]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Introduce target_ops method thread_info_to_thread_handle
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 std::string pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
489 override;
490
491 void stop (ptid_t) override;
492
493 void interrupt () override;
494
495 void pass_ctrlc () override;
496
497 enum target_xfer_status xfer_partial (enum target_object object,
498 const char *annex,
499 gdb_byte *readbuf,
500 const gdb_byte *writebuf,
501 ULONGEST offset, ULONGEST len,
502 ULONGEST *xfered_len) override;
503
504 ULONGEST get_memory_xfer_limit () override;
505
506 void rcmd (const char *command, struct ui_file *output) override;
507
508 char *pid_to_exec_file (int pid) override;
509
510 void log_command (const char *cmd) override
511 {
512 serial_log_command (this, cmd);
513 }
514
515 CORE_ADDR get_thread_local_address (ptid_t ptid,
516 CORE_ADDR load_module_addr,
517 CORE_ADDR offset) override;
518
519 bool can_execute_reverse () override;
520
521 std::vector<mem_region> memory_map () override;
522
523 void flash_erase (ULONGEST address, LONGEST length) override;
524
525 void flash_done () override;
526
527 const struct target_desc *read_description () override;
528
529 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
530 const gdb_byte *pattern, ULONGEST pattern_len,
531 CORE_ADDR *found_addrp) override;
532
533 bool can_async_p () override;
534
535 bool is_async_p () override;
536
537 void async (int) override;
538
539 void thread_events (int) override;
540
541 int can_do_single_step () override;
542
543 void terminal_inferior () override;
544
545 void terminal_ours () override;
546
547 bool supports_non_stop () override;
548
549 bool supports_multi_process () override;
550
551 bool supports_disable_randomization () override;
552
553 bool filesystem_is_local () override;
554
555
556 int fileio_open (struct inferior *inf, const char *filename,
557 int flags, int mode, int warn_if_slow,
558 int *target_errno) override;
559
560 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_pread (int fd, gdb_byte *read_buf, int len,
564 ULONGEST offset, int *target_errno) override;
565
566 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
567
568 int fileio_close (int fd, int *target_errno) override;
569
570 int fileio_unlink (struct inferior *inf,
571 const char *filename,
572 int *target_errno) override;
573
574 gdb::optional<std::string>
575 fileio_readlink (struct inferior *inf,
576 const char *filename,
577 int *target_errno) override;
578
579 bool supports_enable_disable_tracepoint () override;
580
581 bool supports_string_tracing () override;
582
583 bool supports_evaluation_of_breakpoint_conditions () override;
584
585 bool can_run_breakpoint_commands () override;
586
587 void trace_init () override;
588
589 void download_tracepoint (struct bp_location *location) override;
590
591 bool can_download_tracepoint () override;
592
593 void download_trace_state_variable (const trace_state_variable &tsv) override;
594
595 void enable_tracepoint (struct bp_location *location) override;
596
597 void disable_tracepoint (struct bp_location *location) override;
598
599 void trace_set_readonly_regions () override;
600
601 void trace_start () override;
602
603 int get_trace_status (struct trace_status *ts) override;
604
605 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
606 override;
607
608 void trace_stop () override;
609
610 int trace_find (enum trace_find_type type, int num,
611 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
612
613 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
614
615 int save_trace_data (const char *filename) override;
616
617 int upload_tracepoints (struct uploaded_tp **utpp) override;
618
619 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
620
621 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
622
623 int get_min_fast_tracepoint_insn_len () override;
624
625 void set_disconnected_tracing (int val) override;
626
627 void set_circular_trace_buffer (int val) override;
628
629 void set_trace_buffer_size (LONGEST val) override;
630
631 bool set_trace_notes (const char *user, const char *notes,
632 const char *stopnotes) override;
633
634 int core_of_thread (ptid_t ptid) override;
635
636 int verify_memory (const gdb_byte *data,
637 CORE_ADDR memaddr, ULONGEST size) override;
638
639
640 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
641
642 void set_permissions () override;
643
644 bool static_tracepoint_marker_at (CORE_ADDR,
645 struct static_tracepoint_marker *marker)
646 override;
647
648 std::vector<static_tracepoint_marker>
649 static_tracepoint_markers_by_strid (const char *id) override;
650
651 traceframe_info_up traceframe_info () override;
652
653 bool use_agent (bool use) override;
654 bool can_use_agent () override;
655
656 struct btrace_target_info *enable_btrace (ptid_t ptid,
657 const struct btrace_config *conf) override;
658
659 void disable_btrace (struct btrace_target_info *tinfo) override;
660
661 void teardown_btrace (struct btrace_target_info *tinfo) override;
662
663 enum btrace_error read_btrace (struct btrace_data *data,
664 struct btrace_target_info *btinfo,
665 enum btrace_read_type type) override;
666
667 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
668 bool augmented_libraries_svr4_read () override;
669 int follow_fork (int, int) override;
670 void follow_exec (struct inferior *, char *) override;
671 int insert_fork_catchpoint (int) override;
672 int remove_fork_catchpoint (int) override;
673 int insert_vfork_catchpoint (int) override;
674 int remove_vfork_catchpoint (int) override;
675 int insert_exec_catchpoint (int) override;
676 int remove_exec_catchpoint (int) override;
677 enum exec_direction_kind execution_direction () override;
678
679 public: /* Remote specific methods. */
680
681 void remote_download_command_source (int num, ULONGEST addr,
682 struct command_line *cmds);
683
684 void remote_file_put (const char *local_file, const char *remote_file,
685 int from_tty);
686 void remote_file_get (const char *remote_file, const char *local_file,
687 int from_tty);
688 void remote_file_delete (const char *remote_file, int from_tty);
689
690 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
691 ULONGEST offset, int *remote_errno);
692 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
693 ULONGEST offset, int *remote_errno);
694 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
695 ULONGEST offset, int *remote_errno);
696
697 int remote_hostio_send_command (int command_bytes, int which_packet,
698 int *remote_errno, char **attachment,
699 int *attachment_len);
700 int remote_hostio_set_filesystem (struct inferior *inf,
701 int *remote_errno);
702 /* We should get rid of this and use fileio_open directly. */
703 int remote_hostio_open (struct inferior *inf, const char *filename,
704 int flags, int mode, int warn_if_slow,
705 int *remote_errno);
706 int remote_hostio_close (int fd, int *remote_errno);
707
708 int remote_hostio_unlink (inferior *inf, const char *filename,
709 int *remote_errno);
710
711 struct remote_state *get_remote_state ();
712
713 long get_remote_packet_size (void);
714 long get_memory_packet_size (struct memory_packet_config *config);
715
716 long get_memory_write_packet_size ();
717 long get_memory_read_packet_size ();
718
719 char *append_pending_thread_resumptions (char *p, char *endp,
720 ptid_t ptid);
721 static void open_1 (const char *name, int from_tty, int extended_p);
722 void start_remote (int from_tty, int extended_p);
723 void remote_detach_1 (struct inferior *inf, int from_tty);
724
725 char *append_resumption (char *p, char *endp,
726 ptid_t ptid, int step, gdb_signal siggnal);
727 int remote_resume_with_vcont (ptid_t ptid, int step,
728 gdb_signal siggnal);
729
730 void add_current_inferior_and_thread (char *wait_status);
731
732 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
733 int options);
734 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
735 int options);
736
737 ptid_t process_stop_reply (struct stop_reply *stop_reply,
738 target_waitstatus *status);
739
740 void remote_notice_new_inferior (ptid_t currthread, int executing);
741
742 void process_initial_stop_replies (int from_tty);
743
744 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
745
746 void btrace_sync_conf (const btrace_config *conf);
747
748 void remote_btrace_maybe_reopen ();
749
750 void remove_new_fork_children (threads_listing_context *context);
751 void kill_new_fork_children (int pid);
752 void discard_pending_stop_replies (struct inferior *inf);
753 int stop_reply_queue_length ();
754
755 void check_pending_events_prevent_wildcard_vcont
756 (int *may_global_wildcard_vcont);
757
758 void discard_pending_stop_replies_in_queue ();
759 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
760 struct stop_reply *queued_stop_reply (ptid_t ptid);
761 int peek_stop_reply (ptid_t ptid);
762 void remote_parse_stop_reply (const char *buf, stop_reply *event);
763
764 void remote_stop_ns (ptid_t ptid);
765 void remote_interrupt_as ();
766 void remote_interrupt_ns ();
767
768 char *remote_get_noisy_reply ();
769 int remote_query_attached (int pid);
770 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
771 int try_open_exec);
772
773 ptid_t remote_current_thread (ptid_t oldpid);
774 ptid_t get_current_thread (char *wait_status);
775
776 void set_thread (ptid_t ptid, int gen);
777 void set_general_thread (ptid_t ptid);
778 void set_continue_thread (ptid_t ptid);
779 void set_general_process ();
780
781 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
782
783 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
784 gdb_ext_thread_info *info);
785 int remote_get_threadinfo (threadref *threadid, int fieldset,
786 gdb_ext_thread_info *info);
787
788 int parse_threadlist_response (char *pkt, int result_limit,
789 threadref *original_echo,
790 threadref *resultlist,
791 int *doneflag);
792 int remote_get_threadlist (int startflag, threadref *nextthread,
793 int result_limit, int *done, int *result_count,
794 threadref *threadlist);
795
796 int remote_threadlist_iterator (rmt_thread_action stepfunction,
797 void *context, int looplimit);
798
799 int remote_get_threads_with_ql (threads_listing_context *context);
800 int remote_get_threads_with_qxfer (threads_listing_context *context);
801 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
802
803 void extended_remote_restart ();
804
805 void get_offsets ();
806
807 void remote_check_symbols ();
808
809 void remote_supported_packet (const struct protocol_feature *feature,
810 enum packet_support support,
811 const char *argument);
812
813 void remote_query_supported ();
814
815 void remote_packet_size (const protocol_feature *feature,
816 packet_support support, const char *value);
817
818 void remote_serial_quit_handler ();
819
820 void remote_detach_pid (int pid);
821
822 void remote_vcont_probe ();
823
824 void remote_resume_with_hc (ptid_t ptid, int step,
825 gdb_signal siggnal);
826
827 void send_interrupt_sequence ();
828 void interrupt_query ();
829
830 void remote_notif_get_pending_events (notif_client *nc);
831
832 int fetch_register_using_p (struct regcache *regcache,
833 packet_reg *reg);
834 int send_g_packet ();
835 void process_g_packet (struct regcache *regcache);
836 void fetch_registers_using_g (struct regcache *regcache);
837 int store_register_using_P (const struct regcache *regcache,
838 packet_reg *reg);
839 void store_registers_using_G (const struct regcache *regcache);
840
841 void set_remote_traceframe ();
842
843 void check_binary_download (CORE_ADDR addr);
844
845 target_xfer_status remote_write_bytes_aux (const char *header,
846 CORE_ADDR memaddr,
847 const gdb_byte *myaddr,
848 ULONGEST len_units,
849 int unit_size,
850 ULONGEST *xfered_len_units,
851 char packet_format,
852 int use_length);
853
854 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
855 const gdb_byte *myaddr, ULONGEST len,
856 int unit_size, ULONGEST *xfered_len);
857
858 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
859 ULONGEST len_units,
860 int unit_size, ULONGEST *xfered_len_units);
861
862 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
863 ULONGEST memaddr,
864 ULONGEST len,
865 int unit_size,
866 ULONGEST *xfered_len);
867
868 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
869 gdb_byte *myaddr, ULONGEST len,
870 int unit_size,
871 ULONGEST *xfered_len);
872
873 packet_result remote_send_printf (const char *format, ...)
874 ATTRIBUTE_PRINTF (2, 3);
875
876 target_xfer_status remote_flash_write (ULONGEST address,
877 ULONGEST length, ULONGEST *xfered_len,
878 const gdb_byte *data);
879
880 int readchar (int timeout);
881
882 void remote_serial_write (const char *str, int len);
883
884 int putpkt (const char *buf);
885 int putpkt_binary (const char *buf, int cnt);
886
887 int putpkt (const gdb::char_vector &buf)
888 {
889 return putpkt (buf.data ());
890 }
891
892 void skip_frame ();
893 long read_frame (gdb::char_vector *buf_p);
894 void getpkt (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
896 int expecting_notif, int *is_notif);
897 int getpkt_sane (gdb::char_vector *buf, int forever);
898 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
899 int *is_notif);
900 int remote_vkill (int pid);
901 void remote_kill_k ();
902
903 void extended_remote_disable_randomization (int val);
904 int extended_remote_run (const std::string &args);
905
906 void send_environment_packet (const char *action,
907 const char *packet,
908 const char *value);
909
910 void extended_remote_environment_support ();
911 void extended_remote_set_inferior_cwd ();
912
913 target_xfer_status remote_write_qxfer (const char *object_name,
914 const char *annex,
915 const gdb_byte *writebuf,
916 ULONGEST offset, LONGEST len,
917 ULONGEST *xfered_len,
918 struct packet_config *packet);
919
920 target_xfer_status remote_read_qxfer (const char *object_name,
921 const char *annex,
922 gdb_byte *readbuf, ULONGEST offset,
923 LONGEST len,
924 ULONGEST *xfered_len,
925 struct packet_config *packet);
926
927 void push_stop_reply (struct stop_reply *new_event);
928
929 bool vcont_r_supported ();
930
931 void packet_command (const char *args, int from_tty);
932
933 private: /* data fields */
934
935 /* The remote state. Don't reference this directly. Use the
936 get_remote_state method instead. */
937 remote_state m_remote_state;
938 };
939
940 static const target_info extended_remote_target_info = {
941 "extended-remote",
942 N_("Extended remote serial target in gdb-specific protocol"),
943 remote_doc
944 };
945
946 /* Set up the extended remote target by extending the standard remote
947 target and adding to it. */
948
949 class extended_remote_target final : public remote_target
950 {
951 public:
952 const target_info &info () const override
953 { return extended_remote_target_info; }
954
955 /* Open an extended-remote connection. */
956 static void open (const char *, int);
957
958 bool can_create_inferior () override { return true; }
959 void create_inferior (const char *, const std::string &,
960 char **, int) override;
961
962 void detach (inferior *, int) override;
963
964 bool can_attach () override { return true; }
965 void attach (const char *, int) override;
966
967 void post_attach (int) override;
968 bool supports_disable_randomization () override;
969 };
970
971 /* Per-program-space data key. */
972 static const struct program_space_data *remote_pspace_data;
973
974 /* The variable registered as the control variable used by the
975 remote exec-file commands. While the remote exec-file setting is
976 per-program-space, the set/show machinery uses this as the
977 location of the remote exec-file value. */
978 static char *remote_exec_file_var;
979
980 /* The size to align memory write packets, when practical. The protocol
981 does not guarantee any alignment, and gdb will generate short
982 writes and unaligned writes, but even as a best-effort attempt this
983 can improve bulk transfers. For instance, if a write is misaligned
984 relative to the target's data bus, the stub may need to make an extra
985 round trip fetching data from the target. This doesn't make a
986 huge difference, but it's easy to do, so we try to be helpful.
987
988 The alignment chosen is arbitrary; usually data bus width is
989 important here, not the possibly larger cache line size. */
990 enum { REMOTE_ALIGN_WRITES = 16 };
991
992 /* Prototypes for local functions. */
993
994 static int hexnumlen (ULONGEST num);
995
996 static int stubhex (int ch);
997
998 static int hexnumstr (char *, ULONGEST);
999
1000 static int hexnumnstr (char *, ULONGEST, int);
1001
1002 static CORE_ADDR remote_address_masked (CORE_ADDR);
1003
1004 static void print_packet (const char *);
1005
1006 static int stub_unpack_int (char *buff, int fieldlength);
1007
1008 struct packet_config;
1009
1010 static void show_packet_config_cmd (struct packet_config *config);
1011
1012 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1013 int from_tty,
1014 struct cmd_list_element *c,
1015 const char *value);
1016
1017 static ptid_t read_ptid (const char *buf, const char **obuf);
1018
1019 static void remote_async_inferior_event_handler (gdb_client_data);
1020
1021 static bool remote_read_description_p (struct target_ops *target);
1022
1023 static void remote_console_output (const char *msg);
1024
1025 static void remote_btrace_reset (remote_state *rs);
1026
1027 static void remote_unpush_and_throw (void);
1028
1029 /* For "remote". */
1030
1031 static struct cmd_list_element *remote_cmdlist;
1032
1033 /* For "set remote" and "show remote". */
1034
1035 static struct cmd_list_element *remote_set_cmdlist;
1036 static struct cmd_list_element *remote_show_cmdlist;
1037
1038 /* Controls whether GDB is willing to use range stepping. */
1039
1040 static int use_range_stepping = 1;
1041
1042 /* The max number of chars in debug output. The rest of chars are
1043 omitted. */
1044
1045 #define REMOTE_DEBUG_MAX_CHAR 512
1046
1047 /* Private data that we'll store in (struct thread_info)->priv. */
1048 struct remote_thread_info : public private_thread_info
1049 {
1050 std::string extra;
1051 std::string name;
1052 int core = -1;
1053
1054 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1055 sequence of bytes. */
1056 gdb::byte_vector thread_handle;
1057
1058 /* Whether the target stopped for a breakpoint/watchpoint. */
1059 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1060
1061 /* This is set to the data address of the access causing the target
1062 to stop for a watchpoint. */
1063 CORE_ADDR watch_data_address = 0;
1064
1065 /* Fields used by the vCont action coalescing implemented in
1066 remote_resume / remote_commit_resume. remote_resume stores each
1067 thread's last resume request in these fields, so that a later
1068 remote_commit_resume knows which is the proper action for this
1069 thread to include in the vCont packet. */
1070
1071 /* True if the last target_resume call for this thread was a step
1072 request, false if a continue request. */
1073 int last_resume_step = 0;
1074
1075 /* The signal specified in the last target_resume call for this
1076 thread. */
1077 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1078
1079 /* Whether this thread was already vCont-resumed on the remote
1080 side. */
1081 int vcont_resumed = 0;
1082 };
1083
1084 remote_state::remote_state ()
1085 : buf (400)
1086 {
1087 }
1088
1089 remote_state::~remote_state ()
1090 {
1091 xfree (this->last_pass_packet);
1092 xfree (this->last_program_signals_packet);
1093 xfree (this->finished_object);
1094 xfree (this->finished_annex);
1095 }
1096
1097 /* Utility: generate error from an incoming stub packet. */
1098 static void
1099 trace_error (char *buf)
1100 {
1101 if (*buf++ != 'E')
1102 return; /* not an error msg */
1103 switch (*buf)
1104 {
1105 case '1': /* malformed packet error */
1106 if (*++buf == '0') /* general case: */
1107 error (_("remote.c: error in outgoing packet."));
1108 else
1109 error (_("remote.c: error in outgoing packet at field #%ld."),
1110 strtol (buf, NULL, 16));
1111 default:
1112 error (_("Target returns error code '%s'."), buf);
1113 }
1114 }
1115
1116 /* Utility: wait for reply from stub, while accepting "O" packets. */
1117
1118 char *
1119 remote_target::remote_get_noisy_reply ()
1120 {
1121 struct remote_state *rs = get_remote_state ();
1122
1123 do /* Loop on reply from remote stub. */
1124 {
1125 char *buf;
1126
1127 QUIT; /* Allow user to bail out with ^C. */
1128 getpkt (&rs->buf, 0);
1129 buf = rs->buf.data ();
1130 if (buf[0] == 'E')
1131 trace_error (buf);
1132 else if (startswith (buf, "qRelocInsn:"))
1133 {
1134 ULONGEST ul;
1135 CORE_ADDR from, to, org_to;
1136 const char *p, *pp;
1137 int adjusted_size = 0;
1138 int relocated = 0;
1139
1140 p = buf + strlen ("qRelocInsn:");
1141 pp = unpack_varlen_hex (p, &ul);
1142 if (*pp != ';')
1143 error (_("invalid qRelocInsn packet: %s"), buf);
1144 from = ul;
1145
1146 p = pp + 1;
1147 unpack_varlen_hex (p, &ul);
1148 to = ul;
1149
1150 org_to = to;
1151
1152 try
1153 {
1154 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1155 relocated = 1;
1156 }
1157 catch (const gdb_exception &ex)
1158 {
1159 if (ex.error == MEMORY_ERROR)
1160 {
1161 /* Propagate memory errors silently back to the
1162 target. The stub may have limited the range of
1163 addresses we can write to, for example. */
1164 }
1165 else
1166 {
1167 /* Something unexpectedly bad happened. Be verbose
1168 so we can tell what, and propagate the error back
1169 to the stub, so it doesn't get stuck waiting for
1170 a response. */
1171 exception_fprintf (gdb_stderr, ex,
1172 _("warning: relocating instruction: "));
1173 }
1174 putpkt ("E01");
1175 }
1176
1177 if (relocated)
1178 {
1179 adjusted_size = to - org_to;
1180
1181 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1182 putpkt (buf);
1183 }
1184 }
1185 else if (buf[0] == 'O' && buf[1] != 'K')
1186 remote_console_output (buf + 1); /* 'O' message from stub */
1187 else
1188 return buf; /* Here's the actual reply. */
1189 }
1190 while (1);
1191 }
1192
1193 struct remote_arch_state *
1194 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1195 {
1196 remote_arch_state *rsa;
1197
1198 auto it = this->m_arch_states.find (gdbarch);
1199 if (it == this->m_arch_states.end ())
1200 {
1201 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1202 std::forward_as_tuple (gdbarch),
1203 std::forward_as_tuple (gdbarch));
1204 rsa = &p.first->second;
1205
1206 /* Make sure that the packet buffer is plenty big enough for
1207 this architecture. */
1208 if (this->buf.size () < rsa->remote_packet_size)
1209 this->buf.resize (2 * rsa->remote_packet_size);
1210 }
1211 else
1212 rsa = &it->second;
1213
1214 return rsa;
1215 }
1216
1217 /* Fetch the global remote target state. */
1218
1219 remote_state *
1220 remote_target::get_remote_state ()
1221 {
1222 /* Make sure that the remote architecture state has been
1223 initialized, because doing so might reallocate rs->buf. Any
1224 function which calls getpkt also needs to be mindful of changes
1225 to rs->buf, but this call limits the number of places which run
1226 into trouble. */
1227 m_remote_state.get_remote_arch_state (target_gdbarch ());
1228
1229 return &m_remote_state;
1230 }
1231
1232 /* Cleanup routine for the remote module's pspace data. */
1233
1234 static void
1235 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1236 {
1237 char *remote_exec_file = (char *) arg;
1238
1239 xfree (remote_exec_file);
1240 }
1241
1242 /* Fetch the remote exec-file from the current program space. */
1243
1244 static const char *
1245 get_remote_exec_file (void)
1246 {
1247 char *remote_exec_file;
1248
1249 remote_exec_file
1250 = (char *) program_space_data (current_program_space,
1251 remote_pspace_data);
1252 if (remote_exec_file == NULL)
1253 return "";
1254
1255 return remote_exec_file;
1256 }
1257
1258 /* Set the remote exec file for PSPACE. */
1259
1260 static void
1261 set_pspace_remote_exec_file (struct program_space *pspace,
1262 char *remote_exec_file)
1263 {
1264 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1265
1266 xfree (old_file);
1267 set_program_space_data (pspace, remote_pspace_data,
1268 xstrdup (remote_exec_file));
1269 }
1270
1271 /* The "set/show remote exec-file" set command hook. */
1272
1273 static void
1274 set_remote_exec_file (const char *ignored, int from_tty,
1275 struct cmd_list_element *c)
1276 {
1277 gdb_assert (remote_exec_file_var != NULL);
1278 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1279 }
1280
1281 /* The "set/show remote exec-file" show command hook. */
1282
1283 static void
1284 show_remote_exec_file (struct ui_file *file, int from_tty,
1285 struct cmd_list_element *cmd, const char *value)
1286 {
1287 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1288 }
1289
1290 static int
1291 compare_pnums (const void *lhs_, const void *rhs_)
1292 {
1293 const struct packet_reg * const *lhs
1294 = (const struct packet_reg * const *) lhs_;
1295 const struct packet_reg * const *rhs
1296 = (const struct packet_reg * const *) rhs_;
1297
1298 if ((*lhs)->pnum < (*rhs)->pnum)
1299 return -1;
1300 else if ((*lhs)->pnum == (*rhs)->pnum)
1301 return 0;
1302 else
1303 return 1;
1304 }
1305
1306 static int
1307 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1308 {
1309 int regnum, num_remote_regs, offset;
1310 struct packet_reg **remote_regs;
1311
1312 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1313 {
1314 struct packet_reg *r = &regs[regnum];
1315
1316 if (register_size (gdbarch, regnum) == 0)
1317 /* Do not try to fetch zero-sized (placeholder) registers. */
1318 r->pnum = -1;
1319 else
1320 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1321
1322 r->regnum = regnum;
1323 }
1324
1325 /* Define the g/G packet format as the contents of each register
1326 with a remote protocol number, in order of ascending protocol
1327 number. */
1328
1329 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1330 for (num_remote_regs = 0, regnum = 0;
1331 regnum < gdbarch_num_regs (gdbarch);
1332 regnum++)
1333 if (regs[regnum].pnum != -1)
1334 remote_regs[num_remote_regs++] = &regs[regnum];
1335
1336 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1337 compare_pnums);
1338
1339 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1340 {
1341 remote_regs[regnum]->in_g_packet = 1;
1342 remote_regs[regnum]->offset = offset;
1343 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1344 }
1345
1346 return offset;
1347 }
1348
1349 /* Given the architecture described by GDBARCH, return the remote
1350 protocol register's number and the register's offset in the g/G
1351 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1352 If the target does not have a mapping for REGNUM, return false,
1353 otherwise, return true. */
1354
1355 int
1356 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1357 int *pnum, int *poffset)
1358 {
1359 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1360
1361 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1362
1363 map_regcache_remote_table (gdbarch, regs.data ());
1364
1365 *pnum = regs[regnum].pnum;
1366 *poffset = regs[regnum].offset;
1367
1368 return *pnum != -1;
1369 }
1370
1371 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1372 {
1373 /* Use the architecture to build a regnum<->pnum table, which will be
1374 1:1 unless a feature set specifies otherwise. */
1375 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1376
1377 /* Record the maximum possible size of the g packet - it may turn out
1378 to be smaller. */
1379 this->sizeof_g_packet
1380 = map_regcache_remote_table (gdbarch, this->regs.get ());
1381
1382 /* Default maximum number of characters in a packet body. Many
1383 remote stubs have a hardwired buffer size of 400 bytes
1384 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1385 as the maximum packet-size to ensure that the packet and an extra
1386 NUL character can always fit in the buffer. This stops GDB
1387 trashing stubs that try to squeeze an extra NUL into what is
1388 already a full buffer (As of 1999-12-04 that was most stubs). */
1389 this->remote_packet_size = 400 - 1;
1390
1391 /* This one is filled in when a ``g'' packet is received. */
1392 this->actual_register_packet_size = 0;
1393
1394 /* Should rsa->sizeof_g_packet needs more space than the
1395 default, adjust the size accordingly. Remember that each byte is
1396 encoded as two characters. 32 is the overhead for the packet
1397 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1398 (``$NN:G...#NN'') is a better guess, the below has been padded a
1399 little. */
1400 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1401 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1402 }
1403
1404 /* Get a pointer to the current remote target. If not connected to a
1405 remote target, return NULL. */
1406
1407 static remote_target *
1408 get_current_remote_target ()
1409 {
1410 target_ops *proc_target = find_target_at (process_stratum);
1411 return dynamic_cast<remote_target *> (proc_target);
1412 }
1413
1414 /* Return the current allowed size of a remote packet. This is
1415 inferred from the current architecture, and should be used to
1416 limit the length of outgoing packets. */
1417 long
1418 remote_target::get_remote_packet_size ()
1419 {
1420 struct remote_state *rs = get_remote_state ();
1421 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1422
1423 if (rs->explicit_packet_size)
1424 return rs->explicit_packet_size;
1425
1426 return rsa->remote_packet_size;
1427 }
1428
1429 static struct packet_reg *
1430 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1431 long regnum)
1432 {
1433 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1434 return NULL;
1435 else
1436 {
1437 struct packet_reg *r = &rsa->regs[regnum];
1438
1439 gdb_assert (r->regnum == regnum);
1440 return r;
1441 }
1442 }
1443
1444 static struct packet_reg *
1445 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1446 LONGEST pnum)
1447 {
1448 int i;
1449
1450 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1451 {
1452 struct packet_reg *r = &rsa->regs[i];
1453
1454 if (r->pnum == pnum)
1455 return r;
1456 }
1457 return NULL;
1458 }
1459
1460 /* Allow the user to specify what sequence to send to the remote
1461 when he requests a program interruption: Although ^C is usually
1462 what remote systems expect (this is the default, here), it is
1463 sometimes preferable to send a break. On other systems such
1464 as the Linux kernel, a break followed by g, which is Magic SysRq g
1465 is required in order to interrupt the execution. */
1466 const char interrupt_sequence_control_c[] = "Ctrl-C";
1467 const char interrupt_sequence_break[] = "BREAK";
1468 const char interrupt_sequence_break_g[] = "BREAK-g";
1469 static const char *const interrupt_sequence_modes[] =
1470 {
1471 interrupt_sequence_control_c,
1472 interrupt_sequence_break,
1473 interrupt_sequence_break_g,
1474 NULL
1475 };
1476 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1477
1478 static void
1479 show_interrupt_sequence (struct ui_file *file, int from_tty,
1480 struct cmd_list_element *c,
1481 const char *value)
1482 {
1483 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1484 fprintf_filtered (file,
1485 _("Send the ASCII ETX character (Ctrl-c) "
1486 "to the remote target to interrupt the "
1487 "execution of the program.\n"));
1488 else if (interrupt_sequence_mode == interrupt_sequence_break)
1489 fprintf_filtered (file,
1490 _("send a break signal to the remote target "
1491 "to interrupt the execution of the program.\n"));
1492 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1493 fprintf_filtered (file,
1494 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1495 "the remote target to interrupt the execution "
1496 "of Linux kernel.\n"));
1497 else
1498 internal_error (__FILE__, __LINE__,
1499 _("Invalid value for interrupt_sequence_mode: %s."),
1500 interrupt_sequence_mode);
1501 }
1502
1503 /* This boolean variable specifies whether interrupt_sequence is sent
1504 to the remote target when gdb connects to it.
1505 This is mostly needed when you debug the Linux kernel: The Linux kernel
1506 expects BREAK g which is Magic SysRq g for connecting gdb. */
1507 static int interrupt_on_connect = 0;
1508
1509 /* This variable is used to implement the "set/show remotebreak" commands.
1510 Since these commands are now deprecated in favor of "set/show remote
1511 interrupt-sequence", it no longer has any effect on the code. */
1512 static int remote_break;
1513
1514 static void
1515 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1516 {
1517 if (remote_break)
1518 interrupt_sequence_mode = interrupt_sequence_break;
1519 else
1520 interrupt_sequence_mode = interrupt_sequence_control_c;
1521 }
1522
1523 static void
1524 show_remotebreak (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c,
1526 const char *value)
1527 {
1528 }
1529
1530 /* This variable sets the number of bits in an address that are to be
1531 sent in a memory ("M" or "m") packet. Normally, after stripping
1532 leading zeros, the entire address would be sent. This variable
1533 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1534 initial implementation of remote.c restricted the address sent in
1535 memory packets to ``host::sizeof long'' bytes - (typically 32
1536 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1537 address was never sent. Since fixing this bug may cause a break in
1538 some remote targets this variable is principly provided to
1539 facilitate backward compatibility. */
1540
1541 static unsigned int remote_address_size;
1542
1543 \f
1544 /* User configurable variables for the number of characters in a
1545 memory read/write packet. MIN (rsa->remote_packet_size,
1546 rsa->sizeof_g_packet) is the default. Some targets need smaller
1547 values (fifo overruns, et.al.) and some users need larger values
1548 (speed up transfers). The variables ``preferred_*'' (the user
1549 request), ``current_*'' (what was actually set) and ``forced_*''
1550 (Positive - a soft limit, negative - a hard limit). */
1551
1552 struct memory_packet_config
1553 {
1554 const char *name;
1555 long size;
1556 int fixed_p;
1557 };
1558
1559 /* The default max memory-write-packet-size, when the setting is
1560 "fixed". The 16k is historical. (It came from older GDB's using
1561 alloca for buffers and the knowledge (folklore?) that some hosts
1562 don't cope very well with large alloca calls.) */
1563 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1564
1565 /* The minimum remote packet size for memory transfers. Ensures we
1566 can write at least one byte. */
1567 #define MIN_MEMORY_PACKET_SIZE 20
1568
1569 /* Get the memory packet size, assuming it is fixed. */
1570
1571 static long
1572 get_fixed_memory_packet_size (struct memory_packet_config *config)
1573 {
1574 gdb_assert (config->fixed_p);
1575
1576 if (config->size <= 0)
1577 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1578 else
1579 return config->size;
1580 }
1581
1582 /* Compute the current size of a read/write packet. Since this makes
1583 use of ``actual_register_packet_size'' the computation is dynamic. */
1584
1585 long
1586 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1587 {
1588 struct remote_state *rs = get_remote_state ();
1589 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1590
1591 long what_they_get;
1592 if (config->fixed_p)
1593 what_they_get = get_fixed_memory_packet_size (config);
1594 else
1595 {
1596 what_they_get = get_remote_packet_size ();
1597 /* Limit the packet to the size specified by the user. */
1598 if (config->size > 0
1599 && what_they_get > config->size)
1600 what_they_get = config->size;
1601
1602 /* Limit it to the size of the targets ``g'' response unless we have
1603 permission from the stub to use a larger packet size. */
1604 if (rs->explicit_packet_size == 0
1605 && rsa->actual_register_packet_size > 0
1606 && what_they_get > rsa->actual_register_packet_size)
1607 what_they_get = rsa->actual_register_packet_size;
1608 }
1609 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1610 what_they_get = MIN_MEMORY_PACKET_SIZE;
1611
1612 /* Make sure there is room in the global buffer for this packet
1613 (including its trailing NUL byte). */
1614 if (rs->buf.size () < what_they_get + 1)
1615 rs->buf.resize (2 * what_they_get);
1616
1617 return what_they_get;
1618 }
1619
1620 /* Update the size of a read/write packet. If they user wants
1621 something really big then do a sanity check. */
1622
1623 static void
1624 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1625 {
1626 int fixed_p = config->fixed_p;
1627 long size = config->size;
1628
1629 if (args == NULL)
1630 error (_("Argument required (integer, `fixed' or `limited')."));
1631 else if (strcmp (args, "hard") == 0
1632 || strcmp (args, "fixed") == 0)
1633 fixed_p = 1;
1634 else if (strcmp (args, "soft") == 0
1635 || strcmp (args, "limit") == 0)
1636 fixed_p = 0;
1637 else
1638 {
1639 char *end;
1640
1641 size = strtoul (args, &end, 0);
1642 if (args == end)
1643 error (_("Invalid %s (bad syntax)."), config->name);
1644
1645 /* Instead of explicitly capping the size of a packet to or
1646 disallowing it, the user is allowed to set the size to
1647 something arbitrarily large. */
1648 }
1649
1650 /* Extra checks? */
1651 if (fixed_p && !config->fixed_p)
1652 {
1653 /* So that the query shows the correct value. */
1654 long query_size = (size <= 0
1655 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1656 : size);
1657
1658 if (! query (_("The target may not be able to correctly handle a %s\n"
1659 "of %ld bytes. Change the packet size? "),
1660 config->name, query_size))
1661 error (_("Packet size not changed."));
1662 }
1663 /* Update the config. */
1664 config->fixed_p = fixed_p;
1665 config->size = size;
1666 }
1667
1668 static void
1669 show_memory_packet_size (struct memory_packet_config *config)
1670 {
1671 if (config->size == 0)
1672 printf_filtered (_("The %s is 0 (default). "), config->name);
1673 else
1674 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1675 if (config->fixed_p)
1676 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1677 get_fixed_memory_packet_size (config));
1678 else
1679 {
1680 remote_target *remote = get_current_remote_target ();
1681
1682 if (remote != NULL)
1683 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1684 remote->get_memory_packet_size (config));
1685 else
1686 puts_filtered ("The actual limit will be further reduced "
1687 "dependent on the target.\n");
1688 }
1689 }
1690
1691 static struct memory_packet_config memory_write_packet_config =
1692 {
1693 "memory-write-packet-size",
1694 };
1695
1696 static void
1697 set_memory_write_packet_size (const char *args, int from_tty)
1698 {
1699 set_memory_packet_size (args, &memory_write_packet_config);
1700 }
1701
1702 static void
1703 show_memory_write_packet_size (const char *args, int from_tty)
1704 {
1705 show_memory_packet_size (&memory_write_packet_config);
1706 }
1707
1708 /* Show the number of hardware watchpoints that can be used. */
1709
1710 static void
1711 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1712 struct cmd_list_element *c,
1713 const char *value)
1714 {
1715 fprintf_filtered (file, _("The maximum number of target hardware "
1716 "watchpoints is %s.\n"), value);
1717 }
1718
1719 /* Show the length limit (in bytes) for hardware watchpoints. */
1720
1721 static void
1722 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1723 struct cmd_list_element *c,
1724 const char *value)
1725 {
1726 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1727 "hardware watchpoint is %s.\n"), value);
1728 }
1729
1730 /* Show the number of hardware breakpoints that can be used. */
1731
1732 static void
1733 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1734 struct cmd_list_element *c,
1735 const char *value)
1736 {
1737 fprintf_filtered (file, _("The maximum number of target hardware "
1738 "breakpoints is %s.\n"), value);
1739 }
1740
1741 long
1742 remote_target::get_memory_write_packet_size ()
1743 {
1744 return get_memory_packet_size (&memory_write_packet_config);
1745 }
1746
1747 static struct memory_packet_config memory_read_packet_config =
1748 {
1749 "memory-read-packet-size",
1750 };
1751
1752 static void
1753 set_memory_read_packet_size (const char *args, int from_tty)
1754 {
1755 set_memory_packet_size (args, &memory_read_packet_config);
1756 }
1757
1758 static void
1759 show_memory_read_packet_size (const char *args, int from_tty)
1760 {
1761 show_memory_packet_size (&memory_read_packet_config);
1762 }
1763
1764 long
1765 remote_target::get_memory_read_packet_size ()
1766 {
1767 long size = get_memory_packet_size (&memory_read_packet_config);
1768
1769 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1770 extra buffer size argument before the memory read size can be
1771 increased beyond this. */
1772 if (size > get_remote_packet_size ())
1773 size = get_remote_packet_size ();
1774 return size;
1775 }
1776
1777 \f
1778
1779 struct packet_config
1780 {
1781 const char *name;
1782 const char *title;
1783
1784 /* If auto, GDB auto-detects support for this packet or feature,
1785 either through qSupported, or by trying the packet and looking
1786 at the response. If true, GDB assumes the target supports this
1787 packet. If false, the packet is disabled. Configs that don't
1788 have an associated command always have this set to auto. */
1789 enum auto_boolean detect;
1790
1791 /* Does the target support this packet? */
1792 enum packet_support support;
1793 };
1794
1795 static enum packet_support packet_config_support (struct packet_config *config);
1796 static enum packet_support packet_support (int packet);
1797
1798 static void
1799 show_packet_config_cmd (struct packet_config *config)
1800 {
1801 const char *support = "internal-error";
1802
1803 switch (packet_config_support (config))
1804 {
1805 case PACKET_ENABLE:
1806 support = "enabled";
1807 break;
1808 case PACKET_DISABLE:
1809 support = "disabled";
1810 break;
1811 case PACKET_SUPPORT_UNKNOWN:
1812 support = "unknown";
1813 break;
1814 }
1815 switch (config->detect)
1816 {
1817 case AUTO_BOOLEAN_AUTO:
1818 printf_filtered (_("Support for the `%s' packet "
1819 "is auto-detected, currently %s.\n"),
1820 config->name, support);
1821 break;
1822 case AUTO_BOOLEAN_TRUE:
1823 case AUTO_BOOLEAN_FALSE:
1824 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1825 config->name, support);
1826 break;
1827 }
1828 }
1829
1830 static void
1831 add_packet_config_cmd (struct packet_config *config, const char *name,
1832 const char *title, int legacy)
1833 {
1834 char *set_doc;
1835 char *show_doc;
1836 char *cmd_name;
1837
1838 config->name = name;
1839 config->title = title;
1840 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1841 name, title);
1842 show_doc = xstrprintf ("Show current use of remote "
1843 "protocol `%s' (%s) packet",
1844 name, title);
1845 /* set/show TITLE-packet {auto,on,off} */
1846 cmd_name = xstrprintf ("%s-packet", title);
1847 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1848 &config->detect, set_doc,
1849 show_doc, NULL, /* help_doc */
1850 NULL,
1851 show_remote_protocol_packet_cmd,
1852 &remote_set_cmdlist, &remote_show_cmdlist);
1853 /* The command code copies the documentation strings. */
1854 xfree (set_doc);
1855 xfree (show_doc);
1856 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1857 if (legacy)
1858 {
1859 char *legacy_name;
1860
1861 legacy_name = xstrprintf ("%s-packet", name);
1862 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1863 &remote_set_cmdlist);
1864 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1865 &remote_show_cmdlist);
1866 }
1867 }
1868
1869 static enum packet_result
1870 packet_check_result (const char *buf)
1871 {
1872 if (buf[0] != '\0')
1873 {
1874 /* The stub recognized the packet request. Check that the
1875 operation succeeded. */
1876 if (buf[0] == 'E'
1877 && isxdigit (buf[1]) && isxdigit (buf[2])
1878 && buf[3] == '\0')
1879 /* "Enn" - definitly an error. */
1880 return PACKET_ERROR;
1881
1882 /* Always treat "E." as an error. This will be used for
1883 more verbose error messages, such as E.memtypes. */
1884 if (buf[0] == 'E' && buf[1] == '.')
1885 return PACKET_ERROR;
1886
1887 /* The packet may or may not be OK. Just assume it is. */
1888 return PACKET_OK;
1889 }
1890 else
1891 /* The stub does not support the packet. */
1892 return PACKET_UNKNOWN;
1893 }
1894
1895 static enum packet_result
1896 packet_check_result (const gdb::char_vector &buf)
1897 {
1898 return packet_check_result (buf.data ());
1899 }
1900
1901 static enum packet_result
1902 packet_ok (const char *buf, struct packet_config *config)
1903 {
1904 enum packet_result result;
1905
1906 if (config->detect != AUTO_BOOLEAN_TRUE
1907 && config->support == PACKET_DISABLE)
1908 internal_error (__FILE__, __LINE__,
1909 _("packet_ok: attempt to use a disabled packet"));
1910
1911 result = packet_check_result (buf);
1912 switch (result)
1913 {
1914 case PACKET_OK:
1915 case PACKET_ERROR:
1916 /* The stub recognized the packet request. */
1917 if (config->support == PACKET_SUPPORT_UNKNOWN)
1918 {
1919 if (remote_debug)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "Packet %s (%s) is supported\n",
1922 config->name, config->title);
1923 config->support = PACKET_ENABLE;
1924 }
1925 break;
1926 case PACKET_UNKNOWN:
1927 /* The stub does not support the packet. */
1928 if (config->detect == AUTO_BOOLEAN_AUTO
1929 && config->support == PACKET_ENABLE)
1930 {
1931 /* If the stub previously indicated that the packet was
1932 supported then there is a protocol error. */
1933 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1934 config->name, config->title);
1935 }
1936 else if (config->detect == AUTO_BOOLEAN_TRUE)
1937 {
1938 /* The user set it wrong. */
1939 error (_("Enabled packet %s (%s) not recognized by stub"),
1940 config->name, config->title);
1941 }
1942
1943 if (remote_debug)
1944 fprintf_unfiltered (gdb_stdlog,
1945 "Packet %s (%s) is NOT supported\n",
1946 config->name, config->title);
1947 config->support = PACKET_DISABLE;
1948 break;
1949 }
1950
1951 return result;
1952 }
1953
1954 static enum packet_result
1955 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1956 {
1957 return packet_ok (buf.data (), config);
1958 }
1959
1960 enum {
1961 PACKET_vCont = 0,
1962 PACKET_X,
1963 PACKET_qSymbol,
1964 PACKET_P,
1965 PACKET_p,
1966 PACKET_Z0,
1967 PACKET_Z1,
1968 PACKET_Z2,
1969 PACKET_Z3,
1970 PACKET_Z4,
1971 PACKET_vFile_setfs,
1972 PACKET_vFile_open,
1973 PACKET_vFile_pread,
1974 PACKET_vFile_pwrite,
1975 PACKET_vFile_close,
1976 PACKET_vFile_unlink,
1977 PACKET_vFile_readlink,
1978 PACKET_vFile_fstat,
1979 PACKET_qXfer_auxv,
1980 PACKET_qXfer_features,
1981 PACKET_qXfer_exec_file,
1982 PACKET_qXfer_libraries,
1983 PACKET_qXfer_libraries_svr4,
1984 PACKET_qXfer_memory_map,
1985 PACKET_qXfer_spu_read,
1986 PACKET_qXfer_spu_write,
1987 PACKET_qXfer_osdata,
1988 PACKET_qXfer_threads,
1989 PACKET_qXfer_statictrace_read,
1990 PACKET_qXfer_traceframe_info,
1991 PACKET_qXfer_uib,
1992 PACKET_qGetTIBAddr,
1993 PACKET_qGetTLSAddr,
1994 PACKET_qSupported,
1995 PACKET_qTStatus,
1996 PACKET_QPassSignals,
1997 PACKET_QCatchSyscalls,
1998 PACKET_QProgramSignals,
1999 PACKET_QSetWorkingDir,
2000 PACKET_QStartupWithShell,
2001 PACKET_QEnvironmentHexEncoded,
2002 PACKET_QEnvironmentReset,
2003 PACKET_QEnvironmentUnset,
2004 PACKET_qCRC,
2005 PACKET_qSearch_memory,
2006 PACKET_vAttach,
2007 PACKET_vRun,
2008 PACKET_QStartNoAckMode,
2009 PACKET_vKill,
2010 PACKET_qXfer_siginfo_read,
2011 PACKET_qXfer_siginfo_write,
2012 PACKET_qAttached,
2013
2014 /* Support for conditional tracepoints. */
2015 PACKET_ConditionalTracepoints,
2016
2017 /* Support for target-side breakpoint conditions. */
2018 PACKET_ConditionalBreakpoints,
2019
2020 /* Support for target-side breakpoint commands. */
2021 PACKET_BreakpointCommands,
2022
2023 /* Support for fast tracepoints. */
2024 PACKET_FastTracepoints,
2025
2026 /* Support for static tracepoints. */
2027 PACKET_StaticTracepoints,
2028
2029 /* Support for installing tracepoints while a trace experiment is
2030 running. */
2031 PACKET_InstallInTrace,
2032
2033 PACKET_bc,
2034 PACKET_bs,
2035 PACKET_TracepointSource,
2036 PACKET_QAllow,
2037 PACKET_qXfer_fdpic,
2038 PACKET_QDisableRandomization,
2039 PACKET_QAgent,
2040 PACKET_QTBuffer_size,
2041 PACKET_Qbtrace_off,
2042 PACKET_Qbtrace_bts,
2043 PACKET_Qbtrace_pt,
2044 PACKET_qXfer_btrace,
2045
2046 /* Support for the QNonStop packet. */
2047 PACKET_QNonStop,
2048
2049 /* Support for the QThreadEvents packet. */
2050 PACKET_QThreadEvents,
2051
2052 /* Support for multi-process extensions. */
2053 PACKET_multiprocess_feature,
2054
2055 /* Support for enabling and disabling tracepoints while a trace
2056 experiment is running. */
2057 PACKET_EnableDisableTracepoints_feature,
2058
2059 /* Support for collecting strings using the tracenz bytecode. */
2060 PACKET_tracenz_feature,
2061
2062 /* Support for continuing to run a trace experiment while GDB is
2063 disconnected. */
2064 PACKET_DisconnectedTracing_feature,
2065
2066 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2067 PACKET_augmented_libraries_svr4_read_feature,
2068
2069 /* Support for the qXfer:btrace-conf:read packet. */
2070 PACKET_qXfer_btrace_conf,
2071
2072 /* Support for the Qbtrace-conf:bts:size packet. */
2073 PACKET_Qbtrace_conf_bts_size,
2074
2075 /* Support for swbreak+ feature. */
2076 PACKET_swbreak_feature,
2077
2078 /* Support for hwbreak+ feature. */
2079 PACKET_hwbreak_feature,
2080
2081 /* Support for fork events. */
2082 PACKET_fork_event_feature,
2083
2084 /* Support for vfork events. */
2085 PACKET_vfork_event_feature,
2086
2087 /* Support for the Qbtrace-conf:pt:size packet. */
2088 PACKET_Qbtrace_conf_pt_size,
2089
2090 /* Support for exec events. */
2091 PACKET_exec_event_feature,
2092
2093 /* Support for query supported vCont actions. */
2094 PACKET_vContSupported,
2095
2096 /* Support remote CTRL-C. */
2097 PACKET_vCtrlC,
2098
2099 /* Support TARGET_WAITKIND_NO_RESUMED. */
2100 PACKET_no_resumed,
2101
2102 PACKET_MAX
2103 };
2104
2105 static struct packet_config remote_protocol_packets[PACKET_MAX];
2106
2107 /* Returns the packet's corresponding "set remote foo-packet" command
2108 state. See struct packet_config for more details. */
2109
2110 static enum auto_boolean
2111 packet_set_cmd_state (int packet)
2112 {
2113 return remote_protocol_packets[packet].detect;
2114 }
2115
2116 /* Returns whether a given packet or feature is supported. This takes
2117 into account the state of the corresponding "set remote foo-packet"
2118 command, which may be used to bypass auto-detection. */
2119
2120 static enum packet_support
2121 packet_config_support (struct packet_config *config)
2122 {
2123 switch (config->detect)
2124 {
2125 case AUTO_BOOLEAN_TRUE:
2126 return PACKET_ENABLE;
2127 case AUTO_BOOLEAN_FALSE:
2128 return PACKET_DISABLE;
2129 case AUTO_BOOLEAN_AUTO:
2130 return config->support;
2131 default:
2132 gdb_assert_not_reached (_("bad switch"));
2133 }
2134 }
2135
2136 /* Same as packet_config_support, but takes the packet's enum value as
2137 argument. */
2138
2139 static enum packet_support
2140 packet_support (int packet)
2141 {
2142 struct packet_config *config = &remote_protocol_packets[packet];
2143
2144 return packet_config_support (config);
2145 }
2146
2147 static void
2148 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2149 struct cmd_list_element *c,
2150 const char *value)
2151 {
2152 struct packet_config *packet;
2153
2154 for (packet = remote_protocol_packets;
2155 packet < &remote_protocol_packets[PACKET_MAX];
2156 packet++)
2157 {
2158 if (&packet->detect == c->var)
2159 {
2160 show_packet_config_cmd (packet);
2161 return;
2162 }
2163 }
2164 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2165 c->name);
2166 }
2167
2168 /* Should we try one of the 'Z' requests? */
2169
2170 enum Z_packet_type
2171 {
2172 Z_PACKET_SOFTWARE_BP,
2173 Z_PACKET_HARDWARE_BP,
2174 Z_PACKET_WRITE_WP,
2175 Z_PACKET_READ_WP,
2176 Z_PACKET_ACCESS_WP,
2177 NR_Z_PACKET_TYPES
2178 };
2179
2180 /* For compatibility with older distributions. Provide a ``set remote
2181 Z-packet ...'' command that updates all the Z packet types. */
2182
2183 static enum auto_boolean remote_Z_packet_detect;
2184
2185 static void
2186 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2187 struct cmd_list_element *c)
2188 {
2189 int i;
2190
2191 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2192 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2193 }
2194
2195 static void
2196 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2197 struct cmd_list_element *c,
2198 const char *value)
2199 {
2200 int i;
2201
2202 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2203 {
2204 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2205 }
2206 }
2207
2208 /* Returns true if the multi-process extensions are in effect. */
2209
2210 static int
2211 remote_multi_process_p (struct remote_state *rs)
2212 {
2213 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2214 }
2215
2216 /* Returns true if fork events are supported. */
2217
2218 static int
2219 remote_fork_event_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Returns true if vfork events are supported. */
2225
2226 static int
2227 remote_vfork_event_p (struct remote_state *rs)
2228 {
2229 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2230 }
2231
2232 /* Returns true if exec events are supported. */
2233
2234 static int
2235 remote_exec_event_p (struct remote_state *rs)
2236 {
2237 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2238 }
2239
2240 /* Insert fork catchpoint target routine. If fork events are enabled
2241 then return success, nothing more to do. */
2242
2243 int
2244 remote_target::insert_fork_catchpoint (int pid)
2245 {
2246 struct remote_state *rs = get_remote_state ();
2247
2248 return !remote_fork_event_p (rs);
2249 }
2250
2251 /* Remove fork catchpoint target routine. Nothing to do, just
2252 return success. */
2253
2254 int
2255 remote_target::remove_fork_catchpoint (int pid)
2256 {
2257 return 0;
2258 }
2259
2260 /* Insert vfork catchpoint target routine. If vfork events are enabled
2261 then return success, nothing more to do. */
2262
2263 int
2264 remote_target::insert_vfork_catchpoint (int pid)
2265 {
2266 struct remote_state *rs = get_remote_state ();
2267
2268 return !remote_vfork_event_p (rs);
2269 }
2270
2271 /* Remove vfork catchpoint target routine. Nothing to do, just
2272 return success. */
2273
2274 int
2275 remote_target::remove_vfork_catchpoint (int pid)
2276 {
2277 return 0;
2278 }
2279
2280 /* Insert exec catchpoint target routine. If exec events are
2281 enabled, just return success. */
2282
2283 int
2284 remote_target::insert_exec_catchpoint (int pid)
2285 {
2286 struct remote_state *rs = get_remote_state ();
2287
2288 return !remote_exec_event_p (rs);
2289 }
2290
2291 /* Remove exec catchpoint target routine. Nothing to do, just
2292 return success. */
2293
2294 int
2295 remote_target::remove_exec_catchpoint (int pid)
2296 {
2297 return 0;
2298 }
2299
2300 \f
2301
2302 /* Take advantage of the fact that the TID field is not used, to tag
2303 special ptids with it set to != 0. */
2304 static const ptid_t magic_null_ptid (42000, -1, 1);
2305 static const ptid_t not_sent_ptid (42000, -2, 1);
2306 static const ptid_t any_thread_ptid (42000, 0, 1);
2307
2308 /* Find out if the stub attached to PID (and hence GDB should offer to
2309 detach instead of killing it when bailing out). */
2310
2311 int
2312 remote_target::remote_query_attached (int pid)
2313 {
2314 struct remote_state *rs = get_remote_state ();
2315 size_t size = get_remote_packet_size ();
2316
2317 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2318 return 0;
2319
2320 if (remote_multi_process_p (rs))
2321 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2322 else
2323 xsnprintf (rs->buf.data (), size, "qAttached");
2324
2325 putpkt (rs->buf);
2326 getpkt (&rs->buf, 0);
2327
2328 switch (packet_ok (rs->buf,
2329 &remote_protocol_packets[PACKET_qAttached]))
2330 {
2331 case PACKET_OK:
2332 if (strcmp (rs->buf.data (), "1") == 0)
2333 return 1;
2334 break;
2335 case PACKET_ERROR:
2336 warning (_("Remote failure reply: %s"), rs->buf.data ());
2337 break;
2338 case PACKET_UNKNOWN:
2339 break;
2340 }
2341
2342 return 0;
2343 }
2344
2345 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2346 has been invented by GDB, instead of reported by the target. Since
2347 we can be connected to a remote system before before knowing about
2348 any inferior, mark the target with execution when we find the first
2349 inferior. If ATTACHED is 1, then we had just attached to this
2350 inferior. If it is 0, then we just created this inferior. If it
2351 is -1, then try querying the remote stub to find out if it had
2352 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2353 attempt to open this inferior's executable as the main executable
2354 if no main executable is open already. */
2355
2356 inferior *
2357 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2358 int try_open_exec)
2359 {
2360 struct inferior *inf;
2361
2362 /* Check whether this process we're learning about is to be
2363 considered attached, or if is to be considered to have been
2364 spawned by the stub. */
2365 if (attached == -1)
2366 attached = remote_query_attached (pid);
2367
2368 if (gdbarch_has_global_solist (target_gdbarch ()))
2369 {
2370 /* If the target shares code across all inferiors, then every
2371 attach adds a new inferior. */
2372 inf = add_inferior (pid);
2373
2374 /* ... and every inferior is bound to the same program space.
2375 However, each inferior may still have its own address
2376 space. */
2377 inf->aspace = maybe_new_address_space ();
2378 inf->pspace = current_program_space;
2379 }
2380 else
2381 {
2382 /* In the traditional debugging scenario, there's a 1-1 match
2383 between program/address spaces. We simply bind the inferior
2384 to the program space's address space. */
2385 inf = current_inferior ();
2386 inferior_appeared (inf, pid);
2387 }
2388
2389 inf->attach_flag = attached;
2390 inf->fake_pid_p = fake_pid_p;
2391
2392 /* If no main executable is currently open then attempt to
2393 open the file that was executed to create this inferior. */
2394 if (try_open_exec && get_exec_file (0) == NULL)
2395 exec_file_locate_attach (pid, 0, 1);
2396
2397 return inf;
2398 }
2399
2400 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2401 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2402
2403 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2404 according to RUNNING. */
2405
2406 thread_info *
2407 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2408 {
2409 struct remote_state *rs = get_remote_state ();
2410 struct thread_info *thread;
2411
2412 /* GDB historically didn't pull threads in the initial connection
2413 setup. If the remote target doesn't even have a concept of
2414 threads (e.g., a bare-metal target), even if internally we
2415 consider that a single-threaded target, mentioning a new thread
2416 might be confusing to the user. Be silent then, preserving the
2417 age old behavior. */
2418 if (rs->starting_up)
2419 thread = add_thread_silent (ptid);
2420 else
2421 thread = add_thread (ptid);
2422
2423 get_remote_thread_info (thread)->vcont_resumed = executing;
2424 set_executing (ptid, executing);
2425 set_running (ptid, running);
2426
2427 return thread;
2428 }
2429
2430 /* Come here when we learn about a thread id from the remote target.
2431 It may be the first time we hear about such thread, so take the
2432 opportunity to add it to GDB's thread list. In case this is the
2433 first time we're noticing its corresponding inferior, add it to
2434 GDB's inferior list as well. EXECUTING indicates whether the
2435 thread is (internally) executing or stopped. */
2436
2437 void
2438 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2439 {
2440 /* In non-stop mode, we assume new found threads are (externally)
2441 running until proven otherwise with a stop reply. In all-stop,
2442 we can only get here if all threads are stopped. */
2443 int running = target_is_non_stop_p () ? 1 : 0;
2444
2445 /* If this is a new thread, add it to GDB's thread list.
2446 If we leave it up to WFI to do this, bad things will happen. */
2447
2448 thread_info *tp = find_thread_ptid (currthread);
2449 if (tp != NULL && tp->state == THREAD_EXITED)
2450 {
2451 /* We're seeing an event on a thread id we knew had exited.
2452 This has to be a new thread reusing the old id. Add it. */
2453 remote_add_thread (currthread, running, executing);
2454 return;
2455 }
2456
2457 if (!in_thread_list (currthread))
2458 {
2459 struct inferior *inf = NULL;
2460 int pid = currthread.pid ();
2461
2462 if (inferior_ptid.is_pid ()
2463 && pid == inferior_ptid.pid ())
2464 {
2465 /* inferior_ptid has no thread member yet. This can happen
2466 with the vAttach -> remote_wait,"TAAthread:" path if the
2467 stub doesn't support qC. This is the first stop reported
2468 after an attach, so this is the main thread. Update the
2469 ptid in the thread list. */
2470 if (in_thread_list (ptid_t (pid)))
2471 thread_change_ptid (inferior_ptid, currthread);
2472 else
2473 {
2474 remote_add_thread (currthread, running, executing);
2475 inferior_ptid = currthread;
2476 }
2477 return;
2478 }
2479
2480 if (magic_null_ptid == inferior_ptid)
2481 {
2482 /* inferior_ptid is not set yet. This can happen with the
2483 vRun -> remote_wait,"TAAthread:" path if the stub
2484 doesn't support qC. This is the first stop reported
2485 after an attach, so this is the main thread. Update the
2486 ptid in the thread list. */
2487 thread_change_ptid (inferior_ptid, currthread);
2488 return;
2489 }
2490
2491 /* When connecting to a target remote, or to a target
2492 extended-remote which already was debugging an inferior, we
2493 may not know about it yet. Add it before adding its child
2494 thread, so notifications are emitted in a sensible order. */
2495 if (find_inferior_pid (currthread.pid ()) == NULL)
2496 {
2497 struct remote_state *rs = get_remote_state ();
2498 int fake_pid_p = !remote_multi_process_p (rs);
2499
2500 inf = remote_add_inferior (fake_pid_p,
2501 currthread.pid (), -1, 1);
2502 }
2503
2504 /* This is really a new thread. Add it. */
2505 thread_info *new_thr
2506 = remote_add_thread (currthread, running, executing);
2507
2508 /* If we found a new inferior, let the common code do whatever
2509 it needs to with it (e.g., read shared libraries, insert
2510 breakpoints), unless we're just setting up an all-stop
2511 connection. */
2512 if (inf != NULL)
2513 {
2514 struct remote_state *rs = get_remote_state ();
2515
2516 if (!rs->starting_up)
2517 notice_new_inferior (new_thr, executing, 0);
2518 }
2519 }
2520 }
2521
2522 /* Return THREAD's private thread data, creating it if necessary. */
2523
2524 static remote_thread_info *
2525 get_remote_thread_info (thread_info *thread)
2526 {
2527 gdb_assert (thread != NULL);
2528
2529 if (thread->priv == NULL)
2530 thread->priv.reset (new remote_thread_info);
2531
2532 return static_cast<remote_thread_info *> (thread->priv.get ());
2533 }
2534
2535 static remote_thread_info *
2536 get_remote_thread_info (ptid_t ptid)
2537 {
2538 thread_info *thr = find_thread_ptid (ptid);
2539 return get_remote_thread_info (thr);
2540 }
2541
2542 /* Call this function as a result of
2543 1) A halt indication (T packet) containing a thread id
2544 2) A direct query of currthread
2545 3) Successful execution of set thread */
2546
2547 static void
2548 record_currthread (struct remote_state *rs, ptid_t currthread)
2549 {
2550 rs->general_thread = currthread;
2551 }
2552
2553 /* If 'QPassSignals' is supported, tell the remote stub what signals
2554 it can simply pass through to the inferior without reporting. */
2555
2556 void
2557 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2558 {
2559 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2560 {
2561 char *pass_packet, *p;
2562 int count = 0;
2563 struct remote_state *rs = get_remote_state ();
2564
2565 gdb_assert (pass_signals.size () < 256);
2566 for (size_t i = 0; i < pass_signals.size (); i++)
2567 {
2568 if (pass_signals[i])
2569 count++;
2570 }
2571 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2572 strcpy (pass_packet, "QPassSignals:");
2573 p = pass_packet + strlen (pass_packet);
2574 for (size_t i = 0; i < pass_signals.size (); i++)
2575 {
2576 if (pass_signals[i])
2577 {
2578 if (i >= 16)
2579 *p++ = tohex (i >> 4);
2580 *p++ = tohex (i & 15);
2581 if (count)
2582 *p++ = ';';
2583 else
2584 break;
2585 count--;
2586 }
2587 }
2588 *p = 0;
2589 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2590 {
2591 putpkt (pass_packet);
2592 getpkt (&rs->buf, 0);
2593 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2594 if (rs->last_pass_packet)
2595 xfree (rs->last_pass_packet);
2596 rs->last_pass_packet = pass_packet;
2597 }
2598 else
2599 xfree (pass_packet);
2600 }
2601 }
2602
2603 /* If 'QCatchSyscalls' is supported, tell the remote stub
2604 to report syscalls to GDB. */
2605
2606 int
2607 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2608 gdb::array_view<const int> syscall_counts)
2609 {
2610 const char *catch_packet;
2611 enum packet_result result;
2612 int n_sysno = 0;
2613
2614 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2615 {
2616 /* Not supported. */
2617 return 1;
2618 }
2619
2620 if (needed && any_count == 0)
2621 {
2622 /* Count how many syscalls are to be caught. */
2623 for (size_t i = 0; i < syscall_counts.size (); i++)
2624 {
2625 if (syscall_counts[i] != 0)
2626 n_sysno++;
2627 }
2628 }
2629
2630 if (remote_debug)
2631 {
2632 fprintf_unfiltered (gdb_stdlog,
2633 "remote_set_syscall_catchpoint "
2634 "pid %d needed %d any_count %d n_sysno %d\n",
2635 pid, needed, any_count, n_sysno);
2636 }
2637
2638 std::string built_packet;
2639 if (needed)
2640 {
2641 /* Prepare a packet with the sysno list, assuming max 8+1
2642 characters for a sysno. If the resulting packet size is too
2643 big, fallback on the non-selective packet. */
2644 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2645 built_packet.reserve (maxpktsz);
2646 built_packet = "QCatchSyscalls:1";
2647 if (any_count == 0)
2648 {
2649 /* Add in each syscall to be caught. */
2650 for (size_t i = 0; i < syscall_counts.size (); i++)
2651 {
2652 if (syscall_counts[i] != 0)
2653 string_appendf (built_packet, ";%zx", i);
2654 }
2655 }
2656 if (built_packet.size () > get_remote_packet_size ())
2657 {
2658 /* catch_packet too big. Fallback to less efficient
2659 non selective mode, with GDB doing the filtering. */
2660 catch_packet = "QCatchSyscalls:1";
2661 }
2662 else
2663 catch_packet = built_packet.c_str ();
2664 }
2665 else
2666 catch_packet = "QCatchSyscalls:0";
2667
2668 struct remote_state *rs = get_remote_state ();
2669
2670 putpkt (catch_packet);
2671 getpkt (&rs->buf, 0);
2672 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2673 if (result == PACKET_OK)
2674 return 0;
2675 else
2676 return -1;
2677 }
2678
2679 /* If 'QProgramSignals' is supported, tell the remote stub what
2680 signals it should pass through to the inferior when detaching. */
2681
2682 void
2683 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2684 {
2685 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2686 {
2687 char *packet, *p;
2688 int count = 0;
2689 struct remote_state *rs = get_remote_state ();
2690
2691 gdb_assert (signals.size () < 256);
2692 for (size_t i = 0; i < signals.size (); i++)
2693 {
2694 if (signals[i])
2695 count++;
2696 }
2697 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2698 strcpy (packet, "QProgramSignals:");
2699 p = packet + strlen (packet);
2700 for (size_t i = 0; i < signals.size (); i++)
2701 {
2702 if (signal_pass_state (i))
2703 {
2704 if (i >= 16)
2705 *p++ = tohex (i >> 4);
2706 *p++ = tohex (i & 15);
2707 if (count)
2708 *p++ = ';';
2709 else
2710 break;
2711 count--;
2712 }
2713 }
2714 *p = 0;
2715 if (!rs->last_program_signals_packet
2716 || strcmp (rs->last_program_signals_packet, packet) != 0)
2717 {
2718 putpkt (packet);
2719 getpkt (&rs->buf, 0);
2720 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2721 xfree (rs->last_program_signals_packet);
2722 rs->last_program_signals_packet = packet;
2723 }
2724 else
2725 xfree (packet);
2726 }
2727 }
2728
2729 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2730 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2731 thread. If GEN is set, set the general thread, if not, then set
2732 the step/continue thread. */
2733 void
2734 remote_target::set_thread (ptid_t ptid, int gen)
2735 {
2736 struct remote_state *rs = get_remote_state ();
2737 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2738 char *buf = rs->buf.data ();
2739 char *endbuf = buf + get_remote_packet_size ();
2740
2741 if (state == ptid)
2742 return;
2743
2744 *buf++ = 'H';
2745 *buf++ = gen ? 'g' : 'c';
2746 if (ptid == magic_null_ptid)
2747 xsnprintf (buf, endbuf - buf, "0");
2748 else if (ptid == any_thread_ptid)
2749 xsnprintf (buf, endbuf - buf, "0");
2750 else if (ptid == minus_one_ptid)
2751 xsnprintf (buf, endbuf - buf, "-1");
2752 else
2753 write_ptid (buf, endbuf, ptid);
2754 putpkt (rs->buf);
2755 getpkt (&rs->buf, 0);
2756 if (gen)
2757 rs->general_thread = ptid;
2758 else
2759 rs->continue_thread = ptid;
2760 }
2761
2762 void
2763 remote_target::set_general_thread (ptid_t ptid)
2764 {
2765 set_thread (ptid, 1);
2766 }
2767
2768 void
2769 remote_target::set_continue_thread (ptid_t ptid)
2770 {
2771 set_thread (ptid, 0);
2772 }
2773
2774 /* Change the remote current process. Which thread within the process
2775 ends up selected isn't important, as long as it is the same process
2776 as what INFERIOR_PTID points to.
2777
2778 This comes from that fact that there is no explicit notion of
2779 "selected process" in the protocol. The selected process for
2780 general operations is the process the selected general thread
2781 belongs to. */
2782
2783 void
2784 remote_target::set_general_process ()
2785 {
2786 struct remote_state *rs = get_remote_state ();
2787
2788 /* If the remote can't handle multiple processes, don't bother. */
2789 if (!remote_multi_process_p (rs))
2790 return;
2791
2792 /* We only need to change the remote current thread if it's pointing
2793 at some other process. */
2794 if (rs->general_thread.pid () != inferior_ptid.pid ())
2795 set_general_thread (inferior_ptid);
2796 }
2797
2798 \f
2799 /* Return nonzero if this is the main thread that we made up ourselves
2800 to model non-threaded targets as single-threaded. */
2801
2802 static int
2803 remote_thread_always_alive (ptid_t ptid)
2804 {
2805 if (ptid == magic_null_ptid)
2806 /* The main thread is always alive. */
2807 return 1;
2808
2809 if (ptid.pid () != 0 && ptid.lwp () == 0)
2810 /* The main thread is always alive. This can happen after a
2811 vAttach, if the remote side doesn't support
2812 multi-threading. */
2813 return 1;
2814
2815 return 0;
2816 }
2817
2818 /* Return nonzero if the thread PTID is still alive on the remote
2819 system. */
2820
2821 bool
2822 remote_target::thread_alive (ptid_t ptid)
2823 {
2824 struct remote_state *rs = get_remote_state ();
2825 char *p, *endp;
2826
2827 /* Check if this is a thread that we made up ourselves to model
2828 non-threaded targets as single-threaded. */
2829 if (remote_thread_always_alive (ptid))
2830 return 1;
2831
2832 p = rs->buf.data ();
2833 endp = p + get_remote_packet_size ();
2834
2835 *p++ = 'T';
2836 write_ptid (p, endp, ptid);
2837
2838 putpkt (rs->buf);
2839 getpkt (&rs->buf, 0);
2840 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2841 }
2842
2843 /* Return a pointer to a thread name if we know it and NULL otherwise.
2844 The thread_info object owns the memory for the name. */
2845
2846 const char *
2847 remote_target::thread_name (struct thread_info *info)
2848 {
2849 if (info->priv != NULL)
2850 {
2851 const std::string &name = get_remote_thread_info (info)->name;
2852 return !name.empty () ? name.c_str () : NULL;
2853 }
2854
2855 return NULL;
2856 }
2857
2858 /* About these extended threadlist and threadinfo packets. They are
2859 variable length packets but, the fields within them are often fixed
2860 length. They are redundent enough to send over UDP as is the
2861 remote protocol in general. There is a matching unit test module
2862 in libstub. */
2863
2864 /* WARNING: This threadref data structure comes from the remote O.S.,
2865 libstub protocol encoding, and remote.c. It is not particularly
2866 changable. */
2867
2868 /* Right now, the internal structure is int. We want it to be bigger.
2869 Plan to fix this. */
2870
2871 typedef int gdb_threadref; /* Internal GDB thread reference. */
2872
2873 /* gdb_ext_thread_info is an internal GDB data structure which is
2874 equivalent to the reply of the remote threadinfo packet. */
2875
2876 struct gdb_ext_thread_info
2877 {
2878 threadref threadid; /* External form of thread reference. */
2879 int active; /* Has state interesting to GDB?
2880 regs, stack. */
2881 char display[256]; /* Brief state display, name,
2882 blocked/suspended. */
2883 char shortname[32]; /* To be used to name threads. */
2884 char more_display[256]; /* Long info, statistics, queue depth,
2885 whatever. */
2886 };
2887
2888 /* The volume of remote transfers can be limited by submitting
2889 a mask containing bits specifying the desired information.
2890 Use a union of these values as the 'selection' parameter to
2891 get_thread_info. FIXME: Make these TAG names more thread specific. */
2892
2893 #define TAG_THREADID 1
2894 #define TAG_EXISTS 2
2895 #define TAG_DISPLAY 4
2896 #define TAG_THREADNAME 8
2897 #define TAG_MOREDISPLAY 16
2898
2899 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2900
2901 static char *unpack_nibble (char *buf, int *val);
2902
2903 static char *unpack_byte (char *buf, int *value);
2904
2905 static char *pack_int (char *buf, int value);
2906
2907 static char *unpack_int (char *buf, int *value);
2908
2909 static char *unpack_string (char *src, char *dest, int length);
2910
2911 static char *pack_threadid (char *pkt, threadref *id);
2912
2913 static char *unpack_threadid (char *inbuf, threadref *id);
2914
2915 void int_to_threadref (threadref *id, int value);
2916
2917 static int threadref_to_int (threadref *ref);
2918
2919 static void copy_threadref (threadref *dest, threadref *src);
2920
2921 static int threadmatch (threadref *dest, threadref *src);
2922
2923 static char *pack_threadinfo_request (char *pkt, int mode,
2924 threadref *id);
2925
2926 static char *pack_threadlist_request (char *pkt, int startflag,
2927 int threadcount,
2928 threadref *nextthread);
2929
2930 static int remote_newthread_step (threadref *ref, void *context);
2931
2932
2933 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2934 buffer we're allowed to write to. Returns
2935 BUF+CHARACTERS_WRITTEN. */
2936
2937 char *
2938 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2939 {
2940 int pid, tid;
2941 struct remote_state *rs = get_remote_state ();
2942
2943 if (remote_multi_process_p (rs))
2944 {
2945 pid = ptid.pid ();
2946 if (pid < 0)
2947 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2948 else
2949 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2950 }
2951 tid = ptid.lwp ();
2952 if (tid < 0)
2953 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2954 else
2955 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2956
2957 return buf;
2958 }
2959
2960 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2961 last parsed char. Returns null_ptid if no thread id is found, and
2962 throws an error if the thread id has an invalid format. */
2963
2964 static ptid_t
2965 read_ptid (const char *buf, const char **obuf)
2966 {
2967 const char *p = buf;
2968 const char *pp;
2969 ULONGEST pid = 0, tid = 0;
2970
2971 if (*p == 'p')
2972 {
2973 /* Multi-process ptid. */
2974 pp = unpack_varlen_hex (p + 1, &pid);
2975 if (*pp != '.')
2976 error (_("invalid remote ptid: %s"), p);
2977
2978 p = pp;
2979 pp = unpack_varlen_hex (p + 1, &tid);
2980 if (obuf)
2981 *obuf = pp;
2982 return ptid_t (pid, tid, 0);
2983 }
2984
2985 /* No multi-process. Just a tid. */
2986 pp = unpack_varlen_hex (p, &tid);
2987
2988 /* Return null_ptid when no thread id is found. */
2989 if (p == pp)
2990 {
2991 if (obuf)
2992 *obuf = pp;
2993 return null_ptid;
2994 }
2995
2996 /* Since the stub is not sending a process id, then default to
2997 what's in inferior_ptid, unless it's null at this point. If so,
2998 then since there's no way to know the pid of the reported
2999 threads, use the magic number. */
3000 if (inferior_ptid == null_ptid)
3001 pid = magic_null_ptid.pid ();
3002 else
3003 pid = inferior_ptid.pid ();
3004
3005 if (obuf)
3006 *obuf = pp;
3007 return ptid_t (pid, tid, 0);
3008 }
3009
3010 static int
3011 stubhex (int ch)
3012 {
3013 if (ch >= 'a' && ch <= 'f')
3014 return ch - 'a' + 10;
3015 if (ch >= '0' && ch <= '9')
3016 return ch - '0';
3017 if (ch >= 'A' && ch <= 'F')
3018 return ch - 'A' + 10;
3019 return -1;
3020 }
3021
3022 static int
3023 stub_unpack_int (char *buff, int fieldlength)
3024 {
3025 int nibble;
3026 int retval = 0;
3027
3028 while (fieldlength)
3029 {
3030 nibble = stubhex (*buff++);
3031 retval |= nibble;
3032 fieldlength--;
3033 if (fieldlength)
3034 retval = retval << 4;
3035 }
3036 return retval;
3037 }
3038
3039 static char *
3040 unpack_nibble (char *buf, int *val)
3041 {
3042 *val = fromhex (*buf++);
3043 return buf;
3044 }
3045
3046 static char *
3047 unpack_byte (char *buf, int *value)
3048 {
3049 *value = stub_unpack_int (buf, 2);
3050 return buf + 2;
3051 }
3052
3053 static char *
3054 pack_int (char *buf, int value)
3055 {
3056 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3057 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3058 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3059 buf = pack_hex_byte (buf, (value & 0xff));
3060 return buf;
3061 }
3062
3063 static char *
3064 unpack_int (char *buf, int *value)
3065 {
3066 *value = stub_unpack_int (buf, 8);
3067 return buf + 8;
3068 }
3069
3070 #if 0 /* Currently unused, uncomment when needed. */
3071 static char *pack_string (char *pkt, char *string);
3072
3073 static char *
3074 pack_string (char *pkt, char *string)
3075 {
3076 char ch;
3077 int len;
3078
3079 len = strlen (string);
3080 if (len > 200)
3081 len = 200; /* Bigger than most GDB packets, junk??? */
3082 pkt = pack_hex_byte (pkt, len);
3083 while (len-- > 0)
3084 {
3085 ch = *string++;
3086 if ((ch == '\0') || (ch == '#'))
3087 ch = '*'; /* Protect encapsulation. */
3088 *pkt++ = ch;
3089 }
3090 return pkt;
3091 }
3092 #endif /* 0 (unused) */
3093
3094 static char *
3095 unpack_string (char *src, char *dest, int length)
3096 {
3097 while (length--)
3098 *dest++ = *src++;
3099 *dest = '\0';
3100 return src;
3101 }
3102
3103 static char *
3104 pack_threadid (char *pkt, threadref *id)
3105 {
3106 char *limit;
3107 unsigned char *altid;
3108
3109 altid = (unsigned char *) id;
3110 limit = pkt + BUF_THREAD_ID_SIZE;
3111 while (pkt < limit)
3112 pkt = pack_hex_byte (pkt, *altid++);
3113 return pkt;
3114 }
3115
3116
3117 static char *
3118 unpack_threadid (char *inbuf, threadref *id)
3119 {
3120 char *altref;
3121 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3122 int x, y;
3123
3124 altref = (char *) id;
3125
3126 while (inbuf < limit)
3127 {
3128 x = stubhex (*inbuf++);
3129 y = stubhex (*inbuf++);
3130 *altref++ = (x << 4) | y;
3131 }
3132 return inbuf;
3133 }
3134
3135 /* Externally, threadrefs are 64 bits but internally, they are still
3136 ints. This is due to a mismatch of specifications. We would like
3137 to use 64bit thread references internally. This is an adapter
3138 function. */
3139
3140 void
3141 int_to_threadref (threadref *id, int value)
3142 {
3143 unsigned char *scan;
3144
3145 scan = (unsigned char *) id;
3146 {
3147 int i = 4;
3148 while (i--)
3149 *scan++ = 0;
3150 }
3151 *scan++ = (value >> 24) & 0xff;
3152 *scan++ = (value >> 16) & 0xff;
3153 *scan++ = (value >> 8) & 0xff;
3154 *scan++ = (value & 0xff);
3155 }
3156
3157 static int
3158 threadref_to_int (threadref *ref)
3159 {
3160 int i, value = 0;
3161 unsigned char *scan;
3162
3163 scan = *ref;
3164 scan += 4;
3165 i = 4;
3166 while (i-- > 0)
3167 value = (value << 8) | ((*scan++) & 0xff);
3168 return value;
3169 }
3170
3171 static void
3172 copy_threadref (threadref *dest, threadref *src)
3173 {
3174 int i;
3175 unsigned char *csrc, *cdest;
3176
3177 csrc = (unsigned char *) src;
3178 cdest = (unsigned char *) dest;
3179 i = 8;
3180 while (i--)
3181 *cdest++ = *csrc++;
3182 }
3183
3184 static int
3185 threadmatch (threadref *dest, threadref *src)
3186 {
3187 /* Things are broken right now, so just assume we got a match. */
3188 #if 0
3189 unsigned char *srcp, *destp;
3190 int i, result;
3191 srcp = (char *) src;
3192 destp = (char *) dest;
3193
3194 result = 1;
3195 while (i-- > 0)
3196 result &= (*srcp++ == *destp++) ? 1 : 0;
3197 return result;
3198 #endif
3199 return 1;
3200 }
3201
3202 /*
3203 threadid:1, # always request threadid
3204 context_exists:2,
3205 display:4,
3206 unique_name:8,
3207 more_display:16
3208 */
3209
3210 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3211
3212 static char *
3213 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3214 {
3215 *pkt++ = 'q'; /* Info Query */
3216 *pkt++ = 'P'; /* process or thread info */
3217 pkt = pack_int (pkt, mode); /* mode */
3218 pkt = pack_threadid (pkt, id); /* threadid */
3219 *pkt = '\0'; /* terminate */
3220 return pkt;
3221 }
3222
3223 /* These values tag the fields in a thread info response packet. */
3224 /* Tagging the fields allows us to request specific fields and to
3225 add more fields as time goes by. */
3226
3227 #define TAG_THREADID 1 /* Echo the thread identifier. */
3228 #define TAG_EXISTS 2 /* Is this process defined enough to
3229 fetch registers and its stack? */
3230 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3231 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3232 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3233 the process. */
3234
3235 int
3236 remote_target::remote_unpack_thread_info_response (char *pkt,
3237 threadref *expectedref,
3238 gdb_ext_thread_info *info)
3239 {
3240 struct remote_state *rs = get_remote_state ();
3241 int mask, length;
3242 int tag;
3243 threadref ref;
3244 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3245 int retval = 1;
3246
3247 /* info->threadid = 0; FIXME: implement zero_threadref. */
3248 info->active = 0;
3249 info->display[0] = '\0';
3250 info->shortname[0] = '\0';
3251 info->more_display[0] = '\0';
3252
3253 /* Assume the characters indicating the packet type have been
3254 stripped. */
3255 pkt = unpack_int (pkt, &mask); /* arg mask */
3256 pkt = unpack_threadid (pkt, &ref);
3257
3258 if (mask == 0)
3259 warning (_("Incomplete response to threadinfo request."));
3260 if (!threadmatch (&ref, expectedref))
3261 { /* This is an answer to a different request. */
3262 warning (_("ERROR RMT Thread info mismatch."));
3263 return 0;
3264 }
3265 copy_threadref (&info->threadid, &ref);
3266
3267 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3268
3269 /* Packets are terminated with nulls. */
3270 while ((pkt < limit) && mask && *pkt)
3271 {
3272 pkt = unpack_int (pkt, &tag); /* tag */
3273 pkt = unpack_byte (pkt, &length); /* length */
3274 if (!(tag & mask)) /* Tags out of synch with mask. */
3275 {
3276 warning (_("ERROR RMT: threadinfo tag mismatch."));
3277 retval = 0;
3278 break;
3279 }
3280 if (tag == TAG_THREADID)
3281 {
3282 if (length != 16)
3283 {
3284 warning (_("ERROR RMT: length of threadid is not 16."));
3285 retval = 0;
3286 break;
3287 }
3288 pkt = unpack_threadid (pkt, &ref);
3289 mask = mask & ~TAG_THREADID;
3290 continue;
3291 }
3292 if (tag == TAG_EXISTS)
3293 {
3294 info->active = stub_unpack_int (pkt, length);
3295 pkt += length;
3296 mask = mask & ~(TAG_EXISTS);
3297 if (length > 8)
3298 {
3299 warning (_("ERROR RMT: 'exists' length too long."));
3300 retval = 0;
3301 break;
3302 }
3303 continue;
3304 }
3305 if (tag == TAG_THREADNAME)
3306 {
3307 pkt = unpack_string (pkt, &info->shortname[0], length);
3308 mask = mask & ~TAG_THREADNAME;
3309 continue;
3310 }
3311 if (tag == TAG_DISPLAY)
3312 {
3313 pkt = unpack_string (pkt, &info->display[0], length);
3314 mask = mask & ~TAG_DISPLAY;
3315 continue;
3316 }
3317 if (tag == TAG_MOREDISPLAY)
3318 {
3319 pkt = unpack_string (pkt, &info->more_display[0], length);
3320 mask = mask & ~TAG_MOREDISPLAY;
3321 continue;
3322 }
3323 warning (_("ERROR RMT: unknown thread info tag."));
3324 break; /* Not a tag we know about. */
3325 }
3326 return retval;
3327 }
3328
3329 int
3330 remote_target::remote_get_threadinfo (threadref *threadid,
3331 int fieldset,
3332 gdb_ext_thread_info *info)
3333 {
3334 struct remote_state *rs = get_remote_state ();
3335 int result;
3336
3337 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3338 putpkt (rs->buf);
3339 getpkt (&rs->buf, 0);
3340
3341 if (rs->buf[0] == '\0')
3342 return 0;
3343
3344 result = remote_unpack_thread_info_response (&rs->buf[2],
3345 threadid, info);
3346 return result;
3347 }
3348
3349 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3350
3351 static char *
3352 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3353 threadref *nextthread)
3354 {
3355 *pkt++ = 'q'; /* info query packet */
3356 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3357 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3358 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3359 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3360 *pkt = '\0';
3361 return pkt;
3362 }
3363
3364 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3365
3366 int
3367 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3368 threadref *original_echo,
3369 threadref *resultlist,
3370 int *doneflag)
3371 {
3372 struct remote_state *rs = get_remote_state ();
3373 char *limit;
3374 int count, resultcount, done;
3375
3376 resultcount = 0;
3377 /* Assume the 'q' and 'M chars have been stripped. */
3378 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3379 /* done parse past here */
3380 pkt = unpack_byte (pkt, &count); /* count field */
3381 pkt = unpack_nibble (pkt, &done);
3382 /* The first threadid is the argument threadid. */
3383 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3384 while ((count-- > 0) && (pkt < limit))
3385 {
3386 pkt = unpack_threadid (pkt, resultlist++);
3387 if (resultcount++ >= result_limit)
3388 break;
3389 }
3390 if (doneflag)
3391 *doneflag = done;
3392 return resultcount;
3393 }
3394
3395 /* Fetch the next batch of threads from the remote. Returns -1 if the
3396 qL packet is not supported, 0 on error and 1 on success. */
3397
3398 int
3399 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3400 int result_limit, int *done, int *result_count,
3401 threadref *threadlist)
3402 {
3403 struct remote_state *rs = get_remote_state ();
3404 int result = 1;
3405
3406 /* Trancate result limit to be smaller than the packet size. */
3407 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3408 >= get_remote_packet_size ())
3409 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3410
3411 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3412 nextthread);
3413 putpkt (rs->buf);
3414 getpkt (&rs->buf, 0);
3415 if (rs->buf[0] == '\0')
3416 {
3417 /* Packet not supported. */
3418 return -1;
3419 }
3420
3421 *result_count =
3422 parse_threadlist_response (&rs->buf[2], result_limit,
3423 &rs->echo_nextthread, threadlist, done);
3424
3425 if (!threadmatch (&rs->echo_nextthread, nextthread))
3426 {
3427 /* FIXME: This is a good reason to drop the packet. */
3428 /* Possably, there is a duplicate response. */
3429 /* Possabilities :
3430 retransmit immediatly - race conditions
3431 retransmit after timeout - yes
3432 exit
3433 wait for packet, then exit
3434 */
3435 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3436 return 0; /* I choose simply exiting. */
3437 }
3438 if (*result_count <= 0)
3439 {
3440 if (*done != 1)
3441 {
3442 warning (_("RMT ERROR : failed to get remote thread list."));
3443 result = 0;
3444 }
3445 return result; /* break; */
3446 }
3447 if (*result_count > result_limit)
3448 {
3449 *result_count = 0;
3450 warning (_("RMT ERROR: threadlist response longer than requested."));
3451 return 0;
3452 }
3453 return result;
3454 }
3455
3456 /* Fetch the list of remote threads, with the qL packet, and call
3457 STEPFUNCTION for each thread found. Stops iterating and returns 1
3458 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3459 STEPFUNCTION returns false. If the packet is not supported,
3460 returns -1. */
3461
3462 int
3463 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3464 void *context, int looplimit)
3465 {
3466 struct remote_state *rs = get_remote_state ();
3467 int done, i, result_count;
3468 int startflag = 1;
3469 int result = 1;
3470 int loopcount = 0;
3471
3472 done = 0;
3473 while (!done)
3474 {
3475 if (loopcount++ > looplimit)
3476 {
3477 result = 0;
3478 warning (_("Remote fetch threadlist -infinite loop-."));
3479 break;
3480 }
3481 result = remote_get_threadlist (startflag, &rs->nextthread,
3482 MAXTHREADLISTRESULTS,
3483 &done, &result_count,
3484 rs->resultthreadlist);
3485 if (result <= 0)
3486 break;
3487 /* Clear for later iterations. */
3488 startflag = 0;
3489 /* Setup to resume next batch of thread references, set nextthread. */
3490 if (result_count >= 1)
3491 copy_threadref (&rs->nextthread,
3492 &rs->resultthreadlist[result_count - 1]);
3493 i = 0;
3494 while (result_count--)
3495 {
3496 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3497 {
3498 result = 0;
3499 break;
3500 }
3501 }
3502 }
3503 return result;
3504 }
3505
3506 /* A thread found on the remote target. */
3507
3508 struct thread_item
3509 {
3510 explicit thread_item (ptid_t ptid_)
3511 : ptid (ptid_)
3512 {}
3513
3514 thread_item (thread_item &&other) = default;
3515 thread_item &operator= (thread_item &&other) = default;
3516
3517 DISABLE_COPY_AND_ASSIGN (thread_item);
3518
3519 /* The thread's PTID. */
3520 ptid_t ptid;
3521
3522 /* The thread's extra info. */
3523 std::string extra;
3524
3525 /* The thread's name. */
3526 std::string name;
3527
3528 /* The core the thread was running on. -1 if not known. */
3529 int core = -1;
3530
3531 /* The thread handle associated with the thread. */
3532 gdb::byte_vector thread_handle;
3533 };
3534
3535 /* Context passed around to the various methods listing remote
3536 threads. As new threads are found, they're added to the ITEMS
3537 vector. */
3538
3539 struct threads_listing_context
3540 {
3541 /* Return true if this object contains an entry for a thread with ptid
3542 PTID. */
3543
3544 bool contains_thread (ptid_t ptid) const
3545 {
3546 auto match_ptid = [&] (const thread_item &item)
3547 {
3548 return item.ptid == ptid;
3549 };
3550
3551 auto it = std::find_if (this->items.begin (),
3552 this->items.end (),
3553 match_ptid);
3554
3555 return it != this->items.end ();
3556 }
3557
3558 /* Remove the thread with ptid PTID. */
3559
3560 void remove_thread (ptid_t ptid)
3561 {
3562 auto match_ptid = [&] (const thread_item &item)
3563 {
3564 return item.ptid == ptid;
3565 };
3566
3567 auto it = std::remove_if (this->items.begin (),
3568 this->items.end (),
3569 match_ptid);
3570
3571 if (it != this->items.end ())
3572 this->items.erase (it);
3573 }
3574
3575 /* The threads found on the remote target. */
3576 std::vector<thread_item> items;
3577 };
3578
3579 static int
3580 remote_newthread_step (threadref *ref, void *data)
3581 {
3582 struct threads_listing_context *context
3583 = (struct threads_listing_context *) data;
3584 int pid = inferior_ptid.pid ();
3585 int lwp = threadref_to_int (ref);
3586 ptid_t ptid (pid, lwp);
3587
3588 context->items.emplace_back (ptid);
3589
3590 return 1; /* continue iterator */
3591 }
3592
3593 #define CRAZY_MAX_THREADS 1000
3594
3595 ptid_t
3596 remote_target::remote_current_thread (ptid_t oldpid)
3597 {
3598 struct remote_state *rs = get_remote_state ();
3599
3600 putpkt ("qC");
3601 getpkt (&rs->buf, 0);
3602 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3603 {
3604 const char *obuf;
3605 ptid_t result;
3606
3607 result = read_ptid (&rs->buf[2], &obuf);
3608 if (*obuf != '\0' && remote_debug)
3609 fprintf_unfiltered (gdb_stdlog,
3610 "warning: garbage in qC reply\n");
3611
3612 return result;
3613 }
3614 else
3615 return oldpid;
3616 }
3617
3618 /* List remote threads using the deprecated qL packet. */
3619
3620 int
3621 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3622 {
3623 if (remote_threadlist_iterator (remote_newthread_step, context,
3624 CRAZY_MAX_THREADS) >= 0)
3625 return 1;
3626
3627 return 0;
3628 }
3629
3630 #if defined(HAVE_LIBEXPAT)
3631
3632 static void
3633 start_thread (struct gdb_xml_parser *parser,
3634 const struct gdb_xml_element *element,
3635 void *user_data,
3636 std::vector<gdb_xml_value> &attributes)
3637 {
3638 struct threads_listing_context *data
3639 = (struct threads_listing_context *) user_data;
3640 struct gdb_xml_value *attr;
3641
3642 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3643 ptid_t ptid = read_ptid (id, NULL);
3644
3645 data->items.emplace_back (ptid);
3646 thread_item &item = data->items.back ();
3647
3648 attr = xml_find_attribute (attributes, "core");
3649 if (attr != NULL)
3650 item.core = *(ULONGEST *) attr->value.get ();
3651
3652 attr = xml_find_attribute (attributes, "name");
3653 if (attr != NULL)
3654 item.name = (const char *) attr->value.get ();
3655
3656 attr = xml_find_attribute (attributes, "handle");
3657 if (attr != NULL)
3658 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3659 }
3660
3661 static void
3662 end_thread (struct gdb_xml_parser *parser,
3663 const struct gdb_xml_element *element,
3664 void *user_data, const char *body_text)
3665 {
3666 struct threads_listing_context *data
3667 = (struct threads_listing_context *) user_data;
3668
3669 if (body_text != NULL && *body_text != '\0')
3670 data->items.back ().extra = body_text;
3671 }
3672
3673 const struct gdb_xml_attribute thread_attributes[] = {
3674 { "id", GDB_XML_AF_NONE, NULL, NULL },
3675 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3676 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3677 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3678 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3679 };
3680
3681 const struct gdb_xml_element thread_children[] = {
3682 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3683 };
3684
3685 const struct gdb_xml_element threads_children[] = {
3686 { "thread", thread_attributes, thread_children,
3687 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3688 start_thread, end_thread },
3689 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3690 };
3691
3692 const struct gdb_xml_element threads_elements[] = {
3693 { "threads", NULL, threads_children,
3694 GDB_XML_EF_NONE, NULL, NULL },
3695 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696 };
3697
3698 #endif
3699
3700 /* List remote threads using qXfer:threads:read. */
3701
3702 int
3703 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3704 {
3705 #if defined(HAVE_LIBEXPAT)
3706 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3707 {
3708 gdb::optional<gdb::char_vector> xml
3709 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3710
3711 if (xml && (*xml)[0] != '\0')
3712 {
3713 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3714 threads_elements, xml->data (), context);
3715 }
3716
3717 return 1;
3718 }
3719 #endif
3720
3721 return 0;
3722 }
3723
3724 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3728 {
3729 struct remote_state *rs = get_remote_state ();
3730
3731 if (rs->use_threadinfo_query)
3732 {
3733 const char *bufp;
3734
3735 putpkt ("qfThreadInfo");
3736 getpkt (&rs->buf, 0);
3737 bufp = rs->buf.data ();
3738 if (bufp[0] != '\0') /* q packet recognized */
3739 {
3740 while (*bufp++ == 'm') /* reply contains one or more TID */
3741 {
3742 do
3743 {
3744 ptid_t ptid = read_ptid (bufp, &bufp);
3745 context->items.emplace_back (ptid);
3746 }
3747 while (*bufp++ == ','); /* comma-separated list */
3748 putpkt ("qsThreadInfo");
3749 getpkt (&rs->buf, 0);
3750 bufp = rs->buf.data ();
3751 }
3752 return 1;
3753 }
3754 else
3755 {
3756 /* Packet not recognized. */
3757 rs->use_threadinfo_query = 0;
3758 }
3759 }
3760
3761 return 0;
3762 }
3763
3764 /* Implement the to_update_thread_list function for the remote
3765 targets. */
3766
3767 void
3768 remote_target::update_thread_list ()
3769 {
3770 struct threads_listing_context context;
3771 int got_list = 0;
3772
3773 /* We have a few different mechanisms to fetch the thread list. Try
3774 them all, starting with the most preferred one first, falling
3775 back to older methods. */
3776 if (remote_get_threads_with_qxfer (&context)
3777 || remote_get_threads_with_qthreadinfo (&context)
3778 || remote_get_threads_with_ql (&context))
3779 {
3780 got_list = 1;
3781
3782 if (context.items.empty ()
3783 && remote_thread_always_alive (inferior_ptid))
3784 {
3785 /* Some targets don't really support threads, but still
3786 reply an (empty) thread list in response to the thread
3787 listing packets, instead of replying "packet not
3788 supported". Exit early so we don't delete the main
3789 thread. */
3790 return;
3791 }
3792
3793 /* CONTEXT now holds the current thread list on the remote
3794 target end. Delete GDB-side threads no longer found on the
3795 target. */
3796 for (thread_info *tp : all_threads_safe ())
3797 {
3798 if (!context.contains_thread (tp->ptid))
3799 {
3800 /* Not found. */
3801 delete_thread (tp);
3802 }
3803 }
3804
3805 /* Remove any unreported fork child threads from CONTEXT so
3806 that we don't interfere with follow fork, which is where
3807 creation of such threads is handled. */
3808 remove_new_fork_children (&context);
3809
3810 /* And now add threads we don't know about yet to our list. */
3811 for (thread_item &item : context.items)
3812 {
3813 if (item.ptid != null_ptid)
3814 {
3815 /* In non-stop mode, we assume new found threads are
3816 executing until proven otherwise with a stop reply.
3817 In all-stop, we can only get here if all threads are
3818 stopped. */
3819 int executing = target_is_non_stop_p () ? 1 : 0;
3820
3821 remote_notice_new_inferior (item.ptid, executing);
3822
3823 thread_info *tp = find_thread_ptid (item.ptid);
3824 remote_thread_info *info = get_remote_thread_info (tp);
3825 info->core = item.core;
3826 info->extra = std::move (item.extra);
3827 info->name = std::move (item.name);
3828 info->thread_handle = std::move (item.thread_handle);
3829 }
3830 }
3831 }
3832
3833 if (!got_list)
3834 {
3835 /* If no thread listing method is supported, then query whether
3836 each known thread is alive, one by one, with the T packet.
3837 If the target doesn't support threads at all, then this is a
3838 no-op. See remote_thread_alive. */
3839 prune_threads ();
3840 }
3841 }
3842
3843 /*
3844 * Collect a descriptive string about the given thread.
3845 * The target may say anything it wants to about the thread
3846 * (typically info about its blocked / runnable state, name, etc.).
3847 * This string will appear in the info threads display.
3848 *
3849 * Optional: targets are not required to implement this function.
3850 */
3851
3852 const char *
3853 remote_target::extra_thread_info (thread_info *tp)
3854 {
3855 struct remote_state *rs = get_remote_state ();
3856 int set;
3857 threadref id;
3858 struct gdb_ext_thread_info threadinfo;
3859
3860 if (rs->remote_desc == 0) /* paranoia */
3861 internal_error (__FILE__, __LINE__,
3862 _("remote_threads_extra_info"));
3863
3864 if (tp->ptid == magic_null_ptid
3865 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3866 /* This is the main thread which was added by GDB. The remote
3867 server doesn't know about it. */
3868 return NULL;
3869
3870 std::string &extra = get_remote_thread_info (tp)->extra;
3871
3872 /* If already have cached info, use it. */
3873 if (!extra.empty ())
3874 return extra.c_str ();
3875
3876 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3877 {
3878 /* If we're using qXfer:threads:read, then the extra info is
3879 included in the XML. So if we didn't have anything cached,
3880 it's because there's really no extra info. */
3881 return NULL;
3882 }
3883
3884 if (rs->use_threadextra_query)
3885 {
3886 char *b = rs->buf.data ();
3887 char *endb = b + get_remote_packet_size ();
3888
3889 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3890 b += strlen (b);
3891 write_ptid (b, endb, tp->ptid);
3892
3893 putpkt (rs->buf);
3894 getpkt (&rs->buf, 0);
3895 if (rs->buf[0] != 0)
3896 {
3897 extra.resize (strlen (rs->buf.data ()) / 2);
3898 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3899 return extra.c_str ();
3900 }
3901 }
3902
3903 /* If the above query fails, fall back to the old method. */
3904 rs->use_threadextra_query = 0;
3905 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3906 | TAG_MOREDISPLAY | TAG_DISPLAY;
3907 int_to_threadref (&id, tp->ptid.lwp ());
3908 if (remote_get_threadinfo (&id, set, &threadinfo))
3909 if (threadinfo.active)
3910 {
3911 if (*threadinfo.shortname)
3912 string_appendf (extra, " Name: %s", threadinfo.shortname);
3913 if (*threadinfo.display)
3914 {
3915 if (!extra.empty ())
3916 extra += ',';
3917 string_appendf (extra, " State: %s", threadinfo.display);
3918 }
3919 if (*threadinfo.more_display)
3920 {
3921 if (!extra.empty ())
3922 extra += ',';
3923 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3924 }
3925 return extra.c_str ();
3926 }
3927 return NULL;
3928 }
3929 \f
3930
3931 bool
3932 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3933 struct static_tracepoint_marker *marker)
3934 {
3935 struct remote_state *rs = get_remote_state ();
3936 char *p = rs->buf.data ();
3937
3938 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3939 p += strlen (p);
3940 p += hexnumstr (p, addr);
3941 putpkt (rs->buf);
3942 getpkt (&rs->buf, 0);
3943 p = rs->buf.data ();
3944
3945 if (*p == 'E')
3946 error (_("Remote failure reply: %s"), p);
3947
3948 if (*p++ == 'm')
3949 {
3950 parse_static_tracepoint_marker_definition (p, NULL, marker);
3951 return true;
3952 }
3953
3954 return false;
3955 }
3956
3957 std::vector<static_tracepoint_marker>
3958 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3959 {
3960 struct remote_state *rs = get_remote_state ();
3961 std::vector<static_tracepoint_marker> markers;
3962 const char *p;
3963 static_tracepoint_marker marker;
3964
3965 /* Ask for a first packet of static tracepoint marker
3966 definition. */
3967 putpkt ("qTfSTM");
3968 getpkt (&rs->buf, 0);
3969 p = rs->buf.data ();
3970 if (*p == 'E')
3971 error (_("Remote failure reply: %s"), p);
3972
3973 while (*p++ == 'm')
3974 {
3975 do
3976 {
3977 parse_static_tracepoint_marker_definition (p, &p, &marker);
3978
3979 if (strid == NULL || marker.str_id == strid)
3980 markers.push_back (std::move (marker));
3981 }
3982 while (*p++ == ','); /* comma-separated list */
3983 /* Ask for another packet of static tracepoint definition. */
3984 putpkt ("qTsSTM");
3985 getpkt (&rs->buf, 0);
3986 p = rs->buf.data ();
3987 }
3988
3989 return markers;
3990 }
3991
3992 \f
3993 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3994
3995 ptid_t
3996 remote_target::get_ada_task_ptid (long lwp, long thread)
3997 {
3998 return ptid_t (inferior_ptid.pid (), lwp, 0);
3999 }
4000 \f
4001
4002 /* Restart the remote side; this is an extended protocol operation. */
4003
4004 void
4005 remote_target::extended_remote_restart ()
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008
4009 /* Send the restart command; for reasons I don't understand the
4010 remote side really expects a number after the "R". */
4011 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4012 putpkt (rs->buf);
4013
4014 remote_fileio_reset ();
4015 }
4016 \f
4017 /* Clean up connection to a remote debugger. */
4018
4019 void
4020 remote_target::close ()
4021 {
4022 /* Make sure we leave stdin registered in the event loop. */
4023 terminal_ours ();
4024
4025 /* We don't have a connection to the remote stub anymore. Get rid
4026 of all the inferiors and their threads we were controlling.
4027 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4028 will be unable to find the thread corresponding to (pid, 0, 0). */
4029 inferior_ptid = null_ptid;
4030 discard_all_inferiors ();
4031
4032 trace_reset_local_state ();
4033
4034 delete this;
4035 }
4036
4037 remote_target::~remote_target ()
4038 {
4039 struct remote_state *rs = get_remote_state ();
4040
4041 /* Check for NULL because we may get here with a partially
4042 constructed target/connection. */
4043 if (rs->remote_desc == nullptr)
4044 return;
4045
4046 serial_close (rs->remote_desc);
4047
4048 /* We are destroying the remote target, so we should discard
4049 everything of this target. */
4050 discard_pending_stop_replies_in_queue ();
4051
4052 if (rs->remote_async_inferior_event_token)
4053 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4054
4055 remote_notif_state_xfree (rs->notif_state);
4056 }
4057
4058 /* Query the remote side for the text, data and bss offsets. */
4059
4060 void
4061 remote_target::get_offsets ()
4062 {
4063 struct remote_state *rs = get_remote_state ();
4064 char *buf;
4065 char *ptr;
4066 int lose, num_segments = 0, do_sections, do_segments;
4067 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4068 struct section_offsets *offs;
4069 struct symfile_segment_data *data;
4070
4071 if (symfile_objfile == NULL)
4072 return;
4073
4074 putpkt ("qOffsets");
4075 getpkt (&rs->buf, 0);
4076 buf = rs->buf.data ();
4077
4078 if (buf[0] == '\000')
4079 return; /* Return silently. Stub doesn't support
4080 this command. */
4081 if (buf[0] == 'E')
4082 {
4083 warning (_("Remote failure reply: %s"), buf);
4084 return;
4085 }
4086
4087 /* Pick up each field in turn. This used to be done with scanf, but
4088 scanf will make trouble if CORE_ADDR size doesn't match
4089 conversion directives correctly. The following code will work
4090 with any size of CORE_ADDR. */
4091 text_addr = data_addr = bss_addr = 0;
4092 ptr = buf;
4093 lose = 0;
4094
4095 if (startswith (ptr, "Text="))
4096 {
4097 ptr += 5;
4098 /* Don't use strtol, could lose on big values. */
4099 while (*ptr && *ptr != ';')
4100 text_addr = (text_addr << 4) + fromhex (*ptr++);
4101
4102 if (startswith (ptr, ";Data="))
4103 {
4104 ptr += 6;
4105 while (*ptr && *ptr != ';')
4106 data_addr = (data_addr << 4) + fromhex (*ptr++);
4107 }
4108 else
4109 lose = 1;
4110
4111 if (!lose && startswith (ptr, ";Bss="))
4112 {
4113 ptr += 5;
4114 while (*ptr && *ptr != ';')
4115 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4116
4117 if (bss_addr != data_addr)
4118 warning (_("Target reported unsupported offsets: %s"), buf);
4119 }
4120 else
4121 lose = 1;
4122 }
4123 else if (startswith (ptr, "TextSeg="))
4124 {
4125 ptr += 8;
4126 /* Don't use strtol, could lose on big values. */
4127 while (*ptr && *ptr != ';')
4128 text_addr = (text_addr << 4) + fromhex (*ptr++);
4129 num_segments = 1;
4130
4131 if (startswith (ptr, ";DataSeg="))
4132 {
4133 ptr += 9;
4134 while (*ptr && *ptr != ';')
4135 data_addr = (data_addr << 4) + fromhex (*ptr++);
4136 num_segments++;
4137 }
4138 }
4139 else
4140 lose = 1;
4141
4142 if (lose)
4143 error (_("Malformed response to offset query, %s"), buf);
4144 else if (*ptr != '\0')
4145 warning (_("Target reported unsupported offsets: %s"), buf);
4146
4147 offs = ((struct section_offsets *)
4148 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4149 memcpy (offs, symfile_objfile->section_offsets,
4150 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4151
4152 data = get_symfile_segment_data (symfile_objfile->obfd);
4153 do_segments = (data != NULL);
4154 do_sections = num_segments == 0;
4155
4156 if (num_segments > 0)
4157 {
4158 segments[0] = text_addr;
4159 segments[1] = data_addr;
4160 }
4161 /* If we have two segments, we can still try to relocate everything
4162 by assuming that the .text and .data offsets apply to the whole
4163 text and data segments. Convert the offsets given in the packet
4164 to base addresses for symfile_map_offsets_to_segments. */
4165 else if (data && data->num_segments == 2)
4166 {
4167 segments[0] = data->segment_bases[0] + text_addr;
4168 segments[1] = data->segment_bases[1] + data_addr;
4169 num_segments = 2;
4170 }
4171 /* If the object file has only one segment, assume that it is text
4172 rather than data; main programs with no writable data are rare,
4173 but programs with no code are useless. Of course the code might
4174 have ended up in the data segment... to detect that we would need
4175 the permissions here. */
4176 else if (data && data->num_segments == 1)
4177 {
4178 segments[0] = data->segment_bases[0] + text_addr;
4179 num_segments = 1;
4180 }
4181 /* There's no way to relocate by segment. */
4182 else
4183 do_segments = 0;
4184
4185 if (do_segments)
4186 {
4187 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4188 offs, num_segments, segments);
4189
4190 if (ret == 0 && !do_sections)
4191 error (_("Can not handle qOffsets TextSeg "
4192 "response with this symbol file"));
4193
4194 if (ret > 0)
4195 do_sections = 0;
4196 }
4197
4198 if (data)
4199 free_symfile_segment_data (data);
4200
4201 if (do_sections)
4202 {
4203 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4204
4205 /* This is a temporary kludge to force data and bss to use the
4206 same offsets because that's what nlmconv does now. The real
4207 solution requires changes to the stub and remote.c that I
4208 don't have time to do right now. */
4209
4210 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4211 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4212 }
4213
4214 objfile_relocate (symfile_objfile, offs);
4215 }
4216
4217 /* Send interrupt_sequence to remote target. */
4218
4219 void
4220 remote_target::send_interrupt_sequence ()
4221 {
4222 struct remote_state *rs = get_remote_state ();
4223
4224 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4225 remote_serial_write ("\x03", 1);
4226 else if (interrupt_sequence_mode == interrupt_sequence_break)
4227 serial_send_break (rs->remote_desc);
4228 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4229 {
4230 serial_send_break (rs->remote_desc);
4231 remote_serial_write ("g", 1);
4232 }
4233 else
4234 internal_error (__FILE__, __LINE__,
4235 _("Invalid value for interrupt_sequence_mode: %s."),
4236 interrupt_sequence_mode);
4237 }
4238
4239
4240 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4241 and extract the PTID. Returns NULL_PTID if not found. */
4242
4243 static ptid_t
4244 stop_reply_extract_thread (char *stop_reply)
4245 {
4246 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4247 {
4248 const char *p;
4249
4250 /* Txx r:val ; r:val (...) */
4251 p = &stop_reply[3];
4252
4253 /* Look for "register" named "thread". */
4254 while (*p != '\0')
4255 {
4256 const char *p1;
4257
4258 p1 = strchr (p, ':');
4259 if (p1 == NULL)
4260 return null_ptid;
4261
4262 if (strncmp (p, "thread", p1 - p) == 0)
4263 return read_ptid (++p1, &p);
4264
4265 p1 = strchr (p, ';');
4266 if (p1 == NULL)
4267 return null_ptid;
4268 p1++;
4269
4270 p = p1;
4271 }
4272 }
4273
4274 return null_ptid;
4275 }
4276
4277 /* Determine the remote side's current thread. If we have a stop
4278 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4279 "thread" register we can extract the current thread from. If not,
4280 ask the remote which is the current thread with qC. The former
4281 method avoids a roundtrip. */
4282
4283 ptid_t
4284 remote_target::get_current_thread (char *wait_status)
4285 {
4286 ptid_t ptid = null_ptid;
4287
4288 /* Note we don't use remote_parse_stop_reply as that makes use of
4289 the target architecture, which we haven't yet fully determined at
4290 this point. */
4291 if (wait_status != NULL)
4292 ptid = stop_reply_extract_thread (wait_status);
4293 if (ptid == null_ptid)
4294 ptid = remote_current_thread (inferior_ptid);
4295
4296 return ptid;
4297 }
4298
4299 /* Query the remote target for which is the current thread/process,
4300 add it to our tables, and update INFERIOR_PTID. The caller is
4301 responsible for setting the state such that the remote end is ready
4302 to return the current thread.
4303
4304 This function is called after handling the '?' or 'vRun' packets,
4305 whose response is a stop reply from which we can also try
4306 extracting the thread. If the target doesn't support the explicit
4307 qC query, we infer the current thread from that stop reply, passed
4308 in in WAIT_STATUS, which may be NULL. */
4309
4310 void
4311 remote_target::add_current_inferior_and_thread (char *wait_status)
4312 {
4313 struct remote_state *rs = get_remote_state ();
4314 int fake_pid_p = 0;
4315
4316 inferior_ptid = null_ptid;
4317
4318 /* Now, if we have thread information, update inferior_ptid. */
4319 ptid_t curr_ptid = get_current_thread (wait_status);
4320
4321 if (curr_ptid != null_ptid)
4322 {
4323 if (!remote_multi_process_p (rs))
4324 fake_pid_p = 1;
4325 }
4326 else
4327 {
4328 /* Without this, some commands which require an active target
4329 (such as kill) won't work. This variable serves (at least)
4330 double duty as both the pid of the target process (if it has
4331 such), and as a flag indicating that a target is active. */
4332 curr_ptid = magic_null_ptid;
4333 fake_pid_p = 1;
4334 }
4335
4336 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4337
4338 /* Add the main thread and switch to it. Don't try reading
4339 registers yet, since we haven't fetched the target description
4340 yet. */
4341 thread_info *tp = add_thread_silent (curr_ptid);
4342 switch_to_thread_no_regs (tp);
4343 }
4344
4345 /* Print info about a thread that was found already stopped on
4346 connection. */
4347
4348 static void
4349 print_one_stopped_thread (struct thread_info *thread)
4350 {
4351 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4352
4353 switch_to_thread (thread);
4354 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4355 set_current_sal_from_frame (get_current_frame ());
4356
4357 thread->suspend.waitstatus_pending_p = 0;
4358
4359 if (ws->kind == TARGET_WAITKIND_STOPPED)
4360 {
4361 enum gdb_signal sig = ws->value.sig;
4362
4363 if (signal_print_state (sig))
4364 gdb::observers::signal_received.notify (sig);
4365 }
4366 gdb::observers::normal_stop.notify (NULL, 1);
4367 }
4368
4369 /* Process all initial stop replies the remote side sent in response
4370 to the ? packet. These indicate threads that were already stopped
4371 on initial connection. We mark these threads as stopped and print
4372 their current frame before giving the user the prompt. */
4373
4374 void
4375 remote_target::process_initial_stop_replies (int from_tty)
4376 {
4377 int pending_stop_replies = stop_reply_queue_length ();
4378 struct thread_info *selected = NULL;
4379 struct thread_info *lowest_stopped = NULL;
4380 struct thread_info *first = NULL;
4381
4382 /* Consume the initial pending events. */
4383 while (pending_stop_replies-- > 0)
4384 {
4385 ptid_t waiton_ptid = minus_one_ptid;
4386 ptid_t event_ptid;
4387 struct target_waitstatus ws;
4388 int ignore_event = 0;
4389
4390 memset (&ws, 0, sizeof (ws));
4391 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4392 if (remote_debug)
4393 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4394
4395 switch (ws.kind)
4396 {
4397 case TARGET_WAITKIND_IGNORE:
4398 case TARGET_WAITKIND_NO_RESUMED:
4399 case TARGET_WAITKIND_SIGNALLED:
4400 case TARGET_WAITKIND_EXITED:
4401 /* We shouldn't see these, but if we do, just ignore. */
4402 if (remote_debug)
4403 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4404 ignore_event = 1;
4405 break;
4406
4407 case TARGET_WAITKIND_EXECD:
4408 xfree (ws.value.execd_pathname);
4409 break;
4410 default:
4411 break;
4412 }
4413
4414 if (ignore_event)
4415 continue;
4416
4417 struct thread_info *evthread = find_thread_ptid (event_ptid);
4418
4419 if (ws.kind == TARGET_WAITKIND_STOPPED)
4420 {
4421 enum gdb_signal sig = ws.value.sig;
4422
4423 /* Stubs traditionally report SIGTRAP as initial signal,
4424 instead of signal 0. Suppress it. */
4425 if (sig == GDB_SIGNAL_TRAP)
4426 sig = GDB_SIGNAL_0;
4427 evthread->suspend.stop_signal = sig;
4428 ws.value.sig = sig;
4429 }
4430
4431 evthread->suspend.waitstatus = ws;
4432
4433 if (ws.kind != TARGET_WAITKIND_STOPPED
4434 || ws.value.sig != GDB_SIGNAL_0)
4435 evthread->suspend.waitstatus_pending_p = 1;
4436
4437 set_executing (event_ptid, 0);
4438 set_running (event_ptid, 0);
4439 get_remote_thread_info (evthread)->vcont_resumed = 0;
4440 }
4441
4442 /* "Notice" the new inferiors before anything related to
4443 registers/memory. */
4444 for (inferior *inf : all_non_exited_inferiors ())
4445 {
4446 inf->needs_setup = 1;
4447
4448 if (non_stop)
4449 {
4450 thread_info *thread = any_live_thread_of_inferior (inf);
4451 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4452 from_tty);
4453 }
4454 }
4455
4456 /* If all-stop on top of non-stop, pause all threads. Note this
4457 records the threads' stop pc, so must be done after "noticing"
4458 the inferiors. */
4459 if (!non_stop)
4460 {
4461 stop_all_threads ();
4462
4463 /* If all threads of an inferior were already stopped, we
4464 haven't setup the inferior yet. */
4465 for (inferior *inf : all_non_exited_inferiors ())
4466 {
4467 if (inf->needs_setup)
4468 {
4469 thread_info *thread = any_live_thread_of_inferior (inf);
4470 switch_to_thread_no_regs (thread);
4471 setup_inferior (0);
4472 }
4473 }
4474 }
4475
4476 /* Now go over all threads that are stopped, and print their current
4477 frame. If all-stop, then if there's a signalled thread, pick
4478 that as current. */
4479 for (thread_info *thread : all_non_exited_threads ())
4480 {
4481 if (first == NULL)
4482 first = thread;
4483
4484 if (!non_stop)
4485 thread->set_running (false);
4486 else if (thread->state != THREAD_STOPPED)
4487 continue;
4488
4489 if (selected == NULL
4490 && thread->suspend.waitstatus_pending_p)
4491 selected = thread;
4492
4493 if (lowest_stopped == NULL
4494 || thread->inf->num < lowest_stopped->inf->num
4495 || thread->per_inf_num < lowest_stopped->per_inf_num)
4496 lowest_stopped = thread;
4497
4498 if (non_stop)
4499 print_one_stopped_thread (thread);
4500 }
4501
4502 /* In all-stop, we only print the status of one thread, and leave
4503 others with their status pending. */
4504 if (!non_stop)
4505 {
4506 thread_info *thread = selected;
4507 if (thread == NULL)
4508 thread = lowest_stopped;
4509 if (thread == NULL)
4510 thread = first;
4511
4512 print_one_stopped_thread (thread);
4513 }
4514
4515 /* For "info program". */
4516 thread_info *thread = inferior_thread ();
4517 if (thread->state == THREAD_STOPPED)
4518 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4519 }
4520
4521 /* Start the remote connection and sync state. */
4522
4523 void
4524 remote_target::start_remote (int from_tty, int extended_p)
4525 {
4526 struct remote_state *rs = get_remote_state ();
4527 struct packet_config *noack_config;
4528 char *wait_status = NULL;
4529
4530 /* Signal other parts that we're going through the initial setup,
4531 and so things may not be stable yet. E.g., we don't try to
4532 install tracepoints until we've relocated symbols. Also, a
4533 Ctrl-C before we're connected and synced up can't interrupt the
4534 target. Instead, it offers to drop the (potentially wedged)
4535 connection. */
4536 rs->starting_up = 1;
4537
4538 QUIT;
4539
4540 if (interrupt_on_connect)
4541 send_interrupt_sequence ();
4542
4543 /* Ack any packet which the remote side has already sent. */
4544 remote_serial_write ("+", 1);
4545
4546 /* The first packet we send to the target is the optional "supported
4547 packets" request. If the target can answer this, it will tell us
4548 which later probes to skip. */
4549 remote_query_supported ();
4550
4551 /* If the stub wants to get a QAllow, compose one and send it. */
4552 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4553 set_permissions ();
4554
4555 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4556 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4557 as a reply to known packet. For packet "vFile:setfs:" it is an
4558 invalid reply and GDB would return error in
4559 remote_hostio_set_filesystem, making remote files access impossible.
4560 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4561 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4562 {
4563 const char v_mustreplyempty[] = "vMustReplyEmpty";
4564
4565 putpkt (v_mustreplyempty);
4566 getpkt (&rs->buf, 0);
4567 if (strcmp (rs->buf.data (), "OK") == 0)
4568 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4569 else if (strcmp (rs->buf.data (), "") != 0)
4570 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4571 rs->buf.data ());
4572 }
4573
4574 /* Next, we possibly activate noack mode.
4575
4576 If the QStartNoAckMode packet configuration is set to AUTO,
4577 enable noack mode if the stub reported a wish for it with
4578 qSupported.
4579
4580 If set to TRUE, then enable noack mode even if the stub didn't
4581 report it in qSupported. If the stub doesn't reply OK, the
4582 session ends with an error.
4583
4584 If FALSE, then don't activate noack mode, regardless of what the
4585 stub claimed should be the default with qSupported. */
4586
4587 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4588 if (packet_config_support (noack_config) != PACKET_DISABLE)
4589 {
4590 putpkt ("QStartNoAckMode");
4591 getpkt (&rs->buf, 0);
4592 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4593 rs->noack_mode = 1;
4594 }
4595
4596 if (extended_p)
4597 {
4598 /* Tell the remote that we are using the extended protocol. */
4599 putpkt ("!");
4600 getpkt (&rs->buf, 0);
4601 }
4602
4603 /* Let the target know which signals it is allowed to pass down to
4604 the program. */
4605 update_signals_program_target ();
4606
4607 /* Next, if the target can specify a description, read it. We do
4608 this before anything involving memory or registers. */
4609 target_find_description ();
4610
4611 /* Next, now that we know something about the target, update the
4612 address spaces in the program spaces. */
4613 update_address_spaces ();
4614
4615 /* On OSs where the list of libraries is global to all
4616 processes, we fetch them early. */
4617 if (gdbarch_has_global_solist (target_gdbarch ()))
4618 solib_add (NULL, from_tty, auto_solib_add);
4619
4620 if (target_is_non_stop_p ())
4621 {
4622 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4623 error (_("Non-stop mode requested, but remote "
4624 "does not support non-stop"));
4625
4626 putpkt ("QNonStop:1");
4627 getpkt (&rs->buf, 0);
4628
4629 if (strcmp (rs->buf.data (), "OK") != 0)
4630 error (_("Remote refused setting non-stop mode with: %s"),
4631 rs->buf.data ());
4632
4633 /* Find about threads and processes the stub is already
4634 controlling. We default to adding them in the running state.
4635 The '?' query below will then tell us about which threads are
4636 stopped. */
4637 this->update_thread_list ();
4638 }
4639 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4640 {
4641 /* Don't assume that the stub can operate in all-stop mode.
4642 Request it explicitly. */
4643 putpkt ("QNonStop:0");
4644 getpkt (&rs->buf, 0);
4645
4646 if (strcmp (rs->buf.data (), "OK") != 0)
4647 error (_("Remote refused setting all-stop mode with: %s"),
4648 rs->buf.data ());
4649 }
4650
4651 /* Upload TSVs regardless of whether the target is running or not. The
4652 remote stub, such as GDBserver, may have some predefined or builtin
4653 TSVs, even if the target is not running. */
4654 if (get_trace_status (current_trace_status ()) != -1)
4655 {
4656 struct uploaded_tsv *uploaded_tsvs = NULL;
4657
4658 upload_trace_state_variables (&uploaded_tsvs);
4659 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4660 }
4661
4662 /* Check whether the target is running now. */
4663 putpkt ("?");
4664 getpkt (&rs->buf, 0);
4665
4666 if (!target_is_non_stop_p ())
4667 {
4668 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4669 {
4670 if (!extended_p)
4671 error (_("The target is not running (try extended-remote?)"));
4672
4673 /* We're connected, but not running. Drop out before we
4674 call start_remote. */
4675 rs->starting_up = 0;
4676 return;
4677 }
4678 else
4679 {
4680 /* Save the reply for later. */
4681 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4682 strcpy (wait_status, rs->buf.data ());
4683 }
4684
4685 /* Fetch thread list. */
4686 target_update_thread_list ();
4687
4688 /* Let the stub know that we want it to return the thread. */
4689 set_continue_thread (minus_one_ptid);
4690
4691 if (thread_count () == 0)
4692 {
4693 /* Target has no concept of threads at all. GDB treats
4694 non-threaded target as single-threaded; add a main
4695 thread. */
4696 add_current_inferior_and_thread (wait_status);
4697 }
4698 else
4699 {
4700 /* We have thread information; select the thread the target
4701 says should be current. If we're reconnecting to a
4702 multi-threaded program, this will ideally be the thread
4703 that last reported an event before GDB disconnected. */
4704 inferior_ptid = get_current_thread (wait_status);
4705 if (inferior_ptid == null_ptid)
4706 {
4707 /* Odd... The target was able to list threads, but not
4708 tell us which thread was current (no "thread"
4709 register in T stop reply?). Just pick the first
4710 thread in the thread list then. */
4711
4712 if (remote_debug)
4713 fprintf_unfiltered (gdb_stdlog,
4714 "warning: couldn't determine remote "
4715 "current thread; picking first in list.\n");
4716
4717 inferior_ptid = inferior_list->thread_list->ptid;
4718 }
4719 }
4720
4721 /* init_wait_for_inferior should be called before get_offsets in order
4722 to manage `inserted' flag in bp loc in a correct state.
4723 breakpoint_init_inferior, called from init_wait_for_inferior, set
4724 `inserted' flag to 0, while before breakpoint_re_set, called from
4725 start_remote, set `inserted' flag to 1. In the initialization of
4726 inferior, breakpoint_init_inferior should be called first, and then
4727 breakpoint_re_set can be called. If this order is broken, state of
4728 `inserted' flag is wrong, and cause some problems on breakpoint
4729 manipulation. */
4730 init_wait_for_inferior ();
4731
4732 get_offsets (); /* Get text, data & bss offsets. */
4733
4734 /* If we could not find a description using qXfer, and we know
4735 how to do it some other way, try again. This is not
4736 supported for non-stop; it could be, but it is tricky if
4737 there are no stopped threads when we connect. */
4738 if (remote_read_description_p (this)
4739 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4740 {
4741 target_clear_description ();
4742 target_find_description ();
4743 }
4744
4745 /* Use the previously fetched status. */
4746 gdb_assert (wait_status != NULL);
4747 strcpy (rs->buf.data (), wait_status);
4748 rs->cached_wait_status = 1;
4749
4750 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4751 }
4752 else
4753 {
4754 /* Clear WFI global state. Do this before finding about new
4755 threads and inferiors, and setting the current inferior.
4756 Otherwise we would clear the proceed status of the current
4757 inferior when we want its stop_soon state to be preserved
4758 (see notice_new_inferior). */
4759 init_wait_for_inferior ();
4760
4761 /* In non-stop, we will either get an "OK", meaning that there
4762 are no stopped threads at this time; or, a regular stop
4763 reply. In the latter case, there may be more than one thread
4764 stopped --- we pull them all out using the vStopped
4765 mechanism. */
4766 if (strcmp (rs->buf.data (), "OK") != 0)
4767 {
4768 struct notif_client *notif = &notif_client_stop;
4769
4770 /* remote_notif_get_pending_replies acks this one, and gets
4771 the rest out. */
4772 rs->notif_state->pending_event[notif_client_stop.id]
4773 = remote_notif_parse (this, notif, rs->buf.data ());
4774 remote_notif_get_pending_events (notif);
4775 }
4776
4777 if (thread_count () == 0)
4778 {
4779 if (!extended_p)
4780 error (_("The target is not running (try extended-remote?)"));
4781
4782 /* We're connected, but not running. Drop out before we
4783 call start_remote. */
4784 rs->starting_up = 0;
4785 return;
4786 }
4787
4788 /* In non-stop mode, any cached wait status will be stored in
4789 the stop reply queue. */
4790 gdb_assert (wait_status == NULL);
4791
4792 /* Report all signals during attach/startup. */
4793 pass_signals ({});
4794
4795 /* If there are already stopped threads, mark them stopped and
4796 report their stops before giving the prompt to the user. */
4797 process_initial_stop_replies (from_tty);
4798
4799 if (target_can_async_p ())
4800 target_async (1);
4801 }
4802
4803 /* If we connected to a live target, do some additional setup. */
4804 if (target_has_execution)
4805 {
4806 if (symfile_objfile) /* No use without a symbol-file. */
4807 remote_check_symbols ();
4808 }
4809
4810 /* Possibly the target has been engaged in a trace run started
4811 previously; find out where things are at. */
4812 if (get_trace_status (current_trace_status ()) != -1)
4813 {
4814 struct uploaded_tp *uploaded_tps = NULL;
4815
4816 if (current_trace_status ()->running)
4817 printf_filtered (_("Trace is already running on the target.\n"));
4818
4819 upload_tracepoints (&uploaded_tps);
4820
4821 merge_uploaded_tracepoints (&uploaded_tps);
4822 }
4823
4824 /* Possibly the target has been engaged in a btrace record started
4825 previously; find out where things are at. */
4826 remote_btrace_maybe_reopen ();
4827
4828 /* The thread and inferior lists are now synchronized with the
4829 target, our symbols have been relocated, and we're merged the
4830 target's tracepoints with ours. We're done with basic start
4831 up. */
4832 rs->starting_up = 0;
4833
4834 /* Maybe breakpoints are global and need to be inserted now. */
4835 if (breakpoints_should_be_inserted_now ())
4836 insert_breakpoints ();
4837 }
4838
4839 /* Open a connection to a remote debugger.
4840 NAME is the filename used for communication. */
4841
4842 void
4843 remote_target::open (const char *name, int from_tty)
4844 {
4845 open_1 (name, from_tty, 0);
4846 }
4847
4848 /* Open a connection to a remote debugger using the extended
4849 remote gdb protocol. NAME is the filename used for communication. */
4850
4851 void
4852 extended_remote_target::open (const char *name, int from_tty)
4853 {
4854 open_1 (name, from_tty, 1 /*extended_p */);
4855 }
4856
4857 /* Reset all packets back to "unknown support". Called when opening a
4858 new connection to a remote target. */
4859
4860 static void
4861 reset_all_packet_configs_support (void)
4862 {
4863 int i;
4864
4865 for (i = 0; i < PACKET_MAX; i++)
4866 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4867 }
4868
4869 /* Initialize all packet configs. */
4870
4871 static void
4872 init_all_packet_configs (void)
4873 {
4874 int i;
4875
4876 for (i = 0; i < PACKET_MAX; i++)
4877 {
4878 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4879 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4880 }
4881 }
4882
4883 /* Symbol look-up. */
4884
4885 void
4886 remote_target::remote_check_symbols ()
4887 {
4888 char *tmp;
4889 int end;
4890
4891 /* The remote side has no concept of inferiors that aren't running
4892 yet, it only knows about running processes. If we're connected
4893 but our current inferior is not running, we should not invite the
4894 remote target to request symbol lookups related to its
4895 (unrelated) current process. */
4896 if (!target_has_execution)
4897 return;
4898
4899 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4900 return;
4901
4902 /* Make sure the remote is pointing at the right process. Note
4903 there's no way to select "no process". */
4904 set_general_process ();
4905
4906 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4907 because we need both at the same time. */
4908 gdb::char_vector msg (get_remote_packet_size ());
4909 gdb::char_vector reply (get_remote_packet_size ());
4910
4911 /* Invite target to request symbol lookups. */
4912
4913 putpkt ("qSymbol::");
4914 getpkt (&reply, 0);
4915 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4916
4917 while (startswith (reply.data (), "qSymbol:"))
4918 {
4919 struct bound_minimal_symbol sym;
4920
4921 tmp = &reply[8];
4922 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4923 strlen (tmp) / 2);
4924 msg[end] = '\0';
4925 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4926 if (sym.minsym == NULL)
4927 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4928 &reply[8]);
4929 else
4930 {
4931 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4932 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4933
4934 /* If this is a function address, return the start of code
4935 instead of any data function descriptor. */
4936 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4937 sym_addr,
4938 current_top_target ());
4939
4940 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4941 phex_nz (sym_addr, addr_size), &reply[8]);
4942 }
4943
4944 putpkt (msg.data ());
4945 getpkt (&reply, 0);
4946 }
4947 }
4948
4949 static struct serial *
4950 remote_serial_open (const char *name)
4951 {
4952 static int udp_warning = 0;
4953
4954 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4955 of in ser-tcp.c, because it is the remote protocol assuming that the
4956 serial connection is reliable and not the serial connection promising
4957 to be. */
4958 if (!udp_warning && startswith (name, "udp:"))
4959 {
4960 warning (_("The remote protocol may be unreliable over UDP.\n"
4961 "Some events may be lost, rendering further debugging "
4962 "impossible."));
4963 udp_warning = 1;
4964 }
4965
4966 return serial_open (name);
4967 }
4968
4969 /* Inform the target of our permission settings. The permission flags
4970 work without this, but if the target knows the settings, it can do
4971 a couple things. First, it can add its own check, to catch cases
4972 that somehow manage to get by the permissions checks in target
4973 methods. Second, if the target is wired to disallow particular
4974 settings (for instance, a system in the field that is not set up to
4975 be able to stop at a breakpoint), it can object to any unavailable
4976 permissions. */
4977
4978 void
4979 remote_target::set_permissions ()
4980 {
4981 struct remote_state *rs = get_remote_state ();
4982
4983 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4984 "WriteReg:%x;WriteMem:%x;"
4985 "InsertBreak:%x;InsertTrace:%x;"
4986 "InsertFastTrace:%x;Stop:%x",
4987 may_write_registers, may_write_memory,
4988 may_insert_breakpoints, may_insert_tracepoints,
4989 may_insert_fast_tracepoints, may_stop);
4990 putpkt (rs->buf);
4991 getpkt (&rs->buf, 0);
4992
4993 /* If the target didn't like the packet, warn the user. Do not try
4994 to undo the user's settings, that would just be maddening. */
4995 if (strcmp (rs->buf.data (), "OK") != 0)
4996 warning (_("Remote refused setting permissions with: %s"),
4997 rs->buf.data ());
4998 }
4999
5000 /* This type describes each known response to the qSupported
5001 packet. */
5002 struct protocol_feature
5003 {
5004 /* The name of this protocol feature. */
5005 const char *name;
5006
5007 /* The default for this protocol feature. */
5008 enum packet_support default_support;
5009
5010 /* The function to call when this feature is reported, or after
5011 qSupported processing if the feature is not supported.
5012 The first argument points to this structure. The second
5013 argument indicates whether the packet requested support be
5014 enabled, disabled, or probed (or the default, if this function
5015 is being called at the end of processing and this feature was
5016 not reported). The third argument may be NULL; if not NULL, it
5017 is a NUL-terminated string taken from the packet following
5018 this feature's name and an equals sign. */
5019 void (*func) (remote_target *remote, const struct protocol_feature *,
5020 enum packet_support, const char *);
5021
5022 /* The corresponding packet for this feature. Only used if
5023 FUNC is remote_supported_packet. */
5024 int packet;
5025 };
5026
5027 static void
5028 remote_supported_packet (remote_target *remote,
5029 const struct protocol_feature *feature,
5030 enum packet_support support,
5031 const char *argument)
5032 {
5033 if (argument)
5034 {
5035 warning (_("Remote qSupported response supplied an unexpected value for"
5036 " \"%s\"."), feature->name);
5037 return;
5038 }
5039
5040 remote_protocol_packets[feature->packet].support = support;
5041 }
5042
5043 void
5044 remote_target::remote_packet_size (const protocol_feature *feature,
5045 enum packet_support support, const char *value)
5046 {
5047 struct remote_state *rs = get_remote_state ();
5048
5049 int packet_size;
5050 char *value_end;
5051
5052 if (support != PACKET_ENABLE)
5053 return;
5054
5055 if (value == NULL || *value == '\0')
5056 {
5057 warning (_("Remote target reported \"%s\" without a size."),
5058 feature->name);
5059 return;
5060 }
5061
5062 errno = 0;
5063 packet_size = strtol (value, &value_end, 16);
5064 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5065 {
5066 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5067 feature->name, value);
5068 return;
5069 }
5070
5071 /* Record the new maximum packet size. */
5072 rs->explicit_packet_size = packet_size;
5073 }
5074
5075 void
5076 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5077 enum packet_support support, const char *value)
5078 {
5079 remote->remote_packet_size (feature, support, value);
5080 }
5081
5082 static const struct protocol_feature remote_protocol_features[] = {
5083 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5084 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_auxv },
5086 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_exec_file },
5088 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_features },
5090 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_libraries },
5092 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_libraries_svr4 },
5094 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5095 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5096 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_memory_map },
5098 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_spu_read },
5100 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_qXfer_spu_write },
5102 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_osdata },
5104 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_threads },
5106 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_traceframe_info },
5108 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QPassSignals },
5110 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QCatchSyscalls },
5112 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QProgramSignals },
5114 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QSetWorkingDir },
5116 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QStartupWithShell },
5118 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QEnvironmentHexEncoded },
5120 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QEnvironmentReset },
5122 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QEnvironmentUnset },
5124 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_QStartNoAckMode },
5126 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_multiprocess_feature },
5128 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5129 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_qXfer_siginfo_read },
5131 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_qXfer_siginfo_write },
5133 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_ConditionalTracepoints },
5135 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_ConditionalBreakpoints },
5137 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_BreakpointCommands },
5139 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_FastTracepoints },
5141 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_StaticTracepoints },
5143 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_InstallInTrace},
5145 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_DisconnectedTracing_feature },
5147 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_bc },
5149 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_bs },
5151 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_TracepointSource },
5153 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_QAllow },
5155 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_EnableDisableTracepoints_feature },
5157 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_qXfer_fdpic },
5159 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_qXfer_uib },
5161 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_QDisableRandomization },
5163 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5164 { "QTBuffer:size", PACKET_DISABLE,
5165 remote_supported_packet, PACKET_QTBuffer_size},
5166 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5167 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5168 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5169 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5170 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_qXfer_btrace },
5172 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_qXfer_btrace_conf },
5174 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_Qbtrace_conf_bts_size },
5176 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5177 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5178 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_fork_event_feature },
5180 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_vfork_event_feature },
5182 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_exec_event_feature },
5184 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_Qbtrace_conf_pt_size },
5186 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5187 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5188 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5189 };
5190
5191 static char *remote_support_xml;
5192
5193 /* Register string appended to "xmlRegisters=" in qSupported query. */
5194
5195 void
5196 register_remote_support_xml (const char *xml)
5197 {
5198 #if defined(HAVE_LIBEXPAT)
5199 if (remote_support_xml == NULL)
5200 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5201 else
5202 {
5203 char *copy = xstrdup (remote_support_xml + 13);
5204 char *p = strtok (copy, ",");
5205
5206 do
5207 {
5208 if (strcmp (p, xml) == 0)
5209 {
5210 /* already there */
5211 xfree (copy);
5212 return;
5213 }
5214 }
5215 while ((p = strtok (NULL, ",")) != NULL);
5216 xfree (copy);
5217
5218 remote_support_xml = reconcat (remote_support_xml,
5219 remote_support_xml, ",", xml,
5220 (char *) NULL);
5221 }
5222 #endif
5223 }
5224
5225 static void
5226 remote_query_supported_append (std::string *msg, const char *append)
5227 {
5228 if (!msg->empty ())
5229 msg->append (";");
5230 msg->append (append);
5231 }
5232
5233 void
5234 remote_target::remote_query_supported ()
5235 {
5236 struct remote_state *rs = get_remote_state ();
5237 char *next;
5238 int i;
5239 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5240
5241 /* The packet support flags are handled differently for this packet
5242 than for most others. We treat an error, a disabled packet, and
5243 an empty response identically: any features which must be reported
5244 to be used will be automatically disabled. An empty buffer
5245 accomplishes this, since that is also the representation for a list
5246 containing no features. */
5247
5248 rs->buf[0] = 0;
5249 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5250 {
5251 std::string q;
5252
5253 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5254 remote_query_supported_append (&q, "multiprocess+");
5255
5256 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5257 remote_query_supported_append (&q, "swbreak+");
5258 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5259 remote_query_supported_append (&q, "hwbreak+");
5260
5261 remote_query_supported_append (&q, "qRelocInsn+");
5262
5263 if (packet_set_cmd_state (PACKET_fork_event_feature)
5264 != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "fork-events+");
5266 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5267 != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "vfork-events+");
5269 if (packet_set_cmd_state (PACKET_exec_event_feature)
5270 != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "exec-events+");
5272
5273 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "vContSupported+");
5275
5276 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "QThreadEvents+");
5278
5279 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "no-resumed+");
5281
5282 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5283 the qSupported:xmlRegisters=i386 handling. */
5284 if (remote_support_xml != NULL
5285 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5286 remote_query_supported_append (&q, remote_support_xml);
5287
5288 q = "qSupported:" + q;
5289 putpkt (q.c_str ());
5290
5291 getpkt (&rs->buf, 0);
5292
5293 /* If an error occured, warn, but do not return - just reset the
5294 buffer to empty and go on to disable features. */
5295 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5296 == PACKET_ERROR)
5297 {
5298 warning (_("Remote failure reply: %s"), rs->buf.data ());
5299 rs->buf[0] = 0;
5300 }
5301 }
5302
5303 memset (seen, 0, sizeof (seen));
5304
5305 next = rs->buf.data ();
5306 while (*next)
5307 {
5308 enum packet_support is_supported;
5309 char *p, *end, *name_end, *value;
5310
5311 /* First separate out this item from the rest of the packet. If
5312 there's another item after this, we overwrite the separator
5313 (terminated strings are much easier to work with). */
5314 p = next;
5315 end = strchr (p, ';');
5316 if (end == NULL)
5317 {
5318 end = p + strlen (p);
5319 next = end;
5320 }
5321 else
5322 {
5323 *end = '\0';
5324 next = end + 1;
5325
5326 if (end == p)
5327 {
5328 warning (_("empty item in \"qSupported\" response"));
5329 continue;
5330 }
5331 }
5332
5333 name_end = strchr (p, '=');
5334 if (name_end)
5335 {
5336 /* This is a name=value entry. */
5337 is_supported = PACKET_ENABLE;
5338 value = name_end + 1;
5339 *name_end = '\0';
5340 }
5341 else
5342 {
5343 value = NULL;
5344 switch (end[-1])
5345 {
5346 case '+':
5347 is_supported = PACKET_ENABLE;
5348 break;
5349
5350 case '-':
5351 is_supported = PACKET_DISABLE;
5352 break;
5353
5354 case '?':
5355 is_supported = PACKET_SUPPORT_UNKNOWN;
5356 break;
5357
5358 default:
5359 warning (_("unrecognized item \"%s\" "
5360 "in \"qSupported\" response"), p);
5361 continue;
5362 }
5363 end[-1] = '\0';
5364 }
5365
5366 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5367 if (strcmp (remote_protocol_features[i].name, p) == 0)
5368 {
5369 const struct protocol_feature *feature;
5370
5371 seen[i] = 1;
5372 feature = &remote_protocol_features[i];
5373 feature->func (this, feature, is_supported, value);
5374 break;
5375 }
5376 }
5377
5378 /* If we increased the packet size, make sure to increase the global
5379 buffer size also. We delay this until after parsing the entire
5380 qSupported packet, because this is the same buffer we were
5381 parsing. */
5382 if (rs->buf.size () < rs->explicit_packet_size)
5383 rs->buf.resize (rs->explicit_packet_size);
5384
5385 /* Handle the defaults for unmentioned features. */
5386 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5387 if (!seen[i])
5388 {
5389 const struct protocol_feature *feature;
5390
5391 feature = &remote_protocol_features[i];
5392 feature->func (this, feature, feature->default_support, NULL);
5393 }
5394 }
5395
5396 /* Serial QUIT handler for the remote serial descriptor.
5397
5398 Defers handling a Ctrl-C until we're done with the current
5399 command/response packet sequence, unless:
5400
5401 - We're setting up the connection. Don't send a remote interrupt
5402 request, as we're not fully synced yet. Quit immediately
5403 instead.
5404
5405 - The target has been resumed in the foreground
5406 (target_terminal::is_ours is false) with a synchronous resume
5407 packet, and we're blocked waiting for the stop reply, thus a
5408 Ctrl-C should be immediately sent to the target.
5409
5410 - We get a second Ctrl-C while still within the same serial read or
5411 write. In that case the serial is seemingly wedged --- offer to
5412 quit/disconnect.
5413
5414 - We see a second Ctrl-C without target response, after having
5415 previously interrupted the target. In that case the target/stub
5416 is probably wedged --- offer to quit/disconnect.
5417 */
5418
5419 void
5420 remote_target::remote_serial_quit_handler ()
5421 {
5422 struct remote_state *rs = get_remote_state ();
5423
5424 if (check_quit_flag ())
5425 {
5426 /* If we're starting up, we're not fully synced yet. Quit
5427 immediately. */
5428 if (rs->starting_up)
5429 quit ();
5430 else if (rs->got_ctrlc_during_io)
5431 {
5432 if (query (_("The target is not responding to GDB commands.\n"
5433 "Stop debugging it? ")))
5434 remote_unpush_and_throw ();
5435 }
5436 /* If ^C has already been sent once, offer to disconnect. */
5437 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5438 interrupt_query ();
5439 /* All-stop protocol, and blocked waiting for stop reply. Send
5440 an interrupt request. */
5441 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5442 target_interrupt ();
5443 else
5444 rs->got_ctrlc_during_io = 1;
5445 }
5446 }
5447
5448 /* The remote_target that is current while the quit handler is
5449 overridden with remote_serial_quit_handler. */
5450 static remote_target *curr_quit_handler_target;
5451
5452 static void
5453 remote_serial_quit_handler ()
5454 {
5455 curr_quit_handler_target->remote_serial_quit_handler ();
5456 }
5457
5458 /* Remove any of the remote.c targets from target stack. Upper targets depend
5459 on it so remove them first. */
5460
5461 static void
5462 remote_unpush_target (void)
5463 {
5464 pop_all_targets_at_and_above (process_stratum);
5465 }
5466
5467 static void
5468 remote_unpush_and_throw (void)
5469 {
5470 remote_unpush_target ();
5471 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5472 }
5473
5474 void
5475 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5476 {
5477 remote_target *curr_remote = get_current_remote_target ();
5478
5479 if (name == 0)
5480 error (_("To open a remote debug connection, you need to specify what\n"
5481 "serial device is attached to the remote system\n"
5482 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5483
5484 /* If we're connected to a running target, target_preopen will kill it.
5485 Ask this question first, before target_preopen has a chance to kill
5486 anything. */
5487 if (curr_remote != NULL && !have_inferiors ())
5488 {
5489 if (from_tty
5490 && !query (_("Already connected to a remote target. Disconnect? ")))
5491 error (_("Still connected."));
5492 }
5493
5494 /* Here the possibly existing remote target gets unpushed. */
5495 target_preopen (from_tty);
5496
5497 remote_fileio_reset ();
5498 reopen_exec_file ();
5499 reread_symbols ();
5500
5501 remote_target *remote
5502 = (extended_p ? new extended_remote_target () : new remote_target ());
5503 target_ops_up target_holder (remote);
5504
5505 remote_state *rs = remote->get_remote_state ();
5506
5507 /* See FIXME above. */
5508 if (!target_async_permitted)
5509 rs->wait_forever_enabled_p = 1;
5510
5511 rs->remote_desc = remote_serial_open (name);
5512 if (!rs->remote_desc)
5513 perror_with_name (name);
5514
5515 if (baud_rate != -1)
5516 {
5517 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5518 {
5519 /* The requested speed could not be set. Error out to
5520 top level after closing remote_desc. Take care to
5521 set remote_desc to NULL to avoid closing remote_desc
5522 more than once. */
5523 serial_close (rs->remote_desc);
5524 rs->remote_desc = NULL;
5525 perror_with_name (name);
5526 }
5527 }
5528
5529 serial_setparity (rs->remote_desc, serial_parity);
5530 serial_raw (rs->remote_desc);
5531
5532 /* If there is something sitting in the buffer we might take it as a
5533 response to a command, which would be bad. */
5534 serial_flush_input (rs->remote_desc);
5535
5536 if (from_tty)
5537 {
5538 puts_filtered ("Remote debugging using ");
5539 puts_filtered (name);
5540 puts_filtered ("\n");
5541 }
5542
5543 /* Switch to using the remote target now. */
5544 push_target (std::move (target_holder));
5545
5546 /* Register extra event sources in the event loop. */
5547 rs->remote_async_inferior_event_token
5548 = create_async_event_handler (remote_async_inferior_event_handler,
5549 remote);
5550 rs->notif_state = remote_notif_state_allocate (remote);
5551
5552 /* Reset the target state; these things will be queried either by
5553 remote_query_supported or as they are needed. */
5554 reset_all_packet_configs_support ();
5555 rs->cached_wait_status = 0;
5556 rs->explicit_packet_size = 0;
5557 rs->noack_mode = 0;
5558 rs->extended = extended_p;
5559 rs->waiting_for_stop_reply = 0;
5560 rs->ctrlc_pending_p = 0;
5561 rs->got_ctrlc_during_io = 0;
5562
5563 rs->general_thread = not_sent_ptid;
5564 rs->continue_thread = not_sent_ptid;
5565 rs->remote_traceframe_number = -1;
5566
5567 rs->last_resume_exec_dir = EXEC_FORWARD;
5568
5569 /* Probe for ability to use "ThreadInfo" query, as required. */
5570 rs->use_threadinfo_query = 1;
5571 rs->use_threadextra_query = 1;
5572
5573 rs->readahead_cache.invalidate ();
5574
5575 if (target_async_permitted)
5576 {
5577 /* FIXME: cagney/1999-09-23: During the initial connection it is
5578 assumed that the target is already ready and able to respond to
5579 requests. Unfortunately remote_start_remote() eventually calls
5580 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5581 around this. Eventually a mechanism that allows
5582 wait_for_inferior() to expect/get timeouts will be
5583 implemented. */
5584 rs->wait_forever_enabled_p = 0;
5585 }
5586
5587 /* First delete any symbols previously loaded from shared libraries. */
5588 no_shared_libraries (NULL, 0);
5589
5590 /* Start the remote connection. If error() or QUIT, discard this
5591 target (we'd otherwise be in an inconsistent state) and then
5592 propogate the error on up the exception chain. This ensures that
5593 the caller doesn't stumble along blindly assuming that the
5594 function succeeded. The CLI doesn't have this problem but other
5595 UI's, such as MI do.
5596
5597 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5598 this function should return an error indication letting the
5599 caller restore the previous state. Unfortunately the command
5600 ``target remote'' is directly wired to this function making that
5601 impossible. On a positive note, the CLI side of this problem has
5602 been fixed - the function set_cmd_context() makes it possible for
5603 all the ``target ....'' commands to share a common callback
5604 function. See cli-dump.c. */
5605 {
5606
5607 try
5608 {
5609 remote->start_remote (from_tty, extended_p);
5610 }
5611 catch (const gdb_exception &ex)
5612 {
5613 /* Pop the partially set up target - unless something else did
5614 already before throwing the exception. */
5615 if (ex.error != TARGET_CLOSE_ERROR)
5616 remote_unpush_target ();
5617 throw;
5618 }
5619 }
5620
5621 remote_btrace_reset (rs);
5622
5623 if (target_async_permitted)
5624 rs->wait_forever_enabled_p = 1;
5625 }
5626
5627 /* Detach the specified process. */
5628
5629 void
5630 remote_target::remote_detach_pid (int pid)
5631 {
5632 struct remote_state *rs = get_remote_state ();
5633
5634 /* This should not be necessary, but the handling for D;PID in
5635 GDBserver versions prior to 8.2 incorrectly assumes that the
5636 selected process points to the same process we're detaching,
5637 leading to misbehavior (and possibly GDBserver crashing) when it
5638 does not. Since it's easy and cheap, work around it by forcing
5639 GDBserver to select GDB's current process. */
5640 set_general_process ();
5641
5642 if (remote_multi_process_p (rs))
5643 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5644 else
5645 strcpy (rs->buf.data (), "D");
5646
5647 putpkt (rs->buf);
5648 getpkt (&rs->buf, 0);
5649
5650 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5651 ;
5652 else if (rs->buf[0] == '\0')
5653 error (_("Remote doesn't know how to detach"));
5654 else
5655 error (_("Can't detach process."));
5656 }
5657
5658 /* This detaches a program to which we previously attached, using
5659 inferior_ptid to identify the process. After this is done, GDB
5660 can be used to debug some other program. We better not have left
5661 any breakpoints in the target program or it'll die when it hits
5662 one. */
5663
5664 void
5665 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5666 {
5667 int pid = inferior_ptid.pid ();
5668 struct remote_state *rs = get_remote_state ();
5669 int is_fork_parent;
5670
5671 if (!target_has_execution)
5672 error (_("No process to detach from."));
5673
5674 target_announce_detach (from_tty);
5675
5676 /* Tell the remote target to detach. */
5677 remote_detach_pid (pid);
5678
5679 /* Exit only if this is the only active inferior. */
5680 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5681 puts_filtered (_("Ending remote debugging.\n"));
5682
5683 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5684
5685 /* Check to see if we are detaching a fork parent. Note that if we
5686 are detaching a fork child, tp == NULL. */
5687 is_fork_parent = (tp != NULL
5688 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5689
5690 /* If doing detach-on-fork, we don't mourn, because that will delete
5691 breakpoints that should be available for the followed inferior. */
5692 if (!is_fork_parent)
5693 {
5694 /* Save the pid as a string before mourning, since that will
5695 unpush the remote target, and we need the string after. */
5696 std::string infpid = target_pid_to_str (ptid_t (pid));
5697
5698 target_mourn_inferior (inferior_ptid);
5699 if (print_inferior_events)
5700 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5701 inf->num, infpid.c_str ());
5702 }
5703 else
5704 {
5705 inferior_ptid = null_ptid;
5706 detach_inferior (current_inferior ());
5707 }
5708 }
5709
5710 void
5711 remote_target::detach (inferior *inf, int from_tty)
5712 {
5713 remote_detach_1 (inf, from_tty);
5714 }
5715
5716 void
5717 extended_remote_target::detach (inferior *inf, int from_tty)
5718 {
5719 remote_detach_1 (inf, from_tty);
5720 }
5721
5722 /* Target follow-fork function for remote targets. On entry, and
5723 at return, the current inferior is the fork parent.
5724
5725 Note that although this is currently only used for extended-remote,
5726 it is named remote_follow_fork in anticipation of using it for the
5727 remote target as well. */
5728
5729 int
5730 remote_target::follow_fork (int follow_child, int detach_fork)
5731 {
5732 struct remote_state *rs = get_remote_state ();
5733 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5734
5735 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5736 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5737 {
5738 /* When following the parent and detaching the child, we detach
5739 the child here. For the case of following the child and
5740 detaching the parent, the detach is done in the target-
5741 independent follow fork code in infrun.c. We can't use
5742 target_detach when detaching an unfollowed child because
5743 the client side doesn't know anything about the child. */
5744 if (detach_fork && !follow_child)
5745 {
5746 /* Detach the fork child. */
5747 ptid_t child_ptid;
5748 pid_t child_pid;
5749
5750 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5751 child_pid = child_ptid.pid ();
5752
5753 remote_detach_pid (child_pid);
5754 }
5755 }
5756 return 0;
5757 }
5758
5759 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5760 in the program space of the new inferior. On entry and at return the
5761 current inferior is the exec'ing inferior. INF is the new exec'd
5762 inferior, which may be the same as the exec'ing inferior unless
5763 follow-exec-mode is "new". */
5764
5765 void
5766 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5767 {
5768 /* We know that this is a target file name, so if it has the "target:"
5769 prefix we strip it off before saving it in the program space. */
5770 if (is_target_filename (execd_pathname))
5771 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5772
5773 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5774 }
5775
5776 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5777
5778 void
5779 remote_target::disconnect (const char *args, int from_tty)
5780 {
5781 if (args)
5782 error (_("Argument given to \"disconnect\" when remotely debugging."));
5783
5784 /* Make sure we unpush even the extended remote targets. Calling
5785 target_mourn_inferior won't unpush, and remote_mourn won't
5786 unpush if there is more than one inferior left. */
5787 unpush_target (this);
5788 generic_mourn_inferior ();
5789
5790 if (from_tty)
5791 puts_filtered ("Ending remote debugging.\n");
5792 }
5793
5794 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5795 be chatty about it. */
5796
5797 void
5798 extended_remote_target::attach (const char *args, int from_tty)
5799 {
5800 struct remote_state *rs = get_remote_state ();
5801 int pid;
5802 char *wait_status = NULL;
5803
5804 pid = parse_pid_to_attach (args);
5805
5806 /* Remote PID can be freely equal to getpid, do not check it here the same
5807 way as in other targets. */
5808
5809 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5810 error (_("This target does not support attaching to a process"));
5811
5812 if (from_tty)
5813 {
5814 char *exec_file = get_exec_file (0);
5815
5816 if (exec_file)
5817 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5818 target_pid_to_str (ptid_t (pid)).c_str ());
5819 else
5820 printf_unfiltered (_("Attaching to %s\n"),
5821 target_pid_to_str (ptid_t (pid)).c_str ());
5822 }
5823
5824 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5825 putpkt (rs->buf);
5826 getpkt (&rs->buf, 0);
5827
5828 switch (packet_ok (rs->buf,
5829 &remote_protocol_packets[PACKET_vAttach]))
5830 {
5831 case PACKET_OK:
5832 if (!target_is_non_stop_p ())
5833 {
5834 /* Save the reply for later. */
5835 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5836 strcpy (wait_status, rs->buf.data ());
5837 }
5838 else if (strcmp (rs->buf.data (), "OK") != 0)
5839 error (_("Attaching to %s failed with: %s"),
5840 target_pid_to_str (ptid_t (pid)).c_str (),
5841 rs->buf.data ());
5842 break;
5843 case PACKET_UNKNOWN:
5844 error (_("This target does not support attaching to a process"));
5845 default:
5846 error (_("Attaching to %s failed"),
5847 target_pid_to_str (ptid_t (pid)).c_str ());
5848 }
5849
5850 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5851
5852 inferior_ptid = ptid_t (pid);
5853
5854 if (target_is_non_stop_p ())
5855 {
5856 struct thread_info *thread;
5857
5858 /* Get list of threads. */
5859 update_thread_list ();
5860
5861 thread = first_thread_of_inferior (current_inferior ());
5862 if (thread)
5863 inferior_ptid = thread->ptid;
5864 else
5865 inferior_ptid = ptid_t (pid);
5866
5867 /* Invalidate our notion of the remote current thread. */
5868 record_currthread (rs, minus_one_ptid);
5869 }
5870 else
5871 {
5872 /* Now, if we have thread information, update inferior_ptid. */
5873 inferior_ptid = remote_current_thread (inferior_ptid);
5874
5875 /* Add the main thread to the thread list. */
5876 thread_info *thr = add_thread_silent (inferior_ptid);
5877 /* Don't consider the thread stopped until we've processed the
5878 saved stop reply. */
5879 set_executing (thr->ptid, true);
5880 }
5881
5882 /* Next, if the target can specify a description, read it. We do
5883 this before anything involving memory or registers. */
5884 target_find_description ();
5885
5886 if (!target_is_non_stop_p ())
5887 {
5888 /* Use the previously fetched status. */
5889 gdb_assert (wait_status != NULL);
5890
5891 if (target_can_async_p ())
5892 {
5893 struct notif_event *reply
5894 = remote_notif_parse (this, &notif_client_stop, wait_status);
5895
5896 push_stop_reply ((struct stop_reply *) reply);
5897
5898 target_async (1);
5899 }
5900 else
5901 {
5902 gdb_assert (wait_status != NULL);
5903 strcpy (rs->buf.data (), wait_status);
5904 rs->cached_wait_status = 1;
5905 }
5906 }
5907 else
5908 gdb_assert (wait_status == NULL);
5909 }
5910
5911 /* Implementation of the to_post_attach method. */
5912
5913 void
5914 extended_remote_target::post_attach (int pid)
5915 {
5916 /* Get text, data & bss offsets. */
5917 get_offsets ();
5918
5919 /* In certain cases GDB might not have had the chance to start
5920 symbol lookup up until now. This could happen if the debugged
5921 binary is not using shared libraries, the vsyscall page is not
5922 present (on Linux) and the binary itself hadn't changed since the
5923 debugging process was started. */
5924 if (symfile_objfile != NULL)
5925 remote_check_symbols();
5926 }
5927
5928 \f
5929 /* Check for the availability of vCont. This function should also check
5930 the response. */
5931
5932 void
5933 remote_target::remote_vcont_probe ()
5934 {
5935 remote_state *rs = get_remote_state ();
5936 char *buf;
5937
5938 strcpy (rs->buf.data (), "vCont?");
5939 putpkt (rs->buf);
5940 getpkt (&rs->buf, 0);
5941 buf = rs->buf.data ();
5942
5943 /* Make sure that the features we assume are supported. */
5944 if (startswith (buf, "vCont"))
5945 {
5946 char *p = &buf[5];
5947 int support_c, support_C;
5948
5949 rs->supports_vCont.s = 0;
5950 rs->supports_vCont.S = 0;
5951 support_c = 0;
5952 support_C = 0;
5953 rs->supports_vCont.t = 0;
5954 rs->supports_vCont.r = 0;
5955 while (p && *p == ';')
5956 {
5957 p++;
5958 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5959 rs->supports_vCont.s = 1;
5960 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5961 rs->supports_vCont.S = 1;
5962 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5963 support_c = 1;
5964 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5965 support_C = 1;
5966 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5967 rs->supports_vCont.t = 1;
5968 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5969 rs->supports_vCont.r = 1;
5970
5971 p = strchr (p, ';');
5972 }
5973
5974 /* If c, and C are not all supported, we can't use vCont. Clearing
5975 BUF will make packet_ok disable the packet. */
5976 if (!support_c || !support_C)
5977 buf[0] = 0;
5978 }
5979
5980 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5981 }
5982
5983 /* Helper function for building "vCont" resumptions. Write a
5984 resumption to P. ENDP points to one-passed-the-end of the buffer
5985 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5986 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5987 resumed thread should be single-stepped and/or signalled. If PTID
5988 equals minus_one_ptid, then all threads are resumed; if PTID
5989 represents a process, then all threads of the process are resumed;
5990 the thread to be stepped and/or signalled is given in the global
5991 INFERIOR_PTID. */
5992
5993 char *
5994 remote_target::append_resumption (char *p, char *endp,
5995 ptid_t ptid, int step, gdb_signal siggnal)
5996 {
5997 struct remote_state *rs = get_remote_state ();
5998
5999 if (step && siggnal != GDB_SIGNAL_0)
6000 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6001 else if (step
6002 /* GDB is willing to range step. */
6003 && use_range_stepping
6004 /* Target supports range stepping. */
6005 && rs->supports_vCont.r
6006 /* We don't currently support range stepping multiple
6007 threads with a wildcard (though the protocol allows it,
6008 so stubs shouldn't make an active effort to forbid
6009 it). */
6010 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6011 {
6012 struct thread_info *tp;
6013
6014 if (ptid == minus_one_ptid)
6015 {
6016 /* If we don't know about the target thread's tid, then
6017 we're resuming magic_null_ptid (see caller). */
6018 tp = find_thread_ptid (magic_null_ptid);
6019 }
6020 else
6021 tp = find_thread_ptid (ptid);
6022 gdb_assert (tp != NULL);
6023
6024 if (tp->control.may_range_step)
6025 {
6026 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6027
6028 p += xsnprintf (p, endp - p, ";r%s,%s",
6029 phex_nz (tp->control.step_range_start,
6030 addr_size),
6031 phex_nz (tp->control.step_range_end,
6032 addr_size));
6033 }
6034 else
6035 p += xsnprintf (p, endp - p, ";s");
6036 }
6037 else if (step)
6038 p += xsnprintf (p, endp - p, ";s");
6039 else if (siggnal != GDB_SIGNAL_0)
6040 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6041 else
6042 p += xsnprintf (p, endp - p, ";c");
6043
6044 if (remote_multi_process_p (rs) && ptid.is_pid ())
6045 {
6046 ptid_t nptid;
6047
6048 /* All (-1) threads of process. */
6049 nptid = ptid_t (ptid.pid (), -1, 0);
6050
6051 p += xsnprintf (p, endp - p, ":");
6052 p = write_ptid (p, endp, nptid);
6053 }
6054 else if (ptid != minus_one_ptid)
6055 {
6056 p += xsnprintf (p, endp - p, ":");
6057 p = write_ptid (p, endp, ptid);
6058 }
6059
6060 return p;
6061 }
6062
6063 /* Clear the thread's private info on resume. */
6064
6065 static void
6066 resume_clear_thread_private_info (struct thread_info *thread)
6067 {
6068 if (thread->priv != NULL)
6069 {
6070 remote_thread_info *priv = get_remote_thread_info (thread);
6071
6072 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6073 priv->watch_data_address = 0;
6074 }
6075 }
6076
6077 /* Append a vCont continue-with-signal action for threads that have a
6078 non-zero stop signal. */
6079
6080 char *
6081 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6082 ptid_t ptid)
6083 {
6084 for (thread_info *thread : all_non_exited_threads (ptid))
6085 if (inferior_ptid != thread->ptid
6086 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6087 {
6088 p = append_resumption (p, endp, thread->ptid,
6089 0, thread->suspend.stop_signal);
6090 thread->suspend.stop_signal = GDB_SIGNAL_0;
6091 resume_clear_thread_private_info (thread);
6092 }
6093
6094 return p;
6095 }
6096
6097 /* Set the target running, using the packets that use Hc
6098 (c/s/C/S). */
6099
6100 void
6101 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6102 gdb_signal siggnal)
6103 {
6104 struct remote_state *rs = get_remote_state ();
6105 char *buf;
6106
6107 rs->last_sent_signal = siggnal;
6108 rs->last_sent_step = step;
6109
6110 /* The c/s/C/S resume packets use Hc, so set the continue
6111 thread. */
6112 if (ptid == minus_one_ptid)
6113 set_continue_thread (any_thread_ptid);
6114 else
6115 set_continue_thread (ptid);
6116
6117 for (thread_info *thread : all_non_exited_threads ())
6118 resume_clear_thread_private_info (thread);
6119
6120 buf = rs->buf.data ();
6121 if (::execution_direction == EXEC_REVERSE)
6122 {
6123 /* We don't pass signals to the target in reverse exec mode. */
6124 if (info_verbose && siggnal != GDB_SIGNAL_0)
6125 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6126 siggnal);
6127
6128 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6129 error (_("Remote reverse-step not supported."));
6130 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6131 error (_("Remote reverse-continue not supported."));
6132
6133 strcpy (buf, step ? "bs" : "bc");
6134 }
6135 else if (siggnal != GDB_SIGNAL_0)
6136 {
6137 buf[0] = step ? 'S' : 'C';
6138 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6139 buf[2] = tohex (((int) siggnal) & 0xf);
6140 buf[3] = '\0';
6141 }
6142 else
6143 strcpy (buf, step ? "s" : "c");
6144
6145 putpkt (buf);
6146 }
6147
6148 /* Resume the remote inferior by using a "vCont" packet. The thread
6149 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6150 resumed thread should be single-stepped and/or signalled. If PTID
6151 equals minus_one_ptid, then all threads are resumed; the thread to
6152 be stepped and/or signalled is given in the global INFERIOR_PTID.
6153 This function returns non-zero iff it resumes the inferior.
6154
6155 This function issues a strict subset of all possible vCont commands
6156 at the moment. */
6157
6158 int
6159 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6160 enum gdb_signal siggnal)
6161 {
6162 struct remote_state *rs = get_remote_state ();
6163 char *p;
6164 char *endp;
6165
6166 /* No reverse execution actions defined for vCont. */
6167 if (::execution_direction == EXEC_REVERSE)
6168 return 0;
6169
6170 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6171 remote_vcont_probe ();
6172
6173 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6174 return 0;
6175
6176 p = rs->buf.data ();
6177 endp = p + get_remote_packet_size ();
6178
6179 /* If we could generate a wider range of packets, we'd have to worry
6180 about overflowing BUF. Should there be a generic
6181 "multi-part-packet" packet? */
6182
6183 p += xsnprintf (p, endp - p, "vCont");
6184
6185 if (ptid == magic_null_ptid)
6186 {
6187 /* MAGIC_NULL_PTID means that we don't have any active threads,
6188 so we don't have any TID numbers the inferior will
6189 understand. Make sure to only send forms that do not specify
6190 a TID. */
6191 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6192 }
6193 else if (ptid == minus_one_ptid || ptid.is_pid ())
6194 {
6195 /* Resume all threads (of all processes, or of a single
6196 process), with preference for INFERIOR_PTID. This assumes
6197 inferior_ptid belongs to the set of all threads we are about
6198 to resume. */
6199 if (step || siggnal != GDB_SIGNAL_0)
6200 {
6201 /* Step inferior_ptid, with or without signal. */
6202 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6203 }
6204
6205 /* Also pass down any pending signaled resumption for other
6206 threads not the current. */
6207 p = append_pending_thread_resumptions (p, endp, ptid);
6208
6209 /* And continue others without a signal. */
6210 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6211 }
6212 else
6213 {
6214 /* Scheduler locking; resume only PTID. */
6215 append_resumption (p, endp, ptid, step, siggnal);
6216 }
6217
6218 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6219 putpkt (rs->buf);
6220
6221 if (target_is_non_stop_p ())
6222 {
6223 /* In non-stop, the stub replies to vCont with "OK". The stop
6224 reply will be reported asynchronously by means of a `%Stop'
6225 notification. */
6226 getpkt (&rs->buf, 0);
6227 if (strcmp (rs->buf.data (), "OK") != 0)
6228 error (_("Unexpected vCont reply in non-stop mode: %s"),
6229 rs->buf.data ());
6230 }
6231
6232 return 1;
6233 }
6234
6235 /* Tell the remote machine to resume. */
6236
6237 void
6238 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6239 {
6240 struct remote_state *rs = get_remote_state ();
6241
6242 /* When connected in non-stop mode, the core resumes threads
6243 individually. Resuming remote threads directly in target_resume
6244 would thus result in sending one packet per thread. Instead, to
6245 minimize roundtrip latency, here we just store the resume
6246 request; the actual remote resumption will be done in
6247 target_commit_resume / remote_commit_resume, where we'll be able
6248 to do vCont action coalescing. */
6249 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6250 {
6251 remote_thread_info *remote_thr;
6252
6253 if (minus_one_ptid == ptid || ptid.is_pid ())
6254 remote_thr = get_remote_thread_info (inferior_ptid);
6255 else
6256 remote_thr = get_remote_thread_info (ptid);
6257
6258 remote_thr->last_resume_step = step;
6259 remote_thr->last_resume_sig = siggnal;
6260 return;
6261 }
6262
6263 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6264 (explained in remote-notif.c:handle_notification) so
6265 remote_notif_process is not called. We need find a place where
6266 it is safe to start a 'vNotif' sequence. It is good to do it
6267 before resuming inferior, because inferior was stopped and no RSP
6268 traffic at that moment. */
6269 if (!target_is_non_stop_p ())
6270 remote_notif_process (rs->notif_state, &notif_client_stop);
6271
6272 rs->last_resume_exec_dir = ::execution_direction;
6273
6274 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6275 if (!remote_resume_with_vcont (ptid, step, siggnal))
6276 remote_resume_with_hc (ptid, step, siggnal);
6277
6278 /* We are about to start executing the inferior, let's register it
6279 with the event loop. NOTE: this is the one place where all the
6280 execution commands end up. We could alternatively do this in each
6281 of the execution commands in infcmd.c. */
6282 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6283 into infcmd.c in order to allow inferior function calls to work
6284 NOT asynchronously. */
6285 if (target_can_async_p ())
6286 target_async (1);
6287
6288 /* We've just told the target to resume. The remote server will
6289 wait for the inferior to stop, and then send a stop reply. In
6290 the mean time, we can't start another command/query ourselves
6291 because the stub wouldn't be ready to process it. This applies
6292 only to the base all-stop protocol, however. In non-stop (which
6293 only supports vCont), the stub replies with an "OK", and is
6294 immediate able to process further serial input. */
6295 if (!target_is_non_stop_p ())
6296 rs->waiting_for_stop_reply = 1;
6297 }
6298
6299 static int is_pending_fork_parent_thread (struct thread_info *thread);
6300
6301 /* Private per-inferior info for target remote processes. */
6302
6303 struct remote_inferior : public private_inferior
6304 {
6305 /* Whether we can send a wildcard vCont for this process. */
6306 bool may_wildcard_vcont = true;
6307 };
6308
6309 /* Get the remote private inferior data associated to INF. */
6310
6311 static remote_inferior *
6312 get_remote_inferior (inferior *inf)
6313 {
6314 if (inf->priv == NULL)
6315 inf->priv.reset (new remote_inferior);
6316
6317 return static_cast<remote_inferior *> (inf->priv.get ());
6318 }
6319
6320 /* Class used to track the construction of a vCont packet in the
6321 outgoing packet buffer. This is used to send multiple vCont
6322 packets if we have more actions than would fit a single packet. */
6323
6324 class vcont_builder
6325 {
6326 public:
6327 explicit vcont_builder (remote_target *remote)
6328 : m_remote (remote)
6329 {
6330 restart ();
6331 }
6332
6333 void flush ();
6334 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6335
6336 private:
6337 void restart ();
6338
6339 /* The remote target. */
6340 remote_target *m_remote;
6341
6342 /* Pointer to the first action. P points here if no action has been
6343 appended yet. */
6344 char *m_first_action;
6345
6346 /* Where the next action will be appended. */
6347 char *m_p;
6348
6349 /* The end of the buffer. Must never write past this. */
6350 char *m_endp;
6351 };
6352
6353 /* Prepare the outgoing buffer for a new vCont packet. */
6354
6355 void
6356 vcont_builder::restart ()
6357 {
6358 struct remote_state *rs = m_remote->get_remote_state ();
6359
6360 m_p = rs->buf.data ();
6361 m_endp = m_p + m_remote->get_remote_packet_size ();
6362 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6363 m_first_action = m_p;
6364 }
6365
6366 /* If the vCont packet being built has any action, send it to the
6367 remote end. */
6368
6369 void
6370 vcont_builder::flush ()
6371 {
6372 struct remote_state *rs;
6373
6374 if (m_p == m_first_action)
6375 return;
6376
6377 rs = m_remote->get_remote_state ();
6378 m_remote->putpkt (rs->buf);
6379 m_remote->getpkt (&rs->buf, 0);
6380 if (strcmp (rs->buf.data (), "OK") != 0)
6381 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6382 }
6383
6384 /* The largest action is range-stepping, with its two addresses. This
6385 is more than sufficient. If a new, bigger action is created, it'll
6386 quickly trigger a failed assertion in append_resumption (and we'll
6387 just bump this). */
6388 #define MAX_ACTION_SIZE 200
6389
6390 /* Append a new vCont action in the outgoing packet being built. If
6391 the action doesn't fit the packet along with previous actions, push
6392 what we've got so far to the remote end and start over a new vCont
6393 packet (with the new action). */
6394
6395 void
6396 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6397 {
6398 char buf[MAX_ACTION_SIZE + 1];
6399
6400 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6401 ptid, step, siggnal);
6402
6403 /* Check whether this new action would fit in the vCont packet along
6404 with previous actions. If not, send what we've got so far and
6405 start a new vCont packet. */
6406 size_t rsize = endp - buf;
6407 if (rsize > m_endp - m_p)
6408 {
6409 flush ();
6410 restart ();
6411
6412 /* Should now fit. */
6413 gdb_assert (rsize <= m_endp - m_p);
6414 }
6415
6416 memcpy (m_p, buf, rsize);
6417 m_p += rsize;
6418 *m_p = '\0';
6419 }
6420
6421 /* to_commit_resume implementation. */
6422
6423 void
6424 remote_target::commit_resume ()
6425 {
6426 int any_process_wildcard;
6427 int may_global_wildcard_vcont;
6428
6429 /* If connected in all-stop mode, we'd send the remote resume
6430 request directly from remote_resume. Likewise if
6431 reverse-debugging, as there are no defined vCont actions for
6432 reverse execution. */
6433 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6434 return;
6435
6436 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6437 instead of resuming all threads of each process individually.
6438 However, if any thread of a process must remain halted, we can't
6439 send wildcard resumes and must send one action per thread.
6440
6441 Care must be taken to not resume threads/processes the server
6442 side already told us are stopped, but the core doesn't know about
6443 yet, because the events are still in the vStopped notification
6444 queue. For example:
6445
6446 #1 => vCont s:p1.1;c
6447 #2 <= OK
6448 #3 <= %Stopped T05 p1.1
6449 #4 => vStopped
6450 #5 <= T05 p1.2
6451 #6 => vStopped
6452 #7 <= OK
6453 #8 (infrun handles the stop for p1.1 and continues stepping)
6454 #9 => vCont s:p1.1;c
6455
6456 The last vCont above would resume thread p1.2 by mistake, because
6457 the server has no idea that the event for p1.2 had not been
6458 handled yet.
6459
6460 The server side must similarly ignore resume actions for the
6461 thread that has a pending %Stopped notification (and any other
6462 threads with events pending), until GDB acks the notification
6463 with vStopped. Otherwise, e.g., the following case is
6464 mishandled:
6465
6466 #1 => g (or any other packet)
6467 #2 <= [registers]
6468 #3 <= %Stopped T05 p1.2
6469 #4 => vCont s:p1.1;c
6470 #5 <= OK
6471
6472 Above, the server must not resume thread p1.2. GDB can't know
6473 that p1.2 stopped until it acks the %Stopped notification, and
6474 since from GDB's perspective all threads should be running, it
6475 sends a "c" action.
6476
6477 Finally, special care must also be given to handling fork/vfork
6478 events. A (v)fork event actually tells us that two processes
6479 stopped -- the parent and the child. Until we follow the fork,
6480 we must not resume the child. Therefore, if we have a pending
6481 fork follow, we must not send a global wildcard resume action
6482 (vCont;c). We can still send process-wide wildcards though. */
6483
6484 /* Start by assuming a global wildcard (vCont;c) is possible. */
6485 may_global_wildcard_vcont = 1;
6486
6487 /* And assume every process is individually wildcard-able too. */
6488 for (inferior *inf : all_non_exited_inferiors ())
6489 {
6490 remote_inferior *priv = get_remote_inferior (inf);
6491
6492 priv->may_wildcard_vcont = true;
6493 }
6494
6495 /* Check for any pending events (not reported or processed yet) and
6496 disable process and global wildcard resumes appropriately. */
6497 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6498
6499 for (thread_info *tp : all_non_exited_threads ())
6500 {
6501 /* If a thread of a process is not meant to be resumed, then we
6502 can't wildcard that process. */
6503 if (!tp->executing)
6504 {
6505 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6506
6507 /* And if we can't wildcard a process, we can't wildcard
6508 everything either. */
6509 may_global_wildcard_vcont = 0;
6510 continue;
6511 }
6512
6513 /* If a thread is the parent of an unfollowed fork, then we
6514 can't do a global wildcard, as that would resume the fork
6515 child. */
6516 if (is_pending_fork_parent_thread (tp))
6517 may_global_wildcard_vcont = 0;
6518 }
6519
6520 /* Now let's build the vCont packet(s). Actions must be appended
6521 from narrower to wider scopes (thread -> process -> global). If
6522 we end up with too many actions for a single packet vcont_builder
6523 flushes the current vCont packet to the remote side and starts a
6524 new one. */
6525 struct vcont_builder vcont_builder (this);
6526
6527 /* Threads first. */
6528 for (thread_info *tp : all_non_exited_threads ())
6529 {
6530 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6531
6532 if (!tp->executing || remote_thr->vcont_resumed)
6533 continue;
6534
6535 gdb_assert (!thread_is_in_step_over_chain (tp));
6536
6537 if (!remote_thr->last_resume_step
6538 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6539 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6540 {
6541 /* We'll send a wildcard resume instead. */
6542 remote_thr->vcont_resumed = 1;
6543 continue;
6544 }
6545
6546 vcont_builder.push_action (tp->ptid,
6547 remote_thr->last_resume_step,
6548 remote_thr->last_resume_sig);
6549 remote_thr->vcont_resumed = 1;
6550 }
6551
6552 /* Now check whether we can send any process-wide wildcard. This is
6553 to avoid sending a global wildcard in the case nothing is
6554 supposed to be resumed. */
6555 any_process_wildcard = 0;
6556
6557 for (inferior *inf : all_non_exited_inferiors ())
6558 {
6559 if (get_remote_inferior (inf)->may_wildcard_vcont)
6560 {
6561 any_process_wildcard = 1;
6562 break;
6563 }
6564 }
6565
6566 if (any_process_wildcard)
6567 {
6568 /* If all processes are wildcard-able, then send a single "c"
6569 action, otherwise, send an "all (-1) threads of process"
6570 continue action for each running process, if any. */
6571 if (may_global_wildcard_vcont)
6572 {
6573 vcont_builder.push_action (minus_one_ptid,
6574 false, GDB_SIGNAL_0);
6575 }
6576 else
6577 {
6578 for (inferior *inf : all_non_exited_inferiors ())
6579 {
6580 if (get_remote_inferior (inf)->may_wildcard_vcont)
6581 {
6582 vcont_builder.push_action (ptid_t (inf->pid),
6583 false, GDB_SIGNAL_0);
6584 }
6585 }
6586 }
6587 }
6588
6589 vcont_builder.flush ();
6590 }
6591
6592 \f
6593
6594 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6595 thread, all threads of a remote process, or all threads of all
6596 processes. */
6597
6598 void
6599 remote_target::remote_stop_ns (ptid_t ptid)
6600 {
6601 struct remote_state *rs = get_remote_state ();
6602 char *p = rs->buf.data ();
6603 char *endp = p + get_remote_packet_size ();
6604
6605 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6606 remote_vcont_probe ();
6607
6608 if (!rs->supports_vCont.t)
6609 error (_("Remote server does not support stopping threads"));
6610
6611 if (ptid == minus_one_ptid
6612 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6613 p += xsnprintf (p, endp - p, "vCont;t");
6614 else
6615 {
6616 ptid_t nptid;
6617
6618 p += xsnprintf (p, endp - p, "vCont;t:");
6619
6620 if (ptid.is_pid ())
6621 /* All (-1) threads of process. */
6622 nptid = ptid_t (ptid.pid (), -1, 0);
6623 else
6624 {
6625 /* Small optimization: if we already have a stop reply for
6626 this thread, no use in telling the stub we want this
6627 stopped. */
6628 if (peek_stop_reply (ptid))
6629 return;
6630
6631 nptid = ptid;
6632 }
6633
6634 write_ptid (p, endp, nptid);
6635 }
6636
6637 /* In non-stop, we get an immediate OK reply. The stop reply will
6638 come in asynchronously by notification. */
6639 putpkt (rs->buf);
6640 getpkt (&rs->buf, 0);
6641 if (strcmp (rs->buf.data (), "OK") != 0)
6642 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6643 rs->buf.data ());
6644 }
6645
6646 /* All-stop version of target_interrupt. Sends a break or a ^C to
6647 interrupt the remote target. It is undefined which thread of which
6648 process reports the interrupt. */
6649
6650 void
6651 remote_target::remote_interrupt_as ()
6652 {
6653 struct remote_state *rs = get_remote_state ();
6654
6655 rs->ctrlc_pending_p = 1;
6656
6657 /* If the inferior is stopped already, but the core didn't know
6658 about it yet, just ignore the request. The cached wait status
6659 will be collected in remote_wait. */
6660 if (rs->cached_wait_status)
6661 return;
6662
6663 /* Send interrupt_sequence to remote target. */
6664 send_interrupt_sequence ();
6665 }
6666
6667 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6668 the remote target. It is undefined which thread of which process
6669 reports the interrupt. Throws an error if the packet is not
6670 supported by the server. */
6671
6672 void
6673 remote_target::remote_interrupt_ns ()
6674 {
6675 struct remote_state *rs = get_remote_state ();
6676 char *p = rs->buf.data ();
6677 char *endp = p + get_remote_packet_size ();
6678
6679 xsnprintf (p, endp - p, "vCtrlC");
6680
6681 /* In non-stop, we get an immediate OK reply. The stop reply will
6682 come in asynchronously by notification. */
6683 putpkt (rs->buf);
6684 getpkt (&rs->buf, 0);
6685
6686 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6687 {
6688 case PACKET_OK:
6689 break;
6690 case PACKET_UNKNOWN:
6691 error (_("No support for interrupting the remote target."));
6692 case PACKET_ERROR:
6693 error (_("Interrupting target failed: %s"), rs->buf.data ());
6694 }
6695 }
6696
6697 /* Implement the to_stop function for the remote targets. */
6698
6699 void
6700 remote_target::stop (ptid_t ptid)
6701 {
6702 if (remote_debug)
6703 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6704
6705 if (target_is_non_stop_p ())
6706 remote_stop_ns (ptid);
6707 else
6708 {
6709 /* We don't currently have a way to transparently pause the
6710 remote target in all-stop mode. Interrupt it instead. */
6711 remote_interrupt_as ();
6712 }
6713 }
6714
6715 /* Implement the to_interrupt function for the remote targets. */
6716
6717 void
6718 remote_target::interrupt ()
6719 {
6720 if (remote_debug)
6721 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6722
6723 if (target_is_non_stop_p ())
6724 remote_interrupt_ns ();
6725 else
6726 remote_interrupt_as ();
6727 }
6728
6729 /* Implement the to_pass_ctrlc function for the remote targets. */
6730
6731 void
6732 remote_target::pass_ctrlc ()
6733 {
6734 struct remote_state *rs = get_remote_state ();
6735
6736 if (remote_debug)
6737 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6738
6739 /* If we're starting up, we're not fully synced yet. Quit
6740 immediately. */
6741 if (rs->starting_up)
6742 quit ();
6743 /* If ^C has already been sent once, offer to disconnect. */
6744 else if (rs->ctrlc_pending_p)
6745 interrupt_query ();
6746 else
6747 target_interrupt ();
6748 }
6749
6750 /* Ask the user what to do when an interrupt is received. */
6751
6752 void
6753 remote_target::interrupt_query ()
6754 {
6755 struct remote_state *rs = get_remote_state ();
6756
6757 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6758 {
6759 if (query (_("The target is not responding to interrupt requests.\n"
6760 "Stop debugging it? ")))
6761 {
6762 remote_unpush_target ();
6763 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6764 }
6765 }
6766 else
6767 {
6768 if (query (_("Interrupted while waiting for the program.\n"
6769 "Give up waiting? ")))
6770 quit ();
6771 }
6772 }
6773
6774 /* Enable/disable target terminal ownership. Most targets can use
6775 terminal groups to control terminal ownership. Remote targets are
6776 different in that explicit transfer of ownership to/from GDB/target
6777 is required. */
6778
6779 void
6780 remote_target::terminal_inferior ()
6781 {
6782 /* NOTE: At this point we could also register our selves as the
6783 recipient of all input. Any characters typed could then be
6784 passed on down to the target. */
6785 }
6786
6787 void
6788 remote_target::terminal_ours ()
6789 {
6790 }
6791
6792 static void
6793 remote_console_output (const char *msg)
6794 {
6795 const char *p;
6796
6797 for (p = msg; p[0] && p[1]; p += 2)
6798 {
6799 char tb[2];
6800 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6801
6802 tb[0] = c;
6803 tb[1] = 0;
6804 fputs_unfiltered (tb, gdb_stdtarg);
6805 }
6806 gdb_flush (gdb_stdtarg);
6807 }
6808
6809 struct stop_reply : public notif_event
6810 {
6811 ~stop_reply ();
6812
6813 /* The identifier of the thread about this event */
6814 ptid_t ptid;
6815
6816 /* The remote state this event is associated with. When the remote
6817 connection, represented by a remote_state object, is closed,
6818 all the associated stop_reply events should be released. */
6819 struct remote_state *rs;
6820
6821 struct target_waitstatus ws;
6822
6823 /* The architecture associated with the expedited registers. */
6824 gdbarch *arch;
6825
6826 /* Expedited registers. This makes remote debugging a bit more
6827 efficient for those targets that provide critical registers as
6828 part of their normal status mechanism (as another roundtrip to
6829 fetch them is avoided). */
6830 std::vector<cached_reg_t> regcache;
6831
6832 enum target_stop_reason stop_reason;
6833
6834 CORE_ADDR watch_data_address;
6835
6836 int core;
6837 };
6838
6839 /* Return the length of the stop reply queue. */
6840
6841 int
6842 remote_target::stop_reply_queue_length ()
6843 {
6844 remote_state *rs = get_remote_state ();
6845 return rs->stop_reply_queue.size ();
6846 }
6847
6848 void
6849 remote_notif_stop_parse (remote_target *remote,
6850 struct notif_client *self, const char *buf,
6851 struct notif_event *event)
6852 {
6853 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6854 }
6855
6856 static void
6857 remote_notif_stop_ack (remote_target *remote,
6858 struct notif_client *self, const char *buf,
6859 struct notif_event *event)
6860 {
6861 struct stop_reply *stop_reply = (struct stop_reply *) event;
6862
6863 /* acknowledge */
6864 putpkt (remote, self->ack_command);
6865
6866 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6867 {
6868 /* We got an unknown stop reply. */
6869 error (_("Unknown stop reply"));
6870 }
6871
6872 remote->push_stop_reply (stop_reply);
6873 }
6874
6875 static int
6876 remote_notif_stop_can_get_pending_events (remote_target *remote,
6877 struct notif_client *self)
6878 {
6879 /* We can't get pending events in remote_notif_process for
6880 notification stop, and we have to do this in remote_wait_ns
6881 instead. If we fetch all queued events from stub, remote stub
6882 may exit and we have no chance to process them back in
6883 remote_wait_ns. */
6884 remote_state *rs = remote->get_remote_state ();
6885 mark_async_event_handler (rs->remote_async_inferior_event_token);
6886 return 0;
6887 }
6888
6889 stop_reply::~stop_reply ()
6890 {
6891 for (cached_reg_t &reg : regcache)
6892 xfree (reg.data);
6893 }
6894
6895 static notif_event_up
6896 remote_notif_stop_alloc_reply ()
6897 {
6898 return notif_event_up (new struct stop_reply ());
6899 }
6900
6901 /* A client of notification Stop. */
6902
6903 struct notif_client notif_client_stop =
6904 {
6905 "Stop",
6906 "vStopped",
6907 remote_notif_stop_parse,
6908 remote_notif_stop_ack,
6909 remote_notif_stop_can_get_pending_events,
6910 remote_notif_stop_alloc_reply,
6911 REMOTE_NOTIF_STOP,
6912 };
6913
6914 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6915 the pid of the process that owns the threads we want to check, or
6916 -1 if we want to check all threads. */
6917
6918 static int
6919 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6920 ptid_t thread_ptid)
6921 {
6922 if (ws->kind == TARGET_WAITKIND_FORKED
6923 || ws->kind == TARGET_WAITKIND_VFORKED)
6924 {
6925 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6926 return 1;
6927 }
6928
6929 return 0;
6930 }
6931
6932 /* Return the thread's pending status used to determine whether the
6933 thread is a fork parent stopped at a fork event. */
6934
6935 static struct target_waitstatus *
6936 thread_pending_fork_status (struct thread_info *thread)
6937 {
6938 if (thread->suspend.waitstatus_pending_p)
6939 return &thread->suspend.waitstatus;
6940 else
6941 return &thread->pending_follow;
6942 }
6943
6944 /* Determine if THREAD is a pending fork parent thread. */
6945
6946 static int
6947 is_pending_fork_parent_thread (struct thread_info *thread)
6948 {
6949 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6950 int pid = -1;
6951
6952 return is_pending_fork_parent (ws, pid, thread->ptid);
6953 }
6954
6955 /* If CONTEXT contains any fork child threads that have not been
6956 reported yet, remove them from the CONTEXT list. If such a
6957 thread exists it is because we are stopped at a fork catchpoint
6958 and have not yet called follow_fork, which will set up the
6959 host-side data structures for the new process. */
6960
6961 void
6962 remote_target::remove_new_fork_children (threads_listing_context *context)
6963 {
6964 int pid = -1;
6965 struct notif_client *notif = &notif_client_stop;
6966
6967 /* For any threads stopped at a fork event, remove the corresponding
6968 fork child threads from the CONTEXT list. */
6969 for (thread_info *thread : all_non_exited_threads ())
6970 {
6971 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6972
6973 if (is_pending_fork_parent (ws, pid, thread->ptid))
6974 context->remove_thread (ws->value.related_pid);
6975 }
6976
6977 /* Check for any pending fork events (not reported or processed yet)
6978 in process PID and remove those fork child threads from the
6979 CONTEXT list as well. */
6980 remote_notif_get_pending_events (notif);
6981 for (auto &event : get_remote_state ()->stop_reply_queue)
6982 if (event->ws.kind == TARGET_WAITKIND_FORKED
6983 || event->ws.kind == TARGET_WAITKIND_VFORKED
6984 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6985 context->remove_thread (event->ws.value.related_pid);
6986 }
6987
6988 /* Check whether any event pending in the vStopped queue would prevent
6989 a global or process wildcard vCont action. Clear
6990 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6991 and clear the event inferior's may_wildcard_vcont flag if we can't
6992 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6993
6994 void
6995 remote_target::check_pending_events_prevent_wildcard_vcont
6996 (int *may_global_wildcard)
6997 {
6998 struct notif_client *notif = &notif_client_stop;
6999
7000 remote_notif_get_pending_events (notif);
7001 for (auto &event : get_remote_state ()->stop_reply_queue)
7002 {
7003 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7004 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7005 continue;
7006
7007 if (event->ws.kind == TARGET_WAITKIND_FORKED
7008 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7009 *may_global_wildcard = 0;
7010
7011 struct inferior *inf = find_inferior_ptid (event->ptid);
7012
7013 /* This may be the first time we heard about this process.
7014 Regardless, we must not do a global wildcard resume, otherwise
7015 we'd resume this process too. */
7016 *may_global_wildcard = 0;
7017 if (inf != NULL)
7018 get_remote_inferior (inf)->may_wildcard_vcont = false;
7019 }
7020 }
7021
7022 /* Discard all pending stop replies of inferior INF. */
7023
7024 void
7025 remote_target::discard_pending_stop_replies (struct inferior *inf)
7026 {
7027 struct stop_reply *reply;
7028 struct remote_state *rs = get_remote_state ();
7029 struct remote_notif_state *rns = rs->notif_state;
7030
7031 /* This function can be notified when an inferior exists. When the
7032 target is not remote, the notification state is NULL. */
7033 if (rs->remote_desc == NULL)
7034 return;
7035
7036 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7037
7038 /* Discard the in-flight notification. */
7039 if (reply != NULL && reply->ptid.pid () == inf->pid)
7040 {
7041 delete reply;
7042 rns->pending_event[notif_client_stop.id] = NULL;
7043 }
7044
7045 /* Discard the stop replies we have already pulled with
7046 vStopped. */
7047 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7048 rs->stop_reply_queue.end (),
7049 [=] (const stop_reply_up &event)
7050 {
7051 return event->ptid.pid () == inf->pid;
7052 });
7053 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7054 }
7055
7056 /* Discard the stop replies for RS in stop_reply_queue. */
7057
7058 void
7059 remote_target::discard_pending_stop_replies_in_queue ()
7060 {
7061 remote_state *rs = get_remote_state ();
7062
7063 /* Discard the stop replies we have already pulled with
7064 vStopped. */
7065 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7066 rs->stop_reply_queue.end (),
7067 [=] (const stop_reply_up &event)
7068 {
7069 return event->rs == rs;
7070 });
7071 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7072 }
7073
7074 /* Remove the first reply in 'stop_reply_queue' which matches
7075 PTID. */
7076
7077 struct stop_reply *
7078 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7079 {
7080 remote_state *rs = get_remote_state ();
7081
7082 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7083 rs->stop_reply_queue.end (),
7084 [=] (const stop_reply_up &event)
7085 {
7086 return event->ptid.matches (ptid);
7087 });
7088 struct stop_reply *result;
7089 if (iter == rs->stop_reply_queue.end ())
7090 result = nullptr;
7091 else
7092 {
7093 result = iter->release ();
7094 rs->stop_reply_queue.erase (iter);
7095 }
7096
7097 if (notif_debug)
7098 fprintf_unfiltered (gdb_stdlog,
7099 "notif: discard queued event: 'Stop' in %s\n",
7100 target_pid_to_str (ptid).c_str ());
7101
7102 return result;
7103 }
7104
7105 /* Look for a queued stop reply belonging to PTID. If one is found,
7106 remove it from the queue, and return it. Returns NULL if none is
7107 found. If there are still queued events left to process, tell the
7108 event loop to get back to target_wait soon. */
7109
7110 struct stop_reply *
7111 remote_target::queued_stop_reply (ptid_t ptid)
7112 {
7113 remote_state *rs = get_remote_state ();
7114 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7115
7116 if (!rs->stop_reply_queue.empty ())
7117 {
7118 /* There's still at least an event left. */
7119 mark_async_event_handler (rs->remote_async_inferior_event_token);
7120 }
7121
7122 return r;
7123 }
7124
7125 /* Push a fully parsed stop reply in the stop reply queue. Since we
7126 know that we now have at least one queued event left to pass to the
7127 core side, tell the event loop to get back to target_wait soon. */
7128
7129 void
7130 remote_target::push_stop_reply (struct stop_reply *new_event)
7131 {
7132 remote_state *rs = get_remote_state ();
7133 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7134
7135 if (notif_debug)
7136 fprintf_unfiltered (gdb_stdlog,
7137 "notif: push 'Stop' %s to queue %d\n",
7138 target_pid_to_str (new_event->ptid).c_str (),
7139 int (rs->stop_reply_queue.size ()));
7140
7141 mark_async_event_handler (rs->remote_async_inferior_event_token);
7142 }
7143
7144 /* Returns true if we have a stop reply for PTID. */
7145
7146 int
7147 remote_target::peek_stop_reply (ptid_t ptid)
7148 {
7149 remote_state *rs = get_remote_state ();
7150 for (auto &event : rs->stop_reply_queue)
7151 if (ptid == event->ptid
7152 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7153 return 1;
7154 return 0;
7155 }
7156
7157 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7158 starting with P and ending with PEND matches PREFIX. */
7159
7160 static int
7161 strprefix (const char *p, const char *pend, const char *prefix)
7162 {
7163 for ( ; p < pend; p++, prefix++)
7164 if (*p != *prefix)
7165 return 0;
7166 return *prefix == '\0';
7167 }
7168
7169 /* Parse the stop reply in BUF. Either the function succeeds, and the
7170 result is stored in EVENT, or throws an error. */
7171
7172 void
7173 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7174 {
7175 remote_arch_state *rsa = NULL;
7176 ULONGEST addr;
7177 const char *p;
7178 int skipregs = 0;
7179
7180 event->ptid = null_ptid;
7181 event->rs = get_remote_state ();
7182 event->ws.kind = TARGET_WAITKIND_IGNORE;
7183 event->ws.value.integer = 0;
7184 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7185 event->regcache.clear ();
7186 event->core = -1;
7187
7188 switch (buf[0])
7189 {
7190 case 'T': /* Status with PC, SP, FP, ... */
7191 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7192 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7193 ss = signal number
7194 n... = register number
7195 r... = register contents
7196 */
7197
7198 p = &buf[3]; /* after Txx */
7199 while (*p)
7200 {
7201 const char *p1;
7202 int fieldsize;
7203
7204 p1 = strchr (p, ':');
7205 if (p1 == NULL)
7206 error (_("Malformed packet(a) (missing colon): %s\n\
7207 Packet: '%s'\n"),
7208 p, buf);
7209 if (p == p1)
7210 error (_("Malformed packet(a) (missing register number): %s\n\
7211 Packet: '%s'\n"),
7212 p, buf);
7213
7214 /* Some "registers" are actually extended stop information.
7215 Note if you're adding a new entry here: GDB 7.9 and
7216 earlier assume that all register "numbers" that start
7217 with an hex digit are real register numbers. Make sure
7218 the server only sends such a packet if it knows the
7219 client understands it. */
7220
7221 if (strprefix (p, p1, "thread"))
7222 event->ptid = read_ptid (++p1, &p);
7223 else if (strprefix (p, p1, "syscall_entry"))
7224 {
7225 ULONGEST sysno;
7226
7227 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7228 p = unpack_varlen_hex (++p1, &sysno);
7229 event->ws.value.syscall_number = (int) sysno;
7230 }
7231 else if (strprefix (p, p1, "syscall_return"))
7232 {
7233 ULONGEST sysno;
7234
7235 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7236 p = unpack_varlen_hex (++p1, &sysno);
7237 event->ws.value.syscall_number = (int) sysno;
7238 }
7239 else if (strprefix (p, p1, "watch")
7240 || strprefix (p, p1, "rwatch")
7241 || strprefix (p, p1, "awatch"))
7242 {
7243 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7244 p = unpack_varlen_hex (++p1, &addr);
7245 event->watch_data_address = (CORE_ADDR) addr;
7246 }
7247 else if (strprefix (p, p1, "swbreak"))
7248 {
7249 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7250
7251 /* Make sure the stub doesn't forget to indicate support
7252 with qSupported. */
7253 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7254 error (_("Unexpected swbreak stop reason"));
7255
7256 /* The value part is documented as "must be empty",
7257 though we ignore it, in case we ever decide to make
7258 use of it in a backward compatible way. */
7259 p = strchrnul (p1 + 1, ';');
7260 }
7261 else if (strprefix (p, p1, "hwbreak"))
7262 {
7263 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7264
7265 /* Make sure the stub doesn't forget to indicate support
7266 with qSupported. */
7267 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7268 error (_("Unexpected hwbreak stop reason"));
7269
7270 /* See above. */
7271 p = strchrnul (p1 + 1, ';');
7272 }
7273 else if (strprefix (p, p1, "library"))
7274 {
7275 event->ws.kind = TARGET_WAITKIND_LOADED;
7276 p = strchrnul (p1 + 1, ';');
7277 }
7278 else if (strprefix (p, p1, "replaylog"))
7279 {
7280 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7281 /* p1 will indicate "begin" or "end", but it makes
7282 no difference for now, so ignore it. */
7283 p = strchrnul (p1 + 1, ';');
7284 }
7285 else if (strprefix (p, p1, "core"))
7286 {
7287 ULONGEST c;
7288
7289 p = unpack_varlen_hex (++p1, &c);
7290 event->core = c;
7291 }
7292 else if (strprefix (p, p1, "fork"))
7293 {
7294 event->ws.value.related_pid = read_ptid (++p1, &p);
7295 event->ws.kind = TARGET_WAITKIND_FORKED;
7296 }
7297 else if (strprefix (p, p1, "vfork"))
7298 {
7299 event->ws.value.related_pid = read_ptid (++p1, &p);
7300 event->ws.kind = TARGET_WAITKIND_VFORKED;
7301 }
7302 else if (strprefix (p, p1, "vforkdone"))
7303 {
7304 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7305 p = strchrnul (p1 + 1, ';');
7306 }
7307 else if (strprefix (p, p1, "exec"))
7308 {
7309 ULONGEST ignored;
7310 int pathlen;
7311
7312 /* Determine the length of the execd pathname. */
7313 p = unpack_varlen_hex (++p1, &ignored);
7314 pathlen = (p - p1) / 2;
7315
7316 /* Save the pathname for event reporting and for
7317 the next run command. */
7318 gdb::unique_xmalloc_ptr<char[]> pathname
7319 ((char *) xmalloc (pathlen + 1));
7320 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7321 pathname[pathlen] = '\0';
7322
7323 /* This is freed during event handling. */
7324 event->ws.value.execd_pathname = pathname.release ();
7325 event->ws.kind = TARGET_WAITKIND_EXECD;
7326
7327 /* Skip the registers included in this packet, since
7328 they may be for an architecture different from the
7329 one used by the original program. */
7330 skipregs = 1;
7331 }
7332 else if (strprefix (p, p1, "create"))
7333 {
7334 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7335 p = strchrnul (p1 + 1, ';');
7336 }
7337 else
7338 {
7339 ULONGEST pnum;
7340 const char *p_temp;
7341
7342 if (skipregs)
7343 {
7344 p = strchrnul (p1 + 1, ';');
7345 p++;
7346 continue;
7347 }
7348
7349 /* Maybe a real ``P'' register number. */
7350 p_temp = unpack_varlen_hex (p, &pnum);
7351 /* If the first invalid character is the colon, we got a
7352 register number. Otherwise, it's an unknown stop
7353 reason. */
7354 if (p_temp == p1)
7355 {
7356 /* If we haven't parsed the event's thread yet, find
7357 it now, in order to find the architecture of the
7358 reported expedited registers. */
7359 if (event->ptid == null_ptid)
7360 {
7361 const char *thr = strstr (p1 + 1, ";thread:");
7362 if (thr != NULL)
7363 event->ptid = read_ptid (thr + strlen (";thread:"),
7364 NULL);
7365 else
7366 {
7367 /* Either the current thread hasn't changed,
7368 or the inferior is not multi-threaded.
7369 The event must be for the thread we last
7370 set as (or learned as being) current. */
7371 event->ptid = event->rs->general_thread;
7372 }
7373 }
7374
7375 if (rsa == NULL)
7376 {
7377 inferior *inf = (event->ptid == null_ptid
7378 ? NULL
7379 : find_inferior_ptid (event->ptid));
7380 /* If this is the first time we learn anything
7381 about this process, skip the registers
7382 included in this packet, since we don't yet
7383 know which architecture to use to parse them.
7384 We'll determine the architecture later when
7385 we process the stop reply and retrieve the
7386 target description, via
7387 remote_notice_new_inferior ->
7388 post_create_inferior. */
7389 if (inf == NULL)
7390 {
7391 p = strchrnul (p1 + 1, ';');
7392 p++;
7393 continue;
7394 }
7395
7396 event->arch = inf->gdbarch;
7397 rsa = event->rs->get_remote_arch_state (event->arch);
7398 }
7399
7400 packet_reg *reg
7401 = packet_reg_from_pnum (event->arch, rsa, pnum);
7402 cached_reg_t cached_reg;
7403
7404 if (reg == NULL)
7405 error (_("Remote sent bad register number %s: %s\n\
7406 Packet: '%s'\n"),
7407 hex_string (pnum), p, buf);
7408
7409 cached_reg.num = reg->regnum;
7410 cached_reg.data = (gdb_byte *)
7411 xmalloc (register_size (event->arch, reg->regnum));
7412
7413 p = p1 + 1;
7414 fieldsize = hex2bin (p, cached_reg.data,
7415 register_size (event->arch, reg->regnum));
7416 p += 2 * fieldsize;
7417 if (fieldsize < register_size (event->arch, reg->regnum))
7418 warning (_("Remote reply is too short: %s"), buf);
7419
7420 event->regcache.push_back (cached_reg);
7421 }
7422 else
7423 {
7424 /* Not a number. Silently skip unknown optional
7425 info. */
7426 p = strchrnul (p1 + 1, ';');
7427 }
7428 }
7429
7430 if (*p != ';')
7431 error (_("Remote register badly formatted: %s\nhere: %s"),
7432 buf, p);
7433 ++p;
7434 }
7435
7436 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7437 break;
7438
7439 /* fall through */
7440 case 'S': /* Old style status, just signal only. */
7441 {
7442 int sig;
7443
7444 event->ws.kind = TARGET_WAITKIND_STOPPED;
7445 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7446 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7447 event->ws.value.sig = (enum gdb_signal) sig;
7448 else
7449 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7450 }
7451 break;
7452 case 'w': /* Thread exited. */
7453 {
7454 ULONGEST value;
7455
7456 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7457 p = unpack_varlen_hex (&buf[1], &value);
7458 event->ws.value.integer = value;
7459 if (*p != ';')
7460 error (_("stop reply packet badly formatted: %s"), buf);
7461 event->ptid = read_ptid (++p, NULL);
7462 break;
7463 }
7464 case 'W': /* Target exited. */
7465 case 'X':
7466 {
7467 int pid;
7468 ULONGEST value;
7469
7470 /* GDB used to accept only 2 hex chars here. Stubs should
7471 only send more if they detect GDB supports multi-process
7472 support. */
7473 p = unpack_varlen_hex (&buf[1], &value);
7474
7475 if (buf[0] == 'W')
7476 {
7477 /* The remote process exited. */
7478 event->ws.kind = TARGET_WAITKIND_EXITED;
7479 event->ws.value.integer = value;
7480 }
7481 else
7482 {
7483 /* The remote process exited with a signal. */
7484 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7485 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7486 event->ws.value.sig = (enum gdb_signal) value;
7487 else
7488 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7489 }
7490
7491 /* If no process is specified, assume inferior_ptid. */
7492 pid = inferior_ptid.pid ();
7493 if (*p == '\0')
7494 ;
7495 else if (*p == ';')
7496 {
7497 p++;
7498
7499 if (*p == '\0')
7500 ;
7501 else if (startswith (p, "process:"))
7502 {
7503 ULONGEST upid;
7504
7505 p += sizeof ("process:") - 1;
7506 unpack_varlen_hex (p, &upid);
7507 pid = upid;
7508 }
7509 else
7510 error (_("unknown stop reply packet: %s"), buf);
7511 }
7512 else
7513 error (_("unknown stop reply packet: %s"), buf);
7514 event->ptid = ptid_t (pid);
7515 }
7516 break;
7517 case 'N':
7518 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7519 event->ptid = minus_one_ptid;
7520 break;
7521 }
7522
7523 if (target_is_non_stop_p () && event->ptid == null_ptid)
7524 error (_("No process or thread specified in stop reply: %s"), buf);
7525 }
7526
7527 /* When the stub wants to tell GDB about a new notification reply, it
7528 sends a notification (%Stop, for example). Those can come it at
7529 any time, hence, we have to make sure that any pending
7530 putpkt/getpkt sequence we're making is finished, before querying
7531 the stub for more events with the corresponding ack command
7532 (vStopped, for example). E.g., if we started a vStopped sequence
7533 immediately upon receiving the notification, something like this
7534 could happen:
7535
7536 1.1) --> Hg 1
7537 1.2) <-- OK
7538 1.3) --> g
7539 1.4) <-- %Stop
7540 1.5) --> vStopped
7541 1.6) <-- (registers reply to step #1.3)
7542
7543 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7544 query.
7545
7546 To solve this, whenever we parse a %Stop notification successfully,
7547 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7548 doing whatever we were doing:
7549
7550 2.1) --> Hg 1
7551 2.2) <-- OK
7552 2.3) --> g
7553 2.4) <-- %Stop
7554 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7555 2.5) <-- (registers reply to step #2.3)
7556
7557 Eventualy after step #2.5, we return to the event loop, which
7558 notices there's an event on the
7559 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7560 associated callback --- the function below. At this point, we're
7561 always safe to start a vStopped sequence. :
7562
7563 2.6) --> vStopped
7564 2.7) <-- T05 thread:2
7565 2.8) --> vStopped
7566 2.9) --> OK
7567 */
7568
7569 void
7570 remote_target::remote_notif_get_pending_events (notif_client *nc)
7571 {
7572 struct remote_state *rs = get_remote_state ();
7573
7574 if (rs->notif_state->pending_event[nc->id] != NULL)
7575 {
7576 if (notif_debug)
7577 fprintf_unfiltered (gdb_stdlog,
7578 "notif: process: '%s' ack pending event\n",
7579 nc->name);
7580
7581 /* acknowledge */
7582 nc->ack (this, nc, rs->buf.data (),
7583 rs->notif_state->pending_event[nc->id]);
7584 rs->notif_state->pending_event[nc->id] = NULL;
7585
7586 while (1)
7587 {
7588 getpkt (&rs->buf, 0);
7589 if (strcmp (rs->buf.data (), "OK") == 0)
7590 break;
7591 else
7592 remote_notif_ack (this, nc, rs->buf.data ());
7593 }
7594 }
7595 else
7596 {
7597 if (notif_debug)
7598 fprintf_unfiltered (gdb_stdlog,
7599 "notif: process: '%s' no pending reply\n",
7600 nc->name);
7601 }
7602 }
7603
7604 /* Wrapper around remote_target::remote_notif_get_pending_events to
7605 avoid having to export the whole remote_target class. */
7606
7607 void
7608 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7609 {
7610 remote->remote_notif_get_pending_events (nc);
7611 }
7612
7613 /* Called when it is decided that STOP_REPLY holds the info of the
7614 event that is to be returned to the core. This function always
7615 destroys STOP_REPLY. */
7616
7617 ptid_t
7618 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7619 struct target_waitstatus *status)
7620 {
7621 ptid_t ptid;
7622
7623 *status = stop_reply->ws;
7624 ptid = stop_reply->ptid;
7625
7626 /* If no thread/process was reported by the stub, assume the current
7627 inferior. */
7628 if (ptid == null_ptid)
7629 ptid = inferior_ptid;
7630
7631 if (status->kind != TARGET_WAITKIND_EXITED
7632 && status->kind != TARGET_WAITKIND_SIGNALLED
7633 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7634 {
7635 /* Expedited registers. */
7636 if (!stop_reply->regcache.empty ())
7637 {
7638 struct regcache *regcache
7639 = get_thread_arch_regcache (ptid, stop_reply->arch);
7640
7641 for (cached_reg_t &reg : stop_reply->regcache)
7642 {
7643 regcache->raw_supply (reg.num, reg.data);
7644 xfree (reg.data);
7645 }
7646
7647 stop_reply->regcache.clear ();
7648 }
7649
7650 remote_notice_new_inferior (ptid, 0);
7651 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7652 remote_thr->core = stop_reply->core;
7653 remote_thr->stop_reason = stop_reply->stop_reason;
7654 remote_thr->watch_data_address = stop_reply->watch_data_address;
7655 remote_thr->vcont_resumed = 0;
7656 }
7657
7658 delete stop_reply;
7659 return ptid;
7660 }
7661
7662 /* The non-stop mode version of target_wait. */
7663
7664 ptid_t
7665 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7666 {
7667 struct remote_state *rs = get_remote_state ();
7668 struct stop_reply *stop_reply;
7669 int ret;
7670 int is_notif = 0;
7671
7672 /* If in non-stop mode, get out of getpkt even if a
7673 notification is received. */
7674
7675 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7676 while (1)
7677 {
7678 if (ret != -1 && !is_notif)
7679 switch (rs->buf[0])
7680 {
7681 case 'E': /* Error of some sort. */
7682 /* We're out of sync with the target now. Did it continue
7683 or not? We can't tell which thread it was in non-stop,
7684 so just ignore this. */
7685 warning (_("Remote failure reply: %s"), rs->buf.data ());
7686 break;
7687 case 'O': /* Console output. */
7688 remote_console_output (&rs->buf[1]);
7689 break;
7690 default:
7691 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7692 break;
7693 }
7694
7695 /* Acknowledge a pending stop reply that may have arrived in the
7696 mean time. */
7697 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7698 remote_notif_get_pending_events (&notif_client_stop);
7699
7700 /* If indeed we noticed a stop reply, we're done. */
7701 stop_reply = queued_stop_reply (ptid);
7702 if (stop_reply != NULL)
7703 return process_stop_reply (stop_reply, status);
7704
7705 /* Still no event. If we're just polling for an event, then
7706 return to the event loop. */
7707 if (options & TARGET_WNOHANG)
7708 {
7709 status->kind = TARGET_WAITKIND_IGNORE;
7710 return minus_one_ptid;
7711 }
7712
7713 /* Otherwise do a blocking wait. */
7714 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7715 }
7716 }
7717
7718 /* Wait until the remote machine stops, then return, storing status in
7719 STATUS just as `wait' would. */
7720
7721 ptid_t
7722 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7723 {
7724 struct remote_state *rs = get_remote_state ();
7725 ptid_t event_ptid = null_ptid;
7726 char *buf;
7727 struct stop_reply *stop_reply;
7728
7729 again:
7730
7731 status->kind = TARGET_WAITKIND_IGNORE;
7732 status->value.integer = 0;
7733
7734 stop_reply = queued_stop_reply (ptid);
7735 if (stop_reply != NULL)
7736 return process_stop_reply (stop_reply, status);
7737
7738 if (rs->cached_wait_status)
7739 /* Use the cached wait status, but only once. */
7740 rs->cached_wait_status = 0;
7741 else
7742 {
7743 int ret;
7744 int is_notif;
7745 int forever = ((options & TARGET_WNOHANG) == 0
7746 && rs->wait_forever_enabled_p);
7747
7748 if (!rs->waiting_for_stop_reply)
7749 {
7750 status->kind = TARGET_WAITKIND_NO_RESUMED;
7751 return minus_one_ptid;
7752 }
7753
7754 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7755 _never_ wait for ever -> test on target_is_async_p().
7756 However, before we do that we need to ensure that the caller
7757 knows how to take the target into/out of async mode. */
7758 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7759
7760 /* GDB gets a notification. Return to core as this event is
7761 not interesting. */
7762 if (ret != -1 && is_notif)
7763 return minus_one_ptid;
7764
7765 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7766 return minus_one_ptid;
7767 }
7768
7769 buf = rs->buf.data ();
7770
7771 /* Assume that the target has acknowledged Ctrl-C unless we receive
7772 an 'F' or 'O' packet. */
7773 if (buf[0] != 'F' && buf[0] != 'O')
7774 rs->ctrlc_pending_p = 0;
7775
7776 switch (buf[0])
7777 {
7778 case 'E': /* Error of some sort. */
7779 /* We're out of sync with the target now. Did it continue or
7780 not? Not is more likely, so report a stop. */
7781 rs->waiting_for_stop_reply = 0;
7782
7783 warning (_("Remote failure reply: %s"), buf);
7784 status->kind = TARGET_WAITKIND_STOPPED;
7785 status->value.sig = GDB_SIGNAL_0;
7786 break;
7787 case 'F': /* File-I/O request. */
7788 /* GDB may access the inferior memory while handling the File-I/O
7789 request, but we don't want GDB accessing memory while waiting
7790 for a stop reply. See the comments in putpkt_binary. Set
7791 waiting_for_stop_reply to 0 temporarily. */
7792 rs->waiting_for_stop_reply = 0;
7793 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7794 rs->ctrlc_pending_p = 0;
7795 /* GDB handled the File-I/O request, and the target is running
7796 again. Keep waiting for events. */
7797 rs->waiting_for_stop_reply = 1;
7798 break;
7799 case 'N': case 'T': case 'S': case 'X': case 'W':
7800 {
7801 /* There is a stop reply to handle. */
7802 rs->waiting_for_stop_reply = 0;
7803
7804 stop_reply
7805 = (struct stop_reply *) remote_notif_parse (this,
7806 &notif_client_stop,
7807 rs->buf.data ());
7808
7809 event_ptid = process_stop_reply (stop_reply, status);
7810 break;
7811 }
7812 case 'O': /* Console output. */
7813 remote_console_output (buf + 1);
7814 break;
7815 case '\0':
7816 if (rs->last_sent_signal != GDB_SIGNAL_0)
7817 {
7818 /* Zero length reply means that we tried 'S' or 'C' and the
7819 remote system doesn't support it. */
7820 target_terminal::ours_for_output ();
7821 printf_filtered
7822 ("Can't send signals to this remote system. %s not sent.\n",
7823 gdb_signal_to_name (rs->last_sent_signal));
7824 rs->last_sent_signal = GDB_SIGNAL_0;
7825 target_terminal::inferior ();
7826
7827 strcpy (buf, rs->last_sent_step ? "s" : "c");
7828 putpkt (buf);
7829 break;
7830 }
7831 /* fallthrough */
7832 default:
7833 warning (_("Invalid remote reply: %s"), buf);
7834 break;
7835 }
7836
7837 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7838 return minus_one_ptid;
7839 else if (status->kind == TARGET_WAITKIND_IGNORE)
7840 {
7841 /* Nothing interesting happened. If we're doing a non-blocking
7842 poll, we're done. Otherwise, go back to waiting. */
7843 if (options & TARGET_WNOHANG)
7844 return minus_one_ptid;
7845 else
7846 goto again;
7847 }
7848 else if (status->kind != TARGET_WAITKIND_EXITED
7849 && status->kind != TARGET_WAITKIND_SIGNALLED)
7850 {
7851 if (event_ptid != null_ptid)
7852 record_currthread (rs, event_ptid);
7853 else
7854 event_ptid = inferior_ptid;
7855 }
7856 else
7857 /* A process exit. Invalidate our notion of current thread. */
7858 record_currthread (rs, minus_one_ptid);
7859
7860 return event_ptid;
7861 }
7862
7863 /* Wait until the remote machine stops, then return, storing status in
7864 STATUS just as `wait' would. */
7865
7866 ptid_t
7867 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7868 {
7869 ptid_t event_ptid;
7870
7871 if (target_is_non_stop_p ())
7872 event_ptid = wait_ns (ptid, status, options);
7873 else
7874 event_ptid = wait_as (ptid, status, options);
7875
7876 if (target_is_async_p ())
7877 {
7878 remote_state *rs = get_remote_state ();
7879
7880 /* If there are are events left in the queue tell the event loop
7881 to return here. */
7882 if (!rs->stop_reply_queue.empty ())
7883 mark_async_event_handler (rs->remote_async_inferior_event_token);
7884 }
7885
7886 return event_ptid;
7887 }
7888
7889 /* Fetch a single register using a 'p' packet. */
7890
7891 int
7892 remote_target::fetch_register_using_p (struct regcache *regcache,
7893 packet_reg *reg)
7894 {
7895 struct gdbarch *gdbarch = regcache->arch ();
7896 struct remote_state *rs = get_remote_state ();
7897 char *buf, *p;
7898 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7899 int i;
7900
7901 if (packet_support (PACKET_p) == PACKET_DISABLE)
7902 return 0;
7903
7904 if (reg->pnum == -1)
7905 return 0;
7906
7907 p = rs->buf.data ();
7908 *p++ = 'p';
7909 p += hexnumstr (p, reg->pnum);
7910 *p++ = '\0';
7911 putpkt (rs->buf);
7912 getpkt (&rs->buf, 0);
7913
7914 buf = rs->buf.data ();
7915
7916 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7917 {
7918 case PACKET_OK:
7919 break;
7920 case PACKET_UNKNOWN:
7921 return 0;
7922 case PACKET_ERROR:
7923 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7924 gdbarch_register_name (regcache->arch (),
7925 reg->regnum),
7926 buf);
7927 }
7928
7929 /* If this register is unfetchable, tell the regcache. */
7930 if (buf[0] == 'x')
7931 {
7932 regcache->raw_supply (reg->regnum, NULL);
7933 return 1;
7934 }
7935
7936 /* Otherwise, parse and supply the value. */
7937 p = buf;
7938 i = 0;
7939 while (p[0] != 0)
7940 {
7941 if (p[1] == 0)
7942 error (_("fetch_register_using_p: early buf termination"));
7943
7944 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7945 p += 2;
7946 }
7947 regcache->raw_supply (reg->regnum, regp);
7948 return 1;
7949 }
7950
7951 /* Fetch the registers included in the target's 'g' packet. */
7952
7953 int
7954 remote_target::send_g_packet ()
7955 {
7956 struct remote_state *rs = get_remote_state ();
7957 int buf_len;
7958
7959 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7960 putpkt (rs->buf);
7961 getpkt (&rs->buf, 0);
7962 if (packet_check_result (rs->buf) == PACKET_ERROR)
7963 error (_("Could not read registers; remote failure reply '%s'"),
7964 rs->buf.data ());
7965
7966 /* We can get out of synch in various cases. If the first character
7967 in the buffer is not a hex character, assume that has happened
7968 and try to fetch another packet to read. */
7969 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7970 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7971 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7972 && rs->buf[0] != 'x') /* New: unavailable register value. */
7973 {
7974 if (remote_debug)
7975 fprintf_unfiltered (gdb_stdlog,
7976 "Bad register packet; fetching a new packet\n");
7977 getpkt (&rs->buf, 0);
7978 }
7979
7980 buf_len = strlen (rs->buf.data ());
7981
7982 /* Sanity check the received packet. */
7983 if (buf_len % 2 != 0)
7984 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7985
7986 return buf_len / 2;
7987 }
7988
7989 void
7990 remote_target::process_g_packet (struct regcache *regcache)
7991 {
7992 struct gdbarch *gdbarch = regcache->arch ();
7993 struct remote_state *rs = get_remote_state ();
7994 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7995 int i, buf_len;
7996 char *p;
7997 char *regs;
7998
7999 buf_len = strlen (rs->buf.data ());
8000
8001 /* Further sanity checks, with knowledge of the architecture. */
8002 if (buf_len > 2 * rsa->sizeof_g_packet)
8003 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8004 "bytes): %s"),
8005 rsa->sizeof_g_packet, buf_len / 2,
8006 rs->buf.data ());
8007
8008 /* Save the size of the packet sent to us by the target. It is used
8009 as a heuristic when determining the max size of packets that the
8010 target can safely receive. */
8011 if (rsa->actual_register_packet_size == 0)
8012 rsa->actual_register_packet_size = buf_len;
8013
8014 /* If this is smaller than we guessed the 'g' packet would be,
8015 update our records. A 'g' reply that doesn't include a register's
8016 value implies either that the register is not available, or that
8017 the 'p' packet must be used. */
8018 if (buf_len < 2 * rsa->sizeof_g_packet)
8019 {
8020 long sizeof_g_packet = buf_len / 2;
8021
8022 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8023 {
8024 long offset = rsa->regs[i].offset;
8025 long reg_size = register_size (gdbarch, i);
8026
8027 if (rsa->regs[i].pnum == -1)
8028 continue;
8029
8030 if (offset >= sizeof_g_packet)
8031 rsa->regs[i].in_g_packet = 0;
8032 else if (offset + reg_size > sizeof_g_packet)
8033 error (_("Truncated register %d in remote 'g' packet"), i);
8034 else
8035 rsa->regs[i].in_g_packet = 1;
8036 }
8037
8038 /* Looks valid enough, we can assume this is the correct length
8039 for a 'g' packet. It's important not to adjust
8040 rsa->sizeof_g_packet if we have truncated registers otherwise
8041 this "if" won't be run the next time the method is called
8042 with a packet of the same size and one of the internal errors
8043 below will trigger instead. */
8044 rsa->sizeof_g_packet = sizeof_g_packet;
8045 }
8046
8047 regs = (char *) alloca (rsa->sizeof_g_packet);
8048
8049 /* Unimplemented registers read as all bits zero. */
8050 memset (regs, 0, rsa->sizeof_g_packet);
8051
8052 /* Reply describes registers byte by byte, each byte encoded as two
8053 hex characters. Suck them all up, then supply them to the
8054 register cacheing/storage mechanism. */
8055
8056 p = rs->buf.data ();
8057 for (i = 0; i < rsa->sizeof_g_packet; i++)
8058 {
8059 if (p[0] == 0 || p[1] == 0)
8060 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8061 internal_error (__FILE__, __LINE__,
8062 _("unexpected end of 'g' packet reply"));
8063
8064 if (p[0] == 'x' && p[1] == 'x')
8065 regs[i] = 0; /* 'x' */
8066 else
8067 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8068 p += 2;
8069 }
8070
8071 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8072 {
8073 struct packet_reg *r = &rsa->regs[i];
8074 long reg_size = register_size (gdbarch, i);
8075
8076 if (r->in_g_packet)
8077 {
8078 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8079 /* This shouldn't happen - we adjusted in_g_packet above. */
8080 internal_error (__FILE__, __LINE__,
8081 _("unexpected end of 'g' packet reply"));
8082 else if (rs->buf[r->offset * 2] == 'x')
8083 {
8084 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8085 /* The register isn't available, mark it as such (at
8086 the same time setting the value to zero). */
8087 regcache->raw_supply (r->regnum, NULL);
8088 }
8089 else
8090 regcache->raw_supply (r->regnum, regs + r->offset);
8091 }
8092 }
8093 }
8094
8095 void
8096 remote_target::fetch_registers_using_g (struct regcache *regcache)
8097 {
8098 send_g_packet ();
8099 process_g_packet (regcache);
8100 }
8101
8102 /* Make the remote selected traceframe match GDB's selected
8103 traceframe. */
8104
8105 void
8106 remote_target::set_remote_traceframe ()
8107 {
8108 int newnum;
8109 struct remote_state *rs = get_remote_state ();
8110
8111 if (rs->remote_traceframe_number == get_traceframe_number ())
8112 return;
8113
8114 /* Avoid recursion, remote_trace_find calls us again. */
8115 rs->remote_traceframe_number = get_traceframe_number ();
8116
8117 newnum = target_trace_find (tfind_number,
8118 get_traceframe_number (), 0, 0, NULL);
8119
8120 /* Should not happen. If it does, all bets are off. */
8121 if (newnum != get_traceframe_number ())
8122 warning (_("could not set remote traceframe"));
8123 }
8124
8125 void
8126 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8127 {
8128 struct gdbarch *gdbarch = regcache->arch ();
8129 struct remote_state *rs = get_remote_state ();
8130 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8131 int i;
8132
8133 set_remote_traceframe ();
8134 set_general_thread (regcache->ptid ());
8135
8136 if (regnum >= 0)
8137 {
8138 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8139
8140 gdb_assert (reg != NULL);
8141
8142 /* If this register might be in the 'g' packet, try that first -
8143 we are likely to read more than one register. If this is the
8144 first 'g' packet, we might be overly optimistic about its
8145 contents, so fall back to 'p'. */
8146 if (reg->in_g_packet)
8147 {
8148 fetch_registers_using_g (regcache);
8149 if (reg->in_g_packet)
8150 return;
8151 }
8152
8153 if (fetch_register_using_p (regcache, reg))
8154 return;
8155
8156 /* This register is not available. */
8157 regcache->raw_supply (reg->regnum, NULL);
8158
8159 return;
8160 }
8161
8162 fetch_registers_using_g (regcache);
8163
8164 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8165 if (!rsa->regs[i].in_g_packet)
8166 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8167 {
8168 /* This register is not available. */
8169 regcache->raw_supply (i, NULL);
8170 }
8171 }
8172
8173 /* Prepare to store registers. Since we may send them all (using a
8174 'G' request), we have to read out the ones we don't want to change
8175 first. */
8176
8177 void
8178 remote_target::prepare_to_store (struct regcache *regcache)
8179 {
8180 struct remote_state *rs = get_remote_state ();
8181 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8182 int i;
8183
8184 /* Make sure the entire registers array is valid. */
8185 switch (packet_support (PACKET_P))
8186 {
8187 case PACKET_DISABLE:
8188 case PACKET_SUPPORT_UNKNOWN:
8189 /* Make sure all the necessary registers are cached. */
8190 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8191 if (rsa->regs[i].in_g_packet)
8192 regcache->raw_update (rsa->regs[i].regnum);
8193 break;
8194 case PACKET_ENABLE:
8195 break;
8196 }
8197 }
8198
8199 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8200 packet was not recognized. */
8201
8202 int
8203 remote_target::store_register_using_P (const struct regcache *regcache,
8204 packet_reg *reg)
8205 {
8206 struct gdbarch *gdbarch = regcache->arch ();
8207 struct remote_state *rs = get_remote_state ();
8208 /* Try storing a single register. */
8209 char *buf = rs->buf.data ();
8210 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8211 char *p;
8212
8213 if (packet_support (PACKET_P) == PACKET_DISABLE)
8214 return 0;
8215
8216 if (reg->pnum == -1)
8217 return 0;
8218
8219 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8220 p = buf + strlen (buf);
8221 regcache->raw_collect (reg->regnum, regp);
8222 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8223 putpkt (rs->buf);
8224 getpkt (&rs->buf, 0);
8225
8226 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8227 {
8228 case PACKET_OK:
8229 return 1;
8230 case PACKET_ERROR:
8231 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8232 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8233 case PACKET_UNKNOWN:
8234 return 0;
8235 default:
8236 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8237 }
8238 }
8239
8240 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8241 contents of the register cache buffer. FIXME: ignores errors. */
8242
8243 void
8244 remote_target::store_registers_using_G (const struct regcache *regcache)
8245 {
8246 struct remote_state *rs = get_remote_state ();
8247 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8248 gdb_byte *regs;
8249 char *p;
8250
8251 /* Extract all the registers in the regcache copying them into a
8252 local buffer. */
8253 {
8254 int i;
8255
8256 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8257 memset (regs, 0, rsa->sizeof_g_packet);
8258 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8259 {
8260 struct packet_reg *r = &rsa->regs[i];
8261
8262 if (r->in_g_packet)
8263 regcache->raw_collect (r->regnum, regs + r->offset);
8264 }
8265 }
8266
8267 /* Command describes registers byte by byte,
8268 each byte encoded as two hex characters. */
8269 p = rs->buf.data ();
8270 *p++ = 'G';
8271 bin2hex (regs, p, rsa->sizeof_g_packet);
8272 putpkt (rs->buf);
8273 getpkt (&rs->buf, 0);
8274 if (packet_check_result (rs->buf) == PACKET_ERROR)
8275 error (_("Could not write registers; remote failure reply '%s'"),
8276 rs->buf.data ());
8277 }
8278
8279 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8280 of the register cache buffer. FIXME: ignores errors. */
8281
8282 void
8283 remote_target::store_registers (struct regcache *regcache, int regnum)
8284 {
8285 struct gdbarch *gdbarch = regcache->arch ();
8286 struct remote_state *rs = get_remote_state ();
8287 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8288 int i;
8289
8290 set_remote_traceframe ();
8291 set_general_thread (regcache->ptid ());
8292
8293 if (regnum >= 0)
8294 {
8295 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8296
8297 gdb_assert (reg != NULL);
8298
8299 /* Always prefer to store registers using the 'P' packet if
8300 possible; we often change only a small number of registers.
8301 Sometimes we change a larger number; we'd need help from a
8302 higher layer to know to use 'G'. */
8303 if (store_register_using_P (regcache, reg))
8304 return;
8305
8306 /* For now, don't complain if we have no way to write the
8307 register. GDB loses track of unavailable registers too
8308 easily. Some day, this may be an error. We don't have
8309 any way to read the register, either... */
8310 if (!reg->in_g_packet)
8311 return;
8312
8313 store_registers_using_G (regcache);
8314 return;
8315 }
8316
8317 store_registers_using_G (regcache);
8318
8319 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8320 if (!rsa->regs[i].in_g_packet)
8321 if (!store_register_using_P (regcache, &rsa->regs[i]))
8322 /* See above for why we do not issue an error here. */
8323 continue;
8324 }
8325 \f
8326
8327 /* Return the number of hex digits in num. */
8328
8329 static int
8330 hexnumlen (ULONGEST num)
8331 {
8332 int i;
8333
8334 for (i = 0; num != 0; i++)
8335 num >>= 4;
8336
8337 return std::max (i, 1);
8338 }
8339
8340 /* Set BUF to the minimum number of hex digits representing NUM. */
8341
8342 static int
8343 hexnumstr (char *buf, ULONGEST num)
8344 {
8345 int len = hexnumlen (num);
8346
8347 return hexnumnstr (buf, num, len);
8348 }
8349
8350
8351 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8352
8353 static int
8354 hexnumnstr (char *buf, ULONGEST num, int width)
8355 {
8356 int i;
8357
8358 buf[width] = '\0';
8359
8360 for (i = width - 1; i >= 0; i--)
8361 {
8362 buf[i] = "0123456789abcdef"[(num & 0xf)];
8363 num >>= 4;
8364 }
8365
8366 return width;
8367 }
8368
8369 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8370
8371 static CORE_ADDR
8372 remote_address_masked (CORE_ADDR addr)
8373 {
8374 unsigned int address_size = remote_address_size;
8375
8376 /* If "remoteaddresssize" was not set, default to target address size. */
8377 if (!address_size)
8378 address_size = gdbarch_addr_bit (target_gdbarch ());
8379
8380 if (address_size > 0
8381 && address_size < (sizeof (ULONGEST) * 8))
8382 {
8383 /* Only create a mask when that mask can safely be constructed
8384 in a ULONGEST variable. */
8385 ULONGEST mask = 1;
8386
8387 mask = (mask << address_size) - 1;
8388 addr &= mask;
8389 }
8390 return addr;
8391 }
8392
8393 /* Determine whether the remote target supports binary downloading.
8394 This is accomplished by sending a no-op memory write of zero length
8395 to the target at the specified address. It does not suffice to send
8396 the whole packet, since many stubs strip the eighth bit and
8397 subsequently compute a wrong checksum, which causes real havoc with
8398 remote_write_bytes.
8399
8400 NOTE: This can still lose if the serial line is not eight-bit
8401 clean. In cases like this, the user should clear "remote
8402 X-packet". */
8403
8404 void
8405 remote_target::check_binary_download (CORE_ADDR addr)
8406 {
8407 struct remote_state *rs = get_remote_state ();
8408
8409 switch (packet_support (PACKET_X))
8410 {
8411 case PACKET_DISABLE:
8412 break;
8413 case PACKET_ENABLE:
8414 break;
8415 case PACKET_SUPPORT_UNKNOWN:
8416 {
8417 char *p;
8418
8419 p = rs->buf.data ();
8420 *p++ = 'X';
8421 p += hexnumstr (p, (ULONGEST) addr);
8422 *p++ = ',';
8423 p += hexnumstr (p, (ULONGEST) 0);
8424 *p++ = ':';
8425 *p = '\0';
8426
8427 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8428 getpkt (&rs->buf, 0);
8429
8430 if (rs->buf[0] == '\0')
8431 {
8432 if (remote_debug)
8433 fprintf_unfiltered (gdb_stdlog,
8434 "binary downloading NOT "
8435 "supported by target\n");
8436 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8437 }
8438 else
8439 {
8440 if (remote_debug)
8441 fprintf_unfiltered (gdb_stdlog,
8442 "binary downloading supported by target\n");
8443 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8444 }
8445 break;
8446 }
8447 }
8448 }
8449
8450 /* Helper function to resize the payload in order to try to get a good
8451 alignment. We try to write an amount of data such that the next write will
8452 start on an address aligned on REMOTE_ALIGN_WRITES. */
8453
8454 static int
8455 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8456 {
8457 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8458 }
8459
8460 /* Write memory data directly to the remote machine.
8461 This does not inform the data cache; the data cache uses this.
8462 HEADER is the starting part of the packet.
8463 MEMADDR is the address in the remote memory space.
8464 MYADDR is the address of the buffer in our space.
8465 LEN_UNITS is the number of addressable units to write.
8466 UNIT_SIZE is the length in bytes of an addressable unit.
8467 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8468 should send data as binary ('X'), or hex-encoded ('M').
8469
8470 The function creates packet of the form
8471 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8472
8473 where encoding of <DATA> is terminated by PACKET_FORMAT.
8474
8475 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8476 are omitted.
8477
8478 Return the transferred status, error or OK (an
8479 'enum target_xfer_status' value). Save the number of addressable units
8480 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8481
8482 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8483 exchange between gdb and the stub could look like (?? in place of the
8484 checksum):
8485
8486 -> $m1000,4#??
8487 <- aaaabbbbccccdddd
8488
8489 -> $M1000,3:eeeeffffeeee#??
8490 <- OK
8491
8492 -> $m1000,4#??
8493 <- eeeeffffeeeedddd */
8494
8495 target_xfer_status
8496 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8497 const gdb_byte *myaddr,
8498 ULONGEST len_units,
8499 int unit_size,
8500 ULONGEST *xfered_len_units,
8501 char packet_format, int use_length)
8502 {
8503 struct remote_state *rs = get_remote_state ();
8504 char *p;
8505 char *plen = NULL;
8506 int plenlen = 0;
8507 int todo_units;
8508 int units_written;
8509 int payload_capacity_bytes;
8510 int payload_length_bytes;
8511
8512 if (packet_format != 'X' && packet_format != 'M')
8513 internal_error (__FILE__, __LINE__,
8514 _("remote_write_bytes_aux: bad packet format"));
8515
8516 if (len_units == 0)
8517 return TARGET_XFER_EOF;
8518
8519 payload_capacity_bytes = get_memory_write_packet_size ();
8520
8521 /* The packet buffer will be large enough for the payload;
8522 get_memory_packet_size ensures this. */
8523 rs->buf[0] = '\0';
8524
8525 /* Compute the size of the actual payload by subtracting out the
8526 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8527
8528 payload_capacity_bytes -= strlen ("$,:#NN");
8529 if (!use_length)
8530 /* The comma won't be used. */
8531 payload_capacity_bytes += 1;
8532 payload_capacity_bytes -= strlen (header);
8533 payload_capacity_bytes -= hexnumlen (memaddr);
8534
8535 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8536
8537 strcat (rs->buf.data (), header);
8538 p = rs->buf.data () + strlen (header);
8539
8540 /* Compute a best guess of the number of bytes actually transfered. */
8541 if (packet_format == 'X')
8542 {
8543 /* Best guess at number of bytes that will fit. */
8544 todo_units = std::min (len_units,
8545 (ULONGEST) payload_capacity_bytes / unit_size);
8546 if (use_length)
8547 payload_capacity_bytes -= hexnumlen (todo_units);
8548 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8549 }
8550 else
8551 {
8552 /* Number of bytes that will fit. */
8553 todo_units
8554 = std::min (len_units,
8555 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8556 if (use_length)
8557 payload_capacity_bytes -= hexnumlen (todo_units);
8558 todo_units = std::min (todo_units,
8559 (payload_capacity_bytes / unit_size) / 2);
8560 }
8561
8562 if (todo_units <= 0)
8563 internal_error (__FILE__, __LINE__,
8564 _("minimum packet size too small to write data"));
8565
8566 /* If we already need another packet, then try to align the end
8567 of this packet to a useful boundary. */
8568 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8569 todo_units = align_for_efficient_write (todo_units, memaddr);
8570
8571 /* Append "<memaddr>". */
8572 memaddr = remote_address_masked (memaddr);
8573 p += hexnumstr (p, (ULONGEST) memaddr);
8574
8575 if (use_length)
8576 {
8577 /* Append ",". */
8578 *p++ = ',';
8579
8580 /* Append the length and retain its location and size. It may need to be
8581 adjusted once the packet body has been created. */
8582 plen = p;
8583 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8584 p += plenlen;
8585 }
8586
8587 /* Append ":". */
8588 *p++ = ':';
8589 *p = '\0';
8590
8591 /* Append the packet body. */
8592 if (packet_format == 'X')
8593 {
8594 /* Binary mode. Send target system values byte by byte, in
8595 increasing byte addresses. Only escape certain critical
8596 characters. */
8597 payload_length_bytes =
8598 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8599 &units_written, payload_capacity_bytes);
8600
8601 /* If not all TODO units fit, then we'll need another packet. Make
8602 a second try to keep the end of the packet aligned. Don't do
8603 this if the packet is tiny. */
8604 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8605 {
8606 int new_todo_units;
8607
8608 new_todo_units = align_for_efficient_write (units_written, memaddr);
8609
8610 if (new_todo_units != units_written)
8611 payload_length_bytes =
8612 remote_escape_output (myaddr, new_todo_units, unit_size,
8613 (gdb_byte *) p, &units_written,
8614 payload_capacity_bytes);
8615 }
8616
8617 p += payload_length_bytes;
8618 if (use_length && units_written < todo_units)
8619 {
8620 /* Escape chars have filled up the buffer prematurely,
8621 and we have actually sent fewer units than planned.
8622 Fix-up the length field of the packet. Use the same
8623 number of characters as before. */
8624 plen += hexnumnstr (plen, (ULONGEST) units_written,
8625 plenlen);
8626 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8627 }
8628 }
8629 else
8630 {
8631 /* Normal mode: Send target system values byte by byte, in
8632 increasing byte addresses. Each byte is encoded as a two hex
8633 value. */
8634 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8635 units_written = todo_units;
8636 }
8637
8638 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8639 getpkt (&rs->buf, 0);
8640
8641 if (rs->buf[0] == 'E')
8642 return TARGET_XFER_E_IO;
8643
8644 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8645 send fewer units than we'd planned. */
8646 *xfered_len_units = (ULONGEST) units_written;
8647 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8648 }
8649
8650 /* Write memory data directly to the remote machine.
8651 This does not inform the data cache; the data cache uses this.
8652 MEMADDR is the address in the remote memory space.
8653 MYADDR is the address of the buffer in our space.
8654 LEN is the number of bytes.
8655
8656 Return the transferred status, error or OK (an
8657 'enum target_xfer_status' value). Save the number of bytes
8658 transferred in *XFERED_LEN. Only transfer a single packet. */
8659
8660 target_xfer_status
8661 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8662 ULONGEST len, int unit_size,
8663 ULONGEST *xfered_len)
8664 {
8665 const char *packet_format = NULL;
8666
8667 /* Check whether the target supports binary download. */
8668 check_binary_download (memaddr);
8669
8670 switch (packet_support (PACKET_X))
8671 {
8672 case PACKET_ENABLE:
8673 packet_format = "X";
8674 break;
8675 case PACKET_DISABLE:
8676 packet_format = "M";
8677 break;
8678 case PACKET_SUPPORT_UNKNOWN:
8679 internal_error (__FILE__, __LINE__,
8680 _("remote_write_bytes: bad internal state"));
8681 default:
8682 internal_error (__FILE__, __LINE__, _("bad switch"));
8683 }
8684
8685 return remote_write_bytes_aux (packet_format,
8686 memaddr, myaddr, len, unit_size, xfered_len,
8687 packet_format[0], 1);
8688 }
8689
8690 /* Read memory data directly from the remote machine.
8691 This does not use the data cache; the data cache uses this.
8692 MEMADDR is the address in the remote memory space.
8693 MYADDR is the address of the buffer in our space.
8694 LEN_UNITS is the number of addressable memory units to read..
8695 UNIT_SIZE is the length in bytes of an addressable unit.
8696
8697 Return the transferred status, error or OK (an
8698 'enum target_xfer_status' value). Save the number of bytes
8699 transferred in *XFERED_LEN_UNITS.
8700
8701 See the comment of remote_write_bytes_aux for an example of
8702 memory read/write exchange between gdb and the stub. */
8703
8704 target_xfer_status
8705 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8706 ULONGEST len_units,
8707 int unit_size, ULONGEST *xfered_len_units)
8708 {
8709 struct remote_state *rs = get_remote_state ();
8710 int buf_size_bytes; /* Max size of packet output buffer. */
8711 char *p;
8712 int todo_units;
8713 int decoded_bytes;
8714
8715 buf_size_bytes = get_memory_read_packet_size ();
8716 /* The packet buffer will be large enough for the payload;
8717 get_memory_packet_size ensures this. */
8718
8719 /* Number of units that will fit. */
8720 todo_units = std::min (len_units,
8721 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8722
8723 /* Construct "m"<memaddr>","<len>". */
8724 memaddr = remote_address_masked (memaddr);
8725 p = rs->buf.data ();
8726 *p++ = 'm';
8727 p += hexnumstr (p, (ULONGEST) memaddr);
8728 *p++ = ',';
8729 p += hexnumstr (p, (ULONGEST) todo_units);
8730 *p = '\0';
8731 putpkt (rs->buf);
8732 getpkt (&rs->buf, 0);
8733 if (rs->buf[0] == 'E'
8734 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8735 && rs->buf[3] == '\0')
8736 return TARGET_XFER_E_IO;
8737 /* Reply describes memory byte by byte, each byte encoded as two hex
8738 characters. */
8739 p = rs->buf.data ();
8740 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8741 /* Return what we have. Let higher layers handle partial reads. */
8742 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8743 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8744 }
8745
8746 /* Using the set of read-only target sections of remote, read live
8747 read-only memory.
8748
8749 For interface/parameters/return description see target.h,
8750 to_xfer_partial. */
8751
8752 target_xfer_status
8753 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8754 ULONGEST memaddr,
8755 ULONGEST len,
8756 int unit_size,
8757 ULONGEST *xfered_len)
8758 {
8759 struct target_section *secp;
8760 struct target_section_table *table;
8761
8762 secp = target_section_by_addr (this, memaddr);
8763 if (secp != NULL
8764 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8765 secp->the_bfd_section)
8766 & SEC_READONLY))
8767 {
8768 struct target_section *p;
8769 ULONGEST memend = memaddr + len;
8770
8771 table = target_get_section_table (this);
8772
8773 for (p = table->sections; p < table->sections_end; p++)
8774 {
8775 if (memaddr >= p->addr)
8776 {
8777 if (memend <= p->endaddr)
8778 {
8779 /* Entire transfer is within this section. */
8780 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8781 xfered_len);
8782 }
8783 else if (memaddr >= p->endaddr)
8784 {
8785 /* This section ends before the transfer starts. */
8786 continue;
8787 }
8788 else
8789 {
8790 /* This section overlaps the transfer. Just do half. */
8791 len = p->endaddr - memaddr;
8792 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8793 xfered_len);
8794 }
8795 }
8796 }
8797 }
8798
8799 return TARGET_XFER_EOF;
8800 }
8801
8802 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8803 first if the requested memory is unavailable in traceframe.
8804 Otherwise, fall back to remote_read_bytes_1. */
8805
8806 target_xfer_status
8807 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8808 gdb_byte *myaddr, ULONGEST len, int unit_size,
8809 ULONGEST *xfered_len)
8810 {
8811 if (len == 0)
8812 return TARGET_XFER_EOF;
8813
8814 if (get_traceframe_number () != -1)
8815 {
8816 std::vector<mem_range> available;
8817
8818 /* If we fail to get the set of available memory, then the
8819 target does not support querying traceframe info, and so we
8820 attempt reading from the traceframe anyway (assuming the
8821 target implements the old QTro packet then). */
8822 if (traceframe_available_memory (&available, memaddr, len))
8823 {
8824 if (available.empty () || available[0].start != memaddr)
8825 {
8826 enum target_xfer_status res;
8827
8828 /* Don't read into the traceframe's available
8829 memory. */
8830 if (!available.empty ())
8831 {
8832 LONGEST oldlen = len;
8833
8834 len = available[0].start - memaddr;
8835 gdb_assert (len <= oldlen);
8836 }
8837
8838 /* This goes through the topmost target again. */
8839 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8840 len, unit_size, xfered_len);
8841 if (res == TARGET_XFER_OK)
8842 return TARGET_XFER_OK;
8843 else
8844 {
8845 /* No use trying further, we know some memory starting
8846 at MEMADDR isn't available. */
8847 *xfered_len = len;
8848 return (*xfered_len != 0) ?
8849 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8850 }
8851 }
8852
8853 /* Don't try to read more than how much is available, in
8854 case the target implements the deprecated QTro packet to
8855 cater for older GDBs (the target's knowledge of read-only
8856 sections may be outdated by now). */
8857 len = available[0].length;
8858 }
8859 }
8860
8861 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8862 }
8863
8864 \f
8865
8866 /* Sends a packet with content determined by the printf format string
8867 FORMAT and the remaining arguments, then gets the reply. Returns
8868 whether the packet was a success, a failure, or unknown. */
8869
8870 packet_result
8871 remote_target::remote_send_printf (const char *format, ...)
8872 {
8873 struct remote_state *rs = get_remote_state ();
8874 int max_size = get_remote_packet_size ();
8875 va_list ap;
8876
8877 va_start (ap, format);
8878
8879 rs->buf[0] = '\0';
8880 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8881
8882 va_end (ap);
8883
8884 if (size >= max_size)
8885 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8886
8887 if (putpkt (rs->buf) < 0)
8888 error (_("Communication problem with target."));
8889
8890 rs->buf[0] = '\0';
8891 getpkt (&rs->buf, 0);
8892
8893 return packet_check_result (rs->buf);
8894 }
8895
8896 /* Flash writing can take quite some time. We'll set
8897 effectively infinite timeout for flash operations.
8898 In future, we'll need to decide on a better approach. */
8899 static const int remote_flash_timeout = 1000;
8900
8901 void
8902 remote_target::flash_erase (ULONGEST address, LONGEST length)
8903 {
8904 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8905 enum packet_result ret;
8906 scoped_restore restore_timeout
8907 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8908
8909 ret = remote_send_printf ("vFlashErase:%s,%s",
8910 phex (address, addr_size),
8911 phex (length, 4));
8912 switch (ret)
8913 {
8914 case PACKET_UNKNOWN:
8915 error (_("Remote target does not support flash erase"));
8916 case PACKET_ERROR:
8917 error (_("Error erasing flash with vFlashErase packet"));
8918 default:
8919 break;
8920 }
8921 }
8922
8923 target_xfer_status
8924 remote_target::remote_flash_write (ULONGEST address,
8925 ULONGEST length, ULONGEST *xfered_len,
8926 const gdb_byte *data)
8927 {
8928 scoped_restore restore_timeout
8929 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8930 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8931 xfered_len,'X', 0);
8932 }
8933
8934 void
8935 remote_target::flash_done ()
8936 {
8937 int ret;
8938
8939 scoped_restore restore_timeout
8940 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8941
8942 ret = remote_send_printf ("vFlashDone");
8943
8944 switch (ret)
8945 {
8946 case PACKET_UNKNOWN:
8947 error (_("Remote target does not support vFlashDone"));
8948 case PACKET_ERROR:
8949 error (_("Error finishing flash operation"));
8950 default:
8951 break;
8952 }
8953 }
8954
8955 void
8956 remote_target::files_info ()
8957 {
8958 puts_filtered ("Debugging a target over a serial line.\n");
8959 }
8960 \f
8961 /* Stuff for dealing with the packets which are part of this protocol.
8962 See comment at top of file for details. */
8963
8964 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8965 error to higher layers. Called when a serial error is detected.
8966 The exception message is STRING, followed by a colon and a blank,
8967 the system error message for errno at function entry and final dot
8968 for output compatibility with throw_perror_with_name. */
8969
8970 static void
8971 unpush_and_perror (const char *string)
8972 {
8973 int saved_errno = errno;
8974
8975 remote_unpush_target ();
8976 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8977 safe_strerror (saved_errno));
8978 }
8979
8980 /* Read a single character from the remote end. The current quit
8981 handler is overridden to avoid quitting in the middle of packet
8982 sequence, as that would break communication with the remote server.
8983 See remote_serial_quit_handler for more detail. */
8984
8985 int
8986 remote_target::readchar (int timeout)
8987 {
8988 int ch;
8989 struct remote_state *rs = get_remote_state ();
8990
8991 {
8992 scoped_restore restore_quit_target
8993 = make_scoped_restore (&curr_quit_handler_target, this);
8994 scoped_restore restore_quit
8995 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8996
8997 rs->got_ctrlc_during_io = 0;
8998
8999 ch = serial_readchar (rs->remote_desc, timeout);
9000
9001 if (rs->got_ctrlc_during_io)
9002 set_quit_flag ();
9003 }
9004
9005 if (ch >= 0)
9006 return ch;
9007
9008 switch ((enum serial_rc) ch)
9009 {
9010 case SERIAL_EOF:
9011 remote_unpush_target ();
9012 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9013 /* no return */
9014 case SERIAL_ERROR:
9015 unpush_and_perror (_("Remote communication error. "
9016 "Target disconnected."));
9017 /* no return */
9018 case SERIAL_TIMEOUT:
9019 break;
9020 }
9021 return ch;
9022 }
9023
9024 /* Wrapper for serial_write that closes the target and throws if
9025 writing fails. The current quit handler is overridden to avoid
9026 quitting in the middle of packet sequence, as that would break
9027 communication with the remote server. See
9028 remote_serial_quit_handler for more detail. */
9029
9030 void
9031 remote_target::remote_serial_write (const char *str, int len)
9032 {
9033 struct remote_state *rs = get_remote_state ();
9034
9035 scoped_restore restore_quit_target
9036 = make_scoped_restore (&curr_quit_handler_target, this);
9037 scoped_restore restore_quit
9038 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9039
9040 rs->got_ctrlc_during_io = 0;
9041
9042 if (serial_write (rs->remote_desc, str, len))
9043 {
9044 unpush_and_perror (_("Remote communication error. "
9045 "Target disconnected."));
9046 }
9047
9048 if (rs->got_ctrlc_during_io)
9049 set_quit_flag ();
9050 }
9051
9052 /* Return a string representing an escaped version of BUF, of len N.
9053 E.g. \n is converted to \\n, \t to \\t, etc. */
9054
9055 static std::string
9056 escape_buffer (const char *buf, int n)
9057 {
9058 string_file stb;
9059
9060 stb.putstrn (buf, n, '\\');
9061 return std::move (stb.string ());
9062 }
9063
9064 /* Display a null-terminated packet on stdout, for debugging, using C
9065 string notation. */
9066
9067 static void
9068 print_packet (const char *buf)
9069 {
9070 puts_filtered ("\"");
9071 fputstr_filtered (buf, '"', gdb_stdout);
9072 puts_filtered ("\"");
9073 }
9074
9075 int
9076 remote_target::putpkt (const char *buf)
9077 {
9078 return putpkt_binary (buf, strlen (buf));
9079 }
9080
9081 /* Wrapper around remote_target::putpkt to avoid exporting
9082 remote_target. */
9083
9084 int
9085 putpkt (remote_target *remote, const char *buf)
9086 {
9087 return remote->putpkt (buf);
9088 }
9089
9090 /* Send a packet to the remote machine, with error checking. The data
9091 of the packet is in BUF. The string in BUF can be at most
9092 get_remote_packet_size () - 5 to account for the $, # and checksum,
9093 and for a possible /0 if we are debugging (remote_debug) and want
9094 to print the sent packet as a string. */
9095
9096 int
9097 remote_target::putpkt_binary (const char *buf, int cnt)
9098 {
9099 struct remote_state *rs = get_remote_state ();
9100 int i;
9101 unsigned char csum = 0;
9102 gdb::def_vector<char> data (cnt + 6);
9103 char *buf2 = data.data ();
9104
9105 int ch;
9106 int tcount = 0;
9107 char *p;
9108
9109 /* Catch cases like trying to read memory or listing threads while
9110 we're waiting for a stop reply. The remote server wouldn't be
9111 ready to handle this request, so we'd hang and timeout. We don't
9112 have to worry about this in synchronous mode, because in that
9113 case it's not possible to issue a command while the target is
9114 running. This is not a problem in non-stop mode, because in that
9115 case, the stub is always ready to process serial input. */
9116 if (!target_is_non_stop_p ()
9117 && target_is_async_p ()
9118 && rs->waiting_for_stop_reply)
9119 {
9120 error (_("Cannot execute this command while the target is running.\n"
9121 "Use the \"interrupt\" command to stop the target\n"
9122 "and then try again."));
9123 }
9124
9125 /* We're sending out a new packet. Make sure we don't look at a
9126 stale cached response. */
9127 rs->cached_wait_status = 0;
9128
9129 /* Copy the packet into buffer BUF2, encapsulating it
9130 and giving it a checksum. */
9131
9132 p = buf2;
9133 *p++ = '$';
9134
9135 for (i = 0; i < cnt; i++)
9136 {
9137 csum += buf[i];
9138 *p++ = buf[i];
9139 }
9140 *p++ = '#';
9141 *p++ = tohex ((csum >> 4) & 0xf);
9142 *p++ = tohex (csum & 0xf);
9143
9144 /* Send it over and over until we get a positive ack. */
9145
9146 while (1)
9147 {
9148 int started_error_output = 0;
9149
9150 if (remote_debug)
9151 {
9152 *p = '\0';
9153
9154 int len = (int) (p - buf2);
9155
9156 std::string str
9157 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9158
9159 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9160
9161 if (len > REMOTE_DEBUG_MAX_CHAR)
9162 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9163 len - REMOTE_DEBUG_MAX_CHAR);
9164
9165 fprintf_unfiltered (gdb_stdlog, "...");
9166
9167 gdb_flush (gdb_stdlog);
9168 }
9169 remote_serial_write (buf2, p - buf2);
9170
9171 /* If this is a no acks version of the remote protocol, send the
9172 packet and move on. */
9173 if (rs->noack_mode)
9174 break;
9175
9176 /* Read until either a timeout occurs (-2) or '+' is read.
9177 Handle any notification that arrives in the mean time. */
9178 while (1)
9179 {
9180 ch = readchar (remote_timeout);
9181
9182 if (remote_debug)
9183 {
9184 switch (ch)
9185 {
9186 case '+':
9187 case '-':
9188 case SERIAL_TIMEOUT:
9189 case '$':
9190 case '%':
9191 if (started_error_output)
9192 {
9193 putchar_unfiltered ('\n');
9194 started_error_output = 0;
9195 }
9196 }
9197 }
9198
9199 switch (ch)
9200 {
9201 case '+':
9202 if (remote_debug)
9203 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9204 return 1;
9205 case '-':
9206 if (remote_debug)
9207 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9208 /* FALLTHROUGH */
9209 case SERIAL_TIMEOUT:
9210 tcount++;
9211 if (tcount > 3)
9212 return 0;
9213 break; /* Retransmit buffer. */
9214 case '$':
9215 {
9216 if (remote_debug)
9217 fprintf_unfiltered (gdb_stdlog,
9218 "Packet instead of Ack, ignoring it\n");
9219 /* It's probably an old response sent because an ACK
9220 was lost. Gobble up the packet and ack it so it
9221 doesn't get retransmitted when we resend this
9222 packet. */
9223 skip_frame ();
9224 remote_serial_write ("+", 1);
9225 continue; /* Now, go look for +. */
9226 }
9227
9228 case '%':
9229 {
9230 int val;
9231
9232 /* If we got a notification, handle it, and go back to looking
9233 for an ack. */
9234 /* We've found the start of a notification. Now
9235 collect the data. */
9236 val = read_frame (&rs->buf);
9237 if (val >= 0)
9238 {
9239 if (remote_debug)
9240 {
9241 std::string str = escape_buffer (rs->buf.data (), val);
9242
9243 fprintf_unfiltered (gdb_stdlog,
9244 " Notification received: %s\n",
9245 str.c_str ());
9246 }
9247 handle_notification (rs->notif_state, rs->buf.data ());
9248 /* We're in sync now, rewait for the ack. */
9249 tcount = 0;
9250 }
9251 else
9252 {
9253 if (remote_debug)
9254 {
9255 if (!started_error_output)
9256 {
9257 started_error_output = 1;
9258 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9259 }
9260 fputc_unfiltered (ch & 0177, gdb_stdlog);
9261 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9262 }
9263 }
9264 continue;
9265 }
9266 /* fall-through */
9267 default:
9268 if (remote_debug)
9269 {
9270 if (!started_error_output)
9271 {
9272 started_error_output = 1;
9273 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9274 }
9275 fputc_unfiltered (ch & 0177, gdb_stdlog);
9276 }
9277 continue;
9278 }
9279 break; /* Here to retransmit. */
9280 }
9281
9282 #if 0
9283 /* This is wrong. If doing a long backtrace, the user should be
9284 able to get out next time we call QUIT, without anything as
9285 violent as interrupt_query. If we want to provide a way out of
9286 here without getting to the next QUIT, it should be based on
9287 hitting ^C twice as in remote_wait. */
9288 if (quit_flag)
9289 {
9290 quit_flag = 0;
9291 interrupt_query ();
9292 }
9293 #endif
9294 }
9295
9296 return 0;
9297 }
9298
9299 /* Come here after finding the start of a frame when we expected an
9300 ack. Do our best to discard the rest of this packet. */
9301
9302 void
9303 remote_target::skip_frame ()
9304 {
9305 int c;
9306
9307 while (1)
9308 {
9309 c = readchar (remote_timeout);
9310 switch (c)
9311 {
9312 case SERIAL_TIMEOUT:
9313 /* Nothing we can do. */
9314 return;
9315 case '#':
9316 /* Discard the two bytes of checksum and stop. */
9317 c = readchar (remote_timeout);
9318 if (c >= 0)
9319 c = readchar (remote_timeout);
9320
9321 return;
9322 case '*': /* Run length encoding. */
9323 /* Discard the repeat count. */
9324 c = readchar (remote_timeout);
9325 if (c < 0)
9326 return;
9327 break;
9328 default:
9329 /* A regular character. */
9330 break;
9331 }
9332 }
9333 }
9334
9335 /* Come here after finding the start of the frame. Collect the rest
9336 into *BUF, verifying the checksum, length, and handling run-length
9337 compression. NUL terminate the buffer. If there is not enough room,
9338 expand *BUF.
9339
9340 Returns -1 on error, number of characters in buffer (ignoring the
9341 trailing NULL) on success. (could be extended to return one of the
9342 SERIAL status indications). */
9343
9344 long
9345 remote_target::read_frame (gdb::char_vector *buf_p)
9346 {
9347 unsigned char csum;
9348 long bc;
9349 int c;
9350 char *buf = buf_p->data ();
9351 struct remote_state *rs = get_remote_state ();
9352
9353 csum = 0;
9354 bc = 0;
9355
9356 while (1)
9357 {
9358 c = readchar (remote_timeout);
9359 switch (c)
9360 {
9361 case SERIAL_TIMEOUT:
9362 if (remote_debug)
9363 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9364 return -1;
9365 case '$':
9366 if (remote_debug)
9367 fputs_filtered ("Saw new packet start in middle of old one\n",
9368 gdb_stdlog);
9369 return -1; /* Start a new packet, count retries. */
9370 case '#':
9371 {
9372 unsigned char pktcsum;
9373 int check_0 = 0;
9374 int check_1 = 0;
9375
9376 buf[bc] = '\0';
9377
9378 check_0 = readchar (remote_timeout);
9379 if (check_0 >= 0)
9380 check_1 = readchar (remote_timeout);
9381
9382 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9383 {
9384 if (remote_debug)
9385 fputs_filtered ("Timeout in checksum, retrying\n",
9386 gdb_stdlog);
9387 return -1;
9388 }
9389 else if (check_0 < 0 || check_1 < 0)
9390 {
9391 if (remote_debug)
9392 fputs_filtered ("Communication error in checksum\n",
9393 gdb_stdlog);
9394 return -1;
9395 }
9396
9397 /* Don't recompute the checksum; with no ack packets we
9398 don't have any way to indicate a packet retransmission
9399 is necessary. */
9400 if (rs->noack_mode)
9401 return bc;
9402
9403 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9404 if (csum == pktcsum)
9405 return bc;
9406
9407 if (remote_debug)
9408 {
9409 std::string str = escape_buffer (buf, bc);
9410
9411 fprintf_unfiltered (gdb_stdlog,
9412 "Bad checksum, sentsum=0x%x, "
9413 "csum=0x%x, buf=%s\n",
9414 pktcsum, csum, str.c_str ());
9415 }
9416 /* Number of characters in buffer ignoring trailing
9417 NULL. */
9418 return -1;
9419 }
9420 case '*': /* Run length encoding. */
9421 {
9422 int repeat;
9423
9424 csum += c;
9425 c = readchar (remote_timeout);
9426 csum += c;
9427 repeat = c - ' ' + 3; /* Compute repeat count. */
9428
9429 /* The character before ``*'' is repeated. */
9430
9431 if (repeat > 0 && repeat <= 255 && bc > 0)
9432 {
9433 if (bc + repeat - 1 >= buf_p->size () - 1)
9434 {
9435 /* Make some more room in the buffer. */
9436 buf_p->resize (buf_p->size () + repeat);
9437 buf = buf_p->data ();
9438 }
9439
9440 memset (&buf[bc], buf[bc - 1], repeat);
9441 bc += repeat;
9442 continue;
9443 }
9444
9445 buf[bc] = '\0';
9446 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9447 return -1;
9448 }
9449 default:
9450 if (bc >= buf_p->size () - 1)
9451 {
9452 /* Make some more room in the buffer. */
9453 buf_p->resize (buf_p->size () * 2);
9454 buf = buf_p->data ();
9455 }
9456
9457 buf[bc++] = c;
9458 csum += c;
9459 continue;
9460 }
9461 }
9462 }
9463
9464 /* Read a packet from the remote machine, with error checking, and
9465 store it in *BUF. Resize *BUF if necessary to hold the result. If
9466 FOREVER, wait forever rather than timing out; this is used (in
9467 synchronous mode) to wait for a target that is is executing user
9468 code to stop. */
9469 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9470 don't have to change all the calls to getpkt to deal with the
9471 return value, because at the moment I don't know what the right
9472 thing to do it for those. */
9473
9474 void
9475 remote_target::getpkt (gdb::char_vector *buf, int forever)
9476 {
9477 getpkt_sane (buf, forever);
9478 }
9479
9480
9481 /* Read a packet from the remote machine, with error checking, and
9482 store it in *BUF. Resize *BUF if necessary to hold the result. If
9483 FOREVER, wait forever rather than timing out; this is used (in
9484 synchronous mode) to wait for a target that is is executing user
9485 code to stop. If FOREVER == 0, this function is allowed to time
9486 out gracefully and return an indication of this to the caller.
9487 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9488 consider receiving a notification enough reason to return to the
9489 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9490 holds a notification or not (a regular packet). */
9491
9492 int
9493 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9494 int forever, int expecting_notif,
9495 int *is_notif)
9496 {
9497 struct remote_state *rs = get_remote_state ();
9498 int c;
9499 int tries;
9500 int timeout;
9501 int val = -1;
9502
9503 /* We're reading a new response. Make sure we don't look at a
9504 previously cached response. */
9505 rs->cached_wait_status = 0;
9506
9507 strcpy (buf->data (), "timeout");
9508
9509 if (forever)
9510 timeout = watchdog > 0 ? watchdog : -1;
9511 else if (expecting_notif)
9512 timeout = 0; /* There should already be a char in the buffer. If
9513 not, bail out. */
9514 else
9515 timeout = remote_timeout;
9516
9517 #define MAX_TRIES 3
9518
9519 /* Process any number of notifications, and then return when
9520 we get a packet. */
9521 for (;;)
9522 {
9523 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9524 times. */
9525 for (tries = 1; tries <= MAX_TRIES; tries++)
9526 {
9527 /* This can loop forever if the remote side sends us
9528 characters continuously, but if it pauses, we'll get
9529 SERIAL_TIMEOUT from readchar because of timeout. Then
9530 we'll count that as a retry.
9531
9532 Note that even when forever is set, we will only wait
9533 forever prior to the start of a packet. After that, we
9534 expect characters to arrive at a brisk pace. They should
9535 show up within remote_timeout intervals. */
9536 do
9537 c = readchar (timeout);
9538 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9539
9540 if (c == SERIAL_TIMEOUT)
9541 {
9542 if (expecting_notif)
9543 return -1; /* Don't complain, it's normal to not get
9544 anything in this case. */
9545
9546 if (forever) /* Watchdog went off? Kill the target. */
9547 {
9548 remote_unpush_target ();
9549 throw_error (TARGET_CLOSE_ERROR,
9550 _("Watchdog timeout has expired. "
9551 "Target detached."));
9552 }
9553 if (remote_debug)
9554 fputs_filtered ("Timed out.\n", gdb_stdlog);
9555 }
9556 else
9557 {
9558 /* We've found the start of a packet or notification.
9559 Now collect the data. */
9560 val = read_frame (buf);
9561 if (val >= 0)
9562 break;
9563 }
9564
9565 remote_serial_write ("-", 1);
9566 }
9567
9568 if (tries > MAX_TRIES)
9569 {
9570 /* We have tried hard enough, and just can't receive the
9571 packet/notification. Give up. */
9572 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9573
9574 /* Skip the ack char if we're in no-ack mode. */
9575 if (!rs->noack_mode)
9576 remote_serial_write ("+", 1);
9577 return -1;
9578 }
9579
9580 /* If we got an ordinary packet, return that to our caller. */
9581 if (c == '$')
9582 {
9583 if (remote_debug)
9584 {
9585 std::string str
9586 = escape_buffer (buf->data (),
9587 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9588
9589 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9590 str.c_str ());
9591
9592 if (val > REMOTE_DEBUG_MAX_CHAR)
9593 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9594 val - REMOTE_DEBUG_MAX_CHAR);
9595
9596 fprintf_unfiltered (gdb_stdlog, "\n");
9597 }
9598
9599 /* Skip the ack char if we're in no-ack mode. */
9600 if (!rs->noack_mode)
9601 remote_serial_write ("+", 1);
9602 if (is_notif != NULL)
9603 *is_notif = 0;
9604 return val;
9605 }
9606
9607 /* If we got a notification, handle it, and go back to looking
9608 for a packet. */
9609 else
9610 {
9611 gdb_assert (c == '%');
9612
9613 if (remote_debug)
9614 {
9615 std::string str = escape_buffer (buf->data (), val);
9616
9617 fprintf_unfiltered (gdb_stdlog,
9618 " Notification received: %s\n",
9619 str.c_str ());
9620 }
9621 if (is_notif != NULL)
9622 *is_notif = 1;
9623
9624 handle_notification (rs->notif_state, buf->data ());
9625
9626 /* Notifications require no acknowledgement. */
9627
9628 if (expecting_notif)
9629 return val;
9630 }
9631 }
9632 }
9633
9634 int
9635 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9636 {
9637 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9638 }
9639
9640 int
9641 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9642 int *is_notif)
9643 {
9644 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9645 }
9646
9647 /* Kill any new fork children of process PID that haven't been
9648 processed by follow_fork. */
9649
9650 void
9651 remote_target::kill_new_fork_children (int pid)
9652 {
9653 remote_state *rs = get_remote_state ();
9654 struct notif_client *notif = &notif_client_stop;
9655
9656 /* Kill the fork child threads of any threads in process PID
9657 that are stopped at a fork event. */
9658 for (thread_info *thread : all_non_exited_threads ())
9659 {
9660 struct target_waitstatus *ws = &thread->pending_follow;
9661
9662 if (is_pending_fork_parent (ws, pid, thread->ptid))
9663 {
9664 int child_pid = ws->value.related_pid.pid ();
9665 int res;
9666
9667 res = remote_vkill (child_pid);
9668 if (res != 0)
9669 error (_("Can't kill fork child process %d"), child_pid);
9670 }
9671 }
9672
9673 /* Check for any pending fork events (not reported or processed yet)
9674 in process PID and kill those fork child threads as well. */
9675 remote_notif_get_pending_events (notif);
9676 for (auto &event : rs->stop_reply_queue)
9677 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9678 {
9679 int child_pid = event->ws.value.related_pid.pid ();
9680 int res;
9681
9682 res = remote_vkill (child_pid);
9683 if (res != 0)
9684 error (_("Can't kill fork child process %d"), child_pid);
9685 }
9686 }
9687
9688 \f
9689 /* Target hook to kill the current inferior. */
9690
9691 void
9692 remote_target::kill ()
9693 {
9694 int res = -1;
9695 int pid = inferior_ptid.pid ();
9696 struct remote_state *rs = get_remote_state ();
9697
9698 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9699 {
9700 /* If we're stopped while forking and we haven't followed yet,
9701 kill the child task. We need to do this before killing the
9702 parent task because if this is a vfork then the parent will
9703 be sleeping. */
9704 kill_new_fork_children (pid);
9705
9706 res = remote_vkill (pid);
9707 if (res == 0)
9708 {
9709 target_mourn_inferior (inferior_ptid);
9710 return;
9711 }
9712 }
9713
9714 /* If we are in 'target remote' mode and we are killing the only
9715 inferior, then we will tell gdbserver to exit and unpush the
9716 target. */
9717 if (res == -1 && !remote_multi_process_p (rs)
9718 && number_of_live_inferiors () == 1)
9719 {
9720 remote_kill_k ();
9721
9722 /* We've killed the remote end, we get to mourn it. If we are
9723 not in extended mode, mourning the inferior also unpushes
9724 remote_ops from the target stack, which closes the remote
9725 connection. */
9726 target_mourn_inferior (inferior_ptid);
9727
9728 return;
9729 }
9730
9731 error (_("Can't kill process"));
9732 }
9733
9734 /* Send a kill request to the target using the 'vKill' packet. */
9735
9736 int
9737 remote_target::remote_vkill (int pid)
9738 {
9739 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9740 return -1;
9741
9742 remote_state *rs = get_remote_state ();
9743
9744 /* Tell the remote target to detach. */
9745 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9746 putpkt (rs->buf);
9747 getpkt (&rs->buf, 0);
9748
9749 switch (packet_ok (rs->buf,
9750 &remote_protocol_packets[PACKET_vKill]))
9751 {
9752 case PACKET_OK:
9753 return 0;
9754 case PACKET_ERROR:
9755 return 1;
9756 case PACKET_UNKNOWN:
9757 return -1;
9758 default:
9759 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9760 }
9761 }
9762
9763 /* Send a kill request to the target using the 'k' packet. */
9764
9765 void
9766 remote_target::remote_kill_k ()
9767 {
9768 /* Catch errors so the user can quit from gdb even when we
9769 aren't on speaking terms with the remote system. */
9770 try
9771 {
9772 putpkt ("k");
9773 }
9774 catch (const gdb_exception_error &ex)
9775 {
9776 if (ex.error == TARGET_CLOSE_ERROR)
9777 {
9778 /* If we got an (EOF) error that caused the target
9779 to go away, then we're done, that's what we wanted.
9780 "k" is susceptible to cause a premature EOF, given
9781 that the remote server isn't actually required to
9782 reply to "k", and it can happen that it doesn't
9783 even get to reply ACK to the "k". */
9784 return;
9785 }
9786
9787 /* Otherwise, something went wrong. We didn't actually kill
9788 the target. Just propagate the exception, and let the
9789 user or higher layers decide what to do. */
9790 throw;
9791 }
9792 }
9793
9794 void
9795 remote_target::mourn_inferior ()
9796 {
9797 struct remote_state *rs = get_remote_state ();
9798
9799 /* We're no longer interested in notification events of an inferior
9800 that exited or was killed/detached. */
9801 discard_pending_stop_replies (current_inferior ());
9802
9803 /* In 'target remote' mode with one inferior, we close the connection. */
9804 if (!rs->extended && number_of_live_inferiors () <= 1)
9805 {
9806 unpush_target (this);
9807
9808 /* remote_close takes care of doing most of the clean up. */
9809 generic_mourn_inferior ();
9810 return;
9811 }
9812
9813 /* In case we got here due to an error, but we're going to stay
9814 connected. */
9815 rs->waiting_for_stop_reply = 0;
9816
9817 /* If the current general thread belonged to the process we just
9818 detached from or has exited, the remote side current general
9819 thread becomes undefined. Considering a case like this:
9820
9821 - We just got here due to a detach.
9822 - The process that we're detaching from happens to immediately
9823 report a global breakpoint being hit in non-stop mode, in the
9824 same thread we had selected before.
9825 - GDB attaches to this process again.
9826 - This event happens to be the next event we handle.
9827
9828 GDB would consider that the current general thread didn't need to
9829 be set on the stub side (with Hg), since for all it knew,
9830 GENERAL_THREAD hadn't changed.
9831
9832 Notice that although in all-stop mode, the remote server always
9833 sets the current thread to the thread reporting the stop event,
9834 that doesn't happen in non-stop mode; in non-stop, the stub *must
9835 not* change the current thread when reporting a breakpoint hit,
9836 due to the decoupling of event reporting and event handling.
9837
9838 To keep things simple, we always invalidate our notion of the
9839 current thread. */
9840 record_currthread (rs, minus_one_ptid);
9841
9842 /* Call common code to mark the inferior as not running. */
9843 generic_mourn_inferior ();
9844
9845 if (!have_inferiors ())
9846 {
9847 if (!remote_multi_process_p (rs))
9848 {
9849 /* Check whether the target is running now - some remote stubs
9850 automatically restart after kill. */
9851 putpkt ("?");
9852 getpkt (&rs->buf, 0);
9853
9854 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9855 {
9856 /* Assume that the target has been restarted. Set
9857 inferior_ptid so that bits of core GDB realizes
9858 there's something here, e.g., so that the user can
9859 say "kill" again. */
9860 inferior_ptid = magic_null_ptid;
9861 }
9862 }
9863 }
9864 }
9865
9866 bool
9867 extended_remote_target::supports_disable_randomization ()
9868 {
9869 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9870 }
9871
9872 void
9873 remote_target::extended_remote_disable_randomization (int val)
9874 {
9875 struct remote_state *rs = get_remote_state ();
9876 char *reply;
9877
9878 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9879 "QDisableRandomization:%x", val);
9880 putpkt (rs->buf);
9881 reply = remote_get_noisy_reply ();
9882 if (*reply == '\0')
9883 error (_("Target does not support QDisableRandomization."));
9884 if (strcmp (reply, "OK") != 0)
9885 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9886 }
9887
9888 int
9889 remote_target::extended_remote_run (const std::string &args)
9890 {
9891 struct remote_state *rs = get_remote_state ();
9892 int len;
9893 const char *remote_exec_file = get_remote_exec_file ();
9894
9895 /* If the user has disabled vRun support, or we have detected that
9896 support is not available, do not try it. */
9897 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9898 return -1;
9899
9900 strcpy (rs->buf.data (), "vRun;");
9901 len = strlen (rs->buf.data ());
9902
9903 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9904 error (_("Remote file name too long for run packet"));
9905 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9906 strlen (remote_exec_file));
9907
9908 if (!args.empty ())
9909 {
9910 int i;
9911
9912 gdb_argv argv (args.c_str ());
9913 for (i = 0; argv[i] != NULL; i++)
9914 {
9915 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9916 error (_("Argument list too long for run packet"));
9917 rs->buf[len++] = ';';
9918 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9919 strlen (argv[i]));
9920 }
9921 }
9922
9923 rs->buf[len++] = '\0';
9924
9925 putpkt (rs->buf);
9926 getpkt (&rs->buf, 0);
9927
9928 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9929 {
9930 case PACKET_OK:
9931 /* We have a wait response. All is well. */
9932 return 0;
9933 case PACKET_UNKNOWN:
9934 return -1;
9935 case PACKET_ERROR:
9936 if (remote_exec_file[0] == '\0')
9937 error (_("Running the default executable on the remote target failed; "
9938 "try \"set remote exec-file\"?"));
9939 else
9940 error (_("Running \"%s\" on the remote target failed"),
9941 remote_exec_file);
9942 default:
9943 gdb_assert_not_reached (_("bad switch"));
9944 }
9945 }
9946
9947 /* Helper function to send set/unset environment packets. ACTION is
9948 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9949 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9950 sent. */
9951
9952 void
9953 remote_target::send_environment_packet (const char *action,
9954 const char *packet,
9955 const char *value)
9956 {
9957 remote_state *rs = get_remote_state ();
9958
9959 /* Convert the environment variable to an hex string, which
9960 is the best format to be transmitted over the wire. */
9961 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9962 strlen (value));
9963
9964 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9965 "%s:%s", packet, encoded_value.c_str ());
9966
9967 putpkt (rs->buf);
9968 getpkt (&rs->buf, 0);
9969 if (strcmp (rs->buf.data (), "OK") != 0)
9970 warning (_("Unable to %s environment variable '%s' on remote."),
9971 action, value);
9972 }
9973
9974 /* Helper function to handle the QEnvironment* packets. */
9975
9976 void
9977 remote_target::extended_remote_environment_support ()
9978 {
9979 remote_state *rs = get_remote_state ();
9980
9981 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9982 {
9983 putpkt ("QEnvironmentReset");
9984 getpkt (&rs->buf, 0);
9985 if (strcmp (rs->buf.data (), "OK") != 0)
9986 warning (_("Unable to reset environment on remote."));
9987 }
9988
9989 gdb_environ *e = &current_inferior ()->environment;
9990
9991 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9992 for (const std::string &el : e->user_set_env ())
9993 send_environment_packet ("set", "QEnvironmentHexEncoded",
9994 el.c_str ());
9995
9996 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9997 for (const std::string &el : e->user_unset_env ())
9998 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9999 }
10000
10001 /* Helper function to set the current working directory for the
10002 inferior in the remote target. */
10003
10004 void
10005 remote_target::extended_remote_set_inferior_cwd ()
10006 {
10007 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10008 {
10009 const char *inferior_cwd = get_inferior_cwd ();
10010 remote_state *rs = get_remote_state ();
10011
10012 if (inferior_cwd != NULL)
10013 {
10014 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10015 strlen (inferior_cwd));
10016
10017 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10018 "QSetWorkingDir:%s", hexpath.c_str ());
10019 }
10020 else
10021 {
10022 /* An empty inferior_cwd means that the user wants us to
10023 reset the remote server's inferior's cwd. */
10024 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10025 "QSetWorkingDir:");
10026 }
10027
10028 putpkt (rs->buf);
10029 getpkt (&rs->buf, 0);
10030 if (packet_ok (rs->buf,
10031 &remote_protocol_packets[PACKET_QSetWorkingDir])
10032 != PACKET_OK)
10033 error (_("\
10034 Remote replied unexpectedly while setting the inferior's working\n\
10035 directory: %s"),
10036 rs->buf.data ());
10037
10038 }
10039 }
10040
10041 /* In the extended protocol we want to be able to do things like
10042 "run" and have them basically work as expected. So we need
10043 a special create_inferior function. We support changing the
10044 executable file and the command line arguments, but not the
10045 environment. */
10046
10047 void
10048 extended_remote_target::create_inferior (const char *exec_file,
10049 const std::string &args,
10050 char **env, int from_tty)
10051 {
10052 int run_worked;
10053 char *stop_reply;
10054 struct remote_state *rs = get_remote_state ();
10055 const char *remote_exec_file = get_remote_exec_file ();
10056
10057 /* If running asynchronously, register the target file descriptor
10058 with the event loop. */
10059 if (target_can_async_p ())
10060 target_async (1);
10061
10062 /* Disable address space randomization if requested (and supported). */
10063 if (supports_disable_randomization ())
10064 extended_remote_disable_randomization (disable_randomization);
10065
10066 /* If startup-with-shell is on, we inform gdbserver to start the
10067 remote inferior using a shell. */
10068 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10069 {
10070 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10071 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10072 putpkt (rs->buf);
10073 getpkt (&rs->buf, 0);
10074 if (strcmp (rs->buf.data (), "OK") != 0)
10075 error (_("\
10076 Remote replied unexpectedly while setting startup-with-shell: %s"),
10077 rs->buf.data ());
10078 }
10079
10080 extended_remote_environment_support ();
10081
10082 extended_remote_set_inferior_cwd ();
10083
10084 /* Now restart the remote server. */
10085 run_worked = extended_remote_run (args) != -1;
10086 if (!run_worked)
10087 {
10088 /* vRun was not supported. Fail if we need it to do what the
10089 user requested. */
10090 if (remote_exec_file[0])
10091 error (_("Remote target does not support \"set remote exec-file\""));
10092 if (!args.empty ())
10093 error (_("Remote target does not support \"set args\" or run ARGS"));
10094
10095 /* Fall back to "R". */
10096 extended_remote_restart ();
10097 }
10098
10099 /* vRun's success return is a stop reply. */
10100 stop_reply = run_worked ? rs->buf.data () : NULL;
10101 add_current_inferior_and_thread (stop_reply);
10102
10103 /* Get updated offsets, if the stub uses qOffsets. */
10104 get_offsets ();
10105 }
10106 \f
10107
10108 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10109 the list of conditions (in agent expression bytecode format), if any, the
10110 target needs to evaluate. The output is placed into the packet buffer
10111 started from BUF and ended at BUF_END. */
10112
10113 static int
10114 remote_add_target_side_condition (struct gdbarch *gdbarch,
10115 struct bp_target_info *bp_tgt, char *buf,
10116 char *buf_end)
10117 {
10118 if (bp_tgt->conditions.empty ())
10119 return 0;
10120
10121 buf += strlen (buf);
10122 xsnprintf (buf, buf_end - buf, "%s", ";");
10123 buf++;
10124
10125 /* Send conditions to the target. */
10126 for (agent_expr *aexpr : bp_tgt->conditions)
10127 {
10128 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10129 buf += strlen (buf);
10130 for (int i = 0; i < aexpr->len; ++i)
10131 buf = pack_hex_byte (buf, aexpr->buf[i]);
10132 *buf = '\0';
10133 }
10134 return 0;
10135 }
10136
10137 static void
10138 remote_add_target_side_commands (struct gdbarch *gdbarch,
10139 struct bp_target_info *bp_tgt, char *buf)
10140 {
10141 if (bp_tgt->tcommands.empty ())
10142 return;
10143
10144 buf += strlen (buf);
10145
10146 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10147 buf += strlen (buf);
10148
10149 /* Concatenate all the agent expressions that are commands into the
10150 cmds parameter. */
10151 for (agent_expr *aexpr : bp_tgt->tcommands)
10152 {
10153 sprintf (buf, "X%x,", aexpr->len);
10154 buf += strlen (buf);
10155 for (int i = 0; i < aexpr->len; ++i)
10156 buf = pack_hex_byte (buf, aexpr->buf[i]);
10157 *buf = '\0';
10158 }
10159 }
10160
10161 /* Insert a breakpoint. On targets that have software breakpoint
10162 support, we ask the remote target to do the work; on targets
10163 which don't, we insert a traditional memory breakpoint. */
10164
10165 int
10166 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10167 struct bp_target_info *bp_tgt)
10168 {
10169 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10170 If it succeeds, then set the support to PACKET_ENABLE. If it
10171 fails, and the user has explicitly requested the Z support then
10172 report an error, otherwise, mark it disabled and go on. */
10173
10174 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10175 {
10176 CORE_ADDR addr = bp_tgt->reqstd_address;
10177 struct remote_state *rs;
10178 char *p, *endbuf;
10179
10180 /* Make sure the remote is pointing at the right process, if
10181 necessary. */
10182 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10183 set_general_process ();
10184
10185 rs = get_remote_state ();
10186 p = rs->buf.data ();
10187 endbuf = p + get_remote_packet_size ();
10188
10189 *(p++) = 'Z';
10190 *(p++) = '0';
10191 *(p++) = ',';
10192 addr = (ULONGEST) remote_address_masked (addr);
10193 p += hexnumstr (p, addr);
10194 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10195
10196 if (supports_evaluation_of_breakpoint_conditions ())
10197 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10198
10199 if (can_run_breakpoint_commands ())
10200 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10201
10202 putpkt (rs->buf);
10203 getpkt (&rs->buf, 0);
10204
10205 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10206 {
10207 case PACKET_ERROR:
10208 return -1;
10209 case PACKET_OK:
10210 return 0;
10211 case PACKET_UNKNOWN:
10212 break;
10213 }
10214 }
10215
10216 /* If this breakpoint has target-side commands but this stub doesn't
10217 support Z0 packets, throw error. */
10218 if (!bp_tgt->tcommands.empty ())
10219 throw_error (NOT_SUPPORTED_ERROR, _("\
10220 Target doesn't support breakpoints that have target side commands."));
10221
10222 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10223 }
10224
10225 int
10226 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10227 struct bp_target_info *bp_tgt,
10228 enum remove_bp_reason reason)
10229 {
10230 CORE_ADDR addr = bp_tgt->placed_address;
10231 struct remote_state *rs = get_remote_state ();
10232
10233 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10234 {
10235 char *p = rs->buf.data ();
10236 char *endbuf = p + get_remote_packet_size ();
10237
10238 /* Make sure the remote is pointing at the right process, if
10239 necessary. */
10240 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10241 set_general_process ();
10242
10243 *(p++) = 'z';
10244 *(p++) = '0';
10245 *(p++) = ',';
10246
10247 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10248 p += hexnumstr (p, addr);
10249 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10250
10251 putpkt (rs->buf);
10252 getpkt (&rs->buf, 0);
10253
10254 return (rs->buf[0] == 'E');
10255 }
10256
10257 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10258 }
10259
10260 static enum Z_packet_type
10261 watchpoint_to_Z_packet (int type)
10262 {
10263 switch (type)
10264 {
10265 case hw_write:
10266 return Z_PACKET_WRITE_WP;
10267 break;
10268 case hw_read:
10269 return Z_PACKET_READ_WP;
10270 break;
10271 case hw_access:
10272 return Z_PACKET_ACCESS_WP;
10273 break;
10274 default:
10275 internal_error (__FILE__, __LINE__,
10276 _("hw_bp_to_z: bad watchpoint type %d"), type);
10277 }
10278 }
10279
10280 int
10281 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10282 enum target_hw_bp_type type, struct expression *cond)
10283 {
10284 struct remote_state *rs = get_remote_state ();
10285 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10286 char *p;
10287 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10288
10289 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10290 return 1;
10291
10292 /* Make sure the remote is pointing at the right process, if
10293 necessary. */
10294 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10295 set_general_process ();
10296
10297 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10298 p = strchr (rs->buf.data (), '\0');
10299 addr = remote_address_masked (addr);
10300 p += hexnumstr (p, (ULONGEST) addr);
10301 xsnprintf (p, endbuf - p, ",%x", len);
10302
10303 putpkt (rs->buf);
10304 getpkt (&rs->buf, 0);
10305
10306 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10307 {
10308 case PACKET_ERROR:
10309 return -1;
10310 case PACKET_UNKNOWN:
10311 return 1;
10312 case PACKET_OK:
10313 return 0;
10314 }
10315 internal_error (__FILE__, __LINE__,
10316 _("remote_insert_watchpoint: reached end of function"));
10317 }
10318
10319 bool
10320 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10321 CORE_ADDR start, int length)
10322 {
10323 CORE_ADDR diff = remote_address_masked (addr - start);
10324
10325 return diff < length;
10326 }
10327
10328
10329 int
10330 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10331 enum target_hw_bp_type type, struct expression *cond)
10332 {
10333 struct remote_state *rs = get_remote_state ();
10334 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10335 char *p;
10336 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10337
10338 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10339 return -1;
10340
10341 /* Make sure the remote is pointing at the right process, if
10342 necessary. */
10343 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10344 set_general_process ();
10345
10346 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10347 p = strchr (rs->buf.data (), '\0');
10348 addr = remote_address_masked (addr);
10349 p += hexnumstr (p, (ULONGEST) addr);
10350 xsnprintf (p, endbuf - p, ",%x", len);
10351 putpkt (rs->buf);
10352 getpkt (&rs->buf, 0);
10353
10354 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10355 {
10356 case PACKET_ERROR:
10357 case PACKET_UNKNOWN:
10358 return -1;
10359 case PACKET_OK:
10360 return 0;
10361 }
10362 internal_error (__FILE__, __LINE__,
10363 _("remote_remove_watchpoint: reached end of function"));
10364 }
10365
10366
10367 int remote_hw_watchpoint_limit = -1;
10368 int remote_hw_watchpoint_length_limit = -1;
10369 int remote_hw_breakpoint_limit = -1;
10370
10371 int
10372 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10373 {
10374 if (remote_hw_watchpoint_length_limit == 0)
10375 return 0;
10376 else if (remote_hw_watchpoint_length_limit < 0)
10377 return 1;
10378 else if (len <= remote_hw_watchpoint_length_limit)
10379 return 1;
10380 else
10381 return 0;
10382 }
10383
10384 int
10385 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10386 {
10387 if (type == bp_hardware_breakpoint)
10388 {
10389 if (remote_hw_breakpoint_limit == 0)
10390 return 0;
10391 else if (remote_hw_breakpoint_limit < 0)
10392 return 1;
10393 else if (cnt <= remote_hw_breakpoint_limit)
10394 return 1;
10395 }
10396 else
10397 {
10398 if (remote_hw_watchpoint_limit == 0)
10399 return 0;
10400 else if (remote_hw_watchpoint_limit < 0)
10401 return 1;
10402 else if (ot)
10403 return -1;
10404 else if (cnt <= remote_hw_watchpoint_limit)
10405 return 1;
10406 }
10407 return -1;
10408 }
10409
10410 /* The to_stopped_by_sw_breakpoint method of target remote. */
10411
10412 bool
10413 remote_target::stopped_by_sw_breakpoint ()
10414 {
10415 struct thread_info *thread = inferior_thread ();
10416
10417 return (thread->priv != NULL
10418 && (get_remote_thread_info (thread)->stop_reason
10419 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10420 }
10421
10422 /* The to_supports_stopped_by_sw_breakpoint method of target
10423 remote. */
10424
10425 bool
10426 remote_target::supports_stopped_by_sw_breakpoint ()
10427 {
10428 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10429 }
10430
10431 /* The to_stopped_by_hw_breakpoint method of target remote. */
10432
10433 bool
10434 remote_target::stopped_by_hw_breakpoint ()
10435 {
10436 struct thread_info *thread = inferior_thread ();
10437
10438 return (thread->priv != NULL
10439 && (get_remote_thread_info (thread)->stop_reason
10440 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10441 }
10442
10443 /* The to_supports_stopped_by_hw_breakpoint method of target
10444 remote. */
10445
10446 bool
10447 remote_target::supports_stopped_by_hw_breakpoint ()
10448 {
10449 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10450 }
10451
10452 bool
10453 remote_target::stopped_by_watchpoint ()
10454 {
10455 struct thread_info *thread = inferior_thread ();
10456
10457 return (thread->priv != NULL
10458 && (get_remote_thread_info (thread)->stop_reason
10459 == TARGET_STOPPED_BY_WATCHPOINT));
10460 }
10461
10462 bool
10463 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10464 {
10465 struct thread_info *thread = inferior_thread ();
10466
10467 if (thread->priv != NULL
10468 && (get_remote_thread_info (thread)->stop_reason
10469 == TARGET_STOPPED_BY_WATCHPOINT))
10470 {
10471 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10472 return true;
10473 }
10474
10475 return false;
10476 }
10477
10478
10479 int
10480 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10481 struct bp_target_info *bp_tgt)
10482 {
10483 CORE_ADDR addr = bp_tgt->reqstd_address;
10484 struct remote_state *rs;
10485 char *p, *endbuf;
10486 char *message;
10487
10488 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10489 return -1;
10490
10491 /* Make sure the remote is pointing at the right process, if
10492 necessary. */
10493 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10494 set_general_process ();
10495
10496 rs = get_remote_state ();
10497 p = rs->buf.data ();
10498 endbuf = p + get_remote_packet_size ();
10499
10500 *(p++) = 'Z';
10501 *(p++) = '1';
10502 *(p++) = ',';
10503
10504 addr = remote_address_masked (addr);
10505 p += hexnumstr (p, (ULONGEST) addr);
10506 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10507
10508 if (supports_evaluation_of_breakpoint_conditions ())
10509 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10510
10511 if (can_run_breakpoint_commands ())
10512 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10513
10514 putpkt (rs->buf);
10515 getpkt (&rs->buf, 0);
10516
10517 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10518 {
10519 case PACKET_ERROR:
10520 if (rs->buf[1] == '.')
10521 {
10522 message = strchr (&rs->buf[2], '.');
10523 if (message)
10524 error (_("Remote failure reply: %s"), message + 1);
10525 }
10526 return -1;
10527 case PACKET_UNKNOWN:
10528 return -1;
10529 case PACKET_OK:
10530 return 0;
10531 }
10532 internal_error (__FILE__, __LINE__,
10533 _("remote_insert_hw_breakpoint: reached end of function"));
10534 }
10535
10536
10537 int
10538 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10539 struct bp_target_info *bp_tgt)
10540 {
10541 CORE_ADDR addr;
10542 struct remote_state *rs = get_remote_state ();
10543 char *p = rs->buf.data ();
10544 char *endbuf = p + get_remote_packet_size ();
10545
10546 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10547 return -1;
10548
10549 /* Make sure the remote is pointing at the right process, if
10550 necessary. */
10551 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10552 set_general_process ();
10553
10554 *(p++) = 'z';
10555 *(p++) = '1';
10556 *(p++) = ',';
10557
10558 addr = remote_address_masked (bp_tgt->placed_address);
10559 p += hexnumstr (p, (ULONGEST) addr);
10560 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10561
10562 putpkt (rs->buf);
10563 getpkt (&rs->buf, 0);
10564
10565 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10566 {
10567 case PACKET_ERROR:
10568 case PACKET_UNKNOWN:
10569 return -1;
10570 case PACKET_OK:
10571 return 0;
10572 }
10573 internal_error (__FILE__, __LINE__,
10574 _("remote_remove_hw_breakpoint: reached end of function"));
10575 }
10576
10577 /* Verify memory using the "qCRC:" request. */
10578
10579 int
10580 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10581 {
10582 struct remote_state *rs = get_remote_state ();
10583 unsigned long host_crc, target_crc;
10584 char *tmp;
10585
10586 /* It doesn't make sense to use qCRC if the remote target is
10587 connected but not running. */
10588 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10589 {
10590 enum packet_result result;
10591
10592 /* Make sure the remote is pointing at the right process. */
10593 set_general_process ();
10594
10595 /* FIXME: assumes lma can fit into long. */
10596 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10597 (long) lma, (long) size);
10598 putpkt (rs->buf);
10599
10600 /* Be clever; compute the host_crc before waiting for target
10601 reply. */
10602 host_crc = xcrc32 (data, size, 0xffffffff);
10603
10604 getpkt (&rs->buf, 0);
10605
10606 result = packet_ok (rs->buf,
10607 &remote_protocol_packets[PACKET_qCRC]);
10608 if (result == PACKET_ERROR)
10609 return -1;
10610 else if (result == PACKET_OK)
10611 {
10612 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10613 target_crc = target_crc * 16 + fromhex (*tmp);
10614
10615 return (host_crc == target_crc);
10616 }
10617 }
10618
10619 return simple_verify_memory (this, data, lma, size);
10620 }
10621
10622 /* compare-sections command
10623
10624 With no arguments, compares each loadable section in the exec bfd
10625 with the same memory range on the target, and reports mismatches.
10626 Useful for verifying the image on the target against the exec file. */
10627
10628 static void
10629 compare_sections_command (const char *args, int from_tty)
10630 {
10631 asection *s;
10632 const char *sectname;
10633 bfd_size_type size;
10634 bfd_vma lma;
10635 int matched = 0;
10636 int mismatched = 0;
10637 int res;
10638 int read_only = 0;
10639
10640 if (!exec_bfd)
10641 error (_("command cannot be used without an exec file"));
10642
10643 if (args != NULL && strcmp (args, "-r") == 0)
10644 {
10645 read_only = 1;
10646 args = NULL;
10647 }
10648
10649 for (s = exec_bfd->sections; s; s = s->next)
10650 {
10651 if (!(s->flags & SEC_LOAD))
10652 continue; /* Skip non-loadable section. */
10653
10654 if (read_only && (s->flags & SEC_READONLY) == 0)
10655 continue; /* Skip writeable sections */
10656
10657 size = bfd_get_section_size (s);
10658 if (size == 0)
10659 continue; /* Skip zero-length section. */
10660
10661 sectname = bfd_get_section_name (exec_bfd, s);
10662 if (args && strcmp (args, sectname) != 0)
10663 continue; /* Not the section selected by user. */
10664
10665 matched = 1; /* Do this section. */
10666 lma = s->lma;
10667
10668 gdb::byte_vector sectdata (size);
10669 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10670
10671 res = target_verify_memory (sectdata.data (), lma, size);
10672
10673 if (res == -1)
10674 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10675 paddress (target_gdbarch (), lma),
10676 paddress (target_gdbarch (), lma + size));
10677
10678 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10679 paddress (target_gdbarch (), lma),
10680 paddress (target_gdbarch (), lma + size));
10681 if (res)
10682 printf_filtered ("matched.\n");
10683 else
10684 {
10685 printf_filtered ("MIS-MATCHED!\n");
10686 mismatched++;
10687 }
10688 }
10689 if (mismatched > 0)
10690 warning (_("One or more sections of the target image does not match\n\
10691 the loaded file\n"));
10692 if (args && !matched)
10693 printf_filtered (_("No loaded section named '%s'.\n"), args);
10694 }
10695
10696 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10697 into remote target. The number of bytes written to the remote
10698 target is returned, or -1 for error. */
10699
10700 target_xfer_status
10701 remote_target::remote_write_qxfer (const char *object_name,
10702 const char *annex, const gdb_byte *writebuf,
10703 ULONGEST offset, LONGEST len,
10704 ULONGEST *xfered_len,
10705 struct packet_config *packet)
10706 {
10707 int i, buf_len;
10708 ULONGEST n;
10709 struct remote_state *rs = get_remote_state ();
10710 int max_size = get_memory_write_packet_size ();
10711
10712 if (packet_config_support (packet) == PACKET_DISABLE)
10713 return TARGET_XFER_E_IO;
10714
10715 /* Insert header. */
10716 i = snprintf (rs->buf.data (), max_size,
10717 "qXfer:%s:write:%s:%s:",
10718 object_name, annex ? annex : "",
10719 phex_nz (offset, sizeof offset));
10720 max_size -= (i + 1);
10721
10722 /* Escape as much data as fits into rs->buf. */
10723 buf_len = remote_escape_output
10724 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10725
10726 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10727 || getpkt_sane (&rs->buf, 0) < 0
10728 || packet_ok (rs->buf, packet) != PACKET_OK)
10729 return TARGET_XFER_E_IO;
10730
10731 unpack_varlen_hex (rs->buf.data (), &n);
10732
10733 *xfered_len = n;
10734 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10735 }
10736
10737 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10738 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10739 number of bytes read is returned, or 0 for EOF, or -1 for error.
10740 The number of bytes read may be less than LEN without indicating an
10741 EOF. PACKET is checked and updated to indicate whether the remote
10742 target supports this object. */
10743
10744 target_xfer_status
10745 remote_target::remote_read_qxfer (const char *object_name,
10746 const char *annex,
10747 gdb_byte *readbuf, ULONGEST offset,
10748 LONGEST len,
10749 ULONGEST *xfered_len,
10750 struct packet_config *packet)
10751 {
10752 struct remote_state *rs = get_remote_state ();
10753 LONGEST i, n, packet_len;
10754
10755 if (packet_config_support (packet) == PACKET_DISABLE)
10756 return TARGET_XFER_E_IO;
10757
10758 /* Check whether we've cached an end-of-object packet that matches
10759 this request. */
10760 if (rs->finished_object)
10761 {
10762 if (strcmp (object_name, rs->finished_object) == 0
10763 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10764 && offset == rs->finished_offset)
10765 return TARGET_XFER_EOF;
10766
10767
10768 /* Otherwise, we're now reading something different. Discard
10769 the cache. */
10770 xfree (rs->finished_object);
10771 xfree (rs->finished_annex);
10772 rs->finished_object = NULL;
10773 rs->finished_annex = NULL;
10774 }
10775
10776 /* Request only enough to fit in a single packet. The actual data
10777 may not, since we don't know how much of it will need to be escaped;
10778 the target is free to respond with slightly less data. We subtract
10779 five to account for the response type and the protocol frame. */
10780 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10781 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10782 "qXfer:%s:read:%s:%s,%s",
10783 object_name, annex ? annex : "",
10784 phex_nz (offset, sizeof offset),
10785 phex_nz (n, sizeof n));
10786 i = putpkt (rs->buf);
10787 if (i < 0)
10788 return TARGET_XFER_E_IO;
10789
10790 rs->buf[0] = '\0';
10791 packet_len = getpkt_sane (&rs->buf, 0);
10792 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10793 return TARGET_XFER_E_IO;
10794
10795 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10796 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10797
10798 /* 'm' means there is (or at least might be) more data after this
10799 batch. That does not make sense unless there's at least one byte
10800 of data in this reply. */
10801 if (rs->buf[0] == 'm' && packet_len == 1)
10802 error (_("Remote qXfer reply contained no data."));
10803
10804 /* Got some data. */
10805 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10806 packet_len - 1, readbuf, n);
10807
10808 /* 'l' is an EOF marker, possibly including a final block of data,
10809 or possibly empty. If we have the final block of a non-empty
10810 object, record this fact to bypass a subsequent partial read. */
10811 if (rs->buf[0] == 'l' && offset + i > 0)
10812 {
10813 rs->finished_object = xstrdup (object_name);
10814 rs->finished_annex = xstrdup (annex ? annex : "");
10815 rs->finished_offset = offset + i;
10816 }
10817
10818 if (i == 0)
10819 return TARGET_XFER_EOF;
10820 else
10821 {
10822 *xfered_len = i;
10823 return TARGET_XFER_OK;
10824 }
10825 }
10826
10827 enum target_xfer_status
10828 remote_target::xfer_partial (enum target_object object,
10829 const char *annex, gdb_byte *readbuf,
10830 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10831 ULONGEST *xfered_len)
10832 {
10833 struct remote_state *rs;
10834 int i;
10835 char *p2;
10836 char query_type;
10837 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10838
10839 set_remote_traceframe ();
10840 set_general_thread (inferior_ptid);
10841
10842 rs = get_remote_state ();
10843
10844 /* Handle memory using the standard memory routines. */
10845 if (object == TARGET_OBJECT_MEMORY)
10846 {
10847 /* If the remote target is connected but not running, we should
10848 pass this request down to a lower stratum (e.g. the executable
10849 file). */
10850 if (!target_has_execution)
10851 return TARGET_XFER_EOF;
10852
10853 if (writebuf != NULL)
10854 return remote_write_bytes (offset, writebuf, len, unit_size,
10855 xfered_len);
10856 else
10857 return remote_read_bytes (offset, readbuf, len, unit_size,
10858 xfered_len);
10859 }
10860
10861 /* Handle SPU memory using qxfer packets. */
10862 if (object == TARGET_OBJECT_SPU)
10863 {
10864 if (readbuf)
10865 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10866 xfered_len, &remote_protocol_packets
10867 [PACKET_qXfer_spu_read]);
10868 else
10869 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10870 xfered_len, &remote_protocol_packets
10871 [PACKET_qXfer_spu_write]);
10872 }
10873
10874 /* Handle extra signal info using qxfer packets. */
10875 if (object == TARGET_OBJECT_SIGNAL_INFO)
10876 {
10877 if (readbuf)
10878 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10879 xfered_len, &remote_protocol_packets
10880 [PACKET_qXfer_siginfo_read]);
10881 else
10882 return remote_write_qxfer ("siginfo", annex,
10883 writebuf, offset, len, xfered_len,
10884 &remote_protocol_packets
10885 [PACKET_qXfer_siginfo_write]);
10886 }
10887
10888 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10889 {
10890 if (readbuf)
10891 return remote_read_qxfer ("statictrace", annex,
10892 readbuf, offset, len, xfered_len,
10893 &remote_protocol_packets
10894 [PACKET_qXfer_statictrace_read]);
10895 else
10896 return TARGET_XFER_E_IO;
10897 }
10898
10899 /* Only handle flash writes. */
10900 if (writebuf != NULL)
10901 {
10902 switch (object)
10903 {
10904 case TARGET_OBJECT_FLASH:
10905 return remote_flash_write (offset, len, xfered_len,
10906 writebuf);
10907
10908 default:
10909 return TARGET_XFER_E_IO;
10910 }
10911 }
10912
10913 /* Map pre-existing objects onto letters. DO NOT do this for new
10914 objects!!! Instead specify new query packets. */
10915 switch (object)
10916 {
10917 case TARGET_OBJECT_AVR:
10918 query_type = 'R';
10919 break;
10920
10921 case TARGET_OBJECT_AUXV:
10922 gdb_assert (annex == NULL);
10923 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10924 xfered_len,
10925 &remote_protocol_packets[PACKET_qXfer_auxv]);
10926
10927 case TARGET_OBJECT_AVAILABLE_FEATURES:
10928 return remote_read_qxfer
10929 ("features", annex, readbuf, offset, len, xfered_len,
10930 &remote_protocol_packets[PACKET_qXfer_features]);
10931
10932 case TARGET_OBJECT_LIBRARIES:
10933 return remote_read_qxfer
10934 ("libraries", annex, readbuf, offset, len, xfered_len,
10935 &remote_protocol_packets[PACKET_qXfer_libraries]);
10936
10937 case TARGET_OBJECT_LIBRARIES_SVR4:
10938 return remote_read_qxfer
10939 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10940 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10941
10942 case TARGET_OBJECT_MEMORY_MAP:
10943 gdb_assert (annex == NULL);
10944 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10945 xfered_len,
10946 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10947
10948 case TARGET_OBJECT_OSDATA:
10949 /* Should only get here if we're connected. */
10950 gdb_assert (rs->remote_desc);
10951 return remote_read_qxfer
10952 ("osdata", annex, readbuf, offset, len, xfered_len,
10953 &remote_protocol_packets[PACKET_qXfer_osdata]);
10954
10955 case TARGET_OBJECT_THREADS:
10956 gdb_assert (annex == NULL);
10957 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10958 xfered_len,
10959 &remote_protocol_packets[PACKET_qXfer_threads]);
10960
10961 case TARGET_OBJECT_TRACEFRAME_INFO:
10962 gdb_assert (annex == NULL);
10963 return remote_read_qxfer
10964 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10965 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10966
10967 case TARGET_OBJECT_FDPIC:
10968 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10969 xfered_len,
10970 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10971
10972 case TARGET_OBJECT_OPENVMS_UIB:
10973 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10974 xfered_len,
10975 &remote_protocol_packets[PACKET_qXfer_uib]);
10976
10977 case TARGET_OBJECT_BTRACE:
10978 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10979 xfered_len,
10980 &remote_protocol_packets[PACKET_qXfer_btrace]);
10981
10982 case TARGET_OBJECT_BTRACE_CONF:
10983 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10984 len, xfered_len,
10985 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10986
10987 case TARGET_OBJECT_EXEC_FILE:
10988 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10989 len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10991
10992 default:
10993 return TARGET_XFER_E_IO;
10994 }
10995
10996 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10997 large enough let the caller deal with it. */
10998 if (len < get_remote_packet_size ())
10999 return TARGET_XFER_E_IO;
11000 len = get_remote_packet_size ();
11001
11002 /* Except for querying the minimum buffer size, target must be open. */
11003 if (!rs->remote_desc)
11004 error (_("remote query is only available after target open"));
11005
11006 gdb_assert (annex != NULL);
11007 gdb_assert (readbuf != NULL);
11008
11009 p2 = rs->buf.data ();
11010 *p2++ = 'q';
11011 *p2++ = query_type;
11012
11013 /* We used one buffer char for the remote protocol q command and
11014 another for the query type. As the remote protocol encapsulation
11015 uses 4 chars plus one extra in case we are debugging
11016 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11017 string. */
11018 i = 0;
11019 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11020 {
11021 /* Bad caller may have sent forbidden characters. */
11022 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11023 *p2++ = annex[i];
11024 i++;
11025 }
11026 *p2 = '\0';
11027 gdb_assert (annex[i] == '\0');
11028
11029 i = putpkt (rs->buf);
11030 if (i < 0)
11031 return TARGET_XFER_E_IO;
11032
11033 getpkt (&rs->buf, 0);
11034 strcpy ((char *) readbuf, rs->buf.data ());
11035
11036 *xfered_len = strlen ((char *) readbuf);
11037 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11038 }
11039
11040 /* Implementation of to_get_memory_xfer_limit. */
11041
11042 ULONGEST
11043 remote_target::get_memory_xfer_limit ()
11044 {
11045 return get_memory_write_packet_size ();
11046 }
11047
11048 int
11049 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11050 const gdb_byte *pattern, ULONGEST pattern_len,
11051 CORE_ADDR *found_addrp)
11052 {
11053 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11054 struct remote_state *rs = get_remote_state ();
11055 int max_size = get_memory_write_packet_size ();
11056 struct packet_config *packet =
11057 &remote_protocol_packets[PACKET_qSearch_memory];
11058 /* Number of packet bytes used to encode the pattern;
11059 this could be more than PATTERN_LEN due to escape characters. */
11060 int escaped_pattern_len;
11061 /* Amount of pattern that was encodable in the packet. */
11062 int used_pattern_len;
11063 int i;
11064 int found;
11065 ULONGEST found_addr;
11066
11067 /* Don't go to the target if we don't have to. This is done before
11068 checking packet_config_support to avoid the possibility that a
11069 success for this edge case means the facility works in
11070 general. */
11071 if (pattern_len > search_space_len)
11072 return 0;
11073 if (pattern_len == 0)
11074 {
11075 *found_addrp = start_addr;
11076 return 1;
11077 }
11078
11079 /* If we already know the packet isn't supported, fall back to the simple
11080 way of searching memory. */
11081
11082 if (packet_config_support (packet) == PACKET_DISABLE)
11083 {
11084 /* Target doesn't provided special support, fall back and use the
11085 standard support (copy memory and do the search here). */
11086 return simple_search_memory (this, start_addr, search_space_len,
11087 pattern, pattern_len, found_addrp);
11088 }
11089
11090 /* Make sure the remote is pointing at the right process. */
11091 set_general_process ();
11092
11093 /* Insert header. */
11094 i = snprintf (rs->buf.data (), max_size,
11095 "qSearch:memory:%s;%s;",
11096 phex_nz (start_addr, addr_size),
11097 phex_nz (search_space_len, sizeof (search_space_len)));
11098 max_size -= (i + 1);
11099
11100 /* Escape as much data as fits into rs->buf. */
11101 escaped_pattern_len =
11102 remote_escape_output (pattern, pattern_len, 1,
11103 (gdb_byte *) rs->buf.data () + i,
11104 &used_pattern_len, max_size);
11105
11106 /* Bail if the pattern is too large. */
11107 if (used_pattern_len != pattern_len)
11108 error (_("Pattern is too large to transmit to remote target."));
11109
11110 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11111 || getpkt_sane (&rs->buf, 0) < 0
11112 || packet_ok (rs->buf, packet) != PACKET_OK)
11113 {
11114 /* The request may not have worked because the command is not
11115 supported. If so, fall back to the simple way. */
11116 if (packet_config_support (packet) == PACKET_DISABLE)
11117 {
11118 return simple_search_memory (this, start_addr, search_space_len,
11119 pattern, pattern_len, found_addrp);
11120 }
11121 return -1;
11122 }
11123
11124 if (rs->buf[0] == '0')
11125 found = 0;
11126 else if (rs->buf[0] == '1')
11127 {
11128 found = 1;
11129 if (rs->buf[1] != ',')
11130 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11131 unpack_varlen_hex (&rs->buf[2], &found_addr);
11132 *found_addrp = found_addr;
11133 }
11134 else
11135 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11136
11137 return found;
11138 }
11139
11140 void
11141 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11142 {
11143 struct remote_state *rs = get_remote_state ();
11144 char *p = rs->buf.data ();
11145
11146 if (!rs->remote_desc)
11147 error (_("remote rcmd is only available after target open"));
11148
11149 /* Send a NULL command across as an empty command. */
11150 if (command == NULL)
11151 command = "";
11152
11153 /* The query prefix. */
11154 strcpy (rs->buf.data (), "qRcmd,");
11155 p = strchr (rs->buf.data (), '\0');
11156
11157 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11158 > get_remote_packet_size ())
11159 error (_("\"monitor\" command ``%s'' is too long."), command);
11160
11161 /* Encode the actual command. */
11162 bin2hex ((const gdb_byte *) command, p, strlen (command));
11163
11164 if (putpkt (rs->buf) < 0)
11165 error (_("Communication problem with target."));
11166
11167 /* get/display the response */
11168 while (1)
11169 {
11170 char *buf;
11171
11172 /* XXX - see also remote_get_noisy_reply(). */
11173 QUIT; /* Allow user to bail out with ^C. */
11174 rs->buf[0] = '\0';
11175 if (getpkt_sane (&rs->buf, 0) == -1)
11176 {
11177 /* Timeout. Continue to (try to) read responses.
11178 This is better than stopping with an error, assuming the stub
11179 is still executing the (long) monitor command.
11180 If needed, the user can interrupt gdb using C-c, obtaining
11181 an effect similar to stop on timeout. */
11182 continue;
11183 }
11184 buf = rs->buf.data ();
11185 if (buf[0] == '\0')
11186 error (_("Target does not support this command."));
11187 if (buf[0] == 'O' && buf[1] != 'K')
11188 {
11189 remote_console_output (buf + 1); /* 'O' message from stub. */
11190 continue;
11191 }
11192 if (strcmp (buf, "OK") == 0)
11193 break;
11194 if (strlen (buf) == 3 && buf[0] == 'E'
11195 && isdigit (buf[1]) && isdigit (buf[2]))
11196 {
11197 error (_("Protocol error with Rcmd"));
11198 }
11199 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11200 {
11201 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11202
11203 fputc_unfiltered (c, outbuf);
11204 }
11205 break;
11206 }
11207 }
11208
11209 std::vector<mem_region>
11210 remote_target::memory_map ()
11211 {
11212 std::vector<mem_region> result;
11213 gdb::optional<gdb::char_vector> text
11214 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11215
11216 if (text)
11217 result = parse_memory_map (text->data ());
11218
11219 return result;
11220 }
11221
11222 static void
11223 packet_command (const char *args, int from_tty)
11224 {
11225 remote_target *remote = get_current_remote_target ();
11226
11227 if (remote == nullptr)
11228 error (_("command can only be used with remote target"));
11229
11230 remote->packet_command (args, from_tty);
11231 }
11232
11233 void
11234 remote_target::packet_command (const char *args, int from_tty)
11235 {
11236 if (!args)
11237 error (_("remote-packet command requires packet text as argument"));
11238
11239 puts_filtered ("sending: ");
11240 print_packet (args);
11241 puts_filtered ("\n");
11242 putpkt (args);
11243
11244 remote_state *rs = get_remote_state ();
11245
11246 getpkt (&rs->buf, 0);
11247 puts_filtered ("received: ");
11248 print_packet (rs->buf.data ());
11249 puts_filtered ("\n");
11250 }
11251
11252 #if 0
11253 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11254
11255 static void display_thread_info (struct gdb_ext_thread_info *info);
11256
11257 static void threadset_test_cmd (char *cmd, int tty);
11258
11259 static void threadalive_test (char *cmd, int tty);
11260
11261 static void threadlist_test_cmd (char *cmd, int tty);
11262
11263 int get_and_display_threadinfo (threadref *ref);
11264
11265 static void threadinfo_test_cmd (char *cmd, int tty);
11266
11267 static int thread_display_step (threadref *ref, void *context);
11268
11269 static void threadlist_update_test_cmd (char *cmd, int tty);
11270
11271 static void init_remote_threadtests (void);
11272
11273 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11274
11275 static void
11276 threadset_test_cmd (const char *cmd, int tty)
11277 {
11278 int sample_thread = SAMPLE_THREAD;
11279
11280 printf_filtered (_("Remote threadset test\n"));
11281 set_general_thread (sample_thread);
11282 }
11283
11284
11285 static void
11286 threadalive_test (const char *cmd, int tty)
11287 {
11288 int sample_thread = SAMPLE_THREAD;
11289 int pid = inferior_ptid.pid ();
11290 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11291
11292 if (remote_thread_alive (ptid))
11293 printf_filtered ("PASS: Thread alive test\n");
11294 else
11295 printf_filtered ("FAIL: Thread alive test\n");
11296 }
11297
11298 void output_threadid (char *title, threadref *ref);
11299
11300 void
11301 output_threadid (char *title, threadref *ref)
11302 {
11303 char hexid[20];
11304
11305 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11306 hexid[16] = 0;
11307 printf_filtered ("%s %s\n", title, (&hexid[0]));
11308 }
11309
11310 static void
11311 threadlist_test_cmd (const char *cmd, int tty)
11312 {
11313 int startflag = 1;
11314 threadref nextthread;
11315 int done, result_count;
11316 threadref threadlist[3];
11317
11318 printf_filtered ("Remote Threadlist test\n");
11319 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11320 &result_count, &threadlist[0]))
11321 printf_filtered ("FAIL: threadlist test\n");
11322 else
11323 {
11324 threadref *scan = threadlist;
11325 threadref *limit = scan + result_count;
11326
11327 while (scan < limit)
11328 output_threadid (" thread ", scan++);
11329 }
11330 }
11331
11332 void
11333 display_thread_info (struct gdb_ext_thread_info *info)
11334 {
11335 output_threadid ("Threadid: ", &info->threadid);
11336 printf_filtered ("Name: %s\n ", info->shortname);
11337 printf_filtered ("State: %s\n", info->display);
11338 printf_filtered ("other: %s\n\n", info->more_display);
11339 }
11340
11341 int
11342 get_and_display_threadinfo (threadref *ref)
11343 {
11344 int result;
11345 int set;
11346 struct gdb_ext_thread_info threadinfo;
11347
11348 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11349 | TAG_MOREDISPLAY | TAG_DISPLAY;
11350 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11351 display_thread_info (&threadinfo);
11352 return result;
11353 }
11354
11355 static void
11356 threadinfo_test_cmd (const char *cmd, int tty)
11357 {
11358 int athread = SAMPLE_THREAD;
11359 threadref thread;
11360 int set;
11361
11362 int_to_threadref (&thread, athread);
11363 printf_filtered ("Remote Threadinfo test\n");
11364 if (!get_and_display_threadinfo (&thread))
11365 printf_filtered ("FAIL cannot get thread info\n");
11366 }
11367
11368 static int
11369 thread_display_step (threadref *ref, void *context)
11370 {
11371 /* output_threadid(" threadstep ",ref); *//* simple test */
11372 return get_and_display_threadinfo (ref);
11373 }
11374
11375 static void
11376 threadlist_update_test_cmd (const char *cmd, int tty)
11377 {
11378 printf_filtered ("Remote Threadlist update test\n");
11379 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11380 }
11381
11382 static void
11383 init_remote_threadtests (void)
11384 {
11385 add_com ("tlist", class_obscure, threadlist_test_cmd,
11386 _("Fetch and print the remote list of "
11387 "thread identifiers, one pkt only"));
11388 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11389 _("Fetch and display info about one thread"));
11390 add_com ("tset", class_obscure, threadset_test_cmd,
11391 _("Test setting to a different thread"));
11392 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11393 _("Iterate through updating all remote thread info"));
11394 add_com ("talive", class_obscure, threadalive_test,
11395 _(" Remote thread alive test "));
11396 }
11397
11398 #endif /* 0 */
11399
11400 /* Convert a thread ID to a string. */
11401
11402 std::string
11403 remote_target::pid_to_str (ptid_t ptid)
11404 {
11405 struct remote_state *rs = get_remote_state ();
11406
11407 if (ptid == null_ptid)
11408 return normal_pid_to_str (ptid);
11409 else if (ptid.is_pid ())
11410 {
11411 /* Printing an inferior target id. */
11412
11413 /* When multi-process extensions are off, there's no way in the
11414 remote protocol to know the remote process id, if there's any
11415 at all. There's one exception --- when we're connected with
11416 target extended-remote, and we manually attached to a process
11417 with "attach PID". We don't record anywhere a flag that
11418 allows us to distinguish that case from the case of
11419 connecting with extended-remote and the stub already being
11420 attached to a process, and reporting yes to qAttached, hence
11421 no smart special casing here. */
11422 if (!remote_multi_process_p (rs))
11423 return "Remote target";
11424
11425 return normal_pid_to_str (ptid);
11426 }
11427 else
11428 {
11429 if (magic_null_ptid == ptid)
11430 return "Thread <main>";
11431 else if (remote_multi_process_p (rs))
11432 if (ptid.lwp () == 0)
11433 return normal_pid_to_str (ptid);
11434 else
11435 return string_printf ("Thread %d.%ld",
11436 ptid.pid (), ptid.lwp ());
11437 else
11438 return string_printf ("Thread %ld", ptid.lwp ());
11439 }
11440 }
11441
11442 /* Get the address of the thread local variable in OBJFILE which is
11443 stored at OFFSET within the thread local storage for thread PTID. */
11444
11445 CORE_ADDR
11446 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11447 CORE_ADDR offset)
11448 {
11449 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11450 {
11451 struct remote_state *rs = get_remote_state ();
11452 char *p = rs->buf.data ();
11453 char *endp = p + get_remote_packet_size ();
11454 enum packet_result result;
11455
11456 strcpy (p, "qGetTLSAddr:");
11457 p += strlen (p);
11458 p = write_ptid (p, endp, ptid);
11459 *p++ = ',';
11460 p += hexnumstr (p, offset);
11461 *p++ = ',';
11462 p += hexnumstr (p, lm);
11463 *p++ = '\0';
11464
11465 putpkt (rs->buf);
11466 getpkt (&rs->buf, 0);
11467 result = packet_ok (rs->buf,
11468 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11469 if (result == PACKET_OK)
11470 {
11471 ULONGEST addr;
11472
11473 unpack_varlen_hex (rs->buf.data (), &addr);
11474 return addr;
11475 }
11476 else if (result == PACKET_UNKNOWN)
11477 throw_error (TLS_GENERIC_ERROR,
11478 _("Remote target doesn't support qGetTLSAddr packet"));
11479 else
11480 throw_error (TLS_GENERIC_ERROR,
11481 _("Remote target failed to process qGetTLSAddr request"));
11482 }
11483 else
11484 throw_error (TLS_GENERIC_ERROR,
11485 _("TLS not supported or disabled on this target"));
11486 /* Not reached. */
11487 return 0;
11488 }
11489
11490 /* Provide thread local base, i.e. Thread Information Block address.
11491 Returns 1 if ptid is found and thread_local_base is non zero. */
11492
11493 bool
11494 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11495 {
11496 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11497 {
11498 struct remote_state *rs = get_remote_state ();
11499 char *p = rs->buf.data ();
11500 char *endp = p + get_remote_packet_size ();
11501 enum packet_result result;
11502
11503 strcpy (p, "qGetTIBAddr:");
11504 p += strlen (p);
11505 p = write_ptid (p, endp, ptid);
11506 *p++ = '\0';
11507
11508 putpkt (rs->buf);
11509 getpkt (&rs->buf, 0);
11510 result = packet_ok (rs->buf,
11511 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11512 if (result == PACKET_OK)
11513 {
11514 ULONGEST val;
11515 unpack_varlen_hex (rs->buf.data (), &val);
11516 if (addr)
11517 *addr = (CORE_ADDR) val;
11518 return true;
11519 }
11520 else if (result == PACKET_UNKNOWN)
11521 error (_("Remote target doesn't support qGetTIBAddr packet"));
11522 else
11523 error (_("Remote target failed to process qGetTIBAddr request"));
11524 }
11525 else
11526 error (_("qGetTIBAddr not supported or disabled on this target"));
11527 /* Not reached. */
11528 return false;
11529 }
11530
11531 /* Support for inferring a target description based on the current
11532 architecture and the size of a 'g' packet. While the 'g' packet
11533 can have any size (since optional registers can be left off the
11534 end), some sizes are easily recognizable given knowledge of the
11535 approximate architecture. */
11536
11537 struct remote_g_packet_guess
11538 {
11539 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11540 : bytes (bytes_),
11541 tdesc (tdesc_)
11542 {
11543 }
11544
11545 int bytes;
11546 const struct target_desc *tdesc;
11547 };
11548
11549 struct remote_g_packet_data : public allocate_on_obstack
11550 {
11551 std::vector<remote_g_packet_guess> guesses;
11552 };
11553
11554 static struct gdbarch_data *remote_g_packet_data_handle;
11555
11556 static void *
11557 remote_g_packet_data_init (struct obstack *obstack)
11558 {
11559 return new (obstack) remote_g_packet_data;
11560 }
11561
11562 void
11563 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11564 const struct target_desc *tdesc)
11565 {
11566 struct remote_g_packet_data *data
11567 = ((struct remote_g_packet_data *)
11568 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11569
11570 gdb_assert (tdesc != NULL);
11571
11572 for (const remote_g_packet_guess &guess : data->guesses)
11573 if (guess.bytes == bytes)
11574 internal_error (__FILE__, __LINE__,
11575 _("Duplicate g packet description added for size %d"),
11576 bytes);
11577
11578 data->guesses.emplace_back (bytes, tdesc);
11579 }
11580
11581 /* Return true if remote_read_description would do anything on this target
11582 and architecture, false otherwise. */
11583
11584 static bool
11585 remote_read_description_p (struct target_ops *target)
11586 {
11587 struct remote_g_packet_data *data
11588 = ((struct remote_g_packet_data *)
11589 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11590
11591 return !data->guesses.empty ();
11592 }
11593
11594 const struct target_desc *
11595 remote_target::read_description ()
11596 {
11597 struct remote_g_packet_data *data
11598 = ((struct remote_g_packet_data *)
11599 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11600
11601 /* Do not try this during initial connection, when we do not know
11602 whether there is a running but stopped thread. */
11603 if (!target_has_execution || inferior_ptid == null_ptid)
11604 return beneath ()->read_description ();
11605
11606 if (!data->guesses.empty ())
11607 {
11608 int bytes = send_g_packet ();
11609
11610 for (const remote_g_packet_guess &guess : data->guesses)
11611 if (guess.bytes == bytes)
11612 return guess.tdesc;
11613
11614 /* We discard the g packet. A minor optimization would be to
11615 hold on to it, and fill the register cache once we have selected
11616 an architecture, but it's too tricky to do safely. */
11617 }
11618
11619 return beneath ()->read_description ();
11620 }
11621
11622 /* Remote file transfer support. This is host-initiated I/O, not
11623 target-initiated; for target-initiated, see remote-fileio.c. */
11624
11625 /* If *LEFT is at least the length of STRING, copy STRING to
11626 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11627 decrease *LEFT. Otherwise raise an error. */
11628
11629 static void
11630 remote_buffer_add_string (char **buffer, int *left, const char *string)
11631 {
11632 int len = strlen (string);
11633
11634 if (len > *left)
11635 error (_("Packet too long for target."));
11636
11637 memcpy (*buffer, string, len);
11638 *buffer += len;
11639 *left -= len;
11640
11641 /* NUL-terminate the buffer as a convenience, if there is
11642 room. */
11643 if (*left)
11644 **buffer = '\0';
11645 }
11646
11647 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11648 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11649 decrease *LEFT. Otherwise raise an error. */
11650
11651 static void
11652 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11653 int len)
11654 {
11655 if (2 * len > *left)
11656 error (_("Packet too long for target."));
11657
11658 bin2hex (bytes, *buffer, len);
11659 *buffer += 2 * len;
11660 *left -= 2 * len;
11661
11662 /* NUL-terminate the buffer as a convenience, if there is
11663 room. */
11664 if (*left)
11665 **buffer = '\0';
11666 }
11667
11668 /* If *LEFT is large enough, convert VALUE to hex and add it to
11669 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11670 decrease *LEFT. Otherwise raise an error. */
11671
11672 static void
11673 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11674 {
11675 int len = hexnumlen (value);
11676
11677 if (len > *left)
11678 error (_("Packet too long for target."));
11679
11680 hexnumstr (*buffer, value);
11681 *buffer += len;
11682 *left -= len;
11683
11684 /* NUL-terminate the buffer as a convenience, if there is
11685 room. */
11686 if (*left)
11687 **buffer = '\0';
11688 }
11689
11690 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11691 value, *REMOTE_ERRNO to the remote error number or zero if none
11692 was included, and *ATTACHMENT to point to the start of the annex
11693 if any. The length of the packet isn't needed here; there may
11694 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11695
11696 Return 0 if the packet could be parsed, -1 if it could not. If
11697 -1 is returned, the other variables may not be initialized. */
11698
11699 static int
11700 remote_hostio_parse_result (char *buffer, int *retcode,
11701 int *remote_errno, char **attachment)
11702 {
11703 char *p, *p2;
11704
11705 *remote_errno = 0;
11706 *attachment = NULL;
11707
11708 if (buffer[0] != 'F')
11709 return -1;
11710
11711 errno = 0;
11712 *retcode = strtol (&buffer[1], &p, 16);
11713 if (errno != 0 || p == &buffer[1])
11714 return -1;
11715
11716 /* Check for ",errno". */
11717 if (*p == ',')
11718 {
11719 errno = 0;
11720 *remote_errno = strtol (p + 1, &p2, 16);
11721 if (errno != 0 || p + 1 == p2)
11722 return -1;
11723 p = p2;
11724 }
11725
11726 /* Check for ";attachment". If there is no attachment, the
11727 packet should end here. */
11728 if (*p == ';')
11729 {
11730 *attachment = p + 1;
11731 return 0;
11732 }
11733 else if (*p == '\0')
11734 return 0;
11735 else
11736 return -1;
11737 }
11738
11739 /* Send a prepared I/O packet to the target and read its response.
11740 The prepared packet is in the global RS->BUF before this function
11741 is called, and the answer is there when we return.
11742
11743 COMMAND_BYTES is the length of the request to send, which may include
11744 binary data. WHICH_PACKET is the packet configuration to check
11745 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11746 is set to the error number and -1 is returned. Otherwise the value
11747 returned by the function is returned.
11748
11749 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11750 attachment is expected; an error will be reported if there's a
11751 mismatch. If one is found, *ATTACHMENT will be set to point into
11752 the packet buffer and *ATTACHMENT_LEN will be set to the
11753 attachment's length. */
11754
11755 int
11756 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11757 int *remote_errno, char **attachment,
11758 int *attachment_len)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761 int ret, bytes_read;
11762 char *attachment_tmp;
11763
11764 if (packet_support (which_packet) == PACKET_DISABLE)
11765 {
11766 *remote_errno = FILEIO_ENOSYS;
11767 return -1;
11768 }
11769
11770 putpkt_binary (rs->buf.data (), command_bytes);
11771 bytes_read = getpkt_sane (&rs->buf, 0);
11772
11773 /* If it timed out, something is wrong. Don't try to parse the
11774 buffer. */
11775 if (bytes_read < 0)
11776 {
11777 *remote_errno = FILEIO_EINVAL;
11778 return -1;
11779 }
11780
11781 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11782 {
11783 case PACKET_ERROR:
11784 *remote_errno = FILEIO_EINVAL;
11785 return -1;
11786 case PACKET_UNKNOWN:
11787 *remote_errno = FILEIO_ENOSYS;
11788 return -1;
11789 case PACKET_OK:
11790 break;
11791 }
11792
11793 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11794 &attachment_tmp))
11795 {
11796 *remote_errno = FILEIO_EINVAL;
11797 return -1;
11798 }
11799
11800 /* Make sure we saw an attachment if and only if we expected one. */
11801 if ((attachment_tmp == NULL && attachment != NULL)
11802 || (attachment_tmp != NULL && attachment == NULL))
11803 {
11804 *remote_errno = FILEIO_EINVAL;
11805 return -1;
11806 }
11807
11808 /* If an attachment was found, it must point into the packet buffer;
11809 work out how many bytes there were. */
11810 if (attachment_tmp != NULL)
11811 {
11812 *attachment = attachment_tmp;
11813 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11814 }
11815
11816 return ret;
11817 }
11818
11819 /* See declaration.h. */
11820
11821 void
11822 readahead_cache::invalidate ()
11823 {
11824 this->fd = -1;
11825 }
11826
11827 /* See declaration.h. */
11828
11829 void
11830 readahead_cache::invalidate_fd (int fd)
11831 {
11832 if (this->fd == fd)
11833 this->fd = -1;
11834 }
11835
11836 /* Set the filesystem remote_hostio functions that take FILENAME
11837 arguments will use. Return 0 on success, or -1 if an error
11838 occurs (and set *REMOTE_ERRNO). */
11839
11840 int
11841 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11842 int *remote_errno)
11843 {
11844 struct remote_state *rs = get_remote_state ();
11845 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11846 char *p = rs->buf.data ();
11847 int left = get_remote_packet_size () - 1;
11848 char arg[9];
11849 int ret;
11850
11851 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11852 return 0;
11853
11854 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11855 return 0;
11856
11857 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11858
11859 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11860 remote_buffer_add_string (&p, &left, arg);
11861
11862 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11863 remote_errno, NULL, NULL);
11864
11865 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11866 return 0;
11867
11868 if (ret == 0)
11869 rs->fs_pid = required_pid;
11870
11871 return ret;
11872 }
11873
11874 /* Implementation of to_fileio_open. */
11875
11876 int
11877 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11878 int flags, int mode, int warn_if_slow,
11879 int *remote_errno)
11880 {
11881 struct remote_state *rs = get_remote_state ();
11882 char *p = rs->buf.data ();
11883 int left = get_remote_packet_size () - 1;
11884
11885 if (warn_if_slow)
11886 {
11887 static int warning_issued = 0;
11888
11889 printf_unfiltered (_("Reading %s from remote target...\n"),
11890 filename);
11891
11892 if (!warning_issued)
11893 {
11894 warning (_("File transfers from remote targets can be slow."
11895 " Use \"set sysroot\" to access files locally"
11896 " instead."));
11897 warning_issued = 1;
11898 }
11899 }
11900
11901 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11902 return -1;
11903
11904 remote_buffer_add_string (&p, &left, "vFile:open:");
11905
11906 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11907 strlen (filename));
11908 remote_buffer_add_string (&p, &left, ",");
11909
11910 remote_buffer_add_int (&p, &left, flags);
11911 remote_buffer_add_string (&p, &left, ",");
11912
11913 remote_buffer_add_int (&p, &left, mode);
11914
11915 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11916 remote_errno, NULL, NULL);
11917 }
11918
11919 int
11920 remote_target::fileio_open (struct inferior *inf, const char *filename,
11921 int flags, int mode, int warn_if_slow,
11922 int *remote_errno)
11923 {
11924 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11925 remote_errno);
11926 }
11927
11928 /* Implementation of to_fileio_pwrite. */
11929
11930 int
11931 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11932 ULONGEST offset, int *remote_errno)
11933 {
11934 struct remote_state *rs = get_remote_state ();
11935 char *p = rs->buf.data ();
11936 int left = get_remote_packet_size ();
11937 int out_len;
11938
11939 rs->readahead_cache.invalidate_fd (fd);
11940
11941 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11942
11943 remote_buffer_add_int (&p, &left, fd);
11944 remote_buffer_add_string (&p, &left, ",");
11945
11946 remote_buffer_add_int (&p, &left, offset);
11947 remote_buffer_add_string (&p, &left, ",");
11948
11949 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11950 (get_remote_packet_size ()
11951 - (p - rs->buf.data ())));
11952
11953 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11954 remote_errno, NULL, NULL);
11955 }
11956
11957 int
11958 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11959 ULONGEST offset, int *remote_errno)
11960 {
11961 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11962 }
11963
11964 /* Helper for the implementation of to_fileio_pread. Read the file
11965 from the remote side with vFile:pread. */
11966
11967 int
11968 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11969 ULONGEST offset, int *remote_errno)
11970 {
11971 struct remote_state *rs = get_remote_state ();
11972 char *p = rs->buf.data ();
11973 char *attachment;
11974 int left = get_remote_packet_size ();
11975 int ret, attachment_len;
11976 int read_len;
11977
11978 remote_buffer_add_string (&p, &left, "vFile:pread:");
11979
11980 remote_buffer_add_int (&p, &left, fd);
11981 remote_buffer_add_string (&p, &left, ",");
11982
11983 remote_buffer_add_int (&p, &left, len);
11984 remote_buffer_add_string (&p, &left, ",");
11985
11986 remote_buffer_add_int (&p, &left, offset);
11987
11988 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11989 remote_errno, &attachment,
11990 &attachment_len);
11991
11992 if (ret < 0)
11993 return ret;
11994
11995 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11996 read_buf, len);
11997 if (read_len != ret)
11998 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11999
12000 return ret;
12001 }
12002
12003 /* See declaration.h. */
12004
12005 int
12006 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12007 ULONGEST offset)
12008 {
12009 if (this->fd == fd
12010 && this->offset <= offset
12011 && offset < this->offset + this->bufsize)
12012 {
12013 ULONGEST max = this->offset + this->bufsize;
12014
12015 if (offset + len > max)
12016 len = max - offset;
12017
12018 memcpy (read_buf, this->buf + offset - this->offset, len);
12019 return len;
12020 }
12021
12022 return 0;
12023 }
12024
12025 /* Implementation of to_fileio_pread. */
12026
12027 int
12028 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12029 ULONGEST offset, int *remote_errno)
12030 {
12031 int ret;
12032 struct remote_state *rs = get_remote_state ();
12033 readahead_cache *cache = &rs->readahead_cache;
12034
12035 ret = cache->pread (fd, read_buf, len, offset);
12036 if (ret > 0)
12037 {
12038 cache->hit_count++;
12039
12040 if (remote_debug)
12041 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12042 pulongest (cache->hit_count));
12043 return ret;
12044 }
12045
12046 cache->miss_count++;
12047 if (remote_debug)
12048 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12049 pulongest (cache->miss_count));
12050
12051 cache->fd = fd;
12052 cache->offset = offset;
12053 cache->bufsize = get_remote_packet_size ();
12054 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12055
12056 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12057 cache->offset, remote_errno);
12058 if (ret <= 0)
12059 {
12060 cache->invalidate_fd (fd);
12061 return ret;
12062 }
12063
12064 cache->bufsize = ret;
12065 return cache->pread (fd, read_buf, len, offset);
12066 }
12067
12068 int
12069 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12070 ULONGEST offset, int *remote_errno)
12071 {
12072 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12073 }
12074
12075 /* Implementation of to_fileio_close. */
12076
12077 int
12078 remote_target::remote_hostio_close (int fd, int *remote_errno)
12079 {
12080 struct remote_state *rs = get_remote_state ();
12081 char *p = rs->buf.data ();
12082 int left = get_remote_packet_size () - 1;
12083
12084 rs->readahead_cache.invalidate_fd (fd);
12085
12086 remote_buffer_add_string (&p, &left, "vFile:close:");
12087
12088 remote_buffer_add_int (&p, &left, fd);
12089
12090 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12091 remote_errno, NULL, NULL);
12092 }
12093
12094 int
12095 remote_target::fileio_close (int fd, int *remote_errno)
12096 {
12097 return remote_hostio_close (fd, remote_errno);
12098 }
12099
12100 /* Implementation of to_fileio_unlink. */
12101
12102 int
12103 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12104 int *remote_errno)
12105 {
12106 struct remote_state *rs = get_remote_state ();
12107 char *p = rs->buf.data ();
12108 int left = get_remote_packet_size () - 1;
12109
12110 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12111 return -1;
12112
12113 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12114
12115 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12116 strlen (filename));
12117
12118 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12119 remote_errno, NULL, NULL);
12120 }
12121
12122 int
12123 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12124 int *remote_errno)
12125 {
12126 return remote_hostio_unlink (inf, filename, remote_errno);
12127 }
12128
12129 /* Implementation of to_fileio_readlink. */
12130
12131 gdb::optional<std::string>
12132 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12133 int *remote_errno)
12134 {
12135 struct remote_state *rs = get_remote_state ();
12136 char *p = rs->buf.data ();
12137 char *attachment;
12138 int left = get_remote_packet_size ();
12139 int len, attachment_len;
12140 int read_len;
12141
12142 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12143 return {};
12144
12145 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12146
12147 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12148 strlen (filename));
12149
12150 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12151 remote_errno, &attachment,
12152 &attachment_len);
12153
12154 if (len < 0)
12155 return {};
12156
12157 std::string ret (len, '\0');
12158
12159 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12160 (gdb_byte *) &ret[0], len);
12161 if (read_len != len)
12162 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12163
12164 return ret;
12165 }
12166
12167 /* Implementation of to_fileio_fstat. */
12168
12169 int
12170 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12171 {
12172 struct remote_state *rs = get_remote_state ();
12173 char *p = rs->buf.data ();
12174 int left = get_remote_packet_size ();
12175 int attachment_len, ret;
12176 char *attachment;
12177 struct fio_stat fst;
12178 int read_len;
12179
12180 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12181
12182 remote_buffer_add_int (&p, &left, fd);
12183
12184 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12185 remote_errno, &attachment,
12186 &attachment_len);
12187 if (ret < 0)
12188 {
12189 if (*remote_errno != FILEIO_ENOSYS)
12190 return ret;
12191
12192 /* Strictly we should return -1, ENOSYS here, but when
12193 "set sysroot remote:" was implemented in August 2008
12194 BFD's need for a stat function was sidestepped with
12195 this hack. This was not remedied until March 2015
12196 so we retain the previous behavior to avoid breaking
12197 compatibility.
12198
12199 Note that the memset is a March 2015 addition; older
12200 GDBs set st_size *and nothing else* so the structure
12201 would have garbage in all other fields. This might
12202 break something but retaining the previous behavior
12203 here would be just too wrong. */
12204
12205 memset (st, 0, sizeof (struct stat));
12206 st->st_size = INT_MAX;
12207 return 0;
12208 }
12209
12210 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12211 (gdb_byte *) &fst, sizeof (fst));
12212
12213 if (read_len != ret)
12214 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12215
12216 if (read_len != sizeof (fst))
12217 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12218 read_len, (int) sizeof (fst));
12219
12220 remote_fileio_to_host_stat (&fst, st);
12221
12222 return 0;
12223 }
12224
12225 /* Implementation of to_filesystem_is_local. */
12226
12227 bool
12228 remote_target::filesystem_is_local ()
12229 {
12230 /* Valgrind GDB presents itself as a remote target but works
12231 on the local filesystem: it does not implement remote get
12232 and users are not expected to set a sysroot. To handle
12233 this case we treat the remote filesystem as local if the
12234 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12235 does not support vFile:open. */
12236 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12237 {
12238 enum packet_support ps = packet_support (PACKET_vFile_open);
12239
12240 if (ps == PACKET_SUPPORT_UNKNOWN)
12241 {
12242 int fd, remote_errno;
12243
12244 /* Try opening a file to probe support. The supplied
12245 filename is irrelevant, we only care about whether
12246 the stub recognizes the packet or not. */
12247 fd = remote_hostio_open (NULL, "just probing",
12248 FILEIO_O_RDONLY, 0700, 0,
12249 &remote_errno);
12250
12251 if (fd >= 0)
12252 remote_hostio_close (fd, &remote_errno);
12253
12254 ps = packet_support (PACKET_vFile_open);
12255 }
12256
12257 if (ps == PACKET_DISABLE)
12258 {
12259 static int warning_issued = 0;
12260
12261 if (!warning_issued)
12262 {
12263 warning (_("remote target does not support file"
12264 " transfer, attempting to access files"
12265 " from local filesystem."));
12266 warning_issued = 1;
12267 }
12268
12269 return true;
12270 }
12271 }
12272
12273 return false;
12274 }
12275
12276 static int
12277 remote_fileio_errno_to_host (int errnum)
12278 {
12279 switch (errnum)
12280 {
12281 case FILEIO_EPERM:
12282 return EPERM;
12283 case FILEIO_ENOENT:
12284 return ENOENT;
12285 case FILEIO_EINTR:
12286 return EINTR;
12287 case FILEIO_EIO:
12288 return EIO;
12289 case FILEIO_EBADF:
12290 return EBADF;
12291 case FILEIO_EACCES:
12292 return EACCES;
12293 case FILEIO_EFAULT:
12294 return EFAULT;
12295 case FILEIO_EBUSY:
12296 return EBUSY;
12297 case FILEIO_EEXIST:
12298 return EEXIST;
12299 case FILEIO_ENODEV:
12300 return ENODEV;
12301 case FILEIO_ENOTDIR:
12302 return ENOTDIR;
12303 case FILEIO_EISDIR:
12304 return EISDIR;
12305 case FILEIO_EINVAL:
12306 return EINVAL;
12307 case FILEIO_ENFILE:
12308 return ENFILE;
12309 case FILEIO_EMFILE:
12310 return EMFILE;
12311 case FILEIO_EFBIG:
12312 return EFBIG;
12313 case FILEIO_ENOSPC:
12314 return ENOSPC;
12315 case FILEIO_ESPIPE:
12316 return ESPIPE;
12317 case FILEIO_EROFS:
12318 return EROFS;
12319 case FILEIO_ENOSYS:
12320 return ENOSYS;
12321 case FILEIO_ENAMETOOLONG:
12322 return ENAMETOOLONG;
12323 }
12324 return -1;
12325 }
12326
12327 static char *
12328 remote_hostio_error (int errnum)
12329 {
12330 int host_error = remote_fileio_errno_to_host (errnum);
12331
12332 if (host_error == -1)
12333 error (_("Unknown remote I/O error %d"), errnum);
12334 else
12335 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12336 }
12337
12338 /* A RAII wrapper around a remote file descriptor. */
12339
12340 class scoped_remote_fd
12341 {
12342 public:
12343 scoped_remote_fd (remote_target *remote, int fd)
12344 : m_remote (remote), m_fd (fd)
12345 {
12346 }
12347
12348 ~scoped_remote_fd ()
12349 {
12350 if (m_fd != -1)
12351 {
12352 try
12353 {
12354 int remote_errno;
12355 m_remote->remote_hostio_close (m_fd, &remote_errno);
12356 }
12357 catch (...)
12358 {
12359 /* Swallow exception before it escapes the dtor. If
12360 something goes wrong, likely the connection is gone,
12361 and there's nothing else that can be done. */
12362 }
12363 }
12364 }
12365
12366 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12367
12368 /* Release ownership of the file descriptor, and return it. */
12369 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12370 {
12371 int fd = m_fd;
12372 m_fd = -1;
12373 return fd;
12374 }
12375
12376 /* Return the owned file descriptor. */
12377 int get () const noexcept
12378 {
12379 return m_fd;
12380 }
12381
12382 private:
12383 /* The remote target. */
12384 remote_target *m_remote;
12385
12386 /* The owned remote I/O file descriptor. */
12387 int m_fd;
12388 };
12389
12390 void
12391 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12392 {
12393 remote_target *remote = get_current_remote_target ();
12394
12395 if (remote == nullptr)
12396 error (_("command can only be used with remote target"));
12397
12398 remote->remote_file_put (local_file, remote_file, from_tty);
12399 }
12400
12401 void
12402 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12403 int from_tty)
12404 {
12405 int retcode, remote_errno, bytes, io_size;
12406 int bytes_in_buffer;
12407 int saw_eof;
12408 ULONGEST offset;
12409
12410 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12411 if (file == NULL)
12412 perror_with_name (local_file);
12413
12414 scoped_remote_fd fd
12415 (this, remote_hostio_open (NULL,
12416 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12417 | FILEIO_O_TRUNC),
12418 0700, 0, &remote_errno));
12419 if (fd.get () == -1)
12420 remote_hostio_error (remote_errno);
12421
12422 /* Send up to this many bytes at once. They won't all fit in the
12423 remote packet limit, so we'll transfer slightly fewer. */
12424 io_size = get_remote_packet_size ();
12425 gdb::byte_vector buffer (io_size);
12426
12427 bytes_in_buffer = 0;
12428 saw_eof = 0;
12429 offset = 0;
12430 while (bytes_in_buffer || !saw_eof)
12431 {
12432 if (!saw_eof)
12433 {
12434 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12435 io_size - bytes_in_buffer,
12436 file.get ());
12437 if (bytes == 0)
12438 {
12439 if (ferror (file.get ()))
12440 error (_("Error reading %s."), local_file);
12441 else
12442 {
12443 /* EOF. Unless there is something still in the
12444 buffer from the last iteration, we are done. */
12445 saw_eof = 1;
12446 if (bytes_in_buffer == 0)
12447 break;
12448 }
12449 }
12450 }
12451 else
12452 bytes = 0;
12453
12454 bytes += bytes_in_buffer;
12455 bytes_in_buffer = 0;
12456
12457 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12458 offset, &remote_errno);
12459
12460 if (retcode < 0)
12461 remote_hostio_error (remote_errno);
12462 else if (retcode == 0)
12463 error (_("Remote write of %d bytes returned 0!"), bytes);
12464 else if (retcode < bytes)
12465 {
12466 /* Short write. Save the rest of the read data for the next
12467 write. */
12468 bytes_in_buffer = bytes - retcode;
12469 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12470 }
12471
12472 offset += retcode;
12473 }
12474
12475 if (remote_hostio_close (fd.release (), &remote_errno))
12476 remote_hostio_error (remote_errno);
12477
12478 if (from_tty)
12479 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12480 }
12481
12482 void
12483 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12484 {
12485 remote_target *remote = get_current_remote_target ();
12486
12487 if (remote == nullptr)
12488 error (_("command can only be used with remote target"));
12489
12490 remote->remote_file_get (remote_file, local_file, from_tty);
12491 }
12492
12493 void
12494 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12495 int from_tty)
12496 {
12497 int remote_errno, bytes, io_size;
12498 ULONGEST offset;
12499
12500 scoped_remote_fd fd
12501 (this, remote_hostio_open (NULL,
12502 remote_file, FILEIO_O_RDONLY, 0, 0,
12503 &remote_errno));
12504 if (fd.get () == -1)
12505 remote_hostio_error (remote_errno);
12506
12507 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12508 if (file == NULL)
12509 perror_with_name (local_file);
12510
12511 /* Send up to this many bytes at once. They won't all fit in the
12512 remote packet limit, so we'll transfer slightly fewer. */
12513 io_size = get_remote_packet_size ();
12514 gdb::byte_vector buffer (io_size);
12515
12516 offset = 0;
12517 while (1)
12518 {
12519 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12520 &remote_errno);
12521 if (bytes == 0)
12522 /* Success, but no bytes, means end-of-file. */
12523 break;
12524 if (bytes == -1)
12525 remote_hostio_error (remote_errno);
12526
12527 offset += bytes;
12528
12529 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12530 if (bytes == 0)
12531 perror_with_name (local_file);
12532 }
12533
12534 if (remote_hostio_close (fd.release (), &remote_errno))
12535 remote_hostio_error (remote_errno);
12536
12537 if (from_tty)
12538 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12539 }
12540
12541 void
12542 remote_file_delete (const char *remote_file, int from_tty)
12543 {
12544 remote_target *remote = get_current_remote_target ();
12545
12546 if (remote == nullptr)
12547 error (_("command can only be used with remote target"));
12548
12549 remote->remote_file_delete (remote_file, from_tty);
12550 }
12551
12552 void
12553 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12554 {
12555 int retcode, remote_errno;
12556
12557 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12558 if (retcode == -1)
12559 remote_hostio_error (remote_errno);
12560
12561 if (from_tty)
12562 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12563 }
12564
12565 static void
12566 remote_put_command (const char *args, int from_tty)
12567 {
12568 if (args == NULL)
12569 error_no_arg (_("file to put"));
12570
12571 gdb_argv argv (args);
12572 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12573 error (_("Invalid parameters to remote put"));
12574
12575 remote_file_put (argv[0], argv[1], from_tty);
12576 }
12577
12578 static void
12579 remote_get_command (const char *args, int from_tty)
12580 {
12581 if (args == NULL)
12582 error_no_arg (_("file to get"));
12583
12584 gdb_argv argv (args);
12585 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12586 error (_("Invalid parameters to remote get"));
12587
12588 remote_file_get (argv[0], argv[1], from_tty);
12589 }
12590
12591 static void
12592 remote_delete_command (const char *args, int from_tty)
12593 {
12594 if (args == NULL)
12595 error_no_arg (_("file to delete"));
12596
12597 gdb_argv argv (args);
12598 if (argv[0] == NULL || argv[1] != NULL)
12599 error (_("Invalid parameters to remote delete"));
12600
12601 remote_file_delete (argv[0], from_tty);
12602 }
12603
12604 static void
12605 remote_command (const char *args, int from_tty)
12606 {
12607 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12608 }
12609
12610 bool
12611 remote_target::can_execute_reverse ()
12612 {
12613 if (packet_support (PACKET_bs) == PACKET_ENABLE
12614 || packet_support (PACKET_bc) == PACKET_ENABLE)
12615 return true;
12616 else
12617 return false;
12618 }
12619
12620 bool
12621 remote_target::supports_non_stop ()
12622 {
12623 return true;
12624 }
12625
12626 bool
12627 remote_target::supports_disable_randomization ()
12628 {
12629 /* Only supported in extended mode. */
12630 return false;
12631 }
12632
12633 bool
12634 remote_target::supports_multi_process ()
12635 {
12636 struct remote_state *rs = get_remote_state ();
12637
12638 return remote_multi_process_p (rs);
12639 }
12640
12641 static int
12642 remote_supports_cond_tracepoints ()
12643 {
12644 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12645 }
12646
12647 bool
12648 remote_target::supports_evaluation_of_breakpoint_conditions ()
12649 {
12650 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12651 }
12652
12653 static int
12654 remote_supports_fast_tracepoints ()
12655 {
12656 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12657 }
12658
12659 static int
12660 remote_supports_static_tracepoints ()
12661 {
12662 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12663 }
12664
12665 static int
12666 remote_supports_install_in_trace ()
12667 {
12668 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12669 }
12670
12671 bool
12672 remote_target::supports_enable_disable_tracepoint ()
12673 {
12674 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12675 == PACKET_ENABLE);
12676 }
12677
12678 bool
12679 remote_target::supports_string_tracing ()
12680 {
12681 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12682 }
12683
12684 bool
12685 remote_target::can_run_breakpoint_commands ()
12686 {
12687 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12688 }
12689
12690 void
12691 remote_target::trace_init ()
12692 {
12693 struct remote_state *rs = get_remote_state ();
12694
12695 putpkt ("QTinit");
12696 remote_get_noisy_reply ();
12697 if (strcmp (rs->buf.data (), "OK") != 0)
12698 error (_("Target does not support this command."));
12699 }
12700
12701 /* Recursive routine to walk through command list including loops, and
12702 download packets for each command. */
12703
12704 void
12705 remote_target::remote_download_command_source (int num, ULONGEST addr,
12706 struct command_line *cmds)
12707 {
12708 struct remote_state *rs = get_remote_state ();
12709 struct command_line *cmd;
12710
12711 for (cmd = cmds; cmd; cmd = cmd->next)
12712 {
12713 QUIT; /* Allow user to bail out with ^C. */
12714 strcpy (rs->buf.data (), "QTDPsrc:");
12715 encode_source_string (num, addr, "cmd", cmd->line,
12716 rs->buf.data () + strlen (rs->buf.data ()),
12717 rs->buf.size () - strlen (rs->buf.data ()));
12718 putpkt (rs->buf);
12719 remote_get_noisy_reply ();
12720 if (strcmp (rs->buf.data (), "OK"))
12721 warning (_("Target does not support source download."));
12722
12723 if (cmd->control_type == while_control
12724 || cmd->control_type == while_stepping_control)
12725 {
12726 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12727
12728 QUIT; /* Allow user to bail out with ^C. */
12729 strcpy (rs->buf.data (), "QTDPsrc:");
12730 encode_source_string (num, addr, "cmd", "end",
12731 rs->buf.data () + strlen (rs->buf.data ()),
12732 rs->buf.size () - strlen (rs->buf.data ()));
12733 putpkt (rs->buf);
12734 remote_get_noisy_reply ();
12735 if (strcmp (rs->buf.data (), "OK"))
12736 warning (_("Target does not support source download."));
12737 }
12738 }
12739 }
12740
12741 void
12742 remote_target::download_tracepoint (struct bp_location *loc)
12743 {
12744 CORE_ADDR tpaddr;
12745 char addrbuf[40];
12746 std::vector<std::string> tdp_actions;
12747 std::vector<std::string> stepping_actions;
12748 char *pkt;
12749 struct breakpoint *b = loc->owner;
12750 struct tracepoint *t = (struct tracepoint *) b;
12751 struct remote_state *rs = get_remote_state ();
12752 int ret;
12753 const char *err_msg = _("Tracepoint packet too large for target.");
12754 size_t size_left;
12755
12756 /* We use a buffer other than rs->buf because we'll build strings
12757 across multiple statements, and other statements in between could
12758 modify rs->buf. */
12759 gdb::char_vector buf (get_remote_packet_size ());
12760
12761 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12762
12763 tpaddr = loc->address;
12764 sprintf_vma (addrbuf, tpaddr);
12765 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12766 b->number, addrbuf, /* address */
12767 (b->enable_state == bp_enabled ? 'E' : 'D'),
12768 t->step_count, t->pass_count);
12769
12770 if (ret < 0 || ret >= buf.size ())
12771 error ("%s", err_msg);
12772
12773 /* Fast tracepoints are mostly handled by the target, but we can
12774 tell the target how big of an instruction block should be moved
12775 around. */
12776 if (b->type == bp_fast_tracepoint)
12777 {
12778 /* Only test for support at download time; we may not know
12779 target capabilities at definition time. */
12780 if (remote_supports_fast_tracepoints ())
12781 {
12782 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12783 NULL))
12784 {
12785 size_left = buf.size () - strlen (buf.data ());
12786 ret = snprintf (buf.data () + strlen (buf.data ()),
12787 size_left, ":F%x",
12788 gdb_insn_length (loc->gdbarch, tpaddr));
12789
12790 if (ret < 0 || ret >= size_left)
12791 error ("%s", err_msg);
12792 }
12793 else
12794 /* If it passed validation at definition but fails now,
12795 something is very wrong. */
12796 internal_error (__FILE__, __LINE__,
12797 _("Fast tracepoint not "
12798 "valid during download"));
12799 }
12800 else
12801 /* Fast tracepoints are functionally identical to regular
12802 tracepoints, so don't take lack of support as a reason to
12803 give up on the trace run. */
12804 warning (_("Target does not support fast tracepoints, "
12805 "downloading %d as regular tracepoint"), b->number);
12806 }
12807 else if (b->type == bp_static_tracepoint)
12808 {
12809 /* Only test for support at download time; we may not know
12810 target capabilities at definition time. */
12811 if (remote_supports_static_tracepoints ())
12812 {
12813 struct static_tracepoint_marker marker;
12814
12815 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12816 {
12817 size_left = buf.size () - strlen (buf.data ());
12818 ret = snprintf (buf.data () + strlen (buf.data ()),
12819 size_left, ":S");
12820
12821 if (ret < 0 || ret >= size_left)
12822 error ("%s", err_msg);
12823 }
12824 else
12825 error (_("Static tracepoint not valid during download"));
12826 }
12827 else
12828 /* Fast tracepoints are functionally identical to regular
12829 tracepoints, so don't take lack of support as a reason
12830 to give up on the trace run. */
12831 error (_("Target does not support static tracepoints"));
12832 }
12833 /* If the tracepoint has a conditional, make it into an agent
12834 expression and append to the definition. */
12835 if (loc->cond)
12836 {
12837 /* Only test support at download time, we may not know target
12838 capabilities at definition time. */
12839 if (remote_supports_cond_tracepoints ())
12840 {
12841 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12842 loc->cond.get ());
12843
12844 size_left = buf.size () - strlen (buf.data ());
12845
12846 ret = snprintf (buf.data () + strlen (buf.data ()),
12847 size_left, ":X%x,", aexpr->len);
12848
12849 if (ret < 0 || ret >= size_left)
12850 error ("%s", err_msg);
12851
12852 size_left = buf.size () - strlen (buf.data ());
12853
12854 /* Two bytes to encode each aexpr byte, plus the terminating
12855 null byte. */
12856 if (aexpr->len * 2 + 1 > size_left)
12857 error ("%s", err_msg);
12858
12859 pkt = buf.data () + strlen (buf.data ());
12860
12861 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12862 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12863 *pkt = '\0';
12864 }
12865 else
12866 warning (_("Target does not support conditional tracepoints, "
12867 "ignoring tp %d cond"), b->number);
12868 }
12869
12870 if (b->commands || *default_collect)
12871 {
12872 size_left = buf.size () - strlen (buf.data ());
12873
12874 ret = snprintf (buf.data () + strlen (buf.data ()),
12875 size_left, "-");
12876
12877 if (ret < 0 || ret >= size_left)
12878 error ("%s", err_msg);
12879 }
12880
12881 putpkt (buf.data ());
12882 remote_get_noisy_reply ();
12883 if (strcmp (rs->buf.data (), "OK"))
12884 error (_("Target does not support tracepoints."));
12885
12886 /* do_single_steps (t); */
12887 for (auto action_it = tdp_actions.begin ();
12888 action_it != tdp_actions.end (); action_it++)
12889 {
12890 QUIT; /* Allow user to bail out with ^C. */
12891
12892 bool has_more = ((action_it + 1) != tdp_actions.end ()
12893 || !stepping_actions.empty ());
12894
12895 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12896 b->number, addrbuf, /* address */
12897 action_it->c_str (),
12898 has_more ? '-' : 0);
12899
12900 if (ret < 0 || ret >= buf.size ())
12901 error ("%s", err_msg);
12902
12903 putpkt (buf.data ());
12904 remote_get_noisy_reply ();
12905 if (strcmp (rs->buf.data (), "OK"))
12906 error (_("Error on target while setting tracepoints."));
12907 }
12908
12909 for (auto action_it = stepping_actions.begin ();
12910 action_it != stepping_actions.end (); action_it++)
12911 {
12912 QUIT; /* Allow user to bail out with ^C. */
12913
12914 bool is_first = action_it == stepping_actions.begin ();
12915 bool has_more = (action_it + 1) != stepping_actions.end ();
12916
12917 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12918 b->number, addrbuf, /* address */
12919 is_first ? "S" : "",
12920 action_it->c_str (),
12921 has_more ? "-" : "");
12922
12923 if (ret < 0 || ret >= buf.size ())
12924 error ("%s", err_msg);
12925
12926 putpkt (buf.data ());
12927 remote_get_noisy_reply ();
12928 if (strcmp (rs->buf.data (), "OK"))
12929 error (_("Error on target while setting tracepoints."));
12930 }
12931
12932 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12933 {
12934 if (b->location != NULL)
12935 {
12936 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12937
12938 if (ret < 0 || ret >= buf.size ())
12939 error ("%s", err_msg);
12940
12941 encode_source_string (b->number, loc->address, "at",
12942 event_location_to_string (b->location.get ()),
12943 buf.data () + strlen (buf.data ()),
12944 buf.size () - strlen (buf.data ()));
12945 putpkt (buf.data ());
12946 remote_get_noisy_reply ();
12947 if (strcmp (rs->buf.data (), "OK"))
12948 warning (_("Target does not support source download."));
12949 }
12950 if (b->cond_string)
12951 {
12952 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12953
12954 if (ret < 0 || ret >= buf.size ())
12955 error ("%s", err_msg);
12956
12957 encode_source_string (b->number, loc->address,
12958 "cond", b->cond_string,
12959 buf.data () + strlen (buf.data ()),
12960 buf.size () - strlen (buf.data ()));
12961 putpkt (buf.data ());
12962 remote_get_noisy_reply ();
12963 if (strcmp (rs->buf.data (), "OK"))
12964 warning (_("Target does not support source download."));
12965 }
12966 remote_download_command_source (b->number, loc->address,
12967 breakpoint_commands (b));
12968 }
12969 }
12970
12971 bool
12972 remote_target::can_download_tracepoint ()
12973 {
12974 struct remote_state *rs = get_remote_state ();
12975 struct trace_status *ts;
12976 int status;
12977
12978 /* Don't try to install tracepoints until we've relocated our
12979 symbols, and fetched and merged the target's tracepoint list with
12980 ours. */
12981 if (rs->starting_up)
12982 return false;
12983
12984 ts = current_trace_status ();
12985 status = get_trace_status (ts);
12986
12987 if (status == -1 || !ts->running_known || !ts->running)
12988 return false;
12989
12990 /* If we are in a tracing experiment, but remote stub doesn't support
12991 installing tracepoint in trace, we have to return. */
12992 if (!remote_supports_install_in_trace ())
12993 return false;
12994
12995 return true;
12996 }
12997
12998
12999 void
13000 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13001 {
13002 struct remote_state *rs = get_remote_state ();
13003 char *p;
13004
13005 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13006 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13007 tsv.builtin);
13008 p = rs->buf.data () + strlen (rs->buf.data ());
13009 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13010 >= get_remote_packet_size ())
13011 error (_("Trace state variable name too long for tsv definition packet"));
13012 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13013 *p++ = '\0';
13014 putpkt (rs->buf);
13015 remote_get_noisy_reply ();
13016 if (rs->buf[0] == '\0')
13017 error (_("Target does not support this command."));
13018 if (strcmp (rs->buf.data (), "OK") != 0)
13019 error (_("Error on target while downloading trace state variable."));
13020 }
13021
13022 void
13023 remote_target::enable_tracepoint (struct bp_location *location)
13024 {
13025 struct remote_state *rs = get_remote_state ();
13026 char addr_buf[40];
13027
13028 sprintf_vma (addr_buf, location->address);
13029 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13030 location->owner->number, addr_buf);
13031 putpkt (rs->buf);
13032 remote_get_noisy_reply ();
13033 if (rs->buf[0] == '\0')
13034 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13035 if (strcmp (rs->buf.data (), "OK") != 0)
13036 error (_("Error on target while enabling tracepoint."));
13037 }
13038
13039 void
13040 remote_target::disable_tracepoint (struct bp_location *location)
13041 {
13042 struct remote_state *rs = get_remote_state ();
13043 char addr_buf[40];
13044
13045 sprintf_vma (addr_buf, location->address);
13046 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13047 location->owner->number, addr_buf);
13048 putpkt (rs->buf);
13049 remote_get_noisy_reply ();
13050 if (rs->buf[0] == '\0')
13051 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13052 if (strcmp (rs->buf.data (), "OK") != 0)
13053 error (_("Error on target while disabling tracepoint."));
13054 }
13055
13056 void
13057 remote_target::trace_set_readonly_regions ()
13058 {
13059 asection *s;
13060 bfd *abfd = NULL;
13061 bfd_size_type size;
13062 bfd_vma vma;
13063 int anysecs = 0;
13064 int offset = 0;
13065
13066 if (!exec_bfd)
13067 return; /* No information to give. */
13068
13069 struct remote_state *rs = get_remote_state ();
13070
13071 strcpy (rs->buf.data (), "QTro");
13072 offset = strlen (rs->buf.data ());
13073 for (s = exec_bfd->sections; s; s = s->next)
13074 {
13075 char tmp1[40], tmp2[40];
13076 int sec_length;
13077
13078 if ((s->flags & SEC_LOAD) == 0 ||
13079 /* (s->flags & SEC_CODE) == 0 || */
13080 (s->flags & SEC_READONLY) == 0)
13081 continue;
13082
13083 anysecs = 1;
13084 vma = bfd_get_section_vma (abfd, s);
13085 size = bfd_get_section_size (s);
13086 sprintf_vma (tmp1, vma);
13087 sprintf_vma (tmp2, vma + size);
13088 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13089 if (offset + sec_length + 1 > rs->buf.size ())
13090 {
13091 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13092 warning (_("\
13093 Too many sections for read-only sections definition packet."));
13094 break;
13095 }
13096 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13097 tmp1, tmp2);
13098 offset += sec_length;
13099 }
13100 if (anysecs)
13101 {
13102 putpkt (rs->buf);
13103 getpkt (&rs->buf, 0);
13104 }
13105 }
13106
13107 void
13108 remote_target::trace_start ()
13109 {
13110 struct remote_state *rs = get_remote_state ();
13111
13112 putpkt ("QTStart");
13113 remote_get_noisy_reply ();
13114 if (rs->buf[0] == '\0')
13115 error (_("Target does not support this command."));
13116 if (strcmp (rs->buf.data (), "OK") != 0)
13117 error (_("Bogus reply from target: %s"), rs->buf.data ());
13118 }
13119
13120 int
13121 remote_target::get_trace_status (struct trace_status *ts)
13122 {
13123 /* Initialize it just to avoid a GCC false warning. */
13124 char *p = NULL;
13125 /* FIXME we need to get register block size some other way. */
13126 extern int trace_regblock_size;
13127 enum packet_result result;
13128 struct remote_state *rs = get_remote_state ();
13129
13130 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13131 return -1;
13132
13133 trace_regblock_size
13134 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13135
13136 putpkt ("qTStatus");
13137
13138 try
13139 {
13140 p = remote_get_noisy_reply ();
13141 }
13142 catch (const gdb_exception_error &ex)
13143 {
13144 if (ex.error != TARGET_CLOSE_ERROR)
13145 {
13146 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13147 return -1;
13148 }
13149 throw;
13150 }
13151
13152 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13153
13154 /* If the remote target doesn't do tracing, flag it. */
13155 if (result == PACKET_UNKNOWN)
13156 return -1;
13157
13158 /* We're working with a live target. */
13159 ts->filename = NULL;
13160
13161 if (*p++ != 'T')
13162 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13163
13164 /* Function 'parse_trace_status' sets default value of each field of
13165 'ts' at first, so we don't have to do it here. */
13166 parse_trace_status (p, ts);
13167
13168 return ts->running;
13169 }
13170
13171 void
13172 remote_target::get_tracepoint_status (struct breakpoint *bp,
13173 struct uploaded_tp *utp)
13174 {
13175 struct remote_state *rs = get_remote_state ();
13176 char *reply;
13177 struct bp_location *loc;
13178 struct tracepoint *tp = (struct tracepoint *) bp;
13179 size_t size = get_remote_packet_size ();
13180
13181 if (tp)
13182 {
13183 tp->hit_count = 0;
13184 tp->traceframe_usage = 0;
13185 for (loc = tp->loc; loc; loc = loc->next)
13186 {
13187 /* If the tracepoint was never downloaded, don't go asking for
13188 any status. */
13189 if (tp->number_on_target == 0)
13190 continue;
13191 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13192 phex_nz (loc->address, 0));
13193 putpkt (rs->buf);
13194 reply = remote_get_noisy_reply ();
13195 if (reply && *reply)
13196 {
13197 if (*reply == 'V')
13198 parse_tracepoint_status (reply + 1, bp, utp);
13199 }
13200 }
13201 }
13202 else if (utp)
13203 {
13204 utp->hit_count = 0;
13205 utp->traceframe_usage = 0;
13206 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13207 phex_nz (utp->addr, 0));
13208 putpkt (rs->buf);
13209 reply = remote_get_noisy_reply ();
13210 if (reply && *reply)
13211 {
13212 if (*reply == 'V')
13213 parse_tracepoint_status (reply + 1, bp, utp);
13214 }
13215 }
13216 }
13217
13218 void
13219 remote_target::trace_stop ()
13220 {
13221 struct remote_state *rs = get_remote_state ();
13222
13223 putpkt ("QTStop");
13224 remote_get_noisy_reply ();
13225 if (rs->buf[0] == '\0')
13226 error (_("Target does not support this command."));
13227 if (strcmp (rs->buf.data (), "OK") != 0)
13228 error (_("Bogus reply from target: %s"), rs->buf.data ());
13229 }
13230
13231 int
13232 remote_target::trace_find (enum trace_find_type type, int num,
13233 CORE_ADDR addr1, CORE_ADDR addr2,
13234 int *tpp)
13235 {
13236 struct remote_state *rs = get_remote_state ();
13237 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13238 char *p, *reply;
13239 int target_frameno = -1, target_tracept = -1;
13240
13241 /* Lookups other than by absolute frame number depend on the current
13242 trace selected, so make sure it is correct on the remote end
13243 first. */
13244 if (type != tfind_number)
13245 set_remote_traceframe ();
13246
13247 p = rs->buf.data ();
13248 strcpy (p, "QTFrame:");
13249 p = strchr (p, '\0');
13250 switch (type)
13251 {
13252 case tfind_number:
13253 xsnprintf (p, endbuf - p, "%x", num);
13254 break;
13255 case tfind_pc:
13256 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13257 break;
13258 case tfind_tp:
13259 xsnprintf (p, endbuf - p, "tdp:%x", num);
13260 break;
13261 case tfind_range:
13262 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13263 phex_nz (addr2, 0));
13264 break;
13265 case tfind_outside:
13266 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13267 phex_nz (addr2, 0));
13268 break;
13269 default:
13270 error (_("Unknown trace find type %d"), type);
13271 }
13272
13273 putpkt (rs->buf);
13274 reply = remote_get_noisy_reply ();
13275 if (*reply == '\0')
13276 error (_("Target does not support this command."));
13277
13278 while (reply && *reply)
13279 switch (*reply)
13280 {
13281 case 'F':
13282 p = ++reply;
13283 target_frameno = (int) strtol (p, &reply, 16);
13284 if (reply == p)
13285 error (_("Unable to parse trace frame number"));
13286 /* Don't update our remote traceframe number cache on failure
13287 to select a remote traceframe. */
13288 if (target_frameno == -1)
13289 return -1;
13290 break;
13291 case 'T':
13292 p = ++reply;
13293 target_tracept = (int) strtol (p, &reply, 16);
13294 if (reply == p)
13295 error (_("Unable to parse tracepoint number"));
13296 break;
13297 case 'O': /* "OK"? */
13298 if (reply[1] == 'K' && reply[2] == '\0')
13299 reply += 2;
13300 else
13301 error (_("Bogus reply from target: %s"), reply);
13302 break;
13303 default:
13304 error (_("Bogus reply from target: %s"), reply);
13305 }
13306 if (tpp)
13307 *tpp = target_tracept;
13308
13309 rs->remote_traceframe_number = target_frameno;
13310 return target_frameno;
13311 }
13312
13313 bool
13314 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13315 {
13316 struct remote_state *rs = get_remote_state ();
13317 char *reply;
13318 ULONGEST uval;
13319
13320 set_remote_traceframe ();
13321
13322 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13323 putpkt (rs->buf);
13324 reply = remote_get_noisy_reply ();
13325 if (reply && *reply)
13326 {
13327 if (*reply == 'V')
13328 {
13329 unpack_varlen_hex (reply + 1, &uval);
13330 *val = (LONGEST) uval;
13331 return true;
13332 }
13333 }
13334 return false;
13335 }
13336
13337 int
13338 remote_target::save_trace_data (const char *filename)
13339 {
13340 struct remote_state *rs = get_remote_state ();
13341 char *p, *reply;
13342
13343 p = rs->buf.data ();
13344 strcpy (p, "QTSave:");
13345 p += strlen (p);
13346 if ((p - rs->buf.data ()) + strlen (filename) * 2
13347 >= get_remote_packet_size ())
13348 error (_("Remote file name too long for trace save packet"));
13349 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13350 *p++ = '\0';
13351 putpkt (rs->buf);
13352 reply = remote_get_noisy_reply ();
13353 if (*reply == '\0')
13354 error (_("Target does not support this command."));
13355 if (strcmp (reply, "OK") != 0)
13356 error (_("Bogus reply from target: %s"), reply);
13357 return 0;
13358 }
13359
13360 /* This is basically a memory transfer, but needs to be its own packet
13361 because we don't know how the target actually organizes its trace
13362 memory, plus we want to be able to ask for as much as possible, but
13363 not be unhappy if we don't get as much as we ask for. */
13364
13365 LONGEST
13366 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13367 {
13368 struct remote_state *rs = get_remote_state ();
13369 char *reply;
13370 char *p;
13371 int rslt;
13372
13373 p = rs->buf.data ();
13374 strcpy (p, "qTBuffer:");
13375 p += strlen (p);
13376 p += hexnumstr (p, offset);
13377 *p++ = ',';
13378 p += hexnumstr (p, len);
13379 *p++ = '\0';
13380
13381 putpkt (rs->buf);
13382 reply = remote_get_noisy_reply ();
13383 if (reply && *reply)
13384 {
13385 /* 'l' by itself means we're at the end of the buffer and
13386 there is nothing more to get. */
13387 if (*reply == 'l')
13388 return 0;
13389
13390 /* Convert the reply into binary. Limit the number of bytes to
13391 convert according to our passed-in buffer size, rather than
13392 what was returned in the packet; if the target is
13393 unexpectedly generous and gives us a bigger reply than we
13394 asked for, we don't want to crash. */
13395 rslt = hex2bin (reply, buf, len);
13396 return rslt;
13397 }
13398
13399 /* Something went wrong, flag as an error. */
13400 return -1;
13401 }
13402
13403 void
13404 remote_target::set_disconnected_tracing (int val)
13405 {
13406 struct remote_state *rs = get_remote_state ();
13407
13408 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13409 {
13410 char *reply;
13411
13412 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13413 "QTDisconnected:%x", val);
13414 putpkt (rs->buf);
13415 reply = remote_get_noisy_reply ();
13416 if (*reply == '\0')
13417 error (_("Target does not support this command."));
13418 if (strcmp (reply, "OK") != 0)
13419 error (_("Bogus reply from target: %s"), reply);
13420 }
13421 else if (val)
13422 warning (_("Target does not support disconnected tracing."));
13423 }
13424
13425 int
13426 remote_target::core_of_thread (ptid_t ptid)
13427 {
13428 struct thread_info *info = find_thread_ptid (ptid);
13429
13430 if (info != NULL && info->priv != NULL)
13431 return get_remote_thread_info (info)->core;
13432
13433 return -1;
13434 }
13435
13436 void
13437 remote_target::set_circular_trace_buffer (int val)
13438 {
13439 struct remote_state *rs = get_remote_state ();
13440 char *reply;
13441
13442 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13443 "QTBuffer:circular:%x", val);
13444 putpkt (rs->buf);
13445 reply = remote_get_noisy_reply ();
13446 if (*reply == '\0')
13447 error (_("Target does not support this command."));
13448 if (strcmp (reply, "OK") != 0)
13449 error (_("Bogus reply from target: %s"), reply);
13450 }
13451
13452 traceframe_info_up
13453 remote_target::traceframe_info ()
13454 {
13455 gdb::optional<gdb::char_vector> text
13456 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13457 NULL);
13458 if (text)
13459 return parse_traceframe_info (text->data ());
13460
13461 return NULL;
13462 }
13463
13464 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13465 instruction on which a fast tracepoint may be placed. Returns -1
13466 if the packet is not supported, and 0 if the minimum instruction
13467 length is unknown. */
13468
13469 int
13470 remote_target::get_min_fast_tracepoint_insn_len ()
13471 {
13472 struct remote_state *rs = get_remote_state ();
13473 char *reply;
13474
13475 /* If we're not debugging a process yet, the IPA can't be
13476 loaded. */
13477 if (!target_has_execution)
13478 return 0;
13479
13480 /* Make sure the remote is pointing at the right process. */
13481 set_general_process ();
13482
13483 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13484 putpkt (rs->buf);
13485 reply = remote_get_noisy_reply ();
13486 if (*reply == '\0')
13487 return -1;
13488 else
13489 {
13490 ULONGEST min_insn_len;
13491
13492 unpack_varlen_hex (reply, &min_insn_len);
13493
13494 return (int) min_insn_len;
13495 }
13496 }
13497
13498 void
13499 remote_target::set_trace_buffer_size (LONGEST val)
13500 {
13501 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13502 {
13503 struct remote_state *rs = get_remote_state ();
13504 char *buf = rs->buf.data ();
13505 char *endbuf = buf + get_remote_packet_size ();
13506 enum packet_result result;
13507
13508 gdb_assert (val >= 0 || val == -1);
13509 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13510 /* Send -1 as literal "-1" to avoid host size dependency. */
13511 if (val < 0)
13512 {
13513 *buf++ = '-';
13514 buf += hexnumstr (buf, (ULONGEST) -val);
13515 }
13516 else
13517 buf += hexnumstr (buf, (ULONGEST) val);
13518
13519 putpkt (rs->buf);
13520 remote_get_noisy_reply ();
13521 result = packet_ok (rs->buf,
13522 &remote_protocol_packets[PACKET_QTBuffer_size]);
13523
13524 if (result != PACKET_OK)
13525 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13526 }
13527 }
13528
13529 bool
13530 remote_target::set_trace_notes (const char *user, const char *notes,
13531 const char *stop_notes)
13532 {
13533 struct remote_state *rs = get_remote_state ();
13534 char *reply;
13535 char *buf = rs->buf.data ();
13536 char *endbuf = buf + get_remote_packet_size ();
13537 int nbytes;
13538
13539 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13540 if (user)
13541 {
13542 buf += xsnprintf (buf, endbuf - buf, "user:");
13543 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13544 buf += 2 * nbytes;
13545 *buf++ = ';';
13546 }
13547 if (notes)
13548 {
13549 buf += xsnprintf (buf, endbuf - buf, "notes:");
13550 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13551 buf += 2 * nbytes;
13552 *buf++ = ';';
13553 }
13554 if (stop_notes)
13555 {
13556 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13557 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13558 buf += 2 * nbytes;
13559 *buf++ = ';';
13560 }
13561 /* Ensure the buffer is terminated. */
13562 *buf = '\0';
13563
13564 putpkt (rs->buf);
13565 reply = remote_get_noisy_reply ();
13566 if (*reply == '\0')
13567 return false;
13568
13569 if (strcmp (reply, "OK") != 0)
13570 error (_("Bogus reply from target: %s"), reply);
13571
13572 return true;
13573 }
13574
13575 bool
13576 remote_target::use_agent (bool use)
13577 {
13578 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13579 {
13580 struct remote_state *rs = get_remote_state ();
13581
13582 /* If the stub supports QAgent. */
13583 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13584 putpkt (rs->buf);
13585 getpkt (&rs->buf, 0);
13586
13587 if (strcmp (rs->buf.data (), "OK") == 0)
13588 {
13589 ::use_agent = use;
13590 return true;
13591 }
13592 }
13593
13594 return false;
13595 }
13596
13597 bool
13598 remote_target::can_use_agent ()
13599 {
13600 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13601 }
13602
13603 struct btrace_target_info
13604 {
13605 /* The ptid of the traced thread. */
13606 ptid_t ptid;
13607
13608 /* The obtained branch trace configuration. */
13609 struct btrace_config conf;
13610 };
13611
13612 /* Reset our idea of our target's btrace configuration. */
13613
13614 static void
13615 remote_btrace_reset (remote_state *rs)
13616 {
13617 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13618 }
13619
13620 /* Synchronize the configuration with the target. */
13621
13622 void
13623 remote_target::btrace_sync_conf (const btrace_config *conf)
13624 {
13625 struct packet_config *packet;
13626 struct remote_state *rs;
13627 char *buf, *pos, *endbuf;
13628
13629 rs = get_remote_state ();
13630 buf = rs->buf.data ();
13631 endbuf = buf + get_remote_packet_size ();
13632
13633 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13634 if (packet_config_support (packet) == PACKET_ENABLE
13635 && conf->bts.size != rs->btrace_config.bts.size)
13636 {
13637 pos = buf;
13638 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13639 conf->bts.size);
13640
13641 putpkt (buf);
13642 getpkt (&rs->buf, 0);
13643
13644 if (packet_ok (buf, packet) == PACKET_ERROR)
13645 {
13646 if (buf[0] == 'E' && buf[1] == '.')
13647 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13648 else
13649 error (_("Failed to configure the BTS buffer size."));
13650 }
13651
13652 rs->btrace_config.bts.size = conf->bts.size;
13653 }
13654
13655 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13656 if (packet_config_support (packet) == PACKET_ENABLE
13657 && conf->pt.size != rs->btrace_config.pt.size)
13658 {
13659 pos = buf;
13660 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13661 conf->pt.size);
13662
13663 putpkt (buf);
13664 getpkt (&rs->buf, 0);
13665
13666 if (packet_ok (buf, packet) == PACKET_ERROR)
13667 {
13668 if (buf[0] == 'E' && buf[1] == '.')
13669 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13670 else
13671 error (_("Failed to configure the trace buffer size."));
13672 }
13673
13674 rs->btrace_config.pt.size = conf->pt.size;
13675 }
13676 }
13677
13678 /* Read the current thread's btrace configuration from the target and
13679 store it into CONF. */
13680
13681 static void
13682 btrace_read_config (struct btrace_config *conf)
13683 {
13684 gdb::optional<gdb::char_vector> xml
13685 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13686 if (xml)
13687 parse_xml_btrace_conf (conf, xml->data ());
13688 }
13689
13690 /* Maybe reopen target btrace. */
13691
13692 void
13693 remote_target::remote_btrace_maybe_reopen ()
13694 {
13695 struct remote_state *rs = get_remote_state ();
13696 int btrace_target_pushed = 0;
13697 #if !defined (HAVE_LIBIPT)
13698 int warned = 0;
13699 #endif
13700
13701 scoped_restore_current_thread restore_thread;
13702
13703 for (thread_info *tp : all_non_exited_threads ())
13704 {
13705 set_general_thread (tp->ptid);
13706
13707 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13708 btrace_read_config (&rs->btrace_config);
13709
13710 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13711 continue;
13712
13713 #if !defined (HAVE_LIBIPT)
13714 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13715 {
13716 if (!warned)
13717 {
13718 warned = 1;
13719 warning (_("Target is recording using Intel Processor Trace "
13720 "but support was disabled at compile time."));
13721 }
13722
13723 continue;
13724 }
13725 #endif /* !defined (HAVE_LIBIPT) */
13726
13727 /* Push target, once, but before anything else happens. This way our
13728 changes to the threads will be cleaned up by unpushing the target
13729 in case btrace_read_config () throws. */
13730 if (!btrace_target_pushed)
13731 {
13732 btrace_target_pushed = 1;
13733 record_btrace_push_target ();
13734 printf_filtered (_("Target is recording using %s.\n"),
13735 btrace_format_string (rs->btrace_config.format));
13736 }
13737
13738 tp->btrace.target = XCNEW (struct btrace_target_info);
13739 tp->btrace.target->ptid = tp->ptid;
13740 tp->btrace.target->conf = rs->btrace_config;
13741 }
13742 }
13743
13744 /* Enable branch tracing. */
13745
13746 struct btrace_target_info *
13747 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13748 {
13749 struct btrace_target_info *tinfo = NULL;
13750 struct packet_config *packet = NULL;
13751 struct remote_state *rs = get_remote_state ();
13752 char *buf = rs->buf.data ();
13753 char *endbuf = buf + get_remote_packet_size ();
13754
13755 switch (conf->format)
13756 {
13757 case BTRACE_FORMAT_BTS:
13758 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13759 break;
13760
13761 case BTRACE_FORMAT_PT:
13762 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13763 break;
13764 }
13765
13766 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13767 error (_("Target does not support branch tracing."));
13768
13769 btrace_sync_conf (conf);
13770
13771 set_general_thread (ptid);
13772
13773 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13774 putpkt (rs->buf);
13775 getpkt (&rs->buf, 0);
13776
13777 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13778 {
13779 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13780 error (_("Could not enable branch tracing for %s: %s"),
13781 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13782 else
13783 error (_("Could not enable branch tracing for %s."),
13784 target_pid_to_str (ptid).c_str ());
13785 }
13786
13787 tinfo = XCNEW (struct btrace_target_info);
13788 tinfo->ptid = ptid;
13789
13790 /* If we fail to read the configuration, we lose some information, but the
13791 tracing itself is not impacted. */
13792 try
13793 {
13794 btrace_read_config (&tinfo->conf);
13795 }
13796 catch (const gdb_exception_error &err)
13797 {
13798 if (err.message != NULL)
13799 warning ("%s", err.what ());
13800 }
13801
13802 return tinfo;
13803 }
13804
13805 /* Disable branch tracing. */
13806
13807 void
13808 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13809 {
13810 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13811 struct remote_state *rs = get_remote_state ();
13812 char *buf = rs->buf.data ();
13813 char *endbuf = buf + get_remote_packet_size ();
13814
13815 if (packet_config_support (packet) != PACKET_ENABLE)
13816 error (_("Target does not support branch tracing."));
13817
13818 set_general_thread (tinfo->ptid);
13819
13820 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13821 putpkt (rs->buf);
13822 getpkt (&rs->buf, 0);
13823
13824 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13825 {
13826 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13827 error (_("Could not disable branch tracing for %s: %s"),
13828 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13829 else
13830 error (_("Could not disable branch tracing for %s."),
13831 target_pid_to_str (tinfo->ptid).c_str ());
13832 }
13833
13834 xfree (tinfo);
13835 }
13836
13837 /* Teardown branch tracing. */
13838
13839 void
13840 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13841 {
13842 /* We must not talk to the target during teardown. */
13843 xfree (tinfo);
13844 }
13845
13846 /* Read the branch trace. */
13847
13848 enum btrace_error
13849 remote_target::read_btrace (struct btrace_data *btrace,
13850 struct btrace_target_info *tinfo,
13851 enum btrace_read_type type)
13852 {
13853 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13854 const char *annex;
13855
13856 if (packet_config_support (packet) != PACKET_ENABLE)
13857 error (_("Target does not support branch tracing."));
13858
13859 #if !defined(HAVE_LIBEXPAT)
13860 error (_("Cannot process branch tracing result. XML parsing not supported."));
13861 #endif
13862
13863 switch (type)
13864 {
13865 case BTRACE_READ_ALL:
13866 annex = "all";
13867 break;
13868 case BTRACE_READ_NEW:
13869 annex = "new";
13870 break;
13871 case BTRACE_READ_DELTA:
13872 annex = "delta";
13873 break;
13874 default:
13875 internal_error (__FILE__, __LINE__,
13876 _("Bad branch tracing read type: %u."),
13877 (unsigned int) type);
13878 }
13879
13880 gdb::optional<gdb::char_vector> xml
13881 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13882 if (!xml)
13883 return BTRACE_ERR_UNKNOWN;
13884
13885 parse_xml_btrace (btrace, xml->data ());
13886
13887 return BTRACE_ERR_NONE;
13888 }
13889
13890 const struct btrace_config *
13891 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13892 {
13893 return &tinfo->conf;
13894 }
13895
13896 bool
13897 remote_target::augmented_libraries_svr4_read ()
13898 {
13899 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13900 == PACKET_ENABLE);
13901 }
13902
13903 /* Implementation of to_load. */
13904
13905 void
13906 remote_target::load (const char *name, int from_tty)
13907 {
13908 generic_load (name, from_tty);
13909 }
13910
13911 /* Accepts an integer PID; returns a string representing a file that
13912 can be opened on the remote side to get the symbols for the child
13913 process. Returns NULL if the operation is not supported. */
13914
13915 char *
13916 remote_target::pid_to_exec_file (int pid)
13917 {
13918 static gdb::optional<gdb::char_vector> filename;
13919 struct inferior *inf;
13920 char *annex = NULL;
13921
13922 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13923 return NULL;
13924
13925 inf = find_inferior_pid (pid);
13926 if (inf == NULL)
13927 internal_error (__FILE__, __LINE__,
13928 _("not currently attached to process %d"), pid);
13929
13930 if (!inf->fake_pid_p)
13931 {
13932 const int annex_size = 9;
13933
13934 annex = (char *) alloca (annex_size);
13935 xsnprintf (annex, annex_size, "%x", pid);
13936 }
13937
13938 filename = target_read_stralloc (current_top_target (),
13939 TARGET_OBJECT_EXEC_FILE, annex);
13940
13941 return filename ? filename->data () : nullptr;
13942 }
13943
13944 /* Implement the to_can_do_single_step target_ops method. */
13945
13946 int
13947 remote_target::can_do_single_step ()
13948 {
13949 /* We can only tell whether target supports single step or not by
13950 supported s and S vCont actions if the stub supports vContSupported
13951 feature. If the stub doesn't support vContSupported feature,
13952 we have conservatively to think target doesn't supports single
13953 step. */
13954 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13955 {
13956 struct remote_state *rs = get_remote_state ();
13957
13958 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13959 remote_vcont_probe ();
13960
13961 return rs->supports_vCont.s && rs->supports_vCont.S;
13962 }
13963 else
13964 return 0;
13965 }
13966
13967 /* Implementation of the to_execution_direction method for the remote
13968 target. */
13969
13970 enum exec_direction_kind
13971 remote_target::execution_direction ()
13972 {
13973 struct remote_state *rs = get_remote_state ();
13974
13975 return rs->last_resume_exec_dir;
13976 }
13977
13978 /* Return pointer to the thread_info struct which corresponds to
13979 THREAD_HANDLE (having length HANDLE_LEN). */
13980
13981 thread_info *
13982 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13983 int handle_len,
13984 inferior *inf)
13985 {
13986 for (thread_info *tp : all_non_exited_threads ())
13987 {
13988 remote_thread_info *priv = get_remote_thread_info (tp);
13989
13990 if (tp->inf == inf && priv != NULL)
13991 {
13992 if (handle_len != priv->thread_handle.size ())
13993 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13994 handle_len, priv->thread_handle.size ());
13995 if (memcmp (thread_handle, priv->thread_handle.data (),
13996 handle_len) == 0)
13997 return tp;
13998 }
13999 }
14000
14001 return NULL;
14002 }
14003
14004 gdb::byte_vector
14005 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14006 {
14007 remote_thread_info *priv = get_remote_thread_info (tp);
14008 return priv->thread_handle;
14009 }
14010
14011 bool
14012 remote_target::can_async_p ()
14013 {
14014 struct remote_state *rs = get_remote_state ();
14015
14016 /* We don't go async if the user has explicitly prevented it with the
14017 "maint set target-async" command. */
14018 if (!target_async_permitted)
14019 return false;
14020
14021 /* We're async whenever the serial device is. */
14022 return serial_can_async_p (rs->remote_desc);
14023 }
14024
14025 bool
14026 remote_target::is_async_p ()
14027 {
14028 struct remote_state *rs = get_remote_state ();
14029
14030 if (!target_async_permitted)
14031 /* We only enable async when the user specifically asks for it. */
14032 return false;
14033
14034 /* We're async whenever the serial device is. */
14035 return serial_is_async_p (rs->remote_desc);
14036 }
14037
14038 /* Pass the SERIAL event on and up to the client. One day this code
14039 will be able to delay notifying the client of an event until the
14040 point where an entire packet has been received. */
14041
14042 static serial_event_ftype remote_async_serial_handler;
14043
14044 static void
14045 remote_async_serial_handler (struct serial *scb, void *context)
14046 {
14047 /* Don't propogate error information up to the client. Instead let
14048 the client find out about the error by querying the target. */
14049 inferior_event_handler (INF_REG_EVENT, NULL);
14050 }
14051
14052 static void
14053 remote_async_inferior_event_handler (gdb_client_data data)
14054 {
14055 inferior_event_handler (INF_REG_EVENT, data);
14056 }
14057
14058 void
14059 remote_target::async (int enable)
14060 {
14061 struct remote_state *rs = get_remote_state ();
14062
14063 if (enable)
14064 {
14065 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14066
14067 /* If there are pending events in the stop reply queue tell the
14068 event loop to process them. */
14069 if (!rs->stop_reply_queue.empty ())
14070 mark_async_event_handler (rs->remote_async_inferior_event_token);
14071 /* For simplicity, below we clear the pending events token
14072 without remembering whether it is marked, so here we always
14073 mark it. If there's actually no pending notification to
14074 process, this ends up being a no-op (other than a spurious
14075 event-loop wakeup). */
14076 if (target_is_non_stop_p ())
14077 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14078 }
14079 else
14080 {
14081 serial_async (rs->remote_desc, NULL, NULL);
14082 /* If the core is disabling async, it doesn't want to be
14083 disturbed with target events. Clear all async event sources
14084 too. */
14085 clear_async_event_handler (rs->remote_async_inferior_event_token);
14086 if (target_is_non_stop_p ())
14087 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14088 }
14089 }
14090
14091 /* Implementation of the to_thread_events method. */
14092
14093 void
14094 remote_target::thread_events (int enable)
14095 {
14096 struct remote_state *rs = get_remote_state ();
14097 size_t size = get_remote_packet_size ();
14098
14099 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14100 return;
14101
14102 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14103 putpkt (rs->buf);
14104 getpkt (&rs->buf, 0);
14105
14106 switch (packet_ok (rs->buf,
14107 &remote_protocol_packets[PACKET_QThreadEvents]))
14108 {
14109 case PACKET_OK:
14110 if (strcmp (rs->buf.data (), "OK") != 0)
14111 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14112 break;
14113 case PACKET_ERROR:
14114 warning (_("Remote failure reply: %s"), rs->buf.data ());
14115 break;
14116 case PACKET_UNKNOWN:
14117 break;
14118 }
14119 }
14120
14121 static void
14122 set_remote_cmd (const char *args, int from_tty)
14123 {
14124 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14125 }
14126
14127 static void
14128 show_remote_cmd (const char *args, int from_tty)
14129 {
14130 /* We can't just use cmd_show_list here, because we want to skip
14131 the redundant "show remote Z-packet" and the legacy aliases. */
14132 struct cmd_list_element *list = remote_show_cmdlist;
14133 struct ui_out *uiout = current_uiout;
14134
14135 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14136 for (; list != NULL; list = list->next)
14137 if (strcmp (list->name, "Z-packet") == 0)
14138 continue;
14139 else if (list->type == not_set_cmd)
14140 /* Alias commands are exactly like the original, except they
14141 don't have the normal type. */
14142 continue;
14143 else
14144 {
14145 ui_out_emit_tuple option_emitter (uiout, "option");
14146
14147 uiout->field_string ("name", list->name);
14148 uiout->text (": ");
14149 if (list->type == show_cmd)
14150 do_show_command (NULL, from_tty, list);
14151 else
14152 cmd_func (list, NULL, from_tty);
14153 }
14154 }
14155
14156
14157 /* Function to be called whenever a new objfile (shlib) is detected. */
14158 static void
14159 remote_new_objfile (struct objfile *objfile)
14160 {
14161 remote_target *remote = get_current_remote_target ();
14162
14163 if (remote != NULL) /* Have a remote connection. */
14164 remote->remote_check_symbols ();
14165 }
14166
14167 /* Pull all the tracepoints defined on the target and create local
14168 data structures representing them. We don't want to create real
14169 tracepoints yet, we don't want to mess up the user's existing
14170 collection. */
14171
14172 int
14173 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14174 {
14175 struct remote_state *rs = get_remote_state ();
14176 char *p;
14177
14178 /* Ask for a first packet of tracepoint definition. */
14179 putpkt ("qTfP");
14180 getpkt (&rs->buf, 0);
14181 p = rs->buf.data ();
14182 while (*p && *p != 'l')
14183 {
14184 parse_tracepoint_definition (p, utpp);
14185 /* Ask for another packet of tracepoint definition. */
14186 putpkt ("qTsP");
14187 getpkt (&rs->buf, 0);
14188 p = rs->buf.data ();
14189 }
14190 return 0;
14191 }
14192
14193 int
14194 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14195 {
14196 struct remote_state *rs = get_remote_state ();
14197 char *p;
14198
14199 /* Ask for a first packet of variable definition. */
14200 putpkt ("qTfV");
14201 getpkt (&rs->buf, 0);
14202 p = rs->buf.data ();
14203 while (*p && *p != 'l')
14204 {
14205 parse_tsv_definition (p, utsvp);
14206 /* Ask for another packet of variable definition. */
14207 putpkt ("qTsV");
14208 getpkt (&rs->buf, 0);
14209 p = rs->buf.data ();
14210 }
14211 return 0;
14212 }
14213
14214 /* The "set/show range-stepping" show hook. */
14215
14216 static void
14217 show_range_stepping (struct ui_file *file, int from_tty,
14218 struct cmd_list_element *c,
14219 const char *value)
14220 {
14221 fprintf_filtered (file,
14222 _("Debugger's willingness to use range stepping "
14223 "is %s.\n"), value);
14224 }
14225
14226 /* Return true if the vCont;r action is supported by the remote
14227 stub. */
14228
14229 bool
14230 remote_target::vcont_r_supported ()
14231 {
14232 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14233 remote_vcont_probe ();
14234
14235 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14236 && get_remote_state ()->supports_vCont.r);
14237 }
14238
14239 /* The "set/show range-stepping" set hook. */
14240
14241 static void
14242 set_range_stepping (const char *ignore_args, int from_tty,
14243 struct cmd_list_element *c)
14244 {
14245 /* When enabling, check whether range stepping is actually supported
14246 by the target, and warn if not. */
14247 if (use_range_stepping)
14248 {
14249 remote_target *remote = get_current_remote_target ();
14250 if (remote == NULL
14251 || !remote->vcont_r_supported ())
14252 warning (_("Range stepping is not supported by the current target"));
14253 }
14254 }
14255
14256 void
14257 _initialize_remote (void)
14258 {
14259 struct cmd_list_element *cmd;
14260 const char *cmd_name;
14261
14262 /* architecture specific data */
14263 remote_g_packet_data_handle =
14264 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14265
14266 remote_pspace_data
14267 = register_program_space_data_with_cleanup (NULL,
14268 remote_pspace_data_cleanup);
14269
14270 add_target (remote_target_info, remote_target::open);
14271 add_target (extended_remote_target_info, extended_remote_target::open);
14272
14273 /* Hook into new objfile notification. */
14274 gdb::observers::new_objfile.attach (remote_new_objfile);
14275
14276 #if 0
14277 init_remote_threadtests ();
14278 #endif
14279
14280 /* set/show remote ... */
14281
14282 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14283 Remote protocol specific variables\n\
14284 Configure various remote-protocol specific variables such as\n\
14285 the packets being used"),
14286 &remote_set_cmdlist, "set remote ",
14287 0 /* allow-unknown */, &setlist);
14288 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14289 Remote protocol specific variables\n\
14290 Configure various remote-protocol specific variables such as\n\
14291 the packets being used"),
14292 &remote_show_cmdlist, "show remote ",
14293 0 /* allow-unknown */, &showlist);
14294
14295 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14296 Compare section data on target to the exec file.\n\
14297 Argument is a single section name (default: all loaded sections).\n\
14298 To compare only read-only loaded sections, specify the -r option."),
14299 &cmdlist);
14300
14301 add_cmd ("packet", class_maintenance, packet_command, _("\
14302 Send an arbitrary packet to a remote target.\n\
14303 maintenance packet TEXT\n\
14304 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14305 this command sends the string TEXT to the inferior, and displays the\n\
14306 response packet. GDB supplies the initial `$' character, and the\n\
14307 terminating `#' character and checksum."),
14308 &maintenancelist);
14309
14310 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14311 Set whether to send break if interrupted."), _("\
14312 Show whether to send break if interrupted."), _("\
14313 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14314 set_remotebreak, show_remotebreak,
14315 &setlist, &showlist);
14316 cmd_name = "remotebreak";
14317 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14318 deprecate_cmd (cmd, "set remote interrupt-sequence");
14319 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14320 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14321 deprecate_cmd (cmd, "show remote interrupt-sequence");
14322
14323 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14324 interrupt_sequence_modes, &interrupt_sequence_mode,
14325 _("\
14326 Set interrupt sequence to remote target."), _("\
14327 Show interrupt sequence to remote target."), _("\
14328 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14329 NULL, show_interrupt_sequence,
14330 &remote_set_cmdlist,
14331 &remote_show_cmdlist);
14332
14333 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14334 &interrupt_on_connect, _("\
14335 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14336 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14337 If set, interrupt sequence is sent to remote target."),
14338 NULL, NULL,
14339 &remote_set_cmdlist, &remote_show_cmdlist);
14340
14341 /* Install commands for configuring memory read/write packets. */
14342
14343 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14344 Set the maximum number of bytes per memory write packet (deprecated)."),
14345 &setlist);
14346 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14347 Show the maximum number of bytes per memory write packet (deprecated)."),
14348 &showlist);
14349 add_cmd ("memory-write-packet-size", no_class,
14350 set_memory_write_packet_size, _("\
14351 Set the maximum number of bytes per memory-write packet.\n\
14352 Specify the number of bytes in a packet or 0 (zero) for the\n\
14353 default packet size. The actual limit is further reduced\n\
14354 dependent on the target. Specify ``fixed'' to disable the\n\
14355 further restriction and ``limit'' to enable that restriction."),
14356 &remote_set_cmdlist);
14357 add_cmd ("memory-read-packet-size", no_class,
14358 set_memory_read_packet_size, _("\
14359 Set the maximum number of bytes per memory-read packet.\n\
14360 Specify the number of bytes in a packet or 0 (zero) for the\n\
14361 default packet size. The actual limit is further reduced\n\
14362 dependent on the target. Specify ``fixed'' to disable the\n\
14363 further restriction and ``limit'' to enable that restriction."),
14364 &remote_set_cmdlist);
14365 add_cmd ("memory-write-packet-size", no_class,
14366 show_memory_write_packet_size,
14367 _("Show the maximum number of bytes per memory-write packet."),
14368 &remote_show_cmdlist);
14369 add_cmd ("memory-read-packet-size", no_class,
14370 show_memory_read_packet_size,
14371 _("Show the maximum number of bytes per memory-read packet."),
14372 &remote_show_cmdlist);
14373
14374 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14375 &remote_hw_watchpoint_limit, _("\
14376 Set the maximum number of target hardware watchpoints."), _("\
14377 Show the maximum number of target hardware watchpoints."), _("\
14378 Specify \"unlimited\" for unlimited hardware watchpoints."),
14379 NULL, show_hardware_watchpoint_limit,
14380 &remote_set_cmdlist,
14381 &remote_show_cmdlist);
14382 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14383 no_class,
14384 &remote_hw_watchpoint_length_limit, _("\
14385 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14386 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14387 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14388 NULL, show_hardware_watchpoint_length_limit,
14389 &remote_set_cmdlist, &remote_show_cmdlist);
14390 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14391 &remote_hw_breakpoint_limit, _("\
14392 Set the maximum number of target hardware breakpoints."), _("\
14393 Show the maximum number of target hardware breakpoints."), _("\
14394 Specify \"unlimited\" for unlimited hardware breakpoints."),
14395 NULL, show_hardware_breakpoint_limit,
14396 &remote_set_cmdlist, &remote_show_cmdlist);
14397
14398 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14399 &remote_address_size, _("\
14400 Set the maximum size of the address (in bits) in a memory packet."), _("\
14401 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14402 NULL,
14403 NULL, /* FIXME: i18n: */
14404 &setlist, &showlist);
14405
14406 init_all_packet_configs ();
14407
14408 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14409 "X", "binary-download", 1);
14410
14411 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14412 "vCont", "verbose-resume", 0);
14413
14414 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14415 "QPassSignals", "pass-signals", 0);
14416
14417 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14418 "QCatchSyscalls", "catch-syscalls", 0);
14419
14420 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14421 "QProgramSignals", "program-signals", 0);
14422
14423 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14424 "QSetWorkingDir", "set-working-dir", 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14427 "QStartupWithShell", "startup-with-shell", 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets
14430 [PACKET_QEnvironmentHexEncoded],
14431 "QEnvironmentHexEncoded", "environment-hex-encoded",
14432 0);
14433
14434 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14435 "QEnvironmentReset", "environment-reset",
14436 0);
14437
14438 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14439 "QEnvironmentUnset", "environment-unset",
14440 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14443 "qSymbol", "symbol-lookup", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14446 "P", "set-register", 1);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14449 "p", "fetch-register", 1);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14452 "Z0", "software-breakpoint", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14455 "Z1", "hardware-breakpoint", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14458 "Z2", "write-watchpoint", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14461 "Z3", "read-watchpoint", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14464 "Z4", "access-watchpoint", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14467 "qXfer:auxv:read", "read-aux-vector", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14470 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14473 "qXfer:features:read", "target-features", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14476 "qXfer:libraries:read", "library-info", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14479 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14482 "qXfer:memory-map:read", "memory-map", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14485 "qXfer:spu:read", "read-spu-object", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14488 "qXfer:spu:write", "write-spu-object", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14491 "qXfer:osdata:read", "osdata", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14494 "qXfer:threads:read", "threads", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14497 "qXfer:siginfo:read", "read-siginfo-object", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14500 "qXfer:siginfo:write", "write-siginfo-object", 0);
14501
14502 add_packet_config_cmd
14503 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14504 "qXfer:traceframe-info:read", "traceframe-info", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14507 "qXfer:uib:read", "unwind-info-block", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14510 "qGetTLSAddr", "get-thread-local-storage-address",
14511 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14514 "qGetTIBAddr", "get-thread-information-block-address",
14515 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14518 "bc", "reverse-continue", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14521 "bs", "reverse-step", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14524 "qSupported", "supported-packets", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14527 "qSearch:memory", "search-memory", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14530 "qTStatus", "trace-status", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14533 "vFile:setfs", "hostio-setfs", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14536 "vFile:open", "hostio-open", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14539 "vFile:pread", "hostio-pread", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14542 "vFile:pwrite", "hostio-pwrite", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14545 "vFile:close", "hostio-close", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14548 "vFile:unlink", "hostio-unlink", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14551 "vFile:readlink", "hostio-readlink", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14554 "vFile:fstat", "hostio-fstat", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14557 "vAttach", "attach", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14560 "vRun", "run", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14563 "QStartNoAckMode", "noack", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14566 "vKill", "kill", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14569 "qAttached", "query-attached", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14572 "ConditionalTracepoints",
14573 "conditional-tracepoints", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14576 "ConditionalBreakpoints",
14577 "conditional-breakpoints", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14580 "BreakpointCommands",
14581 "breakpoint-commands", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14584 "FastTracepoints", "fast-tracepoints", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14587 "TracepointSource", "TracepointSource", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14590 "QAllow", "allow", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14593 "StaticTracepoints", "static-tracepoints", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14596 "InstallInTrace", "install-in-trace", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14599 "qXfer:statictrace:read", "read-sdata-object", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14602 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14605 "QDisableRandomization", "disable-randomization", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14608 "QAgent", "agent", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14611 "QTBuffer:size", "trace-buffer-size", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14614 "Qbtrace:off", "disable-btrace", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14617 "Qbtrace:bts", "enable-btrace-bts", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14620 "Qbtrace:pt", "enable-btrace-pt", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14623 "qXfer:btrace", "read-btrace", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14626 "qXfer:btrace-conf", "read-btrace-conf", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14629 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14632 "multiprocess-feature", "multiprocess-feature", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14635 "swbreak-feature", "swbreak-feature", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14638 "hwbreak-feature", "hwbreak-feature", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14641 "fork-event-feature", "fork-event-feature", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14644 "vfork-event-feature", "vfork-event-feature", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14647 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14650 "vContSupported", "verbose-resume-supported", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14653 "exec-event-feature", "exec-event-feature", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14656 "vCtrlC", "ctrl-c", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14659 "QThreadEvents", "thread-events", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14662 "N stop reply", "no-resumed-stop-reply", 0);
14663
14664 /* Assert that we've registered "set remote foo-packet" commands
14665 for all packet configs. */
14666 {
14667 int i;
14668
14669 for (i = 0; i < PACKET_MAX; i++)
14670 {
14671 /* Ideally all configs would have a command associated. Some
14672 still don't though. */
14673 int excepted;
14674
14675 switch (i)
14676 {
14677 case PACKET_QNonStop:
14678 case PACKET_EnableDisableTracepoints_feature:
14679 case PACKET_tracenz_feature:
14680 case PACKET_DisconnectedTracing_feature:
14681 case PACKET_augmented_libraries_svr4_read_feature:
14682 case PACKET_qCRC:
14683 /* Additions to this list need to be well justified:
14684 pre-existing packets are OK; new packets are not. */
14685 excepted = 1;
14686 break;
14687 default:
14688 excepted = 0;
14689 break;
14690 }
14691
14692 /* This catches both forgetting to add a config command, and
14693 forgetting to remove a packet from the exception list. */
14694 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14695 }
14696 }
14697
14698 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14699 Z sub-packet has its own set and show commands, but users may
14700 have sets to this variable in their .gdbinit files (or in their
14701 documentation). */
14702 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14703 &remote_Z_packet_detect, _("\
14704 Set use of remote protocol `Z' packets"), _("\
14705 Show use of remote protocol `Z' packets "), _("\
14706 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14707 packets."),
14708 set_remote_protocol_Z_packet_cmd,
14709 show_remote_protocol_Z_packet_cmd,
14710 /* FIXME: i18n: Use of remote protocol
14711 `Z' packets is %s. */
14712 &remote_set_cmdlist, &remote_show_cmdlist);
14713
14714 add_prefix_cmd ("remote", class_files, remote_command, _("\
14715 Manipulate files on the remote system\n\
14716 Transfer files to and from the remote target system."),
14717 &remote_cmdlist, "remote ",
14718 0 /* allow-unknown */, &cmdlist);
14719
14720 add_cmd ("put", class_files, remote_put_command,
14721 _("Copy a local file to the remote system."),
14722 &remote_cmdlist);
14723
14724 add_cmd ("get", class_files, remote_get_command,
14725 _("Copy a remote file to the local system."),
14726 &remote_cmdlist);
14727
14728 add_cmd ("delete", class_files, remote_delete_command,
14729 _("Delete a remote file."),
14730 &remote_cmdlist);
14731
14732 add_setshow_string_noescape_cmd ("exec-file", class_files,
14733 &remote_exec_file_var, _("\
14734 Set the remote pathname for \"run\""), _("\
14735 Show the remote pathname for \"run\""), NULL,
14736 set_remote_exec_file,
14737 show_remote_exec_file,
14738 &remote_set_cmdlist,
14739 &remote_show_cmdlist);
14740
14741 add_setshow_boolean_cmd ("range-stepping", class_run,
14742 &use_range_stepping, _("\
14743 Enable or disable range stepping."), _("\
14744 Show whether target-assisted range stepping is enabled."), _("\
14745 If on, and the target supports it, when stepping a source line, GDB\n\
14746 tells the target to step the corresponding range of addresses itself instead\n\
14747 of issuing multiple single-steps. This speeds up source level\n\
14748 stepping. If off, GDB always issues single-steps, even if range\n\
14749 stepping is supported by the target. The default is on."),
14750 set_range_stepping,
14751 show_range_stepping,
14752 &setlist,
14753 &showlist);
14754
14755 /* Eventually initialize fileio. See fileio.c */
14756 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14757 }