]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* target.h (TARGET_WNOHANG): New.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]))
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231 int pid = ptid_get_pid (currthread);
1232
1233 if (ptid_is_pid (inferior_ptid)
1234 && pid == ptid_get_pid (inferior_ptid))
1235 {
1236 /* inferior_ptid has no thread member yet. This can happen
1237 with the vAttach -> remote_wait,"TAAthread:" path if the
1238 stub doesn't support qC. This is the first stop reported
1239 after an attach, so this is the main thread. Update the
1240 ptid in the thread list. */
1241 if (in_thread_list (pid_to_ptid (pid)))
1242 thread_change_ptid (inferior_ptid, currthread);
1243 else
1244 {
1245 remote_add_thread (currthread, running);
1246 inferior_ptid = currthread;
1247 }
1248 return;
1249 }
1250
1251 if (ptid_equal (magic_null_ptid, inferior_ptid))
1252 {
1253 /* inferior_ptid is not set yet. This can happen with the
1254 vRun -> remote_wait,"TAAthread:" path if the stub
1255 doesn't support qC. This is the first stop reported
1256 after an attach, so this is the main thread. Update the
1257 ptid in the thread list. */
1258 thread_change_ptid (inferior_ptid, currthread);
1259 return;
1260 }
1261
1262 /* When connecting to a target remote, or to a target
1263 extended-remote which already was debugging an inferior, we
1264 may not know about it yet. Add it before adding its child
1265 thread, so notifications are emitted in a sensible order. */
1266 if (!in_inferior_list (ptid_get_pid (currthread)))
1267 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1268
1269 /* This is really a new thread. Add it. */
1270 remote_add_thread (currthread, running);
1271
1272 /* If we found a new inferior, let the common code do whatever
1273 it needs to with it (e.g., read shared libraries, insert
1274 breakpoints). */
1275 if (inf != NULL)
1276 notice_new_inferior (currthread, running, 0);
1277 }
1278 }
1279
1280 /* Call this function as a result of
1281 1) A halt indication (T packet) containing a thread id
1282 2) A direct query of currthread
1283 3) Successful execution of set thread
1284 */
1285
1286 static void
1287 record_currthread (ptid_t currthread)
1288 {
1289 general_thread = currthread;
1290
1291 if (ptid_equal (currthread, minus_one_ptid))
1292 /* We're just invalidating the local thread mirror. */
1293 return;
1294
1295 remote_notice_new_inferior (currthread, 0);
1296 }
1297
1298 static char *last_pass_packet;
1299
1300 /* If 'QPassSignals' is supported, tell the remote stub what signals
1301 it can simply pass through to the inferior without reporting. */
1302
1303 static void
1304 remote_pass_signals (void)
1305 {
1306 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1307 {
1308 char *pass_packet, *p;
1309 int numsigs = (int) TARGET_SIGNAL_LAST;
1310 int count = 0, i;
1311
1312 gdb_assert (numsigs < 256);
1313 for (i = 0; i < numsigs; i++)
1314 {
1315 if (signal_stop_state (i) == 0
1316 && signal_print_state (i) == 0
1317 && signal_pass_state (i) == 1)
1318 count++;
1319 }
1320 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1321 strcpy (pass_packet, "QPassSignals:");
1322 p = pass_packet + strlen (pass_packet);
1323 for (i = 0; i < numsigs; i++)
1324 {
1325 if (signal_stop_state (i) == 0
1326 && signal_print_state (i) == 0
1327 && signal_pass_state (i) == 1)
1328 {
1329 if (i >= 16)
1330 *p++ = tohex (i >> 4);
1331 *p++ = tohex (i & 15);
1332 if (count)
1333 *p++ = ';';
1334 else
1335 break;
1336 count--;
1337 }
1338 }
1339 *p = 0;
1340 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1341 {
1342 struct remote_state *rs = get_remote_state ();
1343 char *buf = rs->buf;
1344
1345 putpkt (pass_packet);
1346 getpkt (&rs->buf, &rs->buf_size, 0);
1347 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1348 if (last_pass_packet)
1349 xfree (last_pass_packet);
1350 last_pass_packet = pass_packet;
1351 }
1352 else
1353 xfree (pass_packet);
1354 }
1355 }
1356
1357 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1358 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1359 thread. If GEN is set, set the general thread, if not, then set
1360 the step/continue thread. */
1361 static void
1362 set_thread (struct ptid ptid, int gen)
1363 {
1364 struct remote_state *rs = get_remote_state ();
1365 ptid_t state = gen ? general_thread : continue_thread;
1366 char *buf = rs->buf;
1367 char *endbuf = rs->buf + get_remote_packet_size ();
1368
1369 if (ptid_equal (state, ptid))
1370 return;
1371
1372 *buf++ = 'H';
1373 *buf++ = gen ? 'g' : 'c';
1374 if (ptid_equal (ptid, magic_null_ptid))
1375 xsnprintf (buf, endbuf - buf, "0");
1376 else if (ptid_equal (ptid, any_thread_ptid))
1377 xsnprintf (buf, endbuf - buf, "0");
1378 else if (ptid_equal (ptid, minus_one_ptid))
1379 xsnprintf (buf, endbuf - buf, "-1");
1380 else
1381 write_ptid (buf, endbuf, ptid);
1382 putpkt (rs->buf);
1383 getpkt (&rs->buf, &rs->buf_size, 0);
1384 if (gen)
1385 general_thread = ptid;
1386 else
1387 continue_thread = ptid;
1388 }
1389
1390 static void
1391 set_general_thread (struct ptid ptid)
1392 {
1393 set_thread (ptid, 1);
1394 }
1395
1396 static void
1397 set_continue_thread (struct ptid ptid)
1398 {
1399 set_thread (ptid, 0);
1400 }
1401
1402 /* Change the remote current process. Which thread within the process
1403 ends up selected isn't important, as long as it is the same process
1404 as what INFERIOR_PTID points to.
1405
1406 This comes from that fact that there is no explicit notion of
1407 "selected process" in the protocol. The selected process for
1408 general operations is the process the selected general thread
1409 belongs to. */
1410
1411 static void
1412 set_general_process (void)
1413 {
1414 struct remote_state *rs = get_remote_state ();
1415
1416 /* If the remote can't handle multiple processes, don't bother. */
1417 if (!remote_multi_process_p (rs))
1418 return;
1419
1420 /* We only need to change the remote current thread if it's pointing
1421 at some other process. */
1422 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1423 set_general_thread (inferior_ptid);
1424 }
1425
1426 \f
1427 /* Return nonzero if the thread PTID is still alive on the remote
1428 system. */
1429
1430 static int
1431 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 int tid = ptid_get_tid (ptid);
1435 char *p, *endp;
1436
1437 if (ptid_equal (ptid, magic_null_ptid))
1438 /* The main thread is always alive. */
1439 return 1;
1440
1441 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1442 /* The main thread is always alive. This can happen after a
1443 vAttach, if the remote side doesn't support
1444 multi-threading. */
1445 return 1;
1446
1447 p = rs->buf;
1448 endp = rs->buf + get_remote_packet_size ();
1449
1450 *p++ = 'T';
1451 write_ptid (p, endp, ptid);
1452
1453 putpkt (rs->buf);
1454 getpkt (&rs->buf, &rs->buf_size, 0);
1455 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1456 }
1457
1458 /* About these extended threadlist and threadinfo packets. They are
1459 variable length packets but, the fields within them are often fixed
1460 length. They are redundent enough to send over UDP as is the
1461 remote protocol in general. There is a matching unit test module
1462 in libstub. */
1463
1464 #define OPAQUETHREADBYTES 8
1465
1466 /* a 64 bit opaque identifier */
1467 typedef unsigned char threadref[OPAQUETHREADBYTES];
1468
1469 /* WARNING: This threadref data structure comes from the remote O.S.,
1470 libstub protocol encoding, and remote.c. it is not particularly
1471 changable. */
1472
1473 /* Right now, the internal structure is int. We want it to be bigger.
1474 Plan to fix this.
1475 */
1476
1477 typedef int gdb_threadref; /* Internal GDB thread reference. */
1478
1479 /* gdb_ext_thread_info is an internal GDB data structure which is
1480 equivalent to the reply of the remote threadinfo packet. */
1481
1482 struct gdb_ext_thread_info
1483 {
1484 threadref threadid; /* External form of thread reference. */
1485 int active; /* Has state interesting to GDB?
1486 regs, stack. */
1487 char display[256]; /* Brief state display, name,
1488 blocked/suspended. */
1489 char shortname[32]; /* To be used to name threads. */
1490 char more_display[256]; /* Long info, statistics, queue depth,
1491 whatever. */
1492 };
1493
1494 /* The volume of remote transfers can be limited by submitting
1495 a mask containing bits specifying the desired information.
1496 Use a union of these values as the 'selection' parameter to
1497 get_thread_info. FIXME: Make these TAG names more thread specific.
1498 */
1499
1500 #define TAG_THREADID 1
1501 #define TAG_EXISTS 2
1502 #define TAG_DISPLAY 4
1503 #define TAG_THREADNAME 8
1504 #define TAG_MOREDISPLAY 16
1505
1506 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1507
1508 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1509
1510 static char *unpack_nibble (char *buf, int *val);
1511
1512 static char *pack_nibble (char *buf, int nibble);
1513
1514 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1515
1516 static char *unpack_byte (char *buf, int *value);
1517
1518 static char *pack_int (char *buf, int value);
1519
1520 static char *unpack_int (char *buf, int *value);
1521
1522 static char *unpack_string (char *src, char *dest, int length);
1523
1524 static char *pack_threadid (char *pkt, threadref *id);
1525
1526 static char *unpack_threadid (char *inbuf, threadref *id);
1527
1528 void int_to_threadref (threadref *id, int value);
1529
1530 static int threadref_to_int (threadref *ref);
1531
1532 static void copy_threadref (threadref *dest, threadref *src);
1533
1534 static int threadmatch (threadref *dest, threadref *src);
1535
1536 static char *pack_threadinfo_request (char *pkt, int mode,
1537 threadref *id);
1538
1539 static int remote_unpack_thread_info_response (char *pkt,
1540 threadref *expectedref,
1541 struct gdb_ext_thread_info
1542 *info);
1543
1544
1545 static int remote_get_threadinfo (threadref *threadid,
1546 int fieldset, /*TAG mask */
1547 struct gdb_ext_thread_info *info);
1548
1549 static char *pack_threadlist_request (char *pkt, int startflag,
1550 int threadcount,
1551 threadref *nextthread);
1552
1553 static int parse_threadlist_response (char *pkt,
1554 int result_limit,
1555 threadref *original_echo,
1556 threadref *resultlist,
1557 int *doneflag);
1558
1559 static int remote_get_threadlist (int startflag,
1560 threadref *nextthread,
1561 int result_limit,
1562 int *done,
1563 int *result_count,
1564 threadref *threadlist);
1565
1566 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1567
1568 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1569 void *context, int looplimit);
1570
1571 static int remote_newthread_step (threadref *ref, void *context);
1572
1573
1574 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1575 buffer we're allowed to write to. Returns
1576 BUF+CHARACTERS_WRITTEN. */
1577
1578 static char *
1579 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1580 {
1581 int pid, tid;
1582 struct remote_state *rs = get_remote_state ();
1583
1584 if (remote_multi_process_p (rs))
1585 {
1586 pid = ptid_get_pid (ptid);
1587 if (pid < 0)
1588 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1589 else
1590 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1591 }
1592 tid = ptid_get_tid (ptid);
1593 if (tid < 0)
1594 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1595 else
1596 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1597
1598 return buf;
1599 }
1600
1601 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1602 passed the last parsed char. Returns null_ptid on error. */
1603
1604 static ptid_t
1605 read_ptid (char *buf, char **obuf)
1606 {
1607 char *p = buf;
1608 char *pp;
1609 ULONGEST pid = 0, tid = 0;
1610 ptid_t ptid;
1611
1612 if (*p == 'p')
1613 {
1614 /* Multi-process ptid. */
1615 pp = unpack_varlen_hex (p + 1, &pid);
1616 if (*pp != '.')
1617 error (_("invalid remote ptid: %s\n"), p);
1618
1619 p = pp;
1620 pp = unpack_varlen_hex (p + 1, &tid);
1621 if (obuf)
1622 *obuf = pp;
1623 return ptid_build (pid, 0, tid);
1624 }
1625
1626 /* No multi-process. Just a tid. */
1627 pp = unpack_varlen_hex (p, &tid);
1628
1629 /* Since the stub is not sending a process id, then default to
1630 what's in inferior_ptid, unless it's null at this point. If so,
1631 then since there's no way to know the pid of the reported
1632 threads, use the magic number. */
1633 if (ptid_equal (inferior_ptid, null_ptid))
1634 pid = ptid_get_pid (magic_null_ptid);
1635 else
1636 pid = ptid_get_pid (inferior_ptid);
1637
1638 if (obuf)
1639 *obuf = pp;
1640 return ptid_build (pid, 0, tid);
1641 }
1642
1643 /* Encode 64 bits in 16 chars of hex. */
1644
1645 static const char hexchars[] = "0123456789abcdef";
1646
1647 static int
1648 ishex (int ch, int *val)
1649 {
1650 if ((ch >= 'a') && (ch <= 'f'))
1651 {
1652 *val = ch - 'a' + 10;
1653 return 1;
1654 }
1655 if ((ch >= 'A') && (ch <= 'F'))
1656 {
1657 *val = ch - 'A' + 10;
1658 return 1;
1659 }
1660 if ((ch >= '0') && (ch <= '9'))
1661 {
1662 *val = ch - '0';
1663 return 1;
1664 }
1665 return 0;
1666 }
1667
1668 static int
1669 stubhex (int ch)
1670 {
1671 if (ch >= 'a' && ch <= 'f')
1672 return ch - 'a' + 10;
1673 if (ch >= '0' && ch <= '9')
1674 return ch - '0';
1675 if (ch >= 'A' && ch <= 'F')
1676 return ch - 'A' + 10;
1677 return -1;
1678 }
1679
1680 static int
1681 stub_unpack_int (char *buff, int fieldlength)
1682 {
1683 int nibble;
1684 int retval = 0;
1685
1686 while (fieldlength)
1687 {
1688 nibble = stubhex (*buff++);
1689 retval |= nibble;
1690 fieldlength--;
1691 if (fieldlength)
1692 retval = retval << 4;
1693 }
1694 return retval;
1695 }
1696
1697 char *
1698 unpack_varlen_hex (char *buff, /* packet to parse */
1699 ULONGEST *result)
1700 {
1701 int nibble;
1702 ULONGEST retval = 0;
1703
1704 while (ishex (*buff, &nibble))
1705 {
1706 buff++;
1707 retval = retval << 4;
1708 retval |= nibble & 0x0f;
1709 }
1710 *result = retval;
1711 return buff;
1712 }
1713
1714 static char *
1715 unpack_nibble (char *buf, int *val)
1716 {
1717 *val = fromhex (*buf++);
1718 return buf;
1719 }
1720
1721 static char *
1722 pack_nibble (char *buf, int nibble)
1723 {
1724 *buf++ = hexchars[(nibble & 0x0f)];
1725 return buf;
1726 }
1727
1728 static char *
1729 pack_hex_byte (char *pkt, int byte)
1730 {
1731 *pkt++ = hexchars[(byte >> 4) & 0xf];
1732 *pkt++ = hexchars[(byte & 0xf)];
1733 return pkt;
1734 }
1735
1736 static char *
1737 unpack_byte (char *buf, int *value)
1738 {
1739 *value = stub_unpack_int (buf, 2);
1740 return buf + 2;
1741 }
1742
1743 static char *
1744 pack_int (char *buf, int value)
1745 {
1746 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1747 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1748 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1749 buf = pack_hex_byte (buf, (value & 0xff));
1750 return buf;
1751 }
1752
1753 static char *
1754 unpack_int (char *buf, int *value)
1755 {
1756 *value = stub_unpack_int (buf, 8);
1757 return buf + 8;
1758 }
1759
1760 #if 0 /* Currently unused, uncomment when needed. */
1761 static char *pack_string (char *pkt, char *string);
1762
1763 static char *
1764 pack_string (char *pkt, char *string)
1765 {
1766 char ch;
1767 int len;
1768
1769 len = strlen (string);
1770 if (len > 200)
1771 len = 200; /* Bigger than most GDB packets, junk??? */
1772 pkt = pack_hex_byte (pkt, len);
1773 while (len-- > 0)
1774 {
1775 ch = *string++;
1776 if ((ch == '\0') || (ch == '#'))
1777 ch = '*'; /* Protect encapsulation. */
1778 *pkt++ = ch;
1779 }
1780 return pkt;
1781 }
1782 #endif /* 0 (unused) */
1783
1784 static char *
1785 unpack_string (char *src, char *dest, int length)
1786 {
1787 while (length--)
1788 *dest++ = *src++;
1789 *dest = '\0';
1790 return src;
1791 }
1792
1793 static char *
1794 pack_threadid (char *pkt, threadref *id)
1795 {
1796 char *limit;
1797 unsigned char *altid;
1798
1799 altid = (unsigned char *) id;
1800 limit = pkt + BUF_THREAD_ID_SIZE;
1801 while (pkt < limit)
1802 pkt = pack_hex_byte (pkt, *altid++);
1803 return pkt;
1804 }
1805
1806
1807 static char *
1808 unpack_threadid (char *inbuf, threadref *id)
1809 {
1810 char *altref;
1811 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1812 int x, y;
1813
1814 altref = (char *) id;
1815
1816 while (inbuf < limit)
1817 {
1818 x = stubhex (*inbuf++);
1819 y = stubhex (*inbuf++);
1820 *altref++ = (x << 4) | y;
1821 }
1822 return inbuf;
1823 }
1824
1825 /* Externally, threadrefs are 64 bits but internally, they are still
1826 ints. This is due to a mismatch of specifications. We would like
1827 to use 64bit thread references internally. This is an adapter
1828 function. */
1829
1830 void
1831 int_to_threadref (threadref *id, int value)
1832 {
1833 unsigned char *scan;
1834
1835 scan = (unsigned char *) id;
1836 {
1837 int i = 4;
1838 while (i--)
1839 *scan++ = 0;
1840 }
1841 *scan++ = (value >> 24) & 0xff;
1842 *scan++ = (value >> 16) & 0xff;
1843 *scan++ = (value >> 8) & 0xff;
1844 *scan++ = (value & 0xff);
1845 }
1846
1847 static int
1848 threadref_to_int (threadref *ref)
1849 {
1850 int i, value = 0;
1851 unsigned char *scan;
1852
1853 scan = *ref;
1854 scan += 4;
1855 i = 4;
1856 while (i-- > 0)
1857 value = (value << 8) | ((*scan++) & 0xff);
1858 return value;
1859 }
1860
1861 static void
1862 copy_threadref (threadref *dest, threadref *src)
1863 {
1864 int i;
1865 unsigned char *csrc, *cdest;
1866
1867 csrc = (unsigned char *) src;
1868 cdest = (unsigned char *) dest;
1869 i = 8;
1870 while (i--)
1871 *cdest++ = *csrc++;
1872 }
1873
1874 static int
1875 threadmatch (threadref *dest, threadref *src)
1876 {
1877 /* Things are broken right now, so just assume we got a match. */
1878 #if 0
1879 unsigned char *srcp, *destp;
1880 int i, result;
1881 srcp = (char *) src;
1882 destp = (char *) dest;
1883
1884 result = 1;
1885 while (i-- > 0)
1886 result &= (*srcp++ == *destp++) ? 1 : 0;
1887 return result;
1888 #endif
1889 return 1;
1890 }
1891
1892 /*
1893 threadid:1, # always request threadid
1894 context_exists:2,
1895 display:4,
1896 unique_name:8,
1897 more_display:16
1898 */
1899
1900 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1901
1902 static char *
1903 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1904 {
1905 *pkt++ = 'q'; /* Info Query */
1906 *pkt++ = 'P'; /* process or thread info */
1907 pkt = pack_int (pkt, mode); /* mode */
1908 pkt = pack_threadid (pkt, id); /* threadid */
1909 *pkt = '\0'; /* terminate */
1910 return pkt;
1911 }
1912
1913 /* These values tag the fields in a thread info response packet. */
1914 /* Tagging the fields allows us to request specific fields and to
1915 add more fields as time goes by. */
1916
1917 #define TAG_THREADID 1 /* Echo the thread identifier. */
1918 #define TAG_EXISTS 2 /* Is this process defined enough to
1919 fetch registers and its stack? */
1920 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1921 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1922 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1923 the process. */
1924
1925 static int
1926 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1927 struct gdb_ext_thread_info *info)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930 int mask, length;
1931 int tag;
1932 threadref ref;
1933 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1934 int retval = 1;
1935
1936 /* info->threadid = 0; FIXME: implement zero_threadref. */
1937 info->active = 0;
1938 info->display[0] = '\0';
1939 info->shortname[0] = '\0';
1940 info->more_display[0] = '\0';
1941
1942 /* Assume the characters indicating the packet type have been
1943 stripped. */
1944 pkt = unpack_int (pkt, &mask); /* arg mask */
1945 pkt = unpack_threadid (pkt, &ref);
1946
1947 if (mask == 0)
1948 warning (_("Incomplete response to threadinfo request."));
1949 if (!threadmatch (&ref, expectedref))
1950 { /* This is an answer to a different request. */
1951 warning (_("ERROR RMT Thread info mismatch."));
1952 return 0;
1953 }
1954 copy_threadref (&info->threadid, &ref);
1955
1956 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1957
1958 /* Packets are terminated with nulls. */
1959 while ((pkt < limit) && mask && *pkt)
1960 {
1961 pkt = unpack_int (pkt, &tag); /* tag */
1962 pkt = unpack_byte (pkt, &length); /* length */
1963 if (!(tag & mask)) /* Tags out of synch with mask. */
1964 {
1965 warning (_("ERROR RMT: threadinfo tag mismatch."));
1966 retval = 0;
1967 break;
1968 }
1969 if (tag == TAG_THREADID)
1970 {
1971 if (length != 16)
1972 {
1973 warning (_("ERROR RMT: length of threadid is not 16."));
1974 retval = 0;
1975 break;
1976 }
1977 pkt = unpack_threadid (pkt, &ref);
1978 mask = mask & ~TAG_THREADID;
1979 continue;
1980 }
1981 if (tag == TAG_EXISTS)
1982 {
1983 info->active = stub_unpack_int (pkt, length);
1984 pkt += length;
1985 mask = mask & ~(TAG_EXISTS);
1986 if (length > 8)
1987 {
1988 warning (_("ERROR RMT: 'exists' length too long."));
1989 retval = 0;
1990 break;
1991 }
1992 continue;
1993 }
1994 if (tag == TAG_THREADNAME)
1995 {
1996 pkt = unpack_string (pkt, &info->shortname[0], length);
1997 mask = mask & ~TAG_THREADNAME;
1998 continue;
1999 }
2000 if (tag == TAG_DISPLAY)
2001 {
2002 pkt = unpack_string (pkt, &info->display[0], length);
2003 mask = mask & ~TAG_DISPLAY;
2004 continue;
2005 }
2006 if (tag == TAG_MOREDISPLAY)
2007 {
2008 pkt = unpack_string (pkt, &info->more_display[0], length);
2009 mask = mask & ~TAG_MOREDISPLAY;
2010 continue;
2011 }
2012 warning (_("ERROR RMT: unknown thread info tag."));
2013 break; /* Not a tag we know about. */
2014 }
2015 return retval;
2016 }
2017
2018 static int
2019 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2020 struct gdb_ext_thread_info *info)
2021 {
2022 struct remote_state *rs = get_remote_state ();
2023 int result;
2024
2025 pack_threadinfo_request (rs->buf, fieldset, threadid);
2026 putpkt (rs->buf);
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2028
2029 if (rs->buf[0] == '\0')
2030 return 0;
2031
2032 result = remote_unpack_thread_info_response (rs->buf + 2,
2033 threadid, info);
2034 return result;
2035 }
2036
2037 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2038
2039 static char *
2040 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2041 threadref *nextthread)
2042 {
2043 *pkt++ = 'q'; /* info query packet */
2044 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2045 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2046 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2047 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2048 *pkt = '\0';
2049 return pkt;
2050 }
2051
2052 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2053
2054 static int
2055 parse_threadlist_response (char *pkt, int result_limit,
2056 threadref *original_echo, threadref *resultlist,
2057 int *doneflag)
2058 {
2059 struct remote_state *rs = get_remote_state ();
2060 char *limit;
2061 int count, resultcount, done;
2062
2063 resultcount = 0;
2064 /* Assume the 'q' and 'M chars have been stripped. */
2065 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2066 /* done parse past here */
2067 pkt = unpack_byte (pkt, &count); /* count field */
2068 pkt = unpack_nibble (pkt, &done);
2069 /* The first threadid is the argument threadid. */
2070 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2071 while ((count-- > 0) && (pkt < limit))
2072 {
2073 pkt = unpack_threadid (pkt, resultlist++);
2074 if (resultcount++ >= result_limit)
2075 break;
2076 }
2077 if (doneflag)
2078 *doneflag = done;
2079 return resultcount;
2080 }
2081
2082 static int
2083 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2084 int *done, int *result_count, threadref *threadlist)
2085 {
2086 struct remote_state *rs = get_remote_state ();
2087 static threadref echo_nextthread;
2088 int result = 1;
2089
2090 /* Trancate result limit to be smaller than the packet size. */
2091 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2092 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2093
2094 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2095 putpkt (rs->buf);
2096 getpkt (&rs->buf, &rs->buf_size, 0);
2097
2098 if (*rs->buf == '\0')
2099 *result_count = 0;
2100 else
2101 *result_count =
2102 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2103 threadlist, done);
2104
2105 if (!threadmatch (&echo_nextthread, nextthread))
2106 {
2107 /* FIXME: This is a good reason to drop the packet. */
2108 /* Possably, there is a duplicate response. */
2109 /* Possabilities :
2110 retransmit immediatly - race conditions
2111 retransmit after timeout - yes
2112 exit
2113 wait for packet, then exit
2114 */
2115 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2116 return 0; /* I choose simply exiting. */
2117 }
2118 if (*result_count <= 0)
2119 {
2120 if (*done != 1)
2121 {
2122 warning (_("RMT ERROR : failed to get remote thread list."));
2123 result = 0;
2124 }
2125 return result; /* break; */
2126 }
2127 if (*result_count > result_limit)
2128 {
2129 *result_count = 0;
2130 warning (_("RMT ERROR: threadlist response longer than requested."));
2131 return 0;
2132 }
2133 return result;
2134 }
2135
2136 /* This is the interface between remote and threads, remotes upper
2137 interface. */
2138
2139 /* remote_find_new_threads retrieves the thread list and for each
2140 thread in the list, looks up the thread in GDB's internal list,
2141 adding the thread if it does not already exist. This involves
2142 getting partial thread lists from the remote target so, polling the
2143 quit_flag is required. */
2144
2145
2146 /* About this many threadisds fit in a packet. */
2147
2148 #define MAXTHREADLISTRESULTS 32
2149
2150 static int
2151 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2152 int looplimit)
2153 {
2154 int done, i, result_count;
2155 int startflag = 1;
2156 int result = 1;
2157 int loopcount = 0;
2158 static threadref nextthread;
2159 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2160
2161 done = 0;
2162 while (!done)
2163 {
2164 if (loopcount++ > looplimit)
2165 {
2166 result = 0;
2167 warning (_("Remote fetch threadlist -infinite loop-."));
2168 break;
2169 }
2170 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2171 &done, &result_count, resultthreadlist))
2172 {
2173 result = 0;
2174 break;
2175 }
2176 /* Clear for later iterations. */
2177 startflag = 0;
2178 /* Setup to resume next batch of thread references, set nextthread. */
2179 if (result_count >= 1)
2180 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2181 i = 0;
2182 while (result_count--)
2183 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2184 break;
2185 }
2186 return result;
2187 }
2188
2189 static int
2190 remote_newthread_step (threadref *ref, void *context)
2191 {
2192 int pid = ptid_get_pid (inferior_ptid);
2193 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2194
2195 if (!in_thread_list (ptid))
2196 add_thread (ptid);
2197 return 1; /* continue iterator */
2198 }
2199
2200 #define CRAZY_MAX_THREADS 1000
2201
2202 static ptid_t
2203 remote_current_thread (ptid_t oldpid)
2204 {
2205 struct remote_state *rs = get_remote_state ();
2206 char *p = rs->buf;
2207 int tid;
2208 int pid;
2209
2210 putpkt ("qC");
2211 getpkt (&rs->buf, &rs->buf_size, 0);
2212 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2213 return read_ptid (&rs->buf[2], NULL);
2214 else
2215 return oldpid;
2216 }
2217
2218 /* Find new threads for info threads command.
2219 * Original version, using John Metzler's thread protocol.
2220 */
2221
2222 static void
2223 remote_find_new_threads (void)
2224 {
2225 remote_threadlist_iterator (remote_newthread_step, 0,
2226 CRAZY_MAX_THREADS);
2227 }
2228
2229 /*
2230 * Find all threads for info threads command.
2231 * Uses new thread protocol contributed by Cisco.
2232 * Falls back and attempts to use the older method (above)
2233 * if the target doesn't respond to the new method.
2234 */
2235
2236 static void
2237 remote_threads_info (struct target_ops *ops)
2238 {
2239 struct remote_state *rs = get_remote_state ();
2240 char *bufp;
2241 ptid_t new_thread;
2242
2243 if (remote_desc == 0) /* paranoia */
2244 error (_("Command can only be used when connected to the remote target."));
2245
2246 if (use_threadinfo_query)
2247 {
2248 putpkt ("qfThreadInfo");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 bufp = rs->buf;
2251 if (bufp[0] != '\0') /* q packet recognized */
2252 {
2253 while (*bufp++ == 'm') /* reply contains one or more TID */
2254 {
2255 do
2256 {
2257 new_thread = read_ptid (bufp, &bufp);
2258 if (!ptid_equal (new_thread, null_ptid))
2259 {
2260 /* In non-stop mode, we assume new found threads
2261 are running until proven otherwise with a
2262 stop reply. In all-stop, we can only get
2263 here if all threads are stopped. */
2264 int running = non_stop ? 1 : 0;
2265
2266 remote_notice_new_inferior (new_thread, running);
2267 }
2268 }
2269 while (*bufp++ == ','); /* comma-separated list */
2270 putpkt ("qsThreadInfo");
2271 getpkt (&rs->buf, &rs->buf_size, 0);
2272 bufp = rs->buf;
2273 }
2274 return; /* done */
2275 }
2276 }
2277
2278 /* Only qfThreadInfo is supported in non-stop mode. */
2279 if (non_stop)
2280 return;
2281
2282 /* Else fall back to old method based on jmetzler protocol. */
2283 use_threadinfo_query = 0;
2284 remote_find_new_threads ();
2285 return;
2286 }
2287
2288 /*
2289 * Collect a descriptive string about the given thread.
2290 * The target may say anything it wants to about the thread
2291 * (typically info about its blocked / runnable state, name, etc.).
2292 * This string will appear in the info threads display.
2293 *
2294 * Optional: targets are not required to implement this function.
2295 */
2296
2297 static char *
2298 remote_threads_extra_info (struct thread_info *tp)
2299 {
2300 struct remote_state *rs = get_remote_state ();
2301 int result;
2302 int set;
2303 threadref id;
2304 struct gdb_ext_thread_info threadinfo;
2305 static char display_buf[100]; /* arbitrary... */
2306 int n = 0; /* position in display_buf */
2307
2308 if (remote_desc == 0) /* paranoia */
2309 internal_error (__FILE__, __LINE__,
2310 _("remote_threads_extra_info"));
2311
2312 if (ptid_equal (tp->ptid, magic_null_ptid)
2313 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2314 /* This is the main thread which was added by GDB. The remote
2315 server doesn't know about it. */
2316 return NULL;
2317
2318 if (use_threadextra_query)
2319 {
2320 char *b = rs->buf;
2321 char *endb = rs->buf + get_remote_packet_size ();
2322
2323 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2324 b += strlen (b);
2325 write_ptid (b, endb, tp->ptid);
2326
2327 putpkt (rs->buf);
2328 getpkt (&rs->buf, &rs->buf_size, 0);
2329 if (rs->buf[0] != 0)
2330 {
2331 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2332 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2333 display_buf [result] = '\0';
2334 return display_buf;
2335 }
2336 }
2337
2338 /* If the above query fails, fall back to the old method. */
2339 use_threadextra_query = 0;
2340 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2341 | TAG_MOREDISPLAY | TAG_DISPLAY;
2342 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2343 if (remote_get_threadinfo (&id, set, &threadinfo))
2344 if (threadinfo.active)
2345 {
2346 if (*threadinfo.shortname)
2347 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2348 " Name: %s,", threadinfo.shortname);
2349 if (*threadinfo.display)
2350 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2351 " State: %s,", threadinfo.display);
2352 if (*threadinfo.more_display)
2353 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2354 " Priority: %s", threadinfo.more_display);
2355
2356 if (n > 0)
2357 {
2358 /* For purely cosmetic reasons, clear up trailing commas. */
2359 if (',' == display_buf[n-1])
2360 display_buf[n-1] = ' ';
2361 return display_buf;
2362 }
2363 }
2364 return NULL;
2365 }
2366 \f
2367
2368 /* Restart the remote side; this is an extended protocol operation. */
2369
2370 static void
2371 extended_remote_restart (void)
2372 {
2373 struct remote_state *rs = get_remote_state ();
2374
2375 /* Send the restart command; for reasons I don't understand the
2376 remote side really expects a number after the "R". */
2377 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2378 putpkt (rs->buf);
2379
2380 remote_fileio_reset ();
2381 }
2382 \f
2383 /* Clean up connection to a remote debugger. */
2384
2385 static void
2386 remote_close (int quitting)
2387 {
2388 if (remote_desc == NULL)
2389 return; /* already closed */
2390
2391 /* Make sure we leave stdin registered in the event loop, and we
2392 don't leave the async SIGINT signal handler installed. */
2393 remote_terminal_ours ();
2394
2395 serial_close (remote_desc);
2396 remote_desc = NULL;
2397
2398 /* We don't have a connection to the remote stub anymore. Get rid
2399 of all the inferiors and their threads we were controlling. */
2400 discard_all_inferiors ();
2401
2402 /* We're no longer interested in any of these events. */
2403 discard_pending_stop_replies (-1);
2404
2405 if (remote_async_inferior_event_token)
2406 delete_async_event_handler (&remote_async_inferior_event_token);
2407 if (remote_async_get_pending_events_token)
2408 delete_async_event_handler (&remote_async_get_pending_events_token);
2409 }
2410
2411 /* Query the remote side for the text, data and bss offsets. */
2412
2413 static void
2414 get_offsets (void)
2415 {
2416 struct remote_state *rs = get_remote_state ();
2417 char *buf;
2418 char *ptr;
2419 int lose, num_segments = 0, do_sections, do_segments;
2420 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2421 struct section_offsets *offs;
2422 struct symfile_segment_data *data;
2423
2424 if (symfile_objfile == NULL)
2425 return;
2426
2427 putpkt ("qOffsets");
2428 getpkt (&rs->buf, &rs->buf_size, 0);
2429 buf = rs->buf;
2430
2431 if (buf[0] == '\000')
2432 return; /* Return silently. Stub doesn't support
2433 this command. */
2434 if (buf[0] == 'E')
2435 {
2436 warning (_("Remote failure reply: %s"), buf);
2437 return;
2438 }
2439
2440 /* Pick up each field in turn. This used to be done with scanf, but
2441 scanf will make trouble if CORE_ADDR size doesn't match
2442 conversion directives correctly. The following code will work
2443 with any size of CORE_ADDR. */
2444 text_addr = data_addr = bss_addr = 0;
2445 ptr = buf;
2446 lose = 0;
2447
2448 if (strncmp (ptr, "Text=", 5) == 0)
2449 {
2450 ptr += 5;
2451 /* Don't use strtol, could lose on big values. */
2452 while (*ptr && *ptr != ';')
2453 text_addr = (text_addr << 4) + fromhex (*ptr++);
2454
2455 if (strncmp (ptr, ";Data=", 6) == 0)
2456 {
2457 ptr += 6;
2458 while (*ptr && *ptr != ';')
2459 data_addr = (data_addr << 4) + fromhex (*ptr++);
2460 }
2461 else
2462 lose = 1;
2463
2464 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2465 {
2466 ptr += 5;
2467 while (*ptr && *ptr != ';')
2468 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2469
2470 if (bss_addr != data_addr)
2471 warning (_("Target reported unsupported offsets: %s"), buf);
2472 }
2473 else
2474 lose = 1;
2475 }
2476 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2477 {
2478 ptr += 8;
2479 /* Don't use strtol, could lose on big values. */
2480 while (*ptr && *ptr != ';')
2481 text_addr = (text_addr << 4) + fromhex (*ptr++);
2482 num_segments = 1;
2483
2484 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2485 {
2486 ptr += 9;
2487 while (*ptr && *ptr != ';')
2488 data_addr = (data_addr << 4) + fromhex (*ptr++);
2489 num_segments++;
2490 }
2491 }
2492 else
2493 lose = 1;
2494
2495 if (lose)
2496 error (_("Malformed response to offset query, %s"), buf);
2497 else if (*ptr != '\0')
2498 warning (_("Target reported unsupported offsets: %s"), buf);
2499
2500 offs = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2502 memcpy (offs, symfile_objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2504
2505 data = get_symfile_segment_data (symfile_objfile->obfd);
2506 do_segments = (data != NULL);
2507 do_sections = num_segments == 0;
2508
2509 if (num_segments > 0)
2510 {
2511 segments[0] = text_addr;
2512 segments[1] = data_addr;
2513 }
2514 /* If we have two segments, we can still try to relocate everything
2515 by assuming that the .text and .data offsets apply to the whole
2516 text and data segments. Convert the offsets given in the packet
2517 to base addresses for symfile_map_offsets_to_segments. */
2518 else if (data && data->num_segments == 2)
2519 {
2520 segments[0] = data->segment_bases[0] + text_addr;
2521 segments[1] = data->segment_bases[1] + data_addr;
2522 num_segments = 2;
2523 }
2524 /* If the object file has only one segment, assume that it is text
2525 rather than data; main programs with no writable data are rare,
2526 but programs with no code are useless. Of course the code might
2527 have ended up in the data segment... to detect that we would need
2528 the permissions here. */
2529 else if (data && data->num_segments == 1)
2530 {
2531 segments[0] = data->segment_bases[0] + text_addr;
2532 num_segments = 1;
2533 }
2534 /* There's no way to relocate by segment. */
2535 else
2536 do_segments = 0;
2537
2538 if (do_segments)
2539 {
2540 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2541 offs, num_segments, segments);
2542
2543 if (ret == 0 && !do_sections)
2544 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2545
2546 if (ret > 0)
2547 do_sections = 0;
2548 }
2549
2550 if (data)
2551 free_symfile_segment_data (data);
2552
2553 if (do_sections)
2554 {
2555 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2556
2557 /* This is a temporary kludge to force data and bss to use the same offsets
2558 because that's what nlmconv does now. The real solution requires changes
2559 to the stub and remote.c that I don't have time to do right now. */
2560
2561 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2562 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2563 }
2564
2565 objfile_relocate (symfile_objfile, offs);
2566 }
2567
2568 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2569 threads we know are stopped already. This is used during the
2570 initial remote connection in non-stop mode --- threads that are
2571 reported as already being stopped are left stopped. */
2572
2573 static int
2574 set_stop_requested_callback (struct thread_info *thread, void *data)
2575 {
2576 /* If we have a stop reply for this thread, it must be stopped. */
2577 if (peek_stop_reply (thread->ptid))
2578 set_stop_requested (thread->ptid, 1);
2579
2580 return 0;
2581 }
2582
2583 /* Stub for catch_exception. */
2584
2585 struct start_remote_args
2586 {
2587 int from_tty;
2588
2589 /* The current target. */
2590 struct target_ops *target;
2591
2592 /* Non-zero if this is an extended-remote target. */
2593 int extended_p;
2594 };
2595
2596 static void
2597 remote_start_remote (struct ui_out *uiout, void *opaque)
2598 {
2599 struct start_remote_args *args = opaque;
2600 struct remote_state *rs = get_remote_state ();
2601 struct packet_config *noack_config;
2602 char *wait_status = NULL;
2603
2604 immediate_quit++; /* Allow user to interrupt it. */
2605
2606 /* Ack any packet which the remote side has already sent. */
2607 serial_write (remote_desc, "+", 1);
2608
2609 /* The first packet we send to the target is the optional "supported
2610 packets" request. If the target can answer this, it will tell us
2611 which later probes to skip. */
2612 remote_query_supported ();
2613
2614 /* Next, we possibly activate noack mode.
2615
2616 If the QStartNoAckMode packet configuration is set to AUTO,
2617 enable noack mode if the stub reported a wish for it with
2618 qSupported.
2619
2620 If set to TRUE, then enable noack mode even if the stub didn't
2621 report it in qSupported. If the stub doesn't reply OK, the
2622 session ends with an error.
2623
2624 If FALSE, then don't activate noack mode, regardless of what the
2625 stub claimed should be the default with qSupported. */
2626
2627 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2628
2629 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2630 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2631 && noack_config->support == PACKET_ENABLE))
2632 {
2633 putpkt ("QStartNoAckMode");
2634 getpkt (&rs->buf, &rs->buf_size, 0);
2635 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2636 rs->noack_mode = 1;
2637 }
2638
2639 if (args->extended_p)
2640 {
2641 /* Tell the remote that we are using the extended protocol. */
2642 putpkt ("!");
2643 getpkt (&rs->buf, &rs->buf_size, 0);
2644 }
2645
2646 /* Next, if the target can specify a description, read it. We do
2647 this before anything involving memory or registers. */
2648 target_find_description ();
2649
2650 /* On OSs where the list of libraries is global to all
2651 processes, we fetch them early. */
2652 if (gdbarch_has_global_solist (target_gdbarch))
2653 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2654
2655 if (non_stop)
2656 {
2657 if (!rs->non_stop_aware)
2658 error (_("Non-stop mode requested, but remote does not support non-stop"));
2659
2660 putpkt ("QNonStop:1");
2661 getpkt (&rs->buf, &rs->buf_size, 0);
2662
2663 if (strcmp (rs->buf, "OK") != 0)
2664 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2665
2666 /* Find about threads and processes the stub is already
2667 controlling. We default to adding them in the running state.
2668 The '?' query below will then tell us about which threads are
2669 stopped. */
2670 remote_threads_info (args->target);
2671 }
2672 else if (rs->non_stop_aware)
2673 {
2674 /* Don't assume that the stub can operate in all-stop mode.
2675 Request it explicitely. */
2676 putpkt ("QNonStop:0");
2677 getpkt (&rs->buf, &rs->buf_size, 0);
2678
2679 if (strcmp (rs->buf, "OK") != 0)
2680 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2681 }
2682
2683 /* Check whether the target is running now. */
2684 putpkt ("?");
2685 getpkt (&rs->buf, &rs->buf_size, 0);
2686
2687 if (!non_stop)
2688 {
2689 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2690 {
2691 if (args->extended_p)
2692 {
2693 /* We're connected, but not running. Drop out before we
2694 call start_remote. */
2695 target_mark_exited (args->target);
2696 return;
2697 }
2698 else
2699 error (_("The target is not running (try extended-remote?)"));
2700 }
2701 else
2702 {
2703 /* Save the reply for later. */
2704 wait_status = alloca (strlen (rs->buf) + 1);
2705 strcpy (wait_status, rs->buf);
2706 }
2707
2708 /* Let the stub know that we want it to return the thread. */
2709 set_continue_thread (minus_one_ptid);
2710
2711 /* Without this, some commands which require an active target
2712 (such as kill) won't work. This variable serves (at least)
2713 double duty as both the pid of the target process (if it has
2714 such), and as a flag indicating that a target is active.
2715 These functions should be split out into seperate variables,
2716 especially since GDB will someday have a notion of debugging
2717 several processes. */
2718 inferior_ptid = magic_null_ptid;
2719
2720 /* Now, if we have thread information, update inferior_ptid. */
2721 inferior_ptid = remote_current_thread (inferior_ptid);
2722
2723 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2724
2725 /* Always add the main thread. */
2726 add_thread_silent (inferior_ptid);
2727
2728 get_offsets (); /* Get text, data & bss offsets. */
2729
2730 /* If we could not find a description using qXfer, and we know
2731 how to do it some other way, try again. This is not
2732 supported for non-stop; it could be, but it is tricky if
2733 there are no stopped threads when we connect. */
2734 if (remote_read_description_p (args->target)
2735 && gdbarch_target_desc (target_gdbarch) == NULL)
2736 {
2737 target_clear_description ();
2738 target_find_description ();
2739 }
2740
2741 /* Use the previously fetched status. */
2742 gdb_assert (wait_status != NULL);
2743 strcpy (rs->buf, wait_status);
2744 rs->cached_wait_status = 1;
2745
2746 immediate_quit--;
2747 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2748 }
2749 else
2750 {
2751 /* Clear WFI global state. Do this before finding about new
2752 threads and inferiors, and setting the current inferior.
2753 Otherwise we would clear the proceed status of the current
2754 inferior when we want its stop_soon state to be preserved
2755 (see notice_new_inferior). */
2756 init_wait_for_inferior ();
2757
2758 /* In non-stop, we will either get an "OK", meaning that there
2759 are no stopped threads at this time; or, a regular stop
2760 reply. In the latter case, there may be more than one thread
2761 stopped --- we pull them all out using the vStopped
2762 mechanism. */
2763 if (strcmp (rs->buf, "OK") != 0)
2764 {
2765 struct stop_reply *stop_reply;
2766 struct cleanup *old_chain;
2767
2768 stop_reply = stop_reply_xmalloc ();
2769 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2770
2771 remote_parse_stop_reply (rs->buf, stop_reply);
2772 discard_cleanups (old_chain);
2773
2774 /* get_pending_stop_replies acks this one, and gets the rest
2775 out. */
2776 pending_stop_reply = stop_reply;
2777 remote_get_pending_stop_replies ();
2778
2779 /* Make sure that threads that were stopped remain
2780 stopped. */
2781 iterate_over_threads (set_stop_requested_callback, NULL);
2782 }
2783
2784 if (target_can_async_p ())
2785 target_async (inferior_event_handler, 0);
2786
2787 if (thread_count () == 0)
2788 {
2789 if (args->extended_p)
2790 {
2791 /* We're connected, but not running. Drop out before we
2792 call start_remote. */
2793 target_mark_exited (args->target);
2794 return;
2795 }
2796 else
2797 error (_("The target is not running (try extended-remote?)"));
2798 }
2799
2800 if (args->extended_p)
2801 target_mark_running (args->target);
2802
2803 /* Let the stub know that we want it to return the thread. */
2804
2805 /* Force the stub to choose a thread. */
2806 set_general_thread (null_ptid);
2807
2808 /* Query it. */
2809 inferior_ptid = remote_current_thread (minus_one_ptid);
2810 if (ptid_equal (inferior_ptid, minus_one_ptid))
2811 error (_("remote didn't report the current thread in non-stop mode"));
2812
2813 get_offsets (); /* Get text, data & bss offsets. */
2814
2815 /* In non-stop mode, any cached wait status will be stored in
2816 the stop reply queue. */
2817 gdb_assert (wait_status == NULL);
2818 }
2819
2820 /* If we connected to a live target, do some additional setup. */
2821 if (target_has_execution)
2822 {
2823 if (exec_bfd) /* No use without an exec file. */
2824 remote_check_symbols (symfile_objfile);
2825 }
2826
2827 /* If breakpoints are global, insert them now. */
2828 if (gdbarch_has_global_breakpoints (target_gdbarch)
2829 && breakpoints_always_inserted_mode ())
2830 insert_breakpoints ();
2831 }
2832
2833 /* Open a connection to a remote debugger.
2834 NAME is the filename used for communication. */
2835
2836 static void
2837 remote_open (char *name, int from_tty)
2838 {
2839 remote_open_1 (name, from_tty, &remote_ops, 0);
2840 }
2841
2842 /* Open a connection to a remote debugger using the extended
2843 remote gdb protocol. NAME is the filename used for communication. */
2844
2845 static void
2846 extended_remote_open (char *name, int from_tty)
2847 {
2848 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2849 }
2850
2851 /* Generic code for opening a connection to a remote target. */
2852
2853 static void
2854 init_all_packet_configs (void)
2855 {
2856 int i;
2857 for (i = 0; i < PACKET_MAX; i++)
2858 update_packet_config (&remote_protocol_packets[i]);
2859 }
2860
2861 /* Symbol look-up. */
2862
2863 static void
2864 remote_check_symbols (struct objfile *objfile)
2865 {
2866 struct remote_state *rs = get_remote_state ();
2867 char *msg, *reply, *tmp;
2868 struct minimal_symbol *sym;
2869 int end;
2870
2871 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2872 return;
2873
2874 /* Make sure the remote is pointing at the right process. */
2875 set_general_process ();
2876
2877 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2878 because we need both at the same time. */
2879 msg = alloca (get_remote_packet_size ());
2880
2881 /* Invite target to request symbol lookups. */
2882
2883 putpkt ("qSymbol::");
2884 getpkt (&rs->buf, &rs->buf_size, 0);
2885 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2886 reply = rs->buf;
2887
2888 while (strncmp (reply, "qSymbol:", 8) == 0)
2889 {
2890 tmp = &reply[8];
2891 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2892 msg[end] = '\0';
2893 sym = lookup_minimal_symbol (msg, NULL, NULL);
2894 if (sym == NULL)
2895 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2896 else
2897 {
2898 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2899
2900 /* If this is a function address, return the start of code
2901 instead of any data function descriptor. */
2902 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2903 sym_addr,
2904 &current_target);
2905
2906 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2907 paddr_nz (sym_addr), &reply[8]);
2908 }
2909
2910 putpkt (msg);
2911 getpkt (&rs->buf, &rs->buf_size, 0);
2912 reply = rs->buf;
2913 }
2914 }
2915
2916 static struct serial *
2917 remote_serial_open (char *name)
2918 {
2919 static int udp_warning = 0;
2920
2921 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2922 of in ser-tcp.c, because it is the remote protocol assuming that the
2923 serial connection is reliable and not the serial connection promising
2924 to be. */
2925 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2926 {
2927 warning (_("\
2928 The remote protocol may be unreliable over UDP.\n\
2929 Some events may be lost, rendering further debugging impossible."));
2930 udp_warning = 1;
2931 }
2932
2933 return serial_open (name);
2934 }
2935
2936 /* This type describes each known response to the qSupported
2937 packet. */
2938 struct protocol_feature
2939 {
2940 /* The name of this protocol feature. */
2941 const char *name;
2942
2943 /* The default for this protocol feature. */
2944 enum packet_support default_support;
2945
2946 /* The function to call when this feature is reported, or after
2947 qSupported processing if the feature is not supported.
2948 The first argument points to this structure. The second
2949 argument indicates whether the packet requested support be
2950 enabled, disabled, or probed (or the default, if this function
2951 is being called at the end of processing and this feature was
2952 not reported). The third argument may be NULL; if not NULL, it
2953 is a NUL-terminated string taken from the packet following
2954 this feature's name and an equals sign. */
2955 void (*func) (const struct protocol_feature *, enum packet_support,
2956 const char *);
2957
2958 /* The corresponding packet for this feature. Only used if
2959 FUNC is remote_supported_packet. */
2960 int packet;
2961 };
2962
2963 static void
2964 remote_supported_packet (const struct protocol_feature *feature,
2965 enum packet_support support,
2966 const char *argument)
2967 {
2968 if (argument)
2969 {
2970 warning (_("Remote qSupported response supplied an unexpected value for"
2971 " \"%s\"."), feature->name);
2972 return;
2973 }
2974
2975 if (remote_protocol_packets[feature->packet].support
2976 == PACKET_SUPPORT_UNKNOWN)
2977 remote_protocol_packets[feature->packet].support = support;
2978 }
2979
2980 static void
2981 remote_packet_size (const struct protocol_feature *feature,
2982 enum packet_support support, const char *value)
2983 {
2984 struct remote_state *rs = get_remote_state ();
2985
2986 int packet_size;
2987 char *value_end;
2988
2989 if (support != PACKET_ENABLE)
2990 return;
2991
2992 if (value == NULL || *value == '\0')
2993 {
2994 warning (_("Remote target reported \"%s\" without a size."),
2995 feature->name);
2996 return;
2997 }
2998
2999 errno = 0;
3000 packet_size = strtol (value, &value_end, 16);
3001 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3002 {
3003 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3004 feature->name, value);
3005 return;
3006 }
3007
3008 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3009 {
3010 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3011 packet_size, MAX_REMOTE_PACKET_SIZE);
3012 packet_size = MAX_REMOTE_PACKET_SIZE;
3013 }
3014
3015 /* Record the new maximum packet size. */
3016 rs->explicit_packet_size = packet_size;
3017 }
3018
3019 static void
3020 remote_multi_process_feature (const struct protocol_feature *feature,
3021 enum packet_support support, const char *value)
3022 {
3023 struct remote_state *rs = get_remote_state ();
3024 rs->multi_process_aware = (support == PACKET_ENABLE);
3025 }
3026
3027 static void
3028 remote_non_stop_feature (const struct protocol_feature *feature,
3029 enum packet_support support, const char *value)
3030 {
3031 struct remote_state *rs = get_remote_state ();
3032 rs->non_stop_aware = (support == PACKET_ENABLE);
3033 }
3034
3035 static struct protocol_feature remote_protocol_features[] = {
3036 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3037 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3038 PACKET_qXfer_auxv },
3039 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3040 PACKET_qXfer_features },
3041 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3042 PACKET_qXfer_libraries },
3043 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3044 PACKET_qXfer_memory_map },
3045 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3046 PACKET_qXfer_spu_read },
3047 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3048 PACKET_qXfer_spu_write },
3049 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3050 PACKET_qXfer_osdata },
3051 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3052 PACKET_QPassSignals },
3053 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3054 PACKET_QStartNoAckMode },
3055 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3056 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3057 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3058 PACKET_qXfer_siginfo_read },
3059 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3060 PACKET_qXfer_siginfo_write },
3061 };
3062
3063 static void
3064 remote_query_supported (void)
3065 {
3066 struct remote_state *rs = get_remote_state ();
3067 char *next;
3068 int i;
3069 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3070
3071 /* The packet support flags are handled differently for this packet
3072 than for most others. We treat an error, a disabled packet, and
3073 an empty response identically: any features which must be reported
3074 to be used will be automatically disabled. An empty buffer
3075 accomplishes this, since that is also the representation for a list
3076 containing no features. */
3077
3078 rs->buf[0] = 0;
3079 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3080 {
3081 if (rs->extended)
3082 putpkt ("qSupported:multiprocess+");
3083 else
3084 putpkt ("qSupported");
3085
3086 getpkt (&rs->buf, &rs->buf_size, 0);
3087
3088 /* If an error occured, warn, but do not return - just reset the
3089 buffer to empty and go on to disable features. */
3090 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3091 == PACKET_ERROR)
3092 {
3093 warning (_("Remote failure reply: %s"), rs->buf);
3094 rs->buf[0] = 0;
3095 }
3096 }
3097
3098 memset (seen, 0, sizeof (seen));
3099
3100 next = rs->buf;
3101 while (*next)
3102 {
3103 enum packet_support is_supported;
3104 char *p, *end, *name_end, *value;
3105
3106 /* First separate out this item from the rest of the packet. If
3107 there's another item after this, we overwrite the separator
3108 (terminated strings are much easier to work with). */
3109 p = next;
3110 end = strchr (p, ';');
3111 if (end == NULL)
3112 {
3113 end = p + strlen (p);
3114 next = end;
3115 }
3116 else
3117 {
3118 *end = '\0';
3119 next = end + 1;
3120
3121 if (end == p)
3122 {
3123 warning (_("empty item in \"qSupported\" response"));
3124 continue;
3125 }
3126 }
3127
3128 name_end = strchr (p, '=');
3129 if (name_end)
3130 {
3131 /* This is a name=value entry. */
3132 is_supported = PACKET_ENABLE;
3133 value = name_end + 1;
3134 *name_end = '\0';
3135 }
3136 else
3137 {
3138 value = NULL;
3139 switch (end[-1])
3140 {
3141 case '+':
3142 is_supported = PACKET_ENABLE;
3143 break;
3144
3145 case '-':
3146 is_supported = PACKET_DISABLE;
3147 break;
3148
3149 case '?':
3150 is_supported = PACKET_SUPPORT_UNKNOWN;
3151 break;
3152
3153 default:
3154 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3155 continue;
3156 }
3157 end[-1] = '\0';
3158 }
3159
3160 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3161 if (strcmp (remote_protocol_features[i].name, p) == 0)
3162 {
3163 const struct protocol_feature *feature;
3164
3165 seen[i] = 1;
3166 feature = &remote_protocol_features[i];
3167 feature->func (feature, is_supported, value);
3168 break;
3169 }
3170 }
3171
3172 /* If we increased the packet size, make sure to increase the global
3173 buffer size also. We delay this until after parsing the entire
3174 qSupported packet, because this is the same buffer we were
3175 parsing. */
3176 if (rs->buf_size < rs->explicit_packet_size)
3177 {
3178 rs->buf_size = rs->explicit_packet_size;
3179 rs->buf = xrealloc (rs->buf, rs->buf_size);
3180 }
3181
3182 /* Handle the defaults for unmentioned features. */
3183 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3184 if (!seen[i])
3185 {
3186 const struct protocol_feature *feature;
3187
3188 feature = &remote_protocol_features[i];
3189 feature->func (feature, feature->default_support, NULL);
3190 }
3191 }
3192
3193
3194 static void
3195 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3196 {
3197 struct remote_state *rs = get_remote_state ();
3198
3199 if (name == 0)
3200 error (_("To open a remote debug connection, you need to specify what\n"
3201 "serial device is attached to the remote system\n"
3202 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3203
3204 /* See FIXME above. */
3205 if (!target_async_permitted)
3206 wait_forever_enabled_p = 1;
3207
3208 /* If we're connected to a running target, target_preopen will kill it.
3209 But if we're connected to a target system with no running process,
3210 then we will still be connected when it returns. Ask this question
3211 first, before target_preopen has a chance to kill anything. */
3212 if (remote_desc != NULL && !target_has_execution)
3213 {
3214 if (!from_tty
3215 || query (_("Already connected to a remote target. Disconnect? ")))
3216 pop_target ();
3217 else
3218 error (_("Still connected."));
3219 }
3220
3221 target_preopen (from_tty);
3222
3223 unpush_target (target);
3224
3225 /* This time without a query. If we were connected to an
3226 extended-remote target and target_preopen killed the running
3227 process, we may still be connected. If we are starting "target
3228 remote" now, the extended-remote target will not have been
3229 removed by unpush_target. */
3230 if (remote_desc != NULL && !target_has_execution)
3231 pop_target ();
3232
3233 /* Make sure we send the passed signals list the next time we resume. */
3234 xfree (last_pass_packet);
3235 last_pass_packet = NULL;
3236
3237 remote_fileio_reset ();
3238 reopen_exec_file ();
3239 reread_symbols ();
3240
3241 remote_desc = remote_serial_open (name);
3242 if (!remote_desc)
3243 perror_with_name (name);
3244
3245 if (baud_rate != -1)
3246 {
3247 if (serial_setbaudrate (remote_desc, baud_rate))
3248 {
3249 /* The requested speed could not be set. Error out to
3250 top level after closing remote_desc. Take care to
3251 set remote_desc to NULL to avoid closing remote_desc
3252 more than once. */
3253 serial_close (remote_desc);
3254 remote_desc = NULL;
3255 perror_with_name (name);
3256 }
3257 }
3258
3259 serial_raw (remote_desc);
3260
3261 /* If there is something sitting in the buffer we might take it as a
3262 response to a command, which would be bad. */
3263 serial_flush_input (remote_desc);
3264
3265 if (from_tty)
3266 {
3267 puts_filtered ("Remote debugging using ");
3268 puts_filtered (name);
3269 puts_filtered ("\n");
3270 }
3271 push_target (target); /* Switch to using remote target now. */
3272
3273 /* Assume that the target is not running, until we learn otherwise. */
3274 if (extended_p)
3275 target_mark_exited (target);
3276
3277 /* Register extra event sources in the event loop. */
3278 remote_async_inferior_event_token
3279 = create_async_event_handler (remote_async_inferior_event_handler,
3280 NULL);
3281 remote_async_get_pending_events_token
3282 = create_async_event_handler (remote_async_get_pending_events_handler,
3283 NULL);
3284
3285 /* Reset the target state; these things will be queried either by
3286 remote_query_supported or as they are needed. */
3287 init_all_packet_configs ();
3288 rs->cached_wait_status = 0;
3289 rs->explicit_packet_size = 0;
3290 rs->noack_mode = 0;
3291 rs->multi_process_aware = 0;
3292 rs->extended = extended_p;
3293 rs->non_stop_aware = 0;
3294 rs->waiting_for_stop_reply = 0;
3295
3296 general_thread = not_sent_ptid;
3297 continue_thread = not_sent_ptid;
3298
3299 /* Probe for ability to use "ThreadInfo" query, as required. */
3300 use_threadinfo_query = 1;
3301 use_threadextra_query = 1;
3302
3303 if (target_async_permitted)
3304 {
3305 /* With this target we start out by owning the terminal. */
3306 remote_async_terminal_ours_p = 1;
3307
3308 /* FIXME: cagney/1999-09-23: During the initial connection it is
3309 assumed that the target is already ready and able to respond to
3310 requests. Unfortunately remote_start_remote() eventually calls
3311 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3312 around this. Eventually a mechanism that allows
3313 wait_for_inferior() to expect/get timeouts will be
3314 implemented. */
3315 wait_forever_enabled_p = 0;
3316 }
3317
3318 /* First delete any symbols previously loaded from shared libraries. */
3319 no_shared_libraries (NULL, 0);
3320
3321 /* Start afresh. */
3322 init_thread_list ();
3323
3324 /* Start the remote connection. If error() or QUIT, discard this
3325 target (we'd otherwise be in an inconsistent state) and then
3326 propogate the error on up the exception chain. This ensures that
3327 the caller doesn't stumble along blindly assuming that the
3328 function succeeded. The CLI doesn't have this problem but other
3329 UI's, such as MI do.
3330
3331 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3332 this function should return an error indication letting the
3333 caller restore the previous state. Unfortunately the command
3334 ``target remote'' is directly wired to this function making that
3335 impossible. On a positive note, the CLI side of this problem has
3336 been fixed - the function set_cmd_context() makes it possible for
3337 all the ``target ....'' commands to share a common callback
3338 function. See cli-dump.c. */
3339 {
3340 struct gdb_exception ex;
3341 struct start_remote_args args;
3342
3343 args.from_tty = from_tty;
3344 args.target = target;
3345 args.extended_p = extended_p;
3346
3347 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3348 if (ex.reason < 0)
3349 {
3350 /* Pop the partially set up target - unless something else did
3351 already before throwing the exception. */
3352 if (remote_desc != NULL)
3353 pop_target ();
3354 if (target_async_permitted)
3355 wait_forever_enabled_p = 1;
3356 throw_exception (ex);
3357 }
3358 }
3359
3360 if (target_async_permitted)
3361 wait_forever_enabled_p = 1;
3362 }
3363
3364 /* This takes a program previously attached to and detaches it. After
3365 this is done, GDB can be used to debug some other program. We
3366 better not have left any breakpoints in the target program or it'll
3367 die when it hits one. */
3368
3369 static void
3370 remote_detach_1 (char *args, int from_tty, int extended)
3371 {
3372 int pid = ptid_get_pid (inferior_ptid);
3373 struct remote_state *rs = get_remote_state ();
3374
3375 if (args)
3376 error (_("Argument given to \"detach\" when remotely debugging."));
3377
3378 if (!target_has_execution)
3379 error (_("No process to detach from."));
3380
3381 /* Tell the remote target to detach. */
3382 if (remote_multi_process_p (rs))
3383 sprintf (rs->buf, "D;%x", pid);
3384 else
3385 strcpy (rs->buf, "D");
3386
3387 putpkt (rs->buf);
3388 getpkt (&rs->buf, &rs->buf_size, 0);
3389
3390 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3391 ;
3392 else if (rs->buf[0] == '\0')
3393 error (_("Remote doesn't know how to detach"));
3394 else
3395 error (_("Can't detach process."));
3396
3397 if (from_tty)
3398 {
3399 if (remote_multi_process_p (rs))
3400 printf_filtered (_("Detached from remote %s.\n"),
3401 target_pid_to_str (pid_to_ptid (pid)));
3402 else
3403 {
3404 if (extended)
3405 puts_filtered (_("Detached from remote process.\n"));
3406 else
3407 puts_filtered (_("Ending remote debugging.\n"));
3408 }
3409 }
3410
3411 discard_pending_stop_replies (pid);
3412 target_mourn_inferior ();
3413 }
3414
3415 static void
3416 remote_detach (struct target_ops *ops, char *args, int from_tty)
3417 {
3418 remote_detach_1 (args, from_tty, 0);
3419 }
3420
3421 static void
3422 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3423 {
3424 remote_detach_1 (args, from_tty, 1);
3425 }
3426
3427 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3428
3429 static void
3430 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3431 {
3432 if (args)
3433 error (_("Argument given to \"disconnect\" when remotely debugging."));
3434
3435 /* Make sure we unpush even the extended remote targets; mourn
3436 won't do it. So call remote_mourn_1 directly instead of
3437 target_mourn_inferior. */
3438 remote_mourn_1 (target);
3439
3440 if (from_tty)
3441 puts_filtered ("Ending remote debugging.\n");
3442 }
3443
3444 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3445 be chatty about it. */
3446
3447 static void
3448 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3449 {
3450 struct remote_state *rs = get_remote_state ();
3451 int pid;
3452 char *dummy;
3453 char *wait_status = NULL;
3454
3455 if (!args)
3456 error_no_arg (_("process-id to attach"));
3457
3458 dummy = args;
3459 pid = strtol (args, &dummy, 0);
3460 /* Some targets don't set errno on errors, grrr! */
3461 if (pid == 0 && args == dummy)
3462 error (_("Illegal process-id: %s."), args);
3463
3464 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3465 error (_("This target does not support attaching to a process"));
3466
3467 sprintf (rs->buf, "vAttach;%x", pid);
3468 putpkt (rs->buf);
3469 getpkt (&rs->buf, &rs->buf_size, 0);
3470
3471 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3472 {
3473 if (from_tty)
3474 printf_unfiltered (_("Attached to %s\n"),
3475 target_pid_to_str (pid_to_ptid (pid)));
3476
3477 if (!non_stop)
3478 {
3479 /* Save the reply for later. */
3480 wait_status = alloca (strlen (rs->buf) + 1);
3481 strcpy (wait_status, rs->buf);
3482 }
3483 else if (strcmp (rs->buf, "OK") != 0)
3484 error (_("Attaching to %s failed with: %s"),
3485 target_pid_to_str (pid_to_ptid (pid)),
3486 rs->buf);
3487 }
3488 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3489 error (_("This target does not support attaching to a process"));
3490 else
3491 error (_("Attaching to %s failed"),
3492 target_pid_to_str (pid_to_ptid (pid)));
3493
3494 remote_add_inferior (pid, 1);
3495
3496 inferior_ptid = pid_to_ptid (pid);
3497
3498 if (non_stop)
3499 {
3500 struct thread_info *thread;
3501
3502 /* Get list of threads. */
3503 remote_threads_info (target);
3504
3505 thread = first_thread_of_process (pid);
3506 if (thread)
3507 inferior_ptid = thread->ptid;
3508 else
3509 inferior_ptid = pid_to_ptid (pid);
3510
3511 /* Invalidate our notion of the remote current thread. */
3512 record_currthread (minus_one_ptid);
3513 }
3514 else
3515 {
3516 /* Now, if we have thread information, update inferior_ptid. */
3517 inferior_ptid = remote_current_thread (inferior_ptid);
3518
3519 /* Add the main thread to the thread list. */
3520 add_thread_silent (inferior_ptid);
3521 }
3522
3523 /* Next, if the target can specify a description, read it. We do
3524 this before anything involving memory or registers. */
3525 target_find_description ();
3526
3527 if (!non_stop)
3528 {
3529 /* Use the previously fetched status. */
3530 gdb_assert (wait_status != NULL);
3531
3532 if (target_can_async_p ())
3533 {
3534 struct stop_reply *stop_reply;
3535 struct cleanup *old_chain;
3536
3537 stop_reply = stop_reply_xmalloc ();
3538 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3539 remote_parse_stop_reply (wait_status, stop_reply);
3540 discard_cleanups (old_chain);
3541 push_stop_reply (stop_reply);
3542
3543 target_async (inferior_event_handler, 0);
3544 }
3545 else
3546 {
3547 gdb_assert (wait_status != NULL);
3548 strcpy (rs->buf, wait_status);
3549 rs->cached_wait_status = 1;
3550 }
3551 }
3552 else
3553 gdb_assert (wait_status == NULL);
3554 }
3555
3556 static void
3557 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3558 {
3559 extended_remote_attach_1 (ops, args, from_tty);
3560 }
3561
3562 /* Convert hex digit A to a number. */
3563
3564 static int
3565 fromhex (int a)
3566 {
3567 if (a >= '0' && a <= '9')
3568 return a - '0';
3569 else if (a >= 'a' && a <= 'f')
3570 return a - 'a' + 10;
3571 else if (a >= 'A' && a <= 'F')
3572 return a - 'A' + 10;
3573 else
3574 error (_("Reply contains invalid hex digit %d"), a);
3575 }
3576
3577 static int
3578 hex2bin (const char *hex, gdb_byte *bin, int count)
3579 {
3580 int i;
3581
3582 for (i = 0; i < count; i++)
3583 {
3584 if (hex[0] == 0 || hex[1] == 0)
3585 {
3586 /* Hex string is short, or of uneven length.
3587 Return the count that has been converted so far. */
3588 return i;
3589 }
3590 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3591 hex += 2;
3592 }
3593 return i;
3594 }
3595
3596 /* Convert number NIB to a hex digit. */
3597
3598 static int
3599 tohex (int nib)
3600 {
3601 if (nib < 10)
3602 return '0' + nib;
3603 else
3604 return 'a' + nib - 10;
3605 }
3606
3607 static int
3608 bin2hex (const gdb_byte *bin, char *hex, int count)
3609 {
3610 int i;
3611 /* May use a length, or a nul-terminated string as input. */
3612 if (count == 0)
3613 count = strlen ((char *) bin);
3614
3615 for (i = 0; i < count; i++)
3616 {
3617 *hex++ = tohex ((*bin >> 4) & 0xf);
3618 *hex++ = tohex (*bin++ & 0xf);
3619 }
3620 *hex = 0;
3621 return i;
3622 }
3623 \f
3624 /* Check for the availability of vCont. This function should also check
3625 the response. */
3626
3627 static void
3628 remote_vcont_probe (struct remote_state *rs)
3629 {
3630 char *buf;
3631
3632 strcpy (rs->buf, "vCont?");
3633 putpkt (rs->buf);
3634 getpkt (&rs->buf, &rs->buf_size, 0);
3635 buf = rs->buf;
3636
3637 /* Make sure that the features we assume are supported. */
3638 if (strncmp (buf, "vCont", 5) == 0)
3639 {
3640 char *p = &buf[5];
3641 int support_s, support_S, support_c, support_C;
3642
3643 support_s = 0;
3644 support_S = 0;
3645 support_c = 0;
3646 support_C = 0;
3647 rs->support_vCont_t = 0;
3648 while (p && *p == ';')
3649 {
3650 p++;
3651 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3652 support_s = 1;
3653 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3654 support_S = 1;
3655 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3656 support_c = 1;
3657 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3658 support_C = 1;
3659 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3660 rs->support_vCont_t = 1;
3661
3662 p = strchr (p, ';');
3663 }
3664
3665 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3666 BUF will make packet_ok disable the packet. */
3667 if (!support_s || !support_S || !support_c || !support_C)
3668 buf[0] = 0;
3669 }
3670
3671 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3672 }
3673
3674 /* Helper function for building "vCont" resumptions. Write a
3675 resumption to P. ENDP points to one-passed-the-end of the buffer
3676 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
3677 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
3678 resumed thread should be single-stepped and/or signalled. If PTID
3679 equals minus_one_ptid, then all threads are resumed; if PTID
3680 represents a process, then all threads of the process are resumed;
3681 the thread to be stepped and/or signalled is given in the global
3682 INFERIOR_PTID. */
3683
3684 static char *
3685 append_resumption (char *p, char *endp,
3686 ptid_t ptid, int step, enum target_signal siggnal)
3687 {
3688 struct remote_state *rs = get_remote_state ();
3689
3690 if (step && siggnal != TARGET_SIGNAL_0)
3691 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
3692 else if (step)
3693 p += xsnprintf (p, endp - p, ";s");
3694 else if (siggnal != TARGET_SIGNAL_0)
3695 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
3696 else
3697 p += xsnprintf (p, endp - p, ";c");
3698
3699 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
3700 {
3701 ptid_t nptid;
3702
3703 /* All (-1) threads of process. */
3704 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3705
3706 p += xsnprintf (p, endp - p, ":");
3707 p = write_ptid (p, endp, nptid);
3708 }
3709 else if (!ptid_equal (ptid, minus_one_ptid))
3710 {
3711 p += xsnprintf (p, endp - p, ":");
3712 p = write_ptid (p, endp, ptid);
3713 }
3714
3715 return p;
3716 }
3717
3718 /* Resume the remote inferior by using a "vCont" packet. The thread
3719 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3720 resumed thread should be single-stepped and/or signalled. If PTID
3721 equals minus_one_ptid, then all threads are resumed; the thread to
3722 be stepped and/or signalled is given in the global INFERIOR_PTID.
3723 This function returns non-zero iff it resumes the inferior.
3724
3725 This function issues a strict subset of all possible vCont commands at the
3726 moment. */
3727
3728 static int
3729 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3730 {
3731 struct remote_state *rs = get_remote_state ();
3732 char *p;
3733 char *endp;
3734
3735 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3736 remote_vcont_probe (rs);
3737
3738 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3739 return 0;
3740
3741 p = rs->buf;
3742 endp = rs->buf + get_remote_packet_size ();
3743
3744 /* If we could generate a wider range of packets, we'd have to worry
3745 about overflowing BUF. Should there be a generic
3746 "multi-part-packet" packet? */
3747
3748 p += xsnprintf (p, endp - p, "vCont");
3749
3750 if (ptid_equal (ptid, magic_null_ptid))
3751 {
3752 /* MAGIC_NULL_PTID means that we don't have any active threads,
3753 so we don't have any TID numbers the inferior will
3754 understand. Make sure to only send forms that do not specify
3755 a TID. */
3756 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
3757 }
3758 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3759 {
3760 /* Resume all threads (of all processes, or of a single
3761 process), with preference for INFERIOR_PTID. This assumes
3762 inferior_ptid belongs to the set of all threads we are about
3763 to resume. */
3764 if (step || siggnal != TARGET_SIGNAL_0)
3765 {
3766 /* Step inferior_ptid, with or without signal. */
3767 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
3768 }
3769
3770 /* And continue others without a signal. */
3771 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
3772 }
3773 else
3774 {
3775 /* Scheduler locking; resume only PTID. */
3776 p = append_resumption (p, endp, ptid, step, siggnal);
3777 }
3778
3779 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3780 putpkt (rs->buf);
3781
3782 if (non_stop)
3783 {
3784 /* In non-stop, the stub replies to vCont with "OK". The stop
3785 reply will be reported asynchronously by means of a `%Stop'
3786 notification. */
3787 getpkt (&rs->buf, &rs->buf_size, 0);
3788 if (strcmp (rs->buf, "OK") != 0)
3789 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3790 }
3791
3792 return 1;
3793 }
3794
3795 /* Tell the remote machine to resume. */
3796
3797 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3798
3799 static int last_sent_step;
3800
3801 static void
3802 remote_resume (struct target_ops *ops,
3803 ptid_t ptid, int step, enum target_signal siggnal)
3804 {
3805 struct remote_state *rs = get_remote_state ();
3806 char *buf;
3807
3808 last_sent_signal = siggnal;
3809 last_sent_step = step;
3810
3811 /* Update the inferior on signals to silently pass, if they've changed. */
3812 remote_pass_signals ();
3813
3814 /* The vCont packet doesn't need to specify threads via Hc. */
3815 if (remote_vcont_resume (ptid, step, siggnal))
3816 goto done;
3817
3818 /* All other supported resume packets do use Hc, so set the continue
3819 thread. */
3820 if (ptid_equal (ptid, minus_one_ptid))
3821 set_continue_thread (any_thread_ptid);
3822 else
3823 set_continue_thread (ptid);
3824
3825 buf = rs->buf;
3826 if (execution_direction == EXEC_REVERSE)
3827 {
3828 /* We don't pass signals to the target in reverse exec mode. */
3829 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3830 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3831 siggnal);
3832 strcpy (buf, step ? "bs" : "bc");
3833 }
3834 else if (siggnal != TARGET_SIGNAL_0)
3835 {
3836 buf[0] = step ? 'S' : 'C';
3837 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3838 buf[2] = tohex (((int) siggnal) & 0xf);
3839 buf[3] = '\0';
3840 }
3841 else
3842 strcpy (buf, step ? "s" : "c");
3843
3844 putpkt (buf);
3845
3846 done:
3847 /* We are about to start executing the inferior, let's register it
3848 with the event loop. NOTE: this is the one place where all the
3849 execution commands end up. We could alternatively do this in each
3850 of the execution commands in infcmd.c. */
3851 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3852 into infcmd.c in order to allow inferior function calls to work
3853 NOT asynchronously. */
3854 if (target_can_async_p ())
3855 target_async (inferior_event_handler, 0);
3856
3857 /* We've just told the target to resume. The remote server will
3858 wait for the inferior to stop, and then send a stop reply. In
3859 the mean time, we can't start another command/query ourselves
3860 because the stub wouldn't be ready to process it. This applies
3861 only to the base all-stop protocol, however. In non-stop (which
3862 only supports vCont), the stub replies with an "OK", and is
3863 immediate able to process further serial input. */
3864 if (!non_stop)
3865 rs->waiting_for_stop_reply = 1;
3866 }
3867 \f
3868
3869 /* Set up the signal handler for SIGINT, while the target is
3870 executing, ovewriting the 'regular' SIGINT signal handler. */
3871 static void
3872 initialize_sigint_signal_handler (void)
3873 {
3874 signal (SIGINT, handle_remote_sigint);
3875 }
3876
3877 /* Signal handler for SIGINT, while the target is executing. */
3878 static void
3879 handle_remote_sigint (int sig)
3880 {
3881 signal (sig, handle_remote_sigint_twice);
3882 mark_async_signal_handler_wrapper (sigint_remote_token);
3883 }
3884
3885 /* Signal handler for SIGINT, installed after SIGINT has already been
3886 sent once. It will take effect the second time that the user sends
3887 a ^C. */
3888 static void
3889 handle_remote_sigint_twice (int sig)
3890 {
3891 signal (sig, handle_remote_sigint);
3892 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3893 }
3894
3895 /* Perform the real interruption of the target execution, in response
3896 to a ^C. */
3897 static void
3898 async_remote_interrupt (gdb_client_data arg)
3899 {
3900 if (remote_debug)
3901 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3902
3903 target_stop (inferior_ptid);
3904 }
3905
3906 /* Perform interrupt, if the first attempt did not succeed. Just give
3907 up on the target alltogether. */
3908 void
3909 async_remote_interrupt_twice (gdb_client_data arg)
3910 {
3911 if (remote_debug)
3912 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3913
3914 interrupt_query ();
3915 }
3916
3917 /* Reinstall the usual SIGINT handlers, after the target has
3918 stopped. */
3919 static void
3920 cleanup_sigint_signal_handler (void *dummy)
3921 {
3922 signal (SIGINT, handle_sigint);
3923 }
3924
3925 /* Send ^C to target to halt it. Target will respond, and send us a
3926 packet. */
3927 static void (*ofunc) (int);
3928
3929 /* The command line interface's stop routine. This function is installed
3930 as a signal handler for SIGINT. The first time a user requests a
3931 stop, we call remote_stop to send a break or ^C. If there is no
3932 response from the target (it didn't stop when the user requested it),
3933 we ask the user if he'd like to detach from the target. */
3934 static void
3935 remote_interrupt (int signo)
3936 {
3937 /* If this doesn't work, try more severe steps. */
3938 signal (signo, remote_interrupt_twice);
3939
3940 gdb_call_async_signal_handler (sigint_remote_token, 1);
3941 }
3942
3943 /* The user typed ^C twice. */
3944
3945 static void
3946 remote_interrupt_twice (int signo)
3947 {
3948 signal (signo, ofunc);
3949 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3950 signal (signo, remote_interrupt);
3951 }
3952
3953 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3954 thread, all threads of a remote process, or all threads of all
3955 processes. */
3956
3957 static void
3958 remote_stop_ns (ptid_t ptid)
3959 {
3960 struct remote_state *rs = get_remote_state ();
3961 char *p = rs->buf;
3962 char *endp = rs->buf + get_remote_packet_size ();
3963 struct stop_reply *reply, *next;
3964
3965 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3966 remote_vcont_probe (rs);
3967
3968 if (!rs->support_vCont_t)
3969 error (_("Remote server does not support stopping threads"));
3970
3971 if (ptid_equal (ptid, minus_one_ptid)
3972 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
3973 p += xsnprintf (p, endp - p, "vCont;t");
3974 else
3975 {
3976 ptid_t nptid;
3977
3978 p += xsnprintf (p, endp - p, "vCont;t:");
3979
3980 if (ptid_is_pid (ptid))
3981 /* All (-1) threads of process. */
3982 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3983 else
3984 {
3985 /* Small optimization: if we already have a stop reply for
3986 this thread, no use in telling the stub we want this
3987 stopped. */
3988 if (peek_stop_reply (ptid))
3989 return;
3990
3991 nptid = ptid;
3992 }
3993
3994 p = write_ptid (p, endp, nptid);
3995 }
3996
3997 /* In non-stop, we get an immediate OK reply. The stop reply will
3998 come in asynchronously by notification. */
3999 putpkt (rs->buf);
4000 getpkt (&rs->buf, &rs->buf_size, 0);
4001 if (strcmp (rs->buf, "OK") != 0)
4002 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4003 }
4004
4005 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4006 remote target. It is undefined which thread of which process
4007 reports the stop. */
4008
4009 static void
4010 remote_stop_as (ptid_t ptid)
4011 {
4012 struct remote_state *rs = get_remote_state ();
4013
4014 /* If the inferior is stopped already, but the core didn't know
4015 about it yet, just ignore the request. The cached wait status
4016 will be collected in remote_wait. */
4017 if (rs->cached_wait_status)
4018 return;
4019
4020 /* Send a break or a ^C, depending on user preference. */
4021
4022 if (remote_break)
4023 serial_send_break (remote_desc);
4024 else
4025 serial_write (remote_desc, "\003", 1);
4026 }
4027
4028 /* This is the generic stop called via the target vector. When a target
4029 interrupt is requested, either by the command line or the GUI, we
4030 will eventually end up here. */
4031
4032 static void
4033 remote_stop (ptid_t ptid)
4034 {
4035 if (remote_debug)
4036 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4037
4038 if (non_stop)
4039 remote_stop_ns (ptid);
4040 else
4041 remote_stop_as (ptid);
4042 }
4043
4044 /* Ask the user what to do when an interrupt is received. */
4045
4046 static void
4047 interrupt_query (void)
4048 {
4049 target_terminal_ours ();
4050
4051 if (target_can_async_p ())
4052 {
4053 signal (SIGINT, handle_sigint);
4054 deprecated_throw_reason (RETURN_QUIT);
4055 }
4056 else
4057 {
4058 if (query (_("Interrupted while waiting for the program.\n\
4059 Give up (and stop debugging it)? ")))
4060 {
4061 pop_target ();
4062 deprecated_throw_reason (RETURN_QUIT);
4063 }
4064 }
4065
4066 target_terminal_inferior ();
4067 }
4068
4069 /* Enable/disable target terminal ownership. Most targets can use
4070 terminal groups to control terminal ownership. Remote targets are
4071 different in that explicit transfer of ownership to/from GDB/target
4072 is required. */
4073
4074 static void
4075 remote_terminal_inferior (void)
4076 {
4077 if (!target_async_permitted)
4078 /* Nothing to do. */
4079 return;
4080
4081 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
4082 sync_execution here. This function should only be called when
4083 GDB is resuming the inferior in the forground. A background
4084 resume (``run&'') should leave GDB in control of the terminal and
4085 consequently should not call this code. */
4086 if (!sync_execution)
4087 return;
4088 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
4089 calls target_terminal_*() idenpotent. The event-loop GDB talking
4090 to an asynchronous target with a synchronous command calls this
4091 function from both event-top.c and infrun.c/infcmd.c. Once GDB
4092 stops trying to transfer the terminal to the target when it
4093 shouldn't this guard can go away. */
4094 if (!remote_async_terminal_ours_p)
4095 return;
4096 delete_file_handler (input_fd);
4097 remote_async_terminal_ours_p = 0;
4098 initialize_sigint_signal_handler ();
4099 /* NOTE: At this point we could also register our selves as the
4100 recipient of all input. Any characters typed could then be
4101 passed on down to the target. */
4102 }
4103
4104 static void
4105 remote_terminal_ours (void)
4106 {
4107 if (!target_async_permitted)
4108 /* Nothing to do. */
4109 return;
4110
4111 /* See FIXME in remote_terminal_inferior. */
4112 if (!sync_execution)
4113 return;
4114 /* See FIXME in remote_terminal_inferior. */
4115 if (remote_async_terminal_ours_p)
4116 return;
4117 cleanup_sigint_signal_handler (NULL);
4118 add_file_handler (input_fd, stdin_event_handler, 0);
4119 remote_async_terminal_ours_p = 1;
4120 }
4121
4122 void
4123 remote_console_output (char *msg)
4124 {
4125 char *p;
4126
4127 for (p = msg; p[0] && p[1]; p += 2)
4128 {
4129 char tb[2];
4130 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4131 tb[0] = c;
4132 tb[1] = 0;
4133 fputs_unfiltered (tb, gdb_stdtarg);
4134 }
4135 gdb_flush (gdb_stdtarg);
4136 }
4137
4138 typedef struct cached_reg
4139 {
4140 int num;
4141 gdb_byte data[MAX_REGISTER_SIZE];
4142 } cached_reg_t;
4143
4144 DEF_VEC_O(cached_reg_t);
4145
4146 struct stop_reply
4147 {
4148 struct stop_reply *next;
4149
4150 ptid_t ptid;
4151
4152 struct target_waitstatus ws;
4153
4154 VEC(cached_reg_t) *regcache;
4155
4156 int stopped_by_watchpoint_p;
4157 CORE_ADDR watch_data_address;
4158
4159 int solibs_changed;
4160 int replay_event;
4161 };
4162
4163 /* The list of already fetched and acknowledged stop events. */
4164 static struct stop_reply *stop_reply_queue;
4165
4166 static struct stop_reply *
4167 stop_reply_xmalloc (void)
4168 {
4169 struct stop_reply *r = XMALLOC (struct stop_reply);
4170 r->next = NULL;
4171 return r;
4172 }
4173
4174 static void
4175 stop_reply_xfree (struct stop_reply *r)
4176 {
4177 if (r != NULL)
4178 {
4179 VEC_free (cached_reg_t, r->regcache);
4180 xfree (r);
4181 }
4182 }
4183
4184 /* Discard all pending stop replies of inferior PID. If PID is -1,
4185 discard everything. */
4186
4187 static void
4188 discard_pending_stop_replies (int pid)
4189 {
4190 struct stop_reply *prev = NULL, *reply, *next;
4191
4192 /* Discard the in-flight notification. */
4193 if (pending_stop_reply != NULL
4194 && (pid == -1
4195 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4196 {
4197 stop_reply_xfree (pending_stop_reply);
4198 pending_stop_reply = NULL;
4199 }
4200
4201 /* Discard the stop replies we have already pulled with
4202 vStopped. */
4203 for (reply = stop_reply_queue; reply; reply = next)
4204 {
4205 next = reply->next;
4206 if (pid == -1
4207 || ptid_get_pid (reply->ptid) == pid)
4208 {
4209 if (reply == stop_reply_queue)
4210 stop_reply_queue = reply->next;
4211 else
4212 prev->next = reply->next;
4213
4214 stop_reply_xfree (reply);
4215 }
4216 else
4217 prev = reply;
4218 }
4219 }
4220
4221 /* Cleanup wrapper. */
4222
4223 static void
4224 do_stop_reply_xfree (void *arg)
4225 {
4226 struct stop_reply *r = arg;
4227 stop_reply_xfree (r);
4228 }
4229
4230 /* Look for a queued stop reply belonging to PTID. If one is found,
4231 remove it from the queue, and return it. Returns NULL if none is
4232 found. If there are still queued events left to process, tell the
4233 event loop to get back to target_wait soon. */
4234
4235 static struct stop_reply *
4236 queued_stop_reply (ptid_t ptid)
4237 {
4238 struct stop_reply *it, *prev;
4239 struct stop_reply head;
4240
4241 head.next = stop_reply_queue;
4242 prev = &head;
4243
4244 it = head.next;
4245
4246 if (!ptid_equal (ptid, minus_one_ptid))
4247 for (; it; prev = it, it = it->next)
4248 if (ptid_equal (ptid, it->ptid))
4249 break;
4250
4251 if (it)
4252 {
4253 prev->next = it->next;
4254 it->next = NULL;
4255 }
4256
4257 stop_reply_queue = head.next;
4258
4259 if (stop_reply_queue)
4260 /* There's still at least an event left. */
4261 mark_async_event_handler (remote_async_inferior_event_token);
4262
4263 return it;
4264 }
4265
4266 /* Push a fully parsed stop reply in the stop reply queue. Since we
4267 know that we now have at least one queued event left to pass to the
4268 core side, tell the event loop to get back to target_wait soon. */
4269
4270 static void
4271 push_stop_reply (struct stop_reply *new_event)
4272 {
4273 struct stop_reply *event;
4274
4275 if (stop_reply_queue)
4276 {
4277 for (event = stop_reply_queue;
4278 event && event->next;
4279 event = event->next)
4280 ;
4281
4282 event->next = new_event;
4283 }
4284 else
4285 stop_reply_queue = new_event;
4286
4287 mark_async_event_handler (remote_async_inferior_event_token);
4288 }
4289
4290 /* Returns true if we have a stop reply for PTID. */
4291
4292 static int
4293 peek_stop_reply (ptid_t ptid)
4294 {
4295 struct stop_reply *it;
4296
4297 for (it = stop_reply_queue; it; it = it->next)
4298 if (ptid_equal (ptid, it->ptid))
4299 {
4300 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4301 return 1;
4302 }
4303
4304 return 0;
4305 }
4306
4307 /* Parse the stop reply in BUF. Either the function succeeds, and the
4308 result is stored in EVENT, or throws an error. */
4309
4310 static void
4311 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4312 {
4313 struct remote_arch_state *rsa = get_remote_arch_state ();
4314 ULONGEST addr;
4315 char *p;
4316
4317 event->ptid = null_ptid;
4318 event->ws.kind = TARGET_WAITKIND_IGNORE;
4319 event->ws.value.integer = 0;
4320 event->solibs_changed = 0;
4321 event->replay_event = 0;
4322 event->stopped_by_watchpoint_p = 0;
4323 event->regcache = NULL;
4324
4325 switch (buf[0])
4326 {
4327 case 'T': /* Status with PC, SP, FP, ... */
4328 {
4329 gdb_byte regs[MAX_REGISTER_SIZE];
4330
4331 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4332 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4333 ss = signal number
4334 n... = register number
4335 r... = register contents
4336 */
4337
4338 p = &buf[3]; /* after Txx */
4339 while (*p)
4340 {
4341 char *p1;
4342 char *p_temp;
4343 int fieldsize;
4344 LONGEST pnum = 0;
4345
4346 /* If the packet contains a register number, save it in
4347 pnum and set p1 to point to the character following it.
4348 Otherwise p1 points to p. */
4349
4350 /* If this packet is an awatch packet, don't parse the 'a'
4351 as a register number. */
4352
4353 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4354 {
4355 /* Read the ``P'' register number. */
4356 pnum = strtol (p, &p_temp, 16);
4357 p1 = p_temp;
4358 }
4359 else
4360 p1 = p;
4361
4362 if (p1 == p) /* No register number present here. */
4363 {
4364 p1 = strchr (p, ':');
4365 if (p1 == NULL)
4366 error (_("Malformed packet(a) (missing colon): %s\n\
4367 Packet: '%s'\n"),
4368 p, buf);
4369 if (strncmp (p, "thread", p1 - p) == 0)
4370 event->ptid = read_ptid (++p1, &p);
4371 else if ((strncmp (p, "watch", p1 - p) == 0)
4372 || (strncmp (p, "rwatch", p1 - p) == 0)
4373 || (strncmp (p, "awatch", p1 - p) == 0))
4374 {
4375 event->stopped_by_watchpoint_p = 1;
4376 p = unpack_varlen_hex (++p1, &addr);
4377 event->watch_data_address = (CORE_ADDR) addr;
4378 }
4379 else if (strncmp (p, "library", p1 - p) == 0)
4380 {
4381 p1++;
4382 p_temp = p1;
4383 while (*p_temp && *p_temp != ';')
4384 p_temp++;
4385
4386 event->solibs_changed = 1;
4387 p = p_temp;
4388 }
4389 else if (strncmp (p, "replaylog", p1 - p) == 0)
4390 {
4391 /* NO_HISTORY event.
4392 p1 will indicate "begin" or "end", but
4393 it makes no difference for now, so ignore it. */
4394 event->replay_event = 1;
4395 p_temp = strchr (p1 + 1, ';');
4396 if (p_temp)
4397 p = p_temp;
4398 }
4399 else
4400 {
4401 /* Silently skip unknown optional info. */
4402 p_temp = strchr (p1 + 1, ';');
4403 if (p_temp)
4404 p = p_temp;
4405 }
4406 }
4407 else
4408 {
4409 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4410 cached_reg_t cached_reg;
4411
4412 p = p1;
4413
4414 if (*p != ':')
4415 error (_("Malformed packet(b) (missing colon): %s\n\
4416 Packet: '%s'\n"),
4417 p, buf);
4418 ++p;
4419
4420 if (reg == NULL)
4421 error (_("Remote sent bad register number %s: %s\n\
4422 Packet: '%s'\n"),
4423 phex_nz (pnum, 0), p, buf);
4424
4425 cached_reg.num = reg->regnum;
4426
4427 fieldsize = hex2bin (p, cached_reg.data,
4428 register_size (target_gdbarch,
4429 reg->regnum));
4430 p += 2 * fieldsize;
4431 if (fieldsize < register_size (target_gdbarch,
4432 reg->regnum))
4433 warning (_("Remote reply is too short: %s"), buf);
4434
4435 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4436 }
4437
4438 if (*p != ';')
4439 error (_("Remote register badly formatted: %s\nhere: %s"),
4440 buf, p);
4441 ++p;
4442 }
4443 }
4444 /* fall through */
4445 case 'S': /* Old style status, just signal only. */
4446 if (event->solibs_changed)
4447 event->ws.kind = TARGET_WAITKIND_LOADED;
4448 else if (event->replay_event)
4449 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4450 else
4451 {
4452 event->ws.kind = TARGET_WAITKIND_STOPPED;
4453 event->ws.value.sig = (enum target_signal)
4454 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4455 }
4456 break;
4457 case 'W': /* Target exited. */
4458 case 'X':
4459 {
4460 char *p;
4461 int pid;
4462 ULONGEST value;
4463
4464 /* GDB used to accept only 2 hex chars here. Stubs should
4465 only send more if they detect GDB supports multi-process
4466 support. */
4467 p = unpack_varlen_hex (&buf[1], &value);
4468
4469 if (buf[0] == 'W')
4470 {
4471 /* The remote process exited. */
4472 event->ws.kind = TARGET_WAITKIND_EXITED;
4473 event->ws.value.integer = value;
4474 }
4475 else
4476 {
4477 /* The remote process exited with a signal. */
4478 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4479 event->ws.value.sig = (enum target_signal) value;
4480 }
4481
4482 /* If no process is specified, assume inferior_ptid. */
4483 pid = ptid_get_pid (inferior_ptid);
4484 if (*p == '\0')
4485 ;
4486 else if (*p == ';')
4487 {
4488 p++;
4489
4490 if (p == '\0')
4491 ;
4492 else if (strncmp (p,
4493 "process:", sizeof ("process:") - 1) == 0)
4494 {
4495 ULONGEST upid;
4496 p += sizeof ("process:") - 1;
4497 unpack_varlen_hex (p, &upid);
4498 pid = upid;
4499 }
4500 else
4501 error (_("unknown stop reply packet: %s"), buf);
4502 }
4503 else
4504 error (_("unknown stop reply packet: %s"), buf);
4505 event->ptid = pid_to_ptid (pid);
4506 }
4507 break;
4508 }
4509
4510 if (non_stop && ptid_equal (event->ptid, null_ptid))
4511 error (_("No process or thread specified in stop reply: %s"), buf);
4512 }
4513
4514 /* When the stub wants to tell GDB about a new stop reply, it sends a
4515 stop notification (%Stop). Those can come it at any time, hence,
4516 we have to make sure that any pending putpkt/getpkt sequence we're
4517 making is finished, before querying the stub for more events with
4518 vStopped. E.g., if we started a vStopped sequence immediatelly
4519 upon receiving the %Stop notification, something like this could
4520 happen:
4521
4522 1.1) --> Hg 1
4523 1.2) <-- OK
4524 1.3) --> g
4525 1.4) <-- %Stop
4526 1.5) --> vStopped
4527 1.6) <-- (registers reply to step #1.3)
4528
4529 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4530 query.
4531
4532 To solve this, whenever we parse a %Stop notification sucessfully,
4533 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4534 doing whatever we were doing:
4535
4536 2.1) --> Hg 1
4537 2.2) <-- OK
4538 2.3) --> g
4539 2.4) <-- %Stop
4540 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4541 2.5) <-- (registers reply to step #2.3)
4542
4543 Eventualy after step #2.5, we return to the event loop, which
4544 notices there's an event on the
4545 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4546 associated callback --- the function below. At this point, we're
4547 always safe to start a vStopped sequence. :
4548
4549 2.6) --> vStopped
4550 2.7) <-- T05 thread:2
4551 2.8) --> vStopped
4552 2.9) --> OK
4553 */
4554
4555 static void
4556 remote_get_pending_stop_replies (void)
4557 {
4558 struct remote_state *rs = get_remote_state ();
4559 int ret;
4560
4561 if (pending_stop_reply)
4562 {
4563 /* acknowledge */
4564 putpkt ("vStopped");
4565
4566 /* Now we can rely on it. */
4567 push_stop_reply (pending_stop_reply);
4568 pending_stop_reply = NULL;
4569
4570 while (1)
4571 {
4572 getpkt (&rs->buf, &rs->buf_size, 0);
4573 if (strcmp (rs->buf, "OK") == 0)
4574 break;
4575 else
4576 {
4577 struct cleanup *old_chain;
4578 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4579
4580 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4581 remote_parse_stop_reply (rs->buf, stop_reply);
4582
4583 /* acknowledge */
4584 putpkt ("vStopped");
4585
4586 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4587 {
4588 /* Now we can rely on it. */
4589 discard_cleanups (old_chain);
4590 push_stop_reply (stop_reply);
4591 }
4592 else
4593 /* We got an unknown stop reply. */
4594 do_cleanups (old_chain);
4595 }
4596 }
4597 }
4598 }
4599
4600
4601 /* Called when it is decided that STOP_REPLY holds the info of the
4602 event that is to be returned to the core. This function always
4603 destroys STOP_REPLY. */
4604
4605 static ptid_t
4606 process_stop_reply (struct stop_reply *stop_reply,
4607 struct target_waitstatus *status)
4608 {
4609 ptid_t ptid;
4610
4611 *status = stop_reply->ws;
4612 ptid = stop_reply->ptid;
4613
4614 /* If no thread/process was reported by the stub, assume the current
4615 inferior. */
4616 if (ptid_equal (ptid, null_ptid))
4617 ptid = inferior_ptid;
4618
4619 if (status->kind != TARGET_WAITKIND_EXITED
4620 && status->kind != TARGET_WAITKIND_SIGNALLED)
4621 {
4622 /* Expedited registers. */
4623 if (stop_reply->regcache)
4624 {
4625 cached_reg_t *reg;
4626 int ix;
4627
4628 for (ix = 0;
4629 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4630 ix++)
4631 regcache_raw_supply (get_thread_regcache (ptid),
4632 reg->num, reg->data);
4633 VEC_free (cached_reg_t, stop_reply->regcache);
4634 }
4635
4636 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4637 remote_watch_data_address = stop_reply->watch_data_address;
4638
4639 remote_notice_new_inferior (ptid, 0);
4640 }
4641
4642 stop_reply_xfree (stop_reply);
4643 return ptid;
4644 }
4645
4646 /* The non-stop mode version of target_wait. */
4647
4648 static ptid_t
4649 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
4650 {
4651 struct remote_state *rs = get_remote_state ();
4652 struct remote_arch_state *rsa = get_remote_arch_state ();
4653 ptid_t event_ptid = null_ptid;
4654 struct stop_reply *stop_reply;
4655 int ret;
4656
4657 /* If in non-stop mode, get out of getpkt even if a
4658 notification is received. */
4659
4660 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4661 0 /* forever */);
4662 while (1)
4663 {
4664 if (ret != -1)
4665 switch (rs->buf[0])
4666 {
4667 case 'E': /* Error of some sort. */
4668 /* We're out of sync with the target now. Did it continue
4669 or not? We can't tell which thread it was in non-stop,
4670 so just ignore this. */
4671 warning (_("Remote failure reply: %s"), rs->buf);
4672 break;
4673 case 'O': /* Console output. */
4674 remote_console_output (rs->buf + 1);
4675 break;
4676 default:
4677 warning (_("Invalid remote reply: %s"), rs->buf);
4678 break;
4679 }
4680
4681 /* Acknowledge a pending stop reply that may have arrived in the
4682 mean time. */
4683 if (pending_stop_reply != NULL)
4684 remote_get_pending_stop_replies ();
4685
4686 /* If indeed we noticed a stop reply, we're done. */
4687 stop_reply = queued_stop_reply (ptid);
4688 if (stop_reply != NULL)
4689 return process_stop_reply (stop_reply, status);
4690
4691 /* Still no event. If we're just polling for an event, then
4692 return to the event loop. */
4693 if (options & TARGET_WNOHANG)
4694 {
4695 status->kind = TARGET_WAITKIND_IGNORE;
4696 return minus_one_ptid;
4697 }
4698
4699 /* Otherwise do a blocking wait. */
4700 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4701 1 /* forever */);
4702 }
4703 }
4704
4705 /* Wait until the remote machine stops, then return, storing status in
4706 STATUS just as `wait' would. */
4707
4708 static ptid_t
4709 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
4710 {
4711 struct remote_state *rs = get_remote_state ();
4712 struct remote_arch_state *rsa = get_remote_arch_state ();
4713 ptid_t event_ptid = null_ptid;
4714 ULONGEST addr;
4715 int solibs_changed = 0;
4716 char *buf, *p;
4717 struct stop_reply *stop_reply;
4718
4719 again:
4720
4721 status->kind = TARGET_WAITKIND_IGNORE;
4722 status->value.integer = 0;
4723
4724 stop_reply = queued_stop_reply (ptid);
4725 if (stop_reply != NULL)
4726 return process_stop_reply (stop_reply, status);
4727
4728 if (rs->cached_wait_status)
4729 /* Use the cached wait status, but only once. */
4730 rs->cached_wait_status = 0;
4731 else
4732 {
4733 int ret;
4734
4735 if (!target_is_async_p ())
4736 {
4737 ofunc = signal (SIGINT, remote_interrupt);
4738 /* If the user hit C-c before this packet, or between packets,
4739 pretend that it was hit right here. */
4740 if (quit_flag)
4741 {
4742 quit_flag = 0;
4743 remote_interrupt (SIGINT);
4744 }
4745 }
4746
4747 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4748 _never_ wait for ever -> test on target_is_async_p().
4749 However, before we do that we need to ensure that the caller
4750 knows how to take the target into/out of async mode. */
4751 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4752 if (!target_is_async_p ())
4753 signal (SIGINT, ofunc);
4754 }
4755
4756 buf = rs->buf;
4757
4758 remote_stopped_by_watchpoint_p = 0;
4759
4760 /* We got something. */
4761 rs->waiting_for_stop_reply = 0;
4762
4763 switch (buf[0])
4764 {
4765 case 'E': /* Error of some sort. */
4766 /* We're out of sync with the target now. Did it continue or
4767 not? Not is more likely, so report a stop. */
4768 warning (_("Remote failure reply: %s"), buf);
4769 status->kind = TARGET_WAITKIND_STOPPED;
4770 status->value.sig = TARGET_SIGNAL_0;
4771 break;
4772 case 'F': /* File-I/O request. */
4773 remote_fileio_request (buf);
4774 break;
4775 case 'T': case 'S': case 'X': case 'W':
4776 {
4777 struct stop_reply *stop_reply;
4778 struct cleanup *old_chain;
4779
4780 stop_reply = stop_reply_xmalloc ();
4781 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4782 remote_parse_stop_reply (buf, stop_reply);
4783 discard_cleanups (old_chain);
4784 event_ptid = process_stop_reply (stop_reply, status);
4785 break;
4786 }
4787 case 'O': /* Console output. */
4788 remote_console_output (buf + 1);
4789
4790 /* The target didn't really stop; keep waiting. */
4791 rs->waiting_for_stop_reply = 1;
4792
4793 break;
4794 case '\0':
4795 if (last_sent_signal != TARGET_SIGNAL_0)
4796 {
4797 /* Zero length reply means that we tried 'S' or 'C' and the
4798 remote system doesn't support it. */
4799 target_terminal_ours_for_output ();
4800 printf_filtered
4801 ("Can't send signals to this remote system. %s not sent.\n",
4802 target_signal_to_name (last_sent_signal));
4803 last_sent_signal = TARGET_SIGNAL_0;
4804 target_terminal_inferior ();
4805
4806 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4807 putpkt ((char *) buf);
4808
4809 /* We just told the target to resume, so a stop reply is in
4810 order. */
4811 rs->waiting_for_stop_reply = 1;
4812 break;
4813 }
4814 /* else fallthrough */
4815 default:
4816 warning (_("Invalid remote reply: %s"), buf);
4817 /* Keep waiting. */
4818 rs->waiting_for_stop_reply = 1;
4819 break;
4820 }
4821
4822 if (status->kind == TARGET_WAITKIND_IGNORE)
4823 {
4824 /* Nothing interesting happened. If we're doing a non-blocking
4825 poll, we're done. Otherwise, go back to waiting. */
4826 if (options & TARGET_WNOHANG)
4827 return minus_one_ptid;
4828 else
4829 goto again;
4830 }
4831 else if (status->kind != TARGET_WAITKIND_EXITED
4832 && status->kind != TARGET_WAITKIND_SIGNALLED)
4833 {
4834 if (!ptid_equal (event_ptid, null_ptid))
4835 record_currthread (event_ptid);
4836 else
4837 event_ptid = inferior_ptid;
4838 }
4839 else
4840 /* A process exit. Invalidate our notion of current thread. */
4841 record_currthread (minus_one_ptid);
4842
4843 return event_ptid;
4844 }
4845
4846 /* Wait until the remote machine stops, then return, storing status in
4847 STATUS just as `wait' would. */
4848
4849 static ptid_t
4850 remote_wait (struct target_ops *ops,
4851 ptid_t ptid, struct target_waitstatus *status, int options)
4852 {
4853 ptid_t event_ptid;
4854
4855 if (non_stop)
4856 event_ptid = remote_wait_ns (ptid, status, options);
4857 else
4858 event_ptid = remote_wait_as (ptid, status, options);
4859
4860 if (target_can_async_p ())
4861 {
4862 /* If there are are events left in the queue tell the event loop
4863 to return here. */
4864 if (stop_reply_queue)
4865 mark_async_event_handler (remote_async_inferior_event_token);
4866 }
4867
4868 return event_ptid;
4869 }
4870
4871 /* Fetch a single register using a 'p' packet. */
4872
4873 static int
4874 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4875 {
4876 struct remote_state *rs = get_remote_state ();
4877 char *buf, *p;
4878 char regp[MAX_REGISTER_SIZE];
4879 int i;
4880
4881 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4882 return 0;
4883
4884 if (reg->pnum == -1)
4885 return 0;
4886
4887 p = rs->buf;
4888 *p++ = 'p';
4889 p += hexnumstr (p, reg->pnum);
4890 *p++ = '\0';
4891 remote_send (&rs->buf, &rs->buf_size);
4892
4893 buf = rs->buf;
4894
4895 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4896 {
4897 case PACKET_OK:
4898 break;
4899 case PACKET_UNKNOWN:
4900 return 0;
4901 case PACKET_ERROR:
4902 error (_("Could not fetch register \"%s\""),
4903 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4904 }
4905
4906 /* If this register is unfetchable, tell the regcache. */
4907 if (buf[0] == 'x')
4908 {
4909 regcache_raw_supply (regcache, reg->regnum, NULL);
4910 return 1;
4911 }
4912
4913 /* Otherwise, parse and supply the value. */
4914 p = buf;
4915 i = 0;
4916 while (p[0] != 0)
4917 {
4918 if (p[1] == 0)
4919 error (_("fetch_register_using_p: early buf termination"));
4920
4921 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4922 p += 2;
4923 }
4924 regcache_raw_supply (regcache, reg->regnum, regp);
4925 return 1;
4926 }
4927
4928 /* Fetch the registers included in the target's 'g' packet. */
4929
4930 static int
4931 send_g_packet (void)
4932 {
4933 struct remote_state *rs = get_remote_state ();
4934 int i, buf_len;
4935 char *p;
4936 char *regs;
4937
4938 sprintf (rs->buf, "g");
4939 remote_send (&rs->buf, &rs->buf_size);
4940
4941 /* We can get out of synch in various cases. If the first character
4942 in the buffer is not a hex character, assume that has happened
4943 and try to fetch another packet to read. */
4944 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4945 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4946 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4947 && rs->buf[0] != 'x') /* New: unavailable register value. */
4948 {
4949 if (remote_debug)
4950 fprintf_unfiltered (gdb_stdlog,
4951 "Bad register packet; fetching a new packet\n");
4952 getpkt (&rs->buf, &rs->buf_size, 0);
4953 }
4954
4955 buf_len = strlen (rs->buf);
4956
4957 /* Sanity check the received packet. */
4958 if (buf_len % 2 != 0)
4959 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4960
4961 return buf_len / 2;
4962 }
4963
4964 static void
4965 process_g_packet (struct regcache *regcache)
4966 {
4967 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4968 struct remote_state *rs = get_remote_state ();
4969 struct remote_arch_state *rsa = get_remote_arch_state ();
4970 int i, buf_len;
4971 char *p;
4972 char *regs;
4973
4974 buf_len = strlen (rs->buf);
4975
4976 /* Further sanity checks, with knowledge of the architecture. */
4977 if (buf_len > 2 * rsa->sizeof_g_packet)
4978 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4979
4980 /* Save the size of the packet sent to us by the target. It is used
4981 as a heuristic when determining the max size of packets that the
4982 target can safely receive. */
4983 if (rsa->actual_register_packet_size == 0)
4984 rsa->actual_register_packet_size = buf_len;
4985
4986 /* If this is smaller than we guessed the 'g' packet would be,
4987 update our records. A 'g' reply that doesn't include a register's
4988 value implies either that the register is not available, or that
4989 the 'p' packet must be used. */
4990 if (buf_len < 2 * rsa->sizeof_g_packet)
4991 {
4992 rsa->sizeof_g_packet = buf_len / 2;
4993
4994 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4995 {
4996 if (rsa->regs[i].pnum == -1)
4997 continue;
4998
4999 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5000 rsa->regs[i].in_g_packet = 0;
5001 else
5002 rsa->regs[i].in_g_packet = 1;
5003 }
5004 }
5005
5006 regs = alloca (rsa->sizeof_g_packet);
5007
5008 /* Unimplemented registers read as all bits zero. */
5009 memset (regs, 0, rsa->sizeof_g_packet);
5010
5011 /* Reply describes registers byte by byte, each byte encoded as two
5012 hex characters. Suck them all up, then supply them to the
5013 register cacheing/storage mechanism. */
5014
5015 p = rs->buf;
5016 for (i = 0; i < rsa->sizeof_g_packet; i++)
5017 {
5018 if (p[0] == 0 || p[1] == 0)
5019 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5020 internal_error (__FILE__, __LINE__,
5021 "unexpected end of 'g' packet reply");
5022
5023 if (p[0] == 'x' && p[1] == 'x')
5024 regs[i] = 0; /* 'x' */
5025 else
5026 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5027 p += 2;
5028 }
5029
5030 {
5031 int i;
5032 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5033 {
5034 struct packet_reg *r = &rsa->regs[i];
5035 if (r->in_g_packet)
5036 {
5037 if (r->offset * 2 >= strlen (rs->buf))
5038 /* This shouldn't happen - we adjusted in_g_packet above. */
5039 internal_error (__FILE__, __LINE__,
5040 "unexpected end of 'g' packet reply");
5041 else if (rs->buf[r->offset * 2] == 'x')
5042 {
5043 gdb_assert (r->offset * 2 < strlen (rs->buf));
5044 /* The register isn't available, mark it as such (at
5045 the same time setting the value to zero). */
5046 regcache_raw_supply (regcache, r->regnum, NULL);
5047 }
5048 else
5049 regcache_raw_supply (regcache, r->regnum,
5050 regs + r->offset);
5051 }
5052 }
5053 }
5054 }
5055
5056 static void
5057 fetch_registers_using_g (struct regcache *regcache)
5058 {
5059 send_g_packet ();
5060 process_g_packet (regcache);
5061 }
5062
5063 static void
5064 remote_fetch_registers (struct target_ops *ops,
5065 struct regcache *regcache, int regnum)
5066 {
5067 struct remote_state *rs = get_remote_state ();
5068 struct remote_arch_state *rsa = get_remote_arch_state ();
5069 int i;
5070
5071 set_general_thread (inferior_ptid);
5072
5073 if (regnum >= 0)
5074 {
5075 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5076 gdb_assert (reg != NULL);
5077
5078 /* If this register might be in the 'g' packet, try that first -
5079 we are likely to read more than one register. If this is the
5080 first 'g' packet, we might be overly optimistic about its
5081 contents, so fall back to 'p'. */
5082 if (reg->in_g_packet)
5083 {
5084 fetch_registers_using_g (regcache);
5085 if (reg->in_g_packet)
5086 return;
5087 }
5088
5089 if (fetch_register_using_p (regcache, reg))
5090 return;
5091
5092 /* This register is not available. */
5093 regcache_raw_supply (regcache, reg->regnum, NULL);
5094
5095 return;
5096 }
5097
5098 fetch_registers_using_g (regcache);
5099
5100 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5101 if (!rsa->regs[i].in_g_packet)
5102 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5103 {
5104 /* This register is not available. */
5105 regcache_raw_supply (regcache, i, NULL);
5106 }
5107 }
5108
5109 /* Prepare to store registers. Since we may send them all (using a
5110 'G' request), we have to read out the ones we don't want to change
5111 first. */
5112
5113 static void
5114 remote_prepare_to_store (struct regcache *regcache)
5115 {
5116 struct remote_arch_state *rsa = get_remote_arch_state ();
5117 int i;
5118 gdb_byte buf[MAX_REGISTER_SIZE];
5119
5120 /* Make sure the entire registers array is valid. */
5121 switch (remote_protocol_packets[PACKET_P].support)
5122 {
5123 case PACKET_DISABLE:
5124 case PACKET_SUPPORT_UNKNOWN:
5125 /* Make sure all the necessary registers are cached. */
5126 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5127 if (rsa->regs[i].in_g_packet)
5128 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5129 break;
5130 case PACKET_ENABLE:
5131 break;
5132 }
5133 }
5134
5135 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5136 packet was not recognized. */
5137
5138 static int
5139 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5140 {
5141 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5142 struct remote_state *rs = get_remote_state ();
5143 struct remote_arch_state *rsa = get_remote_arch_state ();
5144 /* Try storing a single register. */
5145 char *buf = rs->buf;
5146 gdb_byte regp[MAX_REGISTER_SIZE];
5147 char *p;
5148
5149 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5150 return 0;
5151
5152 if (reg->pnum == -1)
5153 return 0;
5154
5155 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5156 p = buf + strlen (buf);
5157 regcache_raw_collect (regcache, reg->regnum, regp);
5158 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5159 remote_send (&rs->buf, &rs->buf_size);
5160
5161 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5162 {
5163 case PACKET_OK:
5164 return 1;
5165 case PACKET_ERROR:
5166 error (_("Could not write register \"%s\""),
5167 gdbarch_register_name (gdbarch, reg->regnum));
5168 case PACKET_UNKNOWN:
5169 return 0;
5170 default:
5171 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5172 }
5173 }
5174
5175 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5176 contents of the register cache buffer. FIXME: ignores errors. */
5177
5178 static void
5179 store_registers_using_G (const struct regcache *regcache)
5180 {
5181 struct remote_state *rs = get_remote_state ();
5182 struct remote_arch_state *rsa = get_remote_arch_state ();
5183 gdb_byte *regs;
5184 char *p;
5185
5186 /* Extract all the registers in the regcache copying them into a
5187 local buffer. */
5188 {
5189 int i;
5190 regs = alloca (rsa->sizeof_g_packet);
5191 memset (regs, 0, rsa->sizeof_g_packet);
5192 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5193 {
5194 struct packet_reg *r = &rsa->regs[i];
5195 if (r->in_g_packet)
5196 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5197 }
5198 }
5199
5200 /* Command describes registers byte by byte,
5201 each byte encoded as two hex characters. */
5202 p = rs->buf;
5203 *p++ = 'G';
5204 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5205 updated. */
5206 bin2hex (regs, p, rsa->sizeof_g_packet);
5207 remote_send (&rs->buf, &rs->buf_size);
5208 }
5209
5210 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5211 of the register cache buffer. FIXME: ignores errors. */
5212
5213 static void
5214 remote_store_registers (struct target_ops *ops,
5215 struct regcache *regcache, int regnum)
5216 {
5217 struct remote_state *rs = get_remote_state ();
5218 struct remote_arch_state *rsa = get_remote_arch_state ();
5219 int i;
5220
5221 set_general_thread (inferior_ptid);
5222
5223 if (regnum >= 0)
5224 {
5225 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5226 gdb_assert (reg != NULL);
5227
5228 /* Always prefer to store registers using the 'P' packet if
5229 possible; we often change only a small number of registers.
5230 Sometimes we change a larger number; we'd need help from a
5231 higher layer to know to use 'G'. */
5232 if (store_register_using_P (regcache, reg))
5233 return;
5234
5235 /* For now, don't complain if we have no way to write the
5236 register. GDB loses track of unavailable registers too
5237 easily. Some day, this may be an error. We don't have
5238 any way to read the register, either... */
5239 if (!reg->in_g_packet)
5240 return;
5241
5242 store_registers_using_G (regcache);
5243 return;
5244 }
5245
5246 store_registers_using_G (regcache);
5247
5248 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5249 if (!rsa->regs[i].in_g_packet)
5250 if (!store_register_using_P (regcache, &rsa->regs[i]))
5251 /* See above for why we do not issue an error here. */
5252 continue;
5253 }
5254 \f
5255
5256 /* Return the number of hex digits in num. */
5257
5258 static int
5259 hexnumlen (ULONGEST num)
5260 {
5261 int i;
5262
5263 for (i = 0; num != 0; i++)
5264 num >>= 4;
5265
5266 return max (i, 1);
5267 }
5268
5269 /* Set BUF to the minimum number of hex digits representing NUM. */
5270
5271 static int
5272 hexnumstr (char *buf, ULONGEST num)
5273 {
5274 int len = hexnumlen (num);
5275 return hexnumnstr (buf, num, len);
5276 }
5277
5278
5279 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5280
5281 static int
5282 hexnumnstr (char *buf, ULONGEST num, int width)
5283 {
5284 int i;
5285
5286 buf[width] = '\0';
5287
5288 for (i = width - 1; i >= 0; i--)
5289 {
5290 buf[i] = "0123456789abcdef"[(num & 0xf)];
5291 num >>= 4;
5292 }
5293
5294 return width;
5295 }
5296
5297 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5298
5299 static CORE_ADDR
5300 remote_address_masked (CORE_ADDR addr)
5301 {
5302 int address_size = remote_address_size;
5303 /* If "remoteaddresssize" was not set, default to target address size. */
5304 if (!address_size)
5305 address_size = gdbarch_addr_bit (target_gdbarch);
5306
5307 if (address_size > 0
5308 && address_size < (sizeof (ULONGEST) * 8))
5309 {
5310 /* Only create a mask when that mask can safely be constructed
5311 in a ULONGEST variable. */
5312 ULONGEST mask = 1;
5313 mask = (mask << address_size) - 1;
5314 addr &= mask;
5315 }
5316 return addr;
5317 }
5318
5319 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5320 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5321 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5322 (which may be more than *OUT_LEN due to escape characters). The
5323 total number of bytes in the output buffer will be at most
5324 OUT_MAXLEN. */
5325
5326 static int
5327 remote_escape_output (const gdb_byte *buffer, int len,
5328 gdb_byte *out_buf, int *out_len,
5329 int out_maxlen)
5330 {
5331 int input_index, output_index;
5332
5333 output_index = 0;
5334 for (input_index = 0; input_index < len; input_index++)
5335 {
5336 gdb_byte b = buffer[input_index];
5337
5338 if (b == '$' || b == '#' || b == '}')
5339 {
5340 /* These must be escaped. */
5341 if (output_index + 2 > out_maxlen)
5342 break;
5343 out_buf[output_index++] = '}';
5344 out_buf[output_index++] = b ^ 0x20;
5345 }
5346 else
5347 {
5348 if (output_index + 1 > out_maxlen)
5349 break;
5350 out_buf[output_index++] = b;
5351 }
5352 }
5353
5354 *out_len = input_index;
5355 return output_index;
5356 }
5357
5358 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5359 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5360 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5361
5362 This function reverses remote_escape_output. It allows more
5363 escaped characters than that function does, in particular because
5364 '*' must be escaped to avoid the run-length encoding processing
5365 in reading packets. */
5366
5367 static int
5368 remote_unescape_input (const gdb_byte *buffer, int len,
5369 gdb_byte *out_buf, int out_maxlen)
5370 {
5371 int input_index, output_index;
5372 int escaped;
5373
5374 output_index = 0;
5375 escaped = 0;
5376 for (input_index = 0; input_index < len; input_index++)
5377 {
5378 gdb_byte b = buffer[input_index];
5379
5380 if (output_index + 1 > out_maxlen)
5381 {
5382 warning (_("Received too much data from remote target;"
5383 " ignoring overflow."));
5384 return output_index;
5385 }
5386
5387 if (escaped)
5388 {
5389 out_buf[output_index++] = b ^ 0x20;
5390 escaped = 0;
5391 }
5392 else if (b == '}')
5393 escaped = 1;
5394 else
5395 out_buf[output_index++] = b;
5396 }
5397
5398 if (escaped)
5399 error (_("Unmatched escape character in target response."));
5400
5401 return output_index;
5402 }
5403
5404 /* Determine whether the remote target supports binary downloading.
5405 This is accomplished by sending a no-op memory write of zero length
5406 to the target at the specified address. It does not suffice to send
5407 the whole packet, since many stubs strip the eighth bit and
5408 subsequently compute a wrong checksum, which causes real havoc with
5409 remote_write_bytes.
5410
5411 NOTE: This can still lose if the serial line is not eight-bit
5412 clean. In cases like this, the user should clear "remote
5413 X-packet". */
5414
5415 static void
5416 check_binary_download (CORE_ADDR addr)
5417 {
5418 struct remote_state *rs = get_remote_state ();
5419
5420 switch (remote_protocol_packets[PACKET_X].support)
5421 {
5422 case PACKET_DISABLE:
5423 break;
5424 case PACKET_ENABLE:
5425 break;
5426 case PACKET_SUPPORT_UNKNOWN:
5427 {
5428 char *p;
5429
5430 p = rs->buf;
5431 *p++ = 'X';
5432 p += hexnumstr (p, (ULONGEST) addr);
5433 *p++ = ',';
5434 p += hexnumstr (p, (ULONGEST) 0);
5435 *p++ = ':';
5436 *p = '\0';
5437
5438 putpkt_binary (rs->buf, (int) (p - rs->buf));
5439 getpkt (&rs->buf, &rs->buf_size, 0);
5440
5441 if (rs->buf[0] == '\0')
5442 {
5443 if (remote_debug)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "binary downloading NOT suppported by target\n");
5446 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5447 }
5448 else
5449 {
5450 if (remote_debug)
5451 fprintf_unfiltered (gdb_stdlog,
5452 "binary downloading suppported by target\n");
5453 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5454 }
5455 break;
5456 }
5457 }
5458 }
5459
5460 /* Write memory data directly to the remote machine.
5461 This does not inform the data cache; the data cache uses this.
5462 HEADER is the starting part of the packet.
5463 MEMADDR is the address in the remote memory space.
5464 MYADDR is the address of the buffer in our space.
5465 LEN is the number of bytes.
5466 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5467 should send data as binary ('X'), or hex-encoded ('M').
5468
5469 The function creates packet of the form
5470 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5471
5472 where encoding of <DATA> is termined by PACKET_FORMAT.
5473
5474 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5475 are omitted.
5476
5477 Returns the number of bytes transferred, or 0 (setting errno) for
5478 error. Only transfer a single packet. */
5479
5480 static int
5481 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5482 const gdb_byte *myaddr, int len,
5483 char packet_format, int use_length)
5484 {
5485 struct remote_state *rs = get_remote_state ();
5486 char *p;
5487 char *plen = NULL;
5488 int plenlen = 0;
5489 int todo;
5490 int nr_bytes;
5491 int payload_size;
5492 int payload_length;
5493 int header_length;
5494
5495 if (packet_format != 'X' && packet_format != 'M')
5496 internal_error (__FILE__, __LINE__,
5497 "remote_write_bytes_aux: bad packet format");
5498
5499 if (len <= 0)
5500 return 0;
5501
5502 payload_size = get_memory_write_packet_size ();
5503
5504 /* The packet buffer will be large enough for the payload;
5505 get_memory_packet_size ensures this. */
5506 rs->buf[0] = '\0';
5507
5508 /* Compute the size of the actual payload by subtracting out the
5509 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5510 */
5511 payload_size -= strlen ("$,:#NN");
5512 if (!use_length)
5513 /* The comma won't be used. */
5514 payload_size += 1;
5515 header_length = strlen (header);
5516 payload_size -= header_length;
5517 payload_size -= hexnumlen (memaddr);
5518
5519 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5520
5521 strcat (rs->buf, header);
5522 p = rs->buf + strlen (header);
5523
5524 /* Compute a best guess of the number of bytes actually transfered. */
5525 if (packet_format == 'X')
5526 {
5527 /* Best guess at number of bytes that will fit. */
5528 todo = min (len, payload_size);
5529 if (use_length)
5530 payload_size -= hexnumlen (todo);
5531 todo = min (todo, payload_size);
5532 }
5533 else
5534 {
5535 /* Num bytes that will fit. */
5536 todo = min (len, payload_size / 2);
5537 if (use_length)
5538 payload_size -= hexnumlen (todo);
5539 todo = min (todo, payload_size / 2);
5540 }
5541
5542 if (todo <= 0)
5543 internal_error (__FILE__, __LINE__,
5544 _("minumum packet size too small to write data"));
5545
5546 /* If we already need another packet, then try to align the end
5547 of this packet to a useful boundary. */
5548 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5549 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5550
5551 /* Append "<memaddr>". */
5552 memaddr = remote_address_masked (memaddr);
5553 p += hexnumstr (p, (ULONGEST) memaddr);
5554
5555 if (use_length)
5556 {
5557 /* Append ",". */
5558 *p++ = ',';
5559
5560 /* Append <len>. Retain the location/size of <len>. It may need to
5561 be adjusted once the packet body has been created. */
5562 plen = p;
5563 plenlen = hexnumstr (p, (ULONGEST) todo);
5564 p += plenlen;
5565 }
5566
5567 /* Append ":". */
5568 *p++ = ':';
5569 *p = '\0';
5570
5571 /* Append the packet body. */
5572 if (packet_format == 'X')
5573 {
5574 /* Binary mode. Send target system values byte by byte, in
5575 increasing byte addresses. Only escape certain critical
5576 characters. */
5577 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5578 payload_size);
5579
5580 /* If not all TODO bytes fit, then we'll need another packet. Make
5581 a second try to keep the end of the packet aligned. Don't do
5582 this if the packet is tiny. */
5583 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5584 {
5585 int new_nr_bytes;
5586
5587 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5588 - memaddr);
5589 if (new_nr_bytes != nr_bytes)
5590 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5591 p, &nr_bytes,
5592 payload_size);
5593 }
5594
5595 p += payload_length;
5596 if (use_length && nr_bytes < todo)
5597 {
5598 /* Escape chars have filled up the buffer prematurely,
5599 and we have actually sent fewer bytes than planned.
5600 Fix-up the length field of the packet. Use the same
5601 number of characters as before. */
5602 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5603 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5604 }
5605 }
5606 else
5607 {
5608 /* Normal mode: Send target system values byte by byte, in
5609 increasing byte addresses. Each byte is encoded as a two hex
5610 value. */
5611 nr_bytes = bin2hex (myaddr, p, todo);
5612 p += 2 * nr_bytes;
5613 }
5614
5615 putpkt_binary (rs->buf, (int) (p - rs->buf));
5616 getpkt (&rs->buf, &rs->buf_size, 0);
5617
5618 if (rs->buf[0] == 'E')
5619 {
5620 /* There is no correspondance between what the remote protocol
5621 uses for errors and errno codes. We would like a cleaner way
5622 of representing errors (big enough to include errno codes,
5623 bfd_error codes, and others). But for now just return EIO. */
5624 errno = EIO;
5625 return 0;
5626 }
5627
5628 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5629 fewer bytes than we'd planned. */
5630 return nr_bytes;
5631 }
5632
5633 /* Write memory data directly to the remote machine.
5634 This does not inform the data cache; the data cache uses this.
5635 MEMADDR is the address in the remote memory space.
5636 MYADDR is the address of the buffer in our space.
5637 LEN is the number of bytes.
5638
5639 Returns number of bytes transferred, or 0 (setting errno) for
5640 error. Only transfer a single packet. */
5641
5642 int
5643 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5644 {
5645 char *packet_format = 0;
5646
5647 /* Check whether the target supports binary download. */
5648 check_binary_download (memaddr);
5649
5650 switch (remote_protocol_packets[PACKET_X].support)
5651 {
5652 case PACKET_ENABLE:
5653 packet_format = "X";
5654 break;
5655 case PACKET_DISABLE:
5656 packet_format = "M";
5657 break;
5658 case PACKET_SUPPORT_UNKNOWN:
5659 internal_error (__FILE__, __LINE__,
5660 _("remote_write_bytes: bad internal state"));
5661 default:
5662 internal_error (__FILE__, __LINE__, _("bad switch"));
5663 }
5664
5665 return remote_write_bytes_aux (packet_format,
5666 memaddr, myaddr, len, packet_format[0], 1);
5667 }
5668
5669 /* Read memory data directly from the remote machine.
5670 This does not use the data cache; the data cache uses this.
5671 MEMADDR is the address in the remote memory space.
5672 MYADDR is the address of the buffer in our space.
5673 LEN is the number of bytes.
5674
5675 Returns number of bytes transferred, or 0 for error. */
5676
5677 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5678 remote targets) shouldn't attempt to read the entire buffer.
5679 Instead it should read a single packet worth of data and then
5680 return the byte size of that packet to the caller. The caller (its
5681 caller and its callers caller ;-) already contains code for
5682 handling partial reads. */
5683
5684 int
5685 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5686 {
5687 struct remote_state *rs = get_remote_state ();
5688 int max_buf_size; /* Max size of packet output buffer. */
5689 int origlen;
5690
5691 if (len <= 0)
5692 return 0;
5693
5694 max_buf_size = get_memory_read_packet_size ();
5695 /* The packet buffer will be large enough for the payload;
5696 get_memory_packet_size ensures this. */
5697
5698 origlen = len;
5699 while (len > 0)
5700 {
5701 char *p;
5702 int todo;
5703 int i;
5704
5705 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5706
5707 /* construct "m"<memaddr>","<len>" */
5708 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5709 memaddr = remote_address_masked (memaddr);
5710 p = rs->buf;
5711 *p++ = 'm';
5712 p += hexnumstr (p, (ULONGEST) memaddr);
5713 *p++ = ',';
5714 p += hexnumstr (p, (ULONGEST) todo);
5715 *p = '\0';
5716
5717 putpkt (rs->buf);
5718 getpkt (&rs->buf, &rs->buf_size, 0);
5719
5720 if (rs->buf[0] == 'E'
5721 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5722 && rs->buf[3] == '\0')
5723 {
5724 /* There is no correspondance between what the remote
5725 protocol uses for errors and errno codes. We would like
5726 a cleaner way of representing errors (big enough to
5727 include errno codes, bfd_error codes, and others). But
5728 for now just return EIO. */
5729 errno = EIO;
5730 return 0;
5731 }
5732
5733 /* Reply describes memory byte by byte,
5734 each byte encoded as two hex characters. */
5735
5736 p = rs->buf;
5737 if ((i = hex2bin (p, myaddr, todo)) < todo)
5738 {
5739 /* Reply is short. This means that we were able to read
5740 only part of what we wanted to. */
5741 return i + (origlen - len);
5742 }
5743 myaddr += todo;
5744 memaddr += todo;
5745 len -= todo;
5746 }
5747 return origlen;
5748 }
5749 \f
5750
5751 /* Remote notification handler. */
5752
5753 static void
5754 handle_notification (char *buf, size_t length)
5755 {
5756 if (strncmp (buf, "Stop:", 5) == 0)
5757 {
5758 if (pending_stop_reply)
5759 /* We've already parsed the in-flight stop-reply, but the stub
5760 for some reason thought we didn't, possibly due to timeout
5761 on its side. Just ignore it. */
5762 ;
5763 else
5764 {
5765 struct cleanup *old_chain;
5766 struct stop_reply *reply = stop_reply_xmalloc ();
5767 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5768
5769 remote_parse_stop_reply (buf + 5, reply);
5770
5771 discard_cleanups (old_chain);
5772
5773 /* Be careful to only set it after parsing, since an error
5774 may be thrown then. */
5775 pending_stop_reply = reply;
5776
5777 /* Notify the event loop there's a stop reply to acknowledge
5778 and that there may be more events to fetch. */
5779 mark_async_event_handler (remote_async_get_pending_events_token);
5780 }
5781 }
5782 else
5783 /* We ignore notifications we don't recognize, for compatibility
5784 with newer stubs. */
5785 ;
5786 }
5787
5788 \f
5789 /* Read or write LEN bytes from inferior memory at MEMADDR,
5790 transferring to or from debugger address BUFFER. Write to inferior
5791 if SHOULD_WRITE is nonzero. Returns length of data written or
5792 read; 0 for error. TARGET is unused. */
5793
5794 static int
5795 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5796 int should_write, struct mem_attrib *attrib,
5797 struct target_ops *target)
5798 {
5799 int res;
5800
5801 set_general_thread (inferior_ptid);
5802
5803 if (should_write)
5804 res = remote_write_bytes (mem_addr, buffer, mem_len);
5805 else
5806 res = remote_read_bytes (mem_addr, buffer, mem_len);
5807
5808 return res;
5809 }
5810
5811 /* Sends a packet with content determined by the printf format string
5812 FORMAT and the remaining arguments, then gets the reply. Returns
5813 whether the packet was a success, a failure, or unknown. */
5814
5815 static enum packet_result
5816 remote_send_printf (const char *format, ...)
5817 {
5818 struct remote_state *rs = get_remote_state ();
5819 int max_size = get_remote_packet_size ();
5820
5821 va_list ap;
5822 va_start (ap, format);
5823
5824 rs->buf[0] = '\0';
5825 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5826 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5827
5828 if (putpkt (rs->buf) < 0)
5829 error (_("Communication problem with target."));
5830
5831 rs->buf[0] = '\0';
5832 getpkt (&rs->buf, &rs->buf_size, 0);
5833
5834 return packet_check_result (rs->buf);
5835 }
5836
5837 static void
5838 restore_remote_timeout (void *p)
5839 {
5840 int value = *(int *)p;
5841 remote_timeout = value;
5842 }
5843
5844 /* Flash writing can take quite some time. We'll set
5845 effectively infinite timeout for flash operations.
5846 In future, we'll need to decide on a better approach. */
5847 static const int remote_flash_timeout = 1000;
5848
5849 static void
5850 remote_flash_erase (struct target_ops *ops,
5851 ULONGEST address, LONGEST length)
5852 {
5853 int saved_remote_timeout = remote_timeout;
5854 enum packet_result ret;
5855
5856 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5857 &saved_remote_timeout);
5858 remote_timeout = remote_flash_timeout;
5859
5860 ret = remote_send_printf ("vFlashErase:%s,%s",
5861 paddr (address),
5862 phex (length, 4));
5863 switch (ret)
5864 {
5865 case PACKET_UNKNOWN:
5866 error (_("Remote target does not support flash erase"));
5867 case PACKET_ERROR:
5868 error (_("Error erasing flash with vFlashErase packet"));
5869 default:
5870 break;
5871 }
5872
5873 do_cleanups (back_to);
5874 }
5875
5876 static LONGEST
5877 remote_flash_write (struct target_ops *ops,
5878 ULONGEST address, LONGEST length,
5879 const gdb_byte *data)
5880 {
5881 int saved_remote_timeout = remote_timeout;
5882 int ret;
5883 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5884 &saved_remote_timeout);
5885
5886 remote_timeout = remote_flash_timeout;
5887 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5888 do_cleanups (back_to);
5889
5890 return ret;
5891 }
5892
5893 static void
5894 remote_flash_done (struct target_ops *ops)
5895 {
5896 int saved_remote_timeout = remote_timeout;
5897 int ret;
5898 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5899 &saved_remote_timeout);
5900
5901 remote_timeout = remote_flash_timeout;
5902 ret = remote_send_printf ("vFlashDone");
5903 do_cleanups (back_to);
5904
5905 switch (ret)
5906 {
5907 case PACKET_UNKNOWN:
5908 error (_("Remote target does not support vFlashDone"));
5909 case PACKET_ERROR:
5910 error (_("Error finishing flash operation"));
5911 default:
5912 break;
5913 }
5914 }
5915
5916 static void
5917 remote_files_info (struct target_ops *ignore)
5918 {
5919 puts_filtered ("Debugging a target over a serial line.\n");
5920 }
5921 \f
5922 /* Stuff for dealing with the packets which are part of this protocol.
5923 See comment at top of file for details. */
5924
5925 /* Read a single character from the remote end. */
5926
5927 static int
5928 readchar (int timeout)
5929 {
5930 int ch;
5931
5932 ch = serial_readchar (remote_desc, timeout);
5933
5934 if (ch >= 0)
5935 return ch;
5936
5937 switch ((enum serial_rc) ch)
5938 {
5939 case SERIAL_EOF:
5940 pop_target ();
5941 error (_("Remote connection closed"));
5942 /* no return */
5943 case SERIAL_ERROR:
5944 perror_with_name (_("Remote communication error"));
5945 /* no return */
5946 case SERIAL_TIMEOUT:
5947 break;
5948 }
5949 return ch;
5950 }
5951
5952 /* Send the command in *BUF to the remote machine, and read the reply
5953 into *BUF. Report an error if we get an error reply. Resize
5954 *BUF using xrealloc if necessary to hold the result, and update
5955 *SIZEOF_BUF. */
5956
5957 static void
5958 remote_send (char **buf,
5959 long *sizeof_buf)
5960 {
5961 putpkt (*buf);
5962 getpkt (buf, sizeof_buf, 0);
5963
5964 if ((*buf)[0] == 'E')
5965 error (_("Remote failure reply: %s"), *buf);
5966 }
5967
5968 /* Return a pointer to an xmalloc'ed string representing an escaped
5969 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5970 etc. The caller is responsible for releasing the returned
5971 memory. */
5972
5973 static char *
5974 escape_buffer (const char *buf, int n)
5975 {
5976 struct cleanup *old_chain;
5977 struct ui_file *stb;
5978 char *str;
5979 long length;
5980
5981 stb = mem_fileopen ();
5982 old_chain = make_cleanup_ui_file_delete (stb);
5983
5984 fputstrn_unfiltered (buf, n, 0, stb);
5985 str = ui_file_xstrdup (stb, &length);
5986 do_cleanups (old_chain);
5987 return str;
5988 }
5989
5990 /* Display a null-terminated packet on stdout, for debugging, using C
5991 string notation. */
5992
5993 static void
5994 print_packet (char *buf)
5995 {
5996 puts_filtered ("\"");
5997 fputstr_filtered (buf, '"', gdb_stdout);
5998 puts_filtered ("\"");
5999 }
6000
6001 int
6002 putpkt (char *buf)
6003 {
6004 return putpkt_binary (buf, strlen (buf));
6005 }
6006
6007 /* Send a packet to the remote machine, with error checking. The data
6008 of the packet is in BUF. The string in BUF can be at most
6009 get_remote_packet_size () - 5 to account for the $, # and checksum,
6010 and for a possible /0 if we are debugging (remote_debug) and want
6011 to print the sent packet as a string. */
6012
6013 static int
6014 putpkt_binary (char *buf, int cnt)
6015 {
6016 struct remote_state *rs = get_remote_state ();
6017 int i;
6018 unsigned char csum = 0;
6019 char *buf2 = alloca (cnt + 6);
6020
6021 int ch;
6022 int tcount = 0;
6023 char *p;
6024
6025 /* Catch cases like trying to read memory or listing threads while
6026 we're waiting for a stop reply. The remote server wouldn't be
6027 ready to handle this request, so we'd hang and timeout. We don't
6028 have to worry about this in synchronous mode, because in that
6029 case it's not possible to issue a command while the target is
6030 running. This is not a problem in non-stop mode, because in that
6031 case, the stub is always ready to process serial input. */
6032 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6033 error (_("Cannot execute this command while the target is running."));
6034
6035 /* We're sending out a new packet. Make sure we don't look at a
6036 stale cached response. */
6037 rs->cached_wait_status = 0;
6038
6039 /* Copy the packet into buffer BUF2, encapsulating it
6040 and giving it a checksum. */
6041
6042 p = buf2;
6043 *p++ = '$';
6044
6045 for (i = 0; i < cnt; i++)
6046 {
6047 csum += buf[i];
6048 *p++ = buf[i];
6049 }
6050 *p++ = '#';
6051 *p++ = tohex ((csum >> 4) & 0xf);
6052 *p++ = tohex (csum & 0xf);
6053
6054 /* Send it over and over until we get a positive ack. */
6055
6056 while (1)
6057 {
6058 int started_error_output = 0;
6059
6060 if (remote_debug)
6061 {
6062 struct cleanup *old_chain;
6063 char *str;
6064
6065 *p = '\0';
6066 str = escape_buffer (buf2, p - buf2);
6067 old_chain = make_cleanup (xfree, str);
6068 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6069 gdb_flush (gdb_stdlog);
6070 do_cleanups (old_chain);
6071 }
6072 if (serial_write (remote_desc, buf2, p - buf2))
6073 perror_with_name (_("putpkt: write failed"));
6074
6075 /* If this is a no acks version of the remote protocol, send the
6076 packet and move on. */
6077 if (rs->noack_mode)
6078 break;
6079
6080 /* Read until either a timeout occurs (-2) or '+' is read.
6081 Handle any notification that arrives in the mean time. */
6082 while (1)
6083 {
6084 ch = readchar (remote_timeout);
6085
6086 if (remote_debug)
6087 {
6088 switch (ch)
6089 {
6090 case '+':
6091 case '-':
6092 case SERIAL_TIMEOUT:
6093 case '$':
6094 case '%':
6095 if (started_error_output)
6096 {
6097 putchar_unfiltered ('\n');
6098 started_error_output = 0;
6099 }
6100 }
6101 }
6102
6103 switch (ch)
6104 {
6105 case '+':
6106 if (remote_debug)
6107 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6108 return 1;
6109 case '-':
6110 if (remote_debug)
6111 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6112 case SERIAL_TIMEOUT:
6113 tcount++;
6114 if (tcount > 3)
6115 return 0;
6116 break; /* Retransmit buffer. */
6117 case '$':
6118 {
6119 if (remote_debug)
6120 fprintf_unfiltered (gdb_stdlog,
6121 "Packet instead of Ack, ignoring it\n");
6122 /* It's probably an old response sent because an ACK
6123 was lost. Gobble up the packet and ack it so it
6124 doesn't get retransmitted when we resend this
6125 packet. */
6126 skip_frame ();
6127 serial_write (remote_desc, "+", 1);
6128 continue; /* Now, go look for +. */
6129 }
6130
6131 case '%':
6132 {
6133 int val;
6134
6135 /* If we got a notification, handle it, and go back to looking
6136 for an ack. */
6137 /* We've found the start of a notification. Now
6138 collect the data. */
6139 val = read_frame (&rs->buf, &rs->buf_size);
6140 if (val >= 0)
6141 {
6142 if (remote_debug)
6143 {
6144 struct cleanup *old_chain;
6145 char *str;
6146
6147 str = escape_buffer (rs->buf, val);
6148 old_chain = make_cleanup (xfree, str);
6149 fprintf_unfiltered (gdb_stdlog,
6150 " Notification received: %s\n",
6151 str);
6152 do_cleanups (old_chain);
6153 }
6154 handle_notification (rs->buf, val);
6155 /* We're in sync now, rewait for the ack. */
6156 tcount = 0;
6157 }
6158 else
6159 {
6160 if (remote_debug)
6161 {
6162 if (!started_error_output)
6163 {
6164 started_error_output = 1;
6165 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6166 }
6167 fputc_unfiltered (ch & 0177, gdb_stdlog);
6168 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6169 }
6170 }
6171 continue;
6172 }
6173 /* fall-through */
6174 default:
6175 if (remote_debug)
6176 {
6177 if (!started_error_output)
6178 {
6179 started_error_output = 1;
6180 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6181 }
6182 fputc_unfiltered (ch & 0177, gdb_stdlog);
6183 }
6184 continue;
6185 }
6186 break; /* Here to retransmit. */
6187 }
6188
6189 #if 0
6190 /* This is wrong. If doing a long backtrace, the user should be
6191 able to get out next time we call QUIT, without anything as
6192 violent as interrupt_query. If we want to provide a way out of
6193 here without getting to the next QUIT, it should be based on
6194 hitting ^C twice as in remote_wait. */
6195 if (quit_flag)
6196 {
6197 quit_flag = 0;
6198 interrupt_query ();
6199 }
6200 #endif
6201 }
6202 return 0;
6203 }
6204
6205 /* Come here after finding the start of a frame when we expected an
6206 ack. Do our best to discard the rest of this packet. */
6207
6208 static void
6209 skip_frame (void)
6210 {
6211 int c;
6212
6213 while (1)
6214 {
6215 c = readchar (remote_timeout);
6216 switch (c)
6217 {
6218 case SERIAL_TIMEOUT:
6219 /* Nothing we can do. */
6220 return;
6221 case '#':
6222 /* Discard the two bytes of checksum and stop. */
6223 c = readchar (remote_timeout);
6224 if (c >= 0)
6225 c = readchar (remote_timeout);
6226
6227 return;
6228 case '*': /* Run length encoding. */
6229 /* Discard the repeat count. */
6230 c = readchar (remote_timeout);
6231 if (c < 0)
6232 return;
6233 break;
6234 default:
6235 /* A regular character. */
6236 break;
6237 }
6238 }
6239 }
6240
6241 /* Come here after finding the start of the frame. Collect the rest
6242 into *BUF, verifying the checksum, length, and handling run-length
6243 compression. NUL terminate the buffer. If there is not enough room,
6244 expand *BUF using xrealloc.
6245
6246 Returns -1 on error, number of characters in buffer (ignoring the
6247 trailing NULL) on success. (could be extended to return one of the
6248 SERIAL status indications). */
6249
6250 static long
6251 read_frame (char **buf_p,
6252 long *sizeof_buf)
6253 {
6254 unsigned char csum;
6255 long bc;
6256 int c;
6257 char *buf = *buf_p;
6258 struct remote_state *rs = get_remote_state ();
6259
6260 csum = 0;
6261 bc = 0;
6262
6263 while (1)
6264 {
6265 c = readchar (remote_timeout);
6266 switch (c)
6267 {
6268 case SERIAL_TIMEOUT:
6269 if (remote_debug)
6270 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6271 return -1;
6272 case '$':
6273 if (remote_debug)
6274 fputs_filtered ("Saw new packet start in middle of old one\n",
6275 gdb_stdlog);
6276 return -1; /* Start a new packet, count retries. */
6277 case '#':
6278 {
6279 unsigned char pktcsum;
6280 int check_0 = 0;
6281 int check_1 = 0;
6282
6283 buf[bc] = '\0';
6284
6285 check_0 = readchar (remote_timeout);
6286 if (check_0 >= 0)
6287 check_1 = readchar (remote_timeout);
6288
6289 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6290 {
6291 if (remote_debug)
6292 fputs_filtered ("Timeout in checksum, retrying\n",
6293 gdb_stdlog);
6294 return -1;
6295 }
6296 else if (check_0 < 0 || check_1 < 0)
6297 {
6298 if (remote_debug)
6299 fputs_filtered ("Communication error in checksum\n",
6300 gdb_stdlog);
6301 return -1;
6302 }
6303
6304 /* Don't recompute the checksum; with no ack packets we
6305 don't have any way to indicate a packet retransmission
6306 is necessary. */
6307 if (rs->noack_mode)
6308 return bc;
6309
6310 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6311 if (csum == pktcsum)
6312 return bc;
6313
6314 if (remote_debug)
6315 {
6316 struct cleanup *old_chain;
6317 char *str;
6318
6319 str = escape_buffer (buf, bc);
6320 old_chain = make_cleanup (xfree, str);
6321 fprintf_unfiltered (gdb_stdlog,
6322 "\
6323 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6324 pktcsum, csum, str);
6325 do_cleanups (old_chain);
6326 }
6327 /* Number of characters in buffer ignoring trailing
6328 NULL. */
6329 return -1;
6330 }
6331 case '*': /* Run length encoding. */
6332 {
6333 int repeat;
6334 csum += c;
6335
6336 c = readchar (remote_timeout);
6337 csum += c;
6338 repeat = c - ' ' + 3; /* Compute repeat count. */
6339
6340 /* The character before ``*'' is repeated. */
6341
6342 if (repeat > 0 && repeat <= 255 && bc > 0)
6343 {
6344 if (bc + repeat - 1 >= *sizeof_buf - 1)
6345 {
6346 /* Make some more room in the buffer. */
6347 *sizeof_buf += repeat;
6348 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6349 buf = *buf_p;
6350 }
6351
6352 memset (&buf[bc], buf[bc - 1], repeat);
6353 bc += repeat;
6354 continue;
6355 }
6356
6357 buf[bc] = '\0';
6358 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6359 return -1;
6360 }
6361 default:
6362 if (bc >= *sizeof_buf - 1)
6363 {
6364 /* Make some more room in the buffer. */
6365 *sizeof_buf *= 2;
6366 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6367 buf = *buf_p;
6368 }
6369
6370 buf[bc++] = c;
6371 csum += c;
6372 continue;
6373 }
6374 }
6375 }
6376
6377 /* Read a packet from the remote machine, with error checking, and
6378 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6379 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6380 rather than timing out; this is used (in synchronous mode) to wait
6381 for a target that is is executing user code to stop. */
6382 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6383 don't have to change all the calls to getpkt to deal with the
6384 return value, because at the moment I don't know what the right
6385 thing to do it for those. */
6386 void
6387 getpkt (char **buf,
6388 long *sizeof_buf,
6389 int forever)
6390 {
6391 int timed_out;
6392
6393 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6394 }
6395
6396
6397 /* Read a packet from the remote machine, with error checking, and
6398 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6399 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6400 rather than timing out; this is used (in synchronous mode) to wait
6401 for a target that is is executing user code to stop. If FOREVER ==
6402 0, this function is allowed to time out gracefully and return an
6403 indication of this to the caller. Otherwise return the number of
6404 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6405 enough reason to return to the caller. */
6406
6407 static int
6408 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6409 int expecting_notif)
6410 {
6411 struct remote_state *rs = get_remote_state ();
6412 int c;
6413 int tries;
6414 int timeout;
6415 int val;
6416
6417 /* We're reading a new response. Make sure we don't look at a
6418 previously cached response. */
6419 rs->cached_wait_status = 0;
6420
6421 strcpy (*buf, "timeout");
6422
6423 if (forever)
6424 timeout = watchdog > 0 ? watchdog : -1;
6425 else if (expecting_notif)
6426 timeout = 0; /* There should already be a char in the buffer. If
6427 not, bail out. */
6428 else
6429 timeout = remote_timeout;
6430
6431 #define MAX_TRIES 3
6432
6433 /* Process any number of notifications, and then return when
6434 we get a packet. */
6435 for (;;)
6436 {
6437 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6438 times. */
6439 for (tries = 1; tries <= MAX_TRIES; tries++)
6440 {
6441 /* This can loop forever if the remote side sends us
6442 characters continuously, but if it pauses, we'll get
6443 SERIAL_TIMEOUT from readchar because of timeout. Then
6444 we'll count that as a retry.
6445
6446 Note that even when forever is set, we will only wait
6447 forever prior to the start of a packet. After that, we
6448 expect characters to arrive at a brisk pace. They should
6449 show up within remote_timeout intervals. */
6450 do
6451 c = readchar (timeout);
6452 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6453
6454 if (c == SERIAL_TIMEOUT)
6455 {
6456 if (expecting_notif)
6457 return -1; /* Don't complain, it's normal to not get
6458 anything in this case. */
6459
6460 if (forever) /* Watchdog went off? Kill the target. */
6461 {
6462 QUIT;
6463 pop_target ();
6464 error (_("Watchdog timeout has expired. Target detached."));
6465 }
6466 if (remote_debug)
6467 fputs_filtered ("Timed out.\n", gdb_stdlog);
6468 }
6469 else
6470 {
6471 /* We've found the start of a packet or notification.
6472 Now collect the data. */
6473 val = read_frame (buf, sizeof_buf);
6474 if (val >= 0)
6475 break;
6476 }
6477
6478 serial_write (remote_desc, "-", 1);
6479 }
6480
6481 if (tries > MAX_TRIES)
6482 {
6483 /* We have tried hard enough, and just can't receive the
6484 packet/notification. Give up. */
6485 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6486
6487 /* Skip the ack char if we're in no-ack mode. */
6488 if (!rs->noack_mode)
6489 serial_write (remote_desc, "+", 1);
6490 return -1;
6491 }
6492
6493 /* If we got an ordinary packet, return that to our caller. */
6494 if (c == '$')
6495 {
6496 if (remote_debug)
6497 {
6498 struct cleanup *old_chain;
6499 char *str;
6500
6501 str = escape_buffer (*buf, val);
6502 old_chain = make_cleanup (xfree, str);
6503 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6504 do_cleanups (old_chain);
6505 }
6506
6507 /* Skip the ack char if we're in no-ack mode. */
6508 if (!rs->noack_mode)
6509 serial_write (remote_desc, "+", 1);
6510 return val;
6511 }
6512
6513 /* If we got a notification, handle it, and go back to looking
6514 for a packet. */
6515 else
6516 {
6517 gdb_assert (c == '%');
6518
6519 if (remote_debug)
6520 {
6521 struct cleanup *old_chain;
6522 char *str;
6523
6524 str = escape_buffer (*buf, val);
6525 old_chain = make_cleanup (xfree, str);
6526 fprintf_unfiltered (gdb_stdlog,
6527 " Notification received: %s\n",
6528 str);
6529 do_cleanups (old_chain);
6530 }
6531
6532 handle_notification (*buf, val);
6533
6534 /* Notifications require no acknowledgement. */
6535
6536 if (expecting_notif)
6537 return -1;
6538 }
6539 }
6540 }
6541
6542 static int
6543 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6544 {
6545 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6546 }
6547
6548 static int
6549 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6550 {
6551 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6552 }
6553
6554 \f
6555 static void
6556 remote_kill (struct target_ops *ops)
6557 {
6558 /* Use catch_errors so the user can quit from gdb even when we
6559 aren't on speaking terms with the remote system. */
6560 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6561
6562 /* Don't wait for it to die. I'm not really sure it matters whether
6563 we do or not. For the existing stubs, kill is a noop. */
6564 target_mourn_inferior ();
6565 }
6566
6567 static int
6568 remote_vkill (int pid, struct remote_state *rs)
6569 {
6570 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6571 return -1;
6572
6573 /* Tell the remote target to detach. */
6574 sprintf (rs->buf, "vKill;%x", pid);
6575 putpkt (rs->buf);
6576 getpkt (&rs->buf, &rs->buf_size, 0);
6577
6578 if (packet_ok (rs->buf,
6579 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6580 return 0;
6581 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6582 return -1;
6583 else
6584 return 1;
6585 }
6586
6587 static void
6588 extended_remote_kill (struct target_ops *ops)
6589 {
6590 int res;
6591 int pid = ptid_get_pid (inferior_ptid);
6592 struct remote_state *rs = get_remote_state ();
6593
6594 res = remote_vkill (pid, rs);
6595 if (res == -1 && !remote_multi_process_p (rs))
6596 {
6597 /* Don't try 'k' on a multi-process aware stub -- it has no way
6598 to specify the pid. */
6599
6600 putpkt ("k");
6601 #if 0
6602 getpkt (&rs->buf, &rs->buf_size, 0);
6603 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6604 res = 1;
6605 #else
6606 /* Don't wait for it to die. I'm not really sure it matters whether
6607 we do or not. For the existing stubs, kill is a noop. */
6608 res = 0;
6609 #endif
6610 }
6611
6612 if (res != 0)
6613 error (_("Can't kill process"));
6614
6615 target_mourn_inferior ();
6616 }
6617
6618 static void
6619 remote_mourn (struct target_ops *ops)
6620 {
6621 remote_mourn_1 (ops);
6622 }
6623
6624 /* Worker function for remote_mourn. */
6625 static void
6626 remote_mourn_1 (struct target_ops *target)
6627 {
6628 unpush_target (target);
6629
6630 /* remote_close takes care of doing most of the clean up. */
6631 generic_mourn_inferior ();
6632 }
6633
6634 static void
6635 extended_remote_mourn_1 (struct target_ops *target)
6636 {
6637 struct remote_state *rs = get_remote_state ();
6638
6639 /* In case we got here due to an error, but we're going to stay
6640 connected. */
6641 rs->waiting_for_stop_reply = 0;
6642
6643 /* We're no longer interested in these events. */
6644 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6645
6646 /* If the current general thread belonged to the process we just
6647 detached from or has exited, the remote side current general
6648 thread becomes undefined. Considering a case like this:
6649
6650 - We just got here due to a detach.
6651 - The process that we're detaching from happens to immediately
6652 report a global breakpoint being hit in non-stop mode, in the
6653 same thread we had selected before.
6654 - GDB attaches to this process again.
6655 - This event happens to be the next event we handle.
6656
6657 GDB would consider that the current general thread didn't need to
6658 be set on the stub side (with Hg), since for all it knew,
6659 GENERAL_THREAD hadn't changed.
6660
6661 Notice that although in all-stop mode, the remote server always
6662 sets the current thread to the thread reporting the stop event,
6663 that doesn't happen in non-stop mode; in non-stop, the stub *must
6664 not* change the current thread when reporting a breakpoint hit,
6665 due to the decoupling of event reporting and event handling.
6666
6667 To keep things simple, we always invalidate our notion of the
6668 current thread. */
6669 record_currthread (minus_one_ptid);
6670
6671 /* Unlike "target remote", we do not want to unpush the target; then
6672 the next time the user says "run", we won't be connected. */
6673
6674 /* Call common code to mark the inferior as not running. */
6675 generic_mourn_inferior ();
6676
6677 if (!have_inferiors ())
6678 {
6679 if (!remote_multi_process_p (rs))
6680 {
6681 /* Check whether the target is running now - some remote stubs
6682 automatically restart after kill. */
6683 putpkt ("?");
6684 getpkt (&rs->buf, &rs->buf_size, 0);
6685
6686 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6687 {
6688 /* Assume that the target has been restarted. Set inferior_ptid
6689 so that bits of core GDB realizes there's something here, e.g.,
6690 so that the user can say "kill" again. */
6691 inferior_ptid = magic_null_ptid;
6692 }
6693 else
6694 {
6695 /* Mark this (still pushed) target as not executable until we
6696 restart it. */
6697 target_mark_exited (target);
6698 }
6699 }
6700 else
6701 /* Always remove execution if this was the last process. */
6702 target_mark_exited (target);
6703 }
6704 }
6705
6706 static void
6707 extended_remote_mourn (struct target_ops *ops)
6708 {
6709 extended_remote_mourn_1 (ops);
6710 }
6711
6712 static int
6713 extended_remote_run (char *args)
6714 {
6715 struct remote_state *rs = get_remote_state ();
6716 char *p;
6717 int len;
6718
6719 /* If the user has disabled vRun support, or we have detected that
6720 support is not available, do not try it. */
6721 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6722 return -1;
6723
6724 strcpy (rs->buf, "vRun;");
6725 len = strlen (rs->buf);
6726
6727 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6728 error (_("Remote file name too long for run packet"));
6729 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6730
6731 gdb_assert (args != NULL);
6732 if (*args)
6733 {
6734 struct cleanup *back_to;
6735 int i;
6736 char **argv;
6737
6738 argv = gdb_buildargv (args);
6739 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6740 for (i = 0; argv[i] != NULL; i++)
6741 {
6742 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6743 error (_("Argument list too long for run packet"));
6744 rs->buf[len++] = ';';
6745 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6746 }
6747 do_cleanups (back_to);
6748 }
6749
6750 rs->buf[len++] = '\0';
6751
6752 putpkt (rs->buf);
6753 getpkt (&rs->buf, &rs->buf_size, 0);
6754
6755 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6756 {
6757 /* We have a wait response; we don't need it, though. All is well. */
6758 return 0;
6759 }
6760 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6761 /* It wasn't disabled before, but it is now. */
6762 return -1;
6763 else
6764 {
6765 if (remote_exec_file[0] == '\0')
6766 error (_("Running the default executable on the remote target failed; "
6767 "try \"set remote exec-file\"?"));
6768 else
6769 error (_("Running \"%s\" on the remote target failed"),
6770 remote_exec_file);
6771 }
6772 }
6773
6774 /* In the extended protocol we want to be able to do things like
6775 "run" and have them basically work as expected. So we need
6776 a special create_inferior function. We support changing the
6777 executable file and the command line arguments, but not the
6778 environment. */
6779
6780 static void
6781 extended_remote_create_inferior_1 (char *exec_file, char *args,
6782 char **env, int from_tty)
6783 {
6784 /* If running asynchronously, register the target file descriptor
6785 with the event loop. */
6786 if (target_can_async_p ())
6787 target_async (inferior_event_handler, 0);
6788
6789 /* Now restart the remote server. */
6790 if (extended_remote_run (args) == -1)
6791 {
6792 /* vRun was not supported. Fail if we need it to do what the
6793 user requested. */
6794 if (remote_exec_file[0])
6795 error (_("Remote target does not support \"set remote exec-file\""));
6796 if (args[0])
6797 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6798
6799 /* Fall back to "R". */
6800 extended_remote_restart ();
6801 }
6802
6803 /* Clean up from the last time we ran, before we mark the target
6804 running again. This will mark breakpoints uninserted, and
6805 get_offsets may insert breakpoints. */
6806 init_thread_list ();
6807 init_wait_for_inferior ();
6808
6809 /* Now mark the inferior as running before we do anything else. */
6810 inferior_ptid = magic_null_ptid;
6811
6812 /* Now, if we have thread information, update inferior_ptid. */
6813 inferior_ptid = remote_current_thread (inferior_ptid);
6814
6815 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6816 add_thread_silent (inferior_ptid);
6817
6818 /* Get updated offsets, if the stub uses qOffsets. */
6819 get_offsets ();
6820 }
6821
6822 static void
6823 extended_remote_create_inferior (struct target_ops *ops,
6824 char *exec_file, char *args,
6825 char **env, int from_tty)
6826 {
6827 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6828 }
6829 \f
6830
6831 /* Insert a breakpoint. On targets that have software breakpoint
6832 support, we ask the remote target to do the work; on targets
6833 which don't, we insert a traditional memory breakpoint. */
6834
6835 static int
6836 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6837 {
6838 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6839 If it succeeds, then set the support to PACKET_ENABLE. If it
6840 fails, and the user has explicitly requested the Z support then
6841 report an error, otherwise, mark it disabled and go on. */
6842
6843 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6844 {
6845 CORE_ADDR addr = bp_tgt->placed_address;
6846 struct remote_state *rs;
6847 char *p;
6848 int bpsize;
6849
6850 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6851
6852 rs = get_remote_state ();
6853 p = rs->buf;
6854
6855 *(p++) = 'Z';
6856 *(p++) = '0';
6857 *(p++) = ',';
6858 addr = (ULONGEST) remote_address_masked (addr);
6859 p += hexnumstr (p, addr);
6860 sprintf (p, ",%d", bpsize);
6861
6862 putpkt (rs->buf);
6863 getpkt (&rs->buf, &rs->buf_size, 0);
6864
6865 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6866 {
6867 case PACKET_ERROR:
6868 return -1;
6869 case PACKET_OK:
6870 bp_tgt->placed_address = addr;
6871 bp_tgt->placed_size = bpsize;
6872 return 0;
6873 case PACKET_UNKNOWN:
6874 break;
6875 }
6876 }
6877
6878 return memory_insert_breakpoint (bp_tgt);
6879 }
6880
6881 static int
6882 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6883 {
6884 CORE_ADDR addr = bp_tgt->placed_address;
6885 struct remote_state *rs = get_remote_state ();
6886 int bp_size;
6887
6888 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6889 {
6890 char *p = rs->buf;
6891
6892 *(p++) = 'z';
6893 *(p++) = '0';
6894 *(p++) = ',';
6895
6896 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6897 p += hexnumstr (p, addr);
6898 sprintf (p, ",%d", bp_tgt->placed_size);
6899
6900 putpkt (rs->buf);
6901 getpkt (&rs->buf, &rs->buf_size, 0);
6902
6903 return (rs->buf[0] == 'E');
6904 }
6905
6906 return memory_remove_breakpoint (bp_tgt);
6907 }
6908
6909 static int
6910 watchpoint_to_Z_packet (int type)
6911 {
6912 switch (type)
6913 {
6914 case hw_write:
6915 return Z_PACKET_WRITE_WP;
6916 break;
6917 case hw_read:
6918 return Z_PACKET_READ_WP;
6919 break;
6920 case hw_access:
6921 return Z_PACKET_ACCESS_WP;
6922 break;
6923 default:
6924 internal_error (__FILE__, __LINE__,
6925 _("hw_bp_to_z: bad watchpoint type %d"), type);
6926 }
6927 }
6928
6929 static int
6930 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6931 {
6932 struct remote_state *rs = get_remote_state ();
6933 char *p;
6934 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6935
6936 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6937 return -1;
6938
6939 sprintf (rs->buf, "Z%x,", packet);
6940 p = strchr (rs->buf, '\0');
6941 addr = remote_address_masked (addr);
6942 p += hexnumstr (p, (ULONGEST) addr);
6943 sprintf (p, ",%x", len);
6944
6945 putpkt (rs->buf);
6946 getpkt (&rs->buf, &rs->buf_size, 0);
6947
6948 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6949 {
6950 case PACKET_ERROR:
6951 case PACKET_UNKNOWN:
6952 return -1;
6953 case PACKET_OK:
6954 return 0;
6955 }
6956 internal_error (__FILE__, __LINE__,
6957 _("remote_insert_watchpoint: reached end of function"));
6958 }
6959
6960
6961 static int
6962 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6963 {
6964 struct remote_state *rs = get_remote_state ();
6965 char *p;
6966 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6967
6968 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6969 return -1;
6970
6971 sprintf (rs->buf, "z%x,", packet);
6972 p = strchr (rs->buf, '\0');
6973 addr = remote_address_masked (addr);
6974 p += hexnumstr (p, (ULONGEST) addr);
6975 sprintf (p, ",%x", len);
6976 putpkt (rs->buf);
6977 getpkt (&rs->buf, &rs->buf_size, 0);
6978
6979 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6980 {
6981 case PACKET_ERROR:
6982 case PACKET_UNKNOWN:
6983 return -1;
6984 case PACKET_OK:
6985 return 0;
6986 }
6987 internal_error (__FILE__, __LINE__,
6988 _("remote_remove_watchpoint: reached end of function"));
6989 }
6990
6991
6992 int remote_hw_watchpoint_limit = -1;
6993 int remote_hw_breakpoint_limit = -1;
6994
6995 static int
6996 remote_check_watch_resources (int type, int cnt, int ot)
6997 {
6998 if (type == bp_hardware_breakpoint)
6999 {
7000 if (remote_hw_breakpoint_limit == 0)
7001 return 0;
7002 else if (remote_hw_breakpoint_limit < 0)
7003 return 1;
7004 else if (cnt <= remote_hw_breakpoint_limit)
7005 return 1;
7006 }
7007 else
7008 {
7009 if (remote_hw_watchpoint_limit == 0)
7010 return 0;
7011 else if (remote_hw_watchpoint_limit < 0)
7012 return 1;
7013 else if (ot)
7014 return -1;
7015 else if (cnt <= remote_hw_watchpoint_limit)
7016 return 1;
7017 }
7018 return -1;
7019 }
7020
7021 static int
7022 remote_stopped_by_watchpoint (void)
7023 {
7024 return remote_stopped_by_watchpoint_p;
7025 }
7026
7027 static int
7028 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7029 {
7030 int rc = 0;
7031 if (remote_stopped_by_watchpoint ())
7032 {
7033 *addr_p = remote_watch_data_address;
7034 rc = 1;
7035 }
7036
7037 return rc;
7038 }
7039
7040
7041 static int
7042 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7043 {
7044 CORE_ADDR addr;
7045 struct remote_state *rs;
7046 char *p;
7047
7048 /* The length field should be set to the size of a breakpoint
7049 instruction, even though we aren't inserting one ourselves. */
7050
7051 gdbarch_breakpoint_from_pc
7052 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7053
7054 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7055 return -1;
7056
7057 rs = get_remote_state ();
7058 p = rs->buf;
7059
7060 *(p++) = 'Z';
7061 *(p++) = '1';
7062 *(p++) = ',';
7063
7064 addr = remote_address_masked (bp_tgt->placed_address);
7065 p += hexnumstr (p, (ULONGEST) addr);
7066 sprintf (p, ",%x", bp_tgt->placed_size);
7067
7068 putpkt (rs->buf);
7069 getpkt (&rs->buf, &rs->buf_size, 0);
7070
7071 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7072 {
7073 case PACKET_ERROR:
7074 case PACKET_UNKNOWN:
7075 return -1;
7076 case PACKET_OK:
7077 return 0;
7078 }
7079 internal_error (__FILE__, __LINE__,
7080 _("remote_insert_hw_breakpoint: reached end of function"));
7081 }
7082
7083
7084 static int
7085 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7086 {
7087 CORE_ADDR addr;
7088 struct remote_state *rs = get_remote_state ();
7089 char *p = rs->buf;
7090
7091 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7092 return -1;
7093
7094 *(p++) = 'z';
7095 *(p++) = '1';
7096 *(p++) = ',';
7097
7098 addr = remote_address_masked (bp_tgt->placed_address);
7099 p += hexnumstr (p, (ULONGEST) addr);
7100 sprintf (p, ",%x", bp_tgt->placed_size);
7101
7102 putpkt (rs->buf);
7103 getpkt (&rs->buf, &rs->buf_size, 0);
7104
7105 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7106 {
7107 case PACKET_ERROR:
7108 case PACKET_UNKNOWN:
7109 return -1;
7110 case PACKET_OK:
7111 return 0;
7112 }
7113 internal_error (__FILE__, __LINE__,
7114 _("remote_remove_hw_breakpoint: reached end of function"));
7115 }
7116
7117 /* Table used by the crc32 function to calcuate the checksum. */
7118
7119 static unsigned long crc32_table[256] =
7120 {0, 0};
7121
7122 static unsigned long
7123 crc32 (unsigned char *buf, int len, unsigned int crc)
7124 {
7125 if (!crc32_table[1])
7126 {
7127 /* Initialize the CRC table and the decoding table. */
7128 int i, j;
7129 unsigned int c;
7130
7131 for (i = 0; i < 256; i++)
7132 {
7133 for (c = i << 24, j = 8; j > 0; --j)
7134 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7135 crc32_table[i] = c;
7136 }
7137 }
7138
7139 while (len--)
7140 {
7141 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7142 buf++;
7143 }
7144 return crc;
7145 }
7146
7147 /* compare-sections command
7148
7149 With no arguments, compares each loadable section in the exec bfd
7150 with the same memory range on the target, and reports mismatches.
7151 Useful for verifying the image on the target against the exec file.
7152 Depends on the target understanding the new "qCRC:" request. */
7153
7154 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7155 target method (target verify memory) and generic version of the
7156 actual command. This will allow other high-level code (especially
7157 generic_load()) to make use of this target functionality. */
7158
7159 static void
7160 compare_sections_command (char *args, int from_tty)
7161 {
7162 struct remote_state *rs = get_remote_state ();
7163 asection *s;
7164 unsigned long host_crc, target_crc;
7165 extern bfd *exec_bfd;
7166 struct cleanup *old_chain;
7167 char *tmp;
7168 char *sectdata;
7169 const char *sectname;
7170 bfd_size_type size;
7171 bfd_vma lma;
7172 int matched = 0;
7173 int mismatched = 0;
7174
7175 if (!exec_bfd)
7176 error (_("command cannot be used without an exec file"));
7177 if (!current_target.to_shortname ||
7178 strcmp (current_target.to_shortname, "remote") != 0)
7179 error (_("command can only be used with remote target"));
7180
7181 for (s = exec_bfd->sections; s; s = s->next)
7182 {
7183 if (!(s->flags & SEC_LOAD))
7184 continue; /* skip non-loadable section */
7185
7186 size = bfd_get_section_size (s);
7187 if (size == 0)
7188 continue; /* skip zero-length section */
7189
7190 sectname = bfd_get_section_name (exec_bfd, s);
7191 if (args && strcmp (args, sectname) != 0)
7192 continue; /* not the section selected by user */
7193
7194 matched = 1; /* do this section */
7195 lma = s->lma;
7196 /* FIXME: assumes lma can fit into long. */
7197 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7198 (long) lma, (long) size);
7199 putpkt (rs->buf);
7200
7201 /* Be clever; compute the host_crc before waiting for target
7202 reply. */
7203 sectdata = xmalloc (size);
7204 old_chain = make_cleanup (xfree, sectdata);
7205 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7206 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7207
7208 getpkt (&rs->buf, &rs->buf_size, 0);
7209 if (rs->buf[0] == 'E')
7210 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7211 sectname, paddr (lma), paddr (lma + size));
7212 if (rs->buf[0] != 'C')
7213 error (_("remote target does not support this operation"));
7214
7215 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7216 target_crc = target_crc * 16 + fromhex (*tmp);
7217
7218 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7219 sectname, paddr (lma), paddr (lma + size));
7220 if (host_crc == target_crc)
7221 printf_filtered ("matched.\n");
7222 else
7223 {
7224 printf_filtered ("MIS-MATCHED!\n");
7225 mismatched++;
7226 }
7227
7228 do_cleanups (old_chain);
7229 }
7230 if (mismatched > 0)
7231 warning (_("One or more sections of the remote executable does not match\n\
7232 the loaded file\n"));
7233 if (args && !matched)
7234 printf_filtered (_("No loaded section named '%s'.\n"), args);
7235 }
7236
7237 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7238 into remote target. The number of bytes written to the remote
7239 target is returned, or -1 for error. */
7240
7241 static LONGEST
7242 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7243 const char *annex, const gdb_byte *writebuf,
7244 ULONGEST offset, LONGEST len,
7245 struct packet_config *packet)
7246 {
7247 int i, buf_len;
7248 ULONGEST n;
7249 gdb_byte *wbuf;
7250 struct remote_state *rs = get_remote_state ();
7251 int max_size = get_memory_write_packet_size ();
7252
7253 if (packet->support == PACKET_DISABLE)
7254 return -1;
7255
7256 /* Insert header. */
7257 i = snprintf (rs->buf, max_size,
7258 "qXfer:%s:write:%s:%s:",
7259 object_name, annex ? annex : "",
7260 phex_nz (offset, sizeof offset));
7261 max_size -= (i + 1);
7262
7263 /* Escape as much data as fits into rs->buf. */
7264 buf_len = remote_escape_output
7265 (writebuf, len, (rs->buf + i), &max_size, max_size);
7266
7267 if (putpkt_binary (rs->buf, i + buf_len) < 0
7268 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7269 || packet_ok (rs->buf, packet) != PACKET_OK)
7270 return -1;
7271
7272 unpack_varlen_hex (rs->buf, &n);
7273 return n;
7274 }
7275
7276 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7277 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7278 number of bytes read is returned, or 0 for EOF, or -1 for error.
7279 The number of bytes read may be less than LEN without indicating an
7280 EOF. PACKET is checked and updated to indicate whether the remote
7281 target supports this object. */
7282
7283 static LONGEST
7284 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7285 const char *annex,
7286 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7287 struct packet_config *packet)
7288 {
7289 static char *finished_object;
7290 static char *finished_annex;
7291 static ULONGEST finished_offset;
7292
7293 struct remote_state *rs = get_remote_state ();
7294 unsigned int total = 0;
7295 LONGEST i, n, packet_len;
7296
7297 if (packet->support == PACKET_DISABLE)
7298 return -1;
7299
7300 /* Check whether we've cached an end-of-object packet that matches
7301 this request. */
7302 if (finished_object)
7303 {
7304 if (strcmp (object_name, finished_object) == 0
7305 && strcmp (annex ? annex : "", finished_annex) == 0
7306 && offset == finished_offset)
7307 return 0;
7308
7309 /* Otherwise, we're now reading something different. Discard
7310 the cache. */
7311 xfree (finished_object);
7312 xfree (finished_annex);
7313 finished_object = NULL;
7314 finished_annex = NULL;
7315 }
7316
7317 /* Request only enough to fit in a single packet. The actual data
7318 may not, since we don't know how much of it will need to be escaped;
7319 the target is free to respond with slightly less data. We subtract
7320 five to account for the response type and the protocol frame. */
7321 n = min (get_remote_packet_size () - 5, len);
7322 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7323 object_name, annex ? annex : "",
7324 phex_nz (offset, sizeof offset),
7325 phex_nz (n, sizeof n));
7326 i = putpkt (rs->buf);
7327 if (i < 0)
7328 return -1;
7329
7330 rs->buf[0] = '\0';
7331 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7332 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7333 return -1;
7334
7335 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7336 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7337
7338 /* 'm' means there is (or at least might be) more data after this
7339 batch. That does not make sense unless there's at least one byte
7340 of data in this reply. */
7341 if (rs->buf[0] == 'm' && packet_len == 1)
7342 error (_("Remote qXfer reply contained no data."));
7343
7344 /* Got some data. */
7345 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7346
7347 /* 'l' is an EOF marker, possibly including a final block of data,
7348 or possibly empty. If we have the final block of a non-empty
7349 object, record this fact to bypass a subsequent partial read. */
7350 if (rs->buf[0] == 'l' && offset + i > 0)
7351 {
7352 finished_object = xstrdup (object_name);
7353 finished_annex = xstrdup (annex ? annex : "");
7354 finished_offset = offset + i;
7355 }
7356
7357 return i;
7358 }
7359
7360 static LONGEST
7361 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7362 const char *annex, gdb_byte *readbuf,
7363 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7364 {
7365 struct remote_state *rs;
7366 int i;
7367 char *p2;
7368 char query_type;
7369
7370 set_general_thread (inferior_ptid);
7371
7372 rs = get_remote_state ();
7373
7374 /* Handle memory using the standard memory routines. */
7375 if (object == TARGET_OBJECT_MEMORY)
7376 {
7377 int xfered;
7378 errno = 0;
7379
7380 /* If the remote target is connected but not running, we should
7381 pass this request down to a lower stratum (e.g. the executable
7382 file). */
7383 if (!target_has_execution)
7384 return 0;
7385
7386 if (writebuf != NULL)
7387 xfered = remote_write_bytes (offset, writebuf, len);
7388 else
7389 xfered = remote_read_bytes (offset, readbuf, len);
7390
7391 if (xfered > 0)
7392 return xfered;
7393 else if (xfered == 0 && errno == 0)
7394 return 0;
7395 else
7396 return -1;
7397 }
7398
7399 /* Handle SPU memory using qxfer packets. */
7400 if (object == TARGET_OBJECT_SPU)
7401 {
7402 if (readbuf)
7403 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7404 &remote_protocol_packets
7405 [PACKET_qXfer_spu_read]);
7406 else
7407 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7408 &remote_protocol_packets
7409 [PACKET_qXfer_spu_write]);
7410 }
7411
7412 /* Handle extra signal info using qxfer packets. */
7413 if (object == TARGET_OBJECT_SIGNAL_INFO)
7414 {
7415 if (readbuf)
7416 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7417 &remote_protocol_packets
7418 [PACKET_qXfer_siginfo_read]);
7419 else
7420 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7421 &remote_protocol_packets
7422 [PACKET_qXfer_siginfo_write]);
7423 }
7424
7425 /* Only handle flash writes. */
7426 if (writebuf != NULL)
7427 {
7428 LONGEST xfered;
7429
7430 switch (object)
7431 {
7432 case TARGET_OBJECT_FLASH:
7433 xfered = remote_flash_write (ops, offset, len, writebuf);
7434
7435 if (xfered > 0)
7436 return xfered;
7437 else if (xfered == 0 && errno == 0)
7438 return 0;
7439 else
7440 return -1;
7441
7442 default:
7443 return -1;
7444 }
7445 }
7446
7447 /* Map pre-existing objects onto letters. DO NOT do this for new
7448 objects!!! Instead specify new query packets. */
7449 switch (object)
7450 {
7451 case TARGET_OBJECT_AVR:
7452 query_type = 'R';
7453 break;
7454
7455 case TARGET_OBJECT_AUXV:
7456 gdb_assert (annex == NULL);
7457 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7458 &remote_protocol_packets[PACKET_qXfer_auxv]);
7459
7460 case TARGET_OBJECT_AVAILABLE_FEATURES:
7461 return remote_read_qxfer
7462 (ops, "features", annex, readbuf, offset, len,
7463 &remote_protocol_packets[PACKET_qXfer_features]);
7464
7465 case TARGET_OBJECT_LIBRARIES:
7466 return remote_read_qxfer
7467 (ops, "libraries", annex, readbuf, offset, len,
7468 &remote_protocol_packets[PACKET_qXfer_libraries]);
7469
7470 case TARGET_OBJECT_MEMORY_MAP:
7471 gdb_assert (annex == NULL);
7472 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7473 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7474
7475 case TARGET_OBJECT_OSDATA:
7476 /* Should only get here if we're connected. */
7477 gdb_assert (remote_desc);
7478 return remote_read_qxfer
7479 (ops, "osdata", annex, readbuf, offset, len,
7480 &remote_protocol_packets[PACKET_qXfer_osdata]);
7481
7482 default:
7483 return -1;
7484 }
7485
7486 /* Note: a zero OFFSET and LEN can be used to query the minimum
7487 buffer size. */
7488 if (offset == 0 && len == 0)
7489 return (get_remote_packet_size ());
7490 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7491 large enough let the caller deal with it. */
7492 if (len < get_remote_packet_size ())
7493 return -1;
7494 len = get_remote_packet_size ();
7495
7496 /* Except for querying the minimum buffer size, target must be open. */
7497 if (!remote_desc)
7498 error (_("remote query is only available after target open"));
7499
7500 gdb_assert (annex != NULL);
7501 gdb_assert (readbuf != NULL);
7502
7503 p2 = rs->buf;
7504 *p2++ = 'q';
7505 *p2++ = query_type;
7506
7507 /* We used one buffer char for the remote protocol q command and
7508 another for the query type. As the remote protocol encapsulation
7509 uses 4 chars plus one extra in case we are debugging
7510 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7511 string. */
7512 i = 0;
7513 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7514 {
7515 /* Bad caller may have sent forbidden characters. */
7516 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7517 *p2++ = annex[i];
7518 i++;
7519 }
7520 *p2 = '\0';
7521 gdb_assert (annex[i] == '\0');
7522
7523 i = putpkt (rs->buf);
7524 if (i < 0)
7525 return i;
7526
7527 getpkt (&rs->buf, &rs->buf_size, 0);
7528 strcpy ((char *) readbuf, rs->buf);
7529
7530 return strlen ((char *) readbuf);
7531 }
7532
7533 static int
7534 remote_search_memory (struct target_ops* ops,
7535 CORE_ADDR start_addr, ULONGEST search_space_len,
7536 const gdb_byte *pattern, ULONGEST pattern_len,
7537 CORE_ADDR *found_addrp)
7538 {
7539 struct remote_state *rs = get_remote_state ();
7540 int max_size = get_memory_write_packet_size ();
7541 struct packet_config *packet =
7542 &remote_protocol_packets[PACKET_qSearch_memory];
7543 /* number of packet bytes used to encode the pattern,
7544 this could be more than PATTERN_LEN due to escape characters */
7545 int escaped_pattern_len;
7546 /* amount of pattern that was encodable in the packet */
7547 int used_pattern_len;
7548 int i;
7549 int found;
7550 ULONGEST found_addr;
7551
7552 /* Don't go to the target if we don't have to.
7553 This is done before checking packet->support to avoid the possibility that
7554 a success for this edge case means the facility works in general. */
7555 if (pattern_len > search_space_len)
7556 return 0;
7557 if (pattern_len == 0)
7558 {
7559 *found_addrp = start_addr;
7560 return 1;
7561 }
7562
7563 /* If we already know the packet isn't supported, fall back to the simple
7564 way of searching memory. */
7565
7566 if (packet->support == PACKET_DISABLE)
7567 {
7568 /* Target doesn't provided special support, fall back and use the
7569 standard support (copy memory and do the search here). */
7570 return simple_search_memory (ops, start_addr, search_space_len,
7571 pattern, pattern_len, found_addrp);
7572 }
7573
7574 /* Insert header. */
7575 i = snprintf (rs->buf, max_size,
7576 "qSearch:memory:%s;%s;",
7577 paddr_nz (start_addr),
7578 phex_nz (search_space_len, sizeof (search_space_len)));
7579 max_size -= (i + 1);
7580
7581 /* Escape as much data as fits into rs->buf. */
7582 escaped_pattern_len =
7583 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7584 &used_pattern_len, max_size);
7585
7586 /* Bail if the pattern is too large. */
7587 if (used_pattern_len != pattern_len)
7588 error ("Pattern is too large to transmit to remote target.");
7589
7590 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7591 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7592 || packet_ok (rs->buf, packet) != PACKET_OK)
7593 {
7594 /* The request may not have worked because the command is not
7595 supported. If so, fall back to the simple way. */
7596 if (packet->support == PACKET_DISABLE)
7597 {
7598 return simple_search_memory (ops, start_addr, search_space_len,
7599 pattern, pattern_len, found_addrp);
7600 }
7601 return -1;
7602 }
7603
7604 if (rs->buf[0] == '0')
7605 found = 0;
7606 else if (rs->buf[0] == '1')
7607 {
7608 found = 1;
7609 if (rs->buf[1] != ',')
7610 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7611 unpack_varlen_hex (rs->buf + 2, &found_addr);
7612 *found_addrp = found_addr;
7613 }
7614 else
7615 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7616
7617 return found;
7618 }
7619
7620 static void
7621 remote_rcmd (char *command,
7622 struct ui_file *outbuf)
7623 {
7624 struct remote_state *rs = get_remote_state ();
7625 char *p = rs->buf;
7626
7627 if (!remote_desc)
7628 error (_("remote rcmd is only available after target open"));
7629
7630 /* Send a NULL command across as an empty command. */
7631 if (command == NULL)
7632 command = "";
7633
7634 /* The query prefix. */
7635 strcpy (rs->buf, "qRcmd,");
7636 p = strchr (rs->buf, '\0');
7637
7638 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7639 error (_("\"monitor\" command ``%s'' is too long."), command);
7640
7641 /* Encode the actual command. */
7642 bin2hex ((gdb_byte *) command, p, 0);
7643
7644 if (putpkt (rs->buf) < 0)
7645 error (_("Communication problem with target."));
7646
7647 /* get/display the response */
7648 while (1)
7649 {
7650 char *buf;
7651
7652 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7653 rs->buf[0] = '\0';
7654 getpkt (&rs->buf, &rs->buf_size, 0);
7655 buf = rs->buf;
7656 if (buf[0] == '\0')
7657 error (_("Target does not support this command."));
7658 if (buf[0] == 'O' && buf[1] != 'K')
7659 {
7660 remote_console_output (buf + 1); /* 'O' message from stub. */
7661 continue;
7662 }
7663 if (strcmp (buf, "OK") == 0)
7664 break;
7665 if (strlen (buf) == 3 && buf[0] == 'E'
7666 && isdigit (buf[1]) && isdigit (buf[2]))
7667 {
7668 error (_("Protocol error with Rcmd"));
7669 }
7670 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7671 {
7672 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7673 fputc_unfiltered (c, outbuf);
7674 }
7675 break;
7676 }
7677 }
7678
7679 static VEC(mem_region_s) *
7680 remote_memory_map (struct target_ops *ops)
7681 {
7682 VEC(mem_region_s) *result = NULL;
7683 char *text = target_read_stralloc (&current_target,
7684 TARGET_OBJECT_MEMORY_MAP, NULL);
7685
7686 if (text)
7687 {
7688 struct cleanup *back_to = make_cleanup (xfree, text);
7689 result = parse_memory_map (text);
7690 do_cleanups (back_to);
7691 }
7692
7693 return result;
7694 }
7695
7696 static void
7697 packet_command (char *args, int from_tty)
7698 {
7699 struct remote_state *rs = get_remote_state ();
7700
7701 if (!remote_desc)
7702 error (_("command can only be used with remote target"));
7703
7704 if (!args)
7705 error (_("remote-packet command requires packet text as argument"));
7706
7707 puts_filtered ("sending: ");
7708 print_packet (args);
7709 puts_filtered ("\n");
7710 putpkt (args);
7711
7712 getpkt (&rs->buf, &rs->buf_size, 0);
7713 puts_filtered ("received: ");
7714 print_packet (rs->buf);
7715 puts_filtered ("\n");
7716 }
7717
7718 #if 0
7719 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7720
7721 static void display_thread_info (struct gdb_ext_thread_info *info);
7722
7723 static void threadset_test_cmd (char *cmd, int tty);
7724
7725 static void threadalive_test (char *cmd, int tty);
7726
7727 static void threadlist_test_cmd (char *cmd, int tty);
7728
7729 int get_and_display_threadinfo (threadref *ref);
7730
7731 static void threadinfo_test_cmd (char *cmd, int tty);
7732
7733 static int thread_display_step (threadref *ref, void *context);
7734
7735 static void threadlist_update_test_cmd (char *cmd, int tty);
7736
7737 static void init_remote_threadtests (void);
7738
7739 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7740
7741 static void
7742 threadset_test_cmd (char *cmd, int tty)
7743 {
7744 int sample_thread = SAMPLE_THREAD;
7745
7746 printf_filtered (_("Remote threadset test\n"));
7747 set_general_thread (sample_thread);
7748 }
7749
7750
7751 static void
7752 threadalive_test (char *cmd, int tty)
7753 {
7754 int sample_thread = SAMPLE_THREAD;
7755 int pid = ptid_get_pid (inferior_ptid);
7756 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7757
7758 if (remote_thread_alive (ptid))
7759 printf_filtered ("PASS: Thread alive test\n");
7760 else
7761 printf_filtered ("FAIL: Thread alive test\n");
7762 }
7763
7764 void output_threadid (char *title, threadref *ref);
7765
7766 void
7767 output_threadid (char *title, threadref *ref)
7768 {
7769 char hexid[20];
7770
7771 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7772 hexid[16] = 0;
7773 printf_filtered ("%s %s\n", title, (&hexid[0]));
7774 }
7775
7776 static void
7777 threadlist_test_cmd (char *cmd, int tty)
7778 {
7779 int startflag = 1;
7780 threadref nextthread;
7781 int done, result_count;
7782 threadref threadlist[3];
7783
7784 printf_filtered ("Remote Threadlist test\n");
7785 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7786 &result_count, &threadlist[0]))
7787 printf_filtered ("FAIL: threadlist test\n");
7788 else
7789 {
7790 threadref *scan = threadlist;
7791 threadref *limit = scan + result_count;
7792
7793 while (scan < limit)
7794 output_threadid (" thread ", scan++);
7795 }
7796 }
7797
7798 void
7799 display_thread_info (struct gdb_ext_thread_info *info)
7800 {
7801 output_threadid ("Threadid: ", &info->threadid);
7802 printf_filtered ("Name: %s\n ", info->shortname);
7803 printf_filtered ("State: %s\n", info->display);
7804 printf_filtered ("other: %s\n\n", info->more_display);
7805 }
7806
7807 int
7808 get_and_display_threadinfo (threadref *ref)
7809 {
7810 int result;
7811 int set;
7812 struct gdb_ext_thread_info threadinfo;
7813
7814 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7815 | TAG_MOREDISPLAY | TAG_DISPLAY;
7816 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7817 display_thread_info (&threadinfo);
7818 return result;
7819 }
7820
7821 static void
7822 threadinfo_test_cmd (char *cmd, int tty)
7823 {
7824 int athread = SAMPLE_THREAD;
7825 threadref thread;
7826 int set;
7827
7828 int_to_threadref (&thread, athread);
7829 printf_filtered ("Remote Threadinfo test\n");
7830 if (!get_and_display_threadinfo (&thread))
7831 printf_filtered ("FAIL cannot get thread info\n");
7832 }
7833
7834 static int
7835 thread_display_step (threadref *ref, void *context)
7836 {
7837 /* output_threadid(" threadstep ",ref); *//* simple test */
7838 return get_and_display_threadinfo (ref);
7839 }
7840
7841 static void
7842 threadlist_update_test_cmd (char *cmd, int tty)
7843 {
7844 printf_filtered ("Remote Threadlist update test\n");
7845 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7846 }
7847
7848 static void
7849 init_remote_threadtests (void)
7850 {
7851 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7852 Fetch and print the remote list of thread identifiers, one pkt only"));
7853 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7854 _("Fetch and display info about one thread"));
7855 add_com ("tset", class_obscure, threadset_test_cmd,
7856 _("Test setting to a different thread"));
7857 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7858 _("Iterate through updating all remote thread info"));
7859 add_com ("talive", class_obscure, threadalive_test,
7860 _(" Remote thread alive test "));
7861 }
7862
7863 #endif /* 0 */
7864
7865 /* Convert a thread ID to a string. Returns the string in a static
7866 buffer. */
7867
7868 static char *
7869 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7870 {
7871 static char buf[64];
7872 struct remote_state *rs = get_remote_state ();
7873
7874 if (ptid_equal (magic_null_ptid, ptid))
7875 {
7876 xsnprintf (buf, sizeof buf, "Thread <main>");
7877 return buf;
7878 }
7879 else if (remote_multi_process_p (rs)
7880 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7881 {
7882 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7883 ptid_get_pid (ptid), ptid_get_tid (ptid));
7884 return buf;
7885 }
7886 else if (ptid_get_tid (ptid) != 0)
7887 {
7888 xsnprintf (buf, sizeof buf, "Thread %ld",
7889 ptid_get_tid (ptid));
7890 return buf;
7891 }
7892
7893 return normal_pid_to_str (ptid);
7894 }
7895
7896 /* Get the address of the thread local variable in OBJFILE which is
7897 stored at OFFSET within the thread local storage for thread PTID. */
7898
7899 static CORE_ADDR
7900 remote_get_thread_local_address (struct target_ops *ops,
7901 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7902 {
7903 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7904 {
7905 struct remote_state *rs = get_remote_state ();
7906 char *p = rs->buf;
7907 char *endp = rs->buf + get_remote_packet_size ();
7908 enum packet_result result;
7909
7910 strcpy (p, "qGetTLSAddr:");
7911 p += strlen (p);
7912 p = write_ptid (p, endp, ptid);
7913 *p++ = ',';
7914 p += hexnumstr (p, offset);
7915 *p++ = ',';
7916 p += hexnumstr (p, lm);
7917 *p++ = '\0';
7918
7919 putpkt (rs->buf);
7920 getpkt (&rs->buf, &rs->buf_size, 0);
7921 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7922 if (result == PACKET_OK)
7923 {
7924 ULONGEST result;
7925
7926 unpack_varlen_hex (rs->buf, &result);
7927 return result;
7928 }
7929 else if (result == PACKET_UNKNOWN)
7930 throw_error (TLS_GENERIC_ERROR,
7931 _("Remote target doesn't support qGetTLSAddr packet"));
7932 else
7933 throw_error (TLS_GENERIC_ERROR,
7934 _("Remote target failed to process qGetTLSAddr request"));
7935 }
7936 else
7937 throw_error (TLS_GENERIC_ERROR,
7938 _("TLS not supported or disabled on this target"));
7939 /* Not reached. */
7940 return 0;
7941 }
7942
7943 /* Support for inferring a target description based on the current
7944 architecture and the size of a 'g' packet. While the 'g' packet
7945 can have any size (since optional registers can be left off the
7946 end), some sizes are easily recognizable given knowledge of the
7947 approximate architecture. */
7948
7949 struct remote_g_packet_guess
7950 {
7951 int bytes;
7952 const struct target_desc *tdesc;
7953 };
7954 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7955 DEF_VEC_O(remote_g_packet_guess_s);
7956
7957 struct remote_g_packet_data
7958 {
7959 VEC(remote_g_packet_guess_s) *guesses;
7960 };
7961
7962 static struct gdbarch_data *remote_g_packet_data_handle;
7963
7964 static void *
7965 remote_g_packet_data_init (struct obstack *obstack)
7966 {
7967 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7968 }
7969
7970 void
7971 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7972 const struct target_desc *tdesc)
7973 {
7974 struct remote_g_packet_data *data
7975 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7976 struct remote_g_packet_guess new_guess, *guess;
7977 int ix;
7978
7979 gdb_assert (tdesc != NULL);
7980
7981 for (ix = 0;
7982 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7983 ix++)
7984 if (guess->bytes == bytes)
7985 internal_error (__FILE__, __LINE__,
7986 "Duplicate g packet description added for size %d",
7987 bytes);
7988
7989 new_guess.bytes = bytes;
7990 new_guess.tdesc = tdesc;
7991 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7992 }
7993
7994 /* Return 1 if remote_read_description would do anything on this target
7995 and architecture, 0 otherwise. */
7996
7997 static int
7998 remote_read_description_p (struct target_ops *target)
7999 {
8000 struct remote_g_packet_data *data
8001 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8002
8003 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8004 return 1;
8005
8006 return 0;
8007 }
8008
8009 static const struct target_desc *
8010 remote_read_description (struct target_ops *target)
8011 {
8012 struct remote_g_packet_data *data
8013 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8014
8015 /* Do not try this during initial connection, when we do not know
8016 whether there is a running but stopped thread. */
8017 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8018 return NULL;
8019
8020 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8021 {
8022 struct remote_g_packet_guess *guess;
8023 int ix;
8024 int bytes = send_g_packet ();
8025
8026 for (ix = 0;
8027 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8028 ix++)
8029 if (guess->bytes == bytes)
8030 return guess->tdesc;
8031
8032 /* We discard the g packet. A minor optimization would be to
8033 hold on to it, and fill the register cache once we have selected
8034 an architecture, but it's too tricky to do safely. */
8035 }
8036
8037 return NULL;
8038 }
8039
8040 /* Remote file transfer support. This is host-initiated I/O, not
8041 target-initiated; for target-initiated, see remote-fileio.c. */
8042
8043 /* If *LEFT is at least the length of STRING, copy STRING to
8044 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8045 decrease *LEFT. Otherwise raise an error. */
8046
8047 static void
8048 remote_buffer_add_string (char **buffer, int *left, char *string)
8049 {
8050 int len = strlen (string);
8051
8052 if (len > *left)
8053 error (_("Packet too long for target."));
8054
8055 memcpy (*buffer, string, len);
8056 *buffer += len;
8057 *left -= len;
8058
8059 /* NUL-terminate the buffer as a convenience, if there is
8060 room. */
8061 if (*left)
8062 **buffer = '\0';
8063 }
8064
8065 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8066 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8067 decrease *LEFT. Otherwise raise an error. */
8068
8069 static void
8070 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8071 int len)
8072 {
8073 if (2 * len > *left)
8074 error (_("Packet too long for target."));
8075
8076 bin2hex (bytes, *buffer, len);
8077 *buffer += 2 * len;
8078 *left -= 2 * len;
8079
8080 /* NUL-terminate the buffer as a convenience, if there is
8081 room. */
8082 if (*left)
8083 **buffer = '\0';
8084 }
8085
8086 /* If *LEFT is large enough, convert VALUE to hex and add it to
8087 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8088 decrease *LEFT. Otherwise raise an error. */
8089
8090 static void
8091 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8092 {
8093 int len = hexnumlen (value);
8094
8095 if (len > *left)
8096 error (_("Packet too long for target."));
8097
8098 hexnumstr (*buffer, value);
8099 *buffer += len;
8100 *left -= len;
8101
8102 /* NUL-terminate the buffer as a convenience, if there is
8103 room. */
8104 if (*left)
8105 **buffer = '\0';
8106 }
8107
8108 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8109 value, *REMOTE_ERRNO to the remote error number or zero if none
8110 was included, and *ATTACHMENT to point to the start of the annex
8111 if any. The length of the packet isn't needed here; there may
8112 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8113
8114 Return 0 if the packet could be parsed, -1 if it could not. If
8115 -1 is returned, the other variables may not be initialized. */
8116
8117 static int
8118 remote_hostio_parse_result (char *buffer, int *retcode,
8119 int *remote_errno, char **attachment)
8120 {
8121 char *p, *p2;
8122
8123 *remote_errno = 0;
8124 *attachment = NULL;
8125
8126 if (buffer[0] != 'F')
8127 return -1;
8128
8129 errno = 0;
8130 *retcode = strtol (&buffer[1], &p, 16);
8131 if (errno != 0 || p == &buffer[1])
8132 return -1;
8133
8134 /* Check for ",errno". */
8135 if (*p == ',')
8136 {
8137 errno = 0;
8138 *remote_errno = strtol (p + 1, &p2, 16);
8139 if (errno != 0 || p + 1 == p2)
8140 return -1;
8141 p = p2;
8142 }
8143
8144 /* Check for ";attachment". If there is no attachment, the
8145 packet should end here. */
8146 if (*p == ';')
8147 {
8148 *attachment = p + 1;
8149 return 0;
8150 }
8151 else if (*p == '\0')
8152 return 0;
8153 else
8154 return -1;
8155 }
8156
8157 /* Send a prepared I/O packet to the target and read its response.
8158 The prepared packet is in the global RS->BUF before this function
8159 is called, and the answer is there when we return.
8160
8161 COMMAND_BYTES is the length of the request to send, which may include
8162 binary data. WHICH_PACKET is the packet configuration to check
8163 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8164 is set to the error number and -1 is returned. Otherwise the value
8165 returned by the function is returned.
8166
8167 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8168 attachment is expected; an error will be reported if there's a
8169 mismatch. If one is found, *ATTACHMENT will be set to point into
8170 the packet buffer and *ATTACHMENT_LEN will be set to the
8171 attachment's length. */
8172
8173 static int
8174 remote_hostio_send_command (int command_bytes, int which_packet,
8175 int *remote_errno, char **attachment,
8176 int *attachment_len)
8177 {
8178 struct remote_state *rs = get_remote_state ();
8179 int ret, bytes_read;
8180 char *attachment_tmp;
8181
8182 if (!remote_desc
8183 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8184 {
8185 *remote_errno = FILEIO_ENOSYS;
8186 return -1;
8187 }
8188
8189 putpkt_binary (rs->buf, command_bytes);
8190 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8191
8192 /* If it timed out, something is wrong. Don't try to parse the
8193 buffer. */
8194 if (bytes_read < 0)
8195 {
8196 *remote_errno = FILEIO_EINVAL;
8197 return -1;
8198 }
8199
8200 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8201 {
8202 case PACKET_ERROR:
8203 *remote_errno = FILEIO_EINVAL;
8204 return -1;
8205 case PACKET_UNKNOWN:
8206 *remote_errno = FILEIO_ENOSYS;
8207 return -1;
8208 case PACKET_OK:
8209 break;
8210 }
8211
8212 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8213 &attachment_tmp))
8214 {
8215 *remote_errno = FILEIO_EINVAL;
8216 return -1;
8217 }
8218
8219 /* Make sure we saw an attachment if and only if we expected one. */
8220 if ((attachment_tmp == NULL && attachment != NULL)
8221 || (attachment_tmp != NULL && attachment == NULL))
8222 {
8223 *remote_errno = FILEIO_EINVAL;
8224 return -1;
8225 }
8226
8227 /* If an attachment was found, it must point into the packet buffer;
8228 work out how many bytes there were. */
8229 if (attachment_tmp != NULL)
8230 {
8231 *attachment = attachment_tmp;
8232 *attachment_len = bytes_read - (*attachment - rs->buf);
8233 }
8234
8235 return ret;
8236 }
8237
8238 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8239 remote file descriptor, or -1 if an error occurs (and set
8240 *REMOTE_ERRNO). */
8241
8242 static int
8243 remote_hostio_open (const char *filename, int flags, int mode,
8244 int *remote_errno)
8245 {
8246 struct remote_state *rs = get_remote_state ();
8247 char *p = rs->buf;
8248 int left = get_remote_packet_size () - 1;
8249
8250 remote_buffer_add_string (&p, &left, "vFile:open:");
8251
8252 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8253 strlen (filename));
8254 remote_buffer_add_string (&p, &left, ",");
8255
8256 remote_buffer_add_int (&p, &left, flags);
8257 remote_buffer_add_string (&p, &left, ",");
8258
8259 remote_buffer_add_int (&p, &left, mode);
8260
8261 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8262 remote_errno, NULL, NULL);
8263 }
8264
8265 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8266 Return the number of bytes written, or -1 if an error occurs (and
8267 set *REMOTE_ERRNO). */
8268
8269 static int
8270 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8271 ULONGEST offset, int *remote_errno)
8272 {
8273 struct remote_state *rs = get_remote_state ();
8274 char *p = rs->buf;
8275 int left = get_remote_packet_size ();
8276 int out_len;
8277
8278 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8279
8280 remote_buffer_add_int (&p, &left, fd);
8281 remote_buffer_add_string (&p, &left, ",");
8282
8283 remote_buffer_add_int (&p, &left, offset);
8284 remote_buffer_add_string (&p, &left, ",");
8285
8286 p += remote_escape_output (write_buf, len, p, &out_len,
8287 get_remote_packet_size () - (p - rs->buf));
8288
8289 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8290 remote_errno, NULL, NULL);
8291 }
8292
8293 /* Read up to LEN bytes FD on the remote target into READ_BUF
8294 Return the number of bytes read, or -1 if an error occurs (and
8295 set *REMOTE_ERRNO). */
8296
8297 static int
8298 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8299 ULONGEST offset, int *remote_errno)
8300 {
8301 struct remote_state *rs = get_remote_state ();
8302 char *p = rs->buf;
8303 char *attachment;
8304 int left = get_remote_packet_size ();
8305 int ret, attachment_len;
8306 int read_len;
8307
8308 remote_buffer_add_string (&p, &left, "vFile:pread:");
8309
8310 remote_buffer_add_int (&p, &left, fd);
8311 remote_buffer_add_string (&p, &left, ",");
8312
8313 remote_buffer_add_int (&p, &left, len);
8314 remote_buffer_add_string (&p, &left, ",");
8315
8316 remote_buffer_add_int (&p, &left, offset);
8317
8318 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8319 remote_errno, &attachment,
8320 &attachment_len);
8321
8322 if (ret < 0)
8323 return ret;
8324
8325 read_len = remote_unescape_input (attachment, attachment_len,
8326 read_buf, len);
8327 if (read_len != ret)
8328 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8329
8330 return ret;
8331 }
8332
8333 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8334 (and set *REMOTE_ERRNO). */
8335
8336 static int
8337 remote_hostio_close (int fd, int *remote_errno)
8338 {
8339 struct remote_state *rs = get_remote_state ();
8340 char *p = rs->buf;
8341 int left = get_remote_packet_size () - 1;
8342
8343 remote_buffer_add_string (&p, &left, "vFile:close:");
8344
8345 remote_buffer_add_int (&p, &left, fd);
8346
8347 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8348 remote_errno, NULL, NULL);
8349 }
8350
8351 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8352 occurs (and set *REMOTE_ERRNO). */
8353
8354 static int
8355 remote_hostio_unlink (const char *filename, int *remote_errno)
8356 {
8357 struct remote_state *rs = get_remote_state ();
8358 char *p = rs->buf;
8359 int left = get_remote_packet_size () - 1;
8360
8361 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8362
8363 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8364 strlen (filename));
8365
8366 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8367 remote_errno, NULL, NULL);
8368 }
8369
8370 static int
8371 remote_fileio_errno_to_host (int errnum)
8372 {
8373 switch (errnum)
8374 {
8375 case FILEIO_EPERM:
8376 return EPERM;
8377 case FILEIO_ENOENT:
8378 return ENOENT;
8379 case FILEIO_EINTR:
8380 return EINTR;
8381 case FILEIO_EIO:
8382 return EIO;
8383 case FILEIO_EBADF:
8384 return EBADF;
8385 case FILEIO_EACCES:
8386 return EACCES;
8387 case FILEIO_EFAULT:
8388 return EFAULT;
8389 case FILEIO_EBUSY:
8390 return EBUSY;
8391 case FILEIO_EEXIST:
8392 return EEXIST;
8393 case FILEIO_ENODEV:
8394 return ENODEV;
8395 case FILEIO_ENOTDIR:
8396 return ENOTDIR;
8397 case FILEIO_EISDIR:
8398 return EISDIR;
8399 case FILEIO_EINVAL:
8400 return EINVAL;
8401 case FILEIO_ENFILE:
8402 return ENFILE;
8403 case FILEIO_EMFILE:
8404 return EMFILE;
8405 case FILEIO_EFBIG:
8406 return EFBIG;
8407 case FILEIO_ENOSPC:
8408 return ENOSPC;
8409 case FILEIO_ESPIPE:
8410 return ESPIPE;
8411 case FILEIO_EROFS:
8412 return EROFS;
8413 case FILEIO_ENOSYS:
8414 return ENOSYS;
8415 case FILEIO_ENAMETOOLONG:
8416 return ENAMETOOLONG;
8417 }
8418 return -1;
8419 }
8420
8421 static char *
8422 remote_hostio_error (int errnum)
8423 {
8424 int host_error = remote_fileio_errno_to_host (errnum);
8425
8426 if (host_error == -1)
8427 error (_("Unknown remote I/O error %d"), errnum);
8428 else
8429 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8430 }
8431
8432 static void
8433 remote_hostio_close_cleanup (void *opaque)
8434 {
8435 int fd = *(int *) opaque;
8436 int remote_errno;
8437
8438 remote_hostio_close (fd, &remote_errno);
8439 }
8440
8441
8442 static void *
8443 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8444 {
8445 const char *filename = bfd_get_filename (abfd);
8446 int fd, remote_errno;
8447 int *stream;
8448
8449 gdb_assert (remote_filename_p (filename));
8450
8451 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8452 if (fd == -1)
8453 {
8454 errno = remote_fileio_errno_to_host (remote_errno);
8455 bfd_set_error (bfd_error_system_call);
8456 return NULL;
8457 }
8458
8459 stream = xmalloc (sizeof (int));
8460 *stream = fd;
8461 return stream;
8462 }
8463
8464 static int
8465 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8466 {
8467 int fd = *(int *)stream;
8468 int remote_errno;
8469
8470 xfree (stream);
8471
8472 /* Ignore errors on close; these may happen if the remote
8473 connection was already torn down. */
8474 remote_hostio_close (fd, &remote_errno);
8475
8476 return 1;
8477 }
8478
8479 static file_ptr
8480 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8481 file_ptr nbytes, file_ptr offset)
8482 {
8483 int fd = *(int *)stream;
8484 int remote_errno;
8485 file_ptr pos, bytes;
8486
8487 pos = 0;
8488 while (nbytes > pos)
8489 {
8490 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8491 offset + pos, &remote_errno);
8492 if (bytes == 0)
8493 /* Success, but no bytes, means end-of-file. */
8494 break;
8495 if (bytes == -1)
8496 {
8497 errno = remote_fileio_errno_to_host (remote_errno);
8498 bfd_set_error (bfd_error_system_call);
8499 return -1;
8500 }
8501
8502 pos += bytes;
8503 }
8504
8505 return pos;
8506 }
8507
8508 static int
8509 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8510 {
8511 /* FIXME: We should probably implement remote_hostio_stat. */
8512 sb->st_size = INT_MAX;
8513 return 0;
8514 }
8515
8516 int
8517 remote_filename_p (const char *filename)
8518 {
8519 return strncmp (filename, "remote:", 7) == 0;
8520 }
8521
8522 bfd *
8523 remote_bfd_open (const char *remote_file, const char *target)
8524 {
8525 return bfd_openr_iovec (remote_file, target,
8526 remote_bfd_iovec_open, NULL,
8527 remote_bfd_iovec_pread,
8528 remote_bfd_iovec_close,
8529 remote_bfd_iovec_stat);
8530 }
8531
8532 void
8533 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8534 {
8535 struct cleanup *back_to, *close_cleanup;
8536 int retcode, fd, remote_errno, bytes, io_size;
8537 FILE *file;
8538 gdb_byte *buffer;
8539 int bytes_in_buffer;
8540 int saw_eof;
8541 ULONGEST offset;
8542
8543 if (!remote_desc)
8544 error (_("command can only be used with remote target"));
8545
8546 file = fopen (local_file, "rb");
8547 if (file == NULL)
8548 perror_with_name (local_file);
8549 back_to = make_cleanup_fclose (file);
8550
8551 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8552 | FILEIO_O_TRUNC),
8553 0700, &remote_errno);
8554 if (fd == -1)
8555 remote_hostio_error (remote_errno);
8556
8557 /* Send up to this many bytes at once. They won't all fit in the
8558 remote packet limit, so we'll transfer slightly fewer. */
8559 io_size = get_remote_packet_size ();
8560 buffer = xmalloc (io_size);
8561 make_cleanup (xfree, buffer);
8562
8563 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8564
8565 bytes_in_buffer = 0;
8566 saw_eof = 0;
8567 offset = 0;
8568 while (bytes_in_buffer || !saw_eof)
8569 {
8570 if (!saw_eof)
8571 {
8572 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8573 file);
8574 if (bytes == 0)
8575 {
8576 if (ferror (file))
8577 error (_("Error reading %s."), local_file);
8578 else
8579 {
8580 /* EOF. Unless there is something still in the
8581 buffer from the last iteration, we are done. */
8582 saw_eof = 1;
8583 if (bytes_in_buffer == 0)
8584 break;
8585 }
8586 }
8587 }
8588 else
8589 bytes = 0;
8590
8591 bytes += bytes_in_buffer;
8592 bytes_in_buffer = 0;
8593
8594 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8595
8596 if (retcode < 0)
8597 remote_hostio_error (remote_errno);
8598 else if (retcode == 0)
8599 error (_("Remote write of %d bytes returned 0!"), bytes);
8600 else if (retcode < bytes)
8601 {
8602 /* Short write. Save the rest of the read data for the next
8603 write. */
8604 bytes_in_buffer = bytes - retcode;
8605 memmove (buffer, buffer + retcode, bytes_in_buffer);
8606 }
8607
8608 offset += retcode;
8609 }
8610
8611 discard_cleanups (close_cleanup);
8612 if (remote_hostio_close (fd, &remote_errno))
8613 remote_hostio_error (remote_errno);
8614
8615 if (from_tty)
8616 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8617 do_cleanups (back_to);
8618 }
8619
8620 void
8621 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8622 {
8623 struct cleanup *back_to, *close_cleanup;
8624 int retcode, fd, remote_errno, bytes, io_size;
8625 FILE *file;
8626 gdb_byte *buffer;
8627 ULONGEST offset;
8628
8629 if (!remote_desc)
8630 error (_("command can only be used with remote target"));
8631
8632 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8633 if (fd == -1)
8634 remote_hostio_error (remote_errno);
8635
8636 file = fopen (local_file, "wb");
8637 if (file == NULL)
8638 perror_with_name (local_file);
8639 back_to = make_cleanup_fclose (file);
8640
8641 /* Send up to this many bytes at once. They won't all fit in the
8642 remote packet limit, so we'll transfer slightly fewer. */
8643 io_size = get_remote_packet_size ();
8644 buffer = xmalloc (io_size);
8645 make_cleanup (xfree, buffer);
8646
8647 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8648
8649 offset = 0;
8650 while (1)
8651 {
8652 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8653 if (bytes == 0)
8654 /* Success, but no bytes, means end-of-file. */
8655 break;
8656 if (bytes == -1)
8657 remote_hostio_error (remote_errno);
8658
8659 offset += bytes;
8660
8661 bytes = fwrite (buffer, 1, bytes, file);
8662 if (bytes == 0)
8663 perror_with_name (local_file);
8664 }
8665
8666 discard_cleanups (close_cleanup);
8667 if (remote_hostio_close (fd, &remote_errno))
8668 remote_hostio_error (remote_errno);
8669
8670 if (from_tty)
8671 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8672 do_cleanups (back_to);
8673 }
8674
8675 void
8676 remote_file_delete (const char *remote_file, int from_tty)
8677 {
8678 int retcode, remote_errno;
8679
8680 if (!remote_desc)
8681 error (_("command can only be used with remote target"));
8682
8683 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8684 if (retcode == -1)
8685 remote_hostio_error (remote_errno);
8686
8687 if (from_tty)
8688 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8689 }
8690
8691 static void
8692 remote_put_command (char *args, int from_tty)
8693 {
8694 struct cleanup *back_to;
8695 char **argv;
8696
8697 if (args == NULL)
8698 error_no_arg (_("file to put"));
8699
8700 argv = gdb_buildargv (args);
8701 back_to = make_cleanup_freeargv (argv);
8702 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8703 error (_("Invalid parameters to remote put"));
8704
8705 remote_file_put (argv[0], argv[1], from_tty);
8706
8707 do_cleanups (back_to);
8708 }
8709
8710 static void
8711 remote_get_command (char *args, int from_tty)
8712 {
8713 struct cleanup *back_to;
8714 char **argv;
8715
8716 if (args == NULL)
8717 error_no_arg (_("file to get"));
8718
8719 argv = gdb_buildargv (args);
8720 back_to = make_cleanup_freeargv (argv);
8721 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8722 error (_("Invalid parameters to remote get"));
8723
8724 remote_file_get (argv[0], argv[1], from_tty);
8725
8726 do_cleanups (back_to);
8727 }
8728
8729 static void
8730 remote_delete_command (char *args, int from_tty)
8731 {
8732 struct cleanup *back_to;
8733 char **argv;
8734
8735 if (args == NULL)
8736 error_no_arg (_("file to delete"));
8737
8738 argv = gdb_buildargv (args);
8739 back_to = make_cleanup_freeargv (argv);
8740 if (argv[0] == NULL || argv[1] != NULL)
8741 error (_("Invalid parameters to remote delete"));
8742
8743 remote_file_delete (argv[0], from_tty);
8744
8745 do_cleanups (back_to);
8746 }
8747
8748 static void
8749 remote_command (char *args, int from_tty)
8750 {
8751 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8752 }
8753
8754 static int remote_target_can_reverse = 1;
8755
8756 static int
8757 remote_can_execute_reverse (void)
8758 {
8759 return remote_target_can_reverse;
8760 }
8761
8762 static int
8763 remote_supports_non_stop (void)
8764 {
8765 return 1;
8766 }
8767
8768 static int
8769 remote_supports_multi_process (void)
8770 {
8771 struct remote_state *rs = get_remote_state ();
8772 return remote_multi_process_p (rs);
8773 }
8774
8775 static void
8776 init_remote_ops (void)
8777 {
8778 remote_ops.to_shortname = "remote";
8779 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8780 remote_ops.to_doc =
8781 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8782 Specify the serial device it is connected to\n\
8783 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8784 remote_ops.to_open = remote_open;
8785 remote_ops.to_close = remote_close;
8786 remote_ops.to_detach = remote_detach;
8787 remote_ops.to_disconnect = remote_disconnect;
8788 remote_ops.to_resume = remote_resume;
8789 remote_ops.to_wait = remote_wait;
8790 remote_ops.to_fetch_registers = remote_fetch_registers;
8791 remote_ops.to_store_registers = remote_store_registers;
8792 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8793 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8794 remote_ops.to_files_info = remote_files_info;
8795 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8796 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8797 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8798 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8799 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8800 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8801 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8802 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8803 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8804 remote_ops.to_kill = remote_kill;
8805 remote_ops.to_load = generic_load;
8806 remote_ops.to_mourn_inferior = remote_mourn;
8807 remote_ops.to_thread_alive = remote_thread_alive;
8808 remote_ops.to_find_new_threads = remote_threads_info;
8809 remote_ops.to_pid_to_str = remote_pid_to_str;
8810 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8811 remote_ops.to_stop = remote_stop;
8812 remote_ops.to_xfer_partial = remote_xfer_partial;
8813 remote_ops.to_rcmd = remote_rcmd;
8814 remote_ops.to_log_command = serial_log_command;
8815 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8816 remote_ops.to_stratum = process_stratum;
8817 remote_ops.to_has_all_memory = 1;
8818 remote_ops.to_has_memory = 1;
8819 remote_ops.to_has_stack = 1;
8820 remote_ops.to_has_registers = 1;
8821 remote_ops.to_has_execution = 1;
8822 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8823 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8824 remote_ops.to_magic = OPS_MAGIC;
8825 remote_ops.to_memory_map = remote_memory_map;
8826 remote_ops.to_flash_erase = remote_flash_erase;
8827 remote_ops.to_flash_done = remote_flash_done;
8828 remote_ops.to_read_description = remote_read_description;
8829 remote_ops.to_search_memory = remote_search_memory;
8830 remote_ops.to_can_async_p = remote_can_async_p;
8831 remote_ops.to_is_async_p = remote_is_async_p;
8832 remote_ops.to_async = remote_async;
8833 remote_ops.to_async_mask = remote_async_mask;
8834 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8835 remote_ops.to_terminal_ours = remote_terminal_ours;
8836 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8837 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8838 }
8839
8840 /* Set up the extended remote vector by making a copy of the standard
8841 remote vector and adding to it. */
8842
8843 static void
8844 init_extended_remote_ops (void)
8845 {
8846 extended_remote_ops = remote_ops;
8847
8848 extended_remote_ops.to_shortname = "extended-remote";
8849 extended_remote_ops.to_longname =
8850 "Extended remote serial target in gdb-specific protocol";
8851 extended_remote_ops.to_doc =
8852 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8853 Specify the serial device it is connected to (e.g. /dev/ttya).";
8854 extended_remote_ops.to_open = extended_remote_open;
8855 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8856 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8857 extended_remote_ops.to_detach = extended_remote_detach;
8858 extended_remote_ops.to_attach = extended_remote_attach;
8859 extended_remote_ops.to_kill = extended_remote_kill;
8860 }
8861
8862 static int
8863 remote_can_async_p (void)
8864 {
8865 if (!target_async_permitted)
8866 /* We only enable async when the user specifically asks for it. */
8867 return 0;
8868
8869 /* We're async whenever the serial device is. */
8870 return remote_async_mask_value && serial_can_async_p (remote_desc);
8871 }
8872
8873 static int
8874 remote_is_async_p (void)
8875 {
8876 if (!target_async_permitted)
8877 /* We only enable async when the user specifically asks for it. */
8878 return 0;
8879
8880 /* We're async whenever the serial device is. */
8881 return remote_async_mask_value && serial_is_async_p (remote_desc);
8882 }
8883
8884 /* Pass the SERIAL event on and up to the client. One day this code
8885 will be able to delay notifying the client of an event until the
8886 point where an entire packet has been received. */
8887
8888 static void (*async_client_callback) (enum inferior_event_type event_type,
8889 void *context);
8890 static void *async_client_context;
8891 static serial_event_ftype remote_async_serial_handler;
8892
8893 static void
8894 remote_async_serial_handler (struct serial *scb, void *context)
8895 {
8896 /* Don't propogate error information up to the client. Instead let
8897 the client find out about the error by querying the target. */
8898 async_client_callback (INF_REG_EVENT, async_client_context);
8899 }
8900
8901 static void
8902 remote_async_inferior_event_handler (gdb_client_data data)
8903 {
8904 inferior_event_handler (INF_REG_EVENT, NULL);
8905 }
8906
8907 static void
8908 remote_async_get_pending_events_handler (gdb_client_data data)
8909 {
8910 remote_get_pending_stop_replies ();
8911 }
8912
8913 static void
8914 remote_async (void (*callback) (enum inferior_event_type event_type,
8915 void *context), void *context)
8916 {
8917 if (remote_async_mask_value == 0)
8918 internal_error (__FILE__, __LINE__,
8919 _("Calling remote_async when async is masked"));
8920
8921 if (callback != NULL)
8922 {
8923 serial_async (remote_desc, remote_async_serial_handler, NULL);
8924 async_client_callback = callback;
8925 async_client_context = context;
8926 }
8927 else
8928 serial_async (remote_desc, NULL, NULL);
8929 }
8930
8931 static int
8932 remote_async_mask (int new_mask)
8933 {
8934 int curr_mask = remote_async_mask_value;
8935 remote_async_mask_value = new_mask;
8936 return curr_mask;
8937 }
8938
8939 static void
8940 set_remote_cmd (char *args, int from_tty)
8941 {
8942 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8943 }
8944
8945 static void
8946 show_remote_cmd (char *args, int from_tty)
8947 {
8948 /* We can't just use cmd_show_list here, because we want to skip
8949 the redundant "show remote Z-packet" and the legacy aliases. */
8950 struct cleanup *showlist_chain;
8951 struct cmd_list_element *list = remote_show_cmdlist;
8952
8953 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8954 for (; list != NULL; list = list->next)
8955 if (strcmp (list->name, "Z-packet") == 0)
8956 continue;
8957 else if (list->type == not_set_cmd)
8958 /* Alias commands are exactly like the original, except they
8959 don't have the normal type. */
8960 continue;
8961 else
8962 {
8963 struct cleanup *option_chain
8964 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8965 ui_out_field_string (uiout, "name", list->name);
8966 ui_out_text (uiout, ": ");
8967 if (list->type == show_cmd)
8968 do_setshow_command ((char *) NULL, from_tty, list);
8969 else
8970 cmd_func (list, NULL, from_tty);
8971 /* Close the tuple. */
8972 do_cleanups (option_chain);
8973 }
8974
8975 /* Close the tuple. */
8976 do_cleanups (showlist_chain);
8977 }
8978
8979
8980 /* Function to be called whenever a new objfile (shlib) is detected. */
8981 static void
8982 remote_new_objfile (struct objfile *objfile)
8983 {
8984 if (remote_desc != 0) /* Have a remote connection. */
8985 remote_check_symbols (objfile);
8986 }
8987
8988 void
8989 _initialize_remote (void)
8990 {
8991 struct remote_state *rs;
8992
8993 /* architecture specific data */
8994 remote_gdbarch_data_handle =
8995 gdbarch_data_register_post_init (init_remote_state);
8996 remote_g_packet_data_handle =
8997 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8998
8999 /* Initialize the per-target state. At the moment there is only one
9000 of these, not one per target. Only one target is active at a
9001 time. The default buffer size is unimportant; it will be expanded
9002 whenever a larger buffer is needed. */
9003 rs = get_remote_state_raw ();
9004 rs->buf_size = 400;
9005 rs->buf = xmalloc (rs->buf_size);
9006
9007 init_remote_ops ();
9008 add_target (&remote_ops);
9009
9010 init_extended_remote_ops ();
9011 add_target (&extended_remote_ops);
9012
9013 /* Hook into new objfile notification. */
9014 observer_attach_new_objfile (remote_new_objfile);
9015
9016 /* Set up signal handlers. */
9017 sigint_remote_token =
9018 create_async_signal_handler (async_remote_interrupt, NULL);
9019 sigint_remote_twice_token =
9020 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9021
9022 #if 0
9023 init_remote_threadtests ();
9024 #endif
9025
9026 /* set/show remote ... */
9027
9028 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9029 Remote protocol specific variables\n\
9030 Configure various remote-protocol specific variables such as\n\
9031 the packets being used"),
9032 &remote_set_cmdlist, "set remote ",
9033 0 /* allow-unknown */, &setlist);
9034 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9035 Remote protocol specific variables\n\
9036 Configure various remote-protocol specific variables such as\n\
9037 the packets being used"),
9038 &remote_show_cmdlist, "show remote ",
9039 0 /* allow-unknown */, &showlist);
9040
9041 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9042 Compare section data on target to the exec file.\n\
9043 Argument is a single section name (default: all loaded sections)."),
9044 &cmdlist);
9045
9046 add_cmd ("packet", class_maintenance, packet_command, _("\
9047 Send an arbitrary packet to a remote target.\n\
9048 maintenance packet TEXT\n\
9049 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9050 this command sends the string TEXT to the inferior, and displays the\n\
9051 response packet. GDB supplies the initial `$' character, and the\n\
9052 terminating `#' character and checksum."),
9053 &maintenancelist);
9054
9055 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9056 Set whether to send break if interrupted."), _("\
9057 Show whether to send break if interrupted."), _("\
9058 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9059 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9060 &setlist, &showlist);
9061
9062 /* Install commands for configuring memory read/write packets. */
9063
9064 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9065 Set the maximum number of bytes per memory write packet (deprecated)."),
9066 &setlist);
9067 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9068 Show the maximum number of bytes per memory write packet (deprecated)."),
9069 &showlist);
9070 add_cmd ("memory-write-packet-size", no_class,
9071 set_memory_write_packet_size, _("\
9072 Set the maximum number of bytes per memory-write packet.\n\
9073 Specify the number of bytes in a packet or 0 (zero) for the\n\
9074 default packet size. The actual limit is further reduced\n\
9075 dependent on the target. Specify ``fixed'' to disable the\n\
9076 further restriction and ``limit'' to enable that restriction."),
9077 &remote_set_cmdlist);
9078 add_cmd ("memory-read-packet-size", no_class,
9079 set_memory_read_packet_size, _("\
9080 Set the maximum number of bytes per memory-read packet.\n\
9081 Specify the number of bytes in a packet or 0 (zero) for the\n\
9082 default packet size. The actual limit is further reduced\n\
9083 dependent on the target. Specify ``fixed'' to disable the\n\
9084 further restriction and ``limit'' to enable that restriction."),
9085 &remote_set_cmdlist);
9086 add_cmd ("memory-write-packet-size", no_class,
9087 show_memory_write_packet_size,
9088 _("Show the maximum number of bytes per memory-write packet."),
9089 &remote_show_cmdlist);
9090 add_cmd ("memory-read-packet-size", no_class,
9091 show_memory_read_packet_size,
9092 _("Show the maximum number of bytes per memory-read packet."),
9093 &remote_show_cmdlist);
9094
9095 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9096 &remote_hw_watchpoint_limit, _("\
9097 Set the maximum number of target hardware watchpoints."), _("\
9098 Show the maximum number of target hardware watchpoints."), _("\
9099 Specify a negative limit for unlimited."),
9100 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9101 &remote_set_cmdlist, &remote_show_cmdlist);
9102 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9103 &remote_hw_breakpoint_limit, _("\
9104 Set the maximum number of target hardware breakpoints."), _("\
9105 Show the maximum number of target hardware breakpoints."), _("\
9106 Specify a negative limit for unlimited."),
9107 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9108 &remote_set_cmdlist, &remote_show_cmdlist);
9109
9110 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9111 &remote_address_size, _("\
9112 Set the maximum size of the address (in bits) in a memory packet."), _("\
9113 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9114 NULL,
9115 NULL, /* FIXME: i18n: */
9116 &setlist, &showlist);
9117
9118 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9119 "X", "binary-download", 1);
9120
9121 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9122 "vCont", "verbose-resume", 0);
9123
9124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9125 "QPassSignals", "pass-signals", 0);
9126
9127 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9128 "qSymbol", "symbol-lookup", 0);
9129
9130 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9131 "P", "set-register", 1);
9132
9133 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9134 "p", "fetch-register", 1);
9135
9136 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9137 "Z0", "software-breakpoint", 0);
9138
9139 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9140 "Z1", "hardware-breakpoint", 0);
9141
9142 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9143 "Z2", "write-watchpoint", 0);
9144
9145 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9146 "Z3", "read-watchpoint", 0);
9147
9148 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9149 "Z4", "access-watchpoint", 0);
9150
9151 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9152 "qXfer:auxv:read", "read-aux-vector", 0);
9153
9154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9155 "qXfer:features:read", "target-features", 0);
9156
9157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9158 "qXfer:libraries:read", "library-info", 0);
9159
9160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9161 "qXfer:memory-map:read", "memory-map", 0);
9162
9163 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9164 "qXfer:spu:read", "read-spu-object", 0);
9165
9166 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9167 "qXfer:spu:write", "write-spu-object", 0);
9168
9169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9170 "qXfer:osdata:read", "osdata", 0);
9171
9172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9173 "qXfer:siginfo:read", "read-siginfo-object", 0);
9174
9175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9176 "qXfer:siginfo:write", "write-siginfo-object", 0);
9177
9178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9179 "qGetTLSAddr", "get-thread-local-storage-address",
9180 0);
9181
9182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9183 "qSupported", "supported-packets", 0);
9184
9185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9186 "qSearch:memory", "search-memory", 0);
9187
9188 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9189 "vFile:open", "hostio-open", 0);
9190
9191 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9192 "vFile:pread", "hostio-pread", 0);
9193
9194 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9195 "vFile:pwrite", "hostio-pwrite", 0);
9196
9197 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9198 "vFile:close", "hostio-close", 0);
9199
9200 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9201 "vFile:unlink", "hostio-unlink", 0);
9202
9203 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9204 "vAttach", "attach", 0);
9205
9206 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9207 "vRun", "run", 0);
9208
9209 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9210 "QStartNoAckMode", "noack", 0);
9211
9212 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9213 "vKill", "kill", 0);
9214
9215 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9216 "qAttached", "query-attached", 0);
9217
9218 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9219 Z sub-packet has its own set and show commands, but users may
9220 have sets to this variable in their .gdbinit files (or in their
9221 documentation). */
9222 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9223 &remote_Z_packet_detect, _("\
9224 Set use of remote protocol `Z' packets"), _("\
9225 Show use of remote protocol `Z' packets "), _("\
9226 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9227 packets."),
9228 set_remote_protocol_Z_packet_cmd,
9229 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9230 &remote_set_cmdlist, &remote_show_cmdlist);
9231
9232 add_prefix_cmd ("remote", class_files, remote_command, _("\
9233 Manipulate files on the remote system\n\
9234 Transfer files to and from the remote target system."),
9235 &remote_cmdlist, "remote ",
9236 0 /* allow-unknown */, &cmdlist);
9237
9238 add_cmd ("put", class_files, remote_put_command,
9239 _("Copy a local file to the remote system."),
9240 &remote_cmdlist);
9241
9242 add_cmd ("get", class_files, remote_get_command,
9243 _("Copy a remote file to the local system."),
9244 &remote_cmdlist);
9245
9246 add_cmd ("delete", class_files, remote_delete_command,
9247 _("Delete a remote file."),
9248 &remote_cmdlist);
9249
9250 remote_exec_file = xstrdup ("");
9251 add_setshow_string_noescape_cmd ("exec-file", class_files,
9252 &remote_exec_file, _("\
9253 Set the remote pathname for \"run\""), _("\
9254 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9255 &remote_set_cmdlist, &remote_show_cmdlist);
9256
9257 /* Eventually initialize fileio. See fileio.c */
9258 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9259
9260 /* Take advantage of the fact that the LWP field is not used, to tag
9261 special ptids with it set to != 0. */
9262 magic_null_ptid = ptid_build (42000, 1, -1);
9263 not_sent_ptid = ptid_build (42000, 1, -2);
9264 any_thread_ptid = ptid_build (42000, 1, 0);
9265 }