]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* remote.c (remote_parse_stop_reply): Use REG only after its NULL check.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
103
104 static void remote_close (int quitting);
105
106 static void remote_store_registers (struct regcache *regcache, int regno);
107
108 static void remote_mourn (struct target_ops *ops);
109
110 static void extended_remote_restart (void);
111
112 static void extended_remote_mourn (struct target_ops *);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char **buf, long *sizeof_buf_p);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static int remote_async_mask (int new_mask);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static int remote_thread_alive (ptid_t);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (ptid_t currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, gdb_byte *bin, int count);
192
193 static int bin2hex (const gdb_byte *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
206 struct cmd_list_element *c);
207
208 static void show_remote_protocol_packet_cmd (struct ui_file *file,
209 int from_tty,
210 struct cmd_list_element *c,
211 const char *value);
212
213 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
214 static ptid_t read_ptid (char *buf, char **obuf);
215
216 static void remote_query_supported (void);
217
218 static void remote_check_symbols (struct objfile *objfile);
219
220 void _initialize_remote (void);
221
222 struct stop_reply;
223 static struct stop_reply *stop_reply_xmalloc (void);
224 static void stop_reply_xfree (struct stop_reply *);
225 static void do_stop_reply_xfree (void *arg);
226 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
227 static void push_stop_reply (struct stop_reply *);
228 static void remote_get_pending_stop_replies (void);
229 static void discard_pending_stop_replies (int pid);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233 static void remote_async_get_pending_events_handler (gdb_client_data);
234
235 static void remote_terminal_ours (void);
236
237 static int remote_read_description_p (struct target_ops *target);
238
239 /* The non-stop remote protocol provisions for one pending stop reply.
240 This is where we keep it until it is acknowledged. */
241
242 static struct stop_reply *pending_stop_reply = NULL;
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Description of the remote protocol state for the currently
254 connected target. This is per-target state, and independent of the
255 selected architecture. */
256
257 struct remote_state
258 {
259 /* A buffer to use for incoming packets, and its current size. The
260 buffer is grown dynamically for larger incoming packets.
261 Outgoing packets may also be constructed in this buffer.
262 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
263 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
264 packets. */
265 char *buf;
266 long buf_size;
267
268 /* If we negotiated packet size explicitly (and thus can bypass
269 heuristics for the largest packet size that will not overflow
270 a buffer in the stub), this will be set to that packet size.
271 Otherwise zero, meaning to use the guessed size. */
272 long explicit_packet_size;
273
274 /* remote_wait is normally called when the target is running and
275 waits for a stop reply packet. But sometimes we need to call it
276 when the target is already stopped. We can send a "?" packet
277 and have remote_wait read the response. Or, if we already have
278 the response, we can stash it in BUF and tell remote_wait to
279 skip calling getpkt. This flag is set when BUF contains a
280 stop reply packet and the target is not waiting. */
281 int cached_wait_status;
282
283 /* True, if in no ack mode. That is, neither GDB nor the stub will
284 expect acks from each other. The connection is assumed to be
285 reliable. */
286 int noack_mode;
287
288 /* True if we're connected in extended remote mode. */
289 int extended;
290
291 /* True if the stub reported support for multi-process
292 extensions. */
293 int multi_process_aware;
294
295 /* True if we resumed the target and we're waiting for the target to
296 stop. In the mean time, we can't start another command/query.
297 The remote server wouldn't be ready to process it, so we'd
298 timeout waiting for a reply that would never come and eventually
299 we'd close the connection. This can happen in asynchronous mode
300 because we allow GDB commands while the target is running. */
301 int waiting_for_stop_reply;
302
303 /* True if the stub reports support for non-stop mode. */
304 int non_stop_aware;
305
306 /* True if the stub reports support for vCont;t. */
307 int support_vCont_t;
308 };
309
310 /* Returns true if the multi-process extensions are in effect. */
311 static int
312 remote_multi_process_p (struct remote_state *rs)
313 {
314 return rs->extended && rs->multi_process_aware;
315 }
316
317 /* This data could be associated with a target, but we do not always
318 have access to the current target when we need it, so for now it is
319 static. This will be fine for as long as only one target is in use
320 at a time. */
321 static struct remote_state remote_state;
322
323 static struct remote_state *
324 get_remote_state_raw (void)
325 {
326 return &remote_state;
327 }
328
329 /* Description of the remote protocol for a given architecture. */
330
331 struct packet_reg
332 {
333 long offset; /* Offset into G packet. */
334 long regnum; /* GDB's internal register number. */
335 LONGEST pnum; /* Remote protocol register number. */
336 int in_g_packet; /* Always part of G packet. */
337 /* long size in bytes; == register_size (target_gdbarch, regnum);
338 at present. */
339 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
340 at present. */
341 };
342
343 struct remote_arch_state
344 {
345 /* Description of the remote protocol registers. */
346 long sizeof_g_packet;
347
348 /* Description of the remote protocol registers indexed by REGNUM
349 (making an array gdbarch_num_regs in size). */
350 struct packet_reg *regs;
351
352 /* This is the size (in chars) of the first response to the ``g''
353 packet. It is used as a heuristic when determining the maximum
354 size of memory-read and memory-write packets. A target will
355 typically only reserve a buffer large enough to hold the ``g''
356 packet. The size does not include packet overhead (headers and
357 trailers). */
358 long actual_register_packet_size;
359
360 /* This is the maximum size (in chars) of a non read/write packet.
361 It is also used as a cap on the size of read/write packets. */
362 long remote_packet_size;
363 };
364
365
366 /* Handle for retreving the remote protocol data from gdbarch. */
367 static struct gdbarch_data *remote_gdbarch_data_handle;
368
369 static struct remote_arch_state *
370 get_remote_arch_state (void)
371 {
372 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
373 }
374
375 /* Fetch the global remote target state. */
376
377 static struct remote_state *
378 get_remote_state (void)
379 {
380 /* Make sure that the remote architecture state has been
381 initialized, because doing so might reallocate rs->buf. Any
382 function which calls getpkt also needs to be mindful of changes
383 to rs->buf, but this call limits the number of places which run
384 into trouble. */
385 get_remote_arch_state ();
386
387 return get_remote_state_raw ();
388 }
389
390 static int
391 compare_pnums (const void *lhs_, const void *rhs_)
392 {
393 const struct packet_reg * const *lhs = lhs_;
394 const struct packet_reg * const *rhs = rhs_;
395
396 if ((*lhs)->pnum < (*rhs)->pnum)
397 return -1;
398 else if ((*lhs)->pnum == (*rhs)->pnum)
399 return 0;
400 else
401 return 1;
402 }
403
404 static void *
405 init_remote_state (struct gdbarch *gdbarch)
406 {
407 int regnum, num_remote_regs, offset;
408 struct remote_state *rs = get_remote_state_raw ();
409 struct remote_arch_state *rsa;
410 struct packet_reg **remote_regs;
411
412 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
413
414 /* Use the architecture to build a regnum<->pnum table, which will be
415 1:1 unless a feature set specifies otherwise. */
416 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
417 gdbarch_num_regs (gdbarch),
418 struct packet_reg);
419 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
420 {
421 struct packet_reg *r = &rsa->regs[regnum];
422
423 if (register_size (gdbarch, regnum) == 0)
424 /* Do not try to fetch zero-sized (placeholder) registers. */
425 r->pnum = -1;
426 else
427 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
428
429 r->regnum = regnum;
430 }
431
432 /* Define the g/G packet format as the contents of each register
433 with a remote protocol number, in order of ascending protocol
434 number. */
435
436 remote_regs = alloca (gdbarch_num_regs (gdbarch)
437 * sizeof (struct packet_reg *));
438 for (num_remote_regs = 0, regnum = 0;
439 regnum < gdbarch_num_regs (gdbarch);
440 regnum++)
441 if (rsa->regs[regnum].pnum != -1)
442 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
443
444 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
445 compare_pnums);
446
447 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
448 {
449 remote_regs[regnum]->in_g_packet = 1;
450 remote_regs[regnum]->offset = offset;
451 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
452 }
453
454 /* Record the maximum possible size of the g packet - it may turn out
455 to be smaller. */
456 rsa->sizeof_g_packet = offset;
457
458 /* Default maximum number of characters in a packet body. Many
459 remote stubs have a hardwired buffer size of 400 bytes
460 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
461 as the maximum packet-size to ensure that the packet and an extra
462 NUL character can always fit in the buffer. This stops GDB
463 trashing stubs that try to squeeze an extra NUL into what is
464 already a full buffer (As of 1999-12-04 that was most stubs). */
465 rsa->remote_packet_size = 400 - 1;
466
467 /* This one is filled in when a ``g'' packet is received. */
468 rsa->actual_register_packet_size = 0;
469
470 /* Should rsa->sizeof_g_packet needs more space than the
471 default, adjust the size accordingly. Remember that each byte is
472 encoded as two characters. 32 is the overhead for the packet
473 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
474 (``$NN:G...#NN'') is a better guess, the below has been padded a
475 little. */
476 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
477 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
478
479 /* Make sure that the packet buffer is plenty big enough for
480 this architecture. */
481 if (rs->buf_size < rsa->remote_packet_size)
482 {
483 rs->buf_size = 2 * rsa->remote_packet_size;
484 rs->buf = xrealloc (rs->buf, rs->buf_size);
485 }
486
487 return rsa;
488 }
489
490 /* Return the current allowed size of a remote packet. This is
491 inferred from the current architecture, and should be used to
492 limit the length of outgoing packets. */
493 static long
494 get_remote_packet_size (void)
495 {
496 struct remote_state *rs = get_remote_state ();
497 struct remote_arch_state *rsa = get_remote_arch_state ();
498
499 if (rs->explicit_packet_size)
500 return rs->explicit_packet_size;
501
502 return rsa->remote_packet_size;
503 }
504
505 static struct packet_reg *
506 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
507 {
508 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
509 return NULL;
510 else
511 {
512 struct packet_reg *r = &rsa->regs[regnum];
513 gdb_assert (r->regnum == regnum);
514 return r;
515 }
516 }
517
518 static struct packet_reg *
519 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
520 {
521 int i;
522 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
523 {
524 struct packet_reg *r = &rsa->regs[i];
525 if (r->pnum == pnum)
526 return r;
527 }
528 return NULL;
529 }
530
531 /* FIXME: graces/2002-08-08: These variables should eventually be
532 bound to an instance of the target object (as in gdbarch-tdep()),
533 when such a thing exists. */
534
535 /* This is set to the data address of the access causing the target
536 to stop for a watchpoint. */
537 static CORE_ADDR remote_watch_data_address;
538
539 /* This is non-zero if target stopped for a watchpoint. */
540 static int remote_stopped_by_watchpoint_p;
541
542 static struct target_ops remote_ops;
543
544 static struct target_ops extended_remote_ops;
545
546 static int remote_async_mask_value = 1;
547
548 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
549 ``forever'' still use the normal timeout mechanism. This is
550 currently used by the ASYNC code to guarentee that target reads
551 during the initial connect always time-out. Once getpkt has been
552 modified to return a timeout indication and, in turn
553 remote_wait()/wait_for_inferior() have gained a timeout parameter
554 this can go away. */
555 static int wait_forever_enabled_p = 1;
556
557
558 /* This variable chooses whether to send a ^C or a break when the user
559 requests program interruption. Although ^C is usually what remote
560 systems expect, and that is the default here, sometimes a break is
561 preferable instead. */
562
563 static int remote_break;
564
565 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
566 remote_open knows that we don't have a file open when the program
567 starts. */
568 static struct serial *remote_desc = NULL;
569
570 /* This variable sets the number of bits in an address that are to be
571 sent in a memory ("M" or "m") packet. Normally, after stripping
572 leading zeros, the entire address would be sent. This variable
573 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
574 initial implementation of remote.c restricted the address sent in
575 memory packets to ``host::sizeof long'' bytes - (typically 32
576 bits). Consequently, for 64 bit targets, the upper 32 bits of an
577 address was never sent. Since fixing this bug may cause a break in
578 some remote targets this variable is principly provided to
579 facilitate backward compatibility. */
580
581 static int remote_address_size;
582
583 /* Temporary to track who currently owns the terminal. See
584 remote_terminal_* for more details. */
585
586 static int remote_async_terminal_ours_p;
587
588 /* The executable file to use for "run" on the remote side. */
589
590 static char *remote_exec_file = "";
591
592 \f
593 /* User configurable variables for the number of characters in a
594 memory read/write packet. MIN (rsa->remote_packet_size,
595 rsa->sizeof_g_packet) is the default. Some targets need smaller
596 values (fifo overruns, et.al.) and some users need larger values
597 (speed up transfers). The variables ``preferred_*'' (the user
598 request), ``current_*'' (what was actually set) and ``forced_*''
599 (Positive - a soft limit, negative - a hard limit). */
600
601 struct memory_packet_config
602 {
603 char *name;
604 long size;
605 int fixed_p;
606 };
607
608 /* Compute the current size of a read/write packet. Since this makes
609 use of ``actual_register_packet_size'' the computation is dynamic. */
610
611 static long
612 get_memory_packet_size (struct memory_packet_config *config)
613 {
614 struct remote_state *rs = get_remote_state ();
615 struct remote_arch_state *rsa = get_remote_arch_state ();
616
617 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
618 law?) that some hosts don't cope very well with large alloca()
619 calls. Eventually the alloca() code will be replaced by calls to
620 xmalloc() and make_cleanups() allowing this restriction to either
621 be lifted or removed. */
622 #ifndef MAX_REMOTE_PACKET_SIZE
623 #define MAX_REMOTE_PACKET_SIZE 16384
624 #endif
625 /* NOTE: 20 ensures we can write at least one byte. */
626 #ifndef MIN_REMOTE_PACKET_SIZE
627 #define MIN_REMOTE_PACKET_SIZE 20
628 #endif
629 long what_they_get;
630 if (config->fixed_p)
631 {
632 if (config->size <= 0)
633 what_they_get = MAX_REMOTE_PACKET_SIZE;
634 else
635 what_they_get = config->size;
636 }
637 else
638 {
639 what_they_get = get_remote_packet_size ();
640 /* Limit the packet to the size specified by the user. */
641 if (config->size > 0
642 && what_they_get > config->size)
643 what_they_get = config->size;
644
645 /* Limit it to the size of the targets ``g'' response unless we have
646 permission from the stub to use a larger packet size. */
647 if (rs->explicit_packet_size == 0
648 && rsa->actual_register_packet_size > 0
649 && what_they_get > rsa->actual_register_packet_size)
650 what_they_get = rsa->actual_register_packet_size;
651 }
652 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
653 what_they_get = MAX_REMOTE_PACKET_SIZE;
654 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
655 what_they_get = MIN_REMOTE_PACKET_SIZE;
656
657 /* Make sure there is room in the global buffer for this packet
658 (including its trailing NUL byte). */
659 if (rs->buf_size < what_they_get + 1)
660 {
661 rs->buf_size = 2 * what_they_get;
662 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
663 }
664
665 return what_they_get;
666 }
667
668 /* Update the size of a read/write packet. If they user wants
669 something really big then do a sanity check. */
670
671 static void
672 set_memory_packet_size (char *args, struct memory_packet_config *config)
673 {
674 int fixed_p = config->fixed_p;
675 long size = config->size;
676 if (args == NULL)
677 error (_("Argument required (integer, `fixed' or `limited')."));
678 else if (strcmp (args, "hard") == 0
679 || strcmp (args, "fixed") == 0)
680 fixed_p = 1;
681 else if (strcmp (args, "soft") == 0
682 || strcmp (args, "limit") == 0)
683 fixed_p = 0;
684 else
685 {
686 char *end;
687 size = strtoul (args, &end, 0);
688 if (args == end)
689 error (_("Invalid %s (bad syntax)."), config->name);
690 #if 0
691 /* Instead of explicitly capping the size of a packet to
692 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
693 instead allowed to set the size to something arbitrarily
694 large. */
695 if (size > MAX_REMOTE_PACKET_SIZE)
696 error (_("Invalid %s (too large)."), config->name);
697 #endif
698 }
699 /* Extra checks? */
700 if (fixed_p && !config->fixed_p)
701 {
702 if (! query (_("The target may not be able to correctly handle a %s\n"
703 "of %ld bytes. Change the packet size? "),
704 config->name, size))
705 error (_("Packet size not changed."));
706 }
707 /* Update the config. */
708 config->fixed_p = fixed_p;
709 config->size = size;
710 }
711
712 static void
713 show_memory_packet_size (struct memory_packet_config *config)
714 {
715 printf_filtered (_("The %s is %ld. "), config->name, config->size);
716 if (config->fixed_p)
717 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
718 get_memory_packet_size (config));
719 else
720 printf_filtered (_("Packets are limited to %ld bytes.\n"),
721 get_memory_packet_size (config));
722 }
723
724 static struct memory_packet_config memory_write_packet_config =
725 {
726 "memory-write-packet-size",
727 };
728
729 static void
730 set_memory_write_packet_size (char *args, int from_tty)
731 {
732 set_memory_packet_size (args, &memory_write_packet_config);
733 }
734
735 static void
736 show_memory_write_packet_size (char *args, int from_tty)
737 {
738 show_memory_packet_size (&memory_write_packet_config);
739 }
740
741 static long
742 get_memory_write_packet_size (void)
743 {
744 return get_memory_packet_size (&memory_write_packet_config);
745 }
746
747 static struct memory_packet_config memory_read_packet_config =
748 {
749 "memory-read-packet-size",
750 };
751
752 static void
753 set_memory_read_packet_size (char *args, int from_tty)
754 {
755 set_memory_packet_size (args, &memory_read_packet_config);
756 }
757
758 static void
759 show_memory_read_packet_size (char *args, int from_tty)
760 {
761 show_memory_packet_size (&memory_read_packet_config);
762 }
763
764 static long
765 get_memory_read_packet_size (void)
766 {
767 long size = get_memory_packet_size (&memory_read_packet_config);
768 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
769 extra buffer size argument before the memory read size can be
770 increased beyond this. */
771 if (size > get_remote_packet_size ())
772 size = get_remote_packet_size ();
773 return size;
774 }
775
776 \f
777 /* Generic configuration support for packets the stub optionally
778 supports. Allows the user to specify the use of the packet as well
779 as allowing GDB to auto-detect support in the remote stub. */
780
781 enum packet_support
782 {
783 PACKET_SUPPORT_UNKNOWN = 0,
784 PACKET_ENABLE,
785 PACKET_DISABLE
786 };
787
788 struct packet_config
789 {
790 const char *name;
791 const char *title;
792 enum auto_boolean detect;
793 enum packet_support support;
794 };
795
796 /* Analyze a packet's return value and update the packet config
797 accordingly. */
798
799 enum packet_result
800 {
801 PACKET_ERROR,
802 PACKET_OK,
803 PACKET_UNKNOWN
804 };
805
806 static void
807 update_packet_config (struct packet_config *config)
808 {
809 switch (config->detect)
810 {
811 case AUTO_BOOLEAN_TRUE:
812 config->support = PACKET_ENABLE;
813 break;
814 case AUTO_BOOLEAN_FALSE:
815 config->support = PACKET_DISABLE;
816 break;
817 case AUTO_BOOLEAN_AUTO:
818 config->support = PACKET_SUPPORT_UNKNOWN;
819 break;
820 }
821 }
822
823 static void
824 show_packet_config_cmd (struct packet_config *config)
825 {
826 char *support = "internal-error";
827 switch (config->support)
828 {
829 case PACKET_ENABLE:
830 support = "enabled";
831 break;
832 case PACKET_DISABLE:
833 support = "disabled";
834 break;
835 case PACKET_SUPPORT_UNKNOWN:
836 support = "unknown";
837 break;
838 }
839 switch (config->detect)
840 {
841 case AUTO_BOOLEAN_AUTO:
842 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
843 config->name, support);
844 break;
845 case AUTO_BOOLEAN_TRUE:
846 case AUTO_BOOLEAN_FALSE:
847 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
848 config->name, support);
849 break;
850 }
851 }
852
853 static void
854 add_packet_config_cmd (struct packet_config *config, const char *name,
855 const char *title, int legacy)
856 {
857 char *set_doc;
858 char *show_doc;
859 char *cmd_name;
860
861 config->name = name;
862 config->title = title;
863 config->detect = AUTO_BOOLEAN_AUTO;
864 config->support = PACKET_SUPPORT_UNKNOWN;
865 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
866 name, title);
867 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
868 name, title);
869 /* set/show TITLE-packet {auto,on,off} */
870 cmd_name = xstrprintf ("%s-packet", title);
871 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
872 &config->detect, set_doc, show_doc, NULL, /* help_doc */
873 set_remote_protocol_packet_cmd,
874 show_remote_protocol_packet_cmd,
875 &remote_set_cmdlist, &remote_show_cmdlist);
876 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
877 if (legacy)
878 {
879 char *legacy_name;
880 legacy_name = xstrprintf ("%s-packet", name);
881 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
882 &remote_set_cmdlist);
883 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
884 &remote_show_cmdlist);
885 }
886 }
887
888 static enum packet_result
889 packet_check_result (const char *buf)
890 {
891 if (buf[0] != '\0')
892 {
893 /* The stub recognized the packet request. Check that the
894 operation succeeded. */
895 if (buf[0] == 'E'
896 && isxdigit (buf[1]) && isxdigit (buf[2])
897 && buf[3] == '\0')
898 /* "Enn" - definitly an error. */
899 return PACKET_ERROR;
900
901 /* Always treat "E." as an error. This will be used for
902 more verbose error messages, such as E.memtypes. */
903 if (buf[0] == 'E' && buf[1] == '.')
904 return PACKET_ERROR;
905
906 /* The packet may or may not be OK. Just assume it is. */
907 return PACKET_OK;
908 }
909 else
910 /* The stub does not support the packet. */
911 return PACKET_UNKNOWN;
912 }
913
914 static enum packet_result
915 packet_ok (const char *buf, struct packet_config *config)
916 {
917 enum packet_result result;
918
919 result = packet_check_result (buf);
920 switch (result)
921 {
922 case PACKET_OK:
923 case PACKET_ERROR:
924 /* The stub recognized the packet request. */
925 switch (config->support)
926 {
927 case PACKET_SUPPORT_UNKNOWN:
928 if (remote_debug)
929 fprintf_unfiltered (gdb_stdlog,
930 "Packet %s (%s) is supported\n",
931 config->name, config->title);
932 config->support = PACKET_ENABLE;
933 break;
934 case PACKET_DISABLE:
935 internal_error (__FILE__, __LINE__,
936 _("packet_ok: attempt to use a disabled packet"));
937 break;
938 case PACKET_ENABLE:
939 break;
940 }
941 break;
942 case PACKET_UNKNOWN:
943 /* The stub does not support the packet. */
944 switch (config->support)
945 {
946 case PACKET_ENABLE:
947 if (config->detect == AUTO_BOOLEAN_AUTO)
948 /* If the stub previously indicated that the packet was
949 supported then there is a protocol error.. */
950 error (_("Protocol error: %s (%s) conflicting enabled responses."),
951 config->name, config->title);
952 else
953 /* The user set it wrong. */
954 error (_("Enabled packet %s (%s) not recognized by stub"),
955 config->name, config->title);
956 break;
957 case PACKET_SUPPORT_UNKNOWN:
958 if (remote_debug)
959 fprintf_unfiltered (gdb_stdlog,
960 "Packet %s (%s) is NOT supported\n",
961 config->name, config->title);
962 config->support = PACKET_DISABLE;
963 break;
964 case PACKET_DISABLE:
965 break;
966 }
967 break;
968 }
969
970 return result;
971 }
972
973 enum {
974 PACKET_vCont = 0,
975 PACKET_X,
976 PACKET_qSymbol,
977 PACKET_P,
978 PACKET_p,
979 PACKET_Z0,
980 PACKET_Z1,
981 PACKET_Z2,
982 PACKET_Z3,
983 PACKET_Z4,
984 PACKET_vFile_open,
985 PACKET_vFile_pread,
986 PACKET_vFile_pwrite,
987 PACKET_vFile_close,
988 PACKET_vFile_unlink,
989 PACKET_qXfer_auxv,
990 PACKET_qXfer_features,
991 PACKET_qXfer_libraries,
992 PACKET_qXfer_memory_map,
993 PACKET_qXfer_spu_read,
994 PACKET_qXfer_spu_write,
995 PACKET_qXfer_osdata,
996 PACKET_qGetTLSAddr,
997 PACKET_qSupported,
998 PACKET_QPassSignals,
999 PACKET_qSearch_memory,
1000 PACKET_vAttach,
1001 PACKET_vRun,
1002 PACKET_QStartNoAckMode,
1003 PACKET_vKill,
1004 PACKET_MAX
1005 };
1006
1007 static struct packet_config remote_protocol_packets[PACKET_MAX];
1008
1009 static void
1010 set_remote_protocol_packet_cmd (char *args, int from_tty,
1011 struct cmd_list_element *c)
1012 {
1013 struct packet_config *packet;
1014
1015 for (packet = remote_protocol_packets;
1016 packet < &remote_protocol_packets[PACKET_MAX];
1017 packet++)
1018 {
1019 if (&packet->detect == c->var)
1020 {
1021 update_packet_config (packet);
1022 return;
1023 }
1024 }
1025 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1026 c->name);
1027 }
1028
1029 static void
1030 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1031 struct cmd_list_element *c,
1032 const char *value)
1033 {
1034 struct packet_config *packet;
1035
1036 for (packet = remote_protocol_packets;
1037 packet < &remote_protocol_packets[PACKET_MAX];
1038 packet++)
1039 {
1040 if (&packet->detect == c->var)
1041 {
1042 show_packet_config_cmd (packet);
1043 return;
1044 }
1045 }
1046 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1047 c->name);
1048 }
1049
1050 /* Should we try one of the 'Z' requests? */
1051
1052 enum Z_packet_type
1053 {
1054 Z_PACKET_SOFTWARE_BP,
1055 Z_PACKET_HARDWARE_BP,
1056 Z_PACKET_WRITE_WP,
1057 Z_PACKET_READ_WP,
1058 Z_PACKET_ACCESS_WP,
1059 NR_Z_PACKET_TYPES
1060 };
1061
1062 /* For compatibility with older distributions. Provide a ``set remote
1063 Z-packet ...'' command that updates all the Z packet types. */
1064
1065 static enum auto_boolean remote_Z_packet_detect;
1066
1067 static void
1068 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1069 struct cmd_list_element *c)
1070 {
1071 int i;
1072 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1073 {
1074 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1075 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1076 }
1077 }
1078
1079 static void
1080 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c,
1082 const char *value)
1083 {
1084 int i;
1085 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1086 {
1087 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1088 }
1089 }
1090
1091 /* Should we try the 'ThreadInfo' query packet?
1092
1093 This variable (NOT available to the user: auto-detect only!)
1094 determines whether GDB will use the new, simpler "ThreadInfo"
1095 query or the older, more complex syntax for thread queries.
1096 This is an auto-detect variable (set to true at each connect,
1097 and set to false when the target fails to recognize it). */
1098
1099 static int use_threadinfo_query;
1100 static int use_threadextra_query;
1101
1102 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1103 static struct async_signal_handler *sigint_remote_twice_token;
1104 static struct async_signal_handler *sigint_remote_token;
1105
1106 \f
1107 /* Asynchronous signal handle registered as event loop source for
1108 when we have pending events ready to be passed to the core. */
1109
1110 static struct async_event_handler *remote_async_inferior_event_token;
1111
1112 /* Asynchronous signal handle registered as event loop source for when
1113 the remote sent us a %Stop notification. The registered callback
1114 will do a vStopped sequence to pull the rest of the events out of
1115 the remote side into our event queue. */
1116
1117 static struct async_event_handler *remote_async_get_pending_events_token;
1118 \f
1119
1120 static ptid_t magic_null_ptid;
1121 static ptid_t not_sent_ptid;
1122 static ptid_t any_thread_ptid;
1123
1124 /* These are the threads which we last sent to the remote system. The
1125 TID member will be -1 for all or -2 for not sent yet. */
1126
1127 static ptid_t general_thread;
1128 static ptid_t continue_thread;
1129
1130 static void
1131 notice_new_inferiors (ptid_t currthread)
1132 {
1133 /* If this is a new thread, add it to GDB's thread list.
1134 If we leave it up to WFI to do this, bad things will happen. */
1135
1136 if (in_thread_list (currthread) && is_exited (currthread))
1137 {
1138 /* We're seeing an event on a thread id we knew had exited.
1139 This has to be a new thread reusing the old id. Add it. */
1140 add_thread (currthread);
1141 return;
1142 }
1143
1144 if (!in_thread_list (currthread))
1145 {
1146 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1147 {
1148 /* inferior_ptid has no thread member yet. This can happen
1149 with the vAttach -> remote_wait,"TAAthread:" path if the
1150 stub doesn't support qC. This is the first stop reported
1151 after an attach, so this is the main thread. Update the
1152 ptid in the thread list. */
1153 thread_change_ptid (inferior_ptid, currthread);
1154 return;
1155 }
1156
1157 if (ptid_equal (magic_null_ptid, inferior_ptid))
1158 {
1159 /* inferior_ptid is not set yet. This can happen with the
1160 vRun -> remote_wait,"TAAthread:" path if the stub
1161 doesn't support qC. This is the first stop reported
1162 after an attach, so this is the main thread. Update the
1163 ptid in the thread list. */
1164 thread_change_ptid (inferior_ptid, currthread);
1165 return;
1166 }
1167
1168 /* When connecting to a target remote, or to a target
1169 extended-remote which already was debugging an inferior, we
1170 may not know about it yet. Add it before adding its child
1171 thread, so notifications are emitted in a sensible order. */
1172 if (!in_inferior_list (ptid_get_pid (currthread)))
1173 add_inferior (ptid_get_pid (currthread));
1174
1175 /* This is really a new thread. Add it. */
1176 add_thread (currthread);
1177 }
1178 }
1179
1180 /* Call this function as a result of
1181 1) A halt indication (T packet) containing a thread id
1182 2) A direct query of currthread
1183 3) Successful execution of set thread
1184 */
1185
1186 static void
1187 record_currthread (ptid_t currthread)
1188 {
1189 general_thread = currthread;
1190
1191 if (ptid_equal (currthread, minus_one_ptid))
1192 /* We're just invalidating the local thread mirror. */
1193 return;
1194
1195 notice_new_inferiors (currthread);
1196 }
1197
1198 static char *last_pass_packet;
1199
1200 /* If 'QPassSignals' is supported, tell the remote stub what signals
1201 it can simply pass through to the inferior without reporting. */
1202
1203 static void
1204 remote_pass_signals (void)
1205 {
1206 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1207 {
1208 char *pass_packet, *p;
1209 int numsigs = (int) TARGET_SIGNAL_LAST;
1210 int count = 0, i;
1211
1212 gdb_assert (numsigs < 256);
1213 for (i = 0; i < numsigs; i++)
1214 {
1215 if (signal_stop_state (i) == 0
1216 && signal_print_state (i) == 0
1217 && signal_pass_state (i) == 1)
1218 count++;
1219 }
1220 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1221 strcpy (pass_packet, "QPassSignals:");
1222 p = pass_packet + strlen (pass_packet);
1223 for (i = 0; i < numsigs; i++)
1224 {
1225 if (signal_stop_state (i) == 0
1226 && signal_print_state (i) == 0
1227 && signal_pass_state (i) == 1)
1228 {
1229 if (i >= 16)
1230 *p++ = tohex (i >> 4);
1231 *p++ = tohex (i & 15);
1232 if (count)
1233 *p++ = ';';
1234 else
1235 break;
1236 count--;
1237 }
1238 }
1239 *p = 0;
1240 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1241 {
1242 struct remote_state *rs = get_remote_state ();
1243 char *buf = rs->buf;
1244
1245 putpkt (pass_packet);
1246 getpkt (&rs->buf, &rs->buf_size, 0);
1247 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1248 if (last_pass_packet)
1249 xfree (last_pass_packet);
1250 last_pass_packet = pass_packet;
1251 }
1252 else
1253 xfree (pass_packet);
1254 }
1255 }
1256
1257 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1258 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1259 thread. If GEN is set, set the general thread, if not, then set
1260 the step/continue thread. */
1261 static void
1262 set_thread (struct ptid ptid, int gen)
1263 {
1264 struct remote_state *rs = get_remote_state ();
1265 ptid_t state = gen ? general_thread : continue_thread;
1266 char *buf = rs->buf;
1267 char *endbuf = rs->buf + get_remote_packet_size ();
1268
1269 if (ptid_equal (state, ptid))
1270 return;
1271
1272 *buf++ = 'H';
1273 *buf++ = gen ? 'g' : 'c';
1274 if (ptid_equal (ptid, magic_null_ptid))
1275 xsnprintf (buf, endbuf - buf, "0");
1276 else if (ptid_equal (ptid, any_thread_ptid))
1277 xsnprintf (buf, endbuf - buf, "0");
1278 else if (ptid_equal (ptid, minus_one_ptid))
1279 xsnprintf (buf, endbuf - buf, "-1");
1280 else
1281 write_ptid (buf, endbuf, ptid);
1282 putpkt (rs->buf);
1283 getpkt (&rs->buf, &rs->buf_size, 0);
1284 if (gen)
1285 general_thread = ptid;
1286 else
1287 continue_thread = ptid;
1288 }
1289
1290 static void
1291 set_general_thread (struct ptid ptid)
1292 {
1293 set_thread (ptid, 1);
1294 }
1295
1296 static void
1297 set_continue_thread (struct ptid ptid)
1298 {
1299 set_thread (ptid, 0);
1300 }
1301
1302 /* Change the remote current process. Which thread within the process
1303 ends up selected isn't important, as long as it is the same process
1304 as what INFERIOR_PTID points to.
1305
1306 This comes from that fact that there is no explicit notion of
1307 "selected process" in the protocol. The selected process for
1308 general operations is the process the selected general thread
1309 belongs to. */
1310
1311 static void
1312 set_general_process (void)
1313 {
1314 struct remote_state *rs = get_remote_state ();
1315
1316 /* If the remote can't handle multiple processes, don't bother. */
1317 if (!remote_multi_process_p (rs))
1318 return;
1319
1320 /* We only need to change the remote current thread if it's pointing
1321 at some other process. */
1322 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1323 set_general_thread (inferior_ptid);
1324 }
1325
1326 \f
1327 /* Return nonzero if the thread PTID is still alive on the remote
1328 system. */
1329
1330 static int
1331 remote_thread_alive (ptid_t ptid)
1332 {
1333 struct remote_state *rs = get_remote_state ();
1334 int tid = ptid_get_tid (ptid);
1335 char *p, *endp;
1336
1337 if (ptid_equal (ptid, magic_null_ptid))
1338 /* The main thread is always alive. */
1339 return 1;
1340
1341 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1342 /* The main thread is always alive. This can happen after a
1343 vAttach, if the remote side doesn't support
1344 multi-threading. */
1345 return 1;
1346
1347 p = rs->buf;
1348 endp = rs->buf + get_remote_packet_size ();
1349
1350 *p++ = 'T';
1351 write_ptid (p, endp, ptid);
1352
1353 putpkt (rs->buf);
1354 getpkt (&rs->buf, &rs->buf_size, 0);
1355 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1356 }
1357
1358 /* About these extended threadlist and threadinfo packets. They are
1359 variable length packets but, the fields within them are often fixed
1360 length. They are redundent enough to send over UDP as is the
1361 remote protocol in general. There is a matching unit test module
1362 in libstub. */
1363
1364 #define OPAQUETHREADBYTES 8
1365
1366 /* a 64 bit opaque identifier */
1367 typedef unsigned char threadref[OPAQUETHREADBYTES];
1368
1369 /* WARNING: This threadref data structure comes from the remote O.S.,
1370 libstub protocol encoding, and remote.c. it is not particularly
1371 changable. */
1372
1373 /* Right now, the internal structure is int. We want it to be bigger.
1374 Plan to fix this.
1375 */
1376
1377 typedef int gdb_threadref; /* Internal GDB thread reference. */
1378
1379 /* gdb_ext_thread_info is an internal GDB data structure which is
1380 equivalent to the reply of the remote threadinfo packet. */
1381
1382 struct gdb_ext_thread_info
1383 {
1384 threadref threadid; /* External form of thread reference. */
1385 int active; /* Has state interesting to GDB?
1386 regs, stack. */
1387 char display[256]; /* Brief state display, name,
1388 blocked/suspended. */
1389 char shortname[32]; /* To be used to name threads. */
1390 char more_display[256]; /* Long info, statistics, queue depth,
1391 whatever. */
1392 };
1393
1394 /* The volume of remote transfers can be limited by submitting
1395 a mask containing bits specifying the desired information.
1396 Use a union of these values as the 'selection' parameter to
1397 get_thread_info. FIXME: Make these TAG names more thread specific.
1398 */
1399
1400 #define TAG_THREADID 1
1401 #define TAG_EXISTS 2
1402 #define TAG_DISPLAY 4
1403 #define TAG_THREADNAME 8
1404 #define TAG_MOREDISPLAY 16
1405
1406 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1407
1408 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1409
1410 static char *unpack_nibble (char *buf, int *val);
1411
1412 static char *pack_nibble (char *buf, int nibble);
1413
1414 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1415
1416 static char *unpack_byte (char *buf, int *value);
1417
1418 static char *pack_int (char *buf, int value);
1419
1420 static char *unpack_int (char *buf, int *value);
1421
1422 static char *unpack_string (char *src, char *dest, int length);
1423
1424 static char *pack_threadid (char *pkt, threadref *id);
1425
1426 static char *unpack_threadid (char *inbuf, threadref *id);
1427
1428 void int_to_threadref (threadref *id, int value);
1429
1430 static int threadref_to_int (threadref *ref);
1431
1432 static void copy_threadref (threadref *dest, threadref *src);
1433
1434 static int threadmatch (threadref *dest, threadref *src);
1435
1436 static char *pack_threadinfo_request (char *pkt, int mode,
1437 threadref *id);
1438
1439 static int remote_unpack_thread_info_response (char *pkt,
1440 threadref *expectedref,
1441 struct gdb_ext_thread_info
1442 *info);
1443
1444
1445 static int remote_get_threadinfo (threadref *threadid,
1446 int fieldset, /*TAG mask */
1447 struct gdb_ext_thread_info *info);
1448
1449 static char *pack_threadlist_request (char *pkt, int startflag,
1450 int threadcount,
1451 threadref *nextthread);
1452
1453 static int parse_threadlist_response (char *pkt,
1454 int result_limit,
1455 threadref *original_echo,
1456 threadref *resultlist,
1457 int *doneflag);
1458
1459 static int remote_get_threadlist (int startflag,
1460 threadref *nextthread,
1461 int result_limit,
1462 int *done,
1463 int *result_count,
1464 threadref *threadlist);
1465
1466 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1467
1468 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1469 void *context, int looplimit);
1470
1471 static int remote_newthread_step (threadref *ref, void *context);
1472
1473
1474 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1475 buffer we're allowed to write to. Returns
1476 BUF+CHARACTERS_WRITTEN. */
1477
1478 static char *
1479 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1480 {
1481 int pid, tid;
1482 struct remote_state *rs = get_remote_state ();
1483
1484 if (remote_multi_process_p (rs))
1485 {
1486 pid = ptid_get_pid (ptid);
1487 if (pid < 0)
1488 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1489 else
1490 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1491 }
1492 tid = ptid_get_tid (ptid);
1493 if (tid < 0)
1494 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1495 else
1496 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1497
1498 return buf;
1499 }
1500
1501 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1502 passed the last parsed char. Returns null_ptid on error. */
1503
1504 static ptid_t
1505 read_ptid (char *buf, char **obuf)
1506 {
1507 char *p = buf;
1508 char *pp;
1509 ULONGEST pid = 0, tid = 0;
1510 ptid_t ptid;
1511
1512 if (*p == 'p')
1513 {
1514 /* Multi-process ptid. */
1515 pp = unpack_varlen_hex (p + 1, &pid);
1516 if (*pp != '.')
1517 error (_("invalid remote ptid: %s\n"), p);
1518
1519 p = pp;
1520 pp = unpack_varlen_hex (p + 1, &tid);
1521 if (obuf)
1522 *obuf = pp;
1523 return ptid_build (pid, 0, tid);
1524 }
1525
1526 /* No multi-process. Just a tid. */
1527 pp = unpack_varlen_hex (p, &tid);
1528
1529 /* Since the stub is not sending a process id, then default to
1530 what's in inferior_ptid. */
1531 pid = ptid_get_pid (inferior_ptid);
1532
1533 if (obuf)
1534 *obuf = pp;
1535 return ptid_build (pid, 0, tid);
1536 }
1537
1538 /* Encode 64 bits in 16 chars of hex. */
1539
1540 static const char hexchars[] = "0123456789abcdef";
1541
1542 static int
1543 ishex (int ch, int *val)
1544 {
1545 if ((ch >= 'a') && (ch <= 'f'))
1546 {
1547 *val = ch - 'a' + 10;
1548 return 1;
1549 }
1550 if ((ch >= 'A') && (ch <= 'F'))
1551 {
1552 *val = ch - 'A' + 10;
1553 return 1;
1554 }
1555 if ((ch >= '0') && (ch <= '9'))
1556 {
1557 *val = ch - '0';
1558 return 1;
1559 }
1560 return 0;
1561 }
1562
1563 static int
1564 stubhex (int ch)
1565 {
1566 if (ch >= 'a' && ch <= 'f')
1567 return ch - 'a' + 10;
1568 if (ch >= '0' && ch <= '9')
1569 return ch - '0';
1570 if (ch >= 'A' && ch <= 'F')
1571 return ch - 'A' + 10;
1572 return -1;
1573 }
1574
1575 static int
1576 stub_unpack_int (char *buff, int fieldlength)
1577 {
1578 int nibble;
1579 int retval = 0;
1580
1581 while (fieldlength)
1582 {
1583 nibble = stubhex (*buff++);
1584 retval |= nibble;
1585 fieldlength--;
1586 if (fieldlength)
1587 retval = retval << 4;
1588 }
1589 return retval;
1590 }
1591
1592 char *
1593 unpack_varlen_hex (char *buff, /* packet to parse */
1594 ULONGEST *result)
1595 {
1596 int nibble;
1597 ULONGEST retval = 0;
1598
1599 while (ishex (*buff, &nibble))
1600 {
1601 buff++;
1602 retval = retval << 4;
1603 retval |= nibble & 0x0f;
1604 }
1605 *result = retval;
1606 return buff;
1607 }
1608
1609 static char *
1610 unpack_nibble (char *buf, int *val)
1611 {
1612 *val = fromhex (*buf++);
1613 return buf;
1614 }
1615
1616 static char *
1617 pack_nibble (char *buf, int nibble)
1618 {
1619 *buf++ = hexchars[(nibble & 0x0f)];
1620 return buf;
1621 }
1622
1623 static char *
1624 pack_hex_byte (char *pkt, int byte)
1625 {
1626 *pkt++ = hexchars[(byte >> 4) & 0xf];
1627 *pkt++ = hexchars[(byte & 0xf)];
1628 return pkt;
1629 }
1630
1631 static char *
1632 unpack_byte (char *buf, int *value)
1633 {
1634 *value = stub_unpack_int (buf, 2);
1635 return buf + 2;
1636 }
1637
1638 static char *
1639 pack_int (char *buf, int value)
1640 {
1641 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1642 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1643 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1644 buf = pack_hex_byte (buf, (value & 0xff));
1645 return buf;
1646 }
1647
1648 static char *
1649 unpack_int (char *buf, int *value)
1650 {
1651 *value = stub_unpack_int (buf, 8);
1652 return buf + 8;
1653 }
1654
1655 #if 0 /* Currently unused, uncomment when needed. */
1656 static char *pack_string (char *pkt, char *string);
1657
1658 static char *
1659 pack_string (char *pkt, char *string)
1660 {
1661 char ch;
1662 int len;
1663
1664 len = strlen (string);
1665 if (len > 200)
1666 len = 200; /* Bigger than most GDB packets, junk??? */
1667 pkt = pack_hex_byte (pkt, len);
1668 while (len-- > 0)
1669 {
1670 ch = *string++;
1671 if ((ch == '\0') || (ch == '#'))
1672 ch = '*'; /* Protect encapsulation. */
1673 *pkt++ = ch;
1674 }
1675 return pkt;
1676 }
1677 #endif /* 0 (unused) */
1678
1679 static char *
1680 unpack_string (char *src, char *dest, int length)
1681 {
1682 while (length--)
1683 *dest++ = *src++;
1684 *dest = '\0';
1685 return src;
1686 }
1687
1688 static char *
1689 pack_threadid (char *pkt, threadref *id)
1690 {
1691 char *limit;
1692 unsigned char *altid;
1693
1694 altid = (unsigned char *) id;
1695 limit = pkt + BUF_THREAD_ID_SIZE;
1696 while (pkt < limit)
1697 pkt = pack_hex_byte (pkt, *altid++);
1698 return pkt;
1699 }
1700
1701
1702 static char *
1703 unpack_threadid (char *inbuf, threadref *id)
1704 {
1705 char *altref;
1706 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1707 int x, y;
1708
1709 altref = (char *) id;
1710
1711 while (inbuf < limit)
1712 {
1713 x = stubhex (*inbuf++);
1714 y = stubhex (*inbuf++);
1715 *altref++ = (x << 4) | y;
1716 }
1717 return inbuf;
1718 }
1719
1720 /* Externally, threadrefs are 64 bits but internally, they are still
1721 ints. This is due to a mismatch of specifications. We would like
1722 to use 64bit thread references internally. This is an adapter
1723 function. */
1724
1725 void
1726 int_to_threadref (threadref *id, int value)
1727 {
1728 unsigned char *scan;
1729
1730 scan = (unsigned char *) id;
1731 {
1732 int i = 4;
1733 while (i--)
1734 *scan++ = 0;
1735 }
1736 *scan++ = (value >> 24) & 0xff;
1737 *scan++ = (value >> 16) & 0xff;
1738 *scan++ = (value >> 8) & 0xff;
1739 *scan++ = (value & 0xff);
1740 }
1741
1742 static int
1743 threadref_to_int (threadref *ref)
1744 {
1745 int i, value = 0;
1746 unsigned char *scan;
1747
1748 scan = *ref;
1749 scan += 4;
1750 i = 4;
1751 while (i-- > 0)
1752 value = (value << 8) | ((*scan++) & 0xff);
1753 return value;
1754 }
1755
1756 static void
1757 copy_threadref (threadref *dest, threadref *src)
1758 {
1759 int i;
1760 unsigned char *csrc, *cdest;
1761
1762 csrc = (unsigned char *) src;
1763 cdest = (unsigned char *) dest;
1764 i = 8;
1765 while (i--)
1766 *cdest++ = *csrc++;
1767 }
1768
1769 static int
1770 threadmatch (threadref *dest, threadref *src)
1771 {
1772 /* Things are broken right now, so just assume we got a match. */
1773 #if 0
1774 unsigned char *srcp, *destp;
1775 int i, result;
1776 srcp = (char *) src;
1777 destp = (char *) dest;
1778
1779 result = 1;
1780 while (i-- > 0)
1781 result &= (*srcp++ == *destp++) ? 1 : 0;
1782 return result;
1783 #endif
1784 return 1;
1785 }
1786
1787 /*
1788 threadid:1, # always request threadid
1789 context_exists:2,
1790 display:4,
1791 unique_name:8,
1792 more_display:16
1793 */
1794
1795 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1796
1797 static char *
1798 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1799 {
1800 *pkt++ = 'q'; /* Info Query */
1801 *pkt++ = 'P'; /* process or thread info */
1802 pkt = pack_int (pkt, mode); /* mode */
1803 pkt = pack_threadid (pkt, id); /* threadid */
1804 *pkt = '\0'; /* terminate */
1805 return pkt;
1806 }
1807
1808 /* These values tag the fields in a thread info response packet. */
1809 /* Tagging the fields allows us to request specific fields and to
1810 add more fields as time goes by. */
1811
1812 #define TAG_THREADID 1 /* Echo the thread identifier. */
1813 #define TAG_EXISTS 2 /* Is this process defined enough to
1814 fetch registers and its stack? */
1815 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1816 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1817 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1818 the process. */
1819
1820 static int
1821 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1822 struct gdb_ext_thread_info *info)
1823 {
1824 struct remote_state *rs = get_remote_state ();
1825 int mask, length;
1826 int tag;
1827 threadref ref;
1828 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1829 int retval = 1;
1830
1831 /* info->threadid = 0; FIXME: implement zero_threadref. */
1832 info->active = 0;
1833 info->display[0] = '\0';
1834 info->shortname[0] = '\0';
1835 info->more_display[0] = '\0';
1836
1837 /* Assume the characters indicating the packet type have been
1838 stripped. */
1839 pkt = unpack_int (pkt, &mask); /* arg mask */
1840 pkt = unpack_threadid (pkt, &ref);
1841
1842 if (mask == 0)
1843 warning (_("Incomplete response to threadinfo request."));
1844 if (!threadmatch (&ref, expectedref))
1845 { /* This is an answer to a different request. */
1846 warning (_("ERROR RMT Thread info mismatch."));
1847 return 0;
1848 }
1849 copy_threadref (&info->threadid, &ref);
1850
1851 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1852
1853 /* Packets are terminated with nulls. */
1854 while ((pkt < limit) && mask && *pkt)
1855 {
1856 pkt = unpack_int (pkt, &tag); /* tag */
1857 pkt = unpack_byte (pkt, &length); /* length */
1858 if (!(tag & mask)) /* Tags out of synch with mask. */
1859 {
1860 warning (_("ERROR RMT: threadinfo tag mismatch."));
1861 retval = 0;
1862 break;
1863 }
1864 if (tag == TAG_THREADID)
1865 {
1866 if (length != 16)
1867 {
1868 warning (_("ERROR RMT: length of threadid is not 16."));
1869 retval = 0;
1870 break;
1871 }
1872 pkt = unpack_threadid (pkt, &ref);
1873 mask = mask & ~TAG_THREADID;
1874 continue;
1875 }
1876 if (tag == TAG_EXISTS)
1877 {
1878 info->active = stub_unpack_int (pkt, length);
1879 pkt += length;
1880 mask = mask & ~(TAG_EXISTS);
1881 if (length > 8)
1882 {
1883 warning (_("ERROR RMT: 'exists' length too long."));
1884 retval = 0;
1885 break;
1886 }
1887 continue;
1888 }
1889 if (tag == TAG_THREADNAME)
1890 {
1891 pkt = unpack_string (pkt, &info->shortname[0], length);
1892 mask = mask & ~TAG_THREADNAME;
1893 continue;
1894 }
1895 if (tag == TAG_DISPLAY)
1896 {
1897 pkt = unpack_string (pkt, &info->display[0], length);
1898 mask = mask & ~TAG_DISPLAY;
1899 continue;
1900 }
1901 if (tag == TAG_MOREDISPLAY)
1902 {
1903 pkt = unpack_string (pkt, &info->more_display[0], length);
1904 mask = mask & ~TAG_MOREDISPLAY;
1905 continue;
1906 }
1907 warning (_("ERROR RMT: unknown thread info tag."));
1908 break; /* Not a tag we know about. */
1909 }
1910 return retval;
1911 }
1912
1913 static int
1914 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1915 struct gdb_ext_thread_info *info)
1916 {
1917 struct remote_state *rs = get_remote_state ();
1918 int result;
1919
1920 pack_threadinfo_request (rs->buf, fieldset, threadid);
1921 putpkt (rs->buf);
1922 getpkt (&rs->buf, &rs->buf_size, 0);
1923
1924 if (rs->buf[0] == '\0')
1925 return 0;
1926
1927 result = remote_unpack_thread_info_response (rs->buf + 2,
1928 threadid, info);
1929 return result;
1930 }
1931
1932 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1933
1934 static char *
1935 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1936 threadref *nextthread)
1937 {
1938 *pkt++ = 'q'; /* info query packet */
1939 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1940 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1941 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1942 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1943 *pkt = '\0';
1944 return pkt;
1945 }
1946
1947 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1948
1949 static int
1950 parse_threadlist_response (char *pkt, int result_limit,
1951 threadref *original_echo, threadref *resultlist,
1952 int *doneflag)
1953 {
1954 struct remote_state *rs = get_remote_state ();
1955 char *limit;
1956 int count, resultcount, done;
1957
1958 resultcount = 0;
1959 /* Assume the 'q' and 'M chars have been stripped. */
1960 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1961 /* done parse past here */
1962 pkt = unpack_byte (pkt, &count); /* count field */
1963 pkt = unpack_nibble (pkt, &done);
1964 /* The first threadid is the argument threadid. */
1965 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1966 while ((count-- > 0) && (pkt < limit))
1967 {
1968 pkt = unpack_threadid (pkt, resultlist++);
1969 if (resultcount++ >= result_limit)
1970 break;
1971 }
1972 if (doneflag)
1973 *doneflag = done;
1974 return resultcount;
1975 }
1976
1977 static int
1978 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1979 int *done, int *result_count, threadref *threadlist)
1980 {
1981 struct remote_state *rs = get_remote_state ();
1982 static threadref echo_nextthread;
1983 int result = 1;
1984
1985 /* Trancate result limit to be smaller than the packet size. */
1986 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1987 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1988
1989 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1990 putpkt (rs->buf);
1991 getpkt (&rs->buf, &rs->buf_size, 0);
1992
1993 if (*rs->buf == '\0')
1994 *result_count = 0;
1995 else
1996 *result_count =
1997 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1998 threadlist, done);
1999
2000 if (!threadmatch (&echo_nextthread, nextthread))
2001 {
2002 /* FIXME: This is a good reason to drop the packet. */
2003 /* Possably, there is a duplicate response. */
2004 /* Possabilities :
2005 retransmit immediatly - race conditions
2006 retransmit after timeout - yes
2007 exit
2008 wait for packet, then exit
2009 */
2010 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2011 return 0; /* I choose simply exiting. */
2012 }
2013 if (*result_count <= 0)
2014 {
2015 if (*done != 1)
2016 {
2017 warning (_("RMT ERROR : failed to get remote thread list."));
2018 result = 0;
2019 }
2020 return result; /* break; */
2021 }
2022 if (*result_count > result_limit)
2023 {
2024 *result_count = 0;
2025 warning (_("RMT ERROR: threadlist response longer than requested."));
2026 return 0;
2027 }
2028 return result;
2029 }
2030
2031 /* This is the interface between remote and threads, remotes upper
2032 interface. */
2033
2034 /* remote_find_new_threads retrieves the thread list and for each
2035 thread in the list, looks up the thread in GDB's internal list,
2036 adding the thread if it does not already exist. This involves
2037 getting partial thread lists from the remote target so, polling the
2038 quit_flag is required. */
2039
2040
2041 /* About this many threadisds fit in a packet. */
2042
2043 #define MAXTHREADLISTRESULTS 32
2044
2045 static int
2046 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2047 int looplimit)
2048 {
2049 int done, i, result_count;
2050 int startflag = 1;
2051 int result = 1;
2052 int loopcount = 0;
2053 static threadref nextthread;
2054 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2055
2056 done = 0;
2057 while (!done)
2058 {
2059 if (loopcount++ > looplimit)
2060 {
2061 result = 0;
2062 warning (_("Remote fetch threadlist -infinite loop-."));
2063 break;
2064 }
2065 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2066 &done, &result_count, resultthreadlist))
2067 {
2068 result = 0;
2069 break;
2070 }
2071 /* Clear for later iterations. */
2072 startflag = 0;
2073 /* Setup to resume next batch of thread references, set nextthread. */
2074 if (result_count >= 1)
2075 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2076 i = 0;
2077 while (result_count--)
2078 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2079 break;
2080 }
2081 return result;
2082 }
2083
2084 static int
2085 remote_newthread_step (threadref *ref, void *context)
2086 {
2087 int pid = ptid_get_pid (inferior_ptid);
2088 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2089
2090 if (!in_thread_list (ptid))
2091 add_thread (ptid);
2092 return 1; /* continue iterator */
2093 }
2094
2095 #define CRAZY_MAX_THREADS 1000
2096
2097 static ptid_t
2098 remote_current_thread (ptid_t oldpid)
2099 {
2100 struct remote_state *rs = get_remote_state ();
2101 char *p = rs->buf;
2102 int tid;
2103 int pid;
2104
2105 putpkt ("qC");
2106 getpkt (&rs->buf, &rs->buf_size, 0);
2107 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2108 return read_ptid (&rs->buf[2], NULL);
2109 else
2110 return oldpid;
2111 }
2112
2113 /* Find new threads for info threads command.
2114 * Original version, using John Metzler's thread protocol.
2115 */
2116
2117 static void
2118 remote_find_new_threads (void)
2119 {
2120 remote_threadlist_iterator (remote_newthread_step, 0,
2121 CRAZY_MAX_THREADS);
2122 }
2123
2124 /*
2125 * Find all threads for info threads command.
2126 * Uses new thread protocol contributed by Cisco.
2127 * Falls back and attempts to use the older method (above)
2128 * if the target doesn't respond to the new method.
2129 */
2130
2131 static void
2132 remote_threads_info (void)
2133 {
2134 struct remote_state *rs = get_remote_state ();
2135 char *bufp;
2136 ptid_t new_thread;
2137
2138 if (remote_desc == 0) /* paranoia */
2139 error (_("Command can only be used when connected to the remote target."));
2140
2141 if (use_threadinfo_query)
2142 {
2143 putpkt ("qfThreadInfo");
2144 getpkt (&rs->buf, &rs->buf_size, 0);
2145 bufp = rs->buf;
2146 if (bufp[0] != '\0') /* q packet recognized */
2147 {
2148 while (*bufp++ == 'm') /* reply contains one or more TID */
2149 {
2150 do
2151 {
2152 new_thread = read_ptid (bufp, &bufp);
2153 if (!ptid_equal (new_thread, null_ptid)
2154 && (!in_thread_list (new_thread)
2155 || is_exited (new_thread)))
2156 {
2157 /* When connected to a multi-process aware stub,
2158 "info threads" may show up threads of
2159 inferiors we didn't know about yet. Add them
2160 now, and before adding any of its child
2161 threads, so notifications are emitted in a
2162 sensible order. */
2163 if (!in_inferior_list (ptid_get_pid (new_thread)))
2164 add_inferior (ptid_get_pid (new_thread));
2165
2166 add_thread (new_thread);
2167
2168 /* In non-stop mode, we assume new found threads
2169 are running until we proven otherwise with a
2170 stop reply. In all-stop, we can only get
2171 here if all threads are stopped. */
2172 set_executing (new_thread, non_stop ? 1 : 0);
2173 set_running (new_thread, non_stop ? 1 : 0);
2174 }
2175 }
2176 while (*bufp++ == ','); /* comma-separated list */
2177 putpkt ("qsThreadInfo");
2178 getpkt (&rs->buf, &rs->buf_size, 0);
2179 bufp = rs->buf;
2180 }
2181 return; /* done */
2182 }
2183 }
2184
2185 /* Only qfThreadInfo is supported in non-stop mode. */
2186 if (non_stop)
2187 return;
2188
2189 /* Else fall back to old method based on jmetzler protocol. */
2190 use_threadinfo_query = 0;
2191 remote_find_new_threads ();
2192 return;
2193 }
2194
2195 /*
2196 * Collect a descriptive string about the given thread.
2197 * The target may say anything it wants to about the thread
2198 * (typically info about its blocked / runnable state, name, etc.).
2199 * This string will appear in the info threads display.
2200 *
2201 * Optional: targets are not required to implement this function.
2202 */
2203
2204 static char *
2205 remote_threads_extra_info (struct thread_info *tp)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208 int result;
2209 int set;
2210 threadref id;
2211 struct gdb_ext_thread_info threadinfo;
2212 static char display_buf[100]; /* arbitrary... */
2213 int n = 0; /* position in display_buf */
2214
2215 if (remote_desc == 0) /* paranoia */
2216 internal_error (__FILE__, __LINE__,
2217 _("remote_threads_extra_info"));
2218
2219 if (ptid_equal (tp->ptid, magic_null_ptid)
2220 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2221 /* This is the main thread which was added by GDB. The remote
2222 server doesn't know about it. */
2223 return NULL;
2224
2225 if (use_threadextra_query)
2226 {
2227 char *b = rs->buf;
2228 char *endb = rs->buf + get_remote_packet_size ();
2229
2230 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2231 b += strlen (b);
2232 write_ptid (b, endb, tp->ptid);
2233
2234 putpkt (rs->buf);
2235 getpkt (&rs->buf, &rs->buf_size, 0);
2236 if (rs->buf[0] != 0)
2237 {
2238 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2239 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2240 display_buf [result] = '\0';
2241 return display_buf;
2242 }
2243 }
2244
2245 /* If the above query fails, fall back to the old method. */
2246 use_threadextra_query = 0;
2247 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2248 | TAG_MOREDISPLAY | TAG_DISPLAY;
2249 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2250 if (remote_get_threadinfo (&id, set, &threadinfo))
2251 if (threadinfo.active)
2252 {
2253 if (*threadinfo.shortname)
2254 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2255 " Name: %s,", threadinfo.shortname);
2256 if (*threadinfo.display)
2257 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2258 " State: %s,", threadinfo.display);
2259 if (*threadinfo.more_display)
2260 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2261 " Priority: %s", threadinfo.more_display);
2262
2263 if (n > 0)
2264 {
2265 /* For purely cosmetic reasons, clear up trailing commas. */
2266 if (',' == display_buf[n-1])
2267 display_buf[n-1] = ' ';
2268 return display_buf;
2269 }
2270 }
2271 return NULL;
2272 }
2273 \f
2274
2275 /* Restart the remote side; this is an extended protocol operation. */
2276
2277 static void
2278 extended_remote_restart (void)
2279 {
2280 struct remote_state *rs = get_remote_state ();
2281
2282 /* Send the restart command; for reasons I don't understand the
2283 remote side really expects a number after the "R". */
2284 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2285 putpkt (rs->buf);
2286
2287 remote_fileio_reset ();
2288 }
2289 \f
2290 /* Clean up connection to a remote debugger. */
2291
2292 static void
2293 remote_close (int quitting)
2294 {
2295 if (remote_desc == NULL)
2296 return; /* already closed */
2297
2298 /* Make sure we leave stdin registered in the event loop, and we
2299 don't leave the async SIGINT signal handler installed. */
2300 remote_terminal_ours ();
2301
2302 serial_close (remote_desc);
2303 remote_desc = NULL;
2304
2305 /* We don't have a connection to the remote stub anymore. Get rid
2306 of all the inferiors and their threads we were controlling. */
2307 discard_all_inferiors ();
2308
2309 /* We're no longer interested in any of these events. */
2310 discard_pending_stop_replies (-1);
2311
2312 if (remote_async_inferior_event_token)
2313 delete_async_event_handler (&remote_async_inferior_event_token);
2314 if (remote_async_get_pending_events_token)
2315 delete_async_event_handler (&remote_async_get_pending_events_token);
2316
2317 generic_mourn_inferior ();
2318 }
2319
2320 /* Query the remote side for the text, data and bss offsets. */
2321
2322 static void
2323 get_offsets (void)
2324 {
2325 struct remote_state *rs = get_remote_state ();
2326 char *buf;
2327 char *ptr;
2328 int lose, num_segments = 0, do_sections, do_segments;
2329 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2330 struct section_offsets *offs;
2331 struct symfile_segment_data *data;
2332
2333 if (symfile_objfile == NULL)
2334 return;
2335
2336 putpkt ("qOffsets");
2337 getpkt (&rs->buf, &rs->buf_size, 0);
2338 buf = rs->buf;
2339
2340 if (buf[0] == '\000')
2341 return; /* Return silently. Stub doesn't support
2342 this command. */
2343 if (buf[0] == 'E')
2344 {
2345 warning (_("Remote failure reply: %s"), buf);
2346 return;
2347 }
2348
2349 /* Pick up each field in turn. This used to be done with scanf, but
2350 scanf will make trouble if CORE_ADDR size doesn't match
2351 conversion directives correctly. The following code will work
2352 with any size of CORE_ADDR. */
2353 text_addr = data_addr = bss_addr = 0;
2354 ptr = buf;
2355 lose = 0;
2356
2357 if (strncmp (ptr, "Text=", 5) == 0)
2358 {
2359 ptr += 5;
2360 /* Don't use strtol, could lose on big values. */
2361 while (*ptr && *ptr != ';')
2362 text_addr = (text_addr << 4) + fromhex (*ptr++);
2363
2364 if (strncmp (ptr, ";Data=", 6) == 0)
2365 {
2366 ptr += 6;
2367 while (*ptr && *ptr != ';')
2368 data_addr = (data_addr << 4) + fromhex (*ptr++);
2369 }
2370 else
2371 lose = 1;
2372
2373 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2374 {
2375 ptr += 5;
2376 while (*ptr && *ptr != ';')
2377 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2378
2379 if (bss_addr != data_addr)
2380 warning (_("Target reported unsupported offsets: %s"), buf);
2381 }
2382 else
2383 lose = 1;
2384 }
2385 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2386 {
2387 ptr += 8;
2388 /* Don't use strtol, could lose on big values. */
2389 while (*ptr && *ptr != ';')
2390 text_addr = (text_addr << 4) + fromhex (*ptr++);
2391 num_segments = 1;
2392
2393 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2394 {
2395 ptr += 9;
2396 while (*ptr && *ptr != ';')
2397 data_addr = (data_addr << 4) + fromhex (*ptr++);
2398 num_segments++;
2399 }
2400 }
2401 else
2402 lose = 1;
2403
2404 if (lose)
2405 error (_("Malformed response to offset query, %s"), buf);
2406 else if (*ptr != '\0')
2407 warning (_("Target reported unsupported offsets: %s"), buf);
2408
2409 offs = ((struct section_offsets *)
2410 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2411 memcpy (offs, symfile_objfile->section_offsets,
2412 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2413
2414 data = get_symfile_segment_data (symfile_objfile->obfd);
2415 do_segments = (data != NULL);
2416 do_sections = num_segments == 0;
2417
2418 if (num_segments > 0)
2419 {
2420 segments[0] = text_addr;
2421 segments[1] = data_addr;
2422 }
2423 /* If we have two segments, we can still try to relocate everything
2424 by assuming that the .text and .data offsets apply to the whole
2425 text and data segments. Convert the offsets given in the packet
2426 to base addresses for symfile_map_offsets_to_segments. */
2427 else if (data && data->num_segments == 2)
2428 {
2429 segments[0] = data->segment_bases[0] + text_addr;
2430 segments[1] = data->segment_bases[1] + data_addr;
2431 num_segments = 2;
2432 }
2433 /* If the object file has only one segment, assume that it is text
2434 rather than data; main programs with no writable data are rare,
2435 but programs with no code are useless. Of course the code might
2436 have ended up in the data segment... to detect that we would need
2437 the permissions here. */
2438 else if (data && data->num_segments == 1)
2439 {
2440 segments[0] = data->segment_bases[0] + text_addr;
2441 num_segments = 1;
2442 }
2443 /* There's no way to relocate by segment. */
2444 else
2445 do_segments = 0;
2446
2447 if (do_segments)
2448 {
2449 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2450 offs, num_segments, segments);
2451
2452 if (ret == 0 && !do_sections)
2453 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2454
2455 if (ret > 0)
2456 do_sections = 0;
2457 }
2458
2459 if (data)
2460 free_symfile_segment_data (data);
2461
2462 if (do_sections)
2463 {
2464 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2465
2466 /* This is a temporary kludge to force data and bss to use the same offsets
2467 because that's what nlmconv does now. The real solution requires changes
2468 to the stub and remote.c that I don't have time to do right now. */
2469
2470 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2471 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2472 }
2473
2474 objfile_relocate (symfile_objfile, offs);
2475 }
2476
2477 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2478 threads we know are stopped already. This is used during the
2479 initial remote connection in non-stop mode --- threads that are
2480 reported as already being stopped are left stopped. */
2481
2482 static int
2483 set_stop_requested_callback (struct thread_info *thread, void *data)
2484 {
2485 /* If we have a stop reply for this thread, it must be stopped. */
2486 if (peek_stop_reply (thread->ptid))
2487 set_stop_requested (thread->ptid, 1);
2488
2489 return 0;
2490 }
2491
2492 /* Stub for catch_exception. */
2493
2494 struct start_remote_args
2495 {
2496 int from_tty;
2497
2498 /* The current target. */
2499 struct target_ops *target;
2500
2501 /* Non-zero if this is an extended-remote target. */
2502 int extended_p;
2503 };
2504
2505 static void
2506 remote_start_remote (struct ui_out *uiout, void *opaque)
2507 {
2508 struct start_remote_args *args = opaque;
2509 struct remote_state *rs = get_remote_state ();
2510 struct packet_config *noack_config;
2511 char *wait_status = NULL;
2512
2513 immediate_quit++; /* Allow user to interrupt it. */
2514
2515 /* Ack any packet which the remote side has already sent. */
2516 serial_write (remote_desc, "+", 1);
2517
2518 /* The first packet we send to the target is the optional "supported
2519 packets" request. If the target can answer this, it will tell us
2520 which later probes to skip. */
2521 remote_query_supported ();
2522
2523 /* Next, we possibly activate noack mode.
2524
2525 If the QStartNoAckMode packet configuration is set to AUTO,
2526 enable noack mode if the stub reported a wish for it with
2527 qSupported.
2528
2529 If set to TRUE, then enable noack mode even if the stub didn't
2530 report it in qSupported. If the stub doesn't reply OK, the
2531 session ends with an error.
2532
2533 If FALSE, then don't activate noack mode, regardless of what the
2534 stub claimed should be the default with qSupported. */
2535
2536 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2537
2538 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2539 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2540 && noack_config->support == PACKET_ENABLE))
2541 {
2542 putpkt ("QStartNoAckMode");
2543 getpkt (&rs->buf, &rs->buf_size, 0);
2544 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2545 rs->noack_mode = 1;
2546 }
2547
2548 if (args->extended_p)
2549 {
2550 /* Tell the remote that we are using the extended protocol. */
2551 putpkt ("!");
2552 getpkt (&rs->buf, &rs->buf_size, 0);
2553 }
2554
2555 /* Next, if the target can specify a description, read it. We do
2556 this before anything involving memory or registers. */
2557 target_find_description ();
2558
2559 /* On OSs where the list of libraries is global to all
2560 processes, we fetch them early. */
2561 if (gdbarch_has_global_solist (target_gdbarch))
2562 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2563
2564 if (non_stop)
2565 {
2566 if (!rs->non_stop_aware)
2567 error (_("Non-stop mode requested, but remote does not support non-stop"));
2568
2569 putpkt ("QNonStop:1");
2570 getpkt (&rs->buf, &rs->buf_size, 0);
2571
2572 if (strcmp (rs->buf, "OK") != 0)
2573 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2574
2575 /* Find about threads and processes the stub is already
2576 controlling. We default to adding them in the running state.
2577 The '?' query below will then tell us about which threads are
2578 stopped. */
2579
2580 /* If we're not using the multi-process extensions, there's no
2581 way to know the pid of the reported threads; use the magic
2582 number. */
2583 if (!remote_multi_process_p (rs))
2584 inferior_ptid = magic_null_ptid;
2585
2586 remote_threads_info ();
2587 }
2588 else if (rs->non_stop_aware)
2589 {
2590 /* Don't assume that the stub can operate in all-stop mode.
2591 Request it explicitely. */
2592 putpkt ("QNonStop:0");
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594
2595 if (strcmp (rs->buf, "OK") != 0)
2596 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2597 }
2598
2599 /* Check whether the target is running now. */
2600 putpkt ("?");
2601 getpkt (&rs->buf, &rs->buf_size, 0);
2602
2603 if (!non_stop)
2604 {
2605 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2606 {
2607 if (args->extended_p)
2608 {
2609 /* We're connected, but not running. Drop out before we
2610 call start_remote. */
2611 target_mark_exited (args->target);
2612 return;
2613 }
2614 else
2615 error (_("The target is not running (try extended-remote?)"));
2616 }
2617 else
2618 {
2619 if (args->extended_p)
2620 target_mark_running (args->target);
2621
2622 /* Save the reply for later. */
2623 wait_status = alloca (strlen (rs->buf) + 1);
2624 strcpy (wait_status, rs->buf);
2625 }
2626
2627 /* Let the stub know that we want it to return the thread. */
2628 set_continue_thread (minus_one_ptid);
2629
2630 /* Without this, some commands which require an active target
2631 (such as kill) won't work. This variable serves (at least)
2632 double duty as both the pid of the target process (if it has
2633 such), and as a flag indicating that a target is active.
2634 These functions should be split out into seperate variables,
2635 especially since GDB will someday have a notion of debugging
2636 several processes. */
2637 inferior_ptid = magic_null_ptid;
2638
2639 /* Now, if we have thread information, update inferior_ptid. */
2640 inferior_ptid = remote_current_thread (inferior_ptid);
2641
2642 add_inferior (ptid_get_pid (inferior_ptid));
2643
2644 /* Always add the main thread. */
2645 add_thread_silent (inferior_ptid);
2646
2647 get_offsets (); /* Get text, data & bss offsets. */
2648
2649 /* If we could not find a description using qXfer, and we know
2650 how to do it some other way, try again. This is not
2651 supported for non-stop; it could be, but it is tricky if
2652 there are no stopped threads when we connect. */
2653 if (remote_read_description_p (args->target)
2654 && gdbarch_target_desc (target_gdbarch) == NULL)
2655 {
2656 target_clear_description ();
2657 target_find_description ();
2658 }
2659
2660 /* Use the previously fetched status. */
2661 gdb_assert (wait_status != NULL);
2662 strcpy (rs->buf, wait_status);
2663 rs->cached_wait_status = 1;
2664
2665 immediate_quit--;
2666 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2667 }
2668 else
2669 {
2670 /* In non-stop, we will either get an "OK", meaning that there
2671 are no stopped threads at this time; or, a regular stop
2672 reply. In the latter case, there may be more than one thread
2673 stopped --- we pull them all out using the vStopped
2674 mechanism. */
2675 if (strcmp (rs->buf, "OK") != 0)
2676 {
2677 struct stop_reply *stop_reply;
2678 struct cleanup *old_chain;
2679
2680 stop_reply = stop_reply_xmalloc ();
2681 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2682
2683 remote_parse_stop_reply (rs->buf, stop_reply);
2684 discard_cleanups (old_chain);
2685
2686 /* get_pending_stop_replies acks this one, and gets the rest
2687 out. */
2688 pending_stop_reply = stop_reply;
2689 remote_get_pending_stop_replies ();
2690
2691 /* Make sure that threads that were stopped remain
2692 stopped. */
2693 iterate_over_threads (set_stop_requested_callback, NULL);
2694 }
2695
2696 if (target_can_async_p ())
2697 target_async (inferior_event_handler, 0);
2698
2699 if (thread_count () == 0)
2700 {
2701 if (args->extended_p)
2702 {
2703 /* We're connected, but not running. Drop out before we
2704 call start_remote. */
2705 target_mark_exited (args->target);
2706 return;
2707 }
2708 else
2709 error (_("The target is not running (try extended-remote?)"));
2710 }
2711
2712 if (args->extended_p)
2713 target_mark_running (args->target);
2714
2715 /* Let the stub know that we want it to return the thread. */
2716
2717 /* Force the stub to choose a thread. */
2718 set_general_thread (null_ptid);
2719
2720 /* Query it. */
2721 inferior_ptid = remote_current_thread (minus_one_ptid);
2722 if (ptid_equal (inferior_ptid, minus_one_ptid))
2723 error (_("remote didn't report the current thread in non-stop mode"));
2724
2725 get_offsets (); /* Get text, data & bss offsets. */
2726
2727 /* In non-stop mode, any cached wait status will be stored in
2728 the stop reply queue. */
2729 gdb_assert (wait_status == NULL);
2730 }
2731
2732 /* If we connected to a live target, do some additional setup. */
2733 if (target_has_execution)
2734 {
2735 if (exec_bfd) /* No use without an exec file. */
2736 remote_check_symbols (symfile_objfile);
2737 }
2738
2739 /* If code is shared between processes, then breakpoints are global
2740 too; Insert them now. */
2741 if (gdbarch_has_global_solist (target_gdbarch)
2742 && breakpoints_always_inserted_mode ())
2743 insert_breakpoints ();
2744 }
2745
2746 /* Open a connection to a remote debugger.
2747 NAME is the filename used for communication. */
2748
2749 static void
2750 remote_open (char *name, int from_tty)
2751 {
2752 remote_open_1 (name, from_tty, &remote_ops, 0);
2753 }
2754
2755 /* Open a connection to a remote debugger using the extended
2756 remote gdb protocol. NAME is the filename used for communication. */
2757
2758 static void
2759 extended_remote_open (char *name, int from_tty)
2760 {
2761 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2762 }
2763
2764 /* Generic code for opening a connection to a remote target. */
2765
2766 static void
2767 init_all_packet_configs (void)
2768 {
2769 int i;
2770 for (i = 0; i < PACKET_MAX; i++)
2771 update_packet_config (&remote_protocol_packets[i]);
2772 }
2773
2774 /* Symbol look-up. */
2775
2776 static void
2777 remote_check_symbols (struct objfile *objfile)
2778 {
2779 struct remote_state *rs = get_remote_state ();
2780 char *msg, *reply, *tmp;
2781 struct minimal_symbol *sym;
2782 int end;
2783
2784 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2785 return;
2786
2787 /* Make sure the remote is pointing at the right process. */
2788 set_general_process ();
2789
2790 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2791 because we need both at the same time. */
2792 msg = alloca (get_remote_packet_size ());
2793
2794 /* Invite target to request symbol lookups. */
2795
2796 putpkt ("qSymbol::");
2797 getpkt (&rs->buf, &rs->buf_size, 0);
2798 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2799 reply = rs->buf;
2800
2801 while (strncmp (reply, "qSymbol:", 8) == 0)
2802 {
2803 tmp = &reply[8];
2804 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2805 msg[end] = '\0';
2806 sym = lookup_minimal_symbol (msg, NULL, NULL);
2807 if (sym == NULL)
2808 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2809 else
2810 {
2811 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2812
2813 /* If this is a function address, return the start of code
2814 instead of any data function descriptor. */
2815 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2816 sym_addr,
2817 &current_target);
2818
2819 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2820 paddr_nz (sym_addr), &reply[8]);
2821 }
2822
2823 putpkt (msg);
2824 getpkt (&rs->buf, &rs->buf_size, 0);
2825 reply = rs->buf;
2826 }
2827 }
2828
2829 static struct serial *
2830 remote_serial_open (char *name)
2831 {
2832 static int udp_warning = 0;
2833
2834 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2835 of in ser-tcp.c, because it is the remote protocol assuming that the
2836 serial connection is reliable and not the serial connection promising
2837 to be. */
2838 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2839 {
2840 warning (_("\
2841 The remote protocol may be unreliable over UDP.\n\
2842 Some events may be lost, rendering further debugging impossible."));
2843 udp_warning = 1;
2844 }
2845
2846 return serial_open (name);
2847 }
2848
2849 /* This type describes each known response to the qSupported
2850 packet. */
2851 struct protocol_feature
2852 {
2853 /* The name of this protocol feature. */
2854 const char *name;
2855
2856 /* The default for this protocol feature. */
2857 enum packet_support default_support;
2858
2859 /* The function to call when this feature is reported, or after
2860 qSupported processing if the feature is not supported.
2861 The first argument points to this structure. The second
2862 argument indicates whether the packet requested support be
2863 enabled, disabled, or probed (or the default, if this function
2864 is being called at the end of processing and this feature was
2865 not reported). The third argument may be NULL; if not NULL, it
2866 is a NUL-terminated string taken from the packet following
2867 this feature's name and an equals sign. */
2868 void (*func) (const struct protocol_feature *, enum packet_support,
2869 const char *);
2870
2871 /* The corresponding packet for this feature. Only used if
2872 FUNC is remote_supported_packet. */
2873 int packet;
2874 };
2875
2876 static void
2877 remote_supported_packet (const struct protocol_feature *feature,
2878 enum packet_support support,
2879 const char *argument)
2880 {
2881 if (argument)
2882 {
2883 warning (_("Remote qSupported response supplied an unexpected value for"
2884 " \"%s\"."), feature->name);
2885 return;
2886 }
2887
2888 if (remote_protocol_packets[feature->packet].support
2889 == PACKET_SUPPORT_UNKNOWN)
2890 remote_protocol_packets[feature->packet].support = support;
2891 }
2892
2893 static void
2894 remote_packet_size (const struct protocol_feature *feature,
2895 enum packet_support support, const char *value)
2896 {
2897 struct remote_state *rs = get_remote_state ();
2898
2899 int packet_size;
2900 char *value_end;
2901
2902 if (support != PACKET_ENABLE)
2903 return;
2904
2905 if (value == NULL || *value == '\0')
2906 {
2907 warning (_("Remote target reported \"%s\" without a size."),
2908 feature->name);
2909 return;
2910 }
2911
2912 errno = 0;
2913 packet_size = strtol (value, &value_end, 16);
2914 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2915 {
2916 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2917 feature->name, value);
2918 return;
2919 }
2920
2921 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2922 {
2923 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2924 packet_size, MAX_REMOTE_PACKET_SIZE);
2925 packet_size = MAX_REMOTE_PACKET_SIZE;
2926 }
2927
2928 /* Record the new maximum packet size. */
2929 rs->explicit_packet_size = packet_size;
2930 }
2931
2932 static void
2933 remote_multi_process_feature (const struct protocol_feature *feature,
2934 enum packet_support support, const char *value)
2935 {
2936 struct remote_state *rs = get_remote_state ();
2937 rs->multi_process_aware = (support == PACKET_ENABLE);
2938 }
2939
2940 static void
2941 remote_non_stop_feature (const struct protocol_feature *feature,
2942 enum packet_support support, const char *value)
2943 {
2944 struct remote_state *rs = get_remote_state ();
2945 rs->non_stop_aware = (support == PACKET_ENABLE);
2946 }
2947
2948 static struct protocol_feature remote_protocol_features[] = {
2949 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2950 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2951 PACKET_qXfer_auxv },
2952 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2953 PACKET_qXfer_features },
2954 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2955 PACKET_qXfer_libraries },
2956 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2957 PACKET_qXfer_memory_map },
2958 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2959 PACKET_qXfer_spu_read },
2960 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2961 PACKET_qXfer_spu_write },
2962 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
2963 PACKET_qXfer_osdata },
2964 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2965 PACKET_QPassSignals },
2966 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2967 PACKET_QStartNoAckMode },
2968 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2969 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2970 };
2971
2972 static void
2973 remote_query_supported (void)
2974 {
2975 struct remote_state *rs = get_remote_state ();
2976 char *next;
2977 int i;
2978 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2979
2980 /* The packet support flags are handled differently for this packet
2981 than for most others. We treat an error, a disabled packet, and
2982 an empty response identically: any features which must be reported
2983 to be used will be automatically disabled. An empty buffer
2984 accomplishes this, since that is also the representation for a list
2985 containing no features. */
2986
2987 rs->buf[0] = 0;
2988 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2989 {
2990 if (rs->extended)
2991 putpkt ("qSupported:multiprocess+");
2992 else
2993 putpkt ("qSupported");
2994
2995 getpkt (&rs->buf, &rs->buf_size, 0);
2996
2997 /* If an error occured, warn, but do not return - just reset the
2998 buffer to empty and go on to disable features. */
2999 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3000 == PACKET_ERROR)
3001 {
3002 warning (_("Remote failure reply: %s"), rs->buf);
3003 rs->buf[0] = 0;
3004 }
3005 }
3006
3007 memset (seen, 0, sizeof (seen));
3008
3009 next = rs->buf;
3010 while (*next)
3011 {
3012 enum packet_support is_supported;
3013 char *p, *end, *name_end, *value;
3014
3015 /* First separate out this item from the rest of the packet. If
3016 there's another item after this, we overwrite the separator
3017 (terminated strings are much easier to work with). */
3018 p = next;
3019 end = strchr (p, ';');
3020 if (end == NULL)
3021 {
3022 end = p + strlen (p);
3023 next = end;
3024 }
3025 else
3026 {
3027 *end = '\0';
3028 next = end + 1;
3029
3030 if (end == p)
3031 {
3032 warning (_("empty item in \"qSupported\" response"));
3033 continue;
3034 }
3035 }
3036
3037 name_end = strchr (p, '=');
3038 if (name_end)
3039 {
3040 /* This is a name=value entry. */
3041 is_supported = PACKET_ENABLE;
3042 value = name_end + 1;
3043 *name_end = '\0';
3044 }
3045 else
3046 {
3047 value = NULL;
3048 switch (end[-1])
3049 {
3050 case '+':
3051 is_supported = PACKET_ENABLE;
3052 break;
3053
3054 case '-':
3055 is_supported = PACKET_DISABLE;
3056 break;
3057
3058 case '?':
3059 is_supported = PACKET_SUPPORT_UNKNOWN;
3060 break;
3061
3062 default:
3063 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3064 continue;
3065 }
3066 end[-1] = '\0';
3067 }
3068
3069 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3070 if (strcmp (remote_protocol_features[i].name, p) == 0)
3071 {
3072 const struct protocol_feature *feature;
3073
3074 seen[i] = 1;
3075 feature = &remote_protocol_features[i];
3076 feature->func (feature, is_supported, value);
3077 break;
3078 }
3079 }
3080
3081 /* If we increased the packet size, make sure to increase the global
3082 buffer size also. We delay this until after parsing the entire
3083 qSupported packet, because this is the same buffer we were
3084 parsing. */
3085 if (rs->buf_size < rs->explicit_packet_size)
3086 {
3087 rs->buf_size = rs->explicit_packet_size;
3088 rs->buf = xrealloc (rs->buf, rs->buf_size);
3089 }
3090
3091 /* Handle the defaults for unmentioned features. */
3092 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3093 if (!seen[i])
3094 {
3095 const struct protocol_feature *feature;
3096
3097 feature = &remote_protocol_features[i];
3098 feature->func (feature, feature->default_support, NULL);
3099 }
3100 }
3101
3102
3103 static void
3104 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3105 {
3106 struct remote_state *rs = get_remote_state ();
3107
3108 if (name == 0)
3109 error (_("To open a remote debug connection, you need to specify what\n"
3110 "serial device is attached to the remote system\n"
3111 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3112
3113 /* See FIXME above. */
3114 if (!target_async_permitted)
3115 wait_forever_enabled_p = 1;
3116
3117 /* If we're connected to a running target, target_preopen will kill it.
3118 But if we're connected to a target system with no running process,
3119 then we will still be connected when it returns. Ask this question
3120 first, before target_preopen has a chance to kill anything. */
3121 if (remote_desc != NULL && !target_has_execution)
3122 {
3123 if (!from_tty
3124 || query (_("Already connected to a remote target. Disconnect? ")))
3125 pop_target ();
3126 else
3127 error (_("Still connected."));
3128 }
3129
3130 target_preopen (from_tty);
3131
3132 unpush_target (target);
3133
3134 /* This time without a query. If we were connected to an
3135 extended-remote target and target_preopen killed the running
3136 process, we may still be connected. If we are starting "target
3137 remote" now, the extended-remote target will not have been
3138 removed by unpush_target. */
3139 if (remote_desc != NULL && !target_has_execution)
3140 pop_target ();
3141
3142 /* Make sure we send the passed signals list the next time we resume. */
3143 xfree (last_pass_packet);
3144 last_pass_packet = NULL;
3145
3146 remote_fileio_reset ();
3147 reopen_exec_file ();
3148 reread_symbols ();
3149
3150 remote_desc = remote_serial_open (name);
3151 if (!remote_desc)
3152 perror_with_name (name);
3153
3154 if (baud_rate != -1)
3155 {
3156 if (serial_setbaudrate (remote_desc, baud_rate))
3157 {
3158 /* The requested speed could not be set. Error out to
3159 top level after closing remote_desc. Take care to
3160 set remote_desc to NULL to avoid closing remote_desc
3161 more than once. */
3162 serial_close (remote_desc);
3163 remote_desc = NULL;
3164 perror_with_name (name);
3165 }
3166 }
3167
3168 serial_raw (remote_desc);
3169
3170 /* If there is something sitting in the buffer we might take it as a
3171 response to a command, which would be bad. */
3172 serial_flush_input (remote_desc);
3173
3174 if (from_tty)
3175 {
3176 puts_filtered ("Remote debugging using ");
3177 puts_filtered (name);
3178 puts_filtered ("\n");
3179 }
3180 push_target (target); /* Switch to using remote target now. */
3181
3182 /* Assume that the target is not running, until we learn otherwise. */
3183 if (extended_p)
3184 target_mark_exited (target);
3185
3186 /* Register extra event sources in the event loop. */
3187 remote_async_inferior_event_token
3188 = create_async_event_handler (remote_async_inferior_event_handler,
3189 NULL);
3190 remote_async_get_pending_events_token
3191 = create_async_event_handler (remote_async_get_pending_events_handler,
3192 NULL);
3193
3194 /* Reset the target state; these things will be queried either by
3195 remote_query_supported or as they are needed. */
3196 init_all_packet_configs ();
3197 rs->cached_wait_status = 0;
3198 rs->explicit_packet_size = 0;
3199 rs->noack_mode = 0;
3200 rs->multi_process_aware = 0;
3201 rs->extended = extended_p;
3202 rs->non_stop_aware = 0;
3203 rs->waiting_for_stop_reply = 0;
3204
3205 general_thread = not_sent_ptid;
3206 continue_thread = not_sent_ptid;
3207
3208 /* Probe for ability to use "ThreadInfo" query, as required. */
3209 use_threadinfo_query = 1;
3210 use_threadextra_query = 1;
3211
3212 if (target_async_permitted)
3213 {
3214 /* With this target we start out by owning the terminal. */
3215 remote_async_terminal_ours_p = 1;
3216
3217 /* FIXME: cagney/1999-09-23: During the initial connection it is
3218 assumed that the target is already ready and able to respond to
3219 requests. Unfortunately remote_start_remote() eventually calls
3220 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3221 around this. Eventually a mechanism that allows
3222 wait_for_inferior() to expect/get timeouts will be
3223 implemented. */
3224 wait_forever_enabled_p = 0;
3225 }
3226
3227 /* First delete any symbols previously loaded from shared libraries. */
3228 no_shared_libraries (NULL, 0);
3229
3230 /* Start afresh. */
3231 init_thread_list ();
3232
3233 /* Start the remote connection. If error() or QUIT, discard this
3234 target (we'd otherwise be in an inconsistent state) and then
3235 propogate the error on up the exception chain. This ensures that
3236 the caller doesn't stumble along blindly assuming that the
3237 function succeeded. The CLI doesn't have this problem but other
3238 UI's, such as MI do.
3239
3240 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3241 this function should return an error indication letting the
3242 caller restore the previous state. Unfortunately the command
3243 ``target remote'' is directly wired to this function making that
3244 impossible. On a positive note, the CLI side of this problem has
3245 been fixed - the function set_cmd_context() makes it possible for
3246 all the ``target ....'' commands to share a common callback
3247 function. See cli-dump.c. */
3248 {
3249 struct gdb_exception ex;
3250 struct start_remote_args args;
3251
3252 args.from_tty = from_tty;
3253 args.target = target;
3254 args.extended_p = extended_p;
3255
3256 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3257 if (ex.reason < 0)
3258 {
3259 /* Pop the partially set up target - unless something else did
3260 already before throwing the exception. */
3261 if (remote_desc != NULL)
3262 pop_target ();
3263 if (target_async_permitted)
3264 wait_forever_enabled_p = 1;
3265 throw_exception (ex);
3266 }
3267 }
3268
3269 if (target_async_permitted)
3270 wait_forever_enabled_p = 1;
3271 }
3272
3273 /* This takes a program previously attached to and detaches it. After
3274 this is done, GDB can be used to debug some other program. We
3275 better not have left any breakpoints in the target program or it'll
3276 die when it hits one. */
3277
3278 static void
3279 remote_detach_1 (char *args, int from_tty, int extended)
3280 {
3281 int pid = ptid_get_pid (inferior_ptid);
3282 struct remote_state *rs = get_remote_state ();
3283
3284 if (args)
3285 error (_("Argument given to \"detach\" when remotely debugging."));
3286
3287 if (!target_has_execution)
3288 error (_("No process to detach from."));
3289
3290 /* Tell the remote target to detach. */
3291 if (remote_multi_process_p (rs))
3292 sprintf (rs->buf, "D;%x", pid);
3293 else
3294 strcpy (rs->buf, "D");
3295
3296 putpkt (rs->buf);
3297 getpkt (&rs->buf, &rs->buf_size, 0);
3298
3299 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3300 ;
3301 else if (rs->buf[0] == '\0')
3302 error (_("Remote doesn't know how to detach"));
3303 else
3304 error (_("Can't detach process."));
3305
3306 if (from_tty)
3307 {
3308 if (remote_multi_process_p (rs))
3309 printf_filtered (_("Detached from remote %s.\n"),
3310 target_pid_to_str (pid_to_ptid (pid)));
3311 else
3312 {
3313 if (extended)
3314 puts_filtered (_("Detached from remote process.\n"));
3315 else
3316 puts_filtered (_("Ending remote debugging.\n"));
3317 }
3318 }
3319
3320 discard_pending_stop_replies (pid);
3321 detach_inferior (pid);
3322 target_mourn_inferior ();
3323 }
3324
3325 static void
3326 remote_detach (struct target_ops *ops, char *args, int from_tty)
3327 {
3328 remote_detach_1 (args, from_tty, 0);
3329 }
3330
3331 static void
3332 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3333 {
3334 remote_detach_1 (args, from_tty, 1);
3335 }
3336
3337 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3338
3339 static void
3340 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3341 {
3342 if (args)
3343 error (_("Argument given to \"disconnect\" when remotely debugging."));
3344
3345 /* Make sure we unpush even the extended remote targets; mourn
3346 won't do it. So call remote_mourn_1 directly instead of
3347 target_mourn_inferior. */
3348 remote_mourn_1 (target);
3349
3350 if (from_tty)
3351 puts_filtered ("Ending remote debugging.\n");
3352 }
3353
3354 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3355 be chatty about it. */
3356
3357 static void
3358 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3359 {
3360 struct remote_state *rs = get_remote_state ();
3361 int pid;
3362 char *dummy;
3363 char *wait_status = NULL;
3364 struct inferior *inf;
3365
3366 if (!args)
3367 error_no_arg (_("process-id to attach"));
3368
3369 dummy = args;
3370 pid = strtol (args, &dummy, 0);
3371 /* Some targets don't set errno on errors, grrr! */
3372 if (pid == 0 && args == dummy)
3373 error (_("Illegal process-id: %s."), args);
3374
3375 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3376 error (_("This target does not support attaching to a process"));
3377
3378 sprintf (rs->buf, "vAttach;%x", pid);
3379 putpkt (rs->buf);
3380 getpkt (&rs->buf, &rs->buf_size, 0);
3381
3382 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3383 {
3384 if (from_tty)
3385 printf_unfiltered (_("Attached to %s\n"),
3386 target_pid_to_str (pid_to_ptid (pid)));
3387
3388 if (!non_stop)
3389 {
3390 /* Save the reply for later. */
3391 wait_status = alloca (strlen (rs->buf) + 1);
3392 strcpy (wait_status, rs->buf);
3393 }
3394 else if (strcmp (rs->buf, "OK") != 0)
3395 error (_("Attaching to %s failed with: %s"),
3396 target_pid_to_str (pid_to_ptid (pid)),
3397 rs->buf);
3398 }
3399 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3400 error (_("This target does not support attaching to a process"));
3401 else
3402 error (_("Attaching to %s failed"),
3403 target_pid_to_str (pid_to_ptid (pid)));
3404
3405 target_mark_running (target);
3406 inferior_ptid = pid_to_ptid (pid);
3407
3408 /* Now, if we have thread information, update inferior_ptid. */
3409 inferior_ptid = remote_current_thread (inferior_ptid);
3410
3411 inf = add_inferior (pid);
3412 inf->attach_flag = 1;
3413
3414 if (non_stop)
3415 /* Get list of threads. */
3416 remote_threads_info ();
3417 else
3418 /* Add the main thread to the thread list. */
3419 add_thread_silent (inferior_ptid);
3420
3421 /* Next, if the target can specify a description, read it. We do
3422 this before anything involving memory or registers. */
3423 target_find_description ();
3424
3425 if (!non_stop)
3426 {
3427 /* Use the previously fetched status. */
3428 gdb_assert (wait_status != NULL);
3429
3430 if (target_can_async_p ())
3431 {
3432 struct stop_reply *stop_reply;
3433 struct cleanup *old_chain;
3434
3435 stop_reply = stop_reply_xmalloc ();
3436 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3437 remote_parse_stop_reply (wait_status, stop_reply);
3438 discard_cleanups (old_chain);
3439 push_stop_reply (stop_reply);
3440
3441 target_async (inferior_event_handler, 0);
3442 }
3443 else
3444 {
3445 gdb_assert (wait_status != NULL);
3446 strcpy (rs->buf, wait_status);
3447 rs->cached_wait_status = 1;
3448 }
3449 }
3450 else
3451 gdb_assert (wait_status == NULL);
3452 }
3453
3454 static void
3455 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3456 {
3457 extended_remote_attach_1 (ops, args, from_tty);
3458 }
3459
3460 /* Convert hex digit A to a number. */
3461
3462 static int
3463 fromhex (int a)
3464 {
3465 if (a >= '0' && a <= '9')
3466 return a - '0';
3467 else if (a >= 'a' && a <= 'f')
3468 return a - 'a' + 10;
3469 else if (a >= 'A' && a <= 'F')
3470 return a - 'A' + 10;
3471 else
3472 error (_("Reply contains invalid hex digit %d"), a);
3473 }
3474
3475 static int
3476 hex2bin (const char *hex, gdb_byte *bin, int count)
3477 {
3478 int i;
3479
3480 for (i = 0; i < count; i++)
3481 {
3482 if (hex[0] == 0 || hex[1] == 0)
3483 {
3484 /* Hex string is short, or of uneven length.
3485 Return the count that has been converted so far. */
3486 return i;
3487 }
3488 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3489 hex += 2;
3490 }
3491 return i;
3492 }
3493
3494 /* Convert number NIB to a hex digit. */
3495
3496 static int
3497 tohex (int nib)
3498 {
3499 if (nib < 10)
3500 return '0' + nib;
3501 else
3502 return 'a' + nib - 10;
3503 }
3504
3505 static int
3506 bin2hex (const gdb_byte *bin, char *hex, int count)
3507 {
3508 int i;
3509 /* May use a length, or a nul-terminated string as input. */
3510 if (count == 0)
3511 count = strlen ((char *) bin);
3512
3513 for (i = 0; i < count; i++)
3514 {
3515 *hex++ = tohex ((*bin >> 4) & 0xf);
3516 *hex++ = tohex (*bin++ & 0xf);
3517 }
3518 *hex = 0;
3519 return i;
3520 }
3521 \f
3522 /* Check for the availability of vCont. This function should also check
3523 the response. */
3524
3525 static void
3526 remote_vcont_probe (struct remote_state *rs)
3527 {
3528 char *buf;
3529
3530 strcpy (rs->buf, "vCont?");
3531 putpkt (rs->buf);
3532 getpkt (&rs->buf, &rs->buf_size, 0);
3533 buf = rs->buf;
3534
3535 /* Make sure that the features we assume are supported. */
3536 if (strncmp (buf, "vCont", 5) == 0)
3537 {
3538 char *p = &buf[5];
3539 int support_s, support_S, support_c, support_C;
3540
3541 support_s = 0;
3542 support_S = 0;
3543 support_c = 0;
3544 support_C = 0;
3545 rs->support_vCont_t = 0;
3546 while (p && *p == ';')
3547 {
3548 p++;
3549 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3550 support_s = 1;
3551 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3552 support_S = 1;
3553 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3554 support_c = 1;
3555 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3556 support_C = 1;
3557 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3558 rs->support_vCont_t = 1;
3559
3560 p = strchr (p, ';');
3561 }
3562
3563 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3564 BUF will make packet_ok disable the packet. */
3565 if (!support_s || !support_S || !support_c || !support_C)
3566 buf[0] = 0;
3567 }
3568
3569 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3570 }
3571
3572 /* Resume the remote inferior by using a "vCont" packet. The thread
3573 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3574 resumed thread should be single-stepped and/or signalled. If PTID
3575 equals minus_one_ptid, then all threads are resumed; the thread to
3576 be stepped and/or signalled is given in the global INFERIOR_PTID.
3577 This function returns non-zero iff it resumes the inferior.
3578
3579 This function issues a strict subset of all possible vCont commands at the
3580 moment. */
3581
3582 static int
3583 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3584 {
3585 struct remote_state *rs = get_remote_state ();
3586 char *p;
3587 char *endp;
3588
3589 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3590 remote_vcont_probe (rs);
3591
3592 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3593 return 0;
3594
3595 p = rs->buf;
3596 endp = rs->buf + get_remote_packet_size ();
3597
3598 /* If we could generate a wider range of packets, we'd have to worry
3599 about overflowing BUF. Should there be a generic
3600 "multi-part-packet" packet? */
3601
3602 if (ptid_equal (ptid, magic_null_ptid))
3603 {
3604 /* MAGIC_NULL_PTID means that we don't have any active threads,
3605 so we don't have any TID numbers the inferior will
3606 understand. Make sure to only send forms that do not specify
3607 a TID. */
3608 if (step && siggnal != TARGET_SIGNAL_0)
3609 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3610 else if (step)
3611 xsnprintf (p, endp - p, "vCont;s");
3612 else if (siggnal != TARGET_SIGNAL_0)
3613 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3614 else
3615 xsnprintf (p, endp - p, "vCont;c");
3616 }
3617 else if (ptid_equal (ptid, minus_one_ptid))
3618 {
3619 /* Resume all threads, with preference for INFERIOR_PTID. */
3620 if (step && siggnal != TARGET_SIGNAL_0)
3621 {
3622 /* Step inferior_ptid with signal. */
3623 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3624 p = write_ptid (p, endp, inferior_ptid);
3625 /* And continue others. */
3626 p += xsnprintf (p, endp - p, ";c");
3627 }
3628 else if (step)
3629 {
3630 /* Step inferior_ptid. */
3631 p += xsnprintf (p, endp - p, "vCont;s:");
3632 p = write_ptid (p, endp, inferior_ptid);
3633 /* And continue others. */
3634 p += xsnprintf (p, endp - p, ";c");
3635 }
3636 else if (siggnal != TARGET_SIGNAL_0)
3637 {
3638 /* Continue inferior_ptid with signal. */
3639 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3640 p = write_ptid (p, endp, inferior_ptid);
3641 /* And continue others. */
3642 p += xsnprintf (p, endp - p, ";c");
3643 }
3644 else
3645 xsnprintf (p, endp - p, "vCont;c");
3646 }
3647 else
3648 {
3649 /* Scheduler locking; resume only PTID. */
3650 if (step && siggnal != TARGET_SIGNAL_0)
3651 {
3652 /* Step ptid with signal. */
3653 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3654 p = write_ptid (p, endp, ptid);
3655 }
3656 else if (step)
3657 {
3658 /* Step ptid. */
3659 p += xsnprintf (p, endp - p, "vCont;s:");
3660 p = write_ptid (p, endp, ptid);
3661 }
3662 else if (siggnal != TARGET_SIGNAL_0)
3663 {
3664 /* Continue ptid with signal. */
3665 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3666 p = write_ptid (p, endp, ptid);
3667 }
3668 else
3669 {
3670 /* Continue ptid. */
3671 p += xsnprintf (p, endp - p, "vCont;c:");
3672 p = write_ptid (p, endp, ptid);
3673 }
3674 }
3675
3676 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3677 putpkt (rs->buf);
3678
3679 if (non_stop)
3680 {
3681 /* In non-stop, the stub replies to vCont with "OK". The stop
3682 reply will be reported asynchronously by means of a `%Stop'
3683 notification. */
3684 getpkt (&rs->buf, &rs->buf_size, 0);
3685 if (strcmp (rs->buf, "OK") != 0)
3686 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3687 }
3688
3689 return 1;
3690 }
3691
3692 /* Tell the remote machine to resume. */
3693
3694 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3695
3696 static int last_sent_step;
3697
3698 static void
3699 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3700 {
3701 struct remote_state *rs = get_remote_state ();
3702 char *buf;
3703
3704 last_sent_signal = siggnal;
3705 last_sent_step = step;
3706
3707 /* Update the inferior on signals to silently pass, if they've changed. */
3708 remote_pass_signals ();
3709
3710 /* The vCont packet doesn't need to specify threads via Hc. */
3711 if (remote_vcont_resume (ptid, step, siggnal))
3712 goto done;
3713
3714 /* All other supported resume packets do use Hc, so set the continue
3715 thread. */
3716 if (ptid_equal (ptid, minus_one_ptid))
3717 set_continue_thread (any_thread_ptid);
3718 else
3719 set_continue_thread (ptid);
3720
3721 buf = rs->buf;
3722 if (execution_direction == EXEC_REVERSE)
3723 {
3724 /* We don't pass signals to the target in reverse exec mode. */
3725 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3726 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3727 siggnal);
3728 strcpy (buf, step ? "bs" : "bc");
3729 }
3730 else if (siggnal != TARGET_SIGNAL_0)
3731 {
3732 buf[0] = step ? 'S' : 'C';
3733 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3734 buf[2] = tohex (((int) siggnal) & 0xf);
3735 buf[3] = '\0';
3736 }
3737 else
3738 strcpy (buf, step ? "s" : "c");
3739
3740 putpkt (buf);
3741
3742 done:
3743 /* We are about to start executing the inferior, let's register it
3744 with the event loop. NOTE: this is the one place where all the
3745 execution commands end up. We could alternatively do this in each
3746 of the execution commands in infcmd.c. */
3747 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3748 into infcmd.c in order to allow inferior function calls to work
3749 NOT asynchronously. */
3750 if (target_can_async_p ())
3751 target_async (inferior_event_handler, 0);
3752
3753 /* We've just told the target to resume. The remote server will
3754 wait for the inferior to stop, and then send a stop reply. In
3755 the mean time, we can't start another command/query ourselves
3756 because the stub wouldn't be ready to process it. This applies
3757 only to the base all-stop protocol, however. In non-stop (which
3758 only supports vCont), the stub replies with an "OK", and is
3759 immediate able to process further serial input. */
3760 if (!non_stop)
3761 rs->waiting_for_stop_reply = 1;
3762 }
3763 \f
3764
3765 /* Set up the signal handler for SIGINT, while the target is
3766 executing, ovewriting the 'regular' SIGINT signal handler. */
3767 static void
3768 initialize_sigint_signal_handler (void)
3769 {
3770 signal (SIGINT, handle_remote_sigint);
3771 }
3772
3773 /* Signal handler for SIGINT, while the target is executing. */
3774 static void
3775 handle_remote_sigint (int sig)
3776 {
3777 signal (sig, handle_remote_sigint_twice);
3778 mark_async_signal_handler_wrapper (sigint_remote_token);
3779 }
3780
3781 /* Signal handler for SIGINT, installed after SIGINT has already been
3782 sent once. It will take effect the second time that the user sends
3783 a ^C. */
3784 static void
3785 handle_remote_sigint_twice (int sig)
3786 {
3787 signal (sig, handle_remote_sigint);
3788 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3789 }
3790
3791 /* Perform the real interruption of the target execution, in response
3792 to a ^C. */
3793 static void
3794 async_remote_interrupt (gdb_client_data arg)
3795 {
3796 if (remote_debug)
3797 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3798
3799 target_stop (inferior_ptid);
3800 }
3801
3802 /* Perform interrupt, if the first attempt did not succeed. Just give
3803 up on the target alltogether. */
3804 void
3805 async_remote_interrupt_twice (gdb_client_data arg)
3806 {
3807 if (remote_debug)
3808 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3809
3810 interrupt_query ();
3811 }
3812
3813 /* Reinstall the usual SIGINT handlers, after the target has
3814 stopped. */
3815 static void
3816 cleanup_sigint_signal_handler (void *dummy)
3817 {
3818 signal (SIGINT, handle_sigint);
3819 }
3820
3821 /* Send ^C to target to halt it. Target will respond, and send us a
3822 packet. */
3823 static void (*ofunc) (int);
3824
3825 /* The command line interface's stop routine. This function is installed
3826 as a signal handler for SIGINT. The first time a user requests a
3827 stop, we call remote_stop to send a break or ^C. If there is no
3828 response from the target (it didn't stop when the user requested it),
3829 we ask the user if he'd like to detach from the target. */
3830 static void
3831 remote_interrupt (int signo)
3832 {
3833 /* If this doesn't work, try more severe steps. */
3834 signal (signo, remote_interrupt_twice);
3835
3836 gdb_call_async_signal_handler (sigint_remote_token, 1);
3837 }
3838
3839 /* The user typed ^C twice. */
3840
3841 static void
3842 remote_interrupt_twice (int signo)
3843 {
3844 signal (signo, ofunc);
3845 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3846 signal (signo, remote_interrupt);
3847 }
3848
3849 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3850 thread, all threads of a remote process, or all threads of all
3851 processes. */
3852
3853 static void
3854 remote_stop_ns (ptid_t ptid)
3855 {
3856 struct remote_state *rs = get_remote_state ();
3857 char *p = rs->buf;
3858 char *endp = rs->buf + get_remote_packet_size ();
3859 struct stop_reply *reply, *next;
3860
3861 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3862 remote_vcont_probe (rs);
3863
3864 if (!rs->support_vCont_t)
3865 error (_("Remote server does not support stopping threads"));
3866
3867 if (ptid_equal (ptid, minus_one_ptid))
3868 p += xsnprintf (p, endp - p, "vCont;t");
3869 else
3870 {
3871 ptid_t nptid;
3872
3873 /* Step inferior_ptid. */
3874 p += xsnprintf (p, endp - p, "vCont;t:");
3875
3876 if (ptid_is_pid (ptid))
3877 /* All (-1) threads of process. */
3878 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3879 else
3880 {
3881 /* Small optimization: if we already have a stop reply for
3882 this thread, no use in telling the stub we want this
3883 stopped. */
3884 if (peek_stop_reply (ptid))
3885 return;
3886
3887 nptid = ptid;
3888 }
3889
3890 p = write_ptid (p, endp, nptid);
3891 }
3892
3893 /* In non-stop, we get an immediate OK reply. The stop reply will
3894 come in asynchronously by notification. */
3895 putpkt (rs->buf);
3896 getpkt (&rs->buf, &rs->buf_size, 0);
3897 if (strcmp (rs->buf, "OK") != 0)
3898 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3899 }
3900
3901 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3902 remote target. It is undefined which thread of which process
3903 reports the stop. */
3904
3905 static void
3906 remote_stop_as (ptid_t ptid)
3907 {
3908 struct remote_state *rs = get_remote_state ();
3909
3910 /* If the inferior is stopped already, but the core didn't know
3911 about it yet, just ignore the request. The cached wait status
3912 will be collected in remote_wait. */
3913 if (rs->cached_wait_status)
3914 return;
3915
3916 /* Send a break or a ^C, depending on user preference. */
3917
3918 if (remote_break)
3919 serial_send_break (remote_desc);
3920 else
3921 serial_write (remote_desc, "\003", 1);
3922 }
3923
3924 /* This is the generic stop called via the target vector. When a target
3925 interrupt is requested, either by the command line or the GUI, we
3926 will eventually end up here. */
3927
3928 static void
3929 remote_stop (ptid_t ptid)
3930 {
3931 if (remote_debug)
3932 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3933
3934 if (non_stop)
3935 remote_stop_ns (ptid);
3936 else
3937 remote_stop_as (ptid);
3938 }
3939
3940 /* Ask the user what to do when an interrupt is received. */
3941
3942 static void
3943 interrupt_query (void)
3944 {
3945 target_terminal_ours ();
3946
3947 if (target_can_async_p ())
3948 {
3949 signal (SIGINT, handle_sigint);
3950 deprecated_throw_reason (RETURN_QUIT);
3951 }
3952 else
3953 {
3954 if (query ("Interrupted while waiting for the program.\n\
3955 Give up (and stop debugging it)? "))
3956 {
3957 pop_target ();
3958 deprecated_throw_reason (RETURN_QUIT);
3959 }
3960 }
3961
3962 target_terminal_inferior ();
3963 }
3964
3965 /* Enable/disable target terminal ownership. Most targets can use
3966 terminal groups to control terminal ownership. Remote targets are
3967 different in that explicit transfer of ownership to/from GDB/target
3968 is required. */
3969
3970 static void
3971 remote_terminal_inferior (void)
3972 {
3973 if (!target_async_permitted)
3974 /* Nothing to do. */
3975 return;
3976
3977 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3978 sync_execution here. This function should only be called when
3979 GDB is resuming the inferior in the forground. A background
3980 resume (``run&'') should leave GDB in control of the terminal and
3981 consequently should not call this code. */
3982 if (!sync_execution)
3983 return;
3984 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3985 calls target_terminal_*() idenpotent. The event-loop GDB talking
3986 to an asynchronous target with a synchronous command calls this
3987 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3988 stops trying to transfer the terminal to the target when it
3989 shouldn't this guard can go away. */
3990 if (!remote_async_terminal_ours_p)
3991 return;
3992 delete_file_handler (input_fd);
3993 remote_async_terminal_ours_p = 0;
3994 initialize_sigint_signal_handler ();
3995 /* NOTE: At this point we could also register our selves as the
3996 recipient of all input. Any characters typed could then be
3997 passed on down to the target. */
3998 }
3999
4000 static void
4001 remote_terminal_ours (void)
4002 {
4003 if (!target_async_permitted)
4004 /* Nothing to do. */
4005 return;
4006
4007 /* See FIXME in remote_terminal_inferior. */
4008 if (!sync_execution)
4009 return;
4010 /* See FIXME in remote_terminal_inferior. */
4011 if (remote_async_terminal_ours_p)
4012 return;
4013 cleanup_sigint_signal_handler (NULL);
4014 add_file_handler (input_fd, stdin_event_handler, 0);
4015 remote_async_terminal_ours_p = 1;
4016 }
4017
4018 void
4019 remote_console_output (char *msg)
4020 {
4021 char *p;
4022
4023 for (p = msg; p[0] && p[1]; p += 2)
4024 {
4025 char tb[2];
4026 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4027 tb[0] = c;
4028 tb[1] = 0;
4029 fputs_unfiltered (tb, gdb_stdtarg);
4030 }
4031 gdb_flush (gdb_stdtarg);
4032 }
4033
4034 typedef struct cached_reg
4035 {
4036 int num;
4037 gdb_byte data[MAX_REGISTER_SIZE];
4038 } cached_reg_t;
4039
4040 DEF_VEC_O(cached_reg_t);
4041
4042 struct stop_reply
4043 {
4044 struct stop_reply *next;
4045
4046 ptid_t ptid;
4047
4048 struct target_waitstatus ws;
4049
4050 VEC(cached_reg_t) *regcache;
4051
4052 int stopped_by_watchpoint_p;
4053 CORE_ADDR watch_data_address;
4054
4055 int solibs_changed;
4056 int replay_event;
4057 };
4058
4059 /* The list of already fetched and acknowledged stop events. */
4060 static struct stop_reply *stop_reply_queue;
4061
4062 static struct stop_reply *
4063 stop_reply_xmalloc (void)
4064 {
4065 struct stop_reply *r = XMALLOC (struct stop_reply);
4066 r->next = NULL;
4067 return r;
4068 }
4069
4070 static void
4071 stop_reply_xfree (struct stop_reply *r)
4072 {
4073 if (r != NULL)
4074 {
4075 VEC_free (cached_reg_t, r->regcache);
4076 xfree (r);
4077 }
4078 }
4079
4080 /* Discard all pending stop replies of inferior PID. If PID is -1,
4081 discard everything. */
4082
4083 static void
4084 discard_pending_stop_replies (int pid)
4085 {
4086 struct stop_reply *prev = NULL, *reply, *next;
4087
4088 /* Discard the in-flight notification. */
4089 if (pending_stop_reply != NULL
4090 && (pid == -1
4091 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4092 {
4093 stop_reply_xfree (pending_stop_reply);
4094 pending_stop_reply = NULL;
4095 }
4096
4097 /* Discard the stop replies we have already pulled with
4098 vStopped. */
4099 for (reply = stop_reply_queue; reply; reply = next)
4100 {
4101 next = reply->next;
4102 if (pid == -1
4103 || ptid_get_pid (reply->ptid) == pid)
4104 {
4105 if (reply == stop_reply_queue)
4106 stop_reply_queue = reply->next;
4107 else
4108 prev->next = reply->next;
4109
4110 stop_reply_xfree (reply);
4111 }
4112 else
4113 prev = reply;
4114 }
4115 }
4116
4117 /* Cleanup wrapper. */
4118
4119 static void
4120 do_stop_reply_xfree (void *arg)
4121 {
4122 struct stop_reply *r = arg;
4123 stop_reply_xfree (r);
4124 }
4125
4126 /* Look for a queued stop reply belonging to PTID. If one is found,
4127 remove it from the queue, and return it. Returns NULL if none is
4128 found. If there are still queued events left to process, tell the
4129 event loop to get back to target_wait soon. */
4130
4131 static struct stop_reply *
4132 queued_stop_reply (ptid_t ptid)
4133 {
4134 struct stop_reply *it, *prev;
4135 struct stop_reply head;
4136
4137 head.next = stop_reply_queue;
4138 prev = &head;
4139
4140 it = head.next;
4141
4142 if (!ptid_equal (ptid, minus_one_ptid))
4143 for (; it; prev = it, it = it->next)
4144 if (ptid_equal (ptid, it->ptid))
4145 break;
4146
4147 if (it)
4148 {
4149 prev->next = it->next;
4150 it->next = NULL;
4151 }
4152
4153 stop_reply_queue = head.next;
4154
4155 if (stop_reply_queue)
4156 /* There's still at least an event left. */
4157 mark_async_event_handler (remote_async_inferior_event_token);
4158
4159 return it;
4160 }
4161
4162 /* Push a fully parsed stop reply in the stop reply queue. Since we
4163 know that we now have at least one queued event left to pass to the
4164 core side, tell the event loop to get back to target_wait soon. */
4165
4166 static void
4167 push_stop_reply (struct stop_reply *new_event)
4168 {
4169 struct stop_reply *event;
4170
4171 if (stop_reply_queue)
4172 {
4173 for (event = stop_reply_queue;
4174 event && event->next;
4175 event = event->next)
4176 ;
4177
4178 event->next = new_event;
4179 }
4180 else
4181 stop_reply_queue = new_event;
4182
4183 mark_async_event_handler (remote_async_inferior_event_token);
4184 }
4185
4186 /* Returns true if we have a stop reply for PTID. */
4187
4188 static int
4189 peek_stop_reply (ptid_t ptid)
4190 {
4191 struct stop_reply *it;
4192
4193 for (it = stop_reply_queue; it; it = it->next)
4194 if (ptid_equal (ptid, it->ptid))
4195 {
4196 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4197 return 1;
4198 }
4199
4200 return 0;
4201 }
4202
4203 /* Parse the stop reply in BUF. Either the function succeeds, and the
4204 result is stored in EVENT, or throws an error. */
4205
4206 static void
4207 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4208 {
4209 struct remote_arch_state *rsa = get_remote_arch_state ();
4210 ULONGEST addr;
4211 char *p;
4212
4213 event->ptid = null_ptid;
4214 event->ws.kind = TARGET_WAITKIND_IGNORE;
4215 event->ws.value.integer = 0;
4216 event->solibs_changed = 0;
4217 event->replay_event = 0;
4218 event->stopped_by_watchpoint_p = 0;
4219 event->regcache = NULL;
4220
4221 switch (buf[0])
4222 {
4223 case 'T': /* Status with PC, SP, FP, ... */
4224 {
4225 gdb_byte regs[MAX_REGISTER_SIZE];
4226
4227 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4228 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4229 ss = signal number
4230 n... = register number
4231 r... = register contents
4232 */
4233
4234 p = &buf[3]; /* after Txx */
4235 while (*p)
4236 {
4237 char *p1;
4238 char *p_temp;
4239 int fieldsize;
4240 LONGEST pnum = 0;
4241
4242 /* If the packet contains a register number, save it in
4243 pnum and set p1 to point to the character following it.
4244 Otherwise p1 points to p. */
4245
4246 /* If this packet is an awatch packet, don't parse the 'a'
4247 as a register number. */
4248
4249 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4250 {
4251 /* Read the ``P'' register number. */
4252 pnum = strtol (p, &p_temp, 16);
4253 p1 = p_temp;
4254 }
4255 else
4256 p1 = p;
4257
4258 if (p1 == p) /* No register number present here. */
4259 {
4260 p1 = strchr (p, ':');
4261 if (p1 == NULL)
4262 error (_("Malformed packet(a) (missing colon): %s\n\
4263 Packet: '%s'\n"),
4264 p, buf);
4265 if (strncmp (p, "thread", p1 - p) == 0)
4266 event->ptid = read_ptid (++p1, &p);
4267 else if ((strncmp (p, "watch", p1 - p) == 0)
4268 || (strncmp (p, "rwatch", p1 - p) == 0)
4269 || (strncmp (p, "awatch", p1 - p) == 0))
4270 {
4271 event->stopped_by_watchpoint_p = 1;
4272 p = unpack_varlen_hex (++p1, &addr);
4273 event->watch_data_address = (CORE_ADDR) addr;
4274 }
4275 else if (strncmp (p, "library", p1 - p) == 0)
4276 {
4277 p1++;
4278 p_temp = p1;
4279 while (*p_temp && *p_temp != ';')
4280 p_temp++;
4281
4282 event->solibs_changed = 1;
4283 p = p_temp;
4284 }
4285 else if (strncmp (p, "replaylog", p1 - p) == 0)
4286 {
4287 /* NO_HISTORY event.
4288 p1 will indicate "begin" or "end", but
4289 it makes no difference for now, so ignore it. */
4290 event->replay_event = 1;
4291 p_temp = strchr (p1 + 1, ';');
4292 if (p_temp)
4293 p = p_temp;
4294 }
4295 else
4296 {
4297 /* Silently skip unknown optional info. */
4298 p_temp = strchr (p1 + 1, ';');
4299 if (p_temp)
4300 p = p_temp;
4301 }
4302 }
4303 else
4304 {
4305 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4306 cached_reg_t cached_reg;
4307
4308 p = p1;
4309
4310 if (*p != ':')
4311 error (_("Malformed packet(b) (missing colon): %s\n\
4312 Packet: '%s'\n"),
4313 p, buf);
4314 ++p;
4315
4316 if (reg == NULL)
4317 error (_("Remote sent bad register number %s: %s\n\
4318 Packet: '%s'\n"),
4319 phex_nz (pnum, 0), p, buf);
4320
4321 cached_reg.num = reg->regnum;
4322
4323 fieldsize = hex2bin (p, cached_reg.data,
4324 register_size (target_gdbarch,
4325 reg->regnum));
4326 p += 2 * fieldsize;
4327 if (fieldsize < register_size (target_gdbarch,
4328 reg->regnum))
4329 warning (_("Remote reply is too short: %s"), buf);
4330
4331 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4332 }
4333
4334 if (*p != ';')
4335 error (_("Remote register badly formatted: %s\nhere: %s"),
4336 buf, p);
4337 ++p;
4338 }
4339 }
4340 /* fall through */
4341 case 'S': /* Old style status, just signal only. */
4342 if (event->solibs_changed)
4343 event->ws.kind = TARGET_WAITKIND_LOADED;
4344 else if (event->replay_event)
4345 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4346 else
4347 {
4348 event->ws.kind = TARGET_WAITKIND_STOPPED;
4349 event->ws.value.sig = (enum target_signal)
4350 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4351 }
4352 break;
4353 case 'W': /* Target exited. */
4354 case 'X':
4355 {
4356 char *p;
4357 int pid;
4358 ULONGEST value;
4359
4360 /* GDB used to accept only 2 hex chars here. Stubs should
4361 only send more if they detect GDB supports multi-process
4362 support. */
4363 p = unpack_varlen_hex (&buf[1], &value);
4364
4365 if (buf[0] == 'W')
4366 {
4367 /* The remote process exited. */
4368 event->ws.kind = TARGET_WAITKIND_EXITED;
4369 event->ws.value.integer = value;
4370 }
4371 else
4372 {
4373 /* The remote process exited with a signal. */
4374 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4375 event->ws.value.sig = (enum target_signal) value;
4376 }
4377
4378 /* If no process is specified, assume inferior_ptid. */
4379 pid = ptid_get_pid (inferior_ptid);
4380 if (*p == '\0')
4381 ;
4382 else if (*p == ';')
4383 {
4384 p++;
4385
4386 if (p == '\0')
4387 ;
4388 else if (strncmp (p,
4389 "process:", sizeof ("process:") - 1) == 0)
4390 {
4391 ULONGEST upid;
4392 p += sizeof ("process:") - 1;
4393 unpack_varlen_hex (p, &upid);
4394 pid = upid;
4395 }
4396 else
4397 error (_("unknown stop reply packet: %s"), buf);
4398 }
4399 else
4400 error (_("unknown stop reply packet: %s"), buf);
4401 event->ptid = pid_to_ptid (pid);
4402 }
4403 break;
4404 }
4405
4406 if (non_stop && ptid_equal (event->ptid, null_ptid))
4407 error (_("No process or thread specified in stop reply: %s"), buf);
4408 }
4409
4410 /* When the stub wants to tell GDB about a new stop reply, it sends a
4411 stop notification (%Stop). Those can come it at any time, hence,
4412 we have to make sure that any pending putpkt/getpkt sequence we're
4413 making is finished, before querying the stub for more events with
4414 vStopped. E.g., if we started a vStopped sequence immediatelly
4415 upon receiving the %Stop notification, something like this could
4416 happen:
4417
4418 1.1) --> Hg 1
4419 1.2) <-- OK
4420 1.3) --> g
4421 1.4) <-- %Stop
4422 1.5) --> vStopped
4423 1.6) <-- (registers reply to step #1.3)
4424
4425 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4426 query.
4427
4428 To solve this, whenever we parse a %Stop notification sucessfully,
4429 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4430 doing whatever we were doing:
4431
4432 2.1) --> Hg 1
4433 2.2) <-- OK
4434 2.3) --> g
4435 2.4) <-- %Stop
4436 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4437 2.5) <-- (registers reply to step #2.3)
4438
4439 Eventualy after step #2.5, we return to the event loop, which
4440 notices there's an event on the
4441 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4442 associated callback --- the function below. At this point, we're
4443 always safe to start a vStopped sequence. :
4444
4445 2.6) --> vStopped
4446 2.7) <-- T05 thread:2
4447 2.8) --> vStopped
4448 2.9) --> OK
4449 */
4450
4451 static void
4452 remote_get_pending_stop_replies (void)
4453 {
4454 struct remote_state *rs = get_remote_state ();
4455 int ret;
4456
4457 if (pending_stop_reply)
4458 {
4459 /* acknowledge */
4460 putpkt ("vStopped");
4461
4462 /* Now we can rely on it. */
4463 push_stop_reply (pending_stop_reply);
4464 pending_stop_reply = NULL;
4465
4466 while (1)
4467 {
4468 getpkt (&rs->buf, &rs->buf_size, 0);
4469 if (strcmp (rs->buf, "OK") == 0)
4470 break;
4471 else
4472 {
4473 struct cleanup *old_chain;
4474 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4475
4476 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4477 remote_parse_stop_reply (rs->buf, stop_reply);
4478
4479 /* acknowledge */
4480 putpkt ("vStopped");
4481
4482 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4483 {
4484 /* Now we can rely on it. */
4485 discard_cleanups (old_chain);
4486 push_stop_reply (stop_reply);
4487 }
4488 else
4489 /* We got an unknown stop reply. */
4490 do_cleanups (old_chain);
4491 }
4492 }
4493 }
4494 }
4495
4496
4497 /* Called when it is decided that STOP_REPLY holds the info of the
4498 event that is to be returned to the core. This function always
4499 destroys STOP_REPLY. */
4500
4501 static ptid_t
4502 process_stop_reply (struct stop_reply *stop_reply,
4503 struct target_waitstatus *status)
4504 {
4505 ptid_t ptid;
4506
4507 *status = stop_reply->ws;
4508 ptid = stop_reply->ptid;
4509
4510 /* If no thread/process was reported by the stub, assume the current
4511 inferior. */
4512 if (ptid_equal (ptid, null_ptid))
4513 ptid = inferior_ptid;
4514
4515 if (status->kind == TARGET_WAITKIND_EXITED
4516 || status->kind == TARGET_WAITKIND_SIGNALLED)
4517 {
4518 int pid = ptid_get_pid (ptid);
4519 delete_inferior (pid);
4520 }
4521 else
4522 notice_new_inferiors (ptid);
4523
4524 /* Expedited registers. */
4525 if (stop_reply->regcache)
4526 {
4527 cached_reg_t *reg;
4528 int ix;
4529
4530 for (ix = 0;
4531 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4532 ix++)
4533 regcache_raw_supply (get_thread_regcache (ptid),
4534 reg->num, reg->data);
4535 VEC_free (cached_reg_t, stop_reply->regcache);
4536 }
4537
4538 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4539 remote_watch_data_address = stop_reply->watch_data_address;
4540
4541 stop_reply_xfree (stop_reply);
4542 return ptid;
4543 }
4544
4545 /* The non-stop mode version of target_wait. */
4546
4547 static ptid_t
4548 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4549 {
4550 struct remote_state *rs = get_remote_state ();
4551 struct remote_arch_state *rsa = get_remote_arch_state ();
4552 ptid_t event_ptid = null_ptid;
4553 struct stop_reply *stop_reply;
4554 int ret;
4555
4556 /* If in non-stop mode, get out of getpkt even if a
4557 notification is received. */
4558
4559 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4560 0 /* forever */);
4561 while (1)
4562 {
4563 if (ret != -1)
4564 switch (rs->buf[0])
4565 {
4566 case 'E': /* Error of some sort. */
4567 /* We're out of sync with the target now. Did it continue
4568 or not? We can't tell which thread it was in non-stop,
4569 so just ignore this. */
4570 warning (_("Remote failure reply: %s"), rs->buf);
4571 break;
4572 case 'O': /* Console output. */
4573 remote_console_output (rs->buf + 1);
4574 break;
4575 default:
4576 warning (_("Invalid remote reply: %s"), rs->buf);
4577 break;
4578 }
4579
4580 /* Acknowledge a pending stop reply that may have arrived in the
4581 mean time. */
4582 if (pending_stop_reply != NULL)
4583 remote_get_pending_stop_replies ();
4584
4585 /* If indeed we noticed a stop reply, we're done. */
4586 stop_reply = queued_stop_reply (ptid);
4587 if (stop_reply != NULL)
4588 return process_stop_reply (stop_reply, status);
4589
4590 /* Still no event. If we're in asynchronous mode, then just
4591 return to the event loop. */
4592 if (remote_is_async_p ())
4593 {
4594 status->kind = TARGET_WAITKIND_IGNORE;
4595 return minus_one_ptid;
4596 }
4597
4598 /* Otherwise, asynchronous mode is masked, so do a blocking
4599 wait. */
4600 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4601 1 /* forever */);
4602 }
4603 }
4604
4605 /* Wait until the remote machine stops, then return, storing status in
4606 STATUS just as `wait' would. */
4607
4608 static ptid_t
4609 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4610 {
4611 struct remote_state *rs = get_remote_state ();
4612 struct remote_arch_state *rsa = get_remote_arch_state ();
4613 ptid_t event_ptid = null_ptid;
4614 ULONGEST addr;
4615 int solibs_changed = 0;
4616 char *buf, *p;
4617 struct stop_reply *stop_reply;
4618
4619 status->kind = TARGET_WAITKIND_IGNORE;
4620 status->value.integer = 0;
4621
4622 stop_reply = queued_stop_reply (ptid);
4623 if (stop_reply != NULL)
4624 return process_stop_reply (stop_reply, status);
4625
4626 if (rs->cached_wait_status)
4627 /* Use the cached wait status, but only once. */
4628 rs->cached_wait_status = 0;
4629 else
4630 {
4631 int ret;
4632
4633 if (!target_is_async_p ())
4634 {
4635 ofunc = signal (SIGINT, remote_interrupt);
4636 /* If the user hit C-c before this packet, or between packets,
4637 pretend that it was hit right here. */
4638 if (quit_flag)
4639 {
4640 quit_flag = 0;
4641 remote_interrupt (SIGINT);
4642 }
4643 }
4644
4645 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4646 _never_ wait for ever -> test on target_is_async_p().
4647 However, before we do that we need to ensure that the caller
4648 knows how to take the target into/out of async mode. */
4649 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4650 if (!target_is_async_p ())
4651 signal (SIGINT, ofunc);
4652 }
4653
4654 buf = rs->buf;
4655
4656 remote_stopped_by_watchpoint_p = 0;
4657
4658 /* We got something. */
4659 rs->waiting_for_stop_reply = 0;
4660
4661 switch (buf[0])
4662 {
4663 case 'E': /* Error of some sort. */
4664 /* We're out of sync with the target now. Did it continue or
4665 not? Not is more likely, so report a stop. */
4666 warning (_("Remote failure reply: %s"), buf);
4667 status->kind = TARGET_WAITKIND_STOPPED;
4668 status->value.sig = TARGET_SIGNAL_0;
4669 break;
4670 case 'F': /* File-I/O request. */
4671 remote_fileio_request (buf);
4672 break;
4673 case 'T': case 'S': case 'X': case 'W':
4674 {
4675 struct stop_reply *stop_reply;
4676 struct cleanup *old_chain;
4677
4678 stop_reply = stop_reply_xmalloc ();
4679 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4680 remote_parse_stop_reply (buf, stop_reply);
4681 discard_cleanups (old_chain);
4682 event_ptid = process_stop_reply (stop_reply, status);
4683 break;
4684 }
4685 case 'O': /* Console output. */
4686 remote_console_output (buf + 1);
4687
4688 /* The target didn't really stop; keep waiting. */
4689 rs->waiting_for_stop_reply = 1;
4690
4691 break;
4692 case '\0':
4693 if (last_sent_signal != TARGET_SIGNAL_0)
4694 {
4695 /* Zero length reply means that we tried 'S' or 'C' and the
4696 remote system doesn't support it. */
4697 target_terminal_ours_for_output ();
4698 printf_filtered
4699 ("Can't send signals to this remote system. %s not sent.\n",
4700 target_signal_to_name (last_sent_signal));
4701 last_sent_signal = TARGET_SIGNAL_0;
4702 target_terminal_inferior ();
4703
4704 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4705 putpkt ((char *) buf);
4706
4707 /* We just told the target to resume, so a stop reply is in
4708 order. */
4709 rs->waiting_for_stop_reply = 1;
4710 break;
4711 }
4712 /* else fallthrough */
4713 default:
4714 warning (_("Invalid remote reply: %s"), buf);
4715 /* Keep waiting. */
4716 rs->waiting_for_stop_reply = 1;
4717 break;
4718 }
4719
4720 if (status->kind == TARGET_WAITKIND_IGNORE)
4721 /* Nothing interesting happened. */
4722 return minus_one_ptid;
4723 else if (status->kind != TARGET_WAITKIND_EXITED
4724 && status->kind != TARGET_WAITKIND_SIGNALLED)
4725 {
4726 if (!ptid_equal (event_ptid, null_ptid))
4727 record_currthread (event_ptid);
4728 else
4729 event_ptid = inferior_ptid;
4730 }
4731 else
4732 /* A process exit. Invalidate our notion of current thread. */
4733 record_currthread (minus_one_ptid);
4734
4735 return event_ptid;
4736 }
4737
4738 /* Wait until the remote machine stops, then return, storing status in
4739 STATUS just as `wait' would. */
4740
4741 static ptid_t
4742 remote_wait (ptid_t ptid, struct target_waitstatus *status)
4743 {
4744 ptid_t event_ptid;
4745
4746 if (non_stop)
4747 event_ptid = remote_wait_ns (ptid, status);
4748 else
4749 {
4750 /* In synchronous mode, keep waiting until the target stops. In
4751 asynchronous mode, always return to the event loop. */
4752
4753 do
4754 {
4755 event_ptid = remote_wait_as (ptid, status);
4756 }
4757 while (status->kind == TARGET_WAITKIND_IGNORE
4758 && !target_can_async_p ());
4759 }
4760
4761 if (target_can_async_p ())
4762 {
4763 /* If there are are events left in the queue tell the event loop
4764 to return here. */
4765 if (stop_reply_queue)
4766 mark_async_event_handler (remote_async_inferior_event_token);
4767 }
4768
4769 return event_ptid;
4770 }
4771
4772 /* Fetch a single register using a 'p' packet. */
4773
4774 static int
4775 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4776 {
4777 struct remote_state *rs = get_remote_state ();
4778 char *buf, *p;
4779 char regp[MAX_REGISTER_SIZE];
4780 int i;
4781
4782 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4783 return 0;
4784
4785 if (reg->pnum == -1)
4786 return 0;
4787
4788 p = rs->buf;
4789 *p++ = 'p';
4790 p += hexnumstr (p, reg->pnum);
4791 *p++ = '\0';
4792 remote_send (&rs->buf, &rs->buf_size);
4793
4794 buf = rs->buf;
4795
4796 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4797 {
4798 case PACKET_OK:
4799 break;
4800 case PACKET_UNKNOWN:
4801 return 0;
4802 case PACKET_ERROR:
4803 error (_("Could not fetch register \"%s\""),
4804 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4805 }
4806
4807 /* If this register is unfetchable, tell the regcache. */
4808 if (buf[0] == 'x')
4809 {
4810 regcache_raw_supply (regcache, reg->regnum, NULL);
4811 return 1;
4812 }
4813
4814 /* Otherwise, parse and supply the value. */
4815 p = buf;
4816 i = 0;
4817 while (p[0] != 0)
4818 {
4819 if (p[1] == 0)
4820 error (_("fetch_register_using_p: early buf termination"));
4821
4822 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4823 p += 2;
4824 }
4825 regcache_raw_supply (regcache, reg->regnum, regp);
4826 return 1;
4827 }
4828
4829 /* Fetch the registers included in the target's 'g' packet. */
4830
4831 static int
4832 send_g_packet (void)
4833 {
4834 struct remote_state *rs = get_remote_state ();
4835 int i, buf_len;
4836 char *p;
4837 char *regs;
4838
4839 sprintf (rs->buf, "g");
4840 remote_send (&rs->buf, &rs->buf_size);
4841
4842 /* We can get out of synch in various cases. If the first character
4843 in the buffer is not a hex character, assume that has happened
4844 and try to fetch another packet to read. */
4845 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4846 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4847 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4848 && rs->buf[0] != 'x') /* New: unavailable register value. */
4849 {
4850 if (remote_debug)
4851 fprintf_unfiltered (gdb_stdlog,
4852 "Bad register packet; fetching a new packet\n");
4853 getpkt (&rs->buf, &rs->buf_size, 0);
4854 }
4855
4856 buf_len = strlen (rs->buf);
4857
4858 /* Sanity check the received packet. */
4859 if (buf_len % 2 != 0)
4860 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4861
4862 return buf_len / 2;
4863 }
4864
4865 static void
4866 process_g_packet (struct regcache *regcache)
4867 {
4868 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4869 struct remote_state *rs = get_remote_state ();
4870 struct remote_arch_state *rsa = get_remote_arch_state ();
4871 int i, buf_len;
4872 char *p;
4873 char *regs;
4874
4875 buf_len = strlen (rs->buf);
4876
4877 /* Further sanity checks, with knowledge of the architecture. */
4878 if (buf_len > 2 * rsa->sizeof_g_packet)
4879 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4880
4881 /* Save the size of the packet sent to us by the target. It is used
4882 as a heuristic when determining the max size of packets that the
4883 target can safely receive. */
4884 if (rsa->actual_register_packet_size == 0)
4885 rsa->actual_register_packet_size = buf_len;
4886
4887 /* If this is smaller than we guessed the 'g' packet would be,
4888 update our records. A 'g' reply that doesn't include a register's
4889 value implies either that the register is not available, or that
4890 the 'p' packet must be used. */
4891 if (buf_len < 2 * rsa->sizeof_g_packet)
4892 {
4893 rsa->sizeof_g_packet = buf_len / 2;
4894
4895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4896 {
4897 if (rsa->regs[i].pnum == -1)
4898 continue;
4899
4900 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4901 rsa->regs[i].in_g_packet = 0;
4902 else
4903 rsa->regs[i].in_g_packet = 1;
4904 }
4905 }
4906
4907 regs = alloca (rsa->sizeof_g_packet);
4908
4909 /* Unimplemented registers read as all bits zero. */
4910 memset (regs, 0, rsa->sizeof_g_packet);
4911
4912 /* Reply describes registers byte by byte, each byte encoded as two
4913 hex characters. Suck them all up, then supply them to the
4914 register cacheing/storage mechanism. */
4915
4916 p = rs->buf;
4917 for (i = 0; i < rsa->sizeof_g_packet; i++)
4918 {
4919 if (p[0] == 0 || p[1] == 0)
4920 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4921 internal_error (__FILE__, __LINE__,
4922 "unexpected end of 'g' packet reply");
4923
4924 if (p[0] == 'x' && p[1] == 'x')
4925 regs[i] = 0; /* 'x' */
4926 else
4927 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4928 p += 2;
4929 }
4930
4931 {
4932 int i;
4933 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4934 {
4935 struct packet_reg *r = &rsa->regs[i];
4936 if (r->in_g_packet)
4937 {
4938 if (r->offset * 2 >= strlen (rs->buf))
4939 /* This shouldn't happen - we adjusted in_g_packet above. */
4940 internal_error (__FILE__, __LINE__,
4941 "unexpected end of 'g' packet reply");
4942 else if (rs->buf[r->offset * 2] == 'x')
4943 {
4944 gdb_assert (r->offset * 2 < strlen (rs->buf));
4945 /* The register isn't available, mark it as such (at
4946 the same time setting the value to zero). */
4947 regcache_raw_supply (regcache, r->regnum, NULL);
4948 }
4949 else
4950 regcache_raw_supply (regcache, r->regnum,
4951 regs + r->offset);
4952 }
4953 }
4954 }
4955 }
4956
4957 static void
4958 fetch_registers_using_g (struct regcache *regcache)
4959 {
4960 send_g_packet ();
4961 process_g_packet (regcache);
4962 }
4963
4964 static void
4965 remote_fetch_registers (struct regcache *regcache, int regnum)
4966 {
4967 struct remote_state *rs = get_remote_state ();
4968 struct remote_arch_state *rsa = get_remote_arch_state ();
4969 int i;
4970
4971 set_general_thread (inferior_ptid);
4972
4973 if (regnum >= 0)
4974 {
4975 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4976 gdb_assert (reg != NULL);
4977
4978 /* If this register might be in the 'g' packet, try that first -
4979 we are likely to read more than one register. If this is the
4980 first 'g' packet, we might be overly optimistic about its
4981 contents, so fall back to 'p'. */
4982 if (reg->in_g_packet)
4983 {
4984 fetch_registers_using_g (regcache);
4985 if (reg->in_g_packet)
4986 return;
4987 }
4988
4989 if (fetch_register_using_p (regcache, reg))
4990 return;
4991
4992 /* This register is not available. */
4993 regcache_raw_supply (regcache, reg->regnum, NULL);
4994
4995 return;
4996 }
4997
4998 fetch_registers_using_g (regcache);
4999
5000 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5001 if (!rsa->regs[i].in_g_packet)
5002 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5003 {
5004 /* This register is not available. */
5005 regcache_raw_supply (regcache, i, NULL);
5006 }
5007 }
5008
5009 /* Prepare to store registers. Since we may send them all (using a
5010 'G' request), we have to read out the ones we don't want to change
5011 first. */
5012
5013 static void
5014 remote_prepare_to_store (struct regcache *regcache)
5015 {
5016 struct remote_arch_state *rsa = get_remote_arch_state ();
5017 int i;
5018 gdb_byte buf[MAX_REGISTER_SIZE];
5019
5020 /* Make sure the entire registers array is valid. */
5021 switch (remote_protocol_packets[PACKET_P].support)
5022 {
5023 case PACKET_DISABLE:
5024 case PACKET_SUPPORT_UNKNOWN:
5025 /* Make sure all the necessary registers are cached. */
5026 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5027 if (rsa->regs[i].in_g_packet)
5028 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5029 break;
5030 case PACKET_ENABLE:
5031 break;
5032 }
5033 }
5034
5035 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5036 packet was not recognized. */
5037
5038 static int
5039 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5040 {
5041 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5042 struct remote_state *rs = get_remote_state ();
5043 struct remote_arch_state *rsa = get_remote_arch_state ();
5044 /* Try storing a single register. */
5045 char *buf = rs->buf;
5046 gdb_byte regp[MAX_REGISTER_SIZE];
5047 char *p;
5048
5049 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5050 return 0;
5051
5052 if (reg->pnum == -1)
5053 return 0;
5054
5055 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5056 p = buf + strlen (buf);
5057 regcache_raw_collect (regcache, reg->regnum, regp);
5058 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5059 remote_send (&rs->buf, &rs->buf_size);
5060
5061 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5062 {
5063 case PACKET_OK:
5064 return 1;
5065 case PACKET_ERROR:
5066 error (_("Could not write register \"%s\""),
5067 gdbarch_register_name (gdbarch, reg->regnum));
5068 case PACKET_UNKNOWN:
5069 return 0;
5070 default:
5071 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5072 }
5073 }
5074
5075 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5076 contents of the register cache buffer. FIXME: ignores errors. */
5077
5078 static void
5079 store_registers_using_G (const struct regcache *regcache)
5080 {
5081 struct remote_state *rs = get_remote_state ();
5082 struct remote_arch_state *rsa = get_remote_arch_state ();
5083 gdb_byte *regs;
5084 char *p;
5085
5086 /* Extract all the registers in the regcache copying them into a
5087 local buffer. */
5088 {
5089 int i;
5090 regs = alloca (rsa->sizeof_g_packet);
5091 memset (regs, 0, rsa->sizeof_g_packet);
5092 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5093 {
5094 struct packet_reg *r = &rsa->regs[i];
5095 if (r->in_g_packet)
5096 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5097 }
5098 }
5099
5100 /* Command describes registers byte by byte,
5101 each byte encoded as two hex characters. */
5102 p = rs->buf;
5103 *p++ = 'G';
5104 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5105 updated. */
5106 bin2hex (regs, p, rsa->sizeof_g_packet);
5107 remote_send (&rs->buf, &rs->buf_size);
5108 }
5109
5110 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5111 of the register cache buffer. FIXME: ignores errors. */
5112
5113 static void
5114 remote_store_registers (struct regcache *regcache, int regnum)
5115 {
5116 struct remote_state *rs = get_remote_state ();
5117 struct remote_arch_state *rsa = get_remote_arch_state ();
5118 int i;
5119
5120 set_general_thread (inferior_ptid);
5121
5122 if (regnum >= 0)
5123 {
5124 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5125 gdb_assert (reg != NULL);
5126
5127 /* Always prefer to store registers using the 'P' packet if
5128 possible; we often change only a small number of registers.
5129 Sometimes we change a larger number; we'd need help from a
5130 higher layer to know to use 'G'. */
5131 if (store_register_using_P (regcache, reg))
5132 return;
5133
5134 /* For now, don't complain if we have no way to write the
5135 register. GDB loses track of unavailable registers too
5136 easily. Some day, this may be an error. We don't have
5137 any way to read the register, either... */
5138 if (!reg->in_g_packet)
5139 return;
5140
5141 store_registers_using_G (regcache);
5142 return;
5143 }
5144
5145 store_registers_using_G (regcache);
5146
5147 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5148 if (!rsa->regs[i].in_g_packet)
5149 if (!store_register_using_P (regcache, &rsa->regs[i]))
5150 /* See above for why we do not issue an error here. */
5151 continue;
5152 }
5153 \f
5154
5155 /* Return the number of hex digits in num. */
5156
5157 static int
5158 hexnumlen (ULONGEST num)
5159 {
5160 int i;
5161
5162 for (i = 0; num != 0; i++)
5163 num >>= 4;
5164
5165 return max (i, 1);
5166 }
5167
5168 /* Set BUF to the minimum number of hex digits representing NUM. */
5169
5170 static int
5171 hexnumstr (char *buf, ULONGEST num)
5172 {
5173 int len = hexnumlen (num);
5174 return hexnumnstr (buf, num, len);
5175 }
5176
5177
5178 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5179
5180 static int
5181 hexnumnstr (char *buf, ULONGEST num, int width)
5182 {
5183 int i;
5184
5185 buf[width] = '\0';
5186
5187 for (i = width - 1; i >= 0; i--)
5188 {
5189 buf[i] = "0123456789abcdef"[(num & 0xf)];
5190 num >>= 4;
5191 }
5192
5193 return width;
5194 }
5195
5196 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5197
5198 static CORE_ADDR
5199 remote_address_masked (CORE_ADDR addr)
5200 {
5201 int address_size = remote_address_size;
5202 /* If "remoteaddresssize" was not set, default to target address size. */
5203 if (!address_size)
5204 address_size = gdbarch_addr_bit (target_gdbarch);
5205
5206 if (address_size > 0
5207 && address_size < (sizeof (ULONGEST) * 8))
5208 {
5209 /* Only create a mask when that mask can safely be constructed
5210 in a ULONGEST variable. */
5211 ULONGEST mask = 1;
5212 mask = (mask << address_size) - 1;
5213 addr &= mask;
5214 }
5215 return addr;
5216 }
5217
5218 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5219 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5220 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5221 (which may be more than *OUT_LEN due to escape characters). The
5222 total number of bytes in the output buffer will be at most
5223 OUT_MAXLEN. */
5224
5225 static int
5226 remote_escape_output (const gdb_byte *buffer, int len,
5227 gdb_byte *out_buf, int *out_len,
5228 int out_maxlen)
5229 {
5230 int input_index, output_index;
5231
5232 output_index = 0;
5233 for (input_index = 0; input_index < len; input_index++)
5234 {
5235 gdb_byte b = buffer[input_index];
5236
5237 if (b == '$' || b == '#' || b == '}')
5238 {
5239 /* These must be escaped. */
5240 if (output_index + 2 > out_maxlen)
5241 break;
5242 out_buf[output_index++] = '}';
5243 out_buf[output_index++] = b ^ 0x20;
5244 }
5245 else
5246 {
5247 if (output_index + 1 > out_maxlen)
5248 break;
5249 out_buf[output_index++] = b;
5250 }
5251 }
5252
5253 *out_len = input_index;
5254 return output_index;
5255 }
5256
5257 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5258 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5259 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5260
5261 This function reverses remote_escape_output. It allows more
5262 escaped characters than that function does, in particular because
5263 '*' must be escaped to avoid the run-length encoding processing
5264 in reading packets. */
5265
5266 static int
5267 remote_unescape_input (const gdb_byte *buffer, int len,
5268 gdb_byte *out_buf, int out_maxlen)
5269 {
5270 int input_index, output_index;
5271 int escaped;
5272
5273 output_index = 0;
5274 escaped = 0;
5275 for (input_index = 0; input_index < len; input_index++)
5276 {
5277 gdb_byte b = buffer[input_index];
5278
5279 if (output_index + 1 > out_maxlen)
5280 {
5281 warning (_("Received too much data from remote target;"
5282 " ignoring overflow."));
5283 return output_index;
5284 }
5285
5286 if (escaped)
5287 {
5288 out_buf[output_index++] = b ^ 0x20;
5289 escaped = 0;
5290 }
5291 else if (b == '}')
5292 escaped = 1;
5293 else
5294 out_buf[output_index++] = b;
5295 }
5296
5297 if (escaped)
5298 error (_("Unmatched escape character in target response."));
5299
5300 return output_index;
5301 }
5302
5303 /* Determine whether the remote target supports binary downloading.
5304 This is accomplished by sending a no-op memory write of zero length
5305 to the target at the specified address. It does not suffice to send
5306 the whole packet, since many stubs strip the eighth bit and
5307 subsequently compute a wrong checksum, which causes real havoc with
5308 remote_write_bytes.
5309
5310 NOTE: This can still lose if the serial line is not eight-bit
5311 clean. In cases like this, the user should clear "remote
5312 X-packet". */
5313
5314 static void
5315 check_binary_download (CORE_ADDR addr)
5316 {
5317 struct remote_state *rs = get_remote_state ();
5318
5319 switch (remote_protocol_packets[PACKET_X].support)
5320 {
5321 case PACKET_DISABLE:
5322 break;
5323 case PACKET_ENABLE:
5324 break;
5325 case PACKET_SUPPORT_UNKNOWN:
5326 {
5327 char *p;
5328
5329 p = rs->buf;
5330 *p++ = 'X';
5331 p += hexnumstr (p, (ULONGEST) addr);
5332 *p++ = ',';
5333 p += hexnumstr (p, (ULONGEST) 0);
5334 *p++ = ':';
5335 *p = '\0';
5336
5337 putpkt_binary (rs->buf, (int) (p - rs->buf));
5338 getpkt (&rs->buf, &rs->buf_size, 0);
5339
5340 if (rs->buf[0] == '\0')
5341 {
5342 if (remote_debug)
5343 fprintf_unfiltered (gdb_stdlog,
5344 "binary downloading NOT suppported by target\n");
5345 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5346 }
5347 else
5348 {
5349 if (remote_debug)
5350 fprintf_unfiltered (gdb_stdlog,
5351 "binary downloading suppported by target\n");
5352 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5353 }
5354 break;
5355 }
5356 }
5357 }
5358
5359 /* Write memory data directly to the remote machine.
5360 This does not inform the data cache; the data cache uses this.
5361 HEADER is the starting part of the packet.
5362 MEMADDR is the address in the remote memory space.
5363 MYADDR is the address of the buffer in our space.
5364 LEN is the number of bytes.
5365 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5366 should send data as binary ('X'), or hex-encoded ('M').
5367
5368 The function creates packet of the form
5369 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5370
5371 where encoding of <DATA> is termined by PACKET_FORMAT.
5372
5373 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5374 are omitted.
5375
5376 Returns the number of bytes transferred, or 0 (setting errno) for
5377 error. Only transfer a single packet. */
5378
5379 static int
5380 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5381 const gdb_byte *myaddr, int len,
5382 char packet_format, int use_length)
5383 {
5384 struct remote_state *rs = get_remote_state ();
5385 char *p;
5386 char *plen = NULL;
5387 int plenlen = 0;
5388 int todo;
5389 int nr_bytes;
5390 int payload_size;
5391 int payload_length;
5392 int header_length;
5393
5394 if (packet_format != 'X' && packet_format != 'M')
5395 internal_error (__FILE__, __LINE__,
5396 "remote_write_bytes_aux: bad packet format");
5397
5398 if (len <= 0)
5399 return 0;
5400
5401 payload_size = get_memory_write_packet_size ();
5402
5403 /* The packet buffer will be large enough for the payload;
5404 get_memory_packet_size ensures this. */
5405 rs->buf[0] = '\0';
5406
5407 /* Compute the size of the actual payload by subtracting out the
5408 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5409 */
5410 payload_size -= strlen ("$,:#NN");
5411 if (!use_length)
5412 /* The comma won't be used. */
5413 payload_size += 1;
5414 header_length = strlen (header);
5415 payload_size -= header_length;
5416 payload_size -= hexnumlen (memaddr);
5417
5418 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5419
5420 strcat (rs->buf, header);
5421 p = rs->buf + strlen (header);
5422
5423 /* Compute a best guess of the number of bytes actually transfered. */
5424 if (packet_format == 'X')
5425 {
5426 /* Best guess at number of bytes that will fit. */
5427 todo = min (len, payload_size);
5428 if (use_length)
5429 payload_size -= hexnumlen (todo);
5430 todo = min (todo, payload_size);
5431 }
5432 else
5433 {
5434 /* Num bytes that will fit. */
5435 todo = min (len, payload_size / 2);
5436 if (use_length)
5437 payload_size -= hexnumlen (todo);
5438 todo = min (todo, payload_size / 2);
5439 }
5440
5441 if (todo <= 0)
5442 internal_error (__FILE__, __LINE__,
5443 _("minumum packet size too small to write data"));
5444
5445 /* If we already need another packet, then try to align the end
5446 of this packet to a useful boundary. */
5447 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5448 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5449
5450 /* Append "<memaddr>". */
5451 memaddr = remote_address_masked (memaddr);
5452 p += hexnumstr (p, (ULONGEST) memaddr);
5453
5454 if (use_length)
5455 {
5456 /* Append ",". */
5457 *p++ = ',';
5458
5459 /* Append <len>. Retain the location/size of <len>. It may need to
5460 be adjusted once the packet body has been created. */
5461 plen = p;
5462 plenlen = hexnumstr (p, (ULONGEST) todo);
5463 p += plenlen;
5464 }
5465
5466 /* Append ":". */
5467 *p++ = ':';
5468 *p = '\0';
5469
5470 /* Append the packet body. */
5471 if (packet_format == 'X')
5472 {
5473 /* Binary mode. Send target system values byte by byte, in
5474 increasing byte addresses. Only escape certain critical
5475 characters. */
5476 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5477 payload_size);
5478
5479 /* If not all TODO bytes fit, then we'll need another packet. Make
5480 a second try to keep the end of the packet aligned. Don't do
5481 this if the packet is tiny. */
5482 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5483 {
5484 int new_nr_bytes;
5485
5486 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5487 - memaddr);
5488 if (new_nr_bytes != nr_bytes)
5489 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5490 p, &nr_bytes,
5491 payload_size);
5492 }
5493
5494 p += payload_length;
5495 if (use_length && nr_bytes < todo)
5496 {
5497 /* Escape chars have filled up the buffer prematurely,
5498 and we have actually sent fewer bytes than planned.
5499 Fix-up the length field of the packet. Use the same
5500 number of characters as before. */
5501 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5502 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5503 }
5504 }
5505 else
5506 {
5507 /* Normal mode: Send target system values byte by byte, in
5508 increasing byte addresses. Each byte is encoded as a two hex
5509 value. */
5510 nr_bytes = bin2hex (myaddr, p, todo);
5511 p += 2 * nr_bytes;
5512 }
5513
5514 putpkt_binary (rs->buf, (int) (p - rs->buf));
5515 getpkt (&rs->buf, &rs->buf_size, 0);
5516
5517 if (rs->buf[0] == 'E')
5518 {
5519 /* There is no correspondance between what the remote protocol
5520 uses for errors and errno codes. We would like a cleaner way
5521 of representing errors (big enough to include errno codes,
5522 bfd_error codes, and others). But for now just return EIO. */
5523 errno = EIO;
5524 return 0;
5525 }
5526
5527 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5528 fewer bytes than we'd planned. */
5529 return nr_bytes;
5530 }
5531
5532 /* Write memory data directly to the remote machine.
5533 This does not inform the data cache; the data cache uses this.
5534 MEMADDR is the address in the remote memory space.
5535 MYADDR is the address of the buffer in our space.
5536 LEN is the number of bytes.
5537
5538 Returns number of bytes transferred, or 0 (setting errno) for
5539 error. Only transfer a single packet. */
5540
5541 int
5542 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5543 {
5544 char *packet_format = 0;
5545
5546 /* Check whether the target supports binary download. */
5547 check_binary_download (memaddr);
5548
5549 switch (remote_protocol_packets[PACKET_X].support)
5550 {
5551 case PACKET_ENABLE:
5552 packet_format = "X";
5553 break;
5554 case PACKET_DISABLE:
5555 packet_format = "M";
5556 break;
5557 case PACKET_SUPPORT_UNKNOWN:
5558 internal_error (__FILE__, __LINE__,
5559 _("remote_write_bytes: bad internal state"));
5560 default:
5561 internal_error (__FILE__, __LINE__, _("bad switch"));
5562 }
5563
5564 return remote_write_bytes_aux (packet_format,
5565 memaddr, myaddr, len, packet_format[0], 1);
5566 }
5567
5568 /* Read memory data directly from the remote machine.
5569 This does not use the data cache; the data cache uses this.
5570 MEMADDR is the address in the remote memory space.
5571 MYADDR is the address of the buffer in our space.
5572 LEN is the number of bytes.
5573
5574 Returns number of bytes transferred, or 0 for error. */
5575
5576 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5577 remote targets) shouldn't attempt to read the entire buffer.
5578 Instead it should read a single packet worth of data and then
5579 return the byte size of that packet to the caller. The caller (its
5580 caller and its callers caller ;-) already contains code for
5581 handling partial reads. */
5582
5583 int
5584 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5585 {
5586 struct remote_state *rs = get_remote_state ();
5587 int max_buf_size; /* Max size of packet output buffer. */
5588 int origlen;
5589
5590 if (len <= 0)
5591 return 0;
5592
5593 max_buf_size = get_memory_read_packet_size ();
5594 /* The packet buffer will be large enough for the payload;
5595 get_memory_packet_size ensures this. */
5596
5597 origlen = len;
5598 while (len > 0)
5599 {
5600 char *p;
5601 int todo;
5602 int i;
5603
5604 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5605
5606 /* construct "m"<memaddr>","<len>" */
5607 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5608 memaddr = remote_address_masked (memaddr);
5609 p = rs->buf;
5610 *p++ = 'm';
5611 p += hexnumstr (p, (ULONGEST) memaddr);
5612 *p++ = ',';
5613 p += hexnumstr (p, (ULONGEST) todo);
5614 *p = '\0';
5615
5616 putpkt (rs->buf);
5617 getpkt (&rs->buf, &rs->buf_size, 0);
5618
5619 if (rs->buf[0] == 'E'
5620 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5621 && rs->buf[3] == '\0')
5622 {
5623 /* There is no correspondance between what the remote
5624 protocol uses for errors and errno codes. We would like
5625 a cleaner way of representing errors (big enough to
5626 include errno codes, bfd_error codes, and others). But
5627 for now just return EIO. */
5628 errno = EIO;
5629 return 0;
5630 }
5631
5632 /* Reply describes memory byte by byte,
5633 each byte encoded as two hex characters. */
5634
5635 p = rs->buf;
5636 if ((i = hex2bin (p, myaddr, todo)) < todo)
5637 {
5638 /* Reply is short. This means that we were able to read
5639 only part of what we wanted to. */
5640 return i + (origlen - len);
5641 }
5642 myaddr += todo;
5643 memaddr += todo;
5644 len -= todo;
5645 }
5646 return origlen;
5647 }
5648 \f
5649
5650 /* Remote notification handler. */
5651
5652 static void
5653 handle_notification (char *buf, size_t length)
5654 {
5655 if (strncmp (buf, "Stop:", 5) == 0)
5656 {
5657 if (pending_stop_reply)
5658 /* We've already parsed the in-flight stop-reply, but the stub
5659 for some reason thought we didn't, possibly due to timeout
5660 on its side. Just ignore it. */
5661 ;
5662 else
5663 {
5664 struct cleanup *old_chain;
5665 struct stop_reply *reply = stop_reply_xmalloc ();
5666 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5667
5668 remote_parse_stop_reply (buf + 5, reply);
5669
5670 discard_cleanups (old_chain);
5671
5672 /* Be careful to only set it after parsing, since an error
5673 may be thrown then. */
5674 pending_stop_reply = reply;
5675
5676 /* Notify the event loop there's a stop reply to acknowledge
5677 and that there may be more events to fetch. */
5678 mark_async_event_handler (remote_async_get_pending_events_token);
5679 }
5680 }
5681 else
5682 /* We ignore notifications we don't recognize, for compatibility
5683 with newer stubs. */
5684 ;
5685 }
5686
5687 \f
5688 /* Read or write LEN bytes from inferior memory at MEMADDR,
5689 transferring to or from debugger address BUFFER. Write to inferior
5690 if SHOULD_WRITE is nonzero. Returns length of data written or
5691 read; 0 for error. TARGET is unused. */
5692
5693 static int
5694 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5695 int should_write, struct mem_attrib *attrib,
5696 struct target_ops *target)
5697 {
5698 int res;
5699
5700 set_general_thread (inferior_ptid);
5701
5702 if (should_write)
5703 res = remote_write_bytes (mem_addr, buffer, mem_len);
5704 else
5705 res = remote_read_bytes (mem_addr, buffer, mem_len);
5706
5707 return res;
5708 }
5709
5710 /* Sends a packet with content determined by the printf format string
5711 FORMAT and the remaining arguments, then gets the reply. Returns
5712 whether the packet was a success, a failure, or unknown. */
5713
5714 enum packet_result
5715 remote_send_printf (const char *format, ...)
5716 {
5717 struct remote_state *rs = get_remote_state ();
5718 int max_size = get_remote_packet_size ();
5719
5720 va_list ap;
5721 va_start (ap, format);
5722
5723 rs->buf[0] = '\0';
5724 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5725 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5726
5727 if (putpkt (rs->buf) < 0)
5728 error (_("Communication problem with target."));
5729
5730 rs->buf[0] = '\0';
5731 getpkt (&rs->buf, &rs->buf_size, 0);
5732
5733 return packet_check_result (rs->buf);
5734 }
5735
5736 static void
5737 restore_remote_timeout (void *p)
5738 {
5739 int value = *(int *)p;
5740 remote_timeout = value;
5741 }
5742
5743 /* Flash writing can take quite some time. We'll set
5744 effectively infinite timeout for flash operations.
5745 In future, we'll need to decide on a better approach. */
5746 static const int remote_flash_timeout = 1000;
5747
5748 static void
5749 remote_flash_erase (struct target_ops *ops,
5750 ULONGEST address, LONGEST length)
5751 {
5752 int saved_remote_timeout = remote_timeout;
5753 enum packet_result ret;
5754
5755 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5756 &saved_remote_timeout);
5757 remote_timeout = remote_flash_timeout;
5758
5759 ret = remote_send_printf ("vFlashErase:%s,%s",
5760 paddr (address),
5761 phex (length, 4));
5762 switch (ret)
5763 {
5764 case PACKET_UNKNOWN:
5765 error (_("Remote target does not support flash erase"));
5766 case PACKET_ERROR:
5767 error (_("Error erasing flash with vFlashErase packet"));
5768 default:
5769 break;
5770 }
5771
5772 do_cleanups (back_to);
5773 }
5774
5775 static LONGEST
5776 remote_flash_write (struct target_ops *ops,
5777 ULONGEST address, LONGEST length,
5778 const gdb_byte *data)
5779 {
5780 int saved_remote_timeout = remote_timeout;
5781 int ret;
5782 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5783 &saved_remote_timeout);
5784
5785 remote_timeout = remote_flash_timeout;
5786 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5787 do_cleanups (back_to);
5788
5789 return ret;
5790 }
5791
5792 static void
5793 remote_flash_done (struct target_ops *ops)
5794 {
5795 int saved_remote_timeout = remote_timeout;
5796 int ret;
5797 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5798 &saved_remote_timeout);
5799
5800 remote_timeout = remote_flash_timeout;
5801 ret = remote_send_printf ("vFlashDone");
5802 do_cleanups (back_to);
5803
5804 switch (ret)
5805 {
5806 case PACKET_UNKNOWN:
5807 error (_("Remote target does not support vFlashDone"));
5808 case PACKET_ERROR:
5809 error (_("Error finishing flash operation"));
5810 default:
5811 break;
5812 }
5813 }
5814
5815 static void
5816 remote_files_info (struct target_ops *ignore)
5817 {
5818 puts_filtered ("Debugging a target over a serial line.\n");
5819 }
5820 \f
5821 /* Stuff for dealing with the packets which are part of this protocol.
5822 See comment at top of file for details. */
5823
5824 /* Read a single character from the remote end. */
5825
5826 static int
5827 readchar (int timeout)
5828 {
5829 int ch;
5830
5831 ch = serial_readchar (remote_desc, timeout);
5832
5833 if (ch >= 0)
5834 return ch;
5835
5836 switch ((enum serial_rc) ch)
5837 {
5838 case SERIAL_EOF:
5839 pop_target ();
5840 error (_("Remote connection closed"));
5841 /* no return */
5842 case SERIAL_ERROR:
5843 perror_with_name (_("Remote communication error"));
5844 /* no return */
5845 case SERIAL_TIMEOUT:
5846 break;
5847 }
5848 return ch;
5849 }
5850
5851 /* Send the command in *BUF to the remote machine, and read the reply
5852 into *BUF. Report an error if we get an error reply. Resize
5853 *BUF using xrealloc if necessary to hold the result, and update
5854 *SIZEOF_BUF. */
5855
5856 static void
5857 remote_send (char **buf,
5858 long *sizeof_buf)
5859 {
5860 putpkt (*buf);
5861 getpkt (buf, sizeof_buf, 0);
5862
5863 if ((*buf)[0] == 'E')
5864 error (_("Remote failure reply: %s"), *buf);
5865 }
5866
5867 /* Return a pointer to an xmalloc'ed string representing an escaped
5868 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5869 etc. The caller is responsible for releasing the returned
5870 memory. */
5871
5872 static char *
5873 escape_buffer (const char *buf, int n)
5874 {
5875 struct cleanup *old_chain;
5876 struct ui_file *stb;
5877 char *str;
5878 long length;
5879
5880 stb = mem_fileopen ();
5881 old_chain = make_cleanup_ui_file_delete (stb);
5882
5883 fputstrn_unfiltered (buf, n, 0, stb);
5884 str = ui_file_xstrdup (stb, &length);
5885 do_cleanups (old_chain);
5886 return str;
5887 }
5888
5889 /* Display a null-terminated packet on stdout, for debugging, using C
5890 string notation. */
5891
5892 static void
5893 print_packet (char *buf)
5894 {
5895 puts_filtered ("\"");
5896 fputstr_filtered (buf, '"', gdb_stdout);
5897 puts_filtered ("\"");
5898 }
5899
5900 int
5901 putpkt (char *buf)
5902 {
5903 return putpkt_binary (buf, strlen (buf));
5904 }
5905
5906 /* Send a packet to the remote machine, with error checking. The data
5907 of the packet is in BUF. The string in BUF can be at most
5908 get_remote_packet_size () - 5 to account for the $, # and checksum,
5909 and for a possible /0 if we are debugging (remote_debug) and want
5910 to print the sent packet as a string. */
5911
5912 static int
5913 putpkt_binary (char *buf, int cnt)
5914 {
5915 struct remote_state *rs = get_remote_state ();
5916 int i;
5917 unsigned char csum = 0;
5918 char *buf2 = alloca (cnt + 6);
5919
5920 int ch;
5921 int tcount = 0;
5922 char *p;
5923
5924 /* Catch cases like trying to read memory or listing threads while
5925 we're waiting for a stop reply. The remote server wouldn't be
5926 ready to handle this request, so we'd hang and timeout. We don't
5927 have to worry about this in synchronous mode, because in that
5928 case it's not possible to issue a command while the target is
5929 running. This is not a problem in non-stop mode, because in that
5930 case, the stub is always ready to process serial input. */
5931 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5932 error (_("Cannot execute this command while the target is running."));
5933
5934 /* We're sending out a new packet. Make sure we don't look at a
5935 stale cached response. */
5936 rs->cached_wait_status = 0;
5937
5938 /* Copy the packet into buffer BUF2, encapsulating it
5939 and giving it a checksum. */
5940
5941 p = buf2;
5942 *p++ = '$';
5943
5944 for (i = 0; i < cnt; i++)
5945 {
5946 csum += buf[i];
5947 *p++ = buf[i];
5948 }
5949 *p++ = '#';
5950 *p++ = tohex ((csum >> 4) & 0xf);
5951 *p++ = tohex (csum & 0xf);
5952
5953 /* Send it over and over until we get a positive ack. */
5954
5955 while (1)
5956 {
5957 int started_error_output = 0;
5958
5959 if (remote_debug)
5960 {
5961 struct cleanup *old_chain;
5962 char *str;
5963
5964 *p = '\0';
5965 str = escape_buffer (buf2, p - buf2);
5966 old_chain = make_cleanup (xfree, str);
5967 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
5968 gdb_flush (gdb_stdlog);
5969 do_cleanups (old_chain);
5970 }
5971 if (serial_write (remote_desc, buf2, p - buf2))
5972 perror_with_name (_("putpkt: write failed"));
5973
5974 /* If this is a no acks version of the remote protocol, send the
5975 packet and move on. */
5976 if (rs->noack_mode)
5977 break;
5978
5979 /* Read until either a timeout occurs (-2) or '+' is read.
5980 Handle any notification that arrives in the mean time. */
5981 while (1)
5982 {
5983 ch = readchar (remote_timeout);
5984
5985 if (remote_debug)
5986 {
5987 switch (ch)
5988 {
5989 case '+':
5990 case '-':
5991 case SERIAL_TIMEOUT:
5992 case '$':
5993 case '%':
5994 if (started_error_output)
5995 {
5996 putchar_unfiltered ('\n');
5997 started_error_output = 0;
5998 }
5999 }
6000 }
6001
6002 switch (ch)
6003 {
6004 case '+':
6005 if (remote_debug)
6006 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6007 return 1;
6008 case '-':
6009 if (remote_debug)
6010 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6011 case SERIAL_TIMEOUT:
6012 tcount++;
6013 if (tcount > 3)
6014 return 0;
6015 break; /* Retransmit buffer. */
6016 case '$':
6017 {
6018 if (remote_debug)
6019 fprintf_unfiltered (gdb_stdlog,
6020 "Packet instead of Ack, ignoring it\n");
6021 /* It's probably an old response sent because an ACK
6022 was lost. Gobble up the packet and ack it so it
6023 doesn't get retransmitted when we resend this
6024 packet. */
6025 skip_frame ();
6026 serial_write (remote_desc, "+", 1);
6027 continue; /* Now, go look for +. */
6028 }
6029
6030 case '%':
6031 {
6032 int val;
6033
6034 /* If we got a notification, handle it, and go back to looking
6035 for an ack. */
6036 /* We've found the start of a notification. Now
6037 collect the data. */
6038 val = read_frame (&rs->buf, &rs->buf_size);
6039 if (val >= 0)
6040 {
6041 if (remote_debug)
6042 {
6043 struct cleanup *old_chain;
6044 char *str;
6045
6046 str = escape_buffer (rs->buf, val);
6047 old_chain = make_cleanup (xfree, str);
6048 fprintf_unfiltered (gdb_stdlog,
6049 " Notification received: %s\n",
6050 str);
6051 do_cleanups (old_chain);
6052 }
6053 handle_notification (rs->buf, val);
6054 /* We're in sync now, rewait for the ack. */
6055 tcount = 0;
6056 }
6057 else
6058 {
6059 if (remote_debug)
6060 {
6061 if (!started_error_output)
6062 {
6063 started_error_output = 1;
6064 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6065 }
6066 fputc_unfiltered (ch & 0177, gdb_stdlog);
6067 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6068 }
6069 }
6070 continue;
6071 }
6072 /* fall-through */
6073 default:
6074 if (remote_debug)
6075 {
6076 if (!started_error_output)
6077 {
6078 started_error_output = 1;
6079 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6080 }
6081 fputc_unfiltered (ch & 0177, gdb_stdlog);
6082 }
6083 continue;
6084 }
6085 break; /* Here to retransmit. */
6086 }
6087
6088 #if 0
6089 /* This is wrong. If doing a long backtrace, the user should be
6090 able to get out next time we call QUIT, without anything as
6091 violent as interrupt_query. If we want to provide a way out of
6092 here without getting to the next QUIT, it should be based on
6093 hitting ^C twice as in remote_wait. */
6094 if (quit_flag)
6095 {
6096 quit_flag = 0;
6097 interrupt_query ();
6098 }
6099 #endif
6100 }
6101 return 0;
6102 }
6103
6104 /* Come here after finding the start of a frame when we expected an
6105 ack. Do our best to discard the rest of this packet. */
6106
6107 static void
6108 skip_frame (void)
6109 {
6110 int c;
6111
6112 while (1)
6113 {
6114 c = readchar (remote_timeout);
6115 switch (c)
6116 {
6117 case SERIAL_TIMEOUT:
6118 /* Nothing we can do. */
6119 return;
6120 case '#':
6121 /* Discard the two bytes of checksum and stop. */
6122 c = readchar (remote_timeout);
6123 if (c >= 0)
6124 c = readchar (remote_timeout);
6125
6126 return;
6127 case '*': /* Run length encoding. */
6128 /* Discard the repeat count. */
6129 c = readchar (remote_timeout);
6130 if (c < 0)
6131 return;
6132 break;
6133 default:
6134 /* A regular character. */
6135 break;
6136 }
6137 }
6138 }
6139
6140 /* Come here after finding the start of the frame. Collect the rest
6141 into *BUF, verifying the checksum, length, and handling run-length
6142 compression. NUL terminate the buffer. If there is not enough room,
6143 expand *BUF using xrealloc.
6144
6145 Returns -1 on error, number of characters in buffer (ignoring the
6146 trailing NULL) on success. (could be extended to return one of the
6147 SERIAL status indications). */
6148
6149 static long
6150 read_frame (char **buf_p,
6151 long *sizeof_buf)
6152 {
6153 unsigned char csum;
6154 long bc;
6155 int c;
6156 char *buf = *buf_p;
6157 struct remote_state *rs = get_remote_state ();
6158
6159 csum = 0;
6160 bc = 0;
6161
6162 while (1)
6163 {
6164 c = readchar (remote_timeout);
6165 switch (c)
6166 {
6167 case SERIAL_TIMEOUT:
6168 if (remote_debug)
6169 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6170 return -1;
6171 case '$':
6172 if (remote_debug)
6173 fputs_filtered ("Saw new packet start in middle of old one\n",
6174 gdb_stdlog);
6175 return -1; /* Start a new packet, count retries. */
6176 case '#':
6177 {
6178 unsigned char pktcsum;
6179 int check_0 = 0;
6180 int check_1 = 0;
6181
6182 buf[bc] = '\0';
6183
6184 check_0 = readchar (remote_timeout);
6185 if (check_0 >= 0)
6186 check_1 = readchar (remote_timeout);
6187
6188 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6189 {
6190 if (remote_debug)
6191 fputs_filtered ("Timeout in checksum, retrying\n",
6192 gdb_stdlog);
6193 return -1;
6194 }
6195 else if (check_0 < 0 || check_1 < 0)
6196 {
6197 if (remote_debug)
6198 fputs_filtered ("Communication error in checksum\n",
6199 gdb_stdlog);
6200 return -1;
6201 }
6202
6203 /* Don't recompute the checksum; with no ack packets we
6204 don't have any way to indicate a packet retransmission
6205 is necessary. */
6206 if (rs->noack_mode)
6207 return bc;
6208
6209 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6210 if (csum == pktcsum)
6211 return bc;
6212
6213 if (remote_debug)
6214 {
6215 struct cleanup *old_chain;
6216 char *str;
6217
6218 str = escape_buffer (buf, bc);
6219 old_chain = make_cleanup (xfree, str);
6220 fprintf_unfiltered (gdb_stdlog,
6221 "\
6222 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6223 pktcsum, csum, str);
6224 do_cleanups (old_chain);
6225 }
6226 /* Number of characters in buffer ignoring trailing
6227 NULL. */
6228 return -1;
6229 }
6230 case '*': /* Run length encoding. */
6231 {
6232 int repeat;
6233 csum += c;
6234
6235 c = readchar (remote_timeout);
6236 csum += c;
6237 repeat = c - ' ' + 3; /* Compute repeat count. */
6238
6239 /* The character before ``*'' is repeated. */
6240
6241 if (repeat > 0 && repeat <= 255 && bc > 0)
6242 {
6243 if (bc + repeat - 1 >= *sizeof_buf - 1)
6244 {
6245 /* Make some more room in the buffer. */
6246 *sizeof_buf += repeat;
6247 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6248 buf = *buf_p;
6249 }
6250
6251 memset (&buf[bc], buf[bc - 1], repeat);
6252 bc += repeat;
6253 continue;
6254 }
6255
6256 buf[bc] = '\0';
6257 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6258 return -1;
6259 }
6260 default:
6261 if (bc >= *sizeof_buf - 1)
6262 {
6263 /* Make some more room in the buffer. */
6264 *sizeof_buf *= 2;
6265 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6266 buf = *buf_p;
6267 }
6268
6269 buf[bc++] = c;
6270 csum += c;
6271 continue;
6272 }
6273 }
6274 }
6275
6276 /* Read a packet from the remote machine, with error checking, and
6277 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6278 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6279 rather than timing out; this is used (in synchronous mode) to wait
6280 for a target that is is executing user code to stop. */
6281 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6282 don't have to change all the calls to getpkt to deal with the
6283 return value, because at the moment I don't know what the right
6284 thing to do it for those. */
6285 void
6286 getpkt (char **buf,
6287 long *sizeof_buf,
6288 int forever)
6289 {
6290 int timed_out;
6291
6292 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6293 }
6294
6295
6296 /* Read a packet from the remote machine, with error checking, and
6297 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6298 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6299 rather than timing out; this is used (in synchronous mode) to wait
6300 for a target that is is executing user code to stop. If FOREVER ==
6301 0, this function is allowed to time out gracefully and return an
6302 indication of this to the caller. Otherwise return the number of
6303 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6304 enough reason to return to the caller. */
6305
6306 static int
6307 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6308 int expecting_notif)
6309 {
6310 struct remote_state *rs = get_remote_state ();
6311 int c;
6312 int tries;
6313 int timeout;
6314 int val;
6315
6316 /* We're reading a new response. Make sure we don't look at a
6317 previously cached response. */
6318 rs->cached_wait_status = 0;
6319
6320 strcpy (*buf, "timeout");
6321
6322 if (forever)
6323 timeout = watchdog > 0 ? watchdog : -1;
6324 else if (expecting_notif)
6325 timeout = 0; /* There should already be a char in the buffer. If
6326 not, bail out. */
6327 else
6328 timeout = remote_timeout;
6329
6330 #define MAX_TRIES 3
6331
6332 /* Process any number of notifications, and then return when
6333 we get a packet. */
6334 for (;;)
6335 {
6336 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6337 times. */
6338 for (tries = 1; tries <= MAX_TRIES; tries++)
6339 {
6340 /* This can loop forever if the remote side sends us
6341 characters continuously, but if it pauses, we'll get
6342 SERIAL_TIMEOUT from readchar because of timeout. Then
6343 we'll count that as a retry.
6344
6345 Note that even when forever is set, we will only wait
6346 forever prior to the start of a packet. After that, we
6347 expect characters to arrive at a brisk pace. They should
6348 show up within remote_timeout intervals. */
6349 do
6350 c = readchar (timeout);
6351 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6352
6353 if (c == SERIAL_TIMEOUT)
6354 {
6355 if (expecting_notif)
6356 return -1; /* Don't complain, it's normal to not get
6357 anything in this case. */
6358
6359 if (forever) /* Watchdog went off? Kill the target. */
6360 {
6361 QUIT;
6362 pop_target ();
6363 error (_("Watchdog timeout has expired. Target detached."));
6364 }
6365 if (remote_debug)
6366 fputs_filtered ("Timed out.\n", gdb_stdlog);
6367 }
6368 else
6369 {
6370 /* We've found the start of a packet or notification.
6371 Now collect the data. */
6372 val = read_frame (buf, sizeof_buf);
6373 if (val >= 0)
6374 break;
6375 }
6376
6377 serial_write (remote_desc, "-", 1);
6378 }
6379
6380 if (tries > MAX_TRIES)
6381 {
6382 /* We have tried hard enough, and just can't receive the
6383 packet/notification. Give up. */
6384 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6385
6386 /* Skip the ack char if we're in no-ack mode. */
6387 if (!rs->noack_mode)
6388 serial_write (remote_desc, "+", 1);
6389 return -1;
6390 }
6391
6392 /* If we got an ordinary packet, return that to our caller. */
6393 if (c == '$')
6394 {
6395 if (remote_debug)
6396 {
6397 struct cleanup *old_chain;
6398 char *str;
6399
6400 str = escape_buffer (*buf, val);
6401 old_chain = make_cleanup (xfree, str);
6402 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6403 do_cleanups (old_chain);
6404 }
6405
6406 /* Skip the ack char if we're in no-ack mode. */
6407 if (!rs->noack_mode)
6408 serial_write (remote_desc, "+", 1);
6409 return val;
6410 }
6411
6412 /* If we got a notification, handle it, and go back to looking
6413 for a packet. */
6414 else
6415 {
6416 gdb_assert (c == '%');
6417
6418 if (remote_debug)
6419 {
6420 struct cleanup *old_chain;
6421 char *str;
6422
6423 str = escape_buffer (*buf, val);
6424 old_chain = make_cleanup (xfree, str);
6425 fprintf_unfiltered (gdb_stdlog,
6426 " Notification received: %s\n",
6427 str);
6428 do_cleanups (old_chain);
6429 }
6430
6431 handle_notification (*buf, val);
6432
6433 /* Notifications require no acknowledgement. */
6434
6435 if (expecting_notif)
6436 return -1;
6437 }
6438 }
6439 }
6440
6441 static int
6442 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6443 {
6444 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6445 }
6446
6447 static int
6448 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6449 {
6450 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6451 }
6452
6453 \f
6454 static void
6455 remote_kill (void)
6456 {
6457 /* Use catch_errors so the user can quit from gdb even when we
6458 aren't on speaking terms with the remote system. */
6459 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6460
6461 /* Don't wait for it to die. I'm not really sure it matters whether
6462 we do or not. For the existing stubs, kill is a noop. */
6463 target_mourn_inferior ();
6464 }
6465
6466 static int
6467 remote_vkill (int pid, struct remote_state *rs)
6468 {
6469 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6470 return -1;
6471
6472 /* Tell the remote target to detach. */
6473 sprintf (rs->buf, "vKill;%x", pid);
6474 putpkt (rs->buf);
6475 getpkt (&rs->buf, &rs->buf_size, 0);
6476
6477 if (packet_ok (rs->buf,
6478 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6479 return 0;
6480 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6481 return -1;
6482 else
6483 return 1;
6484 }
6485
6486 static void
6487 extended_remote_kill (void)
6488 {
6489 int res;
6490 int pid = ptid_get_pid (inferior_ptid);
6491 struct remote_state *rs = get_remote_state ();
6492
6493 res = remote_vkill (pid, rs);
6494 if (res == -1 && !remote_multi_process_p (rs))
6495 {
6496 /* Don't try 'k' on a multi-process aware stub -- it has no way
6497 to specify the pid. */
6498
6499 putpkt ("k");
6500 #if 0
6501 getpkt (&rs->buf, &rs->buf_size, 0);
6502 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6503 res = 1;
6504 #else
6505 /* Don't wait for it to die. I'm not really sure it matters whether
6506 we do or not. For the existing stubs, kill is a noop. */
6507 res = 0;
6508 #endif
6509 }
6510
6511 if (res != 0)
6512 error (_("Can't kill process"));
6513
6514 delete_inferior (pid);
6515 target_mourn_inferior ();
6516 }
6517
6518 static void
6519 remote_mourn (struct target_ops *ops)
6520 {
6521 remote_mourn_1 (ops);
6522 }
6523
6524 /* Worker function for remote_mourn. */
6525 static void
6526 remote_mourn_1 (struct target_ops *target)
6527 {
6528 unpush_target (target);
6529
6530 /* remote_close takes care of cleaning up. */
6531 }
6532
6533 static int
6534 select_new_thread_callback (struct thread_info *th, void* data)
6535 {
6536 if (!is_exited (th->ptid))
6537 {
6538 switch_to_thread (th->ptid);
6539 printf_filtered (_("[Switching to %s]\n"),
6540 target_pid_to_str (inferior_ptid));
6541 return 1;
6542 }
6543 return 0;
6544 }
6545
6546 static void
6547 extended_remote_mourn_1 (struct target_ops *target)
6548 {
6549 struct remote_state *rs = get_remote_state ();
6550
6551 /* In case we got here due to an error, but we're going to stay
6552 connected. */
6553 rs->waiting_for_stop_reply = 0;
6554
6555 /* We're no longer interested in these events. */
6556 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6557
6558 /* Unlike "target remote", we do not want to unpush the target; then
6559 the next time the user says "run", we won't be connected. */
6560
6561 if (have_inferiors ())
6562 {
6563 extern void nullify_last_target_wait_ptid ();
6564 /* Multi-process case. The current process has exited, but
6565 there are other processes to debug. Switch to the first
6566 available. */
6567 iterate_over_threads (select_new_thread_callback, NULL);
6568 nullify_last_target_wait_ptid ();
6569 }
6570 else
6571 {
6572 struct remote_state *rs = get_remote_state ();
6573
6574 /* Call common code to mark the inferior as not running. */
6575 generic_mourn_inferior ();
6576 if (!remote_multi_process_p (rs))
6577 {
6578 /* Check whether the target is running now - some remote stubs
6579 automatically restart after kill. */
6580 putpkt ("?");
6581 getpkt (&rs->buf, &rs->buf_size, 0);
6582
6583 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6584 {
6585 /* Assume that the target has been restarted. Set inferior_ptid
6586 so that bits of core GDB realizes there's something here, e.g.,
6587 so that the user can say "kill" again. */
6588 inferior_ptid = magic_null_ptid;
6589 }
6590 else
6591 {
6592 /* Mark this (still pushed) target as not executable until we
6593 restart it. */
6594 target_mark_exited (target);
6595 }
6596 }
6597 else
6598 /* Always remove execution if this was the last process. */
6599 target_mark_exited (target);
6600 }
6601 }
6602
6603 static void
6604 extended_remote_mourn (struct target_ops *ops)
6605 {
6606 extended_remote_mourn_1 (ops);
6607 }
6608
6609 static int
6610 extended_remote_run (char *args)
6611 {
6612 struct remote_state *rs = get_remote_state ();
6613 char *p;
6614 int len;
6615
6616 /* If the user has disabled vRun support, or we have detected that
6617 support is not available, do not try it. */
6618 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6619 return -1;
6620
6621 strcpy (rs->buf, "vRun;");
6622 len = strlen (rs->buf);
6623
6624 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6625 error (_("Remote file name too long for run packet"));
6626 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6627
6628 gdb_assert (args != NULL);
6629 if (*args)
6630 {
6631 struct cleanup *back_to;
6632 int i;
6633 char **argv;
6634
6635 argv = gdb_buildargv (args);
6636 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6637 for (i = 0; argv[i] != NULL; i++)
6638 {
6639 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6640 error (_("Argument list too long for run packet"));
6641 rs->buf[len++] = ';';
6642 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6643 }
6644 do_cleanups (back_to);
6645 }
6646
6647 rs->buf[len++] = '\0';
6648
6649 putpkt (rs->buf);
6650 getpkt (&rs->buf, &rs->buf_size, 0);
6651
6652 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6653 {
6654 /* We have a wait response; we don't need it, though. All is well. */
6655 return 0;
6656 }
6657 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6658 /* It wasn't disabled before, but it is now. */
6659 return -1;
6660 else
6661 {
6662 if (remote_exec_file[0] == '\0')
6663 error (_("Running the default executable on the remote target failed; "
6664 "try \"set remote exec-file\"?"));
6665 else
6666 error (_("Running \"%s\" on the remote target failed"),
6667 remote_exec_file);
6668 }
6669 }
6670
6671 /* In the extended protocol we want to be able to do things like
6672 "run" and have them basically work as expected. So we need
6673 a special create_inferior function. We support changing the
6674 executable file and the command line arguments, but not the
6675 environment. */
6676
6677 static void
6678 extended_remote_create_inferior_1 (char *exec_file, char *args,
6679 char **env, int from_tty)
6680 {
6681 /* If running asynchronously, register the target file descriptor
6682 with the event loop. */
6683 if (target_can_async_p ())
6684 target_async (inferior_event_handler, 0);
6685
6686 /* Now restart the remote server. */
6687 if (extended_remote_run (args) == -1)
6688 {
6689 /* vRun was not supported. Fail if we need it to do what the
6690 user requested. */
6691 if (remote_exec_file[0])
6692 error (_("Remote target does not support \"set remote exec-file\""));
6693 if (args[0])
6694 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6695
6696 /* Fall back to "R". */
6697 extended_remote_restart ();
6698 }
6699
6700 /* Clean up from the last time we ran, before we mark the target
6701 running again. This will mark breakpoints uninserted, and
6702 get_offsets may insert breakpoints. */
6703 init_thread_list ();
6704 init_wait_for_inferior ();
6705
6706 /* Now mark the inferior as running before we do anything else. */
6707 inferior_ptid = magic_null_ptid;
6708
6709 /* Now, if we have thread information, update inferior_ptid. */
6710 inferior_ptid = remote_current_thread (inferior_ptid);
6711
6712 add_inferior (ptid_get_pid (inferior_ptid));
6713 add_thread_silent (inferior_ptid);
6714
6715 target_mark_running (&extended_remote_ops);
6716
6717 /* Get updated offsets, if the stub uses qOffsets. */
6718 get_offsets ();
6719 }
6720
6721 static void
6722 extended_remote_create_inferior (struct target_ops *ops,
6723 char *exec_file, char *args,
6724 char **env, int from_tty)
6725 {
6726 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6727 }
6728 \f
6729
6730 /* Insert a breakpoint. On targets that have software breakpoint
6731 support, we ask the remote target to do the work; on targets
6732 which don't, we insert a traditional memory breakpoint. */
6733
6734 static int
6735 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6736 {
6737 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6738 If it succeeds, then set the support to PACKET_ENABLE. If it
6739 fails, and the user has explicitly requested the Z support then
6740 report an error, otherwise, mark it disabled and go on. */
6741
6742 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6743 {
6744 CORE_ADDR addr = bp_tgt->placed_address;
6745 struct remote_state *rs;
6746 char *p;
6747 int bpsize;
6748
6749 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6750
6751 rs = get_remote_state ();
6752 p = rs->buf;
6753
6754 *(p++) = 'Z';
6755 *(p++) = '0';
6756 *(p++) = ',';
6757 addr = (ULONGEST) remote_address_masked (addr);
6758 p += hexnumstr (p, addr);
6759 sprintf (p, ",%d", bpsize);
6760
6761 putpkt (rs->buf);
6762 getpkt (&rs->buf, &rs->buf_size, 0);
6763
6764 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6765 {
6766 case PACKET_ERROR:
6767 return -1;
6768 case PACKET_OK:
6769 bp_tgt->placed_address = addr;
6770 bp_tgt->placed_size = bpsize;
6771 return 0;
6772 case PACKET_UNKNOWN:
6773 break;
6774 }
6775 }
6776
6777 return memory_insert_breakpoint (bp_tgt);
6778 }
6779
6780 static int
6781 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6782 {
6783 CORE_ADDR addr = bp_tgt->placed_address;
6784 struct remote_state *rs = get_remote_state ();
6785 int bp_size;
6786
6787 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6788 {
6789 char *p = rs->buf;
6790
6791 *(p++) = 'z';
6792 *(p++) = '0';
6793 *(p++) = ',';
6794
6795 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6796 p += hexnumstr (p, addr);
6797 sprintf (p, ",%d", bp_tgt->placed_size);
6798
6799 putpkt (rs->buf);
6800 getpkt (&rs->buf, &rs->buf_size, 0);
6801
6802 return (rs->buf[0] == 'E');
6803 }
6804
6805 return memory_remove_breakpoint (bp_tgt);
6806 }
6807
6808 static int
6809 watchpoint_to_Z_packet (int type)
6810 {
6811 switch (type)
6812 {
6813 case hw_write:
6814 return Z_PACKET_WRITE_WP;
6815 break;
6816 case hw_read:
6817 return Z_PACKET_READ_WP;
6818 break;
6819 case hw_access:
6820 return Z_PACKET_ACCESS_WP;
6821 break;
6822 default:
6823 internal_error (__FILE__, __LINE__,
6824 _("hw_bp_to_z: bad watchpoint type %d"), type);
6825 }
6826 }
6827
6828 static int
6829 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6830 {
6831 struct remote_state *rs = get_remote_state ();
6832 char *p;
6833 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6834
6835 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6836 return -1;
6837
6838 sprintf (rs->buf, "Z%x,", packet);
6839 p = strchr (rs->buf, '\0');
6840 addr = remote_address_masked (addr);
6841 p += hexnumstr (p, (ULONGEST) addr);
6842 sprintf (p, ",%x", len);
6843
6844 putpkt (rs->buf);
6845 getpkt (&rs->buf, &rs->buf_size, 0);
6846
6847 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6848 {
6849 case PACKET_ERROR:
6850 case PACKET_UNKNOWN:
6851 return -1;
6852 case PACKET_OK:
6853 return 0;
6854 }
6855 internal_error (__FILE__, __LINE__,
6856 _("remote_insert_watchpoint: reached end of function"));
6857 }
6858
6859
6860 static int
6861 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6862 {
6863 struct remote_state *rs = get_remote_state ();
6864 char *p;
6865 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6866
6867 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6868 return -1;
6869
6870 sprintf (rs->buf, "z%x,", packet);
6871 p = strchr (rs->buf, '\0');
6872 addr = remote_address_masked (addr);
6873 p += hexnumstr (p, (ULONGEST) addr);
6874 sprintf (p, ",%x", len);
6875 putpkt (rs->buf);
6876 getpkt (&rs->buf, &rs->buf_size, 0);
6877
6878 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6879 {
6880 case PACKET_ERROR:
6881 case PACKET_UNKNOWN:
6882 return -1;
6883 case PACKET_OK:
6884 return 0;
6885 }
6886 internal_error (__FILE__, __LINE__,
6887 _("remote_remove_watchpoint: reached end of function"));
6888 }
6889
6890
6891 int remote_hw_watchpoint_limit = -1;
6892 int remote_hw_breakpoint_limit = -1;
6893
6894 static int
6895 remote_check_watch_resources (int type, int cnt, int ot)
6896 {
6897 if (type == bp_hardware_breakpoint)
6898 {
6899 if (remote_hw_breakpoint_limit == 0)
6900 return 0;
6901 else if (remote_hw_breakpoint_limit < 0)
6902 return 1;
6903 else if (cnt <= remote_hw_breakpoint_limit)
6904 return 1;
6905 }
6906 else
6907 {
6908 if (remote_hw_watchpoint_limit == 0)
6909 return 0;
6910 else if (remote_hw_watchpoint_limit < 0)
6911 return 1;
6912 else if (ot)
6913 return -1;
6914 else if (cnt <= remote_hw_watchpoint_limit)
6915 return 1;
6916 }
6917 return -1;
6918 }
6919
6920 static int
6921 remote_stopped_by_watchpoint (void)
6922 {
6923 return remote_stopped_by_watchpoint_p;
6924 }
6925
6926 static int
6927 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6928 {
6929 int rc = 0;
6930 if (remote_stopped_by_watchpoint ())
6931 {
6932 *addr_p = remote_watch_data_address;
6933 rc = 1;
6934 }
6935
6936 return rc;
6937 }
6938
6939
6940 static int
6941 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6942 {
6943 CORE_ADDR addr;
6944 struct remote_state *rs;
6945 char *p;
6946
6947 /* The length field should be set to the size of a breakpoint
6948 instruction, even though we aren't inserting one ourselves. */
6949
6950 gdbarch_breakpoint_from_pc
6951 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6952
6953 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6954 return -1;
6955
6956 rs = get_remote_state ();
6957 p = rs->buf;
6958
6959 *(p++) = 'Z';
6960 *(p++) = '1';
6961 *(p++) = ',';
6962
6963 addr = remote_address_masked (bp_tgt->placed_address);
6964 p += hexnumstr (p, (ULONGEST) addr);
6965 sprintf (p, ",%x", bp_tgt->placed_size);
6966
6967 putpkt (rs->buf);
6968 getpkt (&rs->buf, &rs->buf_size, 0);
6969
6970 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6971 {
6972 case PACKET_ERROR:
6973 case PACKET_UNKNOWN:
6974 return -1;
6975 case PACKET_OK:
6976 return 0;
6977 }
6978 internal_error (__FILE__, __LINE__,
6979 _("remote_insert_hw_breakpoint: reached end of function"));
6980 }
6981
6982
6983 static int
6984 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
6985 {
6986 CORE_ADDR addr;
6987 struct remote_state *rs = get_remote_state ();
6988 char *p = rs->buf;
6989
6990 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6991 return -1;
6992
6993 *(p++) = 'z';
6994 *(p++) = '1';
6995 *(p++) = ',';
6996
6997 addr = remote_address_masked (bp_tgt->placed_address);
6998 p += hexnumstr (p, (ULONGEST) addr);
6999 sprintf (p, ",%x", bp_tgt->placed_size);
7000
7001 putpkt (rs->buf);
7002 getpkt (&rs->buf, &rs->buf_size, 0);
7003
7004 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7005 {
7006 case PACKET_ERROR:
7007 case PACKET_UNKNOWN:
7008 return -1;
7009 case PACKET_OK:
7010 return 0;
7011 }
7012 internal_error (__FILE__, __LINE__,
7013 _("remote_remove_hw_breakpoint: reached end of function"));
7014 }
7015
7016 /* Table used by the crc32 function to calcuate the checksum. */
7017
7018 static unsigned long crc32_table[256] =
7019 {0, 0};
7020
7021 static unsigned long
7022 crc32 (unsigned char *buf, int len, unsigned int crc)
7023 {
7024 if (!crc32_table[1])
7025 {
7026 /* Initialize the CRC table and the decoding table. */
7027 int i, j;
7028 unsigned int c;
7029
7030 for (i = 0; i < 256; i++)
7031 {
7032 for (c = i << 24, j = 8; j > 0; --j)
7033 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7034 crc32_table[i] = c;
7035 }
7036 }
7037
7038 while (len--)
7039 {
7040 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7041 buf++;
7042 }
7043 return crc;
7044 }
7045
7046 /* compare-sections command
7047
7048 With no arguments, compares each loadable section in the exec bfd
7049 with the same memory range on the target, and reports mismatches.
7050 Useful for verifying the image on the target against the exec file.
7051 Depends on the target understanding the new "qCRC:" request. */
7052
7053 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7054 target method (target verify memory) and generic version of the
7055 actual command. This will allow other high-level code (especially
7056 generic_load()) to make use of this target functionality. */
7057
7058 static void
7059 compare_sections_command (char *args, int from_tty)
7060 {
7061 struct remote_state *rs = get_remote_state ();
7062 asection *s;
7063 unsigned long host_crc, target_crc;
7064 extern bfd *exec_bfd;
7065 struct cleanup *old_chain;
7066 char *tmp;
7067 char *sectdata;
7068 const char *sectname;
7069 bfd_size_type size;
7070 bfd_vma lma;
7071 int matched = 0;
7072 int mismatched = 0;
7073
7074 if (!exec_bfd)
7075 error (_("command cannot be used without an exec file"));
7076 if (!current_target.to_shortname ||
7077 strcmp (current_target.to_shortname, "remote") != 0)
7078 error (_("command can only be used with remote target"));
7079
7080 for (s = exec_bfd->sections; s; s = s->next)
7081 {
7082 if (!(s->flags & SEC_LOAD))
7083 continue; /* skip non-loadable section */
7084
7085 size = bfd_get_section_size (s);
7086 if (size == 0)
7087 continue; /* skip zero-length section */
7088
7089 sectname = bfd_get_section_name (exec_bfd, s);
7090 if (args && strcmp (args, sectname) != 0)
7091 continue; /* not the section selected by user */
7092
7093 matched = 1; /* do this section */
7094 lma = s->lma;
7095 /* FIXME: assumes lma can fit into long. */
7096 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7097 (long) lma, (long) size);
7098 putpkt (rs->buf);
7099
7100 /* Be clever; compute the host_crc before waiting for target
7101 reply. */
7102 sectdata = xmalloc (size);
7103 old_chain = make_cleanup (xfree, sectdata);
7104 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7105 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7106
7107 getpkt (&rs->buf, &rs->buf_size, 0);
7108 if (rs->buf[0] == 'E')
7109 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7110 sectname, paddr (lma), paddr (lma + size));
7111 if (rs->buf[0] != 'C')
7112 error (_("remote target does not support this operation"));
7113
7114 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7115 target_crc = target_crc * 16 + fromhex (*tmp);
7116
7117 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7118 sectname, paddr (lma), paddr (lma + size));
7119 if (host_crc == target_crc)
7120 printf_filtered ("matched.\n");
7121 else
7122 {
7123 printf_filtered ("MIS-MATCHED!\n");
7124 mismatched++;
7125 }
7126
7127 do_cleanups (old_chain);
7128 }
7129 if (mismatched > 0)
7130 warning (_("One or more sections of the remote executable does not match\n\
7131 the loaded file\n"));
7132 if (args && !matched)
7133 printf_filtered (_("No loaded section named '%s'.\n"), args);
7134 }
7135
7136 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7137 into remote target. The number of bytes written to the remote
7138 target is returned, or -1 for error. */
7139
7140 static LONGEST
7141 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7142 const char *annex, const gdb_byte *writebuf,
7143 ULONGEST offset, LONGEST len,
7144 struct packet_config *packet)
7145 {
7146 int i, buf_len;
7147 ULONGEST n;
7148 gdb_byte *wbuf;
7149 struct remote_state *rs = get_remote_state ();
7150 int max_size = get_memory_write_packet_size ();
7151
7152 if (packet->support == PACKET_DISABLE)
7153 return -1;
7154
7155 /* Insert header. */
7156 i = snprintf (rs->buf, max_size,
7157 "qXfer:%s:write:%s:%s:",
7158 object_name, annex ? annex : "",
7159 phex_nz (offset, sizeof offset));
7160 max_size -= (i + 1);
7161
7162 /* Escape as much data as fits into rs->buf. */
7163 buf_len = remote_escape_output
7164 (writebuf, len, (rs->buf + i), &max_size, max_size);
7165
7166 if (putpkt_binary (rs->buf, i + buf_len) < 0
7167 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7168 || packet_ok (rs->buf, packet) != PACKET_OK)
7169 return -1;
7170
7171 unpack_varlen_hex (rs->buf, &n);
7172 return n;
7173 }
7174
7175 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7176 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7177 number of bytes read is returned, or 0 for EOF, or -1 for error.
7178 The number of bytes read may be less than LEN without indicating an
7179 EOF. PACKET is checked and updated to indicate whether the remote
7180 target supports this object. */
7181
7182 static LONGEST
7183 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7184 const char *annex,
7185 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7186 struct packet_config *packet)
7187 {
7188 static char *finished_object;
7189 static char *finished_annex;
7190 static ULONGEST finished_offset;
7191
7192 struct remote_state *rs = get_remote_state ();
7193 unsigned int total = 0;
7194 LONGEST i, n, packet_len;
7195
7196 if (packet->support == PACKET_DISABLE)
7197 return -1;
7198
7199 /* Check whether we've cached an end-of-object packet that matches
7200 this request. */
7201 if (finished_object)
7202 {
7203 if (strcmp (object_name, finished_object) == 0
7204 && strcmp (annex ? annex : "", finished_annex) == 0
7205 && offset == finished_offset)
7206 return 0;
7207
7208 /* Otherwise, we're now reading something different. Discard
7209 the cache. */
7210 xfree (finished_object);
7211 xfree (finished_annex);
7212 finished_object = NULL;
7213 finished_annex = NULL;
7214 }
7215
7216 /* Request only enough to fit in a single packet. The actual data
7217 may not, since we don't know how much of it will need to be escaped;
7218 the target is free to respond with slightly less data. We subtract
7219 five to account for the response type and the protocol frame. */
7220 n = min (get_remote_packet_size () - 5, len);
7221 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7222 object_name, annex ? annex : "",
7223 phex_nz (offset, sizeof offset),
7224 phex_nz (n, sizeof n));
7225 i = putpkt (rs->buf);
7226 if (i < 0)
7227 return -1;
7228
7229 rs->buf[0] = '\0';
7230 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7231 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7232 return -1;
7233
7234 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7235 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7236
7237 /* 'm' means there is (or at least might be) more data after this
7238 batch. That does not make sense unless there's at least one byte
7239 of data in this reply. */
7240 if (rs->buf[0] == 'm' && packet_len == 1)
7241 error (_("Remote qXfer reply contained no data."));
7242
7243 /* Got some data. */
7244 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7245
7246 /* 'l' is an EOF marker, possibly including a final block of data,
7247 or possibly empty. If we have the final block of a non-empty
7248 object, record this fact to bypass a subsequent partial read. */
7249 if (rs->buf[0] == 'l' && offset + i > 0)
7250 {
7251 finished_object = xstrdup (object_name);
7252 finished_annex = xstrdup (annex ? annex : "");
7253 finished_offset = offset + i;
7254 }
7255
7256 return i;
7257 }
7258
7259 static LONGEST
7260 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7261 const char *annex, gdb_byte *readbuf,
7262 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7263 {
7264 struct remote_state *rs;
7265 int i;
7266 char *p2;
7267 char query_type;
7268
7269 set_general_thread (inferior_ptid);
7270
7271 rs = get_remote_state ();
7272
7273 /* Handle memory using the standard memory routines. */
7274 if (object == TARGET_OBJECT_MEMORY)
7275 {
7276 int xfered;
7277 errno = 0;
7278
7279 /* If the remote target is connected but not running, we should
7280 pass this request down to a lower stratum (e.g. the executable
7281 file). */
7282 if (!target_has_execution)
7283 return 0;
7284
7285 if (writebuf != NULL)
7286 xfered = remote_write_bytes (offset, writebuf, len);
7287 else
7288 xfered = remote_read_bytes (offset, readbuf, len);
7289
7290 if (xfered > 0)
7291 return xfered;
7292 else if (xfered == 0 && errno == 0)
7293 return 0;
7294 else
7295 return -1;
7296 }
7297
7298 /* Handle SPU memory using qxfer packets. */
7299 if (object == TARGET_OBJECT_SPU)
7300 {
7301 if (readbuf)
7302 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7303 &remote_protocol_packets
7304 [PACKET_qXfer_spu_read]);
7305 else
7306 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7307 &remote_protocol_packets
7308 [PACKET_qXfer_spu_write]);
7309 }
7310
7311 /* Only handle flash writes. */
7312 if (writebuf != NULL)
7313 {
7314 LONGEST xfered;
7315
7316 switch (object)
7317 {
7318 case TARGET_OBJECT_FLASH:
7319 xfered = remote_flash_write (ops, offset, len, writebuf);
7320
7321 if (xfered > 0)
7322 return xfered;
7323 else if (xfered == 0 && errno == 0)
7324 return 0;
7325 else
7326 return -1;
7327
7328 default:
7329 return -1;
7330 }
7331 }
7332
7333 /* Map pre-existing objects onto letters. DO NOT do this for new
7334 objects!!! Instead specify new query packets. */
7335 switch (object)
7336 {
7337 case TARGET_OBJECT_AVR:
7338 query_type = 'R';
7339 break;
7340
7341 case TARGET_OBJECT_AUXV:
7342 gdb_assert (annex == NULL);
7343 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7344 &remote_protocol_packets[PACKET_qXfer_auxv]);
7345
7346 case TARGET_OBJECT_AVAILABLE_FEATURES:
7347 return remote_read_qxfer
7348 (ops, "features", annex, readbuf, offset, len,
7349 &remote_protocol_packets[PACKET_qXfer_features]);
7350
7351 case TARGET_OBJECT_LIBRARIES:
7352 return remote_read_qxfer
7353 (ops, "libraries", annex, readbuf, offset, len,
7354 &remote_protocol_packets[PACKET_qXfer_libraries]);
7355
7356 case TARGET_OBJECT_MEMORY_MAP:
7357 gdb_assert (annex == NULL);
7358 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7359 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7360
7361 case TARGET_OBJECT_OSDATA:
7362 /* Should only get here if we're connected. */
7363 gdb_assert (remote_desc);
7364 return remote_read_qxfer
7365 (ops, "osdata", annex, readbuf, offset, len,
7366 &remote_protocol_packets[PACKET_qXfer_osdata]);
7367
7368 default:
7369 return -1;
7370 }
7371
7372 /* Note: a zero OFFSET and LEN can be used to query the minimum
7373 buffer size. */
7374 if (offset == 0 && len == 0)
7375 return (get_remote_packet_size ());
7376 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7377 large enough let the caller deal with it. */
7378 if (len < get_remote_packet_size ())
7379 return -1;
7380 len = get_remote_packet_size ();
7381
7382 /* Except for querying the minimum buffer size, target must be open. */
7383 if (!remote_desc)
7384 error (_("remote query is only available after target open"));
7385
7386 gdb_assert (annex != NULL);
7387 gdb_assert (readbuf != NULL);
7388
7389 p2 = rs->buf;
7390 *p2++ = 'q';
7391 *p2++ = query_type;
7392
7393 /* We used one buffer char for the remote protocol q command and
7394 another for the query type. As the remote protocol encapsulation
7395 uses 4 chars plus one extra in case we are debugging
7396 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7397 string. */
7398 i = 0;
7399 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7400 {
7401 /* Bad caller may have sent forbidden characters. */
7402 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7403 *p2++ = annex[i];
7404 i++;
7405 }
7406 *p2 = '\0';
7407 gdb_assert (annex[i] == '\0');
7408
7409 i = putpkt (rs->buf);
7410 if (i < 0)
7411 return i;
7412
7413 getpkt (&rs->buf, &rs->buf_size, 0);
7414 strcpy ((char *) readbuf, rs->buf);
7415
7416 return strlen ((char *) readbuf);
7417 }
7418
7419 static int
7420 remote_search_memory (struct target_ops* ops,
7421 CORE_ADDR start_addr, ULONGEST search_space_len,
7422 const gdb_byte *pattern, ULONGEST pattern_len,
7423 CORE_ADDR *found_addrp)
7424 {
7425 struct remote_state *rs = get_remote_state ();
7426 int max_size = get_memory_write_packet_size ();
7427 struct packet_config *packet =
7428 &remote_protocol_packets[PACKET_qSearch_memory];
7429 /* number of packet bytes used to encode the pattern,
7430 this could be more than PATTERN_LEN due to escape characters */
7431 int escaped_pattern_len;
7432 /* amount of pattern that was encodable in the packet */
7433 int used_pattern_len;
7434 int i;
7435 int found;
7436 ULONGEST found_addr;
7437
7438 /* Don't go to the target if we don't have to.
7439 This is done before checking packet->support to avoid the possibility that
7440 a success for this edge case means the facility works in general. */
7441 if (pattern_len > search_space_len)
7442 return 0;
7443 if (pattern_len == 0)
7444 {
7445 *found_addrp = start_addr;
7446 return 1;
7447 }
7448
7449 /* If we already know the packet isn't supported, fall back to the simple
7450 way of searching memory. */
7451
7452 if (packet->support == PACKET_DISABLE)
7453 {
7454 /* Target doesn't provided special support, fall back and use the
7455 standard support (copy memory and do the search here). */
7456 return simple_search_memory (ops, start_addr, search_space_len,
7457 pattern, pattern_len, found_addrp);
7458 }
7459
7460 /* Insert header. */
7461 i = snprintf (rs->buf, max_size,
7462 "qSearch:memory:%s;%s;",
7463 paddr_nz (start_addr),
7464 phex_nz (search_space_len, sizeof (search_space_len)));
7465 max_size -= (i + 1);
7466
7467 /* Escape as much data as fits into rs->buf. */
7468 escaped_pattern_len =
7469 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7470 &used_pattern_len, max_size);
7471
7472 /* Bail if the pattern is too large. */
7473 if (used_pattern_len != pattern_len)
7474 error ("Pattern is too large to transmit to remote target.");
7475
7476 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7477 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7478 || packet_ok (rs->buf, packet) != PACKET_OK)
7479 {
7480 /* The request may not have worked because the command is not
7481 supported. If so, fall back to the simple way. */
7482 if (packet->support == PACKET_DISABLE)
7483 {
7484 return simple_search_memory (ops, start_addr, search_space_len,
7485 pattern, pattern_len, found_addrp);
7486 }
7487 return -1;
7488 }
7489
7490 if (rs->buf[0] == '0')
7491 found = 0;
7492 else if (rs->buf[0] == '1')
7493 {
7494 found = 1;
7495 if (rs->buf[1] != ',')
7496 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7497 unpack_varlen_hex (rs->buf + 2, &found_addr);
7498 *found_addrp = found_addr;
7499 }
7500 else
7501 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7502
7503 return found;
7504 }
7505
7506 static void
7507 remote_rcmd (char *command,
7508 struct ui_file *outbuf)
7509 {
7510 struct remote_state *rs = get_remote_state ();
7511 char *p = rs->buf;
7512
7513 if (!remote_desc)
7514 error (_("remote rcmd is only available after target open"));
7515
7516 /* Send a NULL command across as an empty command. */
7517 if (command == NULL)
7518 command = "";
7519
7520 /* The query prefix. */
7521 strcpy (rs->buf, "qRcmd,");
7522 p = strchr (rs->buf, '\0');
7523
7524 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7525 error (_("\"monitor\" command ``%s'' is too long."), command);
7526
7527 /* Encode the actual command. */
7528 bin2hex ((gdb_byte *) command, p, 0);
7529
7530 if (putpkt (rs->buf) < 0)
7531 error (_("Communication problem with target."));
7532
7533 /* get/display the response */
7534 while (1)
7535 {
7536 char *buf;
7537
7538 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7539 rs->buf[0] = '\0';
7540 getpkt (&rs->buf, &rs->buf_size, 0);
7541 buf = rs->buf;
7542 if (buf[0] == '\0')
7543 error (_("Target does not support this command."));
7544 if (buf[0] == 'O' && buf[1] != 'K')
7545 {
7546 remote_console_output (buf + 1); /* 'O' message from stub. */
7547 continue;
7548 }
7549 if (strcmp (buf, "OK") == 0)
7550 break;
7551 if (strlen (buf) == 3 && buf[0] == 'E'
7552 && isdigit (buf[1]) && isdigit (buf[2]))
7553 {
7554 error (_("Protocol error with Rcmd"));
7555 }
7556 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7557 {
7558 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7559 fputc_unfiltered (c, outbuf);
7560 }
7561 break;
7562 }
7563 }
7564
7565 static VEC(mem_region_s) *
7566 remote_memory_map (struct target_ops *ops)
7567 {
7568 VEC(mem_region_s) *result = NULL;
7569 char *text = target_read_stralloc (&current_target,
7570 TARGET_OBJECT_MEMORY_MAP, NULL);
7571
7572 if (text)
7573 {
7574 struct cleanup *back_to = make_cleanup (xfree, text);
7575 result = parse_memory_map (text);
7576 do_cleanups (back_to);
7577 }
7578
7579 return result;
7580 }
7581
7582 static void
7583 packet_command (char *args, int from_tty)
7584 {
7585 struct remote_state *rs = get_remote_state ();
7586
7587 if (!remote_desc)
7588 error (_("command can only be used with remote target"));
7589
7590 if (!args)
7591 error (_("remote-packet command requires packet text as argument"));
7592
7593 puts_filtered ("sending: ");
7594 print_packet (args);
7595 puts_filtered ("\n");
7596 putpkt (args);
7597
7598 getpkt (&rs->buf, &rs->buf_size, 0);
7599 puts_filtered ("received: ");
7600 print_packet (rs->buf);
7601 puts_filtered ("\n");
7602 }
7603
7604 #if 0
7605 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7606
7607 static void display_thread_info (struct gdb_ext_thread_info *info);
7608
7609 static void threadset_test_cmd (char *cmd, int tty);
7610
7611 static void threadalive_test (char *cmd, int tty);
7612
7613 static void threadlist_test_cmd (char *cmd, int tty);
7614
7615 int get_and_display_threadinfo (threadref *ref);
7616
7617 static void threadinfo_test_cmd (char *cmd, int tty);
7618
7619 static int thread_display_step (threadref *ref, void *context);
7620
7621 static void threadlist_update_test_cmd (char *cmd, int tty);
7622
7623 static void init_remote_threadtests (void);
7624
7625 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7626
7627 static void
7628 threadset_test_cmd (char *cmd, int tty)
7629 {
7630 int sample_thread = SAMPLE_THREAD;
7631
7632 printf_filtered (_("Remote threadset test\n"));
7633 set_general_thread (sample_thread);
7634 }
7635
7636
7637 static void
7638 threadalive_test (char *cmd, int tty)
7639 {
7640 int sample_thread = SAMPLE_THREAD;
7641 int pid = ptid_get_pid (inferior_ptid);
7642 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7643
7644 if (remote_thread_alive (ptid))
7645 printf_filtered ("PASS: Thread alive test\n");
7646 else
7647 printf_filtered ("FAIL: Thread alive test\n");
7648 }
7649
7650 void output_threadid (char *title, threadref *ref);
7651
7652 void
7653 output_threadid (char *title, threadref *ref)
7654 {
7655 char hexid[20];
7656
7657 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7658 hexid[16] = 0;
7659 printf_filtered ("%s %s\n", title, (&hexid[0]));
7660 }
7661
7662 static void
7663 threadlist_test_cmd (char *cmd, int tty)
7664 {
7665 int startflag = 1;
7666 threadref nextthread;
7667 int done, result_count;
7668 threadref threadlist[3];
7669
7670 printf_filtered ("Remote Threadlist test\n");
7671 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7672 &result_count, &threadlist[0]))
7673 printf_filtered ("FAIL: threadlist test\n");
7674 else
7675 {
7676 threadref *scan = threadlist;
7677 threadref *limit = scan + result_count;
7678
7679 while (scan < limit)
7680 output_threadid (" thread ", scan++);
7681 }
7682 }
7683
7684 void
7685 display_thread_info (struct gdb_ext_thread_info *info)
7686 {
7687 output_threadid ("Threadid: ", &info->threadid);
7688 printf_filtered ("Name: %s\n ", info->shortname);
7689 printf_filtered ("State: %s\n", info->display);
7690 printf_filtered ("other: %s\n\n", info->more_display);
7691 }
7692
7693 int
7694 get_and_display_threadinfo (threadref *ref)
7695 {
7696 int result;
7697 int set;
7698 struct gdb_ext_thread_info threadinfo;
7699
7700 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7701 | TAG_MOREDISPLAY | TAG_DISPLAY;
7702 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7703 display_thread_info (&threadinfo);
7704 return result;
7705 }
7706
7707 static void
7708 threadinfo_test_cmd (char *cmd, int tty)
7709 {
7710 int athread = SAMPLE_THREAD;
7711 threadref thread;
7712 int set;
7713
7714 int_to_threadref (&thread, athread);
7715 printf_filtered ("Remote Threadinfo test\n");
7716 if (!get_and_display_threadinfo (&thread))
7717 printf_filtered ("FAIL cannot get thread info\n");
7718 }
7719
7720 static int
7721 thread_display_step (threadref *ref, void *context)
7722 {
7723 /* output_threadid(" threadstep ",ref); *//* simple test */
7724 return get_and_display_threadinfo (ref);
7725 }
7726
7727 static void
7728 threadlist_update_test_cmd (char *cmd, int tty)
7729 {
7730 printf_filtered ("Remote Threadlist update test\n");
7731 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7732 }
7733
7734 static void
7735 init_remote_threadtests (void)
7736 {
7737 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7738 Fetch and print the remote list of thread identifiers, one pkt only"));
7739 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7740 _("Fetch and display info about one thread"));
7741 add_com ("tset", class_obscure, threadset_test_cmd,
7742 _("Test setting to a different thread"));
7743 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7744 _("Iterate through updating all remote thread info"));
7745 add_com ("talive", class_obscure, threadalive_test,
7746 _(" Remote thread alive test "));
7747 }
7748
7749 #endif /* 0 */
7750
7751 /* Convert a thread ID to a string. Returns the string in a static
7752 buffer. */
7753
7754 static char *
7755 remote_pid_to_str (ptid_t ptid)
7756 {
7757 static char buf[64];
7758 struct remote_state *rs = get_remote_state ();
7759
7760 if (ptid_equal (magic_null_ptid, ptid))
7761 {
7762 xsnprintf (buf, sizeof buf, "Thread <main>");
7763 return buf;
7764 }
7765 else if (remote_multi_process_p (rs)
7766 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7767 {
7768 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7769 ptid_get_pid (ptid), ptid_get_tid (ptid));
7770 return buf;
7771 }
7772 else if (ptid_get_tid (ptid) != 0)
7773 {
7774 xsnprintf (buf, sizeof buf, "Thread %ld",
7775 ptid_get_tid (ptid));
7776 return buf;
7777 }
7778
7779 return normal_pid_to_str (ptid);
7780 }
7781
7782 /* Get the address of the thread local variable in OBJFILE which is
7783 stored at OFFSET within the thread local storage for thread PTID. */
7784
7785 static CORE_ADDR
7786 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7787 {
7788 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7789 {
7790 struct remote_state *rs = get_remote_state ();
7791 char *p = rs->buf;
7792 char *endp = rs->buf + get_remote_packet_size ();
7793 enum packet_result result;
7794
7795 strcpy (p, "qGetTLSAddr:");
7796 p += strlen (p);
7797 p = write_ptid (p, endp, ptid);
7798 *p++ = ',';
7799 p += hexnumstr (p, offset);
7800 *p++ = ',';
7801 p += hexnumstr (p, lm);
7802 *p++ = '\0';
7803
7804 putpkt (rs->buf);
7805 getpkt (&rs->buf, &rs->buf_size, 0);
7806 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7807 if (result == PACKET_OK)
7808 {
7809 ULONGEST result;
7810
7811 unpack_varlen_hex (rs->buf, &result);
7812 return result;
7813 }
7814 else if (result == PACKET_UNKNOWN)
7815 throw_error (TLS_GENERIC_ERROR,
7816 _("Remote target doesn't support qGetTLSAddr packet"));
7817 else
7818 throw_error (TLS_GENERIC_ERROR,
7819 _("Remote target failed to process qGetTLSAddr request"));
7820 }
7821 else
7822 throw_error (TLS_GENERIC_ERROR,
7823 _("TLS not supported or disabled on this target"));
7824 /* Not reached. */
7825 return 0;
7826 }
7827
7828 /* Support for inferring a target description based on the current
7829 architecture and the size of a 'g' packet. While the 'g' packet
7830 can have any size (since optional registers can be left off the
7831 end), some sizes are easily recognizable given knowledge of the
7832 approximate architecture. */
7833
7834 struct remote_g_packet_guess
7835 {
7836 int bytes;
7837 const struct target_desc *tdesc;
7838 };
7839 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7840 DEF_VEC_O(remote_g_packet_guess_s);
7841
7842 struct remote_g_packet_data
7843 {
7844 VEC(remote_g_packet_guess_s) *guesses;
7845 };
7846
7847 static struct gdbarch_data *remote_g_packet_data_handle;
7848
7849 static void *
7850 remote_g_packet_data_init (struct obstack *obstack)
7851 {
7852 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7853 }
7854
7855 void
7856 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7857 const struct target_desc *tdesc)
7858 {
7859 struct remote_g_packet_data *data
7860 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7861 struct remote_g_packet_guess new_guess, *guess;
7862 int ix;
7863
7864 gdb_assert (tdesc != NULL);
7865
7866 for (ix = 0;
7867 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7868 ix++)
7869 if (guess->bytes == bytes)
7870 internal_error (__FILE__, __LINE__,
7871 "Duplicate g packet description added for size %d",
7872 bytes);
7873
7874 new_guess.bytes = bytes;
7875 new_guess.tdesc = tdesc;
7876 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7877 }
7878
7879 /* Return 1 if remote_read_description would do anything on this target
7880 and architecture, 0 otherwise. */
7881
7882 static int
7883 remote_read_description_p (struct target_ops *target)
7884 {
7885 struct remote_g_packet_data *data
7886 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7887
7888 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7889 return 1;
7890
7891 return 0;
7892 }
7893
7894 static const struct target_desc *
7895 remote_read_description (struct target_ops *target)
7896 {
7897 struct remote_g_packet_data *data
7898 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7899
7900 /* Do not try this during initial connection, when we do not know
7901 whether there is a running but stopped thread. */
7902 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
7903 return NULL;
7904
7905 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7906 {
7907 struct remote_g_packet_guess *guess;
7908 int ix;
7909 int bytes = send_g_packet ();
7910
7911 for (ix = 0;
7912 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7913 ix++)
7914 if (guess->bytes == bytes)
7915 return guess->tdesc;
7916
7917 /* We discard the g packet. A minor optimization would be to
7918 hold on to it, and fill the register cache once we have selected
7919 an architecture, but it's too tricky to do safely. */
7920 }
7921
7922 return NULL;
7923 }
7924
7925 /* Remote file transfer support. This is host-initiated I/O, not
7926 target-initiated; for target-initiated, see remote-fileio.c. */
7927
7928 /* If *LEFT is at least the length of STRING, copy STRING to
7929 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7930 decrease *LEFT. Otherwise raise an error. */
7931
7932 static void
7933 remote_buffer_add_string (char **buffer, int *left, char *string)
7934 {
7935 int len = strlen (string);
7936
7937 if (len > *left)
7938 error (_("Packet too long for target."));
7939
7940 memcpy (*buffer, string, len);
7941 *buffer += len;
7942 *left -= len;
7943
7944 /* NUL-terminate the buffer as a convenience, if there is
7945 room. */
7946 if (*left)
7947 **buffer = '\0';
7948 }
7949
7950 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7951 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7952 decrease *LEFT. Otherwise raise an error. */
7953
7954 static void
7955 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7956 int len)
7957 {
7958 if (2 * len > *left)
7959 error (_("Packet too long for target."));
7960
7961 bin2hex (bytes, *buffer, len);
7962 *buffer += 2 * len;
7963 *left -= 2 * len;
7964
7965 /* NUL-terminate the buffer as a convenience, if there is
7966 room. */
7967 if (*left)
7968 **buffer = '\0';
7969 }
7970
7971 /* If *LEFT is large enough, convert VALUE to hex and add it to
7972 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7973 decrease *LEFT. Otherwise raise an error. */
7974
7975 static void
7976 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
7977 {
7978 int len = hexnumlen (value);
7979
7980 if (len > *left)
7981 error (_("Packet too long for target."));
7982
7983 hexnumstr (*buffer, value);
7984 *buffer += len;
7985 *left -= len;
7986
7987 /* NUL-terminate the buffer as a convenience, if there is
7988 room. */
7989 if (*left)
7990 **buffer = '\0';
7991 }
7992
7993 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
7994 value, *REMOTE_ERRNO to the remote error number or zero if none
7995 was included, and *ATTACHMENT to point to the start of the annex
7996 if any. The length of the packet isn't needed here; there may
7997 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
7998
7999 Return 0 if the packet could be parsed, -1 if it could not. If
8000 -1 is returned, the other variables may not be initialized. */
8001
8002 static int
8003 remote_hostio_parse_result (char *buffer, int *retcode,
8004 int *remote_errno, char **attachment)
8005 {
8006 char *p, *p2;
8007
8008 *remote_errno = 0;
8009 *attachment = NULL;
8010
8011 if (buffer[0] != 'F')
8012 return -1;
8013
8014 errno = 0;
8015 *retcode = strtol (&buffer[1], &p, 16);
8016 if (errno != 0 || p == &buffer[1])
8017 return -1;
8018
8019 /* Check for ",errno". */
8020 if (*p == ',')
8021 {
8022 errno = 0;
8023 *remote_errno = strtol (p + 1, &p2, 16);
8024 if (errno != 0 || p + 1 == p2)
8025 return -1;
8026 p = p2;
8027 }
8028
8029 /* Check for ";attachment". If there is no attachment, the
8030 packet should end here. */
8031 if (*p == ';')
8032 {
8033 *attachment = p + 1;
8034 return 0;
8035 }
8036 else if (*p == '\0')
8037 return 0;
8038 else
8039 return -1;
8040 }
8041
8042 /* Send a prepared I/O packet to the target and read its response.
8043 The prepared packet is in the global RS->BUF before this function
8044 is called, and the answer is there when we return.
8045
8046 COMMAND_BYTES is the length of the request to send, which may include
8047 binary data. WHICH_PACKET is the packet configuration to check
8048 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8049 is set to the error number and -1 is returned. Otherwise the value
8050 returned by the function is returned.
8051
8052 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8053 attachment is expected; an error will be reported if there's a
8054 mismatch. If one is found, *ATTACHMENT will be set to point into
8055 the packet buffer and *ATTACHMENT_LEN will be set to the
8056 attachment's length. */
8057
8058 static int
8059 remote_hostio_send_command (int command_bytes, int which_packet,
8060 int *remote_errno, char **attachment,
8061 int *attachment_len)
8062 {
8063 struct remote_state *rs = get_remote_state ();
8064 int ret, bytes_read;
8065 char *attachment_tmp;
8066
8067 if (!remote_desc
8068 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8069 {
8070 *remote_errno = FILEIO_ENOSYS;
8071 return -1;
8072 }
8073
8074 putpkt_binary (rs->buf, command_bytes);
8075 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8076
8077 /* If it timed out, something is wrong. Don't try to parse the
8078 buffer. */
8079 if (bytes_read < 0)
8080 {
8081 *remote_errno = FILEIO_EINVAL;
8082 return -1;
8083 }
8084
8085 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8086 {
8087 case PACKET_ERROR:
8088 *remote_errno = FILEIO_EINVAL;
8089 return -1;
8090 case PACKET_UNKNOWN:
8091 *remote_errno = FILEIO_ENOSYS;
8092 return -1;
8093 case PACKET_OK:
8094 break;
8095 }
8096
8097 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8098 &attachment_tmp))
8099 {
8100 *remote_errno = FILEIO_EINVAL;
8101 return -1;
8102 }
8103
8104 /* Make sure we saw an attachment if and only if we expected one. */
8105 if ((attachment_tmp == NULL && attachment != NULL)
8106 || (attachment_tmp != NULL && attachment == NULL))
8107 {
8108 *remote_errno = FILEIO_EINVAL;
8109 return -1;
8110 }
8111
8112 /* If an attachment was found, it must point into the packet buffer;
8113 work out how many bytes there were. */
8114 if (attachment_tmp != NULL)
8115 {
8116 *attachment = attachment_tmp;
8117 *attachment_len = bytes_read - (*attachment - rs->buf);
8118 }
8119
8120 return ret;
8121 }
8122
8123 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8124 remote file descriptor, or -1 if an error occurs (and set
8125 *REMOTE_ERRNO). */
8126
8127 static int
8128 remote_hostio_open (const char *filename, int flags, int mode,
8129 int *remote_errno)
8130 {
8131 struct remote_state *rs = get_remote_state ();
8132 char *p = rs->buf;
8133 int left = get_remote_packet_size () - 1;
8134
8135 remote_buffer_add_string (&p, &left, "vFile:open:");
8136
8137 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8138 strlen (filename));
8139 remote_buffer_add_string (&p, &left, ",");
8140
8141 remote_buffer_add_int (&p, &left, flags);
8142 remote_buffer_add_string (&p, &left, ",");
8143
8144 remote_buffer_add_int (&p, &left, mode);
8145
8146 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8147 remote_errno, NULL, NULL);
8148 }
8149
8150 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8151 Return the number of bytes written, or -1 if an error occurs (and
8152 set *REMOTE_ERRNO). */
8153
8154 static int
8155 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8156 ULONGEST offset, int *remote_errno)
8157 {
8158 struct remote_state *rs = get_remote_state ();
8159 char *p = rs->buf;
8160 int left = get_remote_packet_size ();
8161 int out_len;
8162
8163 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8164
8165 remote_buffer_add_int (&p, &left, fd);
8166 remote_buffer_add_string (&p, &left, ",");
8167
8168 remote_buffer_add_int (&p, &left, offset);
8169 remote_buffer_add_string (&p, &left, ",");
8170
8171 p += remote_escape_output (write_buf, len, p, &out_len,
8172 get_remote_packet_size () - (p - rs->buf));
8173
8174 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8175 remote_errno, NULL, NULL);
8176 }
8177
8178 /* Read up to LEN bytes FD on the remote target into READ_BUF
8179 Return the number of bytes read, or -1 if an error occurs (and
8180 set *REMOTE_ERRNO). */
8181
8182 static int
8183 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8184 ULONGEST offset, int *remote_errno)
8185 {
8186 struct remote_state *rs = get_remote_state ();
8187 char *p = rs->buf;
8188 char *attachment;
8189 int left = get_remote_packet_size ();
8190 int ret, attachment_len;
8191 int read_len;
8192
8193 remote_buffer_add_string (&p, &left, "vFile:pread:");
8194
8195 remote_buffer_add_int (&p, &left, fd);
8196 remote_buffer_add_string (&p, &left, ",");
8197
8198 remote_buffer_add_int (&p, &left, len);
8199 remote_buffer_add_string (&p, &left, ",");
8200
8201 remote_buffer_add_int (&p, &left, offset);
8202
8203 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8204 remote_errno, &attachment,
8205 &attachment_len);
8206
8207 if (ret < 0)
8208 return ret;
8209
8210 read_len = remote_unescape_input (attachment, attachment_len,
8211 read_buf, len);
8212 if (read_len != ret)
8213 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8214
8215 return ret;
8216 }
8217
8218 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8219 (and set *REMOTE_ERRNO). */
8220
8221 static int
8222 remote_hostio_close (int fd, int *remote_errno)
8223 {
8224 struct remote_state *rs = get_remote_state ();
8225 char *p = rs->buf;
8226 int left = get_remote_packet_size () - 1;
8227
8228 remote_buffer_add_string (&p, &left, "vFile:close:");
8229
8230 remote_buffer_add_int (&p, &left, fd);
8231
8232 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8233 remote_errno, NULL, NULL);
8234 }
8235
8236 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8237 occurs (and set *REMOTE_ERRNO). */
8238
8239 static int
8240 remote_hostio_unlink (const char *filename, int *remote_errno)
8241 {
8242 struct remote_state *rs = get_remote_state ();
8243 char *p = rs->buf;
8244 int left = get_remote_packet_size () - 1;
8245
8246 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8247
8248 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8249 strlen (filename));
8250
8251 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8252 remote_errno, NULL, NULL);
8253 }
8254
8255 static int
8256 remote_fileio_errno_to_host (int errnum)
8257 {
8258 switch (errnum)
8259 {
8260 case FILEIO_EPERM:
8261 return EPERM;
8262 case FILEIO_ENOENT:
8263 return ENOENT;
8264 case FILEIO_EINTR:
8265 return EINTR;
8266 case FILEIO_EIO:
8267 return EIO;
8268 case FILEIO_EBADF:
8269 return EBADF;
8270 case FILEIO_EACCES:
8271 return EACCES;
8272 case FILEIO_EFAULT:
8273 return EFAULT;
8274 case FILEIO_EBUSY:
8275 return EBUSY;
8276 case FILEIO_EEXIST:
8277 return EEXIST;
8278 case FILEIO_ENODEV:
8279 return ENODEV;
8280 case FILEIO_ENOTDIR:
8281 return ENOTDIR;
8282 case FILEIO_EISDIR:
8283 return EISDIR;
8284 case FILEIO_EINVAL:
8285 return EINVAL;
8286 case FILEIO_ENFILE:
8287 return ENFILE;
8288 case FILEIO_EMFILE:
8289 return EMFILE;
8290 case FILEIO_EFBIG:
8291 return EFBIG;
8292 case FILEIO_ENOSPC:
8293 return ENOSPC;
8294 case FILEIO_ESPIPE:
8295 return ESPIPE;
8296 case FILEIO_EROFS:
8297 return EROFS;
8298 case FILEIO_ENOSYS:
8299 return ENOSYS;
8300 case FILEIO_ENAMETOOLONG:
8301 return ENAMETOOLONG;
8302 }
8303 return -1;
8304 }
8305
8306 static char *
8307 remote_hostio_error (int errnum)
8308 {
8309 int host_error = remote_fileio_errno_to_host (errnum);
8310
8311 if (host_error == -1)
8312 error (_("Unknown remote I/O error %d"), errnum);
8313 else
8314 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8315 }
8316
8317 static void
8318 remote_hostio_close_cleanup (void *opaque)
8319 {
8320 int fd = *(int *) opaque;
8321 int remote_errno;
8322
8323 remote_hostio_close (fd, &remote_errno);
8324 }
8325
8326
8327 static void *
8328 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8329 {
8330 const char *filename = bfd_get_filename (abfd);
8331 int fd, remote_errno;
8332 int *stream;
8333
8334 gdb_assert (remote_filename_p (filename));
8335
8336 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8337 if (fd == -1)
8338 {
8339 errno = remote_fileio_errno_to_host (remote_errno);
8340 bfd_set_error (bfd_error_system_call);
8341 return NULL;
8342 }
8343
8344 stream = xmalloc (sizeof (int));
8345 *stream = fd;
8346 return stream;
8347 }
8348
8349 static int
8350 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8351 {
8352 int fd = *(int *)stream;
8353 int remote_errno;
8354
8355 xfree (stream);
8356
8357 /* Ignore errors on close; these may happen if the remote
8358 connection was already torn down. */
8359 remote_hostio_close (fd, &remote_errno);
8360
8361 return 1;
8362 }
8363
8364 static file_ptr
8365 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8366 file_ptr nbytes, file_ptr offset)
8367 {
8368 int fd = *(int *)stream;
8369 int remote_errno;
8370 file_ptr pos, bytes;
8371
8372 pos = 0;
8373 while (nbytes > pos)
8374 {
8375 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8376 offset + pos, &remote_errno);
8377 if (bytes == 0)
8378 /* Success, but no bytes, means end-of-file. */
8379 break;
8380 if (bytes == -1)
8381 {
8382 errno = remote_fileio_errno_to_host (remote_errno);
8383 bfd_set_error (bfd_error_system_call);
8384 return -1;
8385 }
8386
8387 pos += bytes;
8388 }
8389
8390 return pos;
8391 }
8392
8393 static int
8394 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8395 {
8396 /* FIXME: We should probably implement remote_hostio_stat. */
8397 sb->st_size = INT_MAX;
8398 return 0;
8399 }
8400
8401 int
8402 remote_filename_p (const char *filename)
8403 {
8404 return strncmp (filename, "remote:", 7) == 0;
8405 }
8406
8407 bfd *
8408 remote_bfd_open (const char *remote_file, const char *target)
8409 {
8410 return bfd_openr_iovec (remote_file, target,
8411 remote_bfd_iovec_open, NULL,
8412 remote_bfd_iovec_pread,
8413 remote_bfd_iovec_close,
8414 remote_bfd_iovec_stat);
8415 }
8416
8417 void
8418 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8419 {
8420 struct cleanup *back_to, *close_cleanup;
8421 int retcode, fd, remote_errno, bytes, io_size;
8422 FILE *file;
8423 gdb_byte *buffer;
8424 int bytes_in_buffer;
8425 int saw_eof;
8426 ULONGEST offset;
8427
8428 if (!remote_desc)
8429 error (_("command can only be used with remote target"));
8430
8431 file = fopen (local_file, "rb");
8432 if (file == NULL)
8433 perror_with_name (local_file);
8434 back_to = make_cleanup_fclose (file);
8435
8436 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8437 | FILEIO_O_TRUNC),
8438 0700, &remote_errno);
8439 if (fd == -1)
8440 remote_hostio_error (remote_errno);
8441
8442 /* Send up to this many bytes at once. They won't all fit in the
8443 remote packet limit, so we'll transfer slightly fewer. */
8444 io_size = get_remote_packet_size ();
8445 buffer = xmalloc (io_size);
8446 make_cleanup (xfree, buffer);
8447
8448 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8449
8450 bytes_in_buffer = 0;
8451 saw_eof = 0;
8452 offset = 0;
8453 while (bytes_in_buffer || !saw_eof)
8454 {
8455 if (!saw_eof)
8456 {
8457 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8458 file);
8459 if (bytes == 0)
8460 {
8461 if (ferror (file))
8462 error (_("Error reading %s."), local_file);
8463 else
8464 {
8465 /* EOF. Unless there is something still in the
8466 buffer from the last iteration, we are done. */
8467 saw_eof = 1;
8468 if (bytes_in_buffer == 0)
8469 break;
8470 }
8471 }
8472 }
8473 else
8474 bytes = 0;
8475
8476 bytes += bytes_in_buffer;
8477 bytes_in_buffer = 0;
8478
8479 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8480
8481 if (retcode < 0)
8482 remote_hostio_error (remote_errno);
8483 else if (retcode == 0)
8484 error (_("Remote write of %d bytes returned 0!"), bytes);
8485 else if (retcode < bytes)
8486 {
8487 /* Short write. Save the rest of the read data for the next
8488 write. */
8489 bytes_in_buffer = bytes - retcode;
8490 memmove (buffer, buffer + retcode, bytes_in_buffer);
8491 }
8492
8493 offset += retcode;
8494 }
8495
8496 discard_cleanups (close_cleanup);
8497 if (remote_hostio_close (fd, &remote_errno))
8498 remote_hostio_error (remote_errno);
8499
8500 if (from_tty)
8501 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8502 do_cleanups (back_to);
8503 }
8504
8505 void
8506 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8507 {
8508 struct cleanup *back_to, *close_cleanup;
8509 int retcode, fd, remote_errno, bytes, io_size;
8510 FILE *file;
8511 gdb_byte *buffer;
8512 ULONGEST offset;
8513
8514 if (!remote_desc)
8515 error (_("command can only be used with remote target"));
8516
8517 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8518 if (fd == -1)
8519 remote_hostio_error (remote_errno);
8520
8521 file = fopen (local_file, "wb");
8522 if (file == NULL)
8523 perror_with_name (local_file);
8524 back_to = make_cleanup_fclose (file);
8525
8526 /* Send up to this many bytes at once. They won't all fit in the
8527 remote packet limit, so we'll transfer slightly fewer. */
8528 io_size = get_remote_packet_size ();
8529 buffer = xmalloc (io_size);
8530 make_cleanup (xfree, buffer);
8531
8532 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8533
8534 offset = 0;
8535 while (1)
8536 {
8537 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8538 if (bytes == 0)
8539 /* Success, but no bytes, means end-of-file. */
8540 break;
8541 if (bytes == -1)
8542 remote_hostio_error (remote_errno);
8543
8544 offset += bytes;
8545
8546 bytes = fwrite (buffer, 1, bytes, file);
8547 if (bytes == 0)
8548 perror_with_name (local_file);
8549 }
8550
8551 discard_cleanups (close_cleanup);
8552 if (remote_hostio_close (fd, &remote_errno))
8553 remote_hostio_error (remote_errno);
8554
8555 if (from_tty)
8556 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8557 do_cleanups (back_to);
8558 }
8559
8560 void
8561 remote_file_delete (const char *remote_file, int from_tty)
8562 {
8563 int retcode, remote_errno;
8564
8565 if (!remote_desc)
8566 error (_("command can only be used with remote target"));
8567
8568 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8569 if (retcode == -1)
8570 remote_hostio_error (remote_errno);
8571
8572 if (from_tty)
8573 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8574 }
8575
8576 static void
8577 remote_put_command (char *args, int from_tty)
8578 {
8579 struct cleanup *back_to;
8580 char **argv;
8581
8582 if (args == NULL)
8583 error_no_arg (_("file to put"));
8584
8585 argv = gdb_buildargv (args);
8586 back_to = make_cleanup_freeargv (argv);
8587 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8588 error (_("Invalid parameters to remote put"));
8589
8590 remote_file_put (argv[0], argv[1], from_tty);
8591
8592 do_cleanups (back_to);
8593 }
8594
8595 static void
8596 remote_get_command (char *args, int from_tty)
8597 {
8598 struct cleanup *back_to;
8599 char **argv;
8600
8601 if (args == NULL)
8602 error_no_arg (_("file to get"));
8603
8604 argv = gdb_buildargv (args);
8605 back_to = make_cleanup_freeargv (argv);
8606 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8607 error (_("Invalid parameters to remote get"));
8608
8609 remote_file_get (argv[0], argv[1], from_tty);
8610
8611 do_cleanups (back_to);
8612 }
8613
8614 static void
8615 remote_delete_command (char *args, int from_tty)
8616 {
8617 struct cleanup *back_to;
8618 char **argv;
8619
8620 if (args == NULL)
8621 error_no_arg (_("file to delete"));
8622
8623 argv = gdb_buildargv (args);
8624 back_to = make_cleanup_freeargv (argv);
8625 if (argv[0] == NULL || argv[1] != NULL)
8626 error (_("Invalid parameters to remote delete"));
8627
8628 remote_file_delete (argv[0], from_tty);
8629
8630 do_cleanups (back_to);
8631 }
8632
8633 static void
8634 remote_command (char *args, int from_tty)
8635 {
8636 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8637 }
8638
8639 static int remote_target_can_reverse = 1;
8640
8641 static int
8642 remote_can_execute_reverse (void)
8643 {
8644 return remote_target_can_reverse;
8645 }
8646
8647 static int
8648 remote_supports_non_stop (void)
8649 {
8650 return 1;
8651 }
8652
8653 static int
8654 remote_supports_multi_process (void)
8655 {
8656 struct remote_state *rs = get_remote_state ();
8657 return remote_multi_process_p (rs);
8658 }
8659
8660 static int
8661 extended_remote_can_run (void)
8662 {
8663 if (remote_desc != NULL)
8664 return 1;
8665
8666 return 0;
8667 }
8668
8669 static void
8670 init_remote_ops (void)
8671 {
8672 remote_ops.to_shortname = "remote";
8673 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8674 remote_ops.to_doc =
8675 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8676 Specify the serial device it is connected to\n\
8677 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8678 remote_ops.to_open = remote_open;
8679 remote_ops.to_close = remote_close;
8680 remote_ops.to_detach = remote_detach;
8681 remote_ops.to_disconnect = remote_disconnect;
8682 remote_ops.to_resume = remote_resume;
8683 remote_ops.to_wait = remote_wait;
8684 remote_ops.to_fetch_registers = remote_fetch_registers;
8685 remote_ops.to_store_registers = remote_store_registers;
8686 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8687 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8688 remote_ops.to_files_info = remote_files_info;
8689 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8690 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8691 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8692 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8693 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8694 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8695 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8696 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8697 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8698 remote_ops.to_kill = remote_kill;
8699 remote_ops.to_load = generic_load;
8700 remote_ops.to_mourn_inferior = remote_mourn;
8701 remote_ops.to_thread_alive = remote_thread_alive;
8702 remote_ops.to_find_new_threads = remote_threads_info;
8703 remote_ops.to_pid_to_str = remote_pid_to_str;
8704 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8705 remote_ops.to_stop = remote_stop;
8706 remote_ops.to_xfer_partial = remote_xfer_partial;
8707 remote_ops.to_rcmd = remote_rcmd;
8708 remote_ops.to_log_command = serial_log_command;
8709 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8710 remote_ops.to_stratum = process_stratum;
8711 remote_ops.to_has_all_memory = 1;
8712 remote_ops.to_has_memory = 1;
8713 remote_ops.to_has_stack = 1;
8714 remote_ops.to_has_registers = 1;
8715 remote_ops.to_has_execution = 1;
8716 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8717 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8718 remote_ops.to_magic = OPS_MAGIC;
8719 remote_ops.to_memory_map = remote_memory_map;
8720 remote_ops.to_flash_erase = remote_flash_erase;
8721 remote_ops.to_flash_done = remote_flash_done;
8722 remote_ops.to_read_description = remote_read_description;
8723 remote_ops.to_search_memory = remote_search_memory;
8724 remote_ops.to_can_async_p = remote_can_async_p;
8725 remote_ops.to_is_async_p = remote_is_async_p;
8726 remote_ops.to_async = remote_async;
8727 remote_ops.to_async_mask = remote_async_mask;
8728 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8729 remote_ops.to_terminal_ours = remote_terminal_ours;
8730 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8731 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8732 }
8733
8734 /* Set up the extended remote vector by making a copy of the standard
8735 remote vector and adding to it. */
8736
8737 static void
8738 init_extended_remote_ops (void)
8739 {
8740 extended_remote_ops = remote_ops;
8741
8742 extended_remote_ops.to_shortname = "extended-remote";
8743 extended_remote_ops.to_longname =
8744 "Extended remote serial target in gdb-specific protocol";
8745 extended_remote_ops.to_doc =
8746 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8747 Specify the serial device it is connected to (e.g. /dev/ttya).";
8748 extended_remote_ops.to_open = extended_remote_open;
8749 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8750 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8751 extended_remote_ops.to_detach = extended_remote_detach;
8752 extended_remote_ops.to_attach = extended_remote_attach;
8753 extended_remote_ops.to_kill = extended_remote_kill;
8754 extended_remote_ops.to_can_run = extended_remote_can_run;
8755 }
8756
8757 static int
8758 remote_can_async_p (void)
8759 {
8760 if (!target_async_permitted)
8761 /* We only enable async when the user specifically asks for it. */
8762 return 0;
8763
8764 /* We're async whenever the serial device is. */
8765 return remote_async_mask_value && serial_can_async_p (remote_desc);
8766 }
8767
8768 static int
8769 remote_is_async_p (void)
8770 {
8771 if (!target_async_permitted)
8772 /* We only enable async when the user specifically asks for it. */
8773 return 0;
8774
8775 /* We're async whenever the serial device is. */
8776 return remote_async_mask_value && serial_is_async_p (remote_desc);
8777 }
8778
8779 /* Pass the SERIAL event on and up to the client. One day this code
8780 will be able to delay notifying the client of an event until the
8781 point where an entire packet has been received. */
8782
8783 static void (*async_client_callback) (enum inferior_event_type event_type,
8784 void *context);
8785 static void *async_client_context;
8786 static serial_event_ftype remote_async_serial_handler;
8787
8788 static void
8789 remote_async_serial_handler (struct serial *scb, void *context)
8790 {
8791 /* Don't propogate error information up to the client. Instead let
8792 the client find out about the error by querying the target. */
8793 async_client_callback (INF_REG_EVENT, async_client_context);
8794 }
8795
8796 static void
8797 remote_async_inferior_event_handler (gdb_client_data data)
8798 {
8799 inferior_event_handler (INF_REG_EVENT, NULL);
8800 }
8801
8802 static void
8803 remote_async_get_pending_events_handler (gdb_client_data data)
8804 {
8805 remote_get_pending_stop_replies ();
8806 }
8807
8808 static void
8809 remote_async (void (*callback) (enum inferior_event_type event_type,
8810 void *context), void *context)
8811 {
8812 if (remote_async_mask_value == 0)
8813 internal_error (__FILE__, __LINE__,
8814 _("Calling remote_async when async is masked"));
8815
8816 if (callback != NULL)
8817 {
8818 serial_async (remote_desc, remote_async_serial_handler, NULL);
8819 async_client_callback = callback;
8820 async_client_context = context;
8821 }
8822 else
8823 serial_async (remote_desc, NULL, NULL);
8824 }
8825
8826 static int
8827 remote_async_mask (int new_mask)
8828 {
8829 int curr_mask = remote_async_mask_value;
8830 remote_async_mask_value = new_mask;
8831 return curr_mask;
8832 }
8833
8834 static void
8835 set_remote_cmd (char *args, int from_tty)
8836 {
8837 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8838 }
8839
8840 static void
8841 show_remote_cmd (char *args, int from_tty)
8842 {
8843 /* We can't just use cmd_show_list here, because we want to skip
8844 the redundant "show remote Z-packet" and the legacy aliases. */
8845 struct cleanup *showlist_chain;
8846 struct cmd_list_element *list = remote_show_cmdlist;
8847
8848 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8849 for (; list != NULL; list = list->next)
8850 if (strcmp (list->name, "Z-packet") == 0)
8851 continue;
8852 else if (list->type == not_set_cmd)
8853 /* Alias commands are exactly like the original, except they
8854 don't have the normal type. */
8855 continue;
8856 else
8857 {
8858 struct cleanup *option_chain
8859 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8860 ui_out_field_string (uiout, "name", list->name);
8861 ui_out_text (uiout, ": ");
8862 if (list->type == show_cmd)
8863 do_setshow_command ((char *) NULL, from_tty, list);
8864 else
8865 cmd_func (list, NULL, from_tty);
8866 /* Close the tuple. */
8867 do_cleanups (option_chain);
8868 }
8869
8870 /* Close the tuple. */
8871 do_cleanups (showlist_chain);
8872 }
8873
8874
8875 /* Function to be called whenever a new objfile (shlib) is detected. */
8876 static void
8877 remote_new_objfile (struct objfile *objfile)
8878 {
8879 if (remote_desc != 0) /* Have a remote connection. */
8880 remote_check_symbols (objfile);
8881 }
8882
8883 void
8884 _initialize_remote (void)
8885 {
8886 struct remote_state *rs;
8887
8888 /* architecture specific data */
8889 remote_gdbarch_data_handle =
8890 gdbarch_data_register_post_init (init_remote_state);
8891 remote_g_packet_data_handle =
8892 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8893
8894 /* Initialize the per-target state. At the moment there is only one
8895 of these, not one per target. Only one target is active at a
8896 time. The default buffer size is unimportant; it will be expanded
8897 whenever a larger buffer is needed. */
8898 rs = get_remote_state_raw ();
8899 rs->buf_size = 400;
8900 rs->buf = xmalloc (rs->buf_size);
8901
8902 init_remote_ops ();
8903 add_target (&remote_ops);
8904
8905 init_extended_remote_ops ();
8906 add_target (&extended_remote_ops);
8907
8908 /* Hook into new objfile notification. */
8909 observer_attach_new_objfile (remote_new_objfile);
8910
8911 /* Set up signal handlers. */
8912 sigint_remote_token =
8913 create_async_signal_handler (async_remote_interrupt, NULL);
8914 sigint_remote_twice_token =
8915 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8916
8917 #if 0
8918 init_remote_threadtests ();
8919 #endif
8920
8921 /* set/show remote ... */
8922
8923 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8924 Remote protocol specific variables\n\
8925 Configure various remote-protocol specific variables such as\n\
8926 the packets being used"),
8927 &remote_set_cmdlist, "set remote ",
8928 0 /* allow-unknown */, &setlist);
8929 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8930 Remote protocol specific variables\n\
8931 Configure various remote-protocol specific variables such as\n\
8932 the packets being used"),
8933 &remote_show_cmdlist, "show remote ",
8934 0 /* allow-unknown */, &showlist);
8935
8936 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8937 Compare section data on target to the exec file.\n\
8938 Argument is a single section name (default: all loaded sections)."),
8939 &cmdlist);
8940
8941 add_cmd ("packet", class_maintenance, packet_command, _("\
8942 Send an arbitrary packet to a remote target.\n\
8943 maintenance packet TEXT\n\
8944 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8945 this command sends the string TEXT to the inferior, and displays the\n\
8946 response packet. GDB supplies the initial `$' character, and the\n\
8947 terminating `#' character and checksum."),
8948 &maintenancelist);
8949
8950 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8951 Set whether to send break if interrupted."), _("\
8952 Show whether to send break if interrupted."), _("\
8953 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8954 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8955 &setlist, &showlist);
8956
8957 /* Install commands for configuring memory read/write packets. */
8958
8959 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8960 Set the maximum number of bytes per memory write packet (deprecated)."),
8961 &setlist);
8962 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8963 Show the maximum number of bytes per memory write packet (deprecated)."),
8964 &showlist);
8965 add_cmd ("memory-write-packet-size", no_class,
8966 set_memory_write_packet_size, _("\
8967 Set the maximum number of bytes per memory-write packet.\n\
8968 Specify the number of bytes in a packet or 0 (zero) for the\n\
8969 default packet size. The actual limit is further reduced\n\
8970 dependent on the target. Specify ``fixed'' to disable the\n\
8971 further restriction and ``limit'' to enable that restriction."),
8972 &remote_set_cmdlist);
8973 add_cmd ("memory-read-packet-size", no_class,
8974 set_memory_read_packet_size, _("\
8975 Set the maximum number of bytes per memory-read packet.\n\
8976 Specify the number of bytes in a packet or 0 (zero) for the\n\
8977 default packet size. The actual limit is further reduced\n\
8978 dependent on the target. Specify ``fixed'' to disable the\n\
8979 further restriction and ``limit'' to enable that restriction."),
8980 &remote_set_cmdlist);
8981 add_cmd ("memory-write-packet-size", no_class,
8982 show_memory_write_packet_size,
8983 _("Show the maximum number of bytes per memory-write packet."),
8984 &remote_show_cmdlist);
8985 add_cmd ("memory-read-packet-size", no_class,
8986 show_memory_read_packet_size,
8987 _("Show the maximum number of bytes per memory-read packet."),
8988 &remote_show_cmdlist);
8989
8990 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
8991 &remote_hw_watchpoint_limit, _("\
8992 Set the maximum number of target hardware watchpoints."), _("\
8993 Show the maximum number of target hardware watchpoints."), _("\
8994 Specify a negative limit for unlimited."),
8995 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
8996 &remote_set_cmdlist, &remote_show_cmdlist);
8997 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
8998 &remote_hw_breakpoint_limit, _("\
8999 Set the maximum number of target hardware breakpoints."), _("\
9000 Show the maximum number of target hardware breakpoints."), _("\
9001 Specify a negative limit for unlimited."),
9002 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9003 &remote_set_cmdlist, &remote_show_cmdlist);
9004
9005 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9006 &remote_address_size, _("\
9007 Set the maximum size of the address (in bits) in a memory packet."), _("\
9008 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9009 NULL,
9010 NULL, /* FIXME: i18n: */
9011 &setlist, &showlist);
9012
9013 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9014 "X", "binary-download", 1);
9015
9016 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9017 "vCont", "verbose-resume", 0);
9018
9019 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9020 "QPassSignals", "pass-signals", 0);
9021
9022 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9023 "qSymbol", "symbol-lookup", 0);
9024
9025 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9026 "P", "set-register", 1);
9027
9028 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9029 "p", "fetch-register", 1);
9030
9031 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9032 "Z0", "software-breakpoint", 0);
9033
9034 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9035 "Z1", "hardware-breakpoint", 0);
9036
9037 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9038 "Z2", "write-watchpoint", 0);
9039
9040 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9041 "Z3", "read-watchpoint", 0);
9042
9043 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9044 "Z4", "access-watchpoint", 0);
9045
9046 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9047 "qXfer:auxv:read", "read-aux-vector", 0);
9048
9049 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9050 "qXfer:features:read", "target-features", 0);
9051
9052 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9053 "qXfer:libraries:read", "library-info", 0);
9054
9055 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9056 "qXfer:memory-map:read", "memory-map", 0);
9057
9058 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9059 "qXfer:spu:read", "read-spu-object", 0);
9060
9061 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9062 "qXfer:spu:write", "write-spu-object", 0);
9063
9064 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9065 "qXfer:osdata:read", "osdata", 0);
9066
9067 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9068 "qGetTLSAddr", "get-thread-local-storage-address",
9069 0);
9070
9071 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9072 "qSupported", "supported-packets", 0);
9073
9074 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9075 "qSearch:memory", "search-memory", 0);
9076
9077 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9078 "vFile:open", "hostio-open", 0);
9079
9080 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9081 "vFile:pread", "hostio-pread", 0);
9082
9083 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9084 "vFile:pwrite", "hostio-pwrite", 0);
9085
9086 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9087 "vFile:close", "hostio-close", 0);
9088
9089 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9090 "vFile:unlink", "hostio-unlink", 0);
9091
9092 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9093 "vAttach", "attach", 0);
9094
9095 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9096 "vRun", "run", 0);
9097
9098 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9099 "QStartNoAckMode", "noack", 0);
9100
9101 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9102 "vKill", "kill", 0);
9103
9104 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9105 Z sub-packet has its own set and show commands, but users may
9106 have sets to this variable in their .gdbinit files (or in their
9107 documentation). */
9108 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9109 &remote_Z_packet_detect, _("\
9110 Set use of remote protocol `Z' packets"), _("\
9111 Show use of remote protocol `Z' packets "), _("\
9112 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9113 packets."),
9114 set_remote_protocol_Z_packet_cmd,
9115 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9116 &remote_set_cmdlist, &remote_show_cmdlist);
9117
9118 add_prefix_cmd ("remote", class_files, remote_command, _("\
9119 Manipulate files on the remote system\n\
9120 Transfer files to and from the remote target system."),
9121 &remote_cmdlist, "remote ",
9122 0 /* allow-unknown */, &cmdlist);
9123
9124 add_cmd ("put", class_files, remote_put_command,
9125 _("Copy a local file to the remote system."),
9126 &remote_cmdlist);
9127
9128 add_cmd ("get", class_files, remote_get_command,
9129 _("Copy a remote file to the local system."),
9130 &remote_cmdlist);
9131
9132 add_cmd ("delete", class_files, remote_delete_command,
9133 _("Delete a remote file."),
9134 &remote_cmdlist);
9135
9136 remote_exec_file = xstrdup ("");
9137 add_setshow_string_noescape_cmd ("exec-file", class_files,
9138 &remote_exec_file, _("\
9139 Set the remote pathname for \"run\""), _("\
9140 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9141 &remote_set_cmdlist, &remote_show_cmdlist);
9142
9143 /* Eventually initialize fileio. See fileio.c */
9144 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9145
9146 /* Take advantage of the fact that the LWP field is not used, to tag
9147 special ptids with it set to != 0. */
9148 magic_null_ptid = ptid_build (42000, 1, -1);
9149 not_sent_ptid = ptid_build (42000, 1, -2);
9150 any_thread_ptid = ptid_build (42000, 1, 0);
9151 }