]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* corelow.c, exec.c, inftarg.c, m3-nat.c, op50-rom.c, procfs.c,
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Remote communication protocol.
21
22 A debug packet whose contents are <data>
23 is encapsulated for transmission in the form:
24
25 $ <data> # CSUM1 CSUM2
26
27 <data> must be ASCII alphanumeric and cannot include characters
28 '$' or '#'. If <data> starts with two characters followed by
29 ':', then the existing stubs interpret this as a sequence number.
30
31 CSUM1 and CSUM2 are ascii hex representation of an 8-bit
32 checksum of <data>, the most significant nibble is sent first.
33 the hex digits 0-9,a-f are used.
34
35 Receiver responds with:
36
37 + - if CSUM is correct and ready for next packet
38 - - if CSUM is incorrect
39
40 <data> is as follows:
41 All values are encoded in ascii hex digits.
42
43 Request Packet
44
45 read registers g
46 reply XX....X Each byte of register data
47 is described by two hex digits.
48 Registers are in the internal order
49 for GDB, and the bytes in a register
50 are in the same order the machine uses.
51 or ENN for an error.
52
53 write regs GXX..XX Each byte of register data
54 is described by two hex digits.
55 reply OK for success
56 ENN for an error
57
58 write reg Pn...=r... Write register n... with value r...,
59 which contains two hex digits for each
60 byte in the register (target byte
61 order).
62 reply OK for success
63 ENN for an error
64 (not supported by all stubs).
65
66 read mem mAA..AA,LLLL AA..AA is address, LLLL is length.
67 reply XX..XX XX..XX is mem contents
68 Can be fewer bytes than requested
69 if able to read only part of the data.
70 or ENN NN is errno
71
72 write mem MAA..AA,LLLL:XX..XX
73 AA..AA is address,
74 LLLL is number of bytes,
75 XX..XX is data
76 reply OK for success
77 ENN for an error (this includes the case
78 where only part of the data was
79 written).
80
81 cont cAA..AA AA..AA is address to resume
82 If AA..AA is omitted,
83 resume at same address.
84
85 step sAA..AA AA..AA is address to resume
86 If AA..AA is omitted,
87 resume at same address.
88
89 last signal ? Reply the current reason for stopping.
90 This is the same reply as is generated
91 for step or cont : SAA where AA is the
92 signal number.
93
94 There is no immediate reply to step or cont.
95 The reply comes when the machine stops.
96 It is SAA AA is the "signal number"
97
98 or... TAAn...:r...;n:r...;n...:r...;
99 AA = signal number
100 n... = register number
101 r... = register contents
102 or... WAA The process exited, and AA is
103 the exit status. This is only
104 applicable for certains sorts of
105 targets.
106 kill request k
107
108 toggle debug d toggle debug flag (see 386 & 68k stubs)
109 reset r reset -- see sparc stub.
110 reserved <other> On other requests, the stub should
111 ignore the request and send an empty
112 response ($#<checksum>). This way
113 we can extend the protocol and GDB
114 can tell whether the stub it is
115 talking to uses the old or the new.
116 search tAA:PP,MM Search backwards starting at address
117 AA for a match with pattern PP and
118 mask MM. PP and MM are 4 bytes.
119 Not supported by all stubs.
120
121 general query qXXXX Request info about XXXX.
122 general set QXXXX=yyyy Set value of XXXX to yyyy.
123 query sect offs qOffsets Get section offsets. Reply is
124 Text=xxx;Data=yyy;Bss=zzz
125 console output Otext Send text to stdout. Only comes from
126 remote target.
127
128 Responses can be run-length encoded to save space. A '*' means that
129 the next character is an ASCII encoding giving a repeat count which
130 stands for that many repititions of the character preceding the '*'.
131 The encoding is n+29, yielding a printable character where n >=3
132 (which is where rle starts to win). Don't use an n > 126.
133
134 So
135 "0* " means the same as "0000". */
136
137 #include "defs.h"
138 #include <string.h>
139 #include <fcntl.h>
140 #include "frame.h"
141 #include "inferior.h"
142 #include "bfd.h"
143 #include "symfile.h"
144 #include "target.h"
145 #include "wait.h"
146 #include "terminal.h"
147 #include "gdbcmd.h"
148 #include "objfiles.h"
149 #include "gdb-stabs.h"
150
151 #include "dcache.h"
152
153 #ifdef USG
154 #include <sys/types.h>
155 #endif
156
157 #include <signal.h>
158 #include "serial.h"
159
160 /* Prototypes for local functions */
161
162 static int
163 remote_write_bytes PARAMS ((CORE_ADDR memaddr, unsigned char *myaddr, int len));
164
165 static int
166 remote_read_bytes PARAMS ((CORE_ADDR memaddr, unsigned char *myaddr, int len));
167
168 static void
169 remote_files_info PARAMS ((struct target_ops *ignore));
170
171 static int
172 remote_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
173 int should_write, struct target_ops *target));
174
175 static void
176 remote_prepare_to_store PARAMS ((void));
177
178 static void
179 remote_fetch_registers PARAMS ((int regno));
180
181 static void
182 remote_resume PARAMS ((int pid, int step, enum target_signal siggnal));
183
184 static int
185 remote_start_remote PARAMS ((char *dummy));
186
187 static void
188 remote_open PARAMS ((char *name, int from_tty));
189
190 static void
191 remote_close PARAMS ((int quitting));
192
193 static void
194 remote_store_registers PARAMS ((int regno));
195
196 static void
197 getpkt PARAMS ((char *buf, int forever));
198
199 static void
200 putpkt PARAMS ((char *buf));
201
202 static void
203 remote_send PARAMS ((char *buf));
204
205 static int
206 readchar PARAMS ((int timeout));
207
208 static int remote_wait PARAMS ((int pid, struct target_waitstatus *status));
209
210 static int
211 tohex PARAMS ((int nib));
212
213 static int
214 fromhex PARAMS ((int a));
215
216 static void
217 remote_detach PARAMS ((char *args, int from_tty));
218
219 static void
220 remote_interrupt PARAMS ((int signo));
221
222 static void
223 remote_interrupt_twice PARAMS ((int signo));
224
225 static void
226 interrupt_query PARAMS ((void));
227
228 extern struct target_ops remote_ops; /* Forward decl */
229
230 /* This was 5 seconds, which is a long time to sit and wait.
231 Unless this is going though some terminal server or multiplexer or
232 other form of hairy serial connection, I would think 2 seconds would
233 be plenty. */
234 static int remote_timeout = 2;
235
236 #if 0
237 int icache;
238 #endif
239
240 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
241 remote_open knows that we don't have a file open when the program
242 starts. */
243 serial_t remote_desc = NULL;
244
245 /* Having this larger than 400 causes us to be incompatible with m68k-stub.c
246 and i386-stub.c. Normally, no one would notice because it only matters
247 for writing large chunks of memory (e.g. in downloads). Also, this needs
248 to be more than 400 if required to hold the registers (see below, where
249 we round it up based on REGISTER_BYTES). */
250 #define PBUFSIZ 400
251
252 /* Maximum number of bytes to read/write at once. The value here
253 is chosen to fill up a packet (the headers account for the 32). */
254 #define MAXBUFBYTES ((PBUFSIZ-32)/2)
255
256 /* Round up PBUFSIZ to hold all the registers, at least. */
257 /* The blank line after the #if seems to be required to work around a
258 bug in HP's PA compiler. */
259 #if REGISTER_BYTES > MAXBUFBYTES
260
261 #undef PBUFSIZ
262 #define PBUFSIZ (REGISTER_BYTES * 2 + 32)
263 #endif
264
265 /* Should we try the 'P' request? If this is set to one when the stub
266 doesn't support 'P', the only consequence is some unnecessary traffic. */
267 static int stub_supports_P = 1;
268
269 \f
270 /* Clean up connection to a remote debugger. */
271
272 /* ARGSUSED */
273 static void
274 remote_close (quitting)
275 int quitting;
276 {
277 if (remote_desc)
278 SERIAL_CLOSE (remote_desc);
279 remote_desc = NULL;
280 }
281
282 /* Query the remote side for the text, data and bss offsets. */
283
284 static void
285 get_offsets ()
286 {
287 char buf[PBUFSIZ];
288 int nvals;
289 CORE_ADDR text_addr, data_addr, bss_addr;
290 struct section_offsets *offs;
291
292 putpkt ("qOffsets");
293
294 getpkt (buf, 0);
295
296 if (buf[0] == '\000')
297 return; /* Return silently. Stub doesn't support this
298 command. */
299 if (buf[0] == 'E')
300 {
301 warning ("Remote failure reply: %s", buf);
302 return;
303 }
304
305 nvals = sscanf (buf, "Text=%lx;Data=%lx;Bss=%lx", &text_addr, &data_addr,
306 &bss_addr);
307 if (nvals != 3)
308 error ("Malformed response to offset query, %s", buf);
309
310 if (symfile_objfile == NULL)
311 return;
312
313 offs = (struct section_offsets *) alloca (sizeof (struct section_offsets)
314 + symfile_objfile->num_sections
315 * sizeof (offs->offsets));
316 memcpy (offs, symfile_objfile->section_offsets,
317 sizeof (struct section_offsets)
318 + symfile_objfile->num_sections
319 * sizeof (offs->offsets));
320
321 /* FIXME: This code assumes gdb-stabs.h is being used; it's broken
322 for xcoff, dwarf, sdb-coff, etc. But there is no simple
323 canonical representation for this stuff. (Just what does "text"
324 as seen by the stub mean, anyway? I think it means all sections
325 with SEC_CODE set, but we currently have no way to deal with that). */
326
327 ANOFFSET (offs, SECT_OFF_TEXT) = text_addr;
328
329 /* This is a temporary kludge to force data and bss to use the same offsets
330 because that's what nlmconv does now. The real solution requires changes
331 to the stub and remote.c that I don't have time to do right now. */
332
333 ANOFFSET (offs, SECT_OFF_DATA) = data_addr;
334 ANOFFSET (offs, SECT_OFF_BSS) = data_addr;
335
336 objfile_relocate (symfile_objfile, offs);
337 }
338
339 /* Stub for catch_errors. */
340
341 static int
342 remote_start_remote (dummy)
343 char *dummy;
344 {
345 immediate_quit = 1; /* Allow user to interrupt it */
346
347 /* Ack any packet which the remote side has already sent. */
348
349 SERIAL_WRITE (remote_desc, "+", 1);
350
351 get_offsets (); /* Get text, data & bss offsets */
352
353 putpkt ("?"); /* initiate a query from remote machine */
354 immediate_quit = 0;
355
356 start_remote (); /* Initialize gdb process mechanisms */
357
358 return 1;
359 }
360
361 /* Open a connection to a remote debugger.
362 NAME is the filename used for communication. */
363
364 static DCACHE *remote_dcache;
365
366 static void
367 remote_open (name, from_tty)
368 char *name;
369 int from_tty;
370 {
371 if (name == 0)
372 error (
373 "To open a remote debug connection, you need to specify what serial\n\
374 device is attached to the remote system (e.g. /dev/ttya).");
375
376 target_preopen (from_tty);
377
378 unpush_target (&remote_ops);
379
380 remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes);
381
382 remote_desc = SERIAL_OPEN (name);
383 if (!remote_desc)
384 perror_with_name (name);
385
386 if (baud_rate != -1)
387 {
388 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
389 {
390 SERIAL_CLOSE (remote_desc);
391 perror_with_name (name);
392 }
393 }
394
395 SERIAL_RAW (remote_desc);
396
397 /* If there is something sitting in the buffer we might take it as a
398 response to a command, which would be bad. */
399 SERIAL_FLUSH_INPUT (remote_desc);
400
401 if (from_tty)
402 {
403 puts_filtered ("Remote debugging using ");
404 puts_filtered (name);
405 puts_filtered ("\n");
406 }
407 push_target (&remote_ops); /* Switch to using remote target now */
408
409 /* Start out by trying the 'P' request to set registers. We set this each
410 time that we open a new target so that if the user switches from one
411 stub to another, we can (if the target is closed and reopened) cope. */
412 stub_supports_P = 1;
413
414 /* Without this, some commands which require an active target (such as kill)
415 won't work. This variable serves (at least) double duty as both the pid
416 of the target process (if it has such), and as a flag indicating that a
417 target is active. These functions should be split out into seperate
418 variables, especially since GDB will someday have a notion of debugging
419 several processes. */
420
421 inferior_pid = 42000;
422
423 /* Start the remote connection; if error (0), discard this target.
424 In particular, if the user quits, be sure to discard it
425 (we'd be in an inconsistent state otherwise). */
426 if (!catch_errors (remote_start_remote, (char *)0,
427 "Couldn't establish connection to remote target\n", RETURN_MASK_ALL))
428 pop_target();
429 }
430
431 /* remote_detach()
432 takes a program previously attached to and detaches it.
433 We better not have left any breakpoints
434 in the program or it'll die when it hits one.
435 Close the open connection to the remote debugger.
436 Use this when you want to detach and do something else
437 with your gdb. */
438
439 static void
440 remote_detach (args, from_tty)
441 char *args;
442 int from_tty;
443 {
444 if (args)
445 error ("Argument given to \"detach\" when remotely debugging.");
446
447 pop_target ();
448 if (from_tty)
449 puts_filtered ("Ending remote debugging.\n");
450 }
451
452 /* Convert hex digit A to a number. */
453
454 static int
455 fromhex (a)
456 int a;
457 {
458 if (a >= '0' && a <= '9')
459 return a - '0';
460 else if (a >= 'a' && a <= 'f')
461 return a - 'a' + 10;
462 else
463 error ("Reply contains invalid hex digit %d", a);
464 }
465
466 /* Convert number NIB to a hex digit. */
467
468 static int
469 tohex (nib)
470 int nib;
471 {
472 if (nib < 10)
473 return '0'+nib;
474 else
475 return 'a'+nib-10;
476 }
477 \f
478 /* Tell the remote machine to resume. */
479
480 static void
481 remote_resume (pid, step, siggnal)
482 int pid, step;
483 enum target_signal siggnal;
484 {
485 char buf[PBUFSIZ];
486
487 if (siggnal)
488 {
489 target_terminal_ours_for_output ();
490 printf_filtered
491 ("Can't send signals to a remote system. %s not sent.\n",
492 target_signal_to_name (siggnal));
493 target_terminal_inferior ();
494 }
495
496 dcache_flush (remote_dcache);
497
498 strcpy (buf, step ? "s": "c");
499
500 putpkt (buf);
501 }
502 \f
503 /* Send ^C to target to halt it. Target will respond, and send us a
504 packet. */
505
506 static void
507 remote_interrupt (signo)
508 int signo;
509 {
510 /* If this doesn't work, try more severe steps. */
511 signal (signo, remote_interrupt_twice);
512
513 if (remote_debug)
514 printf_unfiltered ("remote_interrupt called\n");
515
516 SERIAL_WRITE (remote_desc, "\003", 1); /* Send a ^C */
517 }
518
519 static void (*ofunc)();
520
521 /* The user typed ^C twice. */
522 static void
523 remote_interrupt_twice (signo)
524 int signo;
525 {
526 signal (signo, ofunc);
527
528 interrupt_query ();
529
530 signal (signo, remote_interrupt);
531 }
532
533 /* Ask the user what to do when an interrupt is received. */
534
535 static void
536 interrupt_query ()
537 {
538 target_terminal_ours ();
539
540 if (query ("Interrupted while waiting for the program.\n\
541 Give up (and stop debugging it)? "))
542 {
543 target_mourn_inferior ();
544 return_to_top_level (RETURN_QUIT);
545 }
546
547 target_terminal_inferior ();
548 }
549
550 /* Wait until the remote machine stops, then return,
551 storing status in STATUS just as `wait' would.
552 Returns "pid" (though it's not clear what, if anything, that
553 means in the case of this target). */
554
555 static int
556 remote_wait (pid, status)
557 int pid;
558 struct target_waitstatus *status;
559 {
560 unsigned char buf[PBUFSIZ];
561
562 status->kind = TARGET_WAITKIND_EXITED;
563 status->value.integer = 0;
564
565 while (1)
566 {
567 unsigned char *p;
568
569 ofunc = (void (*)()) signal (SIGINT, remote_interrupt);
570 getpkt ((char *) buf, 1);
571 signal (SIGINT, ofunc);
572
573 switch (buf[0])
574 {
575 case 'E': /* Error of some sort */
576 warning ("Remote failure reply: %s", buf);
577 continue;
578 case 'T': /* Status with PC, SP, FP, ... */
579 {
580 int i;
581 long regno;
582 char regs[MAX_REGISTER_RAW_SIZE];
583
584 /* Expedited reply, containing Signal, {regno, reg} repeat */
585 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
586 ss = signal number
587 n... = register number
588 r... = register contents
589 */
590
591 p = &buf[3]; /* after Txx */
592
593 while (*p)
594 {
595 unsigned char *p1;
596
597 regno = strtol (p, &p1, 16); /* Read the register number */
598
599 if (p1 == p)
600 warning ("Remote sent badly formed register number: %s\nPacket: '%s'\n",
601 p1, buf);
602
603 p = p1;
604
605 if (*p++ != ':')
606 warning ("Malformed packet (missing colon): %s\nPacket: '%s'\n",
607 p, buf);
608
609 if (regno >= NUM_REGS)
610 warning ("Remote sent bad register number %d: %s\nPacket: '%s'\n",
611 regno, p, buf);
612
613 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
614 {
615 if (p[0] == 0 || p[1] == 0)
616 warning ("Remote reply is too short: %s", buf);
617 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
618 p += 2;
619 }
620
621 if (*p++ != ';')
622 warning ("Remote register badly formatted: %s", buf);
623
624 supply_register (regno, regs);
625 }
626 }
627 /* fall through */
628 case 'S': /* Old style status, just signal only */
629 status->kind = TARGET_WAITKIND_STOPPED;
630 status->value.sig = (enum target_signal)
631 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
632
633 return inferior_pid;
634 case 'W': /* Target exited */
635 {
636 /* The remote process exited. */
637 status->kind = TARGET_WAITKIND_EXITED;
638 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
639 return inferior_pid;
640 }
641 case 'O': /* Console output */
642 fputs_filtered ((char *)(buf + 1), gdb_stdout);
643 continue;
644 default:
645 warning ("Invalid remote reply: %s", buf);
646 continue;
647 }
648 }
649 }
650
651 /* Number of bytes of registers this stub implements. */
652 static int register_bytes_found;
653
654 /* Read the remote registers into the block REGS. */
655 /* Currently we just read all the registers, so we don't use regno. */
656 /* ARGSUSED */
657 static void
658 remote_fetch_registers (regno)
659 int regno;
660 {
661 char buf[PBUFSIZ];
662 int i;
663 char *p;
664 char regs[REGISTER_BYTES];
665
666 sprintf (buf, "g");
667 remote_send (buf);
668
669 /* Unimplemented registers read as all bits zero. */
670 memset (regs, 0, REGISTER_BYTES);
671
672 /* We can get out of synch in various cases. If the first character
673 in the buffer is not a hex character, assume that has happened
674 and try to fetch another packet to read. */
675 while ((buf[0] < '0' || buf[0] > '9')
676 && (buf[0] < 'a' || buf[0] > 'f'))
677 {
678 if (remote_debug)
679 printf_unfiltered ("Bad register packet; fetching a new packet\n");
680 getpkt (buf, 0);
681 }
682
683 /* Reply describes registers byte by byte, each byte encoded as two
684 hex characters. Suck them all up, then supply them to the
685 register cacheing/storage mechanism. */
686
687 p = buf;
688 for (i = 0; i < REGISTER_BYTES; i++)
689 {
690 if (p[0] == 0)
691 break;
692 if (p[1] == 0)
693 {
694 warning ("Remote reply is of odd length: %s", buf);
695 /* Don't change register_bytes_found in this case, and don't
696 print a second warning. */
697 goto supply_them;
698 }
699 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
700 p += 2;
701 }
702
703 if (i != register_bytes_found)
704 {
705 register_bytes_found = i;
706 #ifdef REGISTER_BYTES_OK
707 if (!REGISTER_BYTES_OK (i))
708 warning ("Remote reply is too short: %s", buf);
709 #endif
710 }
711
712 supply_them:
713 for (i = 0; i < NUM_REGS; i++)
714 supply_register (i, &regs[REGISTER_BYTE(i)]);
715 }
716
717 /* Prepare to store registers. Since we may send them all (using a
718 'G' request), we have to read out the ones we don't want to change
719 first. */
720
721 static void
722 remote_prepare_to_store ()
723 {
724 /* Make sure the entire registers array is valid. */
725 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
726 }
727
728 /* Store register REGNO, or all registers if REGNO == -1, from the contents
729 of REGISTERS. FIXME: ignores errors. */
730
731 static void
732 remote_store_registers (regno)
733 int regno;
734 {
735 char buf[PBUFSIZ];
736 int i;
737 char *p;
738
739 if (regno >= 0 && stub_supports_P)
740 {
741 /* Try storing a single register. */
742 char *regp;
743
744 sprintf (buf, "P%x=", regno);
745 p = buf + strlen (buf);
746 regp = &registers[REGISTER_BYTE (regno)];
747 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
748 {
749 *p++ = tohex ((regp[i] >> 4) & 0xf);
750 *p++ = tohex (regp[i] & 0xf);
751 }
752 *p = '\0';
753 remote_send (buf);
754 if (buf[0] != '\0')
755 {
756 /* The stub understands the 'P' request. We are done. */
757 return;
758 }
759
760 /* The stub does not support the 'P' request. Use 'G' instead,
761 and don't try using 'P' in the future (it will just waste our
762 time). */
763 stub_supports_P = 0;
764 }
765
766 buf[0] = 'G';
767
768 /* Command describes registers byte by byte,
769 each byte encoded as two hex characters. */
770
771 p = buf + 1;
772 /* remote_prepare_to_store insures that register_bytes_found gets set. */
773 for (i = 0; i < register_bytes_found; i++)
774 {
775 *p++ = tohex ((registers[i] >> 4) & 0xf);
776 *p++ = tohex (registers[i] & 0xf);
777 }
778 *p = '\0';
779
780 remote_send (buf);
781 }
782
783 #if 0
784
785 /* Use of the data cache is disabled because it loses for looking at
786 and changing hardware I/O ports and the like. Accepting `volatile'
787 would perhaps be one way to fix it, but a better way which would
788 win for more cases would be to use the executable file for the text
789 segment, like the `icache' code below but done cleanly (in some
790 target-independent place, perhaps in target_xfer_memory, perhaps
791 based on assigning each target a speed or perhaps by some simpler
792 mechanism). */
793
794 /* Read a word from remote address ADDR and return it.
795 This goes through the data cache. */
796
797 static int
798 remote_fetch_word (addr)
799 CORE_ADDR addr;
800 {
801 #if 0
802 if (icache)
803 {
804 extern CORE_ADDR text_start, text_end;
805
806 if (addr >= text_start && addr < text_end)
807 {
808 int buffer;
809 xfer_core_file (addr, &buffer, sizeof (int));
810 return buffer;
811 }
812 }
813 #endif
814 return dcache_fetch (remote_dcache, addr);
815 }
816
817 /* Write a word WORD into remote address ADDR.
818 This goes through the data cache. */
819
820 static void
821 remote_store_word (addr, word)
822 CORE_ADDR addr;
823 int word;
824 {
825 dcache_poke (remote_dcache, addr, word);
826 }
827 #endif /* 0 */
828 \f
829 /* Write memory data directly to the remote machine.
830 This does not inform the data cache; the data cache uses this.
831 MEMADDR is the address in the remote memory space.
832 MYADDR is the address of the buffer in our space.
833 LEN is the number of bytes.
834
835 Returns number of bytes transferred, or 0 for error. */
836
837 static int
838 remote_write_bytes (memaddr, myaddr, len)
839 CORE_ADDR memaddr;
840 unsigned char *myaddr;
841 int len;
842 {
843 char buf[PBUFSIZ];
844 int i;
845 char *p;
846
847 /* FIXME-32x64: Need a version of print_address_numeric which puts the
848 result in a buffer like sprintf. */
849 sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, len);
850
851 /* We send target system values byte by byte, in increasing byte addresses,
852 each byte encoded as two hex characters. */
853
854 p = buf + strlen (buf);
855 for (i = 0; i < len; i++)
856 {
857 *p++ = tohex ((myaddr[i] >> 4) & 0xf);
858 *p++ = tohex (myaddr[i] & 0xf);
859 }
860 *p = '\0';
861
862 putpkt (buf);
863 getpkt (buf, 0);
864
865 if (buf[0] == 'E')
866 {
867 /* There is no correspondance between what the remote protocol uses
868 for errors and errno codes. We would like a cleaner way of
869 representing errors (big enough to include errno codes, bfd_error
870 codes, and others). But for now just return EIO. */
871 errno = EIO;
872 return 0;
873 }
874 return len;
875 }
876
877 /* Read memory data directly from the remote machine.
878 This does not use the data cache; the data cache uses this.
879 MEMADDR is the address in the remote memory space.
880 MYADDR is the address of the buffer in our space.
881 LEN is the number of bytes.
882
883 Returns number of bytes transferred, or 0 for error. */
884
885 static int
886 remote_read_bytes (memaddr, myaddr, len)
887 CORE_ADDR memaddr;
888 unsigned char *myaddr;
889 int len;
890 {
891 char buf[PBUFSIZ];
892 int i;
893 char *p;
894
895 if (len > PBUFSIZ / 2 - 1)
896 abort ();
897
898 /* FIXME-32x64: Need a version of print_address_numeric which puts the
899 result in a buffer like sprintf. */
900 sprintf (buf, "m%lx,%x", (unsigned long) memaddr, len);
901 putpkt (buf);
902 getpkt (buf, 0);
903
904 if (buf[0] == 'E')
905 {
906 /* There is no correspondance between what the remote protocol uses
907 for errors and errno codes. We would like a cleaner way of
908 representing errors (big enough to include errno codes, bfd_error
909 codes, and others). But for now just return EIO. */
910 errno = EIO;
911 return 0;
912 }
913
914 /* Reply describes memory byte by byte,
915 each byte encoded as two hex characters. */
916
917 p = buf;
918 for (i = 0; i < len; i++)
919 {
920 if (p[0] == 0 || p[1] == 0)
921 /* Reply is short. This means that we were able to read only part
922 of what we wanted to. */
923 break;
924 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
925 p += 2;
926 }
927 return i;
928 }
929 \f
930 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
931 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
932 nonzero. Returns length of data written or read; 0 for error. */
933
934 /* ARGSUSED */
935 static int
936 remote_xfer_memory(memaddr, myaddr, len, should_write, target)
937 CORE_ADDR memaddr;
938 char *myaddr;
939 int len;
940 int should_write;
941 struct target_ops *target; /* ignored */
942 {
943 int xfersize;
944 int bytes_xferred;
945 int total_xferred = 0;
946
947 while (len > 0)
948 {
949 if (len > MAXBUFBYTES)
950 xfersize = MAXBUFBYTES;
951 else
952 xfersize = len;
953
954 if (should_write)
955 bytes_xferred = remote_write_bytes (memaddr,
956 (unsigned char *)myaddr, xfersize);
957 else
958 bytes_xferred = remote_read_bytes (memaddr,
959 (unsigned char *)myaddr, xfersize);
960
961 /* If we get an error, we are done xferring. */
962 if (bytes_xferred == 0)
963 break;
964
965 memaddr += bytes_xferred;
966 myaddr += bytes_xferred;
967 len -= bytes_xferred;
968 total_xferred += bytes_xferred;
969 }
970 return total_xferred;
971 }
972
973 #if 0
974 /* Enable after 4.12. */
975
976 void
977 remote_search (len, data, mask, startaddr, increment, lorange, hirange
978 addr_found, data_found)
979 int len;
980 char *data;
981 char *mask;
982 CORE_ADDR startaddr;
983 int increment;
984 CORE_ADDR lorange;
985 CORE_ADDR hirange;
986 CORE_ADDR *addr_found;
987 char *data_found;
988 {
989 if (increment == -4 && len == 4)
990 {
991 long mask_long, data_long;
992 long data_found_long;
993 CORE_ADDR addr_we_found;
994 char buf[PBUFSIZ];
995 long returned_long[2];
996 char *p;
997
998 mask_long = extract_unsigned_integer (mask, len);
999 data_long = extract_unsigned_integer (data, len);
1000 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
1001 putpkt (buf);
1002 getpkt (buf, 0);
1003 if (buf[0] == '\0')
1004 {
1005 /* The stub doesn't support the 't' request. We might want to
1006 remember this fact, but on the other hand the stub could be
1007 switched on us. Maybe we should remember it only until
1008 the next "target remote". */
1009 generic_search (len, data, mask, startaddr, increment, lorange,
1010 hirange, addr_found, data_found);
1011 return;
1012 }
1013
1014 if (buf[0] == 'E')
1015 /* There is no correspondance between what the remote protocol uses
1016 for errors and errno codes. We would like a cleaner way of
1017 representing errors (big enough to include errno codes, bfd_error
1018 codes, and others). But for now just use EIO. */
1019 memory_error (EIO, startaddr);
1020 p = buf;
1021 addr_we_found = 0;
1022 while (*p != '\0' && *p != ',')
1023 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
1024 if (*p == '\0')
1025 error ("Protocol error: short return for search");
1026
1027 data_found_long = 0;
1028 while (*p != '\0' && *p != ',')
1029 data_found_long = (data_found_long << 4) + fromhex (*p++);
1030 /* Ignore anything after this comma, for future extensions. */
1031
1032 if (addr_we_found < lorange || addr_we_found >= hirange)
1033 {
1034 *addr_found = 0;
1035 return;
1036 }
1037
1038 *addr_found = addr_we_found;
1039 *data_found = store_unsigned_integer (data_we_found, len);
1040 return;
1041 }
1042 generic_search (len, data, mask, startaddr, increment, lorange,
1043 hirange, addr_found, data_found);
1044 }
1045 #endif /* 0 */
1046 \f
1047 static void
1048 remote_files_info (ignore)
1049 struct target_ops *ignore;
1050 {
1051 puts_filtered ("Debugging a target over a serial line.\n");
1052 }
1053 \f
1054 /* Stuff for dealing with the packets which are part of this protocol.
1055 See comment at top of file for details. */
1056
1057 /* Read a single character from the remote end, masking it down to 7 bits. */
1058
1059 static int
1060 readchar (timeout)
1061 int timeout;
1062 {
1063 int ch;
1064
1065 ch = SERIAL_READCHAR (remote_desc, timeout);
1066
1067 switch (ch)
1068 {
1069 case SERIAL_EOF:
1070 error ("Remote connection closed");
1071 case SERIAL_ERROR:
1072 perror_with_name ("Remote communication error");
1073 case SERIAL_TIMEOUT:
1074 return ch;
1075 default:
1076 return ch & 0x7f;
1077 }
1078 }
1079
1080 /* Send the command in BUF to the remote machine,
1081 and read the reply into BUF.
1082 Report an error if we get an error reply. */
1083
1084 static void
1085 remote_send (buf)
1086 char *buf;
1087 {
1088
1089 putpkt (buf);
1090 getpkt (buf, 0);
1091
1092 if (buf[0] == 'E')
1093 error ("Remote failure reply: %s", buf);
1094 }
1095
1096 /* Send a packet to the remote machine, with error checking.
1097 The data of the packet is in BUF. */
1098
1099 static void
1100 putpkt (buf)
1101 char *buf;
1102 {
1103 int i;
1104 unsigned char csum = 0;
1105 char buf2[PBUFSIZ];
1106 int cnt = strlen (buf);
1107 int ch;
1108 char *p;
1109
1110 /* Copy the packet into buffer BUF2, encapsulating it
1111 and giving it a checksum. */
1112
1113 if (cnt > sizeof(buf2) - 5) /* Prosanity check */
1114 abort();
1115
1116 p = buf2;
1117 *p++ = '$';
1118
1119 for (i = 0; i < cnt; i++)
1120 {
1121 csum += buf[i];
1122 *p++ = buf[i];
1123 }
1124 *p++ = '#';
1125 *p++ = tohex ((csum >> 4) & 0xf);
1126 *p++ = tohex (csum & 0xf);
1127
1128 /* Send it over and over until we get a positive ack. */
1129
1130 while (1)
1131 {
1132 int started_error_output = 0;
1133
1134 if (remote_debug)
1135 {
1136 *p = '\0';
1137 printf_unfiltered ("Sending packet: %s...", buf2);
1138 gdb_flush(gdb_stdout);
1139 }
1140 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
1141 perror_with_name ("putpkt: write failed");
1142
1143 /* read until either a timeout occurs (-2) or '+' is read */
1144 while (1)
1145 {
1146 ch = readchar (remote_timeout);
1147
1148 if (remote_debug)
1149 {
1150 switch (ch)
1151 {
1152 case '+':
1153 case SERIAL_TIMEOUT:
1154 case '$':
1155 if (started_error_output)
1156 {
1157 putc_unfiltered ('\n');
1158 started_error_output = 0;
1159 }
1160 }
1161 }
1162
1163 switch (ch)
1164 {
1165 case '+':
1166 if (remote_debug)
1167 printf_unfiltered("Ack\n");
1168 return;
1169 case SERIAL_TIMEOUT:
1170 break; /* Retransmit buffer */
1171 case '$':
1172 {
1173 char junkbuf[PBUFSIZ];
1174
1175 /* It's probably an old response, and we're out of sync. Just
1176 gobble up the packet and ignore it. */
1177 getpkt (junkbuf, 0);
1178 continue; /* Now, go look for + */
1179 }
1180 default:
1181 if (remote_debug)
1182 {
1183 if (!started_error_output)
1184 {
1185 started_error_output = 1;
1186 printf_unfiltered ("putpkt: Junk: ");
1187 }
1188 putc_unfiltered (ch & 0177);
1189 }
1190 continue;
1191 }
1192 break; /* Here to retransmit */
1193 }
1194
1195 #if 0
1196 /* This is wrong. If doing a long backtrace, the user should be
1197 able to get out next time we call QUIT, without anything as violent
1198 as interrupt_query. If we want to provide a way out of here
1199 without getting to the next QUIT, it should be based on hitting
1200 ^C twice as in remote_wait. */
1201 if (quit_flag)
1202 {
1203 quit_flag = 0;
1204 interrupt_query ();
1205 }
1206 #endif
1207 }
1208 }
1209
1210 /* Come here after finding the start of the frame. Collect the rest into BUF,
1211 verifying the checksum, length, and handling run-length compression.
1212 Returns 0 on any error, 1 on success. */
1213
1214 static int
1215 read_frame (buf)
1216 char *buf;
1217 {
1218 unsigned char csum;
1219 char *bp;
1220 int c;
1221
1222 csum = 0;
1223 bp = buf;
1224
1225 while (1)
1226 {
1227 c = readchar (remote_timeout);
1228
1229 switch (c)
1230 {
1231 case SERIAL_TIMEOUT:
1232 if (remote_debug)
1233 puts_filtered ("Timeout in mid-packet, retrying\n");
1234 return 0;
1235 case '$':
1236 if (remote_debug)
1237 puts_filtered ("Saw new packet start in middle of old one\n");
1238 return 0; /* Start a new packet, count retries */
1239 case '#':
1240 {
1241 unsigned char pktcsum;
1242
1243 *bp = '\000';
1244
1245 pktcsum = fromhex (readchar (remote_timeout)) << 4;
1246 pktcsum |= fromhex (readchar (remote_timeout));
1247
1248 if (csum == pktcsum)
1249 return 1;
1250
1251 if (remote_debug)
1252 {
1253 printf_filtered ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
1254 pktcsum, csum);
1255 puts_filtered (buf);
1256 puts_filtered ("\n");
1257 }
1258 return 0;
1259 }
1260 case '*': /* Run length encoding */
1261 csum += c;
1262 c = readchar (remote_timeout);
1263 csum += c;
1264 c = c - ' ' + 3; /* Compute repeat count */
1265
1266
1267 if (c > 0 && c < 255 && bp + c - 1 < buf + PBUFSIZ - 1)
1268 {
1269 memset (bp, *(bp - 1), c);
1270 bp += c;
1271 continue;
1272 }
1273
1274 *bp = '\0';
1275 printf_filtered ("Repeat count %d too large for buffer: ", c);
1276 puts_filtered (buf);
1277 puts_filtered ("\n");
1278 return 0;
1279
1280 default:
1281 if (bp < buf + PBUFSIZ - 1)
1282 {
1283 *bp++ = c;
1284 csum += c;
1285 continue;
1286 }
1287
1288 *bp = '\0';
1289 puts_filtered ("Remote packet too long: ");
1290 puts_filtered (buf);
1291 puts_filtered ("\n");
1292
1293 return 0;
1294 }
1295 }
1296 }
1297
1298 /* Read a packet from the remote machine, with error checking,
1299 and store it in BUF. BUF is expected to be of size PBUFSIZ.
1300 If FOREVER, wait forever rather than timing out; this is used
1301 while the target is executing user code. */
1302
1303 static void
1304 getpkt (buf, forever)
1305 char *buf;
1306 int forever;
1307 {
1308 char *bp;
1309 int c;
1310 int tries;
1311 int timeout;
1312 int val;
1313
1314 if (forever)
1315 timeout = -1;
1316 else
1317 timeout = remote_timeout;
1318
1319 #define MAX_TRIES 10
1320
1321 for (tries = 1; tries <= MAX_TRIES; tries++)
1322 {
1323 /* This can loop forever if the remote side sends us characters
1324 continuously, but if it pauses, we'll get a zero from readchar
1325 because of timeout. Then we'll count that as a retry. */
1326
1327 /* Note that we will only wait forever prior to the start of a packet.
1328 After that, we expect characters to arrive at a brisk pace. They
1329 should show up within remote_timeout intervals. */
1330
1331 do
1332 {
1333 c = readchar (timeout);
1334
1335 if (c == SERIAL_TIMEOUT)
1336 {
1337 if (remote_debug)
1338 puts_filtered ("Timed out.\n");
1339 goto retry;
1340 }
1341 }
1342 while (c != '$');
1343
1344 /* We've found the start of a packet, now collect the data. */
1345
1346 val = read_frame (buf);
1347
1348 if (val == 1)
1349 {
1350 if (remote_debug)
1351 fprintf_unfiltered (gdb_stderr, "Packet received: %s\n", buf);
1352 SERIAL_WRITE (remote_desc, "+", 1);
1353 return;
1354 }
1355
1356 /* Try the whole thing again. */
1357 retry:
1358 SERIAL_WRITE (remote_desc, "-", 1);
1359 }
1360
1361 /* We have tried hard enough, and just can't receive the packet. Give up. */
1362
1363 printf_unfiltered ("Ignoring packet error, continuing...\n");
1364 SERIAL_WRITE (remote_desc, "+", 1);
1365 }
1366 \f
1367 static void
1368 remote_kill ()
1369 {
1370 putpkt ("k");
1371 /* Don't wait for it to die. I'm not really sure it matters whether
1372 we do or not. For the existing stubs, kill is a noop. */
1373 target_mourn_inferior ();
1374 }
1375
1376 static void
1377 remote_mourn ()
1378 {
1379 unpush_target (&remote_ops);
1380 generic_mourn_inferior ();
1381 }
1382 \f
1383 #ifdef REMOTE_BREAKPOINT
1384
1385 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
1386 than other targets. */
1387 static unsigned char break_insn[] = REMOTE_BREAKPOINT;
1388
1389 /* Check that it fits in BREAKPOINT_MAX bytes. */
1390 static unsigned char check_break_insn_size[BREAKPOINT_MAX] = REMOTE_BREAKPOINT;
1391
1392 #else /* No REMOTE_BREAKPOINT. */
1393
1394 /* Same old breakpoint instruction. This code does nothing different
1395 than mem-break.c. */
1396 static unsigned char break_insn[] = BREAKPOINT;
1397
1398 #endif /* No REMOTE_BREAKPOINT. */
1399
1400 /* Insert a breakpoint on targets that don't have any better breakpoint
1401 support. We read the contents of the target location and stash it,
1402 then overwrite it with a breakpoint instruction. ADDR is the target
1403 location in the target machine. CONTENTS_CACHE is a pointer to
1404 memory allocated for saving the target contents. It is guaranteed
1405 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
1406 is accomplished via BREAKPOINT_MAX). */
1407
1408 static int
1409 remote_insert_breakpoint (addr, contents_cache)
1410 CORE_ADDR addr;
1411 char *contents_cache;
1412 {
1413 int val;
1414
1415 val = target_read_memory (addr, contents_cache, sizeof break_insn);
1416
1417 if (val == 0)
1418 val = target_write_memory (addr, (char *)break_insn, sizeof break_insn);
1419
1420 return val;
1421 }
1422
1423 static int
1424 remote_remove_breakpoint (addr, contents_cache)
1425 CORE_ADDR addr;
1426 char *contents_cache;
1427 {
1428 return target_write_memory (addr, contents_cache, sizeof break_insn);
1429 }
1430 \f
1431 /* Define the target subroutine names */
1432
1433 struct target_ops remote_ops = {
1434 "remote", /* to_shortname */
1435 "Remote serial target in gdb-specific protocol", /* to_longname */
1436 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
1437 Specify the serial device it is connected to (e.g. /dev/ttya).", /* to_doc */
1438 remote_open, /* to_open */
1439 remote_close, /* to_close */
1440 NULL, /* to_attach */
1441 remote_detach, /* to_detach */
1442 remote_resume, /* to_resume */
1443 remote_wait, /* to_wait */
1444 remote_fetch_registers, /* to_fetch_registers */
1445 remote_store_registers, /* to_store_registers */
1446 remote_prepare_to_store, /* to_prepare_to_store */
1447 remote_xfer_memory, /* to_xfer_memory */
1448 remote_files_info, /* to_files_info */
1449
1450 remote_insert_breakpoint, /* to_insert_breakpoint */
1451 remote_remove_breakpoint, /* to_remove_breakpoint */
1452
1453 NULL, /* to_terminal_init */
1454 NULL, /* to_terminal_inferior */
1455 NULL, /* to_terminal_ours_for_output */
1456 NULL, /* to_terminal_ours */
1457 NULL, /* to_terminal_info */
1458 remote_kill, /* to_kill */
1459 generic_load, /* to_load */
1460 NULL, /* to_lookup_symbol */
1461 NULL, /* to_create_inferior */
1462 remote_mourn, /* to_mourn_inferior */
1463 0, /* to_can_run */
1464 0, /* to_notice_signals */
1465 0, /* to_stop */
1466 process_stratum, /* to_stratum */
1467 NULL, /* to_next */
1468 1, /* to_has_all_memory */
1469 1, /* to_has_memory */
1470 1, /* to_has_stack */
1471 1, /* to_has_registers */
1472 1, /* to_has_execution */
1473 NULL, /* sections */
1474 NULL, /* sections_end */
1475 OPS_MAGIC /* to_magic */
1476 };
1477
1478 void
1479 _initialize_remote ()
1480 {
1481 add_target (&remote_ops);
1482 }