]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* remote.c (remote_detach_1): Don't delete the inferior here.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
103
104 static void remote_close (int quitting);
105
106 static void remote_store_registers (struct regcache *regcache, int regno);
107
108 static void remote_mourn (struct target_ops *ops);
109
110 static void extended_remote_restart (void);
111
112 static void extended_remote_mourn (struct target_ops *);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char **buf, long *sizeof_buf_p);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static int remote_async_mask (int new_mask);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static int remote_thread_alive (ptid_t);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (ptid_t currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, gdb_byte *bin, int count);
192
193 static int bin2hex (const gdb_byte *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
206 struct cmd_list_element *c);
207
208 static void show_remote_protocol_packet_cmd (struct ui_file *file,
209 int from_tty,
210 struct cmd_list_element *c,
211 const char *value);
212
213 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
214 static ptid_t read_ptid (char *buf, char **obuf);
215
216 static void remote_query_supported (void);
217
218 static void remote_check_symbols (struct objfile *objfile);
219
220 void _initialize_remote (void);
221
222 struct stop_reply;
223 static struct stop_reply *stop_reply_xmalloc (void);
224 static void stop_reply_xfree (struct stop_reply *);
225 static void do_stop_reply_xfree (void *arg);
226 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
227 static void push_stop_reply (struct stop_reply *);
228 static void remote_get_pending_stop_replies (void);
229 static void discard_pending_stop_replies (int pid);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233 static void remote_async_get_pending_events_handler (gdb_client_data);
234
235 static void remote_terminal_ours (void);
236
237 static int remote_read_description_p (struct target_ops *target);
238
239 /* The non-stop remote protocol provisions for one pending stop reply.
240 This is where we keep it until it is acknowledged. */
241
242 static struct stop_reply *pending_stop_reply = NULL;
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Description of the remote protocol state for the currently
254 connected target. This is per-target state, and independent of the
255 selected architecture. */
256
257 struct remote_state
258 {
259 /* A buffer to use for incoming packets, and its current size. The
260 buffer is grown dynamically for larger incoming packets.
261 Outgoing packets may also be constructed in this buffer.
262 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
263 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
264 packets. */
265 char *buf;
266 long buf_size;
267
268 /* If we negotiated packet size explicitly (and thus can bypass
269 heuristics for the largest packet size that will not overflow
270 a buffer in the stub), this will be set to that packet size.
271 Otherwise zero, meaning to use the guessed size. */
272 long explicit_packet_size;
273
274 /* remote_wait is normally called when the target is running and
275 waits for a stop reply packet. But sometimes we need to call it
276 when the target is already stopped. We can send a "?" packet
277 and have remote_wait read the response. Or, if we already have
278 the response, we can stash it in BUF and tell remote_wait to
279 skip calling getpkt. This flag is set when BUF contains a
280 stop reply packet and the target is not waiting. */
281 int cached_wait_status;
282
283 /* True, if in no ack mode. That is, neither GDB nor the stub will
284 expect acks from each other. The connection is assumed to be
285 reliable. */
286 int noack_mode;
287
288 /* True if we're connected in extended remote mode. */
289 int extended;
290
291 /* True if the stub reported support for multi-process
292 extensions. */
293 int multi_process_aware;
294
295 /* True if we resumed the target and we're waiting for the target to
296 stop. In the mean time, we can't start another command/query.
297 The remote server wouldn't be ready to process it, so we'd
298 timeout waiting for a reply that would never come and eventually
299 we'd close the connection. This can happen in asynchronous mode
300 because we allow GDB commands while the target is running. */
301 int waiting_for_stop_reply;
302
303 /* True if the stub reports support for non-stop mode. */
304 int non_stop_aware;
305
306 /* True if the stub reports support for vCont;t. */
307 int support_vCont_t;
308 };
309
310 /* Returns true if the multi-process extensions are in effect. */
311 static int
312 remote_multi_process_p (struct remote_state *rs)
313 {
314 return rs->extended && rs->multi_process_aware;
315 }
316
317 /* This data could be associated with a target, but we do not always
318 have access to the current target when we need it, so for now it is
319 static. This will be fine for as long as only one target is in use
320 at a time. */
321 static struct remote_state remote_state;
322
323 static struct remote_state *
324 get_remote_state_raw (void)
325 {
326 return &remote_state;
327 }
328
329 /* Description of the remote protocol for a given architecture. */
330
331 struct packet_reg
332 {
333 long offset; /* Offset into G packet. */
334 long regnum; /* GDB's internal register number. */
335 LONGEST pnum; /* Remote protocol register number. */
336 int in_g_packet; /* Always part of G packet. */
337 /* long size in bytes; == register_size (target_gdbarch, regnum);
338 at present. */
339 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
340 at present. */
341 };
342
343 struct remote_arch_state
344 {
345 /* Description of the remote protocol registers. */
346 long sizeof_g_packet;
347
348 /* Description of the remote protocol registers indexed by REGNUM
349 (making an array gdbarch_num_regs in size). */
350 struct packet_reg *regs;
351
352 /* This is the size (in chars) of the first response to the ``g''
353 packet. It is used as a heuristic when determining the maximum
354 size of memory-read and memory-write packets. A target will
355 typically only reserve a buffer large enough to hold the ``g''
356 packet. The size does not include packet overhead (headers and
357 trailers). */
358 long actual_register_packet_size;
359
360 /* This is the maximum size (in chars) of a non read/write packet.
361 It is also used as a cap on the size of read/write packets. */
362 long remote_packet_size;
363 };
364
365
366 /* Handle for retreving the remote protocol data from gdbarch. */
367 static struct gdbarch_data *remote_gdbarch_data_handle;
368
369 static struct remote_arch_state *
370 get_remote_arch_state (void)
371 {
372 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
373 }
374
375 /* Fetch the global remote target state. */
376
377 static struct remote_state *
378 get_remote_state (void)
379 {
380 /* Make sure that the remote architecture state has been
381 initialized, because doing so might reallocate rs->buf. Any
382 function which calls getpkt also needs to be mindful of changes
383 to rs->buf, but this call limits the number of places which run
384 into trouble. */
385 get_remote_arch_state ();
386
387 return get_remote_state_raw ();
388 }
389
390 static int
391 compare_pnums (const void *lhs_, const void *rhs_)
392 {
393 const struct packet_reg * const *lhs = lhs_;
394 const struct packet_reg * const *rhs = rhs_;
395
396 if ((*lhs)->pnum < (*rhs)->pnum)
397 return -1;
398 else if ((*lhs)->pnum == (*rhs)->pnum)
399 return 0;
400 else
401 return 1;
402 }
403
404 static void *
405 init_remote_state (struct gdbarch *gdbarch)
406 {
407 int regnum, num_remote_regs, offset;
408 struct remote_state *rs = get_remote_state_raw ();
409 struct remote_arch_state *rsa;
410 struct packet_reg **remote_regs;
411
412 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
413
414 /* Use the architecture to build a regnum<->pnum table, which will be
415 1:1 unless a feature set specifies otherwise. */
416 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
417 gdbarch_num_regs (gdbarch),
418 struct packet_reg);
419 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
420 {
421 struct packet_reg *r = &rsa->regs[regnum];
422
423 if (register_size (gdbarch, regnum) == 0)
424 /* Do not try to fetch zero-sized (placeholder) registers. */
425 r->pnum = -1;
426 else
427 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
428
429 r->regnum = regnum;
430 }
431
432 /* Define the g/G packet format as the contents of each register
433 with a remote protocol number, in order of ascending protocol
434 number. */
435
436 remote_regs = alloca (gdbarch_num_regs (gdbarch)
437 * sizeof (struct packet_reg *));
438 for (num_remote_regs = 0, regnum = 0;
439 regnum < gdbarch_num_regs (gdbarch);
440 regnum++)
441 if (rsa->regs[regnum].pnum != -1)
442 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
443
444 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
445 compare_pnums);
446
447 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
448 {
449 remote_regs[regnum]->in_g_packet = 1;
450 remote_regs[regnum]->offset = offset;
451 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
452 }
453
454 /* Record the maximum possible size of the g packet - it may turn out
455 to be smaller. */
456 rsa->sizeof_g_packet = offset;
457
458 /* Default maximum number of characters in a packet body. Many
459 remote stubs have a hardwired buffer size of 400 bytes
460 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
461 as the maximum packet-size to ensure that the packet and an extra
462 NUL character can always fit in the buffer. This stops GDB
463 trashing stubs that try to squeeze an extra NUL into what is
464 already a full buffer (As of 1999-12-04 that was most stubs). */
465 rsa->remote_packet_size = 400 - 1;
466
467 /* This one is filled in when a ``g'' packet is received. */
468 rsa->actual_register_packet_size = 0;
469
470 /* Should rsa->sizeof_g_packet needs more space than the
471 default, adjust the size accordingly. Remember that each byte is
472 encoded as two characters. 32 is the overhead for the packet
473 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
474 (``$NN:G...#NN'') is a better guess, the below has been padded a
475 little. */
476 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
477 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
478
479 /* Make sure that the packet buffer is plenty big enough for
480 this architecture. */
481 if (rs->buf_size < rsa->remote_packet_size)
482 {
483 rs->buf_size = 2 * rsa->remote_packet_size;
484 rs->buf = xrealloc (rs->buf, rs->buf_size);
485 }
486
487 return rsa;
488 }
489
490 /* Return the current allowed size of a remote packet. This is
491 inferred from the current architecture, and should be used to
492 limit the length of outgoing packets. */
493 static long
494 get_remote_packet_size (void)
495 {
496 struct remote_state *rs = get_remote_state ();
497 struct remote_arch_state *rsa = get_remote_arch_state ();
498
499 if (rs->explicit_packet_size)
500 return rs->explicit_packet_size;
501
502 return rsa->remote_packet_size;
503 }
504
505 static struct packet_reg *
506 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
507 {
508 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
509 return NULL;
510 else
511 {
512 struct packet_reg *r = &rsa->regs[regnum];
513 gdb_assert (r->regnum == regnum);
514 return r;
515 }
516 }
517
518 static struct packet_reg *
519 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
520 {
521 int i;
522 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
523 {
524 struct packet_reg *r = &rsa->regs[i];
525 if (r->pnum == pnum)
526 return r;
527 }
528 return NULL;
529 }
530
531 /* FIXME: graces/2002-08-08: These variables should eventually be
532 bound to an instance of the target object (as in gdbarch-tdep()),
533 when such a thing exists. */
534
535 /* This is set to the data address of the access causing the target
536 to stop for a watchpoint. */
537 static CORE_ADDR remote_watch_data_address;
538
539 /* This is non-zero if target stopped for a watchpoint. */
540 static int remote_stopped_by_watchpoint_p;
541
542 static struct target_ops remote_ops;
543
544 static struct target_ops extended_remote_ops;
545
546 static int remote_async_mask_value = 1;
547
548 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
549 ``forever'' still use the normal timeout mechanism. This is
550 currently used by the ASYNC code to guarentee that target reads
551 during the initial connect always time-out. Once getpkt has been
552 modified to return a timeout indication and, in turn
553 remote_wait()/wait_for_inferior() have gained a timeout parameter
554 this can go away. */
555 static int wait_forever_enabled_p = 1;
556
557
558 /* This variable chooses whether to send a ^C or a break when the user
559 requests program interruption. Although ^C is usually what remote
560 systems expect, and that is the default here, sometimes a break is
561 preferable instead. */
562
563 static int remote_break;
564
565 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
566 remote_open knows that we don't have a file open when the program
567 starts. */
568 static struct serial *remote_desc = NULL;
569
570 /* This variable sets the number of bits in an address that are to be
571 sent in a memory ("M" or "m") packet. Normally, after stripping
572 leading zeros, the entire address would be sent. This variable
573 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
574 initial implementation of remote.c restricted the address sent in
575 memory packets to ``host::sizeof long'' bytes - (typically 32
576 bits). Consequently, for 64 bit targets, the upper 32 bits of an
577 address was never sent. Since fixing this bug may cause a break in
578 some remote targets this variable is principly provided to
579 facilitate backward compatibility. */
580
581 static int remote_address_size;
582
583 /* Temporary to track who currently owns the terminal. See
584 remote_terminal_* for more details. */
585
586 static int remote_async_terminal_ours_p;
587
588 /* The executable file to use for "run" on the remote side. */
589
590 static char *remote_exec_file = "";
591
592 \f
593 /* User configurable variables for the number of characters in a
594 memory read/write packet. MIN (rsa->remote_packet_size,
595 rsa->sizeof_g_packet) is the default. Some targets need smaller
596 values (fifo overruns, et.al.) and some users need larger values
597 (speed up transfers). The variables ``preferred_*'' (the user
598 request), ``current_*'' (what was actually set) and ``forced_*''
599 (Positive - a soft limit, negative - a hard limit). */
600
601 struct memory_packet_config
602 {
603 char *name;
604 long size;
605 int fixed_p;
606 };
607
608 /* Compute the current size of a read/write packet. Since this makes
609 use of ``actual_register_packet_size'' the computation is dynamic. */
610
611 static long
612 get_memory_packet_size (struct memory_packet_config *config)
613 {
614 struct remote_state *rs = get_remote_state ();
615 struct remote_arch_state *rsa = get_remote_arch_state ();
616
617 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
618 law?) that some hosts don't cope very well with large alloca()
619 calls. Eventually the alloca() code will be replaced by calls to
620 xmalloc() and make_cleanups() allowing this restriction to either
621 be lifted or removed. */
622 #ifndef MAX_REMOTE_PACKET_SIZE
623 #define MAX_REMOTE_PACKET_SIZE 16384
624 #endif
625 /* NOTE: 20 ensures we can write at least one byte. */
626 #ifndef MIN_REMOTE_PACKET_SIZE
627 #define MIN_REMOTE_PACKET_SIZE 20
628 #endif
629 long what_they_get;
630 if (config->fixed_p)
631 {
632 if (config->size <= 0)
633 what_they_get = MAX_REMOTE_PACKET_SIZE;
634 else
635 what_they_get = config->size;
636 }
637 else
638 {
639 what_they_get = get_remote_packet_size ();
640 /* Limit the packet to the size specified by the user. */
641 if (config->size > 0
642 && what_they_get > config->size)
643 what_they_get = config->size;
644
645 /* Limit it to the size of the targets ``g'' response unless we have
646 permission from the stub to use a larger packet size. */
647 if (rs->explicit_packet_size == 0
648 && rsa->actual_register_packet_size > 0
649 && what_they_get > rsa->actual_register_packet_size)
650 what_they_get = rsa->actual_register_packet_size;
651 }
652 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
653 what_they_get = MAX_REMOTE_PACKET_SIZE;
654 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
655 what_they_get = MIN_REMOTE_PACKET_SIZE;
656
657 /* Make sure there is room in the global buffer for this packet
658 (including its trailing NUL byte). */
659 if (rs->buf_size < what_they_get + 1)
660 {
661 rs->buf_size = 2 * what_they_get;
662 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
663 }
664
665 return what_they_get;
666 }
667
668 /* Update the size of a read/write packet. If they user wants
669 something really big then do a sanity check. */
670
671 static void
672 set_memory_packet_size (char *args, struct memory_packet_config *config)
673 {
674 int fixed_p = config->fixed_p;
675 long size = config->size;
676 if (args == NULL)
677 error (_("Argument required (integer, `fixed' or `limited')."));
678 else if (strcmp (args, "hard") == 0
679 || strcmp (args, "fixed") == 0)
680 fixed_p = 1;
681 else if (strcmp (args, "soft") == 0
682 || strcmp (args, "limit") == 0)
683 fixed_p = 0;
684 else
685 {
686 char *end;
687 size = strtoul (args, &end, 0);
688 if (args == end)
689 error (_("Invalid %s (bad syntax)."), config->name);
690 #if 0
691 /* Instead of explicitly capping the size of a packet to
692 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
693 instead allowed to set the size to something arbitrarily
694 large. */
695 if (size > MAX_REMOTE_PACKET_SIZE)
696 error (_("Invalid %s (too large)."), config->name);
697 #endif
698 }
699 /* Extra checks? */
700 if (fixed_p && !config->fixed_p)
701 {
702 if (! query (_("The target may not be able to correctly handle a %s\n"
703 "of %ld bytes. Change the packet size? "),
704 config->name, size))
705 error (_("Packet size not changed."));
706 }
707 /* Update the config. */
708 config->fixed_p = fixed_p;
709 config->size = size;
710 }
711
712 static void
713 show_memory_packet_size (struct memory_packet_config *config)
714 {
715 printf_filtered (_("The %s is %ld. "), config->name, config->size);
716 if (config->fixed_p)
717 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
718 get_memory_packet_size (config));
719 else
720 printf_filtered (_("Packets are limited to %ld bytes.\n"),
721 get_memory_packet_size (config));
722 }
723
724 static struct memory_packet_config memory_write_packet_config =
725 {
726 "memory-write-packet-size",
727 };
728
729 static void
730 set_memory_write_packet_size (char *args, int from_tty)
731 {
732 set_memory_packet_size (args, &memory_write_packet_config);
733 }
734
735 static void
736 show_memory_write_packet_size (char *args, int from_tty)
737 {
738 show_memory_packet_size (&memory_write_packet_config);
739 }
740
741 static long
742 get_memory_write_packet_size (void)
743 {
744 return get_memory_packet_size (&memory_write_packet_config);
745 }
746
747 static struct memory_packet_config memory_read_packet_config =
748 {
749 "memory-read-packet-size",
750 };
751
752 static void
753 set_memory_read_packet_size (char *args, int from_tty)
754 {
755 set_memory_packet_size (args, &memory_read_packet_config);
756 }
757
758 static void
759 show_memory_read_packet_size (char *args, int from_tty)
760 {
761 show_memory_packet_size (&memory_read_packet_config);
762 }
763
764 static long
765 get_memory_read_packet_size (void)
766 {
767 long size = get_memory_packet_size (&memory_read_packet_config);
768 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
769 extra buffer size argument before the memory read size can be
770 increased beyond this. */
771 if (size > get_remote_packet_size ())
772 size = get_remote_packet_size ();
773 return size;
774 }
775
776 \f
777 /* Generic configuration support for packets the stub optionally
778 supports. Allows the user to specify the use of the packet as well
779 as allowing GDB to auto-detect support in the remote stub. */
780
781 enum packet_support
782 {
783 PACKET_SUPPORT_UNKNOWN = 0,
784 PACKET_ENABLE,
785 PACKET_DISABLE
786 };
787
788 struct packet_config
789 {
790 const char *name;
791 const char *title;
792 enum auto_boolean detect;
793 enum packet_support support;
794 };
795
796 /* Analyze a packet's return value and update the packet config
797 accordingly. */
798
799 enum packet_result
800 {
801 PACKET_ERROR,
802 PACKET_OK,
803 PACKET_UNKNOWN
804 };
805
806 static void
807 update_packet_config (struct packet_config *config)
808 {
809 switch (config->detect)
810 {
811 case AUTO_BOOLEAN_TRUE:
812 config->support = PACKET_ENABLE;
813 break;
814 case AUTO_BOOLEAN_FALSE:
815 config->support = PACKET_DISABLE;
816 break;
817 case AUTO_BOOLEAN_AUTO:
818 config->support = PACKET_SUPPORT_UNKNOWN;
819 break;
820 }
821 }
822
823 static void
824 show_packet_config_cmd (struct packet_config *config)
825 {
826 char *support = "internal-error";
827 switch (config->support)
828 {
829 case PACKET_ENABLE:
830 support = "enabled";
831 break;
832 case PACKET_DISABLE:
833 support = "disabled";
834 break;
835 case PACKET_SUPPORT_UNKNOWN:
836 support = "unknown";
837 break;
838 }
839 switch (config->detect)
840 {
841 case AUTO_BOOLEAN_AUTO:
842 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
843 config->name, support);
844 break;
845 case AUTO_BOOLEAN_TRUE:
846 case AUTO_BOOLEAN_FALSE:
847 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
848 config->name, support);
849 break;
850 }
851 }
852
853 static void
854 add_packet_config_cmd (struct packet_config *config, const char *name,
855 const char *title, int legacy)
856 {
857 char *set_doc;
858 char *show_doc;
859 char *cmd_name;
860
861 config->name = name;
862 config->title = title;
863 config->detect = AUTO_BOOLEAN_AUTO;
864 config->support = PACKET_SUPPORT_UNKNOWN;
865 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
866 name, title);
867 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
868 name, title);
869 /* set/show TITLE-packet {auto,on,off} */
870 cmd_name = xstrprintf ("%s-packet", title);
871 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
872 &config->detect, set_doc, show_doc, NULL, /* help_doc */
873 set_remote_protocol_packet_cmd,
874 show_remote_protocol_packet_cmd,
875 &remote_set_cmdlist, &remote_show_cmdlist);
876 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
877 if (legacy)
878 {
879 char *legacy_name;
880 legacy_name = xstrprintf ("%s-packet", name);
881 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
882 &remote_set_cmdlist);
883 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
884 &remote_show_cmdlist);
885 }
886 }
887
888 static enum packet_result
889 packet_check_result (const char *buf)
890 {
891 if (buf[0] != '\0')
892 {
893 /* The stub recognized the packet request. Check that the
894 operation succeeded. */
895 if (buf[0] == 'E'
896 && isxdigit (buf[1]) && isxdigit (buf[2])
897 && buf[3] == '\0')
898 /* "Enn" - definitly an error. */
899 return PACKET_ERROR;
900
901 /* Always treat "E." as an error. This will be used for
902 more verbose error messages, such as E.memtypes. */
903 if (buf[0] == 'E' && buf[1] == '.')
904 return PACKET_ERROR;
905
906 /* The packet may or may not be OK. Just assume it is. */
907 return PACKET_OK;
908 }
909 else
910 /* The stub does not support the packet. */
911 return PACKET_UNKNOWN;
912 }
913
914 static enum packet_result
915 packet_ok (const char *buf, struct packet_config *config)
916 {
917 enum packet_result result;
918
919 result = packet_check_result (buf);
920 switch (result)
921 {
922 case PACKET_OK:
923 case PACKET_ERROR:
924 /* The stub recognized the packet request. */
925 switch (config->support)
926 {
927 case PACKET_SUPPORT_UNKNOWN:
928 if (remote_debug)
929 fprintf_unfiltered (gdb_stdlog,
930 "Packet %s (%s) is supported\n",
931 config->name, config->title);
932 config->support = PACKET_ENABLE;
933 break;
934 case PACKET_DISABLE:
935 internal_error (__FILE__, __LINE__,
936 _("packet_ok: attempt to use a disabled packet"));
937 break;
938 case PACKET_ENABLE:
939 break;
940 }
941 break;
942 case PACKET_UNKNOWN:
943 /* The stub does not support the packet. */
944 switch (config->support)
945 {
946 case PACKET_ENABLE:
947 if (config->detect == AUTO_BOOLEAN_AUTO)
948 /* If the stub previously indicated that the packet was
949 supported then there is a protocol error.. */
950 error (_("Protocol error: %s (%s) conflicting enabled responses."),
951 config->name, config->title);
952 else
953 /* The user set it wrong. */
954 error (_("Enabled packet %s (%s) not recognized by stub"),
955 config->name, config->title);
956 break;
957 case PACKET_SUPPORT_UNKNOWN:
958 if (remote_debug)
959 fprintf_unfiltered (gdb_stdlog,
960 "Packet %s (%s) is NOT supported\n",
961 config->name, config->title);
962 config->support = PACKET_DISABLE;
963 break;
964 case PACKET_DISABLE:
965 break;
966 }
967 break;
968 }
969
970 return result;
971 }
972
973 enum {
974 PACKET_vCont = 0,
975 PACKET_X,
976 PACKET_qSymbol,
977 PACKET_P,
978 PACKET_p,
979 PACKET_Z0,
980 PACKET_Z1,
981 PACKET_Z2,
982 PACKET_Z3,
983 PACKET_Z4,
984 PACKET_vFile_open,
985 PACKET_vFile_pread,
986 PACKET_vFile_pwrite,
987 PACKET_vFile_close,
988 PACKET_vFile_unlink,
989 PACKET_qXfer_auxv,
990 PACKET_qXfer_features,
991 PACKET_qXfer_libraries,
992 PACKET_qXfer_memory_map,
993 PACKET_qXfer_spu_read,
994 PACKET_qXfer_spu_write,
995 PACKET_qXfer_osdata,
996 PACKET_qGetTLSAddr,
997 PACKET_qSupported,
998 PACKET_QPassSignals,
999 PACKET_qSearch_memory,
1000 PACKET_vAttach,
1001 PACKET_vRun,
1002 PACKET_QStartNoAckMode,
1003 PACKET_vKill,
1004 PACKET_MAX
1005 };
1006
1007 static struct packet_config remote_protocol_packets[PACKET_MAX];
1008
1009 static void
1010 set_remote_protocol_packet_cmd (char *args, int from_tty,
1011 struct cmd_list_element *c)
1012 {
1013 struct packet_config *packet;
1014
1015 for (packet = remote_protocol_packets;
1016 packet < &remote_protocol_packets[PACKET_MAX];
1017 packet++)
1018 {
1019 if (&packet->detect == c->var)
1020 {
1021 update_packet_config (packet);
1022 return;
1023 }
1024 }
1025 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1026 c->name);
1027 }
1028
1029 static void
1030 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1031 struct cmd_list_element *c,
1032 const char *value)
1033 {
1034 struct packet_config *packet;
1035
1036 for (packet = remote_protocol_packets;
1037 packet < &remote_protocol_packets[PACKET_MAX];
1038 packet++)
1039 {
1040 if (&packet->detect == c->var)
1041 {
1042 show_packet_config_cmd (packet);
1043 return;
1044 }
1045 }
1046 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1047 c->name);
1048 }
1049
1050 /* Should we try one of the 'Z' requests? */
1051
1052 enum Z_packet_type
1053 {
1054 Z_PACKET_SOFTWARE_BP,
1055 Z_PACKET_HARDWARE_BP,
1056 Z_PACKET_WRITE_WP,
1057 Z_PACKET_READ_WP,
1058 Z_PACKET_ACCESS_WP,
1059 NR_Z_PACKET_TYPES
1060 };
1061
1062 /* For compatibility with older distributions. Provide a ``set remote
1063 Z-packet ...'' command that updates all the Z packet types. */
1064
1065 static enum auto_boolean remote_Z_packet_detect;
1066
1067 static void
1068 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1069 struct cmd_list_element *c)
1070 {
1071 int i;
1072 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1073 {
1074 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1075 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1076 }
1077 }
1078
1079 static void
1080 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c,
1082 const char *value)
1083 {
1084 int i;
1085 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1086 {
1087 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1088 }
1089 }
1090
1091 /* Should we try the 'ThreadInfo' query packet?
1092
1093 This variable (NOT available to the user: auto-detect only!)
1094 determines whether GDB will use the new, simpler "ThreadInfo"
1095 query or the older, more complex syntax for thread queries.
1096 This is an auto-detect variable (set to true at each connect,
1097 and set to false when the target fails to recognize it). */
1098
1099 static int use_threadinfo_query;
1100 static int use_threadextra_query;
1101
1102 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1103 static struct async_signal_handler *sigint_remote_twice_token;
1104 static struct async_signal_handler *sigint_remote_token;
1105
1106 \f
1107 /* Asynchronous signal handle registered as event loop source for
1108 when we have pending events ready to be passed to the core. */
1109
1110 static struct async_event_handler *remote_async_inferior_event_token;
1111
1112 /* Asynchronous signal handle registered as event loop source for when
1113 the remote sent us a %Stop notification. The registered callback
1114 will do a vStopped sequence to pull the rest of the events out of
1115 the remote side into our event queue. */
1116
1117 static struct async_event_handler *remote_async_get_pending_events_token;
1118 \f
1119
1120 static ptid_t magic_null_ptid;
1121 static ptid_t not_sent_ptid;
1122 static ptid_t any_thread_ptid;
1123
1124 /* These are the threads which we last sent to the remote system. The
1125 TID member will be -1 for all or -2 for not sent yet. */
1126
1127 static ptid_t general_thread;
1128 static ptid_t continue_thread;
1129
1130 static void
1131 notice_new_inferiors (ptid_t currthread)
1132 {
1133 /* If this is a new thread, add it to GDB's thread list.
1134 If we leave it up to WFI to do this, bad things will happen. */
1135
1136 if (in_thread_list (currthread) && is_exited (currthread))
1137 {
1138 /* We're seeing an event on a thread id we knew had exited.
1139 This has to be a new thread reusing the old id. Add it. */
1140 add_thread (currthread);
1141 return;
1142 }
1143
1144 if (!in_thread_list (currthread))
1145 {
1146 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1147 {
1148 /* inferior_ptid has no thread member yet. This can happen
1149 with the vAttach -> remote_wait,"TAAthread:" path if the
1150 stub doesn't support qC. This is the first stop reported
1151 after an attach, so this is the main thread. Update the
1152 ptid in the thread list. */
1153 thread_change_ptid (inferior_ptid, currthread);
1154 return;
1155 }
1156
1157 if (ptid_equal (magic_null_ptid, inferior_ptid))
1158 {
1159 /* inferior_ptid is not set yet. This can happen with the
1160 vRun -> remote_wait,"TAAthread:" path if the stub
1161 doesn't support qC. This is the first stop reported
1162 after an attach, so this is the main thread. Update the
1163 ptid in the thread list. */
1164 thread_change_ptid (inferior_ptid, currthread);
1165 return;
1166 }
1167
1168 /* When connecting to a target remote, or to a target
1169 extended-remote which already was debugging an inferior, we
1170 may not know about it yet. Add it before adding its child
1171 thread, so notifications are emitted in a sensible order. */
1172 if (!in_inferior_list (ptid_get_pid (currthread)))
1173 add_inferior (ptid_get_pid (currthread));
1174
1175 /* This is really a new thread. Add it. */
1176 add_thread (currthread);
1177 }
1178 }
1179
1180 /* Call this function as a result of
1181 1) A halt indication (T packet) containing a thread id
1182 2) A direct query of currthread
1183 3) Successful execution of set thread
1184 */
1185
1186 static void
1187 record_currthread (ptid_t currthread)
1188 {
1189 general_thread = currthread;
1190
1191 if (ptid_equal (currthread, minus_one_ptid))
1192 /* We're just invalidating the local thread mirror. */
1193 return;
1194
1195 notice_new_inferiors (currthread);
1196 }
1197
1198 static char *last_pass_packet;
1199
1200 /* If 'QPassSignals' is supported, tell the remote stub what signals
1201 it can simply pass through to the inferior without reporting. */
1202
1203 static void
1204 remote_pass_signals (void)
1205 {
1206 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1207 {
1208 char *pass_packet, *p;
1209 int numsigs = (int) TARGET_SIGNAL_LAST;
1210 int count = 0, i;
1211
1212 gdb_assert (numsigs < 256);
1213 for (i = 0; i < numsigs; i++)
1214 {
1215 if (signal_stop_state (i) == 0
1216 && signal_print_state (i) == 0
1217 && signal_pass_state (i) == 1)
1218 count++;
1219 }
1220 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1221 strcpy (pass_packet, "QPassSignals:");
1222 p = pass_packet + strlen (pass_packet);
1223 for (i = 0; i < numsigs; i++)
1224 {
1225 if (signal_stop_state (i) == 0
1226 && signal_print_state (i) == 0
1227 && signal_pass_state (i) == 1)
1228 {
1229 if (i >= 16)
1230 *p++ = tohex (i >> 4);
1231 *p++ = tohex (i & 15);
1232 if (count)
1233 *p++ = ';';
1234 else
1235 break;
1236 count--;
1237 }
1238 }
1239 *p = 0;
1240 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1241 {
1242 struct remote_state *rs = get_remote_state ();
1243 char *buf = rs->buf;
1244
1245 putpkt (pass_packet);
1246 getpkt (&rs->buf, &rs->buf_size, 0);
1247 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1248 if (last_pass_packet)
1249 xfree (last_pass_packet);
1250 last_pass_packet = pass_packet;
1251 }
1252 else
1253 xfree (pass_packet);
1254 }
1255 }
1256
1257 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1258 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1259 thread. If GEN is set, set the general thread, if not, then set
1260 the step/continue thread. */
1261 static void
1262 set_thread (struct ptid ptid, int gen)
1263 {
1264 struct remote_state *rs = get_remote_state ();
1265 ptid_t state = gen ? general_thread : continue_thread;
1266 char *buf = rs->buf;
1267 char *endbuf = rs->buf + get_remote_packet_size ();
1268
1269 if (ptid_equal (state, ptid))
1270 return;
1271
1272 *buf++ = 'H';
1273 *buf++ = gen ? 'g' : 'c';
1274 if (ptid_equal (ptid, magic_null_ptid))
1275 xsnprintf (buf, endbuf - buf, "0");
1276 else if (ptid_equal (ptid, any_thread_ptid))
1277 xsnprintf (buf, endbuf - buf, "0");
1278 else if (ptid_equal (ptid, minus_one_ptid))
1279 xsnprintf (buf, endbuf - buf, "-1");
1280 else
1281 write_ptid (buf, endbuf, ptid);
1282 putpkt (rs->buf);
1283 getpkt (&rs->buf, &rs->buf_size, 0);
1284 if (gen)
1285 general_thread = ptid;
1286 else
1287 continue_thread = ptid;
1288 }
1289
1290 static void
1291 set_general_thread (struct ptid ptid)
1292 {
1293 set_thread (ptid, 1);
1294 }
1295
1296 static void
1297 set_continue_thread (struct ptid ptid)
1298 {
1299 set_thread (ptid, 0);
1300 }
1301
1302 /* Change the remote current process. Which thread within the process
1303 ends up selected isn't important, as long as it is the same process
1304 as what INFERIOR_PTID points to.
1305
1306 This comes from that fact that there is no explicit notion of
1307 "selected process" in the protocol. The selected process for
1308 general operations is the process the selected general thread
1309 belongs to. */
1310
1311 static void
1312 set_general_process (void)
1313 {
1314 struct remote_state *rs = get_remote_state ();
1315
1316 /* If the remote can't handle multiple processes, don't bother. */
1317 if (!remote_multi_process_p (rs))
1318 return;
1319
1320 /* We only need to change the remote current thread if it's pointing
1321 at some other process. */
1322 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1323 set_general_thread (inferior_ptid);
1324 }
1325
1326 \f
1327 /* Return nonzero if the thread PTID is still alive on the remote
1328 system. */
1329
1330 static int
1331 remote_thread_alive (ptid_t ptid)
1332 {
1333 struct remote_state *rs = get_remote_state ();
1334 int tid = ptid_get_tid (ptid);
1335 char *p, *endp;
1336
1337 if (ptid_equal (ptid, magic_null_ptid))
1338 /* The main thread is always alive. */
1339 return 1;
1340
1341 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1342 /* The main thread is always alive. This can happen after a
1343 vAttach, if the remote side doesn't support
1344 multi-threading. */
1345 return 1;
1346
1347 p = rs->buf;
1348 endp = rs->buf + get_remote_packet_size ();
1349
1350 *p++ = 'T';
1351 write_ptid (p, endp, ptid);
1352
1353 putpkt (rs->buf);
1354 getpkt (&rs->buf, &rs->buf_size, 0);
1355 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1356 }
1357
1358 /* About these extended threadlist and threadinfo packets. They are
1359 variable length packets but, the fields within them are often fixed
1360 length. They are redundent enough to send over UDP as is the
1361 remote protocol in general. There is a matching unit test module
1362 in libstub. */
1363
1364 #define OPAQUETHREADBYTES 8
1365
1366 /* a 64 bit opaque identifier */
1367 typedef unsigned char threadref[OPAQUETHREADBYTES];
1368
1369 /* WARNING: This threadref data structure comes from the remote O.S.,
1370 libstub protocol encoding, and remote.c. it is not particularly
1371 changable. */
1372
1373 /* Right now, the internal structure is int. We want it to be bigger.
1374 Plan to fix this.
1375 */
1376
1377 typedef int gdb_threadref; /* Internal GDB thread reference. */
1378
1379 /* gdb_ext_thread_info is an internal GDB data structure which is
1380 equivalent to the reply of the remote threadinfo packet. */
1381
1382 struct gdb_ext_thread_info
1383 {
1384 threadref threadid; /* External form of thread reference. */
1385 int active; /* Has state interesting to GDB?
1386 regs, stack. */
1387 char display[256]; /* Brief state display, name,
1388 blocked/suspended. */
1389 char shortname[32]; /* To be used to name threads. */
1390 char more_display[256]; /* Long info, statistics, queue depth,
1391 whatever. */
1392 };
1393
1394 /* The volume of remote transfers can be limited by submitting
1395 a mask containing bits specifying the desired information.
1396 Use a union of these values as the 'selection' parameter to
1397 get_thread_info. FIXME: Make these TAG names more thread specific.
1398 */
1399
1400 #define TAG_THREADID 1
1401 #define TAG_EXISTS 2
1402 #define TAG_DISPLAY 4
1403 #define TAG_THREADNAME 8
1404 #define TAG_MOREDISPLAY 16
1405
1406 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1407
1408 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1409
1410 static char *unpack_nibble (char *buf, int *val);
1411
1412 static char *pack_nibble (char *buf, int nibble);
1413
1414 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1415
1416 static char *unpack_byte (char *buf, int *value);
1417
1418 static char *pack_int (char *buf, int value);
1419
1420 static char *unpack_int (char *buf, int *value);
1421
1422 static char *unpack_string (char *src, char *dest, int length);
1423
1424 static char *pack_threadid (char *pkt, threadref *id);
1425
1426 static char *unpack_threadid (char *inbuf, threadref *id);
1427
1428 void int_to_threadref (threadref *id, int value);
1429
1430 static int threadref_to_int (threadref *ref);
1431
1432 static void copy_threadref (threadref *dest, threadref *src);
1433
1434 static int threadmatch (threadref *dest, threadref *src);
1435
1436 static char *pack_threadinfo_request (char *pkt, int mode,
1437 threadref *id);
1438
1439 static int remote_unpack_thread_info_response (char *pkt,
1440 threadref *expectedref,
1441 struct gdb_ext_thread_info
1442 *info);
1443
1444
1445 static int remote_get_threadinfo (threadref *threadid,
1446 int fieldset, /*TAG mask */
1447 struct gdb_ext_thread_info *info);
1448
1449 static char *pack_threadlist_request (char *pkt, int startflag,
1450 int threadcount,
1451 threadref *nextthread);
1452
1453 static int parse_threadlist_response (char *pkt,
1454 int result_limit,
1455 threadref *original_echo,
1456 threadref *resultlist,
1457 int *doneflag);
1458
1459 static int remote_get_threadlist (int startflag,
1460 threadref *nextthread,
1461 int result_limit,
1462 int *done,
1463 int *result_count,
1464 threadref *threadlist);
1465
1466 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1467
1468 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1469 void *context, int looplimit);
1470
1471 static int remote_newthread_step (threadref *ref, void *context);
1472
1473
1474 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1475 buffer we're allowed to write to. Returns
1476 BUF+CHARACTERS_WRITTEN. */
1477
1478 static char *
1479 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1480 {
1481 int pid, tid;
1482 struct remote_state *rs = get_remote_state ();
1483
1484 if (remote_multi_process_p (rs))
1485 {
1486 pid = ptid_get_pid (ptid);
1487 if (pid < 0)
1488 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1489 else
1490 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1491 }
1492 tid = ptid_get_tid (ptid);
1493 if (tid < 0)
1494 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1495 else
1496 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1497
1498 return buf;
1499 }
1500
1501 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1502 passed the last parsed char. Returns null_ptid on error. */
1503
1504 static ptid_t
1505 read_ptid (char *buf, char **obuf)
1506 {
1507 char *p = buf;
1508 char *pp;
1509 ULONGEST pid = 0, tid = 0;
1510 ptid_t ptid;
1511
1512 if (*p == 'p')
1513 {
1514 /* Multi-process ptid. */
1515 pp = unpack_varlen_hex (p + 1, &pid);
1516 if (*pp != '.')
1517 error (_("invalid remote ptid: %s\n"), p);
1518
1519 p = pp;
1520 pp = unpack_varlen_hex (p + 1, &tid);
1521 if (obuf)
1522 *obuf = pp;
1523 return ptid_build (pid, 0, tid);
1524 }
1525
1526 /* No multi-process. Just a tid. */
1527 pp = unpack_varlen_hex (p, &tid);
1528
1529 /* Since the stub is not sending a process id, then default to
1530 what's in inferior_ptid, unless it's null at this point. If so,
1531 then since there's no way to know the pid of the reported
1532 threads, use the magic number. */
1533 if (ptid_equal (inferior_ptid, null_ptid))
1534 pid = ptid_get_pid (magic_null_ptid);
1535 else
1536 pid = ptid_get_pid (inferior_ptid);
1537
1538 if (obuf)
1539 *obuf = pp;
1540 return ptid_build (pid, 0, tid);
1541 }
1542
1543 /* Encode 64 bits in 16 chars of hex. */
1544
1545 static const char hexchars[] = "0123456789abcdef";
1546
1547 static int
1548 ishex (int ch, int *val)
1549 {
1550 if ((ch >= 'a') && (ch <= 'f'))
1551 {
1552 *val = ch - 'a' + 10;
1553 return 1;
1554 }
1555 if ((ch >= 'A') && (ch <= 'F'))
1556 {
1557 *val = ch - 'A' + 10;
1558 return 1;
1559 }
1560 if ((ch >= '0') && (ch <= '9'))
1561 {
1562 *val = ch - '0';
1563 return 1;
1564 }
1565 return 0;
1566 }
1567
1568 static int
1569 stubhex (int ch)
1570 {
1571 if (ch >= 'a' && ch <= 'f')
1572 return ch - 'a' + 10;
1573 if (ch >= '0' && ch <= '9')
1574 return ch - '0';
1575 if (ch >= 'A' && ch <= 'F')
1576 return ch - 'A' + 10;
1577 return -1;
1578 }
1579
1580 static int
1581 stub_unpack_int (char *buff, int fieldlength)
1582 {
1583 int nibble;
1584 int retval = 0;
1585
1586 while (fieldlength)
1587 {
1588 nibble = stubhex (*buff++);
1589 retval |= nibble;
1590 fieldlength--;
1591 if (fieldlength)
1592 retval = retval << 4;
1593 }
1594 return retval;
1595 }
1596
1597 char *
1598 unpack_varlen_hex (char *buff, /* packet to parse */
1599 ULONGEST *result)
1600 {
1601 int nibble;
1602 ULONGEST retval = 0;
1603
1604 while (ishex (*buff, &nibble))
1605 {
1606 buff++;
1607 retval = retval << 4;
1608 retval |= nibble & 0x0f;
1609 }
1610 *result = retval;
1611 return buff;
1612 }
1613
1614 static char *
1615 unpack_nibble (char *buf, int *val)
1616 {
1617 *val = fromhex (*buf++);
1618 return buf;
1619 }
1620
1621 static char *
1622 pack_nibble (char *buf, int nibble)
1623 {
1624 *buf++ = hexchars[(nibble & 0x0f)];
1625 return buf;
1626 }
1627
1628 static char *
1629 pack_hex_byte (char *pkt, int byte)
1630 {
1631 *pkt++ = hexchars[(byte >> 4) & 0xf];
1632 *pkt++ = hexchars[(byte & 0xf)];
1633 return pkt;
1634 }
1635
1636 static char *
1637 unpack_byte (char *buf, int *value)
1638 {
1639 *value = stub_unpack_int (buf, 2);
1640 return buf + 2;
1641 }
1642
1643 static char *
1644 pack_int (char *buf, int value)
1645 {
1646 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1647 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1648 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1649 buf = pack_hex_byte (buf, (value & 0xff));
1650 return buf;
1651 }
1652
1653 static char *
1654 unpack_int (char *buf, int *value)
1655 {
1656 *value = stub_unpack_int (buf, 8);
1657 return buf + 8;
1658 }
1659
1660 #if 0 /* Currently unused, uncomment when needed. */
1661 static char *pack_string (char *pkt, char *string);
1662
1663 static char *
1664 pack_string (char *pkt, char *string)
1665 {
1666 char ch;
1667 int len;
1668
1669 len = strlen (string);
1670 if (len > 200)
1671 len = 200; /* Bigger than most GDB packets, junk??? */
1672 pkt = pack_hex_byte (pkt, len);
1673 while (len-- > 0)
1674 {
1675 ch = *string++;
1676 if ((ch == '\0') || (ch == '#'))
1677 ch = '*'; /* Protect encapsulation. */
1678 *pkt++ = ch;
1679 }
1680 return pkt;
1681 }
1682 #endif /* 0 (unused) */
1683
1684 static char *
1685 unpack_string (char *src, char *dest, int length)
1686 {
1687 while (length--)
1688 *dest++ = *src++;
1689 *dest = '\0';
1690 return src;
1691 }
1692
1693 static char *
1694 pack_threadid (char *pkt, threadref *id)
1695 {
1696 char *limit;
1697 unsigned char *altid;
1698
1699 altid = (unsigned char *) id;
1700 limit = pkt + BUF_THREAD_ID_SIZE;
1701 while (pkt < limit)
1702 pkt = pack_hex_byte (pkt, *altid++);
1703 return pkt;
1704 }
1705
1706
1707 static char *
1708 unpack_threadid (char *inbuf, threadref *id)
1709 {
1710 char *altref;
1711 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1712 int x, y;
1713
1714 altref = (char *) id;
1715
1716 while (inbuf < limit)
1717 {
1718 x = stubhex (*inbuf++);
1719 y = stubhex (*inbuf++);
1720 *altref++ = (x << 4) | y;
1721 }
1722 return inbuf;
1723 }
1724
1725 /* Externally, threadrefs are 64 bits but internally, they are still
1726 ints. This is due to a mismatch of specifications. We would like
1727 to use 64bit thread references internally. This is an adapter
1728 function. */
1729
1730 void
1731 int_to_threadref (threadref *id, int value)
1732 {
1733 unsigned char *scan;
1734
1735 scan = (unsigned char *) id;
1736 {
1737 int i = 4;
1738 while (i--)
1739 *scan++ = 0;
1740 }
1741 *scan++ = (value >> 24) & 0xff;
1742 *scan++ = (value >> 16) & 0xff;
1743 *scan++ = (value >> 8) & 0xff;
1744 *scan++ = (value & 0xff);
1745 }
1746
1747 static int
1748 threadref_to_int (threadref *ref)
1749 {
1750 int i, value = 0;
1751 unsigned char *scan;
1752
1753 scan = *ref;
1754 scan += 4;
1755 i = 4;
1756 while (i-- > 0)
1757 value = (value << 8) | ((*scan++) & 0xff);
1758 return value;
1759 }
1760
1761 static void
1762 copy_threadref (threadref *dest, threadref *src)
1763 {
1764 int i;
1765 unsigned char *csrc, *cdest;
1766
1767 csrc = (unsigned char *) src;
1768 cdest = (unsigned char *) dest;
1769 i = 8;
1770 while (i--)
1771 *cdest++ = *csrc++;
1772 }
1773
1774 static int
1775 threadmatch (threadref *dest, threadref *src)
1776 {
1777 /* Things are broken right now, so just assume we got a match. */
1778 #if 0
1779 unsigned char *srcp, *destp;
1780 int i, result;
1781 srcp = (char *) src;
1782 destp = (char *) dest;
1783
1784 result = 1;
1785 while (i-- > 0)
1786 result &= (*srcp++ == *destp++) ? 1 : 0;
1787 return result;
1788 #endif
1789 return 1;
1790 }
1791
1792 /*
1793 threadid:1, # always request threadid
1794 context_exists:2,
1795 display:4,
1796 unique_name:8,
1797 more_display:16
1798 */
1799
1800 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1801
1802 static char *
1803 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1804 {
1805 *pkt++ = 'q'; /* Info Query */
1806 *pkt++ = 'P'; /* process or thread info */
1807 pkt = pack_int (pkt, mode); /* mode */
1808 pkt = pack_threadid (pkt, id); /* threadid */
1809 *pkt = '\0'; /* terminate */
1810 return pkt;
1811 }
1812
1813 /* These values tag the fields in a thread info response packet. */
1814 /* Tagging the fields allows us to request specific fields and to
1815 add more fields as time goes by. */
1816
1817 #define TAG_THREADID 1 /* Echo the thread identifier. */
1818 #define TAG_EXISTS 2 /* Is this process defined enough to
1819 fetch registers and its stack? */
1820 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1821 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1822 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1823 the process. */
1824
1825 static int
1826 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1827 struct gdb_ext_thread_info *info)
1828 {
1829 struct remote_state *rs = get_remote_state ();
1830 int mask, length;
1831 int tag;
1832 threadref ref;
1833 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1834 int retval = 1;
1835
1836 /* info->threadid = 0; FIXME: implement zero_threadref. */
1837 info->active = 0;
1838 info->display[0] = '\0';
1839 info->shortname[0] = '\0';
1840 info->more_display[0] = '\0';
1841
1842 /* Assume the characters indicating the packet type have been
1843 stripped. */
1844 pkt = unpack_int (pkt, &mask); /* arg mask */
1845 pkt = unpack_threadid (pkt, &ref);
1846
1847 if (mask == 0)
1848 warning (_("Incomplete response to threadinfo request."));
1849 if (!threadmatch (&ref, expectedref))
1850 { /* This is an answer to a different request. */
1851 warning (_("ERROR RMT Thread info mismatch."));
1852 return 0;
1853 }
1854 copy_threadref (&info->threadid, &ref);
1855
1856 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1857
1858 /* Packets are terminated with nulls. */
1859 while ((pkt < limit) && mask && *pkt)
1860 {
1861 pkt = unpack_int (pkt, &tag); /* tag */
1862 pkt = unpack_byte (pkt, &length); /* length */
1863 if (!(tag & mask)) /* Tags out of synch with mask. */
1864 {
1865 warning (_("ERROR RMT: threadinfo tag mismatch."));
1866 retval = 0;
1867 break;
1868 }
1869 if (tag == TAG_THREADID)
1870 {
1871 if (length != 16)
1872 {
1873 warning (_("ERROR RMT: length of threadid is not 16."));
1874 retval = 0;
1875 break;
1876 }
1877 pkt = unpack_threadid (pkt, &ref);
1878 mask = mask & ~TAG_THREADID;
1879 continue;
1880 }
1881 if (tag == TAG_EXISTS)
1882 {
1883 info->active = stub_unpack_int (pkt, length);
1884 pkt += length;
1885 mask = mask & ~(TAG_EXISTS);
1886 if (length > 8)
1887 {
1888 warning (_("ERROR RMT: 'exists' length too long."));
1889 retval = 0;
1890 break;
1891 }
1892 continue;
1893 }
1894 if (tag == TAG_THREADNAME)
1895 {
1896 pkt = unpack_string (pkt, &info->shortname[0], length);
1897 mask = mask & ~TAG_THREADNAME;
1898 continue;
1899 }
1900 if (tag == TAG_DISPLAY)
1901 {
1902 pkt = unpack_string (pkt, &info->display[0], length);
1903 mask = mask & ~TAG_DISPLAY;
1904 continue;
1905 }
1906 if (tag == TAG_MOREDISPLAY)
1907 {
1908 pkt = unpack_string (pkt, &info->more_display[0], length);
1909 mask = mask & ~TAG_MOREDISPLAY;
1910 continue;
1911 }
1912 warning (_("ERROR RMT: unknown thread info tag."));
1913 break; /* Not a tag we know about. */
1914 }
1915 return retval;
1916 }
1917
1918 static int
1919 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1920 struct gdb_ext_thread_info *info)
1921 {
1922 struct remote_state *rs = get_remote_state ();
1923 int result;
1924
1925 pack_threadinfo_request (rs->buf, fieldset, threadid);
1926 putpkt (rs->buf);
1927 getpkt (&rs->buf, &rs->buf_size, 0);
1928
1929 if (rs->buf[0] == '\0')
1930 return 0;
1931
1932 result = remote_unpack_thread_info_response (rs->buf + 2,
1933 threadid, info);
1934 return result;
1935 }
1936
1937 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1938
1939 static char *
1940 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1941 threadref *nextthread)
1942 {
1943 *pkt++ = 'q'; /* info query packet */
1944 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1945 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1946 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1947 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1948 *pkt = '\0';
1949 return pkt;
1950 }
1951
1952 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1953
1954 static int
1955 parse_threadlist_response (char *pkt, int result_limit,
1956 threadref *original_echo, threadref *resultlist,
1957 int *doneflag)
1958 {
1959 struct remote_state *rs = get_remote_state ();
1960 char *limit;
1961 int count, resultcount, done;
1962
1963 resultcount = 0;
1964 /* Assume the 'q' and 'M chars have been stripped. */
1965 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1966 /* done parse past here */
1967 pkt = unpack_byte (pkt, &count); /* count field */
1968 pkt = unpack_nibble (pkt, &done);
1969 /* The first threadid is the argument threadid. */
1970 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1971 while ((count-- > 0) && (pkt < limit))
1972 {
1973 pkt = unpack_threadid (pkt, resultlist++);
1974 if (resultcount++ >= result_limit)
1975 break;
1976 }
1977 if (doneflag)
1978 *doneflag = done;
1979 return resultcount;
1980 }
1981
1982 static int
1983 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1984 int *done, int *result_count, threadref *threadlist)
1985 {
1986 struct remote_state *rs = get_remote_state ();
1987 static threadref echo_nextthread;
1988 int result = 1;
1989
1990 /* Trancate result limit to be smaller than the packet size. */
1991 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1992 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1993
1994 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1995 putpkt (rs->buf);
1996 getpkt (&rs->buf, &rs->buf_size, 0);
1997
1998 if (*rs->buf == '\0')
1999 *result_count = 0;
2000 else
2001 *result_count =
2002 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2003 threadlist, done);
2004
2005 if (!threadmatch (&echo_nextthread, nextthread))
2006 {
2007 /* FIXME: This is a good reason to drop the packet. */
2008 /* Possably, there is a duplicate response. */
2009 /* Possabilities :
2010 retransmit immediatly - race conditions
2011 retransmit after timeout - yes
2012 exit
2013 wait for packet, then exit
2014 */
2015 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2016 return 0; /* I choose simply exiting. */
2017 }
2018 if (*result_count <= 0)
2019 {
2020 if (*done != 1)
2021 {
2022 warning (_("RMT ERROR : failed to get remote thread list."));
2023 result = 0;
2024 }
2025 return result; /* break; */
2026 }
2027 if (*result_count > result_limit)
2028 {
2029 *result_count = 0;
2030 warning (_("RMT ERROR: threadlist response longer than requested."));
2031 return 0;
2032 }
2033 return result;
2034 }
2035
2036 /* This is the interface between remote and threads, remotes upper
2037 interface. */
2038
2039 /* remote_find_new_threads retrieves the thread list and for each
2040 thread in the list, looks up the thread in GDB's internal list,
2041 adding the thread if it does not already exist. This involves
2042 getting partial thread lists from the remote target so, polling the
2043 quit_flag is required. */
2044
2045
2046 /* About this many threadisds fit in a packet. */
2047
2048 #define MAXTHREADLISTRESULTS 32
2049
2050 static int
2051 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2052 int looplimit)
2053 {
2054 int done, i, result_count;
2055 int startflag = 1;
2056 int result = 1;
2057 int loopcount = 0;
2058 static threadref nextthread;
2059 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2060
2061 done = 0;
2062 while (!done)
2063 {
2064 if (loopcount++ > looplimit)
2065 {
2066 result = 0;
2067 warning (_("Remote fetch threadlist -infinite loop-."));
2068 break;
2069 }
2070 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2071 &done, &result_count, resultthreadlist))
2072 {
2073 result = 0;
2074 break;
2075 }
2076 /* Clear for later iterations. */
2077 startflag = 0;
2078 /* Setup to resume next batch of thread references, set nextthread. */
2079 if (result_count >= 1)
2080 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2081 i = 0;
2082 while (result_count--)
2083 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2084 break;
2085 }
2086 return result;
2087 }
2088
2089 static int
2090 remote_newthread_step (threadref *ref, void *context)
2091 {
2092 int pid = ptid_get_pid (inferior_ptid);
2093 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2094
2095 if (!in_thread_list (ptid))
2096 add_thread (ptid);
2097 return 1; /* continue iterator */
2098 }
2099
2100 #define CRAZY_MAX_THREADS 1000
2101
2102 static ptid_t
2103 remote_current_thread (ptid_t oldpid)
2104 {
2105 struct remote_state *rs = get_remote_state ();
2106 char *p = rs->buf;
2107 int tid;
2108 int pid;
2109
2110 putpkt ("qC");
2111 getpkt (&rs->buf, &rs->buf_size, 0);
2112 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2113 return read_ptid (&rs->buf[2], NULL);
2114 else
2115 return oldpid;
2116 }
2117
2118 /* Find new threads for info threads command.
2119 * Original version, using John Metzler's thread protocol.
2120 */
2121
2122 static void
2123 remote_find_new_threads (void)
2124 {
2125 remote_threadlist_iterator (remote_newthread_step, 0,
2126 CRAZY_MAX_THREADS);
2127 }
2128
2129 /*
2130 * Find all threads for info threads command.
2131 * Uses new thread protocol contributed by Cisco.
2132 * Falls back and attempts to use the older method (above)
2133 * if the target doesn't respond to the new method.
2134 */
2135
2136 static void
2137 remote_threads_info (void)
2138 {
2139 struct remote_state *rs = get_remote_state ();
2140 char *bufp;
2141 ptid_t new_thread;
2142
2143 if (remote_desc == 0) /* paranoia */
2144 error (_("Command can only be used when connected to the remote target."));
2145
2146 if (use_threadinfo_query)
2147 {
2148 putpkt ("qfThreadInfo");
2149 getpkt (&rs->buf, &rs->buf_size, 0);
2150 bufp = rs->buf;
2151 if (bufp[0] != '\0') /* q packet recognized */
2152 {
2153 while (*bufp++ == 'm') /* reply contains one or more TID */
2154 {
2155 do
2156 {
2157 new_thread = read_ptid (bufp, &bufp);
2158 if (!ptid_equal (new_thread, null_ptid)
2159 && (!in_thread_list (new_thread)
2160 || is_exited (new_thread)))
2161 {
2162 /* When connected to a multi-process aware stub,
2163 "info threads" may show up threads of
2164 inferiors we didn't know about yet. Add them
2165 now, and before adding any of its child
2166 threads, so notifications are emitted in a
2167 sensible order. */
2168 if (!in_inferior_list (ptid_get_pid (new_thread)))
2169 add_inferior (ptid_get_pid (new_thread));
2170
2171 add_thread (new_thread);
2172
2173 /* In non-stop mode, we assume new found threads
2174 are running until we proven otherwise with a
2175 stop reply. In all-stop, we can only get
2176 here if all threads are stopped. */
2177 set_executing (new_thread, non_stop ? 1 : 0);
2178 set_running (new_thread, non_stop ? 1 : 0);
2179 }
2180 }
2181 while (*bufp++ == ','); /* comma-separated list */
2182 putpkt ("qsThreadInfo");
2183 getpkt (&rs->buf, &rs->buf_size, 0);
2184 bufp = rs->buf;
2185 }
2186 return; /* done */
2187 }
2188 }
2189
2190 /* Only qfThreadInfo is supported in non-stop mode. */
2191 if (non_stop)
2192 return;
2193
2194 /* Else fall back to old method based on jmetzler protocol. */
2195 use_threadinfo_query = 0;
2196 remote_find_new_threads ();
2197 return;
2198 }
2199
2200 /*
2201 * Collect a descriptive string about the given thread.
2202 * The target may say anything it wants to about the thread
2203 * (typically info about its blocked / runnable state, name, etc.).
2204 * This string will appear in the info threads display.
2205 *
2206 * Optional: targets are not required to implement this function.
2207 */
2208
2209 static char *
2210 remote_threads_extra_info (struct thread_info *tp)
2211 {
2212 struct remote_state *rs = get_remote_state ();
2213 int result;
2214 int set;
2215 threadref id;
2216 struct gdb_ext_thread_info threadinfo;
2217 static char display_buf[100]; /* arbitrary... */
2218 int n = 0; /* position in display_buf */
2219
2220 if (remote_desc == 0) /* paranoia */
2221 internal_error (__FILE__, __LINE__,
2222 _("remote_threads_extra_info"));
2223
2224 if (ptid_equal (tp->ptid, magic_null_ptid)
2225 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2226 /* This is the main thread which was added by GDB. The remote
2227 server doesn't know about it. */
2228 return NULL;
2229
2230 if (use_threadextra_query)
2231 {
2232 char *b = rs->buf;
2233 char *endb = rs->buf + get_remote_packet_size ();
2234
2235 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2236 b += strlen (b);
2237 write_ptid (b, endb, tp->ptid);
2238
2239 putpkt (rs->buf);
2240 getpkt (&rs->buf, &rs->buf_size, 0);
2241 if (rs->buf[0] != 0)
2242 {
2243 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2244 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2245 display_buf [result] = '\0';
2246 return display_buf;
2247 }
2248 }
2249
2250 /* If the above query fails, fall back to the old method. */
2251 use_threadextra_query = 0;
2252 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2253 | TAG_MOREDISPLAY | TAG_DISPLAY;
2254 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2255 if (remote_get_threadinfo (&id, set, &threadinfo))
2256 if (threadinfo.active)
2257 {
2258 if (*threadinfo.shortname)
2259 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2260 " Name: %s,", threadinfo.shortname);
2261 if (*threadinfo.display)
2262 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2263 " State: %s,", threadinfo.display);
2264 if (*threadinfo.more_display)
2265 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2266 " Priority: %s", threadinfo.more_display);
2267
2268 if (n > 0)
2269 {
2270 /* For purely cosmetic reasons, clear up trailing commas. */
2271 if (',' == display_buf[n-1])
2272 display_buf[n-1] = ' ';
2273 return display_buf;
2274 }
2275 }
2276 return NULL;
2277 }
2278 \f
2279
2280 /* Restart the remote side; this is an extended protocol operation. */
2281
2282 static void
2283 extended_remote_restart (void)
2284 {
2285 struct remote_state *rs = get_remote_state ();
2286
2287 /* Send the restart command; for reasons I don't understand the
2288 remote side really expects a number after the "R". */
2289 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2290 putpkt (rs->buf);
2291
2292 remote_fileio_reset ();
2293 }
2294 \f
2295 /* Clean up connection to a remote debugger. */
2296
2297 static void
2298 remote_close (int quitting)
2299 {
2300 if (remote_desc == NULL)
2301 return; /* already closed */
2302
2303 /* Make sure we leave stdin registered in the event loop, and we
2304 don't leave the async SIGINT signal handler installed. */
2305 remote_terminal_ours ();
2306
2307 serial_close (remote_desc);
2308 remote_desc = NULL;
2309
2310 /* We don't have a connection to the remote stub anymore. Get rid
2311 of all the inferiors and their threads we were controlling. */
2312 discard_all_inferiors ();
2313
2314 /* We're no longer interested in any of these events. */
2315 discard_pending_stop_replies (-1);
2316
2317 if (remote_async_inferior_event_token)
2318 delete_async_event_handler (&remote_async_inferior_event_token);
2319 if (remote_async_get_pending_events_token)
2320 delete_async_event_handler (&remote_async_get_pending_events_token);
2321
2322 generic_mourn_inferior ();
2323 }
2324
2325 /* Query the remote side for the text, data and bss offsets. */
2326
2327 static void
2328 get_offsets (void)
2329 {
2330 struct remote_state *rs = get_remote_state ();
2331 char *buf;
2332 char *ptr;
2333 int lose, num_segments = 0, do_sections, do_segments;
2334 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2335 struct section_offsets *offs;
2336 struct symfile_segment_data *data;
2337
2338 if (symfile_objfile == NULL)
2339 return;
2340
2341 putpkt ("qOffsets");
2342 getpkt (&rs->buf, &rs->buf_size, 0);
2343 buf = rs->buf;
2344
2345 if (buf[0] == '\000')
2346 return; /* Return silently. Stub doesn't support
2347 this command. */
2348 if (buf[0] == 'E')
2349 {
2350 warning (_("Remote failure reply: %s"), buf);
2351 return;
2352 }
2353
2354 /* Pick up each field in turn. This used to be done with scanf, but
2355 scanf will make trouble if CORE_ADDR size doesn't match
2356 conversion directives correctly. The following code will work
2357 with any size of CORE_ADDR. */
2358 text_addr = data_addr = bss_addr = 0;
2359 ptr = buf;
2360 lose = 0;
2361
2362 if (strncmp (ptr, "Text=", 5) == 0)
2363 {
2364 ptr += 5;
2365 /* Don't use strtol, could lose on big values. */
2366 while (*ptr && *ptr != ';')
2367 text_addr = (text_addr << 4) + fromhex (*ptr++);
2368
2369 if (strncmp (ptr, ";Data=", 6) == 0)
2370 {
2371 ptr += 6;
2372 while (*ptr && *ptr != ';')
2373 data_addr = (data_addr << 4) + fromhex (*ptr++);
2374 }
2375 else
2376 lose = 1;
2377
2378 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2379 {
2380 ptr += 5;
2381 while (*ptr && *ptr != ';')
2382 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2383
2384 if (bss_addr != data_addr)
2385 warning (_("Target reported unsupported offsets: %s"), buf);
2386 }
2387 else
2388 lose = 1;
2389 }
2390 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2391 {
2392 ptr += 8;
2393 /* Don't use strtol, could lose on big values. */
2394 while (*ptr && *ptr != ';')
2395 text_addr = (text_addr << 4) + fromhex (*ptr++);
2396 num_segments = 1;
2397
2398 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2399 {
2400 ptr += 9;
2401 while (*ptr && *ptr != ';')
2402 data_addr = (data_addr << 4) + fromhex (*ptr++);
2403 num_segments++;
2404 }
2405 }
2406 else
2407 lose = 1;
2408
2409 if (lose)
2410 error (_("Malformed response to offset query, %s"), buf);
2411 else if (*ptr != '\0')
2412 warning (_("Target reported unsupported offsets: %s"), buf);
2413
2414 offs = ((struct section_offsets *)
2415 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2416 memcpy (offs, symfile_objfile->section_offsets,
2417 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2418
2419 data = get_symfile_segment_data (symfile_objfile->obfd);
2420 do_segments = (data != NULL);
2421 do_sections = num_segments == 0;
2422
2423 if (num_segments > 0)
2424 {
2425 segments[0] = text_addr;
2426 segments[1] = data_addr;
2427 }
2428 /* If we have two segments, we can still try to relocate everything
2429 by assuming that the .text and .data offsets apply to the whole
2430 text and data segments. Convert the offsets given in the packet
2431 to base addresses for symfile_map_offsets_to_segments. */
2432 else if (data && data->num_segments == 2)
2433 {
2434 segments[0] = data->segment_bases[0] + text_addr;
2435 segments[1] = data->segment_bases[1] + data_addr;
2436 num_segments = 2;
2437 }
2438 /* If the object file has only one segment, assume that it is text
2439 rather than data; main programs with no writable data are rare,
2440 but programs with no code are useless. Of course the code might
2441 have ended up in the data segment... to detect that we would need
2442 the permissions here. */
2443 else if (data && data->num_segments == 1)
2444 {
2445 segments[0] = data->segment_bases[0] + text_addr;
2446 num_segments = 1;
2447 }
2448 /* There's no way to relocate by segment. */
2449 else
2450 do_segments = 0;
2451
2452 if (do_segments)
2453 {
2454 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2455 offs, num_segments, segments);
2456
2457 if (ret == 0 && !do_sections)
2458 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2459
2460 if (ret > 0)
2461 do_sections = 0;
2462 }
2463
2464 if (data)
2465 free_symfile_segment_data (data);
2466
2467 if (do_sections)
2468 {
2469 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2470
2471 /* This is a temporary kludge to force data and bss to use the same offsets
2472 because that's what nlmconv does now. The real solution requires changes
2473 to the stub and remote.c that I don't have time to do right now. */
2474
2475 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2476 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2477 }
2478
2479 objfile_relocate (symfile_objfile, offs);
2480 }
2481
2482 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2483 threads we know are stopped already. This is used during the
2484 initial remote connection in non-stop mode --- threads that are
2485 reported as already being stopped are left stopped. */
2486
2487 static int
2488 set_stop_requested_callback (struct thread_info *thread, void *data)
2489 {
2490 /* If we have a stop reply for this thread, it must be stopped. */
2491 if (peek_stop_reply (thread->ptid))
2492 set_stop_requested (thread->ptid, 1);
2493
2494 return 0;
2495 }
2496
2497 /* Stub for catch_exception. */
2498
2499 struct start_remote_args
2500 {
2501 int from_tty;
2502
2503 /* The current target. */
2504 struct target_ops *target;
2505
2506 /* Non-zero if this is an extended-remote target. */
2507 int extended_p;
2508 };
2509
2510 static void
2511 remote_start_remote (struct ui_out *uiout, void *opaque)
2512 {
2513 struct start_remote_args *args = opaque;
2514 struct remote_state *rs = get_remote_state ();
2515 struct packet_config *noack_config;
2516 char *wait_status = NULL;
2517
2518 immediate_quit++; /* Allow user to interrupt it. */
2519
2520 /* Ack any packet which the remote side has already sent. */
2521 serial_write (remote_desc, "+", 1);
2522
2523 /* The first packet we send to the target is the optional "supported
2524 packets" request. If the target can answer this, it will tell us
2525 which later probes to skip. */
2526 remote_query_supported ();
2527
2528 /* Next, we possibly activate noack mode.
2529
2530 If the QStartNoAckMode packet configuration is set to AUTO,
2531 enable noack mode if the stub reported a wish for it with
2532 qSupported.
2533
2534 If set to TRUE, then enable noack mode even if the stub didn't
2535 report it in qSupported. If the stub doesn't reply OK, the
2536 session ends with an error.
2537
2538 If FALSE, then don't activate noack mode, regardless of what the
2539 stub claimed should be the default with qSupported. */
2540
2541 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2542
2543 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2544 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2545 && noack_config->support == PACKET_ENABLE))
2546 {
2547 putpkt ("QStartNoAckMode");
2548 getpkt (&rs->buf, &rs->buf_size, 0);
2549 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2550 rs->noack_mode = 1;
2551 }
2552
2553 if (args->extended_p)
2554 {
2555 /* Tell the remote that we are using the extended protocol. */
2556 putpkt ("!");
2557 getpkt (&rs->buf, &rs->buf_size, 0);
2558 }
2559
2560 /* Next, if the target can specify a description, read it. We do
2561 this before anything involving memory or registers. */
2562 target_find_description ();
2563
2564 /* On OSs where the list of libraries is global to all
2565 processes, we fetch them early. */
2566 if (gdbarch_has_global_solist (target_gdbarch))
2567 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2568
2569 if (non_stop)
2570 {
2571 if (!rs->non_stop_aware)
2572 error (_("Non-stop mode requested, but remote does not support non-stop"));
2573
2574 putpkt ("QNonStop:1");
2575 getpkt (&rs->buf, &rs->buf_size, 0);
2576
2577 if (strcmp (rs->buf, "OK") != 0)
2578 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2579
2580 /* Find about threads and processes the stub is already
2581 controlling. We default to adding them in the running state.
2582 The '?' query below will then tell us about which threads are
2583 stopped. */
2584 remote_threads_info ();
2585 }
2586 else if (rs->non_stop_aware)
2587 {
2588 /* Don't assume that the stub can operate in all-stop mode.
2589 Request it explicitely. */
2590 putpkt ("QNonStop:0");
2591 getpkt (&rs->buf, &rs->buf_size, 0);
2592
2593 if (strcmp (rs->buf, "OK") != 0)
2594 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2595 }
2596
2597 /* Check whether the target is running now. */
2598 putpkt ("?");
2599 getpkt (&rs->buf, &rs->buf_size, 0);
2600
2601 if (!non_stop)
2602 {
2603 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2604 {
2605 if (args->extended_p)
2606 {
2607 /* We're connected, but not running. Drop out before we
2608 call start_remote. */
2609 target_mark_exited (args->target);
2610 return;
2611 }
2612 else
2613 error (_("The target is not running (try extended-remote?)"));
2614 }
2615 else
2616 {
2617 if (args->extended_p)
2618 target_mark_running (args->target);
2619
2620 /* Save the reply for later. */
2621 wait_status = alloca (strlen (rs->buf) + 1);
2622 strcpy (wait_status, rs->buf);
2623 }
2624
2625 /* Let the stub know that we want it to return the thread. */
2626 set_continue_thread (minus_one_ptid);
2627
2628 /* Without this, some commands which require an active target
2629 (such as kill) won't work. This variable serves (at least)
2630 double duty as both the pid of the target process (if it has
2631 such), and as a flag indicating that a target is active.
2632 These functions should be split out into seperate variables,
2633 especially since GDB will someday have a notion of debugging
2634 several processes. */
2635 inferior_ptid = magic_null_ptid;
2636
2637 /* Now, if we have thread information, update inferior_ptid. */
2638 inferior_ptid = remote_current_thread (inferior_ptid);
2639
2640 add_inferior (ptid_get_pid (inferior_ptid));
2641
2642 /* Always add the main thread. */
2643 add_thread_silent (inferior_ptid);
2644
2645 get_offsets (); /* Get text, data & bss offsets. */
2646
2647 /* If we could not find a description using qXfer, and we know
2648 how to do it some other way, try again. This is not
2649 supported for non-stop; it could be, but it is tricky if
2650 there are no stopped threads when we connect. */
2651 if (remote_read_description_p (args->target)
2652 && gdbarch_target_desc (target_gdbarch) == NULL)
2653 {
2654 target_clear_description ();
2655 target_find_description ();
2656 }
2657
2658 /* Use the previously fetched status. */
2659 gdb_assert (wait_status != NULL);
2660 strcpy (rs->buf, wait_status);
2661 rs->cached_wait_status = 1;
2662
2663 immediate_quit--;
2664 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2665 }
2666 else
2667 {
2668 /* In non-stop, we will either get an "OK", meaning that there
2669 are no stopped threads at this time; or, a regular stop
2670 reply. In the latter case, there may be more than one thread
2671 stopped --- we pull them all out using the vStopped
2672 mechanism. */
2673 if (strcmp (rs->buf, "OK") != 0)
2674 {
2675 struct stop_reply *stop_reply;
2676 struct cleanup *old_chain;
2677
2678 stop_reply = stop_reply_xmalloc ();
2679 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2680
2681 remote_parse_stop_reply (rs->buf, stop_reply);
2682 discard_cleanups (old_chain);
2683
2684 /* get_pending_stop_replies acks this one, and gets the rest
2685 out. */
2686 pending_stop_reply = stop_reply;
2687 remote_get_pending_stop_replies ();
2688
2689 /* Make sure that threads that were stopped remain
2690 stopped. */
2691 iterate_over_threads (set_stop_requested_callback, NULL);
2692 }
2693
2694 if (target_can_async_p ())
2695 target_async (inferior_event_handler, 0);
2696
2697 if (thread_count () == 0)
2698 {
2699 if (args->extended_p)
2700 {
2701 /* We're connected, but not running. Drop out before we
2702 call start_remote. */
2703 target_mark_exited (args->target);
2704 return;
2705 }
2706 else
2707 error (_("The target is not running (try extended-remote?)"));
2708 }
2709
2710 if (args->extended_p)
2711 target_mark_running (args->target);
2712
2713 /* Let the stub know that we want it to return the thread. */
2714
2715 /* Force the stub to choose a thread. */
2716 set_general_thread (null_ptid);
2717
2718 /* Query it. */
2719 inferior_ptid = remote_current_thread (minus_one_ptid);
2720 if (ptid_equal (inferior_ptid, minus_one_ptid))
2721 error (_("remote didn't report the current thread in non-stop mode"));
2722
2723 get_offsets (); /* Get text, data & bss offsets. */
2724
2725 /* In non-stop mode, any cached wait status will be stored in
2726 the stop reply queue. */
2727 gdb_assert (wait_status == NULL);
2728 }
2729
2730 /* If we connected to a live target, do some additional setup. */
2731 if (target_has_execution)
2732 {
2733 if (exec_bfd) /* No use without an exec file. */
2734 remote_check_symbols (symfile_objfile);
2735 }
2736
2737 /* If code is shared between processes, then breakpoints are global
2738 too; Insert them now. */
2739 if (gdbarch_has_global_solist (target_gdbarch)
2740 && breakpoints_always_inserted_mode ())
2741 insert_breakpoints ();
2742 }
2743
2744 /* Open a connection to a remote debugger.
2745 NAME is the filename used for communication. */
2746
2747 static void
2748 remote_open (char *name, int from_tty)
2749 {
2750 remote_open_1 (name, from_tty, &remote_ops, 0);
2751 }
2752
2753 /* Open a connection to a remote debugger using the extended
2754 remote gdb protocol. NAME is the filename used for communication. */
2755
2756 static void
2757 extended_remote_open (char *name, int from_tty)
2758 {
2759 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2760 }
2761
2762 /* Generic code for opening a connection to a remote target. */
2763
2764 static void
2765 init_all_packet_configs (void)
2766 {
2767 int i;
2768 for (i = 0; i < PACKET_MAX; i++)
2769 update_packet_config (&remote_protocol_packets[i]);
2770 }
2771
2772 /* Symbol look-up. */
2773
2774 static void
2775 remote_check_symbols (struct objfile *objfile)
2776 {
2777 struct remote_state *rs = get_remote_state ();
2778 char *msg, *reply, *tmp;
2779 struct minimal_symbol *sym;
2780 int end;
2781
2782 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2783 return;
2784
2785 /* Make sure the remote is pointing at the right process. */
2786 set_general_process ();
2787
2788 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2789 because we need both at the same time. */
2790 msg = alloca (get_remote_packet_size ());
2791
2792 /* Invite target to request symbol lookups. */
2793
2794 putpkt ("qSymbol::");
2795 getpkt (&rs->buf, &rs->buf_size, 0);
2796 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2797 reply = rs->buf;
2798
2799 while (strncmp (reply, "qSymbol:", 8) == 0)
2800 {
2801 tmp = &reply[8];
2802 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2803 msg[end] = '\0';
2804 sym = lookup_minimal_symbol (msg, NULL, NULL);
2805 if (sym == NULL)
2806 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2807 else
2808 {
2809 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2810
2811 /* If this is a function address, return the start of code
2812 instead of any data function descriptor. */
2813 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2814 sym_addr,
2815 &current_target);
2816
2817 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2818 paddr_nz (sym_addr), &reply[8]);
2819 }
2820
2821 putpkt (msg);
2822 getpkt (&rs->buf, &rs->buf_size, 0);
2823 reply = rs->buf;
2824 }
2825 }
2826
2827 static struct serial *
2828 remote_serial_open (char *name)
2829 {
2830 static int udp_warning = 0;
2831
2832 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2833 of in ser-tcp.c, because it is the remote protocol assuming that the
2834 serial connection is reliable and not the serial connection promising
2835 to be. */
2836 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2837 {
2838 warning (_("\
2839 The remote protocol may be unreliable over UDP.\n\
2840 Some events may be lost, rendering further debugging impossible."));
2841 udp_warning = 1;
2842 }
2843
2844 return serial_open (name);
2845 }
2846
2847 /* This type describes each known response to the qSupported
2848 packet. */
2849 struct protocol_feature
2850 {
2851 /* The name of this protocol feature. */
2852 const char *name;
2853
2854 /* The default for this protocol feature. */
2855 enum packet_support default_support;
2856
2857 /* The function to call when this feature is reported, or after
2858 qSupported processing if the feature is not supported.
2859 The first argument points to this structure. The second
2860 argument indicates whether the packet requested support be
2861 enabled, disabled, or probed (or the default, if this function
2862 is being called at the end of processing and this feature was
2863 not reported). The third argument may be NULL; if not NULL, it
2864 is a NUL-terminated string taken from the packet following
2865 this feature's name and an equals sign. */
2866 void (*func) (const struct protocol_feature *, enum packet_support,
2867 const char *);
2868
2869 /* The corresponding packet for this feature. Only used if
2870 FUNC is remote_supported_packet. */
2871 int packet;
2872 };
2873
2874 static void
2875 remote_supported_packet (const struct protocol_feature *feature,
2876 enum packet_support support,
2877 const char *argument)
2878 {
2879 if (argument)
2880 {
2881 warning (_("Remote qSupported response supplied an unexpected value for"
2882 " \"%s\"."), feature->name);
2883 return;
2884 }
2885
2886 if (remote_protocol_packets[feature->packet].support
2887 == PACKET_SUPPORT_UNKNOWN)
2888 remote_protocol_packets[feature->packet].support = support;
2889 }
2890
2891 static void
2892 remote_packet_size (const struct protocol_feature *feature,
2893 enum packet_support support, const char *value)
2894 {
2895 struct remote_state *rs = get_remote_state ();
2896
2897 int packet_size;
2898 char *value_end;
2899
2900 if (support != PACKET_ENABLE)
2901 return;
2902
2903 if (value == NULL || *value == '\0')
2904 {
2905 warning (_("Remote target reported \"%s\" without a size."),
2906 feature->name);
2907 return;
2908 }
2909
2910 errno = 0;
2911 packet_size = strtol (value, &value_end, 16);
2912 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2913 {
2914 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2915 feature->name, value);
2916 return;
2917 }
2918
2919 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2920 {
2921 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2922 packet_size, MAX_REMOTE_PACKET_SIZE);
2923 packet_size = MAX_REMOTE_PACKET_SIZE;
2924 }
2925
2926 /* Record the new maximum packet size. */
2927 rs->explicit_packet_size = packet_size;
2928 }
2929
2930 static void
2931 remote_multi_process_feature (const struct protocol_feature *feature,
2932 enum packet_support support, const char *value)
2933 {
2934 struct remote_state *rs = get_remote_state ();
2935 rs->multi_process_aware = (support == PACKET_ENABLE);
2936 }
2937
2938 static void
2939 remote_non_stop_feature (const struct protocol_feature *feature,
2940 enum packet_support support, const char *value)
2941 {
2942 struct remote_state *rs = get_remote_state ();
2943 rs->non_stop_aware = (support == PACKET_ENABLE);
2944 }
2945
2946 static struct protocol_feature remote_protocol_features[] = {
2947 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2948 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2949 PACKET_qXfer_auxv },
2950 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2951 PACKET_qXfer_features },
2952 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2953 PACKET_qXfer_libraries },
2954 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2955 PACKET_qXfer_memory_map },
2956 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2957 PACKET_qXfer_spu_read },
2958 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2959 PACKET_qXfer_spu_write },
2960 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
2961 PACKET_qXfer_osdata },
2962 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2963 PACKET_QPassSignals },
2964 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2965 PACKET_QStartNoAckMode },
2966 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2967 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2968 };
2969
2970 static void
2971 remote_query_supported (void)
2972 {
2973 struct remote_state *rs = get_remote_state ();
2974 char *next;
2975 int i;
2976 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2977
2978 /* The packet support flags are handled differently for this packet
2979 than for most others. We treat an error, a disabled packet, and
2980 an empty response identically: any features which must be reported
2981 to be used will be automatically disabled. An empty buffer
2982 accomplishes this, since that is also the representation for a list
2983 containing no features. */
2984
2985 rs->buf[0] = 0;
2986 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2987 {
2988 if (rs->extended)
2989 putpkt ("qSupported:multiprocess+");
2990 else
2991 putpkt ("qSupported");
2992
2993 getpkt (&rs->buf, &rs->buf_size, 0);
2994
2995 /* If an error occured, warn, but do not return - just reset the
2996 buffer to empty and go on to disable features. */
2997 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2998 == PACKET_ERROR)
2999 {
3000 warning (_("Remote failure reply: %s"), rs->buf);
3001 rs->buf[0] = 0;
3002 }
3003 }
3004
3005 memset (seen, 0, sizeof (seen));
3006
3007 next = rs->buf;
3008 while (*next)
3009 {
3010 enum packet_support is_supported;
3011 char *p, *end, *name_end, *value;
3012
3013 /* First separate out this item from the rest of the packet. If
3014 there's another item after this, we overwrite the separator
3015 (terminated strings are much easier to work with). */
3016 p = next;
3017 end = strchr (p, ';');
3018 if (end == NULL)
3019 {
3020 end = p + strlen (p);
3021 next = end;
3022 }
3023 else
3024 {
3025 *end = '\0';
3026 next = end + 1;
3027
3028 if (end == p)
3029 {
3030 warning (_("empty item in \"qSupported\" response"));
3031 continue;
3032 }
3033 }
3034
3035 name_end = strchr (p, '=');
3036 if (name_end)
3037 {
3038 /* This is a name=value entry. */
3039 is_supported = PACKET_ENABLE;
3040 value = name_end + 1;
3041 *name_end = '\0';
3042 }
3043 else
3044 {
3045 value = NULL;
3046 switch (end[-1])
3047 {
3048 case '+':
3049 is_supported = PACKET_ENABLE;
3050 break;
3051
3052 case '-':
3053 is_supported = PACKET_DISABLE;
3054 break;
3055
3056 case '?':
3057 is_supported = PACKET_SUPPORT_UNKNOWN;
3058 break;
3059
3060 default:
3061 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3062 continue;
3063 }
3064 end[-1] = '\0';
3065 }
3066
3067 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3068 if (strcmp (remote_protocol_features[i].name, p) == 0)
3069 {
3070 const struct protocol_feature *feature;
3071
3072 seen[i] = 1;
3073 feature = &remote_protocol_features[i];
3074 feature->func (feature, is_supported, value);
3075 break;
3076 }
3077 }
3078
3079 /* If we increased the packet size, make sure to increase the global
3080 buffer size also. We delay this until after parsing the entire
3081 qSupported packet, because this is the same buffer we were
3082 parsing. */
3083 if (rs->buf_size < rs->explicit_packet_size)
3084 {
3085 rs->buf_size = rs->explicit_packet_size;
3086 rs->buf = xrealloc (rs->buf, rs->buf_size);
3087 }
3088
3089 /* Handle the defaults for unmentioned features. */
3090 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3091 if (!seen[i])
3092 {
3093 const struct protocol_feature *feature;
3094
3095 feature = &remote_protocol_features[i];
3096 feature->func (feature, feature->default_support, NULL);
3097 }
3098 }
3099
3100
3101 static void
3102 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3103 {
3104 struct remote_state *rs = get_remote_state ();
3105
3106 if (name == 0)
3107 error (_("To open a remote debug connection, you need to specify what\n"
3108 "serial device is attached to the remote system\n"
3109 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3110
3111 /* See FIXME above. */
3112 if (!target_async_permitted)
3113 wait_forever_enabled_p = 1;
3114
3115 /* If we're connected to a running target, target_preopen will kill it.
3116 But if we're connected to a target system with no running process,
3117 then we will still be connected when it returns. Ask this question
3118 first, before target_preopen has a chance to kill anything. */
3119 if (remote_desc != NULL && !target_has_execution)
3120 {
3121 if (!from_tty
3122 || query (_("Already connected to a remote target. Disconnect? ")))
3123 pop_target ();
3124 else
3125 error (_("Still connected."));
3126 }
3127
3128 target_preopen (from_tty);
3129
3130 unpush_target (target);
3131
3132 /* This time without a query. If we were connected to an
3133 extended-remote target and target_preopen killed the running
3134 process, we may still be connected. If we are starting "target
3135 remote" now, the extended-remote target will not have been
3136 removed by unpush_target. */
3137 if (remote_desc != NULL && !target_has_execution)
3138 pop_target ();
3139
3140 /* Make sure we send the passed signals list the next time we resume. */
3141 xfree (last_pass_packet);
3142 last_pass_packet = NULL;
3143
3144 remote_fileio_reset ();
3145 reopen_exec_file ();
3146 reread_symbols ();
3147
3148 remote_desc = remote_serial_open (name);
3149 if (!remote_desc)
3150 perror_with_name (name);
3151
3152 if (baud_rate != -1)
3153 {
3154 if (serial_setbaudrate (remote_desc, baud_rate))
3155 {
3156 /* The requested speed could not be set. Error out to
3157 top level after closing remote_desc. Take care to
3158 set remote_desc to NULL to avoid closing remote_desc
3159 more than once. */
3160 serial_close (remote_desc);
3161 remote_desc = NULL;
3162 perror_with_name (name);
3163 }
3164 }
3165
3166 serial_raw (remote_desc);
3167
3168 /* If there is something sitting in the buffer we might take it as a
3169 response to a command, which would be bad. */
3170 serial_flush_input (remote_desc);
3171
3172 if (from_tty)
3173 {
3174 puts_filtered ("Remote debugging using ");
3175 puts_filtered (name);
3176 puts_filtered ("\n");
3177 }
3178 push_target (target); /* Switch to using remote target now. */
3179
3180 /* Assume that the target is not running, until we learn otherwise. */
3181 if (extended_p)
3182 target_mark_exited (target);
3183
3184 /* Register extra event sources in the event loop. */
3185 remote_async_inferior_event_token
3186 = create_async_event_handler (remote_async_inferior_event_handler,
3187 NULL);
3188 remote_async_get_pending_events_token
3189 = create_async_event_handler (remote_async_get_pending_events_handler,
3190 NULL);
3191
3192 /* Reset the target state; these things will be queried either by
3193 remote_query_supported or as they are needed. */
3194 init_all_packet_configs ();
3195 rs->cached_wait_status = 0;
3196 rs->explicit_packet_size = 0;
3197 rs->noack_mode = 0;
3198 rs->multi_process_aware = 0;
3199 rs->extended = extended_p;
3200 rs->non_stop_aware = 0;
3201 rs->waiting_for_stop_reply = 0;
3202
3203 general_thread = not_sent_ptid;
3204 continue_thread = not_sent_ptid;
3205
3206 /* Probe for ability to use "ThreadInfo" query, as required. */
3207 use_threadinfo_query = 1;
3208 use_threadextra_query = 1;
3209
3210 if (target_async_permitted)
3211 {
3212 /* With this target we start out by owning the terminal. */
3213 remote_async_terminal_ours_p = 1;
3214
3215 /* FIXME: cagney/1999-09-23: During the initial connection it is
3216 assumed that the target is already ready and able to respond to
3217 requests. Unfortunately remote_start_remote() eventually calls
3218 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3219 around this. Eventually a mechanism that allows
3220 wait_for_inferior() to expect/get timeouts will be
3221 implemented. */
3222 wait_forever_enabled_p = 0;
3223 }
3224
3225 /* First delete any symbols previously loaded from shared libraries. */
3226 no_shared_libraries (NULL, 0);
3227
3228 /* Start afresh. */
3229 init_thread_list ();
3230
3231 /* Start the remote connection. If error() or QUIT, discard this
3232 target (we'd otherwise be in an inconsistent state) and then
3233 propogate the error on up the exception chain. This ensures that
3234 the caller doesn't stumble along blindly assuming that the
3235 function succeeded. The CLI doesn't have this problem but other
3236 UI's, such as MI do.
3237
3238 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3239 this function should return an error indication letting the
3240 caller restore the previous state. Unfortunately the command
3241 ``target remote'' is directly wired to this function making that
3242 impossible. On a positive note, the CLI side of this problem has
3243 been fixed - the function set_cmd_context() makes it possible for
3244 all the ``target ....'' commands to share a common callback
3245 function. See cli-dump.c. */
3246 {
3247 struct gdb_exception ex;
3248 struct start_remote_args args;
3249
3250 args.from_tty = from_tty;
3251 args.target = target;
3252 args.extended_p = extended_p;
3253
3254 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3255 if (ex.reason < 0)
3256 {
3257 /* Pop the partially set up target - unless something else did
3258 already before throwing the exception. */
3259 if (remote_desc != NULL)
3260 pop_target ();
3261 if (target_async_permitted)
3262 wait_forever_enabled_p = 1;
3263 throw_exception (ex);
3264 }
3265 }
3266
3267 if (target_async_permitted)
3268 wait_forever_enabled_p = 1;
3269 }
3270
3271 /* This takes a program previously attached to and detaches it. After
3272 this is done, GDB can be used to debug some other program. We
3273 better not have left any breakpoints in the target program or it'll
3274 die when it hits one. */
3275
3276 static void
3277 remote_detach_1 (char *args, int from_tty, int extended)
3278 {
3279 int pid = ptid_get_pid (inferior_ptid);
3280 struct remote_state *rs = get_remote_state ();
3281
3282 if (args)
3283 error (_("Argument given to \"detach\" when remotely debugging."));
3284
3285 if (!target_has_execution)
3286 error (_("No process to detach from."));
3287
3288 /* Tell the remote target to detach. */
3289 if (remote_multi_process_p (rs))
3290 sprintf (rs->buf, "D;%x", pid);
3291 else
3292 strcpy (rs->buf, "D");
3293
3294 putpkt (rs->buf);
3295 getpkt (&rs->buf, &rs->buf_size, 0);
3296
3297 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3298 ;
3299 else if (rs->buf[0] == '\0')
3300 error (_("Remote doesn't know how to detach"));
3301 else
3302 error (_("Can't detach process."));
3303
3304 if (from_tty)
3305 {
3306 if (remote_multi_process_p (rs))
3307 printf_filtered (_("Detached from remote %s.\n"),
3308 target_pid_to_str (pid_to_ptid (pid)));
3309 else
3310 {
3311 if (extended)
3312 puts_filtered (_("Detached from remote process.\n"));
3313 else
3314 puts_filtered (_("Ending remote debugging.\n"));
3315 }
3316 }
3317
3318 discard_pending_stop_replies (pid);
3319 target_mourn_inferior ();
3320 }
3321
3322 static void
3323 remote_detach (struct target_ops *ops, char *args, int from_tty)
3324 {
3325 remote_detach_1 (args, from_tty, 0);
3326 }
3327
3328 static void
3329 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3330 {
3331 remote_detach_1 (args, from_tty, 1);
3332 }
3333
3334 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3335
3336 static void
3337 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3338 {
3339 if (args)
3340 error (_("Argument given to \"disconnect\" when remotely debugging."));
3341
3342 /* Make sure we unpush even the extended remote targets; mourn
3343 won't do it. So call remote_mourn_1 directly instead of
3344 target_mourn_inferior. */
3345 remote_mourn_1 (target);
3346
3347 if (from_tty)
3348 puts_filtered ("Ending remote debugging.\n");
3349 }
3350
3351 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3352 be chatty about it. */
3353
3354 static void
3355 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3356 {
3357 struct remote_state *rs = get_remote_state ();
3358 int pid;
3359 char *dummy;
3360 char *wait_status = NULL;
3361 struct inferior *inf;
3362
3363 if (!args)
3364 error_no_arg (_("process-id to attach"));
3365
3366 dummy = args;
3367 pid = strtol (args, &dummy, 0);
3368 /* Some targets don't set errno on errors, grrr! */
3369 if (pid == 0 && args == dummy)
3370 error (_("Illegal process-id: %s."), args);
3371
3372 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3373 error (_("This target does not support attaching to a process"));
3374
3375 sprintf (rs->buf, "vAttach;%x", pid);
3376 putpkt (rs->buf);
3377 getpkt (&rs->buf, &rs->buf_size, 0);
3378
3379 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3380 {
3381 if (from_tty)
3382 printf_unfiltered (_("Attached to %s\n"),
3383 target_pid_to_str (pid_to_ptid (pid)));
3384
3385 if (!non_stop)
3386 {
3387 /* Save the reply for later. */
3388 wait_status = alloca (strlen (rs->buf) + 1);
3389 strcpy (wait_status, rs->buf);
3390 }
3391 else if (strcmp (rs->buf, "OK") != 0)
3392 error (_("Attaching to %s failed with: %s"),
3393 target_pid_to_str (pid_to_ptid (pid)),
3394 rs->buf);
3395 }
3396 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3397 error (_("This target does not support attaching to a process"));
3398 else
3399 error (_("Attaching to %s failed"),
3400 target_pid_to_str (pid_to_ptid (pid)));
3401
3402 target_mark_running (target);
3403 inferior_ptid = pid_to_ptid (pid);
3404
3405 /* Now, if we have thread information, update inferior_ptid. */
3406 inferior_ptid = remote_current_thread (inferior_ptid);
3407
3408 inf = add_inferior (pid);
3409 inf->attach_flag = 1;
3410
3411 if (non_stop)
3412 /* Get list of threads. */
3413 remote_threads_info ();
3414 else
3415 /* Add the main thread to the thread list. */
3416 add_thread_silent (inferior_ptid);
3417
3418 /* Next, if the target can specify a description, read it. We do
3419 this before anything involving memory or registers. */
3420 target_find_description ();
3421
3422 if (!non_stop)
3423 {
3424 /* Use the previously fetched status. */
3425 gdb_assert (wait_status != NULL);
3426
3427 if (target_can_async_p ())
3428 {
3429 struct stop_reply *stop_reply;
3430 struct cleanup *old_chain;
3431
3432 stop_reply = stop_reply_xmalloc ();
3433 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3434 remote_parse_stop_reply (wait_status, stop_reply);
3435 discard_cleanups (old_chain);
3436 push_stop_reply (stop_reply);
3437
3438 target_async (inferior_event_handler, 0);
3439 }
3440 else
3441 {
3442 gdb_assert (wait_status != NULL);
3443 strcpy (rs->buf, wait_status);
3444 rs->cached_wait_status = 1;
3445 }
3446 }
3447 else
3448 gdb_assert (wait_status == NULL);
3449 }
3450
3451 static void
3452 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3453 {
3454 extended_remote_attach_1 (ops, args, from_tty);
3455 }
3456
3457 /* Convert hex digit A to a number. */
3458
3459 static int
3460 fromhex (int a)
3461 {
3462 if (a >= '0' && a <= '9')
3463 return a - '0';
3464 else if (a >= 'a' && a <= 'f')
3465 return a - 'a' + 10;
3466 else if (a >= 'A' && a <= 'F')
3467 return a - 'A' + 10;
3468 else
3469 error (_("Reply contains invalid hex digit %d"), a);
3470 }
3471
3472 static int
3473 hex2bin (const char *hex, gdb_byte *bin, int count)
3474 {
3475 int i;
3476
3477 for (i = 0; i < count; i++)
3478 {
3479 if (hex[0] == 0 || hex[1] == 0)
3480 {
3481 /* Hex string is short, or of uneven length.
3482 Return the count that has been converted so far. */
3483 return i;
3484 }
3485 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3486 hex += 2;
3487 }
3488 return i;
3489 }
3490
3491 /* Convert number NIB to a hex digit. */
3492
3493 static int
3494 tohex (int nib)
3495 {
3496 if (nib < 10)
3497 return '0' + nib;
3498 else
3499 return 'a' + nib - 10;
3500 }
3501
3502 static int
3503 bin2hex (const gdb_byte *bin, char *hex, int count)
3504 {
3505 int i;
3506 /* May use a length, or a nul-terminated string as input. */
3507 if (count == 0)
3508 count = strlen ((char *) bin);
3509
3510 for (i = 0; i < count; i++)
3511 {
3512 *hex++ = tohex ((*bin >> 4) & 0xf);
3513 *hex++ = tohex (*bin++ & 0xf);
3514 }
3515 *hex = 0;
3516 return i;
3517 }
3518 \f
3519 /* Check for the availability of vCont. This function should also check
3520 the response. */
3521
3522 static void
3523 remote_vcont_probe (struct remote_state *rs)
3524 {
3525 char *buf;
3526
3527 strcpy (rs->buf, "vCont?");
3528 putpkt (rs->buf);
3529 getpkt (&rs->buf, &rs->buf_size, 0);
3530 buf = rs->buf;
3531
3532 /* Make sure that the features we assume are supported. */
3533 if (strncmp (buf, "vCont", 5) == 0)
3534 {
3535 char *p = &buf[5];
3536 int support_s, support_S, support_c, support_C;
3537
3538 support_s = 0;
3539 support_S = 0;
3540 support_c = 0;
3541 support_C = 0;
3542 rs->support_vCont_t = 0;
3543 while (p && *p == ';')
3544 {
3545 p++;
3546 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3547 support_s = 1;
3548 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3549 support_S = 1;
3550 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3551 support_c = 1;
3552 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3553 support_C = 1;
3554 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3555 rs->support_vCont_t = 1;
3556
3557 p = strchr (p, ';');
3558 }
3559
3560 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3561 BUF will make packet_ok disable the packet. */
3562 if (!support_s || !support_S || !support_c || !support_C)
3563 buf[0] = 0;
3564 }
3565
3566 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3567 }
3568
3569 /* Resume the remote inferior by using a "vCont" packet. The thread
3570 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3571 resumed thread should be single-stepped and/or signalled. If PTID
3572 equals minus_one_ptid, then all threads are resumed; the thread to
3573 be stepped and/or signalled is given in the global INFERIOR_PTID.
3574 This function returns non-zero iff it resumes the inferior.
3575
3576 This function issues a strict subset of all possible vCont commands at the
3577 moment. */
3578
3579 static int
3580 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3581 {
3582 struct remote_state *rs = get_remote_state ();
3583 char *p;
3584 char *endp;
3585
3586 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3587 remote_vcont_probe (rs);
3588
3589 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3590 return 0;
3591
3592 p = rs->buf;
3593 endp = rs->buf + get_remote_packet_size ();
3594
3595 /* If we could generate a wider range of packets, we'd have to worry
3596 about overflowing BUF. Should there be a generic
3597 "multi-part-packet" packet? */
3598
3599 if (ptid_equal (ptid, magic_null_ptid))
3600 {
3601 /* MAGIC_NULL_PTID means that we don't have any active threads,
3602 so we don't have any TID numbers the inferior will
3603 understand. Make sure to only send forms that do not specify
3604 a TID. */
3605 if (step && siggnal != TARGET_SIGNAL_0)
3606 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3607 else if (step)
3608 xsnprintf (p, endp - p, "vCont;s");
3609 else if (siggnal != TARGET_SIGNAL_0)
3610 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3611 else
3612 xsnprintf (p, endp - p, "vCont;c");
3613 }
3614 else if (ptid_equal (ptid, minus_one_ptid))
3615 {
3616 /* Resume all threads, with preference for INFERIOR_PTID. */
3617 if (step && siggnal != TARGET_SIGNAL_0)
3618 {
3619 /* Step inferior_ptid with signal. */
3620 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3621 p = write_ptid (p, endp, inferior_ptid);
3622 /* And continue others. */
3623 p += xsnprintf (p, endp - p, ";c");
3624 }
3625 else if (step)
3626 {
3627 /* Step inferior_ptid. */
3628 p += xsnprintf (p, endp - p, "vCont;s:");
3629 p = write_ptid (p, endp, inferior_ptid);
3630 /* And continue others. */
3631 p += xsnprintf (p, endp - p, ";c");
3632 }
3633 else if (siggnal != TARGET_SIGNAL_0)
3634 {
3635 /* Continue inferior_ptid with signal. */
3636 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3637 p = write_ptid (p, endp, inferior_ptid);
3638 /* And continue others. */
3639 p += xsnprintf (p, endp - p, ";c");
3640 }
3641 else
3642 xsnprintf (p, endp - p, "vCont;c");
3643 }
3644 else
3645 {
3646 /* Scheduler locking; resume only PTID. */
3647 if (step && siggnal != TARGET_SIGNAL_0)
3648 {
3649 /* Step ptid with signal. */
3650 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3651 p = write_ptid (p, endp, ptid);
3652 }
3653 else if (step)
3654 {
3655 /* Step ptid. */
3656 p += xsnprintf (p, endp - p, "vCont;s:");
3657 p = write_ptid (p, endp, ptid);
3658 }
3659 else if (siggnal != TARGET_SIGNAL_0)
3660 {
3661 /* Continue ptid with signal. */
3662 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3663 p = write_ptid (p, endp, ptid);
3664 }
3665 else
3666 {
3667 /* Continue ptid. */
3668 p += xsnprintf (p, endp - p, "vCont;c:");
3669 p = write_ptid (p, endp, ptid);
3670 }
3671 }
3672
3673 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3674 putpkt (rs->buf);
3675
3676 if (non_stop)
3677 {
3678 /* In non-stop, the stub replies to vCont with "OK". The stop
3679 reply will be reported asynchronously by means of a `%Stop'
3680 notification. */
3681 getpkt (&rs->buf, &rs->buf_size, 0);
3682 if (strcmp (rs->buf, "OK") != 0)
3683 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3684 }
3685
3686 return 1;
3687 }
3688
3689 /* Tell the remote machine to resume. */
3690
3691 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3692
3693 static int last_sent_step;
3694
3695 static void
3696 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3697 {
3698 struct remote_state *rs = get_remote_state ();
3699 char *buf;
3700
3701 last_sent_signal = siggnal;
3702 last_sent_step = step;
3703
3704 /* Update the inferior on signals to silently pass, if they've changed. */
3705 remote_pass_signals ();
3706
3707 /* The vCont packet doesn't need to specify threads via Hc. */
3708 if (remote_vcont_resume (ptid, step, siggnal))
3709 goto done;
3710
3711 /* All other supported resume packets do use Hc, so set the continue
3712 thread. */
3713 if (ptid_equal (ptid, minus_one_ptid))
3714 set_continue_thread (any_thread_ptid);
3715 else
3716 set_continue_thread (ptid);
3717
3718 buf = rs->buf;
3719 if (execution_direction == EXEC_REVERSE)
3720 {
3721 /* We don't pass signals to the target in reverse exec mode. */
3722 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3723 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3724 siggnal);
3725 strcpy (buf, step ? "bs" : "bc");
3726 }
3727 else if (siggnal != TARGET_SIGNAL_0)
3728 {
3729 buf[0] = step ? 'S' : 'C';
3730 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3731 buf[2] = tohex (((int) siggnal) & 0xf);
3732 buf[3] = '\0';
3733 }
3734 else
3735 strcpy (buf, step ? "s" : "c");
3736
3737 putpkt (buf);
3738
3739 done:
3740 /* We are about to start executing the inferior, let's register it
3741 with the event loop. NOTE: this is the one place where all the
3742 execution commands end up. We could alternatively do this in each
3743 of the execution commands in infcmd.c. */
3744 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3745 into infcmd.c in order to allow inferior function calls to work
3746 NOT asynchronously. */
3747 if (target_can_async_p ())
3748 target_async (inferior_event_handler, 0);
3749
3750 /* We've just told the target to resume. The remote server will
3751 wait for the inferior to stop, and then send a stop reply. In
3752 the mean time, we can't start another command/query ourselves
3753 because the stub wouldn't be ready to process it. This applies
3754 only to the base all-stop protocol, however. In non-stop (which
3755 only supports vCont), the stub replies with an "OK", and is
3756 immediate able to process further serial input. */
3757 if (!non_stop)
3758 rs->waiting_for_stop_reply = 1;
3759 }
3760 \f
3761
3762 /* Set up the signal handler for SIGINT, while the target is
3763 executing, ovewriting the 'regular' SIGINT signal handler. */
3764 static void
3765 initialize_sigint_signal_handler (void)
3766 {
3767 signal (SIGINT, handle_remote_sigint);
3768 }
3769
3770 /* Signal handler for SIGINT, while the target is executing. */
3771 static void
3772 handle_remote_sigint (int sig)
3773 {
3774 signal (sig, handle_remote_sigint_twice);
3775 mark_async_signal_handler_wrapper (sigint_remote_token);
3776 }
3777
3778 /* Signal handler for SIGINT, installed after SIGINT has already been
3779 sent once. It will take effect the second time that the user sends
3780 a ^C. */
3781 static void
3782 handle_remote_sigint_twice (int sig)
3783 {
3784 signal (sig, handle_remote_sigint);
3785 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3786 }
3787
3788 /* Perform the real interruption of the target execution, in response
3789 to a ^C. */
3790 static void
3791 async_remote_interrupt (gdb_client_data arg)
3792 {
3793 if (remote_debug)
3794 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3795
3796 target_stop (inferior_ptid);
3797 }
3798
3799 /* Perform interrupt, if the first attempt did not succeed. Just give
3800 up on the target alltogether. */
3801 void
3802 async_remote_interrupt_twice (gdb_client_data arg)
3803 {
3804 if (remote_debug)
3805 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3806
3807 interrupt_query ();
3808 }
3809
3810 /* Reinstall the usual SIGINT handlers, after the target has
3811 stopped. */
3812 static void
3813 cleanup_sigint_signal_handler (void *dummy)
3814 {
3815 signal (SIGINT, handle_sigint);
3816 }
3817
3818 /* Send ^C to target to halt it. Target will respond, and send us a
3819 packet. */
3820 static void (*ofunc) (int);
3821
3822 /* The command line interface's stop routine. This function is installed
3823 as a signal handler for SIGINT. The first time a user requests a
3824 stop, we call remote_stop to send a break or ^C. If there is no
3825 response from the target (it didn't stop when the user requested it),
3826 we ask the user if he'd like to detach from the target. */
3827 static void
3828 remote_interrupt (int signo)
3829 {
3830 /* If this doesn't work, try more severe steps. */
3831 signal (signo, remote_interrupt_twice);
3832
3833 gdb_call_async_signal_handler (sigint_remote_token, 1);
3834 }
3835
3836 /* The user typed ^C twice. */
3837
3838 static void
3839 remote_interrupt_twice (int signo)
3840 {
3841 signal (signo, ofunc);
3842 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3843 signal (signo, remote_interrupt);
3844 }
3845
3846 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3847 thread, all threads of a remote process, or all threads of all
3848 processes. */
3849
3850 static void
3851 remote_stop_ns (ptid_t ptid)
3852 {
3853 struct remote_state *rs = get_remote_state ();
3854 char *p = rs->buf;
3855 char *endp = rs->buf + get_remote_packet_size ();
3856 struct stop_reply *reply, *next;
3857
3858 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3859 remote_vcont_probe (rs);
3860
3861 if (!rs->support_vCont_t)
3862 error (_("Remote server does not support stopping threads"));
3863
3864 if (ptid_equal (ptid, minus_one_ptid))
3865 p += xsnprintf (p, endp - p, "vCont;t");
3866 else
3867 {
3868 ptid_t nptid;
3869
3870 /* Step inferior_ptid. */
3871 p += xsnprintf (p, endp - p, "vCont;t:");
3872
3873 if (ptid_is_pid (ptid))
3874 /* All (-1) threads of process. */
3875 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3876 else
3877 {
3878 /* Small optimization: if we already have a stop reply for
3879 this thread, no use in telling the stub we want this
3880 stopped. */
3881 if (peek_stop_reply (ptid))
3882 return;
3883
3884 nptid = ptid;
3885 }
3886
3887 p = write_ptid (p, endp, nptid);
3888 }
3889
3890 /* In non-stop, we get an immediate OK reply. The stop reply will
3891 come in asynchronously by notification. */
3892 putpkt (rs->buf);
3893 getpkt (&rs->buf, &rs->buf_size, 0);
3894 if (strcmp (rs->buf, "OK") != 0)
3895 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3896 }
3897
3898 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3899 remote target. It is undefined which thread of which process
3900 reports the stop. */
3901
3902 static void
3903 remote_stop_as (ptid_t ptid)
3904 {
3905 struct remote_state *rs = get_remote_state ();
3906
3907 /* If the inferior is stopped already, but the core didn't know
3908 about it yet, just ignore the request. The cached wait status
3909 will be collected in remote_wait. */
3910 if (rs->cached_wait_status)
3911 return;
3912
3913 /* Send a break or a ^C, depending on user preference. */
3914
3915 if (remote_break)
3916 serial_send_break (remote_desc);
3917 else
3918 serial_write (remote_desc, "\003", 1);
3919 }
3920
3921 /* This is the generic stop called via the target vector. When a target
3922 interrupt is requested, either by the command line or the GUI, we
3923 will eventually end up here. */
3924
3925 static void
3926 remote_stop (ptid_t ptid)
3927 {
3928 if (remote_debug)
3929 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3930
3931 if (non_stop)
3932 remote_stop_ns (ptid);
3933 else
3934 remote_stop_as (ptid);
3935 }
3936
3937 /* Ask the user what to do when an interrupt is received. */
3938
3939 static void
3940 interrupt_query (void)
3941 {
3942 target_terminal_ours ();
3943
3944 if (target_can_async_p ())
3945 {
3946 signal (SIGINT, handle_sigint);
3947 deprecated_throw_reason (RETURN_QUIT);
3948 }
3949 else
3950 {
3951 if (query ("Interrupted while waiting for the program.\n\
3952 Give up (and stop debugging it)? "))
3953 {
3954 pop_target ();
3955 deprecated_throw_reason (RETURN_QUIT);
3956 }
3957 }
3958
3959 target_terminal_inferior ();
3960 }
3961
3962 /* Enable/disable target terminal ownership. Most targets can use
3963 terminal groups to control terminal ownership. Remote targets are
3964 different in that explicit transfer of ownership to/from GDB/target
3965 is required. */
3966
3967 static void
3968 remote_terminal_inferior (void)
3969 {
3970 if (!target_async_permitted)
3971 /* Nothing to do. */
3972 return;
3973
3974 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3975 sync_execution here. This function should only be called when
3976 GDB is resuming the inferior in the forground. A background
3977 resume (``run&'') should leave GDB in control of the terminal and
3978 consequently should not call this code. */
3979 if (!sync_execution)
3980 return;
3981 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3982 calls target_terminal_*() idenpotent. The event-loop GDB talking
3983 to an asynchronous target with a synchronous command calls this
3984 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3985 stops trying to transfer the terminal to the target when it
3986 shouldn't this guard can go away. */
3987 if (!remote_async_terminal_ours_p)
3988 return;
3989 delete_file_handler (input_fd);
3990 remote_async_terminal_ours_p = 0;
3991 initialize_sigint_signal_handler ();
3992 /* NOTE: At this point we could also register our selves as the
3993 recipient of all input. Any characters typed could then be
3994 passed on down to the target. */
3995 }
3996
3997 static void
3998 remote_terminal_ours (void)
3999 {
4000 if (!target_async_permitted)
4001 /* Nothing to do. */
4002 return;
4003
4004 /* See FIXME in remote_terminal_inferior. */
4005 if (!sync_execution)
4006 return;
4007 /* See FIXME in remote_terminal_inferior. */
4008 if (remote_async_terminal_ours_p)
4009 return;
4010 cleanup_sigint_signal_handler (NULL);
4011 add_file_handler (input_fd, stdin_event_handler, 0);
4012 remote_async_terminal_ours_p = 1;
4013 }
4014
4015 void
4016 remote_console_output (char *msg)
4017 {
4018 char *p;
4019
4020 for (p = msg; p[0] && p[1]; p += 2)
4021 {
4022 char tb[2];
4023 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4024 tb[0] = c;
4025 tb[1] = 0;
4026 fputs_unfiltered (tb, gdb_stdtarg);
4027 }
4028 gdb_flush (gdb_stdtarg);
4029 }
4030
4031 typedef struct cached_reg
4032 {
4033 int num;
4034 gdb_byte data[MAX_REGISTER_SIZE];
4035 } cached_reg_t;
4036
4037 DEF_VEC_O(cached_reg_t);
4038
4039 struct stop_reply
4040 {
4041 struct stop_reply *next;
4042
4043 ptid_t ptid;
4044
4045 struct target_waitstatus ws;
4046
4047 VEC(cached_reg_t) *regcache;
4048
4049 int stopped_by_watchpoint_p;
4050 CORE_ADDR watch_data_address;
4051
4052 int solibs_changed;
4053 int replay_event;
4054 };
4055
4056 /* The list of already fetched and acknowledged stop events. */
4057 static struct stop_reply *stop_reply_queue;
4058
4059 static struct stop_reply *
4060 stop_reply_xmalloc (void)
4061 {
4062 struct stop_reply *r = XMALLOC (struct stop_reply);
4063 r->next = NULL;
4064 return r;
4065 }
4066
4067 static void
4068 stop_reply_xfree (struct stop_reply *r)
4069 {
4070 if (r != NULL)
4071 {
4072 VEC_free (cached_reg_t, r->regcache);
4073 xfree (r);
4074 }
4075 }
4076
4077 /* Discard all pending stop replies of inferior PID. If PID is -1,
4078 discard everything. */
4079
4080 static void
4081 discard_pending_stop_replies (int pid)
4082 {
4083 struct stop_reply *prev = NULL, *reply, *next;
4084
4085 /* Discard the in-flight notification. */
4086 if (pending_stop_reply != NULL
4087 && (pid == -1
4088 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4089 {
4090 stop_reply_xfree (pending_stop_reply);
4091 pending_stop_reply = NULL;
4092 }
4093
4094 /* Discard the stop replies we have already pulled with
4095 vStopped. */
4096 for (reply = stop_reply_queue; reply; reply = next)
4097 {
4098 next = reply->next;
4099 if (pid == -1
4100 || ptid_get_pid (reply->ptid) == pid)
4101 {
4102 if (reply == stop_reply_queue)
4103 stop_reply_queue = reply->next;
4104 else
4105 prev->next = reply->next;
4106
4107 stop_reply_xfree (reply);
4108 }
4109 else
4110 prev = reply;
4111 }
4112 }
4113
4114 /* Cleanup wrapper. */
4115
4116 static void
4117 do_stop_reply_xfree (void *arg)
4118 {
4119 struct stop_reply *r = arg;
4120 stop_reply_xfree (r);
4121 }
4122
4123 /* Look for a queued stop reply belonging to PTID. If one is found,
4124 remove it from the queue, and return it. Returns NULL if none is
4125 found. If there are still queued events left to process, tell the
4126 event loop to get back to target_wait soon. */
4127
4128 static struct stop_reply *
4129 queued_stop_reply (ptid_t ptid)
4130 {
4131 struct stop_reply *it, *prev;
4132 struct stop_reply head;
4133
4134 head.next = stop_reply_queue;
4135 prev = &head;
4136
4137 it = head.next;
4138
4139 if (!ptid_equal (ptid, minus_one_ptid))
4140 for (; it; prev = it, it = it->next)
4141 if (ptid_equal (ptid, it->ptid))
4142 break;
4143
4144 if (it)
4145 {
4146 prev->next = it->next;
4147 it->next = NULL;
4148 }
4149
4150 stop_reply_queue = head.next;
4151
4152 if (stop_reply_queue)
4153 /* There's still at least an event left. */
4154 mark_async_event_handler (remote_async_inferior_event_token);
4155
4156 return it;
4157 }
4158
4159 /* Push a fully parsed stop reply in the stop reply queue. Since we
4160 know that we now have at least one queued event left to pass to the
4161 core side, tell the event loop to get back to target_wait soon. */
4162
4163 static void
4164 push_stop_reply (struct stop_reply *new_event)
4165 {
4166 struct stop_reply *event;
4167
4168 if (stop_reply_queue)
4169 {
4170 for (event = stop_reply_queue;
4171 event && event->next;
4172 event = event->next)
4173 ;
4174
4175 event->next = new_event;
4176 }
4177 else
4178 stop_reply_queue = new_event;
4179
4180 mark_async_event_handler (remote_async_inferior_event_token);
4181 }
4182
4183 /* Returns true if we have a stop reply for PTID. */
4184
4185 static int
4186 peek_stop_reply (ptid_t ptid)
4187 {
4188 struct stop_reply *it;
4189
4190 for (it = stop_reply_queue; it; it = it->next)
4191 if (ptid_equal (ptid, it->ptid))
4192 {
4193 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4194 return 1;
4195 }
4196
4197 return 0;
4198 }
4199
4200 /* Parse the stop reply in BUF. Either the function succeeds, and the
4201 result is stored in EVENT, or throws an error. */
4202
4203 static void
4204 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4205 {
4206 struct remote_arch_state *rsa = get_remote_arch_state ();
4207 ULONGEST addr;
4208 char *p;
4209
4210 event->ptid = null_ptid;
4211 event->ws.kind = TARGET_WAITKIND_IGNORE;
4212 event->ws.value.integer = 0;
4213 event->solibs_changed = 0;
4214 event->replay_event = 0;
4215 event->stopped_by_watchpoint_p = 0;
4216 event->regcache = NULL;
4217
4218 switch (buf[0])
4219 {
4220 case 'T': /* Status with PC, SP, FP, ... */
4221 {
4222 gdb_byte regs[MAX_REGISTER_SIZE];
4223
4224 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4225 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4226 ss = signal number
4227 n... = register number
4228 r... = register contents
4229 */
4230
4231 p = &buf[3]; /* after Txx */
4232 while (*p)
4233 {
4234 char *p1;
4235 char *p_temp;
4236 int fieldsize;
4237 LONGEST pnum = 0;
4238
4239 /* If the packet contains a register number, save it in
4240 pnum and set p1 to point to the character following it.
4241 Otherwise p1 points to p. */
4242
4243 /* If this packet is an awatch packet, don't parse the 'a'
4244 as a register number. */
4245
4246 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4247 {
4248 /* Read the ``P'' register number. */
4249 pnum = strtol (p, &p_temp, 16);
4250 p1 = p_temp;
4251 }
4252 else
4253 p1 = p;
4254
4255 if (p1 == p) /* No register number present here. */
4256 {
4257 p1 = strchr (p, ':');
4258 if (p1 == NULL)
4259 error (_("Malformed packet(a) (missing colon): %s\n\
4260 Packet: '%s'\n"),
4261 p, buf);
4262 if (strncmp (p, "thread", p1 - p) == 0)
4263 event->ptid = read_ptid (++p1, &p);
4264 else if ((strncmp (p, "watch", p1 - p) == 0)
4265 || (strncmp (p, "rwatch", p1 - p) == 0)
4266 || (strncmp (p, "awatch", p1 - p) == 0))
4267 {
4268 event->stopped_by_watchpoint_p = 1;
4269 p = unpack_varlen_hex (++p1, &addr);
4270 event->watch_data_address = (CORE_ADDR) addr;
4271 }
4272 else if (strncmp (p, "library", p1 - p) == 0)
4273 {
4274 p1++;
4275 p_temp = p1;
4276 while (*p_temp && *p_temp != ';')
4277 p_temp++;
4278
4279 event->solibs_changed = 1;
4280 p = p_temp;
4281 }
4282 else if (strncmp (p, "replaylog", p1 - p) == 0)
4283 {
4284 /* NO_HISTORY event.
4285 p1 will indicate "begin" or "end", but
4286 it makes no difference for now, so ignore it. */
4287 event->replay_event = 1;
4288 p_temp = strchr (p1 + 1, ';');
4289 if (p_temp)
4290 p = p_temp;
4291 }
4292 else
4293 {
4294 /* Silently skip unknown optional info. */
4295 p_temp = strchr (p1 + 1, ';');
4296 if (p_temp)
4297 p = p_temp;
4298 }
4299 }
4300 else
4301 {
4302 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4303 cached_reg_t cached_reg;
4304
4305 p = p1;
4306
4307 if (*p != ':')
4308 error (_("Malformed packet(b) (missing colon): %s\n\
4309 Packet: '%s'\n"),
4310 p, buf);
4311 ++p;
4312
4313 if (reg == NULL)
4314 error (_("Remote sent bad register number %s: %s\n\
4315 Packet: '%s'\n"),
4316 phex_nz (pnum, 0), p, buf);
4317
4318 cached_reg.num = reg->regnum;
4319
4320 fieldsize = hex2bin (p, cached_reg.data,
4321 register_size (target_gdbarch,
4322 reg->regnum));
4323 p += 2 * fieldsize;
4324 if (fieldsize < register_size (target_gdbarch,
4325 reg->regnum))
4326 warning (_("Remote reply is too short: %s"), buf);
4327
4328 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4329 }
4330
4331 if (*p != ';')
4332 error (_("Remote register badly formatted: %s\nhere: %s"),
4333 buf, p);
4334 ++p;
4335 }
4336 }
4337 /* fall through */
4338 case 'S': /* Old style status, just signal only. */
4339 if (event->solibs_changed)
4340 event->ws.kind = TARGET_WAITKIND_LOADED;
4341 else if (event->replay_event)
4342 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4343 else
4344 {
4345 event->ws.kind = TARGET_WAITKIND_STOPPED;
4346 event->ws.value.sig = (enum target_signal)
4347 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4348 }
4349 break;
4350 case 'W': /* Target exited. */
4351 case 'X':
4352 {
4353 char *p;
4354 int pid;
4355 ULONGEST value;
4356
4357 /* GDB used to accept only 2 hex chars here. Stubs should
4358 only send more if they detect GDB supports multi-process
4359 support. */
4360 p = unpack_varlen_hex (&buf[1], &value);
4361
4362 if (buf[0] == 'W')
4363 {
4364 /* The remote process exited. */
4365 event->ws.kind = TARGET_WAITKIND_EXITED;
4366 event->ws.value.integer = value;
4367 }
4368 else
4369 {
4370 /* The remote process exited with a signal. */
4371 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4372 event->ws.value.sig = (enum target_signal) value;
4373 }
4374
4375 /* If no process is specified, assume inferior_ptid. */
4376 pid = ptid_get_pid (inferior_ptid);
4377 if (*p == '\0')
4378 ;
4379 else if (*p == ';')
4380 {
4381 p++;
4382
4383 if (p == '\0')
4384 ;
4385 else if (strncmp (p,
4386 "process:", sizeof ("process:") - 1) == 0)
4387 {
4388 ULONGEST upid;
4389 p += sizeof ("process:") - 1;
4390 unpack_varlen_hex (p, &upid);
4391 pid = upid;
4392 }
4393 else
4394 error (_("unknown stop reply packet: %s"), buf);
4395 }
4396 else
4397 error (_("unknown stop reply packet: %s"), buf);
4398 event->ptid = pid_to_ptid (pid);
4399 }
4400 break;
4401 }
4402
4403 if (non_stop && ptid_equal (event->ptid, null_ptid))
4404 error (_("No process or thread specified in stop reply: %s"), buf);
4405 }
4406
4407 /* When the stub wants to tell GDB about a new stop reply, it sends a
4408 stop notification (%Stop). Those can come it at any time, hence,
4409 we have to make sure that any pending putpkt/getpkt sequence we're
4410 making is finished, before querying the stub for more events with
4411 vStopped. E.g., if we started a vStopped sequence immediatelly
4412 upon receiving the %Stop notification, something like this could
4413 happen:
4414
4415 1.1) --> Hg 1
4416 1.2) <-- OK
4417 1.3) --> g
4418 1.4) <-- %Stop
4419 1.5) --> vStopped
4420 1.6) <-- (registers reply to step #1.3)
4421
4422 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4423 query.
4424
4425 To solve this, whenever we parse a %Stop notification sucessfully,
4426 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4427 doing whatever we were doing:
4428
4429 2.1) --> Hg 1
4430 2.2) <-- OK
4431 2.3) --> g
4432 2.4) <-- %Stop
4433 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4434 2.5) <-- (registers reply to step #2.3)
4435
4436 Eventualy after step #2.5, we return to the event loop, which
4437 notices there's an event on the
4438 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4439 associated callback --- the function below. At this point, we're
4440 always safe to start a vStopped sequence. :
4441
4442 2.6) --> vStopped
4443 2.7) <-- T05 thread:2
4444 2.8) --> vStopped
4445 2.9) --> OK
4446 */
4447
4448 static void
4449 remote_get_pending_stop_replies (void)
4450 {
4451 struct remote_state *rs = get_remote_state ();
4452 int ret;
4453
4454 if (pending_stop_reply)
4455 {
4456 /* acknowledge */
4457 putpkt ("vStopped");
4458
4459 /* Now we can rely on it. */
4460 push_stop_reply (pending_stop_reply);
4461 pending_stop_reply = NULL;
4462
4463 while (1)
4464 {
4465 getpkt (&rs->buf, &rs->buf_size, 0);
4466 if (strcmp (rs->buf, "OK") == 0)
4467 break;
4468 else
4469 {
4470 struct cleanup *old_chain;
4471 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4472
4473 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4474 remote_parse_stop_reply (rs->buf, stop_reply);
4475
4476 /* acknowledge */
4477 putpkt ("vStopped");
4478
4479 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4480 {
4481 /* Now we can rely on it. */
4482 discard_cleanups (old_chain);
4483 push_stop_reply (stop_reply);
4484 }
4485 else
4486 /* We got an unknown stop reply. */
4487 do_cleanups (old_chain);
4488 }
4489 }
4490 }
4491 }
4492
4493
4494 /* Called when it is decided that STOP_REPLY holds the info of the
4495 event that is to be returned to the core. This function always
4496 destroys STOP_REPLY. */
4497
4498 static ptid_t
4499 process_stop_reply (struct stop_reply *stop_reply,
4500 struct target_waitstatus *status)
4501 {
4502 ptid_t ptid;
4503
4504 *status = stop_reply->ws;
4505 ptid = stop_reply->ptid;
4506
4507 /* If no thread/process was reported by the stub, assume the current
4508 inferior. */
4509 if (ptid_equal (ptid, null_ptid))
4510 ptid = inferior_ptid;
4511
4512 if (status->kind != TARGET_WAITKIND_EXITED
4513 && status->kind != TARGET_WAITKIND_SIGNALLED)
4514 {
4515 notice_new_inferiors (ptid);
4516
4517 /* Expedited registers. */
4518 if (stop_reply->regcache)
4519 {
4520 cached_reg_t *reg;
4521 int ix;
4522
4523 for (ix = 0;
4524 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4525 ix++)
4526 regcache_raw_supply (get_thread_regcache (ptid),
4527 reg->num, reg->data);
4528 VEC_free (cached_reg_t, stop_reply->regcache);
4529 }
4530
4531 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4532 remote_watch_data_address = stop_reply->watch_data_address;
4533 }
4534
4535 stop_reply_xfree (stop_reply);
4536 return ptid;
4537 }
4538
4539 /* The non-stop mode version of target_wait. */
4540
4541 static ptid_t
4542 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4543 {
4544 struct remote_state *rs = get_remote_state ();
4545 struct remote_arch_state *rsa = get_remote_arch_state ();
4546 ptid_t event_ptid = null_ptid;
4547 struct stop_reply *stop_reply;
4548 int ret;
4549
4550 /* If in non-stop mode, get out of getpkt even if a
4551 notification is received. */
4552
4553 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4554 0 /* forever */);
4555 while (1)
4556 {
4557 if (ret != -1)
4558 switch (rs->buf[0])
4559 {
4560 case 'E': /* Error of some sort. */
4561 /* We're out of sync with the target now. Did it continue
4562 or not? We can't tell which thread it was in non-stop,
4563 so just ignore this. */
4564 warning (_("Remote failure reply: %s"), rs->buf);
4565 break;
4566 case 'O': /* Console output. */
4567 remote_console_output (rs->buf + 1);
4568 break;
4569 default:
4570 warning (_("Invalid remote reply: %s"), rs->buf);
4571 break;
4572 }
4573
4574 /* Acknowledge a pending stop reply that may have arrived in the
4575 mean time. */
4576 if (pending_stop_reply != NULL)
4577 remote_get_pending_stop_replies ();
4578
4579 /* If indeed we noticed a stop reply, we're done. */
4580 stop_reply = queued_stop_reply (ptid);
4581 if (stop_reply != NULL)
4582 return process_stop_reply (stop_reply, status);
4583
4584 /* Still no event. If we're in asynchronous mode, then just
4585 return to the event loop. */
4586 if (remote_is_async_p ())
4587 {
4588 status->kind = TARGET_WAITKIND_IGNORE;
4589 return minus_one_ptid;
4590 }
4591
4592 /* Otherwise, asynchronous mode is masked, so do a blocking
4593 wait. */
4594 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4595 1 /* forever */);
4596 }
4597 }
4598
4599 /* Wait until the remote machine stops, then return, storing status in
4600 STATUS just as `wait' would. */
4601
4602 static ptid_t
4603 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4604 {
4605 struct remote_state *rs = get_remote_state ();
4606 struct remote_arch_state *rsa = get_remote_arch_state ();
4607 ptid_t event_ptid = null_ptid;
4608 ULONGEST addr;
4609 int solibs_changed = 0;
4610 char *buf, *p;
4611 struct stop_reply *stop_reply;
4612
4613 status->kind = TARGET_WAITKIND_IGNORE;
4614 status->value.integer = 0;
4615
4616 stop_reply = queued_stop_reply (ptid);
4617 if (stop_reply != NULL)
4618 return process_stop_reply (stop_reply, status);
4619
4620 if (rs->cached_wait_status)
4621 /* Use the cached wait status, but only once. */
4622 rs->cached_wait_status = 0;
4623 else
4624 {
4625 int ret;
4626
4627 if (!target_is_async_p ())
4628 {
4629 ofunc = signal (SIGINT, remote_interrupt);
4630 /* If the user hit C-c before this packet, or between packets,
4631 pretend that it was hit right here. */
4632 if (quit_flag)
4633 {
4634 quit_flag = 0;
4635 remote_interrupt (SIGINT);
4636 }
4637 }
4638
4639 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4640 _never_ wait for ever -> test on target_is_async_p().
4641 However, before we do that we need to ensure that the caller
4642 knows how to take the target into/out of async mode. */
4643 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4644 if (!target_is_async_p ())
4645 signal (SIGINT, ofunc);
4646 }
4647
4648 buf = rs->buf;
4649
4650 remote_stopped_by_watchpoint_p = 0;
4651
4652 /* We got something. */
4653 rs->waiting_for_stop_reply = 0;
4654
4655 switch (buf[0])
4656 {
4657 case 'E': /* Error of some sort. */
4658 /* We're out of sync with the target now. Did it continue or
4659 not? Not is more likely, so report a stop. */
4660 warning (_("Remote failure reply: %s"), buf);
4661 status->kind = TARGET_WAITKIND_STOPPED;
4662 status->value.sig = TARGET_SIGNAL_0;
4663 break;
4664 case 'F': /* File-I/O request. */
4665 remote_fileio_request (buf);
4666 break;
4667 case 'T': case 'S': case 'X': case 'W':
4668 {
4669 struct stop_reply *stop_reply;
4670 struct cleanup *old_chain;
4671
4672 stop_reply = stop_reply_xmalloc ();
4673 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4674 remote_parse_stop_reply (buf, stop_reply);
4675 discard_cleanups (old_chain);
4676 event_ptid = process_stop_reply (stop_reply, status);
4677 break;
4678 }
4679 case 'O': /* Console output. */
4680 remote_console_output (buf + 1);
4681
4682 /* The target didn't really stop; keep waiting. */
4683 rs->waiting_for_stop_reply = 1;
4684
4685 break;
4686 case '\0':
4687 if (last_sent_signal != TARGET_SIGNAL_0)
4688 {
4689 /* Zero length reply means that we tried 'S' or 'C' and the
4690 remote system doesn't support it. */
4691 target_terminal_ours_for_output ();
4692 printf_filtered
4693 ("Can't send signals to this remote system. %s not sent.\n",
4694 target_signal_to_name (last_sent_signal));
4695 last_sent_signal = TARGET_SIGNAL_0;
4696 target_terminal_inferior ();
4697
4698 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4699 putpkt ((char *) buf);
4700
4701 /* We just told the target to resume, so a stop reply is in
4702 order. */
4703 rs->waiting_for_stop_reply = 1;
4704 break;
4705 }
4706 /* else fallthrough */
4707 default:
4708 warning (_("Invalid remote reply: %s"), buf);
4709 /* Keep waiting. */
4710 rs->waiting_for_stop_reply = 1;
4711 break;
4712 }
4713
4714 if (status->kind == TARGET_WAITKIND_IGNORE)
4715 /* Nothing interesting happened. */
4716 return minus_one_ptid;
4717 else if (status->kind != TARGET_WAITKIND_EXITED
4718 && status->kind != TARGET_WAITKIND_SIGNALLED)
4719 {
4720 if (!ptid_equal (event_ptid, null_ptid))
4721 record_currthread (event_ptid);
4722 else
4723 event_ptid = inferior_ptid;
4724 }
4725 else
4726 /* A process exit. Invalidate our notion of current thread. */
4727 record_currthread (minus_one_ptid);
4728
4729 return event_ptid;
4730 }
4731
4732 /* Wait until the remote machine stops, then return, storing status in
4733 STATUS just as `wait' would. */
4734
4735 static ptid_t
4736 remote_wait (ptid_t ptid, struct target_waitstatus *status)
4737 {
4738 ptid_t event_ptid;
4739
4740 if (non_stop)
4741 event_ptid = remote_wait_ns (ptid, status);
4742 else
4743 {
4744 /* In synchronous mode, keep waiting until the target stops. In
4745 asynchronous mode, always return to the event loop. */
4746
4747 do
4748 {
4749 event_ptid = remote_wait_as (ptid, status);
4750 }
4751 while (status->kind == TARGET_WAITKIND_IGNORE
4752 && !target_can_async_p ());
4753 }
4754
4755 if (target_can_async_p ())
4756 {
4757 /* If there are are events left in the queue tell the event loop
4758 to return here. */
4759 if (stop_reply_queue)
4760 mark_async_event_handler (remote_async_inferior_event_token);
4761 }
4762
4763 return event_ptid;
4764 }
4765
4766 /* Fetch a single register using a 'p' packet. */
4767
4768 static int
4769 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4770 {
4771 struct remote_state *rs = get_remote_state ();
4772 char *buf, *p;
4773 char regp[MAX_REGISTER_SIZE];
4774 int i;
4775
4776 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4777 return 0;
4778
4779 if (reg->pnum == -1)
4780 return 0;
4781
4782 p = rs->buf;
4783 *p++ = 'p';
4784 p += hexnumstr (p, reg->pnum);
4785 *p++ = '\0';
4786 remote_send (&rs->buf, &rs->buf_size);
4787
4788 buf = rs->buf;
4789
4790 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4791 {
4792 case PACKET_OK:
4793 break;
4794 case PACKET_UNKNOWN:
4795 return 0;
4796 case PACKET_ERROR:
4797 error (_("Could not fetch register \"%s\""),
4798 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4799 }
4800
4801 /* If this register is unfetchable, tell the regcache. */
4802 if (buf[0] == 'x')
4803 {
4804 regcache_raw_supply (regcache, reg->regnum, NULL);
4805 return 1;
4806 }
4807
4808 /* Otherwise, parse and supply the value. */
4809 p = buf;
4810 i = 0;
4811 while (p[0] != 0)
4812 {
4813 if (p[1] == 0)
4814 error (_("fetch_register_using_p: early buf termination"));
4815
4816 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4817 p += 2;
4818 }
4819 regcache_raw_supply (regcache, reg->regnum, regp);
4820 return 1;
4821 }
4822
4823 /* Fetch the registers included in the target's 'g' packet. */
4824
4825 static int
4826 send_g_packet (void)
4827 {
4828 struct remote_state *rs = get_remote_state ();
4829 int i, buf_len;
4830 char *p;
4831 char *regs;
4832
4833 sprintf (rs->buf, "g");
4834 remote_send (&rs->buf, &rs->buf_size);
4835
4836 /* We can get out of synch in various cases. If the first character
4837 in the buffer is not a hex character, assume that has happened
4838 and try to fetch another packet to read. */
4839 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4840 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4841 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4842 && rs->buf[0] != 'x') /* New: unavailable register value. */
4843 {
4844 if (remote_debug)
4845 fprintf_unfiltered (gdb_stdlog,
4846 "Bad register packet; fetching a new packet\n");
4847 getpkt (&rs->buf, &rs->buf_size, 0);
4848 }
4849
4850 buf_len = strlen (rs->buf);
4851
4852 /* Sanity check the received packet. */
4853 if (buf_len % 2 != 0)
4854 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4855
4856 return buf_len / 2;
4857 }
4858
4859 static void
4860 process_g_packet (struct regcache *regcache)
4861 {
4862 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4863 struct remote_state *rs = get_remote_state ();
4864 struct remote_arch_state *rsa = get_remote_arch_state ();
4865 int i, buf_len;
4866 char *p;
4867 char *regs;
4868
4869 buf_len = strlen (rs->buf);
4870
4871 /* Further sanity checks, with knowledge of the architecture. */
4872 if (buf_len > 2 * rsa->sizeof_g_packet)
4873 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4874
4875 /* Save the size of the packet sent to us by the target. It is used
4876 as a heuristic when determining the max size of packets that the
4877 target can safely receive. */
4878 if (rsa->actual_register_packet_size == 0)
4879 rsa->actual_register_packet_size = buf_len;
4880
4881 /* If this is smaller than we guessed the 'g' packet would be,
4882 update our records. A 'g' reply that doesn't include a register's
4883 value implies either that the register is not available, or that
4884 the 'p' packet must be used. */
4885 if (buf_len < 2 * rsa->sizeof_g_packet)
4886 {
4887 rsa->sizeof_g_packet = buf_len / 2;
4888
4889 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4890 {
4891 if (rsa->regs[i].pnum == -1)
4892 continue;
4893
4894 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4895 rsa->regs[i].in_g_packet = 0;
4896 else
4897 rsa->regs[i].in_g_packet = 1;
4898 }
4899 }
4900
4901 regs = alloca (rsa->sizeof_g_packet);
4902
4903 /* Unimplemented registers read as all bits zero. */
4904 memset (regs, 0, rsa->sizeof_g_packet);
4905
4906 /* Reply describes registers byte by byte, each byte encoded as two
4907 hex characters. Suck them all up, then supply them to the
4908 register cacheing/storage mechanism. */
4909
4910 p = rs->buf;
4911 for (i = 0; i < rsa->sizeof_g_packet; i++)
4912 {
4913 if (p[0] == 0 || p[1] == 0)
4914 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4915 internal_error (__FILE__, __LINE__,
4916 "unexpected end of 'g' packet reply");
4917
4918 if (p[0] == 'x' && p[1] == 'x')
4919 regs[i] = 0; /* 'x' */
4920 else
4921 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4922 p += 2;
4923 }
4924
4925 {
4926 int i;
4927 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4928 {
4929 struct packet_reg *r = &rsa->regs[i];
4930 if (r->in_g_packet)
4931 {
4932 if (r->offset * 2 >= strlen (rs->buf))
4933 /* This shouldn't happen - we adjusted in_g_packet above. */
4934 internal_error (__FILE__, __LINE__,
4935 "unexpected end of 'g' packet reply");
4936 else if (rs->buf[r->offset * 2] == 'x')
4937 {
4938 gdb_assert (r->offset * 2 < strlen (rs->buf));
4939 /* The register isn't available, mark it as such (at
4940 the same time setting the value to zero). */
4941 regcache_raw_supply (regcache, r->regnum, NULL);
4942 }
4943 else
4944 regcache_raw_supply (regcache, r->regnum,
4945 regs + r->offset);
4946 }
4947 }
4948 }
4949 }
4950
4951 static void
4952 fetch_registers_using_g (struct regcache *regcache)
4953 {
4954 send_g_packet ();
4955 process_g_packet (regcache);
4956 }
4957
4958 static void
4959 remote_fetch_registers (struct regcache *regcache, int regnum)
4960 {
4961 struct remote_state *rs = get_remote_state ();
4962 struct remote_arch_state *rsa = get_remote_arch_state ();
4963 int i;
4964
4965 set_general_thread (inferior_ptid);
4966
4967 if (regnum >= 0)
4968 {
4969 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4970 gdb_assert (reg != NULL);
4971
4972 /* If this register might be in the 'g' packet, try that first -
4973 we are likely to read more than one register. If this is the
4974 first 'g' packet, we might be overly optimistic about its
4975 contents, so fall back to 'p'. */
4976 if (reg->in_g_packet)
4977 {
4978 fetch_registers_using_g (regcache);
4979 if (reg->in_g_packet)
4980 return;
4981 }
4982
4983 if (fetch_register_using_p (regcache, reg))
4984 return;
4985
4986 /* This register is not available. */
4987 regcache_raw_supply (regcache, reg->regnum, NULL);
4988
4989 return;
4990 }
4991
4992 fetch_registers_using_g (regcache);
4993
4994 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4995 if (!rsa->regs[i].in_g_packet)
4996 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4997 {
4998 /* This register is not available. */
4999 regcache_raw_supply (regcache, i, NULL);
5000 }
5001 }
5002
5003 /* Prepare to store registers. Since we may send them all (using a
5004 'G' request), we have to read out the ones we don't want to change
5005 first. */
5006
5007 static void
5008 remote_prepare_to_store (struct regcache *regcache)
5009 {
5010 struct remote_arch_state *rsa = get_remote_arch_state ();
5011 int i;
5012 gdb_byte buf[MAX_REGISTER_SIZE];
5013
5014 /* Make sure the entire registers array is valid. */
5015 switch (remote_protocol_packets[PACKET_P].support)
5016 {
5017 case PACKET_DISABLE:
5018 case PACKET_SUPPORT_UNKNOWN:
5019 /* Make sure all the necessary registers are cached. */
5020 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5021 if (rsa->regs[i].in_g_packet)
5022 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5023 break;
5024 case PACKET_ENABLE:
5025 break;
5026 }
5027 }
5028
5029 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5030 packet was not recognized. */
5031
5032 static int
5033 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5034 {
5035 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5036 struct remote_state *rs = get_remote_state ();
5037 struct remote_arch_state *rsa = get_remote_arch_state ();
5038 /* Try storing a single register. */
5039 char *buf = rs->buf;
5040 gdb_byte regp[MAX_REGISTER_SIZE];
5041 char *p;
5042
5043 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5044 return 0;
5045
5046 if (reg->pnum == -1)
5047 return 0;
5048
5049 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5050 p = buf + strlen (buf);
5051 regcache_raw_collect (regcache, reg->regnum, regp);
5052 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5053 remote_send (&rs->buf, &rs->buf_size);
5054
5055 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5056 {
5057 case PACKET_OK:
5058 return 1;
5059 case PACKET_ERROR:
5060 error (_("Could not write register \"%s\""),
5061 gdbarch_register_name (gdbarch, reg->regnum));
5062 case PACKET_UNKNOWN:
5063 return 0;
5064 default:
5065 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5066 }
5067 }
5068
5069 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5070 contents of the register cache buffer. FIXME: ignores errors. */
5071
5072 static void
5073 store_registers_using_G (const struct regcache *regcache)
5074 {
5075 struct remote_state *rs = get_remote_state ();
5076 struct remote_arch_state *rsa = get_remote_arch_state ();
5077 gdb_byte *regs;
5078 char *p;
5079
5080 /* Extract all the registers in the regcache copying them into a
5081 local buffer. */
5082 {
5083 int i;
5084 regs = alloca (rsa->sizeof_g_packet);
5085 memset (regs, 0, rsa->sizeof_g_packet);
5086 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5087 {
5088 struct packet_reg *r = &rsa->regs[i];
5089 if (r->in_g_packet)
5090 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5091 }
5092 }
5093
5094 /* Command describes registers byte by byte,
5095 each byte encoded as two hex characters. */
5096 p = rs->buf;
5097 *p++ = 'G';
5098 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5099 updated. */
5100 bin2hex (regs, p, rsa->sizeof_g_packet);
5101 remote_send (&rs->buf, &rs->buf_size);
5102 }
5103
5104 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5105 of the register cache buffer. FIXME: ignores errors. */
5106
5107 static void
5108 remote_store_registers (struct regcache *regcache, int regnum)
5109 {
5110 struct remote_state *rs = get_remote_state ();
5111 struct remote_arch_state *rsa = get_remote_arch_state ();
5112 int i;
5113
5114 set_general_thread (inferior_ptid);
5115
5116 if (regnum >= 0)
5117 {
5118 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5119 gdb_assert (reg != NULL);
5120
5121 /* Always prefer to store registers using the 'P' packet if
5122 possible; we often change only a small number of registers.
5123 Sometimes we change a larger number; we'd need help from a
5124 higher layer to know to use 'G'. */
5125 if (store_register_using_P (regcache, reg))
5126 return;
5127
5128 /* For now, don't complain if we have no way to write the
5129 register. GDB loses track of unavailable registers too
5130 easily. Some day, this may be an error. We don't have
5131 any way to read the register, either... */
5132 if (!reg->in_g_packet)
5133 return;
5134
5135 store_registers_using_G (regcache);
5136 return;
5137 }
5138
5139 store_registers_using_G (regcache);
5140
5141 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5142 if (!rsa->regs[i].in_g_packet)
5143 if (!store_register_using_P (regcache, &rsa->regs[i]))
5144 /* See above for why we do not issue an error here. */
5145 continue;
5146 }
5147 \f
5148
5149 /* Return the number of hex digits in num. */
5150
5151 static int
5152 hexnumlen (ULONGEST num)
5153 {
5154 int i;
5155
5156 for (i = 0; num != 0; i++)
5157 num >>= 4;
5158
5159 return max (i, 1);
5160 }
5161
5162 /* Set BUF to the minimum number of hex digits representing NUM. */
5163
5164 static int
5165 hexnumstr (char *buf, ULONGEST num)
5166 {
5167 int len = hexnumlen (num);
5168 return hexnumnstr (buf, num, len);
5169 }
5170
5171
5172 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5173
5174 static int
5175 hexnumnstr (char *buf, ULONGEST num, int width)
5176 {
5177 int i;
5178
5179 buf[width] = '\0';
5180
5181 for (i = width - 1; i >= 0; i--)
5182 {
5183 buf[i] = "0123456789abcdef"[(num & 0xf)];
5184 num >>= 4;
5185 }
5186
5187 return width;
5188 }
5189
5190 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5191
5192 static CORE_ADDR
5193 remote_address_masked (CORE_ADDR addr)
5194 {
5195 int address_size = remote_address_size;
5196 /* If "remoteaddresssize" was not set, default to target address size. */
5197 if (!address_size)
5198 address_size = gdbarch_addr_bit (target_gdbarch);
5199
5200 if (address_size > 0
5201 && address_size < (sizeof (ULONGEST) * 8))
5202 {
5203 /* Only create a mask when that mask can safely be constructed
5204 in a ULONGEST variable. */
5205 ULONGEST mask = 1;
5206 mask = (mask << address_size) - 1;
5207 addr &= mask;
5208 }
5209 return addr;
5210 }
5211
5212 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5213 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5214 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5215 (which may be more than *OUT_LEN due to escape characters). The
5216 total number of bytes in the output buffer will be at most
5217 OUT_MAXLEN. */
5218
5219 static int
5220 remote_escape_output (const gdb_byte *buffer, int len,
5221 gdb_byte *out_buf, int *out_len,
5222 int out_maxlen)
5223 {
5224 int input_index, output_index;
5225
5226 output_index = 0;
5227 for (input_index = 0; input_index < len; input_index++)
5228 {
5229 gdb_byte b = buffer[input_index];
5230
5231 if (b == '$' || b == '#' || b == '}')
5232 {
5233 /* These must be escaped. */
5234 if (output_index + 2 > out_maxlen)
5235 break;
5236 out_buf[output_index++] = '}';
5237 out_buf[output_index++] = b ^ 0x20;
5238 }
5239 else
5240 {
5241 if (output_index + 1 > out_maxlen)
5242 break;
5243 out_buf[output_index++] = b;
5244 }
5245 }
5246
5247 *out_len = input_index;
5248 return output_index;
5249 }
5250
5251 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5252 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5253 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5254
5255 This function reverses remote_escape_output. It allows more
5256 escaped characters than that function does, in particular because
5257 '*' must be escaped to avoid the run-length encoding processing
5258 in reading packets. */
5259
5260 static int
5261 remote_unescape_input (const gdb_byte *buffer, int len,
5262 gdb_byte *out_buf, int out_maxlen)
5263 {
5264 int input_index, output_index;
5265 int escaped;
5266
5267 output_index = 0;
5268 escaped = 0;
5269 for (input_index = 0; input_index < len; input_index++)
5270 {
5271 gdb_byte b = buffer[input_index];
5272
5273 if (output_index + 1 > out_maxlen)
5274 {
5275 warning (_("Received too much data from remote target;"
5276 " ignoring overflow."));
5277 return output_index;
5278 }
5279
5280 if (escaped)
5281 {
5282 out_buf[output_index++] = b ^ 0x20;
5283 escaped = 0;
5284 }
5285 else if (b == '}')
5286 escaped = 1;
5287 else
5288 out_buf[output_index++] = b;
5289 }
5290
5291 if (escaped)
5292 error (_("Unmatched escape character in target response."));
5293
5294 return output_index;
5295 }
5296
5297 /* Determine whether the remote target supports binary downloading.
5298 This is accomplished by sending a no-op memory write of zero length
5299 to the target at the specified address. It does not suffice to send
5300 the whole packet, since many stubs strip the eighth bit and
5301 subsequently compute a wrong checksum, which causes real havoc with
5302 remote_write_bytes.
5303
5304 NOTE: This can still lose if the serial line is not eight-bit
5305 clean. In cases like this, the user should clear "remote
5306 X-packet". */
5307
5308 static void
5309 check_binary_download (CORE_ADDR addr)
5310 {
5311 struct remote_state *rs = get_remote_state ();
5312
5313 switch (remote_protocol_packets[PACKET_X].support)
5314 {
5315 case PACKET_DISABLE:
5316 break;
5317 case PACKET_ENABLE:
5318 break;
5319 case PACKET_SUPPORT_UNKNOWN:
5320 {
5321 char *p;
5322
5323 p = rs->buf;
5324 *p++ = 'X';
5325 p += hexnumstr (p, (ULONGEST) addr);
5326 *p++ = ',';
5327 p += hexnumstr (p, (ULONGEST) 0);
5328 *p++ = ':';
5329 *p = '\0';
5330
5331 putpkt_binary (rs->buf, (int) (p - rs->buf));
5332 getpkt (&rs->buf, &rs->buf_size, 0);
5333
5334 if (rs->buf[0] == '\0')
5335 {
5336 if (remote_debug)
5337 fprintf_unfiltered (gdb_stdlog,
5338 "binary downloading NOT suppported by target\n");
5339 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5340 }
5341 else
5342 {
5343 if (remote_debug)
5344 fprintf_unfiltered (gdb_stdlog,
5345 "binary downloading suppported by target\n");
5346 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5347 }
5348 break;
5349 }
5350 }
5351 }
5352
5353 /* Write memory data directly to the remote machine.
5354 This does not inform the data cache; the data cache uses this.
5355 HEADER is the starting part of the packet.
5356 MEMADDR is the address in the remote memory space.
5357 MYADDR is the address of the buffer in our space.
5358 LEN is the number of bytes.
5359 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5360 should send data as binary ('X'), or hex-encoded ('M').
5361
5362 The function creates packet of the form
5363 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5364
5365 where encoding of <DATA> is termined by PACKET_FORMAT.
5366
5367 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5368 are omitted.
5369
5370 Returns the number of bytes transferred, or 0 (setting errno) for
5371 error. Only transfer a single packet. */
5372
5373 static int
5374 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5375 const gdb_byte *myaddr, int len,
5376 char packet_format, int use_length)
5377 {
5378 struct remote_state *rs = get_remote_state ();
5379 char *p;
5380 char *plen = NULL;
5381 int plenlen = 0;
5382 int todo;
5383 int nr_bytes;
5384 int payload_size;
5385 int payload_length;
5386 int header_length;
5387
5388 if (packet_format != 'X' && packet_format != 'M')
5389 internal_error (__FILE__, __LINE__,
5390 "remote_write_bytes_aux: bad packet format");
5391
5392 if (len <= 0)
5393 return 0;
5394
5395 payload_size = get_memory_write_packet_size ();
5396
5397 /* The packet buffer will be large enough for the payload;
5398 get_memory_packet_size ensures this. */
5399 rs->buf[0] = '\0';
5400
5401 /* Compute the size of the actual payload by subtracting out the
5402 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5403 */
5404 payload_size -= strlen ("$,:#NN");
5405 if (!use_length)
5406 /* The comma won't be used. */
5407 payload_size += 1;
5408 header_length = strlen (header);
5409 payload_size -= header_length;
5410 payload_size -= hexnumlen (memaddr);
5411
5412 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5413
5414 strcat (rs->buf, header);
5415 p = rs->buf + strlen (header);
5416
5417 /* Compute a best guess of the number of bytes actually transfered. */
5418 if (packet_format == 'X')
5419 {
5420 /* Best guess at number of bytes that will fit. */
5421 todo = min (len, payload_size);
5422 if (use_length)
5423 payload_size -= hexnumlen (todo);
5424 todo = min (todo, payload_size);
5425 }
5426 else
5427 {
5428 /* Num bytes that will fit. */
5429 todo = min (len, payload_size / 2);
5430 if (use_length)
5431 payload_size -= hexnumlen (todo);
5432 todo = min (todo, payload_size / 2);
5433 }
5434
5435 if (todo <= 0)
5436 internal_error (__FILE__, __LINE__,
5437 _("minumum packet size too small to write data"));
5438
5439 /* If we already need another packet, then try to align the end
5440 of this packet to a useful boundary. */
5441 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5442 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5443
5444 /* Append "<memaddr>". */
5445 memaddr = remote_address_masked (memaddr);
5446 p += hexnumstr (p, (ULONGEST) memaddr);
5447
5448 if (use_length)
5449 {
5450 /* Append ",". */
5451 *p++ = ',';
5452
5453 /* Append <len>. Retain the location/size of <len>. It may need to
5454 be adjusted once the packet body has been created. */
5455 plen = p;
5456 plenlen = hexnumstr (p, (ULONGEST) todo);
5457 p += plenlen;
5458 }
5459
5460 /* Append ":". */
5461 *p++ = ':';
5462 *p = '\0';
5463
5464 /* Append the packet body. */
5465 if (packet_format == 'X')
5466 {
5467 /* Binary mode. Send target system values byte by byte, in
5468 increasing byte addresses. Only escape certain critical
5469 characters. */
5470 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5471 payload_size);
5472
5473 /* If not all TODO bytes fit, then we'll need another packet. Make
5474 a second try to keep the end of the packet aligned. Don't do
5475 this if the packet is tiny. */
5476 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5477 {
5478 int new_nr_bytes;
5479
5480 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5481 - memaddr);
5482 if (new_nr_bytes != nr_bytes)
5483 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5484 p, &nr_bytes,
5485 payload_size);
5486 }
5487
5488 p += payload_length;
5489 if (use_length && nr_bytes < todo)
5490 {
5491 /* Escape chars have filled up the buffer prematurely,
5492 and we have actually sent fewer bytes than planned.
5493 Fix-up the length field of the packet. Use the same
5494 number of characters as before. */
5495 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5496 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5497 }
5498 }
5499 else
5500 {
5501 /* Normal mode: Send target system values byte by byte, in
5502 increasing byte addresses. Each byte is encoded as a two hex
5503 value. */
5504 nr_bytes = bin2hex (myaddr, p, todo);
5505 p += 2 * nr_bytes;
5506 }
5507
5508 putpkt_binary (rs->buf, (int) (p - rs->buf));
5509 getpkt (&rs->buf, &rs->buf_size, 0);
5510
5511 if (rs->buf[0] == 'E')
5512 {
5513 /* There is no correspondance between what the remote protocol
5514 uses for errors and errno codes. We would like a cleaner way
5515 of representing errors (big enough to include errno codes,
5516 bfd_error codes, and others). But for now just return EIO. */
5517 errno = EIO;
5518 return 0;
5519 }
5520
5521 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5522 fewer bytes than we'd planned. */
5523 return nr_bytes;
5524 }
5525
5526 /* Write memory data directly to the remote machine.
5527 This does not inform the data cache; the data cache uses this.
5528 MEMADDR is the address in the remote memory space.
5529 MYADDR is the address of the buffer in our space.
5530 LEN is the number of bytes.
5531
5532 Returns number of bytes transferred, or 0 (setting errno) for
5533 error. Only transfer a single packet. */
5534
5535 int
5536 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5537 {
5538 char *packet_format = 0;
5539
5540 /* Check whether the target supports binary download. */
5541 check_binary_download (memaddr);
5542
5543 switch (remote_protocol_packets[PACKET_X].support)
5544 {
5545 case PACKET_ENABLE:
5546 packet_format = "X";
5547 break;
5548 case PACKET_DISABLE:
5549 packet_format = "M";
5550 break;
5551 case PACKET_SUPPORT_UNKNOWN:
5552 internal_error (__FILE__, __LINE__,
5553 _("remote_write_bytes: bad internal state"));
5554 default:
5555 internal_error (__FILE__, __LINE__, _("bad switch"));
5556 }
5557
5558 return remote_write_bytes_aux (packet_format,
5559 memaddr, myaddr, len, packet_format[0], 1);
5560 }
5561
5562 /* Read memory data directly from the remote machine.
5563 This does not use the data cache; the data cache uses this.
5564 MEMADDR is the address in the remote memory space.
5565 MYADDR is the address of the buffer in our space.
5566 LEN is the number of bytes.
5567
5568 Returns number of bytes transferred, or 0 for error. */
5569
5570 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5571 remote targets) shouldn't attempt to read the entire buffer.
5572 Instead it should read a single packet worth of data and then
5573 return the byte size of that packet to the caller. The caller (its
5574 caller and its callers caller ;-) already contains code for
5575 handling partial reads. */
5576
5577 int
5578 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5579 {
5580 struct remote_state *rs = get_remote_state ();
5581 int max_buf_size; /* Max size of packet output buffer. */
5582 int origlen;
5583
5584 if (len <= 0)
5585 return 0;
5586
5587 max_buf_size = get_memory_read_packet_size ();
5588 /* The packet buffer will be large enough for the payload;
5589 get_memory_packet_size ensures this. */
5590
5591 origlen = len;
5592 while (len > 0)
5593 {
5594 char *p;
5595 int todo;
5596 int i;
5597
5598 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5599
5600 /* construct "m"<memaddr>","<len>" */
5601 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5602 memaddr = remote_address_masked (memaddr);
5603 p = rs->buf;
5604 *p++ = 'm';
5605 p += hexnumstr (p, (ULONGEST) memaddr);
5606 *p++ = ',';
5607 p += hexnumstr (p, (ULONGEST) todo);
5608 *p = '\0';
5609
5610 putpkt (rs->buf);
5611 getpkt (&rs->buf, &rs->buf_size, 0);
5612
5613 if (rs->buf[0] == 'E'
5614 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5615 && rs->buf[3] == '\0')
5616 {
5617 /* There is no correspondance between what the remote
5618 protocol uses for errors and errno codes. We would like
5619 a cleaner way of representing errors (big enough to
5620 include errno codes, bfd_error codes, and others). But
5621 for now just return EIO. */
5622 errno = EIO;
5623 return 0;
5624 }
5625
5626 /* Reply describes memory byte by byte,
5627 each byte encoded as two hex characters. */
5628
5629 p = rs->buf;
5630 if ((i = hex2bin (p, myaddr, todo)) < todo)
5631 {
5632 /* Reply is short. This means that we were able to read
5633 only part of what we wanted to. */
5634 return i + (origlen - len);
5635 }
5636 myaddr += todo;
5637 memaddr += todo;
5638 len -= todo;
5639 }
5640 return origlen;
5641 }
5642 \f
5643
5644 /* Remote notification handler. */
5645
5646 static void
5647 handle_notification (char *buf, size_t length)
5648 {
5649 if (strncmp (buf, "Stop:", 5) == 0)
5650 {
5651 if (pending_stop_reply)
5652 /* We've already parsed the in-flight stop-reply, but the stub
5653 for some reason thought we didn't, possibly due to timeout
5654 on its side. Just ignore it. */
5655 ;
5656 else
5657 {
5658 struct cleanup *old_chain;
5659 struct stop_reply *reply = stop_reply_xmalloc ();
5660 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5661
5662 remote_parse_stop_reply (buf + 5, reply);
5663
5664 discard_cleanups (old_chain);
5665
5666 /* Be careful to only set it after parsing, since an error
5667 may be thrown then. */
5668 pending_stop_reply = reply;
5669
5670 /* Notify the event loop there's a stop reply to acknowledge
5671 and that there may be more events to fetch. */
5672 mark_async_event_handler (remote_async_get_pending_events_token);
5673 }
5674 }
5675 else
5676 /* We ignore notifications we don't recognize, for compatibility
5677 with newer stubs. */
5678 ;
5679 }
5680
5681 \f
5682 /* Read or write LEN bytes from inferior memory at MEMADDR,
5683 transferring to or from debugger address BUFFER. Write to inferior
5684 if SHOULD_WRITE is nonzero. Returns length of data written or
5685 read; 0 for error. TARGET is unused. */
5686
5687 static int
5688 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5689 int should_write, struct mem_attrib *attrib,
5690 struct target_ops *target)
5691 {
5692 int res;
5693
5694 set_general_thread (inferior_ptid);
5695
5696 if (should_write)
5697 res = remote_write_bytes (mem_addr, buffer, mem_len);
5698 else
5699 res = remote_read_bytes (mem_addr, buffer, mem_len);
5700
5701 return res;
5702 }
5703
5704 /* Sends a packet with content determined by the printf format string
5705 FORMAT and the remaining arguments, then gets the reply. Returns
5706 whether the packet was a success, a failure, or unknown. */
5707
5708 enum packet_result
5709 remote_send_printf (const char *format, ...)
5710 {
5711 struct remote_state *rs = get_remote_state ();
5712 int max_size = get_remote_packet_size ();
5713
5714 va_list ap;
5715 va_start (ap, format);
5716
5717 rs->buf[0] = '\0';
5718 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5719 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5720
5721 if (putpkt (rs->buf) < 0)
5722 error (_("Communication problem with target."));
5723
5724 rs->buf[0] = '\0';
5725 getpkt (&rs->buf, &rs->buf_size, 0);
5726
5727 return packet_check_result (rs->buf);
5728 }
5729
5730 static void
5731 restore_remote_timeout (void *p)
5732 {
5733 int value = *(int *)p;
5734 remote_timeout = value;
5735 }
5736
5737 /* Flash writing can take quite some time. We'll set
5738 effectively infinite timeout for flash operations.
5739 In future, we'll need to decide on a better approach. */
5740 static const int remote_flash_timeout = 1000;
5741
5742 static void
5743 remote_flash_erase (struct target_ops *ops,
5744 ULONGEST address, LONGEST length)
5745 {
5746 int saved_remote_timeout = remote_timeout;
5747 enum packet_result ret;
5748
5749 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5750 &saved_remote_timeout);
5751 remote_timeout = remote_flash_timeout;
5752
5753 ret = remote_send_printf ("vFlashErase:%s,%s",
5754 paddr (address),
5755 phex (length, 4));
5756 switch (ret)
5757 {
5758 case PACKET_UNKNOWN:
5759 error (_("Remote target does not support flash erase"));
5760 case PACKET_ERROR:
5761 error (_("Error erasing flash with vFlashErase packet"));
5762 default:
5763 break;
5764 }
5765
5766 do_cleanups (back_to);
5767 }
5768
5769 static LONGEST
5770 remote_flash_write (struct target_ops *ops,
5771 ULONGEST address, LONGEST length,
5772 const gdb_byte *data)
5773 {
5774 int saved_remote_timeout = remote_timeout;
5775 int ret;
5776 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5777 &saved_remote_timeout);
5778
5779 remote_timeout = remote_flash_timeout;
5780 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5781 do_cleanups (back_to);
5782
5783 return ret;
5784 }
5785
5786 static void
5787 remote_flash_done (struct target_ops *ops)
5788 {
5789 int saved_remote_timeout = remote_timeout;
5790 int ret;
5791 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5792 &saved_remote_timeout);
5793
5794 remote_timeout = remote_flash_timeout;
5795 ret = remote_send_printf ("vFlashDone");
5796 do_cleanups (back_to);
5797
5798 switch (ret)
5799 {
5800 case PACKET_UNKNOWN:
5801 error (_("Remote target does not support vFlashDone"));
5802 case PACKET_ERROR:
5803 error (_("Error finishing flash operation"));
5804 default:
5805 break;
5806 }
5807 }
5808
5809 static void
5810 remote_files_info (struct target_ops *ignore)
5811 {
5812 puts_filtered ("Debugging a target over a serial line.\n");
5813 }
5814 \f
5815 /* Stuff for dealing with the packets which are part of this protocol.
5816 See comment at top of file for details. */
5817
5818 /* Read a single character from the remote end. */
5819
5820 static int
5821 readchar (int timeout)
5822 {
5823 int ch;
5824
5825 ch = serial_readchar (remote_desc, timeout);
5826
5827 if (ch >= 0)
5828 return ch;
5829
5830 switch ((enum serial_rc) ch)
5831 {
5832 case SERIAL_EOF:
5833 pop_target ();
5834 error (_("Remote connection closed"));
5835 /* no return */
5836 case SERIAL_ERROR:
5837 perror_with_name (_("Remote communication error"));
5838 /* no return */
5839 case SERIAL_TIMEOUT:
5840 break;
5841 }
5842 return ch;
5843 }
5844
5845 /* Send the command in *BUF to the remote machine, and read the reply
5846 into *BUF. Report an error if we get an error reply. Resize
5847 *BUF using xrealloc if necessary to hold the result, and update
5848 *SIZEOF_BUF. */
5849
5850 static void
5851 remote_send (char **buf,
5852 long *sizeof_buf)
5853 {
5854 putpkt (*buf);
5855 getpkt (buf, sizeof_buf, 0);
5856
5857 if ((*buf)[0] == 'E')
5858 error (_("Remote failure reply: %s"), *buf);
5859 }
5860
5861 /* Return a pointer to an xmalloc'ed string representing an escaped
5862 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5863 etc. The caller is responsible for releasing the returned
5864 memory. */
5865
5866 static char *
5867 escape_buffer (const char *buf, int n)
5868 {
5869 struct cleanup *old_chain;
5870 struct ui_file *stb;
5871 char *str;
5872 long length;
5873
5874 stb = mem_fileopen ();
5875 old_chain = make_cleanup_ui_file_delete (stb);
5876
5877 fputstrn_unfiltered (buf, n, 0, stb);
5878 str = ui_file_xstrdup (stb, &length);
5879 do_cleanups (old_chain);
5880 return str;
5881 }
5882
5883 /* Display a null-terminated packet on stdout, for debugging, using C
5884 string notation. */
5885
5886 static void
5887 print_packet (char *buf)
5888 {
5889 puts_filtered ("\"");
5890 fputstr_filtered (buf, '"', gdb_stdout);
5891 puts_filtered ("\"");
5892 }
5893
5894 int
5895 putpkt (char *buf)
5896 {
5897 return putpkt_binary (buf, strlen (buf));
5898 }
5899
5900 /* Send a packet to the remote machine, with error checking. The data
5901 of the packet is in BUF. The string in BUF can be at most
5902 get_remote_packet_size () - 5 to account for the $, # and checksum,
5903 and for a possible /0 if we are debugging (remote_debug) and want
5904 to print the sent packet as a string. */
5905
5906 static int
5907 putpkt_binary (char *buf, int cnt)
5908 {
5909 struct remote_state *rs = get_remote_state ();
5910 int i;
5911 unsigned char csum = 0;
5912 char *buf2 = alloca (cnt + 6);
5913
5914 int ch;
5915 int tcount = 0;
5916 char *p;
5917
5918 /* Catch cases like trying to read memory or listing threads while
5919 we're waiting for a stop reply. The remote server wouldn't be
5920 ready to handle this request, so we'd hang and timeout. We don't
5921 have to worry about this in synchronous mode, because in that
5922 case it's not possible to issue a command while the target is
5923 running. This is not a problem in non-stop mode, because in that
5924 case, the stub is always ready to process serial input. */
5925 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5926 error (_("Cannot execute this command while the target is running."));
5927
5928 /* We're sending out a new packet. Make sure we don't look at a
5929 stale cached response. */
5930 rs->cached_wait_status = 0;
5931
5932 /* Copy the packet into buffer BUF2, encapsulating it
5933 and giving it a checksum. */
5934
5935 p = buf2;
5936 *p++ = '$';
5937
5938 for (i = 0; i < cnt; i++)
5939 {
5940 csum += buf[i];
5941 *p++ = buf[i];
5942 }
5943 *p++ = '#';
5944 *p++ = tohex ((csum >> 4) & 0xf);
5945 *p++ = tohex (csum & 0xf);
5946
5947 /* Send it over and over until we get a positive ack. */
5948
5949 while (1)
5950 {
5951 int started_error_output = 0;
5952
5953 if (remote_debug)
5954 {
5955 struct cleanup *old_chain;
5956 char *str;
5957
5958 *p = '\0';
5959 str = escape_buffer (buf2, p - buf2);
5960 old_chain = make_cleanup (xfree, str);
5961 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
5962 gdb_flush (gdb_stdlog);
5963 do_cleanups (old_chain);
5964 }
5965 if (serial_write (remote_desc, buf2, p - buf2))
5966 perror_with_name (_("putpkt: write failed"));
5967
5968 /* If this is a no acks version of the remote protocol, send the
5969 packet and move on. */
5970 if (rs->noack_mode)
5971 break;
5972
5973 /* Read until either a timeout occurs (-2) or '+' is read.
5974 Handle any notification that arrives in the mean time. */
5975 while (1)
5976 {
5977 ch = readchar (remote_timeout);
5978
5979 if (remote_debug)
5980 {
5981 switch (ch)
5982 {
5983 case '+':
5984 case '-':
5985 case SERIAL_TIMEOUT:
5986 case '$':
5987 case '%':
5988 if (started_error_output)
5989 {
5990 putchar_unfiltered ('\n');
5991 started_error_output = 0;
5992 }
5993 }
5994 }
5995
5996 switch (ch)
5997 {
5998 case '+':
5999 if (remote_debug)
6000 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6001 return 1;
6002 case '-':
6003 if (remote_debug)
6004 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6005 case SERIAL_TIMEOUT:
6006 tcount++;
6007 if (tcount > 3)
6008 return 0;
6009 break; /* Retransmit buffer. */
6010 case '$':
6011 {
6012 if (remote_debug)
6013 fprintf_unfiltered (gdb_stdlog,
6014 "Packet instead of Ack, ignoring it\n");
6015 /* It's probably an old response sent because an ACK
6016 was lost. Gobble up the packet and ack it so it
6017 doesn't get retransmitted when we resend this
6018 packet. */
6019 skip_frame ();
6020 serial_write (remote_desc, "+", 1);
6021 continue; /* Now, go look for +. */
6022 }
6023
6024 case '%':
6025 {
6026 int val;
6027
6028 /* If we got a notification, handle it, and go back to looking
6029 for an ack. */
6030 /* We've found the start of a notification. Now
6031 collect the data. */
6032 val = read_frame (&rs->buf, &rs->buf_size);
6033 if (val >= 0)
6034 {
6035 if (remote_debug)
6036 {
6037 struct cleanup *old_chain;
6038 char *str;
6039
6040 str = escape_buffer (rs->buf, val);
6041 old_chain = make_cleanup (xfree, str);
6042 fprintf_unfiltered (gdb_stdlog,
6043 " Notification received: %s\n",
6044 str);
6045 do_cleanups (old_chain);
6046 }
6047 handle_notification (rs->buf, val);
6048 /* We're in sync now, rewait for the ack. */
6049 tcount = 0;
6050 }
6051 else
6052 {
6053 if (remote_debug)
6054 {
6055 if (!started_error_output)
6056 {
6057 started_error_output = 1;
6058 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6059 }
6060 fputc_unfiltered (ch & 0177, gdb_stdlog);
6061 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6062 }
6063 }
6064 continue;
6065 }
6066 /* fall-through */
6067 default:
6068 if (remote_debug)
6069 {
6070 if (!started_error_output)
6071 {
6072 started_error_output = 1;
6073 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6074 }
6075 fputc_unfiltered (ch & 0177, gdb_stdlog);
6076 }
6077 continue;
6078 }
6079 break; /* Here to retransmit. */
6080 }
6081
6082 #if 0
6083 /* This is wrong. If doing a long backtrace, the user should be
6084 able to get out next time we call QUIT, without anything as
6085 violent as interrupt_query. If we want to provide a way out of
6086 here without getting to the next QUIT, it should be based on
6087 hitting ^C twice as in remote_wait. */
6088 if (quit_flag)
6089 {
6090 quit_flag = 0;
6091 interrupt_query ();
6092 }
6093 #endif
6094 }
6095 return 0;
6096 }
6097
6098 /* Come here after finding the start of a frame when we expected an
6099 ack. Do our best to discard the rest of this packet. */
6100
6101 static void
6102 skip_frame (void)
6103 {
6104 int c;
6105
6106 while (1)
6107 {
6108 c = readchar (remote_timeout);
6109 switch (c)
6110 {
6111 case SERIAL_TIMEOUT:
6112 /* Nothing we can do. */
6113 return;
6114 case '#':
6115 /* Discard the two bytes of checksum and stop. */
6116 c = readchar (remote_timeout);
6117 if (c >= 0)
6118 c = readchar (remote_timeout);
6119
6120 return;
6121 case '*': /* Run length encoding. */
6122 /* Discard the repeat count. */
6123 c = readchar (remote_timeout);
6124 if (c < 0)
6125 return;
6126 break;
6127 default:
6128 /* A regular character. */
6129 break;
6130 }
6131 }
6132 }
6133
6134 /* Come here after finding the start of the frame. Collect the rest
6135 into *BUF, verifying the checksum, length, and handling run-length
6136 compression. NUL terminate the buffer. If there is not enough room,
6137 expand *BUF using xrealloc.
6138
6139 Returns -1 on error, number of characters in buffer (ignoring the
6140 trailing NULL) on success. (could be extended to return one of the
6141 SERIAL status indications). */
6142
6143 static long
6144 read_frame (char **buf_p,
6145 long *sizeof_buf)
6146 {
6147 unsigned char csum;
6148 long bc;
6149 int c;
6150 char *buf = *buf_p;
6151 struct remote_state *rs = get_remote_state ();
6152
6153 csum = 0;
6154 bc = 0;
6155
6156 while (1)
6157 {
6158 c = readchar (remote_timeout);
6159 switch (c)
6160 {
6161 case SERIAL_TIMEOUT:
6162 if (remote_debug)
6163 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6164 return -1;
6165 case '$':
6166 if (remote_debug)
6167 fputs_filtered ("Saw new packet start in middle of old one\n",
6168 gdb_stdlog);
6169 return -1; /* Start a new packet, count retries. */
6170 case '#':
6171 {
6172 unsigned char pktcsum;
6173 int check_0 = 0;
6174 int check_1 = 0;
6175
6176 buf[bc] = '\0';
6177
6178 check_0 = readchar (remote_timeout);
6179 if (check_0 >= 0)
6180 check_1 = readchar (remote_timeout);
6181
6182 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6183 {
6184 if (remote_debug)
6185 fputs_filtered ("Timeout in checksum, retrying\n",
6186 gdb_stdlog);
6187 return -1;
6188 }
6189 else if (check_0 < 0 || check_1 < 0)
6190 {
6191 if (remote_debug)
6192 fputs_filtered ("Communication error in checksum\n",
6193 gdb_stdlog);
6194 return -1;
6195 }
6196
6197 /* Don't recompute the checksum; with no ack packets we
6198 don't have any way to indicate a packet retransmission
6199 is necessary. */
6200 if (rs->noack_mode)
6201 return bc;
6202
6203 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6204 if (csum == pktcsum)
6205 return bc;
6206
6207 if (remote_debug)
6208 {
6209 struct cleanup *old_chain;
6210 char *str;
6211
6212 str = escape_buffer (buf, bc);
6213 old_chain = make_cleanup (xfree, str);
6214 fprintf_unfiltered (gdb_stdlog,
6215 "\
6216 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6217 pktcsum, csum, str);
6218 do_cleanups (old_chain);
6219 }
6220 /* Number of characters in buffer ignoring trailing
6221 NULL. */
6222 return -1;
6223 }
6224 case '*': /* Run length encoding. */
6225 {
6226 int repeat;
6227 csum += c;
6228
6229 c = readchar (remote_timeout);
6230 csum += c;
6231 repeat = c - ' ' + 3; /* Compute repeat count. */
6232
6233 /* The character before ``*'' is repeated. */
6234
6235 if (repeat > 0 && repeat <= 255 && bc > 0)
6236 {
6237 if (bc + repeat - 1 >= *sizeof_buf - 1)
6238 {
6239 /* Make some more room in the buffer. */
6240 *sizeof_buf += repeat;
6241 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6242 buf = *buf_p;
6243 }
6244
6245 memset (&buf[bc], buf[bc - 1], repeat);
6246 bc += repeat;
6247 continue;
6248 }
6249
6250 buf[bc] = '\0';
6251 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6252 return -1;
6253 }
6254 default:
6255 if (bc >= *sizeof_buf - 1)
6256 {
6257 /* Make some more room in the buffer. */
6258 *sizeof_buf *= 2;
6259 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6260 buf = *buf_p;
6261 }
6262
6263 buf[bc++] = c;
6264 csum += c;
6265 continue;
6266 }
6267 }
6268 }
6269
6270 /* Read a packet from the remote machine, with error checking, and
6271 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6272 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6273 rather than timing out; this is used (in synchronous mode) to wait
6274 for a target that is is executing user code to stop. */
6275 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6276 don't have to change all the calls to getpkt to deal with the
6277 return value, because at the moment I don't know what the right
6278 thing to do it for those. */
6279 void
6280 getpkt (char **buf,
6281 long *sizeof_buf,
6282 int forever)
6283 {
6284 int timed_out;
6285
6286 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6287 }
6288
6289
6290 /* Read a packet from the remote machine, with error checking, and
6291 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6292 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6293 rather than timing out; this is used (in synchronous mode) to wait
6294 for a target that is is executing user code to stop. If FOREVER ==
6295 0, this function is allowed to time out gracefully and return an
6296 indication of this to the caller. Otherwise return the number of
6297 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6298 enough reason to return to the caller. */
6299
6300 static int
6301 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6302 int expecting_notif)
6303 {
6304 struct remote_state *rs = get_remote_state ();
6305 int c;
6306 int tries;
6307 int timeout;
6308 int val;
6309
6310 /* We're reading a new response. Make sure we don't look at a
6311 previously cached response. */
6312 rs->cached_wait_status = 0;
6313
6314 strcpy (*buf, "timeout");
6315
6316 if (forever)
6317 timeout = watchdog > 0 ? watchdog : -1;
6318 else if (expecting_notif)
6319 timeout = 0; /* There should already be a char in the buffer. If
6320 not, bail out. */
6321 else
6322 timeout = remote_timeout;
6323
6324 #define MAX_TRIES 3
6325
6326 /* Process any number of notifications, and then return when
6327 we get a packet. */
6328 for (;;)
6329 {
6330 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6331 times. */
6332 for (tries = 1; tries <= MAX_TRIES; tries++)
6333 {
6334 /* This can loop forever if the remote side sends us
6335 characters continuously, but if it pauses, we'll get
6336 SERIAL_TIMEOUT from readchar because of timeout. Then
6337 we'll count that as a retry.
6338
6339 Note that even when forever is set, we will only wait
6340 forever prior to the start of a packet. After that, we
6341 expect characters to arrive at a brisk pace. They should
6342 show up within remote_timeout intervals. */
6343 do
6344 c = readchar (timeout);
6345 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6346
6347 if (c == SERIAL_TIMEOUT)
6348 {
6349 if (expecting_notif)
6350 return -1; /* Don't complain, it's normal to not get
6351 anything in this case. */
6352
6353 if (forever) /* Watchdog went off? Kill the target. */
6354 {
6355 QUIT;
6356 pop_target ();
6357 error (_("Watchdog timeout has expired. Target detached."));
6358 }
6359 if (remote_debug)
6360 fputs_filtered ("Timed out.\n", gdb_stdlog);
6361 }
6362 else
6363 {
6364 /* We've found the start of a packet or notification.
6365 Now collect the data. */
6366 val = read_frame (buf, sizeof_buf);
6367 if (val >= 0)
6368 break;
6369 }
6370
6371 serial_write (remote_desc, "-", 1);
6372 }
6373
6374 if (tries > MAX_TRIES)
6375 {
6376 /* We have tried hard enough, and just can't receive the
6377 packet/notification. Give up. */
6378 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6379
6380 /* Skip the ack char if we're in no-ack mode. */
6381 if (!rs->noack_mode)
6382 serial_write (remote_desc, "+", 1);
6383 return -1;
6384 }
6385
6386 /* If we got an ordinary packet, return that to our caller. */
6387 if (c == '$')
6388 {
6389 if (remote_debug)
6390 {
6391 struct cleanup *old_chain;
6392 char *str;
6393
6394 str = escape_buffer (*buf, val);
6395 old_chain = make_cleanup (xfree, str);
6396 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6397 do_cleanups (old_chain);
6398 }
6399
6400 /* Skip the ack char if we're in no-ack mode. */
6401 if (!rs->noack_mode)
6402 serial_write (remote_desc, "+", 1);
6403 return val;
6404 }
6405
6406 /* If we got a notification, handle it, and go back to looking
6407 for a packet. */
6408 else
6409 {
6410 gdb_assert (c == '%');
6411
6412 if (remote_debug)
6413 {
6414 struct cleanup *old_chain;
6415 char *str;
6416
6417 str = escape_buffer (*buf, val);
6418 old_chain = make_cleanup (xfree, str);
6419 fprintf_unfiltered (gdb_stdlog,
6420 " Notification received: %s\n",
6421 str);
6422 do_cleanups (old_chain);
6423 }
6424
6425 handle_notification (*buf, val);
6426
6427 /* Notifications require no acknowledgement. */
6428
6429 if (expecting_notif)
6430 return -1;
6431 }
6432 }
6433 }
6434
6435 static int
6436 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6437 {
6438 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6439 }
6440
6441 static int
6442 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6443 {
6444 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6445 }
6446
6447 \f
6448 static void
6449 remote_kill (void)
6450 {
6451 /* Use catch_errors so the user can quit from gdb even when we
6452 aren't on speaking terms with the remote system. */
6453 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6454
6455 /* Don't wait for it to die. I'm not really sure it matters whether
6456 we do or not. For the existing stubs, kill is a noop. */
6457 target_mourn_inferior ();
6458 }
6459
6460 static int
6461 remote_vkill (int pid, struct remote_state *rs)
6462 {
6463 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6464 return -1;
6465
6466 /* Tell the remote target to detach. */
6467 sprintf (rs->buf, "vKill;%x", pid);
6468 putpkt (rs->buf);
6469 getpkt (&rs->buf, &rs->buf_size, 0);
6470
6471 if (packet_ok (rs->buf,
6472 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6473 return 0;
6474 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6475 return -1;
6476 else
6477 return 1;
6478 }
6479
6480 static void
6481 extended_remote_kill (void)
6482 {
6483 int res;
6484 int pid = ptid_get_pid (inferior_ptid);
6485 struct remote_state *rs = get_remote_state ();
6486
6487 res = remote_vkill (pid, rs);
6488 if (res == -1 && !remote_multi_process_p (rs))
6489 {
6490 /* Don't try 'k' on a multi-process aware stub -- it has no way
6491 to specify the pid. */
6492
6493 putpkt ("k");
6494 #if 0
6495 getpkt (&rs->buf, &rs->buf_size, 0);
6496 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6497 res = 1;
6498 #else
6499 /* Don't wait for it to die. I'm not really sure it matters whether
6500 we do or not. For the existing stubs, kill is a noop. */
6501 res = 0;
6502 #endif
6503 }
6504
6505 if (res != 0)
6506 error (_("Can't kill process"));
6507
6508 target_mourn_inferior ();
6509 }
6510
6511 static void
6512 remote_mourn (struct target_ops *ops)
6513 {
6514 remote_mourn_1 (ops);
6515 }
6516
6517 /* Worker function for remote_mourn. */
6518 static void
6519 remote_mourn_1 (struct target_ops *target)
6520 {
6521 unpush_target (target);
6522
6523 /* remote_close takes care of cleaning up. */
6524 }
6525
6526 static int
6527 select_new_thread_callback (struct thread_info *th, void* data)
6528 {
6529 if (!is_exited (th->ptid))
6530 {
6531 switch_to_thread (th->ptid);
6532 printf_filtered (_("[Switching to %s]\n"),
6533 target_pid_to_str (inferior_ptid));
6534 return 1;
6535 }
6536 return 0;
6537 }
6538
6539 static void
6540 extended_remote_mourn_1 (struct target_ops *target)
6541 {
6542 struct remote_state *rs = get_remote_state ();
6543
6544 /* In case we got here due to an error, but we're going to stay
6545 connected. */
6546 rs->waiting_for_stop_reply = 0;
6547
6548 /* We're no longer interested in these events. */
6549 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6550
6551 /* Unlike "target remote", we do not want to unpush the target; then
6552 the next time the user says "run", we won't be connected. */
6553
6554 if (have_inferiors ())
6555 {
6556 extern void nullify_last_target_wait_ptid ();
6557 /* Multi-process case. The current process has exited, but
6558 there are other processes to debug. Switch to the first
6559 available. */
6560 iterate_over_threads (select_new_thread_callback, NULL);
6561 nullify_last_target_wait_ptid ();
6562 }
6563 else
6564 {
6565 struct remote_state *rs = get_remote_state ();
6566
6567 /* Call common code to mark the inferior as not running. */
6568 generic_mourn_inferior ();
6569 if (!remote_multi_process_p (rs))
6570 {
6571 /* Check whether the target is running now - some remote stubs
6572 automatically restart after kill. */
6573 putpkt ("?");
6574 getpkt (&rs->buf, &rs->buf_size, 0);
6575
6576 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6577 {
6578 /* Assume that the target has been restarted. Set inferior_ptid
6579 so that bits of core GDB realizes there's something here, e.g.,
6580 so that the user can say "kill" again. */
6581 inferior_ptid = magic_null_ptid;
6582 }
6583 else
6584 {
6585 /* Mark this (still pushed) target as not executable until we
6586 restart it. */
6587 target_mark_exited (target);
6588 }
6589 }
6590 else
6591 /* Always remove execution if this was the last process. */
6592 target_mark_exited (target);
6593 }
6594 }
6595
6596 static void
6597 extended_remote_mourn (struct target_ops *ops)
6598 {
6599 extended_remote_mourn_1 (ops);
6600 }
6601
6602 static int
6603 extended_remote_run (char *args)
6604 {
6605 struct remote_state *rs = get_remote_state ();
6606 char *p;
6607 int len;
6608
6609 /* If the user has disabled vRun support, or we have detected that
6610 support is not available, do not try it. */
6611 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6612 return -1;
6613
6614 strcpy (rs->buf, "vRun;");
6615 len = strlen (rs->buf);
6616
6617 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6618 error (_("Remote file name too long for run packet"));
6619 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6620
6621 gdb_assert (args != NULL);
6622 if (*args)
6623 {
6624 struct cleanup *back_to;
6625 int i;
6626 char **argv;
6627
6628 argv = gdb_buildargv (args);
6629 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6630 for (i = 0; argv[i] != NULL; i++)
6631 {
6632 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6633 error (_("Argument list too long for run packet"));
6634 rs->buf[len++] = ';';
6635 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6636 }
6637 do_cleanups (back_to);
6638 }
6639
6640 rs->buf[len++] = '\0';
6641
6642 putpkt (rs->buf);
6643 getpkt (&rs->buf, &rs->buf_size, 0);
6644
6645 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6646 {
6647 /* We have a wait response; we don't need it, though. All is well. */
6648 return 0;
6649 }
6650 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6651 /* It wasn't disabled before, but it is now. */
6652 return -1;
6653 else
6654 {
6655 if (remote_exec_file[0] == '\0')
6656 error (_("Running the default executable on the remote target failed; "
6657 "try \"set remote exec-file\"?"));
6658 else
6659 error (_("Running \"%s\" on the remote target failed"),
6660 remote_exec_file);
6661 }
6662 }
6663
6664 /* In the extended protocol we want to be able to do things like
6665 "run" and have them basically work as expected. So we need
6666 a special create_inferior function. We support changing the
6667 executable file and the command line arguments, but not the
6668 environment. */
6669
6670 static void
6671 extended_remote_create_inferior_1 (char *exec_file, char *args,
6672 char **env, int from_tty)
6673 {
6674 /* If running asynchronously, register the target file descriptor
6675 with the event loop. */
6676 if (target_can_async_p ())
6677 target_async (inferior_event_handler, 0);
6678
6679 /* Now restart the remote server. */
6680 if (extended_remote_run (args) == -1)
6681 {
6682 /* vRun was not supported. Fail if we need it to do what the
6683 user requested. */
6684 if (remote_exec_file[0])
6685 error (_("Remote target does not support \"set remote exec-file\""));
6686 if (args[0])
6687 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6688
6689 /* Fall back to "R". */
6690 extended_remote_restart ();
6691 }
6692
6693 /* Clean up from the last time we ran, before we mark the target
6694 running again. This will mark breakpoints uninserted, and
6695 get_offsets may insert breakpoints. */
6696 init_thread_list ();
6697 init_wait_for_inferior ();
6698
6699 /* Now mark the inferior as running before we do anything else. */
6700 inferior_ptid = magic_null_ptid;
6701
6702 /* Now, if we have thread information, update inferior_ptid. */
6703 inferior_ptid = remote_current_thread (inferior_ptid);
6704
6705 add_inferior (ptid_get_pid (inferior_ptid));
6706 add_thread_silent (inferior_ptid);
6707
6708 target_mark_running (&extended_remote_ops);
6709
6710 /* Get updated offsets, if the stub uses qOffsets. */
6711 get_offsets ();
6712 }
6713
6714 static void
6715 extended_remote_create_inferior (struct target_ops *ops,
6716 char *exec_file, char *args,
6717 char **env, int from_tty)
6718 {
6719 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6720 }
6721 \f
6722
6723 /* Insert a breakpoint. On targets that have software breakpoint
6724 support, we ask the remote target to do the work; on targets
6725 which don't, we insert a traditional memory breakpoint. */
6726
6727 static int
6728 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6729 {
6730 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6731 If it succeeds, then set the support to PACKET_ENABLE. If it
6732 fails, and the user has explicitly requested the Z support then
6733 report an error, otherwise, mark it disabled and go on. */
6734
6735 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6736 {
6737 CORE_ADDR addr = bp_tgt->placed_address;
6738 struct remote_state *rs;
6739 char *p;
6740 int bpsize;
6741
6742 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6743
6744 rs = get_remote_state ();
6745 p = rs->buf;
6746
6747 *(p++) = 'Z';
6748 *(p++) = '0';
6749 *(p++) = ',';
6750 addr = (ULONGEST) remote_address_masked (addr);
6751 p += hexnumstr (p, addr);
6752 sprintf (p, ",%d", bpsize);
6753
6754 putpkt (rs->buf);
6755 getpkt (&rs->buf, &rs->buf_size, 0);
6756
6757 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6758 {
6759 case PACKET_ERROR:
6760 return -1;
6761 case PACKET_OK:
6762 bp_tgt->placed_address = addr;
6763 bp_tgt->placed_size = bpsize;
6764 return 0;
6765 case PACKET_UNKNOWN:
6766 break;
6767 }
6768 }
6769
6770 return memory_insert_breakpoint (bp_tgt);
6771 }
6772
6773 static int
6774 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6775 {
6776 CORE_ADDR addr = bp_tgt->placed_address;
6777 struct remote_state *rs = get_remote_state ();
6778 int bp_size;
6779
6780 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6781 {
6782 char *p = rs->buf;
6783
6784 *(p++) = 'z';
6785 *(p++) = '0';
6786 *(p++) = ',';
6787
6788 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6789 p += hexnumstr (p, addr);
6790 sprintf (p, ",%d", bp_tgt->placed_size);
6791
6792 putpkt (rs->buf);
6793 getpkt (&rs->buf, &rs->buf_size, 0);
6794
6795 return (rs->buf[0] == 'E');
6796 }
6797
6798 return memory_remove_breakpoint (bp_tgt);
6799 }
6800
6801 static int
6802 watchpoint_to_Z_packet (int type)
6803 {
6804 switch (type)
6805 {
6806 case hw_write:
6807 return Z_PACKET_WRITE_WP;
6808 break;
6809 case hw_read:
6810 return Z_PACKET_READ_WP;
6811 break;
6812 case hw_access:
6813 return Z_PACKET_ACCESS_WP;
6814 break;
6815 default:
6816 internal_error (__FILE__, __LINE__,
6817 _("hw_bp_to_z: bad watchpoint type %d"), type);
6818 }
6819 }
6820
6821 static int
6822 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6823 {
6824 struct remote_state *rs = get_remote_state ();
6825 char *p;
6826 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6827
6828 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6829 return -1;
6830
6831 sprintf (rs->buf, "Z%x,", packet);
6832 p = strchr (rs->buf, '\0');
6833 addr = remote_address_masked (addr);
6834 p += hexnumstr (p, (ULONGEST) addr);
6835 sprintf (p, ",%x", len);
6836
6837 putpkt (rs->buf);
6838 getpkt (&rs->buf, &rs->buf_size, 0);
6839
6840 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6841 {
6842 case PACKET_ERROR:
6843 case PACKET_UNKNOWN:
6844 return -1;
6845 case PACKET_OK:
6846 return 0;
6847 }
6848 internal_error (__FILE__, __LINE__,
6849 _("remote_insert_watchpoint: reached end of function"));
6850 }
6851
6852
6853 static int
6854 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6855 {
6856 struct remote_state *rs = get_remote_state ();
6857 char *p;
6858 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6859
6860 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6861 return -1;
6862
6863 sprintf (rs->buf, "z%x,", packet);
6864 p = strchr (rs->buf, '\0');
6865 addr = remote_address_masked (addr);
6866 p += hexnumstr (p, (ULONGEST) addr);
6867 sprintf (p, ",%x", len);
6868 putpkt (rs->buf);
6869 getpkt (&rs->buf, &rs->buf_size, 0);
6870
6871 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6872 {
6873 case PACKET_ERROR:
6874 case PACKET_UNKNOWN:
6875 return -1;
6876 case PACKET_OK:
6877 return 0;
6878 }
6879 internal_error (__FILE__, __LINE__,
6880 _("remote_remove_watchpoint: reached end of function"));
6881 }
6882
6883
6884 int remote_hw_watchpoint_limit = -1;
6885 int remote_hw_breakpoint_limit = -1;
6886
6887 static int
6888 remote_check_watch_resources (int type, int cnt, int ot)
6889 {
6890 if (type == bp_hardware_breakpoint)
6891 {
6892 if (remote_hw_breakpoint_limit == 0)
6893 return 0;
6894 else if (remote_hw_breakpoint_limit < 0)
6895 return 1;
6896 else if (cnt <= remote_hw_breakpoint_limit)
6897 return 1;
6898 }
6899 else
6900 {
6901 if (remote_hw_watchpoint_limit == 0)
6902 return 0;
6903 else if (remote_hw_watchpoint_limit < 0)
6904 return 1;
6905 else if (ot)
6906 return -1;
6907 else if (cnt <= remote_hw_watchpoint_limit)
6908 return 1;
6909 }
6910 return -1;
6911 }
6912
6913 static int
6914 remote_stopped_by_watchpoint (void)
6915 {
6916 return remote_stopped_by_watchpoint_p;
6917 }
6918
6919 static int
6920 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6921 {
6922 int rc = 0;
6923 if (remote_stopped_by_watchpoint ())
6924 {
6925 *addr_p = remote_watch_data_address;
6926 rc = 1;
6927 }
6928
6929 return rc;
6930 }
6931
6932
6933 static int
6934 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6935 {
6936 CORE_ADDR addr;
6937 struct remote_state *rs;
6938 char *p;
6939
6940 /* The length field should be set to the size of a breakpoint
6941 instruction, even though we aren't inserting one ourselves. */
6942
6943 gdbarch_breakpoint_from_pc
6944 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6945
6946 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6947 return -1;
6948
6949 rs = get_remote_state ();
6950 p = rs->buf;
6951
6952 *(p++) = 'Z';
6953 *(p++) = '1';
6954 *(p++) = ',';
6955
6956 addr = remote_address_masked (bp_tgt->placed_address);
6957 p += hexnumstr (p, (ULONGEST) addr);
6958 sprintf (p, ",%x", bp_tgt->placed_size);
6959
6960 putpkt (rs->buf);
6961 getpkt (&rs->buf, &rs->buf_size, 0);
6962
6963 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6964 {
6965 case PACKET_ERROR:
6966 case PACKET_UNKNOWN:
6967 return -1;
6968 case PACKET_OK:
6969 return 0;
6970 }
6971 internal_error (__FILE__, __LINE__,
6972 _("remote_insert_hw_breakpoint: reached end of function"));
6973 }
6974
6975
6976 static int
6977 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
6978 {
6979 CORE_ADDR addr;
6980 struct remote_state *rs = get_remote_state ();
6981 char *p = rs->buf;
6982
6983 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6984 return -1;
6985
6986 *(p++) = 'z';
6987 *(p++) = '1';
6988 *(p++) = ',';
6989
6990 addr = remote_address_masked (bp_tgt->placed_address);
6991 p += hexnumstr (p, (ULONGEST) addr);
6992 sprintf (p, ",%x", bp_tgt->placed_size);
6993
6994 putpkt (rs->buf);
6995 getpkt (&rs->buf, &rs->buf_size, 0);
6996
6997 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6998 {
6999 case PACKET_ERROR:
7000 case PACKET_UNKNOWN:
7001 return -1;
7002 case PACKET_OK:
7003 return 0;
7004 }
7005 internal_error (__FILE__, __LINE__,
7006 _("remote_remove_hw_breakpoint: reached end of function"));
7007 }
7008
7009 /* Table used by the crc32 function to calcuate the checksum. */
7010
7011 static unsigned long crc32_table[256] =
7012 {0, 0};
7013
7014 static unsigned long
7015 crc32 (unsigned char *buf, int len, unsigned int crc)
7016 {
7017 if (!crc32_table[1])
7018 {
7019 /* Initialize the CRC table and the decoding table. */
7020 int i, j;
7021 unsigned int c;
7022
7023 for (i = 0; i < 256; i++)
7024 {
7025 for (c = i << 24, j = 8; j > 0; --j)
7026 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7027 crc32_table[i] = c;
7028 }
7029 }
7030
7031 while (len--)
7032 {
7033 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7034 buf++;
7035 }
7036 return crc;
7037 }
7038
7039 /* compare-sections command
7040
7041 With no arguments, compares each loadable section in the exec bfd
7042 with the same memory range on the target, and reports mismatches.
7043 Useful for verifying the image on the target against the exec file.
7044 Depends on the target understanding the new "qCRC:" request. */
7045
7046 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7047 target method (target verify memory) and generic version of the
7048 actual command. This will allow other high-level code (especially
7049 generic_load()) to make use of this target functionality. */
7050
7051 static void
7052 compare_sections_command (char *args, int from_tty)
7053 {
7054 struct remote_state *rs = get_remote_state ();
7055 asection *s;
7056 unsigned long host_crc, target_crc;
7057 extern bfd *exec_bfd;
7058 struct cleanup *old_chain;
7059 char *tmp;
7060 char *sectdata;
7061 const char *sectname;
7062 bfd_size_type size;
7063 bfd_vma lma;
7064 int matched = 0;
7065 int mismatched = 0;
7066
7067 if (!exec_bfd)
7068 error (_("command cannot be used without an exec file"));
7069 if (!current_target.to_shortname ||
7070 strcmp (current_target.to_shortname, "remote") != 0)
7071 error (_("command can only be used with remote target"));
7072
7073 for (s = exec_bfd->sections; s; s = s->next)
7074 {
7075 if (!(s->flags & SEC_LOAD))
7076 continue; /* skip non-loadable section */
7077
7078 size = bfd_get_section_size (s);
7079 if (size == 0)
7080 continue; /* skip zero-length section */
7081
7082 sectname = bfd_get_section_name (exec_bfd, s);
7083 if (args && strcmp (args, sectname) != 0)
7084 continue; /* not the section selected by user */
7085
7086 matched = 1; /* do this section */
7087 lma = s->lma;
7088 /* FIXME: assumes lma can fit into long. */
7089 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7090 (long) lma, (long) size);
7091 putpkt (rs->buf);
7092
7093 /* Be clever; compute the host_crc before waiting for target
7094 reply. */
7095 sectdata = xmalloc (size);
7096 old_chain = make_cleanup (xfree, sectdata);
7097 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7098 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7099
7100 getpkt (&rs->buf, &rs->buf_size, 0);
7101 if (rs->buf[0] == 'E')
7102 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7103 sectname, paddr (lma), paddr (lma + size));
7104 if (rs->buf[0] != 'C')
7105 error (_("remote target does not support this operation"));
7106
7107 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7108 target_crc = target_crc * 16 + fromhex (*tmp);
7109
7110 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7111 sectname, paddr (lma), paddr (lma + size));
7112 if (host_crc == target_crc)
7113 printf_filtered ("matched.\n");
7114 else
7115 {
7116 printf_filtered ("MIS-MATCHED!\n");
7117 mismatched++;
7118 }
7119
7120 do_cleanups (old_chain);
7121 }
7122 if (mismatched > 0)
7123 warning (_("One or more sections of the remote executable does not match\n\
7124 the loaded file\n"));
7125 if (args && !matched)
7126 printf_filtered (_("No loaded section named '%s'.\n"), args);
7127 }
7128
7129 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7130 into remote target. The number of bytes written to the remote
7131 target is returned, or -1 for error. */
7132
7133 static LONGEST
7134 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7135 const char *annex, const gdb_byte *writebuf,
7136 ULONGEST offset, LONGEST len,
7137 struct packet_config *packet)
7138 {
7139 int i, buf_len;
7140 ULONGEST n;
7141 gdb_byte *wbuf;
7142 struct remote_state *rs = get_remote_state ();
7143 int max_size = get_memory_write_packet_size ();
7144
7145 if (packet->support == PACKET_DISABLE)
7146 return -1;
7147
7148 /* Insert header. */
7149 i = snprintf (rs->buf, max_size,
7150 "qXfer:%s:write:%s:%s:",
7151 object_name, annex ? annex : "",
7152 phex_nz (offset, sizeof offset));
7153 max_size -= (i + 1);
7154
7155 /* Escape as much data as fits into rs->buf. */
7156 buf_len = remote_escape_output
7157 (writebuf, len, (rs->buf + i), &max_size, max_size);
7158
7159 if (putpkt_binary (rs->buf, i + buf_len) < 0
7160 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7161 || packet_ok (rs->buf, packet) != PACKET_OK)
7162 return -1;
7163
7164 unpack_varlen_hex (rs->buf, &n);
7165 return n;
7166 }
7167
7168 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7169 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7170 number of bytes read is returned, or 0 for EOF, or -1 for error.
7171 The number of bytes read may be less than LEN without indicating an
7172 EOF. PACKET is checked and updated to indicate whether the remote
7173 target supports this object. */
7174
7175 static LONGEST
7176 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7177 const char *annex,
7178 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7179 struct packet_config *packet)
7180 {
7181 static char *finished_object;
7182 static char *finished_annex;
7183 static ULONGEST finished_offset;
7184
7185 struct remote_state *rs = get_remote_state ();
7186 unsigned int total = 0;
7187 LONGEST i, n, packet_len;
7188
7189 if (packet->support == PACKET_DISABLE)
7190 return -1;
7191
7192 /* Check whether we've cached an end-of-object packet that matches
7193 this request. */
7194 if (finished_object)
7195 {
7196 if (strcmp (object_name, finished_object) == 0
7197 && strcmp (annex ? annex : "", finished_annex) == 0
7198 && offset == finished_offset)
7199 return 0;
7200
7201 /* Otherwise, we're now reading something different. Discard
7202 the cache. */
7203 xfree (finished_object);
7204 xfree (finished_annex);
7205 finished_object = NULL;
7206 finished_annex = NULL;
7207 }
7208
7209 /* Request only enough to fit in a single packet. The actual data
7210 may not, since we don't know how much of it will need to be escaped;
7211 the target is free to respond with slightly less data. We subtract
7212 five to account for the response type and the protocol frame. */
7213 n = min (get_remote_packet_size () - 5, len);
7214 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7215 object_name, annex ? annex : "",
7216 phex_nz (offset, sizeof offset),
7217 phex_nz (n, sizeof n));
7218 i = putpkt (rs->buf);
7219 if (i < 0)
7220 return -1;
7221
7222 rs->buf[0] = '\0';
7223 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7224 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7225 return -1;
7226
7227 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7228 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7229
7230 /* 'm' means there is (or at least might be) more data after this
7231 batch. That does not make sense unless there's at least one byte
7232 of data in this reply. */
7233 if (rs->buf[0] == 'm' && packet_len == 1)
7234 error (_("Remote qXfer reply contained no data."));
7235
7236 /* Got some data. */
7237 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7238
7239 /* 'l' is an EOF marker, possibly including a final block of data,
7240 or possibly empty. If we have the final block of a non-empty
7241 object, record this fact to bypass a subsequent partial read. */
7242 if (rs->buf[0] == 'l' && offset + i > 0)
7243 {
7244 finished_object = xstrdup (object_name);
7245 finished_annex = xstrdup (annex ? annex : "");
7246 finished_offset = offset + i;
7247 }
7248
7249 return i;
7250 }
7251
7252 static LONGEST
7253 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7254 const char *annex, gdb_byte *readbuf,
7255 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7256 {
7257 struct remote_state *rs;
7258 int i;
7259 char *p2;
7260 char query_type;
7261
7262 set_general_thread (inferior_ptid);
7263
7264 rs = get_remote_state ();
7265
7266 /* Handle memory using the standard memory routines. */
7267 if (object == TARGET_OBJECT_MEMORY)
7268 {
7269 int xfered;
7270 errno = 0;
7271
7272 /* If the remote target is connected but not running, we should
7273 pass this request down to a lower stratum (e.g. the executable
7274 file). */
7275 if (!target_has_execution)
7276 return 0;
7277
7278 if (writebuf != NULL)
7279 xfered = remote_write_bytes (offset, writebuf, len);
7280 else
7281 xfered = remote_read_bytes (offset, readbuf, len);
7282
7283 if (xfered > 0)
7284 return xfered;
7285 else if (xfered == 0 && errno == 0)
7286 return 0;
7287 else
7288 return -1;
7289 }
7290
7291 /* Handle SPU memory using qxfer packets. */
7292 if (object == TARGET_OBJECT_SPU)
7293 {
7294 if (readbuf)
7295 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7296 &remote_protocol_packets
7297 [PACKET_qXfer_spu_read]);
7298 else
7299 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7300 &remote_protocol_packets
7301 [PACKET_qXfer_spu_write]);
7302 }
7303
7304 /* Only handle flash writes. */
7305 if (writebuf != NULL)
7306 {
7307 LONGEST xfered;
7308
7309 switch (object)
7310 {
7311 case TARGET_OBJECT_FLASH:
7312 xfered = remote_flash_write (ops, offset, len, writebuf);
7313
7314 if (xfered > 0)
7315 return xfered;
7316 else if (xfered == 0 && errno == 0)
7317 return 0;
7318 else
7319 return -1;
7320
7321 default:
7322 return -1;
7323 }
7324 }
7325
7326 /* Map pre-existing objects onto letters. DO NOT do this for new
7327 objects!!! Instead specify new query packets. */
7328 switch (object)
7329 {
7330 case TARGET_OBJECT_AVR:
7331 query_type = 'R';
7332 break;
7333
7334 case TARGET_OBJECT_AUXV:
7335 gdb_assert (annex == NULL);
7336 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7337 &remote_protocol_packets[PACKET_qXfer_auxv]);
7338
7339 case TARGET_OBJECT_AVAILABLE_FEATURES:
7340 return remote_read_qxfer
7341 (ops, "features", annex, readbuf, offset, len,
7342 &remote_protocol_packets[PACKET_qXfer_features]);
7343
7344 case TARGET_OBJECT_LIBRARIES:
7345 return remote_read_qxfer
7346 (ops, "libraries", annex, readbuf, offset, len,
7347 &remote_protocol_packets[PACKET_qXfer_libraries]);
7348
7349 case TARGET_OBJECT_MEMORY_MAP:
7350 gdb_assert (annex == NULL);
7351 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7352 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7353
7354 case TARGET_OBJECT_OSDATA:
7355 /* Should only get here if we're connected. */
7356 gdb_assert (remote_desc);
7357 return remote_read_qxfer
7358 (ops, "osdata", annex, readbuf, offset, len,
7359 &remote_protocol_packets[PACKET_qXfer_osdata]);
7360
7361 default:
7362 return -1;
7363 }
7364
7365 /* Note: a zero OFFSET and LEN can be used to query the minimum
7366 buffer size. */
7367 if (offset == 0 && len == 0)
7368 return (get_remote_packet_size ());
7369 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7370 large enough let the caller deal with it. */
7371 if (len < get_remote_packet_size ())
7372 return -1;
7373 len = get_remote_packet_size ();
7374
7375 /* Except for querying the minimum buffer size, target must be open. */
7376 if (!remote_desc)
7377 error (_("remote query is only available after target open"));
7378
7379 gdb_assert (annex != NULL);
7380 gdb_assert (readbuf != NULL);
7381
7382 p2 = rs->buf;
7383 *p2++ = 'q';
7384 *p2++ = query_type;
7385
7386 /* We used one buffer char for the remote protocol q command and
7387 another for the query type. As the remote protocol encapsulation
7388 uses 4 chars plus one extra in case we are debugging
7389 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7390 string. */
7391 i = 0;
7392 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7393 {
7394 /* Bad caller may have sent forbidden characters. */
7395 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7396 *p2++ = annex[i];
7397 i++;
7398 }
7399 *p2 = '\0';
7400 gdb_assert (annex[i] == '\0');
7401
7402 i = putpkt (rs->buf);
7403 if (i < 0)
7404 return i;
7405
7406 getpkt (&rs->buf, &rs->buf_size, 0);
7407 strcpy ((char *) readbuf, rs->buf);
7408
7409 return strlen ((char *) readbuf);
7410 }
7411
7412 static int
7413 remote_search_memory (struct target_ops* ops,
7414 CORE_ADDR start_addr, ULONGEST search_space_len,
7415 const gdb_byte *pattern, ULONGEST pattern_len,
7416 CORE_ADDR *found_addrp)
7417 {
7418 struct remote_state *rs = get_remote_state ();
7419 int max_size = get_memory_write_packet_size ();
7420 struct packet_config *packet =
7421 &remote_protocol_packets[PACKET_qSearch_memory];
7422 /* number of packet bytes used to encode the pattern,
7423 this could be more than PATTERN_LEN due to escape characters */
7424 int escaped_pattern_len;
7425 /* amount of pattern that was encodable in the packet */
7426 int used_pattern_len;
7427 int i;
7428 int found;
7429 ULONGEST found_addr;
7430
7431 /* Don't go to the target if we don't have to.
7432 This is done before checking packet->support to avoid the possibility that
7433 a success for this edge case means the facility works in general. */
7434 if (pattern_len > search_space_len)
7435 return 0;
7436 if (pattern_len == 0)
7437 {
7438 *found_addrp = start_addr;
7439 return 1;
7440 }
7441
7442 /* If we already know the packet isn't supported, fall back to the simple
7443 way of searching memory. */
7444
7445 if (packet->support == PACKET_DISABLE)
7446 {
7447 /* Target doesn't provided special support, fall back and use the
7448 standard support (copy memory and do the search here). */
7449 return simple_search_memory (ops, start_addr, search_space_len,
7450 pattern, pattern_len, found_addrp);
7451 }
7452
7453 /* Insert header. */
7454 i = snprintf (rs->buf, max_size,
7455 "qSearch:memory:%s;%s;",
7456 paddr_nz (start_addr),
7457 phex_nz (search_space_len, sizeof (search_space_len)));
7458 max_size -= (i + 1);
7459
7460 /* Escape as much data as fits into rs->buf. */
7461 escaped_pattern_len =
7462 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7463 &used_pattern_len, max_size);
7464
7465 /* Bail if the pattern is too large. */
7466 if (used_pattern_len != pattern_len)
7467 error ("Pattern is too large to transmit to remote target.");
7468
7469 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7470 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7471 || packet_ok (rs->buf, packet) != PACKET_OK)
7472 {
7473 /* The request may not have worked because the command is not
7474 supported. If so, fall back to the simple way. */
7475 if (packet->support == PACKET_DISABLE)
7476 {
7477 return simple_search_memory (ops, start_addr, search_space_len,
7478 pattern, pattern_len, found_addrp);
7479 }
7480 return -1;
7481 }
7482
7483 if (rs->buf[0] == '0')
7484 found = 0;
7485 else if (rs->buf[0] == '1')
7486 {
7487 found = 1;
7488 if (rs->buf[1] != ',')
7489 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7490 unpack_varlen_hex (rs->buf + 2, &found_addr);
7491 *found_addrp = found_addr;
7492 }
7493 else
7494 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7495
7496 return found;
7497 }
7498
7499 static void
7500 remote_rcmd (char *command,
7501 struct ui_file *outbuf)
7502 {
7503 struct remote_state *rs = get_remote_state ();
7504 char *p = rs->buf;
7505
7506 if (!remote_desc)
7507 error (_("remote rcmd is only available after target open"));
7508
7509 /* Send a NULL command across as an empty command. */
7510 if (command == NULL)
7511 command = "";
7512
7513 /* The query prefix. */
7514 strcpy (rs->buf, "qRcmd,");
7515 p = strchr (rs->buf, '\0');
7516
7517 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7518 error (_("\"monitor\" command ``%s'' is too long."), command);
7519
7520 /* Encode the actual command. */
7521 bin2hex ((gdb_byte *) command, p, 0);
7522
7523 if (putpkt (rs->buf) < 0)
7524 error (_("Communication problem with target."));
7525
7526 /* get/display the response */
7527 while (1)
7528 {
7529 char *buf;
7530
7531 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7532 rs->buf[0] = '\0';
7533 getpkt (&rs->buf, &rs->buf_size, 0);
7534 buf = rs->buf;
7535 if (buf[0] == '\0')
7536 error (_("Target does not support this command."));
7537 if (buf[0] == 'O' && buf[1] != 'K')
7538 {
7539 remote_console_output (buf + 1); /* 'O' message from stub. */
7540 continue;
7541 }
7542 if (strcmp (buf, "OK") == 0)
7543 break;
7544 if (strlen (buf) == 3 && buf[0] == 'E'
7545 && isdigit (buf[1]) && isdigit (buf[2]))
7546 {
7547 error (_("Protocol error with Rcmd"));
7548 }
7549 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7550 {
7551 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7552 fputc_unfiltered (c, outbuf);
7553 }
7554 break;
7555 }
7556 }
7557
7558 static VEC(mem_region_s) *
7559 remote_memory_map (struct target_ops *ops)
7560 {
7561 VEC(mem_region_s) *result = NULL;
7562 char *text = target_read_stralloc (&current_target,
7563 TARGET_OBJECT_MEMORY_MAP, NULL);
7564
7565 if (text)
7566 {
7567 struct cleanup *back_to = make_cleanup (xfree, text);
7568 result = parse_memory_map (text);
7569 do_cleanups (back_to);
7570 }
7571
7572 return result;
7573 }
7574
7575 static void
7576 packet_command (char *args, int from_tty)
7577 {
7578 struct remote_state *rs = get_remote_state ();
7579
7580 if (!remote_desc)
7581 error (_("command can only be used with remote target"));
7582
7583 if (!args)
7584 error (_("remote-packet command requires packet text as argument"));
7585
7586 puts_filtered ("sending: ");
7587 print_packet (args);
7588 puts_filtered ("\n");
7589 putpkt (args);
7590
7591 getpkt (&rs->buf, &rs->buf_size, 0);
7592 puts_filtered ("received: ");
7593 print_packet (rs->buf);
7594 puts_filtered ("\n");
7595 }
7596
7597 #if 0
7598 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7599
7600 static void display_thread_info (struct gdb_ext_thread_info *info);
7601
7602 static void threadset_test_cmd (char *cmd, int tty);
7603
7604 static void threadalive_test (char *cmd, int tty);
7605
7606 static void threadlist_test_cmd (char *cmd, int tty);
7607
7608 int get_and_display_threadinfo (threadref *ref);
7609
7610 static void threadinfo_test_cmd (char *cmd, int tty);
7611
7612 static int thread_display_step (threadref *ref, void *context);
7613
7614 static void threadlist_update_test_cmd (char *cmd, int tty);
7615
7616 static void init_remote_threadtests (void);
7617
7618 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7619
7620 static void
7621 threadset_test_cmd (char *cmd, int tty)
7622 {
7623 int sample_thread = SAMPLE_THREAD;
7624
7625 printf_filtered (_("Remote threadset test\n"));
7626 set_general_thread (sample_thread);
7627 }
7628
7629
7630 static void
7631 threadalive_test (char *cmd, int tty)
7632 {
7633 int sample_thread = SAMPLE_THREAD;
7634 int pid = ptid_get_pid (inferior_ptid);
7635 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7636
7637 if (remote_thread_alive (ptid))
7638 printf_filtered ("PASS: Thread alive test\n");
7639 else
7640 printf_filtered ("FAIL: Thread alive test\n");
7641 }
7642
7643 void output_threadid (char *title, threadref *ref);
7644
7645 void
7646 output_threadid (char *title, threadref *ref)
7647 {
7648 char hexid[20];
7649
7650 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7651 hexid[16] = 0;
7652 printf_filtered ("%s %s\n", title, (&hexid[0]));
7653 }
7654
7655 static void
7656 threadlist_test_cmd (char *cmd, int tty)
7657 {
7658 int startflag = 1;
7659 threadref nextthread;
7660 int done, result_count;
7661 threadref threadlist[3];
7662
7663 printf_filtered ("Remote Threadlist test\n");
7664 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7665 &result_count, &threadlist[0]))
7666 printf_filtered ("FAIL: threadlist test\n");
7667 else
7668 {
7669 threadref *scan = threadlist;
7670 threadref *limit = scan + result_count;
7671
7672 while (scan < limit)
7673 output_threadid (" thread ", scan++);
7674 }
7675 }
7676
7677 void
7678 display_thread_info (struct gdb_ext_thread_info *info)
7679 {
7680 output_threadid ("Threadid: ", &info->threadid);
7681 printf_filtered ("Name: %s\n ", info->shortname);
7682 printf_filtered ("State: %s\n", info->display);
7683 printf_filtered ("other: %s\n\n", info->more_display);
7684 }
7685
7686 int
7687 get_and_display_threadinfo (threadref *ref)
7688 {
7689 int result;
7690 int set;
7691 struct gdb_ext_thread_info threadinfo;
7692
7693 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7694 | TAG_MOREDISPLAY | TAG_DISPLAY;
7695 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7696 display_thread_info (&threadinfo);
7697 return result;
7698 }
7699
7700 static void
7701 threadinfo_test_cmd (char *cmd, int tty)
7702 {
7703 int athread = SAMPLE_THREAD;
7704 threadref thread;
7705 int set;
7706
7707 int_to_threadref (&thread, athread);
7708 printf_filtered ("Remote Threadinfo test\n");
7709 if (!get_and_display_threadinfo (&thread))
7710 printf_filtered ("FAIL cannot get thread info\n");
7711 }
7712
7713 static int
7714 thread_display_step (threadref *ref, void *context)
7715 {
7716 /* output_threadid(" threadstep ",ref); *//* simple test */
7717 return get_and_display_threadinfo (ref);
7718 }
7719
7720 static void
7721 threadlist_update_test_cmd (char *cmd, int tty)
7722 {
7723 printf_filtered ("Remote Threadlist update test\n");
7724 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7725 }
7726
7727 static void
7728 init_remote_threadtests (void)
7729 {
7730 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7731 Fetch and print the remote list of thread identifiers, one pkt only"));
7732 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7733 _("Fetch and display info about one thread"));
7734 add_com ("tset", class_obscure, threadset_test_cmd,
7735 _("Test setting to a different thread"));
7736 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7737 _("Iterate through updating all remote thread info"));
7738 add_com ("talive", class_obscure, threadalive_test,
7739 _(" Remote thread alive test "));
7740 }
7741
7742 #endif /* 0 */
7743
7744 /* Convert a thread ID to a string. Returns the string in a static
7745 buffer. */
7746
7747 static char *
7748 remote_pid_to_str (ptid_t ptid)
7749 {
7750 static char buf[64];
7751 struct remote_state *rs = get_remote_state ();
7752
7753 if (ptid_equal (magic_null_ptid, ptid))
7754 {
7755 xsnprintf (buf, sizeof buf, "Thread <main>");
7756 return buf;
7757 }
7758 else if (remote_multi_process_p (rs)
7759 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7760 {
7761 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7762 ptid_get_pid (ptid), ptid_get_tid (ptid));
7763 return buf;
7764 }
7765 else if (ptid_get_tid (ptid) != 0)
7766 {
7767 xsnprintf (buf, sizeof buf, "Thread %ld",
7768 ptid_get_tid (ptid));
7769 return buf;
7770 }
7771
7772 return normal_pid_to_str (ptid);
7773 }
7774
7775 /* Get the address of the thread local variable in OBJFILE which is
7776 stored at OFFSET within the thread local storage for thread PTID. */
7777
7778 static CORE_ADDR
7779 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7780 {
7781 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7782 {
7783 struct remote_state *rs = get_remote_state ();
7784 char *p = rs->buf;
7785 char *endp = rs->buf + get_remote_packet_size ();
7786 enum packet_result result;
7787
7788 strcpy (p, "qGetTLSAddr:");
7789 p += strlen (p);
7790 p = write_ptid (p, endp, ptid);
7791 *p++ = ',';
7792 p += hexnumstr (p, offset);
7793 *p++ = ',';
7794 p += hexnumstr (p, lm);
7795 *p++ = '\0';
7796
7797 putpkt (rs->buf);
7798 getpkt (&rs->buf, &rs->buf_size, 0);
7799 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7800 if (result == PACKET_OK)
7801 {
7802 ULONGEST result;
7803
7804 unpack_varlen_hex (rs->buf, &result);
7805 return result;
7806 }
7807 else if (result == PACKET_UNKNOWN)
7808 throw_error (TLS_GENERIC_ERROR,
7809 _("Remote target doesn't support qGetTLSAddr packet"));
7810 else
7811 throw_error (TLS_GENERIC_ERROR,
7812 _("Remote target failed to process qGetTLSAddr request"));
7813 }
7814 else
7815 throw_error (TLS_GENERIC_ERROR,
7816 _("TLS not supported or disabled on this target"));
7817 /* Not reached. */
7818 return 0;
7819 }
7820
7821 /* Support for inferring a target description based on the current
7822 architecture and the size of a 'g' packet. While the 'g' packet
7823 can have any size (since optional registers can be left off the
7824 end), some sizes are easily recognizable given knowledge of the
7825 approximate architecture. */
7826
7827 struct remote_g_packet_guess
7828 {
7829 int bytes;
7830 const struct target_desc *tdesc;
7831 };
7832 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7833 DEF_VEC_O(remote_g_packet_guess_s);
7834
7835 struct remote_g_packet_data
7836 {
7837 VEC(remote_g_packet_guess_s) *guesses;
7838 };
7839
7840 static struct gdbarch_data *remote_g_packet_data_handle;
7841
7842 static void *
7843 remote_g_packet_data_init (struct obstack *obstack)
7844 {
7845 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7846 }
7847
7848 void
7849 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7850 const struct target_desc *tdesc)
7851 {
7852 struct remote_g_packet_data *data
7853 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7854 struct remote_g_packet_guess new_guess, *guess;
7855 int ix;
7856
7857 gdb_assert (tdesc != NULL);
7858
7859 for (ix = 0;
7860 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7861 ix++)
7862 if (guess->bytes == bytes)
7863 internal_error (__FILE__, __LINE__,
7864 "Duplicate g packet description added for size %d",
7865 bytes);
7866
7867 new_guess.bytes = bytes;
7868 new_guess.tdesc = tdesc;
7869 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7870 }
7871
7872 /* Return 1 if remote_read_description would do anything on this target
7873 and architecture, 0 otherwise. */
7874
7875 static int
7876 remote_read_description_p (struct target_ops *target)
7877 {
7878 struct remote_g_packet_data *data
7879 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7880
7881 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7882 return 1;
7883
7884 return 0;
7885 }
7886
7887 static const struct target_desc *
7888 remote_read_description (struct target_ops *target)
7889 {
7890 struct remote_g_packet_data *data
7891 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7892
7893 /* Do not try this during initial connection, when we do not know
7894 whether there is a running but stopped thread. */
7895 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
7896 return NULL;
7897
7898 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7899 {
7900 struct remote_g_packet_guess *guess;
7901 int ix;
7902 int bytes = send_g_packet ();
7903
7904 for (ix = 0;
7905 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7906 ix++)
7907 if (guess->bytes == bytes)
7908 return guess->tdesc;
7909
7910 /* We discard the g packet. A minor optimization would be to
7911 hold on to it, and fill the register cache once we have selected
7912 an architecture, but it's too tricky to do safely. */
7913 }
7914
7915 return NULL;
7916 }
7917
7918 /* Remote file transfer support. This is host-initiated I/O, not
7919 target-initiated; for target-initiated, see remote-fileio.c. */
7920
7921 /* If *LEFT is at least the length of STRING, copy STRING to
7922 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7923 decrease *LEFT. Otherwise raise an error. */
7924
7925 static void
7926 remote_buffer_add_string (char **buffer, int *left, char *string)
7927 {
7928 int len = strlen (string);
7929
7930 if (len > *left)
7931 error (_("Packet too long for target."));
7932
7933 memcpy (*buffer, string, len);
7934 *buffer += len;
7935 *left -= len;
7936
7937 /* NUL-terminate the buffer as a convenience, if there is
7938 room. */
7939 if (*left)
7940 **buffer = '\0';
7941 }
7942
7943 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7944 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7945 decrease *LEFT. Otherwise raise an error. */
7946
7947 static void
7948 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7949 int len)
7950 {
7951 if (2 * len > *left)
7952 error (_("Packet too long for target."));
7953
7954 bin2hex (bytes, *buffer, len);
7955 *buffer += 2 * len;
7956 *left -= 2 * len;
7957
7958 /* NUL-terminate the buffer as a convenience, if there is
7959 room. */
7960 if (*left)
7961 **buffer = '\0';
7962 }
7963
7964 /* If *LEFT is large enough, convert VALUE to hex and add it to
7965 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7966 decrease *LEFT. Otherwise raise an error. */
7967
7968 static void
7969 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
7970 {
7971 int len = hexnumlen (value);
7972
7973 if (len > *left)
7974 error (_("Packet too long for target."));
7975
7976 hexnumstr (*buffer, value);
7977 *buffer += len;
7978 *left -= len;
7979
7980 /* NUL-terminate the buffer as a convenience, if there is
7981 room. */
7982 if (*left)
7983 **buffer = '\0';
7984 }
7985
7986 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
7987 value, *REMOTE_ERRNO to the remote error number or zero if none
7988 was included, and *ATTACHMENT to point to the start of the annex
7989 if any. The length of the packet isn't needed here; there may
7990 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
7991
7992 Return 0 if the packet could be parsed, -1 if it could not. If
7993 -1 is returned, the other variables may not be initialized. */
7994
7995 static int
7996 remote_hostio_parse_result (char *buffer, int *retcode,
7997 int *remote_errno, char **attachment)
7998 {
7999 char *p, *p2;
8000
8001 *remote_errno = 0;
8002 *attachment = NULL;
8003
8004 if (buffer[0] != 'F')
8005 return -1;
8006
8007 errno = 0;
8008 *retcode = strtol (&buffer[1], &p, 16);
8009 if (errno != 0 || p == &buffer[1])
8010 return -1;
8011
8012 /* Check for ",errno". */
8013 if (*p == ',')
8014 {
8015 errno = 0;
8016 *remote_errno = strtol (p + 1, &p2, 16);
8017 if (errno != 0 || p + 1 == p2)
8018 return -1;
8019 p = p2;
8020 }
8021
8022 /* Check for ";attachment". If there is no attachment, the
8023 packet should end here. */
8024 if (*p == ';')
8025 {
8026 *attachment = p + 1;
8027 return 0;
8028 }
8029 else if (*p == '\0')
8030 return 0;
8031 else
8032 return -1;
8033 }
8034
8035 /* Send a prepared I/O packet to the target and read its response.
8036 The prepared packet is in the global RS->BUF before this function
8037 is called, and the answer is there when we return.
8038
8039 COMMAND_BYTES is the length of the request to send, which may include
8040 binary data. WHICH_PACKET is the packet configuration to check
8041 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8042 is set to the error number and -1 is returned. Otherwise the value
8043 returned by the function is returned.
8044
8045 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8046 attachment is expected; an error will be reported if there's a
8047 mismatch. If one is found, *ATTACHMENT will be set to point into
8048 the packet buffer and *ATTACHMENT_LEN will be set to the
8049 attachment's length. */
8050
8051 static int
8052 remote_hostio_send_command (int command_bytes, int which_packet,
8053 int *remote_errno, char **attachment,
8054 int *attachment_len)
8055 {
8056 struct remote_state *rs = get_remote_state ();
8057 int ret, bytes_read;
8058 char *attachment_tmp;
8059
8060 if (!remote_desc
8061 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8062 {
8063 *remote_errno = FILEIO_ENOSYS;
8064 return -1;
8065 }
8066
8067 putpkt_binary (rs->buf, command_bytes);
8068 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8069
8070 /* If it timed out, something is wrong. Don't try to parse the
8071 buffer. */
8072 if (bytes_read < 0)
8073 {
8074 *remote_errno = FILEIO_EINVAL;
8075 return -1;
8076 }
8077
8078 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8079 {
8080 case PACKET_ERROR:
8081 *remote_errno = FILEIO_EINVAL;
8082 return -1;
8083 case PACKET_UNKNOWN:
8084 *remote_errno = FILEIO_ENOSYS;
8085 return -1;
8086 case PACKET_OK:
8087 break;
8088 }
8089
8090 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8091 &attachment_tmp))
8092 {
8093 *remote_errno = FILEIO_EINVAL;
8094 return -1;
8095 }
8096
8097 /* Make sure we saw an attachment if and only if we expected one. */
8098 if ((attachment_tmp == NULL && attachment != NULL)
8099 || (attachment_tmp != NULL && attachment == NULL))
8100 {
8101 *remote_errno = FILEIO_EINVAL;
8102 return -1;
8103 }
8104
8105 /* If an attachment was found, it must point into the packet buffer;
8106 work out how many bytes there were. */
8107 if (attachment_tmp != NULL)
8108 {
8109 *attachment = attachment_tmp;
8110 *attachment_len = bytes_read - (*attachment - rs->buf);
8111 }
8112
8113 return ret;
8114 }
8115
8116 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8117 remote file descriptor, or -1 if an error occurs (and set
8118 *REMOTE_ERRNO). */
8119
8120 static int
8121 remote_hostio_open (const char *filename, int flags, int mode,
8122 int *remote_errno)
8123 {
8124 struct remote_state *rs = get_remote_state ();
8125 char *p = rs->buf;
8126 int left = get_remote_packet_size () - 1;
8127
8128 remote_buffer_add_string (&p, &left, "vFile:open:");
8129
8130 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8131 strlen (filename));
8132 remote_buffer_add_string (&p, &left, ",");
8133
8134 remote_buffer_add_int (&p, &left, flags);
8135 remote_buffer_add_string (&p, &left, ",");
8136
8137 remote_buffer_add_int (&p, &left, mode);
8138
8139 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8140 remote_errno, NULL, NULL);
8141 }
8142
8143 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8144 Return the number of bytes written, or -1 if an error occurs (and
8145 set *REMOTE_ERRNO). */
8146
8147 static int
8148 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8149 ULONGEST offset, int *remote_errno)
8150 {
8151 struct remote_state *rs = get_remote_state ();
8152 char *p = rs->buf;
8153 int left = get_remote_packet_size ();
8154 int out_len;
8155
8156 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8157
8158 remote_buffer_add_int (&p, &left, fd);
8159 remote_buffer_add_string (&p, &left, ",");
8160
8161 remote_buffer_add_int (&p, &left, offset);
8162 remote_buffer_add_string (&p, &left, ",");
8163
8164 p += remote_escape_output (write_buf, len, p, &out_len,
8165 get_remote_packet_size () - (p - rs->buf));
8166
8167 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8168 remote_errno, NULL, NULL);
8169 }
8170
8171 /* Read up to LEN bytes FD on the remote target into READ_BUF
8172 Return the number of bytes read, or -1 if an error occurs (and
8173 set *REMOTE_ERRNO). */
8174
8175 static int
8176 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8177 ULONGEST offset, int *remote_errno)
8178 {
8179 struct remote_state *rs = get_remote_state ();
8180 char *p = rs->buf;
8181 char *attachment;
8182 int left = get_remote_packet_size ();
8183 int ret, attachment_len;
8184 int read_len;
8185
8186 remote_buffer_add_string (&p, &left, "vFile:pread:");
8187
8188 remote_buffer_add_int (&p, &left, fd);
8189 remote_buffer_add_string (&p, &left, ",");
8190
8191 remote_buffer_add_int (&p, &left, len);
8192 remote_buffer_add_string (&p, &left, ",");
8193
8194 remote_buffer_add_int (&p, &left, offset);
8195
8196 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8197 remote_errno, &attachment,
8198 &attachment_len);
8199
8200 if (ret < 0)
8201 return ret;
8202
8203 read_len = remote_unescape_input (attachment, attachment_len,
8204 read_buf, len);
8205 if (read_len != ret)
8206 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8207
8208 return ret;
8209 }
8210
8211 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8212 (and set *REMOTE_ERRNO). */
8213
8214 static int
8215 remote_hostio_close (int fd, int *remote_errno)
8216 {
8217 struct remote_state *rs = get_remote_state ();
8218 char *p = rs->buf;
8219 int left = get_remote_packet_size () - 1;
8220
8221 remote_buffer_add_string (&p, &left, "vFile:close:");
8222
8223 remote_buffer_add_int (&p, &left, fd);
8224
8225 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8226 remote_errno, NULL, NULL);
8227 }
8228
8229 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8230 occurs (and set *REMOTE_ERRNO). */
8231
8232 static int
8233 remote_hostio_unlink (const char *filename, int *remote_errno)
8234 {
8235 struct remote_state *rs = get_remote_state ();
8236 char *p = rs->buf;
8237 int left = get_remote_packet_size () - 1;
8238
8239 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8240
8241 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8242 strlen (filename));
8243
8244 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8245 remote_errno, NULL, NULL);
8246 }
8247
8248 static int
8249 remote_fileio_errno_to_host (int errnum)
8250 {
8251 switch (errnum)
8252 {
8253 case FILEIO_EPERM:
8254 return EPERM;
8255 case FILEIO_ENOENT:
8256 return ENOENT;
8257 case FILEIO_EINTR:
8258 return EINTR;
8259 case FILEIO_EIO:
8260 return EIO;
8261 case FILEIO_EBADF:
8262 return EBADF;
8263 case FILEIO_EACCES:
8264 return EACCES;
8265 case FILEIO_EFAULT:
8266 return EFAULT;
8267 case FILEIO_EBUSY:
8268 return EBUSY;
8269 case FILEIO_EEXIST:
8270 return EEXIST;
8271 case FILEIO_ENODEV:
8272 return ENODEV;
8273 case FILEIO_ENOTDIR:
8274 return ENOTDIR;
8275 case FILEIO_EISDIR:
8276 return EISDIR;
8277 case FILEIO_EINVAL:
8278 return EINVAL;
8279 case FILEIO_ENFILE:
8280 return ENFILE;
8281 case FILEIO_EMFILE:
8282 return EMFILE;
8283 case FILEIO_EFBIG:
8284 return EFBIG;
8285 case FILEIO_ENOSPC:
8286 return ENOSPC;
8287 case FILEIO_ESPIPE:
8288 return ESPIPE;
8289 case FILEIO_EROFS:
8290 return EROFS;
8291 case FILEIO_ENOSYS:
8292 return ENOSYS;
8293 case FILEIO_ENAMETOOLONG:
8294 return ENAMETOOLONG;
8295 }
8296 return -1;
8297 }
8298
8299 static char *
8300 remote_hostio_error (int errnum)
8301 {
8302 int host_error = remote_fileio_errno_to_host (errnum);
8303
8304 if (host_error == -1)
8305 error (_("Unknown remote I/O error %d"), errnum);
8306 else
8307 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8308 }
8309
8310 static void
8311 remote_hostio_close_cleanup (void *opaque)
8312 {
8313 int fd = *(int *) opaque;
8314 int remote_errno;
8315
8316 remote_hostio_close (fd, &remote_errno);
8317 }
8318
8319
8320 static void *
8321 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8322 {
8323 const char *filename = bfd_get_filename (abfd);
8324 int fd, remote_errno;
8325 int *stream;
8326
8327 gdb_assert (remote_filename_p (filename));
8328
8329 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8330 if (fd == -1)
8331 {
8332 errno = remote_fileio_errno_to_host (remote_errno);
8333 bfd_set_error (bfd_error_system_call);
8334 return NULL;
8335 }
8336
8337 stream = xmalloc (sizeof (int));
8338 *stream = fd;
8339 return stream;
8340 }
8341
8342 static int
8343 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8344 {
8345 int fd = *(int *)stream;
8346 int remote_errno;
8347
8348 xfree (stream);
8349
8350 /* Ignore errors on close; these may happen if the remote
8351 connection was already torn down. */
8352 remote_hostio_close (fd, &remote_errno);
8353
8354 return 1;
8355 }
8356
8357 static file_ptr
8358 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8359 file_ptr nbytes, file_ptr offset)
8360 {
8361 int fd = *(int *)stream;
8362 int remote_errno;
8363 file_ptr pos, bytes;
8364
8365 pos = 0;
8366 while (nbytes > pos)
8367 {
8368 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8369 offset + pos, &remote_errno);
8370 if (bytes == 0)
8371 /* Success, but no bytes, means end-of-file. */
8372 break;
8373 if (bytes == -1)
8374 {
8375 errno = remote_fileio_errno_to_host (remote_errno);
8376 bfd_set_error (bfd_error_system_call);
8377 return -1;
8378 }
8379
8380 pos += bytes;
8381 }
8382
8383 return pos;
8384 }
8385
8386 static int
8387 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8388 {
8389 /* FIXME: We should probably implement remote_hostio_stat. */
8390 sb->st_size = INT_MAX;
8391 return 0;
8392 }
8393
8394 int
8395 remote_filename_p (const char *filename)
8396 {
8397 return strncmp (filename, "remote:", 7) == 0;
8398 }
8399
8400 bfd *
8401 remote_bfd_open (const char *remote_file, const char *target)
8402 {
8403 return bfd_openr_iovec (remote_file, target,
8404 remote_bfd_iovec_open, NULL,
8405 remote_bfd_iovec_pread,
8406 remote_bfd_iovec_close,
8407 remote_bfd_iovec_stat);
8408 }
8409
8410 void
8411 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8412 {
8413 struct cleanup *back_to, *close_cleanup;
8414 int retcode, fd, remote_errno, bytes, io_size;
8415 FILE *file;
8416 gdb_byte *buffer;
8417 int bytes_in_buffer;
8418 int saw_eof;
8419 ULONGEST offset;
8420
8421 if (!remote_desc)
8422 error (_("command can only be used with remote target"));
8423
8424 file = fopen (local_file, "rb");
8425 if (file == NULL)
8426 perror_with_name (local_file);
8427 back_to = make_cleanup_fclose (file);
8428
8429 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8430 | FILEIO_O_TRUNC),
8431 0700, &remote_errno);
8432 if (fd == -1)
8433 remote_hostio_error (remote_errno);
8434
8435 /* Send up to this many bytes at once. They won't all fit in the
8436 remote packet limit, so we'll transfer slightly fewer. */
8437 io_size = get_remote_packet_size ();
8438 buffer = xmalloc (io_size);
8439 make_cleanup (xfree, buffer);
8440
8441 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8442
8443 bytes_in_buffer = 0;
8444 saw_eof = 0;
8445 offset = 0;
8446 while (bytes_in_buffer || !saw_eof)
8447 {
8448 if (!saw_eof)
8449 {
8450 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8451 file);
8452 if (bytes == 0)
8453 {
8454 if (ferror (file))
8455 error (_("Error reading %s."), local_file);
8456 else
8457 {
8458 /* EOF. Unless there is something still in the
8459 buffer from the last iteration, we are done. */
8460 saw_eof = 1;
8461 if (bytes_in_buffer == 0)
8462 break;
8463 }
8464 }
8465 }
8466 else
8467 bytes = 0;
8468
8469 bytes += bytes_in_buffer;
8470 bytes_in_buffer = 0;
8471
8472 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8473
8474 if (retcode < 0)
8475 remote_hostio_error (remote_errno);
8476 else if (retcode == 0)
8477 error (_("Remote write of %d bytes returned 0!"), bytes);
8478 else if (retcode < bytes)
8479 {
8480 /* Short write. Save the rest of the read data for the next
8481 write. */
8482 bytes_in_buffer = bytes - retcode;
8483 memmove (buffer, buffer + retcode, bytes_in_buffer);
8484 }
8485
8486 offset += retcode;
8487 }
8488
8489 discard_cleanups (close_cleanup);
8490 if (remote_hostio_close (fd, &remote_errno))
8491 remote_hostio_error (remote_errno);
8492
8493 if (from_tty)
8494 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8495 do_cleanups (back_to);
8496 }
8497
8498 void
8499 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8500 {
8501 struct cleanup *back_to, *close_cleanup;
8502 int retcode, fd, remote_errno, bytes, io_size;
8503 FILE *file;
8504 gdb_byte *buffer;
8505 ULONGEST offset;
8506
8507 if (!remote_desc)
8508 error (_("command can only be used with remote target"));
8509
8510 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8511 if (fd == -1)
8512 remote_hostio_error (remote_errno);
8513
8514 file = fopen (local_file, "wb");
8515 if (file == NULL)
8516 perror_with_name (local_file);
8517 back_to = make_cleanup_fclose (file);
8518
8519 /* Send up to this many bytes at once. They won't all fit in the
8520 remote packet limit, so we'll transfer slightly fewer. */
8521 io_size = get_remote_packet_size ();
8522 buffer = xmalloc (io_size);
8523 make_cleanup (xfree, buffer);
8524
8525 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8526
8527 offset = 0;
8528 while (1)
8529 {
8530 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8531 if (bytes == 0)
8532 /* Success, but no bytes, means end-of-file. */
8533 break;
8534 if (bytes == -1)
8535 remote_hostio_error (remote_errno);
8536
8537 offset += bytes;
8538
8539 bytes = fwrite (buffer, 1, bytes, file);
8540 if (bytes == 0)
8541 perror_with_name (local_file);
8542 }
8543
8544 discard_cleanups (close_cleanup);
8545 if (remote_hostio_close (fd, &remote_errno))
8546 remote_hostio_error (remote_errno);
8547
8548 if (from_tty)
8549 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8550 do_cleanups (back_to);
8551 }
8552
8553 void
8554 remote_file_delete (const char *remote_file, int from_tty)
8555 {
8556 int retcode, remote_errno;
8557
8558 if (!remote_desc)
8559 error (_("command can only be used with remote target"));
8560
8561 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8562 if (retcode == -1)
8563 remote_hostio_error (remote_errno);
8564
8565 if (from_tty)
8566 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8567 }
8568
8569 static void
8570 remote_put_command (char *args, int from_tty)
8571 {
8572 struct cleanup *back_to;
8573 char **argv;
8574
8575 if (args == NULL)
8576 error_no_arg (_("file to put"));
8577
8578 argv = gdb_buildargv (args);
8579 back_to = make_cleanup_freeargv (argv);
8580 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8581 error (_("Invalid parameters to remote put"));
8582
8583 remote_file_put (argv[0], argv[1], from_tty);
8584
8585 do_cleanups (back_to);
8586 }
8587
8588 static void
8589 remote_get_command (char *args, int from_tty)
8590 {
8591 struct cleanup *back_to;
8592 char **argv;
8593
8594 if (args == NULL)
8595 error_no_arg (_("file to get"));
8596
8597 argv = gdb_buildargv (args);
8598 back_to = make_cleanup_freeargv (argv);
8599 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8600 error (_("Invalid parameters to remote get"));
8601
8602 remote_file_get (argv[0], argv[1], from_tty);
8603
8604 do_cleanups (back_to);
8605 }
8606
8607 static void
8608 remote_delete_command (char *args, int from_tty)
8609 {
8610 struct cleanup *back_to;
8611 char **argv;
8612
8613 if (args == NULL)
8614 error_no_arg (_("file to delete"));
8615
8616 argv = gdb_buildargv (args);
8617 back_to = make_cleanup_freeargv (argv);
8618 if (argv[0] == NULL || argv[1] != NULL)
8619 error (_("Invalid parameters to remote delete"));
8620
8621 remote_file_delete (argv[0], from_tty);
8622
8623 do_cleanups (back_to);
8624 }
8625
8626 static void
8627 remote_command (char *args, int from_tty)
8628 {
8629 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8630 }
8631
8632 static int remote_target_can_reverse = 1;
8633
8634 static int
8635 remote_can_execute_reverse (void)
8636 {
8637 return remote_target_can_reverse;
8638 }
8639
8640 static int
8641 remote_supports_non_stop (void)
8642 {
8643 return 1;
8644 }
8645
8646 static int
8647 remote_supports_multi_process (void)
8648 {
8649 struct remote_state *rs = get_remote_state ();
8650 return remote_multi_process_p (rs);
8651 }
8652
8653 static int
8654 extended_remote_can_run (void)
8655 {
8656 if (remote_desc != NULL)
8657 return 1;
8658
8659 return 0;
8660 }
8661
8662 static void
8663 init_remote_ops (void)
8664 {
8665 remote_ops.to_shortname = "remote";
8666 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8667 remote_ops.to_doc =
8668 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8669 Specify the serial device it is connected to\n\
8670 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8671 remote_ops.to_open = remote_open;
8672 remote_ops.to_close = remote_close;
8673 remote_ops.to_detach = remote_detach;
8674 remote_ops.to_disconnect = remote_disconnect;
8675 remote_ops.to_resume = remote_resume;
8676 remote_ops.to_wait = remote_wait;
8677 remote_ops.to_fetch_registers = remote_fetch_registers;
8678 remote_ops.to_store_registers = remote_store_registers;
8679 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8680 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8681 remote_ops.to_files_info = remote_files_info;
8682 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8683 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8684 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8685 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8686 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8687 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8688 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8689 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8690 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8691 remote_ops.to_kill = remote_kill;
8692 remote_ops.to_load = generic_load;
8693 remote_ops.to_mourn_inferior = remote_mourn;
8694 remote_ops.to_thread_alive = remote_thread_alive;
8695 remote_ops.to_find_new_threads = remote_threads_info;
8696 remote_ops.to_pid_to_str = remote_pid_to_str;
8697 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8698 remote_ops.to_stop = remote_stop;
8699 remote_ops.to_xfer_partial = remote_xfer_partial;
8700 remote_ops.to_rcmd = remote_rcmd;
8701 remote_ops.to_log_command = serial_log_command;
8702 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8703 remote_ops.to_stratum = process_stratum;
8704 remote_ops.to_has_all_memory = 1;
8705 remote_ops.to_has_memory = 1;
8706 remote_ops.to_has_stack = 1;
8707 remote_ops.to_has_registers = 1;
8708 remote_ops.to_has_execution = 1;
8709 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8710 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8711 remote_ops.to_magic = OPS_MAGIC;
8712 remote_ops.to_memory_map = remote_memory_map;
8713 remote_ops.to_flash_erase = remote_flash_erase;
8714 remote_ops.to_flash_done = remote_flash_done;
8715 remote_ops.to_read_description = remote_read_description;
8716 remote_ops.to_search_memory = remote_search_memory;
8717 remote_ops.to_can_async_p = remote_can_async_p;
8718 remote_ops.to_is_async_p = remote_is_async_p;
8719 remote_ops.to_async = remote_async;
8720 remote_ops.to_async_mask = remote_async_mask;
8721 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8722 remote_ops.to_terminal_ours = remote_terminal_ours;
8723 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8724 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8725 }
8726
8727 /* Set up the extended remote vector by making a copy of the standard
8728 remote vector and adding to it. */
8729
8730 static void
8731 init_extended_remote_ops (void)
8732 {
8733 extended_remote_ops = remote_ops;
8734
8735 extended_remote_ops.to_shortname = "extended-remote";
8736 extended_remote_ops.to_longname =
8737 "Extended remote serial target in gdb-specific protocol";
8738 extended_remote_ops.to_doc =
8739 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8740 Specify the serial device it is connected to (e.g. /dev/ttya).";
8741 extended_remote_ops.to_open = extended_remote_open;
8742 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8743 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8744 extended_remote_ops.to_detach = extended_remote_detach;
8745 extended_remote_ops.to_attach = extended_remote_attach;
8746 extended_remote_ops.to_kill = extended_remote_kill;
8747 extended_remote_ops.to_can_run = extended_remote_can_run;
8748 }
8749
8750 static int
8751 remote_can_async_p (void)
8752 {
8753 if (!target_async_permitted)
8754 /* We only enable async when the user specifically asks for it. */
8755 return 0;
8756
8757 /* We're async whenever the serial device is. */
8758 return remote_async_mask_value && serial_can_async_p (remote_desc);
8759 }
8760
8761 static int
8762 remote_is_async_p (void)
8763 {
8764 if (!target_async_permitted)
8765 /* We only enable async when the user specifically asks for it. */
8766 return 0;
8767
8768 /* We're async whenever the serial device is. */
8769 return remote_async_mask_value && serial_is_async_p (remote_desc);
8770 }
8771
8772 /* Pass the SERIAL event on and up to the client. One day this code
8773 will be able to delay notifying the client of an event until the
8774 point where an entire packet has been received. */
8775
8776 static void (*async_client_callback) (enum inferior_event_type event_type,
8777 void *context);
8778 static void *async_client_context;
8779 static serial_event_ftype remote_async_serial_handler;
8780
8781 static void
8782 remote_async_serial_handler (struct serial *scb, void *context)
8783 {
8784 /* Don't propogate error information up to the client. Instead let
8785 the client find out about the error by querying the target. */
8786 async_client_callback (INF_REG_EVENT, async_client_context);
8787 }
8788
8789 static void
8790 remote_async_inferior_event_handler (gdb_client_data data)
8791 {
8792 inferior_event_handler (INF_REG_EVENT, NULL);
8793 }
8794
8795 static void
8796 remote_async_get_pending_events_handler (gdb_client_data data)
8797 {
8798 remote_get_pending_stop_replies ();
8799 }
8800
8801 static void
8802 remote_async (void (*callback) (enum inferior_event_type event_type,
8803 void *context), void *context)
8804 {
8805 if (remote_async_mask_value == 0)
8806 internal_error (__FILE__, __LINE__,
8807 _("Calling remote_async when async is masked"));
8808
8809 if (callback != NULL)
8810 {
8811 serial_async (remote_desc, remote_async_serial_handler, NULL);
8812 async_client_callback = callback;
8813 async_client_context = context;
8814 }
8815 else
8816 serial_async (remote_desc, NULL, NULL);
8817 }
8818
8819 static int
8820 remote_async_mask (int new_mask)
8821 {
8822 int curr_mask = remote_async_mask_value;
8823 remote_async_mask_value = new_mask;
8824 return curr_mask;
8825 }
8826
8827 static void
8828 set_remote_cmd (char *args, int from_tty)
8829 {
8830 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8831 }
8832
8833 static void
8834 show_remote_cmd (char *args, int from_tty)
8835 {
8836 /* We can't just use cmd_show_list here, because we want to skip
8837 the redundant "show remote Z-packet" and the legacy aliases. */
8838 struct cleanup *showlist_chain;
8839 struct cmd_list_element *list = remote_show_cmdlist;
8840
8841 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8842 for (; list != NULL; list = list->next)
8843 if (strcmp (list->name, "Z-packet") == 0)
8844 continue;
8845 else if (list->type == not_set_cmd)
8846 /* Alias commands are exactly like the original, except they
8847 don't have the normal type. */
8848 continue;
8849 else
8850 {
8851 struct cleanup *option_chain
8852 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8853 ui_out_field_string (uiout, "name", list->name);
8854 ui_out_text (uiout, ": ");
8855 if (list->type == show_cmd)
8856 do_setshow_command ((char *) NULL, from_tty, list);
8857 else
8858 cmd_func (list, NULL, from_tty);
8859 /* Close the tuple. */
8860 do_cleanups (option_chain);
8861 }
8862
8863 /* Close the tuple. */
8864 do_cleanups (showlist_chain);
8865 }
8866
8867
8868 /* Function to be called whenever a new objfile (shlib) is detected. */
8869 static void
8870 remote_new_objfile (struct objfile *objfile)
8871 {
8872 if (remote_desc != 0) /* Have a remote connection. */
8873 remote_check_symbols (objfile);
8874 }
8875
8876 void
8877 _initialize_remote (void)
8878 {
8879 struct remote_state *rs;
8880
8881 /* architecture specific data */
8882 remote_gdbarch_data_handle =
8883 gdbarch_data_register_post_init (init_remote_state);
8884 remote_g_packet_data_handle =
8885 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8886
8887 /* Initialize the per-target state. At the moment there is only one
8888 of these, not one per target. Only one target is active at a
8889 time. The default buffer size is unimportant; it will be expanded
8890 whenever a larger buffer is needed. */
8891 rs = get_remote_state_raw ();
8892 rs->buf_size = 400;
8893 rs->buf = xmalloc (rs->buf_size);
8894
8895 init_remote_ops ();
8896 add_target (&remote_ops);
8897
8898 init_extended_remote_ops ();
8899 add_target (&extended_remote_ops);
8900
8901 /* Hook into new objfile notification. */
8902 observer_attach_new_objfile (remote_new_objfile);
8903
8904 /* Set up signal handlers. */
8905 sigint_remote_token =
8906 create_async_signal_handler (async_remote_interrupt, NULL);
8907 sigint_remote_twice_token =
8908 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8909
8910 #if 0
8911 init_remote_threadtests ();
8912 #endif
8913
8914 /* set/show remote ... */
8915
8916 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8917 Remote protocol specific variables\n\
8918 Configure various remote-protocol specific variables such as\n\
8919 the packets being used"),
8920 &remote_set_cmdlist, "set remote ",
8921 0 /* allow-unknown */, &setlist);
8922 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8923 Remote protocol specific variables\n\
8924 Configure various remote-protocol specific variables such as\n\
8925 the packets being used"),
8926 &remote_show_cmdlist, "show remote ",
8927 0 /* allow-unknown */, &showlist);
8928
8929 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8930 Compare section data on target to the exec file.\n\
8931 Argument is a single section name (default: all loaded sections)."),
8932 &cmdlist);
8933
8934 add_cmd ("packet", class_maintenance, packet_command, _("\
8935 Send an arbitrary packet to a remote target.\n\
8936 maintenance packet TEXT\n\
8937 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8938 this command sends the string TEXT to the inferior, and displays the\n\
8939 response packet. GDB supplies the initial `$' character, and the\n\
8940 terminating `#' character and checksum."),
8941 &maintenancelist);
8942
8943 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8944 Set whether to send break if interrupted."), _("\
8945 Show whether to send break if interrupted."), _("\
8946 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8947 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8948 &setlist, &showlist);
8949
8950 /* Install commands for configuring memory read/write packets. */
8951
8952 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8953 Set the maximum number of bytes per memory write packet (deprecated)."),
8954 &setlist);
8955 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8956 Show the maximum number of bytes per memory write packet (deprecated)."),
8957 &showlist);
8958 add_cmd ("memory-write-packet-size", no_class,
8959 set_memory_write_packet_size, _("\
8960 Set the maximum number of bytes per memory-write packet.\n\
8961 Specify the number of bytes in a packet or 0 (zero) for the\n\
8962 default packet size. The actual limit is further reduced\n\
8963 dependent on the target. Specify ``fixed'' to disable the\n\
8964 further restriction and ``limit'' to enable that restriction."),
8965 &remote_set_cmdlist);
8966 add_cmd ("memory-read-packet-size", no_class,
8967 set_memory_read_packet_size, _("\
8968 Set the maximum number of bytes per memory-read packet.\n\
8969 Specify the number of bytes in a packet or 0 (zero) for the\n\
8970 default packet size. The actual limit is further reduced\n\
8971 dependent on the target. Specify ``fixed'' to disable the\n\
8972 further restriction and ``limit'' to enable that restriction."),
8973 &remote_set_cmdlist);
8974 add_cmd ("memory-write-packet-size", no_class,
8975 show_memory_write_packet_size,
8976 _("Show the maximum number of bytes per memory-write packet."),
8977 &remote_show_cmdlist);
8978 add_cmd ("memory-read-packet-size", no_class,
8979 show_memory_read_packet_size,
8980 _("Show the maximum number of bytes per memory-read packet."),
8981 &remote_show_cmdlist);
8982
8983 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
8984 &remote_hw_watchpoint_limit, _("\
8985 Set the maximum number of target hardware watchpoints."), _("\
8986 Show the maximum number of target hardware watchpoints."), _("\
8987 Specify a negative limit for unlimited."),
8988 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
8989 &remote_set_cmdlist, &remote_show_cmdlist);
8990 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
8991 &remote_hw_breakpoint_limit, _("\
8992 Set the maximum number of target hardware breakpoints."), _("\
8993 Show the maximum number of target hardware breakpoints."), _("\
8994 Specify a negative limit for unlimited."),
8995 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
8996 &remote_set_cmdlist, &remote_show_cmdlist);
8997
8998 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
8999 &remote_address_size, _("\
9000 Set the maximum size of the address (in bits) in a memory packet."), _("\
9001 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9002 NULL,
9003 NULL, /* FIXME: i18n: */
9004 &setlist, &showlist);
9005
9006 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9007 "X", "binary-download", 1);
9008
9009 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9010 "vCont", "verbose-resume", 0);
9011
9012 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9013 "QPassSignals", "pass-signals", 0);
9014
9015 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9016 "qSymbol", "symbol-lookup", 0);
9017
9018 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9019 "P", "set-register", 1);
9020
9021 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9022 "p", "fetch-register", 1);
9023
9024 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9025 "Z0", "software-breakpoint", 0);
9026
9027 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9028 "Z1", "hardware-breakpoint", 0);
9029
9030 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9031 "Z2", "write-watchpoint", 0);
9032
9033 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9034 "Z3", "read-watchpoint", 0);
9035
9036 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9037 "Z4", "access-watchpoint", 0);
9038
9039 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9040 "qXfer:auxv:read", "read-aux-vector", 0);
9041
9042 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9043 "qXfer:features:read", "target-features", 0);
9044
9045 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9046 "qXfer:libraries:read", "library-info", 0);
9047
9048 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9049 "qXfer:memory-map:read", "memory-map", 0);
9050
9051 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9052 "qXfer:spu:read", "read-spu-object", 0);
9053
9054 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9055 "qXfer:spu:write", "write-spu-object", 0);
9056
9057 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9058 "qXfer:osdata:read", "osdata", 0);
9059
9060 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9061 "qGetTLSAddr", "get-thread-local-storage-address",
9062 0);
9063
9064 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9065 "qSupported", "supported-packets", 0);
9066
9067 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9068 "qSearch:memory", "search-memory", 0);
9069
9070 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9071 "vFile:open", "hostio-open", 0);
9072
9073 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9074 "vFile:pread", "hostio-pread", 0);
9075
9076 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9077 "vFile:pwrite", "hostio-pwrite", 0);
9078
9079 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9080 "vFile:close", "hostio-close", 0);
9081
9082 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9083 "vFile:unlink", "hostio-unlink", 0);
9084
9085 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9086 "vAttach", "attach", 0);
9087
9088 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9089 "vRun", "run", 0);
9090
9091 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9092 "QStartNoAckMode", "noack", 0);
9093
9094 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9095 "vKill", "kill", 0);
9096
9097 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9098 Z sub-packet has its own set and show commands, but users may
9099 have sets to this variable in their .gdbinit files (or in their
9100 documentation). */
9101 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9102 &remote_Z_packet_detect, _("\
9103 Set use of remote protocol `Z' packets"), _("\
9104 Show use of remote protocol `Z' packets "), _("\
9105 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9106 packets."),
9107 set_remote_protocol_Z_packet_cmd,
9108 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9109 &remote_set_cmdlist, &remote_show_cmdlist);
9110
9111 add_prefix_cmd ("remote", class_files, remote_command, _("\
9112 Manipulate files on the remote system\n\
9113 Transfer files to and from the remote target system."),
9114 &remote_cmdlist, "remote ",
9115 0 /* allow-unknown */, &cmdlist);
9116
9117 add_cmd ("put", class_files, remote_put_command,
9118 _("Copy a local file to the remote system."),
9119 &remote_cmdlist);
9120
9121 add_cmd ("get", class_files, remote_get_command,
9122 _("Copy a remote file to the local system."),
9123 &remote_cmdlist);
9124
9125 add_cmd ("delete", class_files, remote_delete_command,
9126 _("Delete a remote file."),
9127 &remote_cmdlist);
9128
9129 remote_exec_file = xstrdup ("");
9130 add_setshow_string_noescape_cmd ("exec-file", class_files,
9131 &remote_exec_file, _("\
9132 Set the remote pathname for \"run\""), _("\
9133 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9134 &remote_set_cmdlist, &remote_show_cmdlist);
9135
9136 /* Eventually initialize fileio. See fileio.c */
9137 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9138
9139 /* Take advantage of the fact that the LWP field is not used, to tag
9140 special ptids with it set to != 0. */
9141 magic_null_ptid = ptid_build (42000, 1, -1);
9142 not_sent_ptid = ptid_build (42000, 1, -2);
9143 any_thread_ptid = ptid_build (42000, 1, 0);
9144 }