]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* remote.c (push_remote_target): Delete.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void remote_files_info (struct target_ops *ignore);
89
90 static void remote_prepare_to_store (struct regcache *regcache);
91
92 static void remote_fetch_registers (struct regcache *regcache, int regno);
93
94 static void remote_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97
98 static void extended_remote_open (char *name, int from_tty);
99
100 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
101
102 static void remote_close (int quitting);
103
104 static void remote_store_registers (struct regcache *regcache, int regno);
105
106 static void remote_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char **buf, long *sizeof_buf_p);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120
121 static void remote_kill (void);
122
123 static int tohex (int nib);
124
125 static int remote_can_async_p (void);
126
127 static int remote_is_async_p (void);
128
129 static void remote_async (void (*callback) (enum inferior_event_type event_type,
130 void *context), void *context);
131
132 static int remote_async_mask (int new_mask);
133
134 static void remote_detach (char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static int remote_thread_alive (ptid_t);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (ptid_t);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static unsigned long crc32 (unsigned char *, int, unsigned int);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static void remote_find_new_threads (void);
184
185 static void record_currthread (ptid_t currthread);
186
187 static int fromhex (int a);
188
189 static int hex2bin (const char *hex, gdb_byte *bin, int count);
190
191 static int bin2hex (const gdb_byte *bin, char *hex, int count);
192
193 static int putpkt_binary (char *buf, int cnt);
194
195 static void check_binary_download (CORE_ADDR addr);
196
197 struct packet_config;
198
199 static void show_packet_config_cmd (struct packet_config *config);
200
201 static void update_packet_config (struct packet_config *config);
202
203 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
204 struct cmd_list_element *c);
205
206 static void show_remote_protocol_packet_cmd (struct ui_file *file,
207 int from_tty,
208 struct cmd_list_element *c,
209 const char *value);
210
211 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
212 static ptid_t read_ptid (char *buf, char **obuf);
213
214 static void remote_query_supported (void);
215
216 static void remote_check_symbols (struct objfile *objfile);
217
218 void _initialize_remote (void);
219
220 /* For "remote". */
221
222 static struct cmd_list_element *remote_cmdlist;
223
224 /* For "set remote" and "show remote". */
225
226 static struct cmd_list_element *remote_set_cmdlist;
227 static struct cmd_list_element *remote_show_cmdlist;
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 struct remote_state
234 {
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 char *buf;
242 long buf_size;
243
244 /* If we negotiated packet size explicitly (and thus can bypass
245 heuristics for the largest packet size that will not overflow
246 a buffer in the stub), this will be set to that packet size.
247 Otherwise zero, meaning to use the guessed size. */
248 long explicit_packet_size;
249
250 /* remote_wait is normally called when the target is running and
251 waits for a stop reply packet. But sometimes we need to call it
252 when the target is already stopped. We can send a "?" packet
253 and have remote_wait read the response. Or, if we already have
254 the response, we can stash it in BUF and tell remote_wait to
255 skip calling getpkt. This flag is set when BUF contains a
256 stop reply packet and the target is not waiting. */
257 int cached_wait_status;
258
259 /* True, if in no ack mode. That is, neither GDB nor the stub will
260 expect acks from each other. The connection is assumed to be
261 reliable. */
262 int noack_mode;
263
264 /* True if we're connected in extended remote mode. */
265 int extended;
266
267 /* True if the stub reported support for multi-process
268 extensions. */
269 int multi_process_aware;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 int waiting_for_stop_reply;
278 };
279
280 /* Returns true if the multi-process extensions are in effect. */
281 static int
282 remote_multi_process_p (struct remote_state *rs)
283 {
284 return rs->extended && rs->multi_process_aware;
285 }
286
287 /* This data could be associated with a target, but we do not always
288 have access to the current target when we need it, so for now it is
289 static. This will be fine for as long as only one target is in use
290 at a time. */
291 static struct remote_state remote_state;
292
293 static struct remote_state *
294 get_remote_state_raw (void)
295 {
296 return &remote_state;
297 }
298
299 /* Description of the remote protocol for a given architecture. */
300
301 struct packet_reg
302 {
303 long offset; /* Offset into G packet. */
304 long regnum; /* GDB's internal register number. */
305 LONGEST pnum; /* Remote protocol register number. */
306 int in_g_packet; /* Always part of G packet. */
307 /* long size in bytes; == register_size (target_gdbarch, regnum);
308 at present. */
309 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
310 at present. */
311 };
312
313 struct remote_arch_state
314 {
315 /* Description of the remote protocol registers. */
316 long sizeof_g_packet;
317
318 /* Description of the remote protocol registers indexed by REGNUM
319 (making an array gdbarch_num_regs in size). */
320 struct packet_reg *regs;
321
322 /* This is the size (in chars) of the first response to the ``g''
323 packet. It is used as a heuristic when determining the maximum
324 size of memory-read and memory-write packets. A target will
325 typically only reserve a buffer large enough to hold the ``g''
326 packet. The size does not include packet overhead (headers and
327 trailers). */
328 long actual_register_packet_size;
329
330 /* This is the maximum size (in chars) of a non read/write packet.
331 It is also used as a cap on the size of read/write packets. */
332 long remote_packet_size;
333 };
334
335
336 /* Handle for retreving the remote protocol data from gdbarch. */
337 static struct gdbarch_data *remote_gdbarch_data_handle;
338
339 static struct remote_arch_state *
340 get_remote_arch_state (void)
341 {
342 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
343 }
344
345 /* Fetch the global remote target state. */
346
347 static struct remote_state *
348 get_remote_state (void)
349 {
350 /* Make sure that the remote architecture state has been
351 initialized, because doing so might reallocate rs->buf. Any
352 function which calls getpkt also needs to be mindful of changes
353 to rs->buf, but this call limits the number of places which run
354 into trouble. */
355 get_remote_arch_state ();
356
357 return get_remote_state_raw ();
358 }
359
360 static int
361 compare_pnums (const void *lhs_, const void *rhs_)
362 {
363 const struct packet_reg * const *lhs = lhs_;
364 const struct packet_reg * const *rhs = rhs_;
365
366 if ((*lhs)->pnum < (*rhs)->pnum)
367 return -1;
368 else if ((*lhs)->pnum == (*rhs)->pnum)
369 return 0;
370 else
371 return 1;
372 }
373
374 static void *
375 init_remote_state (struct gdbarch *gdbarch)
376 {
377 int regnum, num_remote_regs, offset;
378 struct remote_state *rs = get_remote_state_raw ();
379 struct remote_arch_state *rsa;
380 struct packet_reg **remote_regs;
381
382 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
383
384 /* Use the architecture to build a regnum<->pnum table, which will be
385 1:1 unless a feature set specifies otherwise. */
386 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
387 gdbarch_num_regs (gdbarch),
388 struct packet_reg);
389 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
390 {
391 struct packet_reg *r = &rsa->regs[regnum];
392
393 if (register_size (gdbarch, regnum) == 0)
394 /* Do not try to fetch zero-sized (placeholder) registers. */
395 r->pnum = -1;
396 else
397 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
398
399 r->regnum = regnum;
400 }
401
402 /* Define the g/G packet format as the contents of each register
403 with a remote protocol number, in order of ascending protocol
404 number. */
405
406 remote_regs = alloca (gdbarch_num_regs (gdbarch)
407 * sizeof (struct packet_reg *));
408 for (num_remote_regs = 0, regnum = 0;
409 regnum < gdbarch_num_regs (gdbarch);
410 regnum++)
411 if (rsa->regs[regnum].pnum != -1)
412 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
413
414 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
415 compare_pnums);
416
417 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
418 {
419 remote_regs[regnum]->in_g_packet = 1;
420 remote_regs[regnum]->offset = offset;
421 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
422 }
423
424 /* Record the maximum possible size of the g packet - it may turn out
425 to be smaller. */
426 rsa->sizeof_g_packet = offset;
427
428 /* Default maximum number of characters in a packet body. Many
429 remote stubs have a hardwired buffer size of 400 bytes
430 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
431 as the maximum packet-size to ensure that the packet and an extra
432 NUL character can always fit in the buffer. This stops GDB
433 trashing stubs that try to squeeze an extra NUL into what is
434 already a full buffer (As of 1999-12-04 that was most stubs). */
435 rsa->remote_packet_size = 400 - 1;
436
437 /* This one is filled in when a ``g'' packet is received. */
438 rsa->actual_register_packet_size = 0;
439
440 /* Should rsa->sizeof_g_packet needs more space than the
441 default, adjust the size accordingly. Remember that each byte is
442 encoded as two characters. 32 is the overhead for the packet
443 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
444 (``$NN:G...#NN'') is a better guess, the below has been padded a
445 little. */
446 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
447 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
448
449 /* Make sure that the packet buffer is plenty big enough for
450 this architecture. */
451 if (rs->buf_size < rsa->remote_packet_size)
452 {
453 rs->buf_size = 2 * rsa->remote_packet_size;
454 rs->buf = xrealloc (rs->buf, rs->buf_size);
455 }
456
457 return rsa;
458 }
459
460 /* Return the current allowed size of a remote packet. This is
461 inferred from the current architecture, and should be used to
462 limit the length of outgoing packets. */
463 static long
464 get_remote_packet_size (void)
465 {
466 struct remote_state *rs = get_remote_state ();
467 struct remote_arch_state *rsa = get_remote_arch_state ();
468
469 if (rs->explicit_packet_size)
470 return rs->explicit_packet_size;
471
472 return rsa->remote_packet_size;
473 }
474
475 static struct packet_reg *
476 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
477 {
478 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
479 return NULL;
480 else
481 {
482 struct packet_reg *r = &rsa->regs[regnum];
483 gdb_assert (r->regnum == regnum);
484 return r;
485 }
486 }
487
488 static struct packet_reg *
489 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
490 {
491 int i;
492 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
493 {
494 struct packet_reg *r = &rsa->regs[i];
495 if (r->pnum == pnum)
496 return r;
497 }
498 return NULL;
499 }
500
501 /* FIXME: graces/2002-08-08: These variables should eventually be
502 bound to an instance of the target object (as in gdbarch-tdep()),
503 when such a thing exists. */
504
505 /* This is set to the data address of the access causing the target
506 to stop for a watchpoint. */
507 static CORE_ADDR remote_watch_data_address;
508
509 /* This is non-zero if target stopped for a watchpoint. */
510 static int remote_stopped_by_watchpoint_p;
511
512 static struct target_ops remote_ops;
513
514 static struct target_ops extended_remote_ops;
515
516 static int remote_async_mask_value = 1;
517
518 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
519 ``forever'' still use the normal timeout mechanism. This is
520 currently used by the ASYNC code to guarentee that target reads
521 during the initial connect always time-out. Once getpkt has been
522 modified to return a timeout indication and, in turn
523 remote_wait()/wait_for_inferior() have gained a timeout parameter
524 this can go away. */
525 static int wait_forever_enabled_p = 1;
526
527
528 /* This variable chooses whether to send a ^C or a break when the user
529 requests program interruption. Although ^C is usually what remote
530 systems expect, and that is the default here, sometimes a break is
531 preferable instead. */
532
533 static int remote_break;
534
535 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
536 remote_open knows that we don't have a file open when the program
537 starts. */
538 static struct serial *remote_desc = NULL;
539
540 /* This variable sets the number of bits in an address that are to be
541 sent in a memory ("M" or "m") packet. Normally, after stripping
542 leading zeros, the entire address would be sent. This variable
543 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
544 initial implementation of remote.c restricted the address sent in
545 memory packets to ``host::sizeof long'' bytes - (typically 32
546 bits). Consequently, for 64 bit targets, the upper 32 bits of an
547 address was never sent. Since fixing this bug may cause a break in
548 some remote targets this variable is principly provided to
549 facilitate backward compatibility. */
550
551 static int remote_address_size;
552
553 /* Temporary to track who currently owns the terminal. See
554 remote_terminal_* for more details. */
555
556 static int remote_async_terminal_ours_p;
557
558 /* The executable file to use for "run" on the remote side. */
559
560 static char *remote_exec_file = "";
561
562 \f
563 /* User configurable variables for the number of characters in a
564 memory read/write packet. MIN (rsa->remote_packet_size,
565 rsa->sizeof_g_packet) is the default. Some targets need smaller
566 values (fifo overruns, et.al.) and some users need larger values
567 (speed up transfers). The variables ``preferred_*'' (the user
568 request), ``current_*'' (what was actually set) and ``forced_*''
569 (Positive - a soft limit, negative - a hard limit). */
570
571 struct memory_packet_config
572 {
573 char *name;
574 long size;
575 int fixed_p;
576 };
577
578 /* Compute the current size of a read/write packet. Since this makes
579 use of ``actual_register_packet_size'' the computation is dynamic. */
580
581 static long
582 get_memory_packet_size (struct memory_packet_config *config)
583 {
584 struct remote_state *rs = get_remote_state ();
585 struct remote_arch_state *rsa = get_remote_arch_state ();
586
587 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
588 law?) that some hosts don't cope very well with large alloca()
589 calls. Eventually the alloca() code will be replaced by calls to
590 xmalloc() and make_cleanups() allowing this restriction to either
591 be lifted or removed. */
592 #ifndef MAX_REMOTE_PACKET_SIZE
593 #define MAX_REMOTE_PACKET_SIZE 16384
594 #endif
595 /* NOTE: 20 ensures we can write at least one byte. */
596 #ifndef MIN_REMOTE_PACKET_SIZE
597 #define MIN_REMOTE_PACKET_SIZE 20
598 #endif
599 long what_they_get;
600 if (config->fixed_p)
601 {
602 if (config->size <= 0)
603 what_they_get = MAX_REMOTE_PACKET_SIZE;
604 else
605 what_they_get = config->size;
606 }
607 else
608 {
609 what_they_get = get_remote_packet_size ();
610 /* Limit the packet to the size specified by the user. */
611 if (config->size > 0
612 && what_they_get > config->size)
613 what_they_get = config->size;
614
615 /* Limit it to the size of the targets ``g'' response unless we have
616 permission from the stub to use a larger packet size. */
617 if (rs->explicit_packet_size == 0
618 && rsa->actual_register_packet_size > 0
619 && what_they_get > rsa->actual_register_packet_size)
620 what_they_get = rsa->actual_register_packet_size;
621 }
622 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
623 what_they_get = MAX_REMOTE_PACKET_SIZE;
624 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
625 what_they_get = MIN_REMOTE_PACKET_SIZE;
626
627 /* Make sure there is room in the global buffer for this packet
628 (including its trailing NUL byte). */
629 if (rs->buf_size < what_they_get + 1)
630 {
631 rs->buf_size = 2 * what_they_get;
632 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
633 }
634
635 return what_they_get;
636 }
637
638 /* Update the size of a read/write packet. If they user wants
639 something really big then do a sanity check. */
640
641 static void
642 set_memory_packet_size (char *args, struct memory_packet_config *config)
643 {
644 int fixed_p = config->fixed_p;
645 long size = config->size;
646 if (args == NULL)
647 error (_("Argument required (integer, `fixed' or `limited')."));
648 else if (strcmp (args, "hard") == 0
649 || strcmp (args, "fixed") == 0)
650 fixed_p = 1;
651 else if (strcmp (args, "soft") == 0
652 || strcmp (args, "limit") == 0)
653 fixed_p = 0;
654 else
655 {
656 char *end;
657 size = strtoul (args, &end, 0);
658 if (args == end)
659 error (_("Invalid %s (bad syntax)."), config->name);
660 #if 0
661 /* Instead of explicitly capping the size of a packet to
662 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
663 instead allowed to set the size to something arbitrarily
664 large. */
665 if (size > MAX_REMOTE_PACKET_SIZE)
666 error (_("Invalid %s (too large)."), config->name);
667 #endif
668 }
669 /* Extra checks? */
670 if (fixed_p && !config->fixed_p)
671 {
672 if (! query (_("The target may not be able to correctly handle a %s\n"
673 "of %ld bytes. Change the packet size? "),
674 config->name, size))
675 error (_("Packet size not changed."));
676 }
677 /* Update the config. */
678 config->fixed_p = fixed_p;
679 config->size = size;
680 }
681
682 static void
683 show_memory_packet_size (struct memory_packet_config *config)
684 {
685 printf_filtered (_("The %s is %ld. "), config->name, config->size);
686 if (config->fixed_p)
687 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
688 get_memory_packet_size (config));
689 else
690 printf_filtered (_("Packets are limited to %ld bytes.\n"),
691 get_memory_packet_size (config));
692 }
693
694 static struct memory_packet_config memory_write_packet_config =
695 {
696 "memory-write-packet-size",
697 };
698
699 static void
700 set_memory_write_packet_size (char *args, int from_tty)
701 {
702 set_memory_packet_size (args, &memory_write_packet_config);
703 }
704
705 static void
706 show_memory_write_packet_size (char *args, int from_tty)
707 {
708 show_memory_packet_size (&memory_write_packet_config);
709 }
710
711 static long
712 get_memory_write_packet_size (void)
713 {
714 return get_memory_packet_size (&memory_write_packet_config);
715 }
716
717 static struct memory_packet_config memory_read_packet_config =
718 {
719 "memory-read-packet-size",
720 };
721
722 static void
723 set_memory_read_packet_size (char *args, int from_tty)
724 {
725 set_memory_packet_size (args, &memory_read_packet_config);
726 }
727
728 static void
729 show_memory_read_packet_size (char *args, int from_tty)
730 {
731 show_memory_packet_size (&memory_read_packet_config);
732 }
733
734 static long
735 get_memory_read_packet_size (void)
736 {
737 long size = get_memory_packet_size (&memory_read_packet_config);
738 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
739 extra buffer size argument before the memory read size can be
740 increased beyond this. */
741 if (size > get_remote_packet_size ())
742 size = get_remote_packet_size ();
743 return size;
744 }
745
746 \f
747 /* Generic configuration support for packets the stub optionally
748 supports. Allows the user to specify the use of the packet as well
749 as allowing GDB to auto-detect support in the remote stub. */
750
751 enum packet_support
752 {
753 PACKET_SUPPORT_UNKNOWN = 0,
754 PACKET_ENABLE,
755 PACKET_DISABLE
756 };
757
758 struct packet_config
759 {
760 const char *name;
761 const char *title;
762 enum auto_boolean detect;
763 enum packet_support support;
764 };
765
766 /* Analyze a packet's return value and update the packet config
767 accordingly. */
768
769 enum packet_result
770 {
771 PACKET_ERROR,
772 PACKET_OK,
773 PACKET_UNKNOWN
774 };
775
776 static void
777 update_packet_config (struct packet_config *config)
778 {
779 switch (config->detect)
780 {
781 case AUTO_BOOLEAN_TRUE:
782 config->support = PACKET_ENABLE;
783 break;
784 case AUTO_BOOLEAN_FALSE:
785 config->support = PACKET_DISABLE;
786 break;
787 case AUTO_BOOLEAN_AUTO:
788 config->support = PACKET_SUPPORT_UNKNOWN;
789 break;
790 }
791 }
792
793 static void
794 show_packet_config_cmd (struct packet_config *config)
795 {
796 char *support = "internal-error";
797 switch (config->support)
798 {
799 case PACKET_ENABLE:
800 support = "enabled";
801 break;
802 case PACKET_DISABLE:
803 support = "disabled";
804 break;
805 case PACKET_SUPPORT_UNKNOWN:
806 support = "unknown";
807 break;
808 }
809 switch (config->detect)
810 {
811 case AUTO_BOOLEAN_AUTO:
812 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
813 config->name, support);
814 break;
815 case AUTO_BOOLEAN_TRUE:
816 case AUTO_BOOLEAN_FALSE:
817 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
818 config->name, support);
819 break;
820 }
821 }
822
823 static void
824 add_packet_config_cmd (struct packet_config *config, const char *name,
825 const char *title, int legacy)
826 {
827 char *set_doc;
828 char *show_doc;
829 char *cmd_name;
830
831 config->name = name;
832 config->title = title;
833 config->detect = AUTO_BOOLEAN_AUTO;
834 config->support = PACKET_SUPPORT_UNKNOWN;
835 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
836 name, title);
837 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
838 name, title);
839 /* set/show TITLE-packet {auto,on,off} */
840 cmd_name = xstrprintf ("%s-packet", title);
841 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
842 &config->detect, set_doc, show_doc, NULL, /* help_doc */
843 set_remote_protocol_packet_cmd,
844 show_remote_protocol_packet_cmd,
845 &remote_set_cmdlist, &remote_show_cmdlist);
846 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
847 if (legacy)
848 {
849 char *legacy_name;
850 legacy_name = xstrprintf ("%s-packet", name);
851 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
852 &remote_set_cmdlist);
853 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
854 &remote_show_cmdlist);
855 }
856 }
857
858 static enum packet_result
859 packet_check_result (const char *buf)
860 {
861 if (buf[0] != '\0')
862 {
863 /* The stub recognized the packet request. Check that the
864 operation succeeded. */
865 if (buf[0] == 'E'
866 && isxdigit (buf[1]) && isxdigit (buf[2])
867 && buf[3] == '\0')
868 /* "Enn" - definitly an error. */
869 return PACKET_ERROR;
870
871 /* Always treat "E." as an error. This will be used for
872 more verbose error messages, such as E.memtypes. */
873 if (buf[0] == 'E' && buf[1] == '.')
874 return PACKET_ERROR;
875
876 /* The packet may or may not be OK. Just assume it is. */
877 return PACKET_OK;
878 }
879 else
880 /* The stub does not support the packet. */
881 return PACKET_UNKNOWN;
882 }
883
884 static enum packet_result
885 packet_ok (const char *buf, struct packet_config *config)
886 {
887 enum packet_result result;
888
889 result = packet_check_result (buf);
890 switch (result)
891 {
892 case PACKET_OK:
893 case PACKET_ERROR:
894 /* The stub recognized the packet request. */
895 switch (config->support)
896 {
897 case PACKET_SUPPORT_UNKNOWN:
898 if (remote_debug)
899 fprintf_unfiltered (gdb_stdlog,
900 "Packet %s (%s) is supported\n",
901 config->name, config->title);
902 config->support = PACKET_ENABLE;
903 break;
904 case PACKET_DISABLE:
905 internal_error (__FILE__, __LINE__,
906 _("packet_ok: attempt to use a disabled packet"));
907 break;
908 case PACKET_ENABLE:
909 break;
910 }
911 break;
912 case PACKET_UNKNOWN:
913 /* The stub does not support the packet. */
914 switch (config->support)
915 {
916 case PACKET_ENABLE:
917 if (config->detect == AUTO_BOOLEAN_AUTO)
918 /* If the stub previously indicated that the packet was
919 supported then there is a protocol error.. */
920 error (_("Protocol error: %s (%s) conflicting enabled responses."),
921 config->name, config->title);
922 else
923 /* The user set it wrong. */
924 error (_("Enabled packet %s (%s) not recognized by stub"),
925 config->name, config->title);
926 break;
927 case PACKET_SUPPORT_UNKNOWN:
928 if (remote_debug)
929 fprintf_unfiltered (gdb_stdlog,
930 "Packet %s (%s) is NOT supported\n",
931 config->name, config->title);
932 config->support = PACKET_DISABLE;
933 break;
934 case PACKET_DISABLE:
935 break;
936 }
937 break;
938 }
939
940 return result;
941 }
942
943 enum {
944 PACKET_vCont = 0,
945 PACKET_X,
946 PACKET_qSymbol,
947 PACKET_P,
948 PACKET_p,
949 PACKET_Z0,
950 PACKET_Z1,
951 PACKET_Z2,
952 PACKET_Z3,
953 PACKET_Z4,
954 PACKET_vFile_open,
955 PACKET_vFile_pread,
956 PACKET_vFile_pwrite,
957 PACKET_vFile_close,
958 PACKET_vFile_unlink,
959 PACKET_qXfer_auxv,
960 PACKET_qXfer_features,
961 PACKET_qXfer_libraries,
962 PACKET_qXfer_memory_map,
963 PACKET_qXfer_spu_read,
964 PACKET_qXfer_spu_write,
965 PACKET_qGetTLSAddr,
966 PACKET_qSupported,
967 PACKET_QPassSignals,
968 PACKET_qSearch_memory,
969 PACKET_vAttach,
970 PACKET_vRun,
971 PACKET_QStartNoAckMode,
972 PACKET_vKill,
973 PACKET_MAX
974 };
975
976 static struct packet_config remote_protocol_packets[PACKET_MAX];
977
978 static void
979 set_remote_protocol_packet_cmd (char *args, int from_tty,
980 struct cmd_list_element *c)
981 {
982 struct packet_config *packet;
983
984 for (packet = remote_protocol_packets;
985 packet < &remote_protocol_packets[PACKET_MAX];
986 packet++)
987 {
988 if (&packet->detect == c->var)
989 {
990 update_packet_config (packet);
991 return;
992 }
993 }
994 internal_error (__FILE__, __LINE__, "Could not find config for %s",
995 c->name);
996 }
997
998 static void
999 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1000 struct cmd_list_element *c,
1001 const char *value)
1002 {
1003 struct packet_config *packet;
1004
1005 for (packet = remote_protocol_packets;
1006 packet < &remote_protocol_packets[PACKET_MAX];
1007 packet++)
1008 {
1009 if (&packet->detect == c->var)
1010 {
1011 show_packet_config_cmd (packet);
1012 return;
1013 }
1014 }
1015 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1016 c->name);
1017 }
1018
1019 /* Should we try one of the 'Z' requests? */
1020
1021 enum Z_packet_type
1022 {
1023 Z_PACKET_SOFTWARE_BP,
1024 Z_PACKET_HARDWARE_BP,
1025 Z_PACKET_WRITE_WP,
1026 Z_PACKET_READ_WP,
1027 Z_PACKET_ACCESS_WP,
1028 NR_Z_PACKET_TYPES
1029 };
1030
1031 /* For compatibility with older distributions. Provide a ``set remote
1032 Z-packet ...'' command that updates all the Z packet types. */
1033
1034 static enum auto_boolean remote_Z_packet_detect;
1035
1036 static void
1037 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1038 struct cmd_list_element *c)
1039 {
1040 int i;
1041 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1042 {
1043 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1044 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1045 }
1046 }
1047
1048 static void
1049 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1050 struct cmd_list_element *c,
1051 const char *value)
1052 {
1053 int i;
1054 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1055 {
1056 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1057 }
1058 }
1059
1060 /* Should we try the 'ThreadInfo' query packet?
1061
1062 This variable (NOT available to the user: auto-detect only!)
1063 determines whether GDB will use the new, simpler "ThreadInfo"
1064 query or the older, more complex syntax for thread queries.
1065 This is an auto-detect variable (set to true at each connect,
1066 and set to false when the target fails to recognize it). */
1067
1068 static int use_threadinfo_query;
1069 static int use_threadextra_query;
1070
1071 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1072 static struct async_signal_handler *sigint_remote_twice_token;
1073 static struct async_signal_handler *sigint_remote_token;
1074
1075 \f
1076
1077 static ptid_t magic_null_ptid;
1078 static ptid_t not_sent_ptid;
1079 static ptid_t any_thread_ptid;
1080
1081 /* These are the threads which we last sent to the remote system. The
1082 TID member will be -1 for all or -2 for not sent yet. */
1083
1084 static ptid_t general_thread;
1085 static ptid_t continue_thread;
1086
1087
1088 /* Call this function as a result of
1089 1) A halt indication (T packet) containing a thread id
1090 2) A direct query of currthread
1091 3) Successful execution of set thread
1092 */
1093
1094 static void
1095 record_currthread (ptid_t currthread)
1096 {
1097 general_thread = currthread;
1098
1099 /* If this is a new thread, add it to GDB's thread list.
1100 If we leave it up to WFI to do this, bad things will happen. */
1101
1102 if (in_thread_list (currthread) && is_exited (currthread))
1103 {
1104 /* We're seeing an event on a thread id we knew had exited.
1105 This has to be a new thread reusing the old id. Add it. */
1106 add_thread (currthread);
1107 return;
1108 }
1109
1110 if (!in_thread_list (currthread))
1111 {
1112 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1113 {
1114 /* inferior_ptid has no thread member yet. This can happen
1115 with the vAttach -> remote_wait,"TAAthread:" path if the
1116 stub doesn't support qC. This is the first stop reported
1117 after an attach, so this is the main thread. Update the
1118 ptid in the thread list. */
1119 thread_change_ptid (inferior_ptid, currthread);
1120 return;
1121 }
1122
1123 if (ptid_equal (magic_null_ptid, inferior_ptid))
1124 {
1125 /* inferior_ptid is not set yet. This can happen with the
1126 vRun -> remote_wait,"TAAthread:" path if the stub
1127 doesn't support qC. This is the first stop reported
1128 after an attach, so this is the main thread. Update the
1129 ptid in the thread list. */
1130 thread_change_ptid (inferior_ptid, currthread);
1131 return;
1132 }
1133
1134 /* This is really a new thread. Add it. */
1135 add_thread (currthread);
1136 }
1137
1138 if (!in_inferior_list (ptid_get_pid (currthread)))
1139 /* When connecting to a target remote, or to a target
1140 extended-remote which already was debugging an inferior, we may
1141 not know about it yet --- add it. */
1142 add_inferior (ptid_get_pid (currthread));
1143 }
1144
1145 static char *last_pass_packet;
1146
1147 /* If 'QPassSignals' is supported, tell the remote stub what signals
1148 it can simply pass through to the inferior without reporting. */
1149
1150 static void
1151 remote_pass_signals (void)
1152 {
1153 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1154 {
1155 char *pass_packet, *p;
1156 int numsigs = (int) TARGET_SIGNAL_LAST;
1157 int count = 0, i;
1158
1159 gdb_assert (numsigs < 256);
1160 for (i = 0; i < numsigs; i++)
1161 {
1162 if (signal_stop_state (i) == 0
1163 && signal_print_state (i) == 0
1164 && signal_pass_state (i) == 1)
1165 count++;
1166 }
1167 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1168 strcpy (pass_packet, "QPassSignals:");
1169 p = pass_packet + strlen (pass_packet);
1170 for (i = 0; i < numsigs; i++)
1171 {
1172 if (signal_stop_state (i) == 0
1173 && signal_print_state (i) == 0
1174 && signal_pass_state (i) == 1)
1175 {
1176 if (i >= 16)
1177 *p++ = tohex (i >> 4);
1178 *p++ = tohex (i & 15);
1179 if (count)
1180 *p++ = ';';
1181 else
1182 break;
1183 count--;
1184 }
1185 }
1186 *p = 0;
1187 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1188 {
1189 struct remote_state *rs = get_remote_state ();
1190 char *buf = rs->buf;
1191
1192 putpkt (pass_packet);
1193 getpkt (&rs->buf, &rs->buf_size, 0);
1194 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1195 if (last_pass_packet)
1196 xfree (last_pass_packet);
1197 last_pass_packet = pass_packet;
1198 }
1199 else
1200 xfree (pass_packet);
1201 }
1202 }
1203
1204 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1205 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1206 thread. If GEN is set, set the general thread, if not, then set
1207 the step/continue thread. */
1208 static void
1209 set_thread (struct ptid ptid, int gen)
1210 {
1211 struct remote_state *rs = get_remote_state ();
1212 ptid_t state = gen ? general_thread : continue_thread;
1213 char *buf = rs->buf;
1214 char *endbuf = rs->buf + get_remote_packet_size ();
1215
1216 if (ptid_equal (state, ptid))
1217 return;
1218
1219 *buf++ = 'H';
1220 *buf++ = gen ? 'g' : 'c';
1221 if (ptid_equal (ptid, magic_null_ptid))
1222 xsnprintf (buf, endbuf - buf, "0");
1223 else if (ptid_equal (ptid, any_thread_ptid))
1224 xsnprintf (buf, endbuf - buf, "0");
1225 else if (ptid_equal (ptid, minus_one_ptid))
1226 xsnprintf (buf, endbuf - buf, "-1");
1227 else
1228 write_ptid (buf, endbuf, ptid);
1229 putpkt (rs->buf);
1230 getpkt (&rs->buf, &rs->buf_size, 0);
1231 if (gen)
1232 general_thread = ptid;
1233 else
1234 continue_thread = ptid;
1235 }
1236
1237 static void
1238 set_general_thread (struct ptid ptid)
1239 {
1240 set_thread (ptid, 1);
1241 }
1242
1243 static void
1244 set_continue_thread (struct ptid ptid)
1245 {
1246 set_thread (ptid, 0);
1247 }
1248
1249 \f
1250 /* Return nonzero if the thread PTID is still alive on the remote
1251 system. */
1252
1253 static int
1254 remote_thread_alive (ptid_t ptid)
1255 {
1256 struct remote_state *rs = get_remote_state ();
1257 int tid = ptid_get_tid (ptid);
1258 char *p, *endp;
1259
1260 if (ptid_equal (ptid, magic_null_ptid))
1261 /* The main thread is always alive. */
1262 return 1;
1263
1264 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1265 /* The main thread is always alive. This can happen after a
1266 vAttach, if the remote side doesn't support
1267 multi-threading. */
1268 return 1;
1269
1270 p = rs->buf;
1271 endp = rs->buf + get_remote_packet_size ();
1272
1273 *p++ = 'T';
1274 write_ptid (p, endp, ptid);
1275
1276 putpkt (rs->buf);
1277 getpkt (&rs->buf, &rs->buf_size, 0);
1278 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1279 }
1280
1281 /* About these extended threadlist and threadinfo packets. They are
1282 variable length packets but, the fields within them are often fixed
1283 length. They are redundent enough to send over UDP as is the
1284 remote protocol in general. There is a matching unit test module
1285 in libstub. */
1286
1287 #define OPAQUETHREADBYTES 8
1288
1289 /* a 64 bit opaque identifier */
1290 typedef unsigned char threadref[OPAQUETHREADBYTES];
1291
1292 /* WARNING: This threadref data structure comes from the remote O.S.,
1293 libstub protocol encoding, and remote.c. it is not particularly
1294 changable. */
1295
1296 /* Right now, the internal structure is int. We want it to be bigger.
1297 Plan to fix this.
1298 */
1299
1300 typedef int gdb_threadref; /* Internal GDB thread reference. */
1301
1302 /* gdb_ext_thread_info is an internal GDB data structure which is
1303 equivalent to the reply of the remote threadinfo packet. */
1304
1305 struct gdb_ext_thread_info
1306 {
1307 threadref threadid; /* External form of thread reference. */
1308 int active; /* Has state interesting to GDB?
1309 regs, stack. */
1310 char display[256]; /* Brief state display, name,
1311 blocked/suspended. */
1312 char shortname[32]; /* To be used to name threads. */
1313 char more_display[256]; /* Long info, statistics, queue depth,
1314 whatever. */
1315 };
1316
1317 /* The volume of remote transfers can be limited by submitting
1318 a mask containing bits specifying the desired information.
1319 Use a union of these values as the 'selection' parameter to
1320 get_thread_info. FIXME: Make these TAG names more thread specific.
1321 */
1322
1323 #define TAG_THREADID 1
1324 #define TAG_EXISTS 2
1325 #define TAG_DISPLAY 4
1326 #define TAG_THREADNAME 8
1327 #define TAG_MOREDISPLAY 16
1328
1329 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1330
1331 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1332
1333 static char *unpack_nibble (char *buf, int *val);
1334
1335 static char *pack_nibble (char *buf, int nibble);
1336
1337 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1338
1339 static char *unpack_byte (char *buf, int *value);
1340
1341 static char *pack_int (char *buf, int value);
1342
1343 static char *unpack_int (char *buf, int *value);
1344
1345 static char *unpack_string (char *src, char *dest, int length);
1346
1347 static char *pack_threadid (char *pkt, threadref *id);
1348
1349 static char *unpack_threadid (char *inbuf, threadref *id);
1350
1351 void int_to_threadref (threadref *id, int value);
1352
1353 static int threadref_to_int (threadref *ref);
1354
1355 static void copy_threadref (threadref *dest, threadref *src);
1356
1357 static int threadmatch (threadref *dest, threadref *src);
1358
1359 static char *pack_threadinfo_request (char *pkt, int mode,
1360 threadref *id);
1361
1362 static int remote_unpack_thread_info_response (char *pkt,
1363 threadref *expectedref,
1364 struct gdb_ext_thread_info
1365 *info);
1366
1367
1368 static int remote_get_threadinfo (threadref *threadid,
1369 int fieldset, /*TAG mask */
1370 struct gdb_ext_thread_info *info);
1371
1372 static char *pack_threadlist_request (char *pkt, int startflag,
1373 int threadcount,
1374 threadref *nextthread);
1375
1376 static int parse_threadlist_response (char *pkt,
1377 int result_limit,
1378 threadref *original_echo,
1379 threadref *resultlist,
1380 int *doneflag);
1381
1382 static int remote_get_threadlist (int startflag,
1383 threadref *nextthread,
1384 int result_limit,
1385 int *done,
1386 int *result_count,
1387 threadref *threadlist);
1388
1389 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1390
1391 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1392 void *context, int looplimit);
1393
1394 static int remote_newthread_step (threadref *ref, void *context);
1395
1396
1397 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1398 buffer we're allowed to write to. Returns
1399 BUF+CHARACTERS_WRITTEN. */
1400
1401 static char *
1402 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1403 {
1404 int pid, tid;
1405 struct remote_state *rs = get_remote_state ();
1406
1407 if (remote_multi_process_p (rs))
1408 {
1409 pid = ptid_get_pid (ptid);
1410 if (pid < 0)
1411 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1412 else
1413 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1414 }
1415 tid = ptid_get_tid (ptid);
1416 if (tid < 0)
1417 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1418 else
1419 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1420
1421 return buf;
1422 }
1423
1424 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1425 passed the last parsed char. Returns null_ptid on error. */
1426
1427 static ptid_t
1428 read_ptid (char *buf, char **obuf)
1429 {
1430 char *p = buf;
1431 char *pp;
1432 ULONGEST pid = 0, tid = 0;
1433 ptid_t ptid;
1434
1435 if (*p == 'p')
1436 {
1437 /* Multi-process ptid. */
1438 pp = unpack_varlen_hex (p + 1, &pid);
1439 if (*pp != '.')
1440 error (_("invalid remote ptid: %s\n"), p);
1441
1442 p = pp;
1443 pp = unpack_varlen_hex (p + 1, &tid);
1444 if (obuf)
1445 *obuf = pp;
1446 return ptid_build (pid, 0, tid);
1447 }
1448
1449 /* No multi-process. Just a tid. */
1450 pp = unpack_varlen_hex (p, &tid);
1451
1452 /* Since the stub is not sending a process id, then default to
1453 what's in inferior_ptid. */
1454 pid = ptid_get_pid (inferior_ptid);
1455
1456 if (obuf)
1457 *obuf = pp;
1458 return ptid_build (pid, 0, tid);
1459 }
1460
1461 /* Encode 64 bits in 16 chars of hex. */
1462
1463 static const char hexchars[] = "0123456789abcdef";
1464
1465 static int
1466 ishex (int ch, int *val)
1467 {
1468 if ((ch >= 'a') && (ch <= 'f'))
1469 {
1470 *val = ch - 'a' + 10;
1471 return 1;
1472 }
1473 if ((ch >= 'A') && (ch <= 'F'))
1474 {
1475 *val = ch - 'A' + 10;
1476 return 1;
1477 }
1478 if ((ch >= '0') && (ch <= '9'))
1479 {
1480 *val = ch - '0';
1481 return 1;
1482 }
1483 return 0;
1484 }
1485
1486 static int
1487 stubhex (int ch)
1488 {
1489 if (ch >= 'a' && ch <= 'f')
1490 return ch - 'a' + 10;
1491 if (ch >= '0' && ch <= '9')
1492 return ch - '0';
1493 if (ch >= 'A' && ch <= 'F')
1494 return ch - 'A' + 10;
1495 return -1;
1496 }
1497
1498 static int
1499 stub_unpack_int (char *buff, int fieldlength)
1500 {
1501 int nibble;
1502 int retval = 0;
1503
1504 while (fieldlength)
1505 {
1506 nibble = stubhex (*buff++);
1507 retval |= nibble;
1508 fieldlength--;
1509 if (fieldlength)
1510 retval = retval << 4;
1511 }
1512 return retval;
1513 }
1514
1515 char *
1516 unpack_varlen_hex (char *buff, /* packet to parse */
1517 ULONGEST *result)
1518 {
1519 int nibble;
1520 ULONGEST retval = 0;
1521
1522 while (ishex (*buff, &nibble))
1523 {
1524 buff++;
1525 retval = retval << 4;
1526 retval |= nibble & 0x0f;
1527 }
1528 *result = retval;
1529 return buff;
1530 }
1531
1532 static char *
1533 unpack_nibble (char *buf, int *val)
1534 {
1535 *val = fromhex (*buf++);
1536 return buf;
1537 }
1538
1539 static char *
1540 pack_nibble (char *buf, int nibble)
1541 {
1542 *buf++ = hexchars[(nibble & 0x0f)];
1543 return buf;
1544 }
1545
1546 static char *
1547 pack_hex_byte (char *pkt, int byte)
1548 {
1549 *pkt++ = hexchars[(byte >> 4) & 0xf];
1550 *pkt++ = hexchars[(byte & 0xf)];
1551 return pkt;
1552 }
1553
1554 static char *
1555 unpack_byte (char *buf, int *value)
1556 {
1557 *value = stub_unpack_int (buf, 2);
1558 return buf + 2;
1559 }
1560
1561 static char *
1562 pack_int (char *buf, int value)
1563 {
1564 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1565 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1566 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1567 buf = pack_hex_byte (buf, (value & 0xff));
1568 return buf;
1569 }
1570
1571 static char *
1572 unpack_int (char *buf, int *value)
1573 {
1574 *value = stub_unpack_int (buf, 8);
1575 return buf + 8;
1576 }
1577
1578 #if 0 /* Currently unused, uncomment when needed. */
1579 static char *pack_string (char *pkt, char *string);
1580
1581 static char *
1582 pack_string (char *pkt, char *string)
1583 {
1584 char ch;
1585 int len;
1586
1587 len = strlen (string);
1588 if (len > 200)
1589 len = 200; /* Bigger than most GDB packets, junk??? */
1590 pkt = pack_hex_byte (pkt, len);
1591 while (len-- > 0)
1592 {
1593 ch = *string++;
1594 if ((ch == '\0') || (ch == '#'))
1595 ch = '*'; /* Protect encapsulation. */
1596 *pkt++ = ch;
1597 }
1598 return pkt;
1599 }
1600 #endif /* 0 (unused) */
1601
1602 static char *
1603 unpack_string (char *src, char *dest, int length)
1604 {
1605 while (length--)
1606 *dest++ = *src++;
1607 *dest = '\0';
1608 return src;
1609 }
1610
1611 static char *
1612 pack_threadid (char *pkt, threadref *id)
1613 {
1614 char *limit;
1615 unsigned char *altid;
1616
1617 altid = (unsigned char *) id;
1618 limit = pkt + BUF_THREAD_ID_SIZE;
1619 while (pkt < limit)
1620 pkt = pack_hex_byte (pkt, *altid++);
1621 return pkt;
1622 }
1623
1624
1625 static char *
1626 unpack_threadid (char *inbuf, threadref *id)
1627 {
1628 char *altref;
1629 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1630 int x, y;
1631
1632 altref = (char *) id;
1633
1634 while (inbuf < limit)
1635 {
1636 x = stubhex (*inbuf++);
1637 y = stubhex (*inbuf++);
1638 *altref++ = (x << 4) | y;
1639 }
1640 return inbuf;
1641 }
1642
1643 /* Externally, threadrefs are 64 bits but internally, they are still
1644 ints. This is due to a mismatch of specifications. We would like
1645 to use 64bit thread references internally. This is an adapter
1646 function. */
1647
1648 void
1649 int_to_threadref (threadref *id, int value)
1650 {
1651 unsigned char *scan;
1652
1653 scan = (unsigned char *) id;
1654 {
1655 int i = 4;
1656 while (i--)
1657 *scan++ = 0;
1658 }
1659 *scan++ = (value >> 24) & 0xff;
1660 *scan++ = (value >> 16) & 0xff;
1661 *scan++ = (value >> 8) & 0xff;
1662 *scan++ = (value & 0xff);
1663 }
1664
1665 static int
1666 threadref_to_int (threadref *ref)
1667 {
1668 int i, value = 0;
1669 unsigned char *scan;
1670
1671 scan = *ref;
1672 scan += 4;
1673 i = 4;
1674 while (i-- > 0)
1675 value = (value << 8) | ((*scan++) & 0xff);
1676 return value;
1677 }
1678
1679 static void
1680 copy_threadref (threadref *dest, threadref *src)
1681 {
1682 int i;
1683 unsigned char *csrc, *cdest;
1684
1685 csrc = (unsigned char *) src;
1686 cdest = (unsigned char *) dest;
1687 i = 8;
1688 while (i--)
1689 *cdest++ = *csrc++;
1690 }
1691
1692 static int
1693 threadmatch (threadref *dest, threadref *src)
1694 {
1695 /* Things are broken right now, so just assume we got a match. */
1696 #if 0
1697 unsigned char *srcp, *destp;
1698 int i, result;
1699 srcp = (char *) src;
1700 destp = (char *) dest;
1701
1702 result = 1;
1703 while (i-- > 0)
1704 result &= (*srcp++ == *destp++) ? 1 : 0;
1705 return result;
1706 #endif
1707 return 1;
1708 }
1709
1710 /*
1711 threadid:1, # always request threadid
1712 context_exists:2,
1713 display:4,
1714 unique_name:8,
1715 more_display:16
1716 */
1717
1718 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1719
1720 static char *
1721 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1722 {
1723 *pkt++ = 'q'; /* Info Query */
1724 *pkt++ = 'P'; /* process or thread info */
1725 pkt = pack_int (pkt, mode); /* mode */
1726 pkt = pack_threadid (pkt, id); /* threadid */
1727 *pkt = '\0'; /* terminate */
1728 return pkt;
1729 }
1730
1731 /* These values tag the fields in a thread info response packet. */
1732 /* Tagging the fields allows us to request specific fields and to
1733 add more fields as time goes by. */
1734
1735 #define TAG_THREADID 1 /* Echo the thread identifier. */
1736 #define TAG_EXISTS 2 /* Is this process defined enough to
1737 fetch registers and its stack? */
1738 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1739 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1740 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1741 the process. */
1742
1743 static int
1744 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1745 struct gdb_ext_thread_info *info)
1746 {
1747 struct remote_state *rs = get_remote_state ();
1748 int mask, length;
1749 int tag;
1750 threadref ref;
1751 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1752 int retval = 1;
1753
1754 /* info->threadid = 0; FIXME: implement zero_threadref. */
1755 info->active = 0;
1756 info->display[0] = '\0';
1757 info->shortname[0] = '\0';
1758 info->more_display[0] = '\0';
1759
1760 /* Assume the characters indicating the packet type have been
1761 stripped. */
1762 pkt = unpack_int (pkt, &mask); /* arg mask */
1763 pkt = unpack_threadid (pkt, &ref);
1764
1765 if (mask == 0)
1766 warning (_("Incomplete response to threadinfo request."));
1767 if (!threadmatch (&ref, expectedref))
1768 { /* This is an answer to a different request. */
1769 warning (_("ERROR RMT Thread info mismatch."));
1770 return 0;
1771 }
1772 copy_threadref (&info->threadid, &ref);
1773
1774 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1775
1776 /* Packets are terminated with nulls. */
1777 while ((pkt < limit) && mask && *pkt)
1778 {
1779 pkt = unpack_int (pkt, &tag); /* tag */
1780 pkt = unpack_byte (pkt, &length); /* length */
1781 if (!(tag & mask)) /* Tags out of synch with mask. */
1782 {
1783 warning (_("ERROR RMT: threadinfo tag mismatch."));
1784 retval = 0;
1785 break;
1786 }
1787 if (tag == TAG_THREADID)
1788 {
1789 if (length != 16)
1790 {
1791 warning (_("ERROR RMT: length of threadid is not 16."));
1792 retval = 0;
1793 break;
1794 }
1795 pkt = unpack_threadid (pkt, &ref);
1796 mask = mask & ~TAG_THREADID;
1797 continue;
1798 }
1799 if (tag == TAG_EXISTS)
1800 {
1801 info->active = stub_unpack_int (pkt, length);
1802 pkt += length;
1803 mask = mask & ~(TAG_EXISTS);
1804 if (length > 8)
1805 {
1806 warning (_("ERROR RMT: 'exists' length too long."));
1807 retval = 0;
1808 break;
1809 }
1810 continue;
1811 }
1812 if (tag == TAG_THREADNAME)
1813 {
1814 pkt = unpack_string (pkt, &info->shortname[0], length);
1815 mask = mask & ~TAG_THREADNAME;
1816 continue;
1817 }
1818 if (tag == TAG_DISPLAY)
1819 {
1820 pkt = unpack_string (pkt, &info->display[0], length);
1821 mask = mask & ~TAG_DISPLAY;
1822 continue;
1823 }
1824 if (tag == TAG_MOREDISPLAY)
1825 {
1826 pkt = unpack_string (pkt, &info->more_display[0], length);
1827 mask = mask & ~TAG_MOREDISPLAY;
1828 continue;
1829 }
1830 warning (_("ERROR RMT: unknown thread info tag."));
1831 break; /* Not a tag we know about. */
1832 }
1833 return retval;
1834 }
1835
1836 static int
1837 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1838 struct gdb_ext_thread_info *info)
1839 {
1840 struct remote_state *rs = get_remote_state ();
1841 int result;
1842
1843 pack_threadinfo_request (rs->buf, fieldset, threadid);
1844 putpkt (rs->buf);
1845 getpkt (&rs->buf, &rs->buf_size, 0);
1846
1847 if (rs->buf[0] == '\0')
1848 return 0;
1849
1850 result = remote_unpack_thread_info_response (rs->buf + 2,
1851 threadid, info);
1852 return result;
1853 }
1854
1855 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1856
1857 static char *
1858 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1859 threadref *nextthread)
1860 {
1861 *pkt++ = 'q'; /* info query packet */
1862 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1863 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1864 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1865 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1866 *pkt = '\0';
1867 return pkt;
1868 }
1869
1870 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1871
1872 static int
1873 parse_threadlist_response (char *pkt, int result_limit,
1874 threadref *original_echo, threadref *resultlist,
1875 int *doneflag)
1876 {
1877 struct remote_state *rs = get_remote_state ();
1878 char *limit;
1879 int count, resultcount, done;
1880
1881 resultcount = 0;
1882 /* Assume the 'q' and 'M chars have been stripped. */
1883 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1884 /* done parse past here */
1885 pkt = unpack_byte (pkt, &count); /* count field */
1886 pkt = unpack_nibble (pkt, &done);
1887 /* The first threadid is the argument threadid. */
1888 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1889 while ((count-- > 0) && (pkt < limit))
1890 {
1891 pkt = unpack_threadid (pkt, resultlist++);
1892 if (resultcount++ >= result_limit)
1893 break;
1894 }
1895 if (doneflag)
1896 *doneflag = done;
1897 return resultcount;
1898 }
1899
1900 static int
1901 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1902 int *done, int *result_count, threadref *threadlist)
1903 {
1904 struct remote_state *rs = get_remote_state ();
1905 static threadref echo_nextthread;
1906 int result = 1;
1907
1908 /* Trancate result limit to be smaller than the packet size. */
1909 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1910 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1911
1912 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1913 putpkt (rs->buf);
1914 getpkt (&rs->buf, &rs->buf_size, 0);
1915
1916 if (*rs->buf == '\0')
1917 *result_count = 0;
1918 else
1919 *result_count =
1920 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1921 threadlist, done);
1922
1923 if (!threadmatch (&echo_nextthread, nextthread))
1924 {
1925 /* FIXME: This is a good reason to drop the packet. */
1926 /* Possably, there is a duplicate response. */
1927 /* Possabilities :
1928 retransmit immediatly - race conditions
1929 retransmit after timeout - yes
1930 exit
1931 wait for packet, then exit
1932 */
1933 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1934 return 0; /* I choose simply exiting. */
1935 }
1936 if (*result_count <= 0)
1937 {
1938 if (*done != 1)
1939 {
1940 warning (_("RMT ERROR : failed to get remote thread list."));
1941 result = 0;
1942 }
1943 return result; /* break; */
1944 }
1945 if (*result_count > result_limit)
1946 {
1947 *result_count = 0;
1948 warning (_("RMT ERROR: threadlist response longer than requested."));
1949 return 0;
1950 }
1951 return result;
1952 }
1953
1954 /* This is the interface between remote and threads, remotes upper
1955 interface. */
1956
1957 /* remote_find_new_threads retrieves the thread list and for each
1958 thread in the list, looks up the thread in GDB's internal list,
1959 adding the thread if it does not already exist. This involves
1960 getting partial thread lists from the remote target so, polling the
1961 quit_flag is required. */
1962
1963
1964 /* About this many threadisds fit in a packet. */
1965
1966 #define MAXTHREADLISTRESULTS 32
1967
1968 static int
1969 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1970 int looplimit)
1971 {
1972 int done, i, result_count;
1973 int startflag = 1;
1974 int result = 1;
1975 int loopcount = 0;
1976 static threadref nextthread;
1977 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1978
1979 done = 0;
1980 while (!done)
1981 {
1982 if (loopcount++ > looplimit)
1983 {
1984 result = 0;
1985 warning (_("Remote fetch threadlist -infinite loop-."));
1986 break;
1987 }
1988 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1989 &done, &result_count, resultthreadlist))
1990 {
1991 result = 0;
1992 break;
1993 }
1994 /* Clear for later iterations. */
1995 startflag = 0;
1996 /* Setup to resume next batch of thread references, set nextthread. */
1997 if (result_count >= 1)
1998 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1999 i = 0;
2000 while (result_count--)
2001 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2002 break;
2003 }
2004 return result;
2005 }
2006
2007 static int
2008 remote_newthread_step (threadref *ref, void *context)
2009 {
2010 int pid = ptid_get_pid (inferior_ptid);
2011 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2012
2013 if (!in_thread_list (ptid))
2014 add_thread (ptid);
2015 return 1; /* continue iterator */
2016 }
2017
2018 #define CRAZY_MAX_THREADS 1000
2019
2020 static ptid_t
2021 remote_current_thread (ptid_t oldpid)
2022 {
2023 struct remote_state *rs = get_remote_state ();
2024 char *p = rs->buf;
2025 int tid;
2026 int pid;
2027
2028 putpkt ("qC");
2029 getpkt (&rs->buf, &rs->buf_size, 0);
2030 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2031 return read_ptid (&rs->buf[2], NULL);
2032 else
2033 return oldpid;
2034 }
2035
2036 /* Find new threads for info threads command.
2037 * Original version, using John Metzler's thread protocol.
2038 */
2039
2040 static void
2041 remote_find_new_threads (void)
2042 {
2043 remote_threadlist_iterator (remote_newthread_step, 0,
2044 CRAZY_MAX_THREADS);
2045 }
2046
2047 /*
2048 * Find all threads for info threads command.
2049 * Uses new thread protocol contributed by Cisco.
2050 * Falls back and attempts to use the older method (above)
2051 * if the target doesn't respond to the new method.
2052 */
2053
2054 static void
2055 remote_threads_info (void)
2056 {
2057 struct remote_state *rs = get_remote_state ();
2058 char *bufp;
2059 ptid_t new_thread;
2060
2061 if (remote_desc == 0) /* paranoia */
2062 error (_("Command can only be used when connected to the remote target."));
2063
2064 if (use_threadinfo_query)
2065 {
2066 putpkt ("qfThreadInfo");
2067 getpkt (&rs->buf, &rs->buf_size, 0);
2068 bufp = rs->buf;
2069 if (bufp[0] != '\0') /* q packet recognized */
2070 {
2071 while (*bufp++ == 'm') /* reply contains one or more TID */
2072 {
2073 do
2074 {
2075 new_thread = read_ptid (bufp, &bufp);
2076 if (!ptid_equal (new_thread, null_ptid)
2077 && !in_thread_list (new_thread))
2078 {
2079 if (!in_inferior_list (ptid_get_pid (new_thread)))
2080 /* When connected to a multi-process aware
2081 stub, "info threads" may show up threads of
2082 inferiors we didn't know about yet. Add
2083 them. */
2084 add_inferior (ptid_get_pid (new_thread));
2085
2086 add_thread (new_thread);
2087 }
2088 }
2089 while (*bufp++ == ','); /* comma-separated list */
2090 putpkt ("qsThreadInfo");
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 bufp = rs->buf;
2093 }
2094 return; /* done */
2095 }
2096 }
2097
2098 /* Else fall back to old method based on jmetzler protocol. */
2099 use_threadinfo_query = 0;
2100 remote_find_new_threads ();
2101 return;
2102 }
2103
2104 /*
2105 * Collect a descriptive string about the given thread.
2106 * The target may say anything it wants to about the thread
2107 * (typically info about its blocked / runnable state, name, etc.).
2108 * This string will appear in the info threads display.
2109 *
2110 * Optional: targets are not required to implement this function.
2111 */
2112
2113 static char *
2114 remote_threads_extra_info (struct thread_info *tp)
2115 {
2116 struct remote_state *rs = get_remote_state ();
2117 int result;
2118 int set;
2119 threadref id;
2120 struct gdb_ext_thread_info threadinfo;
2121 static char display_buf[100]; /* arbitrary... */
2122 int n = 0; /* position in display_buf */
2123
2124 if (remote_desc == 0) /* paranoia */
2125 internal_error (__FILE__, __LINE__,
2126 _("remote_threads_extra_info"));
2127
2128 if (ptid_equal (tp->ptid, magic_null_ptid)
2129 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2130 /* This is the main thread which was added by GDB. The remote
2131 server doesn't know about it. */
2132 return NULL;
2133
2134 if (use_threadextra_query)
2135 {
2136 char *b = rs->buf;
2137 char *endb = rs->buf + get_remote_packet_size ();
2138
2139 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2140 b += strlen (b);
2141 write_ptid (b, endb, tp->ptid);
2142
2143 putpkt (rs->buf);
2144 getpkt (&rs->buf, &rs->buf_size, 0);
2145 if (rs->buf[0] != 0)
2146 {
2147 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2148 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2149 display_buf [result] = '\0';
2150 return display_buf;
2151 }
2152 }
2153
2154 /* If the above query fails, fall back to the old method. */
2155 use_threadextra_query = 0;
2156 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2157 | TAG_MOREDISPLAY | TAG_DISPLAY;
2158 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2159 if (remote_get_threadinfo (&id, set, &threadinfo))
2160 if (threadinfo.active)
2161 {
2162 if (*threadinfo.shortname)
2163 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2164 " Name: %s,", threadinfo.shortname);
2165 if (*threadinfo.display)
2166 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2167 " State: %s,", threadinfo.display);
2168 if (*threadinfo.more_display)
2169 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2170 " Priority: %s", threadinfo.more_display);
2171
2172 if (n > 0)
2173 {
2174 /* For purely cosmetic reasons, clear up trailing commas. */
2175 if (',' == display_buf[n-1])
2176 display_buf[n-1] = ' ';
2177 return display_buf;
2178 }
2179 }
2180 return NULL;
2181 }
2182 \f
2183
2184 /* Restart the remote side; this is an extended protocol operation. */
2185
2186 static void
2187 extended_remote_restart (void)
2188 {
2189 struct remote_state *rs = get_remote_state ();
2190
2191 /* Send the restart command; for reasons I don't understand the
2192 remote side really expects a number after the "R". */
2193 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2194 putpkt (rs->buf);
2195
2196 remote_fileio_reset ();
2197 }
2198 \f
2199 /* Clean up connection to a remote debugger. */
2200
2201 static void
2202 remote_close (int quitting)
2203 {
2204 if (remote_desc)
2205 {
2206 /* Unregister the file descriptor from the event loop. */
2207 if (target_is_async_p ())
2208 target_async (NULL, 0);
2209 serial_close (remote_desc);
2210 remote_desc = NULL;
2211 }
2212
2213 /* Make sure we don't leave the async SIGINT signal handler
2214 installed. */
2215 signal (SIGINT, handle_sigint);
2216
2217 /* We don't have a connection to the remote stub anymore. Get rid
2218 of all the inferiors and their threads we were controlling. */
2219 discard_all_inferiors ();
2220
2221 generic_mourn_inferior ();
2222 }
2223
2224 /* Query the remote side for the text, data and bss offsets. */
2225
2226 static void
2227 get_offsets (void)
2228 {
2229 struct remote_state *rs = get_remote_state ();
2230 char *buf;
2231 char *ptr;
2232 int lose, num_segments = 0, do_sections, do_segments;
2233 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2234 struct section_offsets *offs;
2235 struct symfile_segment_data *data;
2236
2237 if (symfile_objfile == NULL)
2238 return;
2239
2240 putpkt ("qOffsets");
2241 getpkt (&rs->buf, &rs->buf_size, 0);
2242 buf = rs->buf;
2243
2244 if (buf[0] == '\000')
2245 return; /* Return silently. Stub doesn't support
2246 this command. */
2247 if (buf[0] == 'E')
2248 {
2249 warning (_("Remote failure reply: %s"), buf);
2250 return;
2251 }
2252
2253 /* Pick up each field in turn. This used to be done with scanf, but
2254 scanf will make trouble if CORE_ADDR size doesn't match
2255 conversion directives correctly. The following code will work
2256 with any size of CORE_ADDR. */
2257 text_addr = data_addr = bss_addr = 0;
2258 ptr = buf;
2259 lose = 0;
2260
2261 if (strncmp (ptr, "Text=", 5) == 0)
2262 {
2263 ptr += 5;
2264 /* Don't use strtol, could lose on big values. */
2265 while (*ptr && *ptr != ';')
2266 text_addr = (text_addr << 4) + fromhex (*ptr++);
2267
2268 if (strncmp (ptr, ";Data=", 6) == 0)
2269 {
2270 ptr += 6;
2271 while (*ptr && *ptr != ';')
2272 data_addr = (data_addr << 4) + fromhex (*ptr++);
2273 }
2274 else
2275 lose = 1;
2276
2277 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2278 {
2279 ptr += 5;
2280 while (*ptr && *ptr != ';')
2281 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2282
2283 if (bss_addr != data_addr)
2284 warning (_("Target reported unsupported offsets: %s"), buf);
2285 }
2286 else
2287 lose = 1;
2288 }
2289 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2290 {
2291 ptr += 8;
2292 /* Don't use strtol, could lose on big values. */
2293 while (*ptr && *ptr != ';')
2294 text_addr = (text_addr << 4) + fromhex (*ptr++);
2295 num_segments = 1;
2296
2297 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2298 {
2299 ptr += 9;
2300 while (*ptr && *ptr != ';')
2301 data_addr = (data_addr << 4) + fromhex (*ptr++);
2302 num_segments++;
2303 }
2304 }
2305 else
2306 lose = 1;
2307
2308 if (lose)
2309 error (_("Malformed response to offset query, %s"), buf);
2310 else if (*ptr != '\0')
2311 warning (_("Target reported unsupported offsets: %s"), buf);
2312
2313 offs = ((struct section_offsets *)
2314 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2315 memcpy (offs, symfile_objfile->section_offsets,
2316 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2317
2318 data = get_symfile_segment_data (symfile_objfile->obfd);
2319 do_segments = (data != NULL);
2320 do_sections = num_segments == 0;
2321
2322 if (num_segments > 0)
2323 {
2324 segments[0] = text_addr;
2325 segments[1] = data_addr;
2326 }
2327 /* If we have two segments, we can still try to relocate everything
2328 by assuming that the .text and .data offsets apply to the whole
2329 text and data segments. Convert the offsets given in the packet
2330 to base addresses for symfile_map_offsets_to_segments. */
2331 else if (data && data->num_segments == 2)
2332 {
2333 segments[0] = data->segment_bases[0] + text_addr;
2334 segments[1] = data->segment_bases[1] + data_addr;
2335 num_segments = 2;
2336 }
2337 /* If the object file has only one segment, assume that it is text
2338 rather than data; main programs with no writable data are rare,
2339 but programs with no code are useless. Of course the code might
2340 have ended up in the data segment... to detect that we would need
2341 the permissions here. */
2342 else if (data && data->num_segments == 1)
2343 {
2344 segments[0] = data->segment_bases[0] + text_addr;
2345 num_segments = 1;
2346 }
2347 /* There's no way to relocate by segment. */
2348 else
2349 do_segments = 0;
2350
2351 if (do_segments)
2352 {
2353 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2354 offs, num_segments, segments);
2355
2356 if (ret == 0 && !do_sections)
2357 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2358
2359 if (ret > 0)
2360 do_sections = 0;
2361 }
2362
2363 if (data)
2364 free_symfile_segment_data (data);
2365
2366 if (do_sections)
2367 {
2368 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2369
2370 /* This is a temporary kludge to force data and bss to use the same offsets
2371 because that's what nlmconv does now. The real solution requires changes
2372 to the stub and remote.c that I don't have time to do right now. */
2373
2374 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2375 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2376 }
2377
2378 objfile_relocate (symfile_objfile, offs);
2379 }
2380
2381 /* Stub for catch_exception. */
2382
2383 struct start_remote_args
2384 {
2385 int from_tty;
2386
2387 /* The current target. */
2388 struct target_ops *target;
2389
2390 /* Non-zero if this is an extended-remote target. */
2391 int extended_p;
2392 };
2393
2394 static void
2395 remote_start_remote (struct ui_out *uiout, void *opaque)
2396 {
2397 struct start_remote_args *args = opaque;
2398 struct remote_state *rs = get_remote_state ();
2399 struct packet_config *noack_config;
2400 char *wait_status = NULL;
2401
2402 immediate_quit++; /* Allow user to interrupt it. */
2403
2404 /* Ack any packet which the remote side has already sent. */
2405 serial_write (remote_desc, "+", 1);
2406
2407 /* The first packet we send to the target is the optional "supported
2408 packets" request. If the target can answer this, it will tell us
2409 which later probes to skip. */
2410 remote_query_supported ();
2411
2412 /* Next, we possibly activate noack mode.
2413
2414 If the QStartNoAckMode packet configuration is set to AUTO,
2415 enable noack mode if the stub reported a wish for it with
2416 qSupported.
2417
2418 If set to TRUE, then enable noack mode even if the stub didn't
2419 report it in qSupported. If the stub doesn't reply OK, the
2420 session ends with an error.
2421
2422 If FALSE, then don't activate noack mode, regardless of what the
2423 stub claimed should be the default with qSupported. */
2424
2425 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2426
2427 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2428 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2429 && noack_config->support == PACKET_ENABLE))
2430 {
2431 putpkt ("QStartNoAckMode");
2432 getpkt (&rs->buf, &rs->buf_size, 0);
2433 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2434 rs->noack_mode = 1;
2435 }
2436
2437 if (args->extended_p)
2438 {
2439 /* Tell the remote that we are using the extended protocol. */
2440 putpkt ("!");
2441 getpkt (&rs->buf, &rs->buf_size, 0);
2442 }
2443
2444 /* Next, if the target can specify a description, read it. We do
2445 this before anything involving memory or registers. */
2446 target_find_description ();
2447
2448 /* Check whether the target is running now. */
2449 putpkt ("?");
2450 getpkt (&rs->buf, &rs->buf_size, 0);
2451
2452 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2453 {
2454 if (args->extended_p)
2455 {
2456 /* We're connected, but not running. Drop out before we
2457 call start_remote. */
2458 target_mark_exited (args->target);
2459 return;
2460 }
2461 else
2462 error (_("The target is not running (try extended-remote?)"));
2463 }
2464 else
2465 {
2466 if (args->extended_p)
2467 target_mark_running (args->target);
2468
2469 /* Save the reply for later. */
2470 wait_status = alloca (strlen (rs->buf) + 1);
2471 strcpy (wait_status, rs->buf);
2472 }
2473
2474 /* Start afresh. */
2475 init_thread_list ();
2476
2477 /* Let the stub know that we want it to return the thread. */
2478 set_continue_thread (minus_one_ptid);
2479
2480 /* Without this, some commands which require an active target
2481 (such as kill) won't work. This variable serves (at least)
2482 double duty as both the pid of the target process (if it has
2483 such), and as a flag indicating that a target is active.
2484 These functions should be split out into seperate variables,
2485 especially since GDB will someday have a notion of debugging
2486 several processes. */
2487 inferior_ptid = magic_null_ptid;
2488
2489 /* Now, if we have thread information, update inferior_ptid. */
2490 inferior_ptid = remote_current_thread (inferior_ptid);
2491
2492 add_inferior (ptid_get_pid (inferior_ptid));
2493
2494 /* Always add the main thread. */
2495 add_thread_silent (inferior_ptid);
2496
2497 get_offsets (); /* Get text, data & bss offsets. */
2498
2499 /* Use the previously fetched status. */
2500 gdb_assert (wait_status != NULL);
2501 strcpy (rs->buf, wait_status);
2502 rs->cached_wait_status = 1;
2503
2504 immediate_quit--;
2505 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2506
2507 /* If we connected to a live target, do some additional setup. */
2508 if (target_has_execution)
2509 {
2510 if (exec_bfd) /* No use without an exec file. */
2511 remote_check_symbols (symfile_objfile);
2512 }
2513 }
2514
2515 /* Open a connection to a remote debugger.
2516 NAME is the filename used for communication. */
2517
2518 static void
2519 remote_open (char *name, int from_tty)
2520 {
2521 remote_open_1 (name, from_tty, &remote_ops, 0);
2522 }
2523
2524 /* Open a connection to a remote debugger using the extended
2525 remote gdb protocol. NAME is the filename used for communication. */
2526
2527 static void
2528 extended_remote_open (char *name, int from_tty)
2529 {
2530 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2531 }
2532
2533 /* Generic code for opening a connection to a remote target. */
2534
2535 static void
2536 init_all_packet_configs (void)
2537 {
2538 int i;
2539 for (i = 0; i < PACKET_MAX; i++)
2540 update_packet_config (&remote_protocol_packets[i]);
2541 }
2542
2543 /* Symbol look-up. */
2544
2545 static void
2546 remote_check_symbols (struct objfile *objfile)
2547 {
2548 struct remote_state *rs = get_remote_state ();
2549 char *msg, *reply, *tmp;
2550 struct minimal_symbol *sym;
2551 int end;
2552
2553 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2554 return;
2555
2556 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2557 because we need both at the same time. */
2558 msg = alloca (get_remote_packet_size ());
2559
2560 /* Invite target to request symbol lookups. */
2561
2562 putpkt ("qSymbol::");
2563 getpkt (&rs->buf, &rs->buf_size, 0);
2564 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2565 reply = rs->buf;
2566
2567 while (strncmp (reply, "qSymbol:", 8) == 0)
2568 {
2569 tmp = &reply[8];
2570 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2571 msg[end] = '\0';
2572 sym = lookup_minimal_symbol (msg, NULL, NULL);
2573 if (sym == NULL)
2574 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2575 else
2576 {
2577 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2578
2579 /* If this is a function address, return the start of code
2580 instead of any data function descriptor. */
2581 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2582 sym_addr,
2583 &current_target);
2584
2585 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2586 paddr_nz (sym_addr), &reply[8]);
2587 }
2588
2589 putpkt (msg);
2590 getpkt (&rs->buf, &rs->buf_size, 0);
2591 reply = rs->buf;
2592 }
2593 }
2594
2595 static struct serial *
2596 remote_serial_open (char *name)
2597 {
2598 static int udp_warning = 0;
2599
2600 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2601 of in ser-tcp.c, because it is the remote protocol assuming that the
2602 serial connection is reliable and not the serial connection promising
2603 to be. */
2604 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2605 {
2606 warning (_("\
2607 The remote protocol may be unreliable over UDP.\n\
2608 Some events may be lost, rendering further debugging impossible."));
2609 udp_warning = 1;
2610 }
2611
2612 return serial_open (name);
2613 }
2614
2615 /* This type describes each known response to the qSupported
2616 packet. */
2617 struct protocol_feature
2618 {
2619 /* The name of this protocol feature. */
2620 const char *name;
2621
2622 /* The default for this protocol feature. */
2623 enum packet_support default_support;
2624
2625 /* The function to call when this feature is reported, or after
2626 qSupported processing if the feature is not supported.
2627 The first argument points to this structure. The second
2628 argument indicates whether the packet requested support be
2629 enabled, disabled, or probed (or the default, if this function
2630 is being called at the end of processing and this feature was
2631 not reported). The third argument may be NULL; if not NULL, it
2632 is a NUL-terminated string taken from the packet following
2633 this feature's name and an equals sign. */
2634 void (*func) (const struct protocol_feature *, enum packet_support,
2635 const char *);
2636
2637 /* The corresponding packet for this feature. Only used if
2638 FUNC is remote_supported_packet. */
2639 int packet;
2640 };
2641
2642 static void
2643 remote_supported_packet (const struct protocol_feature *feature,
2644 enum packet_support support,
2645 const char *argument)
2646 {
2647 if (argument)
2648 {
2649 warning (_("Remote qSupported response supplied an unexpected value for"
2650 " \"%s\"."), feature->name);
2651 return;
2652 }
2653
2654 if (remote_protocol_packets[feature->packet].support
2655 == PACKET_SUPPORT_UNKNOWN)
2656 remote_protocol_packets[feature->packet].support = support;
2657 }
2658
2659 static void
2660 remote_packet_size (const struct protocol_feature *feature,
2661 enum packet_support support, const char *value)
2662 {
2663 struct remote_state *rs = get_remote_state ();
2664
2665 int packet_size;
2666 char *value_end;
2667
2668 if (support != PACKET_ENABLE)
2669 return;
2670
2671 if (value == NULL || *value == '\0')
2672 {
2673 warning (_("Remote target reported \"%s\" without a size."),
2674 feature->name);
2675 return;
2676 }
2677
2678 errno = 0;
2679 packet_size = strtol (value, &value_end, 16);
2680 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2681 {
2682 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2683 feature->name, value);
2684 return;
2685 }
2686
2687 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2688 {
2689 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2690 packet_size, MAX_REMOTE_PACKET_SIZE);
2691 packet_size = MAX_REMOTE_PACKET_SIZE;
2692 }
2693
2694 /* Record the new maximum packet size. */
2695 rs->explicit_packet_size = packet_size;
2696 }
2697
2698 static void
2699 remote_multi_process_feature (const struct protocol_feature *feature,
2700 enum packet_support support, const char *value)
2701 {
2702 struct remote_state *rs = get_remote_state ();
2703 rs->multi_process_aware = (support == PACKET_ENABLE);
2704 }
2705
2706 static struct protocol_feature remote_protocol_features[] = {
2707 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2708 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2709 PACKET_qXfer_auxv },
2710 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2711 PACKET_qXfer_features },
2712 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2713 PACKET_qXfer_libraries },
2714 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2715 PACKET_qXfer_memory_map },
2716 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2717 PACKET_qXfer_spu_read },
2718 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2719 PACKET_qXfer_spu_write },
2720 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2721 PACKET_QPassSignals },
2722 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2723 PACKET_QStartNoAckMode },
2724 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2725 };
2726
2727 static void
2728 remote_query_supported (void)
2729 {
2730 struct remote_state *rs = get_remote_state ();
2731 char *next;
2732 int i;
2733 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2734
2735 /* The packet support flags are handled differently for this packet
2736 than for most others. We treat an error, a disabled packet, and
2737 an empty response identically: any features which must be reported
2738 to be used will be automatically disabled. An empty buffer
2739 accomplishes this, since that is also the representation for a list
2740 containing no features. */
2741
2742 rs->buf[0] = 0;
2743 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2744 {
2745 if (rs->extended)
2746 putpkt ("qSupported:multiprocess+");
2747 else
2748 putpkt ("qSupported");
2749
2750 getpkt (&rs->buf, &rs->buf_size, 0);
2751
2752 /* If an error occured, warn, but do not return - just reset the
2753 buffer to empty and go on to disable features. */
2754 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2755 == PACKET_ERROR)
2756 {
2757 warning (_("Remote failure reply: %s"), rs->buf);
2758 rs->buf[0] = 0;
2759 }
2760 }
2761
2762 memset (seen, 0, sizeof (seen));
2763
2764 next = rs->buf;
2765 while (*next)
2766 {
2767 enum packet_support is_supported;
2768 char *p, *end, *name_end, *value;
2769
2770 /* First separate out this item from the rest of the packet. If
2771 there's another item after this, we overwrite the separator
2772 (terminated strings are much easier to work with). */
2773 p = next;
2774 end = strchr (p, ';');
2775 if (end == NULL)
2776 {
2777 end = p + strlen (p);
2778 next = end;
2779 }
2780 else
2781 {
2782 *end = '\0';
2783 next = end + 1;
2784
2785 if (end == p)
2786 {
2787 warning (_("empty item in \"qSupported\" response"));
2788 continue;
2789 }
2790 }
2791
2792 name_end = strchr (p, '=');
2793 if (name_end)
2794 {
2795 /* This is a name=value entry. */
2796 is_supported = PACKET_ENABLE;
2797 value = name_end + 1;
2798 *name_end = '\0';
2799 }
2800 else
2801 {
2802 value = NULL;
2803 switch (end[-1])
2804 {
2805 case '+':
2806 is_supported = PACKET_ENABLE;
2807 break;
2808
2809 case '-':
2810 is_supported = PACKET_DISABLE;
2811 break;
2812
2813 case '?':
2814 is_supported = PACKET_SUPPORT_UNKNOWN;
2815 break;
2816
2817 default:
2818 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2819 continue;
2820 }
2821 end[-1] = '\0';
2822 }
2823
2824 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2825 if (strcmp (remote_protocol_features[i].name, p) == 0)
2826 {
2827 const struct protocol_feature *feature;
2828
2829 seen[i] = 1;
2830 feature = &remote_protocol_features[i];
2831 feature->func (feature, is_supported, value);
2832 break;
2833 }
2834 }
2835
2836 /* If we increased the packet size, make sure to increase the global
2837 buffer size also. We delay this until after parsing the entire
2838 qSupported packet, because this is the same buffer we were
2839 parsing. */
2840 if (rs->buf_size < rs->explicit_packet_size)
2841 {
2842 rs->buf_size = rs->explicit_packet_size;
2843 rs->buf = xrealloc (rs->buf, rs->buf_size);
2844 }
2845
2846 /* Handle the defaults for unmentioned features. */
2847 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2848 if (!seen[i])
2849 {
2850 const struct protocol_feature *feature;
2851
2852 feature = &remote_protocol_features[i];
2853 feature->func (feature, feature->default_support, NULL);
2854 }
2855 }
2856
2857
2858 static void
2859 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2860 {
2861 struct remote_state *rs = get_remote_state ();
2862
2863 if (name == 0)
2864 error (_("To open a remote debug connection, you need to specify what\n"
2865 "serial device is attached to the remote system\n"
2866 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2867
2868 /* See FIXME above. */
2869 if (!target_async_permitted)
2870 wait_forever_enabled_p = 1;
2871
2872 /* If we're connected to a running target, target_preopen will kill it.
2873 But if we're connected to a target system with no running process,
2874 then we will still be connected when it returns. Ask this question
2875 first, before target_preopen has a chance to kill anything. */
2876 if (remote_desc != NULL && !target_has_execution)
2877 {
2878 if (!from_tty
2879 || query (_("Already connected to a remote target. Disconnect? ")))
2880 pop_target ();
2881 else
2882 error (_("Still connected."));
2883 }
2884
2885 target_preopen (from_tty);
2886
2887 unpush_target (target);
2888
2889 /* This time without a query. If we were connected to an
2890 extended-remote target and target_preopen killed the running
2891 process, we may still be connected. If we are starting "target
2892 remote" now, the extended-remote target will not have been
2893 removed by unpush_target. */
2894 if (remote_desc != NULL && !target_has_execution)
2895 pop_target ();
2896
2897 /* Make sure we send the passed signals list the next time we resume. */
2898 xfree (last_pass_packet);
2899 last_pass_packet = NULL;
2900
2901 remote_fileio_reset ();
2902 reopen_exec_file ();
2903 reread_symbols ();
2904
2905 remote_desc = remote_serial_open (name);
2906 if (!remote_desc)
2907 perror_with_name (name);
2908
2909 if (baud_rate != -1)
2910 {
2911 if (serial_setbaudrate (remote_desc, baud_rate))
2912 {
2913 /* The requested speed could not be set. Error out to
2914 top level after closing remote_desc. Take care to
2915 set remote_desc to NULL to avoid closing remote_desc
2916 more than once. */
2917 serial_close (remote_desc);
2918 remote_desc = NULL;
2919 perror_with_name (name);
2920 }
2921 }
2922
2923 serial_raw (remote_desc);
2924
2925 /* If there is something sitting in the buffer we might take it as a
2926 response to a command, which would be bad. */
2927 serial_flush_input (remote_desc);
2928
2929 if (from_tty)
2930 {
2931 puts_filtered ("Remote debugging using ");
2932 puts_filtered (name);
2933 puts_filtered ("\n");
2934 }
2935 push_target (target); /* Switch to using remote target now. */
2936
2937 /* Assume that the target is running, unless we learn otherwise. */
2938 target_mark_running (target);
2939
2940 /* Reset the target state; these things will be queried either by
2941 remote_query_supported or as they are needed. */
2942 init_all_packet_configs ();
2943 rs->explicit_packet_size = 0;
2944 rs->noack_mode = 0;
2945 rs->multi_process_aware = 0;
2946 rs->extended = extended_p;
2947 rs->waiting_for_stop_reply = 0;
2948
2949 general_thread = not_sent_ptid;
2950 continue_thread = not_sent_ptid;
2951
2952 /* Probe for ability to use "ThreadInfo" query, as required. */
2953 use_threadinfo_query = 1;
2954 use_threadextra_query = 1;
2955
2956 if (target_async_permitted)
2957 {
2958 /* With this target we start out by owning the terminal. */
2959 remote_async_terminal_ours_p = 1;
2960
2961 /* FIXME: cagney/1999-09-23: During the initial connection it is
2962 assumed that the target is already ready and able to respond to
2963 requests. Unfortunately remote_start_remote() eventually calls
2964 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2965 around this. Eventually a mechanism that allows
2966 wait_for_inferior() to expect/get timeouts will be
2967 implemented. */
2968 wait_forever_enabled_p = 0;
2969 }
2970
2971 /* First delete any symbols previously loaded from shared libraries. */
2972 no_shared_libraries (NULL, 0);
2973
2974 /* Start the remote connection. If error() or QUIT, discard this
2975 target (we'd otherwise be in an inconsistent state) and then
2976 propogate the error on up the exception chain. This ensures that
2977 the caller doesn't stumble along blindly assuming that the
2978 function succeeded. The CLI doesn't have this problem but other
2979 UI's, such as MI do.
2980
2981 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2982 this function should return an error indication letting the
2983 caller restore the previous state. Unfortunately the command
2984 ``target remote'' is directly wired to this function making that
2985 impossible. On a positive note, the CLI side of this problem has
2986 been fixed - the function set_cmd_context() makes it possible for
2987 all the ``target ....'' commands to share a common callback
2988 function. See cli-dump.c. */
2989 {
2990 struct gdb_exception ex;
2991 struct start_remote_args args;
2992
2993 args.from_tty = from_tty;
2994 args.target = target;
2995 args.extended_p = extended_p;
2996
2997 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2998 if (ex.reason < 0)
2999 {
3000 /* Pop the partially set up target - unless something else did
3001 already before throwing the exception. */
3002 if (remote_desc != NULL)
3003 pop_target ();
3004 if (target_async_permitted)
3005 wait_forever_enabled_p = 1;
3006 throw_exception (ex);
3007 }
3008 }
3009
3010 if (target_async_permitted)
3011 wait_forever_enabled_p = 1;
3012 }
3013
3014 /* This takes a program previously attached to and detaches it. After
3015 this is done, GDB can be used to debug some other program. We
3016 better not have left any breakpoints in the target program or it'll
3017 die when it hits one. */
3018
3019 static void
3020 remote_detach_1 (char *args, int from_tty, int extended)
3021 {
3022 int pid = ptid_get_pid (inferior_ptid);
3023 struct remote_state *rs = get_remote_state ();
3024
3025 if (args)
3026 error (_("Argument given to \"detach\" when remotely debugging."));
3027
3028 if (!target_has_execution)
3029 error (_("No process to detach from."));
3030
3031 /* Tell the remote target to detach. */
3032 if (remote_multi_process_p (rs))
3033 sprintf (rs->buf, "D;%x", pid);
3034 else
3035 strcpy (rs->buf, "D");
3036
3037 putpkt (rs->buf);
3038 getpkt (&rs->buf, &rs->buf_size, 0);
3039
3040 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3041 ;
3042 else if (rs->buf[0] == '\0')
3043 error (_("Remote doesn't know how to detach"));
3044 else
3045 error (_("Can't detach process."));
3046
3047 if (from_tty)
3048 {
3049 if (remote_multi_process_p (rs))
3050 printf_filtered (_("Detached from remote %s.\n"),
3051 target_pid_to_str (pid_to_ptid (pid)));
3052 else
3053 {
3054 if (extended)
3055 puts_filtered (_("Detached from remote process.\n"));
3056 else
3057 puts_filtered (_("Ending remote debugging.\n"));
3058 }
3059 }
3060
3061 detach_inferior (pid);
3062 target_mourn_inferior ();
3063 }
3064
3065 static void
3066 remote_detach (char *args, int from_tty)
3067 {
3068 remote_detach_1 (args, from_tty, 0);
3069 }
3070
3071 static void
3072 extended_remote_detach (char *args, int from_tty)
3073 {
3074 remote_detach_1 (args, from_tty, 1);
3075 }
3076
3077 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3078
3079 static void
3080 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3081 {
3082 if (args)
3083 error (_("Argument given to \"disconnect\" when remotely debugging."));
3084
3085 /* Make sure we unpush even the extended remote targets; mourn
3086 won't do it. So call remote_mourn_1 directly instead of
3087 target_mourn_inferior. */
3088 remote_mourn_1 (target);
3089
3090 if (from_tty)
3091 puts_filtered ("Ending remote debugging.\n");
3092 }
3093
3094 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3095 be chatty about it. */
3096
3097 static void
3098 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3099 {
3100 struct remote_state *rs = get_remote_state ();
3101 int pid;
3102 char *dummy;
3103 char *wait_status = NULL;
3104 struct inferior *inf;
3105
3106 if (!args)
3107 error_no_arg (_("process-id to attach"));
3108
3109 dummy = args;
3110 pid = strtol (args, &dummy, 0);
3111 /* Some targets don't set errno on errors, grrr! */
3112 if (pid == 0 && args == dummy)
3113 error (_("Illegal process-id: %s."), args);
3114
3115 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3116 error (_("This target does not support attaching to a process"));
3117
3118 sprintf (rs->buf, "vAttach;%x", pid);
3119 putpkt (rs->buf);
3120 getpkt (&rs->buf, &rs->buf_size, 0);
3121
3122 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3123 {
3124 if (from_tty)
3125 printf_unfiltered (_("Attached to %s\n"),
3126 target_pid_to_str (pid_to_ptid (pid)));
3127
3128 /* Save the reply for later. */
3129 wait_status = alloca (strlen (rs->buf) + 1);
3130 strcpy (wait_status, rs->buf);
3131 }
3132 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3133 error (_("This target does not support attaching to a process"));
3134 else
3135 error (_("Attaching to %s failed"),
3136 target_pid_to_str (pid_to_ptid (pid)));
3137
3138 target_mark_running (target);
3139 inferior_ptid = pid_to_ptid (pid);
3140
3141 /* Now, if we have thread information, update inferior_ptid. */
3142 inferior_ptid = remote_current_thread (inferior_ptid);
3143
3144 inf = add_inferior (pid);
3145 inf->attach_flag = 1;
3146
3147 /* Now, add the main thread to the thread list. */
3148 add_thread_silent (inferior_ptid);
3149
3150 /* Next, if the target can specify a description, read it. We do
3151 this before anything involving memory or registers. */
3152 target_find_description ();
3153
3154 /* Use the previously fetched status. */
3155 gdb_assert (wait_status != NULL);
3156 strcpy (rs->buf, wait_status);
3157 rs->cached_wait_status = 1;
3158 }
3159
3160 static void
3161 extended_remote_attach (char *args, int from_tty)
3162 {
3163 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
3164 }
3165
3166 /* Convert hex digit A to a number. */
3167
3168 static int
3169 fromhex (int a)
3170 {
3171 if (a >= '0' && a <= '9')
3172 return a - '0';
3173 else if (a >= 'a' && a <= 'f')
3174 return a - 'a' + 10;
3175 else if (a >= 'A' && a <= 'F')
3176 return a - 'A' + 10;
3177 else
3178 error (_("Reply contains invalid hex digit %d"), a);
3179 }
3180
3181 static int
3182 hex2bin (const char *hex, gdb_byte *bin, int count)
3183 {
3184 int i;
3185
3186 for (i = 0; i < count; i++)
3187 {
3188 if (hex[0] == 0 || hex[1] == 0)
3189 {
3190 /* Hex string is short, or of uneven length.
3191 Return the count that has been converted so far. */
3192 return i;
3193 }
3194 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3195 hex += 2;
3196 }
3197 return i;
3198 }
3199
3200 /* Convert number NIB to a hex digit. */
3201
3202 static int
3203 tohex (int nib)
3204 {
3205 if (nib < 10)
3206 return '0' + nib;
3207 else
3208 return 'a' + nib - 10;
3209 }
3210
3211 static int
3212 bin2hex (const gdb_byte *bin, char *hex, int count)
3213 {
3214 int i;
3215 /* May use a length, or a nul-terminated string as input. */
3216 if (count == 0)
3217 count = strlen ((char *) bin);
3218
3219 for (i = 0; i < count; i++)
3220 {
3221 *hex++ = tohex ((*bin >> 4) & 0xf);
3222 *hex++ = tohex (*bin++ & 0xf);
3223 }
3224 *hex = 0;
3225 return i;
3226 }
3227 \f
3228 /* Check for the availability of vCont. This function should also check
3229 the response. */
3230
3231 static void
3232 remote_vcont_probe (struct remote_state *rs)
3233 {
3234 char *buf;
3235
3236 strcpy (rs->buf, "vCont?");
3237 putpkt (rs->buf);
3238 getpkt (&rs->buf, &rs->buf_size, 0);
3239 buf = rs->buf;
3240
3241 /* Make sure that the features we assume are supported. */
3242 if (strncmp (buf, "vCont", 5) == 0)
3243 {
3244 char *p = &buf[5];
3245 int support_s, support_S, support_c, support_C;
3246
3247 support_s = 0;
3248 support_S = 0;
3249 support_c = 0;
3250 support_C = 0;
3251 while (p && *p == ';')
3252 {
3253 p++;
3254 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3255 support_s = 1;
3256 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3257 support_S = 1;
3258 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3259 support_c = 1;
3260 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3261 support_C = 1;
3262
3263 p = strchr (p, ';');
3264 }
3265
3266 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3267 BUF will make packet_ok disable the packet. */
3268 if (!support_s || !support_S || !support_c || !support_C)
3269 buf[0] = 0;
3270 }
3271
3272 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3273 }
3274
3275 /* Resume the remote inferior by using a "vCont" packet. The thread
3276 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3277 resumed thread should be single-stepped and/or signalled. If PTID
3278 equals minus_one_ptid, then all threads are resumed; the thread to
3279 be stepped and/or signalled is given in the global INFERIOR_PTID.
3280 This function returns non-zero iff it resumes the inferior.
3281
3282 This function issues a strict subset of all possible vCont commands at the
3283 moment. */
3284
3285 static int
3286 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3287 {
3288 struct remote_state *rs = get_remote_state ();
3289 char *p;
3290 char *endp;
3291
3292 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3293 remote_vcont_probe (rs);
3294
3295 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3296 return 0;
3297
3298 p = rs->buf;
3299 endp = rs->buf + get_remote_packet_size ();
3300
3301 /* If we could generate a wider range of packets, we'd have to worry
3302 about overflowing BUF. Should there be a generic
3303 "multi-part-packet" packet? */
3304
3305 if (ptid_equal (ptid, magic_null_ptid))
3306 {
3307 /* MAGIC_NULL_PTID means that we don't have any active threads,
3308 so we don't have any TID numbers the inferior will
3309 understand. Make sure to only send forms that do not specify
3310 a TID. */
3311 if (step && siggnal != TARGET_SIGNAL_0)
3312 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3313 else if (step)
3314 xsnprintf (p, endp - p, "vCont;s");
3315 else if (siggnal != TARGET_SIGNAL_0)
3316 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3317 else
3318 xsnprintf (p, endp - p, "vCont;c");
3319 }
3320 else if (ptid_equal (ptid, minus_one_ptid))
3321 {
3322 /* Resume all threads, with preference for INFERIOR_PTID. */
3323 if (step && siggnal != TARGET_SIGNAL_0)
3324 {
3325 /* Step inferior_ptid with signal. */
3326 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3327 p = write_ptid (p, endp, inferior_ptid);
3328 /* And continue others. */
3329 p += xsnprintf (p, endp - p, ";c");
3330 }
3331 else if (step)
3332 {
3333 /* Step inferior_ptid. */
3334 p += xsnprintf (p, endp - p, "vCont;s:");
3335 p = write_ptid (p, endp, inferior_ptid);
3336 /* And continue others. */
3337 p += xsnprintf (p, endp - p, ";c");
3338 }
3339 else if (siggnal != TARGET_SIGNAL_0)
3340 {
3341 /* Continue inferior_ptid with signal. */
3342 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3343 p = write_ptid (p, endp, inferior_ptid);
3344 /* And continue others. */
3345 p += xsnprintf (p, endp - p, ";c");
3346 }
3347 else
3348 xsnprintf (p, endp - p, "vCont;c");
3349 }
3350 else
3351 {
3352 /* Scheduler locking; resume only PTID. */
3353 if (step && siggnal != TARGET_SIGNAL_0)
3354 {
3355 /* Step ptid with signal. */
3356 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3357 p = write_ptid (p, endp, ptid);
3358 }
3359 else if (step)
3360 {
3361 /* Step ptid. */
3362 p += xsnprintf (p, endp - p, "vCont;s:");
3363 p = write_ptid (p, endp, ptid);
3364 }
3365 else if (siggnal != TARGET_SIGNAL_0)
3366 {
3367 /* Continue ptid with signal. */
3368 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3369 p = write_ptid (p, endp, ptid);
3370 }
3371 else
3372 {
3373 /* Continue ptid. */
3374 p += xsnprintf (p, endp - p, "vCont;c:");
3375 p = write_ptid (p, endp, ptid);
3376 }
3377 }
3378
3379 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3380 putpkt (rs->buf);
3381
3382 return 1;
3383 }
3384
3385 /* Tell the remote machine to resume. */
3386
3387 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3388
3389 static int last_sent_step;
3390
3391 static void
3392 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3393 {
3394 struct remote_state *rs = get_remote_state ();
3395 char *buf;
3396
3397 last_sent_signal = siggnal;
3398 last_sent_step = step;
3399
3400 /* Update the inferior on signals to silently pass, if they've changed. */
3401 remote_pass_signals ();
3402
3403 /* The vCont packet doesn't need to specify threads via Hc. */
3404 if (remote_vcont_resume (ptid, step, siggnal))
3405 goto done;
3406
3407 /* All other supported resume packets do use Hc, so set the continue
3408 thread. */
3409 if (ptid_equal (ptid, minus_one_ptid))
3410 set_continue_thread (any_thread_ptid);
3411 else
3412 set_continue_thread (ptid);
3413
3414 buf = rs->buf;
3415 if (siggnal != TARGET_SIGNAL_0)
3416 {
3417 buf[0] = step ? 'S' : 'C';
3418 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3419 buf[2] = tohex (((int) siggnal) & 0xf);
3420 buf[3] = '\0';
3421 }
3422 else
3423 strcpy (buf, step ? "s" : "c");
3424
3425 putpkt (buf);
3426
3427 done:
3428 /* We are about to start executing the inferior, let's register it
3429 with the event loop. NOTE: this is the one place where all the
3430 execution commands end up. We could alternatively do this in each
3431 of the execution commands in infcmd.c. */
3432 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3433 into infcmd.c in order to allow inferior function calls to work
3434 NOT asynchronously. */
3435 if (target_can_async_p ())
3436 target_async (inferior_event_handler, 0);
3437
3438 /* We've just told the target to resume. The remote server will
3439 wait for the inferior to stop, and then send a stop reply. In
3440 the mean time, we can't start another command/query ourselves
3441 because the stub wouldn't be ready to process it. */
3442 rs->waiting_for_stop_reply = 1;
3443 }
3444 \f
3445
3446 /* Set up the signal handler for SIGINT, while the target is
3447 executing, ovewriting the 'regular' SIGINT signal handler. */
3448 static void
3449 initialize_sigint_signal_handler (void)
3450 {
3451 signal (SIGINT, handle_remote_sigint);
3452 }
3453
3454 /* Signal handler for SIGINT, while the target is executing. */
3455 static void
3456 handle_remote_sigint (int sig)
3457 {
3458 signal (sig, handle_remote_sigint_twice);
3459 mark_async_signal_handler_wrapper (sigint_remote_token);
3460 }
3461
3462 /* Signal handler for SIGINT, installed after SIGINT has already been
3463 sent once. It will take effect the second time that the user sends
3464 a ^C. */
3465 static void
3466 handle_remote_sigint_twice (int sig)
3467 {
3468 signal (sig, handle_remote_sigint);
3469 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3470 }
3471
3472 /* Perform the real interruption of the target execution, in response
3473 to a ^C. */
3474 static void
3475 async_remote_interrupt (gdb_client_data arg)
3476 {
3477 if (remote_debug)
3478 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3479
3480 target_stop (inferior_ptid);
3481 }
3482
3483 /* Perform interrupt, if the first attempt did not succeed. Just give
3484 up on the target alltogether. */
3485 void
3486 async_remote_interrupt_twice (gdb_client_data arg)
3487 {
3488 if (remote_debug)
3489 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3490
3491 interrupt_query ();
3492 }
3493
3494 /* Reinstall the usual SIGINT handlers, after the target has
3495 stopped. */
3496 static void
3497 cleanup_sigint_signal_handler (void *dummy)
3498 {
3499 signal (SIGINT, handle_sigint);
3500 }
3501
3502 /* Send ^C to target to halt it. Target will respond, and send us a
3503 packet. */
3504 static void (*ofunc) (int);
3505
3506 /* The command line interface's stop routine. This function is installed
3507 as a signal handler for SIGINT. The first time a user requests a
3508 stop, we call remote_stop to send a break or ^C. If there is no
3509 response from the target (it didn't stop when the user requested it),
3510 we ask the user if he'd like to detach from the target. */
3511 static void
3512 remote_interrupt (int signo)
3513 {
3514 /* If this doesn't work, try more severe steps. */
3515 signal (signo, remote_interrupt_twice);
3516
3517 gdb_call_async_signal_handler (sigint_remote_token, 1);
3518 }
3519
3520 /* The user typed ^C twice. */
3521
3522 static void
3523 remote_interrupt_twice (int signo)
3524 {
3525 signal (signo, ofunc);
3526 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3527 signal (signo, remote_interrupt);
3528 }
3529
3530 /* This is the generic stop called via the target vector. When a target
3531 interrupt is requested, either by the command line or the GUI, we
3532 will eventually end up here. */
3533 static void
3534 remote_stop (ptid_t ptid)
3535 {
3536 /* Send a break or a ^C, depending on user preference. */
3537 if (remote_debug)
3538 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3539
3540 if (remote_break)
3541 serial_send_break (remote_desc);
3542 else
3543 serial_write (remote_desc, "\003", 1);
3544 }
3545
3546 /* Ask the user what to do when an interrupt is received. */
3547
3548 static void
3549 interrupt_query (void)
3550 {
3551 target_terminal_ours ();
3552
3553 if (query ("Interrupted while waiting for the program.\n\
3554 Give up (and stop debugging it)? "))
3555 {
3556 pop_target ();
3557 deprecated_throw_reason (RETURN_QUIT);
3558 }
3559
3560 target_terminal_inferior ();
3561 }
3562
3563 /* Enable/disable target terminal ownership. Most targets can use
3564 terminal groups to control terminal ownership. Remote targets are
3565 different in that explicit transfer of ownership to/from GDB/target
3566 is required. */
3567
3568 static void
3569 remote_terminal_inferior (void)
3570 {
3571 if (!target_async_permitted)
3572 /* Nothing to do. */
3573 return;
3574
3575 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3576 sync_execution here. This function should only be called when
3577 GDB is resuming the inferior in the forground. A background
3578 resume (``run&'') should leave GDB in control of the terminal and
3579 consequently should not call this code. */
3580 if (!sync_execution)
3581 return;
3582 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3583 calls target_terminal_*() idenpotent. The event-loop GDB talking
3584 to an asynchronous target with a synchronous command calls this
3585 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3586 stops trying to transfer the terminal to the target when it
3587 shouldn't this guard can go away. */
3588 if (!remote_async_terminal_ours_p)
3589 return;
3590 delete_file_handler (input_fd);
3591 remote_async_terminal_ours_p = 0;
3592 initialize_sigint_signal_handler ();
3593 /* NOTE: At this point we could also register our selves as the
3594 recipient of all input. Any characters typed could then be
3595 passed on down to the target. */
3596 }
3597
3598 static void
3599 remote_terminal_ours (void)
3600 {
3601 if (!target_async_permitted)
3602 /* Nothing to do. */
3603 return;
3604
3605 /* See FIXME in remote_terminal_inferior. */
3606 if (!sync_execution)
3607 return;
3608 /* See FIXME in remote_terminal_inferior. */
3609 if (remote_async_terminal_ours_p)
3610 return;
3611 cleanup_sigint_signal_handler (NULL);
3612 add_file_handler (input_fd, stdin_event_handler, 0);
3613 remote_async_terminal_ours_p = 1;
3614 }
3615
3616 void
3617 remote_console_output (char *msg)
3618 {
3619 char *p;
3620
3621 for (p = msg; p[0] && p[1]; p += 2)
3622 {
3623 char tb[2];
3624 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3625 tb[0] = c;
3626 tb[1] = 0;
3627 fputs_unfiltered (tb, gdb_stdtarg);
3628 }
3629 gdb_flush (gdb_stdtarg);
3630 }
3631
3632 /* Wait until the remote machine stops, then return,
3633 storing status in STATUS just as `wait' would. */
3634
3635 static ptid_t
3636 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
3637 {
3638 struct remote_state *rs = get_remote_state ();
3639 struct remote_arch_state *rsa = get_remote_arch_state ();
3640 ptid_t event_ptid = null_ptid;
3641 ULONGEST addr;
3642 int solibs_changed = 0;
3643 char *buf, *p;
3644
3645 status->kind = TARGET_WAITKIND_IGNORE;
3646 status->value.integer = 0;
3647
3648 if (rs->cached_wait_status)
3649 /* Use the cached wait status, but only once. */
3650 rs->cached_wait_status = 0;
3651 else
3652 {
3653 if (!target_is_async_p ())
3654 {
3655 ofunc = signal (SIGINT, remote_interrupt);
3656 /* If the user hit C-c before this packet, or between
3657 packets, pretend that it was hit right here. */
3658 if (quit_flag)
3659 {
3660 quit_flag = 0;
3661 remote_interrupt (SIGINT);
3662 }
3663 }
3664 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3665 _never_ wait for ever -> test on target_is_async_p().
3666 However, before we do that we need to ensure that the caller
3667 knows how to take the target into/out of async mode. */
3668 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3669 if (!target_is_async_p ())
3670 signal (SIGINT, ofunc);
3671 }
3672
3673 buf = rs->buf;
3674
3675 remote_stopped_by_watchpoint_p = 0;
3676
3677 /* We got something. */
3678 rs->waiting_for_stop_reply = 0;
3679
3680 switch (buf[0])
3681 {
3682 case 'E': /* Error of some sort. */
3683 /* We're out of sync with the target now. Did it continue or
3684 not? Not is more likely, so report a stop. */
3685 warning (_("Remote failure reply: %s"), buf);
3686 status->kind = TARGET_WAITKIND_STOPPED;
3687 status->value.sig = TARGET_SIGNAL_0;
3688 break;
3689 case 'F': /* File-I/O request. */
3690 remote_fileio_request (buf);
3691
3692 /* This stop reply is special. We reply back to the stub,
3693 and keep waiting for the target to stop. */
3694 rs->waiting_for_stop_reply = 1;
3695 break;
3696 case 'T': /* Status with PC, SP, FP, ... */
3697 {
3698 gdb_byte regs[MAX_REGISTER_SIZE];
3699
3700 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3701 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3702 ss = signal number
3703 n... = register number
3704 r... = register contents
3705 */
3706 p = &buf[3]; /* after Txx */
3707
3708 while (*p)
3709 {
3710 char *p1;
3711 char *p_temp;
3712 int fieldsize;
3713 LONGEST pnum = 0;
3714
3715 /* If the packet contains a register number, save it in
3716 pnum and set p1 to point to the character following it.
3717 Otherwise p1 points to p. */
3718
3719 /* If this packet is an awatch packet, don't parse the
3720 'a' as a register number. */
3721
3722 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3723 {
3724 /* Read the ``P'' register number. */
3725 pnum = strtol (p, &p_temp, 16);
3726 p1 = p_temp;
3727 }
3728 else
3729 p1 = p;
3730
3731 if (p1 == p) /* No register number present here. */
3732 {
3733 p1 = strchr (p, ':');
3734 if (p1 == NULL)
3735 error (_("Malformed packet(a) (missing colon): %s\n\
3736 Packet: '%s'\n"),
3737 p, buf);
3738 if (strncmp (p, "thread", p1 - p) == 0)
3739 event_ptid = read_ptid (++p1, &p);
3740 else if ((strncmp (p, "watch", p1 - p) == 0)
3741 || (strncmp (p, "rwatch", p1 - p) == 0)
3742 || (strncmp (p, "awatch", p1 - p) == 0))
3743 {
3744 remote_stopped_by_watchpoint_p = 1;
3745 p = unpack_varlen_hex (++p1, &addr);
3746 remote_watch_data_address = (CORE_ADDR)addr;
3747 }
3748 else if (strncmp (p, "library", p1 - p) == 0)
3749 {
3750 p1++;
3751 p_temp = p1;
3752 while (*p_temp && *p_temp != ';')
3753 p_temp++;
3754
3755 solibs_changed = 1;
3756 p = p_temp;
3757 }
3758 else
3759 {
3760 /* Silently skip unknown optional info. */
3761 p_temp = strchr (p1 + 1, ';');
3762 if (p_temp)
3763 p = p_temp;
3764 }
3765 }
3766 else
3767 {
3768 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3769 p = p1;
3770
3771 if (*p != ':')
3772 error (_("Malformed packet(b) (missing colon): %s\n\
3773 Packet: '%s'\n"),
3774 p, buf);
3775 ++p;
3776
3777 if (reg == NULL)
3778 error (_("Remote sent bad register number %s: %s\n\
3779 Packet: '%s'\n"),
3780 phex_nz (pnum, 0), p, buf);
3781
3782 fieldsize = hex2bin (p, regs,
3783 register_size (target_gdbarch,
3784 reg->regnum));
3785 p += 2 * fieldsize;
3786 if (fieldsize < register_size (target_gdbarch,
3787 reg->regnum))
3788 warning (_("Remote reply is too short: %s"), buf);
3789 regcache_raw_supply (get_current_regcache (),
3790 reg->regnum, regs);
3791 }
3792
3793 if (*p != ';')
3794 error (_("Remote register badly formatted: %s\nhere: %s"),
3795 buf, p);
3796 ++p;
3797 }
3798 }
3799 /* fall through */
3800 case 'S': /* Old style status, just signal only. */
3801 if (solibs_changed)
3802 status->kind = TARGET_WAITKIND_LOADED;
3803 else
3804 {
3805 status->kind = TARGET_WAITKIND_STOPPED;
3806 status->value.sig = (enum target_signal)
3807 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3808 }
3809 break;
3810 case 'W': /* Target exited. */
3811 case 'X':
3812 {
3813 char *p;
3814 int pid;
3815 ULONGEST value;
3816
3817 /* GDB used to accept only 2 hex chars here. Stubs should
3818 only send more if they detect GDB supports multi-process
3819 support. */
3820 p = unpack_varlen_hex (&buf[1], &value);
3821
3822 if (buf[0] == 'W')
3823 {
3824 /* The remote process exited. */
3825 status->kind = TARGET_WAITKIND_EXITED;
3826 status->value.integer = value;
3827 }
3828 else
3829 {
3830 /* The remote process exited with a signal. */
3831 status->kind = TARGET_WAITKIND_SIGNALLED;
3832 status->value.sig = (enum target_signal) value;
3833 }
3834
3835 /* If no process is specified, assume inferior_ptid. */
3836 pid = ptid_get_pid (inferior_ptid);
3837 if (*p == '\0')
3838 ;
3839 else if (*p == ';')
3840 {
3841 p++;
3842
3843 if (p == '\0')
3844 ;
3845 else if (strncmp (p,
3846 "process:", sizeof ("process:") - 1) == 0)
3847 {
3848 ULONGEST upid;
3849 p += sizeof ("process:") - 1;
3850 unpack_varlen_hex (p, &upid);
3851 pid = upid;
3852 }
3853 else
3854 error (_("unknown stop reply packet: %s"), buf);
3855 }
3856 else
3857 error (_("unknown stop reply packet: %s"), buf);
3858 event_ptid = pid_to_ptid (pid);
3859 break;
3860 }
3861 case 'O': /* Console output. */
3862 remote_console_output (buf + 1);
3863
3864 /* The target didn't really stop; keep waiting. */
3865 rs->waiting_for_stop_reply = 1;
3866
3867 break;
3868 case '\0':
3869 if (last_sent_signal != TARGET_SIGNAL_0)
3870 {
3871 /* Zero length reply means that we tried 'S' or 'C' and the
3872 remote system doesn't support it. */
3873 target_terminal_ours_for_output ();
3874 printf_filtered
3875 ("Can't send signals to this remote system. %s not sent.\n",
3876 target_signal_to_name (last_sent_signal));
3877 last_sent_signal = TARGET_SIGNAL_0;
3878 target_terminal_inferior ();
3879
3880 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3881 putpkt ((char *) buf);
3882
3883 /* We just told the target to resume, so a stop reply is in
3884 order. */
3885 rs->waiting_for_stop_reply = 1;
3886 break;
3887 }
3888 /* else fallthrough */
3889 default:
3890 warning (_("Invalid remote reply: %s"), buf);
3891 /* Keep waiting. */
3892 rs->waiting_for_stop_reply = 1;
3893 break;
3894 }
3895
3896 /* Nothing interesting happened. */
3897 if (status->kind == TARGET_WAITKIND_IGNORE)
3898 return minus_one_ptid;
3899
3900 if (status->kind == TARGET_WAITKIND_EXITED
3901 || status->kind == TARGET_WAITKIND_SIGNALLED)
3902 {
3903 int pid = ptid_get_pid (event_ptid);
3904 delete_inferior (pid);
3905 }
3906 else
3907 {
3908 if (!ptid_equal (event_ptid, null_ptid))
3909 record_currthread (event_ptid);
3910 else
3911 event_ptid = inferior_ptid;
3912 }
3913
3914 return event_ptid;
3915 }
3916
3917 static ptid_t
3918 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3919 {
3920 ptid_t event_ptid;
3921
3922 /* In synchronous mode, keep waiting until the target stops. In
3923 asynchronous mode, always return to the event loop. */
3924
3925 do
3926 {
3927 event_ptid = remote_wait_as (ptid, status);
3928 }
3929 while (status->kind == TARGET_WAITKIND_IGNORE
3930 && !target_can_async_p ());
3931
3932 return event_ptid;
3933 }
3934
3935 /* Fetch a single register using a 'p' packet. */
3936
3937 static int
3938 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3939 {
3940 struct remote_state *rs = get_remote_state ();
3941 char *buf, *p;
3942 char regp[MAX_REGISTER_SIZE];
3943 int i;
3944
3945 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3946 return 0;
3947
3948 if (reg->pnum == -1)
3949 return 0;
3950
3951 p = rs->buf;
3952 *p++ = 'p';
3953 p += hexnumstr (p, reg->pnum);
3954 *p++ = '\0';
3955 remote_send (&rs->buf, &rs->buf_size);
3956
3957 buf = rs->buf;
3958
3959 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3960 {
3961 case PACKET_OK:
3962 break;
3963 case PACKET_UNKNOWN:
3964 return 0;
3965 case PACKET_ERROR:
3966 error (_("Could not fetch register \"%s\""),
3967 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3968 }
3969
3970 /* If this register is unfetchable, tell the regcache. */
3971 if (buf[0] == 'x')
3972 {
3973 regcache_raw_supply (regcache, reg->regnum, NULL);
3974 return 1;
3975 }
3976
3977 /* Otherwise, parse and supply the value. */
3978 p = buf;
3979 i = 0;
3980 while (p[0] != 0)
3981 {
3982 if (p[1] == 0)
3983 error (_("fetch_register_using_p: early buf termination"));
3984
3985 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3986 p += 2;
3987 }
3988 regcache_raw_supply (regcache, reg->regnum, regp);
3989 return 1;
3990 }
3991
3992 /* Fetch the registers included in the target's 'g' packet. */
3993
3994 static int
3995 send_g_packet (void)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 int i, buf_len;
3999 char *p;
4000 char *regs;
4001
4002 sprintf (rs->buf, "g");
4003 remote_send (&rs->buf, &rs->buf_size);
4004
4005 /* We can get out of synch in various cases. If the first character
4006 in the buffer is not a hex character, assume that has happened
4007 and try to fetch another packet to read. */
4008 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4009 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4010 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4011 && rs->buf[0] != 'x') /* New: unavailable register value. */
4012 {
4013 if (remote_debug)
4014 fprintf_unfiltered (gdb_stdlog,
4015 "Bad register packet; fetching a new packet\n");
4016 getpkt (&rs->buf, &rs->buf_size, 0);
4017 }
4018
4019 buf_len = strlen (rs->buf);
4020
4021 /* Sanity check the received packet. */
4022 if (buf_len % 2 != 0)
4023 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4024
4025 return buf_len / 2;
4026 }
4027
4028 static void
4029 process_g_packet (struct regcache *regcache)
4030 {
4031 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4032 struct remote_state *rs = get_remote_state ();
4033 struct remote_arch_state *rsa = get_remote_arch_state ();
4034 int i, buf_len;
4035 char *p;
4036 char *regs;
4037
4038 buf_len = strlen (rs->buf);
4039
4040 /* Further sanity checks, with knowledge of the architecture. */
4041 if (buf_len > 2 * rsa->sizeof_g_packet)
4042 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4043
4044 /* Save the size of the packet sent to us by the target. It is used
4045 as a heuristic when determining the max size of packets that the
4046 target can safely receive. */
4047 if (rsa->actual_register_packet_size == 0)
4048 rsa->actual_register_packet_size = buf_len;
4049
4050 /* If this is smaller than we guessed the 'g' packet would be,
4051 update our records. A 'g' reply that doesn't include a register's
4052 value implies either that the register is not available, or that
4053 the 'p' packet must be used. */
4054 if (buf_len < 2 * rsa->sizeof_g_packet)
4055 {
4056 rsa->sizeof_g_packet = buf_len / 2;
4057
4058 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4059 {
4060 if (rsa->regs[i].pnum == -1)
4061 continue;
4062
4063 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4064 rsa->regs[i].in_g_packet = 0;
4065 else
4066 rsa->regs[i].in_g_packet = 1;
4067 }
4068 }
4069
4070 regs = alloca (rsa->sizeof_g_packet);
4071
4072 /* Unimplemented registers read as all bits zero. */
4073 memset (regs, 0, rsa->sizeof_g_packet);
4074
4075 /* Reply describes registers byte by byte, each byte encoded as two
4076 hex characters. Suck them all up, then supply them to the
4077 register cacheing/storage mechanism. */
4078
4079 p = rs->buf;
4080 for (i = 0; i < rsa->sizeof_g_packet; i++)
4081 {
4082 if (p[0] == 0 || p[1] == 0)
4083 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4084 internal_error (__FILE__, __LINE__,
4085 "unexpected end of 'g' packet reply");
4086
4087 if (p[0] == 'x' && p[1] == 'x')
4088 regs[i] = 0; /* 'x' */
4089 else
4090 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4091 p += 2;
4092 }
4093
4094 {
4095 int i;
4096 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4097 {
4098 struct packet_reg *r = &rsa->regs[i];
4099 if (r->in_g_packet)
4100 {
4101 if (r->offset * 2 >= strlen (rs->buf))
4102 /* This shouldn't happen - we adjusted in_g_packet above. */
4103 internal_error (__FILE__, __LINE__,
4104 "unexpected end of 'g' packet reply");
4105 else if (rs->buf[r->offset * 2] == 'x')
4106 {
4107 gdb_assert (r->offset * 2 < strlen (rs->buf));
4108 /* The register isn't available, mark it as such (at
4109 the same time setting the value to zero). */
4110 regcache_raw_supply (regcache, r->regnum, NULL);
4111 }
4112 else
4113 regcache_raw_supply (regcache, r->regnum,
4114 regs + r->offset);
4115 }
4116 }
4117 }
4118 }
4119
4120 static void
4121 fetch_registers_using_g (struct regcache *regcache)
4122 {
4123 send_g_packet ();
4124 process_g_packet (regcache);
4125 }
4126
4127 static void
4128 remote_fetch_registers (struct regcache *regcache, int regnum)
4129 {
4130 struct remote_state *rs = get_remote_state ();
4131 struct remote_arch_state *rsa = get_remote_arch_state ();
4132 int i;
4133
4134 set_general_thread (inferior_ptid);
4135
4136 if (regnum >= 0)
4137 {
4138 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4139 gdb_assert (reg != NULL);
4140
4141 /* If this register might be in the 'g' packet, try that first -
4142 we are likely to read more than one register. If this is the
4143 first 'g' packet, we might be overly optimistic about its
4144 contents, so fall back to 'p'. */
4145 if (reg->in_g_packet)
4146 {
4147 fetch_registers_using_g (regcache);
4148 if (reg->in_g_packet)
4149 return;
4150 }
4151
4152 if (fetch_register_using_p (regcache, reg))
4153 return;
4154
4155 /* This register is not available. */
4156 regcache_raw_supply (regcache, reg->regnum, NULL);
4157
4158 return;
4159 }
4160
4161 fetch_registers_using_g (regcache);
4162
4163 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4164 if (!rsa->regs[i].in_g_packet)
4165 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4166 {
4167 /* This register is not available. */
4168 regcache_raw_supply (regcache, i, NULL);
4169 }
4170 }
4171
4172 /* Prepare to store registers. Since we may send them all (using a
4173 'G' request), we have to read out the ones we don't want to change
4174 first. */
4175
4176 static void
4177 remote_prepare_to_store (struct regcache *regcache)
4178 {
4179 struct remote_arch_state *rsa = get_remote_arch_state ();
4180 int i;
4181 gdb_byte buf[MAX_REGISTER_SIZE];
4182
4183 /* Make sure the entire registers array is valid. */
4184 switch (remote_protocol_packets[PACKET_P].support)
4185 {
4186 case PACKET_DISABLE:
4187 case PACKET_SUPPORT_UNKNOWN:
4188 /* Make sure all the necessary registers are cached. */
4189 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4190 if (rsa->regs[i].in_g_packet)
4191 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4192 break;
4193 case PACKET_ENABLE:
4194 break;
4195 }
4196 }
4197
4198 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4199 packet was not recognized. */
4200
4201 static int
4202 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4203 {
4204 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4205 struct remote_state *rs = get_remote_state ();
4206 struct remote_arch_state *rsa = get_remote_arch_state ();
4207 /* Try storing a single register. */
4208 char *buf = rs->buf;
4209 gdb_byte regp[MAX_REGISTER_SIZE];
4210 char *p;
4211
4212 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4213 return 0;
4214
4215 if (reg->pnum == -1)
4216 return 0;
4217
4218 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4219 p = buf + strlen (buf);
4220 regcache_raw_collect (regcache, reg->regnum, regp);
4221 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4222 remote_send (&rs->buf, &rs->buf_size);
4223
4224 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4225 {
4226 case PACKET_OK:
4227 return 1;
4228 case PACKET_ERROR:
4229 error (_("Could not write register \"%s\""),
4230 gdbarch_register_name (gdbarch, reg->regnum));
4231 case PACKET_UNKNOWN:
4232 return 0;
4233 default:
4234 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4235 }
4236 }
4237
4238 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4239 contents of the register cache buffer. FIXME: ignores errors. */
4240
4241 static void
4242 store_registers_using_G (const struct regcache *regcache)
4243 {
4244 struct remote_state *rs = get_remote_state ();
4245 struct remote_arch_state *rsa = get_remote_arch_state ();
4246 gdb_byte *regs;
4247 char *p;
4248
4249 /* Extract all the registers in the regcache copying them into a
4250 local buffer. */
4251 {
4252 int i;
4253 regs = alloca (rsa->sizeof_g_packet);
4254 memset (regs, 0, rsa->sizeof_g_packet);
4255 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4256 {
4257 struct packet_reg *r = &rsa->regs[i];
4258 if (r->in_g_packet)
4259 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4260 }
4261 }
4262
4263 /* Command describes registers byte by byte,
4264 each byte encoded as two hex characters. */
4265 p = rs->buf;
4266 *p++ = 'G';
4267 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4268 updated. */
4269 bin2hex (regs, p, rsa->sizeof_g_packet);
4270 remote_send (&rs->buf, &rs->buf_size);
4271 }
4272
4273 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4274 of the register cache buffer. FIXME: ignores errors. */
4275
4276 static void
4277 remote_store_registers (struct regcache *regcache, int regnum)
4278 {
4279 struct remote_state *rs = get_remote_state ();
4280 struct remote_arch_state *rsa = get_remote_arch_state ();
4281 int i;
4282
4283 set_general_thread (inferior_ptid);
4284
4285 if (regnum >= 0)
4286 {
4287 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4288 gdb_assert (reg != NULL);
4289
4290 /* Always prefer to store registers using the 'P' packet if
4291 possible; we often change only a small number of registers.
4292 Sometimes we change a larger number; we'd need help from a
4293 higher layer to know to use 'G'. */
4294 if (store_register_using_P (regcache, reg))
4295 return;
4296
4297 /* For now, don't complain if we have no way to write the
4298 register. GDB loses track of unavailable registers too
4299 easily. Some day, this may be an error. We don't have
4300 any way to read the register, either... */
4301 if (!reg->in_g_packet)
4302 return;
4303
4304 store_registers_using_G (regcache);
4305 return;
4306 }
4307
4308 store_registers_using_G (regcache);
4309
4310 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4311 if (!rsa->regs[i].in_g_packet)
4312 if (!store_register_using_P (regcache, &rsa->regs[i]))
4313 /* See above for why we do not issue an error here. */
4314 continue;
4315 }
4316 \f
4317
4318 /* Return the number of hex digits in num. */
4319
4320 static int
4321 hexnumlen (ULONGEST num)
4322 {
4323 int i;
4324
4325 for (i = 0; num != 0; i++)
4326 num >>= 4;
4327
4328 return max (i, 1);
4329 }
4330
4331 /* Set BUF to the minimum number of hex digits representing NUM. */
4332
4333 static int
4334 hexnumstr (char *buf, ULONGEST num)
4335 {
4336 int len = hexnumlen (num);
4337 return hexnumnstr (buf, num, len);
4338 }
4339
4340
4341 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4342
4343 static int
4344 hexnumnstr (char *buf, ULONGEST num, int width)
4345 {
4346 int i;
4347
4348 buf[width] = '\0';
4349
4350 for (i = width - 1; i >= 0; i--)
4351 {
4352 buf[i] = "0123456789abcdef"[(num & 0xf)];
4353 num >>= 4;
4354 }
4355
4356 return width;
4357 }
4358
4359 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4360
4361 static CORE_ADDR
4362 remote_address_masked (CORE_ADDR addr)
4363 {
4364 int address_size = remote_address_size;
4365 /* If "remoteaddresssize" was not set, default to target address size. */
4366 if (!address_size)
4367 address_size = gdbarch_addr_bit (target_gdbarch);
4368
4369 if (address_size > 0
4370 && address_size < (sizeof (ULONGEST) * 8))
4371 {
4372 /* Only create a mask when that mask can safely be constructed
4373 in a ULONGEST variable. */
4374 ULONGEST mask = 1;
4375 mask = (mask << address_size) - 1;
4376 addr &= mask;
4377 }
4378 return addr;
4379 }
4380
4381 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4382 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4383 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4384 (which may be more than *OUT_LEN due to escape characters). The
4385 total number of bytes in the output buffer will be at most
4386 OUT_MAXLEN. */
4387
4388 static int
4389 remote_escape_output (const gdb_byte *buffer, int len,
4390 gdb_byte *out_buf, int *out_len,
4391 int out_maxlen)
4392 {
4393 int input_index, output_index;
4394
4395 output_index = 0;
4396 for (input_index = 0; input_index < len; input_index++)
4397 {
4398 gdb_byte b = buffer[input_index];
4399
4400 if (b == '$' || b == '#' || b == '}')
4401 {
4402 /* These must be escaped. */
4403 if (output_index + 2 > out_maxlen)
4404 break;
4405 out_buf[output_index++] = '}';
4406 out_buf[output_index++] = b ^ 0x20;
4407 }
4408 else
4409 {
4410 if (output_index + 1 > out_maxlen)
4411 break;
4412 out_buf[output_index++] = b;
4413 }
4414 }
4415
4416 *out_len = input_index;
4417 return output_index;
4418 }
4419
4420 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4421 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4422 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4423
4424 This function reverses remote_escape_output. It allows more
4425 escaped characters than that function does, in particular because
4426 '*' must be escaped to avoid the run-length encoding processing
4427 in reading packets. */
4428
4429 static int
4430 remote_unescape_input (const gdb_byte *buffer, int len,
4431 gdb_byte *out_buf, int out_maxlen)
4432 {
4433 int input_index, output_index;
4434 int escaped;
4435
4436 output_index = 0;
4437 escaped = 0;
4438 for (input_index = 0; input_index < len; input_index++)
4439 {
4440 gdb_byte b = buffer[input_index];
4441
4442 if (output_index + 1 > out_maxlen)
4443 {
4444 warning (_("Received too much data from remote target;"
4445 " ignoring overflow."));
4446 return output_index;
4447 }
4448
4449 if (escaped)
4450 {
4451 out_buf[output_index++] = b ^ 0x20;
4452 escaped = 0;
4453 }
4454 else if (b == '}')
4455 escaped = 1;
4456 else
4457 out_buf[output_index++] = b;
4458 }
4459
4460 if (escaped)
4461 error (_("Unmatched escape character in target response."));
4462
4463 return output_index;
4464 }
4465
4466 /* Determine whether the remote target supports binary downloading.
4467 This is accomplished by sending a no-op memory write of zero length
4468 to the target at the specified address. It does not suffice to send
4469 the whole packet, since many stubs strip the eighth bit and
4470 subsequently compute a wrong checksum, which causes real havoc with
4471 remote_write_bytes.
4472
4473 NOTE: This can still lose if the serial line is not eight-bit
4474 clean. In cases like this, the user should clear "remote
4475 X-packet". */
4476
4477 static void
4478 check_binary_download (CORE_ADDR addr)
4479 {
4480 struct remote_state *rs = get_remote_state ();
4481
4482 switch (remote_protocol_packets[PACKET_X].support)
4483 {
4484 case PACKET_DISABLE:
4485 break;
4486 case PACKET_ENABLE:
4487 break;
4488 case PACKET_SUPPORT_UNKNOWN:
4489 {
4490 char *p;
4491
4492 p = rs->buf;
4493 *p++ = 'X';
4494 p += hexnumstr (p, (ULONGEST) addr);
4495 *p++ = ',';
4496 p += hexnumstr (p, (ULONGEST) 0);
4497 *p++ = ':';
4498 *p = '\0';
4499
4500 putpkt_binary (rs->buf, (int) (p - rs->buf));
4501 getpkt (&rs->buf, &rs->buf_size, 0);
4502
4503 if (rs->buf[0] == '\0')
4504 {
4505 if (remote_debug)
4506 fprintf_unfiltered (gdb_stdlog,
4507 "binary downloading NOT suppported by target\n");
4508 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4509 }
4510 else
4511 {
4512 if (remote_debug)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "binary downloading suppported by target\n");
4515 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4516 }
4517 break;
4518 }
4519 }
4520 }
4521
4522 /* Write memory data directly to the remote machine.
4523 This does not inform the data cache; the data cache uses this.
4524 HEADER is the starting part of the packet.
4525 MEMADDR is the address in the remote memory space.
4526 MYADDR is the address of the buffer in our space.
4527 LEN is the number of bytes.
4528 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4529 should send data as binary ('X'), or hex-encoded ('M').
4530
4531 The function creates packet of the form
4532 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4533
4534 where encoding of <DATA> is termined by PACKET_FORMAT.
4535
4536 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4537 are omitted.
4538
4539 Returns the number of bytes transferred, or 0 (setting errno) for
4540 error. Only transfer a single packet. */
4541
4542 static int
4543 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4544 const gdb_byte *myaddr, int len,
4545 char packet_format, int use_length)
4546 {
4547 struct remote_state *rs = get_remote_state ();
4548 char *p;
4549 char *plen = NULL;
4550 int plenlen = 0;
4551 int todo;
4552 int nr_bytes;
4553 int payload_size;
4554 int payload_length;
4555 int header_length;
4556
4557 if (packet_format != 'X' && packet_format != 'M')
4558 internal_error (__FILE__, __LINE__,
4559 "remote_write_bytes_aux: bad packet format");
4560
4561 if (len <= 0)
4562 return 0;
4563
4564 payload_size = get_memory_write_packet_size ();
4565
4566 /* The packet buffer will be large enough for the payload;
4567 get_memory_packet_size ensures this. */
4568 rs->buf[0] = '\0';
4569
4570 /* Compute the size of the actual payload by subtracting out the
4571 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4572 */
4573 payload_size -= strlen ("$,:#NN");
4574 if (!use_length)
4575 /* The comma won't be used. */
4576 payload_size += 1;
4577 header_length = strlen (header);
4578 payload_size -= header_length;
4579 payload_size -= hexnumlen (memaddr);
4580
4581 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4582
4583 strcat (rs->buf, header);
4584 p = rs->buf + strlen (header);
4585
4586 /* Compute a best guess of the number of bytes actually transfered. */
4587 if (packet_format == 'X')
4588 {
4589 /* Best guess at number of bytes that will fit. */
4590 todo = min (len, payload_size);
4591 if (use_length)
4592 payload_size -= hexnumlen (todo);
4593 todo = min (todo, payload_size);
4594 }
4595 else
4596 {
4597 /* Num bytes that will fit. */
4598 todo = min (len, payload_size / 2);
4599 if (use_length)
4600 payload_size -= hexnumlen (todo);
4601 todo = min (todo, payload_size / 2);
4602 }
4603
4604 if (todo <= 0)
4605 internal_error (__FILE__, __LINE__,
4606 _("minumum packet size too small to write data"));
4607
4608 /* If we already need another packet, then try to align the end
4609 of this packet to a useful boundary. */
4610 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4611 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4612
4613 /* Append "<memaddr>". */
4614 memaddr = remote_address_masked (memaddr);
4615 p += hexnumstr (p, (ULONGEST) memaddr);
4616
4617 if (use_length)
4618 {
4619 /* Append ",". */
4620 *p++ = ',';
4621
4622 /* Append <len>. Retain the location/size of <len>. It may need to
4623 be adjusted once the packet body has been created. */
4624 plen = p;
4625 plenlen = hexnumstr (p, (ULONGEST) todo);
4626 p += plenlen;
4627 }
4628
4629 /* Append ":". */
4630 *p++ = ':';
4631 *p = '\0';
4632
4633 /* Append the packet body. */
4634 if (packet_format == 'X')
4635 {
4636 /* Binary mode. Send target system values byte by byte, in
4637 increasing byte addresses. Only escape certain critical
4638 characters. */
4639 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4640 payload_size);
4641
4642 /* If not all TODO bytes fit, then we'll need another packet. Make
4643 a second try to keep the end of the packet aligned. Don't do
4644 this if the packet is tiny. */
4645 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4646 {
4647 int new_nr_bytes;
4648
4649 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4650 - memaddr);
4651 if (new_nr_bytes != nr_bytes)
4652 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4653 p, &nr_bytes,
4654 payload_size);
4655 }
4656
4657 p += payload_length;
4658 if (use_length && nr_bytes < todo)
4659 {
4660 /* Escape chars have filled up the buffer prematurely,
4661 and we have actually sent fewer bytes than planned.
4662 Fix-up the length field of the packet. Use the same
4663 number of characters as before. */
4664 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4665 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4666 }
4667 }
4668 else
4669 {
4670 /* Normal mode: Send target system values byte by byte, in
4671 increasing byte addresses. Each byte is encoded as a two hex
4672 value. */
4673 nr_bytes = bin2hex (myaddr, p, todo);
4674 p += 2 * nr_bytes;
4675 }
4676
4677 putpkt_binary (rs->buf, (int) (p - rs->buf));
4678 getpkt (&rs->buf, &rs->buf_size, 0);
4679
4680 if (rs->buf[0] == 'E')
4681 {
4682 /* There is no correspondance between what the remote protocol
4683 uses for errors and errno codes. We would like a cleaner way
4684 of representing errors (big enough to include errno codes,
4685 bfd_error codes, and others). But for now just return EIO. */
4686 errno = EIO;
4687 return 0;
4688 }
4689
4690 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4691 fewer bytes than we'd planned. */
4692 return nr_bytes;
4693 }
4694
4695 /* Write memory data directly to the remote machine.
4696 This does not inform the data cache; the data cache uses this.
4697 MEMADDR is the address in the remote memory space.
4698 MYADDR is the address of the buffer in our space.
4699 LEN is the number of bytes.
4700
4701 Returns number of bytes transferred, or 0 (setting errno) for
4702 error. Only transfer a single packet. */
4703
4704 int
4705 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4706 {
4707 char *packet_format = 0;
4708
4709 /* Check whether the target supports binary download. */
4710 check_binary_download (memaddr);
4711
4712 switch (remote_protocol_packets[PACKET_X].support)
4713 {
4714 case PACKET_ENABLE:
4715 packet_format = "X";
4716 break;
4717 case PACKET_DISABLE:
4718 packet_format = "M";
4719 break;
4720 case PACKET_SUPPORT_UNKNOWN:
4721 internal_error (__FILE__, __LINE__,
4722 _("remote_write_bytes: bad internal state"));
4723 default:
4724 internal_error (__FILE__, __LINE__, _("bad switch"));
4725 }
4726
4727 return remote_write_bytes_aux (packet_format,
4728 memaddr, myaddr, len, packet_format[0], 1);
4729 }
4730
4731 /* Read memory data directly from the remote machine.
4732 This does not use the data cache; the data cache uses this.
4733 MEMADDR is the address in the remote memory space.
4734 MYADDR is the address of the buffer in our space.
4735 LEN is the number of bytes.
4736
4737 Returns number of bytes transferred, or 0 for error. */
4738
4739 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4740 remote targets) shouldn't attempt to read the entire buffer.
4741 Instead it should read a single packet worth of data and then
4742 return the byte size of that packet to the caller. The caller (its
4743 caller and its callers caller ;-) already contains code for
4744 handling partial reads. */
4745
4746 int
4747 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4748 {
4749 struct remote_state *rs = get_remote_state ();
4750 int max_buf_size; /* Max size of packet output buffer. */
4751 int origlen;
4752
4753 if (len <= 0)
4754 return 0;
4755
4756 max_buf_size = get_memory_read_packet_size ();
4757 /* The packet buffer will be large enough for the payload;
4758 get_memory_packet_size ensures this. */
4759
4760 origlen = len;
4761 while (len > 0)
4762 {
4763 char *p;
4764 int todo;
4765 int i;
4766
4767 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4768
4769 /* construct "m"<memaddr>","<len>" */
4770 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4771 memaddr = remote_address_masked (memaddr);
4772 p = rs->buf;
4773 *p++ = 'm';
4774 p += hexnumstr (p, (ULONGEST) memaddr);
4775 *p++ = ',';
4776 p += hexnumstr (p, (ULONGEST) todo);
4777 *p = '\0';
4778
4779 putpkt (rs->buf);
4780 getpkt (&rs->buf, &rs->buf_size, 0);
4781
4782 if (rs->buf[0] == 'E'
4783 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4784 && rs->buf[3] == '\0')
4785 {
4786 /* There is no correspondance between what the remote
4787 protocol uses for errors and errno codes. We would like
4788 a cleaner way of representing errors (big enough to
4789 include errno codes, bfd_error codes, and others). But
4790 for now just return EIO. */
4791 errno = EIO;
4792 return 0;
4793 }
4794
4795 /* Reply describes memory byte by byte,
4796 each byte encoded as two hex characters. */
4797
4798 p = rs->buf;
4799 if ((i = hex2bin (p, myaddr, todo)) < todo)
4800 {
4801 /* Reply is short. This means that we were able to read
4802 only part of what we wanted to. */
4803 return i + (origlen - len);
4804 }
4805 myaddr += todo;
4806 memaddr += todo;
4807 len -= todo;
4808 }
4809 return origlen;
4810 }
4811 \f
4812 /* Read or write LEN bytes from inferior memory at MEMADDR,
4813 transferring to or from debugger address BUFFER. Write to inferior
4814 if SHOULD_WRITE is nonzero. Returns length of data written or
4815 read; 0 for error. TARGET is unused. */
4816
4817 static int
4818 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4819 int should_write, struct mem_attrib *attrib,
4820 struct target_ops *target)
4821 {
4822 int res;
4823
4824 set_general_thread (inferior_ptid);
4825
4826 if (should_write)
4827 res = remote_write_bytes (mem_addr, buffer, mem_len);
4828 else
4829 res = remote_read_bytes (mem_addr, buffer, mem_len);
4830
4831 return res;
4832 }
4833
4834 /* Sends a packet with content determined by the printf format string
4835 FORMAT and the remaining arguments, then gets the reply. Returns
4836 whether the packet was a success, a failure, or unknown. */
4837
4838 enum packet_result
4839 remote_send_printf (const char *format, ...)
4840 {
4841 struct remote_state *rs = get_remote_state ();
4842 int max_size = get_remote_packet_size ();
4843
4844 va_list ap;
4845 va_start (ap, format);
4846
4847 rs->buf[0] = '\0';
4848 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4849 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4850
4851 if (putpkt (rs->buf) < 0)
4852 error (_("Communication problem with target."));
4853
4854 rs->buf[0] = '\0';
4855 getpkt (&rs->buf, &rs->buf_size, 0);
4856
4857 return packet_check_result (rs->buf);
4858 }
4859
4860 static void
4861 restore_remote_timeout (void *p)
4862 {
4863 int value = *(int *)p;
4864 remote_timeout = value;
4865 }
4866
4867 /* Flash writing can take quite some time. We'll set
4868 effectively infinite timeout for flash operations.
4869 In future, we'll need to decide on a better approach. */
4870 static const int remote_flash_timeout = 1000;
4871
4872 static void
4873 remote_flash_erase (struct target_ops *ops,
4874 ULONGEST address, LONGEST length)
4875 {
4876 int saved_remote_timeout = remote_timeout;
4877 enum packet_result ret;
4878
4879 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4880 &saved_remote_timeout);
4881 remote_timeout = remote_flash_timeout;
4882
4883 ret = remote_send_printf ("vFlashErase:%s,%s",
4884 paddr (address),
4885 phex (length, 4));
4886 switch (ret)
4887 {
4888 case PACKET_UNKNOWN:
4889 error (_("Remote target does not support flash erase"));
4890 case PACKET_ERROR:
4891 error (_("Error erasing flash with vFlashErase packet"));
4892 default:
4893 break;
4894 }
4895
4896 do_cleanups (back_to);
4897 }
4898
4899 static LONGEST
4900 remote_flash_write (struct target_ops *ops,
4901 ULONGEST address, LONGEST length,
4902 const gdb_byte *data)
4903 {
4904 int saved_remote_timeout = remote_timeout;
4905 int ret;
4906 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4907 &saved_remote_timeout);
4908
4909 remote_timeout = remote_flash_timeout;
4910 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4911 do_cleanups (back_to);
4912
4913 return ret;
4914 }
4915
4916 static void
4917 remote_flash_done (struct target_ops *ops)
4918 {
4919 int saved_remote_timeout = remote_timeout;
4920 int ret;
4921 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4922 &saved_remote_timeout);
4923
4924 remote_timeout = remote_flash_timeout;
4925 ret = remote_send_printf ("vFlashDone");
4926 do_cleanups (back_to);
4927
4928 switch (ret)
4929 {
4930 case PACKET_UNKNOWN:
4931 error (_("Remote target does not support vFlashDone"));
4932 case PACKET_ERROR:
4933 error (_("Error finishing flash operation"));
4934 default:
4935 break;
4936 }
4937 }
4938
4939 static void
4940 remote_files_info (struct target_ops *ignore)
4941 {
4942 puts_filtered ("Debugging a target over a serial line.\n");
4943 }
4944 \f
4945 /* Stuff for dealing with the packets which are part of this protocol.
4946 See comment at top of file for details. */
4947
4948 /* Read a single character from the remote end. */
4949
4950 static int
4951 readchar (int timeout)
4952 {
4953 int ch;
4954
4955 ch = serial_readchar (remote_desc, timeout);
4956
4957 if (ch >= 0)
4958 return ch;
4959
4960 switch ((enum serial_rc) ch)
4961 {
4962 case SERIAL_EOF:
4963 pop_target ();
4964 error (_("Remote connection closed"));
4965 /* no return */
4966 case SERIAL_ERROR:
4967 perror_with_name (_("Remote communication error"));
4968 /* no return */
4969 case SERIAL_TIMEOUT:
4970 break;
4971 }
4972 return ch;
4973 }
4974
4975 /* Send the command in *BUF to the remote machine, and read the reply
4976 into *BUF. Report an error if we get an error reply. Resize
4977 *BUF using xrealloc if necessary to hold the result, and update
4978 *SIZEOF_BUF. */
4979
4980 static void
4981 remote_send (char **buf,
4982 long *sizeof_buf)
4983 {
4984 putpkt (*buf);
4985 getpkt (buf, sizeof_buf, 0);
4986
4987 if ((*buf)[0] == 'E')
4988 error (_("Remote failure reply: %s"), *buf);
4989 }
4990
4991 /* Display a null-terminated packet on stdout, for debugging, using C
4992 string notation. */
4993
4994 static void
4995 print_packet (char *buf)
4996 {
4997 puts_filtered ("\"");
4998 fputstr_filtered (buf, '"', gdb_stdout);
4999 puts_filtered ("\"");
5000 }
5001
5002 int
5003 putpkt (char *buf)
5004 {
5005 return putpkt_binary (buf, strlen (buf));
5006 }
5007
5008 /* Send a packet to the remote machine, with error checking. The data
5009 of the packet is in BUF. The string in BUF can be at most
5010 get_remote_packet_size () - 5 to account for the $, # and checksum,
5011 and for a possible /0 if we are debugging (remote_debug) and want
5012 to print the sent packet as a string. */
5013
5014 static int
5015 putpkt_binary (char *buf, int cnt)
5016 {
5017 struct remote_state *rs = get_remote_state ();
5018 int i;
5019 unsigned char csum = 0;
5020 char *buf2 = alloca (cnt + 6);
5021
5022 int ch;
5023 int tcount = 0;
5024 char *p;
5025
5026 /* Catch cases like trying to read memory or listing threads while
5027 we're waiting for a stop reply. The remote server wouldn't be
5028 ready to handle this request, so we'd hang and timeout. We don't
5029 have to worry about this in synchronous mode, because in that
5030 case it's not possible to issue a command while the target is
5031 running. */
5032 if (target_can_async_p () && rs->waiting_for_stop_reply)
5033 error (_("Cannot execute this command while the target is running."));
5034
5035 /* We're sending out a new packet. Make sure we don't look at a
5036 stale cached response. */
5037 rs->cached_wait_status = 0;
5038
5039 /* Copy the packet into buffer BUF2, encapsulating it
5040 and giving it a checksum. */
5041
5042 p = buf2;
5043 *p++ = '$';
5044
5045 for (i = 0; i < cnt; i++)
5046 {
5047 csum += buf[i];
5048 *p++ = buf[i];
5049 }
5050 *p++ = '#';
5051 *p++ = tohex ((csum >> 4) & 0xf);
5052 *p++ = tohex (csum & 0xf);
5053
5054 /* Send it over and over until we get a positive ack. */
5055
5056 while (1)
5057 {
5058 int started_error_output = 0;
5059
5060 if (remote_debug)
5061 {
5062 *p = '\0';
5063 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
5064 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
5065 fprintf_unfiltered (gdb_stdlog, "...");
5066 gdb_flush (gdb_stdlog);
5067 }
5068 if (serial_write (remote_desc, buf2, p - buf2))
5069 perror_with_name (_("putpkt: write failed"));
5070
5071 /* If this is a no acks version of the remote protocol, send the
5072 packet and move on. */
5073 if (rs->noack_mode)
5074 break;
5075
5076 /* Read until either a timeout occurs (-2) or '+' is read. */
5077 while (1)
5078 {
5079 ch = readchar (remote_timeout);
5080
5081 if (remote_debug)
5082 {
5083 switch (ch)
5084 {
5085 case '+':
5086 case '-':
5087 case SERIAL_TIMEOUT:
5088 case '$':
5089 if (started_error_output)
5090 {
5091 putchar_unfiltered ('\n');
5092 started_error_output = 0;
5093 }
5094 }
5095 }
5096
5097 switch (ch)
5098 {
5099 case '+':
5100 if (remote_debug)
5101 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5102 return 1;
5103 case '-':
5104 if (remote_debug)
5105 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5106 case SERIAL_TIMEOUT:
5107 tcount++;
5108 if (tcount > 3)
5109 return 0;
5110 break; /* Retransmit buffer. */
5111 case '$':
5112 {
5113 if (remote_debug)
5114 fprintf_unfiltered (gdb_stdlog,
5115 "Packet instead of Ack, ignoring it\n");
5116 /* It's probably an old response sent because an ACK
5117 was lost. Gobble up the packet and ack it so it
5118 doesn't get retransmitted when we resend this
5119 packet. */
5120 skip_frame ();
5121 serial_write (remote_desc, "+", 1);
5122 continue; /* Now, go look for +. */
5123 }
5124 default:
5125 if (remote_debug)
5126 {
5127 if (!started_error_output)
5128 {
5129 started_error_output = 1;
5130 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
5131 }
5132 fputc_unfiltered (ch & 0177, gdb_stdlog);
5133 }
5134 continue;
5135 }
5136 break; /* Here to retransmit. */
5137 }
5138
5139 #if 0
5140 /* This is wrong. If doing a long backtrace, the user should be
5141 able to get out next time we call QUIT, without anything as
5142 violent as interrupt_query. If we want to provide a way out of
5143 here without getting to the next QUIT, it should be based on
5144 hitting ^C twice as in remote_wait. */
5145 if (quit_flag)
5146 {
5147 quit_flag = 0;
5148 interrupt_query ();
5149 }
5150 #endif
5151 }
5152 return 0;
5153 }
5154
5155 /* Come here after finding the start of a frame when we expected an
5156 ack. Do our best to discard the rest of this packet. */
5157
5158 static void
5159 skip_frame (void)
5160 {
5161 int c;
5162
5163 while (1)
5164 {
5165 c = readchar (remote_timeout);
5166 switch (c)
5167 {
5168 case SERIAL_TIMEOUT:
5169 /* Nothing we can do. */
5170 return;
5171 case '#':
5172 /* Discard the two bytes of checksum and stop. */
5173 c = readchar (remote_timeout);
5174 if (c >= 0)
5175 c = readchar (remote_timeout);
5176
5177 return;
5178 case '*': /* Run length encoding. */
5179 /* Discard the repeat count. */
5180 c = readchar (remote_timeout);
5181 if (c < 0)
5182 return;
5183 break;
5184 default:
5185 /* A regular character. */
5186 break;
5187 }
5188 }
5189 }
5190
5191 /* Come here after finding the start of the frame. Collect the rest
5192 into *BUF, verifying the checksum, length, and handling run-length
5193 compression. NUL terminate the buffer. If there is not enough room,
5194 expand *BUF using xrealloc.
5195
5196 Returns -1 on error, number of characters in buffer (ignoring the
5197 trailing NULL) on success. (could be extended to return one of the
5198 SERIAL status indications). */
5199
5200 static long
5201 read_frame (char **buf_p,
5202 long *sizeof_buf)
5203 {
5204 unsigned char csum;
5205 long bc;
5206 int c;
5207 char *buf = *buf_p;
5208 struct remote_state *rs = get_remote_state ();
5209
5210 csum = 0;
5211 bc = 0;
5212
5213 while (1)
5214 {
5215 c = readchar (remote_timeout);
5216 switch (c)
5217 {
5218 case SERIAL_TIMEOUT:
5219 if (remote_debug)
5220 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5221 return -1;
5222 case '$':
5223 if (remote_debug)
5224 fputs_filtered ("Saw new packet start in middle of old one\n",
5225 gdb_stdlog);
5226 return -1; /* Start a new packet, count retries. */
5227 case '#':
5228 {
5229 unsigned char pktcsum;
5230 int check_0 = 0;
5231 int check_1 = 0;
5232
5233 buf[bc] = '\0';
5234
5235 check_0 = readchar (remote_timeout);
5236 if (check_0 >= 0)
5237 check_1 = readchar (remote_timeout);
5238
5239 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5240 {
5241 if (remote_debug)
5242 fputs_filtered ("Timeout in checksum, retrying\n",
5243 gdb_stdlog);
5244 return -1;
5245 }
5246 else if (check_0 < 0 || check_1 < 0)
5247 {
5248 if (remote_debug)
5249 fputs_filtered ("Communication error in checksum\n",
5250 gdb_stdlog);
5251 return -1;
5252 }
5253
5254 /* Don't recompute the checksum; with no ack packets we
5255 don't have any way to indicate a packet retransmission
5256 is necessary. */
5257 if (rs->noack_mode)
5258 return bc;
5259
5260 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5261 if (csum == pktcsum)
5262 return bc;
5263
5264 if (remote_debug)
5265 {
5266 fprintf_filtered (gdb_stdlog,
5267 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5268 pktcsum, csum);
5269 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5270 fputs_filtered ("\n", gdb_stdlog);
5271 }
5272 /* Number of characters in buffer ignoring trailing
5273 NULL. */
5274 return -1;
5275 }
5276 case '*': /* Run length encoding. */
5277 {
5278 int repeat;
5279 csum += c;
5280
5281 c = readchar (remote_timeout);
5282 csum += c;
5283 repeat = c - ' ' + 3; /* Compute repeat count. */
5284
5285 /* The character before ``*'' is repeated. */
5286
5287 if (repeat > 0 && repeat <= 255 && bc > 0)
5288 {
5289 if (bc + repeat - 1 >= *sizeof_buf - 1)
5290 {
5291 /* Make some more room in the buffer. */
5292 *sizeof_buf += repeat;
5293 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5294 buf = *buf_p;
5295 }
5296
5297 memset (&buf[bc], buf[bc - 1], repeat);
5298 bc += repeat;
5299 continue;
5300 }
5301
5302 buf[bc] = '\0';
5303 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5304 return -1;
5305 }
5306 default:
5307 if (bc >= *sizeof_buf - 1)
5308 {
5309 /* Make some more room in the buffer. */
5310 *sizeof_buf *= 2;
5311 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5312 buf = *buf_p;
5313 }
5314
5315 buf[bc++] = c;
5316 csum += c;
5317 continue;
5318 }
5319 }
5320 }
5321
5322 /* Read a packet from the remote machine, with error checking, and
5323 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5324 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5325 rather than timing out; this is used (in synchronous mode) to wait
5326 for a target that is is executing user code to stop. */
5327 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5328 don't have to change all the calls to getpkt to deal with the
5329 return value, because at the moment I don't know what the right
5330 thing to do it for those. */
5331 void
5332 getpkt (char **buf,
5333 long *sizeof_buf,
5334 int forever)
5335 {
5336 int timed_out;
5337
5338 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5339 }
5340
5341
5342 /* Read a packet from the remote machine, with error checking, and
5343 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5344 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5345 rather than timing out; this is used (in synchronous mode) to wait
5346 for a target that is is executing user code to stop. If FOREVER ==
5347 0, this function is allowed to time out gracefully and return an
5348 indication of this to the caller. Otherwise return the number
5349 of bytes read. */
5350 static int
5351 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5352 {
5353 struct remote_state *rs = get_remote_state ();
5354 int c;
5355 int tries;
5356 int timeout;
5357 int val;
5358
5359 /* We're reading a new response. Make sure we don't look at a
5360 previously cached response. */
5361 rs->cached_wait_status = 0;
5362
5363 strcpy (*buf, "timeout");
5364
5365 if (forever)
5366 {
5367 timeout = watchdog > 0 ? watchdog : -1;
5368 }
5369
5370 else
5371 timeout = remote_timeout;
5372
5373 #define MAX_TRIES 3
5374
5375 for (tries = 1; tries <= MAX_TRIES; tries++)
5376 {
5377 /* This can loop forever if the remote side sends us characters
5378 continuously, but if it pauses, we'll get a zero from
5379 readchar because of timeout. Then we'll count that as a
5380 retry. */
5381
5382 /* Note that we will only wait forever prior to the start of a
5383 packet. After that, we expect characters to arrive at a
5384 brisk pace. They should show up within remote_timeout
5385 intervals. */
5386
5387 do
5388 {
5389 c = readchar (timeout);
5390
5391 if (c == SERIAL_TIMEOUT)
5392 {
5393 if (forever) /* Watchdog went off? Kill the target. */
5394 {
5395 QUIT;
5396 pop_target ();
5397 error (_("Watchdog timeout has expired. Target detached."));
5398 }
5399 if (remote_debug)
5400 fputs_filtered ("Timed out.\n", gdb_stdlog);
5401 goto retry;
5402 }
5403 }
5404 while (c != '$');
5405
5406 /* We've found the start of a packet, now collect the data. */
5407
5408 val = read_frame (buf, sizeof_buf);
5409
5410 if (val >= 0)
5411 {
5412 if (remote_debug)
5413 {
5414 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5415 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5416 fprintf_unfiltered (gdb_stdlog, "\n");
5417 }
5418
5419 /* Skip the ack char if we're in no-ack mode. */
5420 if (!rs->noack_mode)
5421 serial_write (remote_desc, "+", 1);
5422 return val;
5423 }
5424
5425 /* Try the whole thing again. */
5426 retry:
5427 /* Skip the nack char if we're in no-ack mode. */
5428 if (!rs->noack_mode)
5429 serial_write (remote_desc, "-", 1);
5430 }
5431
5432 /* We have tried hard enough, and just can't receive the packet.
5433 Give up. */
5434
5435 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5436
5437 /* Skip the ack char if we're in no-ack mode. */
5438 if (!rs->noack_mode)
5439 serial_write (remote_desc, "+", 1);
5440 return -1;
5441 }
5442 \f
5443 static void
5444 remote_kill (void)
5445 {
5446 /* Use catch_errors so the user can quit from gdb even when we
5447 aren't on speaking terms with the remote system. */
5448 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5449
5450 /* Don't wait for it to die. I'm not really sure it matters whether
5451 we do or not. For the existing stubs, kill is a noop. */
5452 target_mourn_inferior ();
5453 }
5454
5455 static int
5456 remote_vkill (int pid, struct remote_state *rs)
5457 {
5458 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
5459 return -1;
5460
5461 /* Tell the remote target to detach. */
5462 sprintf (rs->buf, "vKill;%x", pid);
5463 putpkt (rs->buf);
5464 getpkt (&rs->buf, &rs->buf_size, 0);
5465
5466 if (packet_ok (rs->buf,
5467 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
5468 return 0;
5469 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
5470 return -1;
5471 else
5472 return 1;
5473 }
5474
5475 static void
5476 extended_remote_kill (void)
5477 {
5478 int res;
5479 int pid = ptid_get_pid (inferior_ptid);
5480 struct remote_state *rs = get_remote_state ();
5481
5482 res = remote_vkill (pid, rs);
5483 if (res == -1 && !remote_multi_process_p (rs))
5484 {
5485 /* Don't try 'k' on a multi-process aware stub -- it has no way
5486 to specify the pid. */
5487
5488 putpkt ("k");
5489 #if 0
5490 getpkt (&rs->buf, &rs->buf_size, 0);
5491 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
5492 res = 1;
5493 #else
5494 /* Don't wait for it to die. I'm not really sure it matters whether
5495 we do or not. For the existing stubs, kill is a noop. */
5496 res = 0;
5497 #endif
5498 }
5499
5500 if (res != 0)
5501 error (_("Can't kill process"));
5502
5503 delete_inferior (pid);
5504 target_mourn_inferior ();
5505 }
5506
5507 static void
5508 remote_mourn (void)
5509 {
5510 remote_mourn_1 (&remote_ops);
5511 }
5512
5513 /* Worker function for remote_mourn. */
5514 static void
5515 remote_mourn_1 (struct target_ops *target)
5516 {
5517 unpush_target (target);
5518
5519 /* remote_close takes care of cleaning up. */
5520 }
5521
5522 static int
5523 select_new_thread_callback (struct thread_info *th, void* data)
5524 {
5525 if (!ptid_equal (th->ptid, minus_one_ptid))
5526 {
5527 switch_to_thread (th->ptid);
5528 printf_filtered (_("[Switching to %s]\n"),
5529 target_pid_to_str (inferior_ptid));
5530 return 1;
5531 }
5532 return 0;
5533 }
5534
5535 static void
5536 extended_remote_mourn_1 (struct target_ops *target)
5537 {
5538 struct remote_state *rs = get_remote_state ();
5539
5540 /* In case we got here due to an error, but we're going to stay
5541 connected. */
5542 rs->waiting_for_stop_reply = 0;
5543
5544 /* Unlike "target remote", we do not want to unpush the target; then
5545 the next time the user says "run", we won't be connected. */
5546
5547 if (have_inferiors ())
5548 {
5549 extern void nullify_last_target_wait_ptid ();
5550 /* Multi-process case. The current process has exited, but
5551 there are other processes to debug. Switch to the first
5552 available. */
5553 iterate_over_threads (select_new_thread_callback, NULL);
5554 nullify_last_target_wait_ptid ();
5555 }
5556 else
5557 {
5558 struct remote_state *rs = get_remote_state ();
5559
5560 /* Call common code to mark the inferior as not running. */
5561 generic_mourn_inferior ();
5562 if (!remote_multi_process_p (rs))
5563 {
5564 /* Check whether the target is running now - some remote stubs
5565 automatically restart after kill. */
5566 putpkt ("?");
5567 getpkt (&rs->buf, &rs->buf_size, 0);
5568
5569 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5570 {
5571 /* Assume that the target has been restarted. Set inferior_ptid
5572 so that bits of core GDB realizes there's something here, e.g.,
5573 so that the user can say "kill" again. */
5574 inferior_ptid = magic_null_ptid;
5575 }
5576 else
5577 {
5578 /* Mark this (still pushed) target as not executable until we
5579 restart it. */
5580 target_mark_exited (target);
5581 }
5582 }
5583 else
5584 /* Always remove execution if this was the last process. */
5585 target_mark_exited (target);
5586 }
5587 }
5588
5589 static void
5590 extended_remote_mourn (void)
5591 {
5592 extended_remote_mourn_1 (&extended_remote_ops);
5593 }
5594
5595 static int
5596 extended_remote_run (char *args)
5597 {
5598 struct remote_state *rs = get_remote_state ();
5599 char *p;
5600 int len;
5601
5602 /* If the user has disabled vRun support, or we have detected that
5603 support is not available, do not try it. */
5604 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5605 return -1;
5606
5607 strcpy (rs->buf, "vRun;");
5608 len = strlen (rs->buf);
5609
5610 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5611 error (_("Remote file name too long for run packet"));
5612 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5613
5614 gdb_assert (args != NULL);
5615 if (*args)
5616 {
5617 struct cleanup *back_to;
5618 int i;
5619 char **argv;
5620
5621 argv = gdb_buildargv (args);
5622 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5623 for (i = 0; argv[i] != NULL; i++)
5624 {
5625 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5626 error (_("Argument list too long for run packet"));
5627 rs->buf[len++] = ';';
5628 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5629 }
5630 do_cleanups (back_to);
5631 }
5632
5633 rs->buf[len++] = '\0';
5634
5635 putpkt (rs->buf);
5636 getpkt (&rs->buf, &rs->buf_size, 0);
5637
5638 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5639 {
5640 /* We have a wait response; we don't need it, though. All is well. */
5641 return 0;
5642 }
5643 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5644 /* It wasn't disabled before, but it is now. */
5645 return -1;
5646 else
5647 {
5648 if (remote_exec_file[0] == '\0')
5649 error (_("Running the default executable on the remote target failed; "
5650 "try \"set remote exec-file\"?"));
5651 else
5652 error (_("Running \"%s\" on the remote target failed"),
5653 remote_exec_file);
5654 }
5655 }
5656
5657 /* In the extended protocol we want to be able to do things like
5658 "run" and have them basically work as expected. So we need
5659 a special create_inferior function. We support changing the
5660 executable file and the command line arguments, but not the
5661 environment. */
5662
5663 static void
5664 extended_remote_create_inferior_1 (char *exec_file, char *args,
5665 char **env, int from_tty)
5666 {
5667 /* If running asynchronously, register the target file descriptor
5668 with the event loop. */
5669 if (target_can_async_p ())
5670 target_async (inferior_event_handler, 0);
5671
5672 /* Now restart the remote server. */
5673 if (extended_remote_run (args) == -1)
5674 {
5675 /* vRun was not supported. Fail if we need it to do what the
5676 user requested. */
5677 if (remote_exec_file[0])
5678 error (_("Remote target does not support \"set remote exec-file\""));
5679 if (args[0])
5680 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5681
5682 /* Fall back to "R". */
5683 extended_remote_restart ();
5684 }
5685
5686 /* Clean up from the last time we ran, before we mark the target
5687 running again. This will mark breakpoints uninserted, and
5688 get_offsets may insert breakpoints. */
5689 init_thread_list ();
5690 init_wait_for_inferior ();
5691
5692 /* Now mark the inferior as running before we do anything else. */
5693 inferior_ptid = magic_null_ptid;
5694
5695 add_inferior (ptid_get_pid (inferior_ptid));
5696 add_thread_silent (inferior_ptid);
5697
5698 target_mark_running (&extended_remote_ops);
5699
5700 /* Get updated offsets, if the stub uses qOffsets. */
5701 get_offsets ();
5702 }
5703
5704 static void
5705 extended_remote_create_inferior (char *exec_file, char *args,
5706 char **env, int from_tty)
5707 {
5708 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5709 }
5710 \f
5711
5712 /* Insert a breakpoint. On targets that have software breakpoint
5713 support, we ask the remote target to do the work; on targets
5714 which don't, we insert a traditional memory breakpoint. */
5715
5716 static int
5717 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5718 {
5719 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5720 If it succeeds, then set the support to PACKET_ENABLE. If it
5721 fails, and the user has explicitly requested the Z support then
5722 report an error, otherwise, mark it disabled and go on. */
5723
5724 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5725 {
5726 CORE_ADDR addr = bp_tgt->placed_address;
5727 struct remote_state *rs;
5728 char *p;
5729 int bpsize;
5730
5731 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
5732
5733 rs = get_remote_state ();
5734 p = rs->buf;
5735
5736 *(p++) = 'Z';
5737 *(p++) = '0';
5738 *(p++) = ',';
5739 addr = (ULONGEST) remote_address_masked (addr);
5740 p += hexnumstr (p, addr);
5741 sprintf (p, ",%d", bpsize);
5742
5743 putpkt (rs->buf);
5744 getpkt (&rs->buf, &rs->buf_size, 0);
5745
5746 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5747 {
5748 case PACKET_ERROR:
5749 return -1;
5750 case PACKET_OK:
5751 bp_tgt->placed_address = addr;
5752 bp_tgt->placed_size = bpsize;
5753 return 0;
5754 case PACKET_UNKNOWN:
5755 break;
5756 }
5757 }
5758
5759 return memory_insert_breakpoint (bp_tgt);
5760 }
5761
5762 static int
5763 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5764 {
5765 CORE_ADDR addr = bp_tgt->placed_address;
5766 struct remote_state *rs = get_remote_state ();
5767 int bp_size;
5768
5769 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5770 {
5771 char *p = rs->buf;
5772
5773 *(p++) = 'z';
5774 *(p++) = '0';
5775 *(p++) = ',';
5776
5777 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5778 p += hexnumstr (p, addr);
5779 sprintf (p, ",%d", bp_tgt->placed_size);
5780
5781 putpkt (rs->buf);
5782 getpkt (&rs->buf, &rs->buf_size, 0);
5783
5784 return (rs->buf[0] == 'E');
5785 }
5786
5787 return memory_remove_breakpoint (bp_tgt);
5788 }
5789
5790 static int
5791 watchpoint_to_Z_packet (int type)
5792 {
5793 switch (type)
5794 {
5795 case hw_write:
5796 return Z_PACKET_WRITE_WP;
5797 break;
5798 case hw_read:
5799 return Z_PACKET_READ_WP;
5800 break;
5801 case hw_access:
5802 return Z_PACKET_ACCESS_WP;
5803 break;
5804 default:
5805 internal_error (__FILE__, __LINE__,
5806 _("hw_bp_to_z: bad watchpoint type %d"), type);
5807 }
5808 }
5809
5810 static int
5811 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5812 {
5813 struct remote_state *rs = get_remote_state ();
5814 char *p;
5815 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5816
5817 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5818 return -1;
5819
5820 sprintf (rs->buf, "Z%x,", packet);
5821 p = strchr (rs->buf, '\0');
5822 addr = remote_address_masked (addr);
5823 p += hexnumstr (p, (ULONGEST) addr);
5824 sprintf (p, ",%x", len);
5825
5826 putpkt (rs->buf);
5827 getpkt (&rs->buf, &rs->buf_size, 0);
5828
5829 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5830 {
5831 case PACKET_ERROR:
5832 case PACKET_UNKNOWN:
5833 return -1;
5834 case PACKET_OK:
5835 return 0;
5836 }
5837 internal_error (__FILE__, __LINE__,
5838 _("remote_insert_watchpoint: reached end of function"));
5839 }
5840
5841
5842 static int
5843 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5844 {
5845 struct remote_state *rs = get_remote_state ();
5846 char *p;
5847 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5848
5849 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5850 return -1;
5851
5852 sprintf (rs->buf, "z%x,", packet);
5853 p = strchr (rs->buf, '\0');
5854 addr = remote_address_masked (addr);
5855 p += hexnumstr (p, (ULONGEST) addr);
5856 sprintf (p, ",%x", len);
5857 putpkt (rs->buf);
5858 getpkt (&rs->buf, &rs->buf_size, 0);
5859
5860 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5861 {
5862 case PACKET_ERROR:
5863 case PACKET_UNKNOWN:
5864 return -1;
5865 case PACKET_OK:
5866 return 0;
5867 }
5868 internal_error (__FILE__, __LINE__,
5869 _("remote_remove_watchpoint: reached end of function"));
5870 }
5871
5872
5873 int remote_hw_watchpoint_limit = -1;
5874 int remote_hw_breakpoint_limit = -1;
5875
5876 static int
5877 remote_check_watch_resources (int type, int cnt, int ot)
5878 {
5879 if (type == bp_hardware_breakpoint)
5880 {
5881 if (remote_hw_breakpoint_limit == 0)
5882 return 0;
5883 else if (remote_hw_breakpoint_limit < 0)
5884 return 1;
5885 else if (cnt <= remote_hw_breakpoint_limit)
5886 return 1;
5887 }
5888 else
5889 {
5890 if (remote_hw_watchpoint_limit == 0)
5891 return 0;
5892 else if (remote_hw_watchpoint_limit < 0)
5893 return 1;
5894 else if (ot)
5895 return -1;
5896 else if (cnt <= remote_hw_watchpoint_limit)
5897 return 1;
5898 }
5899 return -1;
5900 }
5901
5902 static int
5903 remote_stopped_by_watchpoint (void)
5904 {
5905 return remote_stopped_by_watchpoint_p;
5906 }
5907
5908 static int
5909 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5910 {
5911 int rc = 0;
5912 if (remote_stopped_by_watchpoint ())
5913 {
5914 *addr_p = remote_watch_data_address;
5915 rc = 1;
5916 }
5917
5918 return rc;
5919 }
5920
5921
5922 static int
5923 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5924 {
5925 CORE_ADDR addr;
5926 struct remote_state *rs;
5927 char *p;
5928
5929 /* The length field should be set to the size of a breakpoint
5930 instruction, even though we aren't inserting one ourselves. */
5931
5932 gdbarch_breakpoint_from_pc
5933 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5934
5935 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5936 return -1;
5937
5938 rs = get_remote_state ();
5939 p = rs->buf;
5940
5941 *(p++) = 'Z';
5942 *(p++) = '1';
5943 *(p++) = ',';
5944
5945 addr = remote_address_masked (bp_tgt->placed_address);
5946 p += hexnumstr (p, (ULONGEST) addr);
5947 sprintf (p, ",%x", bp_tgt->placed_size);
5948
5949 putpkt (rs->buf);
5950 getpkt (&rs->buf, &rs->buf_size, 0);
5951
5952 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5953 {
5954 case PACKET_ERROR:
5955 case PACKET_UNKNOWN:
5956 return -1;
5957 case PACKET_OK:
5958 return 0;
5959 }
5960 internal_error (__FILE__, __LINE__,
5961 _("remote_insert_hw_breakpoint: reached end of function"));
5962 }
5963
5964
5965 static int
5966 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5967 {
5968 CORE_ADDR addr;
5969 struct remote_state *rs = get_remote_state ();
5970 char *p = rs->buf;
5971
5972 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5973 return -1;
5974
5975 *(p++) = 'z';
5976 *(p++) = '1';
5977 *(p++) = ',';
5978
5979 addr = remote_address_masked (bp_tgt->placed_address);
5980 p += hexnumstr (p, (ULONGEST) addr);
5981 sprintf (p, ",%x", bp_tgt->placed_size);
5982
5983 putpkt (rs->buf);
5984 getpkt (&rs->buf, &rs->buf_size, 0);
5985
5986 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5987 {
5988 case PACKET_ERROR:
5989 case PACKET_UNKNOWN:
5990 return -1;
5991 case PACKET_OK:
5992 return 0;
5993 }
5994 internal_error (__FILE__, __LINE__,
5995 _("remote_remove_hw_breakpoint: reached end of function"));
5996 }
5997
5998 /* Table used by the crc32 function to calcuate the checksum. */
5999
6000 static unsigned long crc32_table[256] =
6001 {0, 0};
6002
6003 static unsigned long
6004 crc32 (unsigned char *buf, int len, unsigned int crc)
6005 {
6006 if (!crc32_table[1])
6007 {
6008 /* Initialize the CRC table and the decoding table. */
6009 int i, j;
6010 unsigned int c;
6011
6012 for (i = 0; i < 256; i++)
6013 {
6014 for (c = i << 24, j = 8; j > 0; --j)
6015 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
6016 crc32_table[i] = c;
6017 }
6018 }
6019
6020 while (len--)
6021 {
6022 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
6023 buf++;
6024 }
6025 return crc;
6026 }
6027
6028 /* compare-sections command
6029
6030 With no arguments, compares each loadable section in the exec bfd
6031 with the same memory range on the target, and reports mismatches.
6032 Useful for verifying the image on the target against the exec file.
6033 Depends on the target understanding the new "qCRC:" request. */
6034
6035 /* FIXME: cagney/1999-10-26: This command should be broken down into a
6036 target method (target verify memory) and generic version of the
6037 actual command. This will allow other high-level code (especially
6038 generic_load()) to make use of this target functionality. */
6039
6040 static void
6041 compare_sections_command (char *args, int from_tty)
6042 {
6043 struct remote_state *rs = get_remote_state ();
6044 asection *s;
6045 unsigned long host_crc, target_crc;
6046 extern bfd *exec_bfd;
6047 struct cleanup *old_chain;
6048 char *tmp;
6049 char *sectdata;
6050 const char *sectname;
6051 bfd_size_type size;
6052 bfd_vma lma;
6053 int matched = 0;
6054 int mismatched = 0;
6055
6056 if (!exec_bfd)
6057 error (_("command cannot be used without an exec file"));
6058 if (!current_target.to_shortname ||
6059 strcmp (current_target.to_shortname, "remote") != 0)
6060 error (_("command can only be used with remote target"));
6061
6062 for (s = exec_bfd->sections; s; s = s->next)
6063 {
6064 if (!(s->flags & SEC_LOAD))
6065 continue; /* skip non-loadable section */
6066
6067 size = bfd_get_section_size (s);
6068 if (size == 0)
6069 continue; /* skip zero-length section */
6070
6071 sectname = bfd_get_section_name (exec_bfd, s);
6072 if (args && strcmp (args, sectname) != 0)
6073 continue; /* not the section selected by user */
6074
6075 matched = 1; /* do this section */
6076 lma = s->lma;
6077 /* FIXME: assumes lma can fit into long. */
6078 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
6079 (long) lma, (long) size);
6080 putpkt (rs->buf);
6081
6082 /* Be clever; compute the host_crc before waiting for target
6083 reply. */
6084 sectdata = xmalloc (size);
6085 old_chain = make_cleanup (xfree, sectdata);
6086 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
6087 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
6088
6089 getpkt (&rs->buf, &rs->buf_size, 0);
6090 if (rs->buf[0] == 'E')
6091 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
6092 sectname, paddr (lma), paddr (lma + size));
6093 if (rs->buf[0] != 'C')
6094 error (_("remote target does not support this operation"));
6095
6096 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
6097 target_crc = target_crc * 16 + fromhex (*tmp);
6098
6099 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
6100 sectname, paddr (lma), paddr (lma + size));
6101 if (host_crc == target_crc)
6102 printf_filtered ("matched.\n");
6103 else
6104 {
6105 printf_filtered ("MIS-MATCHED!\n");
6106 mismatched++;
6107 }
6108
6109 do_cleanups (old_chain);
6110 }
6111 if (mismatched > 0)
6112 warning (_("One or more sections of the remote executable does not match\n\
6113 the loaded file\n"));
6114 if (args && !matched)
6115 printf_filtered (_("No loaded section named '%s'.\n"), args);
6116 }
6117
6118 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
6119 into remote target. The number of bytes written to the remote
6120 target is returned, or -1 for error. */
6121
6122 static LONGEST
6123 remote_write_qxfer (struct target_ops *ops, const char *object_name,
6124 const char *annex, const gdb_byte *writebuf,
6125 ULONGEST offset, LONGEST len,
6126 struct packet_config *packet)
6127 {
6128 int i, buf_len;
6129 ULONGEST n;
6130 gdb_byte *wbuf;
6131 struct remote_state *rs = get_remote_state ();
6132 int max_size = get_memory_write_packet_size ();
6133
6134 if (packet->support == PACKET_DISABLE)
6135 return -1;
6136
6137 /* Insert header. */
6138 i = snprintf (rs->buf, max_size,
6139 "qXfer:%s:write:%s:%s:",
6140 object_name, annex ? annex : "",
6141 phex_nz (offset, sizeof offset));
6142 max_size -= (i + 1);
6143
6144 /* Escape as much data as fits into rs->buf. */
6145 buf_len = remote_escape_output
6146 (writebuf, len, (rs->buf + i), &max_size, max_size);
6147
6148 if (putpkt_binary (rs->buf, i + buf_len) < 0
6149 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6150 || packet_ok (rs->buf, packet) != PACKET_OK)
6151 return -1;
6152
6153 unpack_varlen_hex (rs->buf, &n);
6154 return n;
6155 }
6156
6157 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
6158 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
6159 number of bytes read is returned, or 0 for EOF, or -1 for error.
6160 The number of bytes read may be less than LEN without indicating an
6161 EOF. PACKET is checked and updated to indicate whether the remote
6162 target supports this object. */
6163
6164 static LONGEST
6165 remote_read_qxfer (struct target_ops *ops, const char *object_name,
6166 const char *annex,
6167 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
6168 struct packet_config *packet)
6169 {
6170 static char *finished_object;
6171 static char *finished_annex;
6172 static ULONGEST finished_offset;
6173
6174 struct remote_state *rs = get_remote_state ();
6175 unsigned int total = 0;
6176 LONGEST i, n, packet_len;
6177
6178 if (packet->support == PACKET_DISABLE)
6179 return -1;
6180
6181 /* Check whether we've cached an end-of-object packet that matches
6182 this request. */
6183 if (finished_object)
6184 {
6185 if (strcmp (object_name, finished_object) == 0
6186 && strcmp (annex ? annex : "", finished_annex) == 0
6187 && offset == finished_offset)
6188 return 0;
6189
6190 /* Otherwise, we're now reading something different. Discard
6191 the cache. */
6192 xfree (finished_object);
6193 xfree (finished_annex);
6194 finished_object = NULL;
6195 finished_annex = NULL;
6196 }
6197
6198 /* Request only enough to fit in a single packet. The actual data
6199 may not, since we don't know how much of it will need to be escaped;
6200 the target is free to respond with slightly less data. We subtract
6201 five to account for the response type and the protocol frame. */
6202 n = min (get_remote_packet_size () - 5, len);
6203 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6204 object_name, annex ? annex : "",
6205 phex_nz (offset, sizeof offset),
6206 phex_nz (n, sizeof n));
6207 i = putpkt (rs->buf);
6208 if (i < 0)
6209 return -1;
6210
6211 rs->buf[0] = '\0';
6212 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6213 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6214 return -1;
6215
6216 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6217 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6218
6219 /* 'm' means there is (or at least might be) more data after this
6220 batch. That does not make sense unless there's at least one byte
6221 of data in this reply. */
6222 if (rs->buf[0] == 'm' && packet_len == 1)
6223 error (_("Remote qXfer reply contained no data."));
6224
6225 /* Got some data. */
6226 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6227
6228 /* 'l' is an EOF marker, possibly including a final block of data,
6229 or possibly empty. If we have the final block of a non-empty
6230 object, record this fact to bypass a subsequent partial read. */
6231 if (rs->buf[0] == 'l' && offset + i > 0)
6232 {
6233 finished_object = xstrdup (object_name);
6234 finished_annex = xstrdup (annex ? annex : "");
6235 finished_offset = offset + i;
6236 }
6237
6238 return i;
6239 }
6240
6241 static LONGEST
6242 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6243 const char *annex, gdb_byte *readbuf,
6244 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6245 {
6246 struct remote_state *rs;
6247 int i;
6248 char *p2;
6249 char query_type;
6250
6251 set_general_thread (inferior_ptid);
6252
6253 rs = get_remote_state ();
6254
6255 /* Handle memory using the standard memory routines. */
6256 if (object == TARGET_OBJECT_MEMORY)
6257 {
6258 int xfered;
6259 errno = 0;
6260
6261 /* If the remote target is connected but not running, we should
6262 pass this request down to a lower stratum (e.g. the executable
6263 file). */
6264 if (!target_has_execution)
6265 return 0;
6266
6267 if (writebuf != NULL)
6268 xfered = remote_write_bytes (offset, writebuf, len);
6269 else
6270 xfered = remote_read_bytes (offset, readbuf, len);
6271
6272 if (xfered > 0)
6273 return xfered;
6274 else if (xfered == 0 && errno == 0)
6275 return 0;
6276 else
6277 return -1;
6278 }
6279
6280 /* Handle SPU memory using qxfer packets. */
6281 if (object == TARGET_OBJECT_SPU)
6282 {
6283 if (readbuf)
6284 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6285 &remote_protocol_packets
6286 [PACKET_qXfer_spu_read]);
6287 else
6288 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6289 &remote_protocol_packets
6290 [PACKET_qXfer_spu_write]);
6291 }
6292
6293 /* Only handle flash writes. */
6294 if (writebuf != NULL)
6295 {
6296 LONGEST xfered;
6297
6298 switch (object)
6299 {
6300 case TARGET_OBJECT_FLASH:
6301 xfered = remote_flash_write (ops, offset, len, writebuf);
6302
6303 if (xfered > 0)
6304 return xfered;
6305 else if (xfered == 0 && errno == 0)
6306 return 0;
6307 else
6308 return -1;
6309
6310 default:
6311 return -1;
6312 }
6313 }
6314
6315 /* Map pre-existing objects onto letters. DO NOT do this for new
6316 objects!!! Instead specify new query packets. */
6317 switch (object)
6318 {
6319 case TARGET_OBJECT_AVR:
6320 query_type = 'R';
6321 break;
6322
6323 case TARGET_OBJECT_AUXV:
6324 gdb_assert (annex == NULL);
6325 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6326 &remote_protocol_packets[PACKET_qXfer_auxv]);
6327
6328 case TARGET_OBJECT_AVAILABLE_FEATURES:
6329 return remote_read_qxfer
6330 (ops, "features", annex, readbuf, offset, len,
6331 &remote_protocol_packets[PACKET_qXfer_features]);
6332
6333 case TARGET_OBJECT_LIBRARIES:
6334 return remote_read_qxfer
6335 (ops, "libraries", annex, readbuf, offset, len,
6336 &remote_protocol_packets[PACKET_qXfer_libraries]);
6337
6338 case TARGET_OBJECT_MEMORY_MAP:
6339 gdb_assert (annex == NULL);
6340 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6341 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6342
6343 default:
6344 return -1;
6345 }
6346
6347 /* Note: a zero OFFSET and LEN can be used to query the minimum
6348 buffer size. */
6349 if (offset == 0 && len == 0)
6350 return (get_remote_packet_size ());
6351 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6352 large enough let the caller deal with it. */
6353 if (len < get_remote_packet_size ())
6354 return -1;
6355 len = get_remote_packet_size ();
6356
6357 /* Except for querying the minimum buffer size, target must be open. */
6358 if (!remote_desc)
6359 error (_("remote query is only available after target open"));
6360
6361 gdb_assert (annex != NULL);
6362 gdb_assert (readbuf != NULL);
6363
6364 p2 = rs->buf;
6365 *p2++ = 'q';
6366 *p2++ = query_type;
6367
6368 /* We used one buffer char for the remote protocol q command and
6369 another for the query type. As the remote protocol encapsulation
6370 uses 4 chars plus one extra in case we are debugging
6371 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6372 string. */
6373 i = 0;
6374 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6375 {
6376 /* Bad caller may have sent forbidden characters. */
6377 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6378 *p2++ = annex[i];
6379 i++;
6380 }
6381 *p2 = '\0';
6382 gdb_assert (annex[i] == '\0');
6383
6384 i = putpkt (rs->buf);
6385 if (i < 0)
6386 return i;
6387
6388 getpkt (&rs->buf, &rs->buf_size, 0);
6389 strcpy ((char *) readbuf, rs->buf);
6390
6391 return strlen ((char *) readbuf);
6392 }
6393
6394 static int
6395 remote_search_memory (struct target_ops* ops,
6396 CORE_ADDR start_addr, ULONGEST search_space_len,
6397 const gdb_byte *pattern, ULONGEST pattern_len,
6398 CORE_ADDR *found_addrp)
6399 {
6400 struct remote_state *rs = get_remote_state ();
6401 int max_size = get_memory_write_packet_size ();
6402 struct packet_config *packet =
6403 &remote_protocol_packets[PACKET_qSearch_memory];
6404 /* number of packet bytes used to encode the pattern,
6405 this could be more than PATTERN_LEN due to escape characters */
6406 int escaped_pattern_len;
6407 /* amount of pattern that was encodable in the packet */
6408 int used_pattern_len;
6409 int i;
6410 int found;
6411 ULONGEST found_addr;
6412
6413 /* Don't go to the target if we don't have to.
6414 This is done before checking packet->support to avoid the possibility that
6415 a success for this edge case means the facility works in general. */
6416 if (pattern_len > search_space_len)
6417 return 0;
6418 if (pattern_len == 0)
6419 {
6420 *found_addrp = start_addr;
6421 return 1;
6422 }
6423
6424 /* If we already know the packet isn't supported, fall back to the simple
6425 way of searching memory. */
6426
6427 if (packet->support == PACKET_DISABLE)
6428 {
6429 /* Target doesn't provided special support, fall back and use the
6430 standard support (copy memory and do the search here). */
6431 return simple_search_memory (ops, start_addr, search_space_len,
6432 pattern, pattern_len, found_addrp);
6433 }
6434
6435 /* Insert header. */
6436 i = snprintf (rs->buf, max_size,
6437 "qSearch:memory:%s;%s;",
6438 paddr_nz (start_addr),
6439 phex_nz (search_space_len, sizeof (search_space_len)));
6440 max_size -= (i + 1);
6441
6442 /* Escape as much data as fits into rs->buf. */
6443 escaped_pattern_len =
6444 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6445 &used_pattern_len, max_size);
6446
6447 /* Bail if the pattern is too large. */
6448 if (used_pattern_len != pattern_len)
6449 error ("Pattern is too large to transmit to remote target.");
6450
6451 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6452 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6453 || packet_ok (rs->buf, packet) != PACKET_OK)
6454 {
6455 /* The request may not have worked because the command is not
6456 supported. If so, fall back to the simple way. */
6457 if (packet->support == PACKET_DISABLE)
6458 {
6459 return simple_search_memory (ops, start_addr, search_space_len,
6460 pattern, pattern_len, found_addrp);
6461 }
6462 return -1;
6463 }
6464
6465 if (rs->buf[0] == '0')
6466 found = 0;
6467 else if (rs->buf[0] == '1')
6468 {
6469 found = 1;
6470 if (rs->buf[1] != ',')
6471 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6472 unpack_varlen_hex (rs->buf + 2, &found_addr);
6473 *found_addrp = found_addr;
6474 }
6475 else
6476 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6477
6478 return found;
6479 }
6480
6481 static void
6482 remote_rcmd (char *command,
6483 struct ui_file *outbuf)
6484 {
6485 struct remote_state *rs = get_remote_state ();
6486 char *p = rs->buf;
6487
6488 if (!remote_desc)
6489 error (_("remote rcmd is only available after target open"));
6490
6491 /* Send a NULL command across as an empty command. */
6492 if (command == NULL)
6493 command = "";
6494
6495 /* The query prefix. */
6496 strcpy (rs->buf, "qRcmd,");
6497 p = strchr (rs->buf, '\0');
6498
6499 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6500 error (_("\"monitor\" command ``%s'' is too long."), command);
6501
6502 /* Encode the actual command. */
6503 bin2hex ((gdb_byte *) command, p, 0);
6504
6505 if (putpkt (rs->buf) < 0)
6506 error (_("Communication problem with target."));
6507
6508 /* get/display the response */
6509 while (1)
6510 {
6511 char *buf;
6512
6513 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6514 rs->buf[0] = '\0';
6515 getpkt (&rs->buf, &rs->buf_size, 0);
6516 buf = rs->buf;
6517 if (buf[0] == '\0')
6518 error (_("Target does not support this command."));
6519 if (buf[0] == 'O' && buf[1] != 'K')
6520 {
6521 remote_console_output (buf + 1); /* 'O' message from stub. */
6522 continue;
6523 }
6524 if (strcmp (buf, "OK") == 0)
6525 break;
6526 if (strlen (buf) == 3 && buf[0] == 'E'
6527 && isdigit (buf[1]) && isdigit (buf[2]))
6528 {
6529 error (_("Protocol error with Rcmd"));
6530 }
6531 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6532 {
6533 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6534 fputc_unfiltered (c, outbuf);
6535 }
6536 break;
6537 }
6538 }
6539
6540 static VEC(mem_region_s) *
6541 remote_memory_map (struct target_ops *ops)
6542 {
6543 VEC(mem_region_s) *result = NULL;
6544 char *text = target_read_stralloc (&current_target,
6545 TARGET_OBJECT_MEMORY_MAP, NULL);
6546
6547 if (text)
6548 {
6549 struct cleanup *back_to = make_cleanup (xfree, text);
6550 result = parse_memory_map (text);
6551 do_cleanups (back_to);
6552 }
6553
6554 return result;
6555 }
6556
6557 static void
6558 packet_command (char *args, int from_tty)
6559 {
6560 struct remote_state *rs = get_remote_state ();
6561
6562 if (!remote_desc)
6563 error (_("command can only be used with remote target"));
6564
6565 if (!args)
6566 error (_("remote-packet command requires packet text as argument"));
6567
6568 puts_filtered ("sending: ");
6569 print_packet (args);
6570 puts_filtered ("\n");
6571 putpkt (args);
6572
6573 getpkt (&rs->buf, &rs->buf_size, 0);
6574 puts_filtered ("received: ");
6575 print_packet (rs->buf);
6576 puts_filtered ("\n");
6577 }
6578
6579 #if 0
6580 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6581
6582 static void display_thread_info (struct gdb_ext_thread_info *info);
6583
6584 static void threadset_test_cmd (char *cmd, int tty);
6585
6586 static void threadalive_test (char *cmd, int tty);
6587
6588 static void threadlist_test_cmd (char *cmd, int tty);
6589
6590 int get_and_display_threadinfo (threadref *ref);
6591
6592 static void threadinfo_test_cmd (char *cmd, int tty);
6593
6594 static int thread_display_step (threadref *ref, void *context);
6595
6596 static void threadlist_update_test_cmd (char *cmd, int tty);
6597
6598 static void init_remote_threadtests (void);
6599
6600 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6601
6602 static void
6603 threadset_test_cmd (char *cmd, int tty)
6604 {
6605 int sample_thread = SAMPLE_THREAD;
6606
6607 printf_filtered (_("Remote threadset test\n"));
6608 set_general_thread (sample_thread);
6609 }
6610
6611
6612 static void
6613 threadalive_test (char *cmd, int tty)
6614 {
6615 int sample_thread = SAMPLE_THREAD;
6616 int pid = ptid_get_pid (inferior_ptid);
6617 ptid_t ptid = ptid_build (pid, 0, sample_thread);
6618
6619 if (remote_thread_alive (ptid))
6620 printf_filtered ("PASS: Thread alive test\n");
6621 else
6622 printf_filtered ("FAIL: Thread alive test\n");
6623 }
6624
6625 void output_threadid (char *title, threadref *ref);
6626
6627 void
6628 output_threadid (char *title, threadref *ref)
6629 {
6630 char hexid[20];
6631
6632 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6633 hexid[16] = 0;
6634 printf_filtered ("%s %s\n", title, (&hexid[0]));
6635 }
6636
6637 static void
6638 threadlist_test_cmd (char *cmd, int tty)
6639 {
6640 int startflag = 1;
6641 threadref nextthread;
6642 int done, result_count;
6643 threadref threadlist[3];
6644
6645 printf_filtered ("Remote Threadlist test\n");
6646 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6647 &result_count, &threadlist[0]))
6648 printf_filtered ("FAIL: threadlist test\n");
6649 else
6650 {
6651 threadref *scan = threadlist;
6652 threadref *limit = scan + result_count;
6653
6654 while (scan < limit)
6655 output_threadid (" thread ", scan++);
6656 }
6657 }
6658
6659 void
6660 display_thread_info (struct gdb_ext_thread_info *info)
6661 {
6662 output_threadid ("Threadid: ", &info->threadid);
6663 printf_filtered ("Name: %s\n ", info->shortname);
6664 printf_filtered ("State: %s\n", info->display);
6665 printf_filtered ("other: %s\n\n", info->more_display);
6666 }
6667
6668 int
6669 get_and_display_threadinfo (threadref *ref)
6670 {
6671 int result;
6672 int set;
6673 struct gdb_ext_thread_info threadinfo;
6674
6675 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6676 | TAG_MOREDISPLAY | TAG_DISPLAY;
6677 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6678 display_thread_info (&threadinfo);
6679 return result;
6680 }
6681
6682 static void
6683 threadinfo_test_cmd (char *cmd, int tty)
6684 {
6685 int athread = SAMPLE_THREAD;
6686 threadref thread;
6687 int set;
6688
6689 int_to_threadref (&thread, athread);
6690 printf_filtered ("Remote Threadinfo test\n");
6691 if (!get_and_display_threadinfo (&thread))
6692 printf_filtered ("FAIL cannot get thread info\n");
6693 }
6694
6695 static int
6696 thread_display_step (threadref *ref, void *context)
6697 {
6698 /* output_threadid(" threadstep ",ref); *//* simple test */
6699 return get_and_display_threadinfo (ref);
6700 }
6701
6702 static void
6703 threadlist_update_test_cmd (char *cmd, int tty)
6704 {
6705 printf_filtered ("Remote Threadlist update test\n");
6706 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6707 }
6708
6709 static void
6710 init_remote_threadtests (void)
6711 {
6712 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6713 Fetch and print the remote list of thread identifiers, one pkt only"));
6714 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6715 _("Fetch and display info about one thread"));
6716 add_com ("tset", class_obscure, threadset_test_cmd,
6717 _("Test setting to a different thread"));
6718 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6719 _("Iterate through updating all remote thread info"));
6720 add_com ("talive", class_obscure, threadalive_test,
6721 _(" Remote thread alive test "));
6722 }
6723
6724 #endif /* 0 */
6725
6726 /* Convert a thread ID to a string. Returns the string in a static
6727 buffer. */
6728
6729 static char *
6730 remote_pid_to_str (ptid_t ptid)
6731 {
6732 static char buf[64];
6733 struct remote_state *rs = get_remote_state ();
6734
6735 if (ptid_equal (magic_null_ptid, ptid))
6736 {
6737 xsnprintf (buf, sizeof buf, "Thread <main>");
6738 return buf;
6739 }
6740 else if (remote_multi_process_p (rs)
6741 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
6742 {
6743 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
6744 ptid_get_pid (ptid), ptid_get_tid (ptid));
6745 return buf;
6746 }
6747 else if (ptid_get_tid (ptid) != 0)
6748 {
6749 xsnprintf (buf, sizeof buf, "Thread %ld",
6750 ptid_get_tid (ptid));
6751 return buf;
6752 }
6753
6754 return normal_pid_to_str (ptid);
6755 }
6756
6757 /* Get the address of the thread local variable in OBJFILE which is
6758 stored at OFFSET within the thread local storage for thread PTID. */
6759
6760 static CORE_ADDR
6761 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6762 {
6763 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6764 {
6765 struct remote_state *rs = get_remote_state ();
6766 char *p = rs->buf;
6767 char *endp = rs->buf + get_remote_packet_size ();
6768 enum packet_result result;
6769
6770 strcpy (p, "qGetTLSAddr:");
6771 p += strlen (p);
6772 p = write_ptid (p, endp, ptid);
6773 *p++ = ',';
6774 p += hexnumstr (p, offset);
6775 *p++ = ',';
6776 p += hexnumstr (p, lm);
6777 *p++ = '\0';
6778
6779 putpkt (rs->buf);
6780 getpkt (&rs->buf, &rs->buf_size, 0);
6781 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6782 if (result == PACKET_OK)
6783 {
6784 ULONGEST result;
6785
6786 unpack_varlen_hex (rs->buf, &result);
6787 return result;
6788 }
6789 else if (result == PACKET_UNKNOWN)
6790 throw_error (TLS_GENERIC_ERROR,
6791 _("Remote target doesn't support qGetTLSAddr packet"));
6792 else
6793 throw_error (TLS_GENERIC_ERROR,
6794 _("Remote target failed to process qGetTLSAddr request"));
6795 }
6796 else
6797 throw_error (TLS_GENERIC_ERROR,
6798 _("TLS not supported or disabled on this target"));
6799 /* Not reached. */
6800 return 0;
6801 }
6802
6803 /* Support for inferring a target description based on the current
6804 architecture and the size of a 'g' packet. While the 'g' packet
6805 can have any size (since optional registers can be left off the
6806 end), some sizes are easily recognizable given knowledge of the
6807 approximate architecture. */
6808
6809 struct remote_g_packet_guess
6810 {
6811 int bytes;
6812 const struct target_desc *tdesc;
6813 };
6814 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6815 DEF_VEC_O(remote_g_packet_guess_s);
6816
6817 struct remote_g_packet_data
6818 {
6819 VEC(remote_g_packet_guess_s) *guesses;
6820 };
6821
6822 static struct gdbarch_data *remote_g_packet_data_handle;
6823
6824 static void *
6825 remote_g_packet_data_init (struct obstack *obstack)
6826 {
6827 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6828 }
6829
6830 void
6831 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6832 const struct target_desc *tdesc)
6833 {
6834 struct remote_g_packet_data *data
6835 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6836 struct remote_g_packet_guess new_guess, *guess;
6837 int ix;
6838
6839 gdb_assert (tdesc != NULL);
6840
6841 for (ix = 0;
6842 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6843 ix++)
6844 if (guess->bytes == bytes)
6845 internal_error (__FILE__, __LINE__,
6846 "Duplicate g packet description added for size %d",
6847 bytes);
6848
6849 new_guess.bytes = bytes;
6850 new_guess.tdesc = tdesc;
6851 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6852 }
6853
6854 static const struct target_desc *
6855 remote_read_description (struct target_ops *target)
6856 {
6857 struct remote_g_packet_data *data
6858 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
6859
6860 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6861 {
6862 struct remote_g_packet_guess *guess;
6863 int ix;
6864 int bytes = send_g_packet ();
6865
6866 for (ix = 0;
6867 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6868 ix++)
6869 if (guess->bytes == bytes)
6870 return guess->tdesc;
6871
6872 /* We discard the g packet. A minor optimization would be to
6873 hold on to it, and fill the register cache once we have selected
6874 an architecture, but it's too tricky to do safely. */
6875 }
6876
6877 return NULL;
6878 }
6879
6880 /* Remote file transfer support. This is host-initiated I/O, not
6881 target-initiated; for target-initiated, see remote-fileio.c. */
6882
6883 /* If *LEFT is at least the length of STRING, copy STRING to
6884 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6885 decrease *LEFT. Otherwise raise an error. */
6886
6887 static void
6888 remote_buffer_add_string (char **buffer, int *left, char *string)
6889 {
6890 int len = strlen (string);
6891
6892 if (len > *left)
6893 error (_("Packet too long for target."));
6894
6895 memcpy (*buffer, string, len);
6896 *buffer += len;
6897 *left -= len;
6898
6899 /* NUL-terminate the buffer as a convenience, if there is
6900 room. */
6901 if (*left)
6902 **buffer = '\0';
6903 }
6904
6905 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6906 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6907 decrease *LEFT. Otherwise raise an error. */
6908
6909 static void
6910 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6911 int len)
6912 {
6913 if (2 * len > *left)
6914 error (_("Packet too long for target."));
6915
6916 bin2hex (bytes, *buffer, len);
6917 *buffer += 2 * len;
6918 *left -= 2 * len;
6919
6920 /* NUL-terminate the buffer as a convenience, if there is
6921 room. */
6922 if (*left)
6923 **buffer = '\0';
6924 }
6925
6926 /* If *LEFT is large enough, convert VALUE to hex and add it to
6927 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6928 decrease *LEFT. Otherwise raise an error. */
6929
6930 static void
6931 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6932 {
6933 int len = hexnumlen (value);
6934
6935 if (len > *left)
6936 error (_("Packet too long for target."));
6937
6938 hexnumstr (*buffer, value);
6939 *buffer += len;
6940 *left -= len;
6941
6942 /* NUL-terminate the buffer as a convenience, if there is
6943 room. */
6944 if (*left)
6945 **buffer = '\0';
6946 }
6947
6948 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6949 value, *REMOTE_ERRNO to the remote error number or zero if none
6950 was included, and *ATTACHMENT to point to the start of the annex
6951 if any. The length of the packet isn't needed here; there may
6952 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6953
6954 Return 0 if the packet could be parsed, -1 if it could not. If
6955 -1 is returned, the other variables may not be initialized. */
6956
6957 static int
6958 remote_hostio_parse_result (char *buffer, int *retcode,
6959 int *remote_errno, char **attachment)
6960 {
6961 char *p, *p2;
6962
6963 *remote_errno = 0;
6964 *attachment = NULL;
6965
6966 if (buffer[0] != 'F')
6967 return -1;
6968
6969 errno = 0;
6970 *retcode = strtol (&buffer[1], &p, 16);
6971 if (errno != 0 || p == &buffer[1])
6972 return -1;
6973
6974 /* Check for ",errno". */
6975 if (*p == ',')
6976 {
6977 errno = 0;
6978 *remote_errno = strtol (p + 1, &p2, 16);
6979 if (errno != 0 || p + 1 == p2)
6980 return -1;
6981 p = p2;
6982 }
6983
6984 /* Check for ";attachment". If there is no attachment, the
6985 packet should end here. */
6986 if (*p == ';')
6987 {
6988 *attachment = p + 1;
6989 return 0;
6990 }
6991 else if (*p == '\0')
6992 return 0;
6993 else
6994 return -1;
6995 }
6996
6997 /* Send a prepared I/O packet to the target and read its response.
6998 The prepared packet is in the global RS->BUF before this function
6999 is called, and the answer is there when we return.
7000
7001 COMMAND_BYTES is the length of the request to send, which may include
7002 binary data. WHICH_PACKET is the packet configuration to check
7003 before attempting a packet. If an error occurs, *REMOTE_ERRNO
7004 is set to the error number and -1 is returned. Otherwise the value
7005 returned by the function is returned.
7006
7007 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
7008 attachment is expected; an error will be reported if there's a
7009 mismatch. If one is found, *ATTACHMENT will be set to point into
7010 the packet buffer and *ATTACHMENT_LEN will be set to the
7011 attachment's length. */
7012
7013 static int
7014 remote_hostio_send_command (int command_bytes, int which_packet,
7015 int *remote_errno, char **attachment,
7016 int *attachment_len)
7017 {
7018 struct remote_state *rs = get_remote_state ();
7019 int ret, bytes_read;
7020 char *attachment_tmp;
7021
7022 if (!remote_desc
7023 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
7024 {
7025 *remote_errno = FILEIO_ENOSYS;
7026 return -1;
7027 }
7028
7029 putpkt_binary (rs->buf, command_bytes);
7030 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7031
7032 /* If it timed out, something is wrong. Don't try to parse the
7033 buffer. */
7034 if (bytes_read < 0)
7035 {
7036 *remote_errno = FILEIO_EINVAL;
7037 return -1;
7038 }
7039
7040 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
7041 {
7042 case PACKET_ERROR:
7043 *remote_errno = FILEIO_EINVAL;
7044 return -1;
7045 case PACKET_UNKNOWN:
7046 *remote_errno = FILEIO_ENOSYS;
7047 return -1;
7048 case PACKET_OK:
7049 break;
7050 }
7051
7052 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
7053 &attachment_tmp))
7054 {
7055 *remote_errno = FILEIO_EINVAL;
7056 return -1;
7057 }
7058
7059 /* Make sure we saw an attachment if and only if we expected one. */
7060 if ((attachment_tmp == NULL && attachment != NULL)
7061 || (attachment_tmp != NULL && attachment == NULL))
7062 {
7063 *remote_errno = FILEIO_EINVAL;
7064 return -1;
7065 }
7066
7067 /* If an attachment was found, it must point into the packet buffer;
7068 work out how many bytes there were. */
7069 if (attachment_tmp != NULL)
7070 {
7071 *attachment = attachment_tmp;
7072 *attachment_len = bytes_read - (*attachment - rs->buf);
7073 }
7074
7075 return ret;
7076 }
7077
7078 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
7079 remote file descriptor, or -1 if an error occurs (and set
7080 *REMOTE_ERRNO). */
7081
7082 static int
7083 remote_hostio_open (const char *filename, int flags, int mode,
7084 int *remote_errno)
7085 {
7086 struct remote_state *rs = get_remote_state ();
7087 char *p = rs->buf;
7088 int left = get_remote_packet_size () - 1;
7089
7090 remote_buffer_add_string (&p, &left, "vFile:open:");
7091
7092 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
7093 strlen (filename));
7094 remote_buffer_add_string (&p, &left, ",");
7095
7096 remote_buffer_add_int (&p, &left, flags);
7097 remote_buffer_add_string (&p, &left, ",");
7098
7099 remote_buffer_add_int (&p, &left, mode);
7100
7101 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
7102 remote_errno, NULL, NULL);
7103 }
7104
7105 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
7106 Return the number of bytes written, or -1 if an error occurs (and
7107 set *REMOTE_ERRNO). */
7108
7109 static int
7110 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
7111 ULONGEST offset, int *remote_errno)
7112 {
7113 struct remote_state *rs = get_remote_state ();
7114 char *p = rs->buf;
7115 int left = get_remote_packet_size ();
7116 int out_len;
7117
7118 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
7119
7120 remote_buffer_add_int (&p, &left, fd);
7121 remote_buffer_add_string (&p, &left, ",");
7122
7123 remote_buffer_add_int (&p, &left, offset);
7124 remote_buffer_add_string (&p, &left, ",");
7125
7126 p += remote_escape_output (write_buf, len, p, &out_len,
7127 get_remote_packet_size () - (p - rs->buf));
7128
7129 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
7130 remote_errno, NULL, NULL);
7131 }
7132
7133 /* Read up to LEN bytes FD on the remote target into READ_BUF
7134 Return the number of bytes read, or -1 if an error occurs (and
7135 set *REMOTE_ERRNO). */
7136
7137 static int
7138 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
7139 ULONGEST offset, int *remote_errno)
7140 {
7141 struct remote_state *rs = get_remote_state ();
7142 char *p = rs->buf;
7143 char *attachment;
7144 int left = get_remote_packet_size ();
7145 int ret, attachment_len;
7146 int read_len;
7147
7148 remote_buffer_add_string (&p, &left, "vFile:pread:");
7149
7150 remote_buffer_add_int (&p, &left, fd);
7151 remote_buffer_add_string (&p, &left, ",");
7152
7153 remote_buffer_add_int (&p, &left, len);
7154 remote_buffer_add_string (&p, &left, ",");
7155
7156 remote_buffer_add_int (&p, &left, offset);
7157
7158 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
7159 remote_errno, &attachment,
7160 &attachment_len);
7161
7162 if (ret < 0)
7163 return ret;
7164
7165 read_len = remote_unescape_input (attachment, attachment_len,
7166 read_buf, len);
7167 if (read_len != ret)
7168 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
7169
7170 return ret;
7171 }
7172
7173 /* Close FD on the remote target. Return 0, or -1 if an error occurs
7174 (and set *REMOTE_ERRNO). */
7175
7176 static int
7177 remote_hostio_close (int fd, int *remote_errno)
7178 {
7179 struct remote_state *rs = get_remote_state ();
7180 char *p = rs->buf;
7181 int left = get_remote_packet_size () - 1;
7182
7183 remote_buffer_add_string (&p, &left, "vFile:close:");
7184
7185 remote_buffer_add_int (&p, &left, fd);
7186
7187 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
7188 remote_errno, NULL, NULL);
7189 }
7190
7191 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
7192 occurs (and set *REMOTE_ERRNO). */
7193
7194 static int
7195 remote_hostio_unlink (const char *filename, int *remote_errno)
7196 {
7197 struct remote_state *rs = get_remote_state ();
7198 char *p = rs->buf;
7199 int left = get_remote_packet_size () - 1;
7200
7201 remote_buffer_add_string (&p, &left, "vFile:unlink:");
7202
7203 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
7204 strlen (filename));
7205
7206 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
7207 remote_errno, NULL, NULL);
7208 }
7209
7210 static int
7211 remote_fileio_errno_to_host (int errnum)
7212 {
7213 switch (errnum)
7214 {
7215 case FILEIO_EPERM:
7216 return EPERM;
7217 case FILEIO_ENOENT:
7218 return ENOENT;
7219 case FILEIO_EINTR:
7220 return EINTR;
7221 case FILEIO_EIO:
7222 return EIO;
7223 case FILEIO_EBADF:
7224 return EBADF;
7225 case FILEIO_EACCES:
7226 return EACCES;
7227 case FILEIO_EFAULT:
7228 return EFAULT;
7229 case FILEIO_EBUSY:
7230 return EBUSY;
7231 case FILEIO_EEXIST:
7232 return EEXIST;
7233 case FILEIO_ENODEV:
7234 return ENODEV;
7235 case FILEIO_ENOTDIR:
7236 return ENOTDIR;
7237 case FILEIO_EISDIR:
7238 return EISDIR;
7239 case FILEIO_EINVAL:
7240 return EINVAL;
7241 case FILEIO_ENFILE:
7242 return ENFILE;
7243 case FILEIO_EMFILE:
7244 return EMFILE;
7245 case FILEIO_EFBIG:
7246 return EFBIG;
7247 case FILEIO_ENOSPC:
7248 return ENOSPC;
7249 case FILEIO_ESPIPE:
7250 return ESPIPE;
7251 case FILEIO_EROFS:
7252 return EROFS;
7253 case FILEIO_ENOSYS:
7254 return ENOSYS;
7255 case FILEIO_ENAMETOOLONG:
7256 return ENAMETOOLONG;
7257 }
7258 return -1;
7259 }
7260
7261 static char *
7262 remote_hostio_error (int errnum)
7263 {
7264 int host_error = remote_fileio_errno_to_host (errnum);
7265
7266 if (host_error == -1)
7267 error (_("Unknown remote I/O error %d"), errnum);
7268 else
7269 error (_("Remote I/O error: %s"), safe_strerror (host_error));
7270 }
7271
7272 static void
7273 fclose_cleanup (void *file)
7274 {
7275 fclose (file);
7276 }
7277
7278 static void
7279 remote_hostio_close_cleanup (void *opaque)
7280 {
7281 int fd = *(int *) opaque;
7282 int remote_errno;
7283
7284 remote_hostio_close (fd, &remote_errno);
7285 }
7286
7287
7288 static void *
7289 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
7290 {
7291 const char *filename = bfd_get_filename (abfd);
7292 int fd, remote_errno;
7293 int *stream;
7294
7295 gdb_assert (remote_filename_p (filename));
7296
7297 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
7298 if (fd == -1)
7299 {
7300 errno = remote_fileio_errno_to_host (remote_errno);
7301 bfd_set_error (bfd_error_system_call);
7302 return NULL;
7303 }
7304
7305 stream = xmalloc (sizeof (int));
7306 *stream = fd;
7307 return stream;
7308 }
7309
7310 static int
7311 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
7312 {
7313 int fd = *(int *)stream;
7314 int remote_errno;
7315
7316 xfree (stream);
7317
7318 /* Ignore errors on close; these may happen if the remote
7319 connection was already torn down. */
7320 remote_hostio_close (fd, &remote_errno);
7321
7322 return 1;
7323 }
7324
7325 static file_ptr
7326 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
7327 file_ptr nbytes, file_ptr offset)
7328 {
7329 int fd = *(int *)stream;
7330 int remote_errno;
7331 file_ptr pos, bytes;
7332
7333 pos = 0;
7334 while (nbytes > pos)
7335 {
7336 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
7337 offset + pos, &remote_errno);
7338 if (bytes == 0)
7339 /* Success, but no bytes, means end-of-file. */
7340 break;
7341 if (bytes == -1)
7342 {
7343 errno = remote_fileio_errno_to_host (remote_errno);
7344 bfd_set_error (bfd_error_system_call);
7345 return -1;
7346 }
7347
7348 pos += bytes;
7349 }
7350
7351 return pos;
7352 }
7353
7354 static int
7355 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
7356 {
7357 /* FIXME: We should probably implement remote_hostio_stat. */
7358 sb->st_size = INT_MAX;
7359 return 0;
7360 }
7361
7362 int
7363 remote_filename_p (const char *filename)
7364 {
7365 return strncmp (filename, "remote:", 7) == 0;
7366 }
7367
7368 bfd *
7369 remote_bfd_open (const char *remote_file, const char *target)
7370 {
7371 return bfd_openr_iovec (remote_file, target,
7372 remote_bfd_iovec_open, NULL,
7373 remote_bfd_iovec_pread,
7374 remote_bfd_iovec_close,
7375 remote_bfd_iovec_stat);
7376 }
7377
7378 void
7379 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
7380 {
7381 struct cleanup *back_to, *close_cleanup;
7382 int retcode, fd, remote_errno, bytes, io_size;
7383 FILE *file;
7384 gdb_byte *buffer;
7385 int bytes_in_buffer;
7386 int saw_eof;
7387 ULONGEST offset;
7388
7389 if (!remote_desc)
7390 error (_("command can only be used with remote target"));
7391
7392 file = fopen (local_file, "rb");
7393 if (file == NULL)
7394 perror_with_name (local_file);
7395 back_to = make_cleanup (fclose_cleanup, file);
7396
7397 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7398 | FILEIO_O_TRUNC),
7399 0700, &remote_errno);
7400 if (fd == -1)
7401 remote_hostio_error (remote_errno);
7402
7403 /* Send up to this many bytes at once. They won't all fit in the
7404 remote packet limit, so we'll transfer slightly fewer. */
7405 io_size = get_remote_packet_size ();
7406 buffer = xmalloc (io_size);
7407 make_cleanup (xfree, buffer);
7408
7409 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7410
7411 bytes_in_buffer = 0;
7412 saw_eof = 0;
7413 offset = 0;
7414 while (bytes_in_buffer || !saw_eof)
7415 {
7416 if (!saw_eof)
7417 {
7418 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7419 file);
7420 if (bytes == 0)
7421 {
7422 if (ferror (file))
7423 error (_("Error reading %s."), local_file);
7424 else
7425 {
7426 /* EOF. Unless there is something still in the
7427 buffer from the last iteration, we are done. */
7428 saw_eof = 1;
7429 if (bytes_in_buffer == 0)
7430 break;
7431 }
7432 }
7433 }
7434 else
7435 bytes = 0;
7436
7437 bytes += bytes_in_buffer;
7438 bytes_in_buffer = 0;
7439
7440 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7441
7442 if (retcode < 0)
7443 remote_hostio_error (remote_errno);
7444 else if (retcode == 0)
7445 error (_("Remote write of %d bytes returned 0!"), bytes);
7446 else if (retcode < bytes)
7447 {
7448 /* Short write. Save the rest of the read data for the next
7449 write. */
7450 bytes_in_buffer = bytes - retcode;
7451 memmove (buffer, buffer + retcode, bytes_in_buffer);
7452 }
7453
7454 offset += retcode;
7455 }
7456
7457 discard_cleanups (close_cleanup);
7458 if (remote_hostio_close (fd, &remote_errno))
7459 remote_hostio_error (remote_errno);
7460
7461 if (from_tty)
7462 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7463 do_cleanups (back_to);
7464 }
7465
7466 void
7467 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7468 {
7469 struct cleanup *back_to, *close_cleanup;
7470 int retcode, fd, remote_errno, bytes, io_size;
7471 FILE *file;
7472 gdb_byte *buffer;
7473 ULONGEST offset;
7474
7475 if (!remote_desc)
7476 error (_("command can only be used with remote target"));
7477
7478 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7479 if (fd == -1)
7480 remote_hostio_error (remote_errno);
7481
7482 file = fopen (local_file, "wb");
7483 if (file == NULL)
7484 perror_with_name (local_file);
7485 back_to = make_cleanup (fclose_cleanup, file);
7486
7487 /* Send up to this many bytes at once. They won't all fit in the
7488 remote packet limit, so we'll transfer slightly fewer. */
7489 io_size = get_remote_packet_size ();
7490 buffer = xmalloc (io_size);
7491 make_cleanup (xfree, buffer);
7492
7493 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7494
7495 offset = 0;
7496 while (1)
7497 {
7498 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7499 if (bytes == 0)
7500 /* Success, but no bytes, means end-of-file. */
7501 break;
7502 if (bytes == -1)
7503 remote_hostio_error (remote_errno);
7504
7505 offset += bytes;
7506
7507 bytes = fwrite (buffer, 1, bytes, file);
7508 if (bytes == 0)
7509 perror_with_name (local_file);
7510 }
7511
7512 discard_cleanups (close_cleanup);
7513 if (remote_hostio_close (fd, &remote_errno))
7514 remote_hostio_error (remote_errno);
7515
7516 if (from_tty)
7517 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7518 do_cleanups (back_to);
7519 }
7520
7521 void
7522 remote_file_delete (const char *remote_file, int from_tty)
7523 {
7524 int retcode, remote_errno;
7525
7526 if (!remote_desc)
7527 error (_("command can only be used with remote target"));
7528
7529 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7530 if (retcode == -1)
7531 remote_hostio_error (remote_errno);
7532
7533 if (from_tty)
7534 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7535 }
7536
7537 static void
7538 remote_put_command (char *args, int from_tty)
7539 {
7540 struct cleanup *back_to;
7541 char **argv;
7542
7543 if (args == NULL)
7544 error_no_arg (_("file to put"));
7545
7546 argv = gdb_buildargv (args);
7547 back_to = make_cleanup_freeargv (argv);
7548 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7549 error (_("Invalid parameters to remote put"));
7550
7551 remote_file_put (argv[0], argv[1], from_tty);
7552
7553 do_cleanups (back_to);
7554 }
7555
7556 static void
7557 remote_get_command (char *args, int from_tty)
7558 {
7559 struct cleanup *back_to;
7560 char **argv;
7561
7562 if (args == NULL)
7563 error_no_arg (_("file to get"));
7564
7565 argv = gdb_buildargv (args);
7566 back_to = make_cleanup_freeargv (argv);
7567 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7568 error (_("Invalid parameters to remote get"));
7569
7570 remote_file_get (argv[0], argv[1], from_tty);
7571
7572 do_cleanups (back_to);
7573 }
7574
7575 static void
7576 remote_delete_command (char *args, int from_tty)
7577 {
7578 struct cleanup *back_to;
7579 char **argv;
7580
7581 if (args == NULL)
7582 error_no_arg (_("file to delete"));
7583
7584 argv = gdb_buildargv (args);
7585 back_to = make_cleanup_freeargv (argv);
7586 if (argv[0] == NULL || argv[1] != NULL)
7587 error (_("Invalid parameters to remote delete"));
7588
7589 remote_file_delete (argv[0], from_tty);
7590
7591 do_cleanups (back_to);
7592 }
7593
7594 static void
7595 remote_command (char *args, int from_tty)
7596 {
7597 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7598 }
7599
7600 static void
7601 init_remote_ops (void)
7602 {
7603 remote_ops.to_shortname = "remote";
7604 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7605 remote_ops.to_doc =
7606 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7607 Specify the serial device it is connected to\n\
7608 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7609 remote_ops.to_open = remote_open;
7610 remote_ops.to_close = remote_close;
7611 remote_ops.to_detach = remote_detach;
7612 remote_ops.to_disconnect = remote_disconnect;
7613 remote_ops.to_resume = remote_resume;
7614 remote_ops.to_wait = remote_wait;
7615 remote_ops.to_fetch_registers = remote_fetch_registers;
7616 remote_ops.to_store_registers = remote_store_registers;
7617 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7618 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7619 remote_ops.to_files_info = remote_files_info;
7620 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7621 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7622 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7623 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7624 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7625 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7626 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7627 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7628 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7629 remote_ops.to_kill = remote_kill;
7630 remote_ops.to_load = generic_load;
7631 remote_ops.to_mourn_inferior = remote_mourn;
7632 remote_ops.to_thread_alive = remote_thread_alive;
7633 remote_ops.to_find_new_threads = remote_threads_info;
7634 remote_ops.to_pid_to_str = remote_pid_to_str;
7635 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7636 remote_ops.to_stop = remote_stop;
7637 remote_ops.to_xfer_partial = remote_xfer_partial;
7638 remote_ops.to_rcmd = remote_rcmd;
7639 remote_ops.to_log_command = serial_log_command;
7640 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7641 remote_ops.to_stratum = process_stratum;
7642 remote_ops.to_has_all_memory = 1;
7643 remote_ops.to_has_memory = 1;
7644 remote_ops.to_has_stack = 1;
7645 remote_ops.to_has_registers = 1;
7646 remote_ops.to_has_execution = 1;
7647 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7648 remote_ops.to_magic = OPS_MAGIC;
7649 remote_ops.to_memory_map = remote_memory_map;
7650 remote_ops.to_flash_erase = remote_flash_erase;
7651 remote_ops.to_flash_done = remote_flash_done;
7652 remote_ops.to_read_description = remote_read_description;
7653 remote_ops.to_search_memory = remote_search_memory;
7654 remote_ops.to_can_async_p = remote_can_async_p;
7655 remote_ops.to_is_async_p = remote_is_async_p;
7656 remote_ops.to_async = remote_async;
7657 remote_ops.to_async_mask = remote_async_mask;
7658 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7659 remote_ops.to_terminal_ours = remote_terminal_ours;
7660 }
7661
7662 /* Set up the extended remote vector by making a copy of the standard
7663 remote vector and adding to it. */
7664
7665 static void
7666 init_extended_remote_ops (void)
7667 {
7668 extended_remote_ops = remote_ops;
7669
7670 extended_remote_ops.to_shortname = "extended-remote";
7671 extended_remote_ops.to_longname =
7672 "Extended remote serial target in gdb-specific protocol";
7673 extended_remote_ops.to_doc =
7674 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7675 Specify the serial device it is connected to (e.g. /dev/ttya).";
7676 extended_remote_ops.to_open = extended_remote_open;
7677 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7678 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7679 extended_remote_ops.to_detach = extended_remote_detach;
7680 extended_remote_ops.to_attach = extended_remote_attach;
7681 extended_remote_ops.to_kill = extended_remote_kill;
7682 }
7683
7684 static int
7685 remote_can_async_p (void)
7686 {
7687 if (!target_async_permitted)
7688 /* We only enable async when the user specifically asks for it. */
7689 return 0;
7690
7691 /* We're async whenever the serial device is. */
7692 return remote_async_mask_value && serial_can_async_p (remote_desc);
7693 }
7694
7695 static int
7696 remote_is_async_p (void)
7697 {
7698 if (!target_async_permitted)
7699 /* We only enable async when the user specifically asks for it. */
7700 return 0;
7701
7702 /* We're async whenever the serial device is. */
7703 return remote_async_mask_value && serial_is_async_p (remote_desc);
7704 }
7705
7706 /* Pass the SERIAL event on and up to the client. One day this code
7707 will be able to delay notifying the client of an event until the
7708 point where an entire packet has been received. */
7709
7710 static void (*async_client_callback) (enum inferior_event_type event_type,
7711 void *context);
7712 static void *async_client_context;
7713 static serial_event_ftype remote_async_serial_handler;
7714
7715 static void
7716 remote_async_serial_handler (struct serial *scb, void *context)
7717 {
7718 /* Don't propogate error information up to the client. Instead let
7719 the client find out about the error by querying the target. */
7720 async_client_callback (INF_REG_EVENT, async_client_context);
7721 }
7722
7723 static void
7724 remote_async (void (*callback) (enum inferior_event_type event_type,
7725 void *context), void *context)
7726 {
7727 if (remote_async_mask_value == 0)
7728 internal_error (__FILE__, __LINE__,
7729 _("Calling remote_async when async is masked"));
7730
7731 if (callback != NULL)
7732 {
7733 serial_async (remote_desc, remote_async_serial_handler, NULL);
7734 async_client_callback = callback;
7735 async_client_context = context;
7736 }
7737 else
7738 serial_async (remote_desc, NULL, NULL);
7739 }
7740
7741 static int
7742 remote_async_mask (int new_mask)
7743 {
7744 int curr_mask = remote_async_mask_value;
7745 remote_async_mask_value = new_mask;
7746 return curr_mask;
7747 }
7748
7749 static void
7750 set_remote_cmd (char *args, int from_tty)
7751 {
7752 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7753 }
7754
7755 static void
7756 show_remote_cmd (char *args, int from_tty)
7757 {
7758 /* We can't just use cmd_show_list here, because we want to skip
7759 the redundant "show remote Z-packet" and the legacy aliases. */
7760 struct cleanup *showlist_chain;
7761 struct cmd_list_element *list = remote_show_cmdlist;
7762
7763 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7764 for (; list != NULL; list = list->next)
7765 if (strcmp (list->name, "Z-packet") == 0)
7766 continue;
7767 else if (list->type == not_set_cmd)
7768 /* Alias commands are exactly like the original, except they
7769 don't have the normal type. */
7770 continue;
7771 else
7772 {
7773 struct cleanup *option_chain
7774 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7775 ui_out_field_string (uiout, "name", list->name);
7776 ui_out_text (uiout, ": ");
7777 if (list->type == show_cmd)
7778 do_setshow_command ((char *) NULL, from_tty, list);
7779 else
7780 cmd_func (list, NULL, from_tty);
7781 /* Close the tuple. */
7782 do_cleanups (option_chain);
7783 }
7784
7785 /* Close the tuple. */
7786 do_cleanups (showlist_chain);
7787 }
7788
7789
7790 /* Function to be called whenever a new objfile (shlib) is detected. */
7791 static void
7792 remote_new_objfile (struct objfile *objfile)
7793 {
7794 if (remote_desc != 0) /* Have a remote connection. */
7795 remote_check_symbols (objfile);
7796 }
7797
7798 void
7799 _initialize_remote (void)
7800 {
7801 struct remote_state *rs;
7802
7803 /* architecture specific data */
7804 remote_gdbarch_data_handle =
7805 gdbarch_data_register_post_init (init_remote_state);
7806 remote_g_packet_data_handle =
7807 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7808
7809 /* Initialize the per-target state. At the moment there is only one
7810 of these, not one per target. Only one target is active at a
7811 time. The default buffer size is unimportant; it will be expanded
7812 whenever a larger buffer is needed. */
7813 rs = get_remote_state_raw ();
7814 rs->buf_size = 400;
7815 rs->buf = xmalloc (rs->buf_size);
7816
7817 init_remote_ops ();
7818 add_target (&remote_ops);
7819
7820 init_extended_remote_ops ();
7821 add_target (&extended_remote_ops);
7822
7823 /* Hook into new objfile notification. */
7824 observer_attach_new_objfile (remote_new_objfile);
7825
7826 /* Set up signal handlers. */
7827 sigint_remote_token =
7828 create_async_signal_handler (async_remote_interrupt, NULL);
7829 sigint_remote_twice_token =
7830 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7831
7832 #if 0
7833 init_remote_threadtests ();
7834 #endif
7835
7836 /* set/show remote ... */
7837
7838 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7839 Remote protocol specific variables\n\
7840 Configure various remote-protocol specific variables such as\n\
7841 the packets being used"),
7842 &remote_set_cmdlist, "set remote ",
7843 0 /* allow-unknown */, &setlist);
7844 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7845 Remote protocol specific variables\n\
7846 Configure various remote-protocol specific variables such as\n\
7847 the packets being used"),
7848 &remote_show_cmdlist, "show remote ",
7849 0 /* allow-unknown */, &showlist);
7850
7851 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7852 Compare section data on target to the exec file.\n\
7853 Argument is a single section name (default: all loaded sections)."),
7854 &cmdlist);
7855
7856 add_cmd ("packet", class_maintenance, packet_command, _("\
7857 Send an arbitrary packet to a remote target.\n\
7858 maintenance packet TEXT\n\
7859 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7860 this command sends the string TEXT to the inferior, and displays the\n\
7861 response packet. GDB supplies the initial `$' character, and the\n\
7862 terminating `#' character and checksum."),
7863 &maintenancelist);
7864
7865 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7866 Set whether to send break if interrupted."), _("\
7867 Show whether to send break if interrupted."), _("\
7868 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7869 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7870 &setlist, &showlist);
7871
7872 /* Install commands for configuring memory read/write packets. */
7873
7874 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7875 Set the maximum number of bytes per memory write packet (deprecated)."),
7876 &setlist);
7877 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7878 Show the maximum number of bytes per memory write packet (deprecated)."),
7879 &showlist);
7880 add_cmd ("memory-write-packet-size", no_class,
7881 set_memory_write_packet_size, _("\
7882 Set the maximum number of bytes per memory-write packet.\n\
7883 Specify the number of bytes in a packet or 0 (zero) for the\n\
7884 default packet size. The actual limit is further reduced\n\
7885 dependent on the target. Specify ``fixed'' to disable the\n\
7886 further restriction and ``limit'' to enable that restriction."),
7887 &remote_set_cmdlist);
7888 add_cmd ("memory-read-packet-size", no_class,
7889 set_memory_read_packet_size, _("\
7890 Set the maximum number of bytes per memory-read packet.\n\
7891 Specify the number of bytes in a packet or 0 (zero) for the\n\
7892 default packet size. The actual limit is further reduced\n\
7893 dependent on the target. Specify ``fixed'' to disable the\n\
7894 further restriction and ``limit'' to enable that restriction."),
7895 &remote_set_cmdlist);
7896 add_cmd ("memory-write-packet-size", no_class,
7897 show_memory_write_packet_size,
7898 _("Show the maximum number of bytes per memory-write packet."),
7899 &remote_show_cmdlist);
7900 add_cmd ("memory-read-packet-size", no_class,
7901 show_memory_read_packet_size,
7902 _("Show the maximum number of bytes per memory-read packet."),
7903 &remote_show_cmdlist);
7904
7905 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7906 &remote_hw_watchpoint_limit, _("\
7907 Set the maximum number of target hardware watchpoints."), _("\
7908 Show the maximum number of target hardware watchpoints."), _("\
7909 Specify a negative limit for unlimited."),
7910 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7911 &remote_set_cmdlist, &remote_show_cmdlist);
7912 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7913 &remote_hw_breakpoint_limit, _("\
7914 Set the maximum number of target hardware breakpoints."), _("\
7915 Show the maximum number of target hardware breakpoints."), _("\
7916 Specify a negative limit for unlimited."),
7917 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7918 &remote_set_cmdlist, &remote_show_cmdlist);
7919
7920 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7921 &remote_address_size, _("\
7922 Set the maximum size of the address (in bits) in a memory packet."), _("\
7923 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7924 NULL,
7925 NULL, /* FIXME: i18n: */
7926 &setlist, &showlist);
7927
7928 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7929 "X", "binary-download", 1);
7930
7931 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7932 "vCont", "verbose-resume", 0);
7933
7934 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7935 "QPassSignals", "pass-signals", 0);
7936
7937 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7938 "qSymbol", "symbol-lookup", 0);
7939
7940 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7941 "P", "set-register", 1);
7942
7943 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7944 "p", "fetch-register", 1);
7945
7946 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7947 "Z0", "software-breakpoint", 0);
7948
7949 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7950 "Z1", "hardware-breakpoint", 0);
7951
7952 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7953 "Z2", "write-watchpoint", 0);
7954
7955 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7956 "Z3", "read-watchpoint", 0);
7957
7958 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7959 "Z4", "access-watchpoint", 0);
7960
7961 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7962 "qXfer:auxv:read", "read-aux-vector", 0);
7963
7964 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7965 "qXfer:features:read", "target-features", 0);
7966
7967 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7968 "qXfer:libraries:read", "library-info", 0);
7969
7970 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7971 "qXfer:memory-map:read", "memory-map", 0);
7972
7973 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7974 "qXfer:spu:read", "read-spu-object", 0);
7975
7976 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7977 "qXfer:spu:write", "write-spu-object", 0);
7978
7979 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7980 "qGetTLSAddr", "get-thread-local-storage-address",
7981 0);
7982
7983 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7984 "qSupported", "supported-packets", 0);
7985
7986 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7987 "qSearch:memory", "search-memory", 0);
7988
7989 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7990 "vFile:open", "hostio-open", 0);
7991
7992 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7993 "vFile:pread", "hostio-pread", 0);
7994
7995 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7996 "vFile:pwrite", "hostio-pwrite", 0);
7997
7998 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7999 "vFile:close", "hostio-close", 0);
8000
8001 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
8002 "vFile:unlink", "hostio-unlink", 0);
8003
8004 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
8005 "vAttach", "attach", 0);
8006
8007 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
8008 "vRun", "run", 0);
8009
8010 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
8011 "QStartNoAckMode", "noack", 0);
8012
8013 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
8014 "vKill", "kill", 0);
8015
8016 /* Keep the old ``set remote Z-packet ...'' working. Each individual
8017 Z sub-packet has its own set and show commands, but users may
8018 have sets to this variable in their .gdbinit files (or in their
8019 documentation). */
8020 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
8021 &remote_Z_packet_detect, _("\
8022 Set use of remote protocol `Z' packets"), _("\
8023 Show use of remote protocol `Z' packets "), _("\
8024 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
8025 packets."),
8026 set_remote_protocol_Z_packet_cmd,
8027 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
8028 &remote_set_cmdlist, &remote_show_cmdlist);
8029
8030 add_prefix_cmd ("remote", class_files, remote_command, _("\
8031 Manipulate files on the remote system\n\
8032 Transfer files to and from the remote target system."),
8033 &remote_cmdlist, "remote ",
8034 0 /* allow-unknown */, &cmdlist);
8035
8036 add_cmd ("put", class_files, remote_put_command,
8037 _("Copy a local file to the remote system."),
8038 &remote_cmdlist);
8039
8040 add_cmd ("get", class_files, remote_get_command,
8041 _("Copy a remote file to the local system."),
8042 &remote_cmdlist);
8043
8044 add_cmd ("delete", class_files, remote_delete_command,
8045 _("Delete a remote file."),
8046 &remote_cmdlist);
8047
8048 remote_exec_file = xstrdup ("");
8049 add_setshow_string_noescape_cmd ("exec-file", class_files,
8050 &remote_exec_file, _("\
8051 Set the remote pathname for \"run\""), _("\
8052 Show the remote pathname for \"run\""), NULL, NULL, NULL,
8053 &remote_set_cmdlist, &remote_show_cmdlist);
8054
8055 /* Eventually initialize fileio. See fileio.c */
8056 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
8057
8058 /* Take advantage of the fact that the LWP field is not used, to tag
8059 special ptids with it set to != 0. */
8060 magic_null_ptid = ptid_build (42000, 1, -1);
8061 not_sent_ptid = ptid_build (42000, 1, -2);
8062 any_thread_ptid = ptid_build (42000, 1, 0);
8063 }