]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Replace VEC(gdb_xml_value_s) with std::vector
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::unique_xmalloc_ptr<char> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml != NULL && *xml != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml.get (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static int
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return 1;
3405 }
3406
3407 return 0;
3408 }
3409
3410 static VEC(static_tracepoint_marker_p) *
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 VEC(static_tracepoint_marker_p) *markers = NULL;
3416 struct static_tracepoint_marker *marker = NULL;
3417 struct cleanup *old_chain;
3418 const char *p;
3419
3420 /* Ask for a first packet of static tracepoint marker
3421 definition. */
3422 putpkt ("qTfSTM");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424 p = rs->buf;
3425 if (*p == 'E')
3426 error (_("Remote failure reply: %s"), p);
3427
3428 old_chain = make_cleanup (free_current_marker, &marker);
3429
3430 while (*p++ == 'm')
3431 {
3432 if (marker == NULL)
3433 marker = XCNEW (struct static_tracepoint_marker);
3434
3435 do
3436 {
3437 parse_static_tracepoint_marker_definition (p, &p, marker);
3438
3439 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3440 {
3441 VEC_safe_push (static_tracepoint_marker_p,
3442 markers, marker);
3443 marker = NULL;
3444 }
3445 else
3446 {
3447 release_static_tracepoint_marker (marker);
3448 memset (marker, 0, sizeof (*marker));
3449 }
3450 }
3451 while (*p++ == ','); /* comma-separated list */
3452 /* Ask for another packet of static tracepoint definition. */
3453 putpkt ("qTsSTM");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455 p = rs->buf;
3456 }
3457
3458 do_cleanups (old_chain);
3459 return markers;
3460 }
3461
3462 \f
3463 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3464
3465 static ptid_t
3466 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3467 {
3468 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3469 }
3470 \f
3471
3472 /* Restart the remote side; this is an extended protocol operation. */
3473
3474 static void
3475 extended_remote_restart (void)
3476 {
3477 struct remote_state *rs = get_remote_state ();
3478
3479 /* Send the restart command; for reasons I don't understand the
3480 remote side really expects a number after the "R". */
3481 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3482 putpkt (rs->buf);
3483
3484 remote_fileio_reset ();
3485 }
3486 \f
3487 /* Clean up connection to a remote debugger. */
3488
3489 static void
3490 remote_close (struct target_ops *self)
3491 {
3492 struct remote_state *rs = get_remote_state ();
3493
3494 if (rs->remote_desc == NULL)
3495 return; /* already closed */
3496
3497 /* Make sure we leave stdin registered in the event loop. */
3498 remote_terminal_ours (self);
3499
3500 serial_close (rs->remote_desc);
3501 rs->remote_desc = NULL;
3502
3503 /* We don't have a connection to the remote stub anymore. Get rid
3504 of all the inferiors and their threads we were controlling.
3505 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3506 will be unable to find the thread corresponding to (pid, 0, 0). */
3507 inferior_ptid = null_ptid;
3508 discard_all_inferiors ();
3509
3510 /* We are closing the remote target, so we should discard
3511 everything of this target. */
3512 discard_pending_stop_replies_in_queue (rs);
3513
3514 if (remote_async_inferior_event_token)
3515 delete_async_event_handler (&remote_async_inferior_event_token);
3516
3517 remote_notif_state_xfree (rs->notif_state);
3518
3519 trace_reset_local_state ();
3520 }
3521
3522 /* Query the remote side for the text, data and bss offsets. */
3523
3524 static void
3525 get_offsets (void)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 char *buf;
3529 char *ptr;
3530 int lose, num_segments = 0, do_sections, do_segments;
3531 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3532 struct section_offsets *offs;
3533 struct symfile_segment_data *data;
3534
3535 if (symfile_objfile == NULL)
3536 return;
3537
3538 putpkt ("qOffsets");
3539 getpkt (&rs->buf, &rs->buf_size, 0);
3540 buf = rs->buf;
3541
3542 if (buf[0] == '\000')
3543 return; /* Return silently. Stub doesn't support
3544 this command. */
3545 if (buf[0] == 'E')
3546 {
3547 warning (_("Remote failure reply: %s"), buf);
3548 return;
3549 }
3550
3551 /* Pick up each field in turn. This used to be done with scanf, but
3552 scanf will make trouble if CORE_ADDR size doesn't match
3553 conversion directives correctly. The following code will work
3554 with any size of CORE_ADDR. */
3555 text_addr = data_addr = bss_addr = 0;
3556 ptr = buf;
3557 lose = 0;
3558
3559 if (startswith (ptr, "Text="))
3560 {
3561 ptr += 5;
3562 /* Don't use strtol, could lose on big values. */
3563 while (*ptr && *ptr != ';')
3564 text_addr = (text_addr << 4) + fromhex (*ptr++);
3565
3566 if (startswith (ptr, ";Data="))
3567 {
3568 ptr += 6;
3569 while (*ptr && *ptr != ';')
3570 data_addr = (data_addr << 4) + fromhex (*ptr++);
3571 }
3572 else
3573 lose = 1;
3574
3575 if (!lose && startswith (ptr, ";Bss="))
3576 {
3577 ptr += 5;
3578 while (*ptr && *ptr != ';')
3579 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3580
3581 if (bss_addr != data_addr)
3582 warning (_("Target reported unsupported offsets: %s"), buf);
3583 }
3584 else
3585 lose = 1;
3586 }
3587 else if (startswith (ptr, "TextSeg="))
3588 {
3589 ptr += 8;
3590 /* Don't use strtol, could lose on big values. */
3591 while (*ptr && *ptr != ';')
3592 text_addr = (text_addr << 4) + fromhex (*ptr++);
3593 num_segments = 1;
3594
3595 if (startswith (ptr, ";DataSeg="))
3596 {
3597 ptr += 9;
3598 while (*ptr && *ptr != ';')
3599 data_addr = (data_addr << 4) + fromhex (*ptr++);
3600 num_segments++;
3601 }
3602 }
3603 else
3604 lose = 1;
3605
3606 if (lose)
3607 error (_("Malformed response to offset query, %s"), buf);
3608 else if (*ptr != '\0')
3609 warning (_("Target reported unsupported offsets: %s"), buf);
3610
3611 offs = ((struct section_offsets *)
3612 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3613 memcpy (offs, symfile_objfile->section_offsets,
3614 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3615
3616 data = get_symfile_segment_data (symfile_objfile->obfd);
3617 do_segments = (data != NULL);
3618 do_sections = num_segments == 0;
3619
3620 if (num_segments > 0)
3621 {
3622 segments[0] = text_addr;
3623 segments[1] = data_addr;
3624 }
3625 /* If we have two segments, we can still try to relocate everything
3626 by assuming that the .text and .data offsets apply to the whole
3627 text and data segments. Convert the offsets given in the packet
3628 to base addresses for symfile_map_offsets_to_segments. */
3629 else if (data && data->num_segments == 2)
3630 {
3631 segments[0] = data->segment_bases[0] + text_addr;
3632 segments[1] = data->segment_bases[1] + data_addr;
3633 num_segments = 2;
3634 }
3635 /* If the object file has only one segment, assume that it is text
3636 rather than data; main programs with no writable data are rare,
3637 but programs with no code are useless. Of course the code might
3638 have ended up in the data segment... to detect that we would need
3639 the permissions here. */
3640 else if (data && data->num_segments == 1)
3641 {
3642 segments[0] = data->segment_bases[0] + text_addr;
3643 num_segments = 1;
3644 }
3645 /* There's no way to relocate by segment. */
3646 else
3647 do_segments = 0;
3648
3649 if (do_segments)
3650 {
3651 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3652 offs, num_segments, segments);
3653
3654 if (ret == 0 && !do_sections)
3655 error (_("Can not handle qOffsets TextSeg "
3656 "response with this symbol file"));
3657
3658 if (ret > 0)
3659 do_sections = 0;
3660 }
3661
3662 if (data)
3663 free_symfile_segment_data (data);
3664
3665 if (do_sections)
3666 {
3667 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3668
3669 /* This is a temporary kludge to force data and bss to use the
3670 same offsets because that's what nlmconv does now. The real
3671 solution requires changes to the stub and remote.c that I
3672 don't have time to do right now. */
3673
3674 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3675 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3676 }
3677
3678 objfile_relocate (symfile_objfile, offs);
3679 }
3680
3681 /* Send interrupt_sequence to remote target. */
3682 static void
3683 send_interrupt_sequence (void)
3684 {
3685 struct remote_state *rs = get_remote_state ();
3686
3687 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3688 remote_serial_write ("\x03", 1);
3689 else if (interrupt_sequence_mode == interrupt_sequence_break)
3690 serial_send_break (rs->remote_desc);
3691 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3692 {
3693 serial_send_break (rs->remote_desc);
3694 remote_serial_write ("g", 1);
3695 }
3696 else
3697 internal_error (__FILE__, __LINE__,
3698 _("Invalid value for interrupt_sequence_mode: %s."),
3699 interrupt_sequence_mode);
3700 }
3701
3702
3703 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3704 and extract the PTID. Returns NULL_PTID if not found. */
3705
3706 static ptid_t
3707 stop_reply_extract_thread (char *stop_reply)
3708 {
3709 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3710 {
3711 const char *p;
3712
3713 /* Txx r:val ; r:val (...) */
3714 p = &stop_reply[3];
3715
3716 /* Look for "register" named "thread". */
3717 while (*p != '\0')
3718 {
3719 const char *p1;
3720
3721 p1 = strchr (p, ':');
3722 if (p1 == NULL)
3723 return null_ptid;
3724
3725 if (strncmp (p, "thread", p1 - p) == 0)
3726 return read_ptid (++p1, &p);
3727
3728 p1 = strchr (p, ';');
3729 if (p1 == NULL)
3730 return null_ptid;
3731 p1++;
3732
3733 p = p1;
3734 }
3735 }
3736
3737 return null_ptid;
3738 }
3739
3740 /* Determine the remote side's current thread. If we have a stop
3741 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3742 "thread" register we can extract the current thread from. If not,
3743 ask the remote which is the current thread with qC. The former
3744 method avoids a roundtrip. */
3745
3746 static ptid_t
3747 get_current_thread (char *wait_status)
3748 {
3749 ptid_t ptid = null_ptid;
3750
3751 /* Note we don't use remote_parse_stop_reply as that makes use of
3752 the target architecture, which we haven't yet fully determined at
3753 this point. */
3754 if (wait_status != NULL)
3755 ptid = stop_reply_extract_thread (wait_status);
3756 if (ptid_equal (ptid, null_ptid))
3757 ptid = remote_current_thread (inferior_ptid);
3758
3759 return ptid;
3760 }
3761
3762 /* Query the remote target for which is the current thread/process,
3763 add it to our tables, and update INFERIOR_PTID. The caller is
3764 responsible for setting the state such that the remote end is ready
3765 to return the current thread.
3766
3767 This function is called after handling the '?' or 'vRun' packets,
3768 whose response is a stop reply from which we can also try
3769 extracting the thread. If the target doesn't support the explicit
3770 qC query, we infer the current thread from that stop reply, passed
3771 in in WAIT_STATUS, which may be NULL. */
3772
3773 static void
3774 add_current_inferior_and_thread (char *wait_status)
3775 {
3776 struct remote_state *rs = get_remote_state ();
3777 int fake_pid_p = 0;
3778
3779 inferior_ptid = null_ptid;
3780
3781 /* Now, if we have thread information, update inferior_ptid. */
3782 ptid_t curr_ptid = get_current_thread (wait_status);
3783
3784 if (curr_ptid != null_ptid)
3785 {
3786 if (!remote_multi_process_p (rs))
3787 fake_pid_p = 1;
3788 }
3789 else
3790 {
3791 /* Without this, some commands which require an active target
3792 (such as kill) won't work. This variable serves (at least)
3793 double duty as both the pid of the target process (if it has
3794 such), and as a flag indicating that a target is active. */
3795 curr_ptid = magic_null_ptid;
3796 fake_pid_p = 1;
3797 }
3798
3799 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3800
3801 /* Add the main thread and switch to it. Don't try reading
3802 registers yet, since we haven't fetched the target description
3803 yet. */
3804 thread_info *tp = add_thread_silent (curr_ptid);
3805 switch_to_thread_no_regs (tp);
3806 }
3807
3808 /* Print info about a thread that was found already stopped on
3809 connection. */
3810
3811 static void
3812 print_one_stopped_thread (struct thread_info *thread)
3813 {
3814 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3815
3816 switch_to_thread (thread->ptid);
3817 stop_pc = get_frame_pc (get_current_frame ());
3818 set_current_sal_from_frame (get_current_frame ());
3819
3820 thread->suspend.waitstatus_pending_p = 0;
3821
3822 if (ws->kind == TARGET_WAITKIND_STOPPED)
3823 {
3824 enum gdb_signal sig = ws->value.sig;
3825
3826 if (signal_print_state (sig))
3827 observer_notify_signal_received (sig);
3828 }
3829 observer_notify_normal_stop (NULL, 1);
3830 }
3831
3832 /* Process all initial stop replies the remote side sent in response
3833 to the ? packet. These indicate threads that were already stopped
3834 on initial connection. We mark these threads as stopped and print
3835 their current frame before giving the user the prompt. */
3836
3837 static void
3838 process_initial_stop_replies (int from_tty)
3839 {
3840 int pending_stop_replies = stop_reply_queue_length ();
3841 struct inferior *inf;
3842 struct thread_info *thread;
3843 struct thread_info *selected = NULL;
3844 struct thread_info *lowest_stopped = NULL;
3845 struct thread_info *first = NULL;
3846
3847 /* Consume the initial pending events. */
3848 while (pending_stop_replies-- > 0)
3849 {
3850 ptid_t waiton_ptid = minus_one_ptid;
3851 ptid_t event_ptid;
3852 struct target_waitstatus ws;
3853 int ignore_event = 0;
3854 struct thread_info *thread;
3855
3856 memset (&ws, 0, sizeof (ws));
3857 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3858 if (remote_debug)
3859 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3860
3861 switch (ws.kind)
3862 {
3863 case TARGET_WAITKIND_IGNORE:
3864 case TARGET_WAITKIND_NO_RESUMED:
3865 case TARGET_WAITKIND_SIGNALLED:
3866 case TARGET_WAITKIND_EXITED:
3867 /* We shouldn't see these, but if we do, just ignore. */
3868 if (remote_debug)
3869 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3870 ignore_event = 1;
3871 break;
3872
3873 case TARGET_WAITKIND_EXECD:
3874 xfree (ws.value.execd_pathname);
3875 break;
3876 default:
3877 break;
3878 }
3879
3880 if (ignore_event)
3881 continue;
3882
3883 thread = find_thread_ptid (event_ptid);
3884
3885 if (ws.kind == TARGET_WAITKIND_STOPPED)
3886 {
3887 enum gdb_signal sig = ws.value.sig;
3888
3889 /* Stubs traditionally report SIGTRAP as initial signal,
3890 instead of signal 0. Suppress it. */
3891 if (sig == GDB_SIGNAL_TRAP)
3892 sig = GDB_SIGNAL_0;
3893 thread->suspend.stop_signal = sig;
3894 ws.value.sig = sig;
3895 }
3896
3897 thread->suspend.waitstatus = ws;
3898
3899 if (ws.kind != TARGET_WAITKIND_STOPPED
3900 || ws.value.sig != GDB_SIGNAL_0)
3901 thread->suspend.waitstatus_pending_p = 1;
3902
3903 set_executing (event_ptid, 0);
3904 set_running (event_ptid, 0);
3905 get_remote_thread_info (thread)->vcont_resumed = 0;
3906 }
3907
3908 /* "Notice" the new inferiors before anything related to
3909 registers/memory. */
3910 ALL_INFERIORS (inf)
3911 {
3912 if (inf->pid == 0)
3913 continue;
3914
3915 inf->needs_setup = 1;
3916
3917 if (non_stop)
3918 {
3919 thread = any_live_thread_of_process (inf->pid);
3920 notice_new_inferior (thread->ptid,
3921 thread->state == THREAD_RUNNING,
3922 from_tty);
3923 }
3924 }
3925
3926 /* If all-stop on top of non-stop, pause all threads. Note this
3927 records the threads' stop pc, so must be done after "noticing"
3928 the inferiors. */
3929 if (!non_stop)
3930 {
3931 stop_all_threads ();
3932
3933 /* If all threads of an inferior were already stopped, we
3934 haven't setup the inferior yet. */
3935 ALL_INFERIORS (inf)
3936 {
3937 if (inf->pid == 0)
3938 continue;
3939
3940 if (inf->needs_setup)
3941 {
3942 thread = any_live_thread_of_process (inf->pid);
3943 switch_to_thread_no_regs (thread);
3944 setup_inferior (0);
3945 }
3946 }
3947 }
3948
3949 /* Now go over all threads that are stopped, and print their current
3950 frame. If all-stop, then if there's a signalled thread, pick
3951 that as current. */
3952 ALL_NON_EXITED_THREADS (thread)
3953 {
3954 if (first == NULL)
3955 first = thread;
3956
3957 if (!non_stop)
3958 set_running (thread->ptid, 0);
3959 else if (thread->state != THREAD_STOPPED)
3960 continue;
3961
3962 if (selected == NULL
3963 && thread->suspend.waitstatus_pending_p)
3964 selected = thread;
3965
3966 if (lowest_stopped == NULL
3967 || thread->inf->num < lowest_stopped->inf->num
3968 || thread->per_inf_num < lowest_stopped->per_inf_num)
3969 lowest_stopped = thread;
3970
3971 if (non_stop)
3972 print_one_stopped_thread (thread);
3973 }
3974
3975 /* In all-stop, we only print the status of one thread, and leave
3976 others with their status pending. */
3977 if (!non_stop)
3978 {
3979 thread = selected;
3980 if (thread == NULL)
3981 thread = lowest_stopped;
3982 if (thread == NULL)
3983 thread = first;
3984
3985 print_one_stopped_thread (thread);
3986 }
3987
3988 /* For "info program". */
3989 thread = inferior_thread ();
3990 if (thread->state == THREAD_STOPPED)
3991 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3992 }
3993
3994 /* Start the remote connection and sync state. */
3995
3996 static void
3997 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000 struct packet_config *noack_config;
4001 char *wait_status = NULL;
4002
4003 /* Signal other parts that we're going through the initial setup,
4004 and so things may not be stable yet. E.g., we don't try to
4005 install tracepoints until we've relocated symbols. Also, a
4006 Ctrl-C before we're connected and synced up can't interrupt the
4007 target. Instead, it offers to drop the (potentially wedged)
4008 connection. */
4009 rs->starting_up = 1;
4010
4011 QUIT;
4012
4013 if (interrupt_on_connect)
4014 send_interrupt_sequence ();
4015
4016 /* Ack any packet which the remote side has already sent. */
4017 remote_serial_write ("+", 1);
4018
4019 /* The first packet we send to the target is the optional "supported
4020 packets" request. If the target can answer this, it will tell us
4021 which later probes to skip. */
4022 remote_query_supported ();
4023
4024 /* If the stub wants to get a QAllow, compose one and send it. */
4025 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4026 remote_set_permissions (target);
4027
4028 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4029 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4030 as a reply to known packet. For packet "vFile:setfs:" it is an
4031 invalid reply and GDB would return error in
4032 remote_hostio_set_filesystem, making remote files access impossible.
4033 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4034 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4035 {
4036 const char v_mustreplyempty[] = "vMustReplyEmpty";
4037
4038 putpkt (v_mustreplyempty);
4039 getpkt (&rs->buf, &rs->buf_size, 0);
4040 if (strcmp (rs->buf, "OK") == 0)
4041 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4042 else if (strcmp (rs->buf, "") != 0)
4043 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4044 rs->buf);
4045 }
4046
4047 /* Next, we possibly activate noack mode.
4048
4049 If the QStartNoAckMode packet configuration is set to AUTO,
4050 enable noack mode if the stub reported a wish for it with
4051 qSupported.
4052
4053 If set to TRUE, then enable noack mode even if the stub didn't
4054 report it in qSupported. If the stub doesn't reply OK, the
4055 session ends with an error.
4056
4057 If FALSE, then don't activate noack mode, regardless of what the
4058 stub claimed should be the default with qSupported. */
4059
4060 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4061 if (packet_config_support (noack_config) != PACKET_DISABLE)
4062 {
4063 putpkt ("QStartNoAckMode");
4064 getpkt (&rs->buf, &rs->buf_size, 0);
4065 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4066 rs->noack_mode = 1;
4067 }
4068
4069 if (extended_p)
4070 {
4071 /* Tell the remote that we are using the extended protocol. */
4072 putpkt ("!");
4073 getpkt (&rs->buf, &rs->buf_size, 0);
4074 }
4075
4076 /* Let the target know which signals it is allowed to pass down to
4077 the program. */
4078 update_signals_program_target ();
4079
4080 /* Next, if the target can specify a description, read it. We do
4081 this before anything involving memory or registers. */
4082 target_find_description ();
4083
4084 /* Next, now that we know something about the target, update the
4085 address spaces in the program spaces. */
4086 update_address_spaces ();
4087
4088 /* On OSs where the list of libraries is global to all
4089 processes, we fetch them early. */
4090 if (gdbarch_has_global_solist (target_gdbarch ()))
4091 solib_add (NULL, from_tty, auto_solib_add);
4092
4093 if (target_is_non_stop_p ())
4094 {
4095 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4096 error (_("Non-stop mode requested, but remote "
4097 "does not support non-stop"));
4098
4099 putpkt ("QNonStop:1");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4104
4105 /* Find about threads and processes the stub is already
4106 controlling. We default to adding them in the running state.
4107 The '?' query below will then tell us about which threads are
4108 stopped. */
4109 remote_update_thread_list (target);
4110 }
4111 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4112 {
4113 /* Don't assume that the stub can operate in all-stop mode.
4114 Request it explicitly. */
4115 putpkt ("QNonStop:0");
4116 getpkt (&rs->buf, &rs->buf_size, 0);
4117
4118 if (strcmp (rs->buf, "OK") != 0)
4119 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4120 }
4121
4122 /* Upload TSVs regardless of whether the target is running or not. The
4123 remote stub, such as GDBserver, may have some predefined or builtin
4124 TSVs, even if the target is not running. */
4125 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4126 {
4127 struct uploaded_tsv *uploaded_tsvs = NULL;
4128
4129 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4130 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4131 }
4132
4133 /* Check whether the target is running now. */
4134 putpkt ("?");
4135 getpkt (&rs->buf, &rs->buf_size, 0);
4136
4137 if (!target_is_non_stop_p ())
4138 {
4139 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4140 {
4141 if (!extended_p)
4142 error (_("The target is not running (try extended-remote?)"));
4143
4144 /* We're connected, but not running. Drop out before we
4145 call start_remote. */
4146 rs->starting_up = 0;
4147 return;
4148 }
4149 else
4150 {
4151 /* Save the reply for later. */
4152 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4153 strcpy (wait_status, rs->buf);
4154 }
4155
4156 /* Fetch thread list. */
4157 target_update_thread_list ();
4158
4159 /* Let the stub know that we want it to return the thread. */
4160 set_continue_thread (minus_one_ptid);
4161
4162 if (thread_count () == 0)
4163 {
4164 /* Target has no concept of threads at all. GDB treats
4165 non-threaded target as single-threaded; add a main
4166 thread. */
4167 add_current_inferior_and_thread (wait_status);
4168 }
4169 else
4170 {
4171 /* We have thread information; select the thread the target
4172 says should be current. If we're reconnecting to a
4173 multi-threaded program, this will ideally be the thread
4174 that last reported an event before GDB disconnected. */
4175 inferior_ptid = get_current_thread (wait_status);
4176 if (ptid_equal (inferior_ptid, null_ptid))
4177 {
4178 /* Odd... The target was able to list threads, but not
4179 tell us which thread was current (no "thread"
4180 register in T stop reply?). Just pick the first
4181 thread in the thread list then. */
4182
4183 if (remote_debug)
4184 fprintf_unfiltered (gdb_stdlog,
4185 "warning: couldn't determine remote "
4186 "current thread; picking first in list.\n");
4187
4188 inferior_ptid = thread_list->ptid;
4189 }
4190 }
4191
4192 /* init_wait_for_inferior should be called before get_offsets in order
4193 to manage `inserted' flag in bp loc in a correct state.
4194 breakpoint_init_inferior, called from init_wait_for_inferior, set
4195 `inserted' flag to 0, while before breakpoint_re_set, called from
4196 start_remote, set `inserted' flag to 1. In the initialization of
4197 inferior, breakpoint_init_inferior should be called first, and then
4198 breakpoint_re_set can be called. If this order is broken, state of
4199 `inserted' flag is wrong, and cause some problems on breakpoint
4200 manipulation. */
4201 init_wait_for_inferior ();
4202
4203 get_offsets (); /* Get text, data & bss offsets. */
4204
4205 /* If we could not find a description using qXfer, and we know
4206 how to do it some other way, try again. This is not
4207 supported for non-stop; it could be, but it is tricky if
4208 there are no stopped threads when we connect. */
4209 if (remote_read_description_p (target)
4210 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4211 {
4212 target_clear_description ();
4213 target_find_description ();
4214 }
4215
4216 /* Use the previously fetched status. */
4217 gdb_assert (wait_status != NULL);
4218 strcpy (rs->buf, wait_status);
4219 rs->cached_wait_status = 1;
4220
4221 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4222 }
4223 else
4224 {
4225 /* Clear WFI global state. Do this before finding about new
4226 threads and inferiors, and setting the current inferior.
4227 Otherwise we would clear the proceed status of the current
4228 inferior when we want its stop_soon state to be preserved
4229 (see notice_new_inferior). */
4230 init_wait_for_inferior ();
4231
4232 /* In non-stop, we will either get an "OK", meaning that there
4233 are no stopped threads at this time; or, a regular stop
4234 reply. In the latter case, there may be more than one thread
4235 stopped --- we pull them all out using the vStopped
4236 mechanism. */
4237 if (strcmp (rs->buf, "OK") != 0)
4238 {
4239 struct notif_client *notif = &notif_client_stop;
4240
4241 /* remote_notif_get_pending_replies acks this one, and gets
4242 the rest out. */
4243 rs->notif_state->pending_event[notif_client_stop.id]
4244 = remote_notif_parse (notif, rs->buf);
4245 remote_notif_get_pending_events (notif);
4246 }
4247
4248 if (thread_count () == 0)
4249 {
4250 if (!extended_p)
4251 error (_("The target is not running (try extended-remote?)"));
4252
4253 /* We're connected, but not running. Drop out before we
4254 call start_remote. */
4255 rs->starting_up = 0;
4256 return;
4257 }
4258
4259 /* In non-stop mode, any cached wait status will be stored in
4260 the stop reply queue. */
4261 gdb_assert (wait_status == NULL);
4262
4263 /* Report all signals during attach/startup. */
4264 remote_pass_signals (target, 0, NULL);
4265
4266 /* If there are already stopped threads, mark them stopped and
4267 report their stops before giving the prompt to the user. */
4268 process_initial_stop_replies (from_tty);
4269
4270 if (target_can_async_p ())
4271 target_async (1);
4272 }
4273
4274 /* If we connected to a live target, do some additional setup. */
4275 if (target_has_execution)
4276 {
4277 if (symfile_objfile) /* No use without a symbol-file. */
4278 remote_check_symbols ();
4279 }
4280
4281 /* Possibly the target has been engaged in a trace run started
4282 previously; find out where things are at. */
4283 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4284 {
4285 struct uploaded_tp *uploaded_tps = NULL;
4286
4287 if (current_trace_status ()->running)
4288 printf_filtered (_("Trace is already running on the target.\n"));
4289
4290 remote_upload_tracepoints (target, &uploaded_tps);
4291
4292 merge_uploaded_tracepoints (&uploaded_tps);
4293 }
4294
4295 /* Possibly the target has been engaged in a btrace record started
4296 previously; find out where things are at. */
4297 remote_btrace_maybe_reopen ();
4298
4299 /* The thread and inferior lists are now synchronized with the
4300 target, our symbols have been relocated, and we're merged the
4301 target's tracepoints with ours. We're done with basic start
4302 up. */
4303 rs->starting_up = 0;
4304
4305 /* Maybe breakpoints are global and need to be inserted now. */
4306 if (breakpoints_should_be_inserted_now ())
4307 insert_breakpoints ();
4308 }
4309
4310 /* Open a connection to a remote debugger.
4311 NAME is the filename used for communication. */
4312
4313 static void
4314 remote_open (const char *name, int from_tty)
4315 {
4316 remote_open_1 (name, from_tty, &remote_ops, 0);
4317 }
4318
4319 /* Open a connection to a remote debugger using the extended
4320 remote gdb protocol. NAME is the filename used for communication. */
4321
4322 static void
4323 extended_remote_open (const char *name, int from_tty)
4324 {
4325 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4326 }
4327
4328 /* Reset all packets back to "unknown support". Called when opening a
4329 new connection to a remote target. */
4330
4331 static void
4332 reset_all_packet_configs_support (void)
4333 {
4334 int i;
4335
4336 for (i = 0; i < PACKET_MAX; i++)
4337 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4338 }
4339
4340 /* Initialize all packet configs. */
4341
4342 static void
4343 init_all_packet_configs (void)
4344 {
4345 int i;
4346
4347 for (i = 0; i < PACKET_MAX; i++)
4348 {
4349 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4350 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4351 }
4352 }
4353
4354 /* Symbol look-up. */
4355
4356 static void
4357 remote_check_symbols (void)
4358 {
4359 char *msg, *reply, *tmp;
4360 int end;
4361 long reply_size;
4362 struct cleanup *old_chain;
4363
4364 /* The remote side has no concept of inferiors that aren't running
4365 yet, it only knows about running processes. If we're connected
4366 but our current inferior is not running, we should not invite the
4367 remote target to request symbol lookups related to its
4368 (unrelated) current process. */
4369 if (!target_has_execution)
4370 return;
4371
4372 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4373 return;
4374
4375 /* Make sure the remote is pointing at the right process. Note
4376 there's no way to select "no process". */
4377 set_general_process ();
4378
4379 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4380 because we need both at the same time. */
4381 msg = (char *) xmalloc (get_remote_packet_size ());
4382 old_chain = make_cleanup (xfree, msg);
4383 reply = (char *) xmalloc (get_remote_packet_size ());
4384 make_cleanup (free_current_contents, &reply);
4385 reply_size = get_remote_packet_size ();
4386
4387 /* Invite target to request symbol lookups. */
4388
4389 putpkt ("qSymbol::");
4390 getpkt (&reply, &reply_size, 0);
4391 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4392
4393 while (startswith (reply, "qSymbol:"))
4394 {
4395 struct bound_minimal_symbol sym;
4396
4397 tmp = &reply[8];
4398 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4399 msg[end] = '\0';
4400 sym = lookup_minimal_symbol (msg, NULL, NULL);
4401 if (sym.minsym == NULL)
4402 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4403 else
4404 {
4405 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4406 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4407
4408 /* If this is a function address, return the start of code
4409 instead of any data function descriptor. */
4410 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4411 sym_addr,
4412 &current_target);
4413
4414 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4415 phex_nz (sym_addr, addr_size), &reply[8]);
4416 }
4417
4418 putpkt (msg);
4419 getpkt (&reply, &reply_size, 0);
4420 }
4421
4422 do_cleanups (old_chain);
4423 }
4424
4425 static struct serial *
4426 remote_serial_open (const char *name)
4427 {
4428 static int udp_warning = 0;
4429
4430 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4431 of in ser-tcp.c, because it is the remote protocol assuming that the
4432 serial connection is reliable and not the serial connection promising
4433 to be. */
4434 if (!udp_warning && startswith (name, "udp:"))
4435 {
4436 warning (_("The remote protocol may be unreliable over UDP.\n"
4437 "Some events may be lost, rendering further debugging "
4438 "impossible."));
4439 udp_warning = 1;
4440 }
4441
4442 return serial_open (name);
4443 }
4444
4445 /* Inform the target of our permission settings. The permission flags
4446 work without this, but if the target knows the settings, it can do
4447 a couple things. First, it can add its own check, to catch cases
4448 that somehow manage to get by the permissions checks in target
4449 methods. Second, if the target is wired to disallow particular
4450 settings (for instance, a system in the field that is not set up to
4451 be able to stop at a breakpoint), it can object to any unavailable
4452 permissions. */
4453
4454 void
4455 remote_set_permissions (struct target_ops *self)
4456 {
4457 struct remote_state *rs = get_remote_state ();
4458
4459 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4460 "WriteReg:%x;WriteMem:%x;"
4461 "InsertBreak:%x;InsertTrace:%x;"
4462 "InsertFastTrace:%x;Stop:%x",
4463 may_write_registers, may_write_memory,
4464 may_insert_breakpoints, may_insert_tracepoints,
4465 may_insert_fast_tracepoints, may_stop);
4466 putpkt (rs->buf);
4467 getpkt (&rs->buf, &rs->buf_size, 0);
4468
4469 /* If the target didn't like the packet, warn the user. Do not try
4470 to undo the user's settings, that would just be maddening. */
4471 if (strcmp (rs->buf, "OK") != 0)
4472 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4473 }
4474
4475 /* This type describes each known response to the qSupported
4476 packet. */
4477 struct protocol_feature
4478 {
4479 /* The name of this protocol feature. */
4480 const char *name;
4481
4482 /* The default for this protocol feature. */
4483 enum packet_support default_support;
4484
4485 /* The function to call when this feature is reported, or after
4486 qSupported processing if the feature is not supported.
4487 The first argument points to this structure. The second
4488 argument indicates whether the packet requested support be
4489 enabled, disabled, or probed (or the default, if this function
4490 is being called at the end of processing and this feature was
4491 not reported). The third argument may be NULL; if not NULL, it
4492 is a NUL-terminated string taken from the packet following
4493 this feature's name and an equals sign. */
4494 void (*func) (const struct protocol_feature *, enum packet_support,
4495 const char *);
4496
4497 /* The corresponding packet for this feature. Only used if
4498 FUNC is remote_supported_packet. */
4499 int packet;
4500 };
4501
4502 static void
4503 remote_supported_packet (const struct protocol_feature *feature,
4504 enum packet_support support,
4505 const char *argument)
4506 {
4507 if (argument)
4508 {
4509 warning (_("Remote qSupported response supplied an unexpected value for"
4510 " \"%s\"."), feature->name);
4511 return;
4512 }
4513
4514 remote_protocol_packets[feature->packet].support = support;
4515 }
4516
4517 static void
4518 remote_packet_size (const struct protocol_feature *feature,
4519 enum packet_support support, const char *value)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522
4523 int packet_size;
4524 char *value_end;
4525
4526 if (support != PACKET_ENABLE)
4527 return;
4528
4529 if (value == NULL || *value == '\0')
4530 {
4531 warning (_("Remote target reported \"%s\" without a size."),
4532 feature->name);
4533 return;
4534 }
4535
4536 errno = 0;
4537 packet_size = strtol (value, &value_end, 16);
4538 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4539 {
4540 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4541 feature->name, value);
4542 return;
4543 }
4544
4545 /* Record the new maximum packet size. */
4546 rs->explicit_packet_size = packet_size;
4547 }
4548
4549 static const struct protocol_feature remote_protocol_features[] = {
4550 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4551 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_auxv },
4553 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_exec_file },
4555 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_features },
4557 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_libraries },
4559 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_qXfer_libraries_svr4 },
4561 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4562 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4563 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_qXfer_memory_map },
4565 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_qXfer_spu_read },
4567 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_qXfer_spu_write },
4569 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_qXfer_osdata },
4571 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_qXfer_threads },
4573 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_qXfer_traceframe_info },
4575 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QPassSignals },
4577 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_QCatchSyscalls },
4579 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_QProgramSignals },
4581 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_QSetWorkingDir },
4583 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_QStartupWithShell },
4585 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4586 PACKET_QEnvironmentHexEncoded },
4587 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_QEnvironmentReset },
4589 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_QEnvironmentUnset },
4591 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_QStartNoAckMode },
4593 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_multiprocess_feature },
4595 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4596 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_qXfer_siginfo_read },
4598 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_qXfer_siginfo_write },
4600 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_ConditionalTracepoints },
4602 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_ConditionalBreakpoints },
4604 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_BreakpointCommands },
4606 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_FastTracepoints },
4608 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_StaticTracepoints },
4610 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_InstallInTrace},
4612 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_DisconnectedTracing_feature },
4614 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_bc },
4616 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_bs },
4618 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_TracepointSource },
4620 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_QAllow },
4622 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_EnableDisableTracepoints_feature },
4624 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_fdpic },
4626 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_uib },
4628 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_QDisableRandomization },
4630 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4631 { "QTBuffer:size", PACKET_DISABLE,
4632 remote_supported_packet, PACKET_QTBuffer_size},
4633 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4634 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4635 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4636 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4637 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4638 PACKET_qXfer_btrace },
4639 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4640 PACKET_qXfer_btrace_conf },
4641 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_Qbtrace_conf_bts_size },
4643 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4644 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4645 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4646 PACKET_fork_event_feature },
4647 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4648 PACKET_vfork_event_feature },
4649 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4650 PACKET_exec_event_feature },
4651 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4652 PACKET_Qbtrace_conf_pt_size },
4653 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4654 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4655 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4656 };
4657
4658 static char *remote_support_xml;
4659
4660 /* Register string appended to "xmlRegisters=" in qSupported query. */
4661
4662 void
4663 register_remote_support_xml (const char *xml)
4664 {
4665 #if defined(HAVE_LIBEXPAT)
4666 if (remote_support_xml == NULL)
4667 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4668 else
4669 {
4670 char *copy = xstrdup (remote_support_xml + 13);
4671 char *p = strtok (copy, ",");
4672
4673 do
4674 {
4675 if (strcmp (p, xml) == 0)
4676 {
4677 /* already there */
4678 xfree (copy);
4679 return;
4680 }
4681 }
4682 while ((p = strtok (NULL, ",")) != NULL);
4683 xfree (copy);
4684
4685 remote_support_xml = reconcat (remote_support_xml,
4686 remote_support_xml, ",", xml,
4687 (char *) NULL);
4688 }
4689 #endif
4690 }
4691
4692 static char *
4693 remote_query_supported_append (char *msg, const char *append)
4694 {
4695 if (msg)
4696 return reconcat (msg, msg, ";", append, (char *) NULL);
4697 else
4698 return xstrdup (append);
4699 }
4700
4701 static void
4702 remote_query_supported (void)
4703 {
4704 struct remote_state *rs = get_remote_state ();
4705 char *next;
4706 int i;
4707 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4708
4709 /* The packet support flags are handled differently for this packet
4710 than for most others. We treat an error, a disabled packet, and
4711 an empty response identically: any features which must be reported
4712 to be used will be automatically disabled. An empty buffer
4713 accomplishes this, since that is also the representation for a list
4714 containing no features. */
4715
4716 rs->buf[0] = 0;
4717 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4718 {
4719 char *q = NULL;
4720 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4721
4722 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4723 q = remote_query_supported_append (q, "multiprocess+");
4724
4725 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4726 q = remote_query_supported_append (q, "swbreak+");
4727 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4728 q = remote_query_supported_append (q, "hwbreak+");
4729
4730 q = remote_query_supported_append (q, "qRelocInsn+");
4731
4732 if (packet_set_cmd_state (PACKET_fork_event_feature)
4733 != AUTO_BOOLEAN_FALSE)
4734 q = remote_query_supported_append (q, "fork-events+");
4735 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4736 != AUTO_BOOLEAN_FALSE)
4737 q = remote_query_supported_append (q, "vfork-events+");
4738 if (packet_set_cmd_state (PACKET_exec_event_feature)
4739 != AUTO_BOOLEAN_FALSE)
4740 q = remote_query_supported_append (q, "exec-events+");
4741
4742 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4743 q = remote_query_supported_append (q, "vContSupported+");
4744
4745 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4746 q = remote_query_supported_append (q, "QThreadEvents+");
4747
4748 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4749 q = remote_query_supported_append (q, "no-resumed+");
4750
4751 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4752 the qSupported:xmlRegisters=i386 handling. */
4753 if (remote_support_xml != NULL
4754 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4755 q = remote_query_supported_append (q, remote_support_xml);
4756
4757 q = reconcat (q, "qSupported:", q, (char *) NULL);
4758 putpkt (q);
4759
4760 do_cleanups (old_chain);
4761
4762 getpkt (&rs->buf, &rs->buf_size, 0);
4763
4764 /* If an error occured, warn, but do not return - just reset the
4765 buffer to empty and go on to disable features. */
4766 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4767 == PACKET_ERROR)
4768 {
4769 warning (_("Remote failure reply: %s"), rs->buf);
4770 rs->buf[0] = 0;
4771 }
4772 }
4773
4774 memset (seen, 0, sizeof (seen));
4775
4776 next = rs->buf;
4777 while (*next)
4778 {
4779 enum packet_support is_supported;
4780 char *p, *end, *name_end, *value;
4781
4782 /* First separate out this item from the rest of the packet. If
4783 there's another item after this, we overwrite the separator
4784 (terminated strings are much easier to work with). */
4785 p = next;
4786 end = strchr (p, ';');
4787 if (end == NULL)
4788 {
4789 end = p + strlen (p);
4790 next = end;
4791 }
4792 else
4793 {
4794 *end = '\0';
4795 next = end + 1;
4796
4797 if (end == p)
4798 {
4799 warning (_("empty item in \"qSupported\" response"));
4800 continue;
4801 }
4802 }
4803
4804 name_end = strchr (p, '=');
4805 if (name_end)
4806 {
4807 /* This is a name=value entry. */
4808 is_supported = PACKET_ENABLE;
4809 value = name_end + 1;
4810 *name_end = '\0';
4811 }
4812 else
4813 {
4814 value = NULL;
4815 switch (end[-1])
4816 {
4817 case '+':
4818 is_supported = PACKET_ENABLE;
4819 break;
4820
4821 case '-':
4822 is_supported = PACKET_DISABLE;
4823 break;
4824
4825 case '?':
4826 is_supported = PACKET_SUPPORT_UNKNOWN;
4827 break;
4828
4829 default:
4830 warning (_("unrecognized item \"%s\" "
4831 "in \"qSupported\" response"), p);
4832 continue;
4833 }
4834 end[-1] = '\0';
4835 }
4836
4837 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4838 if (strcmp (remote_protocol_features[i].name, p) == 0)
4839 {
4840 const struct protocol_feature *feature;
4841
4842 seen[i] = 1;
4843 feature = &remote_protocol_features[i];
4844 feature->func (feature, is_supported, value);
4845 break;
4846 }
4847 }
4848
4849 /* If we increased the packet size, make sure to increase the global
4850 buffer size also. We delay this until after parsing the entire
4851 qSupported packet, because this is the same buffer we were
4852 parsing. */
4853 if (rs->buf_size < rs->explicit_packet_size)
4854 {
4855 rs->buf_size = rs->explicit_packet_size;
4856 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4857 }
4858
4859 /* Handle the defaults for unmentioned features. */
4860 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4861 if (!seen[i])
4862 {
4863 const struct protocol_feature *feature;
4864
4865 feature = &remote_protocol_features[i];
4866 feature->func (feature, feature->default_support, NULL);
4867 }
4868 }
4869
4870 /* Serial QUIT handler for the remote serial descriptor.
4871
4872 Defers handling a Ctrl-C until we're done with the current
4873 command/response packet sequence, unless:
4874
4875 - We're setting up the connection. Don't send a remote interrupt
4876 request, as we're not fully synced yet. Quit immediately
4877 instead.
4878
4879 - The target has been resumed in the foreground
4880 (target_terminal::is_ours is false) with a synchronous resume
4881 packet, and we're blocked waiting for the stop reply, thus a
4882 Ctrl-C should be immediately sent to the target.
4883
4884 - We get a second Ctrl-C while still within the same serial read or
4885 write. In that case the serial is seemingly wedged --- offer to
4886 quit/disconnect.
4887
4888 - We see a second Ctrl-C without target response, after having
4889 previously interrupted the target. In that case the target/stub
4890 is probably wedged --- offer to quit/disconnect.
4891 */
4892
4893 static void
4894 remote_serial_quit_handler (void)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897
4898 if (check_quit_flag ())
4899 {
4900 /* If we're starting up, we're not fully synced yet. Quit
4901 immediately. */
4902 if (rs->starting_up)
4903 quit ();
4904 else if (rs->got_ctrlc_during_io)
4905 {
4906 if (query (_("The target is not responding to GDB commands.\n"
4907 "Stop debugging it? ")))
4908 remote_unpush_and_throw ();
4909 }
4910 /* If ^C has already been sent once, offer to disconnect. */
4911 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4912 interrupt_query ();
4913 /* All-stop protocol, and blocked waiting for stop reply. Send
4914 an interrupt request. */
4915 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4916 target_interrupt (inferior_ptid);
4917 else
4918 rs->got_ctrlc_during_io = 1;
4919 }
4920 }
4921
4922 /* Remove any of the remote.c targets from target stack. Upper targets depend
4923 on it so remove them first. */
4924
4925 static void
4926 remote_unpush_target (void)
4927 {
4928 pop_all_targets_at_and_above (process_stratum);
4929 }
4930
4931 static void
4932 remote_unpush_and_throw (void)
4933 {
4934 remote_unpush_target ();
4935 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4936 }
4937
4938 static void
4939 remote_open_1 (const char *name, int from_tty,
4940 struct target_ops *target, int extended_p)
4941 {
4942 struct remote_state *rs = get_remote_state ();
4943
4944 if (name == 0)
4945 error (_("To open a remote debug connection, you need to specify what\n"
4946 "serial device is attached to the remote system\n"
4947 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4948
4949 /* See FIXME above. */
4950 if (!target_async_permitted)
4951 wait_forever_enabled_p = 1;
4952
4953 /* If we're connected to a running target, target_preopen will kill it.
4954 Ask this question first, before target_preopen has a chance to kill
4955 anything. */
4956 if (rs->remote_desc != NULL && !have_inferiors ())
4957 {
4958 if (from_tty
4959 && !query (_("Already connected to a remote target. Disconnect? ")))
4960 error (_("Still connected."));
4961 }
4962
4963 /* Here the possibly existing remote target gets unpushed. */
4964 target_preopen (from_tty);
4965
4966 /* Make sure we send the passed signals list the next time we resume. */
4967 xfree (rs->last_pass_packet);
4968 rs->last_pass_packet = NULL;
4969
4970 /* Make sure we send the program signals list the next time we
4971 resume. */
4972 xfree (rs->last_program_signals_packet);
4973 rs->last_program_signals_packet = NULL;
4974
4975 remote_fileio_reset ();
4976 reopen_exec_file ();
4977 reread_symbols ();
4978
4979 rs->remote_desc = remote_serial_open (name);
4980 if (!rs->remote_desc)
4981 perror_with_name (name);
4982
4983 if (baud_rate != -1)
4984 {
4985 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4986 {
4987 /* The requested speed could not be set. Error out to
4988 top level after closing remote_desc. Take care to
4989 set remote_desc to NULL to avoid closing remote_desc
4990 more than once. */
4991 serial_close (rs->remote_desc);
4992 rs->remote_desc = NULL;
4993 perror_with_name (name);
4994 }
4995 }
4996
4997 serial_setparity (rs->remote_desc, serial_parity);
4998 serial_raw (rs->remote_desc);
4999
5000 /* If there is something sitting in the buffer we might take it as a
5001 response to a command, which would be bad. */
5002 serial_flush_input (rs->remote_desc);
5003
5004 if (from_tty)
5005 {
5006 puts_filtered ("Remote debugging using ");
5007 puts_filtered (name);
5008 puts_filtered ("\n");
5009 }
5010 push_target (target); /* Switch to using remote target now. */
5011
5012 /* Register extra event sources in the event loop. */
5013 remote_async_inferior_event_token
5014 = create_async_event_handler (remote_async_inferior_event_handler,
5015 NULL);
5016 rs->notif_state = remote_notif_state_allocate ();
5017
5018 /* Reset the target state; these things will be queried either by
5019 remote_query_supported or as they are needed. */
5020 reset_all_packet_configs_support ();
5021 rs->cached_wait_status = 0;
5022 rs->explicit_packet_size = 0;
5023 rs->noack_mode = 0;
5024 rs->extended = extended_p;
5025 rs->waiting_for_stop_reply = 0;
5026 rs->ctrlc_pending_p = 0;
5027 rs->got_ctrlc_during_io = 0;
5028
5029 rs->general_thread = not_sent_ptid;
5030 rs->continue_thread = not_sent_ptid;
5031 rs->remote_traceframe_number = -1;
5032
5033 rs->last_resume_exec_dir = EXEC_FORWARD;
5034
5035 /* Probe for ability to use "ThreadInfo" query, as required. */
5036 rs->use_threadinfo_query = 1;
5037 rs->use_threadextra_query = 1;
5038
5039 readahead_cache_invalidate ();
5040
5041 if (target_async_permitted)
5042 {
5043 /* FIXME: cagney/1999-09-23: During the initial connection it is
5044 assumed that the target is already ready and able to respond to
5045 requests. Unfortunately remote_start_remote() eventually calls
5046 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5047 around this. Eventually a mechanism that allows
5048 wait_for_inferior() to expect/get timeouts will be
5049 implemented. */
5050 wait_forever_enabled_p = 0;
5051 }
5052
5053 /* First delete any symbols previously loaded from shared libraries. */
5054 no_shared_libraries (NULL, 0);
5055
5056 /* Start afresh. */
5057 init_thread_list ();
5058
5059 /* Start the remote connection. If error() or QUIT, discard this
5060 target (we'd otherwise be in an inconsistent state) and then
5061 propogate the error on up the exception chain. This ensures that
5062 the caller doesn't stumble along blindly assuming that the
5063 function succeeded. The CLI doesn't have this problem but other
5064 UI's, such as MI do.
5065
5066 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5067 this function should return an error indication letting the
5068 caller restore the previous state. Unfortunately the command
5069 ``target remote'' is directly wired to this function making that
5070 impossible. On a positive note, the CLI side of this problem has
5071 been fixed - the function set_cmd_context() makes it possible for
5072 all the ``target ....'' commands to share a common callback
5073 function. See cli-dump.c. */
5074 {
5075
5076 TRY
5077 {
5078 remote_start_remote (from_tty, target, extended_p);
5079 }
5080 CATCH (ex, RETURN_MASK_ALL)
5081 {
5082 /* Pop the partially set up target - unless something else did
5083 already before throwing the exception. */
5084 if (rs->remote_desc != NULL)
5085 remote_unpush_target ();
5086 if (target_async_permitted)
5087 wait_forever_enabled_p = 1;
5088 throw_exception (ex);
5089 }
5090 END_CATCH
5091 }
5092
5093 remote_btrace_reset ();
5094
5095 if (target_async_permitted)
5096 wait_forever_enabled_p = 1;
5097 }
5098
5099 /* Detach the specified process. */
5100
5101 static void
5102 remote_detach_pid (int pid)
5103 {
5104 struct remote_state *rs = get_remote_state ();
5105
5106 if (remote_multi_process_p (rs))
5107 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5108 else
5109 strcpy (rs->buf, "D");
5110
5111 putpkt (rs->buf);
5112 getpkt (&rs->buf, &rs->buf_size, 0);
5113
5114 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5115 ;
5116 else if (rs->buf[0] == '\0')
5117 error (_("Remote doesn't know how to detach"));
5118 else
5119 error (_("Can't detach process."));
5120 }
5121
5122 /* This detaches a program to which we previously attached, using
5123 inferior_ptid to identify the process. After this is done, GDB
5124 can be used to debug some other program. We better not have left
5125 any breakpoints in the target program or it'll die when it hits
5126 one. */
5127
5128 static void
5129 remote_detach_1 (const char *args, int from_tty)
5130 {
5131 int pid = ptid_get_pid (inferior_ptid);
5132 struct remote_state *rs = get_remote_state ();
5133 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5134 int is_fork_parent;
5135
5136 if (args)
5137 error (_("Argument given to \"detach\" when remotely debugging."));
5138
5139 if (!target_has_execution)
5140 error (_("No process to detach from."));
5141
5142 target_announce_detach (from_tty);
5143
5144 /* Tell the remote target to detach. */
5145 remote_detach_pid (pid);
5146
5147 /* Exit only if this is the only active inferior. */
5148 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5149 puts_filtered (_("Ending remote debugging.\n"));
5150
5151 /* Check to see if we are detaching a fork parent. Note that if we
5152 are detaching a fork child, tp == NULL. */
5153 is_fork_parent = (tp != NULL
5154 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5155
5156 /* If doing detach-on-fork, we don't mourn, because that will delete
5157 breakpoints that should be available for the followed inferior. */
5158 if (!is_fork_parent)
5159 target_mourn_inferior (inferior_ptid);
5160 else
5161 {
5162 inferior_ptid = null_ptid;
5163 detach_inferior (pid);
5164 }
5165 }
5166
5167 static void
5168 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5169 {
5170 remote_detach_1 (args, from_tty);
5171 }
5172
5173 static void
5174 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5175 {
5176 remote_detach_1 (args, from_tty);
5177 }
5178
5179 /* Target follow-fork function for remote targets. On entry, and
5180 at return, the current inferior is the fork parent.
5181
5182 Note that although this is currently only used for extended-remote,
5183 it is named remote_follow_fork in anticipation of using it for the
5184 remote target as well. */
5185
5186 static int
5187 remote_follow_fork (struct target_ops *ops, int follow_child,
5188 int detach_fork)
5189 {
5190 struct remote_state *rs = get_remote_state ();
5191 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5192
5193 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5194 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5195 {
5196 /* When following the parent and detaching the child, we detach
5197 the child here. For the case of following the child and
5198 detaching the parent, the detach is done in the target-
5199 independent follow fork code in infrun.c. We can't use
5200 target_detach when detaching an unfollowed child because
5201 the client side doesn't know anything about the child. */
5202 if (detach_fork && !follow_child)
5203 {
5204 /* Detach the fork child. */
5205 ptid_t child_ptid;
5206 pid_t child_pid;
5207
5208 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5209 child_pid = ptid_get_pid (child_ptid);
5210
5211 remote_detach_pid (child_pid);
5212 detach_inferior (child_pid);
5213 }
5214 }
5215 return 0;
5216 }
5217
5218 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5219 in the program space of the new inferior. On entry and at return the
5220 current inferior is the exec'ing inferior. INF is the new exec'd
5221 inferior, which may be the same as the exec'ing inferior unless
5222 follow-exec-mode is "new". */
5223
5224 static void
5225 remote_follow_exec (struct target_ops *ops,
5226 struct inferior *inf, char *execd_pathname)
5227 {
5228 /* We know that this is a target file name, so if it has the "target:"
5229 prefix we strip it off before saving it in the program space. */
5230 if (is_target_filename (execd_pathname))
5231 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5232
5233 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5234 }
5235
5236 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5237
5238 static void
5239 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5240 {
5241 if (args)
5242 error (_("Argument given to \"disconnect\" when remotely debugging."));
5243
5244 /* Make sure we unpush even the extended remote targets. Calling
5245 target_mourn_inferior won't unpush, and remote_mourn won't
5246 unpush if there is more than one inferior left. */
5247 unpush_target (target);
5248 generic_mourn_inferior ();
5249
5250 if (from_tty)
5251 puts_filtered ("Ending remote debugging.\n");
5252 }
5253
5254 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5255 be chatty about it. */
5256
5257 static void
5258 extended_remote_attach (struct target_ops *target, const char *args,
5259 int from_tty)
5260 {
5261 struct remote_state *rs = get_remote_state ();
5262 int pid;
5263 char *wait_status = NULL;
5264
5265 pid = parse_pid_to_attach (args);
5266
5267 /* Remote PID can be freely equal to getpid, do not check it here the same
5268 way as in other targets. */
5269
5270 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5271 error (_("This target does not support attaching to a process"));
5272
5273 if (from_tty)
5274 {
5275 char *exec_file = get_exec_file (0);
5276
5277 if (exec_file)
5278 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5279 target_pid_to_str (pid_to_ptid (pid)));
5280 else
5281 printf_unfiltered (_("Attaching to %s\n"),
5282 target_pid_to_str (pid_to_ptid (pid)));
5283
5284 gdb_flush (gdb_stdout);
5285 }
5286
5287 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5288 putpkt (rs->buf);
5289 getpkt (&rs->buf, &rs->buf_size, 0);
5290
5291 switch (packet_ok (rs->buf,
5292 &remote_protocol_packets[PACKET_vAttach]))
5293 {
5294 case PACKET_OK:
5295 if (!target_is_non_stop_p ())
5296 {
5297 /* Save the reply for later. */
5298 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5299 strcpy (wait_status, rs->buf);
5300 }
5301 else if (strcmp (rs->buf, "OK") != 0)
5302 error (_("Attaching to %s failed with: %s"),
5303 target_pid_to_str (pid_to_ptid (pid)),
5304 rs->buf);
5305 break;
5306 case PACKET_UNKNOWN:
5307 error (_("This target does not support attaching to a process"));
5308 default:
5309 error (_("Attaching to %s failed"),
5310 target_pid_to_str (pid_to_ptid (pid)));
5311 }
5312
5313 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5314
5315 inferior_ptid = pid_to_ptid (pid);
5316
5317 if (target_is_non_stop_p ())
5318 {
5319 struct thread_info *thread;
5320
5321 /* Get list of threads. */
5322 remote_update_thread_list (target);
5323
5324 thread = first_thread_of_process (pid);
5325 if (thread)
5326 inferior_ptid = thread->ptid;
5327 else
5328 inferior_ptid = pid_to_ptid (pid);
5329
5330 /* Invalidate our notion of the remote current thread. */
5331 record_currthread (rs, minus_one_ptid);
5332 }
5333 else
5334 {
5335 /* Now, if we have thread information, update inferior_ptid. */
5336 inferior_ptid = remote_current_thread (inferior_ptid);
5337
5338 /* Add the main thread to the thread list. */
5339 add_thread_silent (inferior_ptid);
5340 }
5341
5342 /* Next, if the target can specify a description, read it. We do
5343 this before anything involving memory or registers. */
5344 target_find_description ();
5345
5346 if (!target_is_non_stop_p ())
5347 {
5348 /* Use the previously fetched status. */
5349 gdb_assert (wait_status != NULL);
5350
5351 if (target_can_async_p ())
5352 {
5353 struct notif_event *reply
5354 = remote_notif_parse (&notif_client_stop, wait_status);
5355
5356 push_stop_reply ((struct stop_reply *) reply);
5357
5358 target_async (1);
5359 }
5360 else
5361 {
5362 gdb_assert (wait_status != NULL);
5363 strcpy (rs->buf, wait_status);
5364 rs->cached_wait_status = 1;
5365 }
5366 }
5367 else
5368 gdb_assert (wait_status == NULL);
5369 }
5370
5371 /* Implementation of the to_post_attach method. */
5372
5373 static void
5374 extended_remote_post_attach (struct target_ops *ops, int pid)
5375 {
5376 /* Get text, data & bss offsets. */
5377 get_offsets ();
5378
5379 /* In certain cases GDB might not have had the chance to start
5380 symbol lookup up until now. This could happen if the debugged
5381 binary is not using shared libraries, the vsyscall page is not
5382 present (on Linux) and the binary itself hadn't changed since the
5383 debugging process was started. */
5384 if (symfile_objfile != NULL)
5385 remote_check_symbols();
5386 }
5387
5388 \f
5389 /* Check for the availability of vCont. This function should also check
5390 the response. */
5391
5392 static void
5393 remote_vcont_probe (struct remote_state *rs)
5394 {
5395 char *buf;
5396
5397 strcpy (rs->buf, "vCont?");
5398 putpkt (rs->buf);
5399 getpkt (&rs->buf, &rs->buf_size, 0);
5400 buf = rs->buf;
5401
5402 /* Make sure that the features we assume are supported. */
5403 if (startswith (buf, "vCont"))
5404 {
5405 char *p = &buf[5];
5406 int support_c, support_C;
5407
5408 rs->supports_vCont.s = 0;
5409 rs->supports_vCont.S = 0;
5410 support_c = 0;
5411 support_C = 0;
5412 rs->supports_vCont.t = 0;
5413 rs->supports_vCont.r = 0;
5414 while (p && *p == ';')
5415 {
5416 p++;
5417 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 rs->supports_vCont.s = 1;
5419 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5420 rs->supports_vCont.S = 1;
5421 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5422 support_c = 1;
5423 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5424 support_C = 1;
5425 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5426 rs->supports_vCont.t = 1;
5427 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5428 rs->supports_vCont.r = 1;
5429
5430 p = strchr (p, ';');
5431 }
5432
5433 /* If c, and C are not all supported, we can't use vCont. Clearing
5434 BUF will make packet_ok disable the packet. */
5435 if (!support_c || !support_C)
5436 buf[0] = 0;
5437 }
5438
5439 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5440 }
5441
5442 /* Helper function for building "vCont" resumptions. Write a
5443 resumption to P. ENDP points to one-passed-the-end of the buffer
5444 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5445 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5446 resumed thread should be single-stepped and/or signalled. If PTID
5447 equals minus_one_ptid, then all threads are resumed; if PTID
5448 represents a process, then all threads of the process are resumed;
5449 the thread to be stepped and/or signalled is given in the global
5450 INFERIOR_PTID. */
5451
5452 static char *
5453 append_resumption (char *p, char *endp,
5454 ptid_t ptid, int step, enum gdb_signal siggnal)
5455 {
5456 struct remote_state *rs = get_remote_state ();
5457
5458 if (step && siggnal != GDB_SIGNAL_0)
5459 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5460 else if (step
5461 /* GDB is willing to range step. */
5462 && use_range_stepping
5463 /* Target supports range stepping. */
5464 && rs->supports_vCont.r
5465 /* We don't currently support range stepping multiple
5466 threads with a wildcard (though the protocol allows it,
5467 so stubs shouldn't make an active effort to forbid
5468 it). */
5469 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5470 {
5471 struct thread_info *tp;
5472
5473 if (ptid_equal (ptid, minus_one_ptid))
5474 {
5475 /* If we don't know about the target thread's tid, then
5476 we're resuming magic_null_ptid (see caller). */
5477 tp = find_thread_ptid (magic_null_ptid);
5478 }
5479 else
5480 tp = find_thread_ptid (ptid);
5481 gdb_assert (tp != NULL);
5482
5483 if (tp->control.may_range_step)
5484 {
5485 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5486
5487 p += xsnprintf (p, endp - p, ";r%s,%s",
5488 phex_nz (tp->control.step_range_start,
5489 addr_size),
5490 phex_nz (tp->control.step_range_end,
5491 addr_size));
5492 }
5493 else
5494 p += xsnprintf (p, endp - p, ";s");
5495 }
5496 else if (step)
5497 p += xsnprintf (p, endp - p, ";s");
5498 else if (siggnal != GDB_SIGNAL_0)
5499 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5500 else
5501 p += xsnprintf (p, endp - p, ";c");
5502
5503 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5504 {
5505 ptid_t nptid;
5506
5507 /* All (-1) threads of process. */
5508 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5509
5510 p += xsnprintf (p, endp - p, ":");
5511 p = write_ptid (p, endp, nptid);
5512 }
5513 else if (!ptid_equal (ptid, minus_one_ptid))
5514 {
5515 p += xsnprintf (p, endp - p, ":");
5516 p = write_ptid (p, endp, ptid);
5517 }
5518
5519 return p;
5520 }
5521
5522 /* Clear the thread's private info on resume. */
5523
5524 static void
5525 resume_clear_thread_private_info (struct thread_info *thread)
5526 {
5527 if (thread->priv != NULL)
5528 {
5529 remote_thread_info *priv = get_remote_thread_info (thread);
5530
5531 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5532 priv->watch_data_address = 0;
5533 }
5534 }
5535
5536 /* Append a vCont continue-with-signal action for threads that have a
5537 non-zero stop signal. */
5538
5539 static char *
5540 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5541 {
5542 struct thread_info *thread;
5543
5544 ALL_NON_EXITED_THREADS (thread)
5545 if (ptid_match (thread->ptid, ptid)
5546 && !ptid_equal (inferior_ptid, thread->ptid)
5547 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5548 {
5549 p = append_resumption (p, endp, thread->ptid,
5550 0, thread->suspend.stop_signal);
5551 thread->suspend.stop_signal = GDB_SIGNAL_0;
5552 resume_clear_thread_private_info (thread);
5553 }
5554
5555 return p;
5556 }
5557
5558 /* Set the target running, using the packets that use Hc
5559 (c/s/C/S). */
5560
5561 static void
5562 remote_resume_with_hc (struct target_ops *ops,
5563 ptid_t ptid, int step, enum gdb_signal siggnal)
5564 {
5565 struct remote_state *rs = get_remote_state ();
5566 struct thread_info *thread;
5567 char *buf;
5568
5569 rs->last_sent_signal = siggnal;
5570 rs->last_sent_step = step;
5571
5572 /* The c/s/C/S resume packets use Hc, so set the continue
5573 thread. */
5574 if (ptid_equal (ptid, minus_one_ptid))
5575 set_continue_thread (any_thread_ptid);
5576 else
5577 set_continue_thread (ptid);
5578
5579 ALL_NON_EXITED_THREADS (thread)
5580 resume_clear_thread_private_info (thread);
5581
5582 buf = rs->buf;
5583 if (execution_direction == EXEC_REVERSE)
5584 {
5585 /* We don't pass signals to the target in reverse exec mode. */
5586 if (info_verbose && siggnal != GDB_SIGNAL_0)
5587 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5588 siggnal);
5589
5590 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5591 error (_("Remote reverse-step not supported."));
5592 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5593 error (_("Remote reverse-continue not supported."));
5594
5595 strcpy (buf, step ? "bs" : "bc");
5596 }
5597 else if (siggnal != GDB_SIGNAL_0)
5598 {
5599 buf[0] = step ? 'S' : 'C';
5600 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5601 buf[2] = tohex (((int) siggnal) & 0xf);
5602 buf[3] = '\0';
5603 }
5604 else
5605 strcpy (buf, step ? "s" : "c");
5606
5607 putpkt (buf);
5608 }
5609
5610 /* Resume the remote inferior by using a "vCont" packet. The thread
5611 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5612 resumed thread should be single-stepped and/or signalled. If PTID
5613 equals minus_one_ptid, then all threads are resumed; the thread to
5614 be stepped and/or signalled is given in the global INFERIOR_PTID.
5615 This function returns non-zero iff it resumes the inferior.
5616
5617 This function issues a strict subset of all possible vCont commands
5618 at the moment. */
5619
5620 static int
5621 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5622 {
5623 struct remote_state *rs = get_remote_state ();
5624 char *p;
5625 char *endp;
5626
5627 /* No reverse execution actions defined for vCont. */
5628 if (execution_direction == EXEC_REVERSE)
5629 return 0;
5630
5631 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5632 remote_vcont_probe (rs);
5633
5634 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5635 return 0;
5636
5637 p = rs->buf;
5638 endp = rs->buf + get_remote_packet_size ();
5639
5640 /* If we could generate a wider range of packets, we'd have to worry
5641 about overflowing BUF. Should there be a generic
5642 "multi-part-packet" packet? */
5643
5644 p += xsnprintf (p, endp - p, "vCont");
5645
5646 if (ptid_equal (ptid, magic_null_ptid))
5647 {
5648 /* MAGIC_NULL_PTID means that we don't have any active threads,
5649 so we don't have any TID numbers the inferior will
5650 understand. Make sure to only send forms that do not specify
5651 a TID. */
5652 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5653 }
5654 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5655 {
5656 /* Resume all threads (of all processes, or of a single
5657 process), with preference for INFERIOR_PTID. This assumes
5658 inferior_ptid belongs to the set of all threads we are about
5659 to resume. */
5660 if (step || siggnal != GDB_SIGNAL_0)
5661 {
5662 /* Step inferior_ptid, with or without signal. */
5663 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5664 }
5665
5666 /* Also pass down any pending signaled resumption for other
5667 threads not the current. */
5668 p = append_pending_thread_resumptions (p, endp, ptid);
5669
5670 /* And continue others without a signal. */
5671 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5672 }
5673 else
5674 {
5675 /* Scheduler locking; resume only PTID. */
5676 append_resumption (p, endp, ptid, step, siggnal);
5677 }
5678
5679 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5680 putpkt (rs->buf);
5681
5682 if (target_is_non_stop_p ())
5683 {
5684 /* In non-stop, the stub replies to vCont with "OK". The stop
5685 reply will be reported asynchronously by means of a `%Stop'
5686 notification. */
5687 getpkt (&rs->buf, &rs->buf_size, 0);
5688 if (strcmp (rs->buf, "OK") != 0)
5689 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5690 }
5691
5692 return 1;
5693 }
5694
5695 /* Tell the remote machine to resume. */
5696
5697 static void
5698 remote_resume (struct target_ops *ops,
5699 ptid_t ptid, int step, enum gdb_signal siggnal)
5700 {
5701 struct remote_state *rs = get_remote_state ();
5702
5703 /* When connected in non-stop mode, the core resumes threads
5704 individually. Resuming remote threads directly in target_resume
5705 would thus result in sending one packet per thread. Instead, to
5706 minimize roundtrip latency, here we just store the resume
5707 request; the actual remote resumption will be done in
5708 target_commit_resume / remote_commit_resume, where we'll be able
5709 to do vCont action coalescing. */
5710 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5711 {
5712 remote_thread_info *remote_thr;
5713
5714 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5715 remote_thr = get_remote_thread_info (inferior_ptid);
5716 else
5717 remote_thr = get_remote_thread_info (ptid);
5718
5719 remote_thr->last_resume_step = step;
5720 remote_thr->last_resume_sig = siggnal;
5721 return;
5722 }
5723
5724 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5725 (explained in remote-notif.c:handle_notification) so
5726 remote_notif_process is not called. We need find a place where
5727 it is safe to start a 'vNotif' sequence. It is good to do it
5728 before resuming inferior, because inferior was stopped and no RSP
5729 traffic at that moment. */
5730 if (!target_is_non_stop_p ())
5731 remote_notif_process (rs->notif_state, &notif_client_stop);
5732
5733 rs->last_resume_exec_dir = execution_direction;
5734
5735 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5736 if (!remote_resume_with_vcont (ptid, step, siggnal))
5737 remote_resume_with_hc (ops, ptid, step, siggnal);
5738
5739 /* We are about to start executing the inferior, let's register it
5740 with the event loop. NOTE: this is the one place where all the
5741 execution commands end up. We could alternatively do this in each
5742 of the execution commands in infcmd.c. */
5743 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5744 into infcmd.c in order to allow inferior function calls to work
5745 NOT asynchronously. */
5746 if (target_can_async_p ())
5747 target_async (1);
5748
5749 /* We've just told the target to resume. The remote server will
5750 wait for the inferior to stop, and then send a stop reply. In
5751 the mean time, we can't start another command/query ourselves
5752 because the stub wouldn't be ready to process it. This applies
5753 only to the base all-stop protocol, however. In non-stop (which
5754 only supports vCont), the stub replies with an "OK", and is
5755 immediate able to process further serial input. */
5756 if (!target_is_non_stop_p ())
5757 rs->waiting_for_stop_reply = 1;
5758 }
5759
5760 static void check_pending_events_prevent_wildcard_vcont
5761 (int *may_global_wildcard_vcont);
5762 static int is_pending_fork_parent_thread (struct thread_info *thread);
5763
5764 /* Private per-inferior info for target remote processes. */
5765
5766 struct remote_inferior : public private_inferior
5767 {
5768 /* Whether we can send a wildcard vCont for this process. */
5769 bool may_wildcard_vcont = true;
5770 };
5771
5772 /* Get the remote private inferior data associated to INF. */
5773
5774 static remote_inferior *
5775 get_remote_inferior (inferior *inf)
5776 {
5777 if (inf->priv == NULL)
5778 inf->priv.reset (new remote_inferior);
5779
5780 return static_cast<remote_inferior *> (inf->priv.get ());
5781 }
5782
5783 /* Structure used to track the construction of a vCont packet in the
5784 outgoing packet buffer. This is used to send multiple vCont
5785 packets if we have more actions than would fit a single packet. */
5786
5787 struct vcont_builder
5788 {
5789 /* Pointer to the first action. P points here if no action has been
5790 appended yet. */
5791 char *first_action;
5792
5793 /* Where the next action will be appended. */
5794 char *p;
5795
5796 /* The end of the buffer. Must never write past this. */
5797 char *endp;
5798 };
5799
5800 /* Prepare the outgoing buffer for a new vCont packet. */
5801
5802 static void
5803 vcont_builder_restart (struct vcont_builder *builder)
5804 {
5805 struct remote_state *rs = get_remote_state ();
5806
5807 builder->p = rs->buf;
5808 builder->endp = rs->buf + get_remote_packet_size ();
5809 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5810 builder->first_action = builder->p;
5811 }
5812
5813 /* If the vCont packet being built has any action, send it to the
5814 remote end. */
5815
5816 static void
5817 vcont_builder_flush (struct vcont_builder *builder)
5818 {
5819 struct remote_state *rs;
5820
5821 if (builder->p == builder->first_action)
5822 return;
5823
5824 rs = get_remote_state ();
5825 putpkt (rs->buf);
5826 getpkt (&rs->buf, &rs->buf_size, 0);
5827 if (strcmp (rs->buf, "OK") != 0)
5828 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5829 }
5830
5831 /* The largest action is range-stepping, with its two addresses. This
5832 is more than sufficient. If a new, bigger action is created, it'll
5833 quickly trigger a failed assertion in append_resumption (and we'll
5834 just bump this). */
5835 #define MAX_ACTION_SIZE 200
5836
5837 /* Append a new vCont action in the outgoing packet being built. If
5838 the action doesn't fit the packet along with previous actions, push
5839 what we've got so far to the remote end and start over a new vCont
5840 packet (with the new action). */
5841
5842 static void
5843 vcont_builder_push_action (struct vcont_builder *builder,
5844 ptid_t ptid, int step, enum gdb_signal siggnal)
5845 {
5846 char buf[MAX_ACTION_SIZE + 1];
5847 char *endp;
5848 size_t rsize;
5849
5850 endp = append_resumption (buf, buf + sizeof (buf),
5851 ptid, step, siggnal);
5852
5853 /* Check whether this new action would fit in the vCont packet along
5854 with previous actions. If not, send what we've got so far and
5855 start a new vCont packet. */
5856 rsize = endp - buf;
5857 if (rsize > builder->endp - builder->p)
5858 {
5859 vcont_builder_flush (builder);
5860 vcont_builder_restart (builder);
5861
5862 /* Should now fit. */
5863 gdb_assert (rsize <= builder->endp - builder->p);
5864 }
5865
5866 memcpy (builder->p, buf, rsize);
5867 builder->p += rsize;
5868 *builder->p = '\0';
5869 }
5870
5871 /* to_commit_resume implementation. */
5872
5873 static void
5874 remote_commit_resume (struct target_ops *ops)
5875 {
5876 struct inferior *inf;
5877 struct thread_info *tp;
5878 int any_process_wildcard;
5879 int may_global_wildcard_vcont;
5880 struct vcont_builder vcont_builder;
5881
5882 /* If connected in all-stop mode, we'd send the remote resume
5883 request directly from remote_resume. Likewise if
5884 reverse-debugging, as there are no defined vCont actions for
5885 reverse execution. */
5886 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5887 return;
5888
5889 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5890 instead of resuming all threads of each process individually.
5891 However, if any thread of a process must remain halted, we can't
5892 send wildcard resumes and must send one action per thread.
5893
5894 Care must be taken to not resume threads/processes the server
5895 side already told us are stopped, but the core doesn't know about
5896 yet, because the events are still in the vStopped notification
5897 queue. For example:
5898
5899 #1 => vCont s:p1.1;c
5900 #2 <= OK
5901 #3 <= %Stopped T05 p1.1
5902 #4 => vStopped
5903 #5 <= T05 p1.2
5904 #6 => vStopped
5905 #7 <= OK
5906 #8 (infrun handles the stop for p1.1 and continues stepping)
5907 #9 => vCont s:p1.1;c
5908
5909 The last vCont above would resume thread p1.2 by mistake, because
5910 the server has no idea that the event for p1.2 had not been
5911 handled yet.
5912
5913 The server side must similarly ignore resume actions for the
5914 thread that has a pending %Stopped notification (and any other
5915 threads with events pending), until GDB acks the notification
5916 with vStopped. Otherwise, e.g., the following case is
5917 mishandled:
5918
5919 #1 => g (or any other packet)
5920 #2 <= [registers]
5921 #3 <= %Stopped T05 p1.2
5922 #4 => vCont s:p1.1;c
5923 #5 <= OK
5924
5925 Above, the server must not resume thread p1.2. GDB can't know
5926 that p1.2 stopped until it acks the %Stopped notification, and
5927 since from GDB's perspective all threads should be running, it
5928 sends a "c" action.
5929
5930 Finally, special care must also be given to handling fork/vfork
5931 events. A (v)fork event actually tells us that two processes
5932 stopped -- the parent and the child. Until we follow the fork,
5933 we must not resume the child. Therefore, if we have a pending
5934 fork follow, we must not send a global wildcard resume action
5935 (vCont;c). We can still send process-wide wildcards though. */
5936
5937 /* Start by assuming a global wildcard (vCont;c) is possible. */
5938 may_global_wildcard_vcont = 1;
5939
5940 /* And assume every process is individually wildcard-able too. */
5941 ALL_NON_EXITED_INFERIORS (inf)
5942 {
5943 remote_inferior *priv = get_remote_inferior (inf);
5944
5945 priv->may_wildcard_vcont = true;
5946 }
5947
5948 /* Check for any pending events (not reported or processed yet) and
5949 disable process and global wildcard resumes appropriately. */
5950 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5951
5952 ALL_NON_EXITED_THREADS (tp)
5953 {
5954 /* If a thread of a process is not meant to be resumed, then we
5955 can't wildcard that process. */
5956 if (!tp->executing)
5957 {
5958 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5959
5960 /* And if we can't wildcard a process, we can't wildcard
5961 everything either. */
5962 may_global_wildcard_vcont = 0;
5963 continue;
5964 }
5965
5966 /* If a thread is the parent of an unfollowed fork, then we
5967 can't do a global wildcard, as that would resume the fork
5968 child. */
5969 if (is_pending_fork_parent_thread (tp))
5970 may_global_wildcard_vcont = 0;
5971 }
5972
5973 /* Now let's build the vCont packet(s). Actions must be appended
5974 from narrower to wider scopes (thread -> process -> global). If
5975 we end up with too many actions for a single packet vcont_builder
5976 flushes the current vCont packet to the remote side and starts a
5977 new one. */
5978 vcont_builder_restart (&vcont_builder);
5979
5980 /* Threads first. */
5981 ALL_NON_EXITED_THREADS (tp)
5982 {
5983 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5984
5985 if (!tp->executing || remote_thr->vcont_resumed)
5986 continue;
5987
5988 gdb_assert (!thread_is_in_step_over_chain (tp));
5989
5990 if (!remote_thr->last_resume_step
5991 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5992 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5993 {
5994 /* We'll send a wildcard resume instead. */
5995 remote_thr->vcont_resumed = 1;
5996 continue;
5997 }
5998
5999 vcont_builder_push_action (&vcont_builder, tp->ptid,
6000 remote_thr->last_resume_step,
6001 remote_thr->last_resume_sig);
6002 remote_thr->vcont_resumed = 1;
6003 }
6004
6005 /* Now check whether we can send any process-wide wildcard. This is
6006 to avoid sending a global wildcard in the case nothing is
6007 supposed to be resumed. */
6008 any_process_wildcard = 0;
6009
6010 ALL_NON_EXITED_INFERIORS (inf)
6011 {
6012 if (get_remote_inferior (inf)->may_wildcard_vcont)
6013 {
6014 any_process_wildcard = 1;
6015 break;
6016 }
6017 }
6018
6019 if (any_process_wildcard)
6020 {
6021 /* If all processes are wildcard-able, then send a single "c"
6022 action, otherwise, send an "all (-1) threads of process"
6023 continue action for each running process, if any. */
6024 if (may_global_wildcard_vcont)
6025 {
6026 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6027 0, GDB_SIGNAL_0);
6028 }
6029 else
6030 {
6031 ALL_NON_EXITED_INFERIORS (inf)
6032 {
6033 if (get_remote_inferior (inf)->may_wildcard_vcont)
6034 {
6035 vcont_builder_push_action (&vcont_builder,
6036 pid_to_ptid (inf->pid),
6037 0, GDB_SIGNAL_0);
6038 }
6039 }
6040 }
6041 }
6042
6043 vcont_builder_flush (&vcont_builder);
6044 }
6045
6046 \f
6047
6048 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6049 thread, all threads of a remote process, or all threads of all
6050 processes. */
6051
6052 static void
6053 remote_stop_ns (ptid_t ptid)
6054 {
6055 struct remote_state *rs = get_remote_state ();
6056 char *p = rs->buf;
6057 char *endp = rs->buf + get_remote_packet_size ();
6058
6059 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6060 remote_vcont_probe (rs);
6061
6062 if (!rs->supports_vCont.t)
6063 error (_("Remote server does not support stopping threads"));
6064
6065 if (ptid_equal (ptid, minus_one_ptid)
6066 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6067 p += xsnprintf (p, endp - p, "vCont;t");
6068 else
6069 {
6070 ptid_t nptid;
6071
6072 p += xsnprintf (p, endp - p, "vCont;t:");
6073
6074 if (ptid_is_pid (ptid))
6075 /* All (-1) threads of process. */
6076 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6077 else
6078 {
6079 /* Small optimization: if we already have a stop reply for
6080 this thread, no use in telling the stub we want this
6081 stopped. */
6082 if (peek_stop_reply (ptid))
6083 return;
6084
6085 nptid = ptid;
6086 }
6087
6088 write_ptid (p, endp, nptid);
6089 }
6090
6091 /* In non-stop, we get an immediate OK reply. The stop reply will
6092 come in asynchronously by notification. */
6093 putpkt (rs->buf);
6094 getpkt (&rs->buf, &rs->buf_size, 0);
6095 if (strcmp (rs->buf, "OK") != 0)
6096 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6097 }
6098
6099 /* All-stop version of target_interrupt. Sends a break or a ^C to
6100 interrupt the remote target. It is undefined which thread of which
6101 process reports the interrupt. */
6102
6103 static void
6104 remote_interrupt_as (void)
6105 {
6106 struct remote_state *rs = get_remote_state ();
6107
6108 rs->ctrlc_pending_p = 1;
6109
6110 /* If the inferior is stopped already, but the core didn't know
6111 about it yet, just ignore the request. The cached wait status
6112 will be collected in remote_wait. */
6113 if (rs->cached_wait_status)
6114 return;
6115
6116 /* Send interrupt_sequence to remote target. */
6117 send_interrupt_sequence ();
6118 }
6119
6120 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6121 the remote target. It is undefined which thread of which process
6122 reports the interrupt. Throws an error if the packet is not
6123 supported by the server. */
6124
6125 static void
6126 remote_interrupt_ns (void)
6127 {
6128 struct remote_state *rs = get_remote_state ();
6129 char *p = rs->buf;
6130 char *endp = rs->buf + get_remote_packet_size ();
6131
6132 xsnprintf (p, endp - p, "vCtrlC");
6133
6134 /* In non-stop, we get an immediate OK reply. The stop reply will
6135 come in asynchronously by notification. */
6136 putpkt (rs->buf);
6137 getpkt (&rs->buf, &rs->buf_size, 0);
6138
6139 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6140 {
6141 case PACKET_OK:
6142 break;
6143 case PACKET_UNKNOWN:
6144 error (_("No support for interrupting the remote target."));
6145 case PACKET_ERROR:
6146 error (_("Interrupting target failed: %s"), rs->buf);
6147 }
6148 }
6149
6150 /* Implement the to_stop function for the remote targets. */
6151
6152 static void
6153 remote_stop (struct target_ops *self, ptid_t ptid)
6154 {
6155 if (remote_debug)
6156 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6157
6158 if (target_is_non_stop_p ())
6159 remote_stop_ns (ptid);
6160 else
6161 {
6162 /* We don't currently have a way to transparently pause the
6163 remote target in all-stop mode. Interrupt it instead. */
6164 remote_interrupt_as ();
6165 }
6166 }
6167
6168 /* Implement the to_interrupt function for the remote targets. */
6169
6170 static void
6171 remote_interrupt (struct target_ops *self, ptid_t ptid)
6172 {
6173 if (remote_debug)
6174 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6175
6176 if (target_is_non_stop_p ())
6177 remote_interrupt_ns ();
6178 else
6179 remote_interrupt_as ();
6180 }
6181
6182 /* Implement the to_pass_ctrlc function for the remote targets. */
6183
6184 static void
6185 remote_pass_ctrlc (struct target_ops *self)
6186 {
6187 struct remote_state *rs = get_remote_state ();
6188
6189 if (remote_debug)
6190 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6191
6192 /* If we're starting up, we're not fully synced yet. Quit
6193 immediately. */
6194 if (rs->starting_up)
6195 quit ();
6196 /* If ^C has already been sent once, offer to disconnect. */
6197 else if (rs->ctrlc_pending_p)
6198 interrupt_query ();
6199 else
6200 target_interrupt (inferior_ptid);
6201 }
6202
6203 /* Ask the user what to do when an interrupt is received. */
6204
6205 static void
6206 interrupt_query (void)
6207 {
6208 struct remote_state *rs = get_remote_state ();
6209
6210 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6211 {
6212 if (query (_("The target is not responding to interrupt requests.\n"
6213 "Stop debugging it? ")))
6214 {
6215 remote_unpush_target ();
6216 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6217 }
6218 }
6219 else
6220 {
6221 if (query (_("Interrupted while waiting for the program.\n"
6222 "Give up waiting? ")))
6223 quit ();
6224 }
6225 }
6226
6227 /* Enable/disable target terminal ownership. Most targets can use
6228 terminal groups to control terminal ownership. Remote targets are
6229 different in that explicit transfer of ownership to/from GDB/target
6230 is required. */
6231
6232 static void
6233 remote_terminal_inferior (struct target_ops *self)
6234 {
6235 /* NOTE: At this point we could also register our selves as the
6236 recipient of all input. Any characters typed could then be
6237 passed on down to the target. */
6238 }
6239
6240 static void
6241 remote_terminal_ours (struct target_ops *self)
6242 {
6243 }
6244
6245 static void
6246 remote_console_output (char *msg)
6247 {
6248 char *p;
6249
6250 for (p = msg; p[0] && p[1]; p += 2)
6251 {
6252 char tb[2];
6253 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6254
6255 tb[0] = c;
6256 tb[1] = 0;
6257 fputs_unfiltered (tb, gdb_stdtarg);
6258 }
6259 gdb_flush (gdb_stdtarg);
6260 }
6261
6262 DEF_VEC_O(cached_reg_t);
6263
6264 typedef struct stop_reply
6265 {
6266 struct notif_event base;
6267
6268 /* The identifier of the thread about this event */
6269 ptid_t ptid;
6270
6271 /* The remote state this event is associated with. When the remote
6272 connection, represented by a remote_state object, is closed,
6273 all the associated stop_reply events should be released. */
6274 struct remote_state *rs;
6275
6276 struct target_waitstatus ws;
6277
6278 /* The architecture associated with the expedited registers. */
6279 gdbarch *arch;
6280
6281 /* Expedited registers. This makes remote debugging a bit more
6282 efficient for those targets that provide critical registers as
6283 part of their normal status mechanism (as another roundtrip to
6284 fetch them is avoided). */
6285 VEC(cached_reg_t) *regcache;
6286
6287 enum target_stop_reason stop_reason;
6288
6289 CORE_ADDR watch_data_address;
6290
6291 int core;
6292 } *stop_reply_p;
6293
6294 DECLARE_QUEUE_P (stop_reply_p);
6295 DEFINE_QUEUE_P (stop_reply_p);
6296 /* The list of already fetched and acknowledged stop events. This
6297 queue is used for notification Stop, and other notifications
6298 don't need queue for their events, because the notification events
6299 of Stop can't be consumed immediately, so that events should be
6300 queued first, and be consumed by remote_wait_{ns,as} one per
6301 time. Other notifications can consume their events immediately,
6302 so queue is not needed for them. */
6303 static QUEUE (stop_reply_p) *stop_reply_queue;
6304
6305 static void
6306 stop_reply_xfree (struct stop_reply *r)
6307 {
6308 notif_event_xfree ((struct notif_event *) r);
6309 }
6310
6311 /* Return the length of the stop reply queue. */
6312
6313 static int
6314 stop_reply_queue_length (void)
6315 {
6316 return QUEUE_length (stop_reply_p, stop_reply_queue);
6317 }
6318
6319 static void
6320 remote_notif_stop_parse (struct notif_client *self, char *buf,
6321 struct notif_event *event)
6322 {
6323 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6324 }
6325
6326 static void
6327 remote_notif_stop_ack (struct notif_client *self, char *buf,
6328 struct notif_event *event)
6329 {
6330 struct stop_reply *stop_reply = (struct stop_reply *) event;
6331
6332 /* acknowledge */
6333 putpkt (self->ack_command);
6334
6335 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6336 /* We got an unknown stop reply. */
6337 error (_("Unknown stop reply"));
6338
6339 push_stop_reply (stop_reply);
6340 }
6341
6342 static int
6343 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6344 {
6345 /* We can't get pending events in remote_notif_process for
6346 notification stop, and we have to do this in remote_wait_ns
6347 instead. If we fetch all queued events from stub, remote stub
6348 may exit and we have no chance to process them back in
6349 remote_wait_ns. */
6350 mark_async_event_handler (remote_async_inferior_event_token);
6351 return 0;
6352 }
6353
6354 static void
6355 stop_reply_dtr (struct notif_event *event)
6356 {
6357 struct stop_reply *r = (struct stop_reply *) event;
6358 cached_reg_t *reg;
6359 int ix;
6360
6361 for (ix = 0;
6362 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6363 ix++)
6364 xfree (reg->data);
6365
6366 VEC_free (cached_reg_t, r->regcache);
6367 }
6368
6369 static struct notif_event *
6370 remote_notif_stop_alloc_reply (void)
6371 {
6372 /* We cast to a pointer to the "base class". */
6373 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6374
6375 r->dtr = stop_reply_dtr;
6376
6377 return r;
6378 }
6379
6380 /* A client of notification Stop. */
6381
6382 struct notif_client notif_client_stop =
6383 {
6384 "Stop",
6385 "vStopped",
6386 remote_notif_stop_parse,
6387 remote_notif_stop_ack,
6388 remote_notif_stop_can_get_pending_events,
6389 remote_notif_stop_alloc_reply,
6390 REMOTE_NOTIF_STOP,
6391 };
6392
6393 /* A parameter to pass data in and out. */
6394
6395 struct queue_iter_param
6396 {
6397 void *input;
6398 struct stop_reply *output;
6399 };
6400
6401 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6402 the pid of the process that owns the threads we want to check, or
6403 -1 if we want to check all threads. */
6404
6405 static int
6406 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6407 ptid_t thread_ptid)
6408 {
6409 if (ws->kind == TARGET_WAITKIND_FORKED
6410 || ws->kind == TARGET_WAITKIND_VFORKED)
6411 {
6412 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6413 return 1;
6414 }
6415
6416 return 0;
6417 }
6418
6419 /* Return the thread's pending status used to determine whether the
6420 thread is a fork parent stopped at a fork event. */
6421
6422 static struct target_waitstatus *
6423 thread_pending_fork_status (struct thread_info *thread)
6424 {
6425 if (thread->suspend.waitstatus_pending_p)
6426 return &thread->suspend.waitstatus;
6427 else
6428 return &thread->pending_follow;
6429 }
6430
6431 /* Determine if THREAD is a pending fork parent thread. */
6432
6433 static int
6434 is_pending_fork_parent_thread (struct thread_info *thread)
6435 {
6436 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6437 int pid = -1;
6438
6439 return is_pending_fork_parent (ws, pid, thread->ptid);
6440 }
6441
6442 /* Check whether EVENT is a fork event, and if it is, remove the
6443 fork child from the context list passed in DATA. */
6444
6445 static int
6446 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6447 QUEUE_ITER (stop_reply_p) *iter,
6448 stop_reply_p event,
6449 void *data)
6450 {
6451 struct queue_iter_param *param = (struct queue_iter_param *) data;
6452 struct threads_listing_context *context
6453 = (struct threads_listing_context *) param->input;
6454
6455 if (event->ws.kind == TARGET_WAITKIND_FORKED
6456 || event->ws.kind == TARGET_WAITKIND_VFORKED
6457 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6458 context->remove_thread (event->ws.value.related_pid);
6459
6460 return 1;
6461 }
6462
6463 /* If CONTEXT contains any fork child threads that have not been
6464 reported yet, remove them from the CONTEXT list. If such a
6465 thread exists it is because we are stopped at a fork catchpoint
6466 and have not yet called follow_fork, which will set up the
6467 host-side data structures for the new process. */
6468
6469 static void
6470 remove_new_fork_children (struct threads_listing_context *context)
6471 {
6472 struct thread_info * thread;
6473 int pid = -1;
6474 struct notif_client *notif = &notif_client_stop;
6475 struct queue_iter_param param;
6476
6477 /* For any threads stopped at a fork event, remove the corresponding
6478 fork child threads from the CONTEXT list. */
6479 ALL_NON_EXITED_THREADS (thread)
6480 {
6481 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6482
6483 if (is_pending_fork_parent (ws, pid, thread->ptid))
6484 context->remove_thread (ws->value.related_pid);
6485 }
6486
6487 /* Check for any pending fork events (not reported or processed yet)
6488 in process PID and remove those fork child threads from the
6489 CONTEXT list as well. */
6490 remote_notif_get_pending_events (notif);
6491 param.input = context;
6492 param.output = NULL;
6493 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6494 remove_child_of_pending_fork, &param);
6495 }
6496
6497 /* Check whether EVENT would prevent a global or process wildcard
6498 vCont action. */
6499
6500 static int
6501 check_pending_event_prevents_wildcard_vcont_callback
6502 (QUEUE (stop_reply_p) *q,
6503 QUEUE_ITER (stop_reply_p) *iter,
6504 stop_reply_p event,
6505 void *data)
6506 {
6507 struct inferior *inf;
6508 int *may_global_wildcard_vcont = (int *) data;
6509
6510 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6511 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6512 return 1;
6513
6514 if (event->ws.kind == TARGET_WAITKIND_FORKED
6515 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6516 *may_global_wildcard_vcont = 0;
6517
6518 inf = find_inferior_ptid (event->ptid);
6519
6520 /* This may be the first time we heard about this process.
6521 Regardless, we must not do a global wildcard resume, otherwise
6522 we'd resume this process too. */
6523 *may_global_wildcard_vcont = 0;
6524 if (inf != NULL)
6525 get_remote_inferior (inf)->may_wildcard_vcont = false;
6526
6527 return 1;
6528 }
6529
6530 /* Check whether any event pending in the vStopped queue would prevent
6531 a global or process wildcard vCont action. Clear
6532 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6533 and clear the event inferior's may_wildcard_vcont flag if we can't
6534 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6535
6536 static void
6537 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6538 {
6539 struct notif_client *notif = &notif_client_stop;
6540
6541 remote_notif_get_pending_events (notif);
6542 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6543 check_pending_event_prevents_wildcard_vcont_callback,
6544 may_global_wildcard);
6545 }
6546
6547 /* Remove stop replies in the queue if its pid is equal to the given
6548 inferior's pid. */
6549
6550 static int
6551 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6552 QUEUE_ITER (stop_reply_p) *iter,
6553 stop_reply_p event,
6554 void *data)
6555 {
6556 struct queue_iter_param *param = (struct queue_iter_param *) data;
6557 struct inferior *inf = (struct inferior *) param->input;
6558
6559 if (ptid_get_pid (event->ptid) == inf->pid)
6560 {
6561 stop_reply_xfree (event);
6562 QUEUE_remove_elem (stop_reply_p, q, iter);
6563 }
6564
6565 return 1;
6566 }
6567
6568 /* Discard all pending stop replies of inferior INF. */
6569
6570 static void
6571 discard_pending_stop_replies (struct inferior *inf)
6572 {
6573 struct queue_iter_param param;
6574 struct stop_reply *reply;
6575 struct remote_state *rs = get_remote_state ();
6576 struct remote_notif_state *rns = rs->notif_state;
6577
6578 /* This function can be notified when an inferior exists. When the
6579 target is not remote, the notification state is NULL. */
6580 if (rs->remote_desc == NULL)
6581 return;
6582
6583 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6584
6585 /* Discard the in-flight notification. */
6586 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6587 {
6588 stop_reply_xfree (reply);
6589 rns->pending_event[notif_client_stop.id] = NULL;
6590 }
6591
6592 param.input = inf;
6593 param.output = NULL;
6594 /* Discard the stop replies we have already pulled with
6595 vStopped. */
6596 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6597 remove_stop_reply_for_inferior, &param);
6598 }
6599
6600 /* If its remote state is equal to the given remote state,
6601 remove EVENT from the stop reply queue. */
6602
6603 static int
6604 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6605 QUEUE_ITER (stop_reply_p) *iter,
6606 stop_reply_p event,
6607 void *data)
6608 {
6609 struct queue_iter_param *param = (struct queue_iter_param *) data;
6610 struct remote_state *rs = (struct remote_state *) param->input;
6611
6612 if (event->rs == rs)
6613 {
6614 stop_reply_xfree (event);
6615 QUEUE_remove_elem (stop_reply_p, q, iter);
6616 }
6617
6618 return 1;
6619 }
6620
6621 /* Discard the stop replies for RS in stop_reply_queue. */
6622
6623 static void
6624 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6625 {
6626 struct queue_iter_param param;
6627
6628 param.input = rs;
6629 param.output = NULL;
6630 /* Discard the stop replies we have already pulled with
6631 vStopped. */
6632 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6633 remove_stop_reply_of_remote_state, &param);
6634 }
6635
6636 /* A parameter to pass data in and out. */
6637
6638 static int
6639 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6640 QUEUE_ITER (stop_reply_p) *iter,
6641 stop_reply_p event,
6642 void *data)
6643 {
6644 struct queue_iter_param *param = (struct queue_iter_param *) data;
6645 ptid_t *ptid = (ptid_t *) param->input;
6646
6647 if (ptid_match (event->ptid, *ptid))
6648 {
6649 param->output = event;
6650 QUEUE_remove_elem (stop_reply_p, q, iter);
6651 return 0;
6652 }
6653
6654 return 1;
6655 }
6656
6657 /* Remove the first reply in 'stop_reply_queue' which matches
6658 PTID. */
6659
6660 static struct stop_reply *
6661 remote_notif_remove_queued_reply (ptid_t ptid)
6662 {
6663 struct queue_iter_param param;
6664
6665 param.input = &ptid;
6666 param.output = NULL;
6667
6668 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6669 remote_notif_remove_once_on_match, &param);
6670 if (notif_debug)
6671 fprintf_unfiltered (gdb_stdlog,
6672 "notif: discard queued event: 'Stop' in %s\n",
6673 target_pid_to_str (ptid));
6674
6675 return param.output;
6676 }
6677
6678 /* Look for a queued stop reply belonging to PTID. If one is found,
6679 remove it from the queue, and return it. Returns NULL if none is
6680 found. If there are still queued events left to process, tell the
6681 event loop to get back to target_wait soon. */
6682
6683 static struct stop_reply *
6684 queued_stop_reply (ptid_t ptid)
6685 {
6686 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6687
6688 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6689 /* There's still at least an event left. */
6690 mark_async_event_handler (remote_async_inferior_event_token);
6691
6692 return r;
6693 }
6694
6695 /* Push a fully parsed stop reply in the stop reply queue. Since we
6696 know that we now have at least one queued event left to pass to the
6697 core side, tell the event loop to get back to target_wait soon. */
6698
6699 static void
6700 push_stop_reply (struct stop_reply *new_event)
6701 {
6702 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6703
6704 if (notif_debug)
6705 fprintf_unfiltered (gdb_stdlog,
6706 "notif: push 'Stop' %s to queue %d\n",
6707 target_pid_to_str (new_event->ptid),
6708 QUEUE_length (stop_reply_p,
6709 stop_reply_queue));
6710
6711 mark_async_event_handler (remote_async_inferior_event_token);
6712 }
6713
6714 static int
6715 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6716 QUEUE_ITER (stop_reply_p) *iter,
6717 struct stop_reply *event,
6718 void *data)
6719 {
6720 ptid_t *ptid = (ptid_t *) data;
6721
6722 return !(ptid_equal (*ptid, event->ptid)
6723 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6724 }
6725
6726 /* Returns true if we have a stop reply for PTID. */
6727
6728 static int
6729 peek_stop_reply (ptid_t ptid)
6730 {
6731 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6732 stop_reply_match_ptid_and_ws, &ptid);
6733 }
6734
6735 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6736 starting with P and ending with PEND matches PREFIX. */
6737
6738 static int
6739 strprefix (const char *p, const char *pend, const char *prefix)
6740 {
6741 for ( ; p < pend; p++, prefix++)
6742 if (*p != *prefix)
6743 return 0;
6744 return *prefix == '\0';
6745 }
6746
6747 /* Parse the stop reply in BUF. Either the function succeeds, and the
6748 result is stored in EVENT, or throws an error. */
6749
6750 static void
6751 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6752 {
6753 remote_arch_state *rsa = NULL;
6754 ULONGEST addr;
6755 const char *p;
6756 int skipregs = 0;
6757
6758 event->ptid = null_ptid;
6759 event->rs = get_remote_state ();
6760 event->ws.kind = TARGET_WAITKIND_IGNORE;
6761 event->ws.value.integer = 0;
6762 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6763 event->regcache = NULL;
6764 event->core = -1;
6765
6766 switch (buf[0])
6767 {
6768 case 'T': /* Status with PC, SP, FP, ... */
6769 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6770 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6771 ss = signal number
6772 n... = register number
6773 r... = register contents
6774 */
6775
6776 p = &buf[3]; /* after Txx */
6777 while (*p)
6778 {
6779 const char *p1;
6780 int fieldsize;
6781
6782 p1 = strchr (p, ':');
6783 if (p1 == NULL)
6784 error (_("Malformed packet(a) (missing colon): %s\n\
6785 Packet: '%s'\n"),
6786 p, buf);
6787 if (p == p1)
6788 error (_("Malformed packet(a) (missing register number): %s\n\
6789 Packet: '%s'\n"),
6790 p, buf);
6791
6792 /* Some "registers" are actually extended stop information.
6793 Note if you're adding a new entry here: GDB 7.9 and
6794 earlier assume that all register "numbers" that start
6795 with an hex digit are real register numbers. Make sure
6796 the server only sends such a packet if it knows the
6797 client understands it. */
6798
6799 if (strprefix (p, p1, "thread"))
6800 event->ptid = read_ptid (++p1, &p);
6801 else if (strprefix (p, p1, "syscall_entry"))
6802 {
6803 ULONGEST sysno;
6804
6805 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6806 p = unpack_varlen_hex (++p1, &sysno);
6807 event->ws.value.syscall_number = (int) sysno;
6808 }
6809 else if (strprefix (p, p1, "syscall_return"))
6810 {
6811 ULONGEST sysno;
6812
6813 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6814 p = unpack_varlen_hex (++p1, &sysno);
6815 event->ws.value.syscall_number = (int) sysno;
6816 }
6817 else if (strprefix (p, p1, "watch")
6818 || strprefix (p, p1, "rwatch")
6819 || strprefix (p, p1, "awatch"))
6820 {
6821 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6822 p = unpack_varlen_hex (++p1, &addr);
6823 event->watch_data_address = (CORE_ADDR) addr;
6824 }
6825 else if (strprefix (p, p1, "swbreak"))
6826 {
6827 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6828
6829 /* Make sure the stub doesn't forget to indicate support
6830 with qSupported. */
6831 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6832 error (_("Unexpected swbreak stop reason"));
6833
6834 /* The value part is documented as "must be empty",
6835 though we ignore it, in case we ever decide to make
6836 use of it in a backward compatible way. */
6837 p = strchrnul (p1 + 1, ';');
6838 }
6839 else if (strprefix (p, p1, "hwbreak"))
6840 {
6841 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6842
6843 /* Make sure the stub doesn't forget to indicate support
6844 with qSupported. */
6845 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6846 error (_("Unexpected hwbreak stop reason"));
6847
6848 /* See above. */
6849 p = strchrnul (p1 + 1, ';');
6850 }
6851 else if (strprefix (p, p1, "library"))
6852 {
6853 event->ws.kind = TARGET_WAITKIND_LOADED;
6854 p = strchrnul (p1 + 1, ';');
6855 }
6856 else if (strprefix (p, p1, "replaylog"))
6857 {
6858 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6859 /* p1 will indicate "begin" or "end", but it makes
6860 no difference for now, so ignore it. */
6861 p = strchrnul (p1 + 1, ';');
6862 }
6863 else if (strprefix (p, p1, "core"))
6864 {
6865 ULONGEST c;
6866
6867 p = unpack_varlen_hex (++p1, &c);
6868 event->core = c;
6869 }
6870 else if (strprefix (p, p1, "fork"))
6871 {
6872 event->ws.value.related_pid = read_ptid (++p1, &p);
6873 event->ws.kind = TARGET_WAITKIND_FORKED;
6874 }
6875 else if (strprefix (p, p1, "vfork"))
6876 {
6877 event->ws.value.related_pid = read_ptid (++p1, &p);
6878 event->ws.kind = TARGET_WAITKIND_VFORKED;
6879 }
6880 else if (strprefix (p, p1, "vforkdone"))
6881 {
6882 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6883 p = strchrnul (p1 + 1, ';');
6884 }
6885 else if (strprefix (p, p1, "exec"))
6886 {
6887 ULONGEST ignored;
6888 char pathname[PATH_MAX];
6889 int pathlen;
6890
6891 /* Determine the length of the execd pathname. */
6892 p = unpack_varlen_hex (++p1, &ignored);
6893 pathlen = (p - p1) / 2;
6894
6895 /* Save the pathname for event reporting and for
6896 the next run command. */
6897 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6898 pathname[pathlen] = '\0';
6899
6900 /* This is freed during event handling. */
6901 event->ws.value.execd_pathname = xstrdup (pathname);
6902 event->ws.kind = TARGET_WAITKIND_EXECD;
6903
6904 /* Skip the registers included in this packet, since
6905 they may be for an architecture different from the
6906 one used by the original program. */
6907 skipregs = 1;
6908 }
6909 else if (strprefix (p, p1, "create"))
6910 {
6911 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6912 p = strchrnul (p1 + 1, ';');
6913 }
6914 else
6915 {
6916 ULONGEST pnum;
6917 const char *p_temp;
6918
6919 if (skipregs)
6920 {
6921 p = strchrnul (p1 + 1, ';');
6922 p++;
6923 continue;
6924 }
6925
6926 /* Maybe a real ``P'' register number. */
6927 p_temp = unpack_varlen_hex (p, &pnum);
6928 /* If the first invalid character is the colon, we got a
6929 register number. Otherwise, it's an unknown stop
6930 reason. */
6931 if (p_temp == p1)
6932 {
6933 /* If we haven't parsed the event's thread yet, find
6934 it now, in order to find the architecture of the
6935 reported expedited registers. */
6936 if (event->ptid == null_ptid)
6937 {
6938 const char *thr = strstr (p1 + 1, ";thread:");
6939 if (thr != NULL)
6940 event->ptid = read_ptid (thr + strlen (";thread:"),
6941 NULL);
6942 else
6943 event->ptid = magic_null_ptid;
6944 }
6945
6946 if (rsa == NULL)
6947 {
6948 inferior *inf = (event->ptid == null_ptid
6949 ? NULL
6950 : find_inferior_ptid (event->ptid));
6951 /* If this is the first time we learn anything
6952 about this process, skip the registers
6953 included in this packet, since we don't yet
6954 know which architecture to use to parse them.
6955 We'll determine the architecture later when
6956 we process the stop reply and retrieve the
6957 target description, via
6958 remote_notice_new_inferior ->
6959 post_create_inferior. */
6960 if (inf == NULL)
6961 {
6962 p = strchrnul (p1 + 1, ';');
6963 p++;
6964 continue;
6965 }
6966
6967 event->arch = inf->gdbarch;
6968 rsa = get_remote_arch_state (event->arch);
6969 }
6970
6971 packet_reg *reg
6972 = packet_reg_from_pnum (event->arch, rsa, pnum);
6973 cached_reg_t cached_reg;
6974
6975 if (reg == NULL)
6976 error (_("Remote sent bad register number %s: %s\n\
6977 Packet: '%s'\n"),
6978 hex_string (pnum), p, buf);
6979
6980 cached_reg.num = reg->regnum;
6981 cached_reg.data = (gdb_byte *)
6982 xmalloc (register_size (event->arch, reg->regnum));
6983
6984 p = p1 + 1;
6985 fieldsize = hex2bin (p, cached_reg.data,
6986 register_size (event->arch, reg->regnum));
6987 p += 2 * fieldsize;
6988 if (fieldsize < register_size (event->arch, reg->regnum))
6989 warning (_("Remote reply is too short: %s"), buf);
6990
6991 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6992 }
6993 else
6994 {
6995 /* Not a number. Silently skip unknown optional
6996 info. */
6997 p = strchrnul (p1 + 1, ';');
6998 }
6999 }
7000
7001 if (*p != ';')
7002 error (_("Remote register badly formatted: %s\nhere: %s"),
7003 buf, p);
7004 ++p;
7005 }
7006
7007 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7008 break;
7009
7010 /* fall through */
7011 case 'S': /* Old style status, just signal only. */
7012 {
7013 int sig;
7014
7015 event->ws.kind = TARGET_WAITKIND_STOPPED;
7016 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7017 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7018 event->ws.value.sig = (enum gdb_signal) sig;
7019 else
7020 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7021 }
7022 break;
7023 case 'w': /* Thread exited. */
7024 {
7025 const char *p;
7026 ULONGEST value;
7027
7028 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7029 p = unpack_varlen_hex (&buf[1], &value);
7030 event->ws.value.integer = value;
7031 if (*p != ';')
7032 error (_("stop reply packet badly formatted: %s"), buf);
7033 event->ptid = read_ptid (++p, NULL);
7034 break;
7035 }
7036 case 'W': /* Target exited. */
7037 case 'X':
7038 {
7039 const char *p;
7040 int pid;
7041 ULONGEST value;
7042
7043 /* GDB used to accept only 2 hex chars here. Stubs should
7044 only send more if they detect GDB supports multi-process
7045 support. */
7046 p = unpack_varlen_hex (&buf[1], &value);
7047
7048 if (buf[0] == 'W')
7049 {
7050 /* The remote process exited. */
7051 event->ws.kind = TARGET_WAITKIND_EXITED;
7052 event->ws.value.integer = value;
7053 }
7054 else
7055 {
7056 /* The remote process exited with a signal. */
7057 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7058 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7059 event->ws.value.sig = (enum gdb_signal) value;
7060 else
7061 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7062 }
7063
7064 /* If no process is specified, assume inferior_ptid. */
7065 pid = ptid_get_pid (inferior_ptid);
7066 if (*p == '\0')
7067 ;
7068 else if (*p == ';')
7069 {
7070 p++;
7071
7072 if (*p == '\0')
7073 ;
7074 else if (startswith (p, "process:"))
7075 {
7076 ULONGEST upid;
7077
7078 p += sizeof ("process:") - 1;
7079 unpack_varlen_hex (p, &upid);
7080 pid = upid;
7081 }
7082 else
7083 error (_("unknown stop reply packet: %s"), buf);
7084 }
7085 else
7086 error (_("unknown stop reply packet: %s"), buf);
7087 event->ptid = pid_to_ptid (pid);
7088 }
7089 break;
7090 case 'N':
7091 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7092 event->ptid = minus_one_ptid;
7093 break;
7094 }
7095
7096 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7097 error (_("No process or thread specified in stop reply: %s"), buf);
7098 }
7099
7100 /* When the stub wants to tell GDB about a new notification reply, it
7101 sends a notification (%Stop, for example). Those can come it at
7102 any time, hence, we have to make sure that any pending
7103 putpkt/getpkt sequence we're making is finished, before querying
7104 the stub for more events with the corresponding ack command
7105 (vStopped, for example). E.g., if we started a vStopped sequence
7106 immediately upon receiving the notification, something like this
7107 could happen:
7108
7109 1.1) --> Hg 1
7110 1.2) <-- OK
7111 1.3) --> g
7112 1.4) <-- %Stop
7113 1.5) --> vStopped
7114 1.6) <-- (registers reply to step #1.3)
7115
7116 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7117 query.
7118
7119 To solve this, whenever we parse a %Stop notification successfully,
7120 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7121 doing whatever we were doing:
7122
7123 2.1) --> Hg 1
7124 2.2) <-- OK
7125 2.3) --> g
7126 2.4) <-- %Stop
7127 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7128 2.5) <-- (registers reply to step #2.3)
7129
7130 Eventualy after step #2.5, we return to the event loop, which
7131 notices there's an event on the
7132 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7133 associated callback --- the function below. At this point, we're
7134 always safe to start a vStopped sequence. :
7135
7136 2.6) --> vStopped
7137 2.7) <-- T05 thread:2
7138 2.8) --> vStopped
7139 2.9) --> OK
7140 */
7141
7142 void
7143 remote_notif_get_pending_events (struct notif_client *nc)
7144 {
7145 struct remote_state *rs = get_remote_state ();
7146
7147 if (rs->notif_state->pending_event[nc->id] != NULL)
7148 {
7149 if (notif_debug)
7150 fprintf_unfiltered (gdb_stdlog,
7151 "notif: process: '%s' ack pending event\n",
7152 nc->name);
7153
7154 /* acknowledge */
7155 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7156 rs->notif_state->pending_event[nc->id] = NULL;
7157
7158 while (1)
7159 {
7160 getpkt (&rs->buf, &rs->buf_size, 0);
7161 if (strcmp (rs->buf, "OK") == 0)
7162 break;
7163 else
7164 remote_notif_ack (nc, rs->buf);
7165 }
7166 }
7167 else
7168 {
7169 if (notif_debug)
7170 fprintf_unfiltered (gdb_stdlog,
7171 "notif: process: '%s' no pending reply\n",
7172 nc->name);
7173 }
7174 }
7175
7176 /* Called when it is decided that STOP_REPLY holds the info of the
7177 event that is to be returned to the core. This function always
7178 destroys STOP_REPLY. */
7179
7180 static ptid_t
7181 process_stop_reply (struct stop_reply *stop_reply,
7182 struct target_waitstatus *status)
7183 {
7184 ptid_t ptid;
7185
7186 *status = stop_reply->ws;
7187 ptid = stop_reply->ptid;
7188
7189 /* If no thread/process was reported by the stub, assume the current
7190 inferior. */
7191 if (ptid_equal (ptid, null_ptid))
7192 ptid = inferior_ptid;
7193
7194 if (status->kind != TARGET_WAITKIND_EXITED
7195 && status->kind != TARGET_WAITKIND_SIGNALLED
7196 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7197 {
7198 /* Expedited registers. */
7199 if (stop_reply->regcache)
7200 {
7201 struct regcache *regcache
7202 = get_thread_arch_regcache (ptid, stop_reply->arch);
7203 cached_reg_t *reg;
7204 int ix;
7205
7206 for (ix = 0;
7207 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7208 ix++)
7209 {
7210 regcache_raw_supply (regcache, reg->num, reg->data);
7211 xfree (reg->data);
7212 }
7213
7214 VEC_free (cached_reg_t, stop_reply->regcache);
7215 }
7216
7217 remote_notice_new_inferior (ptid, 0);
7218 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7219 remote_thr->core = stop_reply->core;
7220 remote_thr->stop_reason = stop_reply->stop_reason;
7221 remote_thr->watch_data_address = stop_reply->watch_data_address;
7222 remote_thr->vcont_resumed = 0;
7223 }
7224
7225 stop_reply_xfree (stop_reply);
7226 return ptid;
7227 }
7228
7229 /* The non-stop mode version of target_wait. */
7230
7231 static ptid_t
7232 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7233 {
7234 struct remote_state *rs = get_remote_state ();
7235 struct stop_reply *stop_reply;
7236 int ret;
7237 int is_notif = 0;
7238
7239 /* If in non-stop mode, get out of getpkt even if a
7240 notification is received. */
7241
7242 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7243 0 /* forever */, &is_notif);
7244 while (1)
7245 {
7246 if (ret != -1 && !is_notif)
7247 switch (rs->buf[0])
7248 {
7249 case 'E': /* Error of some sort. */
7250 /* We're out of sync with the target now. Did it continue
7251 or not? We can't tell which thread it was in non-stop,
7252 so just ignore this. */
7253 warning (_("Remote failure reply: %s"), rs->buf);
7254 break;
7255 case 'O': /* Console output. */
7256 remote_console_output (rs->buf + 1);
7257 break;
7258 default:
7259 warning (_("Invalid remote reply: %s"), rs->buf);
7260 break;
7261 }
7262
7263 /* Acknowledge a pending stop reply that may have arrived in the
7264 mean time. */
7265 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7266 remote_notif_get_pending_events (&notif_client_stop);
7267
7268 /* If indeed we noticed a stop reply, we're done. */
7269 stop_reply = queued_stop_reply (ptid);
7270 if (stop_reply != NULL)
7271 return process_stop_reply (stop_reply, status);
7272
7273 /* Still no event. If we're just polling for an event, then
7274 return to the event loop. */
7275 if (options & TARGET_WNOHANG)
7276 {
7277 status->kind = TARGET_WAITKIND_IGNORE;
7278 return minus_one_ptid;
7279 }
7280
7281 /* Otherwise do a blocking wait. */
7282 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7283 1 /* forever */, &is_notif);
7284 }
7285 }
7286
7287 /* Wait until the remote machine stops, then return, storing status in
7288 STATUS just as `wait' would. */
7289
7290 static ptid_t
7291 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7292 {
7293 struct remote_state *rs = get_remote_state ();
7294 ptid_t event_ptid = null_ptid;
7295 char *buf;
7296 struct stop_reply *stop_reply;
7297
7298 again:
7299
7300 status->kind = TARGET_WAITKIND_IGNORE;
7301 status->value.integer = 0;
7302
7303 stop_reply = queued_stop_reply (ptid);
7304 if (stop_reply != NULL)
7305 return process_stop_reply (stop_reply, status);
7306
7307 if (rs->cached_wait_status)
7308 /* Use the cached wait status, but only once. */
7309 rs->cached_wait_status = 0;
7310 else
7311 {
7312 int ret;
7313 int is_notif;
7314 int forever = ((options & TARGET_WNOHANG) == 0
7315 && wait_forever_enabled_p);
7316
7317 if (!rs->waiting_for_stop_reply)
7318 {
7319 status->kind = TARGET_WAITKIND_NO_RESUMED;
7320 return minus_one_ptid;
7321 }
7322
7323 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7324 _never_ wait for ever -> test on target_is_async_p().
7325 However, before we do that we need to ensure that the caller
7326 knows how to take the target into/out of async mode. */
7327 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7328 forever, &is_notif);
7329
7330 /* GDB gets a notification. Return to core as this event is
7331 not interesting. */
7332 if (ret != -1 && is_notif)
7333 return minus_one_ptid;
7334
7335 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7336 return minus_one_ptid;
7337 }
7338
7339 buf = rs->buf;
7340
7341 /* Assume that the target has acknowledged Ctrl-C unless we receive
7342 an 'F' or 'O' packet. */
7343 if (buf[0] != 'F' && buf[0] != 'O')
7344 rs->ctrlc_pending_p = 0;
7345
7346 switch (buf[0])
7347 {
7348 case 'E': /* Error of some sort. */
7349 /* We're out of sync with the target now. Did it continue or
7350 not? Not is more likely, so report a stop. */
7351 rs->waiting_for_stop_reply = 0;
7352
7353 warning (_("Remote failure reply: %s"), buf);
7354 status->kind = TARGET_WAITKIND_STOPPED;
7355 status->value.sig = GDB_SIGNAL_0;
7356 break;
7357 case 'F': /* File-I/O request. */
7358 /* GDB may access the inferior memory while handling the File-I/O
7359 request, but we don't want GDB accessing memory while waiting
7360 for a stop reply. See the comments in putpkt_binary. Set
7361 waiting_for_stop_reply to 0 temporarily. */
7362 rs->waiting_for_stop_reply = 0;
7363 remote_fileio_request (buf, rs->ctrlc_pending_p);
7364 rs->ctrlc_pending_p = 0;
7365 /* GDB handled the File-I/O request, and the target is running
7366 again. Keep waiting for events. */
7367 rs->waiting_for_stop_reply = 1;
7368 break;
7369 case 'N': case 'T': case 'S': case 'X': case 'W':
7370 {
7371 struct stop_reply *stop_reply;
7372
7373 /* There is a stop reply to handle. */
7374 rs->waiting_for_stop_reply = 0;
7375
7376 stop_reply
7377 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7378 rs->buf);
7379
7380 event_ptid = process_stop_reply (stop_reply, status);
7381 break;
7382 }
7383 case 'O': /* Console output. */
7384 remote_console_output (buf + 1);
7385 break;
7386 case '\0':
7387 if (rs->last_sent_signal != GDB_SIGNAL_0)
7388 {
7389 /* Zero length reply means that we tried 'S' or 'C' and the
7390 remote system doesn't support it. */
7391 target_terminal::ours_for_output ();
7392 printf_filtered
7393 ("Can't send signals to this remote system. %s not sent.\n",
7394 gdb_signal_to_name (rs->last_sent_signal));
7395 rs->last_sent_signal = GDB_SIGNAL_0;
7396 target_terminal::inferior ();
7397
7398 strcpy (buf, rs->last_sent_step ? "s" : "c");
7399 putpkt (buf);
7400 break;
7401 }
7402 /* else fallthrough */
7403 default:
7404 warning (_("Invalid remote reply: %s"), buf);
7405 break;
7406 }
7407
7408 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7409 return minus_one_ptid;
7410 else if (status->kind == TARGET_WAITKIND_IGNORE)
7411 {
7412 /* Nothing interesting happened. If we're doing a non-blocking
7413 poll, we're done. Otherwise, go back to waiting. */
7414 if (options & TARGET_WNOHANG)
7415 return minus_one_ptid;
7416 else
7417 goto again;
7418 }
7419 else if (status->kind != TARGET_WAITKIND_EXITED
7420 && status->kind != TARGET_WAITKIND_SIGNALLED)
7421 {
7422 if (!ptid_equal (event_ptid, null_ptid))
7423 record_currthread (rs, event_ptid);
7424 else
7425 event_ptid = inferior_ptid;
7426 }
7427 else
7428 /* A process exit. Invalidate our notion of current thread. */
7429 record_currthread (rs, minus_one_ptid);
7430
7431 return event_ptid;
7432 }
7433
7434 /* Wait until the remote machine stops, then return, storing status in
7435 STATUS just as `wait' would. */
7436
7437 static ptid_t
7438 remote_wait (struct target_ops *ops,
7439 ptid_t ptid, struct target_waitstatus *status, int options)
7440 {
7441 ptid_t event_ptid;
7442
7443 if (target_is_non_stop_p ())
7444 event_ptid = remote_wait_ns (ptid, status, options);
7445 else
7446 event_ptid = remote_wait_as (ptid, status, options);
7447
7448 if (target_is_async_p ())
7449 {
7450 /* If there are are events left in the queue tell the event loop
7451 to return here. */
7452 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7453 mark_async_event_handler (remote_async_inferior_event_token);
7454 }
7455
7456 return event_ptid;
7457 }
7458
7459 /* Fetch a single register using a 'p' packet. */
7460
7461 static int
7462 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7463 {
7464 struct gdbarch *gdbarch = regcache->arch ();
7465 struct remote_state *rs = get_remote_state ();
7466 char *buf, *p;
7467 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7468 int i;
7469
7470 if (packet_support (PACKET_p) == PACKET_DISABLE)
7471 return 0;
7472
7473 if (reg->pnum == -1)
7474 return 0;
7475
7476 p = rs->buf;
7477 *p++ = 'p';
7478 p += hexnumstr (p, reg->pnum);
7479 *p++ = '\0';
7480 putpkt (rs->buf);
7481 getpkt (&rs->buf, &rs->buf_size, 0);
7482
7483 buf = rs->buf;
7484
7485 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7486 {
7487 case PACKET_OK:
7488 break;
7489 case PACKET_UNKNOWN:
7490 return 0;
7491 case PACKET_ERROR:
7492 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7493 gdbarch_register_name (regcache->arch (),
7494 reg->regnum),
7495 buf);
7496 }
7497
7498 /* If this register is unfetchable, tell the regcache. */
7499 if (buf[0] == 'x')
7500 {
7501 regcache_raw_supply (regcache, reg->regnum, NULL);
7502 return 1;
7503 }
7504
7505 /* Otherwise, parse and supply the value. */
7506 p = buf;
7507 i = 0;
7508 while (p[0] != 0)
7509 {
7510 if (p[1] == 0)
7511 error (_("fetch_register_using_p: early buf termination"));
7512
7513 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7514 p += 2;
7515 }
7516 regcache_raw_supply (regcache, reg->regnum, regp);
7517 return 1;
7518 }
7519
7520 /* Fetch the registers included in the target's 'g' packet. */
7521
7522 static int
7523 send_g_packet (void)
7524 {
7525 struct remote_state *rs = get_remote_state ();
7526 int buf_len;
7527
7528 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7529 remote_send (&rs->buf, &rs->buf_size);
7530
7531 /* We can get out of synch in various cases. If the first character
7532 in the buffer is not a hex character, assume that has happened
7533 and try to fetch another packet to read. */
7534 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7535 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7536 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7537 && rs->buf[0] != 'x') /* New: unavailable register value. */
7538 {
7539 if (remote_debug)
7540 fprintf_unfiltered (gdb_stdlog,
7541 "Bad register packet; fetching a new packet\n");
7542 getpkt (&rs->buf, &rs->buf_size, 0);
7543 }
7544
7545 buf_len = strlen (rs->buf);
7546
7547 /* Sanity check the received packet. */
7548 if (buf_len % 2 != 0)
7549 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7550
7551 return buf_len / 2;
7552 }
7553
7554 static void
7555 process_g_packet (struct regcache *regcache)
7556 {
7557 struct gdbarch *gdbarch = regcache->arch ();
7558 struct remote_state *rs = get_remote_state ();
7559 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7560 int i, buf_len;
7561 char *p;
7562 char *regs;
7563
7564 buf_len = strlen (rs->buf);
7565
7566 /* Further sanity checks, with knowledge of the architecture. */
7567 if (buf_len > 2 * rsa->sizeof_g_packet)
7568 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7569 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7570
7571 /* Save the size of the packet sent to us by the target. It is used
7572 as a heuristic when determining the max size of packets that the
7573 target can safely receive. */
7574 if (rsa->actual_register_packet_size == 0)
7575 rsa->actual_register_packet_size = buf_len;
7576
7577 /* If this is smaller than we guessed the 'g' packet would be,
7578 update our records. A 'g' reply that doesn't include a register's
7579 value implies either that the register is not available, or that
7580 the 'p' packet must be used. */
7581 if (buf_len < 2 * rsa->sizeof_g_packet)
7582 {
7583 long sizeof_g_packet = buf_len / 2;
7584
7585 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7586 {
7587 long offset = rsa->regs[i].offset;
7588 long reg_size = register_size (gdbarch, i);
7589
7590 if (rsa->regs[i].pnum == -1)
7591 continue;
7592
7593 if (offset >= sizeof_g_packet)
7594 rsa->regs[i].in_g_packet = 0;
7595 else if (offset + reg_size > sizeof_g_packet)
7596 error (_("Truncated register %d in remote 'g' packet"), i);
7597 else
7598 rsa->regs[i].in_g_packet = 1;
7599 }
7600
7601 /* Looks valid enough, we can assume this is the correct length
7602 for a 'g' packet. It's important not to adjust
7603 rsa->sizeof_g_packet if we have truncated registers otherwise
7604 this "if" won't be run the next time the method is called
7605 with a packet of the same size and one of the internal errors
7606 below will trigger instead. */
7607 rsa->sizeof_g_packet = sizeof_g_packet;
7608 }
7609
7610 regs = (char *) alloca (rsa->sizeof_g_packet);
7611
7612 /* Unimplemented registers read as all bits zero. */
7613 memset (regs, 0, rsa->sizeof_g_packet);
7614
7615 /* Reply describes registers byte by byte, each byte encoded as two
7616 hex characters. Suck them all up, then supply them to the
7617 register cacheing/storage mechanism. */
7618
7619 p = rs->buf;
7620 for (i = 0; i < rsa->sizeof_g_packet; i++)
7621 {
7622 if (p[0] == 0 || p[1] == 0)
7623 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7624 internal_error (__FILE__, __LINE__,
7625 _("unexpected end of 'g' packet reply"));
7626
7627 if (p[0] == 'x' && p[1] == 'x')
7628 regs[i] = 0; /* 'x' */
7629 else
7630 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7631 p += 2;
7632 }
7633
7634 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7635 {
7636 struct packet_reg *r = &rsa->regs[i];
7637 long reg_size = register_size (gdbarch, i);
7638
7639 if (r->in_g_packet)
7640 {
7641 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7642 /* This shouldn't happen - we adjusted in_g_packet above. */
7643 internal_error (__FILE__, __LINE__,
7644 _("unexpected end of 'g' packet reply"));
7645 else if (rs->buf[r->offset * 2] == 'x')
7646 {
7647 gdb_assert (r->offset * 2 < strlen (rs->buf));
7648 /* The register isn't available, mark it as such (at
7649 the same time setting the value to zero). */
7650 regcache_raw_supply (regcache, r->regnum, NULL);
7651 }
7652 else
7653 regcache_raw_supply (regcache, r->regnum,
7654 regs + r->offset);
7655 }
7656 }
7657 }
7658
7659 static void
7660 fetch_registers_using_g (struct regcache *regcache)
7661 {
7662 send_g_packet ();
7663 process_g_packet (regcache);
7664 }
7665
7666 /* Make the remote selected traceframe match GDB's selected
7667 traceframe. */
7668
7669 static void
7670 set_remote_traceframe (void)
7671 {
7672 int newnum;
7673 struct remote_state *rs = get_remote_state ();
7674
7675 if (rs->remote_traceframe_number == get_traceframe_number ())
7676 return;
7677
7678 /* Avoid recursion, remote_trace_find calls us again. */
7679 rs->remote_traceframe_number = get_traceframe_number ();
7680
7681 newnum = target_trace_find (tfind_number,
7682 get_traceframe_number (), 0, 0, NULL);
7683
7684 /* Should not happen. If it does, all bets are off. */
7685 if (newnum != get_traceframe_number ())
7686 warning (_("could not set remote traceframe"));
7687 }
7688
7689 static void
7690 remote_fetch_registers (struct target_ops *ops,
7691 struct regcache *regcache, int regnum)
7692 {
7693 struct gdbarch *gdbarch = regcache->arch ();
7694 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7695 int i;
7696
7697 set_remote_traceframe ();
7698 set_general_thread (regcache_get_ptid (regcache));
7699
7700 if (regnum >= 0)
7701 {
7702 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7703
7704 gdb_assert (reg != NULL);
7705
7706 /* If this register might be in the 'g' packet, try that first -
7707 we are likely to read more than one register. If this is the
7708 first 'g' packet, we might be overly optimistic about its
7709 contents, so fall back to 'p'. */
7710 if (reg->in_g_packet)
7711 {
7712 fetch_registers_using_g (regcache);
7713 if (reg->in_g_packet)
7714 return;
7715 }
7716
7717 if (fetch_register_using_p (regcache, reg))
7718 return;
7719
7720 /* This register is not available. */
7721 regcache_raw_supply (regcache, reg->regnum, NULL);
7722
7723 return;
7724 }
7725
7726 fetch_registers_using_g (regcache);
7727
7728 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7729 if (!rsa->regs[i].in_g_packet)
7730 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7731 {
7732 /* This register is not available. */
7733 regcache_raw_supply (regcache, i, NULL);
7734 }
7735 }
7736
7737 /* Prepare to store registers. Since we may send them all (using a
7738 'G' request), we have to read out the ones we don't want to change
7739 first. */
7740
7741 static void
7742 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7743 {
7744 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7745 int i;
7746
7747 /* Make sure the entire registers array is valid. */
7748 switch (packet_support (PACKET_P))
7749 {
7750 case PACKET_DISABLE:
7751 case PACKET_SUPPORT_UNKNOWN:
7752 /* Make sure all the necessary registers are cached. */
7753 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7754 if (rsa->regs[i].in_g_packet)
7755 regcache_raw_update (regcache, rsa->regs[i].regnum);
7756 break;
7757 case PACKET_ENABLE:
7758 break;
7759 }
7760 }
7761
7762 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7763 packet was not recognized. */
7764
7765 static int
7766 store_register_using_P (const struct regcache *regcache,
7767 struct packet_reg *reg)
7768 {
7769 struct gdbarch *gdbarch = regcache->arch ();
7770 struct remote_state *rs = get_remote_state ();
7771 /* Try storing a single register. */
7772 char *buf = rs->buf;
7773 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7774 char *p;
7775
7776 if (packet_support (PACKET_P) == PACKET_DISABLE)
7777 return 0;
7778
7779 if (reg->pnum == -1)
7780 return 0;
7781
7782 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7783 p = buf + strlen (buf);
7784 regcache_raw_collect (regcache, reg->regnum, regp);
7785 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7786 putpkt (rs->buf);
7787 getpkt (&rs->buf, &rs->buf_size, 0);
7788
7789 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7790 {
7791 case PACKET_OK:
7792 return 1;
7793 case PACKET_ERROR:
7794 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7795 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7796 case PACKET_UNKNOWN:
7797 return 0;
7798 default:
7799 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7800 }
7801 }
7802
7803 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7804 contents of the register cache buffer. FIXME: ignores errors. */
7805
7806 static void
7807 store_registers_using_G (const struct regcache *regcache)
7808 {
7809 struct remote_state *rs = get_remote_state ();
7810 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7811 gdb_byte *regs;
7812 char *p;
7813
7814 /* Extract all the registers in the regcache copying them into a
7815 local buffer. */
7816 {
7817 int i;
7818
7819 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7820 memset (regs, 0, rsa->sizeof_g_packet);
7821 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7822 {
7823 struct packet_reg *r = &rsa->regs[i];
7824
7825 if (r->in_g_packet)
7826 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7827 }
7828 }
7829
7830 /* Command describes registers byte by byte,
7831 each byte encoded as two hex characters. */
7832 p = rs->buf;
7833 *p++ = 'G';
7834 bin2hex (regs, p, rsa->sizeof_g_packet);
7835 putpkt (rs->buf);
7836 getpkt (&rs->buf, &rs->buf_size, 0);
7837 if (packet_check_result (rs->buf) == PACKET_ERROR)
7838 error (_("Could not write registers; remote failure reply '%s'"),
7839 rs->buf);
7840 }
7841
7842 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7843 of the register cache buffer. FIXME: ignores errors. */
7844
7845 static void
7846 remote_store_registers (struct target_ops *ops,
7847 struct regcache *regcache, int regnum)
7848 {
7849 struct gdbarch *gdbarch = regcache->arch ();
7850 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7851 int i;
7852
7853 set_remote_traceframe ();
7854 set_general_thread (regcache_get_ptid (regcache));
7855
7856 if (regnum >= 0)
7857 {
7858 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7859
7860 gdb_assert (reg != NULL);
7861
7862 /* Always prefer to store registers using the 'P' packet if
7863 possible; we often change only a small number of registers.
7864 Sometimes we change a larger number; we'd need help from a
7865 higher layer to know to use 'G'. */
7866 if (store_register_using_P (regcache, reg))
7867 return;
7868
7869 /* For now, don't complain if we have no way to write the
7870 register. GDB loses track of unavailable registers too
7871 easily. Some day, this may be an error. We don't have
7872 any way to read the register, either... */
7873 if (!reg->in_g_packet)
7874 return;
7875
7876 store_registers_using_G (regcache);
7877 return;
7878 }
7879
7880 store_registers_using_G (regcache);
7881
7882 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7883 if (!rsa->regs[i].in_g_packet)
7884 if (!store_register_using_P (regcache, &rsa->regs[i]))
7885 /* See above for why we do not issue an error here. */
7886 continue;
7887 }
7888 \f
7889
7890 /* Return the number of hex digits in num. */
7891
7892 static int
7893 hexnumlen (ULONGEST num)
7894 {
7895 int i;
7896
7897 for (i = 0; num != 0; i++)
7898 num >>= 4;
7899
7900 return std::max (i, 1);
7901 }
7902
7903 /* Set BUF to the minimum number of hex digits representing NUM. */
7904
7905 static int
7906 hexnumstr (char *buf, ULONGEST num)
7907 {
7908 int len = hexnumlen (num);
7909
7910 return hexnumnstr (buf, num, len);
7911 }
7912
7913
7914 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7915
7916 static int
7917 hexnumnstr (char *buf, ULONGEST num, int width)
7918 {
7919 int i;
7920
7921 buf[width] = '\0';
7922
7923 for (i = width - 1; i >= 0; i--)
7924 {
7925 buf[i] = "0123456789abcdef"[(num & 0xf)];
7926 num >>= 4;
7927 }
7928
7929 return width;
7930 }
7931
7932 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7933
7934 static CORE_ADDR
7935 remote_address_masked (CORE_ADDR addr)
7936 {
7937 unsigned int address_size = remote_address_size;
7938
7939 /* If "remoteaddresssize" was not set, default to target address size. */
7940 if (!address_size)
7941 address_size = gdbarch_addr_bit (target_gdbarch ());
7942
7943 if (address_size > 0
7944 && address_size < (sizeof (ULONGEST) * 8))
7945 {
7946 /* Only create a mask when that mask can safely be constructed
7947 in a ULONGEST variable. */
7948 ULONGEST mask = 1;
7949
7950 mask = (mask << address_size) - 1;
7951 addr &= mask;
7952 }
7953 return addr;
7954 }
7955
7956 /* Determine whether the remote target supports binary downloading.
7957 This is accomplished by sending a no-op memory write of zero length
7958 to the target at the specified address. It does not suffice to send
7959 the whole packet, since many stubs strip the eighth bit and
7960 subsequently compute a wrong checksum, which causes real havoc with
7961 remote_write_bytes.
7962
7963 NOTE: This can still lose if the serial line is not eight-bit
7964 clean. In cases like this, the user should clear "remote
7965 X-packet". */
7966
7967 static void
7968 check_binary_download (CORE_ADDR addr)
7969 {
7970 struct remote_state *rs = get_remote_state ();
7971
7972 switch (packet_support (PACKET_X))
7973 {
7974 case PACKET_DISABLE:
7975 break;
7976 case PACKET_ENABLE:
7977 break;
7978 case PACKET_SUPPORT_UNKNOWN:
7979 {
7980 char *p;
7981
7982 p = rs->buf;
7983 *p++ = 'X';
7984 p += hexnumstr (p, (ULONGEST) addr);
7985 *p++ = ',';
7986 p += hexnumstr (p, (ULONGEST) 0);
7987 *p++ = ':';
7988 *p = '\0';
7989
7990 putpkt_binary (rs->buf, (int) (p - rs->buf));
7991 getpkt (&rs->buf, &rs->buf_size, 0);
7992
7993 if (rs->buf[0] == '\0')
7994 {
7995 if (remote_debug)
7996 fprintf_unfiltered (gdb_stdlog,
7997 "binary downloading NOT "
7998 "supported by target\n");
7999 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8000 }
8001 else
8002 {
8003 if (remote_debug)
8004 fprintf_unfiltered (gdb_stdlog,
8005 "binary downloading supported by target\n");
8006 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8007 }
8008 break;
8009 }
8010 }
8011 }
8012
8013 /* Helper function to resize the payload in order to try to get a good
8014 alignment. We try to write an amount of data such that the next write will
8015 start on an address aligned on REMOTE_ALIGN_WRITES. */
8016
8017 static int
8018 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8019 {
8020 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8021 }
8022
8023 /* Write memory data directly to the remote machine.
8024 This does not inform the data cache; the data cache uses this.
8025 HEADER is the starting part of the packet.
8026 MEMADDR is the address in the remote memory space.
8027 MYADDR is the address of the buffer in our space.
8028 LEN_UNITS is the number of addressable units to write.
8029 UNIT_SIZE is the length in bytes of an addressable unit.
8030 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8031 should send data as binary ('X'), or hex-encoded ('M').
8032
8033 The function creates packet of the form
8034 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8035
8036 where encoding of <DATA> is terminated by PACKET_FORMAT.
8037
8038 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8039 are omitted.
8040
8041 Return the transferred status, error or OK (an
8042 'enum target_xfer_status' value). Save the number of addressable units
8043 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8044
8045 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8046 exchange between gdb and the stub could look like (?? in place of the
8047 checksum):
8048
8049 -> $m1000,4#??
8050 <- aaaabbbbccccdddd
8051
8052 -> $M1000,3:eeeeffffeeee#??
8053 <- OK
8054
8055 -> $m1000,4#??
8056 <- eeeeffffeeeedddd */
8057
8058 static enum target_xfer_status
8059 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8060 const gdb_byte *myaddr, ULONGEST len_units,
8061 int unit_size, ULONGEST *xfered_len_units,
8062 char packet_format, int use_length)
8063 {
8064 struct remote_state *rs = get_remote_state ();
8065 char *p;
8066 char *plen = NULL;
8067 int plenlen = 0;
8068 int todo_units;
8069 int units_written;
8070 int payload_capacity_bytes;
8071 int payload_length_bytes;
8072
8073 if (packet_format != 'X' && packet_format != 'M')
8074 internal_error (__FILE__, __LINE__,
8075 _("remote_write_bytes_aux: bad packet format"));
8076
8077 if (len_units == 0)
8078 return TARGET_XFER_EOF;
8079
8080 payload_capacity_bytes = get_memory_write_packet_size ();
8081
8082 /* The packet buffer will be large enough for the payload;
8083 get_memory_packet_size ensures this. */
8084 rs->buf[0] = '\0';
8085
8086 /* Compute the size of the actual payload by subtracting out the
8087 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8088
8089 payload_capacity_bytes -= strlen ("$,:#NN");
8090 if (!use_length)
8091 /* The comma won't be used. */
8092 payload_capacity_bytes += 1;
8093 payload_capacity_bytes -= strlen (header);
8094 payload_capacity_bytes -= hexnumlen (memaddr);
8095
8096 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8097
8098 strcat (rs->buf, header);
8099 p = rs->buf + strlen (header);
8100
8101 /* Compute a best guess of the number of bytes actually transfered. */
8102 if (packet_format == 'X')
8103 {
8104 /* Best guess at number of bytes that will fit. */
8105 todo_units = std::min (len_units,
8106 (ULONGEST) payload_capacity_bytes / unit_size);
8107 if (use_length)
8108 payload_capacity_bytes -= hexnumlen (todo_units);
8109 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8110 }
8111 else
8112 {
8113 /* Number of bytes that will fit. */
8114 todo_units
8115 = std::min (len_units,
8116 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8117 if (use_length)
8118 payload_capacity_bytes -= hexnumlen (todo_units);
8119 todo_units = std::min (todo_units,
8120 (payload_capacity_bytes / unit_size) / 2);
8121 }
8122
8123 if (todo_units <= 0)
8124 internal_error (__FILE__, __LINE__,
8125 _("minimum packet size too small to write data"));
8126
8127 /* If we already need another packet, then try to align the end
8128 of this packet to a useful boundary. */
8129 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8130 todo_units = align_for_efficient_write (todo_units, memaddr);
8131
8132 /* Append "<memaddr>". */
8133 memaddr = remote_address_masked (memaddr);
8134 p += hexnumstr (p, (ULONGEST) memaddr);
8135
8136 if (use_length)
8137 {
8138 /* Append ",". */
8139 *p++ = ',';
8140
8141 /* Append the length and retain its location and size. It may need to be
8142 adjusted once the packet body has been created. */
8143 plen = p;
8144 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8145 p += plenlen;
8146 }
8147
8148 /* Append ":". */
8149 *p++ = ':';
8150 *p = '\0';
8151
8152 /* Append the packet body. */
8153 if (packet_format == 'X')
8154 {
8155 /* Binary mode. Send target system values byte by byte, in
8156 increasing byte addresses. Only escape certain critical
8157 characters. */
8158 payload_length_bytes =
8159 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8160 &units_written, payload_capacity_bytes);
8161
8162 /* If not all TODO units fit, then we'll need another packet. Make
8163 a second try to keep the end of the packet aligned. Don't do
8164 this if the packet is tiny. */
8165 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8166 {
8167 int new_todo_units;
8168
8169 new_todo_units = align_for_efficient_write (units_written, memaddr);
8170
8171 if (new_todo_units != units_written)
8172 payload_length_bytes =
8173 remote_escape_output (myaddr, new_todo_units, unit_size,
8174 (gdb_byte *) p, &units_written,
8175 payload_capacity_bytes);
8176 }
8177
8178 p += payload_length_bytes;
8179 if (use_length && units_written < todo_units)
8180 {
8181 /* Escape chars have filled up the buffer prematurely,
8182 and we have actually sent fewer units than planned.
8183 Fix-up the length field of the packet. Use the same
8184 number of characters as before. */
8185 plen += hexnumnstr (plen, (ULONGEST) units_written,
8186 plenlen);
8187 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8188 }
8189 }
8190 else
8191 {
8192 /* Normal mode: Send target system values byte by byte, in
8193 increasing byte addresses. Each byte is encoded as a two hex
8194 value. */
8195 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8196 units_written = todo_units;
8197 }
8198
8199 putpkt_binary (rs->buf, (int) (p - rs->buf));
8200 getpkt (&rs->buf, &rs->buf_size, 0);
8201
8202 if (rs->buf[0] == 'E')
8203 return TARGET_XFER_E_IO;
8204
8205 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8206 send fewer units than we'd planned. */
8207 *xfered_len_units = (ULONGEST) units_written;
8208 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8209 }
8210
8211 /* Write memory data directly to the remote machine.
8212 This does not inform the data cache; the data cache uses this.
8213 MEMADDR is the address in the remote memory space.
8214 MYADDR is the address of the buffer in our space.
8215 LEN is the number of bytes.
8216
8217 Return the transferred status, error or OK (an
8218 'enum target_xfer_status' value). Save the number of bytes
8219 transferred in *XFERED_LEN. Only transfer a single packet. */
8220
8221 static enum target_xfer_status
8222 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8223 int unit_size, ULONGEST *xfered_len)
8224 {
8225 const char *packet_format = NULL;
8226
8227 /* Check whether the target supports binary download. */
8228 check_binary_download (memaddr);
8229
8230 switch (packet_support (PACKET_X))
8231 {
8232 case PACKET_ENABLE:
8233 packet_format = "X";
8234 break;
8235 case PACKET_DISABLE:
8236 packet_format = "M";
8237 break;
8238 case PACKET_SUPPORT_UNKNOWN:
8239 internal_error (__FILE__, __LINE__,
8240 _("remote_write_bytes: bad internal state"));
8241 default:
8242 internal_error (__FILE__, __LINE__, _("bad switch"));
8243 }
8244
8245 return remote_write_bytes_aux (packet_format,
8246 memaddr, myaddr, len, unit_size, xfered_len,
8247 packet_format[0], 1);
8248 }
8249
8250 /* Read memory data directly from the remote machine.
8251 This does not use the data cache; the data cache uses this.
8252 MEMADDR is the address in the remote memory space.
8253 MYADDR is the address of the buffer in our space.
8254 LEN_UNITS is the number of addressable memory units to read..
8255 UNIT_SIZE is the length in bytes of an addressable unit.
8256
8257 Return the transferred status, error or OK (an
8258 'enum target_xfer_status' value). Save the number of bytes
8259 transferred in *XFERED_LEN_UNITS.
8260
8261 See the comment of remote_write_bytes_aux for an example of
8262 memory read/write exchange between gdb and the stub. */
8263
8264 static enum target_xfer_status
8265 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8266 int unit_size, ULONGEST *xfered_len_units)
8267 {
8268 struct remote_state *rs = get_remote_state ();
8269 int buf_size_bytes; /* Max size of packet output buffer. */
8270 char *p;
8271 int todo_units;
8272 int decoded_bytes;
8273
8274 buf_size_bytes = get_memory_read_packet_size ();
8275 /* The packet buffer will be large enough for the payload;
8276 get_memory_packet_size ensures this. */
8277
8278 /* Number of units that will fit. */
8279 todo_units = std::min (len_units,
8280 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8281
8282 /* Construct "m"<memaddr>","<len>". */
8283 memaddr = remote_address_masked (memaddr);
8284 p = rs->buf;
8285 *p++ = 'm';
8286 p += hexnumstr (p, (ULONGEST) memaddr);
8287 *p++ = ',';
8288 p += hexnumstr (p, (ULONGEST) todo_units);
8289 *p = '\0';
8290 putpkt (rs->buf);
8291 getpkt (&rs->buf, &rs->buf_size, 0);
8292 if (rs->buf[0] == 'E'
8293 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8294 && rs->buf[3] == '\0')
8295 return TARGET_XFER_E_IO;
8296 /* Reply describes memory byte by byte, each byte encoded as two hex
8297 characters. */
8298 p = rs->buf;
8299 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8300 /* Return what we have. Let higher layers handle partial reads. */
8301 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8302 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8303 }
8304
8305 /* Using the set of read-only target sections of remote, read live
8306 read-only memory.
8307
8308 For interface/parameters/return description see target.h,
8309 to_xfer_partial. */
8310
8311 static enum target_xfer_status
8312 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8313 ULONGEST memaddr, ULONGEST len,
8314 int unit_size, ULONGEST *xfered_len)
8315 {
8316 struct target_section *secp;
8317 struct target_section_table *table;
8318
8319 secp = target_section_by_addr (ops, memaddr);
8320 if (secp != NULL
8321 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8322 secp->the_bfd_section)
8323 & SEC_READONLY))
8324 {
8325 struct target_section *p;
8326 ULONGEST memend = memaddr + len;
8327
8328 table = target_get_section_table (ops);
8329
8330 for (p = table->sections; p < table->sections_end; p++)
8331 {
8332 if (memaddr >= p->addr)
8333 {
8334 if (memend <= p->endaddr)
8335 {
8336 /* Entire transfer is within this section. */
8337 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8338 xfered_len);
8339 }
8340 else if (memaddr >= p->endaddr)
8341 {
8342 /* This section ends before the transfer starts. */
8343 continue;
8344 }
8345 else
8346 {
8347 /* This section overlaps the transfer. Just do half. */
8348 len = p->endaddr - memaddr;
8349 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8350 xfered_len);
8351 }
8352 }
8353 }
8354 }
8355
8356 return TARGET_XFER_EOF;
8357 }
8358
8359 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8360 first if the requested memory is unavailable in traceframe.
8361 Otherwise, fall back to remote_read_bytes_1. */
8362
8363 static enum target_xfer_status
8364 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8365 gdb_byte *myaddr, ULONGEST len, int unit_size,
8366 ULONGEST *xfered_len)
8367 {
8368 if (len == 0)
8369 return TARGET_XFER_EOF;
8370
8371 if (get_traceframe_number () != -1)
8372 {
8373 std::vector<mem_range> available;
8374
8375 /* If we fail to get the set of available memory, then the
8376 target does not support querying traceframe info, and so we
8377 attempt reading from the traceframe anyway (assuming the
8378 target implements the old QTro packet then). */
8379 if (traceframe_available_memory (&available, memaddr, len))
8380 {
8381 if (available.empty () || available[0].start != memaddr)
8382 {
8383 enum target_xfer_status res;
8384
8385 /* Don't read into the traceframe's available
8386 memory. */
8387 if (!available.empty ())
8388 {
8389 LONGEST oldlen = len;
8390
8391 len = available[0].start - memaddr;
8392 gdb_assert (len <= oldlen);
8393 }
8394
8395 /* This goes through the topmost target again. */
8396 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8397 len, unit_size, xfered_len);
8398 if (res == TARGET_XFER_OK)
8399 return TARGET_XFER_OK;
8400 else
8401 {
8402 /* No use trying further, we know some memory starting
8403 at MEMADDR isn't available. */
8404 *xfered_len = len;
8405 return (*xfered_len != 0) ?
8406 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8407 }
8408 }
8409
8410 /* Don't try to read more than how much is available, in
8411 case the target implements the deprecated QTro packet to
8412 cater for older GDBs (the target's knowledge of read-only
8413 sections may be outdated by now). */
8414 len = available[0].length;
8415 }
8416 }
8417
8418 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8419 }
8420
8421 \f
8422
8423 /* Sends a packet with content determined by the printf format string
8424 FORMAT and the remaining arguments, then gets the reply. Returns
8425 whether the packet was a success, a failure, or unknown. */
8426
8427 static enum packet_result remote_send_printf (const char *format, ...)
8428 ATTRIBUTE_PRINTF (1, 2);
8429
8430 static enum packet_result
8431 remote_send_printf (const char *format, ...)
8432 {
8433 struct remote_state *rs = get_remote_state ();
8434 int max_size = get_remote_packet_size ();
8435 va_list ap;
8436
8437 va_start (ap, format);
8438
8439 rs->buf[0] = '\0';
8440 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8441 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8442
8443 if (putpkt (rs->buf) < 0)
8444 error (_("Communication problem with target."));
8445
8446 rs->buf[0] = '\0';
8447 getpkt (&rs->buf, &rs->buf_size, 0);
8448
8449 return packet_check_result (rs->buf);
8450 }
8451
8452 /* Flash writing can take quite some time. We'll set
8453 effectively infinite timeout for flash operations.
8454 In future, we'll need to decide on a better approach. */
8455 static const int remote_flash_timeout = 1000;
8456
8457 static void
8458 remote_flash_erase (struct target_ops *ops,
8459 ULONGEST address, LONGEST length)
8460 {
8461 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8462 enum packet_result ret;
8463 scoped_restore restore_timeout
8464 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8465
8466 ret = remote_send_printf ("vFlashErase:%s,%s",
8467 phex (address, addr_size),
8468 phex (length, 4));
8469 switch (ret)
8470 {
8471 case PACKET_UNKNOWN:
8472 error (_("Remote target does not support flash erase"));
8473 case PACKET_ERROR:
8474 error (_("Error erasing flash with vFlashErase packet"));
8475 default:
8476 break;
8477 }
8478 }
8479
8480 static enum target_xfer_status
8481 remote_flash_write (struct target_ops *ops, ULONGEST address,
8482 ULONGEST length, ULONGEST *xfered_len,
8483 const gdb_byte *data)
8484 {
8485 scoped_restore restore_timeout
8486 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8487 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8488 xfered_len,'X', 0);
8489 }
8490
8491 static void
8492 remote_flash_done (struct target_ops *ops)
8493 {
8494 int ret;
8495
8496 scoped_restore restore_timeout
8497 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8498
8499 ret = remote_send_printf ("vFlashDone");
8500
8501 switch (ret)
8502 {
8503 case PACKET_UNKNOWN:
8504 error (_("Remote target does not support vFlashDone"));
8505 case PACKET_ERROR:
8506 error (_("Error finishing flash operation"));
8507 default:
8508 break;
8509 }
8510 }
8511
8512 static void
8513 remote_files_info (struct target_ops *ignore)
8514 {
8515 puts_filtered ("Debugging a target over a serial line.\n");
8516 }
8517 \f
8518 /* Stuff for dealing with the packets which are part of this protocol.
8519 See comment at top of file for details. */
8520
8521 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8522 error to higher layers. Called when a serial error is detected.
8523 The exception message is STRING, followed by a colon and a blank,
8524 the system error message for errno at function entry and final dot
8525 for output compatibility with throw_perror_with_name. */
8526
8527 static void
8528 unpush_and_perror (const char *string)
8529 {
8530 int saved_errno = errno;
8531
8532 remote_unpush_target ();
8533 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8534 safe_strerror (saved_errno));
8535 }
8536
8537 /* Read a single character from the remote end. The current quit
8538 handler is overridden to avoid quitting in the middle of packet
8539 sequence, as that would break communication with the remote server.
8540 See remote_serial_quit_handler for more detail. */
8541
8542 static int
8543 readchar (int timeout)
8544 {
8545 int ch;
8546 struct remote_state *rs = get_remote_state ();
8547
8548 {
8549 scoped_restore restore_quit
8550 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8551
8552 rs->got_ctrlc_during_io = 0;
8553
8554 ch = serial_readchar (rs->remote_desc, timeout);
8555
8556 if (rs->got_ctrlc_during_io)
8557 set_quit_flag ();
8558 }
8559
8560 if (ch >= 0)
8561 return ch;
8562
8563 switch ((enum serial_rc) ch)
8564 {
8565 case SERIAL_EOF:
8566 remote_unpush_target ();
8567 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8568 /* no return */
8569 case SERIAL_ERROR:
8570 unpush_and_perror (_("Remote communication error. "
8571 "Target disconnected."));
8572 /* no return */
8573 case SERIAL_TIMEOUT:
8574 break;
8575 }
8576 return ch;
8577 }
8578
8579 /* Wrapper for serial_write that closes the target and throws if
8580 writing fails. The current quit handler is overridden to avoid
8581 quitting in the middle of packet sequence, as that would break
8582 communication with the remote server. See
8583 remote_serial_quit_handler for more detail. */
8584
8585 static void
8586 remote_serial_write (const char *str, int len)
8587 {
8588 struct remote_state *rs = get_remote_state ();
8589
8590 scoped_restore restore_quit
8591 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8592
8593 rs->got_ctrlc_during_io = 0;
8594
8595 if (serial_write (rs->remote_desc, str, len))
8596 {
8597 unpush_and_perror (_("Remote communication error. "
8598 "Target disconnected."));
8599 }
8600
8601 if (rs->got_ctrlc_during_io)
8602 set_quit_flag ();
8603 }
8604
8605 /* Send the command in *BUF to the remote machine, and read the reply
8606 into *BUF. Report an error if we get an error reply. Resize
8607 *BUF using xrealloc if necessary to hold the result, and update
8608 *SIZEOF_BUF. */
8609
8610 static void
8611 remote_send (char **buf,
8612 long *sizeof_buf)
8613 {
8614 putpkt (*buf);
8615 getpkt (buf, sizeof_buf, 0);
8616
8617 if ((*buf)[0] == 'E')
8618 error (_("Remote failure reply: %s"), *buf);
8619 }
8620
8621 /* Return a string representing an escaped version of BUF, of len N.
8622 E.g. \n is converted to \\n, \t to \\t, etc. */
8623
8624 static std::string
8625 escape_buffer (const char *buf, int n)
8626 {
8627 string_file stb;
8628
8629 stb.putstrn (buf, n, '\\');
8630 return std::move (stb.string ());
8631 }
8632
8633 /* Display a null-terminated packet on stdout, for debugging, using C
8634 string notation. */
8635
8636 static void
8637 print_packet (const char *buf)
8638 {
8639 puts_filtered ("\"");
8640 fputstr_filtered (buf, '"', gdb_stdout);
8641 puts_filtered ("\"");
8642 }
8643
8644 int
8645 putpkt (const char *buf)
8646 {
8647 return putpkt_binary (buf, strlen (buf));
8648 }
8649
8650 /* Send a packet to the remote machine, with error checking. The data
8651 of the packet is in BUF. The string in BUF can be at most
8652 get_remote_packet_size () - 5 to account for the $, # and checksum,
8653 and for a possible /0 if we are debugging (remote_debug) and want
8654 to print the sent packet as a string. */
8655
8656 static int
8657 putpkt_binary (const char *buf, int cnt)
8658 {
8659 struct remote_state *rs = get_remote_state ();
8660 int i;
8661 unsigned char csum = 0;
8662 gdb::def_vector<char> data (cnt + 6);
8663 char *buf2 = data.data ();
8664
8665 int ch;
8666 int tcount = 0;
8667 char *p;
8668
8669 /* Catch cases like trying to read memory or listing threads while
8670 we're waiting for a stop reply. The remote server wouldn't be
8671 ready to handle this request, so we'd hang and timeout. We don't
8672 have to worry about this in synchronous mode, because in that
8673 case it's not possible to issue a command while the target is
8674 running. This is not a problem in non-stop mode, because in that
8675 case, the stub is always ready to process serial input. */
8676 if (!target_is_non_stop_p ()
8677 && target_is_async_p ()
8678 && rs->waiting_for_stop_reply)
8679 {
8680 error (_("Cannot execute this command while the target is running.\n"
8681 "Use the \"interrupt\" command to stop the target\n"
8682 "and then try again."));
8683 }
8684
8685 /* We're sending out a new packet. Make sure we don't look at a
8686 stale cached response. */
8687 rs->cached_wait_status = 0;
8688
8689 /* Copy the packet into buffer BUF2, encapsulating it
8690 and giving it a checksum. */
8691
8692 p = buf2;
8693 *p++ = '$';
8694
8695 for (i = 0; i < cnt; i++)
8696 {
8697 csum += buf[i];
8698 *p++ = buf[i];
8699 }
8700 *p++ = '#';
8701 *p++ = tohex ((csum >> 4) & 0xf);
8702 *p++ = tohex (csum & 0xf);
8703
8704 /* Send it over and over until we get a positive ack. */
8705
8706 while (1)
8707 {
8708 int started_error_output = 0;
8709
8710 if (remote_debug)
8711 {
8712 *p = '\0';
8713
8714 int len = (int) (p - buf2);
8715
8716 std::string str
8717 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8718
8719 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8720
8721 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8722 {
8723 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8724 str.length () - REMOTE_DEBUG_MAX_CHAR);
8725 }
8726
8727 fprintf_unfiltered (gdb_stdlog, "...");
8728
8729 gdb_flush (gdb_stdlog);
8730 }
8731 remote_serial_write (buf2, p - buf2);
8732
8733 /* If this is a no acks version of the remote protocol, send the
8734 packet and move on. */
8735 if (rs->noack_mode)
8736 break;
8737
8738 /* Read until either a timeout occurs (-2) or '+' is read.
8739 Handle any notification that arrives in the mean time. */
8740 while (1)
8741 {
8742 ch = readchar (remote_timeout);
8743
8744 if (remote_debug)
8745 {
8746 switch (ch)
8747 {
8748 case '+':
8749 case '-':
8750 case SERIAL_TIMEOUT:
8751 case '$':
8752 case '%':
8753 if (started_error_output)
8754 {
8755 putchar_unfiltered ('\n');
8756 started_error_output = 0;
8757 }
8758 }
8759 }
8760
8761 switch (ch)
8762 {
8763 case '+':
8764 if (remote_debug)
8765 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8766 return 1;
8767 case '-':
8768 if (remote_debug)
8769 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8770 /* FALLTHROUGH */
8771 case SERIAL_TIMEOUT:
8772 tcount++;
8773 if (tcount > 3)
8774 return 0;
8775 break; /* Retransmit buffer. */
8776 case '$':
8777 {
8778 if (remote_debug)
8779 fprintf_unfiltered (gdb_stdlog,
8780 "Packet instead of Ack, ignoring it\n");
8781 /* It's probably an old response sent because an ACK
8782 was lost. Gobble up the packet and ack it so it
8783 doesn't get retransmitted when we resend this
8784 packet. */
8785 skip_frame ();
8786 remote_serial_write ("+", 1);
8787 continue; /* Now, go look for +. */
8788 }
8789
8790 case '%':
8791 {
8792 int val;
8793
8794 /* If we got a notification, handle it, and go back to looking
8795 for an ack. */
8796 /* We've found the start of a notification. Now
8797 collect the data. */
8798 val = read_frame (&rs->buf, &rs->buf_size);
8799 if (val >= 0)
8800 {
8801 if (remote_debug)
8802 {
8803 std::string str = escape_buffer (rs->buf, val);
8804
8805 fprintf_unfiltered (gdb_stdlog,
8806 " Notification received: %s\n",
8807 str.c_str ());
8808 }
8809 handle_notification (rs->notif_state, rs->buf);
8810 /* We're in sync now, rewait for the ack. */
8811 tcount = 0;
8812 }
8813 else
8814 {
8815 if (remote_debug)
8816 {
8817 if (!started_error_output)
8818 {
8819 started_error_output = 1;
8820 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8821 }
8822 fputc_unfiltered (ch & 0177, gdb_stdlog);
8823 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8824 }
8825 }
8826 continue;
8827 }
8828 /* fall-through */
8829 default:
8830 if (remote_debug)
8831 {
8832 if (!started_error_output)
8833 {
8834 started_error_output = 1;
8835 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8836 }
8837 fputc_unfiltered (ch & 0177, gdb_stdlog);
8838 }
8839 continue;
8840 }
8841 break; /* Here to retransmit. */
8842 }
8843
8844 #if 0
8845 /* This is wrong. If doing a long backtrace, the user should be
8846 able to get out next time we call QUIT, without anything as
8847 violent as interrupt_query. If we want to provide a way out of
8848 here without getting to the next QUIT, it should be based on
8849 hitting ^C twice as in remote_wait. */
8850 if (quit_flag)
8851 {
8852 quit_flag = 0;
8853 interrupt_query ();
8854 }
8855 #endif
8856 }
8857
8858 return 0;
8859 }
8860
8861 /* Come here after finding the start of a frame when we expected an
8862 ack. Do our best to discard the rest of this packet. */
8863
8864 static void
8865 skip_frame (void)
8866 {
8867 int c;
8868
8869 while (1)
8870 {
8871 c = readchar (remote_timeout);
8872 switch (c)
8873 {
8874 case SERIAL_TIMEOUT:
8875 /* Nothing we can do. */
8876 return;
8877 case '#':
8878 /* Discard the two bytes of checksum and stop. */
8879 c = readchar (remote_timeout);
8880 if (c >= 0)
8881 c = readchar (remote_timeout);
8882
8883 return;
8884 case '*': /* Run length encoding. */
8885 /* Discard the repeat count. */
8886 c = readchar (remote_timeout);
8887 if (c < 0)
8888 return;
8889 break;
8890 default:
8891 /* A regular character. */
8892 break;
8893 }
8894 }
8895 }
8896
8897 /* Come here after finding the start of the frame. Collect the rest
8898 into *BUF, verifying the checksum, length, and handling run-length
8899 compression. NUL terminate the buffer. If there is not enough room,
8900 expand *BUF using xrealloc.
8901
8902 Returns -1 on error, number of characters in buffer (ignoring the
8903 trailing NULL) on success. (could be extended to return one of the
8904 SERIAL status indications). */
8905
8906 static long
8907 read_frame (char **buf_p,
8908 long *sizeof_buf)
8909 {
8910 unsigned char csum;
8911 long bc;
8912 int c;
8913 char *buf = *buf_p;
8914 struct remote_state *rs = get_remote_state ();
8915
8916 csum = 0;
8917 bc = 0;
8918
8919 while (1)
8920 {
8921 c = readchar (remote_timeout);
8922 switch (c)
8923 {
8924 case SERIAL_TIMEOUT:
8925 if (remote_debug)
8926 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8927 return -1;
8928 case '$':
8929 if (remote_debug)
8930 fputs_filtered ("Saw new packet start in middle of old one\n",
8931 gdb_stdlog);
8932 return -1; /* Start a new packet, count retries. */
8933 case '#':
8934 {
8935 unsigned char pktcsum;
8936 int check_0 = 0;
8937 int check_1 = 0;
8938
8939 buf[bc] = '\0';
8940
8941 check_0 = readchar (remote_timeout);
8942 if (check_0 >= 0)
8943 check_1 = readchar (remote_timeout);
8944
8945 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8946 {
8947 if (remote_debug)
8948 fputs_filtered ("Timeout in checksum, retrying\n",
8949 gdb_stdlog);
8950 return -1;
8951 }
8952 else if (check_0 < 0 || check_1 < 0)
8953 {
8954 if (remote_debug)
8955 fputs_filtered ("Communication error in checksum\n",
8956 gdb_stdlog);
8957 return -1;
8958 }
8959
8960 /* Don't recompute the checksum; with no ack packets we
8961 don't have any way to indicate a packet retransmission
8962 is necessary. */
8963 if (rs->noack_mode)
8964 return bc;
8965
8966 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8967 if (csum == pktcsum)
8968 return bc;
8969
8970 if (remote_debug)
8971 {
8972 std::string str = escape_buffer (buf, bc);
8973
8974 fprintf_unfiltered (gdb_stdlog,
8975 "Bad checksum, sentsum=0x%x, "
8976 "csum=0x%x, buf=%s\n",
8977 pktcsum, csum, str.c_str ());
8978 }
8979 /* Number of characters in buffer ignoring trailing
8980 NULL. */
8981 return -1;
8982 }
8983 case '*': /* Run length encoding. */
8984 {
8985 int repeat;
8986
8987 csum += c;
8988 c = readchar (remote_timeout);
8989 csum += c;
8990 repeat = c - ' ' + 3; /* Compute repeat count. */
8991
8992 /* The character before ``*'' is repeated. */
8993
8994 if (repeat > 0 && repeat <= 255 && bc > 0)
8995 {
8996 if (bc + repeat - 1 >= *sizeof_buf - 1)
8997 {
8998 /* Make some more room in the buffer. */
8999 *sizeof_buf += repeat;
9000 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9001 buf = *buf_p;
9002 }
9003
9004 memset (&buf[bc], buf[bc - 1], repeat);
9005 bc += repeat;
9006 continue;
9007 }
9008
9009 buf[bc] = '\0';
9010 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9011 return -1;
9012 }
9013 default:
9014 if (bc >= *sizeof_buf - 1)
9015 {
9016 /* Make some more room in the buffer. */
9017 *sizeof_buf *= 2;
9018 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9019 buf = *buf_p;
9020 }
9021
9022 buf[bc++] = c;
9023 csum += c;
9024 continue;
9025 }
9026 }
9027 }
9028
9029 /* Read a packet from the remote machine, with error checking, and
9030 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9031 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9032 rather than timing out; this is used (in synchronous mode) to wait
9033 for a target that is is executing user code to stop. */
9034 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9035 don't have to change all the calls to getpkt to deal with the
9036 return value, because at the moment I don't know what the right
9037 thing to do it for those. */
9038 void
9039 getpkt (char **buf,
9040 long *sizeof_buf,
9041 int forever)
9042 {
9043 getpkt_sane (buf, sizeof_buf, forever);
9044 }
9045
9046
9047 /* Read a packet from the remote machine, with error checking, and
9048 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9049 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9050 rather than timing out; this is used (in synchronous mode) to wait
9051 for a target that is is executing user code to stop. If FOREVER ==
9052 0, this function is allowed to time out gracefully and return an
9053 indication of this to the caller. Otherwise return the number of
9054 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9055 enough reason to return to the caller. *IS_NOTIF is an output
9056 boolean that indicates whether *BUF holds a notification or not
9057 (a regular packet). */
9058
9059 static int
9060 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9061 int expecting_notif, int *is_notif)
9062 {
9063 struct remote_state *rs = get_remote_state ();
9064 int c;
9065 int tries;
9066 int timeout;
9067 int val = -1;
9068
9069 /* We're reading a new response. Make sure we don't look at a
9070 previously cached response. */
9071 rs->cached_wait_status = 0;
9072
9073 strcpy (*buf, "timeout");
9074
9075 if (forever)
9076 timeout = watchdog > 0 ? watchdog : -1;
9077 else if (expecting_notif)
9078 timeout = 0; /* There should already be a char in the buffer. If
9079 not, bail out. */
9080 else
9081 timeout = remote_timeout;
9082
9083 #define MAX_TRIES 3
9084
9085 /* Process any number of notifications, and then return when
9086 we get a packet. */
9087 for (;;)
9088 {
9089 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9090 times. */
9091 for (tries = 1; tries <= MAX_TRIES; tries++)
9092 {
9093 /* This can loop forever if the remote side sends us
9094 characters continuously, but if it pauses, we'll get
9095 SERIAL_TIMEOUT from readchar because of timeout. Then
9096 we'll count that as a retry.
9097
9098 Note that even when forever is set, we will only wait
9099 forever prior to the start of a packet. After that, we
9100 expect characters to arrive at a brisk pace. They should
9101 show up within remote_timeout intervals. */
9102 do
9103 c = readchar (timeout);
9104 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9105
9106 if (c == SERIAL_TIMEOUT)
9107 {
9108 if (expecting_notif)
9109 return -1; /* Don't complain, it's normal to not get
9110 anything in this case. */
9111
9112 if (forever) /* Watchdog went off? Kill the target. */
9113 {
9114 remote_unpush_target ();
9115 throw_error (TARGET_CLOSE_ERROR,
9116 _("Watchdog timeout has expired. "
9117 "Target detached."));
9118 }
9119 if (remote_debug)
9120 fputs_filtered ("Timed out.\n", gdb_stdlog);
9121 }
9122 else
9123 {
9124 /* We've found the start of a packet or notification.
9125 Now collect the data. */
9126 val = read_frame (buf, sizeof_buf);
9127 if (val >= 0)
9128 break;
9129 }
9130
9131 remote_serial_write ("-", 1);
9132 }
9133
9134 if (tries > MAX_TRIES)
9135 {
9136 /* We have tried hard enough, and just can't receive the
9137 packet/notification. Give up. */
9138 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9139
9140 /* Skip the ack char if we're in no-ack mode. */
9141 if (!rs->noack_mode)
9142 remote_serial_write ("+", 1);
9143 return -1;
9144 }
9145
9146 /* If we got an ordinary packet, return that to our caller. */
9147 if (c == '$')
9148 {
9149 if (remote_debug)
9150 {
9151 std::string str
9152 = escape_buffer (*buf,
9153 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9154
9155 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9156 str.c_str ());
9157
9158 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9159 {
9160 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9161 str.length () - REMOTE_DEBUG_MAX_CHAR);
9162 }
9163
9164 fprintf_unfiltered (gdb_stdlog, "\n");
9165 }
9166
9167 /* Skip the ack char if we're in no-ack mode. */
9168 if (!rs->noack_mode)
9169 remote_serial_write ("+", 1);
9170 if (is_notif != NULL)
9171 *is_notif = 0;
9172 return val;
9173 }
9174
9175 /* If we got a notification, handle it, and go back to looking
9176 for a packet. */
9177 else
9178 {
9179 gdb_assert (c == '%');
9180
9181 if (remote_debug)
9182 {
9183 std::string str = escape_buffer (*buf, val);
9184
9185 fprintf_unfiltered (gdb_stdlog,
9186 " Notification received: %s\n",
9187 str.c_str ());
9188 }
9189 if (is_notif != NULL)
9190 *is_notif = 1;
9191
9192 handle_notification (rs->notif_state, *buf);
9193
9194 /* Notifications require no acknowledgement. */
9195
9196 if (expecting_notif)
9197 return val;
9198 }
9199 }
9200 }
9201
9202 static int
9203 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9204 {
9205 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9206 }
9207
9208 static int
9209 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9210 int *is_notif)
9211 {
9212 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9213 is_notif);
9214 }
9215
9216 /* Check whether EVENT is a fork event for the process specified
9217 by the pid passed in DATA, and if it is, kill the fork child. */
9218
9219 static int
9220 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9221 QUEUE_ITER (stop_reply_p) *iter,
9222 stop_reply_p event,
9223 void *data)
9224 {
9225 struct queue_iter_param *param = (struct queue_iter_param *) data;
9226 int parent_pid = *(int *) param->input;
9227
9228 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9229 {
9230 struct remote_state *rs = get_remote_state ();
9231 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9232 int res;
9233
9234 res = remote_vkill (child_pid, rs);
9235 if (res != 0)
9236 error (_("Can't kill fork child process %d"), child_pid);
9237 }
9238
9239 return 1;
9240 }
9241
9242 /* Kill any new fork children of process PID that haven't been
9243 processed by follow_fork. */
9244
9245 static void
9246 kill_new_fork_children (int pid, struct remote_state *rs)
9247 {
9248 struct thread_info *thread;
9249 struct notif_client *notif = &notif_client_stop;
9250 struct queue_iter_param param;
9251
9252 /* Kill the fork child threads of any threads in process PID
9253 that are stopped at a fork event. */
9254 ALL_NON_EXITED_THREADS (thread)
9255 {
9256 struct target_waitstatus *ws = &thread->pending_follow;
9257
9258 if (is_pending_fork_parent (ws, pid, thread->ptid))
9259 {
9260 struct remote_state *rs = get_remote_state ();
9261 int child_pid = ptid_get_pid (ws->value.related_pid);
9262 int res;
9263
9264 res = remote_vkill (child_pid, rs);
9265 if (res != 0)
9266 error (_("Can't kill fork child process %d"), child_pid);
9267 }
9268 }
9269
9270 /* Check for any pending fork events (not reported or processed yet)
9271 in process PID and kill those fork child threads as well. */
9272 remote_notif_get_pending_events (notif);
9273 param.input = &pid;
9274 param.output = NULL;
9275 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9276 kill_child_of_pending_fork, &param);
9277 }
9278
9279 \f
9280 /* Target hook to kill the current inferior. */
9281
9282 static void
9283 remote_kill (struct target_ops *ops)
9284 {
9285 int res = -1;
9286 int pid = ptid_get_pid (inferior_ptid);
9287 struct remote_state *rs = get_remote_state ();
9288
9289 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9290 {
9291 /* If we're stopped while forking and we haven't followed yet,
9292 kill the child task. We need to do this before killing the
9293 parent task because if this is a vfork then the parent will
9294 be sleeping. */
9295 kill_new_fork_children (pid, rs);
9296
9297 res = remote_vkill (pid, rs);
9298 if (res == 0)
9299 {
9300 target_mourn_inferior (inferior_ptid);
9301 return;
9302 }
9303 }
9304
9305 /* If we are in 'target remote' mode and we are killing the only
9306 inferior, then we will tell gdbserver to exit and unpush the
9307 target. */
9308 if (res == -1 && !remote_multi_process_p (rs)
9309 && number_of_live_inferiors () == 1)
9310 {
9311 remote_kill_k ();
9312
9313 /* We've killed the remote end, we get to mourn it. If we are
9314 not in extended mode, mourning the inferior also unpushes
9315 remote_ops from the target stack, which closes the remote
9316 connection. */
9317 target_mourn_inferior (inferior_ptid);
9318
9319 return;
9320 }
9321
9322 error (_("Can't kill process"));
9323 }
9324
9325 /* Send a kill request to the target using the 'vKill' packet. */
9326
9327 static int
9328 remote_vkill (int pid, struct remote_state *rs)
9329 {
9330 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9331 return -1;
9332
9333 /* Tell the remote target to detach. */
9334 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9335 putpkt (rs->buf);
9336 getpkt (&rs->buf, &rs->buf_size, 0);
9337
9338 switch (packet_ok (rs->buf,
9339 &remote_protocol_packets[PACKET_vKill]))
9340 {
9341 case PACKET_OK:
9342 return 0;
9343 case PACKET_ERROR:
9344 return 1;
9345 case PACKET_UNKNOWN:
9346 return -1;
9347 default:
9348 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9349 }
9350 }
9351
9352 /* Send a kill request to the target using the 'k' packet. */
9353
9354 static void
9355 remote_kill_k (void)
9356 {
9357 /* Catch errors so the user can quit from gdb even when we
9358 aren't on speaking terms with the remote system. */
9359 TRY
9360 {
9361 putpkt ("k");
9362 }
9363 CATCH (ex, RETURN_MASK_ERROR)
9364 {
9365 if (ex.error == TARGET_CLOSE_ERROR)
9366 {
9367 /* If we got an (EOF) error that caused the target
9368 to go away, then we're done, that's what we wanted.
9369 "k" is susceptible to cause a premature EOF, given
9370 that the remote server isn't actually required to
9371 reply to "k", and it can happen that it doesn't
9372 even get to reply ACK to the "k". */
9373 return;
9374 }
9375
9376 /* Otherwise, something went wrong. We didn't actually kill
9377 the target. Just propagate the exception, and let the
9378 user or higher layers decide what to do. */
9379 throw_exception (ex);
9380 }
9381 END_CATCH
9382 }
9383
9384 static void
9385 remote_mourn (struct target_ops *target)
9386 {
9387 struct remote_state *rs = get_remote_state ();
9388
9389 /* In 'target remote' mode with one inferior, we close the connection. */
9390 if (!rs->extended && number_of_live_inferiors () <= 1)
9391 {
9392 unpush_target (target);
9393
9394 /* remote_close takes care of doing most of the clean up. */
9395 generic_mourn_inferior ();
9396 return;
9397 }
9398
9399 /* In case we got here due to an error, but we're going to stay
9400 connected. */
9401 rs->waiting_for_stop_reply = 0;
9402
9403 /* If the current general thread belonged to the process we just
9404 detached from or has exited, the remote side current general
9405 thread becomes undefined. Considering a case like this:
9406
9407 - We just got here due to a detach.
9408 - The process that we're detaching from happens to immediately
9409 report a global breakpoint being hit in non-stop mode, in the
9410 same thread we had selected before.
9411 - GDB attaches to this process again.
9412 - This event happens to be the next event we handle.
9413
9414 GDB would consider that the current general thread didn't need to
9415 be set on the stub side (with Hg), since for all it knew,
9416 GENERAL_THREAD hadn't changed.
9417
9418 Notice that although in all-stop mode, the remote server always
9419 sets the current thread to the thread reporting the stop event,
9420 that doesn't happen in non-stop mode; in non-stop, the stub *must
9421 not* change the current thread when reporting a breakpoint hit,
9422 due to the decoupling of event reporting and event handling.
9423
9424 To keep things simple, we always invalidate our notion of the
9425 current thread. */
9426 record_currthread (rs, minus_one_ptid);
9427
9428 /* Call common code to mark the inferior as not running. */
9429 generic_mourn_inferior ();
9430
9431 if (!have_inferiors ())
9432 {
9433 if (!remote_multi_process_p (rs))
9434 {
9435 /* Check whether the target is running now - some remote stubs
9436 automatically restart after kill. */
9437 putpkt ("?");
9438 getpkt (&rs->buf, &rs->buf_size, 0);
9439
9440 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9441 {
9442 /* Assume that the target has been restarted. Set
9443 inferior_ptid so that bits of core GDB realizes
9444 there's something here, e.g., so that the user can
9445 say "kill" again. */
9446 inferior_ptid = magic_null_ptid;
9447 }
9448 }
9449 }
9450 }
9451
9452 static int
9453 extended_remote_supports_disable_randomization (struct target_ops *self)
9454 {
9455 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9456 }
9457
9458 static void
9459 extended_remote_disable_randomization (int val)
9460 {
9461 struct remote_state *rs = get_remote_state ();
9462 char *reply;
9463
9464 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9465 val);
9466 putpkt (rs->buf);
9467 reply = remote_get_noisy_reply ();
9468 if (*reply == '\0')
9469 error (_("Target does not support QDisableRandomization."));
9470 if (strcmp (reply, "OK") != 0)
9471 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9472 }
9473
9474 static int
9475 extended_remote_run (const std::string &args)
9476 {
9477 struct remote_state *rs = get_remote_state ();
9478 int len;
9479 const char *remote_exec_file = get_remote_exec_file ();
9480
9481 /* If the user has disabled vRun support, or we have detected that
9482 support is not available, do not try it. */
9483 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9484 return -1;
9485
9486 strcpy (rs->buf, "vRun;");
9487 len = strlen (rs->buf);
9488
9489 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9490 error (_("Remote file name too long for run packet"));
9491 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9492 strlen (remote_exec_file));
9493
9494 if (!args.empty ())
9495 {
9496 int i;
9497
9498 gdb_argv argv (args.c_str ());
9499 for (i = 0; argv[i] != NULL; i++)
9500 {
9501 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9502 error (_("Argument list too long for run packet"));
9503 rs->buf[len++] = ';';
9504 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9505 strlen (argv[i]));
9506 }
9507 }
9508
9509 rs->buf[len++] = '\0';
9510
9511 putpkt (rs->buf);
9512 getpkt (&rs->buf, &rs->buf_size, 0);
9513
9514 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9515 {
9516 case PACKET_OK:
9517 /* We have a wait response. All is well. */
9518 return 0;
9519 case PACKET_UNKNOWN:
9520 return -1;
9521 case PACKET_ERROR:
9522 if (remote_exec_file[0] == '\0')
9523 error (_("Running the default executable on the remote target failed; "
9524 "try \"set remote exec-file\"?"));
9525 else
9526 error (_("Running \"%s\" on the remote target failed"),
9527 remote_exec_file);
9528 default:
9529 gdb_assert_not_reached (_("bad switch"));
9530 }
9531 }
9532
9533 /* Helper function to send set/unset environment packets. ACTION is
9534 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9535 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9536 sent. */
9537
9538 static void
9539 send_environment_packet (struct remote_state *rs,
9540 const char *action,
9541 const char *packet,
9542 const char *value)
9543 {
9544 /* Convert the environment variable to an hex string, which
9545 is the best format to be transmitted over the wire. */
9546 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9547 strlen (value));
9548
9549 xsnprintf (rs->buf, get_remote_packet_size (),
9550 "%s:%s", packet, encoded_value.c_str ());
9551
9552 putpkt (rs->buf);
9553 getpkt (&rs->buf, &rs->buf_size, 0);
9554 if (strcmp (rs->buf, "OK") != 0)
9555 warning (_("Unable to %s environment variable '%s' on remote."),
9556 action, value);
9557 }
9558
9559 /* Helper function to handle the QEnvironment* packets. */
9560
9561 static void
9562 extended_remote_environment_support (struct remote_state *rs)
9563 {
9564 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9565 {
9566 putpkt ("QEnvironmentReset");
9567 getpkt (&rs->buf, &rs->buf_size, 0);
9568 if (strcmp (rs->buf, "OK") != 0)
9569 warning (_("Unable to reset environment on remote."));
9570 }
9571
9572 gdb_environ *e = &current_inferior ()->environment;
9573
9574 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9575 for (const std::string &el : e->user_set_env ())
9576 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9577 el.c_str ());
9578
9579 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9580 for (const std::string &el : e->user_unset_env ())
9581 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9582 }
9583
9584 /* Helper function to set the current working directory for the
9585 inferior in the remote target. */
9586
9587 static void
9588 extended_remote_set_inferior_cwd (struct remote_state *rs)
9589 {
9590 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9591 {
9592 const char *inferior_cwd = get_inferior_cwd ();
9593
9594 if (inferior_cwd != NULL)
9595 {
9596 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9597 strlen (inferior_cwd));
9598
9599 xsnprintf (rs->buf, get_remote_packet_size (),
9600 "QSetWorkingDir:%s", hexpath.c_str ());
9601 }
9602 else
9603 {
9604 /* An empty inferior_cwd means that the user wants us to
9605 reset the remote server's inferior's cwd. */
9606 xsnprintf (rs->buf, get_remote_packet_size (),
9607 "QSetWorkingDir:");
9608 }
9609
9610 putpkt (rs->buf);
9611 getpkt (&rs->buf, &rs->buf_size, 0);
9612 if (packet_ok (rs->buf,
9613 &remote_protocol_packets[PACKET_QSetWorkingDir])
9614 != PACKET_OK)
9615 error (_("\
9616 Remote replied unexpectedly while setting the inferior's working\n\
9617 directory: %s"),
9618 rs->buf);
9619
9620 }
9621 }
9622
9623 /* In the extended protocol we want to be able to do things like
9624 "run" and have them basically work as expected. So we need
9625 a special create_inferior function. We support changing the
9626 executable file and the command line arguments, but not the
9627 environment. */
9628
9629 static void
9630 extended_remote_create_inferior (struct target_ops *ops,
9631 const char *exec_file,
9632 const std::string &args,
9633 char **env, int from_tty)
9634 {
9635 int run_worked;
9636 char *stop_reply;
9637 struct remote_state *rs = get_remote_state ();
9638 const char *remote_exec_file = get_remote_exec_file ();
9639
9640 /* If running asynchronously, register the target file descriptor
9641 with the event loop. */
9642 if (target_can_async_p ())
9643 target_async (1);
9644
9645 /* Disable address space randomization if requested (and supported). */
9646 if (extended_remote_supports_disable_randomization (ops))
9647 extended_remote_disable_randomization (disable_randomization);
9648
9649 /* If startup-with-shell is on, we inform gdbserver to start the
9650 remote inferior using a shell. */
9651 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9652 {
9653 xsnprintf (rs->buf, get_remote_packet_size (),
9654 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9655 putpkt (rs->buf);
9656 getpkt (&rs->buf, &rs->buf_size, 0);
9657 if (strcmp (rs->buf, "OK") != 0)
9658 error (_("\
9659 Remote replied unexpectedly while setting startup-with-shell: %s"),
9660 rs->buf);
9661 }
9662
9663 extended_remote_environment_support (rs);
9664
9665 extended_remote_set_inferior_cwd (rs);
9666
9667 /* Now restart the remote server. */
9668 run_worked = extended_remote_run (args) != -1;
9669 if (!run_worked)
9670 {
9671 /* vRun was not supported. Fail if we need it to do what the
9672 user requested. */
9673 if (remote_exec_file[0])
9674 error (_("Remote target does not support \"set remote exec-file\""));
9675 if (!args.empty ())
9676 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9677
9678 /* Fall back to "R". */
9679 extended_remote_restart ();
9680 }
9681
9682 if (!have_inferiors ())
9683 {
9684 /* Clean up from the last time we ran, before we mark the target
9685 running again. This will mark breakpoints uninserted, and
9686 get_offsets may insert breakpoints. */
9687 init_thread_list ();
9688 init_wait_for_inferior ();
9689 }
9690
9691 /* vRun's success return is a stop reply. */
9692 stop_reply = run_worked ? rs->buf : NULL;
9693 add_current_inferior_and_thread (stop_reply);
9694
9695 /* Get updated offsets, if the stub uses qOffsets. */
9696 get_offsets ();
9697 }
9698 \f
9699
9700 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9701 the list of conditions (in agent expression bytecode format), if any, the
9702 target needs to evaluate. The output is placed into the packet buffer
9703 started from BUF and ended at BUF_END. */
9704
9705 static int
9706 remote_add_target_side_condition (struct gdbarch *gdbarch,
9707 struct bp_target_info *bp_tgt, char *buf,
9708 char *buf_end)
9709 {
9710 if (bp_tgt->conditions.empty ())
9711 return 0;
9712
9713 buf += strlen (buf);
9714 xsnprintf (buf, buf_end - buf, "%s", ";");
9715 buf++;
9716
9717 /* Send conditions to the target. */
9718 for (agent_expr *aexpr : bp_tgt->conditions)
9719 {
9720 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9721 buf += strlen (buf);
9722 for (int i = 0; i < aexpr->len; ++i)
9723 buf = pack_hex_byte (buf, aexpr->buf[i]);
9724 *buf = '\0';
9725 }
9726 return 0;
9727 }
9728
9729 static void
9730 remote_add_target_side_commands (struct gdbarch *gdbarch,
9731 struct bp_target_info *bp_tgt, char *buf)
9732 {
9733 if (bp_tgt->tcommands.empty ())
9734 return;
9735
9736 buf += strlen (buf);
9737
9738 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9739 buf += strlen (buf);
9740
9741 /* Concatenate all the agent expressions that are commands into the
9742 cmds parameter. */
9743 for (agent_expr *aexpr : bp_tgt->tcommands)
9744 {
9745 sprintf (buf, "X%x,", aexpr->len);
9746 buf += strlen (buf);
9747 for (int i = 0; i < aexpr->len; ++i)
9748 buf = pack_hex_byte (buf, aexpr->buf[i]);
9749 *buf = '\0';
9750 }
9751 }
9752
9753 /* Insert a breakpoint. On targets that have software breakpoint
9754 support, we ask the remote target to do the work; on targets
9755 which don't, we insert a traditional memory breakpoint. */
9756
9757 static int
9758 remote_insert_breakpoint (struct target_ops *ops,
9759 struct gdbarch *gdbarch,
9760 struct bp_target_info *bp_tgt)
9761 {
9762 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9763 If it succeeds, then set the support to PACKET_ENABLE. If it
9764 fails, and the user has explicitly requested the Z support then
9765 report an error, otherwise, mark it disabled and go on. */
9766
9767 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9768 {
9769 CORE_ADDR addr = bp_tgt->reqstd_address;
9770 struct remote_state *rs;
9771 char *p, *endbuf;
9772
9773 /* Make sure the remote is pointing at the right process, if
9774 necessary. */
9775 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9776 set_general_process ();
9777
9778 rs = get_remote_state ();
9779 p = rs->buf;
9780 endbuf = rs->buf + get_remote_packet_size ();
9781
9782 *(p++) = 'Z';
9783 *(p++) = '0';
9784 *(p++) = ',';
9785 addr = (ULONGEST) remote_address_masked (addr);
9786 p += hexnumstr (p, addr);
9787 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9788
9789 if (remote_supports_cond_breakpoints (ops))
9790 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9791
9792 if (remote_can_run_breakpoint_commands (ops))
9793 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9794
9795 putpkt (rs->buf);
9796 getpkt (&rs->buf, &rs->buf_size, 0);
9797
9798 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9799 {
9800 case PACKET_ERROR:
9801 return -1;
9802 case PACKET_OK:
9803 return 0;
9804 case PACKET_UNKNOWN:
9805 break;
9806 }
9807 }
9808
9809 /* If this breakpoint has target-side commands but this stub doesn't
9810 support Z0 packets, throw error. */
9811 if (!bp_tgt->tcommands.empty ())
9812 throw_error (NOT_SUPPORTED_ERROR, _("\
9813 Target doesn't support breakpoints that have target side commands."));
9814
9815 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9816 }
9817
9818 static int
9819 remote_remove_breakpoint (struct target_ops *ops,
9820 struct gdbarch *gdbarch,
9821 struct bp_target_info *bp_tgt,
9822 enum remove_bp_reason reason)
9823 {
9824 CORE_ADDR addr = bp_tgt->placed_address;
9825 struct remote_state *rs = get_remote_state ();
9826
9827 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9828 {
9829 char *p = rs->buf;
9830 char *endbuf = rs->buf + get_remote_packet_size ();
9831
9832 /* Make sure the remote is pointing at the right process, if
9833 necessary. */
9834 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9835 set_general_process ();
9836
9837 *(p++) = 'z';
9838 *(p++) = '0';
9839 *(p++) = ',';
9840
9841 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9842 p += hexnumstr (p, addr);
9843 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9844
9845 putpkt (rs->buf);
9846 getpkt (&rs->buf, &rs->buf_size, 0);
9847
9848 return (rs->buf[0] == 'E');
9849 }
9850
9851 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9852 }
9853
9854 static enum Z_packet_type
9855 watchpoint_to_Z_packet (int type)
9856 {
9857 switch (type)
9858 {
9859 case hw_write:
9860 return Z_PACKET_WRITE_WP;
9861 break;
9862 case hw_read:
9863 return Z_PACKET_READ_WP;
9864 break;
9865 case hw_access:
9866 return Z_PACKET_ACCESS_WP;
9867 break;
9868 default:
9869 internal_error (__FILE__, __LINE__,
9870 _("hw_bp_to_z: bad watchpoint type %d"), type);
9871 }
9872 }
9873
9874 static int
9875 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9876 enum target_hw_bp_type type, struct expression *cond)
9877 {
9878 struct remote_state *rs = get_remote_state ();
9879 char *endbuf = rs->buf + get_remote_packet_size ();
9880 char *p;
9881 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9882
9883 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9884 return 1;
9885
9886 /* Make sure the remote is pointing at the right process, if
9887 necessary. */
9888 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9889 set_general_process ();
9890
9891 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9892 p = strchr (rs->buf, '\0');
9893 addr = remote_address_masked (addr);
9894 p += hexnumstr (p, (ULONGEST) addr);
9895 xsnprintf (p, endbuf - p, ",%x", len);
9896
9897 putpkt (rs->buf);
9898 getpkt (&rs->buf, &rs->buf_size, 0);
9899
9900 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9901 {
9902 case PACKET_ERROR:
9903 return -1;
9904 case PACKET_UNKNOWN:
9905 return 1;
9906 case PACKET_OK:
9907 return 0;
9908 }
9909 internal_error (__FILE__, __LINE__,
9910 _("remote_insert_watchpoint: reached end of function"));
9911 }
9912
9913 static int
9914 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9915 CORE_ADDR start, int length)
9916 {
9917 CORE_ADDR diff = remote_address_masked (addr - start);
9918
9919 return diff < length;
9920 }
9921
9922
9923 static int
9924 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9925 enum target_hw_bp_type type, struct expression *cond)
9926 {
9927 struct remote_state *rs = get_remote_state ();
9928 char *endbuf = rs->buf + get_remote_packet_size ();
9929 char *p;
9930 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9931
9932 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9933 return -1;
9934
9935 /* Make sure the remote is pointing at the right process, if
9936 necessary. */
9937 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9938 set_general_process ();
9939
9940 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9941 p = strchr (rs->buf, '\0');
9942 addr = remote_address_masked (addr);
9943 p += hexnumstr (p, (ULONGEST) addr);
9944 xsnprintf (p, endbuf - p, ",%x", len);
9945 putpkt (rs->buf);
9946 getpkt (&rs->buf, &rs->buf_size, 0);
9947
9948 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9949 {
9950 case PACKET_ERROR:
9951 case PACKET_UNKNOWN:
9952 return -1;
9953 case PACKET_OK:
9954 return 0;
9955 }
9956 internal_error (__FILE__, __LINE__,
9957 _("remote_remove_watchpoint: reached end of function"));
9958 }
9959
9960
9961 int remote_hw_watchpoint_limit = -1;
9962 int remote_hw_watchpoint_length_limit = -1;
9963 int remote_hw_breakpoint_limit = -1;
9964
9965 static int
9966 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9967 CORE_ADDR addr, int len)
9968 {
9969 if (remote_hw_watchpoint_length_limit == 0)
9970 return 0;
9971 else if (remote_hw_watchpoint_length_limit < 0)
9972 return 1;
9973 else if (len <= remote_hw_watchpoint_length_limit)
9974 return 1;
9975 else
9976 return 0;
9977 }
9978
9979 static int
9980 remote_check_watch_resources (struct target_ops *self,
9981 enum bptype type, int cnt, int ot)
9982 {
9983 if (type == bp_hardware_breakpoint)
9984 {
9985 if (remote_hw_breakpoint_limit == 0)
9986 return 0;
9987 else if (remote_hw_breakpoint_limit < 0)
9988 return 1;
9989 else if (cnt <= remote_hw_breakpoint_limit)
9990 return 1;
9991 }
9992 else
9993 {
9994 if (remote_hw_watchpoint_limit == 0)
9995 return 0;
9996 else if (remote_hw_watchpoint_limit < 0)
9997 return 1;
9998 else if (ot)
9999 return -1;
10000 else if (cnt <= remote_hw_watchpoint_limit)
10001 return 1;
10002 }
10003 return -1;
10004 }
10005
10006 /* The to_stopped_by_sw_breakpoint method of target remote. */
10007
10008 static int
10009 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10010 {
10011 struct thread_info *thread = inferior_thread ();
10012
10013 return (thread->priv != NULL
10014 && (get_remote_thread_info (thread)->stop_reason
10015 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10016 }
10017
10018 /* The to_supports_stopped_by_sw_breakpoint method of target
10019 remote. */
10020
10021 static int
10022 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10023 {
10024 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10025 }
10026
10027 /* The to_stopped_by_hw_breakpoint method of target remote. */
10028
10029 static int
10030 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10031 {
10032 struct thread_info *thread = inferior_thread ();
10033
10034 return (thread->priv != NULL
10035 && (get_remote_thread_info (thread)->stop_reason
10036 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10037 }
10038
10039 /* The to_supports_stopped_by_hw_breakpoint method of target
10040 remote. */
10041
10042 static int
10043 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10044 {
10045 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10046 }
10047
10048 static int
10049 remote_stopped_by_watchpoint (struct target_ops *ops)
10050 {
10051 struct thread_info *thread = inferior_thread ();
10052
10053 return (thread->priv != NULL
10054 && (get_remote_thread_info (thread)->stop_reason
10055 == TARGET_STOPPED_BY_WATCHPOINT));
10056 }
10057
10058 static int
10059 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10060 {
10061 struct thread_info *thread = inferior_thread ();
10062
10063 if (thread->priv != NULL
10064 && (get_remote_thread_info (thread)->stop_reason
10065 == TARGET_STOPPED_BY_WATCHPOINT))
10066 {
10067 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10068 return 1;
10069 }
10070
10071 return 0;
10072 }
10073
10074
10075 static int
10076 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10077 struct bp_target_info *bp_tgt)
10078 {
10079 CORE_ADDR addr = bp_tgt->reqstd_address;
10080 struct remote_state *rs;
10081 char *p, *endbuf;
10082 char *message;
10083
10084 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10085 return -1;
10086
10087 /* Make sure the remote is pointing at the right process, if
10088 necessary. */
10089 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10090 set_general_process ();
10091
10092 rs = get_remote_state ();
10093 p = rs->buf;
10094 endbuf = rs->buf + get_remote_packet_size ();
10095
10096 *(p++) = 'Z';
10097 *(p++) = '1';
10098 *(p++) = ',';
10099
10100 addr = remote_address_masked (addr);
10101 p += hexnumstr (p, (ULONGEST) addr);
10102 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10103
10104 if (remote_supports_cond_breakpoints (self))
10105 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10106
10107 if (remote_can_run_breakpoint_commands (self))
10108 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10109
10110 putpkt (rs->buf);
10111 getpkt (&rs->buf, &rs->buf_size, 0);
10112
10113 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10114 {
10115 case PACKET_ERROR:
10116 if (rs->buf[1] == '.')
10117 {
10118 message = strchr (rs->buf + 2, '.');
10119 if (message)
10120 error (_("Remote failure reply: %s"), message + 1);
10121 }
10122 return -1;
10123 case PACKET_UNKNOWN:
10124 return -1;
10125 case PACKET_OK:
10126 return 0;
10127 }
10128 internal_error (__FILE__, __LINE__,
10129 _("remote_insert_hw_breakpoint: reached end of function"));
10130 }
10131
10132
10133 static int
10134 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10135 struct bp_target_info *bp_tgt)
10136 {
10137 CORE_ADDR addr;
10138 struct remote_state *rs = get_remote_state ();
10139 char *p = rs->buf;
10140 char *endbuf = rs->buf + get_remote_packet_size ();
10141
10142 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10143 return -1;
10144
10145 /* Make sure the remote is pointing at the right process, if
10146 necessary. */
10147 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10148 set_general_process ();
10149
10150 *(p++) = 'z';
10151 *(p++) = '1';
10152 *(p++) = ',';
10153
10154 addr = remote_address_masked (bp_tgt->placed_address);
10155 p += hexnumstr (p, (ULONGEST) addr);
10156 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10157
10158 putpkt (rs->buf);
10159 getpkt (&rs->buf, &rs->buf_size, 0);
10160
10161 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10162 {
10163 case PACKET_ERROR:
10164 case PACKET_UNKNOWN:
10165 return -1;
10166 case PACKET_OK:
10167 return 0;
10168 }
10169 internal_error (__FILE__, __LINE__,
10170 _("remote_remove_hw_breakpoint: reached end of function"));
10171 }
10172
10173 /* Verify memory using the "qCRC:" request. */
10174
10175 static int
10176 remote_verify_memory (struct target_ops *ops,
10177 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10178 {
10179 struct remote_state *rs = get_remote_state ();
10180 unsigned long host_crc, target_crc;
10181 char *tmp;
10182
10183 /* It doesn't make sense to use qCRC if the remote target is
10184 connected but not running. */
10185 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10186 {
10187 enum packet_result result;
10188
10189 /* Make sure the remote is pointing at the right process. */
10190 set_general_process ();
10191
10192 /* FIXME: assumes lma can fit into long. */
10193 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10194 (long) lma, (long) size);
10195 putpkt (rs->buf);
10196
10197 /* Be clever; compute the host_crc before waiting for target
10198 reply. */
10199 host_crc = xcrc32 (data, size, 0xffffffff);
10200
10201 getpkt (&rs->buf, &rs->buf_size, 0);
10202
10203 result = packet_ok (rs->buf,
10204 &remote_protocol_packets[PACKET_qCRC]);
10205 if (result == PACKET_ERROR)
10206 return -1;
10207 else if (result == PACKET_OK)
10208 {
10209 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10210 target_crc = target_crc * 16 + fromhex (*tmp);
10211
10212 return (host_crc == target_crc);
10213 }
10214 }
10215
10216 return simple_verify_memory (ops, data, lma, size);
10217 }
10218
10219 /* compare-sections command
10220
10221 With no arguments, compares each loadable section in the exec bfd
10222 with the same memory range on the target, and reports mismatches.
10223 Useful for verifying the image on the target against the exec file. */
10224
10225 static void
10226 compare_sections_command (const char *args, int from_tty)
10227 {
10228 asection *s;
10229 const char *sectname;
10230 bfd_size_type size;
10231 bfd_vma lma;
10232 int matched = 0;
10233 int mismatched = 0;
10234 int res;
10235 int read_only = 0;
10236
10237 if (!exec_bfd)
10238 error (_("command cannot be used without an exec file"));
10239
10240 /* Make sure the remote is pointing at the right process. */
10241 set_general_process ();
10242
10243 if (args != NULL && strcmp (args, "-r") == 0)
10244 {
10245 read_only = 1;
10246 args = NULL;
10247 }
10248
10249 for (s = exec_bfd->sections; s; s = s->next)
10250 {
10251 if (!(s->flags & SEC_LOAD))
10252 continue; /* Skip non-loadable section. */
10253
10254 if (read_only && (s->flags & SEC_READONLY) == 0)
10255 continue; /* Skip writeable sections */
10256
10257 size = bfd_get_section_size (s);
10258 if (size == 0)
10259 continue; /* Skip zero-length section. */
10260
10261 sectname = bfd_get_section_name (exec_bfd, s);
10262 if (args && strcmp (args, sectname) != 0)
10263 continue; /* Not the section selected by user. */
10264
10265 matched = 1; /* Do this section. */
10266 lma = s->lma;
10267
10268 gdb::byte_vector sectdata (size);
10269 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10270
10271 res = target_verify_memory (sectdata.data (), lma, size);
10272
10273 if (res == -1)
10274 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10275 paddress (target_gdbarch (), lma),
10276 paddress (target_gdbarch (), lma + size));
10277
10278 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10279 paddress (target_gdbarch (), lma),
10280 paddress (target_gdbarch (), lma + size));
10281 if (res)
10282 printf_filtered ("matched.\n");
10283 else
10284 {
10285 printf_filtered ("MIS-MATCHED!\n");
10286 mismatched++;
10287 }
10288 }
10289 if (mismatched > 0)
10290 warning (_("One or more sections of the target image does not match\n\
10291 the loaded file\n"));
10292 if (args && !matched)
10293 printf_filtered (_("No loaded section named '%s'.\n"), args);
10294 }
10295
10296 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10297 into remote target. The number of bytes written to the remote
10298 target is returned, or -1 for error. */
10299
10300 static enum target_xfer_status
10301 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10302 const char *annex, const gdb_byte *writebuf,
10303 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10304 struct packet_config *packet)
10305 {
10306 int i, buf_len;
10307 ULONGEST n;
10308 struct remote_state *rs = get_remote_state ();
10309 int max_size = get_memory_write_packet_size ();
10310
10311 if (packet_config_support (packet) == PACKET_DISABLE)
10312 return TARGET_XFER_E_IO;
10313
10314 /* Insert header. */
10315 i = snprintf (rs->buf, max_size,
10316 "qXfer:%s:write:%s:%s:",
10317 object_name, annex ? annex : "",
10318 phex_nz (offset, sizeof offset));
10319 max_size -= (i + 1);
10320
10321 /* Escape as much data as fits into rs->buf. */
10322 buf_len = remote_escape_output
10323 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10324
10325 if (putpkt_binary (rs->buf, i + buf_len) < 0
10326 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10327 || packet_ok (rs->buf, packet) != PACKET_OK)
10328 return TARGET_XFER_E_IO;
10329
10330 unpack_varlen_hex (rs->buf, &n);
10331
10332 *xfered_len = n;
10333 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10334 }
10335
10336 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10337 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10338 number of bytes read is returned, or 0 for EOF, or -1 for error.
10339 The number of bytes read may be less than LEN without indicating an
10340 EOF. PACKET is checked and updated to indicate whether the remote
10341 target supports this object. */
10342
10343 static enum target_xfer_status
10344 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10345 const char *annex,
10346 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10347 ULONGEST *xfered_len,
10348 struct packet_config *packet)
10349 {
10350 struct remote_state *rs = get_remote_state ();
10351 LONGEST i, n, packet_len;
10352
10353 if (packet_config_support (packet) == PACKET_DISABLE)
10354 return TARGET_XFER_E_IO;
10355
10356 /* Check whether we've cached an end-of-object packet that matches
10357 this request. */
10358 if (rs->finished_object)
10359 {
10360 if (strcmp (object_name, rs->finished_object) == 0
10361 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10362 && offset == rs->finished_offset)
10363 return TARGET_XFER_EOF;
10364
10365
10366 /* Otherwise, we're now reading something different. Discard
10367 the cache. */
10368 xfree (rs->finished_object);
10369 xfree (rs->finished_annex);
10370 rs->finished_object = NULL;
10371 rs->finished_annex = NULL;
10372 }
10373
10374 /* Request only enough to fit in a single packet. The actual data
10375 may not, since we don't know how much of it will need to be escaped;
10376 the target is free to respond with slightly less data. We subtract
10377 five to account for the response type and the protocol frame. */
10378 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10379 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10380 object_name, annex ? annex : "",
10381 phex_nz (offset, sizeof offset),
10382 phex_nz (n, sizeof n));
10383 i = putpkt (rs->buf);
10384 if (i < 0)
10385 return TARGET_XFER_E_IO;
10386
10387 rs->buf[0] = '\0';
10388 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10389 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10390 return TARGET_XFER_E_IO;
10391
10392 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10393 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10394
10395 /* 'm' means there is (or at least might be) more data after this
10396 batch. That does not make sense unless there's at least one byte
10397 of data in this reply. */
10398 if (rs->buf[0] == 'm' && packet_len == 1)
10399 error (_("Remote qXfer reply contained no data."));
10400
10401 /* Got some data. */
10402 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10403 packet_len - 1, readbuf, n);
10404
10405 /* 'l' is an EOF marker, possibly including a final block of data,
10406 or possibly empty. If we have the final block of a non-empty
10407 object, record this fact to bypass a subsequent partial read. */
10408 if (rs->buf[0] == 'l' && offset + i > 0)
10409 {
10410 rs->finished_object = xstrdup (object_name);
10411 rs->finished_annex = xstrdup (annex ? annex : "");
10412 rs->finished_offset = offset + i;
10413 }
10414
10415 if (i == 0)
10416 return TARGET_XFER_EOF;
10417 else
10418 {
10419 *xfered_len = i;
10420 return TARGET_XFER_OK;
10421 }
10422 }
10423
10424 static enum target_xfer_status
10425 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10426 const char *annex, gdb_byte *readbuf,
10427 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10428 ULONGEST *xfered_len)
10429 {
10430 struct remote_state *rs;
10431 int i;
10432 char *p2;
10433 char query_type;
10434 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10435
10436 set_remote_traceframe ();
10437 set_general_thread (inferior_ptid);
10438
10439 rs = get_remote_state ();
10440
10441 /* Handle memory using the standard memory routines. */
10442 if (object == TARGET_OBJECT_MEMORY)
10443 {
10444 /* If the remote target is connected but not running, we should
10445 pass this request down to a lower stratum (e.g. the executable
10446 file). */
10447 if (!target_has_execution)
10448 return TARGET_XFER_EOF;
10449
10450 if (writebuf != NULL)
10451 return remote_write_bytes (offset, writebuf, len, unit_size,
10452 xfered_len);
10453 else
10454 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10455 xfered_len);
10456 }
10457
10458 /* Handle SPU memory using qxfer packets. */
10459 if (object == TARGET_OBJECT_SPU)
10460 {
10461 if (readbuf)
10462 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10463 xfered_len, &remote_protocol_packets
10464 [PACKET_qXfer_spu_read]);
10465 else
10466 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10467 xfered_len, &remote_protocol_packets
10468 [PACKET_qXfer_spu_write]);
10469 }
10470
10471 /* Handle extra signal info using qxfer packets. */
10472 if (object == TARGET_OBJECT_SIGNAL_INFO)
10473 {
10474 if (readbuf)
10475 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10476 xfered_len, &remote_protocol_packets
10477 [PACKET_qXfer_siginfo_read]);
10478 else
10479 return remote_write_qxfer (ops, "siginfo", annex,
10480 writebuf, offset, len, xfered_len,
10481 &remote_protocol_packets
10482 [PACKET_qXfer_siginfo_write]);
10483 }
10484
10485 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10486 {
10487 if (readbuf)
10488 return remote_read_qxfer (ops, "statictrace", annex,
10489 readbuf, offset, len, xfered_len,
10490 &remote_protocol_packets
10491 [PACKET_qXfer_statictrace_read]);
10492 else
10493 return TARGET_XFER_E_IO;
10494 }
10495
10496 /* Only handle flash writes. */
10497 if (writebuf != NULL)
10498 {
10499 switch (object)
10500 {
10501 case TARGET_OBJECT_FLASH:
10502 return remote_flash_write (ops, offset, len, xfered_len,
10503 writebuf);
10504
10505 default:
10506 return TARGET_XFER_E_IO;
10507 }
10508 }
10509
10510 /* Map pre-existing objects onto letters. DO NOT do this for new
10511 objects!!! Instead specify new query packets. */
10512 switch (object)
10513 {
10514 case TARGET_OBJECT_AVR:
10515 query_type = 'R';
10516 break;
10517
10518 case TARGET_OBJECT_AUXV:
10519 gdb_assert (annex == NULL);
10520 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10521 xfered_len,
10522 &remote_protocol_packets[PACKET_qXfer_auxv]);
10523
10524 case TARGET_OBJECT_AVAILABLE_FEATURES:
10525 return remote_read_qxfer
10526 (ops, "features", annex, readbuf, offset, len, xfered_len,
10527 &remote_protocol_packets[PACKET_qXfer_features]);
10528
10529 case TARGET_OBJECT_LIBRARIES:
10530 return remote_read_qxfer
10531 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10532 &remote_protocol_packets[PACKET_qXfer_libraries]);
10533
10534 case TARGET_OBJECT_LIBRARIES_SVR4:
10535 return remote_read_qxfer
10536 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10537 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10538
10539 case TARGET_OBJECT_MEMORY_MAP:
10540 gdb_assert (annex == NULL);
10541 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10542 xfered_len,
10543 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10544
10545 case TARGET_OBJECT_OSDATA:
10546 /* Should only get here if we're connected. */
10547 gdb_assert (rs->remote_desc);
10548 return remote_read_qxfer
10549 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10550 &remote_protocol_packets[PACKET_qXfer_osdata]);
10551
10552 case TARGET_OBJECT_THREADS:
10553 gdb_assert (annex == NULL);
10554 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10555 xfered_len,
10556 &remote_protocol_packets[PACKET_qXfer_threads]);
10557
10558 case TARGET_OBJECT_TRACEFRAME_INFO:
10559 gdb_assert (annex == NULL);
10560 return remote_read_qxfer
10561 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10562 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10563
10564 case TARGET_OBJECT_FDPIC:
10565 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10566 xfered_len,
10567 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10568
10569 case TARGET_OBJECT_OPENVMS_UIB:
10570 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10571 xfered_len,
10572 &remote_protocol_packets[PACKET_qXfer_uib]);
10573
10574 case TARGET_OBJECT_BTRACE:
10575 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10576 xfered_len,
10577 &remote_protocol_packets[PACKET_qXfer_btrace]);
10578
10579 case TARGET_OBJECT_BTRACE_CONF:
10580 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10581 len, xfered_len,
10582 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10583
10584 case TARGET_OBJECT_EXEC_FILE:
10585 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10586 len, xfered_len,
10587 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10588
10589 default:
10590 return TARGET_XFER_E_IO;
10591 }
10592
10593 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10594 large enough let the caller deal with it. */
10595 if (len < get_remote_packet_size ())
10596 return TARGET_XFER_E_IO;
10597 len = get_remote_packet_size ();
10598
10599 /* Except for querying the minimum buffer size, target must be open. */
10600 if (!rs->remote_desc)
10601 error (_("remote query is only available after target open"));
10602
10603 gdb_assert (annex != NULL);
10604 gdb_assert (readbuf != NULL);
10605
10606 p2 = rs->buf;
10607 *p2++ = 'q';
10608 *p2++ = query_type;
10609
10610 /* We used one buffer char for the remote protocol q command and
10611 another for the query type. As the remote protocol encapsulation
10612 uses 4 chars plus one extra in case we are debugging
10613 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10614 string. */
10615 i = 0;
10616 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10617 {
10618 /* Bad caller may have sent forbidden characters. */
10619 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10620 *p2++ = annex[i];
10621 i++;
10622 }
10623 *p2 = '\0';
10624 gdb_assert (annex[i] == '\0');
10625
10626 i = putpkt (rs->buf);
10627 if (i < 0)
10628 return TARGET_XFER_E_IO;
10629
10630 getpkt (&rs->buf, &rs->buf_size, 0);
10631 strcpy ((char *) readbuf, rs->buf);
10632
10633 *xfered_len = strlen ((char *) readbuf);
10634 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10635 }
10636
10637 /* Implementation of to_get_memory_xfer_limit. */
10638
10639 static ULONGEST
10640 remote_get_memory_xfer_limit (struct target_ops *ops)
10641 {
10642 return get_memory_write_packet_size ();
10643 }
10644
10645 static int
10646 remote_search_memory (struct target_ops* ops,
10647 CORE_ADDR start_addr, ULONGEST search_space_len,
10648 const gdb_byte *pattern, ULONGEST pattern_len,
10649 CORE_ADDR *found_addrp)
10650 {
10651 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10652 struct remote_state *rs = get_remote_state ();
10653 int max_size = get_memory_write_packet_size ();
10654 struct packet_config *packet =
10655 &remote_protocol_packets[PACKET_qSearch_memory];
10656 /* Number of packet bytes used to encode the pattern;
10657 this could be more than PATTERN_LEN due to escape characters. */
10658 int escaped_pattern_len;
10659 /* Amount of pattern that was encodable in the packet. */
10660 int used_pattern_len;
10661 int i;
10662 int found;
10663 ULONGEST found_addr;
10664
10665 /* Don't go to the target if we don't have to. This is done before
10666 checking packet_config_support to avoid the possibility that a
10667 success for this edge case means the facility works in
10668 general. */
10669 if (pattern_len > search_space_len)
10670 return 0;
10671 if (pattern_len == 0)
10672 {
10673 *found_addrp = start_addr;
10674 return 1;
10675 }
10676
10677 /* If we already know the packet isn't supported, fall back to the simple
10678 way of searching memory. */
10679
10680 if (packet_config_support (packet) == PACKET_DISABLE)
10681 {
10682 /* Target doesn't provided special support, fall back and use the
10683 standard support (copy memory and do the search here). */
10684 return simple_search_memory (ops, start_addr, search_space_len,
10685 pattern, pattern_len, found_addrp);
10686 }
10687
10688 /* Make sure the remote is pointing at the right process. */
10689 set_general_process ();
10690
10691 /* Insert header. */
10692 i = snprintf (rs->buf, max_size,
10693 "qSearch:memory:%s;%s;",
10694 phex_nz (start_addr, addr_size),
10695 phex_nz (search_space_len, sizeof (search_space_len)));
10696 max_size -= (i + 1);
10697
10698 /* Escape as much data as fits into rs->buf. */
10699 escaped_pattern_len =
10700 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10701 &used_pattern_len, max_size);
10702
10703 /* Bail if the pattern is too large. */
10704 if (used_pattern_len != pattern_len)
10705 error (_("Pattern is too large to transmit to remote target."));
10706
10707 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10708 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10709 || packet_ok (rs->buf, packet) != PACKET_OK)
10710 {
10711 /* The request may not have worked because the command is not
10712 supported. If so, fall back to the simple way. */
10713 if (packet_config_support (packet) == PACKET_DISABLE)
10714 {
10715 return simple_search_memory (ops, start_addr, search_space_len,
10716 pattern, pattern_len, found_addrp);
10717 }
10718 return -1;
10719 }
10720
10721 if (rs->buf[0] == '0')
10722 found = 0;
10723 else if (rs->buf[0] == '1')
10724 {
10725 found = 1;
10726 if (rs->buf[1] != ',')
10727 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10728 unpack_varlen_hex (rs->buf + 2, &found_addr);
10729 *found_addrp = found_addr;
10730 }
10731 else
10732 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10733
10734 return found;
10735 }
10736
10737 static void
10738 remote_rcmd (struct target_ops *self, const char *command,
10739 struct ui_file *outbuf)
10740 {
10741 struct remote_state *rs = get_remote_state ();
10742 char *p = rs->buf;
10743
10744 if (!rs->remote_desc)
10745 error (_("remote rcmd is only available after target open"));
10746
10747 /* Send a NULL command across as an empty command. */
10748 if (command == NULL)
10749 command = "";
10750
10751 /* The query prefix. */
10752 strcpy (rs->buf, "qRcmd,");
10753 p = strchr (rs->buf, '\0');
10754
10755 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10756 > get_remote_packet_size ())
10757 error (_("\"monitor\" command ``%s'' is too long."), command);
10758
10759 /* Encode the actual command. */
10760 bin2hex ((const gdb_byte *) command, p, strlen (command));
10761
10762 if (putpkt (rs->buf) < 0)
10763 error (_("Communication problem with target."));
10764
10765 /* get/display the response */
10766 while (1)
10767 {
10768 char *buf;
10769
10770 /* XXX - see also remote_get_noisy_reply(). */
10771 QUIT; /* Allow user to bail out with ^C. */
10772 rs->buf[0] = '\0';
10773 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10774 {
10775 /* Timeout. Continue to (try to) read responses.
10776 This is better than stopping with an error, assuming the stub
10777 is still executing the (long) monitor command.
10778 If needed, the user can interrupt gdb using C-c, obtaining
10779 an effect similar to stop on timeout. */
10780 continue;
10781 }
10782 buf = rs->buf;
10783 if (buf[0] == '\0')
10784 error (_("Target does not support this command."));
10785 if (buf[0] == 'O' && buf[1] != 'K')
10786 {
10787 remote_console_output (buf + 1); /* 'O' message from stub. */
10788 continue;
10789 }
10790 if (strcmp (buf, "OK") == 0)
10791 break;
10792 if (strlen (buf) == 3 && buf[0] == 'E'
10793 && isdigit (buf[1]) && isdigit (buf[2]))
10794 {
10795 error (_("Protocol error with Rcmd"));
10796 }
10797 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10798 {
10799 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10800
10801 fputc_unfiltered (c, outbuf);
10802 }
10803 break;
10804 }
10805 }
10806
10807 static std::vector<mem_region>
10808 remote_memory_map (struct target_ops *ops)
10809 {
10810 std::vector<mem_region> result;
10811 gdb::unique_xmalloc_ptr<char> text
10812 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10813
10814 if (text)
10815 result = parse_memory_map (text.get ());
10816
10817 return result;
10818 }
10819
10820 static void
10821 packet_command (const char *args, int from_tty)
10822 {
10823 struct remote_state *rs = get_remote_state ();
10824
10825 if (!rs->remote_desc)
10826 error (_("command can only be used with remote target"));
10827
10828 if (!args)
10829 error (_("remote-packet command requires packet text as argument"));
10830
10831 puts_filtered ("sending: ");
10832 print_packet (args);
10833 puts_filtered ("\n");
10834 putpkt (args);
10835
10836 getpkt (&rs->buf, &rs->buf_size, 0);
10837 puts_filtered ("received: ");
10838 print_packet (rs->buf);
10839 puts_filtered ("\n");
10840 }
10841
10842 #if 0
10843 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10844
10845 static void display_thread_info (struct gdb_ext_thread_info *info);
10846
10847 static void threadset_test_cmd (char *cmd, int tty);
10848
10849 static void threadalive_test (char *cmd, int tty);
10850
10851 static void threadlist_test_cmd (char *cmd, int tty);
10852
10853 int get_and_display_threadinfo (threadref *ref);
10854
10855 static void threadinfo_test_cmd (char *cmd, int tty);
10856
10857 static int thread_display_step (threadref *ref, void *context);
10858
10859 static void threadlist_update_test_cmd (char *cmd, int tty);
10860
10861 static void init_remote_threadtests (void);
10862
10863 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10864
10865 static void
10866 threadset_test_cmd (const char *cmd, int tty)
10867 {
10868 int sample_thread = SAMPLE_THREAD;
10869
10870 printf_filtered (_("Remote threadset test\n"));
10871 set_general_thread (sample_thread);
10872 }
10873
10874
10875 static void
10876 threadalive_test (const char *cmd, int tty)
10877 {
10878 int sample_thread = SAMPLE_THREAD;
10879 int pid = ptid_get_pid (inferior_ptid);
10880 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10881
10882 if (remote_thread_alive (ptid))
10883 printf_filtered ("PASS: Thread alive test\n");
10884 else
10885 printf_filtered ("FAIL: Thread alive test\n");
10886 }
10887
10888 void output_threadid (char *title, threadref *ref);
10889
10890 void
10891 output_threadid (char *title, threadref *ref)
10892 {
10893 char hexid[20];
10894
10895 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10896 hexid[16] = 0;
10897 printf_filtered ("%s %s\n", title, (&hexid[0]));
10898 }
10899
10900 static void
10901 threadlist_test_cmd (const char *cmd, int tty)
10902 {
10903 int startflag = 1;
10904 threadref nextthread;
10905 int done, result_count;
10906 threadref threadlist[3];
10907
10908 printf_filtered ("Remote Threadlist test\n");
10909 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10910 &result_count, &threadlist[0]))
10911 printf_filtered ("FAIL: threadlist test\n");
10912 else
10913 {
10914 threadref *scan = threadlist;
10915 threadref *limit = scan + result_count;
10916
10917 while (scan < limit)
10918 output_threadid (" thread ", scan++);
10919 }
10920 }
10921
10922 void
10923 display_thread_info (struct gdb_ext_thread_info *info)
10924 {
10925 output_threadid ("Threadid: ", &info->threadid);
10926 printf_filtered ("Name: %s\n ", info->shortname);
10927 printf_filtered ("State: %s\n", info->display);
10928 printf_filtered ("other: %s\n\n", info->more_display);
10929 }
10930
10931 int
10932 get_and_display_threadinfo (threadref *ref)
10933 {
10934 int result;
10935 int set;
10936 struct gdb_ext_thread_info threadinfo;
10937
10938 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10939 | TAG_MOREDISPLAY | TAG_DISPLAY;
10940 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10941 display_thread_info (&threadinfo);
10942 return result;
10943 }
10944
10945 static void
10946 threadinfo_test_cmd (const char *cmd, int tty)
10947 {
10948 int athread = SAMPLE_THREAD;
10949 threadref thread;
10950 int set;
10951
10952 int_to_threadref (&thread, athread);
10953 printf_filtered ("Remote Threadinfo test\n");
10954 if (!get_and_display_threadinfo (&thread))
10955 printf_filtered ("FAIL cannot get thread info\n");
10956 }
10957
10958 static int
10959 thread_display_step (threadref *ref, void *context)
10960 {
10961 /* output_threadid(" threadstep ",ref); *//* simple test */
10962 return get_and_display_threadinfo (ref);
10963 }
10964
10965 static void
10966 threadlist_update_test_cmd (const char *cmd, int tty)
10967 {
10968 printf_filtered ("Remote Threadlist update test\n");
10969 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10970 }
10971
10972 static void
10973 init_remote_threadtests (void)
10974 {
10975 add_com ("tlist", class_obscure, threadlist_test_cmd,
10976 _("Fetch and print the remote list of "
10977 "thread identifiers, one pkt only"));
10978 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10979 _("Fetch and display info about one thread"));
10980 add_com ("tset", class_obscure, threadset_test_cmd,
10981 _("Test setting to a different thread"));
10982 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10983 _("Iterate through updating all remote thread info"));
10984 add_com ("talive", class_obscure, threadalive_test,
10985 _(" Remote thread alive test "));
10986 }
10987
10988 #endif /* 0 */
10989
10990 /* Convert a thread ID to a string. Returns the string in a static
10991 buffer. */
10992
10993 static const char *
10994 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10995 {
10996 static char buf[64];
10997 struct remote_state *rs = get_remote_state ();
10998
10999 if (ptid_equal (ptid, null_ptid))
11000 return normal_pid_to_str (ptid);
11001 else if (ptid_is_pid (ptid))
11002 {
11003 /* Printing an inferior target id. */
11004
11005 /* When multi-process extensions are off, there's no way in the
11006 remote protocol to know the remote process id, if there's any
11007 at all. There's one exception --- when we're connected with
11008 target extended-remote, and we manually attached to a process
11009 with "attach PID". We don't record anywhere a flag that
11010 allows us to distinguish that case from the case of
11011 connecting with extended-remote and the stub already being
11012 attached to a process, and reporting yes to qAttached, hence
11013 no smart special casing here. */
11014 if (!remote_multi_process_p (rs))
11015 {
11016 xsnprintf (buf, sizeof buf, "Remote target");
11017 return buf;
11018 }
11019
11020 return normal_pid_to_str (ptid);
11021 }
11022 else
11023 {
11024 if (ptid_equal (magic_null_ptid, ptid))
11025 xsnprintf (buf, sizeof buf, "Thread <main>");
11026 else if (remote_multi_process_p (rs))
11027 if (ptid_get_lwp (ptid) == 0)
11028 return normal_pid_to_str (ptid);
11029 else
11030 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11031 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11032 else
11033 xsnprintf (buf, sizeof buf, "Thread %ld",
11034 ptid_get_lwp (ptid));
11035 return buf;
11036 }
11037 }
11038
11039 /* Get the address of the thread local variable in OBJFILE which is
11040 stored at OFFSET within the thread local storage for thread PTID. */
11041
11042 static CORE_ADDR
11043 remote_get_thread_local_address (struct target_ops *ops,
11044 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11045 {
11046 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11047 {
11048 struct remote_state *rs = get_remote_state ();
11049 char *p = rs->buf;
11050 char *endp = rs->buf + get_remote_packet_size ();
11051 enum packet_result result;
11052
11053 strcpy (p, "qGetTLSAddr:");
11054 p += strlen (p);
11055 p = write_ptid (p, endp, ptid);
11056 *p++ = ',';
11057 p += hexnumstr (p, offset);
11058 *p++ = ',';
11059 p += hexnumstr (p, lm);
11060 *p++ = '\0';
11061
11062 putpkt (rs->buf);
11063 getpkt (&rs->buf, &rs->buf_size, 0);
11064 result = packet_ok (rs->buf,
11065 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11066 if (result == PACKET_OK)
11067 {
11068 ULONGEST result;
11069
11070 unpack_varlen_hex (rs->buf, &result);
11071 return result;
11072 }
11073 else if (result == PACKET_UNKNOWN)
11074 throw_error (TLS_GENERIC_ERROR,
11075 _("Remote target doesn't support qGetTLSAddr packet"));
11076 else
11077 throw_error (TLS_GENERIC_ERROR,
11078 _("Remote target failed to process qGetTLSAddr request"));
11079 }
11080 else
11081 throw_error (TLS_GENERIC_ERROR,
11082 _("TLS not supported or disabled on this target"));
11083 /* Not reached. */
11084 return 0;
11085 }
11086
11087 /* Provide thread local base, i.e. Thread Information Block address.
11088 Returns 1 if ptid is found and thread_local_base is non zero. */
11089
11090 static int
11091 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11092 {
11093 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11094 {
11095 struct remote_state *rs = get_remote_state ();
11096 char *p = rs->buf;
11097 char *endp = rs->buf + get_remote_packet_size ();
11098 enum packet_result result;
11099
11100 strcpy (p, "qGetTIBAddr:");
11101 p += strlen (p);
11102 p = write_ptid (p, endp, ptid);
11103 *p++ = '\0';
11104
11105 putpkt (rs->buf);
11106 getpkt (&rs->buf, &rs->buf_size, 0);
11107 result = packet_ok (rs->buf,
11108 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11109 if (result == PACKET_OK)
11110 {
11111 ULONGEST result;
11112
11113 unpack_varlen_hex (rs->buf, &result);
11114 if (addr)
11115 *addr = (CORE_ADDR) result;
11116 return 1;
11117 }
11118 else if (result == PACKET_UNKNOWN)
11119 error (_("Remote target doesn't support qGetTIBAddr packet"));
11120 else
11121 error (_("Remote target failed to process qGetTIBAddr request"));
11122 }
11123 else
11124 error (_("qGetTIBAddr not supported or disabled on this target"));
11125 /* Not reached. */
11126 return 0;
11127 }
11128
11129 /* Support for inferring a target description based on the current
11130 architecture and the size of a 'g' packet. While the 'g' packet
11131 can have any size (since optional registers can be left off the
11132 end), some sizes are easily recognizable given knowledge of the
11133 approximate architecture. */
11134
11135 struct remote_g_packet_guess
11136 {
11137 int bytes;
11138 const struct target_desc *tdesc;
11139 };
11140 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11141 DEF_VEC_O(remote_g_packet_guess_s);
11142
11143 struct remote_g_packet_data
11144 {
11145 VEC(remote_g_packet_guess_s) *guesses;
11146 };
11147
11148 static struct gdbarch_data *remote_g_packet_data_handle;
11149
11150 static void *
11151 remote_g_packet_data_init (struct obstack *obstack)
11152 {
11153 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11154 }
11155
11156 void
11157 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11158 const struct target_desc *tdesc)
11159 {
11160 struct remote_g_packet_data *data
11161 = ((struct remote_g_packet_data *)
11162 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11163 struct remote_g_packet_guess new_guess, *guess;
11164 int ix;
11165
11166 gdb_assert (tdesc != NULL);
11167
11168 for (ix = 0;
11169 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11170 ix++)
11171 if (guess->bytes == bytes)
11172 internal_error (__FILE__, __LINE__,
11173 _("Duplicate g packet description added for size %d"),
11174 bytes);
11175
11176 new_guess.bytes = bytes;
11177 new_guess.tdesc = tdesc;
11178 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11179 }
11180
11181 /* Return 1 if remote_read_description would do anything on this target
11182 and architecture, 0 otherwise. */
11183
11184 static int
11185 remote_read_description_p (struct target_ops *target)
11186 {
11187 struct remote_g_packet_data *data
11188 = ((struct remote_g_packet_data *)
11189 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11190
11191 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11192 return 1;
11193
11194 return 0;
11195 }
11196
11197 static const struct target_desc *
11198 remote_read_description (struct target_ops *target)
11199 {
11200 struct remote_g_packet_data *data
11201 = ((struct remote_g_packet_data *)
11202 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11203
11204 /* Do not try this during initial connection, when we do not know
11205 whether there is a running but stopped thread. */
11206 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11207 return target->beneath->to_read_description (target->beneath);
11208
11209 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11210 {
11211 struct remote_g_packet_guess *guess;
11212 int ix;
11213 int bytes = send_g_packet ();
11214
11215 for (ix = 0;
11216 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11217 ix++)
11218 if (guess->bytes == bytes)
11219 return guess->tdesc;
11220
11221 /* We discard the g packet. A minor optimization would be to
11222 hold on to it, and fill the register cache once we have selected
11223 an architecture, but it's too tricky to do safely. */
11224 }
11225
11226 return target->beneath->to_read_description (target->beneath);
11227 }
11228
11229 /* Remote file transfer support. This is host-initiated I/O, not
11230 target-initiated; for target-initiated, see remote-fileio.c. */
11231
11232 /* If *LEFT is at least the length of STRING, copy STRING to
11233 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11234 decrease *LEFT. Otherwise raise an error. */
11235
11236 static void
11237 remote_buffer_add_string (char **buffer, int *left, const char *string)
11238 {
11239 int len = strlen (string);
11240
11241 if (len > *left)
11242 error (_("Packet too long for target."));
11243
11244 memcpy (*buffer, string, len);
11245 *buffer += len;
11246 *left -= len;
11247
11248 /* NUL-terminate the buffer as a convenience, if there is
11249 room. */
11250 if (*left)
11251 **buffer = '\0';
11252 }
11253
11254 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11255 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11256 decrease *LEFT. Otherwise raise an error. */
11257
11258 static void
11259 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11260 int len)
11261 {
11262 if (2 * len > *left)
11263 error (_("Packet too long for target."));
11264
11265 bin2hex (bytes, *buffer, len);
11266 *buffer += 2 * len;
11267 *left -= 2 * len;
11268
11269 /* NUL-terminate the buffer as a convenience, if there is
11270 room. */
11271 if (*left)
11272 **buffer = '\0';
11273 }
11274
11275 /* If *LEFT is large enough, convert VALUE to hex and add it to
11276 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11277 decrease *LEFT. Otherwise raise an error. */
11278
11279 static void
11280 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11281 {
11282 int len = hexnumlen (value);
11283
11284 if (len > *left)
11285 error (_("Packet too long for target."));
11286
11287 hexnumstr (*buffer, value);
11288 *buffer += len;
11289 *left -= len;
11290
11291 /* NUL-terminate the buffer as a convenience, if there is
11292 room. */
11293 if (*left)
11294 **buffer = '\0';
11295 }
11296
11297 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11298 value, *REMOTE_ERRNO to the remote error number or zero if none
11299 was included, and *ATTACHMENT to point to the start of the annex
11300 if any. The length of the packet isn't needed here; there may
11301 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11302
11303 Return 0 if the packet could be parsed, -1 if it could not. If
11304 -1 is returned, the other variables may not be initialized. */
11305
11306 static int
11307 remote_hostio_parse_result (char *buffer, int *retcode,
11308 int *remote_errno, char **attachment)
11309 {
11310 char *p, *p2;
11311
11312 *remote_errno = 0;
11313 *attachment = NULL;
11314
11315 if (buffer[0] != 'F')
11316 return -1;
11317
11318 errno = 0;
11319 *retcode = strtol (&buffer[1], &p, 16);
11320 if (errno != 0 || p == &buffer[1])
11321 return -1;
11322
11323 /* Check for ",errno". */
11324 if (*p == ',')
11325 {
11326 errno = 0;
11327 *remote_errno = strtol (p + 1, &p2, 16);
11328 if (errno != 0 || p + 1 == p2)
11329 return -1;
11330 p = p2;
11331 }
11332
11333 /* Check for ";attachment". If there is no attachment, the
11334 packet should end here. */
11335 if (*p == ';')
11336 {
11337 *attachment = p + 1;
11338 return 0;
11339 }
11340 else if (*p == '\0')
11341 return 0;
11342 else
11343 return -1;
11344 }
11345
11346 /* Send a prepared I/O packet to the target and read its response.
11347 The prepared packet is in the global RS->BUF before this function
11348 is called, and the answer is there when we return.
11349
11350 COMMAND_BYTES is the length of the request to send, which may include
11351 binary data. WHICH_PACKET is the packet configuration to check
11352 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11353 is set to the error number and -1 is returned. Otherwise the value
11354 returned by the function is returned.
11355
11356 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11357 attachment is expected; an error will be reported if there's a
11358 mismatch. If one is found, *ATTACHMENT will be set to point into
11359 the packet buffer and *ATTACHMENT_LEN will be set to the
11360 attachment's length. */
11361
11362 static int
11363 remote_hostio_send_command (int command_bytes, int which_packet,
11364 int *remote_errno, char **attachment,
11365 int *attachment_len)
11366 {
11367 struct remote_state *rs = get_remote_state ();
11368 int ret, bytes_read;
11369 char *attachment_tmp;
11370
11371 if (!rs->remote_desc
11372 || packet_support (which_packet) == PACKET_DISABLE)
11373 {
11374 *remote_errno = FILEIO_ENOSYS;
11375 return -1;
11376 }
11377
11378 putpkt_binary (rs->buf, command_bytes);
11379 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11380
11381 /* If it timed out, something is wrong. Don't try to parse the
11382 buffer. */
11383 if (bytes_read < 0)
11384 {
11385 *remote_errno = FILEIO_EINVAL;
11386 return -1;
11387 }
11388
11389 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11390 {
11391 case PACKET_ERROR:
11392 *remote_errno = FILEIO_EINVAL;
11393 return -1;
11394 case PACKET_UNKNOWN:
11395 *remote_errno = FILEIO_ENOSYS;
11396 return -1;
11397 case PACKET_OK:
11398 break;
11399 }
11400
11401 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11402 &attachment_tmp))
11403 {
11404 *remote_errno = FILEIO_EINVAL;
11405 return -1;
11406 }
11407
11408 /* Make sure we saw an attachment if and only if we expected one. */
11409 if ((attachment_tmp == NULL && attachment != NULL)
11410 || (attachment_tmp != NULL && attachment == NULL))
11411 {
11412 *remote_errno = FILEIO_EINVAL;
11413 return -1;
11414 }
11415
11416 /* If an attachment was found, it must point into the packet buffer;
11417 work out how many bytes there were. */
11418 if (attachment_tmp != NULL)
11419 {
11420 *attachment = attachment_tmp;
11421 *attachment_len = bytes_read - (*attachment - rs->buf);
11422 }
11423
11424 return ret;
11425 }
11426
11427 /* Invalidate the readahead cache. */
11428
11429 static void
11430 readahead_cache_invalidate (void)
11431 {
11432 struct remote_state *rs = get_remote_state ();
11433
11434 rs->readahead_cache.fd = -1;
11435 }
11436
11437 /* Invalidate the readahead cache if it is holding data for FD. */
11438
11439 static void
11440 readahead_cache_invalidate_fd (int fd)
11441 {
11442 struct remote_state *rs = get_remote_state ();
11443
11444 if (rs->readahead_cache.fd == fd)
11445 rs->readahead_cache.fd = -1;
11446 }
11447
11448 /* Set the filesystem remote_hostio functions that take FILENAME
11449 arguments will use. Return 0 on success, or -1 if an error
11450 occurs (and set *REMOTE_ERRNO). */
11451
11452 static int
11453 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11454 {
11455 struct remote_state *rs = get_remote_state ();
11456 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11457 char *p = rs->buf;
11458 int left = get_remote_packet_size () - 1;
11459 char arg[9];
11460 int ret;
11461
11462 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11463 return 0;
11464
11465 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11466 return 0;
11467
11468 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11469
11470 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11471 remote_buffer_add_string (&p, &left, arg);
11472
11473 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11474 remote_errno, NULL, NULL);
11475
11476 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11477 return 0;
11478
11479 if (ret == 0)
11480 rs->fs_pid = required_pid;
11481
11482 return ret;
11483 }
11484
11485 /* Implementation of to_fileio_open. */
11486
11487 static int
11488 remote_hostio_open (struct target_ops *self,
11489 struct inferior *inf, const char *filename,
11490 int flags, int mode, int warn_if_slow,
11491 int *remote_errno)
11492 {
11493 struct remote_state *rs = get_remote_state ();
11494 char *p = rs->buf;
11495 int left = get_remote_packet_size () - 1;
11496
11497 if (warn_if_slow)
11498 {
11499 static int warning_issued = 0;
11500
11501 printf_unfiltered (_("Reading %s from remote target...\n"),
11502 filename);
11503
11504 if (!warning_issued)
11505 {
11506 warning (_("File transfers from remote targets can be slow."
11507 " Use \"set sysroot\" to access files locally"
11508 " instead."));
11509 warning_issued = 1;
11510 }
11511 }
11512
11513 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11514 return -1;
11515
11516 remote_buffer_add_string (&p, &left, "vFile:open:");
11517
11518 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11519 strlen (filename));
11520 remote_buffer_add_string (&p, &left, ",");
11521
11522 remote_buffer_add_int (&p, &left, flags);
11523 remote_buffer_add_string (&p, &left, ",");
11524
11525 remote_buffer_add_int (&p, &left, mode);
11526
11527 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11528 remote_errno, NULL, NULL);
11529 }
11530
11531 /* Implementation of to_fileio_pwrite. */
11532
11533 static int
11534 remote_hostio_pwrite (struct target_ops *self,
11535 int fd, const gdb_byte *write_buf, int len,
11536 ULONGEST offset, int *remote_errno)
11537 {
11538 struct remote_state *rs = get_remote_state ();
11539 char *p = rs->buf;
11540 int left = get_remote_packet_size ();
11541 int out_len;
11542
11543 readahead_cache_invalidate_fd (fd);
11544
11545 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11546
11547 remote_buffer_add_int (&p, &left, fd);
11548 remote_buffer_add_string (&p, &left, ",");
11549
11550 remote_buffer_add_int (&p, &left, offset);
11551 remote_buffer_add_string (&p, &left, ",");
11552
11553 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11554 get_remote_packet_size () - (p - rs->buf));
11555
11556 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11557 remote_errno, NULL, NULL);
11558 }
11559
11560 /* Helper for the implementation of to_fileio_pread. Read the file
11561 from the remote side with vFile:pread. */
11562
11563 static int
11564 remote_hostio_pread_vFile (struct target_ops *self,
11565 int fd, gdb_byte *read_buf, int len,
11566 ULONGEST offset, int *remote_errno)
11567 {
11568 struct remote_state *rs = get_remote_state ();
11569 char *p = rs->buf;
11570 char *attachment;
11571 int left = get_remote_packet_size ();
11572 int ret, attachment_len;
11573 int read_len;
11574
11575 remote_buffer_add_string (&p, &left, "vFile:pread:");
11576
11577 remote_buffer_add_int (&p, &left, fd);
11578 remote_buffer_add_string (&p, &left, ",");
11579
11580 remote_buffer_add_int (&p, &left, len);
11581 remote_buffer_add_string (&p, &left, ",");
11582
11583 remote_buffer_add_int (&p, &left, offset);
11584
11585 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11586 remote_errno, &attachment,
11587 &attachment_len);
11588
11589 if (ret < 0)
11590 return ret;
11591
11592 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11593 read_buf, len);
11594 if (read_len != ret)
11595 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11596
11597 return ret;
11598 }
11599
11600 /* Serve pread from the readahead cache. Returns number of bytes
11601 read, or 0 if the request can't be served from the cache. */
11602
11603 static int
11604 remote_hostio_pread_from_cache (struct remote_state *rs,
11605 int fd, gdb_byte *read_buf, size_t len,
11606 ULONGEST offset)
11607 {
11608 struct readahead_cache *cache = &rs->readahead_cache;
11609
11610 if (cache->fd == fd
11611 && cache->offset <= offset
11612 && offset < cache->offset + cache->bufsize)
11613 {
11614 ULONGEST max = cache->offset + cache->bufsize;
11615
11616 if (offset + len > max)
11617 len = max - offset;
11618
11619 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11620 return len;
11621 }
11622
11623 return 0;
11624 }
11625
11626 /* Implementation of to_fileio_pread. */
11627
11628 static int
11629 remote_hostio_pread (struct target_ops *self,
11630 int fd, gdb_byte *read_buf, int len,
11631 ULONGEST offset, int *remote_errno)
11632 {
11633 int ret;
11634 struct remote_state *rs = get_remote_state ();
11635 struct readahead_cache *cache = &rs->readahead_cache;
11636
11637 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11638 if (ret > 0)
11639 {
11640 cache->hit_count++;
11641
11642 if (remote_debug)
11643 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11644 pulongest (cache->hit_count));
11645 return ret;
11646 }
11647
11648 cache->miss_count++;
11649 if (remote_debug)
11650 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11651 pulongest (cache->miss_count));
11652
11653 cache->fd = fd;
11654 cache->offset = offset;
11655 cache->bufsize = get_remote_packet_size ();
11656 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11657
11658 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11659 cache->offset, remote_errno);
11660 if (ret <= 0)
11661 {
11662 readahead_cache_invalidate_fd (fd);
11663 return ret;
11664 }
11665
11666 cache->bufsize = ret;
11667 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11668 }
11669
11670 /* Implementation of to_fileio_close. */
11671
11672 static int
11673 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11674 {
11675 struct remote_state *rs = get_remote_state ();
11676 char *p = rs->buf;
11677 int left = get_remote_packet_size () - 1;
11678
11679 readahead_cache_invalidate_fd (fd);
11680
11681 remote_buffer_add_string (&p, &left, "vFile:close:");
11682
11683 remote_buffer_add_int (&p, &left, fd);
11684
11685 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11686 remote_errno, NULL, NULL);
11687 }
11688
11689 /* Implementation of to_fileio_unlink. */
11690
11691 static int
11692 remote_hostio_unlink (struct target_ops *self,
11693 struct inferior *inf, const char *filename,
11694 int *remote_errno)
11695 {
11696 struct remote_state *rs = get_remote_state ();
11697 char *p = rs->buf;
11698 int left = get_remote_packet_size () - 1;
11699
11700 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11701 return -1;
11702
11703 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11704
11705 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11706 strlen (filename));
11707
11708 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11709 remote_errno, NULL, NULL);
11710 }
11711
11712 /* Implementation of to_fileio_readlink. */
11713
11714 static char *
11715 remote_hostio_readlink (struct target_ops *self,
11716 struct inferior *inf, const char *filename,
11717 int *remote_errno)
11718 {
11719 struct remote_state *rs = get_remote_state ();
11720 char *p = rs->buf;
11721 char *attachment;
11722 int left = get_remote_packet_size ();
11723 int len, attachment_len;
11724 int read_len;
11725 char *ret;
11726
11727 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11728 return NULL;
11729
11730 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11731
11732 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11733 strlen (filename));
11734
11735 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11736 remote_errno, &attachment,
11737 &attachment_len);
11738
11739 if (len < 0)
11740 return NULL;
11741
11742 ret = (char *) xmalloc (len + 1);
11743
11744 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11745 (gdb_byte *) ret, len);
11746 if (read_len != len)
11747 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11748
11749 ret[len] = '\0';
11750 return ret;
11751 }
11752
11753 /* Implementation of to_fileio_fstat. */
11754
11755 static int
11756 remote_hostio_fstat (struct target_ops *self,
11757 int fd, struct stat *st,
11758 int *remote_errno)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761 char *p = rs->buf;
11762 int left = get_remote_packet_size ();
11763 int attachment_len, ret;
11764 char *attachment;
11765 struct fio_stat fst;
11766 int read_len;
11767
11768 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11769
11770 remote_buffer_add_int (&p, &left, fd);
11771
11772 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11773 remote_errno, &attachment,
11774 &attachment_len);
11775 if (ret < 0)
11776 {
11777 if (*remote_errno != FILEIO_ENOSYS)
11778 return ret;
11779
11780 /* Strictly we should return -1, ENOSYS here, but when
11781 "set sysroot remote:" was implemented in August 2008
11782 BFD's need for a stat function was sidestepped with
11783 this hack. This was not remedied until March 2015
11784 so we retain the previous behavior to avoid breaking
11785 compatibility.
11786
11787 Note that the memset is a March 2015 addition; older
11788 GDBs set st_size *and nothing else* so the structure
11789 would have garbage in all other fields. This might
11790 break something but retaining the previous behavior
11791 here would be just too wrong. */
11792
11793 memset (st, 0, sizeof (struct stat));
11794 st->st_size = INT_MAX;
11795 return 0;
11796 }
11797
11798 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11799 (gdb_byte *) &fst, sizeof (fst));
11800
11801 if (read_len != ret)
11802 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11803
11804 if (read_len != sizeof (fst))
11805 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11806 read_len, (int) sizeof (fst));
11807
11808 remote_fileio_to_host_stat (&fst, st);
11809
11810 return 0;
11811 }
11812
11813 /* Implementation of to_filesystem_is_local. */
11814
11815 static int
11816 remote_filesystem_is_local (struct target_ops *self)
11817 {
11818 /* Valgrind GDB presents itself as a remote target but works
11819 on the local filesystem: it does not implement remote get
11820 and users are not expected to set a sysroot. To handle
11821 this case we treat the remote filesystem as local if the
11822 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11823 does not support vFile:open. */
11824 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11825 {
11826 enum packet_support ps = packet_support (PACKET_vFile_open);
11827
11828 if (ps == PACKET_SUPPORT_UNKNOWN)
11829 {
11830 int fd, remote_errno;
11831
11832 /* Try opening a file to probe support. The supplied
11833 filename is irrelevant, we only care about whether
11834 the stub recognizes the packet or not. */
11835 fd = remote_hostio_open (self, NULL, "just probing",
11836 FILEIO_O_RDONLY, 0700, 0,
11837 &remote_errno);
11838
11839 if (fd >= 0)
11840 remote_hostio_close (self, fd, &remote_errno);
11841
11842 ps = packet_support (PACKET_vFile_open);
11843 }
11844
11845 if (ps == PACKET_DISABLE)
11846 {
11847 static int warning_issued = 0;
11848
11849 if (!warning_issued)
11850 {
11851 warning (_("remote target does not support file"
11852 " transfer, attempting to access files"
11853 " from local filesystem."));
11854 warning_issued = 1;
11855 }
11856
11857 return 1;
11858 }
11859 }
11860
11861 return 0;
11862 }
11863
11864 static int
11865 remote_fileio_errno_to_host (int errnum)
11866 {
11867 switch (errnum)
11868 {
11869 case FILEIO_EPERM:
11870 return EPERM;
11871 case FILEIO_ENOENT:
11872 return ENOENT;
11873 case FILEIO_EINTR:
11874 return EINTR;
11875 case FILEIO_EIO:
11876 return EIO;
11877 case FILEIO_EBADF:
11878 return EBADF;
11879 case FILEIO_EACCES:
11880 return EACCES;
11881 case FILEIO_EFAULT:
11882 return EFAULT;
11883 case FILEIO_EBUSY:
11884 return EBUSY;
11885 case FILEIO_EEXIST:
11886 return EEXIST;
11887 case FILEIO_ENODEV:
11888 return ENODEV;
11889 case FILEIO_ENOTDIR:
11890 return ENOTDIR;
11891 case FILEIO_EISDIR:
11892 return EISDIR;
11893 case FILEIO_EINVAL:
11894 return EINVAL;
11895 case FILEIO_ENFILE:
11896 return ENFILE;
11897 case FILEIO_EMFILE:
11898 return EMFILE;
11899 case FILEIO_EFBIG:
11900 return EFBIG;
11901 case FILEIO_ENOSPC:
11902 return ENOSPC;
11903 case FILEIO_ESPIPE:
11904 return ESPIPE;
11905 case FILEIO_EROFS:
11906 return EROFS;
11907 case FILEIO_ENOSYS:
11908 return ENOSYS;
11909 case FILEIO_ENAMETOOLONG:
11910 return ENAMETOOLONG;
11911 }
11912 return -1;
11913 }
11914
11915 static char *
11916 remote_hostio_error (int errnum)
11917 {
11918 int host_error = remote_fileio_errno_to_host (errnum);
11919
11920 if (host_error == -1)
11921 error (_("Unknown remote I/O error %d"), errnum);
11922 else
11923 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11924 }
11925
11926 static void
11927 remote_hostio_close_cleanup (void *opaque)
11928 {
11929 int fd = *(int *) opaque;
11930 int remote_errno;
11931
11932 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11933 }
11934
11935 void
11936 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11937 {
11938 struct cleanup *back_to, *close_cleanup;
11939 int retcode, fd, remote_errno, bytes, io_size;
11940 gdb_byte *buffer;
11941 int bytes_in_buffer;
11942 int saw_eof;
11943 ULONGEST offset;
11944 struct remote_state *rs = get_remote_state ();
11945
11946 if (!rs->remote_desc)
11947 error (_("command can only be used with remote target"));
11948
11949 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11950 if (file == NULL)
11951 perror_with_name (local_file);
11952
11953 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11954 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11955 | FILEIO_O_TRUNC),
11956 0700, 0, &remote_errno);
11957 if (fd == -1)
11958 remote_hostio_error (remote_errno);
11959
11960 /* Send up to this many bytes at once. They won't all fit in the
11961 remote packet limit, so we'll transfer slightly fewer. */
11962 io_size = get_remote_packet_size ();
11963 buffer = (gdb_byte *) xmalloc (io_size);
11964 back_to = make_cleanup (xfree, buffer);
11965
11966 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11967
11968 bytes_in_buffer = 0;
11969 saw_eof = 0;
11970 offset = 0;
11971 while (bytes_in_buffer || !saw_eof)
11972 {
11973 if (!saw_eof)
11974 {
11975 bytes = fread (buffer + bytes_in_buffer, 1,
11976 io_size - bytes_in_buffer,
11977 file.get ());
11978 if (bytes == 0)
11979 {
11980 if (ferror (file.get ()))
11981 error (_("Error reading %s."), local_file);
11982 else
11983 {
11984 /* EOF. Unless there is something still in the
11985 buffer from the last iteration, we are done. */
11986 saw_eof = 1;
11987 if (bytes_in_buffer == 0)
11988 break;
11989 }
11990 }
11991 }
11992 else
11993 bytes = 0;
11994
11995 bytes += bytes_in_buffer;
11996 bytes_in_buffer = 0;
11997
11998 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11999 fd, buffer, bytes,
12000 offset, &remote_errno);
12001
12002 if (retcode < 0)
12003 remote_hostio_error (remote_errno);
12004 else if (retcode == 0)
12005 error (_("Remote write of %d bytes returned 0!"), bytes);
12006 else if (retcode < bytes)
12007 {
12008 /* Short write. Save the rest of the read data for the next
12009 write. */
12010 bytes_in_buffer = bytes - retcode;
12011 memmove (buffer, buffer + retcode, bytes_in_buffer);
12012 }
12013
12014 offset += retcode;
12015 }
12016
12017 discard_cleanups (close_cleanup);
12018 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12019 remote_hostio_error (remote_errno);
12020
12021 if (from_tty)
12022 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12023 do_cleanups (back_to);
12024 }
12025
12026 void
12027 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12028 {
12029 struct cleanup *back_to, *close_cleanup;
12030 int fd, remote_errno, bytes, io_size;
12031 gdb_byte *buffer;
12032 ULONGEST offset;
12033 struct remote_state *rs = get_remote_state ();
12034
12035 if (!rs->remote_desc)
12036 error (_("command can only be used with remote target"));
12037
12038 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12039 remote_file, FILEIO_O_RDONLY, 0, 0,
12040 &remote_errno);
12041 if (fd == -1)
12042 remote_hostio_error (remote_errno);
12043
12044 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12045 if (file == NULL)
12046 perror_with_name (local_file);
12047
12048 /* Send up to this many bytes at once. They won't all fit in the
12049 remote packet limit, so we'll transfer slightly fewer. */
12050 io_size = get_remote_packet_size ();
12051 buffer = (gdb_byte *) xmalloc (io_size);
12052 back_to = make_cleanup (xfree, buffer);
12053
12054 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12055
12056 offset = 0;
12057 while (1)
12058 {
12059 bytes = remote_hostio_pread (find_target_at (process_stratum),
12060 fd, buffer, io_size, offset, &remote_errno);
12061 if (bytes == 0)
12062 /* Success, but no bytes, means end-of-file. */
12063 break;
12064 if (bytes == -1)
12065 remote_hostio_error (remote_errno);
12066
12067 offset += bytes;
12068
12069 bytes = fwrite (buffer, 1, bytes, file.get ());
12070 if (bytes == 0)
12071 perror_with_name (local_file);
12072 }
12073
12074 discard_cleanups (close_cleanup);
12075 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12076 remote_hostio_error (remote_errno);
12077
12078 if (from_tty)
12079 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12080 do_cleanups (back_to);
12081 }
12082
12083 void
12084 remote_file_delete (const char *remote_file, int from_tty)
12085 {
12086 int retcode, remote_errno;
12087 struct remote_state *rs = get_remote_state ();
12088
12089 if (!rs->remote_desc)
12090 error (_("command can only be used with remote target"));
12091
12092 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12093 NULL, remote_file, &remote_errno);
12094 if (retcode == -1)
12095 remote_hostio_error (remote_errno);
12096
12097 if (from_tty)
12098 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12099 }
12100
12101 static void
12102 remote_put_command (const char *args, int from_tty)
12103 {
12104 if (args == NULL)
12105 error_no_arg (_("file to put"));
12106
12107 gdb_argv argv (args);
12108 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12109 error (_("Invalid parameters to remote put"));
12110
12111 remote_file_put (argv[0], argv[1], from_tty);
12112 }
12113
12114 static void
12115 remote_get_command (const char *args, int from_tty)
12116 {
12117 if (args == NULL)
12118 error_no_arg (_("file to get"));
12119
12120 gdb_argv argv (args);
12121 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12122 error (_("Invalid parameters to remote get"));
12123
12124 remote_file_get (argv[0], argv[1], from_tty);
12125 }
12126
12127 static void
12128 remote_delete_command (const char *args, int from_tty)
12129 {
12130 if (args == NULL)
12131 error_no_arg (_("file to delete"));
12132
12133 gdb_argv argv (args);
12134 if (argv[0] == NULL || argv[1] != NULL)
12135 error (_("Invalid parameters to remote delete"));
12136
12137 remote_file_delete (argv[0], from_tty);
12138 }
12139
12140 static void
12141 remote_command (const char *args, int from_tty)
12142 {
12143 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12144 }
12145
12146 static int
12147 remote_can_execute_reverse (struct target_ops *self)
12148 {
12149 if (packet_support (PACKET_bs) == PACKET_ENABLE
12150 || packet_support (PACKET_bc) == PACKET_ENABLE)
12151 return 1;
12152 else
12153 return 0;
12154 }
12155
12156 static int
12157 remote_supports_non_stop (struct target_ops *self)
12158 {
12159 return 1;
12160 }
12161
12162 static int
12163 remote_supports_disable_randomization (struct target_ops *self)
12164 {
12165 /* Only supported in extended mode. */
12166 return 0;
12167 }
12168
12169 static int
12170 remote_supports_multi_process (struct target_ops *self)
12171 {
12172 struct remote_state *rs = get_remote_state ();
12173
12174 return remote_multi_process_p (rs);
12175 }
12176
12177 static int
12178 remote_supports_cond_tracepoints (void)
12179 {
12180 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12181 }
12182
12183 static int
12184 remote_supports_cond_breakpoints (struct target_ops *self)
12185 {
12186 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12187 }
12188
12189 static int
12190 remote_supports_fast_tracepoints (void)
12191 {
12192 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12193 }
12194
12195 static int
12196 remote_supports_static_tracepoints (void)
12197 {
12198 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12199 }
12200
12201 static int
12202 remote_supports_install_in_trace (void)
12203 {
12204 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12205 }
12206
12207 static int
12208 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12209 {
12210 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12211 == PACKET_ENABLE);
12212 }
12213
12214 static int
12215 remote_supports_string_tracing (struct target_ops *self)
12216 {
12217 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12218 }
12219
12220 static int
12221 remote_can_run_breakpoint_commands (struct target_ops *self)
12222 {
12223 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12224 }
12225
12226 static void
12227 remote_trace_init (struct target_ops *self)
12228 {
12229 struct remote_state *rs = get_remote_state ();
12230
12231 putpkt ("QTinit");
12232 remote_get_noisy_reply ();
12233 if (strcmp (rs->buf, "OK") != 0)
12234 error (_("Target does not support this command."));
12235 }
12236
12237 /* Recursive routine to walk through command list including loops, and
12238 download packets for each command. */
12239
12240 static void
12241 remote_download_command_source (int num, ULONGEST addr,
12242 struct command_line *cmds)
12243 {
12244 struct remote_state *rs = get_remote_state ();
12245 struct command_line *cmd;
12246
12247 for (cmd = cmds; cmd; cmd = cmd->next)
12248 {
12249 QUIT; /* Allow user to bail out with ^C. */
12250 strcpy (rs->buf, "QTDPsrc:");
12251 encode_source_string (num, addr, "cmd", cmd->line,
12252 rs->buf + strlen (rs->buf),
12253 rs->buf_size - strlen (rs->buf));
12254 putpkt (rs->buf);
12255 remote_get_noisy_reply ();
12256 if (strcmp (rs->buf, "OK"))
12257 warning (_("Target does not support source download."));
12258
12259 if (cmd->control_type == while_control
12260 || cmd->control_type == while_stepping_control)
12261 {
12262 remote_download_command_source (num, addr, *cmd->body_list);
12263
12264 QUIT; /* Allow user to bail out with ^C. */
12265 strcpy (rs->buf, "QTDPsrc:");
12266 encode_source_string (num, addr, "cmd", "end",
12267 rs->buf + strlen (rs->buf),
12268 rs->buf_size - strlen (rs->buf));
12269 putpkt (rs->buf);
12270 remote_get_noisy_reply ();
12271 if (strcmp (rs->buf, "OK"))
12272 warning (_("Target does not support source download."));
12273 }
12274 }
12275 }
12276
12277 static void
12278 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12279 {
12280 #define BUF_SIZE 2048
12281
12282 CORE_ADDR tpaddr;
12283 char addrbuf[40];
12284 char buf[BUF_SIZE];
12285 std::vector<std::string> tdp_actions;
12286 std::vector<std::string> stepping_actions;
12287 char *pkt;
12288 struct breakpoint *b = loc->owner;
12289 struct tracepoint *t = (struct tracepoint *) b;
12290 struct remote_state *rs = get_remote_state ();
12291
12292 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12293
12294 tpaddr = loc->address;
12295 sprintf_vma (addrbuf, tpaddr);
12296 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12297 addrbuf, /* address */
12298 (b->enable_state == bp_enabled ? 'E' : 'D'),
12299 t->step_count, t->pass_count);
12300 /* Fast tracepoints are mostly handled by the target, but we can
12301 tell the target how big of an instruction block should be moved
12302 around. */
12303 if (b->type == bp_fast_tracepoint)
12304 {
12305 /* Only test for support at download time; we may not know
12306 target capabilities at definition time. */
12307 if (remote_supports_fast_tracepoints ())
12308 {
12309 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12310 NULL))
12311 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12312 gdb_insn_length (loc->gdbarch, tpaddr));
12313 else
12314 /* If it passed validation at definition but fails now,
12315 something is very wrong. */
12316 internal_error (__FILE__, __LINE__,
12317 _("Fast tracepoint not "
12318 "valid during download"));
12319 }
12320 else
12321 /* Fast tracepoints are functionally identical to regular
12322 tracepoints, so don't take lack of support as a reason to
12323 give up on the trace run. */
12324 warning (_("Target does not support fast tracepoints, "
12325 "downloading %d as regular tracepoint"), b->number);
12326 }
12327 else if (b->type == bp_static_tracepoint)
12328 {
12329 /* Only test for support at download time; we may not know
12330 target capabilities at definition time. */
12331 if (remote_supports_static_tracepoints ())
12332 {
12333 struct static_tracepoint_marker marker;
12334
12335 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12336 strcat (buf, ":S");
12337 else
12338 error (_("Static tracepoint not valid during download"));
12339 }
12340 else
12341 /* Fast tracepoints are functionally identical to regular
12342 tracepoints, so don't take lack of support as a reason
12343 to give up on the trace run. */
12344 error (_("Target does not support static tracepoints"));
12345 }
12346 /* If the tracepoint has a conditional, make it into an agent
12347 expression and append to the definition. */
12348 if (loc->cond)
12349 {
12350 /* Only test support at download time, we may not know target
12351 capabilities at definition time. */
12352 if (remote_supports_cond_tracepoints ())
12353 {
12354 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12355 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12356 aexpr->len);
12357 pkt = buf + strlen (buf);
12358 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12359 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12360 *pkt = '\0';
12361 }
12362 else
12363 warning (_("Target does not support conditional tracepoints, "
12364 "ignoring tp %d cond"), b->number);
12365 }
12366
12367 if (b->commands || *default_collect)
12368 strcat (buf, "-");
12369 putpkt (buf);
12370 remote_get_noisy_reply ();
12371 if (strcmp (rs->buf, "OK"))
12372 error (_("Target does not support tracepoints."));
12373
12374 /* do_single_steps (t); */
12375 for (auto action_it = tdp_actions.begin ();
12376 action_it != tdp_actions.end (); action_it++)
12377 {
12378 QUIT; /* Allow user to bail out with ^C. */
12379
12380 bool has_more = (action_it != tdp_actions.end ()
12381 || !stepping_actions.empty ());
12382
12383 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12384 b->number, addrbuf, /* address */
12385 action_it->c_str (),
12386 has_more ? '-' : 0);
12387 putpkt (buf);
12388 remote_get_noisy_reply ();
12389 if (strcmp (rs->buf, "OK"))
12390 error (_("Error on target while setting tracepoints."));
12391 }
12392
12393 for (auto action_it = stepping_actions.begin ();
12394 action_it != stepping_actions.end (); action_it++)
12395 {
12396 QUIT; /* Allow user to bail out with ^C. */
12397
12398 bool is_first = action_it == stepping_actions.begin ();
12399 bool has_more = action_it != stepping_actions.end ();
12400
12401 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12402 b->number, addrbuf, /* address */
12403 is_first ? "S" : "",
12404 action_it->c_str (),
12405 has_more ? "-" : "");
12406 putpkt (buf);
12407 remote_get_noisy_reply ();
12408 if (strcmp (rs->buf, "OK"))
12409 error (_("Error on target while setting tracepoints."));
12410 }
12411
12412 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12413 {
12414 if (b->location != NULL)
12415 {
12416 strcpy (buf, "QTDPsrc:");
12417 encode_source_string (b->number, loc->address, "at",
12418 event_location_to_string (b->location.get ()),
12419 buf + strlen (buf), 2048 - strlen (buf));
12420 putpkt (buf);
12421 remote_get_noisy_reply ();
12422 if (strcmp (rs->buf, "OK"))
12423 warning (_("Target does not support source download."));
12424 }
12425 if (b->cond_string)
12426 {
12427 strcpy (buf, "QTDPsrc:");
12428 encode_source_string (b->number, loc->address,
12429 "cond", b->cond_string, buf + strlen (buf),
12430 2048 - strlen (buf));
12431 putpkt (buf);
12432 remote_get_noisy_reply ();
12433 if (strcmp (rs->buf, "OK"))
12434 warning (_("Target does not support source download."));
12435 }
12436 remote_download_command_source (b->number, loc->address,
12437 breakpoint_commands (b));
12438 }
12439 }
12440
12441 static int
12442 remote_can_download_tracepoint (struct target_ops *self)
12443 {
12444 struct remote_state *rs = get_remote_state ();
12445 struct trace_status *ts;
12446 int status;
12447
12448 /* Don't try to install tracepoints until we've relocated our
12449 symbols, and fetched and merged the target's tracepoint list with
12450 ours. */
12451 if (rs->starting_up)
12452 return 0;
12453
12454 ts = current_trace_status ();
12455 status = remote_get_trace_status (self, ts);
12456
12457 if (status == -1 || !ts->running_known || !ts->running)
12458 return 0;
12459
12460 /* If we are in a tracing experiment, but remote stub doesn't support
12461 installing tracepoint in trace, we have to return. */
12462 if (!remote_supports_install_in_trace ())
12463 return 0;
12464
12465 return 1;
12466 }
12467
12468
12469 static void
12470 remote_download_trace_state_variable (struct target_ops *self,
12471 struct trace_state_variable *tsv)
12472 {
12473 struct remote_state *rs = get_remote_state ();
12474 char *p;
12475
12476 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12477 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12478 tsv->builtin);
12479 p = rs->buf + strlen (rs->buf);
12480 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12481 error (_("Trace state variable name too long for tsv definition packet"));
12482 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12483 *p++ = '\0';
12484 putpkt (rs->buf);
12485 remote_get_noisy_reply ();
12486 if (*rs->buf == '\0')
12487 error (_("Target does not support this command."));
12488 if (strcmp (rs->buf, "OK") != 0)
12489 error (_("Error on target while downloading trace state variable."));
12490 }
12491
12492 static void
12493 remote_enable_tracepoint (struct target_ops *self,
12494 struct bp_location *location)
12495 {
12496 struct remote_state *rs = get_remote_state ();
12497 char addr_buf[40];
12498
12499 sprintf_vma (addr_buf, location->address);
12500 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12501 location->owner->number, addr_buf);
12502 putpkt (rs->buf);
12503 remote_get_noisy_reply ();
12504 if (*rs->buf == '\0')
12505 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12506 if (strcmp (rs->buf, "OK") != 0)
12507 error (_("Error on target while enabling tracepoint."));
12508 }
12509
12510 static void
12511 remote_disable_tracepoint (struct target_ops *self,
12512 struct bp_location *location)
12513 {
12514 struct remote_state *rs = get_remote_state ();
12515 char addr_buf[40];
12516
12517 sprintf_vma (addr_buf, location->address);
12518 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12519 location->owner->number, addr_buf);
12520 putpkt (rs->buf);
12521 remote_get_noisy_reply ();
12522 if (*rs->buf == '\0')
12523 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12524 if (strcmp (rs->buf, "OK") != 0)
12525 error (_("Error on target while disabling tracepoint."));
12526 }
12527
12528 static void
12529 remote_trace_set_readonly_regions (struct target_ops *self)
12530 {
12531 asection *s;
12532 bfd *abfd = NULL;
12533 bfd_size_type size;
12534 bfd_vma vma;
12535 int anysecs = 0;
12536 int offset = 0;
12537
12538 if (!exec_bfd)
12539 return; /* No information to give. */
12540
12541 struct remote_state *rs = get_remote_state ();
12542
12543 strcpy (rs->buf, "QTro");
12544 offset = strlen (rs->buf);
12545 for (s = exec_bfd->sections; s; s = s->next)
12546 {
12547 char tmp1[40], tmp2[40];
12548 int sec_length;
12549
12550 if ((s->flags & SEC_LOAD) == 0 ||
12551 /* (s->flags & SEC_CODE) == 0 || */
12552 (s->flags & SEC_READONLY) == 0)
12553 continue;
12554
12555 anysecs = 1;
12556 vma = bfd_get_section_vma (abfd, s);
12557 size = bfd_get_section_size (s);
12558 sprintf_vma (tmp1, vma);
12559 sprintf_vma (tmp2, vma + size);
12560 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12561 if (offset + sec_length + 1 > rs->buf_size)
12562 {
12563 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12564 warning (_("\
12565 Too many sections for read-only sections definition packet."));
12566 break;
12567 }
12568 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12569 tmp1, tmp2);
12570 offset += sec_length;
12571 }
12572 if (anysecs)
12573 {
12574 putpkt (rs->buf);
12575 getpkt (&rs->buf, &rs->buf_size, 0);
12576 }
12577 }
12578
12579 static void
12580 remote_trace_start (struct target_ops *self)
12581 {
12582 struct remote_state *rs = get_remote_state ();
12583
12584 putpkt ("QTStart");
12585 remote_get_noisy_reply ();
12586 if (*rs->buf == '\0')
12587 error (_("Target does not support this command."));
12588 if (strcmp (rs->buf, "OK") != 0)
12589 error (_("Bogus reply from target: %s"), rs->buf);
12590 }
12591
12592 static int
12593 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12594 {
12595 /* Initialize it just to avoid a GCC false warning. */
12596 char *p = NULL;
12597 /* FIXME we need to get register block size some other way. */
12598 extern int trace_regblock_size;
12599 enum packet_result result;
12600 struct remote_state *rs = get_remote_state ();
12601
12602 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12603 return -1;
12604
12605 trace_regblock_size
12606 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12607
12608 putpkt ("qTStatus");
12609
12610 TRY
12611 {
12612 p = remote_get_noisy_reply ();
12613 }
12614 CATCH (ex, RETURN_MASK_ERROR)
12615 {
12616 if (ex.error != TARGET_CLOSE_ERROR)
12617 {
12618 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12619 return -1;
12620 }
12621 throw_exception (ex);
12622 }
12623 END_CATCH
12624
12625 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12626
12627 /* If the remote target doesn't do tracing, flag it. */
12628 if (result == PACKET_UNKNOWN)
12629 return -1;
12630
12631 /* We're working with a live target. */
12632 ts->filename = NULL;
12633
12634 if (*p++ != 'T')
12635 error (_("Bogus trace status reply from target: %s"), rs->buf);
12636
12637 /* Function 'parse_trace_status' sets default value of each field of
12638 'ts' at first, so we don't have to do it here. */
12639 parse_trace_status (p, ts);
12640
12641 return ts->running;
12642 }
12643
12644 static void
12645 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12646 struct uploaded_tp *utp)
12647 {
12648 struct remote_state *rs = get_remote_state ();
12649 char *reply;
12650 struct bp_location *loc;
12651 struct tracepoint *tp = (struct tracepoint *) bp;
12652 size_t size = get_remote_packet_size ();
12653
12654 if (tp)
12655 {
12656 tp->hit_count = 0;
12657 tp->traceframe_usage = 0;
12658 for (loc = tp->loc; loc; loc = loc->next)
12659 {
12660 /* If the tracepoint was never downloaded, don't go asking for
12661 any status. */
12662 if (tp->number_on_target == 0)
12663 continue;
12664 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12665 phex_nz (loc->address, 0));
12666 putpkt (rs->buf);
12667 reply = remote_get_noisy_reply ();
12668 if (reply && *reply)
12669 {
12670 if (*reply == 'V')
12671 parse_tracepoint_status (reply + 1, bp, utp);
12672 }
12673 }
12674 }
12675 else if (utp)
12676 {
12677 utp->hit_count = 0;
12678 utp->traceframe_usage = 0;
12679 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12680 phex_nz (utp->addr, 0));
12681 putpkt (rs->buf);
12682 reply = remote_get_noisy_reply ();
12683 if (reply && *reply)
12684 {
12685 if (*reply == 'V')
12686 parse_tracepoint_status (reply + 1, bp, utp);
12687 }
12688 }
12689 }
12690
12691 static void
12692 remote_trace_stop (struct target_ops *self)
12693 {
12694 struct remote_state *rs = get_remote_state ();
12695
12696 putpkt ("QTStop");
12697 remote_get_noisy_reply ();
12698 if (*rs->buf == '\0')
12699 error (_("Target does not support this command."));
12700 if (strcmp (rs->buf, "OK") != 0)
12701 error (_("Bogus reply from target: %s"), rs->buf);
12702 }
12703
12704 static int
12705 remote_trace_find (struct target_ops *self,
12706 enum trace_find_type type, int num,
12707 CORE_ADDR addr1, CORE_ADDR addr2,
12708 int *tpp)
12709 {
12710 struct remote_state *rs = get_remote_state ();
12711 char *endbuf = rs->buf + get_remote_packet_size ();
12712 char *p, *reply;
12713 int target_frameno = -1, target_tracept = -1;
12714
12715 /* Lookups other than by absolute frame number depend on the current
12716 trace selected, so make sure it is correct on the remote end
12717 first. */
12718 if (type != tfind_number)
12719 set_remote_traceframe ();
12720
12721 p = rs->buf;
12722 strcpy (p, "QTFrame:");
12723 p = strchr (p, '\0');
12724 switch (type)
12725 {
12726 case tfind_number:
12727 xsnprintf (p, endbuf - p, "%x", num);
12728 break;
12729 case tfind_pc:
12730 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12731 break;
12732 case tfind_tp:
12733 xsnprintf (p, endbuf - p, "tdp:%x", num);
12734 break;
12735 case tfind_range:
12736 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12737 phex_nz (addr2, 0));
12738 break;
12739 case tfind_outside:
12740 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12741 phex_nz (addr2, 0));
12742 break;
12743 default:
12744 error (_("Unknown trace find type %d"), type);
12745 }
12746
12747 putpkt (rs->buf);
12748 reply = remote_get_noisy_reply ();
12749 if (*reply == '\0')
12750 error (_("Target does not support this command."));
12751
12752 while (reply && *reply)
12753 switch (*reply)
12754 {
12755 case 'F':
12756 p = ++reply;
12757 target_frameno = (int) strtol (p, &reply, 16);
12758 if (reply == p)
12759 error (_("Unable to parse trace frame number"));
12760 /* Don't update our remote traceframe number cache on failure
12761 to select a remote traceframe. */
12762 if (target_frameno == -1)
12763 return -1;
12764 break;
12765 case 'T':
12766 p = ++reply;
12767 target_tracept = (int) strtol (p, &reply, 16);
12768 if (reply == p)
12769 error (_("Unable to parse tracepoint number"));
12770 break;
12771 case 'O': /* "OK"? */
12772 if (reply[1] == 'K' && reply[2] == '\0')
12773 reply += 2;
12774 else
12775 error (_("Bogus reply from target: %s"), reply);
12776 break;
12777 default:
12778 error (_("Bogus reply from target: %s"), reply);
12779 }
12780 if (tpp)
12781 *tpp = target_tracept;
12782
12783 rs->remote_traceframe_number = target_frameno;
12784 return target_frameno;
12785 }
12786
12787 static int
12788 remote_get_trace_state_variable_value (struct target_ops *self,
12789 int tsvnum, LONGEST *val)
12790 {
12791 struct remote_state *rs = get_remote_state ();
12792 char *reply;
12793 ULONGEST uval;
12794
12795 set_remote_traceframe ();
12796
12797 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12798 putpkt (rs->buf);
12799 reply = remote_get_noisy_reply ();
12800 if (reply && *reply)
12801 {
12802 if (*reply == 'V')
12803 {
12804 unpack_varlen_hex (reply + 1, &uval);
12805 *val = (LONGEST) uval;
12806 return 1;
12807 }
12808 }
12809 return 0;
12810 }
12811
12812 static int
12813 remote_save_trace_data (struct target_ops *self, const char *filename)
12814 {
12815 struct remote_state *rs = get_remote_state ();
12816 char *p, *reply;
12817
12818 p = rs->buf;
12819 strcpy (p, "QTSave:");
12820 p += strlen (p);
12821 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12822 error (_("Remote file name too long for trace save packet"));
12823 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12824 *p++ = '\0';
12825 putpkt (rs->buf);
12826 reply = remote_get_noisy_reply ();
12827 if (*reply == '\0')
12828 error (_("Target does not support this command."));
12829 if (strcmp (reply, "OK") != 0)
12830 error (_("Bogus reply from target: %s"), reply);
12831 return 0;
12832 }
12833
12834 /* This is basically a memory transfer, but needs to be its own packet
12835 because we don't know how the target actually organizes its trace
12836 memory, plus we want to be able to ask for as much as possible, but
12837 not be unhappy if we don't get as much as we ask for. */
12838
12839 static LONGEST
12840 remote_get_raw_trace_data (struct target_ops *self,
12841 gdb_byte *buf, ULONGEST offset, LONGEST len)
12842 {
12843 struct remote_state *rs = get_remote_state ();
12844 char *reply;
12845 char *p;
12846 int rslt;
12847
12848 p = rs->buf;
12849 strcpy (p, "qTBuffer:");
12850 p += strlen (p);
12851 p += hexnumstr (p, offset);
12852 *p++ = ',';
12853 p += hexnumstr (p, len);
12854 *p++ = '\0';
12855
12856 putpkt (rs->buf);
12857 reply = remote_get_noisy_reply ();
12858 if (reply && *reply)
12859 {
12860 /* 'l' by itself means we're at the end of the buffer and
12861 there is nothing more to get. */
12862 if (*reply == 'l')
12863 return 0;
12864
12865 /* Convert the reply into binary. Limit the number of bytes to
12866 convert according to our passed-in buffer size, rather than
12867 what was returned in the packet; if the target is
12868 unexpectedly generous and gives us a bigger reply than we
12869 asked for, we don't want to crash. */
12870 rslt = hex2bin (reply, buf, len);
12871 return rslt;
12872 }
12873
12874 /* Something went wrong, flag as an error. */
12875 return -1;
12876 }
12877
12878 static void
12879 remote_set_disconnected_tracing (struct target_ops *self, int val)
12880 {
12881 struct remote_state *rs = get_remote_state ();
12882
12883 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12884 {
12885 char *reply;
12886
12887 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12888 putpkt (rs->buf);
12889 reply = remote_get_noisy_reply ();
12890 if (*reply == '\0')
12891 error (_("Target does not support this command."));
12892 if (strcmp (reply, "OK") != 0)
12893 error (_("Bogus reply from target: %s"), reply);
12894 }
12895 else if (val)
12896 warning (_("Target does not support disconnected tracing."));
12897 }
12898
12899 static int
12900 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12901 {
12902 struct thread_info *info = find_thread_ptid (ptid);
12903
12904 if (info != NULL && info->priv != NULL)
12905 return get_remote_thread_info (info)->core;
12906
12907 return -1;
12908 }
12909
12910 static void
12911 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12912 {
12913 struct remote_state *rs = get_remote_state ();
12914 char *reply;
12915
12916 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12917 putpkt (rs->buf);
12918 reply = remote_get_noisy_reply ();
12919 if (*reply == '\0')
12920 error (_("Target does not support this command."));
12921 if (strcmp (reply, "OK") != 0)
12922 error (_("Bogus reply from target: %s"), reply);
12923 }
12924
12925 static traceframe_info_up
12926 remote_traceframe_info (struct target_ops *self)
12927 {
12928 gdb::unique_xmalloc_ptr<char> text
12929 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12930 NULL);
12931 if (text != NULL)
12932 return parse_traceframe_info (text.get ());
12933
12934 return NULL;
12935 }
12936
12937 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12938 instruction on which a fast tracepoint may be placed. Returns -1
12939 if the packet is not supported, and 0 if the minimum instruction
12940 length is unknown. */
12941
12942 static int
12943 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12944 {
12945 struct remote_state *rs = get_remote_state ();
12946 char *reply;
12947
12948 /* If we're not debugging a process yet, the IPA can't be
12949 loaded. */
12950 if (!target_has_execution)
12951 return 0;
12952
12953 /* Make sure the remote is pointing at the right process. */
12954 set_general_process ();
12955
12956 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12957 putpkt (rs->buf);
12958 reply = remote_get_noisy_reply ();
12959 if (*reply == '\0')
12960 return -1;
12961 else
12962 {
12963 ULONGEST min_insn_len;
12964
12965 unpack_varlen_hex (reply, &min_insn_len);
12966
12967 return (int) min_insn_len;
12968 }
12969 }
12970
12971 static void
12972 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12973 {
12974 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12975 {
12976 struct remote_state *rs = get_remote_state ();
12977 char *buf = rs->buf;
12978 char *endbuf = rs->buf + get_remote_packet_size ();
12979 enum packet_result result;
12980
12981 gdb_assert (val >= 0 || val == -1);
12982 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12983 /* Send -1 as literal "-1" to avoid host size dependency. */
12984 if (val < 0)
12985 {
12986 *buf++ = '-';
12987 buf += hexnumstr (buf, (ULONGEST) -val);
12988 }
12989 else
12990 buf += hexnumstr (buf, (ULONGEST) val);
12991
12992 putpkt (rs->buf);
12993 remote_get_noisy_reply ();
12994 result = packet_ok (rs->buf,
12995 &remote_protocol_packets[PACKET_QTBuffer_size]);
12996
12997 if (result != PACKET_OK)
12998 warning (_("Bogus reply from target: %s"), rs->buf);
12999 }
13000 }
13001
13002 static int
13003 remote_set_trace_notes (struct target_ops *self,
13004 const char *user, const char *notes,
13005 const char *stop_notes)
13006 {
13007 struct remote_state *rs = get_remote_state ();
13008 char *reply;
13009 char *buf = rs->buf;
13010 char *endbuf = rs->buf + get_remote_packet_size ();
13011 int nbytes;
13012
13013 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13014 if (user)
13015 {
13016 buf += xsnprintf (buf, endbuf - buf, "user:");
13017 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13018 buf += 2 * nbytes;
13019 *buf++ = ';';
13020 }
13021 if (notes)
13022 {
13023 buf += xsnprintf (buf, endbuf - buf, "notes:");
13024 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13025 buf += 2 * nbytes;
13026 *buf++ = ';';
13027 }
13028 if (stop_notes)
13029 {
13030 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13031 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13032 buf += 2 * nbytes;
13033 *buf++ = ';';
13034 }
13035 /* Ensure the buffer is terminated. */
13036 *buf = '\0';
13037
13038 putpkt (rs->buf);
13039 reply = remote_get_noisy_reply ();
13040 if (*reply == '\0')
13041 return 0;
13042
13043 if (strcmp (reply, "OK") != 0)
13044 error (_("Bogus reply from target: %s"), reply);
13045
13046 return 1;
13047 }
13048
13049 static int
13050 remote_use_agent (struct target_ops *self, int use)
13051 {
13052 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13053 {
13054 struct remote_state *rs = get_remote_state ();
13055
13056 /* If the stub supports QAgent. */
13057 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13058 putpkt (rs->buf);
13059 getpkt (&rs->buf, &rs->buf_size, 0);
13060
13061 if (strcmp (rs->buf, "OK") == 0)
13062 {
13063 use_agent = use;
13064 return 1;
13065 }
13066 }
13067
13068 return 0;
13069 }
13070
13071 static int
13072 remote_can_use_agent (struct target_ops *self)
13073 {
13074 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13075 }
13076
13077 struct btrace_target_info
13078 {
13079 /* The ptid of the traced thread. */
13080 ptid_t ptid;
13081
13082 /* The obtained branch trace configuration. */
13083 struct btrace_config conf;
13084 };
13085
13086 /* Reset our idea of our target's btrace configuration. */
13087
13088 static void
13089 remote_btrace_reset (void)
13090 {
13091 struct remote_state *rs = get_remote_state ();
13092
13093 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13094 }
13095
13096 /* Check whether the target supports branch tracing. */
13097
13098 static int
13099 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13100 {
13101 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13102 return 0;
13103 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13104 return 0;
13105
13106 switch (format)
13107 {
13108 case BTRACE_FORMAT_NONE:
13109 return 0;
13110
13111 case BTRACE_FORMAT_BTS:
13112 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13113
13114 case BTRACE_FORMAT_PT:
13115 /* The trace is decoded on the host. Even if our target supports it,
13116 we still need to have libipt to decode the trace. */
13117 #if defined (HAVE_LIBIPT)
13118 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13119 #else /* !defined (HAVE_LIBIPT) */
13120 return 0;
13121 #endif /* !defined (HAVE_LIBIPT) */
13122 }
13123
13124 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13125 }
13126
13127 /* Synchronize the configuration with the target. */
13128
13129 static void
13130 btrace_sync_conf (const struct btrace_config *conf)
13131 {
13132 struct packet_config *packet;
13133 struct remote_state *rs;
13134 char *buf, *pos, *endbuf;
13135
13136 rs = get_remote_state ();
13137 buf = rs->buf;
13138 endbuf = buf + get_remote_packet_size ();
13139
13140 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13141 if (packet_config_support (packet) == PACKET_ENABLE
13142 && conf->bts.size != rs->btrace_config.bts.size)
13143 {
13144 pos = buf;
13145 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13146 conf->bts.size);
13147
13148 putpkt (buf);
13149 getpkt (&buf, &rs->buf_size, 0);
13150
13151 if (packet_ok (buf, packet) == PACKET_ERROR)
13152 {
13153 if (buf[0] == 'E' && buf[1] == '.')
13154 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13155 else
13156 error (_("Failed to configure the BTS buffer size."));
13157 }
13158
13159 rs->btrace_config.bts.size = conf->bts.size;
13160 }
13161
13162 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13163 if (packet_config_support (packet) == PACKET_ENABLE
13164 && conf->pt.size != rs->btrace_config.pt.size)
13165 {
13166 pos = buf;
13167 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13168 conf->pt.size);
13169
13170 putpkt (buf);
13171 getpkt (&buf, &rs->buf_size, 0);
13172
13173 if (packet_ok (buf, packet) == PACKET_ERROR)
13174 {
13175 if (buf[0] == 'E' && buf[1] == '.')
13176 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13177 else
13178 error (_("Failed to configure the trace buffer size."));
13179 }
13180
13181 rs->btrace_config.pt.size = conf->pt.size;
13182 }
13183 }
13184
13185 /* Read the current thread's btrace configuration from the target and
13186 store it into CONF. */
13187
13188 static void
13189 btrace_read_config (struct btrace_config *conf)
13190 {
13191 gdb::unique_xmalloc_ptr<char> xml
13192 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13193 if (xml != NULL)
13194 parse_xml_btrace_conf (conf, xml.get ());
13195 }
13196
13197 /* Maybe reopen target btrace. */
13198
13199 static void
13200 remote_btrace_maybe_reopen (void)
13201 {
13202 struct remote_state *rs = get_remote_state ();
13203 struct thread_info *tp;
13204 int btrace_target_pushed = 0;
13205 int warned = 0;
13206
13207 scoped_restore_current_thread restore_thread;
13208
13209 ALL_NON_EXITED_THREADS (tp)
13210 {
13211 set_general_thread (tp->ptid);
13212
13213 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13214 btrace_read_config (&rs->btrace_config);
13215
13216 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13217 continue;
13218
13219 #if !defined (HAVE_LIBIPT)
13220 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13221 {
13222 if (!warned)
13223 {
13224 warned = 1;
13225 warning (_("GDB does not support Intel Processor Trace. "
13226 "\"record\" will not work in this session."));
13227 }
13228
13229 continue;
13230 }
13231 #endif /* !defined (HAVE_LIBIPT) */
13232
13233 /* Push target, once, but before anything else happens. This way our
13234 changes to the threads will be cleaned up by unpushing the target
13235 in case btrace_read_config () throws. */
13236 if (!btrace_target_pushed)
13237 {
13238 btrace_target_pushed = 1;
13239 record_btrace_push_target ();
13240 printf_filtered (_("Target is recording using %s.\n"),
13241 btrace_format_string (rs->btrace_config.format));
13242 }
13243
13244 tp->btrace.target = XCNEW (struct btrace_target_info);
13245 tp->btrace.target->ptid = tp->ptid;
13246 tp->btrace.target->conf = rs->btrace_config;
13247 }
13248 }
13249
13250 /* Enable branch tracing. */
13251
13252 static struct btrace_target_info *
13253 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13254 const struct btrace_config *conf)
13255 {
13256 struct btrace_target_info *tinfo = NULL;
13257 struct packet_config *packet = NULL;
13258 struct remote_state *rs = get_remote_state ();
13259 char *buf = rs->buf;
13260 char *endbuf = rs->buf + get_remote_packet_size ();
13261
13262 switch (conf->format)
13263 {
13264 case BTRACE_FORMAT_BTS:
13265 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13266 break;
13267
13268 case BTRACE_FORMAT_PT:
13269 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13270 break;
13271 }
13272
13273 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13274 error (_("Target does not support branch tracing."));
13275
13276 btrace_sync_conf (conf);
13277
13278 set_general_thread (ptid);
13279
13280 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13281 putpkt (rs->buf);
13282 getpkt (&rs->buf, &rs->buf_size, 0);
13283
13284 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13285 {
13286 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13287 error (_("Could not enable branch tracing for %s: %s"),
13288 target_pid_to_str (ptid), rs->buf + 2);
13289 else
13290 error (_("Could not enable branch tracing for %s."),
13291 target_pid_to_str (ptid));
13292 }
13293
13294 tinfo = XCNEW (struct btrace_target_info);
13295 tinfo->ptid = ptid;
13296
13297 /* If we fail to read the configuration, we lose some information, but the
13298 tracing itself is not impacted. */
13299 TRY
13300 {
13301 btrace_read_config (&tinfo->conf);
13302 }
13303 CATCH (err, RETURN_MASK_ERROR)
13304 {
13305 if (err.message != NULL)
13306 warning ("%s", err.message);
13307 }
13308 END_CATCH
13309
13310 return tinfo;
13311 }
13312
13313 /* Disable branch tracing. */
13314
13315 static void
13316 remote_disable_btrace (struct target_ops *self,
13317 struct btrace_target_info *tinfo)
13318 {
13319 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13320 struct remote_state *rs = get_remote_state ();
13321 char *buf = rs->buf;
13322 char *endbuf = rs->buf + get_remote_packet_size ();
13323
13324 if (packet_config_support (packet) != PACKET_ENABLE)
13325 error (_("Target does not support branch tracing."));
13326
13327 set_general_thread (tinfo->ptid);
13328
13329 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13330 putpkt (rs->buf);
13331 getpkt (&rs->buf, &rs->buf_size, 0);
13332
13333 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13334 {
13335 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13336 error (_("Could not disable branch tracing for %s: %s"),
13337 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13338 else
13339 error (_("Could not disable branch tracing for %s."),
13340 target_pid_to_str (tinfo->ptid));
13341 }
13342
13343 xfree (tinfo);
13344 }
13345
13346 /* Teardown branch tracing. */
13347
13348 static void
13349 remote_teardown_btrace (struct target_ops *self,
13350 struct btrace_target_info *tinfo)
13351 {
13352 /* We must not talk to the target during teardown. */
13353 xfree (tinfo);
13354 }
13355
13356 /* Read the branch trace. */
13357
13358 static enum btrace_error
13359 remote_read_btrace (struct target_ops *self,
13360 struct btrace_data *btrace,
13361 struct btrace_target_info *tinfo,
13362 enum btrace_read_type type)
13363 {
13364 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13365 const char *annex;
13366
13367 if (packet_config_support (packet) != PACKET_ENABLE)
13368 error (_("Target does not support branch tracing."));
13369
13370 #if !defined(HAVE_LIBEXPAT)
13371 error (_("Cannot process branch tracing result. XML parsing not supported."));
13372 #endif
13373
13374 switch (type)
13375 {
13376 case BTRACE_READ_ALL:
13377 annex = "all";
13378 break;
13379 case BTRACE_READ_NEW:
13380 annex = "new";
13381 break;
13382 case BTRACE_READ_DELTA:
13383 annex = "delta";
13384 break;
13385 default:
13386 internal_error (__FILE__, __LINE__,
13387 _("Bad branch tracing read type: %u."),
13388 (unsigned int) type);
13389 }
13390
13391 gdb::unique_xmalloc_ptr<char> xml
13392 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13393 if (xml == NULL)
13394 return BTRACE_ERR_UNKNOWN;
13395
13396 parse_xml_btrace (btrace, xml.get ());
13397
13398 return BTRACE_ERR_NONE;
13399 }
13400
13401 static const struct btrace_config *
13402 remote_btrace_conf (struct target_ops *self,
13403 const struct btrace_target_info *tinfo)
13404 {
13405 return &tinfo->conf;
13406 }
13407
13408 static int
13409 remote_augmented_libraries_svr4_read (struct target_ops *self)
13410 {
13411 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13412 == PACKET_ENABLE);
13413 }
13414
13415 /* Implementation of to_load. */
13416
13417 static void
13418 remote_load (struct target_ops *self, const char *name, int from_tty)
13419 {
13420 generic_load (name, from_tty);
13421 }
13422
13423 /* Accepts an integer PID; returns a string representing a file that
13424 can be opened on the remote side to get the symbols for the child
13425 process. Returns NULL if the operation is not supported. */
13426
13427 static char *
13428 remote_pid_to_exec_file (struct target_ops *self, int pid)
13429 {
13430 static gdb::unique_xmalloc_ptr<char> filename;
13431 struct inferior *inf;
13432 char *annex = NULL;
13433
13434 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13435 return NULL;
13436
13437 inf = find_inferior_pid (pid);
13438 if (inf == NULL)
13439 internal_error (__FILE__, __LINE__,
13440 _("not currently attached to process %d"), pid);
13441
13442 if (!inf->fake_pid_p)
13443 {
13444 const int annex_size = 9;
13445
13446 annex = (char *) alloca (annex_size);
13447 xsnprintf (annex, annex_size, "%x", pid);
13448 }
13449
13450 filename = target_read_stralloc (&current_target,
13451 TARGET_OBJECT_EXEC_FILE, annex);
13452
13453 return filename.get ();
13454 }
13455
13456 /* Implement the to_can_do_single_step target_ops method. */
13457
13458 static int
13459 remote_can_do_single_step (struct target_ops *ops)
13460 {
13461 /* We can only tell whether target supports single step or not by
13462 supported s and S vCont actions if the stub supports vContSupported
13463 feature. If the stub doesn't support vContSupported feature,
13464 we have conservatively to think target doesn't supports single
13465 step. */
13466 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13467 {
13468 struct remote_state *rs = get_remote_state ();
13469
13470 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13471 remote_vcont_probe (rs);
13472
13473 return rs->supports_vCont.s && rs->supports_vCont.S;
13474 }
13475 else
13476 return 0;
13477 }
13478
13479 /* Implementation of the to_execution_direction method for the remote
13480 target. */
13481
13482 static enum exec_direction_kind
13483 remote_execution_direction (struct target_ops *self)
13484 {
13485 struct remote_state *rs = get_remote_state ();
13486
13487 return rs->last_resume_exec_dir;
13488 }
13489
13490 /* Return pointer to the thread_info struct which corresponds to
13491 THREAD_HANDLE (having length HANDLE_LEN). */
13492
13493 static struct thread_info *
13494 remote_thread_handle_to_thread_info (struct target_ops *ops,
13495 const gdb_byte *thread_handle,
13496 int handle_len,
13497 struct inferior *inf)
13498 {
13499 struct thread_info *tp;
13500
13501 ALL_NON_EXITED_THREADS (tp)
13502 {
13503 remote_thread_info *priv = get_remote_thread_info (tp);
13504
13505 if (tp->inf == inf && priv != NULL)
13506 {
13507 if (handle_len != priv->thread_handle.size ())
13508 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13509 handle_len, priv->thread_handle.size ());
13510 if (memcmp (thread_handle, priv->thread_handle.data (),
13511 handle_len) == 0)
13512 return tp;
13513 }
13514 }
13515
13516 return NULL;
13517 }
13518
13519 static void
13520 init_remote_ops (void)
13521 {
13522 remote_ops.to_shortname = "remote";
13523 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13524 remote_ops.to_doc =
13525 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13526 Specify the serial device it is connected to\n\
13527 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13528 remote_ops.to_open = remote_open;
13529 remote_ops.to_close = remote_close;
13530 remote_ops.to_detach = remote_detach;
13531 remote_ops.to_disconnect = remote_disconnect;
13532 remote_ops.to_resume = remote_resume;
13533 remote_ops.to_commit_resume = remote_commit_resume;
13534 remote_ops.to_wait = remote_wait;
13535 remote_ops.to_fetch_registers = remote_fetch_registers;
13536 remote_ops.to_store_registers = remote_store_registers;
13537 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13538 remote_ops.to_files_info = remote_files_info;
13539 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13540 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13541 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13542 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13543 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13544 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13545 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13546 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13547 remote_ops.to_watchpoint_addr_within_range =
13548 remote_watchpoint_addr_within_range;
13549 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13550 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13551 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13552 remote_ops.to_region_ok_for_hw_watchpoint
13553 = remote_region_ok_for_hw_watchpoint;
13554 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13555 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13556 remote_ops.to_kill = remote_kill;
13557 remote_ops.to_load = remote_load;
13558 remote_ops.to_mourn_inferior = remote_mourn;
13559 remote_ops.to_pass_signals = remote_pass_signals;
13560 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13561 remote_ops.to_program_signals = remote_program_signals;
13562 remote_ops.to_thread_alive = remote_thread_alive;
13563 remote_ops.to_thread_name = remote_thread_name;
13564 remote_ops.to_update_thread_list = remote_update_thread_list;
13565 remote_ops.to_pid_to_str = remote_pid_to_str;
13566 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13567 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13568 remote_ops.to_stop = remote_stop;
13569 remote_ops.to_interrupt = remote_interrupt;
13570 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13571 remote_ops.to_xfer_partial = remote_xfer_partial;
13572 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13573 remote_ops.to_rcmd = remote_rcmd;
13574 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13575 remote_ops.to_log_command = serial_log_command;
13576 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13577 remote_ops.to_stratum = process_stratum;
13578 remote_ops.to_has_all_memory = default_child_has_all_memory;
13579 remote_ops.to_has_memory = default_child_has_memory;
13580 remote_ops.to_has_stack = default_child_has_stack;
13581 remote_ops.to_has_registers = default_child_has_registers;
13582 remote_ops.to_has_execution = default_child_has_execution;
13583 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13584 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13585 remote_ops.to_magic = OPS_MAGIC;
13586 remote_ops.to_memory_map = remote_memory_map;
13587 remote_ops.to_flash_erase = remote_flash_erase;
13588 remote_ops.to_flash_done = remote_flash_done;
13589 remote_ops.to_read_description = remote_read_description;
13590 remote_ops.to_search_memory = remote_search_memory;
13591 remote_ops.to_can_async_p = remote_can_async_p;
13592 remote_ops.to_is_async_p = remote_is_async_p;
13593 remote_ops.to_async = remote_async;
13594 remote_ops.to_thread_events = remote_thread_events;
13595 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13596 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13597 remote_ops.to_terminal_ours = remote_terminal_ours;
13598 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13599 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13600 remote_ops.to_supports_disable_randomization
13601 = remote_supports_disable_randomization;
13602 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13603 remote_ops.to_fileio_open = remote_hostio_open;
13604 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13605 remote_ops.to_fileio_pread = remote_hostio_pread;
13606 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13607 remote_ops.to_fileio_close = remote_hostio_close;
13608 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13609 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13610 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13611 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13612 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13613 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13614 remote_ops.to_trace_init = remote_trace_init;
13615 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13616 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13617 remote_ops.to_download_trace_state_variable
13618 = remote_download_trace_state_variable;
13619 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13620 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13621 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13622 remote_ops.to_trace_start = remote_trace_start;
13623 remote_ops.to_get_trace_status = remote_get_trace_status;
13624 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13625 remote_ops.to_trace_stop = remote_trace_stop;
13626 remote_ops.to_trace_find = remote_trace_find;
13627 remote_ops.to_get_trace_state_variable_value
13628 = remote_get_trace_state_variable_value;
13629 remote_ops.to_save_trace_data = remote_save_trace_data;
13630 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13631 remote_ops.to_upload_trace_state_variables
13632 = remote_upload_trace_state_variables;
13633 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13634 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13635 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13636 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13637 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13638 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13639 remote_ops.to_core_of_thread = remote_core_of_thread;
13640 remote_ops.to_verify_memory = remote_verify_memory;
13641 remote_ops.to_get_tib_address = remote_get_tib_address;
13642 remote_ops.to_set_permissions = remote_set_permissions;
13643 remote_ops.to_static_tracepoint_marker_at
13644 = remote_static_tracepoint_marker_at;
13645 remote_ops.to_static_tracepoint_markers_by_strid
13646 = remote_static_tracepoint_markers_by_strid;
13647 remote_ops.to_traceframe_info = remote_traceframe_info;
13648 remote_ops.to_use_agent = remote_use_agent;
13649 remote_ops.to_can_use_agent = remote_can_use_agent;
13650 remote_ops.to_supports_btrace = remote_supports_btrace;
13651 remote_ops.to_enable_btrace = remote_enable_btrace;
13652 remote_ops.to_disable_btrace = remote_disable_btrace;
13653 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13654 remote_ops.to_read_btrace = remote_read_btrace;
13655 remote_ops.to_btrace_conf = remote_btrace_conf;
13656 remote_ops.to_augmented_libraries_svr4_read =
13657 remote_augmented_libraries_svr4_read;
13658 remote_ops.to_follow_fork = remote_follow_fork;
13659 remote_ops.to_follow_exec = remote_follow_exec;
13660 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13661 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13662 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13663 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13664 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13665 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13666 remote_ops.to_execution_direction = remote_execution_direction;
13667 remote_ops.to_thread_handle_to_thread_info =
13668 remote_thread_handle_to_thread_info;
13669 }
13670
13671 /* Set up the extended remote vector by making a copy of the standard
13672 remote vector and adding to it. */
13673
13674 static void
13675 init_extended_remote_ops (void)
13676 {
13677 extended_remote_ops = remote_ops;
13678
13679 extended_remote_ops.to_shortname = "extended-remote";
13680 extended_remote_ops.to_longname =
13681 "Extended remote serial target in gdb-specific protocol";
13682 extended_remote_ops.to_doc =
13683 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13684 Specify the serial device it is connected to (e.g. /dev/ttya).";
13685 extended_remote_ops.to_open = extended_remote_open;
13686 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13687 extended_remote_ops.to_detach = extended_remote_detach;
13688 extended_remote_ops.to_attach = extended_remote_attach;
13689 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13690 extended_remote_ops.to_supports_disable_randomization
13691 = extended_remote_supports_disable_randomization;
13692 }
13693
13694 static int
13695 remote_can_async_p (struct target_ops *ops)
13696 {
13697 struct remote_state *rs = get_remote_state ();
13698
13699 /* We don't go async if the user has explicitly prevented it with the
13700 "maint set target-async" command. */
13701 if (!target_async_permitted)
13702 return 0;
13703
13704 /* We're async whenever the serial device is. */
13705 return serial_can_async_p (rs->remote_desc);
13706 }
13707
13708 static int
13709 remote_is_async_p (struct target_ops *ops)
13710 {
13711 struct remote_state *rs = get_remote_state ();
13712
13713 if (!target_async_permitted)
13714 /* We only enable async when the user specifically asks for it. */
13715 return 0;
13716
13717 /* We're async whenever the serial device is. */
13718 return serial_is_async_p (rs->remote_desc);
13719 }
13720
13721 /* Pass the SERIAL event on and up to the client. One day this code
13722 will be able to delay notifying the client of an event until the
13723 point where an entire packet has been received. */
13724
13725 static serial_event_ftype remote_async_serial_handler;
13726
13727 static void
13728 remote_async_serial_handler (struct serial *scb, void *context)
13729 {
13730 /* Don't propogate error information up to the client. Instead let
13731 the client find out about the error by querying the target. */
13732 inferior_event_handler (INF_REG_EVENT, NULL);
13733 }
13734
13735 static void
13736 remote_async_inferior_event_handler (gdb_client_data data)
13737 {
13738 inferior_event_handler (INF_REG_EVENT, NULL);
13739 }
13740
13741 static void
13742 remote_async (struct target_ops *ops, int enable)
13743 {
13744 struct remote_state *rs = get_remote_state ();
13745
13746 if (enable)
13747 {
13748 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13749
13750 /* If there are pending events in the stop reply queue tell the
13751 event loop to process them. */
13752 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13753 mark_async_event_handler (remote_async_inferior_event_token);
13754 /* For simplicity, below we clear the pending events token
13755 without remembering whether it is marked, so here we always
13756 mark it. If there's actually no pending notification to
13757 process, this ends up being a no-op (other than a spurious
13758 event-loop wakeup). */
13759 if (target_is_non_stop_p ())
13760 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13761 }
13762 else
13763 {
13764 serial_async (rs->remote_desc, NULL, NULL);
13765 /* If the core is disabling async, it doesn't want to be
13766 disturbed with target events. Clear all async event sources
13767 too. */
13768 clear_async_event_handler (remote_async_inferior_event_token);
13769 if (target_is_non_stop_p ())
13770 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13771 }
13772 }
13773
13774 /* Implementation of the to_thread_events method. */
13775
13776 static void
13777 remote_thread_events (struct target_ops *ops, int enable)
13778 {
13779 struct remote_state *rs = get_remote_state ();
13780 size_t size = get_remote_packet_size ();
13781
13782 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13783 return;
13784
13785 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13786 putpkt (rs->buf);
13787 getpkt (&rs->buf, &rs->buf_size, 0);
13788
13789 switch (packet_ok (rs->buf,
13790 &remote_protocol_packets[PACKET_QThreadEvents]))
13791 {
13792 case PACKET_OK:
13793 if (strcmp (rs->buf, "OK") != 0)
13794 error (_("Remote refused setting thread events: %s"), rs->buf);
13795 break;
13796 case PACKET_ERROR:
13797 warning (_("Remote failure reply: %s"), rs->buf);
13798 break;
13799 case PACKET_UNKNOWN:
13800 break;
13801 }
13802 }
13803
13804 static void
13805 set_remote_cmd (const char *args, int from_tty)
13806 {
13807 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13808 }
13809
13810 static void
13811 show_remote_cmd (const char *args, int from_tty)
13812 {
13813 /* We can't just use cmd_show_list here, because we want to skip
13814 the redundant "show remote Z-packet" and the legacy aliases. */
13815 struct cmd_list_element *list = remote_show_cmdlist;
13816 struct ui_out *uiout = current_uiout;
13817
13818 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13819 for (; list != NULL; list = list->next)
13820 if (strcmp (list->name, "Z-packet") == 0)
13821 continue;
13822 else if (list->type == not_set_cmd)
13823 /* Alias commands are exactly like the original, except they
13824 don't have the normal type. */
13825 continue;
13826 else
13827 {
13828 ui_out_emit_tuple option_emitter (uiout, "option");
13829
13830 uiout->field_string ("name", list->name);
13831 uiout->text (": ");
13832 if (list->type == show_cmd)
13833 do_show_command (NULL, from_tty, list);
13834 else
13835 cmd_func (list, NULL, from_tty);
13836 }
13837 }
13838
13839
13840 /* Function to be called whenever a new objfile (shlib) is detected. */
13841 static void
13842 remote_new_objfile (struct objfile *objfile)
13843 {
13844 struct remote_state *rs = get_remote_state ();
13845
13846 if (rs->remote_desc != 0) /* Have a remote connection. */
13847 remote_check_symbols ();
13848 }
13849
13850 /* Pull all the tracepoints defined on the target and create local
13851 data structures representing them. We don't want to create real
13852 tracepoints yet, we don't want to mess up the user's existing
13853 collection. */
13854
13855 static int
13856 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13857 {
13858 struct remote_state *rs = get_remote_state ();
13859 char *p;
13860
13861 /* Ask for a first packet of tracepoint definition. */
13862 putpkt ("qTfP");
13863 getpkt (&rs->buf, &rs->buf_size, 0);
13864 p = rs->buf;
13865 while (*p && *p != 'l')
13866 {
13867 parse_tracepoint_definition (p, utpp);
13868 /* Ask for another packet of tracepoint definition. */
13869 putpkt ("qTsP");
13870 getpkt (&rs->buf, &rs->buf_size, 0);
13871 p = rs->buf;
13872 }
13873 return 0;
13874 }
13875
13876 static int
13877 remote_upload_trace_state_variables (struct target_ops *self,
13878 struct uploaded_tsv **utsvp)
13879 {
13880 struct remote_state *rs = get_remote_state ();
13881 char *p;
13882
13883 /* Ask for a first packet of variable definition. */
13884 putpkt ("qTfV");
13885 getpkt (&rs->buf, &rs->buf_size, 0);
13886 p = rs->buf;
13887 while (*p && *p != 'l')
13888 {
13889 parse_tsv_definition (p, utsvp);
13890 /* Ask for another packet of variable definition. */
13891 putpkt ("qTsV");
13892 getpkt (&rs->buf, &rs->buf_size, 0);
13893 p = rs->buf;
13894 }
13895 return 0;
13896 }
13897
13898 /* The "set/show range-stepping" show hook. */
13899
13900 static void
13901 show_range_stepping (struct ui_file *file, int from_tty,
13902 struct cmd_list_element *c,
13903 const char *value)
13904 {
13905 fprintf_filtered (file,
13906 _("Debugger's willingness to use range stepping "
13907 "is %s.\n"), value);
13908 }
13909
13910 /* The "set/show range-stepping" set hook. */
13911
13912 static void
13913 set_range_stepping (const char *ignore_args, int from_tty,
13914 struct cmd_list_element *c)
13915 {
13916 struct remote_state *rs = get_remote_state ();
13917
13918 /* Whene enabling, check whether range stepping is actually
13919 supported by the target, and warn if not. */
13920 if (use_range_stepping)
13921 {
13922 if (rs->remote_desc != NULL)
13923 {
13924 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13925 remote_vcont_probe (rs);
13926
13927 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13928 && rs->supports_vCont.r)
13929 return;
13930 }
13931
13932 warning (_("Range stepping is not supported by the current target"));
13933 }
13934 }
13935
13936 void
13937 _initialize_remote (void)
13938 {
13939 struct cmd_list_element *cmd;
13940 const char *cmd_name;
13941
13942 /* architecture specific data */
13943 remote_gdbarch_data_handle =
13944 gdbarch_data_register_post_init (init_remote_state);
13945 remote_g_packet_data_handle =
13946 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13947
13948 remote_pspace_data
13949 = register_program_space_data_with_cleanup (NULL,
13950 remote_pspace_data_cleanup);
13951
13952 /* Initialize the per-target state. At the moment there is only one
13953 of these, not one per target. Only one target is active at a
13954 time. */
13955 remote_state = new_remote_state ();
13956
13957 init_remote_ops ();
13958 add_target (&remote_ops);
13959
13960 init_extended_remote_ops ();
13961 add_target (&extended_remote_ops);
13962
13963 /* Hook into new objfile notification. */
13964 observer_attach_new_objfile (remote_new_objfile);
13965 /* We're no longer interested in notification events of an inferior
13966 when it exits. */
13967 observer_attach_inferior_exit (discard_pending_stop_replies);
13968
13969 #if 0
13970 init_remote_threadtests ();
13971 #endif
13972
13973 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13974 /* set/show remote ... */
13975
13976 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13977 Remote protocol specific variables\n\
13978 Configure various remote-protocol specific variables such as\n\
13979 the packets being used"),
13980 &remote_set_cmdlist, "set remote ",
13981 0 /* allow-unknown */, &setlist);
13982 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13983 Remote protocol specific variables\n\
13984 Configure various remote-protocol specific variables such as\n\
13985 the packets being used"),
13986 &remote_show_cmdlist, "show remote ",
13987 0 /* allow-unknown */, &showlist);
13988
13989 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13990 Compare section data on target to the exec file.\n\
13991 Argument is a single section name (default: all loaded sections).\n\
13992 To compare only read-only loaded sections, specify the -r option."),
13993 &cmdlist);
13994
13995 add_cmd ("packet", class_maintenance, packet_command, _("\
13996 Send an arbitrary packet to a remote target.\n\
13997 maintenance packet TEXT\n\
13998 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13999 this command sends the string TEXT to the inferior, and displays the\n\
14000 response packet. GDB supplies the initial `$' character, and the\n\
14001 terminating `#' character and checksum."),
14002 &maintenancelist);
14003
14004 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14005 Set whether to send break if interrupted."), _("\
14006 Show whether to send break if interrupted."), _("\
14007 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14008 set_remotebreak, show_remotebreak,
14009 &setlist, &showlist);
14010 cmd_name = "remotebreak";
14011 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14012 deprecate_cmd (cmd, "set remote interrupt-sequence");
14013 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14014 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14015 deprecate_cmd (cmd, "show remote interrupt-sequence");
14016
14017 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14018 interrupt_sequence_modes, &interrupt_sequence_mode,
14019 _("\
14020 Set interrupt sequence to remote target."), _("\
14021 Show interrupt sequence to remote target."), _("\
14022 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14023 NULL, show_interrupt_sequence,
14024 &remote_set_cmdlist,
14025 &remote_show_cmdlist);
14026
14027 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14028 &interrupt_on_connect, _("\
14029 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14030 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14031 If set, interrupt sequence is sent to remote target."),
14032 NULL, NULL,
14033 &remote_set_cmdlist, &remote_show_cmdlist);
14034
14035 /* Install commands for configuring memory read/write packets. */
14036
14037 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14038 Set the maximum number of bytes per memory write packet (deprecated)."),
14039 &setlist);
14040 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14041 Show the maximum number of bytes per memory write packet (deprecated)."),
14042 &showlist);
14043 add_cmd ("memory-write-packet-size", no_class,
14044 set_memory_write_packet_size, _("\
14045 Set the maximum number of bytes per memory-write packet.\n\
14046 Specify the number of bytes in a packet or 0 (zero) for the\n\
14047 default packet size. The actual limit is further reduced\n\
14048 dependent on the target. Specify ``fixed'' to disable the\n\
14049 further restriction and ``limit'' to enable that restriction."),
14050 &remote_set_cmdlist);
14051 add_cmd ("memory-read-packet-size", no_class,
14052 set_memory_read_packet_size, _("\
14053 Set the maximum number of bytes per memory-read packet.\n\
14054 Specify the number of bytes in a packet or 0 (zero) for the\n\
14055 default packet size. The actual limit is further reduced\n\
14056 dependent on the target. Specify ``fixed'' to disable the\n\
14057 further restriction and ``limit'' to enable that restriction."),
14058 &remote_set_cmdlist);
14059 add_cmd ("memory-write-packet-size", no_class,
14060 show_memory_write_packet_size,
14061 _("Show the maximum number of bytes per memory-write packet."),
14062 &remote_show_cmdlist);
14063 add_cmd ("memory-read-packet-size", no_class,
14064 show_memory_read_packet_size,
14065 _("Show the maximum number of bytes per memory-read packet."),
14066 &remote_show_cmdlist);
14067
14068 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14069 &remote_hw_watchpoint_limit, _("\
14070 Set the maximum number of target hardware watchpoints."), _("\
14071 Show the maximum number of target hardware watchpoints."), _("\
14072 Specify a negative limit for unlimited."),
14073 NULL, NULL, /* FIXME: i18n: The maximum
14074 number of target hardware
14075 watchpoints is %s. */
14076 &remote_set_cmdlist, &remote_show_cmdlist);
14077 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14078 &remote_hw_watchpoint_length_limit, _("\
14079 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14080 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14081 Specify a negative limit for unlimited."),
14082 NULL, NULL, /* FIXME: i18n: The maximum
14083 length (in bytes) of a target
14084 hardware watchpoint is %s. */
14085 &remote_set_cmdlist, &remote_show_cmdlist);
14086 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14087 &remote_hw_breakpoint_limit, _("\
14088 Set the maximum number of target hardware breakpoints."), _("\
14089 Show the maximum number of target hardware breakpoints."), _("\
14090 Specify a negative limit for unlimited."),
14091 NULL, NULL, /* FIXME: i18n: The maximum
14092 number of target hardware
14093 breakpoints is %s. */
14094 &remote_set_cmdlist, &remote_show_cmdlist);
14095
14096 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14097 &remote_address_size, _("\
14098 Set the maximum size of the address (in bits) in a memory packet."), _("\
14099 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14100 NULL,
14101 NULL, /* FIXME: i18n: */
14102 &setlist, &showlist);
14103
14104 init_all_packet_configs ();
14105
14106 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14107 "X", "binary-download", 1);
14108
14109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14110 "vCont", "verbose-resume", 0);
14111
14112 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14113 "QPassSignals", "pass-signals", 0);
14114
14115 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14116 "QCatchSyscalls", "catch-syscalls", 0);
14117
14118 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14119 "QProgramSignals", "program-signals", 0);
14120
14121 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14122 "QSetWorkingDir", "set-working-dir", 0);
14123
14124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14125 "QStartupWithShell", "startup-with-shell", 0);
14126
14127 add_packet_config_cmd (&remote_protocol_packets
14128 [PACKET_QEnvironmentHexEncoded],
14129 "QEnvironmentHexEncoded", "environment-hex-encoded",
14130 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14133 "QEnvironmentReset", "environment-reset",
14134 0);
14135
14136 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14137 "QEnvironmentUnset", "environment-unset",
14138 0);
14139
14140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14141 "qSymbol", "symbol-lookup", 0);
14142
14143 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14144 "P", "set-register", 1);
14145
14146 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14147 "p", "fetch-register", 1);
14148
14149 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14150 "Z0", "software-breakpoint", 0);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14153 "Z1", "hardware-breakpoint", 0);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14156 "Z2", "write-watchpoint", 0);
14157
14158 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14159 "Z3", "read-watchpoint", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14162 "Z4", "access-watchpoint", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14165 "qXfer:auxv:read", "read-aux-vector", 0);
14166
14167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14168 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14171 "qXfer:features:read", "target-features", 0);
14172
14173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14174 "qXfer:libraries:read", "library-info", 0);
14175
14176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14177 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14178
14179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14180 "qXfer:memory-map:read", "memory-map", 0);
14181
14182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14183 "qXfer:spu:read", "read-spu-object", 0);
14184
14185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14186 "qXfer:spu:write", "write-spu-object", 0);
14187
14188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14189 "qXfer:osdata:read", "osdata", 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14192 "qXfer:threads:read", "threads", 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14195 "qXfer:siginfo:read", "read-siginfo-object", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14198 "qXfer:siginfo:write", "write-siginfo-object", 0);
14199
14200 add_packet_config_cmd
14201 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14202 "qXfer:traceframe-info:read", "traceframe-info", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14205 "qXfer:uib:read", "unwind-info-block", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14208 "qGetTLSAddr", "get-thread-local-storage-address",
14209 0);
14210
14211 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14212 "qGetTIBAddr", "get-thread-information-block-address",
14213 0);
14214
14215 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14216 "bc", "reverse-continue", 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14219 "bs", "reverse-step", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14222 "qSupported", "supported-packets", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14225 "qSearch:memory", "search-memory", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14228 "qTStatus", "trace-status", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14231 "vFile:setfs", "hostio-setfs", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14234 "vFile:open", "hostio-open", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14237 "vFile:pread", "hostio-pread", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14240 "vFile:pwrite", "hostio-pwrite", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14243 "vFile:close", "hostio-close", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14246 "vFile:unlink", "hostio-unlink", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14249 "vFile:readlink", "hostio-readlink", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14252 "vFile:fstat", "hostio-fstat", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14255 "vAttach", "attach", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14258 "vRun", "run", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14261 "QStartNoAckMode", "noack", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14264 "vKill", "kill", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14267 "qAttached", "query-attached", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14270 "ConditionalTracepoints",
14271 "conditional-tracepoints", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14274 "ConditionalBreakpoints",
14275 "conditional-breakpoints", 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14278 "BreakpointCommands",
14279 "breakpoint-commands", 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14282 "FastTracepoints", "fast-tracepoints", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14285 "TracepointSource", "TracepointSource", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14288 "QAllow", "allow", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14291 "StaticTracepoints", "static-tracepoints", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14294 "InstallInTrace", "install-in-trace", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14297 "qXfer:statictrace:read", "read-sdata-object", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14300 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14303 "QDisableRandomization", "disable-randomization", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14306 "QAgent", "agent", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14309 "QTBuffer:size", "trace-buffer-size", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14312 "Qbtrace:off", "disable-btrace", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14315 "Qbtrace:bts", "enable-btrace-bts", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14318 "Qbtrace:pt", "enable-btrace-pt", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14321 "qXfer:btrace", "read-btrace", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14324 "qXfer:btrace-conf", "read-btrace-conf", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14327 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14330 "multiprocess-feature", "multiprocess-feature", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14333 "swbreak-feature", "swbreak-feature", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14336 "hwbreak-feature", "hwbreak-feature", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14339 "fork-event-feature", "fork-event-feature", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14342 "vfork-event-feature", "vfork-event-feature", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14345 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14348 "vContSupported", "verbose-resume-supported", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14351 "exec-event-feature", "exec-event-feature", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14354 "vCtrlC", "ctrl-c", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14357 "QThreadEvents", "thread-events", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14360 "N stop reply", "no-resumed-stop-reply", 0);
14361
14362 /* Assert that we've registered "set remote foo-packet" commands
14363 for all packet configs. */
14364 {
14365 int i;
14366
14367 for (i = 0; i < PACKET_MAX; i++)
14368 {
14369 /* Ideally all configs would have a command associated. Some
14370 still don't though. */
14371 int excepted;
14372
14373 switch (i)
14374 {
14375 case PACKET_QNonStop:
14376 case PACKET_EnableDisableTracepoints_feature:
14377 case PACKET_tracenz_feature:
14378 case PACKET_DisconnectedTracing_feature:
14379 case PACKET_augmented_libraries_svr4_read_feature:
14380 case PACKET_qCRC:
14381 /* Additions to this list need to be well justified:
14382 pre-existing packets are OK; new packets are not. */
14383 excepted = 1;
14384 break;
14385 default:
14386 excepted = 0;
14387 break;
14388 }
14389
14390 /* This catches both forgetting to add a config command, and
14391 forgetting to remove a packet from the exception list. */
14392 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14393 }
14394 }
14395
14396 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14397 Z sub-packet has its own set and show commands, but users may
14398 have sets to this variable in their .gdbinit files (or in their
14399 documentation). */
14400 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14401 &remote_Z_packet_detect, _("\
14402 Set use of remote protocol `Z' packets"), _("\
14403 Show use of remote protocol `Z' packets "), _("\
14404 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14405 packets."),
14406 set_remote_protocol_Z_packet_cmd,
14407 show_remote_protocol_Z_packet_cmd,
14408 /* FIXME: i18n: Use of remote protocol
14409 `Z' packets is %s. */
14410 &remote_set_cmdlist, &remote_show_cmdlist);
14411
14412 add_prefix_cmd ("remote", class_files, remote_command, _("\
14413 Manipulate files on the remote system\n\
14414 Transfer files to and from the remote target system."),
14415 &remote_cmdlist, "remote ",
14416 0 /* allow-unknown */, &cmdlist);
14417
14418 add_cmd ("put", class_files, remote_put_command,
14419 _("Copy a local file to the remote system."),
14420 &remote_cmdlist);
14421
14422 add_cmd ("get", class_files, remote_get_command,
14423 _("Copy a remote file to the local system."),
14424 &remote_cmdlist);
14425
14426 add_cmd ("delete", class_files, remote_delete_command,
14427 _("Delete a remote file."),
14428 &remote_cmdlist);
14429
14430 add_setshow_string_noescape_cmd ("exec-file", class_files,
14431 &remote_exec_file_var, _("\
14432 Set the remote pathname for \"run\""), _("\
14433 Show the remote pathname for \"run\""), NULL,
14434 set_remote_exec_file,
14435 show_remote_exec_file,
14436 &remote_set_cmdlist,
14437 &remote_show_cmdlist);
14438
14439 add_setshow_boolean_cmd ("range-stepping", class_run,
14440 &use_range_stepping, _("\
14441 Enable or disable range stepping."), _("\
14442 Show whether target-assisted range stepping is enabled."), _("\
14443 If on, and the target supports it, when stepping a source line, GDB\n\
14444 tells the target to step the corresponding range of addresses itself instead\n\
14445 of issuing multiple single-steps. This speeds up source level\n\
14446 stepping. If off, GDB always issues single-steps, even if range\n\
14447 stepping is supported by the target. The default is on."),
14448 set_range_stepping,
14449 show_range_stepping,
14450 &setlist,
14451 &showlist);
14452
14453 /* Eventually initialize fileio. See fileio.c */
14454 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14455
14456 /* Take advantage of the fact that the TID field is not used, to tag
14457 special ptids with it set to != 0. */
14458 magic_null_ptid = ptid_build (42000, -1, 1);
14459 not_sent_ptid = ptid_build (42000, -2, 1);
14460 any_thread_ptid = ptid_build (42000, 0, 1);
14461 }