs->finished_object);
10375 xfree (rs->finished_annex);
10376 rs->finished_object = NULL;
10377 rs->finished_annex = NULL;
10378 }
10379
10380 /* Request only enough to fit in a single packet. The actual data
10381 may not, since we don't know how much of it will need to be escaped;
10382 the target is free to respond with slightly less data. We subtract
10383 five to account for the response type and the protocol frame. */
10384 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10385 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10386 object_name, annex ? annex : "",
10387 phex_nz (offset, sizeof offset),
10388 phex_nz (n, sizeof n));
10389 i = putpkt (rs->buf);
10390 if (i < 0)
10391 return TARGET_XFER_E_IO;
10392
10393 rs->buf[0] = '\0';
10394 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10395 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10396 return TARGET_XFER_E_IO;
10397
10398 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10399 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10400
10401 /* 'm' means there is (or at least might be) more data after this
10402 batch. That does not make sense unless there's at least one byte
10403 of data in this reply. */
10404 if (rs->buf[0] == 'm' && packet_len == 1)
10405 error (_("Remote qXfer reply contained no data."));
10406
10407 /* Got some data. */
10408 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10409 packet_len - 1, readbuf, n);
10410
10411 /* 'l' is an EOF marker, possibly including a final block of data,
10412 or possibly empty. If we have the final block of a non-empty
10413 object, record this fact to bypass a subsequent partial read. */
10414 if (rs->buf[0] == 'l' && offset + i > 0)
10415 {
10416 rs->finished_object = xstrdup (object_name);
10417 rs->finished_annex = xstrdup (annex ? annex : "");
10418 rs->finished_offset = offset + i;
10419 }
10420
10421 if (i == 0)
10422 return TARGET_XFER_EOF;
10423 else
10424 {
10425 *xfered_len = i;
10426 return TARGET_XFER_OK;
10427 }
10428 }
10429
10430 static enum target_xfer_status
10431 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10432 const char *annex, gdb_byte *readbuf,
10433 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10434 ULONGEST *xfered_len)
10435 {
10436 struct remote_state *rs;
10437 int i;
10438 char *p2;
10439 char query_type;
10440 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10441
10442 set_remote_traceframe ();
10443 set_general_thread (inferior_ptid);
10444
10445 rs = get_remote_state ();
10446
10447 /* Handle memory using the standard memory routines. */
10448 if (object == TARGET_OBJECT_MEMORY)
10449 {
10450 /* If the remote target is connected but not running, we should
10451 pass this request down to a lower stratum (e.g. the executable
10452 file). */
10453 if (!target_has_execution)
10454 return TARGET_XFER_EOF;
10455
10456 if (writebuf != NULL)
10457 return remote_write_bytes (offset, writebuf, len, unit_size,
10458 xfered_len);
10459 else
10460 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10461 xfered_len);
10462 }
10463
10464 /* Handle SPU memory using qxfer packets. */
10465 if (object == TARGET_OBJECT_SPU)
10466 {
10467 if (readbuf)
10468 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10469 xfered_len, &remote_protocol_packets
10470 [PACKET_qXfer_spu_read]);
10471 else
10472 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10473 xfered_len, &remote_protocol_packets
10474 [PACKET_qXfer_spu_write]);
10475 }
10476
10477 /* Handle extra signal info using qxfer packets. */
10478 if (object == TARGET_OBJECT_SIGNAL_INFO)
10479 {
10480 if (readbuf)
10481 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10482 xfered_len, &remote_protocol_packets
10483 [PACKET_qXfer_siginfo_read]);
10484 else
10485 return remote_write_qxfer (ops, "siginfo", annex,
10486 writebuf, offset, len, xfered_len,
10487 &remote_protocol_packets
10488 [PACKET_qXfer_siginfo_write]);
10489 }
10490
10491 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10492 {
10493 if (readbuf)
10494 return remote_read_qxfer (ops, "statictrace", annex,
10495 readbuf, offset, len, xfered_len,
10496 &remote_protocol_packets
10497 [PACKET_qXfer_statictrace_read]);
10498 else
10499 return TARGET_XFER_E_IO;
10500 }
10501
10502 /* Only handle flash writes. */
10503 if (writebuf != NULL)
10504 {
10505 switch (object)
10506 {
10507 case TARGET_OBJECT_FLASH:
10508 return remote_flash_write (ops, offset, len, xfered_len,
10509 writebuf);
10510
10511 default:
10512 return TARGET_XFER_E_IO;
10513 }
10514 }
10515
10516 /* Map pre-existing objects onto letters. DO NOT do this for new
10517 objects!!! Instead specify new query packets. */
10518 switch (object)
10519 {
10520 case TARGET_OBJECT_AVR:
10521 query_type = 'R';
10522 break;
10523
10524 case TARGET_OBJECT_AUXV:
10525 gdb_assert (annex == NULL);
10526 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10527 xfered_len,
10528 &remote_protocol_packets[PACKET_qXfer_auxv]);
10529
10530 case TARGET_OBJECT_AVAILABLE_FEATURES:
10531 return remote_read_qxfer
10532 (ops, "features", annex, readbuf, offset, len, xfered_len,
10533 &remote_protocol_packets[PACKET_qXfer_features]);
10534
10535 case TARGET_OBJECT_LIBRARIES:
10536 return remote_read_qxfer
10537 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10538 &remote_protocol_packets[PACKET_qXfer_libraries]);
10539
10540 case TARGET_OBJECT_LIBRARIES_SVR4:
10541 return remote_read_qxfer
10542 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10543 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10544
10545 case TARGET_OBJECT_MEMORY_MAP:
10546 gdb_assert (annex == NULL);
10547 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10548 xfered_len,
10549 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10550
10551 case TARGET_OBJECT_OSDATA:
10552 /* Should only get here if we're connected. */
10553 gdb_assert (rs->remote_desc);
10554 return remote_read_qxfer
10555 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10556 &remote_protocol_packets[PACKET_qXfer_osdata]);
10557
10558 case TARGET_OBJECT_THREADS:
10559 gdb_assert (annex == NULL);
10560 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10561 xfered_len,
10562 &remote_protocol_packets[PACKET_qXfer_threads]);
10563
10564 case TARGET_OBJECT_TRACEFRAME_INFO:
10565 gdb_assert (annex == NULL);
10566 return remote_read_qxfer
10567 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10568 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10569
10570 case TARGET_OBJECT_FDPIC:
10571 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10572 xfered_len,
10573 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10574
10575 case TARGET_OBJECT_OPENVMS_UIB:
10576 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10577 xfered_len,
10578 &remote_protocol_packets[PACKET_qXfer_uib]);
10579
10580 case TARGET_OBJECT_BTRACE:
10581 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10582 xfered_len,
10583 &remote_protocol_packets[PACKET_qXfer_btrace]);
10584
10585 case TARGET_OBJECT_BTRACE_CONF:
10586 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10587 len, xfered_len,
10588 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10589
10590 case TARGET_OBJECT_EXEC_FILE:
10591 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10592 len, xfered_len,
10593 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10594
10595 default:
10596 return TARGET_XFER_E_IO;
10597 }
10598
10599 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10600 large enough let the caller deal with it. */
10601 if (len < get_remote_packet_size ())
10602 return TARGET_XFER_E_IO;
10603 len = get_remote_packet_size ();
10604
10605 /* Except for querying the minimum buffer size, target must be open. */
10606 if (!rs->remote_desc)
10607 error (_("remote query is only available after target open"));
10608
10609 gdb_assert (annex != NULL);
10610 gdb_assert (readbuf != NULL);
10611
10612 p2 = rs->buf;
10613 *p2++ = 'q';
10614 *p2++ = query_type;
10615
10616 /* We used one buffer char for the remote protocol q command and
10617 another for the query type. As the remote protocol encapsulation
10618 uses 4 chars plus one extra in case we are debugging
10619 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10620 string. */
10621 i = 0;
10622 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10623 {
10624 /* Bad caller may have sent forbidden characters. */
10625 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10626 *p2++ = annex[i];
10627 i++;
10628 }
10629 *p2 = '\0';
10630 gdb_assert (annex[i] == '\0');
10631
10632 i = putpkt (rs->buf);
10633 if (i < 0)
10634 return TARGET_XFER_E_IO;
10635
10636 getpkt (&rs->buf, &rs->buf_size, 0);
10637 strcpy ((char *) readbuf, rs->buf);
10638
10639 *xfered_len = strlen ((char *) readbuf);
10640 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10641 }
10642
10643 /* Implementation of to_get_memory_xfer_limit. */
10644
10645 static ULONGEST
10646 remote_get_memory_xfer_limit (struct target_ops *ops)
10647 {
10648 return get_memory_write_packet_size ();
10649 }
10650
10651 static int
10652 remote_search_memory (struct target_ops* ops,
10653 CORE_ADDR start_addr, ULONGEST search_space_len,
10654 const gdb_byte *pattern, ULONGEST pattern_len,
10655 CORE_ADDR *found_addrp)
10656 {
10657 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10658 struct remote_state *rs = get_remote_state ();
10659 int max_size = get_memory_write_packet_size ();
10660 struct packet_config *packet =
10661 &remote_protocol_packets[PACKET_qSearch_memory];
10662 /* Number of packet bytes used to encode the pattern;
10663 this could be more than PATTERN_LEN due to escape characters. */
10664 int escaped_pattern_len;
10665 /* Amount of pattern that was encodable in the packet. */
10666 int used_pattern_len;
10667 int i;
10668 int found;
10669 ULONGEST found_addr;
10670
10671 /* Don't go to the target if we don't have to. This is done before
10672 checking packet_config_support to avoid the possibility that a
10673 success for this edge case means the facility works in
10674 general. */
10675 if (pattern_len > search_space_len)
10676 return 0;
10677 if (pattern_len == 0)
10678 {
10679 *found_addrp = start_addr;
10680 return 1;
10681 }
10682
10683 /* If we already know the packet isn't supported, fall back to the simple
10684 way of searching memory. */
10685
10686 if (packet_config_support (packet) == PACKET_DISABLE)
10687 {
10688 /* Target doesn't provided special support, fall back and use the
10689 standard support (copy memory and do the search here). */
10690 return simple_search_memory (ops, start_addr, search_space_len,
10691 pattern, pattern_len, found_addrp);
10692 }
10693
10694 /* Make sure the remote is pointing at the right process. */
10695 set_general_process ();
10696
10697 /* Insert header. */
10698 i = snprintf (rs->buf, max_size,
10699 "qSearch:memory:%s;%s;",
10700 phex_nz (start_addr, addr_size),
10701 phex_nz (search_space_len, sizeof (search_space_len)));
10702 max_size -= (i + 1);
10703
10704 /* Escape as much data as fits into rs->buf. */
10705 escaped_pattern_len =
10706 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10707 &used_pattern_len, max_size);
10708
10709 /* Bail if the pattern is too large. */
10710 if (used_pattern_len != pattern_len)
10711 error (_("Pattern is too large to transmit to remote target."));
10712
10713 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10714 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10715 || packet_ok (rs->buf, packet) != PACKET_OK)
10716 {
10717 /* The request may not have worked because the command is not
10718 supported. If so, fall back to the simple way. */
10719 if (packet_config_support (packet) == PACKET_DISABLE)
10720 {
10721 return simple_search_memory (ops, start_addr, search_space_len,
10722 pattern, pattern_len, found_addrp);
10723 }
10724 return -1;
10725 }
10726
10727 if (rs->buf[0] == '0')
10728 found = 0;
10729 else if (rs->buf[0] == '1')
10730 {
10731 found = 1;
10732 if (rs->buf[1] != ',')
10733 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10734 unpack_varlen_hex (rs->buf + 2, &found_addr);
10735 *found_addrp = found_addr;
10736 }
10737 else
10738 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10739
10740 return found;
10741 }
10742
10743 static void
10744 remote_rcmd (struct target_ops *self, const char *command,
10745 struct ui_file *outbuf)
10746 {
10747 struct remote_state *rs = get_remote_state ();
10748 char *p = rs->buf;
10749
10750 if (!rs->remote_desc)
10751 error (_("remote rcmd is only available after target open"));
10752
10753 /* Send a NULL command across as an empty command. */
10754 if (command == NULL)
10755 command = "";
10756
10757 /* The query prefix. */
10758 strcpy (rs->buf, "qRcmd,");
10759 p = strchr (rs->buf, '\0');
10760
10761 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10762 > get_remote_packet_size ())
10763 error (_("\"monitor\" command ``%s'' is too long."), command);
10764
10765 /* Encode the actual command. */
10766 bin2hex ((const gdb_byte *) command, p, strlen (command));
10767
10768 if (putpkt (rs->buf) < 0)
10769 error (_("Communication problem with target."));
10770
10771 /* get/display the response */
10772 while (1)
10773 {
10774 char *buf;
10775
10776 /* XXX - see also remote_get_noisy_reply(). */
10777 QUIT; /* Allow user to bail out with ^C. */
10778 rs->buf[0] = '\0';
10779 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10780 {
10781 /* Timeout. Continue to (try to) read responses.
10782 This is better than stopping with an error, assuming the stub
10783 is still executing the (long) monitor command.
10784 If needed, the user can interrupt gdb using C-c, obtaining
10785 an effect similar to stop on timeout. */
10786 continue;
10787 }
10788 buf = rs->buf;
10789 if (buf[0] == '\0')
10790 error (_("Target does not support this command."));
10791 if (buf[0] == 'O' && buf[1] != 'K')
10792 {
10793 remote_console_output (buf + 1); /* 'O' message from stub. */
10794 continue;
10795 }
10796 if (strcmp (buf, "OK") == 0)
10797 break;
10798 if (strlen (buf) == 3 && buf[0] == 'E'
10799 && isdigit (buf[1]) && isdigit (buf[2]))
10800 {
10801 error (_("Protocol error with Rcmd"));
10802 }
10803 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10804 {
10805 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10806
10807 fputc_unfiltered (c, outbuf);
10808 }
10809 break;
10810 }
10811 }
10812
10813 static std::vector<mem_region>
10814 remote_memory_map (struct target_ops *ops)
10815 {
10816 std::vector<mem_region> result;
10817 gdb::unique_xmalloc_ptr<char> text
10818 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10819
10820 if (text)
10821 result = parse_memory_map (text.get ());
10822
10823 return result;
10824 }
10825
10826 static void
10827 packet_command (const char *args, int from_tty)
10828 {
10829 struct remote_state *rs = get_remote_state ();
10830
10831 if (!rs->remote_desc)
10832 error (_("command can only be used with remote target"));
10833
10834 if (!args)
10835 error (_("remote-packet command requires packet text as argument"));
10836
10837 puts_filtered ("sending: ");
10838 print_packet (args);
10839 puts_filtered ("\n");
10840 putpkt (args);
10841
10842 getpkt (&rs->buf, &rs->buf_size, 0);
10843 puts_filtered ("received: ");
10844 print_packet (rs->buf);
10845 puts_filtered ("\n");
10846 }
10847
10848 #if 0
10849 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10850
10851 static void display_thread_info (struct gdb_ext_thread_info *info);
10852
10853 static void threadset_test_cmd (char *cmd, int tty);
10854
10855 static void threadalive_test (char *cmd, int tty);
10856
10857 static void threadlist_test_cmd (char *cmd, int tty);
10858
10859 int get_and_display_threadinfo (threadref *ref);
10860
10861 static void threadinfo_test_cmd (char *cmd, int tty);
10862
10863 static int thread_display_step (threadref *ref, void *context);
10864
10865 static void threadlist_update_test_cmd (char *cmd, int tty);
10866
10867 static void init_remote_threadtests (void);
10868
10869 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10870
10871 static void
10872 threadset_test_cmd (const char *cmd, int tty)
10873 {
10874 int sample_thread = SAMPLE_THREAD;
10875
10876 printf_filtered (_("Remote threadset test\n"));
10877 set_general_thread (sample_thread);
10878 }
10879
10880
10881 static void
10882 threadalive_test (const char *cmd, int tty)
10883 {
10884 int sample_thread = SAMPLE_THREAD;
10885 int pid = ptid_get_pid (inferior_ptid);
10886 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10887
10888 if (remote_thread_alive (ptid))
10889 printf_filtered ("PASS: Thread alive test\n");
10890 else
10891 printf_filtered ("FAIL: Thread alive test\n");
10892 }
10893
10894 void output_threadid (char *title, threadref *ref);
10895
10896 void
10897 output_threadid (char *title, threadref *ref)
10898 {
10899 char hexid[20];
10900
10901 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10902 hexid[16] = 0;
10903 printf_filtered ("%s %s\n", title, (&hexid[0]));
10904 }
10905
10906 static void
10907 threadlist_test_cmd (const char *cmd, int tty)
10908 {
10909 int startflag = 1;
10910 threadref nextthread;
10911 int done, result_count;
10912 threadref threadlist[3];
10913
10914 printf_filtered ("Remote Threadlist test\n");
10915 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10916 &result_count, &threadlist[0]))
10917 printf_filtered ("FAIL: threadlist test\n");
10918 else
10919 {
10920 threadref *scan = threadlist;
10921 threadref *limit = scan + result_count;
10922
10923 while (scan < limit)
10924 output_threadid (" thread ", scan++);
10925 }
10926 }
10927
10928 void
10929 display_thread_info (struct gdb_ext_thread_info *info)
10930 {
10931 output_threadid ("Threadid: ", &info->threadid);
10932 printf_filtered ("Name: %s\n ", info->shortname);
10933 printf_filtered ("State: %s\n", info->display);
10934 printf_filtered ("other: %s\n\n", info->more_display);
10935 }
10936
10937 int
10938 get_and_display_threadinfo (threadref *ref)
10939 {
10940 int result;
10941 int set;
10942 struct gdb_ext_thread_info threadinfo;
10943
10944 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10945 | TAG_MOREDISPLAY | TAG_DISPLAY;
10946 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10947 display_thread_info (&threadinfo);
10948 return result;
10949 }
10950
10951 static void
10952 threadinfo_test_cmd (const char *cmd, int tty)
10953 {
10954 int athread = SAMPLE_THREAD;
10955 threadref thread;
10956 int set;
10957
10958 int_to_threadref (&thread, athread);
10959 printf_filtered ("Remote Threadinfo test\n");
10960 if (!get_and_display_threadinfo (&thread))
10961 printf_filtered ("FAIL cannot get thread info\n");
10962 }
10963
10964 static int
10965 thread_display_step (threadref *ref, void *context)
10966 {
10967 /* output_threadid(" threadstep ",ref); *//* simple test */
10968 return get_and_display_threadinfo (ref);
10969 }
10970
10971 static void
10972 threadlist_update_test_cmd (const char *cmd, int tty)
10973 {
10974 printf_filtered ("Remote Threadlist update test\n");
10975 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10976 }
10977
10978 static void
10979 init_remote_threadtests (void)
10980 {
10981 add_com ("tlist", class_obscure, threadlist_test_cmd,
10982 _("Fetch and print the remote list of "
10983 "thread identifiers, one pkt only"));
10984 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10985 _("Fetch and display info about one thread"));
10986 add_com ("tset", class_obscure, threadset_test_cmd,
10987 _("Test setting to a different thread"));
10988 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10989 _("Iterate through updating all remote thread info"));
10990 add_com ("talive", class_obscure, threadalive_test,
10991 _(" Remote thread alive test "));
10992 }
10993
10994 #endif /* 0 */
10995
10996 /* Convert a thread ID to a string. Returns the string in a static
10997 buffer. */
10998
10999 static const char *
11000 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
11001 {
11002 static char buf[64];
11003 struct remote_state *rs = get_remote_state ();
11004
11005 if (ptid_equal (ptid, null_ptid))
11006 return normal_pid_to_str (ptid);
11007 else if (ptid_is_pid (ptid))
11008 {
11009 /* Printing an inferior target id. */
11010
11011 /* When multi-process extensions are off, there's no way in the
11012 remote protocol to know the remote process id, if there's any
11013 at all. There's one exception --- when we're connected with
11014 target extended-remote, and we manually attached to a process
11015 with "attach PID". We don't record anywhere a flag that
11016 allows us to distinguish that case from the case of
11017 connecting with extended-remote and the stub already being
11018 attached to a process, and reporting yes to qAttached, hence
11019 no smart special casing here. */
11020 if (!remote_multi_process_p (rs))
11021 {
11022 xsnprintf (buf, sizeof buf, "Remote target");
11023 return buf;
11024 }
11025
11026 return normal_pid_to_str (ptid);
11027 }
11028 else
11029 {
11030 if (ptid_equal (magic_null_ptid, ptid))
11031 xsnprintf (buf, sizeof buf, "Thread <main>");
11032 else if (remote_multi_process_p (rs))
11033 if (ptid_get_lwp (ptid) == 0)
11034 return normal_pid_to_str (ptid);
11035 else
11036 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11037 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11038 else
11039 xsnprintf (buf, sizeof buf, "Thread %ld",
11040 ptid_get_lwp (ptid));
11041 return buf;
11042 }
11043 }
11044
11045 /* Get the address of the thread local variable in OBJFILE which is
11046 stored at OFFSET within the thread local storage for thread PTID. */
11047
11048 static CORE_ADDR
11049 remote_get_thread_local_address (struct target_ops *ops,
11050 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11051 {
11052 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11053 {
11054 struct remote_state *rs = get_remote_state ();
11055 char *p = rs->buf;
11056 char *endp = rs->buf + get_remote_packet_size ();
11057 enum packet_result result;
11058
11059 strcpy (p, "qGetTLSAddr:");
11060 p += strlen (p);
11061 p = write_ptid (p, endp, ptid);
11062 *p++ = ',';
11063 p += hexnumstr (p, offset);
11064 *p++ = ',';
11065 p += hexnumstr (p, lm);
11066 *p++ = '\0';
11067
11068 putpkt (rs->buf);
11069 getpkt (&rs->buf, &rs->buf_size, 0);
11070 result = packet_ok (rs->buf,
11071 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11072 if (result == PACKET_OK)
11073 {
11074 ULONGEST result;
11075
11076 unpack_varlen_hex (rs->buf, &result);
11077 return result;
11078 }
11079 else if (result == PACKET_UNKNOWN)
11080 throw_error (TLS_GENERIC_ERROR,
11081 _("Remote target doesn't support qGetTLSAddr packet"));
11082 else
11083 throw_error (TLS_GENERIC_ERROR,
11084 _("Remote target failed to process qGetTLSAddr request"));
11085 }
11086 else
11087 throw_error (TLS_GENERIC_ERROR,
11088 _("TLS not supported or disabled on this target"));
11089 /* Not reached. */
11090 return 0;
11091 }
11092
11093 /* Provide thread local base, i.e. Thread Information Block address.
11094 Returns 1 if ptid is found and thread_local_base is non zero. */
11095
11096 static int
11097 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11098 {
11099 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11100 {
11101 struct remote_state *rs = get_remote_state ();
11102 char *p = rs->buf;
11103 char *endp = rs->buf + get_remote_packet_size ();
11104 enum packet_result result;
11105
11106 strcpy (p, "qGetTIBAddr:");
11107 p += strlen (p);
11108 p = write_ptid (p, endp, ptid);
11109 *p++ = '\0';
11110
11111 putpkt (rs->buf);
11112 getpkt (&rs->buf, &rs->buf_size, 0);
11113 result = packet_ok (rs->buf,
11114 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11115 if (result == PACKET_OK)
11116 {
11117 ULONGEST result;
11118
11119 unpack_varlen_hex (rs->buf, &result);
11120 if (addr)
11121 *addr = (CORE_ADDR) result;
11122 return 1;
11123 }
11124 else if (result == PACKET_UNKNOWN)
11125 error (_("Remote target doesn't support qGetTIBAddr packet"));
11126 else
11127 error (_("Remote target failed to process qGetTIBAddr request"));
11128 }
11129 else
11130 error (_("qGetTIBAddr not supported or disabled on this target"));
11131 /* Not reached. */
11132 return 0;
11133 }
11134
11135 /* Support for inferring a target description based on the current
11136 architecture and the size of a 'g' packet. While the 'g' packet
11137 can have any size (since optional registers can be left off the
11138 end), some sizes are easily recognizable given knowledge of the
11139 approximate architecture. */
11140
11141 struct remote_g_packet_guess
11142 {
11143 int bytes;
11144 const struct target_desc *tdesc;
11145 };
11146 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11147 DEF_VEC_O(remote_g_packet_guess_s);
11148
11149 struct remote_g_packet_data
11150 {
11151 VEC(remote_g_packet_guess_s) *guesses;
11152 };
11153
11154 static struct gdbarch_data *remote_g_packet_data_handle;
11155
11156 static void *
11157 remote_g_packet_data_init (struct obstack *obstack)
11158 {
11159 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11160 }
11161
11162 void
11163 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11164 const struct target_desc *tdesc)
11165 {
11166 struct remote_g_packet_data *data
11167 = ((struct remote_g_packet_data *)
11168 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11169 struct remote_g_packet_guess new_guess, *guess;
11170 int ix;
11171
11172 gdb_assert (tdesc != NULL);
11173
11174 for (ix = 0;
11175 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11176 ix++)
11177 if (guess->bytes == bytes)
11178 internal_error (__FILE__, __LINE__,
11179 _("Duplicate g packet description added for size %d"),
11180 bytes);
11181
11182 new_guess.bytes = bytes;
11183 new_guess.tdesc = tdesc;
11184 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11185 }
11186
11187 /* Return 1 if remote_read_description would do anything on this target
11188 and architecture, 0 otherwise. */
11189
11190 static int
11191 remote_read_description_p (struct target_ops *target)
11192 {
11193 struct remote_g_packet_data *data
11194 = ((struct remote_g_packet_data *)
11195 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11196
11197 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11198 return 1;
11199
11200 return 0;
11201 }
11202
11203 static const struct target_desc *
11204 remote_read_description (struct target_ops *target)
11205 {
11206 struct remote_g_packet_data *data
11207 = ((struct remote_g_packet_data *)
11208 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11209
11210 /* Do not try this during initial connection, when we do not know
11211 whether there is a running but stopped thread. */
11212 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11213 return target->beneath->to_read_description (target->beneath);
11214
11215 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11216 {
11217 struct remote_g_packet_guess *guess;
11218 int ix;
11219 int bytes = send_g_packet ();
11220
11221 for (ix = 0;
11222 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11223 ix++)
11224 if (guess->bytes == bytes)
11225 return guess->tdesc;
11226
11227 /* We discard the g packet. A minor optimization would be to
11228 hold on to it, and fill the register cache once we have selected
11229 an architecture, but it's too tricky to do safely. */
11230 }
11231
11232 return target->beneath->to_read_description (target->beneath);
11233 }
11234
11235 /* Remote file transfer support. This is host-initiated I/O, not
11236 target-initiated; for target-initiated, see remote-fileio.c. */
11237
11238 /* If *LEFT is at least the length of STRING, copy STRING to
11239 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11240 decrease *LEFT. Otherwise raise an error. */
11241
11242 static void
11243 remote_buffer_add_string (char **buffer, int *left, const char *string)
11244 {
11245 int len = strlen (string);
11246
11247 if (len > *left)
11248 error (_("Packet too long for target."));
11249
11250 memcpy (*buffer, string, len);
11251 *buffer += len;
11252 *left -= len;
11253
11254 /* NUL-terminate the buffer as a convenience, if there is
11255 room. */
11256 if (*left)
11257 **buffer = '\0';
11258 }
11259
11260 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11261 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11262 decrease *LEFT. Otherwise raise an error. */
11263
11264 static void
11265 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11266 int len)
11267 {
11268 if (2 * len > *left)
11269 error (_("Packet too long for target."));
11270
11271 bin2hex (bytes, *buffer, len);
11272 *buffer += 2 * len;
11273 *left -= 2 * len;
11274
11275 /* NUL-terminate the buffer as a convenience, if there is
11276 room. */
11277 if (*left)
11278 **buffer = '\0';
11279 }
11280
11281 /* If *LEFT is large enough, convert VALUE to hex and add it to
11282 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11283 decrease *LEFT. Otherwise raise an error. */
11284
11285 static void
11286 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11287 {
11288 int len = hexnumlen (value);
11289
11290 if (len > *left)
11291 error (_("Packet too long for target."));
11292
11293 hexnumstr (*buffer, value);
11294 *buffer += len;
11295 *left -= len;
11296
11297 /* NUL-terminate the buffer as a convenience, if there is
11298 room. */
11299 if (*left)
11300 **buffer = '\0';
11301 }
11302
11303 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11304 value, *REMOTE_ERRNO to the remote error number or zero if none
11305 was included, and *ATTACHMENT to point to the start of the annex
11306 if any. The length of the packet isn't needed here; there may
11307 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11308
11309 Return 0 if the packet could be parsed, -1 if it could not. If
11310 -1 is returned, the other variables may not be initialized. */
11311
11312 static int
11313 remote_hostio_parse_result (char *buffer, int *retcode,
11314 int *remote_errno, char **attachment)
11315 {
11316 char *p, *p2;
11317
11318 *remote_errno = 0;
11319 *attachment = NULL;
11320
11321 if (buffer[0] != 'F')
11322 return -1;
11323
11324 errno = 0;
11325 *retcode = strtol (&buffer[1], &p, 16);
11326 if (errno != 0 || p == &buffer[1])
11327 return -1;
11328
11329 /* Check for ",errno". */
11330 if (*p == ',')
11331 {
11332 errno = 0;
11333 *remote_errno = strtol (p + 1, &p2, 16);
11334 if (errno != 0 || p + 1 == p2)
11335 return -1;
11336 p = p2;
11337 }
11338
11339 /* Check for ";attachment". If there is no attachment, the
11340 packet should end here. */
11341 if (*p == ';')
11342 {
11343 *attachment = p + 1;
11344 return 0;
11345 }
11346 else if (*p == '\0')
11347 return 0;
11348 else
11349 return -1;
11350 }
11351
11352 /* Send a prepared I/O packet to the target and read its response.
11353 The prepared packet is in the global RS->BUF before this function
11354 is called, and the answer is there when we return.
11355
11356 COMMAND_BYTES is the length of the request to send, which may include
11357 binary data. WHICH_PACKET is the packet configuration to check
11358 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11359 is set to the error number and -1 is returned. Otherwise the value
11360 returned by the function is returned.
11361
11362 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11363 attachment is expected; an error will be reported if there's a
11364 mismatch. If one is found, *ATTACHMENT will be set to point into
11365 the packet buffer and *ATTACHMENT_LEN will be set to the
11366 attachment's length. */
11367
11368 static int
11369 remote_hostio_send_command (int command_bytes, int which_packet,
11370 int *remote_errno, char **attachment,
11371 int *attachment_len)
11372 {
11373 struct remote_state *rs = get_remote_state ();
11374 int ret, bytes_read;
11375 char *attachment_tmp;
11376
11377 if (!rs->remote_desc
11378 || packet_support (which_packet) == PACKET_DISABLE)
11379 {
11380 *remote_errno = FILEIO_ENOSYS;
11381 return -1;
11382 }
11383
11384 putpkt_binary (rs->buf, command_bytes);
11385 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11386
11387 /* If it timed out, something is wrong. Don't try to parse the
11388 buffer. */
11389 if (bytes_read < 0)
11390 {
11391 *remote_errno = FILEIO_EINVAL;
11392 return -1;
11393 }
11394
11395 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11396 {
11397 case PACKET_ERROR:
11398 *remote_errno = FILEIO_EINVAL;
11399 return -1;
11400 case PACKET_UNKNOWN:
11401 *remote_errno = FILEIO_ENOSYS;
11402 return -1;
11403 case PACKET_OK:
11404 break;
11405 }
11406
11407 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11408 &attachment_tmp))
11409 {
11410 *remote_errno = FILEIO_EINVAL;
11411 return -1;
11412 }
11413
11414 /* Make sure we saw an attachment if and only if we expected one. */
11415 if ((attachment_tmp == NULL && attachment != NULL)
11416 || (attachment_tmp != NULL && attachment == NULL))
11417 {
11418 *remote_errno = FILEIO_EINVAL;
11419 return -1;
11420 }
11421
11422 /* If an attachment was found, it must point into the packet buffer;
11423 work out how many bytes there were. */
11424 if (attachment_tmp != NULL)
11425 {
11426 *attachment = attachment_tmp;
11427 *attachment_len = bytes_read - (*attachment - rs->buf);
11428 }
11429
11430 return ret;
11431 }
11432
11433 /* Invalidate the readahead cache. */
11434
11435 static void
11436 readahead_cache_invalidate (void)
11437 {
11438 struct remote_state *rs = get_remote_state ();
11439
11440 rs->readahead_cache.fd = -1;
11441 }
11442
11443 /* Invalidate the readahead cache if it is holding data for FD. */
11444
11445 static void
11446 readahead_cache_invalidate_fd (int fd)
11447 {
11448 struct remote_state *rs = get_remote_state ();
11449
11450 if (rs->readahead_cache.fd == fd)
11451 rs->readahead_cache.fd = -1;
11452 }
11453
11454 /* Set the filesystem remote_hostio functions that take FILENAME
11455 arguments will use. Return 0 on success, or -1 if an error
11456 occurs (and set *REMOTE_ERRNO). */
11457
11458 static int
11459 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11460 {
11461 struct remote_state *rs = get_remote_state ();
11462 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11463 char *p = rs->buf;
11464 int left = get_remote_packet_size () - 1;
11465 char arg[9];
11466 int ret;
11467
11468 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11469 return 0;
11470
11471 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11472 return 0;
11473
11474 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11475
11476 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11477 remote_buffer_add_string (&p, &left, arg);
11478
11479 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11480 remote_errno, NULL, NULL);
11481
11482 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11483 return 0;
11484
11485 if (ret == 0)
11486 rs->fs_pid = required_pid;
11487
11488 return ret;
11489 }
11490
11491 /* Implementation of to_fileio_open. */
11492
11493 static int
11494 remote_hostio_open (struct target_ops *self,
11495 struct inferior *inf, const char *filename,
11496 int flags, int mode, int warn_if_slow,
11497 int *remote_errno)
11498 {
11499 struct remote_state *rs = get_remote_state ();
11500 char *p = rs->buf;
11501 int left = get_remote_packet_size () - 1;
11502
11503 if (warn_if_slow)
11504 {
11505 static int warning_issued = 0;
11506
11507 printf_unfiltered (_("Reading %s from remote target...\n"),
11508 filename);
11509
11510 if (!warning_issued)
11511 {
11512 warning (_("File transfers from remote targets can be slow."
11513 " Use \"set sysroot\" to access files locally"
11514 " instead."));
11515 warning_issued = 1;
11516 }
11517 }
11518
11519 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11520 return -1;
11521
11522 remote_buffer_add_string (&p, &left, "vFile:open:");
11523
11524 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11525 strlen (filename));
11526 remote_buffer_add_string (&p, &left, ",");
11527
11528 remote_buffer_add_int (&p, &left, flags);
11529 remote_buffer_add_string (&p, &left, ",");
11530
11531 remote_buffer_add_int (&p, &left, mode);
11532
11533 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11534 remote_errno, NULL, NULL);
11535 }
11536
11537 /* Implementation of to_fileio_pwrite. */
11538
11539 static int
11540 remote_hostio_pwrite (struct target_ops *self,
11541 int fd, const gdb_byte *write_buf, int len,
11542 ULONGEST offset, int *remote_errno)
11543 {
11544 struct remote_state *rs = get_remote_state ();
11545 char *p = rs->buf;
11546 int left = get_remote_packet_size ();
11547 int out_len;
11548
11549 readahead_cache_invalidate_fd (fd);
11550
11551 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11552
11553 remote_buffer_add_int (&p, &left, fd);
11554 remote_buffer_add_string (&p, &left, ",");
11555
11556 remote_buffer_add_int (&p, &left, offset);
11557 remote_buffer_add_string (&p, &left, ",");
11558
11559 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11560 get_remote_packet_size () - (p - rs->buf));
11561
11562 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11563 remote_errno, NULL, NULL);
11564 }
11565
11566 /* Helper for the implementation of to_fileio_pread. Read the file
11567 from the remote side with vFile:pread. */
11568
11569 static int
11570 remote_hostio_pread_vFile (struct target_ops *self,
11571 int fd, gdb_byte *read_buf, int len,
11572 ULONGEST offset, int *remote_errno)
11573 {
11574 struct remote_state *rs = get_remote_state ();
11575 char *p = rs->buf;
11576 char *attachment;
11577 int left = get_remote_packet_size ();
11578 int ret, attachment_len;
11579 int read_len;
11580
11581 remote_buffer_add_string (&p, &left, "vFile:pread:");
11582
11583 remote_buffer_add_int (&p, &left, fd);
11584 remote_buffer_add_string (&p, &left, ",");
11585
11586 remote_buffer_add_int (&p, &left, len);
11587 remote_buffer_add_string (&p, &left, ",");
11588
11589 remote_buffer_add_int (&p, &left, offset);
11590
11591 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11592 remote_errno, &attachment,
11593 &attachment_len);
11594
11595 if (ret < 0)
11596 return ret;
11597
11598 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11599 read_buf, len);
11600 if (read_len != ret)
11601 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11602
11603 return ret;
11604 }
11605
11606 /* Serve pread from the readahead cache. Returns number of bytes
11607 read, or 0 if the request can't be served from the cache. */
11608
11609 static int
11610 remote_hostio_pread_from_cache (struct remote_state *rs,
11611 int fd, gdb_byte *read_buf, size_t len,
11612 ULONGEST offset)
11613 {
11614 struct readahead_cache *cache = &rs->readahead_cache;
11615
11616 if (cache->fd == fd
11617 && cache->offset <= offset
11618 && offset < cache->offset + cache->bufsize)
11619 {
11620 ULONGEST max = cache->offset + cache->bufsize;
11621
11622 if (offset + len > max)
11623 len = max - offset;
11624
11625 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11626 return len;
11627 }
11628
11629 return 0;
11630 }
11631
11632 /* Implementation of to_fileio_pread. */
11633
11634 static int
11635 remote_hostio_pread (struct target_ops *self,
11636 int fd, gdb_byte *read_buf, int len,
11637 ULONGEST offset, int *remote_errno)
11638 {
11639 int ret;
11640 struct remote_state *rs = get_remote_state ();
11641 struct readahead_cache *cache = &rs->readahead_cache;
11642
11643 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11644 if (ret > 0)
11645 {
11646 cache->hit_count++;
11647
11648 if (remote_debug)
11649 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11650 pulongest (cache->hit_count));
11651 return ret;
11652 }
11653
11654 cache->miss_count++;
11655 if (remote_debug)
11656 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11657 pulongest (cache->miss_count));
11658
11659 cache->fd = fd;
11660 cache->offset = offset;
11661 cache->bufsize = get_remote_packet_size ();
11662 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11663
11664 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11665 cache->offset, remote_errno);
11666 if (ret <= 0)
11667 {
11668 readahead_cache_invalidate_fd (fd);
11669 return ret;
11670 }
11671
11672 cache->bufsize = ret;
11673 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11674 }
11675
11676 /* Implementation of to_fileio_close. */
11677
11678 static int
11679 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11680 {
11681 struct remote_state *rs = get_remote_state ();
11682 char *p = rs->buf;
11683 int left = get_remote_packet_size () - 1;
11684
11685 readahead_cache_invalidate_fd (fd);
11686
11687 remote_buffer_add_string (&p, &left, "vFile:close:");
11688
11689 remote_buffer_add_int (&p, &left, fd);
11690
11691 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11692 remote_errno, NULL, NULL);
11693 }
11694
11695 /* Implementation of to_fileio_unlink. */
11696
11697 static int
11698 remote_hostio_unlink (struct target_ops *self,
11699 struct inferior *inf, const char *filename,
11700 int *remote_errno)
11701 {
11702 struct remote_state *rs = get_remote_state ();
11703 char *p = rs->buf;
11704 int left = get_remote_packet_size () - 1;
11705
11706 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11707 return -1;
11708
11709 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11710
11711 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11712 strlen (filename));
11713
11714 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11715 remote_errno, NULL, NULL);
11716 }
11717
11718 /* Implementation of to_fileio_readlink. */
11719
11720 static char *
11721 remote_hostio_readlink (struct target_ops *self,
11722 struct inferior *inf, const char *filename,
11723 int *remote_errno)
11724 {
11725 struct remote_state *rs = get_remote_state ();
11726 char *p = rs->buf;
11727 char *attachment;
11728 int left = get_remote_packet_size ();
11729 int len, attachment_len;
11730 int read_len;
11731 char *ret;
11732
11733 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11734 return NULL;
11735
11736 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11737
11738 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11739 strlen (filename));
11740
11741 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11742 remote_errno, &attachment,
11743 &attachment_len);
11744
11745 if (len < 0)
11746 return NULL;
11747
11748 ret = (char *) xmalloc (len + 1);
11749
11750 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11751 (gdb_byte *) ret, len);
11752 if (read_len != len)
11753 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11754
11755 ret[len] = '\0';
11756 return ret;
11757 }
11758
11759 /* Implementation of to_fileio_fstat. */
11760
11761 static int
11762 remote_hostio_fstat (struct target_ops *self,
11763 int fd, struct stat *st,
11764 int *remote_errno)
11765 {
11766 struct remote_state *rs = get_remote_state ();
11767 char *p = rs->buf;
11768 int left = get_remote_packet_size ();
11769 int attachment_len, ret;
11770 char *attachment;
11771 struct fio_stat fst;
11772 int read_len;
11773
11774 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11775
11776 remote_buffer_add_int (&p, &left, fd);
11777
11778 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11779 remote_errno, &attachment,
11780 &attachment_len);
11781 if (ret < 0)
11782 {
11783 if (*remote_errno != FILEIO_ENOSYS)
11784 return ret;
11785
11786 /* Strictly we should return -1, ENOSYS here, but when
11787 "set sysroot remote:" was implemented in August 2008
11788 BFD's need for a stat function was sidestepped with
11789 this hack. This was not remedied until March 2015
11790 so we retain the previous behavior to avoid breaking
11791 compatibility.
11792
11793 Note that the memset is a March 2015 addition; older
11794 GDBs set st_size *and nothing else* so the structure
11795 would have garbage in all other fields. This might
11796 break something but retaining the previous behavior
11797 here would be just too wrong. */
11798
11799 memset (st, 0, sizeof (struct stat));
11800 st->st_size = INT_MAX;
11801 return 0;
11802 }
11803
11804 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11805 (gdb_byte *) &fst, sizeof (fst));
11806
11807 if (read_len != ret)
11808 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11809
11810 if (read_len != sizeof (fst))
11811 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11812 read_len, (int) sizeof (fst));
11813
11814 remote_fileio_to_host_stat (&fst, st);
11815
11816 return 0;
11817 }
11818
11819 /* Implementation of to_filesystem_is_local. */
11820
11821 static int
11822 remote_filesystem_is_local (struct target_ops *self)
11823 {
11824 /* Valgrind GDB presents itself as a remote target but works
11825 on the local filesystem: it does not implement remote get
11826 and users are not expected to set a sysroot. To handle
11827 this case we treat the remote filesystem as local if the
11828 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11829 does not support vFile:open. */
11830 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11831 {
11832 enum packet_support ps = packet_support (PACKET_vFile_open);
11833
11834 if (ps == PACKET_SUPPORT_UNKNOWN)
11835 {
11836 int fd, remote_errno;
11837
11838 /* Try opening a file to probe support. The supplied
11839 filename is irrelevant, we only care about whether
11840 the stub recognizes the packet or not. */
11841 fd = remote_hostio_open (self, NULL, "just probing",
11842 FILEIO_O_RDONLY, 0700, 0,
11843 &remote_errno);
11844
11845 if (fd >= 0)
11846 remote_hostio_close (self, fd, &remote_errno);
11847
11848 ps = packet_support (PACKET_vFile_open);
11849 }
11850
11851 if (ps == PACKET_DISABLE)
11852 {
11853 static int warning_issued = 0;
11854
11855 if (!warning_issued)
11856 {
11857 warning (_("remote target does not support file"
11858 " transfer, attempting to access files"
11859 " from local filesystem."));
11860 warning_issued = 1;
11861 }
11862
11863 return 1;
11864 }
11865 }
11866
11867 return 0;
11868 }
11869
11870 static int
11871 remote_fileio_errno_to_host (int errnum)
11872 {
11873 switch (errnum)
11874 {
11875 case FILEIO_EPERM:
11876 return EPERM;
11877 case FILEIO_ENOENT:
11878 return ENOENT;
11879 case FILEIO_EINTR:
11880 return EINTR;
11881 case FILEIO_EIO:
11882 return EIO;
11883 case FILEIO_EBADF:
11884 return EBADF;
11885 case FILEIO_EACCES:
11886 return EACCES;
11887 case FILEIO_EFAULT:
11888 return EFAULT;
11889 case FILEIO_EBUSY:
11890 return EBUSY;
11891 case FILEIO_EEXIST:
11892 return EEXIST;
11893 case FILEIO_ENODEV:
11894 return ENODEV;
11895 case FILEIO_ENOTDIR:
11896 return ENOTDIR;
11897 case FILEIO_EISDIR:
11898 return EISDIR;
11899 case FILEIO_EINVAL:
11900 return EINVAL;
11901 case FILEIO_ENFILE:
11902 return ENFILE;
11903 case FILEIO_EMFILE:
11904 return EMFILE;
11905 case FILEIO_EFBIG:
11906 return EFBIG;
11907 case FILEIO_ENOSPC:
11908 return ENOSPC;
11909 case FILEIO_ESPIPE:
11910 return ESPIPE;
11911 case FILEIO_EROFS:
11912 return EROFS;
11913 case FILEIO_ENOSYS:
11914 return ENOSYS;
11915 case FILEIO_ENAMETOOLONG:
11916 return ENAMETOOLONG;
11917 }
11918 return -1;
11919 }
11920
11921 static char *
11922 remote_hostio_error (int errnum)
11923 {
11924 int host_error = remote_fileio_errno_to_host (errnum);
11925
11926 if (host_error == -1)
11927 error (_("Unknown remote I/O error %d"), errnum);
11928 else
11929 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11930 }
11931
11932 static void
11933 remote_hostio_close_cleanup (void *opaque)
11934 {
11935 int fd = *(int *) opaque;
11936 int remote_errno;
11937
11938 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11939 }
11940
11941 void
11942 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11943 {
11944 struct cleanup *back_to, *close_cleanup;
11945 int retcode, fd, remote_errno, bytes, io_size;
11946 gdb_byte *buffer;
11947 int bytes_in_buffer;
11948 int saw_eof;
11949 ULONGEST offset;
11950 struct remote_state *rs = get_remote_state ();
11951
11952 if (!rs->remote_desc)
11953 error (_("command can only be used with remote target"));
11954
11955 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11956 if (file == NULL)
11957 perror_with_name (local_file);
11958
11959 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11960 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11961 | FILEIO_O_TRUNC),
11962 0700, 0, &remote_errno);
11963 if (fd == -1)
11964 remote_hostio_error (remote_errno);
11965
11966 /* Send up to this many bytes at once. They won't all fit in the
11967 remote packet limit, so we'll transfer slightly fewer. */
11968 io_size = get_remote_packet_size ();
11969 buffer = (gdb_byte *) xmalloc (io_size);
11970 back_to = make_cleanup (xfree, buffer);
11971
11972 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11973
11974 bytes_in_buffer = 0;
11975 saw_eof = 0;
11976 offset = 0;
11977 while (bytes_in_buffer || !saw_eof)
11978 {
11979 if (!saw_eof)
11980 {
11981 bytes = fread (buffer + bytes_in_buffer, 1,
11982 io_size - bytes_in_buffer,
11983 file.get ());
11984 if (bytes == 0)
11985 {
11986 if (ferror (file.get ()))
11987 error (_("Error reading %s."), local_file);
11988 else
11989 {
11990 /* EOF. Unless there is something still in the
11991 buffer from the last iteration, we are done. */
11992 saw_eof = 1;
11993 if (bytes_in_buffer == 0)
11994 break;
11995 }
11996 }
11997 }
11998 else
11999 bytes = 0;
12000
12001 bytes += bytes_in_buffer;
12002 bytes_in_buffer = 0;
12003
12004 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12005 fd, buffer, bytes,
12006 offset, &remote_errno);
12007
12008 if (retcode < 0)
12009 remote_hostio_error (remote_errno);
12010 else if (retcode == 0)
12011 error (_("Remote write of %d bytes returned 0!"), bytes);
12012 else if (retcode < bytes)
12013 {
12014 /* Short write. Save the rest of the read data for the next
12015 write. */
12016 bytes_in_buffer = bytes - retcode;
12017 memmove (buffer, buffer + retcode, bytes_in_buffer);
12018 }
12019
12020 offset += retcode;
12021 }
12022
12023 discard_cleanups (close_cleanup);
12024 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12025 remote_hostio_error (remote_errno);
12026
12027 if (from_tty)
12028 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12029 do_cleanups (back_to);
12030 }
12031
12032 void
12033 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12034 {
12035 struct cleanup *back_to, *close_cleanup;
12036 int fd, remote_errno, bytes, io_size;
12037 gdb_byte *buffer;
12038 ULONGEST offset;
12039 struct remote_state *rs = get_remote_state ();
12040
12041 if (!rs->remote_desc)
12042 error (_("command can only be used with remote target"));
12043
12044 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12045 remote_file, FILEIO_O_RDONLY, 0, 0,
12046 &remote_errno);
12047 if (fd == -1)
12048 remote_hostio_error (remote_errno);
12049
12050 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12051 if (file == NULL)
12052 perror_with_name (local_file);
12053
12054 /* Send up to this many bytes at once. They won't all fit in the
12055 remote packet limit, so we'll transfer slightly fewer. */
12056 io_size = get_remote_packet_size ();
12057 buffer = (gdb_byte *) xmalloc (io_size);
12058 back_to = make_cleanup (xfree, buffer);
12059
12060 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12061
12062 offset = 0;
12063 while (1)
12064 {
12065 bytes = remote_hostio_pread (find_target_at (process_stratum),
12066 fd, buffer, io_size, offset, &remote_errno);
12067 if (bytes == 0)
12068 /* Success, but no bytes, means end-of-file. */
12069 break;
12070 if (bytes == -1)
12071 remote_hostio_error (remote_errno);
12072
12073 offset += bytes;
12074
12075 bytes = fwrite (buffer, 1, bytes, file.get ());
12076 if (bytes == 0)
12077 perror_with_name (local_file);
12078 }
12079
12080 discard_cleanups (close_cleanup);
12081 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12082 remote_hostio_error (remote_errno);
12083
12084 if (from_tty)
12085 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12086 do_cleanups (back_to);
12087 }
12088
12089 void
12090 remote_file_delete (const char *remote_file, int from_tty)
12091 {
12092 int retcode, remote_errno;
12093 struct remote_state *rs = get_remote_state ();
12094
12095 if (!rs->remote_desc)
12096 error (_("command can only be used with remote target"));
12097
12098 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12099 NULL, remote_file, &remote_errno);
12100 if (retcode == -1)
12101 remote_hostio_error (remote_errno);
12102
12103 if (from_tty)
12104 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12105 }
12106
12107 static void
12108 remote_put_command (const char *args, int from_tty)
12109 {
12110 if (args == NULL)
12111 error_no_arg (_("file to put"));
12112
12113 gdb_argv argv (args);
12114 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12115 error (_("Invalid parameters to remote put"));
12116
12117 remote_file_put (argv[0], argv[1], from_tty);
12118 }
12119
12120 static void
12121 remote_get_command (const char *args, int from_tty)
12122 {
12123 if (args == NULL)
12124 error_no_arg (_("file to get"));
12125
12126 gdb_argv argv (args);
12127 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12128 error (_("Invalid parameters to remote get"));
12129
12130 remote_file_get (argv[0], argv[1], from_tty);
12131 }
12132
12133 static void
12134 remote_delete_command (const char *args, int from_tty)
12135 {
12136 if (args == NULL)
12137 error_no_arg (_("file to delete"));
12138
12139 gdb_argv argv (args);
12140 if (argv[0] == NULL || argv[1] != NULL)
12141 error (_("Invalid parameters to remote delete"));
12142
12143 remote_file_delete (argv[0], from_tty);
12144 }
12145
12146 static void
12147 remote_command (const char *args, int from_tty)
12148 {
12149 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12150 }
12151
12152 static int
12153 remote_can_execute_reverse (struct target_ops *self)
12154 {
12155 if (packet_support (PACKET_bs) == PACKET_ENABLE
12156 || packet_support (PACKET_bc) == PACKET_ENABLE)
12157 return 1;
12158 else
12159 return 0;
12160 }
12161
12162 static int
12163 remote_supports_non_stop (struct target_ops *self)
12164 {
12165 return 1;
12166 }
12167
12168 static int
12169 remote_supports_disable_randomization (struct target_ops *self)
12170 {
12171 /* Only supported in extended mode. */
12172 return 0;
12173 }
12174
12175 static int
12176 remote_supports_multi_process (struct target_ops *self)
12177 {
12178 struct remote_state *rs = get_remote_state ();
12179
12180 return remote_multi_process_p (rs);
12181 }
12182
12183 static int
12184 remote_supports_cond_tracepoints (void)
12185 {
12186 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12187 }
12188
12189 static int
12190 remote_supports_cond_breakpoints (struct target_ops *self)
12191 {
12192 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12193 }
12194
12195 static int
12196 remote_supports_fast_tracepoints (void)
12197 {
12198 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12199 }
12200
12201 static int
12202 remote_supports_static_tracepoints (void)
12203 {
12204 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12205 }
12206
12207 static int
12208 remote_supports_install_in_trace (void)
12209 {
12210 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12211 }
12212
12213 static int
12214 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12215 {
12216 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12217 == PACKET_ENABLE);
12218 }
12219
12220 static int
12221 remote_supports_string_tracing (struct target_ops *self)
12222 {
12223 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12224 }
12225
12226 static int
12227 remote_can_run_breakpoint_commands (struct target_ops *self)
12228 {
12229 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12230 }
12231
12232 static void
12233 remote_trace_init (struct target_ops *self)
12234 {
12235 struct remote_state *rs = get_remote_state ();
12236
12237 putpkt ("QTinit");
12238 remote_get_noisy_reply ();
12239 if (strcmp (rs->buf, "OK") != 0)
12240 error (_("Target does not support this command."));
12241 }
12242
12243 /* Recursive routine to walk through command list including loops, and
12244 download packets for each command. */
12245
12246 static void
12247 remote_download_command_source (int num, ULONGEST addr,
12248 struct command_line *cmds)
12249 {
12250 struct remote_state *rs = get_remote_state ();
12251 struct command_line *cmd;
12252
12253 for (cmd = cmds; cmd; cmd = cmd->next)
12254 {
12255 QUIT; /* Allow user to bail out with ^C. */
12256 strcpy (rs->buf, "QTDPsrc:");
12257 encode_source_string (num, addr, "cmd", cmd->line,
12258 rs->buf + strlen (rs->buf),
12259 rs->buf_size - strlen (rs->buf));
12260 putpkt (rs->buf);
12261 remote_get_noisy_reply ();
12262 if (strcmp (rs->buf, "OK"))
12263 warning (_("Target does not support source download."));
12264
12265 if (cmd->control_type == while_control
12266 || cmd->control_type == while_stepping_control)
12267 {
12268 remote_download_command_source (num, addr, *cmd->body_list);
12269
12270 QUIT; /* Allow user to bail out with ^C. */
12271 strcpy (rs->buf, "QTDPsrc:");
12272 encode_source_string (num, addr, "cmd", "end",
12273 rs->buf + strlen (rs->buf),
12274 rs->buf_size - strlen (rs->buf));
12275 putpkt (rs->buf);
12276 remote_get_noisy_reply ();
12277 if (strcmp (rs->buf, "OK"))
12278 warning (_("Target does not support source download."));
12279 }
12280 }
12281 }
12282
12283 static void
12284 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12285 {
12286 #define BUF_SIZE 2048
12287
12288 CORE_ADDR tpaddr;
12289 char addrbuf[40];
12290 char buf[BUF_SIZE];
12291 std::vector<std::string> tdp_actions;
12292 std::vector<std::string> stepping_actions;
12293 char *pkt;
12294 struct breakpoint *b = loc->owner;
12295 struct tracepoint *t = (struct tracepoint *) b;
12296 struct remote_state *rs = get_remote_state ();
12297
12298 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12299
12300 tpaddr = loc->address;
12301 sprintf_vma (addrbuf, tpaddr);
12302 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12303 addrbuf, /* address */
12304 (b->enable_state == bp_enabled ? 'E' : 'D'),
12305 t->step_count, t->pass_count);
12306 /* Fast tracepoints are mostly handled by the target, but we can
12307 tell the target how big of an instruction block should be moved
12308 around. */
12309 if (b->type == bp_fast_tracepoint)
12310 {
12311 /* Only test for support at download time; we may not know
12312 target capabilities at definition time. */
12313 if (remote_supports_fast_tracepoints ())
12314 {
12315 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12316 NULL))
12317 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12318 gdb_insn_length (loc->gdbarch, tpaddr));
12319 else
12320 /* If it passed validation at definition but fails now,
12321 something is very wrong. */
12322 internal_error (__FILE__, __LINE__,
12323 _("Fast tracepoint not "
12324 "valid during download"));
12325 }
12326 else
12327 /* Fast tracepoints are functionally identical to regular
12328 tracepoints, so don't take lack of support as a reason to
12329 give up on the trace run. */
12330 warning (_("Target does not support fast tracepoints, "
12331 "downloading %d as regular tracepoint"), b->number);
12332 }
12333 else if (b->type == bp_static_tracepoint)
12334 {
12335 /* Only test for support at download time; we may not know
12336 target capabilities at definition time. */
12337 if (remote_supports_static_tracepoints ())
12338 {
12339 struct static_tracepoint_marker marker;
12340
12341 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12342 strcat (buf, ":S");
12343 else
12344 error (_("Static tracepoint not valid during download"));
12345 }
12346 else
12347 /* Fast tracepoints are functionally identical to regular
12348 tracepoints, so don't take lack of support as a reason
12349 to give up on the trace run. */
12350 error (_("Target does not support static tracepoints"));
12351 }
12352 /* If the tracepoint has a conditional, make it into an agent
12353 expression and append to the definition. */
12354 if (loc->cond)
12355 {
12356 /* Only test support at download time, we may not know target
12357 capabilities at definition time. */
12358 if (remote_supports_cond_tracepoints ())
12359 {
12360 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12361 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12362 aexpr->len);
12363 pkt = buf + strlen (buf);
12364 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12365 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12366 *pkt = '\0';
12367 }
12368 else
12369 warning (_("Target does not support conditional tracepoints, "
12370 "ignoring tp %d cond"), b->number);
12371 }
12372
12373 if (b->commands || *default_collect)
12374 strcat (buf, "-");
12375 putpkt (buf);
12376 remote_get_noisy_reply ();
12377 if (strcmp (rs->buf, "OK"))
12378 error (_("Target does not support tracepoints."));
12379
12380 /* do_single_steps (t); */
12381 for (auto action_it = tdp_actions.begin ();
12382 action_it != tdp_actions.end (); action_it++)
12383 {
12384 QUIT; /* Allow user to bail out with ^C. */
12385
12386 bool has_more = (action_it != tdp_actions.end ()
12387 || !stepping_actions.empty ());
12388
12389 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12390 b->number, addrbuf, /* address */
12391 action_it->c_str (),
12392 has_more ? '-' : 0);
12393 putpkt (buf);
12394 remote_get_noisy_reply ();
12395 if (strcmp (rs->buf, "OK"))
12396 error (_("Error on target while setting tracepoints."));
12397 }
12398
12399 for (auto action_it = stepping_actions.begin ();
12400 action_it != stepping_actions.end (); action_it++)
12401 {
12402 QUIT; /* Allow user to bail out with ^C. */
12403
12404 bool is_first = action_it == stepping_actions.begin ();
12405 bool has_more = action_it != stepping_actions.end ();
12406
12407 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12408 b->number, addrbuf, /* address */
12409 is_first ? "S" : "",
12410 action_it->c_str (),
12411 has_more ? "-" : "");
12412 putpkt (buf);
12413 remote_get_noisy_reply ();
12414 if (strcmp (rs->buf, "OK"))
12415 error (_("Error on target while setting tracepoints."));
12416 }
12417
12418 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12419 {
12420 if (b->location != NULL)
12421 {
12422 strcpy (buf, "QTDPsrc:");
12423 encode_source_string (b->number, loc->address, "at",
12424 event_location_to_string (b->location.get ()),
12425 buf + strlen (buf), 2048 - strlen (buf));
12426 putpkt (buf);
12427 remote_get_noisy_reply ();
12428 if (strcmp (rs->buf, "OK"))
12429 warning (_("Target does not support source download."));
12430 }
12431 if (b->cond_string)
12432 {
12433 strcpy (buf, "QTDPsrc:");
12434 encode_source_string (b->number, loc->address,
12435 "cond", b->cond_string, buf + strlen (buf),
12436 2048 - strlen (buf));
12437 putpkt (buf);
12438 remote_get_noisy_reply ();
12439 if (strcmp (rs->buf, "OK"))
12440 warning (_("Target does not support source download."));
12441 }
12442 remote_download_command_source (b->number, loc->address,
12443 breakpoint_commands (b));
12444 }
12445 }
12446
12447 static int
12448 remote_can_download_tracepoint (struct target_ops *self)
12449 {
12450 struct remote_state *rs = get_remote_state ();
12451 struct trace_status *ts;
12452 int status;
12453
12454 /* Don't try to install tracepoints until we've relocated our
12455 symbols, and fetched and merged the target's tracepoint list with
12456 ours. */
12457 if (rs->starting_up)
12458 return 0;
12459
12460 ts = current_trace_status ();
12461 status = remote_get_trace_status (self, ts);
12462
12463 if (status == -1 || !ts->running_known || !ts->running)
12464 return 0;
12465
12466 /* If we are in a tracing experiment, but remote stub doesn't support
12467 installing tracepoint in trace, we have to return. */
12468 if (!remote_supports_install_in_trace ())
12469 return 0;
12470
12471 return 1;
12472 }
12473
12474
12475 static void
12476 remote_download_trace_state_variable (struct target_ops *self,
12477 struct trace_state_variable *tsv)
12478 {
12479 struct remote_state *rs = get_remote_state ();
12480 char *p;
12481
12482 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12483 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12484 tsv->builtin);
12485 p = rs->buf + strlen (rs->buf);
12486 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12487 error (_("Trace state variable name too long for tsv definition packet"));
12488 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12489 *p++ = '\0';
12490 putpkt (rs->buf);
12491 remote_get_noisy_reply ();
12492 if (*rs->buf == '\0')
12493 error (_("Target does not support this command."));
12494 if (strcmp (rs->buf, "OK") != 0)
12495 error (_("Error on target while downloading trace state variable."));
12496 }
12497
12498 static void
12499 remote_enable_tracepoint (struct target_ops *self,
12500 struct bp_location *location)
12501 {
12502 struct remote_state *rs = get_remote_state ();
12503 char addr_buf[40];
12504
12505 sprintf_vma (addr_buf, location->address);
12506 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12507 location->owner->number, addr_buf);
12508 putpkt (rs->buf);
12509 remote_get_noisy_reply ();
12510 if (*rs->buf == '\0')
12511 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12512 if (strcmp (rs->buf, "OK") != 0)
12513 error (_("Error on target while enabling tracepoint."));
12514 }
12515
12516 static void
12517 remote_disable_tracepoint (struct target_ops *self,
12518 struct bp_location *location)
12519 {
12520 struct remote_state *rs = get_remote_state ();
12521 char addr_buf[40];
12522
12523 sprintf_vma (addr_buf, location->address);
12524 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12525 location->owner->number, addr_buf);
12526 putpkt (rs->buf);
12527 remote_get_noisy_reply ();
12528 if (*rs->buf == '\0')
12529 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12530 if (strcmp (rs->buf, "OK") != 0)
12531 error (_("Error on target while disabling tracepoint."));
12532 }
12533
12534 static void
12535 remote_trace_set_readonly_regions (struct target_ops *self)
12536 {
12537 asection *s;
12538 bfd *abfd = NULL;
12539 bfd_size_type size;
12540 bfd_vma vma;
12541 int anysecs = 0;
12542 int offset = 0;
12543
12544 if (!exec_bfd)
12545 return; /* No information to give. */
12546
12547 struct remote_state *rs = get_remote_state ();
12548
12549 strcpy (rs->buf, "QTro");
12550 offset = strlen (rs->buf);
12551 for (s = exec_bfd->sections; s; s = s->next)
12552 {
12553 char tmp1[40], tmp2[40];
12554 int sec_length;
12555
12556 if ((s->flags & SEC_LOAD) == 0 ||
12557 /* (s->flags & SEC_CODE) == 0 || */
12558 (s->flags & SEC_READONLY) == 0)
12559 continue;
12560
12561 anysecs = 1;
12562 vma = bfd_get_section_vma (abfd, s);
12563 size = bfd_get_section_size (s);
12564 sprintf_vma (tmp1, vma);
12565 sprintf_vma (tmp2, vma + size);
12566 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12567 if (offset + sec_length + 1 > rs->buf_size)
12568 {
12569 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12570 warning (_("\
12571 Too many sections for read-only sections definition packet."));
12572 break;
12573 }
12574 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12575 tmp1, tmp2);
12576 offset += sec_length;
12577 }
12578 if (anysecs)
12579 {
12580 putpkt (rs->buf);
12581 getpkt (&rs->buf, &rs->buf_size, 0);
12582 }
12583 }
12584
12585 static void
12586 remote_trace_start (struct target_ops *self)
12587 {
12588 struct remote_state *rs = get_remote_state ();
12589
12590 putpkt ("QTStart");
12591 remote_get_noisy_reply ();
12592 if (*rs->buf == '\0')
12593 error (_("Target does not support this command."));
12594 if (strcmp (rs->buf, "OK") != 0)
12595 error (_("Bogus reply from target: %s"), rs->buf);
12596 }
12597
12598 static int
12599 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12600 {
12601 /* Initialize it just to avoid a GCC false warning. */
12602 char *p = NULL;
12603 /* FIXME we need to get register block size some other way. */
12604 extern int trace_regblock_size;
12605 enum packet_result result;
12606 struct remote_state *rs = get_remote_state ();
12607
12608 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12609 return -1;
12610
12611 trace_regblock_size
12612 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12613
12614 putpkt ("qTStatus");
12615
12616 TRY
12617 {
12618 p = remote_get_noisy_reply ();
12619 }
12620 CATCH (ex, RETURN_MASK_ERROR)
12621 {
12622 if (ex.error != TARGET_CLOSE_ERROR)
12623 {
12624 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12625 return -1;
12626 }
12627 throw_exception (ex);
12628 }
12629 END_CATCH
12630
12631 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12632
12633 /* If the remote target doesn't do tracing, flag it. */
12634 if (result == PACKET_UNKNOWN)
12635 return -1;
12636
12637 /* We're working with a live target. */
12638 ts->filename = NULL;
12639
12640 if (*p++ != 'T')
12641 error (_("Bogus trace status reply from target: %s"), rs->buf);
12642
12643 /* Function 'parse_trace_status' sets default value of each field of
12644 'ts' at first, so we don't have to do it here. */
12645 parse_trace_status (p, ts);
12646
12647 return ts->running;
12648 }
12649
12650 static void
12651 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12652 struct uploaded_tp *utp)
12653 {
12654 struct remote_state *rs = get_remote_state ();
12655 char *reply;
12656 struct bp_location *loc;
12657 struct tracepoint *tp = (struct tracepoint *) bp;
12658 size_t size = get_remote_packet_size ();
12659
12660 if (tp)
12661 {
12662 tp->hit_count = 0;
12663 tp->traceframe_usage = 0;
12664 for (loc = tp->loc; loc; loc = loc->next)
12665 {
12666 /* If the tracepoint was never downloaded, don't go asking for
12667 any status. */
12668 if (tp->number_on_target == 0)
12669 continue;
12670 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12671 phex_nz (loc->address, 0));
12672 putpkt (rs->buf);
12673 reply = remote_get_noisy_reply ();
12674 if (reply && *reply)
12675 {
12676 if (*reply == 'V')
12677 parse_tracepoint_status (reply + 1, bp, utp);
12678 }
12679 }
12680 }
12681 else if (utp)
12682 {
12683 utp->hit_count = 0;
12684 utp->traceframe_usage = 0;
12685 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12686 phex_nz (utp->addr, 0));
12687 putpkt (rs->buf);
12688 reply = remote_get_noisy_reply ();
12689 if (reply && *reply)
12690 {
12691 if (*reply == 'V')
12692 parse_tracepoint_status (reply + 1, bp, utp);
12693 }
12694 }
12695 }
12696
12697 static void
12698 remote_trace_stop (struct target_ops *self)
12699 {
12700 struct remote_state *rs = get_remote_state ();
12701
12702 putpkt ("QTStop");
12703 remote_get_noisy_reply ();
12704 if (*rs->buf == '\0')
12705 error (_("Target does not support this command."));
12706 if (strcmp (rs->buf, "OK") != 0)
12707 error (_("Bogus reply from target: %s"), rs->buf);
12708 }
12709
12710 static int
12711 remote_trace_find (struct target_ops *self,
12712 enum trace_find_type type, int num,
12713 CORE_ADDR addr1, CORE_ADDR addr2,
12714 int *tpp)
12715 {
12716 struct remote_state *rs = get_remote_state ();
12717 char *endbuf = rs->buf + get_remote_packet_size ();
12718 char *p, *reply;
12719 int target_frameno = -1, target_tracept = -1;
12720
12721 /* Lookups other than by absolute frame number depend on the current
12722 trace selected, so make sure it is correct on the remote end
12723 first. */
12724 if (type != tfind_number)
12725 set_remote_traceframe ();
12726
12727 p = rs->buf;
12728 strcpy (p, "QTFrame:");
12729 p = strchr (p, '\0');
12730 switch (type)
12731 {
12732 case tfind_number:
12733 xsnprintf (p, endbuf - p, "%x", num);
12734 break;
12735 case tfind_pc:
12736 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12737 break;
12738 case tfind_tp:
12739 xsnprintf (p, endbuf - p, "tdp:%x", num);
12740 break;
12741 case tfind_range:
12742 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12743 phex_nz (addr2, 0));
12744 break;
12745 case tfind_outside:
12746 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12747 phex_nz (addr2, 0));
12748 break;
12749 default:
12750 error (_("Unknown trace find type %d"), type);
12751 }
12752
12753 putpkt (rs->buf);
12754 reply = remote_get_noisy_reply ();
12755 if (*reply == '\0')
12756 error (_("Target does not support this command."));
12757
12758 while (reply && *reply)
12759 switch (*reply)
12760 {
12761 case 'F':
12762 p = ++reply;
12763 target_frameno = (int) strtol (p, &reply, 16);
12764 if (reply == p)
12765 error (_("Unable to parse trace frame number"));
12766 /* Don't update our remote traceframe number cache on failure
12767 to select a remote traceframe. */
12768 if (target_frameno == -1)
12769 return -1;
12770 break;
12771 case 'T':
12772 p = ++reply;
12773 target_tracept = (int) strtol (p, &reply, 16);
12774 if (reply == p)
12775 error (_("Unable to parse tracepoint number"));
12776 break;
12777 case 'O': /* "OK"? */
12778 if (reply[1] == 'K' && reply[2] == '\0')
12779 reply += 2;
12780 else
12781 error (_("Bogus reply from target: %s"), reply);
12782 break;
12783 default:
12784 error (_("Bogus reply from target: %s"), reply);
12785 }
12786 if (tpp)
12787 *tpp = target_tracept;
12788
12789 rs->remote_traceframe_number = target_frameno;
12790 return target_frameno;
12791 }
12792
12793 static int
12794 remote_get_trace_state_variable_value (struct target_ops *self,
12795 int tsvnum, LONGEST *val)
12796 {
12797 struct remote_state *rs = get_remote_state ();
12798 char *reply;
12799 ULONGEST uval;
12800
12801 set_remote_traceframe ();
12802
12803 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12804 putpkt (rs->buf);
12805 reply = remote_get_noisy_reply ();
12806 if (reply && *reply)
12807 {
12808 if (*reply == 'V')
12809 {
12810 unpack_varlen_hex (reply + 1, &uval);
12811 *val = (LONGEST) uval;
12812 return 1;
12813 }
12814 }
12815 return 0;
12816 }
12817
12818 static int
12819 remote_save_trace_data (struct target_ops *self, const char *filename)
12820 {
12821 struct remote_state *rs = get_remote_state ();
12822 char *p, *reply;
12823
12824 p = rs->buf;
12825 strcpy (p, "QTSave:");
12826 p += strlen (p);
12827 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12828 error (_("Remote file name too long for trace save packet"));
12829 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12830 *p++ = '\0';
12831 putpkt (rs->buf);
12832 reply = remote_get_noisy_reply ();
12833 if (*reply == '\0')
12834 error (_("Target does not support this command."));
12835 if (strcmp (reply, "OK") != 0)
12836 error (_("Bogus reply from target: %s"), reply);
12837 return 0;
12838 }
12839
12840 /* This is basically a memory transfer, but needs to be its own packet
12841 because we don't know how the target actually organizes its trace
12842 memory, plus we want to be able to ask for as much as possible, but
12843 not be unhappy if we don't get as much as we ask for. */
12844
12845 static LONGEST
12846 remote_get_raw_trace_data (struct target_ops *self,
12847 gdb_byte *buf, ULONGEST offset, LONGEST len)
12848 {
12849 struct remote_state *rs = get_remote_state ();
12850 char *reply;
12851 char *p;
12852 int rslt;
12853
12854 p = rs->buf;
12855 strcpy (p, "qTBuffer:");
12856 p += strlen (p);
12857 p += hexnumstr (p, offset);
12858 *p++ = ',';
12859 p += hexnumstr (p, len);
12860 *p++ = '\0';
12861
12862 putpkt (rs->buf);
12863 reply = remote_get_noisy_reply ();
12864 if (reply && *reply)
12865 {
12866 /* 'l' by itself means we're at the end of the buffer and
12867 there is nothing more to get. */
12868 if (*reply == 'l')
12869 return 0;
12870
12871 /* Convert the reply into binary. Limit the number of bytes to
12872 convert according to our passed-in buffer size, rather than
12873 what was returned in the packet; if the target is
12874 unexpectedly generous and gives us a bigger reply than we
12875 asked for, we don't want to crash. */
12876 rslt = hex2bin (reply, buf, len);
12877 return rslt;
12878 }
12879
12880 /* Something went wrong, flag as an error. */
12881 return -1;
12882 }
12883
12884 static void
12885 remote_set_disconnected_tracing (struct target_ops *self, int val)
12886 {
12887 struct remote_state *rs = get_remote_state ();
12888
12889 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12890 {
12891 char *reply;
12892
12893 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12894 putpkt (rs->buf);
12895 reply = remote_get_noisy_reply ();
12896 if (*reply == '\0')
12897 error (_("Target does not support this command."));
12898 if (strcmp (reply, "OK") != 0)
12899 error (_("Bogus reply from target: %s"), reply);
12900 }
12901 else if (val)
12902 warning (_("Target does not support disconnected tracing."));
12903 }
12904
12905 static int
12906 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12907 {
12908 struct thread_info *info = find_thread_ptid (ptid);
12909
12910 if (info != NULL && info->priv != NULL)
12911 return get_remote_thread_info (info)->core;
12912
12913 return -1;
12914 }
12915
12916 static void
12917 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12918 {
12919 struct remote_state *rs = get_remote_state ();
12920 char *reply;
12921
12922 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12923 putpkt (rs->buf);
12924 reply = remote_get_noisy_reply ();
12925 if (*reply == '\0')
12926 error (_("Target does not support this command."));
12927 if (strcmp (reply, "OK") != 0)
12928 error (_("Bogus reply from target: %s"), reply);
12929 }
12930
12931 static traceframe_info_up
12932 remote_traceframe_info (struct target_ops *self)
12933 {
12934 gdb::unique_xmalloc_ptr<char> text
12935 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12936 NULL);
12937 if (text != NULL)
12938 return parse_traceframe_info (text.get ());
12939
12940 return NULL;
12941 }
12942
12943 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12944 instruction on which a fast tracepoint may be placed. Returns -1
12945 if the packet is not supported, and 0 if the minimum instruction
12946 length is unknown. */
12947
12948 static int
12949 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12950 {
12951 struct remote_state *rs = get_remote_state ();
12952 char *reply;
12953
12954 /* If we're not debugging a process yet, the IPA can't be
12955 loaded. */
12956 if (!target_has_execution)
12957 return 0;
12958
12959 /* Make sure the remote is pointing at the right process. */
12960 set_general_process ();
12961
12962 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12963 putpkt (rs->buf);
12964 reply = remote_get_noisy_reply ();
12965 if (*reply == '\0')
12966 return -1;
12967 else
12968 {
12969 ULONGEST min_insn_len;
12970
12971 unpack_varlen_hex (reply, &min_insn_len);
12972
12973 return (int) min_insn_len;
12974 }
12975 }
12976
12977 static void
12978 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12979 {
12980 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12981 {
12982 struct remote_state *rs = get_remote_state ();
12983 char *buf = rs->buf;
12984 char *endbuf = rs->buf + get_remote_packet_size ();
12985 enum packet_result result;
12986
12987 gdb_assert (val >= 0 || val == -1);
12988 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12989 /* Send -1 as literal "-1" to avoid host size dependency. */
12990 if (val < 0)
12991 {
12992 *buf++ = '-';
12993 buf += hexnumstr (buf, (ULONGEST) -val);
12994 }
12995 else
12996 buf += hexnumstr (buf, (ULONGEST) val);
12997
12998 putpkt (rs->buf);
12999 remote_get_noisy_reply ();
13000 result = packet_ok (rs->buf,
13001 &remote_protocol_packets[PACKET_QTBuffer_size]);
13002
13003 if (result != PACKET_OK)
13004 warning (_("Bogus reply from target: %s"), rs->buf);
13005 }
13006 }
13007
13008 static int
13009 remote_set_trace_notes (struct target_ops *self,
13010 const char *user, const char *notes,
13011 const char *stop_notes)
13012 {
13013 struct remote_state *rs = get_remote_state ();
13014 char *reply;
13015 char *buf = rs->buf;
13016 char *endbuf = rs->buf + get_remote_packet_size ();
13017 int nbytes;
13018
13019 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13020 if (user)
13021 {
13022 buf += xsnprintf (buf, endbuf - buf, "user:");
13023 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13024 buf += 2 * nbytes;
13025 *buf++ = ';';
13026 }
13027 if (notes)
13028 {
13029 buf += xsnprintf (buf, endbuf - buf, "notes:");
13030 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13031 buf += 2 * nbytes;
13032 *buf++ = ';';
13033 }
13034 if (stop_notes)
13035 {
13036 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13037 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13038 buf += 2 * nbytes;
13039 *buf++ = ';';
13040 }
13041 /* Ensure the buffer is terminated. */
13042 *buf = '\0';
13043
13044 putpkt (rs->buf);
13045 reply = remote_get_noisy_reply ();
13046 if (*reply == '\0')
13047 return 0;
13048
13049 if (strcmp (reply, "OK") != 0)
13050 error (_("Bogus reply from target: %s"), reply);
13051
13052 return 1;
13053 }
13054
13055 static int
13056 remote_use_agent (struct target_ops *self, int use)
13057 {
13058 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13059 {
13060 struct remote_state *rs = get_remote_state ();
13061
13062 /* If the stub supports QAgent. */
13063 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13064 putpkt (rs->buf);
13065 getpkt (&rs->buf, &rs->buf_size, 0);
13066
13067 if (strcmp (rs->buf, "OK") == 0)
13068 {
13069 use_agent = use;
13070 return 1;
13071 }
13072 }
13073
13074 return 0;
13075 }
13076
13077 static int
13078 remote_can_use_agent (struct target_ops *self)
13079 {
13080 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13081 }
13082
13083 struct btrace_target_info
13084 {
13085 /* The ptid of the traced thread. */
13086 ptid_t ptid;
13087
13088 /* The obtained branch trace configuration. */
13089 struct btrace_config conf;
13090 };
13091
13092 /* Reset our idea of our target's btrace configuration. */
13093
13094 static void
13095 remote_btrace_reset (void)
13096 {
13097 struct remote_state *rs = get_remote_state ();
13098
13099 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13100 }
13101
13102 /* Check whether the target supports branch tracing. */
13103
13104 static int
13105 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13106 {
13107 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13108 return 0;
13109 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13110 return 0;
13111
13112 switch (format)
13113 {
13114 case BTRACE_FORMAT_NONE:
13115 return 0;
13116
13117 case BTRACE_FORMAT_BTS:
13118 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13119
13120 case BTRACE_FORMAT_PT:
13121 /* The trace is decoded on the host. Even if our target supports it,
13122 we still need to have libipt to decode the trace. */
13123 #if defined (HAVE_LIBIPT)
13124 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13125 #else /* !defined (HAVE_LIBIPT) */
13126 return 0;
13127 #endif /* !defined (HAVE_LIBIPT) */
13128 }
13129
13130 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13131 }
13132
13133 /* Synchronize the configuration with the target. */
13134
13135 static void
13136 btrace_sync_conf (const struct btrace_config *conf)
13137 {
13138 struct packet_config *packet;
13139 struct remote_state *rs;
13140 char *buf, *pos, *endbuf;
13141
13142 rs = get_remote_state ();
13143 buf = rs->buf;
13144 endbuf = buf + get_remote_packet_size ();
13145
13146 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13147 if (packet_config_support (packet) == PACKET_ENABLE
13148 && conf->bts.size != rs->btrace_config.bts.size)
13149 {
13150 pos = buf;
13151 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13152 conf->bts.size);
13153
13154 putpkt (buf);
13155 getpkt (&buf, &rs->buf_size, 0);
13156
13157 if (packet_ok (buf, packet) == PACKET_ERROR)
13158 {
13159 if (buf[0] == 'E' && buf[1] == '.')
13160 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13161 else
13162 error (_("Failed to configure the BTS buffer size."));
13163 }
13164
13165 rs->btrace_config.bts.size = conf->bts.size;
13166 }
13167
13168 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13169 if (packet_config_support (packet) == PACKET_ENABLE
13170 && conf->pt.size != rs->btrace_config.pt.size)
13171 {
13172 pos = buf;
13173 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13174 conf->pt.size);
13175
13176 putpkt (buf);
13177 getpkt (&buf, &rs->buf_size, 0);
13178
13179 if (packet_ok (buf, packet) == PACKET_ERROR)
13180 {
13181 if (buf[0] == 'E' && buf[1] == '.')
13182 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13183 else
13184 error (_("Failed to configure the trace buffer size."));
13185 }
13186
13187 rs->btrace_config.pt.size = conf->pt.size;
13188 }
13189 }
13190
13191 /* Read the current thread's btrace configuration from the target and
13192 store it into CONF. */
13193
13194 static void
13195 btrace_read_config (struct btrace_config *conf)
13196 {
13197 gdb::unique_xmalloc_ptr<char> xml
13198 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13199 if (xml != NULL)
13200 parse_xml_btrace_conf (conf, xml.get ());
13201 }
13202
13203 /* Maybe reopen target btrace. */
13204
13205 static void
13206 remote_btrace_maybe_reopen (void)
13207 {
13208 struct remote_state *rs = get_remote_state ();
13209 struct thread_info *tp;
13210 int btrace_target_pushed = 0;
13211 int warned = 0;
13212
13213 scoped_restore_current_thread restore_thread;
13214
13215 ALL_NON_EXITED_THREADS (tp)
13216 {
13217 set_general_thread (tp->ptid);
13218
13219 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13220 btrace_read_config (&rs->btrace_config);
13221
13222 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13223 continue;
13224
13225 #if !defined (HAVE_LIBIPT)
13226 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13227 {
13228 if (!warned)
13229 {
13230 warned = 1;
13231 warning (_("GDB does not support Intel Processor Trace. "
13232 "\"record\" will not work in this session."));
13233 }
13234
13235 continue;
13236 }
13237 #endif /* !defined (HAVE_LIBIPT) */
13238
13239 /* Push target, once, but before anything else happens. This way our
13240 changes to the threads will be cleaned up by unpushing the target
13241 in case btrace_read_config () throws. */
13242 if (!btrace_target_pushed)
13243 {
13244 btrace_target_pushed = 1;
13245 record_btrace_push_target ();
13246 printf_filtered (_("Target is recording using %s.\n"),
13247 btrace_format_string (rs->btrace_config.format));
13248 }
13249
13250 tp->btrace.target = XCNEW (struct btrace_target_info);
13251 tp->btrace.target->ptid = tp->ptid;
13252 tp->btrace.target->conf = rs->btrace_config;
13253 }
13254 }
13255
13256 /* Enable branch tracing. */
13257
13258 static struct btrace_target_info *
13259 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13260 const struct btrace_config *conf)
13261 {
13262 struct btrace_target_info *tinfo = NULL;
13263 struct packet_config *packet = NULL;
13264 struct remote_state *rs = get_remote_state ();
13265 char *buf = rs->buf;
13266 char *endbuf = rs->buf + get_remote_packet_size ();
13267
13268 switch (conf->format)
13269 {
13270 case BTRACE_FORMAT_BTS:
13271 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13272 break;
13273
13274 case BTRACE_FORMAT_PT:
13275 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13276 break;
13277 }
13278
13279 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13280 error (_("Target does not support branch tracing."));
13281
13282 btrace_sync_conf (conf);
13283
13284 set_general_thread (ptid);
13285
13286 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13287 putpkt (rs->buf);
13288 getpkt (&rs->buf, &rs->buf_size, 0);
13289
13290 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13291 {
13292 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13293 error (_("Could not enable branch tracing for %s: %s"),
13294 target_pid_to_str (ptid), rs->buf + 2);
13295 else
13296 error (_("Could not enable branch tracing for %s."),
13297 target_pid_to_str (ptid));
13298 }
13299
13300 tinfo = XCNEW (struct btrace_target_info);
13301 tinfo->ptid = ptid;
13302
13303 /* If we fail to read the configuration, we lose some information, but the
13304 tracing itself is not impacted. */
13305 TRY
13306 {
13307 btrace_read_config (&tinfo->conf);
13308 }
13309 CATCH (err, RETURN_MASK_ERROR)
13310 {
13311 if (err.message != NULL)
13312 warning ("%s", err.message);
13313 }
13314 END_CATCH
13315
13316 return tinfo;
13317 }
13318
13319 /* Disable branch tracing. */
13320
13321 static void
13322 remote_disable_btrace (struct target_ops *self,
13323 struct btrace_target_info *tinfo)
13324 {
13325 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13326 struct remote_state *rs = get_remote_state ();
13327 char *buf = rs->buf;
13328 char *endbuf = rs->buf + get_remote_packet_size ();
13329
13330 if (packet_config_support (packet) != PACKET_ENABLE)
13331 error (_("Target does not support branch tracing."));
13332
13333 set_general_thread (tinfo->ptid);
13334
13335 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13336 putpkt (rs->buf);
13337 getpkt (&rs->buf, &rs->buf_size, 0);
13338
13339 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13340 {
13341 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13342 error (_("Could not disable branch tracing for %s: %s"),
13343 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13344 else
13345 error (_("Could not disable branch tracing for %s."),
13346 target_pid_to_str (tinfo->ptid));
13347 }
13348
13349 xfree (tinfo);
13350 }
13351
13352 /* Teardown branch tracing. */
13353
13354 static void
13355 remote_teardown_btrace (struct target_ops *self,
13356 struct btrace_target_info *tinfo)
13357 {
13358 /* We must not talk to the target during teardown. */
13359 xfree (tinfo);
13360 }
13361
13362 /* Read the branch trace. */
13363
13364 static enum btrace_error
13365 remote_read_btrace (struct target_ops *self,
13366 struct btrace_data *btrace,
13367 struct btrace_target_info *tinfo,
13368 enum btrace_read_type type)
13369 {
13370 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13371 const char *annex;
13372
13373 if (packet_config_support (packet) != PACKET_ENABLE)
13374 error (_("Target does not support branch tracing."));
13375
13376 #if !defined(HAVE_LIBEXPAT)
13377 error (_("Cannot process branch tracing result. XML parsing not supported."));
13378 #endif
13379
13380 switch (type)
13381 {
13382 case BTRACE_READ_ALL:
13383 annex = "all";
13384 break;
13385 case BTRACE_READ_NEW:
13386 annex = "new";
13387 break;
13388 case BTRACE_READ_DELTA:
13389 annex = "delta";
13390 break;
13391 default:
13392 internal_error (__FILE__, __LINE__,
13393 _("Bad branch tracing read type: %u."),
13394 (unsigned int) type);
13395 }
13396
13397 gdb::unique_xmalloc_ptr<char> xml
13398 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13399 if (xml == NULL)
13400 return BTRACE_ERR_UNKNOWN;
13401
13402 parse_xml_btrace (btrace, xml.get ());
13403
13404 return BTRACE_ERR_NONE;
13405 }
13406
13407 static const struct btrace_config *
13408 remote_btrace_conf (struct target_ops *self,
13409 const struct btrace_target_info *tinfo)
13410 {
13411 return &tinfo->conf;
13412 }
13413
13414 static int
13415 remote_augmented_libraries_svr4_read (struct target_ops *self)
13416 {
13417 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13418 == PACKET_ENABLE);
13419 }
13420
13421 /* Implementation of to_load. */
13422
13423 static void
13424 remote_load (struct target_ops *self, const char *name, int from_tty)
13425 {
13426 generic_load (name, from_tty);
13427 }
13428
13429 /* Accepts an integer PID; returns a string representing a file that
13430 can be opened on the remote side to get the symbols for the child
13431 process. Returns NULL if the operation is not supported. */
13432
13433 static char *
13434 remote_pid_to_exec_file (struct target_ops *self, int pid)
13435 {
13436 static gdb::unique_xmalloc_ptr<char> filename;
13437 struct inferior *inf;
13438 char *annex = NULL;
13439
13440 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13441 return NULL;
13442
13443 inf = find_inferior_pid (pid);
13444 if (inf == NULL)
13445 internal_error (__FILE__, __LINE__,
13446 _("not currently attached to process %d"), pid);
13447
13448 if (!inf->fake_pid_p)
13449 {
13450 const int annex_size = 9;
13451
13452 annex = (char *) alloca (annex_size);
13453 xsnprintf (annex, annex_size, "%x", pid);
13454 }
13455
13456 filename = target_read_stralloc (&current_target,
13457 TARGET_OBJECT_EXEC_FILE, annex);
13458
13459 return filename.get ();
13460 }
13461
13462 /* Implement the to_can_do_single_step target_ops method. */
13463
13464 static int
13465 remote_can_do_single_step (struct target_ops *ops)
13466 {
13467 /* We can only tell whether target supports single step or not by
13468 supported s and S vCont actions if the stub supports vContSupported
13469 feature. If the stub doesn't support vContSupported feature,
13470 we have conservatively to think target doesn't supports single
13471 step. */
13472 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13473 {
13474 struct remote_state *rs = get_remote_state ();
13475
13476 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13477 remote_vcont_probe (rs);
13478
13479 return rs->supports_vCont.s && rs->supports_vCont.S;
13480 }
13481 else
13482 return 0;
13483 }
13484
13485 /* Implementation of the to_execution_direction method for the remote
13486 target. */
13487
13488 static enum exec_direction_kind
13489 remote_execution_direction (struct target_ops *self)
13490 {
13491 struct remote_state *rs = get_remote_state ();
13492
13493 return rs->last_resume_exec_dir;
13494 }
13495
13496 /* Return pointer to the thread_info struct which corresponds to
13497 THREAD_HANDLE (having length HANDLE_LEN). */
13498
13499 static struct thread_info *
13500 remote_thread_handle_to_thread_info (struct target_ops *ops,
13501 const gdb_byte *thread_handle,
13502 int handle_len,
13503 struct inferior *inf)
13504 {
13505 struct thread_info *tp;
13506
13507 ALL_NON_EXITED_THREADS (tp)
13508 {
13509 remote_thread_info *priv = get_remote_thread_info (tp);
13510
13511 if (tp->inf == inf && priv != NULL)
13512 {
13513 if (handle_len != priv->thread_handle.size ())
13514 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13515 handle_len, priv->thread_handle.size ());
13516 if (memcmp (thread_handle, priv->thread_handle.data (),
13517 handle_len) == 0)
13518 return tp;
13519 }
13520 }
13521
13522 return NULL;
13523 }
13524
13525 static void
13526 init_remote_ops (void)
13527 {
13528 remote_ops.to_shortname = "remote";
13529 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13530 remote_ops.to_doc =
13531 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13532 Specify the serial device it is connected to\n\
13533 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13534 remote_ops.to_open = remote_open;
13535 remote_ops.to_close = remote_close;
13536 remote_ops.to_detach = remote_detach;
13537 remote_ops.to_disconnect = remote_disconnect;
13538 remote_ops.to_resume = remote_resume;
13539 remote_ops.to_commit_resume = remote_commit_resume;
13540 remote_ops.to_wait = remote_wait;
13541 remote_ops.to_fetch_registers = remote_fetch_registers;
13542 remote_ops.to_store_registers = remote_store_registers;
13543 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13544 remote_ops.to_files_info = remote_files_info;
13545 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13546 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13547 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13548 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13549 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13550 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13551 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13552 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13553 remote_ops.to_watchpoint_addr_within_range =
13554 remote_watchpoint_addr_within_range;
13555 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13556 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13557 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13558 remote_ops.to_region_ok_for_hw_watchpoint
13559 = remote_region_ok_for_hw_watchpoint;
13560 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13561 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13562 remote_ops.to_kill = remote_kill;
13563 remote_ops.to_load = remote_load;
13564 remote_ops.to_mourn_inferior = remote_mourn;
13565 remote_ops.to_pass_signals = remote_pass_signals;
13566 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13567 remote_ops.to_program_signals = remote_program_signals;
13568 remote_ops.to_thread_alive = remote_thread_alive;
13569 remote_ops.to_thread_name = remote_thread_name;
13570 remote_ops.to_update_thread_list = remote_update_thread_list;
13571 remote_ops.to_pid_to_str = remote_pid_to_str;
13572 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13573 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13574 remote_ops.to_stop = remote_stop;
13575 remote_ops.to_interrupt = remote_interrupt;
13576 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13577 remote_ops.to_xfer_partial = remote_xfer_partial;
13578 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13579 remote_ops.to_rcmd = remote_rcmd;
13580 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13581 remote_ops.to_log_command = serial_log_command;
13582 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13583 remote_ops.to_stratum = process_stratum;
13584 remote_ops.to_has_all_memory = default_child_has_all_memory;
13585 remote_ops.to_has_memory = default_child_has_memory;
13586 remote_ops.to_has_stack = default_child_has_stack;
13587 remote_ops.to_has_registers = default_child_has_registers;
13588 remote_ops.to_has_execution = default_child_has_execution;
13589 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13590 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13591 remote_ops.to_magic = OPS_MAGIC;
13592 remote_ops.to_memory_map = remote_memory_map;
13593 remote_ops.to_flash_erase = remote_flash_erase;
13594 remote_ops.to_flash_done = remote_flash_done;
13595 remote_ops.to_read_description = remote_read_description;
13596 remote_ops.to_search_memory = remote_search_memory;
13597 remote_ops.to_can_async_p = remote_can_async_p;
13598 remote_ops.to_is_async_p = remote_is_async_p;
13599 remote_ops.to_async = remote_async;
13600 remote_ops.to_thread_events = remote_thread_events;
13601 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13602 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13603 remote_ops.to_terminal_ours = remote_terminal_ours;
13604 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13605 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13606 remote_ops.to_supports_disable_randomization
13607 = remote_supports_disable_randomization;
13608 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13609 remote_ops.to_fileio_open = remote_hostio_open;
13610 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13611 remote_ops.to_fileio_pread = remote_hostio_pread;
13612 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13613 remote_ops.to_fileio_close = remote_hostio_close;
13614 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13615 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13616 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13617 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13618 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13619 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13620 remote_ops.to_trace_init = remote_trace_init;
13621 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13622 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13623 remote_ops.to_download_trace_state_variable
13624 = remote_download_trace_state_variable;
13625 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13626 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13627 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13628 remote_ops.to_trace_start = remote_trace_start;
13629 remote_ops.to_get_trace_status = remote_get_trace_status;
13630 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13631 remote_ops.to_trace_stop = remote_trace_stop;
13632 remote_ops.to_trace_find = remote_trace_find;
13633 remote_ops.to_get_trace_state_variable_value
13634 = remote_get_trace_state_variable_value;
13635 remote_ops.to_save_trace_data = remote_save_trace_data;
13636 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13637 remote_ops.to_upload_trace_state_variables
13638 = remote_upload_trace_state_variables;
13639 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13640 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13641 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13642 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13643 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13644 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13645 remote_ops.to_core_of_thread = remote_core_of_thread;
13646 remote_ops.to_verify_memory = remote_verify_memory;
13647 remote_ops.to_get_tib_address = remote_get_tib_address;
13648 remote_ops.to_set_permissions = remote_set_permissions;
13649 remote_ops.to_static_tracepoint_marker_at
13650 = remote_static_tracepoint_marker_at;
13651 remote_ops.to_static_tracepoint_markers_by_strid
13652 = remote_static_tracepoint_markers_by_strid;
13653 remote_ops.to_traceframe_info = remote_traceframe_info;
13654 remote_ops.to_use_agent = remote_use_agent;
13655 remote_ops.to_can_use_agent = remote_can_use_agent;
13656 remote_ops.to_supports_btrace = remote_supports_btrace;
13657 remote_ops.to_enable_btrace = remote_enable_btrace;
13658 remote_ops.to_disable_btrace = remote_disable_btrace;
13659 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13660 remote_ops.to_read_btrace = remote_read_btrace;
13661 remote_ops.to_btrace_conf = remote_btrace_conf;
13662 remote_ops.to_augmented_libraries_svr4_read =
13663 remote_augmented_libraries_svr4_read;
13664 remote_ops.to_follow_fork = remote_follow_fork;
13665 remote_ops.to_follow_exec = remote_follow_exec;
13666 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13667 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13668 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13669 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13670 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13671 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13672 remote_ops.to_execution_direction = remote_execution_direction;
13673 remote_ops.to_thread_handle_to_thread_info =
13674 remote_thread_handle_to_thread_info;
13675 }
13676
13677 /* Set up the extended remote vector by making a copy of the standard
13678 remote vector and adding to it. */
13679
13680 static void
13681 init_extended_remote_ops (void)
13682 {
13683 extended_remote_ops = remote_ops;
13684
13685 extended_remote_ops.to_shortname = "extended-remote";
13686 extended_remote_ops.to_longname =
13687 "Extended remote serial target in gdb-specific protocol";
13688 extended_remote_ops.to_doc =
13689 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13690 Specify the serial device it is connected to (e.g. /dev/ttya).";
13691 extended_remote_ops.to_open = extended_remote_open;
13692 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13693 extended_remote_ops.to_detach = extended_remote_detach;
13694 extended_remote_ops.to_attach = extended_remote_attach;
13695 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13696 extended_remote_ops.to_supports_disable_randomization
13697 = extended_remote_supports_disable_randomization;
13698 }
13699
13700 static int
13701 remote_can_async_p (struct target_ops *ops)
13702 {
13703 struct remote_state *rs = get_remote_state ();
13704
13705 /* We don't go async if the user has explicitly prevented it with the
13706 "maint set target-async" command. */
13707 if (!target_async_permitted)
13708 return 0;
13709
13710 /* We're async whenever the serial device is. */
13711 return serial_can_async_p (rs->remote_desc);
13712 }
13713
13714 static int
13715 remote_is_async_p (struct target_ops *ops)
13716 {
13717 struct remote_state *rs = get_remote_state ();
13718
13719 if (!target_async_permitted)
13720 /* We only enable async when the user specifically asks for it. */
13721 return 0;
13722
13723 /* We're async whenever the serial device is. */
13724 return serial_is_async_p (rs->remote_desc);
13725 }
13726
13727 /* Pass the SERIAL event on and up to the client. One day this code
13728 will be able to delay notifying the client of an event until the
13729 point where an entire packet has been received. */
13730
13731 static serial_event_ftype remote_async_serial_handler;
13732
13733 static void
13734 remote_async_serial_handler (struct serial *scb, void *context)
13735 {
13736 /* Don't propogate error information up to the client. Instead let
13737 the client find out about the error by querying the target. */
13738 inferior_event_handler (INF_REG_EVENT, NULL);
13739 }
13740
13741 static void
13742 remote_async_inferior_event_handler (gdb_client_data data)
13743 {
13744 inferior_event_handler (INF_REG_EVENT, NULL);
13745 }
13746
13747 static void
13748 remote_async (struct target_ops *ops, int enable)
13749 {
13750 struct remote_state *rs = get_remote_state ();
13751
13752 if (enable)
13753 {
13754 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13755
13756 /* If there are pending events in the stop reply queue tell the
13757 event loop to process them. */
13758 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13759 mark_async_event_handler (remote_async_inferior_event_token);
13760 /* For simplicity, below we clear the pending events token
13761 without remembering whether it is marked, so here we always
13762 mark it. If there's actually no pending notification to
13763 process, this ends up being a no-op (other than a spurious
13764 event-loop wakeup). */
13765 if (target_is_non_stop_p ())
13766 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13767 }
13768 else
13769 {
13770 serial_async (rs->remote_desc, NULL, NULL);
13771 /* If the core is disabling async, it doesn't want to be
13772 disturbed with target events. Clear all async event sources
13773 too. */
13774 clear_async_event_handler (remote_async_inferior_event_token);
13775 if (target_is_non_stop_p ())
13776 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13777 }
13778 }
13779
13780 /* Implementation of the to_thread_events method. */
13781
13782 static void
13783 remote_thread_events (struct target_ops *ops, int enable)
13784 {
13785 struct remote_state *rs = get_remote_state ();
13786 size_t size = get_remote_packet_size ();
13787
13788 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13789 return;
13790
13791 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13792 putpkt (rs->buf);
13793 getpkt (&rs->buf, &rs->buf_size, 0);
13794
13795 switch (packet_ok (rs->buf,
13796 &remote_protocol_packets[PACKET_QThreadEvents]))
13797 {
13798 case PACKET_OK:
13799 if (strcmp (rs->buf, "OK") != 0)
13800 error (_("Remote refused setting thread events: %s"), rs->buf);
13801 break;
13802 case PACKET_ERROR:
13803 warning (_("Remote failure reply: %s"), rs->buf);
13804 break;
13805 case PACKET_UNKNOWN:
13806 break;
13807 }
13808 }
13809
13810 static void
13811 set_remote_cmd (const char *args, int from_tty)
13812 {
13813 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13814 }
13815
13816 static void
13817 show_remote_cmd (const char *args, int from_tty)
13818 {
13819 /* We can't just use cmd_show_list here, because we want to skip
13820 the redundant "show remote Z-packet" and the legacy aliases. */
13821 struct cmd_list_element *list = remote_show_cmdlist;
13822 struct ui_out *uiout = current_uiout;
13823
13824 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13825 for (; list != NULL; list = list->next)
13826 if (strcmp (list->name, "Z-packet") == 0)
13827 continue;
13828 else if (list->type == not_set_cmd)
13829 /* Alias commands are exactly like the original, except they
13830 don't have the normal type. */
13831 continue;
13832 else
13833 {
13834 ui_out_emit_tuple option_emitter (uiout, "option");
13835
13836 uiout->field_string ("name", list->name);
13837 uiout->text (": ");
13838 if (list->type == show_cmd)
13839 do_show_command (NULL, from_tty, list);
13840 else
13841 cmd_func (list, NULL, from_tty);
13842 }
13843 }
13844
13845
13846 /* Function to be called whenever a new objfile (shlib) is detected. */
13847 static void
13848 remote_new_objfile (struct objfile *objfile)
13849 {
13850 struct remote_state *rs = get_remote_state ();
13851
13852 if (rs->remote_desc != 0) /* Have a remote connection. */
13853 remote_check_symbols ();
13854 }
13855
13856 /* Pull all the tracepoints defined on the target and create local
13857 data structures representing them. We don't want to create real
13858 tracepoints yet, we don't want to mess up the user's existing
13859 collection. */
13860
13861 static int
13862 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13863 {
13864 struct remote_state *rs = get_remote_state ();
13865 char *p;
13866
13867 /* Ask for a first packet of tracepoint definition. */
13868 putpkt ("qTfP");
13869 getpkt (&rs->buf, &rs->buf_size, 0);
13870 p = rs->buf;
13871 while (*p && *p != 'l')
13872 {
13873 parse_tracepoint_definition (p, utpp);
13874 /* Ask for another packet of tracepoint definition. */
13875 putpkt ("qTsP");
13876 getpkt (&rs->buf, &rs->buf_size, 0);
13877 p = rs->buf;
13878 }
13879 return 0;
13880 }
13881
13882 static int
13883 remote_upload_trace_state_variables (struct target_ops *self,
13884 struct uploaded_tsv **utsvp)
13885 {
13886 struct remote_state *rs = get_remote_state ();
13887 char *p;
13888
13889 /* Ask for a first packet of variable definition. */
13890 putpkt ("qTfV");
13891 getpkt (&rs->buf, &rs->buf_size, 0);
13892 p = rs->buf;
13893 while (*p && *p != 'l')
13894 {
13895 parse_tsv_definition (p, utsvp);
13896 /* Ask for another packet of variable definition. */
13897 putpkt ("qTsV");
13898 getpkt (&rs->buf, &rs->buf_size, 0);
13899 p = rs->buf;
13900 }
13901 return 0;
13902 }
13903
13904 /* The "set/show range-stepping" show hook. */
13905
13906 static void
13907 show_range_stepping (struct ui_file *file, int from_tty,
13908 struct cmd_list_element *c,
13909 const char *value)
13910 {
13911 fprintf_filtered (file,
13912 _("Debugger's willingness to use range stepping "
13913 "is %s.\n"), value);
13914 }
13915
13916 /* The "set/show range-stepping" set hook. */
13917
13918 static void
13919 set_range_stepping (const char *ignore_args, int from_tty,
13920 struct cmd_list_element *c)
13921 {
13922 struct remote_state *rs = get_remote_state ();
13923
13924 /* Whene enabling, check whether range stepping is actually
13925 supported by the target, and warn if not. */
13926 if (use_range_stepping)
13927 {
13928 if (rs->remote_desc != NULL)
13929 {
13930 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13931 remote_vcont_probe (rs);
13932
13933 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13934 && rs->supports_vCont.r)
13935 return;
13936 }
13937
13938 warning (_("Range stepping is not supported by the current target"));
13939 }
13940 }
13941
13942 void
13943 _initialize_remote (void)
13944 {
13945 struct cmd_list_element *cmd;
13946 const char *cmd_name;
13947
13948 /* architecture specific data */
13949 remote_gdbarch_data_handle =
13950 gdbarch_data_register_post_init (init_remote_state);
13951 remote_g_packet_data_handle =
13952 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13953
13954 remote_pspace_data
13955 = register_program_space_data_with_cleanup (NULL,
13956 remote_pspace_data_cleanup);
13957
13958 /* Initialize the per-target state. At the moment there is only one
13959 of these, not one per target. Only one target is active at a
13960 time. */
13961 remote_state = new_remote_state ();
13962
13963 init_remote_ops ();
13964 add_target (&remote_ops);
13965
13966 init_extended_remote_ops ();
13967 add_target (&extended_remote_ops);
13968
13969 /* Hook into new objfile notification. */
13970 observer_attach_new_objfile (remote_new_objfile);
13971 /* We're no longer interested in notification events of an inferior
13972 when it exits. */
13973 observer_attach_inferior_exit (discard_pending_stop_replies);
13974
13975 #if 0
13976 init_remote_threadtests ();
13977 #endif
13978
13979 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13980 /* set/show remote ... */
13981
13982 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13983 Remote protocol specific variables\n\
13984 Configure various remote-protocol specific variables such as\n\
13985 the packets being used"),
13986 &remote_set_cmdlist, "set remote ",
13987 0 /* allow-unknown */, &setlist);
13988 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13989 Remote protocol specific variables\n\
13990 Configure various remote-protocol specific variables such as\n\
13991 the packets being used"),
13992 &remote_show_cmdlist, "show remote ",
13993 0 /* allow-unknown */, &showlist);
13994
13995 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13996 Compare section data on target to the exec file.\n\
13997 Argument is a single section name (default: all loaded sections).\n\
13998 To compare only read-only loaded sections, specify the -r option."),
13999 &cmdlist);
14000
14001 add_cmd ("packet", class_maintenance, packet_command, _("\
14002 Send an arbitrary packet to a remote target.\n\
14003 maintenance packet TEXT\n\
14004 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14005 this command sends the string TEXT to the inferior, and displays the\n\
14006 response packet. GDB supplies the initial `$' character, and the\n\
14007 terminating `#' character and checksum."),
14008 &maintenancelist);
14009
14010 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14011 Set whether to send break if interrupted."), _("\
14012 Show whether to send break if interrupted."), _("\
14013 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14014 set_remotebreak, show_remotebreak,
14015 &setlist, &showlist);
14016 cmd_name = "remotebreak";
14017 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14018 deprecate_cmd (cmd, "set remote interrupt-sequence");
14019 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14020 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14021 deprecate_cmd (cmd, "show remote interrupt-sequence");
14022
14023 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14024 interrupt_sequence_modes, &interrupt_sequence_mode,
14025 _("\
14026 Set interrupt sequence to remote target."), _("\
14027 Show interrupt sequence to remote target."), _("\
14028 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14029 NULL, show_interrupt_sequence,
14030 &remote_set_cmdlist,
14031 &remote_show_cmdlist);
14032
14033 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14034 &interrupt_on_connect, _("\
14035 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14036 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14037 If set, interrupt sequence is sent to remote target."),
14038 NULL, NULL,
14039 &remote_set_cmdlist, &remote_show_cmdlist);
14040
14041 /* Install commands for configuring memory read/write packets. */
14042
14043 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14044 Set the maximum number of bytes per memory write packet (deprecated)."),
14045 &setlist);
14046 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14047 Show the maximum number of bytes per memory write packet (deprecated)."),
14048 &showlist);
14049 add_cmd ("memory-write-packet-size", no_class,
14050 set_memory_write_packet_size, _("\
14051 Set the maximum number of bytes per memory-write packet.\n\
14052 Specify the number of bytes in a packet or 0 (zero) for the\n\
14053 default packet size. The actual limit is further reduced\n\
14054 dependent on the target. Specify ``fixed'' to disable the\n\
14055 further restriction and ``limit'' to enable that restriction."),
14056 &remote_set_cmdlist);
14057 add_cmd ("memory-read-packet-size", no_class,
14058 set_memory_read_packet_size, _("\
14059 Set the maximum number of bytes per memory-read packet.\n\
14060 Specify the number of bytes in a packet or 0 (zero) for the\n\
14061 default packet size. The actual limit is further reduced\n\
14062 dependent on the target. Specify ``fixed'' to disable the\n\
14063 further restriction and ``limit'' to enable that restriction."),
14064 &remote_set_cmdlist);
14065 add_cmd ("memory-write-packet-size", no_class,
14066 show_memory_write_packet_size,
14067 _("Show the maximum number of bytes per memory-write packet."),
14068 &remote_show_cmdlist);
14069 add_cmd ("memory-read-packet-size", no_class,
14070 show_memory_read_packet_size,
14071 _("Show the maximum number of bytes per memory-read packet."),
14072 &remote_show_cmdlist);
14073
14074 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14075 &remote_hw_watchpoint_limit, _("\
14076 Set the maximum number of target hardware watchpoints."), _("\
14077 Show the maximum number of target hardware watchpoints."), _("\
14078 Specify a negative limit for unlimited."),
14079 NULL, NULL, /* FIXME: i18n: The maximum
14080 number of target hardware
14081 watchpoints is %s. */
14082 &remote_set_cmdlist, &remote_show_cmdlist);
14083 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14084 &remote_hw_watchpoint_length_limit, _("\
14085 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14086 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14087 Specify a negative limit for unlimited."),
14088 NULL, NULL, /* FIXME: i18n: The maximum
14089 length (in bytes) of a target
14090 hardware watchpoint is %s. */
14091 &remote_set_cmdlist, &remote_show_cmdlist);
14092 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14093 &remote_hw_breakpoint_limit, _("\
14094 Set the maximum number of target hardware breakpoints."), _("\
14095 Show the maximum number of target hardware breakpoints."), _("\
14096 Specify a negative limit for unlimited."),
14097 NULL, NULL, /* FIXME: i18n: The maximum
14098 number of target hardware
14099 breakpoints is %s. */
14100 &remote_set_cmdlist, &remote_show_cmdlist);
14101
14102 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14103 &remote_address_size, _("\
14104 Set the maximum size of the address (in bits) in a memory packet."), _("\
14105 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14106 NULL,
14107 NULL, /* FIXME: i18n: */
14108 &setlist, &showlist);
14109
14110 init_all_packet_configs ();
14111
14112 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14113 "X", "binary-download", 1);
14114
14115 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14116 "vCont", "verbose-resume", 0);
14117
14118 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14119 "QPassSignals", "pass-signals", 0);
14120
14121 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14122 "QCatchSyscalls", "catch-syscalls", 0);
14123
14124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14125 "QProgramSignals", "program-signals", 0);
14126
14127 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14128 "QSetWorkingDir", "set-working-dir", 0);
14129
14130 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14131 "QStartupWithShell", "startup-with-shell", 0);
14132
14133 add_packet_config_cmd (&remote_protocol_packets
14134 [PACKET_QEnvironmentHexEncoded],
14135 "QEnvironmentHexEncoded", "environment-hex-encoded",
14136 0);
14137
14138 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14139 "QEnvironmentReset", "environment-reset",
14140 0);
14141
14142 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14143 "QEnvironmentUnset", "environment-unset",
14144 0);
14145
14146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14147 "qSymbol", "symbol-lookup", 0);
14148
14149 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14150 "P", "set-register", 1);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14153 "p", "fetch-register", 1);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14156 "Z0", "software-breakpoint", 0);
14157
14158 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14159 "Z1", "hardware-breakpoint", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14162 "Z2", "write-watchpoint", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14165 "Z3", "read-watchpoint", 0);
14166
14167 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14168 "Z4", "access-watchpoint", 0);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14171 "qXfer:auxv:read", "read-aux-vector", 0);
14172
14173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14174 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14175
14176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14177 "qXfer:features:read", "target-features", 0);
14178
14179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14180 "qXfer:libraries:read", "library-info", 0);
14181
14182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14183 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14184
14185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14186 "qXfer:memory-map:read", "memory-map", 0);
14187
14188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14189 "qXfer:spu:read", "read-spu-object", 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14192 "qXfer:spu:write", "write-spu-object", 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14195 "qXfer:osdata:read", "osdata", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14198 "qXfer:threads:read", "threads", 0);
14199
14200 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14201 "qXfer:siginfo:read", "read-siginfo-object", 0);
14202
14203 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14204 "qXfer:siginfo:write", "write-siginfo-object", 0);
14205
14206 add_packet_config_cmd
14207 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14208 "qXfer:traceframe-info:read", "traceframe-info", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14211 "qXfer:uib:read", "unwind-info-block", 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14214 "qGetTLSAddr", "get-thread-local-storage-address",
14215 0);
14216
14217 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14218 "qGetTIBAddr", "get-thread-information-block-address",
14219 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14222 "bc", "reverse-continue", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14225 "bs", "reverse-step", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14228 "qSupported", "supported-packets", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14231 "qSearch:memory", "search-memory", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14234 "qTStatus", "trace-status", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14237 "vFile:setfs", "hostio-setfs", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14240 "vFile:open", "hostio-open", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14243 "vFile:pread", "hostio-pread", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14246 "vFile:pwrite", "hostio-pwrite", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14249 "vFile:close", "hostio-close", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14252 "vFile:unlink", "hostio-unlink", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14255 "vFile:readlink", "hostio-readlink", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14258 "vFile:fstat", "hostio-fstat", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14261 "vAttach", "attach", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14264 "vRun", "run", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14267 "QStartNoAckMode", "noack", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14270 "vKill", "kill", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14273 "qAttached", "query-attached", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14276 "ConditionalTracepoints",
14277 "conditional-tracepoints", 0);
14278
14279 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14280 "ConditionalBreakpoints",
14281 "conditional-breakpoints", 0);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14284 "BreakpointCommands",
14285 "breakpoint-commands", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14288 "FastTracepoints", "fast-tracepoints", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14291 "TracepointSource", "TracepointSource", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14294 "QAllow", "allow", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14297 "StaticTracepoints", "static-tracepoints", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14300 "InstallInTrace", "install-in-trace", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14303 "qXfer:statictrace:read", "read-sdata-object", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14306 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14309 "QDisableRandomization", "disable-randomization", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14312 "QAgent", "agent", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14315 "QTBuffer:size", "trace-buffer-size", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14318 "Qbtrace:off", "disable-btrace", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14321 "Qbtrace:bts", "enable-btrace-bts", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14324 "Qbtrace:pt", "enable-btrace-pt", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14327 "qXfer:btrace", "read-btrace", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14330 "qXfer:btrace-conf", "read-btrace-conf", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14333 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14336 "multiprocess-feature", "multiprocess-feature", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14339 "swbreak-feature", "swbreak-feature", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14342 "hwbreak-feature", "hwbreak-feature", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14345 "fork-event-feature", "fork-event-feature", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14348 "vfork-event-feature", "vfork-event-feature", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14351 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14354 "vContSupported", "verbose-resume-supported", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14357 "exec-event-feature", "exec-event-feature", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14360 "vCtrlC", "ctrl-c", 0);
14361
14362 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14363 "QThreadEvents", "thread-events", 0);
14364
14365 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14366 "N stop reply", "no-resumed-stop-reply", 0);
14367
14368 /* Assert that we've registered "set remote foo-packet" commands
14369 for all packet configs. */
14370 {
14371 int i;
14372
14373 for (i = 0; i < PACKET_MAX; i++)
14374 {
14375 /* Ideally all configs would have a command associated. Some
14376 still don't though. */
14377 int excepted;
14378
14379 switch (i)
14380 {
14381 case PACKET_QNonStop:
14382 case PACKET_EnableDisableTracepoints_feature:
14383 case PACKET_tracenz_feature:
14384 case PACKET_DisconnectedTracing_feature:
14385 case PACKET_augmented_libraries_svr4_read_feature:
14386 case PACKET_qCRC:
14387 /* Additions to this list need to be well justified:
14388 pre-existing packets are OK; new packets are not. */
14389 excepted = 1;
14390 break;
14391 default:
14392 excepted = 0;
14393 break;
14394 }
14395
14396 /* This catches both forgetting to add a config command, and
14397 forgetting to remove a packet from the exception list. */
14398 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14399 }
14400 }
14401
14402 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14403 Z sub-packet has its own set and show commands, but users may
14404 have sets to this variable in their .gdbinit files (or in their
14405 documentation). */
14406 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14407 &remote_Z_packet_detect, _("\
14408 Set use of remote protocol `Z' packets"), _("\
14409 Show use of remote protocol `Z' packets "), _("\
14410 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14411 packets."),
14412 set_remote_protocol_Z_packet_cmd,
14413 show_remote_protocol_Z_packet_cmd,
14414 /* FIXME: i18n: Use of remote protocol
14415 `Z' packets is %s. */
14416 &remote_set_cmdlist, &remote_show_cmdlist);
14417
14418 add_prefix_cmd ("remote", class_files, remote_command, _("\
14419 Manipulate files on the remote system\n\
14420 Transfer files to and from the remote target system."),
14421 &remote_cmdlist, "remote ",
14422 0 /* allow-unknown */, &cmdlist);
14423
14424 add_cmd ("put", class_files, remote_put_command,
14425 _("Copy a local file to the remote system."),
14426 &remote_cmdlist);
14427
14428 add_cmd ("get", class_files, remote_get_command,
14429 _("Copy a remote file to the local system."),
14430 &remote_cmdlist);
14431
14432 add_cmd ("delete", class_files, remote_delete_command,
14433 _("Delete a remote file."),
14434 &remote_cmdlist);
14435
14436 add_setshow_string_noescape_cmd ("exec-file", class_files,
14437 &remote_exec_file_var, _("\
14438 Set the remote pathname for \"run\""), _("\
14439 Show the remote pathname for \"run\""), NULL,
14440 set_remote_exec_file,
14441 show_remote_exec_file,
14442 &remote_set_cmdlist,
14443 &remote_show_cmdlist);
14444
14445 add_setshow_boolean_cmd ("range-stepping", class_run,
14446 &use_range_stepping, _("\
14447 Enable or disable range stepping."), _("\
14448 Show whether target-assisted range stepping is enabled."), _("\
14449 If on, and the target supports it, when stepping a source line, GDB\n\
14450 tells the target to step the corresponding range of addresses itself instead\n\
14451 of issuing multiple single-steps. This speeds up source level\n\
14452 stepping. If off, GDB always issues single-steps, even if range\n\
14453 stepping is supported by the target. The default is on."),
14454 set_range_stepping,
14455 show_range_stepping,
14456 &setlist,
14457 &showlist);
14458
14459 /* Eventually initialize fileio. See fileio.c */
14460 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14461
14462 /* Take advantage of the fact that the TID field is not used, to tag
14463 special ptids with it set to != 0. */
14464 magic_null_ptid = ptid_build (42000, -1, 1);
14465 not_sent_ptid = ptid_build (42000, -2, 1);
14466 any_thread_ptid = ptid_build (42000, 0, 1);
14467 }