]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
gdb/gdbsupport: make xstrprintf and xstrvprintf return a unique_ptr
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static std::string remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 set_pspace_remote_exec_file (current_program_space,
1359 remote_exec_file_var.c_str ());
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* The "show remote foo-packet" command created for this packet. */
1877 cmd_list_element *show_cmd;
1878
1879 /* Does the target support this packet? */
1880 enum packet_support support;
1881 };
1882
1883 static enum packet_support packet_config_support (struct packet_config *config);
1884 static enum packet_support packet_support (int packet);
1885
1886 static void
1887 show_packet_config_cmd (struct packet_config *config)
1888 {
1889 const char *support = "internal-error";
1890
1891 switch (packet_config_support (config))
1892 {
1893 case PACKET_ENABLE:
1894 support = "enabled";
1895 break;
1896 case PACKET_DISABLE:
1897 support = "disabled";
1898 break;
1899 case PACKET_SUPPORT_UNKNOWN:
1900 support = "unknown";
1901 break;
1902 }
1903 switch (config->detect)
1904 {
1905 case AUTO_BOOLEAN_AUTO:
1906 printf_filtered (_("Support for the `%s' packet "
1907 "is auto-detected, currently %s.\n"),
1908 config->name, support);
1909 break;
1910 case AUTO_BOOLEAN_TRUE:
1911 case AUTO_BOOLEAN_FALSE:
1912 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1913 config->name, support);
1914 break;
1915 }
1916 }
1917
1918 static void
1919 add_packet_config_cmd (struct packet_config *config, const char *name,
1920 const char *title, int legacy)
1921 {
1922 config->name = name;
1923 config->title = title;
1924 gdb::unique_xmalloc_ptr<char> set_doc
1925 = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 gdb::unique_xmalloc_ptr<char> show_doc
1928 = xstrprintf ("Show current use of remote protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 gdb::unique_xmalloc_ptr<char> cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name.release (), class_obscure,
1934 &config->detect, set_doc.get (),
1935 show_doc.get (), NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939 config->show_cmd = cmds.show;
1940
1941 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1942 if (legacy)
1943 {
1944 /* It's not clear who should take ownership of this string, so, for
1945 now, make it static, and give copies to each of the add_alias_cmd
1946 calls below. */
1947 static gdb::unique_xmalloc_ptr<char> legacy_name
1948 = xstrprintf ("%s-packet", name);
1949 add_alias_cmd (legacy_name.get (), cmds.set, class_obscure, 0,
1950 &remote_set_cmdlist);
1951 add_alias_cmd (legacy_name.get (), cmds.show, class_obscure, 0,
1952 &remote_show_cmdlist);
1953 }
1954 }
1955
1956 static enum packet_result
1957 packet_check_result (const char *buf)
1958 {
1959 if (buf[0] != '\0')
1960 {
1961 /* The stub recognized the packet request. Check that the
1962 operation succeeded. */
1963 if (buf[0] == 'E'
1964 && isxdigit (buf[1]) && isxdigit (buf[2])
1965 && buf[3] == '\0')
1966 /* "Enn" - definitely an error. */
1967 return PACKET_ERROR;
1968
1969 /* Always treat "E." as an error. This will be used for
1970 more verbose error messages, such as E.memtypes. */
1971 if (buf[0] == 'E' && buf[1] == '.')
1972 return PACKET_ERROR;
1973
1974 /* The packet may or may not be OK. Just assume it is. */
1975 return PACKET_OK;
1976 }
1977 else
1978 /* The stub does not support the packet. */
1979 return PACKET_UNKNOWN;
1980 }
1981
1982 static enum packet_result
1983 packet_check_result (const gdb::char_vector &buf)
1984 {
1985 return packet_check_result (buf.data ());
1986 }
1987
1988 static enum packet_result
1989 packet_ok (const char *buf, struct packet_config *config)
1990 {
1991 enum packet_result result;
1992
1993 if (config->detect != AUTO_BOOLEAN_TRUE
1994 && config->support == PACKET_DISABLE)
1995 internal_error (__FILE__, __LINE__,
1996 _("packet_ok: attempt to use a disabled packet"));
1997
1998 result = packet_check_result (buf);
1999 switch (result)
2000 {
2001 case PACKET_OK:
2002 case PACKET_ERROR:
2003 /* The stub recognized the packet request. */
2004 if (config->support == PACKET_SUPPORT_UNKNOWN)
2005 {
2006 remote_debug_printf ("Packet %s (%s) is supported",
2007 config->name, config->title);
2008 config->support = PACKET_ENABLE;
2009 }
2010 break;
2011 case PACKET_UNKNOWN:
2012 /* The stub does not support the packet. */
2013 if (config->detect == AUTO_BOOLEAN_AUTO
2014 && config->support == PACKET_ENABLE)
2015 {
2016 /* If the stub previously indicated that the packet was
2017 supported then there is a protocol error. */
2018 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2019 config->name, config->title);
2020 }
2021 else if (config->detect == AUTO_BOOLEAN_TRUE)
2022 {
2023 /* The user set it wrong. */
2024 error (_("Enabled packet %s (%s) not recognized by stub"),
2025 config->name, config->title);
2026 }
2027
2028 remote_debug_printf ("Packet %s (%s) is NOT supported",
2029 config->name, config->title);
2030 config->support = PACKET_DISABLE;
2031 break;
2032 }
2033
2034 return result;
2035 }
2036
2037 static enum packet_result
2038 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2039 {
2040 return packet_ok (buf.data (), config);
2041 }
2042
2043 enum {
2044 PACKET_vCont = 0,
2045 PACKET_X,
2046 PACKET_qSymbol,
2047 PACKET_P,
2048 PACKET_p,
2049 PACKET_Z0,
2050 PACKET_Z1,
2051 PACKET_Z2,
2052 PACKET_Z3,
2053 PACKET_Z4,
2054 PACKET_vFile_setfs,
2055 PACKET_vFile_open,
2056 PACKET_vFile_pread,
2057 PACKET_vFile_pwrite,
2058 PACKET_vFile_close,
2059 PACKET_vFile_unlink,
2060 PACKET_vFile_readlink,
2061 PACKET_vFile_fstat,
2062 PACKET_qXfer_auxv,
2063 PACKET_qXfer_features,
2064 PACKET_qXfer_exec_file,
2065 PACKET_qXfer_libraries,
2066 PACKET_qXfer_libraries_svr4,
2067 PACKET_qXfer_memory_map,
2068 PACKET_qXfer_osdata,
2069 PACKET_qXfer_threads,
2070 PACKET_qXfer_statictrace_read,
2071 PACKET_qXfer_traceframe_info,
2072 PACKET_qXfer_uib,
2073 PACKET_qGetTIBAddr,
2074 PACKET_qGetTLSAddr,
2075 PACKET_qSupported,
2076 PACKET_qTStatus,
2077 PACKET_QPassSignals,
2078 PACKET_QCatchSyscalls,
2079 PACKET_QProgramSignals,
2080 PACKET_QSetWorkingDir,
2081 PACKET_QStartupWithShell,
2082 PACKET_QEnvironmentHexEncoded,
2083 PACKET_QEnvironmentReset,
2084 PACKET_QEnvironmentUnset,
2085 PACKET_qCRC,
2086 PACKET_qSearch_memory,
2087 PACKET_vAttach,
2088 PACKET_vRun,
2089 PACKET_QStartNoAckMode,
2090 PACKET_vKill,
2091 PACKET_qXfer_siginfo_read,
2092 PACKET_qXfer_siginfo_write,
2093 PACKET_qAttached,
2094
2095 /* Support for conditional tracepoints. */
2096 PACKET_ConditionalTracepoints,
2097
2098 /* Support for target-side breakpoint conditions. */
2099 PACKET_ConditionalBreakpoints,
2100
2101 /* Support for target-side breakpoint commands. */
2102 PACKET_BreakpointCommands,
2103
2104 /* Support for fast tracepoints. */
2105 PACKET_FastTracepoints,
2106
2107 /* Support for static tracepoints. */
2108 PACKET_StaticTracepoints,
2109
2110 /* Support for installing tracepoints while a trace experiment is
2111 running. */
2112 PACKET_InstallInTrace,
2113
2114 PACKET_bc,
2115 PACKET_bs,
2116 PACKET_TracepointSource,
2117 PACKET_QAllow,
2118 PACKET_qXfer_fdpic,
2119 PACKET_QDisableRandomization,
2120 PACKET_QAgent,
2121 PACKET_QTBuffer_size,
2122 PACKET_Qbtrace_off,
2123 PACKET_Qbtrace_bts,
2124 PACKET_Qbtrace_pt,
2125 PACKET_qXfer_btrace,
2126
2127 /* Support for the QNonStop packet. */
2128 PACKET_QNonStop,
2129
2130 /* Support for the QThreadEvents packet. */
2131 PACKET_QThreadEvents,
2132
2133 /* Support for multi-process extensions. */
2134 PACKET_multiprocess_feature,
2135
2136 /* Support for enabling and disabling tracepoints while a trace
2137 experiment is running. */
2138 PACKET_EnableDisableTracepoints_feature,
2139
2140 /* Support for collecting strings using the tracenz bytecode. */
2141 PACKET_tracenz_feature,
2142
2143 /* Support for continuing to run a trace experiment while GDB is
2144 disconnected. */
2145 PACKET_DisconnectedTracing_feature,
2146
2147 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2148 PACKET_augmented_libraries_svr4_read_feature,
2149
2150 /* Support for the qXfer:btrace-conf:read packet. */
2151 PACKET_qXfer_btrace_conf,
2152
2153 /* Support for the Qbtrace-conf:bts:size packet. */
2154 PACKET_Qbtrace_conf_bts_size,
2155
2156 /* Support for swbreak+ feature. */
2157 PACKET_swbreak_feature,
2158
2159 /* Support for hwbreak+ feature. */
2160 PACKET_hwbreak_feature,
2161
2162 /* Support for fork events. */
2163 PACKET_fork_event_feature,
2164
2165 /* Support for vfork events. */
2166 PACKET_vfork_event_feature,
2167
2168 /* Support for the Qbtrace-conf:pt:size packet. */
2169 PACKET_Qbtrace_conf_pt_size,
2170
2171 /* Support for exec events. */
2172 PACKET_exec_event_feature,
2173
2174 /* Support for query supported vCont actions. */
2175 PACKET_vContSupported,
2176
2177 /* Support remote CTRL-C. */
2178 PACKET_vCtrlC,
2179
2180 /* Support TARGET_WAITKIND_NO_RESUMED. */
2181 PACKET_no_resumed,
2182
2183 /* Support for memory tagging, allocation tag fetch/store
2184 packets and the tag violation stop replies. */
2185 PACKET_memory_tagging_feature,
2186
2187 PACKET_MAX
2188 };
2189
2190 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2191 assuming all remote targets are the same server (thus all support
2192 the same packets). */
2193 static struct packet_config remote_protocol_packets[PACKET_MAX];
2194
2195 /* Returns the packet's corresponding "set remote foo-packet" command
2196 state. See struct packet_config for more details. */
2197
2198 static enum auto_boolean
2199 packet_set_cmd_state (int packet)
2200 {
2201 return remote_protocol_packets[packet].detect;
2202 }
2203
2204 /* Returns whether a given packet or feature is supported. This takes
2205 into account the state of the corresponding "set remote foo-packet"
2206 command, which may be used to bypass auto-detection. */
2207
2208 static enum packet_support
2209 packet_config_support (struct packet_config *config)
2210 {
2211 switch (config->detect)
2212 {
2213 case AUTO_BOOLEAN_TRUE:
2214 return PACKET_ENABLE;
2215 case AUTO_BOOLEAN_FALSE:
2216 return PACKET_DISABLE;
2217 case AUTO_BOOLEAN_AUTO:
2218 return config->support;
2219 default:
2220 gdb_assert_not_reached (_("bad switch"));
2221 }
2222 }
2223
2224 /* Same as packet_config_support, but takes the packet's enum value as
2225 argument. */
2226
2227 static enum packet_support
2228 packet_support (int packet)
2229 {
2230 struct packet_config *config = &remote_protocol_packets[packet];
2231
2232 return packet_config_support (config);
2233 }
2234
2235 static void
2236 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2237 struct cmd_list_element *c,
2238 const char *value)
2239 {
2240 struct packet_config *packet;
2241 gdb_assert (c->var.has_value ());
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (c == packet->show_cmd)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to RUNNING. */
2527
2528 thread_info *
2529 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2530 {
2531 struct remote_state *rs = get_remote_state ();
2532 struct thread_info *thread;
2533
2534 /* GDB historically didn't pull threads in the initial connection
2535 setup. If the remote target doesn't even have a concept of
2536 threads (e.g., a bare-metal target), even if internally we
2537 consider that a single-threaded target, mentioning a new thread
2538 might be confusing to the user. Be silent then, preserving the
2539 age old behavior. */
2540 if (rs->starting_up)
2541 thread = add_thread_silent (this, ptid);
2542 else
2543 thread = add_thread (this, ptid);
2544
2545 /* We start by assuming threads are resumed. That state then gets updated
2546 when we process a matching stop reply. */
2547 get_remote_thread_info (thread)->set_resumed ();
2548
2549 set_executing (this, ptid, executing);
2550 set_running (this, ptid, running);
2551
2552 return thread;
2553 }
2554
2555 /* Come here when we learn about a thread id from the remote target.
2556 It may be the first time we hear about such thread, so take the
2557 opportunity to add it to GDB's thread list. In case this is the
2558 first time we're noticing its corresponding inferior, add it to
2559 GDB's inferior list as well. EXECUTING indicates whether the
2560 thread is (internally) executing or stopped. */
2561
2562 void
2563 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2564 {
2565 /* In non-stop mode, we assume new found threads are (externally)
2566 running until proven otherwise with a stop reply. In all-stop,
2567 we can only get here if all threads are stopped. */
2568 bool running = target_is_non_stop_p ();
2569
2570 /* If this is a new thread, add it to GDB's thread list.
2571 If we leave it up to WFI to do this, bad things will happen. */
2572
2573 thread_info *tp = find_thread_ptid (this, currthread);
2574 if (tp != NULL && tp->state == THREAD_EXITED)
2575 {
2576 /* We're seeing an event on a thread id we knew had exited.
2577 This has to be a new thread reusing the old id. Add it. */
2578 remote_add_thread (currthread, running, executing);
2579 return;
2580 }
2581
2582 if (!in_thread_list (this, currthread))
2583 {
2584 struct inferior *inf = NULL;
2585 int pid = currthread.pid ();
2586
2587 if (inferior_ptid.is_pid ()
2588 && pid == inferior_ptid.pid ())
2589 {
2590 /* inferior_ptid has no thread member yet. This can happen
2591 with the vAttach -> remote_wait,"TAAthread:" path if the
2592 stub doesn't support qC. This is the first stop reported
2593 after an attach, so this is the main thread. Update the
2594 ptid in the thread list. */
2595 if (in_thread_list (this, ptid_t (pid)))
2596 thread_change_ptid (this, inferior_ptid, currthread);
2597 else
2598 {
2599 thread_info *thr
2600 = remote_add_thread (currthread, running, executing);
2601 switch_to_thread (thr);
2602 }
2603 return;
2604 }
2605
2606 if (magic_null_ptid == inferior_ptid)
2607 {
2608 /* inferior_ptid is not set yet. This can happen with the
2609 vRun -> remote_wait,"TAAthread:" path if the stub
2610 doesn't support qC. This is the first stop reported
2611 after an attach, so this is the main thread. Update the
2612 ptid in the thread list. */
2613 thread_change_ptid (this, inferior_ptid, currthread);
2614 return;
2615 }
2616
2617 /* When connecting to a target remote, or to a target
2618 extended-remote which already was debugging an inferior, we
2619 may not know about it yet. Add it before adding its child
2620 thread, so notifications are emitted in a sensible order. */
2621 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2622 {
2623 struct remote_state *rs = get_remote_state ();
2624 bool fake_pid_p = !remote_multi_process_p (rs);
2625
2626 inf = remote_add_inferior (fake_pid_p,
2627 currthread.pid (), -1, 1);
2628 }
2629
2630 /* This is really a new thread. Add it. */
2631 thread_info *new_thr
2632 = remote_add_thread (currthread, running, executing);
2633
2634 /* If we found a new inferior, let the common code do whatever
2635 it needs to with it (e.g., read shared libraries, insert
2636 breakpoints), unless we're just setting up an all-stop
2637 connection. */
2638 if (inf != NULL)
2639 {
2640 struct remote_state *rs = get_remote_state ();
2641
2642 if (!rs->starting_up)
2643 notice_new_inferior (new_thr, executing, 0);
2644 }
2645 }
2646 }
2647
2648 /* Return THREAD's private thread data, creating it if necessary. */
2649
2650 static remote_thread_info *
2651 get_remote_thread_info (thread_info *thread)
2652 {
2653 gdb_assert (thread != NULL);
2654
2655 if (thread->priv == NULL)
2656 thread->priv.reset (new remote_thread_info);
2657
2658 return static_cast<remote_thread_info *> (thread->priv.get ());
2659 }
2660
2661 /* Return PTID's private thread data, creating it if necessary. */
2662
2663 static remote_thread_info *
2664 get_remote_thread_info (remote_target *target, ptid_t ptid)
2665 {
2666 thread_info *thr = find_thread_ptid (target, ptid);
2667 return get_remote_thread_info (thr);
2668 }
2669
2670 /* Call this function as a result of
2671 1) A halt indication (T packet) containing a thread id
2672 2) A direct query of currthread
2673 3) Successful execution of set thread */
2674
2675 static void
2676 record_currthread (struct remote_state *rs, ptid_t currthread)
2677 {
2678 rs->general_thread = currthread;
2679 }
2680
2681 /* If 'QPassSignals' is supported, tell the remote stub what signals
2682 it can simply pass through to the inferior without reporting. */
2683
2684 void
2685 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2686 {
2687 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2688 {
2689 char *pass_packet, *p;
2690 int count = 0;
2691 struct remote_state *rs = get_remote_state ();
2692
2693 gdb_assert (pass_signals.size () < 256);
2694 for (size_t i = 0; i < pass_signals.size (); i++)
2695 {
2696 if (pass_signals[i])
2697 count++;
2698 }
2699 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2700 strcpy (pass_packet, "QPassSignals:");
2701 p = pass_packet + strlen (pass_packet);
2702 for (size_t i = 0; i < pass_signals.size (); i++)
2703 {
2704 if (pass_signals[i])
2705 {
2706 if (i >= 16)
2707 *p++ = tohex (i >> 4);
2708 *p++ = tohex (i & 15);
2709 if (count)
2710 *p++ = ';';
2711 else
2712 break;
2713 count--;
2714 }
2715 }
2716 *p = 0;
2717 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2718 {
2719 putpkt (pass_packet);
2720 getpkt (&rs->buf, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2722 xfree (rs->last_pass_packet);
2723 rs->last_pass_packet = pass_packet;
2724 }
2725 else
2726 xfree (pass_packet);
2727 }
2728 }
2729
2730 /* If 'QCatchSyscalls' is supported, tell the remote stub
2731 to report syscalls to GDB. */
2732
2733 int
2734 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2735 gdb::array_view<const int> syscall_counts)
2736 {
2737 const char *catch_packet;
2738 enum packet_result result;
2739 int n_sysno = 0;
2740
2741 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2742 {
2743 /* Not supported. */
2744 return 1;
2745 }
2746
2747 if (needed && any_count == 0)
2748 {
2749 /* Count how many syscalls are to be caught. */
2750 for (size_t i = 0; i < syscall_counts.size (); i++)
2751 {
2752 if (syscall_counts[i] != 0)
2753 n_sysno++;
2754 }
2755 }
2756
2757 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2758 pid, needed, any_count, n_sysno);
2759
2760 std::string built_packet;
2761 if (needed)
2762 {
2763 /* Prepare a packet with the sysno list, assuming max 8+1
2764 characters for a sysno. If the resulting packet size is too
2765 big, fallback on the non-selective packet. */
2766 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2767 built_packet.reserve (maxpktsz);
2768 built_packet = "QCatchSyscalls:1";
2769 if (any_count == 0)
2770 {
2771 /* Add in each syscall to be caught. */
2772 for (size_t i = 0; i < syscall_counts.size (); i++)
2773 {
2774 if (syscall_counts[i] != 0)
2775 string_appendf (built_packet, ";%zx", i);
2776 }
2777 }
2778 if (built_packet.size () > get_remote_packet_size ())
2779 {
2780 /* catch_packet too big. Fallback to less efficient
2781 non selective mode, with GDB doing the filtering. */
2782 catch_packet = "QCatchSyscalls:1";
2783 }
2784 else
2785 catch_packet = built_packet.c_str ();
2786 }
2787 else
2788 catch_packet = "QCatchSyscalls:0";
2789
2790 struct remote_state *rs = get_remote_state ();
2791
2792 putpkt (catch_packet);
2793 getpkt (&rs->buf, 0);
2794 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2795 if (result == PACKET_OK)
2796 return 0;
2797 else
2798 return -1;
2799 }
2800
2801 /* If 'QProgramSignals' is supported, tell the remote stub what
2802 signals it should pass through to the inferior when detaching. */
2803
2804 void
2805 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2806 {
2807 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2808 {
2809 char *packet, *p;
2810 int count = 0;
2811 struct remote_state *rs = get_remote_state ();
2812
2813 gdb_assert (signals.size () < 256);
2814 for (size_t i = 0; i < signals.size (); i++)
2815 {
2816 if (signals[i])
2817 count++;
2818 }
2819 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2820 strcpy (packet, "QProgramSignals:");
2821 p = packet + strlen (packet);
2822 for (size_t i = 0; i < signals.size (); i++)
2823 {
2824 if (signal_pass_state (i))
2825 {
2826 if (i >= 16)
2827 *p++ = tohex (i >> 4);
2828 *p++ = tohex (i & 15);
2829 if (count)
2830 *p++ = ';';
2831 else
2832 break;
2833 count--;
2834 }
2835 }
2836 *p = 0;
2837 if (!rs->last_program_signals_packet
2838 || strcmp (rs->last_program_signals_packet, packet) != 0)
2839 {
2840 putpkt (packet);
2841 getpkt (&rs->buf, 0);
2842 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2843 xfree (rs->last_program_signals_packet);
2844 rs->last_program_signals_packet = packet;
2845 }
2846 else
2847 xfree (packet);
2848 }
2849 }
2850
2851 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2852 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2853 thread. If GEN is set, set the general thread, if not, then set
2854 the step/continue thread. */
2855 void
2856 remote_target::set_thread (ptid_t ptid, int gen)
2857 {
2858 struct remote_state *rs = get_remote_state ();
2859 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2860 char *buf = rs->buf.data ();
2861 char *endbuf = buf + get_remote_packet_size ();
2862
2863 if (state == ptid)
2864 return;
2865
2866 *buf++ = 'H';
2867 *buf++ = gen ? 'g' : 'c';
2868 if (ptid == magic_null_ptid)
2869 xsnprintf (buf, endbuf - buf, "0");
2870 else if (ptid == any_thread_ptid)
2871 xsnprintf (buf, endbuf - buf, "0");
2872 else if (ptid == minus_one_ptid)
2873 xsnprintf (buf, endbuf - buf, "-1");
2874 else
2875 write_ptid (buf, endbuf, ptid);
2876 putpkt (rs->buf);
2877 getpkt (&rs->buf, 0);
2878 if (gen)
2879 rs->general_thread = ptid;
2880 else
2881 rs->continue_thread = ptid;
2882 }
2883
2884 void
2885 remote_target::set_general_thread (ptid_t ptid)
2886 {
2887 set_thread (ptid, 1);
2888 }
2889
2890 void
2891 remote_target::set_continue_thread (ptid_t ptid)
2892 {
2893 set_thread (ptid, 0);
2894 }
2895
2896 /* Change the remote current process. Which thread within the process
2897 ends up selected isn't important, as long as it is the same process
2898 as what INFERIOR_PTID points to.
2899
2900 This comes from that fact that there is no explicit notion of
2901 "selected process" in the protocol. The selected process for
2902 general operations is the process the selected general thread
2903 belongs to. */
2904
2905 void
2906 remote_target::set_general_process ()
2907 {
2908 struct remote_state *rs = get_remote_state ();
2909
2910 /* If the remote can't handle multiple processes, don't bother. */
2911 if (!remote_multi_process_p (rs))
2912 return;
2913
2914 /* We only need to change the remote current thread if it's pointing
2915 at some other process. */
2916 if (rs->general_thread.pid () != inferior_ptid.pid ())
2917 set_general_thread (inferior_ptid);
2918 }
2919
2920 \f
2921 /* Return nonzero if this is the main thread that we made up ourselves
2922 to model non-threaded targets as single-threaded. */
2923
2924 static int
2925 remote_thread_always_alive (ptid_t ptid)
2926 {
2927 if (ptid == magic_null_ptid)
2928 /* The main thread is always alive. */
2929 return 1;
2930
2931 if (ptid.pid () != 0 && ptid.lwp () == 0)
2932 /* The main thread is always alive. This can happen after a
2933 vAttach, if the remote side doesn't support
2934 multi-threading. */
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 /* Return nonzero if the thread PTID is still alive on the remote
2941 system. */
2942
2943 bool
2944 remote_target::thread_alive (ptid_t ptid)
2945 {
2946 struct remote_state *rs = get_remote_state ();
2947 char *p, *endp;
2948
2949 /* Check if this is a thread that we made up ourselves to model
2950 non-threaded targets as single-threaded. */
2951 if (remote_thread_always_alive (ptid))
2952 return 1;
2953
2954 p = rs->buf.data ();
2955 endp = p + get_remote_packet_size ();
2956
2957 *p++ = 'T';
2958 write_ptid (p, endp, ptid);
2959
2960 putpkt (rs->buf);
2961 getpkt (&rs->buf, 0);
2962 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2963 }
2964
2965 /* Return a pointer to a thread name if we know it and NULL otherwise.
2966 The thread_info object owns the memory for the name. */
2967
2968 const char *
2969 remote_target::thread_name (struct thread_info *info)
2970 {
2971 if (info->priv != NULL)
2972 {
2973 const std::string &name = get_remote_thread_info (info)->name;
2974 return !name.empty () ? name.c_str () : NULL;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* About these extended threadlist and threadinfo packets. They are
2981 variable length packets but, the fields within them are often fixed
2982 length. They are redundant enough to send over UDP as is the
2983 remote protocol in general. There is a matching unit test module
2984 in libstub. */
2985
2986 /* WARNING: This threadref data structure comes from the remote O.S.,
2987 libstub protocol encoding, and remote.c. It is not particularly
2988 changable. */
2989
2990 /* Right now, the internal structure is int. We want it to be bigger.
2991 Plan to fix this. */
2992
2993 typedef int gdb_threadref; /* Internal GDB thread reference. */
2994
2995 /* gdb_ext_thread_info is an internal GDB data structure which is
2996 equivalent to the reply of the remote threadinfo packet. */
2997
2998 struct gdb_ext_thread_info
2999 {
3000 threadref threadid; /* External form of thread reference. */
3001 int active; /* Has state interesting to GDB?
3002 regs, stack. */
3003 char display[256]; /* Brief state display, name,
3004 blocked/suspended. */
3005 char shortname[32]; /* To be used to name threads. */
3006 char more_display[256]; /* Long info, statistics, queue depth,
3007 whatever. */
3008 };
3009
3010 /* The volume of remote transfers can be limited by submitting
3011 a mask containing bits specifying the desired information.
3012 Use a union of these values as the 'selection' parameter to
3013 get_thread_info. FIXME: Make these TAG names more thread specific. */
3014
3015 #define TAG_THREADID 1
3016 #define TAG_EXISTS 2
3017 #define TAG_DISPLAY 4
3018 #define TAG_THREADNAME 8
3019 #define TAG_MOREDISPLAY 16
3020
3021 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3022
3023 static const char *unpack_nibble (const char *buf, int *val);
3024
3025 static const char *unpack_byte (const char *buf, int *value);
3026
3027 static char *pack_int (char *buf, int value);
3028
3029 static const char *unpack_int (const char *buf, int *value);
3030
3031 static const char *unpack_string (const char *src, char *dest, int length);
3032
3033 static char *pack_threadid (char *pkt, threadref *id);
3034
3035 static const char *unpack_threadid (const char *inbuf, threadref *id);
3036
3037 void int_to_threadref (threadref *id, int value);
3038
3039 static int threadref_to_int (threadref *ref);
3040
3041 static void copy_threadref (threadref *dest, threadref *src);
3042
3043 static int threadmatch (threadref *dest, threadref *src);
3044
3045 static char *pack_threadinfo_request (char *pkt, int mode,
3046 threadref *id);
3047
3048 static char *pack_threadlist_request (char *pkt, int startflag,
3049 int threadcount,
3050 threadref *nextthread);
3051
3052 static int remote_newthread_step (threadref *ref, void *context);
3053
3054
3055 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3056 buffer we're allowed to write to. Returns
3057 BUF+CHARACTERS_WRITTEN. */
3058
3059 char *
3060 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3061 {
3062 int pid, tid;
3063 struct remote_state *rs = get_remote_state ();
3064
3065 if (remote_multi_process_p (rs))
3066 {
3067 pid = ptid.pid ();
3068 if (pid < 0)
3069 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3070 else
3071 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3072 }
3073 tid = ptid.lwp ();
3074 if (tid < 0)
3075 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3076 else
3077 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3078
3079 return buf;
3080 }
3081
3082 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3083 last parsed char. Returns null_ptid if no thread id is found, and
3084 throws an error if the thread id has an invalid format. */
3085
3086 static ptid_t
3087 read_ptid (const char *buf, const char **obuf)
3088 {
3089 const char *p = buf;
3090 const char *pp;
3091 ULONGEST pid = 0, tid = 0;
3092
3093 if (*p == 'p')
3094 {
3095 /* Multi-process ptid. */
3096 pp = unpack_varlen_hex (p + 1, &pid);
3097 if (*pp != '.')
3098 error (_("invalid remote ptid: %s"), p);
3099
3100 p = pp;
3101 pp = unpack_varlen_hex (p + 1, &tid);
3102 if (obuf)
3103 *obuf = pp;
3104 return ptid_t (pid, tid);
3105 }
3106
3107 /* No multi-process. Just a tid. */
3108 pp = unpack_varlen_hex (p, &tid);
3109
3110 /* Return null_ptid when no thread id is found. */
3111 if (p == pp)
3112 {
3113 if (obuf)
3114 *obuf = pp;
3115 return null_ptid;
3116 }
3117
3118 /* Since the stub is not sending a process id, then default to
3119 what's in inferior_ptid, unless it's null at this point. If so,
3120 then since there's no way to know the pid of the reported
3121 threads, use the magic number. */
3122 if (inferior_ptid == null_ptid)
3123 pid = magic_null_ptid.pid ();
3124 else
3125 pid = inferior_ptid.pid ();
3126
3127 if (obuf)
3128 *obuf = pp;
3129 return ptid_t (pid, tid);
3130 }
3131
3132 static int
3133 stubhex (int ch)
3134 {
3135 if (ch >= 'a' && ch <= 'f')
3136 return ch - 'a' + 10;
3137 if (ch >= '0' && ch <= '9')
3138 return ch - '0';
3139 if (ch >= 'A' && ch <= 'F')
3140 return ch - 'A' + 10;
3141 return -1;
3142 }
3143
3144 static int
3145 stub_unpack_int (const char *buff, int fieldlength)
3146 {
3147 int nibble;
3148 int retval = 0;
3149
3150 while (fieldlength)
3151 {
3152 nibble = stubhex (*buff++);
3153 retval |= nibble;
3154 fieldlength--;
3155 if (fieldlength)
3156 retval = retval << 4;
3157 }
3158 return retval;
3159 }
3160
3161 static const char *
3162 unpack_nibble (const char *buf, int *val)
3163 {
3164 *val = fromhex (*buf++);
3165 return buf;
3166 }
3167
3168 static const char *
3169 unpack_byte (const char *buf, int *value)
3170 {
3171 *value = stub_unpack_int (buf, 2);
3172 return buf + 2;
3173 }
3174
3175 static char *
3176 pack_int (char *buf, int value)
3177 {
3178 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3180 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3181 buf = pack_hex_byte (buf, (value & 0xff));
3182 return buf;
3183 }
3184
3185 static const char *
3186 unpack_int (const char *buf, int *value)
3187 {
3188 *value = stub_unpack_int (buf, 8);
3189 return buf + 8;
3190 }
3191
3192 #if 0 /* Currently unused, uncomment when needed. */
3193 static char *pack_string (char *pkt, char *string);
3194
3195 static char *
3196 pack_string (char *pkt, char *string)
3197 {
3198 char ch;
3199 int len;
3200
3201 len = strlen (string);
3202 if (len > 200)
3203 len = 200; /* Bigger than most GDB packets, junk??? */
3204 pkt = pack_hex_byte (pkt, len);
3205 while (len-- > 0)
3206 {
3207 ch = *string++;
3208 if ((ch == '\0') || (ch == '#'))
3209 ch = '*'; /* Protect encapsulation. */
3210 *pkt++ = ch;
3211 }
3212 return pkt;
3213 }
3214 #endif /* 0 (unused) */
3215
3216 static const char *
3217 unpack_string (const char *src, char *dest, int length)
3218 {
3219 while (length--)
3220 *dest++ = *src++;
3221 *dest = '\0';
3222 return src;
3223 }
3224
3225 static char *
3226 pack_threadid (char *pkt, threadref *id)
3227 {
3228 char *limit;
3229 unsigned char *altid;
3230
3231 altid = (unsigned char *) id;
3232 limit = pkt + BUF_THREAD_ID_SIZE;
3233 while (pkt < limit)
3234 pkt = pack_hex_byte (pkt, *altid++);
3235 return pkt;
3236 }
3237
3238
3239 static const char *
3240 unpack_threadid (const char *inbuf, threadref *id)
3241 {
3242 char *altref;
3243 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3244 int x, y;
3245
3246 altref = (char *) id;
3247
3248 while (inbuf < limit)
3249 {
3250 x = stubhex (*inbuf++);
3251 y = stubhex (*inbuf++);
3252 *altref++ = (x << 4) | y;
3253 }
3254 return inbuf;
3255 }
3256
3257 /* Externally, threadrefs are 64 bits but internally, they are still
3258 ints. This is due to a mismatch of specifications. We would like
3259 to use 64bit thread references internally. This is an adapter
3260 function. */
3261
3262 void
3263 int_to_threadref (threadref *id, int value)
3264 {
3265 unsigned char *scan;
3266
3267 scan = (unsigned char *) id;
3268 {
3269 int i = 4;
3270 while (i--)
3271 *scan++ = 0;
3272 }
3273 *scan++ = (value >> 24) & 0xff;
3274 *scan++ = (value >> 16) & 0xff;
3275 *scan++ = (value >> 8) & 0xff;
3276 *scan++ = (value & 0xff);
3277 }
3278
3279 static int
3280 threadref_to_int (threadref *ref)
3281 {
3282 int i, value = 0;
3283 unsigned char *scan;
3284
3285 scan = *ref;
3286 scan += 4;
3287 i = 4;
3288 while (i-- > 0)
3289 value = (value << 8) | ((*scan++) & 0xff);
3290 return value;
3291 }
3292
3293 static void
3294 copy_threadref (threadref *dest, threadref *src)
3295 {
3296 int i;
3297 unsigned char *csrc, *cdest;
3298
3299 csrc = (unsigned char *) src;
3300 cdest = (unsigned char *) dest;
3301 i = 8;
3302 while (i--)
3303 *cdest++ = *csrc++;
3304 }
3305
3306 static int
3307 threadmatch (threadref *dest, threadref *src)
3308 {
3309 /* Things are broken right now, so just assume we got a match. */
3310 #if 0
3311 unsigned char *srcp, *destp;
3312 int i, result;
3313 srcp = (char *) src;
3314 destp = (char *) dest;
3315
3316 result = 1;
3317 while (i-- > 0)
3318 result &= (*srcp++ == *destp++) ? 1 : 0;
3319 return result;
3320 #endif
3321 return 1;
3322 }
3323
3324 /*
3325 threadid:1, # always request threadid
3326 context_exists:2,
3327 display:4,
3328 unique_name:8,
3329 more_display:16
3330 */
3331
3332 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3333
3334 static char *
3335 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3336 {
3337 *pkt++ = 'q'; /* Info Query */
3338 *pkt++ = 'P'; /* process or thread info */
3339 pkt = pack_int (pkt, mode); /* mode */
3340 pkt = pack_threadid (pkt, id); /* threadid */
3341 *pkt = '\0'; /* terminate */
3342 return pkt;
3343 }
3344
3345 /* These values tag the fields in a thread info response packet. */
3346 /* Tagging the fields allows us to request specific fields and to
3347 add more fields as time goes by. */
3348
3349 #define TAG_THREADID 1 /* Echo the thread identifier. */
3350 #define TAG_EXISTS 2 /* Is this process defined enough to
3351 fetch registers and its stack? */
3352 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3353 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3354 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3355 the process. */
3356
3357 int
3358 remote_target::remote_unpack_thread_info_response (const char *pkt,
3359 threadref *expectedref,
3360 gdb_ext_thread_info *info)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int mask, length;
3364 int tag;
3365 threadref ref;
3366 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3367 int retval = 1;
3368
3369 /* info->threadid = 0; FIXME: implement zero_threadref. */
3370 info->active = 0;
3371 info->display[0] = '\0';
3372 info->shortname[0] = '\0';
3373 info->more_display[0] = '\0';
3374
3375 /* Assume the characters indicating the packet type have been
3376 stripped. */
3377 pkt = unpack_int (pkt, &mask); /* arg mask */
3378 pkt = unpack_threadid (pkt, &ref);
3379
3380 if (mask == 0)
3381 warning (_("Incomplete response to threadinfo request."));
3382 if (!threadmatch (&ref, expectedref))
3383 { /* This is an answer to a different request. */
3384 warning (_("ERROR RMT Thread info mismatch."));
3385 return 0;
3386 }
3387 copy_threadref (&info->threadid, &ref);
3388
3389 /* Loop on tagged fields , try to bail if something goes wrong. */
3390
3391 /* Packets are terminated with nulls. */
3392 while ((pkt < limit) && mask && *pkt)
3393 {
3394 pkt = unpack_int (pkt, &tag); /* tag */
3395 pkt = unpack_byte (pkt, &length); /* length */
3396 if (!(tag & mask)) /* Tags out of synch with mask. */
3397 {
3398 warning (_("ERROR RMT: threadinfo tag mismatch."));
3399 retval = 0;
3400 break;
3401 }
3402 if (tag == TAG_THREADID)
3403 {
3404 if (length != 16)
3405 {
3406 warning (_("ERROR RMT: length of threadid is not 16."));
3407 retval = 0;
3408 break;
3409 }
3410 pkt = unpack_threadid (pkt, &ref);
3411 mask = mask & ~TAG_THREADID;
3412 continue;
3413 }
3414 if (tag == TAG_EXISTS)
3415 {
3416 info->active = stub_unpack_int (pkt, length);
3417 pkt += length;
3418 mask = mask & ~(TAG_EXISTS);
3419 if (length > 8)
3420 {
3421 warning (_("ERROR RMT: 'exists' length too long."));
3422 retval = 0;
3423 break;
3424 }
3425 continue;
3426 }
3427 if (tag == TAG_THREADNAME)
3428 {
3429 pkt = unpack_string (pkt, &info->shortname[0], length);
3430 mask = mask & ~TAG_THREADNAME;
3431 continue;
3432 }
3433 if (tag == TAG_DISPLAY)
3434 {
3435 pkt = unpack_string (pkt, &info->display[0], length);
3436 mask = mask & ~TAG_DISPLAY;
3437 continue;
3438 }
3439 if (tag == TAG_MOREDISPLAY)
3440 {
3441 pkt = unpack_string (pkt, &info->more_display[0], length);
3442 mask = mask & ~TAG_MOREDISPLAY;
3443 continue;
3444 }
3445 warning (_("ERROR RMT: unknown thread info tag."));
3446 break; /* Not a tag we know about. */
3447 }
3448 return retval;
3449 }
3450
3451 int
3452 remote_target::remote_get_threadinfo (threadref *threadid,
3453 int fieldset,
3454 gdb_ext_thread_info *info)
3455 {
3456 struct remote_state *rs = get_remote_state ();
3457 int result;
3458
3459 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, 0);
3462
3463 if (rs->buf[0] == '\0')
3464 return 0;
3465
3466 result = remote_unpack_thread_info_response (&rs->buf[2],
3467 threadid, info);
3468 return result;
3469 }
3470
3471 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3472
3473 static char *
3474 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3475 threadref *nextthread)
3476 {
3477 *pkt++ = 'q'; /* info query packet */
3478 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3479 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3480 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3481 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3482 *pkt = '\0';
3483 return pkt;
3484 }
3485
3486 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3487
3488 int
3489 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3490 threadref *original_echo,
3491 threadref *resultlist,
3492 int *doneflag)
3493 {
3494 struct remote_state *rs = get_remote_state ();
3495 int count, resultcount, done;
3496
3497 resultcount = 0;
3498 /* Assume the 'q' and 'M chars have been stripped. */
3499 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3500 /* done parse past here */
3501 pkt = unpack_byte (pkt, &count); /* count field */
3502 pkt = unpack_nibble (pkt, &done);
3503 /* The first threadid is the argument threadid. */
3504 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3505 while ((count-- > 0) && (pkt < limit))
3506 {
3507 pkt = unpack_threadid (pkt, resultlist++);
3508 if (resultcount++ >= result_limit)
3509 break;
3510 }
3511 if (doneflag)
3512 *doneflag = done;
3513 return resultcount;
3514 }
3515
3516 /* Fetch the next batch of threads from the remote. Returns -1 if the
3517 qL packet is not supported, 0 on error and 1 on success. */
3518
3519 int
3520 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3521 int result_limit, int *done, int *result_count,
3522 threadref *threadlist)
3523 {
3524 struct remote_state *rs = get_remote_state ();
3525 int result = 1;
3526
3527 /* Truncate result limit to be smaller than the packet size. */
3528 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3529 >= get_remote_packet_size ())
3530 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3531
3532 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3533 nextthread);
3534 putpkt (rs->buf);
3535 getpkt (&rs->buf, 0);
3536 if (rs->buf[0] == '\0')
3537 {
3538 /* Packet not supported. */
3539 return -1;
3540 }
3541
3542 *result_count =
3543 parse_threadlist_response (&rs->buf[2], result_limit,
3544 &rs->echo_nextthread, threadlist, done);
3545
3546 if (!threadmatch (&rs->echo_nextthread, nextthread))
3547 {
3548 /* FIXME: This is a good reason to drop the packet. */
3549 /* Possibly, there is a duplicate response. */
3550 /* Possibilities :
3551 retransmit immediatly - race conditions
3552 retransmit after timeout - yes
3553 exit
3554 wait for packet, then exit
3555 */
3556 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3557 return 0; /* I choose simply exiting. */
3558 }
3559 if (*result_count <= 0)
3560 {
3561 if (*done != 1)
3562 {
3563 warning (_("RMT ERROR : failed to get remote thread list."));
3564 result = 0;
3565 }
3566 return result; /* break; */
3567 }
3568 if (*result_count > result_limit)
3569 {
3570 *result_count = 0;
3571 warning (_("RMT ERROR: threadlist response longer than requested."));
3572 return 0;
3573 }
3574 return result;
3575 }
3576
3577 /* Fetch the list of remote threads, with the qL packet, and call
3578 STEPFUNCTION for each thread found. Stops iterating and returns 1
3579 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3580 STEPFUNCTION returns false. If the packet is not supported,
3581 returns -1. */
3582
3583 int
3584 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3585 void *context, int looplimit)
3586 {
3587 struct remote_state *rs = get_remote_state ();
3588 int done, i, result_count;
3589 int startflag = 1;
3590 int result = 1;
3591 int loopcount = 0;
3592
3593 done = 0;
3594 while (!done)
3595 {
3596 if (loopcount++ > looplimit)
3597 {
3598 result = 0;
3599 warning (_("Remote fetch threadlist -infinite loop-."));
3600 break;
3601 }
3602 result = remote_get_threadlist (startflag, &rs->nextthread,
3603 MAXTHREADLISTRESULTS,
3604 &done, &result_count,
3605 rs->resultthreadlist);
3606 if (result <= 0)
3607 break;
3608 /* Clear for later iterations. */
3609 startflag = 0;
3610 /* Setup to resume next batch of thread references, set nextthread. */
3611 if (result_count >= 1)
3612 copy_threadref (&rs->nextthread,
3613 &rs->resultthreadlist[result_count - 1]);
3614 i = 0;
3615 while (result_count--)
3616 {
3617 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3618 {
3619 result = 0;
3620 break;
3621 }
3622 }
3623 }
3624 return result;
3625 }
3626
3627 /* A thread found on the remote target. */
3628
3629 struct thread_item
3630 {
3631 explicit thread_item (ptid_t ptid_)
3632 : ptid (ptid_)
3633 {}
3634
3635 thread_item (thread_item &&other) = default;
3636 thread_item &operator= (thread_item &&other) = default;
3637
3638 DISABLE_COPY_AND_ASSIGN (thread_item);
3639
3640 /* The thread's PTID. */
3641 ptid_t ptid;
3642
3643 /* The thread's extra info. */
3644 std::string extra;
3645
3646 /* The thread's name. */
3647 std::string name;
3648
3649 /* The core the thread was running on. -1 if not known. */
3650 int core = -1;
3651
3652 /* The thread handle associated with the thread. */
3653 gdb::byte_vector thread_handle;
3654 };
3655
3656 /* Context passed around to the various methods listing remote
3657 threads. As new threads are found, they're added to the ITEMS
3658 vector. */
3659
3660 struct threads_listing_context
3661 {
3662 /* Return true if this object contains an entry for a thread with ptid
3663 PTID. */
3664
3665 bool contains_thread (ptid_t ptid) const
3666 {
3667 auto match_ptid = [&] (const thread_item &item)
3668 {
3669 return item.ptid == ptid;
3670 };
3671
3672 auto it = std::find_if (this->items.begin (),
3673 this->items.end (),
3674 match_ptid);
3675
3676 return it != this->items.end ();
3677 }
3678
3679 /* Remove the thread with ptid PTID. */
3680
3681 void remove_thread (ptid_t ptid)
3682 {
3683 auto match_ptid = [&] (const thread_item &item)
3684 {
3685 return item.ptid == ptid;
3686 };
3687
3688 auto it = std::remove_if (this->items.begin (),
3689 this->items.end (),
3690 match_ptid);
3691
3692 if (it != this->items.end ())
3693 this->items.erase (it);
3694 }
3695
3696 /* The threads found on the remote target. */
3697 std::vector<thread_item> items;
3698 };
3699
3700 static int
3701 remote_newthread_step (threadref *ref, void *data)
3702 {
3703 struct threads_listing_context *context
3704 = (struct threads_listing_context *) data;
3705 int pid = inferior_ptid.pid ();
3706 int lwp = threadref_to_int (ref);
3707 ptid_t ptid (pid, lwp);
3708
3709 context->items.emplace_back (ptid);
3710
3711 return 1; /* continue iterator */
3712 }
3713
3714 #define CRAZY_MAX_THREADS 1000
3715
3716 ptid_t
3717 remote_target::remote_current_thread (ptid_t oldpid)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720
3721 putpkt ("qC");
3722 getpkt (&rs->buf, 0);
3723 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3724 {
3725 const char *obuf;
3726 ptid_t result;
3727
3728 result = read_ptid (&rs->buf[2], &obuf);
3729 if (*obuf != '\0')
3730 remote_debug_printf ("warning: garbage in qC reply");
3731
3732 return result;
3733 }
3734 else
3735 return oldpid;
3736 }
3737
3738 /* List remote threads using the deprecated qL packet. */
3739
3740 int
3741 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3742 {
3743 if (remote_threadlist_iterator (remote_newthread_step, context,
3744 CRAZY_MAX_THREADS) >= 0)
3745 return 1;
3746
3747 return 0;
3748 }
3749
3750 #if defined(HAVE_LIBEXPAT)
3751
3752 static void
3753 start_thread (struct gdb_xml_parser *parser,
3754 const struct gdb_xml_element *element,
3755 void *user_data,
3756 std::vector<gdb_xml_value> &attributes)
3757 {
3758 struct threads_listing_context *data
3759 = (struct threads_listing_context *) user_data;
3760 struct gdb_xml_value *attr;
3761
3762 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3763 ptid_t ptid = read_ptid (id, NULL);
3764
3765 data->items.emplace_back (ptid);
3766 thread_item &item = data->items.back ();
3767
3768 attr = xml_find_attribute (attributes, "core");
3769 if (attr != NULL)
3770 item.core = *(ULONGEST *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "name");
3773 if (attr != NULL)
3774 item.name = (const char *) attr->value.get ();
3775
3776 attr = xml_find_attribute (attributes, "handle");
3777 if (attr != NULL)
3778 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3779 }
3780
3781 static void
3782 end_thread (struct gdb_xml_parser *parser,
3783 const struct gdb_xml_element *element,
3784 void *user_data, const char *body_text)
3785 {
3786 struct threads_listing_context *data
3787 = (struct threads_listing_context *) user_data;
3788
3789 if (body_text != NULL && *body_text != '\0')
3790 data->items.back ().extra = body_text;
3791 }
3792
3793 const struct gdb_xml_attribute thread_attributes[] = {
3794 { "id", GDB_XML_AF_NONE, NULL, NULL },
3795 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3796 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3798 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element thread_children[] = {
3802 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3803 };
3804
3805 const struct gdb_xml_element threads_children[] = {
3806 { "thread", thread_attributes, thread_children,
3807 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3808 start_thread, end_thread },
3809 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3810 };
3811
3812 const struct gdb_xml_element threads_elements[] = {
3813 { "threads", NULL, threads_children,
3814 GDB_XML_EF_NONE, NULL, NULL },
3815 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3816 };
3817
3818 #endif
3819
3820 /* List remote threads using qXfer:threads:read. */
3821
3822 int
3823 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3824 {
3825 #if defined(HAVE_LIBEXPAT)
3826 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3827 {
3828 gdb::optional<gdb::char_vector> xml
3829 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3830
3831 if (xml && (*xml)[0] != '\0')
3832 {
3833 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3834 threads_elements, xml->data (), context);
3835 }
3836
3837 return 1;
3838 }
3839 #endif
3840
3841 return 0;
3842 }
3843
3844 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3845
3846 int
3847 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3848 {
3849 struct remote_state *rs = get_remote_state ();
3850
3851 if (rs->use_threadinfo_query)
3852 {
3853 const char *bufp;
3854
3855 putpkt ("qfThreadInfo");
3856 getpkt (&rs->buf, 0);
3857 bufp = rs->buf.data ();
3858 if (bufp[0] != '\0') /* q packet recognized */
3859 {
3860 while (*bufp++ == 'm') /* reply contains one or more TID */
3861 {
3862 do
3863 {
3864 ptid_t ptid = read_ptid (bufp, &bufp);
3865 context->items.emplace_back (ptid);
3866 }
3867 while (*bufp++ == ','); /* comma-separated list */
3868 putpkt ("qsThreadInfo");
3869 getpkt (&rs->buf, 0);
3870 bufp = rs->buf.data ();
3871 }
3872 return 1;
3873 }
3874 else
3875 {
3876 /* Packet not recognized. */
3877 rs->use_threadinfo_query = 0;
3878 }
3879 }
3880
3881 return 0;
3882 }
3883
3884 /* Return true if INF only has one non-exited thread. */
3885
3886 static bool
3887 has_single_non_exited_thread (inferior *inf)
3888 {
3889 int count = 0;
3890 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3891 if (++count > 1)
3892 break;
3893 return count == 1;
3894 }
3895
3896 /* Implement the to_update_thread_list function for the remote
3897 targets. */
3898
3899 void
3900 remote_target::update_thread_list ()
3901 {
3902 struct threads_listing_context context;
3903 int got_list = 0;
3904
3905 /* We have a few different mechanisms to fetch the thread list. Try
3906 them all, starting with the most preferred one first, falling
3907 back to older methods. */
3908 if (remote_get_threads_with_qxfer (&context)
3909 || remote_get_threads_with_qthreadinfo (&context)
3910 || remote_get_threads_with_ql (&context))
3911 {
3912 got_list = 1;
3913
3914 if (context.items.empty ()
3915 && remote_thread_always_alive (inferior_ptid))
3916 {
3917 /* Some targets don't really support threads, but still
3918 reply an (empty) thread list in response to the thread
3919 listing packets, instead of replying "packet not
3920 supported". Exit early so we don't delete the main
3921 thread. */
3922 return;
3923 }
3924
3925 /* CONTEXT now holds the current thread list on the remote
3926 target end. Delete GDB-side threads no longer found on the
3927 target. */
3928 for (thread_info *tp : all_threads_safe ())
3929 {
3930 if (tp->inf->process_target () != this)
3931 continue;
3932
3933 if (!context.contains_thread (tp->ptid))
3934 {
3935 /* Do not remove the thread if it is the last thread in
3936 the inferior. This situation happens when we have a
3937 pending exit process status to process. Otherwise we
3938 may end up with a seemingly live inferior (i.e. pid
3939 != 0) that has no threads. */
3940 if (has_single_non_exited_thread (tp->inf))
3941 continue;
3942
3943 /* Not found. */
3944 delete_thread (tp);
3945 }
3946 }
3947
3948 /* Remove any unreported fork child threads from CONTEXT so
3949 that we don't interfere with follow fork, which is where
3950 creation of such threads is handled. */
3951 remove_new_fork_children (&context);
3952
3953 /* And now add threads we don't know about yet to our list. */
3954 for (thread_item &item : context.items)
3955 {
3956 if (item.ptid != null_ptid)
3957 {
3958 /* In non-stop mode, we assume new found threads are
3959 executing until proven otherwise with a stop reply.
3960 In all-stop, we can only get here if all threads are
3961 stopped. */
3962 bool executing = target_is_non_stop_p ();
3963
3964 remote_notice_new_inferior (item.ptid, executing);
3965
3966 thread_info *tp = find_thread_ptid (this, item.ptid);
3967 remote_thread_info *info = get_remote_thread_info (tp);
3968 info->core = item.core;
3969 info->extra = std::move (item.extra);
3970 info->name = std::move (item.name);
3971 info->thread_handle = std::move (item.thread_handle);
3972 }
3973 }
3974 }
3975
3976 if (!got_list)
3977 {
3978 /* If no thread listing method is supported, then query whether
3979 each known thread is alive, one by one, with the T packet.
3980 If the target doesn't support threads at all, then this is a
3981 no-op. See remote_thread_alive. */
3982 prune_threads ();
3983 }
3984 }
3985
3986 /*
3987 * Collect a descriptive string about the given thread.
3988 * The target may say anything it wants to about the thread
3989 * (typically info about its blocked / runnable state, name, etc.).
3990 * This string will appear in the info threads display.
3991 *
3992 * Optional: targets are not required to implement this function.
3993 */
3994
3995 const char *
3996 remote_target::extra_thread_info (thread_info *tp)
3997 {
3998 struct remote_state *rs = get_remote_state ();
3999 int set;
4000 threadref id;
4001 struct gdb_ext_thread_info threadinfo;
4002
4003 if (rs->remote_desc == 0) /* paranoia */
4004 internal_error (__FILE__, __LINE__,
4005 _("remote_threads_extra_info"));
4006
4007 if (tp->ptid == magic_null_ptid
4008 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4009 /* This is the main thread which was added by GDB. The remote
4010 server doesn't know about it. */
4011 return NULL;
4012
4013 std::string &extra = get_remote_thread_info (tp)->extra;
4014
4015 /* If already have cached info, use it. */
4016 if (!extra.empty ())
4017 return extra.c_str ();
4018
4019 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4020 {
4021 /* If we're using qXfer:threads:read, then the extra info is
4022 included in the XML. So if we didn't have anything cached,
4023 it's because there's really no extra info. */
4024 return NULL;
4025 }
4026
4027 if (rs->use_threadextra_query)
4028 {
4029 char *b = rs->buf.data ();
4030 char *endb = b + get_remote_packet_size ();
4031
4032 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4033 b += strlen (b);
4034 write_ptid (b, endb, tp->ptid);
4035
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, 0);
4038 if (rs->buf[0] != 0)
4039 {
4040 extra.resize (strlen (rs->buf.data ()) / 2);
4041 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4042 return extra.c_str ();
4043 }
4044 }
4045
4046 /* If the above query fails, fall back to the old method. */
4047 rs->use_threadextra_query = 0;
4048 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4049 | TAG_MOREDISPLAY | TAG_DISPLAY;
4050 int_to_threadref (&id, tp->ptid.lwp ());
4051 if (remote_get_threadinfo (&id, set, &threadinfo))
4052 if (threadinfo.active)
4053 {
4054 if (*threadinfo.shortname)
4055 string_appendf (extra, " Name: %s", threadinfo.shortname);
4056 if (*threadinfo.display)
4057 {
4058 if (!extra.empty ())
4059 extra += ',';
4060 string_appendf (extra, " State: %s", threadinfo.display);
4061 }
4062 if (*threadinfo.more_display)
4063 {
4064 if (!extra.empty ())
4065 extra += ',';
4066 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4067 }
4068 return extra.c_str ();
4069 }
4070 return NULL;
4071 }
4072 \f
4073
4074 bool
4075 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4076 struct static_tracepoint_marker *marker)
4077 {
4078 struct remote_state *rs = get_remote_state ();
4079 char *p = rs->buf.data ();
4080
4081 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4082 p += strlen (p);
4083 p += hexnumstr (p, addr);
4084 putpkt (rs->buf);
4085 getpkt (&rs->buf, 0);
4086 p = rs->buf.data ();
4087
4088 if (*p == 'E')
4089 error (_("Remote failure reply: %s"), p);
4090
4091 if (*p++ == 'm')
4092 {
4093 parse_static_tracepoint_marker_definition (p, NULL, marker);
4094 return true;
4095 }
4096
4097 return false;
4098 }
4099
4100 std::vector<static_tracepoint_marker>
4101 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 std::vector<static_tracepoint_marker> markers;
4105 const char *p;
4106 static_tracepoint_marker marker;
4107
4108 /* Ask for a first packet of static tracepoint marker
4109 definition. */
4110 putpkt ("qTfSTM");
4111 getpkt (&rs->buf, 0);
4112 p = rs->buf.data ();
4113 if (*p == 'E')
4114 error (_("Remote failure reply: %s"), p);
4115
4116 while (*p++ == 'm')
4117 {
4118 do
4119 {
4120 parse_static_tracepoint_marker_definition (p, &p, &marker);
4121
4122 if (strid == NULL || marker.str_id == strid)
4123 markers.push_back (std::move (marker));
4124 }
4125 while (*p++ == ','); /* comma-separated list */
4126 /* Ask for another packet of static tracepoint definition. */
4127 putpkt ("qTsSTM");
4128 getpkt (&rs->buf, 0);
4129 p = rs->buf.data ();
4130 }
4131
4132 return markers;
4133 }
4134
4135 \f
4136 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4137
4138 ptid_t
4139 remote_target::get_ada_task_ptid (long lwp, ULONGEST thread)
4140 {
4141 return ptid_t (inferior_ptid.pid (), lwp);
4142 }
4143 \f
4144
4145 /* Restart the remote side; this is an extended protocol operation. */
4146
4147 void
4148 remote_target::extended_remote_restart ()
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151
4152 /* Send the restart command; for reasons I don't understand the
4153 remote side really expects a number after the "R". */
4154 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4155 putpkt (rs->buf);
4156
4157 remote_fileio_reset ();
4158 }
4159 \f
4160 /* Clean up connection to a remote debugger. */
4161
4162 void
4163 remote_target::close ()
4164 {
4165 /* Make sure we leave stdin registered in the event loop. */
4166 terminal_ours ();
4167
4168 trace_reset_local_state ();
4169
4170 delete this;
4171 }
4172
4173 remote_target::~remote_target ()
4174 {
4175 struct remote_state *rs = get_remote_state ();
4176
4177 /* Check for NULL because we may get here with a partially
4178 constructed target/connection. */
4179 if (rs->remote_desc == nullptr)
4180 return;
4181
4182 serial_close (rs->remote_desc);
4183
4184 /* We are destroying the remote target, so we should discard
4185 everything of this target. */
4186 discard_pending_stop_replies_in_queue ();
4187
4188 if (rs->remote_async_inferior_event_token)
4189 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4190
4191 delete rs->notif_state;
4192 }
4193
4194 /* Query the remote side for the text, data and bss offsets. */
4195
4196 void
4197 remote_target::get_offsets ()
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *buf;
4201 char *ptr;
4202 int lose, num_segments = 0, do_sections, do_segments;
4203 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4204
4205 if (current_program_space->symfile_object_file == NULL)
4206 return;
4207
4208 putpkt ("qOffsets");
4209 getpkt (&rs->buf, 0);
4210 buf = rs->buf.data ();
4211
4212 if (buf[0] == '\000')
4213 return; /* Return silently. Stub doesn't support
4214 this command. */
4215 if (buf[0] == 'E')
4216 {
4217 warning (_("Remote failure reply: %s"), buf);
4218 return;
4219 }
4220
4221 /* Pick up each field in turn. This used to be done with scanf, but
4222 scanf will make trouble if CORE_ADDR size doesn't match
4223 conversion directives correctly. The following code will work
4224 with any size of CORE_ADDR. */
4225 text_addr = data_addr = bss_addr = 0;
4226 ptr = buf;
4227 lose = 0;
4228
4229 if (startswith (ptr, "Text="))
4230 {
4231 ptr += 5;
4232 /* Don't use strtol, could lose on big values. */
4233 while (*ptr && *ptr != ';')
4234 text_addr = (text_addr << 4) + fromhex (*ptr++);
4235
4236 if (startswith (ptr, ";Data="))
4237 {
4238 ptr += 6;
4239 while (*ptr && *ptr != ';')
4240 data_addr = (data_addr << 4) + fromhex (*ptr++);
4241 }
4242 else
4243 lose = 1;
4244
4245 if (!lose && startswith (ptr, ";Bss="))
4246 {
4247 ptr += 5;
4248 while (*ptr && *ptr != ';')
4249 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4250
4251 if (bss_addr != data_addr)
4252 warning (_("Target reported unsupported offsets: %s"), buf);
4253 }
4254 else
4255 lose = 1;
4256 }
4257 else if (startswith (ptr, "TextSeg="))
4258 {
4259 ptr += 8;
4260 /* Don't use strtol, could lose on big values. */
4261 while (*ptr && *ptr != ';')
4262 text_addr = (text_addr << 4) + fromhex (*ptr++);
4263 num_segments = 1;
4264
4265 if (startswith (ptr, ";DataSeg="))
4266 {
4267 ptr += 9;
4268 while (*ptr && *ptr != ';')
4269 data_addr = (data_addr << 4) + fromhex (*ptr++);
4270 num_segments++;
4271 }
4272 }
4273 else
4274 lose = 1;
4275
4276 if (lose)
4277 error (_("Malformed response to offset query, %s"), buf);
4278 else if (*ptr != '\0')
4279 warning (_("Target reported unsupported offsets: %s"), buf);
4280
4281 objfile *objf = current_program_space->symfile_object_file;
4282 section_offsets offs = objf->section_offsets;
4283
4284 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4285 do_segments = (data != NULL);
4286 do_sections = num_segments == 0;
4287
4288 if (num_segments > 0)
4289 {
4290 segments[0] = text_addr;
4291 segments[1] = data_addr;
4292 }
4293 /* If we have two segments, we can still try to relocate everything
4294 by assuming that the .text and .data offsets apply to the whole
4295 text and data segments. Convert the offsets given in the packet
4296 to base addresses for symfile_map_offsets_to_segments. */
4297 else if (data != nullptr && data->segments.size () == 2)
4298 {
4299 segments[0] = data->segments[0].base + text_addr;
4300 segments[1] = data->segments[1].base + data_addr;
4301 num_segments = 2;
4302 }
4303 /* If the object file has only one segment, assume that it is text
4304 rather than data; main programs with no writable data are rare,
4305 but programs with no code are useless. Of course the code might
4306 have ended up in the data segment... to detect that we would need
4307 the permissions here. */
4308 else if (data && data->segments.size () == 1)
4309 {
4310 segments[0] = data->segments[0].base + text_addr;
4311 num_segments = 1;
4312 }
4313 /* There's no way to relocate by segment. */
4314 else
4315 do_segments = 0;
4316
4317 if (do_segments)
4318 {
4319 int ret = symfile_map_offsets_to_segments (objf->obfd,
4320 data.get (), offs,
4321 num_segments, segments);
4322
4323 if (ret == 0 && !do_sections)
4324 error (_("Can not handle qOffsets TextSeg "
4325 "response with this symbol file"));
4326
4327 if (ret > 0)
4328 do_sections = 0;
4329 }
4330
4331 if (do_sections)
4332 {
4333 offs[SECT_OFF_TEXT (objf)] = text_addr;
4334
4335 /* This is a temporary kludge to force data and bss to use the
4336 same offsets because that's what nlmconv does now. The real
4337 solution requires changes to the stub and remote.c that I
4338 don't have time to do right now. */
4339
4340 offs[SECT_OFF_DATA (objf)] = data_addr;
4341 offs[SECT_OFF_BSS (objf)] = data_addr;
4342 }
4343
4344 objfile_relocate (objf, offs);
4345 }
4346
4347 /* Send interrupt_sequence to remote target. */
4348
4349 void
4350 remote_target::send_interrupt_sequence ()
4351 {
4352 struct remote_state *rs = get_remote_state ();
4353
4354 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4355 remote_serial_write ("\x03", 1);
4356 else if (interrupt_sequence_mode == interrupt_sequence_break)
4357 serial_send_break (rs->remote_desc);
4358 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4359 {
4360 serial_send_break (rs->remote_desc);
4361 remote_serial_write ("g", 1);
4362 }
4363 else
4364 internal_error (__FILE__, __LINE__,
4365 _("Invalid value for interrupt_sequence_mode: %s."),
4366 interrupt_sequence_mode);
4367 }
4368
4369
4370 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4371 and extract the PTID. Returns NULL_PTID if not found. */
4372
4373 static ptid_t
4374 stop_reply_extract_thread (const char *stop_reply)
4375 {
4376 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4377 {
4378 const char *p;
4379
4380 /* Txx r:val ; r:val (...) */
4381 p = &stop_reply[3];
4382
4383 /* Look for "register" named "thread". */
4384 while (*p != '\0')
4385 {
4386 const char *p1;
4387
4388 p1 = strchr (p, ':');
4389 if (p1 == NULL)
4390 return null_ptid;
4391
4392 if (strncmp (p, "thread", p1 - p) == 0)
4393 return read_ptid (++p1, &p);
4394
4395 p1 = strchr (p, ';');
4396 if (p1 == NULL)
4397 return null_ptid;
4398 p1++;
4399
4400 p = p1;
4401 }
4402 }
4403
4404 return null_ptid;
4405 }
4406
4407 /* Determine the remote side's current thread. If we have a stop
4408 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4409 "thread" register we can extract the current thread from. If not,
4410 ask the remote which is the current thread with qC. The former
4411 method avoids a roundtrip. */
4412
4413 ptid_t
4414 remote_target::get_current_thread (const char *wait_status)
4415 {
4416 ptid_t ptid = null_ptid;
4417
4418 /* Note we don't use remote_parse_stop_reply as that makes use of
4419 the target architecture, which we haven't yet fully determined at
4420 this point. */
4421 if (wait_status != NULL)
4422 ptid = stop_reply_extract_thread (wait_status);
4423 if (ptid == null_ptid)
4424 ptid = remote_current_thread (inferior_ptid);
4425
4426 return ptid;
4427 }
4428
4429 /* Query the remote target for which is the current thread/process,
4430 add it to our tables, and update INFERIOR_PTID. The caller is
4431 responsible for setting the state such that the remote end is ready
4432 to return the current thread.
4433
4434 This function is called after handling the '?' or 'vRun' packets,
4435 whose response is a stop reply from which we can also try
4436 extracting the thread. If the target doesn't support the explicit
4437 qC query, we infer the current thread from that stop reply, passed
4438 in in WAIT_STATUS, which may be NULL.
4439
4440 The function returns pointer to the main thread of the inferior. */
4441
4442 thread_info *
4443 remote_target::add_current_inferior_and_thread (const char *wait_status)
4444 {
4445 struct remote_state *rs = get_remote_state ();
4446 bool fake_pid_p = false;
4447
4448 switch_to_no_thread ();
4449
4450 /* Now, if we have thread information, update the current thread's
4451 ptid. */
4452 ptid_t curr_ptid = get_current_thread (wait_status);
4453
4454 if (curr_ptid != null_ptid)
4455 {
4456 if (!remote_multi_process_p (rs))
4457 fake_pid_p = true;
4458 }
4459 else
4460 {
4461 /* Without this, some commands which require an active target
4462 (such as kill) won't work. This variable serves (at least)
4463 double duty as both the pid of the target process (if it has
4464 such), and as a flag indicating that a target is active. */
4465 curr_ptid = magic_null_ptid;
4466 fake_pid_p = true;
4467 }
4468
4469 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4470
4471 /* Add the main thread and switch to it. Don't try reading
4472 registers yet, since we haven't fetched the target description
4473 yet. */
4474 thread_info *tp = add_thread_silent (this, curr_ptid);
4475 switch_to_thread_no_regs (tp);
4476
4477 return tp;
4478 }
4479
4480 /* Print info about a thread that was found already stopped on
4481 connection. */
4482
4483 void
4484 remote_target::print_one_stopped_thread (thread_info *thread)
4485 {
4486 target_waitstatus ws;
4487
4488 /* If there is a pending waitstatus, use it. If there isn't it's because
4489 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4490 and process_initial_stop_replies decided it wasn't interesting to save
4491 and report to the core. */
4492 if (thread->has_pending_waitstatus ())
4493 {
4494 ws = thread->pending_waitstatus ();
4495 thread->clear_pending_waitstatus ();
4496 }
4497 else
4498 {
4499 ws.set_stopped (GDB_SIGNAL_0);
4500 }
4501
4502 switch_to_thread (thread);
4503 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4504 set_current_sal_from_frame (get_current_frame ());
4505
4506 /* For "info program". */
4507 set_last_target_status (this, thread->ptid, ws);
4508
4509 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4510 {
4511 enum gdb_signal sig = ws.sig ();
4512
4513 if (signal_print_state (sig))
4514 gdb::observers::signal_received.notify (sig);
4515 }
4516 gdb::observers::normal_stop.notify (NULL, 1);
4517 }
4518
4519 /* Process all initial stop replies the remote side sent in response
4520 to the ? packet. These indicate threads that were already stopped
4521 on initial connection. We mark these threads as stopped and print
4522 their current frame before giving the user the prompt. */
4523
4524 void
4525 remote_target::process_initial_stop_replies (int from_tty)
4526 {
4527 int pending_stop_replies = stop_reply_queue_length ();
4528 struct thread_info *selected = NULL;
4529 struct thread_info *lowest_stopped = NULL;
4530 struct thread_info *first = NULL;
4531
4532 /* This is only used when the target is non-stop. */
4533 gdb_assert (target_is_non_stop_p ());
4534
4535 /* Consume the initial pending events. */
4536 while (pending_stop_replies-- > 0)
4537 {
4538 ptid_t waiton_ptid = minus_one_ptid;
4539 ptid_t event_ptid;
4540 struct target_waitstatus ws;
4541 int ignore_event = 0;
4542
4543 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4544 if (remote_debug)
4545 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4546
4547 switch (ws.kind ())
4548 {
4549 case TARGET_WAITKIND_IGNORE:
4550 case TARGET_WAITKIND_NO_RESUMED:
4551 case TARGET_WAITKIND_SIGNALLED:
4552 case TARGET_WAITKIND_EXITED:
4553 /* We shouldn't see these, but if we do, just ignore. */
4554 remote_debug_printf ("event ignored");
4555 ignore_event = 1;
4556 break;
4557
4558 default:
4559 break;
4560 }
4561
4562 if (ignore_event)
4563 continue;
4564
4565 thread_info *evthread = find_thread_ptid (this, event_ptid);
4566
4567 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4568 {
4569 enum gdb_signal sig = ws.sig ();
4570
4571 /* Stubs traditionally report SIGTRAP as initial signal,
4572 instead of signal 0. Suppress it. */
4573 if (sig == GDB_SIGNAL_TRAP)
4574 sig = GDB_SIGNAL_0;
4575 evthread->set_stop_signal (sig);
4576 ws.set_stopped (sig);
4577 }
4578
4579 if (ws.kind () != TARGET_WAITKIND_STOPPED
4580 || ws.sig () != GDB_SIGNAL_0)
4581 evthread->set_pending_waitstatus (ws);
4582
4583 set_executing (this, event_ptid, false);
4584 set_running (this, event_ptid, false);
4585 get_remote_thread_info (evthread)->set_not_resumed ();
4586 }
4587
4588 /* "Notice" the new inferiors before anything related to
4589 registers/memory. */
4590 for (inferior *inf : all_non_exited_inferiors (this))
4591 {
4592 inf->needs_setup = 1;
4593
4594 if (non_stop)
4595 {
4596 thread_info *thread = any_live_thread_of_inferior (inf);
4597 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4598 from_tty);
4599 }
4600 }
4601
4602 /* If all-stop on top of non-stop, pause all threads. Note this
4603 records the threads' stop pc, so must be done after "noticing"
4604 the inferiors. */
4605 if (!non_stop)
4606 {
4607 {
4608 /* At this point, the remote target is not async. It needs to be for
4609 the poll in stop_all_threads to consider events from it, so enable
4610 it temporarily. */
4611 gdb_assert (!this->is_async_p ());
4612 SCOPE_EXIT { target_async (0); };
4613 target_async (1);
4614 stop_all_threads ();
4615 }
4616
4617 /* If all threads of an inferior were already stopped, we
4618 haven't setup the inferior yet. */
4619 for (inferior *inf : all_non_exited_inferiors (this))
4620 {
4621 if (inf->needs_setup)
4622 {
4623 thread_info *thread = any_live_thread_of_inferior (inf);
4624 switch_to_thread_no_regs (thread);
4625 setup_inferior (0);
4626 }
4627 }
4628 }
4629
4630 /* Now go over all threads that are stopped, and print their current
4631 frame. If all-stop, then if there's a signalled thread, pick
4632 that as current. */
4633 for (thread_info *thread : all_non_exited_threads (this))
4634 {
4635 if (first == NULL)
4636 first = thread;
4637
4638 if (!non_stop)
4639 thread->set_running (false);
4640 else if (thread->state != THREAD_STOPPED)
4641 continue;
4642
4643 if (selected == nullptr && thread->has_pending_waitstatus ())
4644 selected = thread;
4645
4646 if (lowest_stopped == NULL
4647 || thread->inf->num < lowest_stopped->inf->num
4648 || thread->per_inf_num < lowest_stopped->per_inf_num)
4649 lowest_stopped = thread;
4650
4651 if (non_stop)
4652 print_one_stopped_thread (thread);
4653 }
4654
4655 /* In all-stop, we only print the status of one thread, and leave
4656 others with their status pending. */
4657 if (!non_stop)
4658 {
4659 thread_info *thread = selected;
4660 if (thread == NULL)
4661 thread = lowest_stopped;
4662 if (thread == NULL)
4663 thread = first;
4664
4665 print_one_stopped_thread (thread);
4666 }
4667 }
4668
4669 /* Start the remote connection and sync state. */
4670
4671 void
4672 remote_target::start_remote (int from_tty, int extended_p)
4673 {
4674 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4675
4676 struct remote_state *rs = get_remote_state ();
4677 struct packet_config *noack_config;
4678
4679 /* Signal other parts that we're going through the initial setup,
4680 and so things may not be stable yet. E.g., we don't try to
4681 install tracepoints until we've relocated symbols. Also, a
4682 Ctrl-C before we're connected and synced up can't interrupt the
4683 target. Instead, it offers to drop the (potentially wedged)
4684 connection. */
4685 rs->starting_up = true;
4686
4687 QUIT;
4688
4689 if (interrupt_on_connect)
4690 send_interrupt_sequence ();
4691
4692 /* Ack any packet which the remote side has already sent. */
4693 remote_serial_write ("+", 1);
4694
4695 /* The first packet we send to the target is the optional "supported
4696 packets" request. If the target can answer this, it will tell us
4697 which later probes to skip. */
4698 remote_query_supported ();
4699
4700 /* If the stub wants to get a QAllow, compose one and send it. */
4701 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4702 set_permissions ();
4703
4704 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4705 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4706 as a reply to known packet. For packet "vFile:setfs:" it is an
4707 invalid reply and GDB would return error in
4708 remote_hostio_set_filesystem, making remote files access impossible.
4709 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4710 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4711 {
4712 const char v_mustreplyempty[] = "vMustReplyEmpty";
4713
4714 putpkt (v_mustreplyempty);
4715 getpkt (&rs->buf, 0);
4716 if (strcmp (rs->buf.data (), "OK") == 0)
4717 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4718 else if (strcmp (rs->buf.data (), "") != 0)
4719 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4720 rs->buf.data ());
4721 }
4722
4723 /* Next, we possibly activate noack mode.
4724
4725 If the QStartNoAckMode packet configuration is set to AUTO,
4726 enable noack mode if the stub reported a wish for it with
4727 qSupported.
4728
4729 If set to TRUE, then enable noack mode even if the stub didn't
4730 report it in qSupported. If the stub doesn't reply OK, the
4731 session ends with an error.
4732
4733 If FALSE, then don't activate noack mode, regardless of what the
4734 stub claimed should be the default with qSupported. */
4735
4736 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4737 if (packet_config_support (noack_config) != PACKET_DISABLE)
4738 {
4739 putpkt ("QStartNoAckMode");
4740 getpkt (&rs->buf, 0);
4741 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4742 rs->noack_mode = 1;
4743 }
4744
4745 if (extended_p)
4746 {
4747 /* Tell the remote that we are using the extended protocol. */
4748 putpkt ("!");
4749 getpkt (&rs->buf, 0);
4750 }
4751
4752 /* Let the target know which signals it is allowed to pass down to
4753 the program. */
4754 update_signals_program_target ();
4755
4756 /* Next, if the target can specify a description, read it. We do
4757 this before anything involving memory or registers. */
4758 target_find_description ();
4759
4760 /* Next, now that we know something about the target, update the
4761 address spaces in the program spaces. */
4762 update_address_spaces ();
4763
4764 /* On OSs where the list of libraries is global to all
4765 processes, we fetch them early. */
4766 if (gdbarch_has_global_solist (target_gdbarch ()))
4767 solib_add (NULL, from_tty, auto_solib_add);
4768
4769 if (target_is_non_stop_p ())
4770 {
4771 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4772 error (_("Non-stop mode requested, but remote "
4773 "does not support non-stop"));
4774
4775 putpkt ("QNonStop:1");
4776 getpkt (&rs->buf, 0);
4777
4778 if (strcmp (rs->buf.data (), "OK") != 0)
4779 error (_("Remote refused setting non-stop mode with: %s"),
4780 rs->buf.data ());
4781
4782 /* Find about threads and processes the stub is already
4783 controlling. We default to adding them in the running state.
4784 The '?' query below will then tell us about which threads are
4785 stopped. */
4786 this->update_thread_list ();
4787 }
4788 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4789 {
4790 /* Don't assume that the stub can operate in all-stop mode.
4791 Request it explicitly. */
4792 putpkt ("QNonStop:0");
4793 getpkt (&rs->buf, 0);
4794
4795 if (strcmp (rs->buf.data (), "OK") != 0)
4796 error (_("Remote refused setting all-stop mode with: %s"),
4797 rs->buf.data ());
4798 }
4799
4800 /* Upload TSVs regardless of whether the target is running or not. The
4801 remote stub, such as GDBserver, may have some predefined or builtin
4802 TSVs, even if the target is not running. */
4803 if (get_trace_status (current_trace_status ()) != -1)
4804 {
4805 struct uploaded_tsv *uploaded_tsvs = NULL;
4806
4807 upload_trace_state_variables (&uploaded_tsvs);
4808 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4809 }
4810
4811 /* Check whether the target is running now. */
4812 putpkt ("?");
4813 getpkt (&rs->buf, 0);
4814
4815 if (!target_is_non_stop_p ())
4816 {
4817 char *wait_status = NULL;
4818
4819 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4820 {
4821 if (!extended_p)
4822 error (_("The target is not running (try extended-remote?)"));
4823
4824 /* We're connected, but not running. Drop out before we
4825 call start_remote. */
4826 rs->starting_up = false;
4827 return;
4828 }
4829 else
4830 {
4831 /* Save the reply for later. */
4832 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4833 strcpy (wait_status, rs->buf.data ());
4834 }
4835
4836 /* Fetch thread list. */
4837 target_update_thread_list ();
4838
4839 /* Let the stub know that we want it to return the thread. */
4840 set_continue_thread (minus_one_ptid);
4841
4842 if (thread_count (this) == 0)
4843 {
4844 /* Target has no concept of threads at all. GDB treats
4845 non-threaded target as single-threaded; add a main
4846 thread. */
4847 thread_info *tp = add_current_inferior_and_thread (wait_status);
4848 get_remote_thread_info (tp)->set_resumed ();
4849 }
4850 else
4851 {
4852 /* We have thread information; select the thread the target
4853 says should be current. If we're reconnecting to a
4854 multi-threaded program, this will ideally be the thread
4855 that last reported an event before GDB disconnected. */
4856 ptid_t curr_thread = get_current_thread (wait_status);
4857 if (curr_thread == null_ptid)
4858 {
4859 /* Odd... The target was able to list threads, but not
4860 tell us which thread was current (no "thread"
4861 register in T stop reply?). Just pick the first
4862 thread in the thread list then. */
4863
4864 remote_debug_printf ("warning: couldn't determine remote "
4865 "current thread; picking first in list.");
4866
4867 for (thread_info *tp : all_non_exited_threads (this,
4868 minus_one_ptid))
4869 {
4870 switch_to_thread (tp);
4871 break;
4872 }
4873 }
4874 else
4875 switch_to_thread (find_thread_ptid (this, curr_thread));
4876 }
4877
4878 /* init_wait_for_inferior should be called before get_offsets in order
4879 to manage `inserted' flag in bp loc in a correct state.
4880 breakpoint_init_inferior, called from init_wait_for_inferior, set
4881 `inserted' flag to 0, while before breakpoint_re_set, called from
4882 start_remote, set `inserted' flag to 1. In the initialization of
4883 inferior, breakpoint_init_inferior should be called first, and then
4884 breakpoint_re_set can be called. If this order is broken, state of
4885 `inserted' flag is wrong, and cause some problems on breakpoint
4886 manipulation. */
4887 init_wait_for_inferior ();
4888
4889 get_offsets (); /* Get text, data & bss offsets. */
4890
4891 /* If we could not find a description using qXfer, and we know
4892 how to do it some other way, try again. This is not
4893 supported for non-stop; it could be, but it is tricky if
4894 there are no stopped threads when we connect. */
4895 if (remote_read_description_p (this)
4896 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4897 {
4898 target_clear_description ();
4899 target_find_description ();
4900 }
4901
4902 /* Use the previously fetched status. */
4903 gdb_assert (wait_status != NULL);
4904 strcpy (rs->buf.data (), wait_status);
4905 rs->cached_wait_status = 1;
4906
4907 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4908 }
4909 else
4910 {
4911 /* Clear WFI global state. Do this before finding about new
4912 threads and inferiors, and setting the current inferior.
4913 Otherwise we would clear the proceed status of the current
4914 inferior when we want its stop_soon state to be preserved
4915 (see notice_new_inferior). */
4916 init_wait_for_inferior ();
4917
4918 /* In non-stop, we will either get an "OK", meaning that there
4919 are no stopped threads at this time; or, a regular stop
4920 reply. In the latter case, there may be more than one thread
4921 stopped --- we pull them all out using the vStopped
4922 mechanism. */
4923 if (strcmp (rs->buf.data (), "OK") != 0)
4924 {
4925 struct notif_client *notif = &notif_client_stop;
4926
4927 /* remote_notif_get_pending_replies acks this one, and gets
4928 the rest out. */
4929 rs->notif_state->pending_event[notif_client_stop.id]
4930 = remote_notif_parse (this, notif, rs->buf.data ());
4931 remote_notif_get_pending_events (notif);
4932 }
4933
4934 if (thread_count (this) == 0)
4935 {
4936 if (!extended_p)
4937 error (_("The target is not running (try extended-remote?)"));
4938
4939 /* We're connected, but not running. Drop out before we
4940 call start_remote. */
4941 rs->starting_up = false;
4942 return;
4943 }
4944
4945 /* Report all signals during attach/startup. */
4946 pass_signals ({});
4947
4948 /* If there are already stopped threads, mark them stopped and
4949 report their stops before giving the prompt to the user. */
4950 process_initial_stop_replies (from_tty);
4951
4952 if (target_can_async_p ())
4953 target_async (1);
4954 }
4955
4956 /* If we connected to a live target, do some additional setup. */
4957 if (target_has_execution ())
4958 {
4959 /* No use without a symbol-file. */
4960 if (current_program_space->symfile_object_file)
4961 remote_check_symbols ();
4962 }
4963
4964 /* Possibly the target has been engaged in a trace run started
4965 previously; find out where things are at. */
4966 if (get_trace_status (current_trace_status ()) != -1)
4967 {
4968 struct uploaded_tp *uploaded_tps = NULL;
4969
4970 if (current_trace_status ()->running)
4971 printf_filtered (_("Trace is already running on the target.\n"));
4972
4973 upload_tracepoints (&uploaded_tps);
4974
4975 merge_uploaded_tracepoints (&uploaded_tps);
4976 }
4977
4978 /* Possibly the target has been engaged in a btrace record started
4979 previously; find out where things are at. */
4980 remote_btrace_maybe_reopen ();
4981
4982 /* The thread and inferior lists are now synchronized with the
4983 target, our symbols have been relocated, and we're merged the
4984 target's tracepoints with ours. We're done with basic start
4985 up. */
4986 rs->starting_up = false;
4987
4988 /* Maybe breakpoints are global and need to be inserted now. */
4989 if (breakpoints_should_be_inserted_now ())
4990 insert_breakpoints ();
4991 }
4992
4993 const char *
4994 remote_target::connection_string ()
4995 {
4996 remote_state *rs = get_remote_state ();
4997
4998 if (rs->remote_desc->name != NULL)
4999 return rs->remote_desc->name;
5000 else
5001 return NULL;
5002 }
5003
5004 /* Open a connection to a remote debugger.
5005 NAME is the filename used for communication. */
5006
5007 void
5008 remote_target::open (const char *name, int from_tty)
5009 {
5010 open_1 (name, from_tty, 0);
5011 }
5012
5013 /* Open a connection to a remote debugger using the extended
5014 remote gdb protocol. NAME is the filename used for communication. */
5015
5016 void
5017 extended_remote_target::open (const char *name, int from_tty)
5018 {
5019 open_1 (name, from_tty, 1 /*extended_p */);
5020 }
5021
5022 /* Reset all packets back to "unknown support". Called when opening a
5023 new connection to a remote target. */
5024
5025 static void
5026 reset_all_packet_configs_support (void)
5027 {
5028 int i;
5029
5030 for (i = 0; i < PACKET_MAX; i++)
5031 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5032 }
5033
5034 /* Initialize all packet configs. */
5035
5036 static void
5037 init_all_packet_configs (void)
5038 {
5039 int i;
5040
5041 for (i = 0; i < PACKET_MAX; i++)
5042 {
5043 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5044 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5045 }
5046 }
5047
5048 /* Symbol look-up. */
5049
5050 void
5051 remote_target::remote_check_symbols ()
5052 {
5053 char *tmp;
5054 int end;
5055
5056 /* The remote side has no concept of inferiors that aren't running
5057 yet, it only knows about running processes. If we're connected
5058 but our current inferior is not running, we should not invite the
5059 remote target to request symbol lookups related to its
5060 (unrelated) current process. */
5061 if (!target_has_execution ())
5062 return;
5063
5064 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5065 return;
5066
5067 /* Make sure the remote is pointing at the right process. Note
5068 there's no way to select "no process". */
5069 set_general_process ();
5070
5071 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5072 because we need both at the same time. */
5073 gdb::char_vector msg (get_remote_packet_size ());
5074 gdb::char_vector reply (get_remote_packet_size ());
5075
5076 /* Invite target to request symbol lookups. */
5077
5078 putpkt ("qSymbol::");
5079 getpkt (&reply, 0);
5080 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5081
5082 while (startswith (reply.data (), "qSymbol:"))
5083 {
5084 struct bound_minimal_symbol sym;
5085
5086 tmp = &reply[8];
5087 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5088 strlen (tmp) / 2);
5089 msg[end] = '\0';
5090 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5091 if (sym.minsym == NULL)
5092 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5093 &reply[8]);
5094 else
5095 {
5096 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5097 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5098
5099 /* If this is a function address, return the start of code
5100 instead of any data function descriptor. */
5101 sym_addr = gdbarch_convert_from_func_ptr_addr
5102 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5103
5104 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5105 phex_nz (sym_addr, addr_size), &reply[8]);
5106 }
5107
5108 putpkt (msg.data ());
5109 getpkt (&reply, 0);
5110 }
5111 }
5112
5113 static struct serial *
5114 remote_serial_open (const char *name)
5115 {
5116 static int udp_warning = 0;
5117
5118 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5119 of in ser-tcp.c, because it is the remote protocol assuming that the
5120 serial connection is reliable and not the serial connection promising
5121 to be. */
5122 if (!udp_warning && startswith (name, "udp:"))
5123 {
5124 warning (_("The remote protocol may be unreliable over UDP.\n"
5125 "Some events may be lost, rendering further debugging "
5126 "impossible."));
5127 udp_warning = 1;
5128 }
5129
5130 return serial_open (name);
5131 }
5132
5133 /* Inform the target of our permission settings. The permission flags
5134 work without this, but if the target knows the settings, it can do
5135 a couple things. First, it can add its own check, to catch cases
5136 that somehow manage to get by the permissions checks in target
5137 methods. Second, if the target is wired to disallow particular
5138 settings (for instance, a system in the field that is not set up to
5139 be able to stop at a breakpoint), it can object to any unavailable
5140 permissions. */
5141
5142 void
5143 remote_target::set_permissions ()
5144 {
5145 struct remote_state *rs = get_remote_state ();
5146
5147 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5148 "WriteReg:%x;WriteMem:%x;"
5149 "InsertBreak:%x;InsertTrace:%x;"
5150 "InsertFastTrace:%x;Stop:%x",
5151 may_write_registers, may_write_memory,
5152 may_insert_breakpoints, may_insert_tracepoints,
5153 may_insert_fast_tracepoints, may_stop);
5154 putpkt (rs->buf);
5155 getpkt (&rs->buf, 0);
5156
5157 /* If the target didn't like the packet, warn the user. Do not try
5158 to undo the user's settings, that would just be maddening. */
5159 if (strcmp (rs->buf.data (), "OK") != 0)
5160 warning (_("Remote refused setting permissions with: %s"),
5161 rs->buf.data ());
5162 }
5163
5164 /* This type describes each known response to the qSupported
5165 packet. */
5166 struct protocol_feature
5167 {
5168 /* The name of this protocol feature. */
5169 const char *name;
5170
5171 /* The default for this protocol feature. */
5172 enum packet_support default_support;
5173
5174 /* The function to call when this feature is reported, or after
5175 qSupported processing if the feature is not supported.
5176 The first argument points to this structure. The second
5177 argument indicates whether the packet requested support be
5178 enabled, disabled, or probed (or the default, if this function
5179 is being called at the end of processing and this feature was
5180 not reported). The third argument may be NULL; if not NULL, it
5181 is a NUL-terminated string taken from the packet following
5182 this feature's name and an equals sign. */
5183 void (*func) (remote_target *remote, const struct protocol_feature *,
5184 enum packet_support, const char *);
5185
5186 /* The corresponding packet for this feature. Only used if
5187 FUNC is remote_supported_packet. */
5188 int packet;
5189 };
5190
5191 static void
5192 remote_supported_packet (remote_target *remote,
5193 const struct protocol_feature *feature,
5194 enum packet_support support,
5195 const char *argument)
5196 {
5197 if (argument)
5198 {
5199 warning (_("Remote qSupported response supplied an unexpected value for"
5200 " \"%s\"."), feature->name);
5201 return;
5202 }
5203
5204 remote_protocol_packets[feature->packet].support = support;
5205 }
5206
5207 void
5208 remote_target::remote_packet_size (const protocol_feature *feature,
5209 enum packet_support support, const char *value)
5210 {
5211 struct remote_state *rs = get_remote_state ();
5212
5213 int packet_size;
5214 char *value_end;
5215
5216 if (support != PACKET_ENABLE)
5217 return;
5218
5219 if (value == NULL || *value == '\0')
5220 {
5221 warning (_("Remote target reported \"%s\" without a size."),
5222 feature->name);
5223 return;
5224 }
5225
5226 errno = 0;
5227 packet_size = strtol (value, &value_end, 16);
5228 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5229 {
5230 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5231 feature->name, value);
5232 return;
5233 }
5234
5235 /* Record the new maximum packet size. */
5236 rs->explicit_packet_size = packet_size;
5237 }
5238
5239 static void
5240 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5241 enum packet_support support, const char *value)
5242 {
5243 remote->remote_packet_size (feature, support, value);
5244 }
5245
5246 static const struct protocol_feature remote_protocol_features[] = {
5247 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5248 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5249 PACKET_qXfer_auxv },
5250 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5251 PACKET_qXfer_exec_file },
5252 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5253 PACKET_qXfer_features },
5254 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5255 PACKET_qXfer_libraries },
5256 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5257 PACKET_qXfer_libraries_svr4 },
5258 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5259 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5260 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_qXfer_memory_map },
5262 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_qXfer_osdata },
5264 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_qXfer_threads },
5266 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_qXfer_traceframe_info },
5268 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_QPassSignals },
5270 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5271 PACKET_QCatchSyscalls },
5272 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5273 PACKET_QProgramSignals },
5274 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_QSetWorkingDir },
5276 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_QStartupWithShell },
5278 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_QEnvironmentHexEncoded },
5280 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_QEnvironmentReset },
5282 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_QEnvironmentUnset },
5284 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_QStartNoAckMode },
5286 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_multiprocess_feature },
5288 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5289 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5290 PACKET_qXfer_siginfo_read },
5291 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5292 PACKET_qXfer_siginfo_write },
5293 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5294 PACKET_ConditionalTracepoints },
5295 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5296 PACKET_ConditionalBreakpoints },
5297 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5298 PACKET_BreakpointCommands },
5299 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5300 PACKET_FastTracepoints },
5301 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_StaticTracepoints },
5303 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5304 PACKET_InstallInTrace},
5305 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5306 PACKET_DisconnectedTracing_feature },
5307 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5308 PACKET_bc },
5309 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5310 PACKET_bs },
5311 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5312 PACKET_TracepointSource },
5313 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5314 PACKET_QAllow },
5315 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5316 PACKET_EnableDisableTracepoints_feature },
5317 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5318 PACKET_qXfer_fdpic },
5319 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_qXfer_uib },
5321 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5322 PACKET_QDisableRandomization },
5323 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5324 { "QTBuffer:size", PACKET_DISABLE,
5325 remote_supported_packet, PACKET_QTBuffer_size},
5326 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5327 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5328 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5329 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5330 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5331 PACKET_qXfer_btrace },
5332 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5333 PACKET_qXfer_btrace_conf },
5334 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_Qbtrace_conf_bts_size },
5336 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5337 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5338 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5339 PACKET_fork_event_feature },
5340 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5341 PACKET_vfork_event_feature },
5342 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5343 PACKET_exec_event_feature },
5344 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5345 PACKET_Qbtrace_conf_pt_size },
5346 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5347 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5348 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5349 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5350 PACKET_memory_tagging_feature },
5351 };
5352
5353 static char *remote_support_xml;
5354
5355 /* Register string appended to "xmlRegisters=" in qSupported query. */
5356
5357 void
5358 register_remote_support_xml (const char *xml)
5359 {
5360 #if defined(HAVE_LIBEXPAT)
5361 if (remote_support_xml == NULL)
5362 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5363 else
5364 {
5365 char *copy = xstrdup (remote_support_xml + 13);
5366 char *saveptr;
5367 char *p = strtok_r (copy, ",", &saveptr);
5368
5369 do
5370 {
5371 if (strcmp (p, xml) == 0)
5372 {
5373 /* already there */
5374 xfree (copy);
5375 return;
5376 }
5377 }
5378 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5379 xfree (copy);
5380
5381 remote_support_xml = reconcat (remote_support_xml,
5382 remote_support_xml, ",", xml,
5383 (char *) NULL);
5384 }
5385 #endif
5386 }
5387
5388 static void
5389 remote_query_supported_append (std::string *msg, const char *append)
5390 {
5391 if (!msg->empty ())
5392 msg->append (";");
5393 msg->append (append);
5394 }
5395
5396 void
5397 remote_target::remote_query_supported ()
5398 {
5399 struct remote_state *rs = get_remote_state ();
5400 char *next;
5401 int i;
5402 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5403
5404 /* The packet support flags are handled differently for this packet
5405 than for most others. We treat an error, a disabled packet, and
5406 an empty response identically: any features which must be reported
5407 to be used will be automatically disabled. An empty buffer
5408 accomplishes this, since that is also the representation for a list
5409 containing no features. */
5410
5411 rs->buf[0] = 0;
5412 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5413 {
5414 std::string q;
5415
5416 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "multiprocess+");
5418
5419 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5420 remote_query_supported_append (&q, "swbreak+");
5421 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "hwbreak+");
5423
5424 remote_query_supported_append (&q, "qRelocInsn+");
5425
5426 if (packet_set_cmd_state (PACKET_fork_event_feature)
5427 != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "fork-events+");
5429 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5430 != AUTO_BOOLEAN_FALSE)
5431 remote_query_supported_append (&q, "vfork-events+");
5432 if (packet_set_cmd_state (PACKET_exec_event_feature)
5433 != AUTO_BOOLEAN_FALSE)
5434 remote_query_supported_append (&q, "exec-events+");
5435
5436 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5437 remote_query_supported_append (&q, "vContSupported+");
5438
5439 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5440 remote_query_supported_append (&q, "QThreadEvents+");
5441
5442 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5443 remote_query_supported_append (&q, "no-resumed+");
5444
5445 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5446 != AUTO_BOOLEAN_FALSE)
5447 remote_query_supported_append (&q, "memory-tagging+");
5448
5449 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5450 the qSupported:xmlRegisters=i386 handling. */
5451 if (remote_support_xml != NULL
5452 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5453 remote_query_supported_append (&q, remote_support_xml);
5454
5455 q = "qSupported:" + q;
5456 putpkt (q.c_str ());
5457
5458 getpkt (&rs->buf, 0);
5459
5460 /* If an error occured, warn, but do not return - just reset the
5461 buffer to empty and go on to disable features. */
5462 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5463 == PACKET_ERROR)
5464 {
5465 warning (_("Remote failure reply: %s"), rs->buf.data ());
5466 rs->buf[0] = 0;
5467 }
5468 }
5469
5470 memset (seen, 0, sizeof (seen));
5471
5472 next = rs->buf.data ();
5473 while (*next)
5474 {
5475 enum packet_support is_supported;
5476 char *p, *end, *name_end, *value;
5477
5478 /* First separate out this item from the rest of the packet. If
5479 there's another item after this, we overwrite the separator
5480 (terminated strings are much easier to work with). */
5481 p = next;
5482 end = strchr (p, ';');
5483 if (end == NULL)
5484 {
5485 end = p + strlen (p);
5486 next = end;
5487 }
5488 else
5489 {
5490 *end = '\0';
5491 next = end + 1;
5492
5493 if (end == p)
5494 {
5495 warning (_("empty item in \"qSupported\" response"));
5496 continue;
5497 }
5498 }
5499
5500 name_end = strchr (p, '=');
5501 if (name_end)
5502 {
5503 /* This is a name=value entry. */
5504 is_supported = PACKET_ENABLE;
5505 value = name_end + 1;
5506 *name_end = '\0';
5507 }
5508 else
5509 {
5510 value = NULL;
5511 switch (end[-1])
5512 {
5513 case '+':
5514 is_supported = PACKET_ENABLE;
5515 break;
5516
5517 case '-':
5518 is_supported = PACKET_DISABLE;
5519 break;
5520
5521 case '?':
5522 is_supported = PACKET_SUPPORT_UNKNOWN;
5523 break;
5524
5525 default:
5526 warning (_("unrecognized item \"%s\" "
5527 "in \"qSupported\" response"), p);
5528 continue;
5529 }
5530 end[-1] = '\0';
5531 }
5532
5533 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5534 if (strcmp (remote_protocol_features[i].name, p) == 0)
5535 {
5536 const struct protocol_feature *feature;
5537
5538 seen[i] = 1;
5539 feature = &remote_protocol_features[i];
5540 feature->func (this, feature, is_supported, value);
5541 break;
5542 }
5543 }
5544
5545 /* If we increased the packet size, make sure to increase the global
5546 buffer size also. We delay this until after parsing the entire
5547 qSupported packet, because this is the same buffer we were
5548 parsing. */
5549 if (rs->buf.size () < rs->explicit_packet_size)
5550 rs->buf.resize (rs->explicit_packet_size);
5551
5552 /* Handle the defaults for unmentioned features. */
5553 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5554 if (!seen[i])
5555 {
5556 const struct protocol_feature *feature;
5557
5558 feature = &remote_protocol_features[i];
5559 feature->func (this, feature, feature->default_support, NULL);
5560 }
5561 }
5562
5563 /* Serial QUIT handler for the remote serial descriptor.
5564
5565 Defers handling a Ctrl-C until we're done with the current
5566 command/response packet sequence, unless:
5567
5568 - We're setting up the connection. Don't send a remote interrupt
5569 request, as we're not fully synced yet. Quit immediately
5570 instead.
5571
5572 - The target has been resumed in the foreground
5573 (target_terminal::is_ours is false) with a synchronous resume
5574 packet, and we're blocked waiting for the stop reply, thus a
5575 Ctrl-C should be immediately sent to the target.
5576
5577 - We get a second Ctrl-C while still within the same serial read or
5578 write. In that case the serial is seemingly wedged --- offer to
5579 quit/disconnect.
5580
5581 - We see a second Ctrl-C without target response, after having
5582 previously interrupted the target. In that case the target/stub
5583 is probably wedged --- offer to quit/disconnect.
5584 */
5585
5586 void
5587 remote_target::remote_serial_quit_handler ()
5588 {
5589 struct remote_state *rs = get_remote_state ();
5590
5591 if (check_quit_flag ())
5592 {
5593 /* If we're starting up, we're not fully synced yet. Quit
5594 immediately. */
5595 if (rs->starting_up)
5596 quit ();
5597 else if (rs->got_ctrlc_during_io)
5598 {
5599 if (query (_("The target is not responding to GDB commands.\n"
5600 "Stop debugging it? ")))
5601 remote_unpush_and_throw (this);
5602 }
5603 /* If ^C has already been sent once, offer to disconnect. */
5604 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5605 interrupt_query ();
5606 /* All-stop protocol, and blocked waiting for stop reply. Send
5607 an interrupt request. */
5608 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5609 target_interrupt ();
5610 else
5611 rs->got_ctrlc_during_io = 1;
5612 }
5613 }
5614
5615 /* The remote_target that is current while the quit handler is
5616 overridden with remote_serial_quit_handler. */
5617 static remote_target *curr_quit_handler_target;
5618
5619 static void
5620 remote_serial_quit_handler ()
5621 {
5622 curr_quit_handler_target->remote_serial_quit_handler ();
5623 }
5624
5625 /* Remove the remote target from the target stack of each inferior
5626 that is using it. Upper targets depend on it so remove them
5627 first. */
5628
5629 static void
5630 remote_unpush_target (remote_target *target)
5631 {
5632 /* We have to unpush the target from all inferiors, even those that
5633 aren't running. */
5634 scoped_restore_current_inferior restore_current_inferior;
5635
5636 for (inferior *inf : all_inferiors (target))
5637 {
5638 switch_to_inferior_no_thread (inf);
5639 pop_all_targets_at_and_above (process_stratum);
5640 generic_mourn_inferior ();
5641 }
5642
5643 /* Don't rely on target_close doing this when the target is popped
5644 from the last remote inferior above, because something may be
5645 holding a reference to the target higher up on the stack, meaning
5646 target_close won't be called yet. We lost the connection to the
5647 target, so clear these now, otherwise we may later throw
5648 TARGET_CLOSE_ERROR while trying to tell the remote target to
5649 close the file. */
5650 fileio_handles_invalidate_target (target);
5651 }
5652
5653 static void
5654 remote_unpush_and_throw (remote_target *target)
5655 {
5656 remote_unpush_target (target);
5657 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5658 }
5659
5660 void
5661 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5662 {
5663 remote_target *curr_remote = get_current_remote_target ();
5664
5665 if (name == 0)
5666 error (_("To open a remote debug connection, you need to specify what\n"
5667 "serial device is attached to the remote system\n"
5668 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5669
5670 /* If we're connected to a running target, target_preopen will kill it.
5671 Ask this question first, before target_preopen has a chance to kill
5672 anything. */
5673 if (curr_remote != NULL && !target_has_execution ())
5674 {
5675 if (from_tty
5676 && !query (_("Already connected to a remote target. Disconnect? ")))
5677 error (_("Still connected."));
5678 }
5679
5680 /* Here the possibly existing remote target gets unpushed. */
5681 target_preopen (from_tty);
5682
5683 remote_fileio_reset ();
5684 reopen_exec_file ();
5685 reread_symbols ();
5686
5687 remote_target *remote
5688 = (extended_p ? new extended_remote_target () : new remote_target ());
5689 target_ops_up target_holder (remote);
5690
5691 remote_state *rs = remote->get_remote_state ();
5692
5693 /* See FIXME above. */
5694 if (!target_async_permitted)
5695 rs->wait_forever_enabled_p = 1;
5696
5697 rs->remote_desc = remote_serial_open (name);
5698 if (!rs->remote_desc)
5699 perror_with_name (name);
5700
5701 if (baud_rate != -1)
5702 {
5703 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5704 {
5705 /* The requested speed could not be set. Error out to
5706 top level after closing remote_desc. Take care to
5707 set remote_desc to NULL to avoid closing remote_desc
5708 more than once. */
5709 serial_close (rs->remote_desc);
5710 rs->remote_desc = NULL;
5711 perror_with_name (name);
5712 }
5713 }
5714
5715 serial_setparity (rs->remote_desc, serial_parity);
5716 serial_raw (rs->remote_desc);
5717
5718 /* If there is something sitting in the buffer we might take it as a
5719 response to a command, which would be bad. */
5720 serial_flush_input (rs->remote_desc);
5721
5722 if (from_tty)
5723 {
5724 puts_filtered ("Remote debugging using ");
5725 puts_filtered (name);
5726 puts_filtered ("\n");
5727 }
5728
5729 /* Switch to using the remote target now. */
5730 current_inferior ()->push_target (std::move (target_holder));
5731
5732 /* Register extra event sources in the event loop. */
5733 rs->remote_async_inferior_event_token
5734 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5735 "remote");
5736 rs->notif_state = remote_notif_state_allocate (remote);
5737
5738 /* Reset the target state; these things will be queried either by
5739 remote_query_supported or as they are needed. */
5740 reset_all_packet_configs_support ();
5741 rs->cached_wait_status = 0;
5742 rs->explicit_packet_size = 0;
5743 rs->noack_mode = 0;
5744 rs->extended = extended_p;
5745 rs->waiting_for_stop_reply = 0;
5746 rs->ctrlc_pending_p = 0;
5747 rs->got_ctrlc_during_io = 0;
5748
5749 rs->general_thread = not_sent_ptid;
5750 rs->continue_thread = not_sent_ptid;
5751 rs->remote_traceframe_number = -1;
5752
5753 rs->last_resume_exec_dir = EXEC_FORWARD;
5754
5755 /* Probe for ability to use "ThreadInfo" query, as required. */
5756 rs->use_threadinfo_query = 1;
5757 rs->use_threadextra_query = 1;
5758
5759 rs->readahead_cache.invalidate ();
5760
5761 if (target_async_permitted)
5762 {
5763 /* FIXME: cagney/1999-09-23: During the initial connection it is
5764 assumed that the target is already ready and able to respond to
5765 requests. Unfortunately remote_start_remote() eventually calls
5766 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5767 around this. Eventually a mechanism that allows
5768 wait_for_inferior() to expect/get timeouts will be
5769 implemented. */
5770 rs->wait_forever_enabled_p = 0;
5771 }
5772
5773 /* First delete any symbols previously loaded from shared libraries. */
5774 no_shared_libraries (NULL, 0);
5775
5776 /* Start the remote connection. If error() or QUIT, discard this
5777 target (we'd otherwise be in an inconsistent state) and then
5778 propogate the error on up the exception chain. This ensures that
5779 the caller doesn't stumble along blindly assuming that the
5780 function succeeded. The CLI doesn't have this problem but other
5781 UI's, such as MI do.
5782
5783 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5784 this function should return an error indication letting the
5785 caller restore the previous state. Unfortunately the command
5786 ``target remote'' is directly wired to this function making that
5787 impossible. On a positive note, the CLI side of this problem has
5788 been fixed - the function set_cmd_context() makes it possible for
5789 all the ``target ....'' commands to share a common callback
5790 function. See cli-dump.c. */
5791 {
5792
5793 try
5794 {
5795 remote->start_remote (from_tty, extended_p);
5796 }
5797 catch (const gdb_exception &ex)
5798 {
5799 /* Pop the partially set up target - unless something else did
5800 already before throwing the exception. */
5801 if (ex.error != TARGET_CLOSE_ERROR)
5802 remote_unpush_target (remote);
5803 throw;
5804 }
5805 }
5806
5807 remote_btrace_reset (rs);
5808
5809 if (target_async_permitted)
5810 rs->wait_forever_enabled_p = 1;
5811 }
5812
5813 /* Detach the specified process. */
5814
5815 void
5816 remote_target::remote_detach_pid (int pid)
5817 {
5818 struct remote_state *rs = get_remote_state ();
5819
5820 /* This should not be necessary, but the handling for D;PID in
5821 GDBserver versions prior to 8.2 incorrectly assumes that the
5822 selected process points to the same process we're detaching,
5823 leading to misbehavior (and possibly GDBserver crashing) when it
5824 does not. Since it's easy and cheap, work around it by forcing
5825 GDBserver to select GDB's current process. */
5826 set_general_process ();
5827
5828 if (remote_multi_process_p (rs))
5829 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5830 else
5831 strcpy (rs->buf.data (), "D");
5832
5833 putpkt (rs->buf);
5834 getpkt (&rs->buf, 0);
5835
5836 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5837 ;
5838 else if (rs->buf[0] == '\0')
5839 error (_("Remote doesn't know how to detach"));
5840 else
5841 error (_("Can't detach process."));
5842 }
5843
5844 /* This detaches a program to which we previously attached, using
5845 inferior_ptid to identify the process. After this is done, GDB
5846 can be used to debug some other program. We better not have left
5847 any breakpoints in the target program or it'll die when it hits
5848 one. */
5849
5850 void
5851 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5852 {
5853 int pid = inferior_ptid.pid ();
5854 struct remote_state *rs = get_remote_state ();
5855 int is_fork_parent;
5856
5857 if (!target_has_execution ())
5858 error (_("No process to detach from."));
5859
5860 target_announce_detach (from_tty);
5861
5862 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5863 {
5864 /* If we're in breakpoints-always-inserted mode, or the inferior
5865 is running, we have to remove breakpoints before detaching.
5866 We don't do this in common code instead because not all
5867 targets support removing breakpoints while the target is
5868 running. The remote target / gdbserver does, though. */
5869 remove_breakpoints_inf (current_inferior ());
5870 }
5871
5872 /* Tell the remote target to detach. */
5873 remote_detach_pid (pid);
5874
5875 /* Exit only if this is the only active inferior. */
5876 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5877 puts_filtered (_("Ending remote debugging.\n"));
5878
5879 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5880
5881 /* Check to see if we are detaching a fork parent. Note that if we
5882 are detaching a fork child, tp == NULL. */
5883 is_fork_parent = (tp != NULL
5884 && tp->pending_follow.kind () == TARGET_WAITKIND_FORKED);
5885
5886 /* If doing detach-on-fork, we don't mourn, because that will delete
5887 breakpoints that should be available for the followed inferior. */
5888 if (!is_fork_parent)
5889 {
5890 /* Save the pid as a string before mourning, since that will
5891 unpush the remote target, and we need the string after. */
5892 std::string infpid = target_pid_to_str (ptid_t (pid));
5893
5894 target_mourn_inferior (inferior_ptid);
5895 if (print_inferior_events)
5896 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5897 inf->num, infpid.c_str ());
5898 }
5899 else
5900 {
5901 switch_to_no_thread ();
5902 detach_inferior (current_inferior ());
5903 }
5904 }
5905
5906 void
5907 remote_target::detach (inferior *inf, int from_tty)
5908 {
5909 remote_detach_1 (inf, from_tty);
5910 }
5911
5912 void
5913 extended_remote_target::detach (inferior *inf, int from_tty)
5914 {
5915 remote_detach_1 (inf, from_tty);
5916 }
5917
5918 /* Target follow-fork function for remote targets. On entry, and
5919 at return, the current inferior is the fork parent.
5920
5921 Note that although this is currently only used for extended-remote,
5922 it is named remote_follow_fork in anticipation of using it for the
5923 remote target as well. */
5924
5925 void
5926 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
5927 target_waitkind fork_kind, bool follow_child,
5928 bool detach_fork)
5929 {
5930 process_stratum_target::follow_fork (child_inf, child_ptid,
5931 fork_kind, follow_child, detach_fork);
5932
5933 struct remote_state *rs = get_remote_state ();
5934
5935 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5936 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5937 {
5938 /* When following the parent and detaching the child, we detach
5939 the child here. For the case of following the child and
5940 detaching the parent, the detach is done in the target-
5941 independent follow fork code in infrun.c. We can't use
5942 target_detach when detaching an unfollowed child because
5943 the client side doesn't know anything about the child. */
5944 if (detach_fork && !follow_child)
5945 {
5946 /* Detach the fork child. */
5947 remote_detach_pid (child_ptid.pid ());
5948 }
5949 }
5950 }
5951
5952 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5953 in the program space of the new inferior. */
5954
5955 void
5956 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5957 const char *execd_pathname)
5958 {
5959 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5960
5961 /* We know that this is a target file name, so if it has the "target:"
5962 prefix we strip it off before saving it in the program space. */
5963 if (is_target_filename (execd_pathname))
5964 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5965
5966 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5967 }
5968
5969 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5970
5971 void
5972 remote_target::disconnect (const char *args, int from_tty)
5973 {
5974 if (args)
5975 error (_("Argument given to \"disconnect\" when remotely debugging."));
5976
5977 /* Make sure we unpush even the extended remote targets. Calling
5978 target_mourn_inferior won't unpush, and
5979 remote_target::mourn_inferior won't unpush if there is more than
5980 one inferior left. */
5981 remote_unpush_target (this);
5982
5983 if (from_tty)
5984 puts_filtered ("Ending remote debugging.\n");
5985 }
5986
5987 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5988 be chatty about it. */
5989
5990 void
5991 extended_remote_target::attach (const char *args, int from_tty)
5992 {
5993 struct remote_state *rs = get_remote_state ();
5994 int pid;
5995 char *wait_status = NULL;
5996
5997 pid = parse_pid_to_attach (args);
5998
5999 /* Remote PID can be freely equal to getpid, do not check it here the same
6000 way as in other targets. */
6001
6002 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6003 error (_("This target does not support attaching to a process"));
6004
6005 if (from_tty)
6006 {
6007 const char *exec_file = get_exec_file (0);
6008
6009 if (exec_file)
6010 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6011 target_pid_to_str (ptid_t (pid)).c_str ());
6012 else
6013 printf_unfiltered (_("Attaching to %s\n"),
6014 target_pid_to_str (ptid_t (pid)).c_str ());
6015 }
6016
6017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6018 putpkt (rs->buf);
6019 getpkt (&rs->buf, 0);
6020
6021 switch (packet_ok (rs->buf,
6022 &remote_protocol_packets[PACKET_vAttach]))
6023 {
6024 case PACKET_OK:
6025 if (!target_is_non_stop_p ())
6026 {
6027 /* Save the reply for later. */
6028 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6029 strcpy (wait_status, rs->buf.data ());
6030 }
6031 else if (strcmp (rs->buf.data (), "OK") != 0)
6032 error (_("Attaching to %s failed with: %s"),
6033 target_pid_to_str (ptid_t (pid)).c_str (),
6034 rs->buf.data ());
6035 break;
6036 case PACKET_UNKNOWN:
6037 error (_("This target does not support attaching to a process"));
6038 default:
6039 error (_("Attaching to %s failed"),
6040 target_pid_to_str (ptid_t (pid)).c_str ());
6041 }
6042
6043 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6044
6045 inferior_ptid = ptid_t (pid);
6046
6047 if (target_is_non_stop_p ())
6048 {
6049 /* Get list of threads. */
6050 update_thread_list ();
6051
6052 thread_info *thread = first_thread_of_inferior (current_inferior ());
6053 if (thread != nullptr)
6054 switch_to_thread (thread);
6055
6056 /* Invalidate our notion of the remote current thread. */
6057 record_currthread (rs, minus_one_ptid);
6058 }
6059 else
6060 {
6061 /* Now, if we have thread information, update the main thread's
6062 ptid. */
6063 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6064
6065 /* Add the main thread to the thread list. */
6066 thread_info *thr = add_thread_silent (this, curr_ptid);
6067
6068 switch_to_thread (thr);
6069
6070 /* Don't consider the thread stopped until we've processed the
6071 saved stop reply. */
6072 set_executing (this, thr->ptid, true);
6073 }
6074
6075 /* Next, if the target can specify a description, read it. We do
6076 this before anything involving memory or registers. */
6077 target_find_description ();
6078
6079 if (!target_is_non_stop_p ())
6080 {
6081 /* Use the previously fetched status. */
6082 gdb_assert (wait_status != NULL);
6083
6084 if (target_can_async_p ())
6085 {
6086 struct notif_event *reply
6087 = remote_notif_parse (this, &notif_client_stop, wait_status);
6088
6089 push_stop_reply ((struct stop_reply *) reply);
6090
6091 target_async (1);
6092 }
6093 else
6094 {
6095 gdb_assert (wait_status != NULL);
6096 strcpy (rs->buf.data (), wait_status);
6097 rs->cached_wait_status = 1;
6098 }
6099 }
6100 else
6101 {
6102 gdb_assert (wait_status == NULL);
6103
6104 gdb_assert (target_can_async_p ());
6105 target_async (1);
6106 }
6107 }
6108
6109 /* Implementation of the to_post_attach method. */
6110
6111 void
6112 extended_remote_target::post_attach (int pid)
6113 {
6114 /* Get text, data & bss offsets. */
6115 get_offsets ();
6116
6117 /* In certain cases GDB might not have had the chance to start
6118 symbol lookup up until now. This could happen if the debugged
6119 binary is not using shared libraries, the vsyscall page is not
6120 present (on Linux) and the binary itself hadn't changed since the
6121 debugging process was started. */
6122 if (current_program_space->symfile_object_file != NULL)
6123 remote_check_symbols();
6124 }
6125
6126 \f
6127 /* Check for the availability of vCont. This function should also check
6128 the response. */
6129
6130 void
6131 remote_target::remote_vcont_probe ()
6132 {
6133 remote_state *rs = get_remote_state ();
6134 char *buf;
6135
6136 strcpy (rs->buf.data (), "vCont?");
6137 putpkt (rs->buf);
6138 getpkt (&rs->buf, 0);
6139 buf = rs->buf.data ();
6140
6141 /* Make sure that the features we assume are supported. */
6142 if (startswith (buf, "vCont"))
6143 {
6144 char *p = &buf[5];
6145 int support_c, support_C;
6146
6147 rs->supports_vCont.s = 0;
6148 rs->supports_vCont.S = 0;
6149 support_c = 0;
6150 support_C = 0;
6151 rs->supports_vCont.t = 0;
6152 rs->supports_vCont.r = 0;
6153 while (p && *p == ';')
6154 {
6155 p++;
6156 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6157 rs->supports_vCont.s = 1;
6158 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6159 rs->supports_vCont.S = 1;
6160 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6161 support_c = 1;
6162 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6163 support_C = 1;
6164 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6165 rs->supports_vCont.t = 1;
6166 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6167 rs->supports_vCont.r = 1;
6168
6169 p = strchr (p, ';');
6170 }
6171
6172 /* If c, and C are not all supported, we can't use vCont. Clearing
6173 BUF will make packet_ok disable the packet. */
6174 if (!support_c || !support_C)
6175 buf[0] = 0;
6176 }
6177
6178 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6179 rs->supports_vCont_probed = true;
6180 }
6181
6182 /* Helper function for building "vCont" resumptions. Write a
6183 resumption to P. ENDP points to one-passed-the-end of the buffer
6184 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6185 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6186 resumed thread should be single-stepped and/or signalled. If PTID
6187 equals minus_one_ptid, then all threads are resumed; if PTID
6188 represents a process, then all threads of the process are resumed;
6189 the thread to be stepped and/or signalled is given in the global
6190 INFERIOR_PTID. */
6191
6192 char *
6193 remote_target::append_resumption (char *p, char *endp,
6194 ptid_t ptid, int step, gdb_signal siggnal)
6195 {
6196 struct remote_state *rs = get_remote_state ();
6197
6198 if (step && siggnal != GDB_SIGNAL_0)
6199 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6200 else if (step
6201 /* GDB is willing to range step. */
6202 && use_range_stepping
6203 /* Target supports range stepping. */
6204 && rs->supports_vCont.r
6205 /* We don't currently support range stepping multiple
6206 threads with a wildcard (though the protocol allows it,
6207 so stubs shouldn't make an active effort to forbid
6208 it). */
6209 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6210 {
6211 struct thread_info *tp;
6212
6213 if (ptid == minus_one_ptid)
6214 {
6215 /* If we don't know about the target thread's tid, then
6216 we're resuming magic_null_ptid (see caller). */
6217 tp = find_thread_ptid (this, magic_null_ptid);
6218 }
6219 else
6220 tp = find_thread_ptid (this, ptid);
6221 gdb_assert (tp != NULL);
6222
6223 if (tp->control.may_range_step)
6224 {
6225 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6226
6227 p += xsnprintf (p, endp - p, ";r%s,%s",
6228 phex_nz (tp->control.step_range_start,
6229 addr_size),
6230 phex_nz (tp->control.step_range_end,
6231 addr_size));
6232 }
6233 else
6234 p += xsnprintf (p, endp - p, ";s");
6235 }
6236 else if (step)
6237 p += xsnprintf (p, endp - p, ";s");
6238 else if (siggnal != GDB_SIGNAL_0)
6239 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6240 else
6241 p += xsnprintf (p, endp - p, ";c");
6242
6243 if (remote_multi_process_p (rs) && ptid.is_pid ())
6244 {
6245 ptid_t nptid;
6246
6247 /* All (-1) threads of process. */
6248 nptid = ptid_t (ptid.pid (), -1);
6249
6250 p += xsnprintf (p, endp - p, ":");
6251 p = write_ptid (p, endp, nptid);
6252 }
6253 else if (ptid != minus_one_ptid)
6254 {
6255 p += xsnprintf (p, endp - p, ":");
6256 p = write_ptid (p, endp, ptid);
6257 }
6258
6259 return p;
6260 }
6261
6262 /* Clear the thread's private info on resume. */
6263
6264 static void
6265 resume_clear_thread_private_info (struct thread_info *thread)
6266 {
6267 if (thread->priv != NULL)
6268 {
6269 remote_thread_info *priv = get_remote_thread_info (thread);
6270
6271 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6272 priv->watch_data_address = 0;
6273 }
6274 }
6275
6276 /* Append a vCont continue-with-signal action for threads that have a
6277 non-zero stop signal. */
6278
6279 char *
6280 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6281 ptid_t ptid)
6282 {
6283 for (thread_info *thread : all_non_exited_threads (this, ptid))
6284 if (inferior_ptid != thread->ptid
6285 && thread->stop_signal () != GDB_SIGNAL_0)
6286 {
6287 p = append_resumption (p, endp, thread->ptid,
6288 0, thread->stop_signal ());
6289 thread->set_stop_signal (GDB_SIGNAL_0);
6290 resume_clear_thread_private_info (thread);
6291 }
6292
6293 return p;
6294 }
6295
6296 /* Set the target running, using the packets that use Hc
6297 (c/s/C/S). */
6298
6299 void
6300 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6301 gdb_signal siggnal)
6302 {
6303 struct remote_state *rs = get_remote_state ();
6304 char *buf;
6305
6306 rs->last_sent_signal = siggnal;
6307 rs->last_sent_step = step;
6308
6309 /* The c/s/C/S resume packets use Hc, so set the continue
6310 thread. */
6311 if (ptid == minus_one_ptid)
6312 set_continue_thread (any_thread_ptid);
6313 else
6314 set_continue_thread (ptid);
6315
6316 for (thread_info *thread : all_non_exited_threads (this))
6317 resume_clear_thread_private_info (thread);
6318
6319 buf = rs->buf.data ();
6320 if (::execution_direction == EXEC_REVERSE)
6321 {
6322 /* We don't pass signals to the target in reverse exec mode. */
6323 if (info_verbose && siggnal != GDB_SIGNAL_0)
6324 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6325 siggnal);
6326
6327 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6328 error (_("Remote reverse-step not supported."));
6329 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6330 error (_("Remote reverse-continue not supported."));
6331
6332 strcpy (buf, step ? "bs" : "bc");
6333 }
6334 else if (siggnal != GDB_SIGNAL_0)
6335 {
6336 buf[0] = step ? 'S' : 'C';
6337 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6338 buf[2] = tohex (((int) siggnal) & 0xf);
6339 buf[3] = '\0';
6340 }
6341 else
6342 strcpy (buf, step ? "s" : "c");
6343
6344 putpkt (buf);
6345 }
6346
6347 /* Resume the remote inferior by using a "vCont" packet. The thread
6348 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6349 resumed thread should be single-stepped and/or signalled. If PTID
6350 equals minus_one_ptid, then all threads are resumed; the thread to
6351 be stepped and/or signalled is given in the global INFERIOR_PTID.
6352 This function returns non-zero iff it resumes the inferior.
6353
6354 This function issues a strict subset of all possible vCont commands
6355 at the moment. */
6356
6357 int
6358 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6359 enum gdb_signal siggnal)
6360 {
6361 struct remote_state *rs = get_remote_state ();
6362 char *p;
6363 char *endp;
6364
6365 /* No reverse execution actions defined for vCont. */
6366 if (::execution_direction == EXEC_REVERSE)
6367 return 0;
6368
6369 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6370 remote_vcont_probe ();
6371
6372 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6373 return 0;
6374
6375 p = rs->buf.data ();
6376 endp = p + get_remote_packet_size ();
6377
6378 /* If we could generate a wider range of packets, we'd have to worry
6379 about overflowing BUF. Should there be a generic
6380 "multi-part-packet" packet? */
6381
6382 p += xsnprintf (p, endp - p, "vCont");
6383
6384 if (ptid == magic_null_ptid)
6385 {
6386 /* MAGIC_NULL_PTID means that we don't have any active threads,
6387 so we don't have any TID numbers the inferior will
6388 understand. Make sure to only send forms that do not specify
6389 a TID. */
6390 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6391 }
6392 else if (ptid == minus_one_ptid || ptid.is_pid ())
6393 {
6394 /* Resume all threads (of all processes, or of a single
6395 process), with preference for INFERIOR_PTID. This assumes
6396 inferior_ptid belongs to the set of all threads we are about
6397 to resume. */
6398 if (step || siggnal != GDB_SIGNAL_0)
6399 {
6400 /* Step inferior_ptid, with or without signal. */
6401 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6402 }
6403
6404 /* Also pass down any pending signaled resumption for other
6405 threads not the current. */
6406 p = append_pending_thread_resumptions (p, endp, ptid);
6407
6408 /* And continue others without a signal. */
6409 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6410 }
6411 else
6412 {
6413 /* Scheduler locking; resume only PTID. */
6414 append_resumption (p, endp, ptid, step, siggnal);
6415 }
6416
6417 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6418 putpkt (rs->buf);
6419
6420 if (target_is_non_stop_p ())
6421 {
6422 /* In non-stop, the stub replies to vCont with "OK". The stop
6423 reply will be reported asynchronously by means of a `%Stop'
6424 notification. */
6425 getpkt (&rs->buf, 0);
6426 if (strcmp (rs->buf.data (), "OK") != 0)
6427 error (_("Unexpected vCont reply in non-stop mode: %s"),
6428 rs->buf.data ());
6429 }
6430
6431 return 1;
6432 }
6433
6434 /* Tell the remote machine to resume. */
6435
6436 void
6437 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6438 {
6439 struct remote_state *rs = get_remote_state ();
6440
6441 /* When connected in non-stop mode, the core resumes threads
6442 individually. Resuming remote threads directly in target_resume
6443 would thus result in sending one packet per thread. Instead, to
6444 minimize roundtrip latency, here we just store the resume
6445 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6446 resumption will be done in remote_target::commit_resume, where we'll be
6447 able to do vCont action coalescing. */
6448 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6449 {
6450 remote_thread_info *remote_thr;
6451
6452 if (minus_one_ptid == ptid || ptid.is_pid ())
6453 remote_thr = get_remote_thread_info (this, inferior_ptid);
6454 else
6455 remote_thr = get_remote_thread_info (this, ptid);
6456
6457 /* We don't expect the core to ask to resume an already resumed (from
6458 its point of view) thread. */
6459 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6460
6461 remote_thr->set_resumed_pending_vcont (step, siggnal);
6462 return;
6463 }
6464
6465 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6466 (explained in remote-notif.c:handle_notification) so
6467 remote_notif_process is not called. We need find a place where
6468 it is safe to start a 'vNotif' sequence. It is good to do it
6469 before resuming inferior, because inferior was stopped and no RSP
6470 traffic at that moment. */
6471 if (!target_is_non_stop_p ())
6472 remote_notif_process (rs->notif_state, &notif_client_stop);
6473
6474 rs->last_resume_exec_dir = ::execution_direction;
6475
6476 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6477 if (!remote_resume_with_vcont (ptid, step, siggnal))
6478 remote_resume_with_hc (ptid, step, siggnal);
6479
6480 /* Update resumed state tracked by the remote target. */
6481 for (thread_info *tp : all_non_exited_threads (this, ptid))
6482 get_remote_thread_info (tp)->set_resumed ();
6483
6484 /* We are about to start executing the inferior, let's register it
6485 with the event loop. NOTE: this is the one place where all the
6486 execution commands end up. We could alternatively do this in each
6487 of the execution commands in infcmd.c. */
6488 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6489 into infcmd.c in order to allow inferior function calls to work
6490 NOT asynchronously. */
6491 if (target_can_async_p ())
6492 target_async (1);
6493
6494 /* We've just told the target to resume. The remote server will
6495 wait for the inferior to stop, and then send a stop reply. In
6496 the mean time, we can't start another command/query ourselves
6497 because the stub wouldn't be ready to process it. This applies
6498 only to the base all-stop protocol, however. In non-stop (which
6499 only supports vCont), the stub replies with an "OK", and is
6500 immediate able to process further serial input. */
6501 if (!target_is_non_stop_p ())
6502 rs->waiting_for_stop_reply = 1;
6503 }
6504
6505 static int is_pending_fork_parent_thread (struct thread_info *thread);
6506
6507 /* Private per-inferior info for target remote processes. */
6508
6509 struct remote_inferior : public private_inferior
6510 {
6511 /* Whether we can send a wildcard vCont for this process. */
6512 bool may_wildcard_vcont = true;
6513 };
6514
6515 /* Get the remote private inferior data associated to INF. */
6516
6517 static remote_inferior *
6518 get_remote_inferior (inferior *inf)
6519 {
6520 if (inf->priv == NULL)
6521 inf->priv.reset (new remote_inferior);
6522
6523 return static_cast<remote_inferior *> (inf->priv.get ());
6524 }
6525
6526 struct stop_reply : public notif_event
6527 {
6528 ~stop_reply ();
6529
6530 /* The identifier of the thread about this event */
6531 ptid_t ptid;
6532
6533 /* The remote state this event is associated with. When the remote
6534 connection, represented by a remote_state object, is closed,
6535 all the associated stop_reply events should be released. */
6536 struct remote_state *rs;
6537
6538 struct target_waitstatus ws;
6539
6540 /* The architecture associated with the expedited registers. */
6541 gdbarch *arch;
6542
6543 /* Expedited registers. This makes remote debugging a bit more
6544 efficient for those targets that provide critical registers as
6545 part of their normal status mechanism (as another roundtrip to
6546 fetch them is avoided). */
6547 std::vector<cached_reg_t> regcache;
6548
6549 enum target_stop_reason stop_reason;
6550
6551 CORE_ADDR watch_data_address;
6552
6553 int core;
6554 };
6555
6556 /* Class used to track the construction of a vCont packet in the
6557 outgoing packet buffer. This is used to send multiple vCont
6558 packets if we have more actions than would fit a single packet. */
6559
6560 class vcont_builder
6561 {
6562 public:
6563 explicit vcont_builder (remote_target *remote)
6564 : m_remote (remote)
6565 {
6566 restart ();
6567 }
6568
6569 void flush ();
6570 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6571
6572 private:
6573 void restart ();
6574
6575 /* The remote target. */
6576 remote_target *m_remote;
6577
6578 /* Pointer to the first action. P points here if no action has been
6579 appended yet. */
6580 char *m_first_action;
6581
6582 /* Where the next action will be appended. */
6583 char *m_p;
6584
6585 /* The end of the buffer. Must never write past this. */
6586 char *m_endp;
6587 };
6588
6589 /* Prepare the outgoing buffer for a new vCont packet. */
6590
6591 void
6592 vcont_builder::restart ()
6593 {
6594 struct remote_state *rs = m_remote->get_remote_state ();
6595
6596 m_p = rs->buf.data ();
6597 m_endp = m_p + m_remote->get_remote_packet_size ();
6598 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6599 m_first_action = m_p;
6600 }
6601
6602 /* If the vCont packet being built has any action, send it to the
6603 remote end. */
6604
6605 void
6606 vcont_builder::flush ()
6607 {
6608 struct remote_state *rs;
6609
6610 if (m_p == m_first_action)
6611 return;
6612
6613 rs = m_remote->get_remote_state ();
6614 m_remote->putpkt (rs->buf);
6615 m_remote->getpkt (&rs->buf, 0);
6616 if (strcmp (rs->buf.data (), "OK") != 0)
6617 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6618 }
6619
6620 /* The largest action is range-stepping, with its two addresses. This
6621 is more than sufficient. If a new, bigger action is created, it'll
6622 quickly trigger a failed assertion in append_resumption (and we'll
6623 just bump this). */
6624 #define MAX_ACTION_SIZE 200
6625
6626 /* Append a new vCont action in the outgoing packet being built. If
6627 the action doesn't fit the packet along with previous actions, push
6628 what we've got so far to the remote end and start over a new vCont
6629 packet (with the new action). */
6630
6631 void
6632 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6633 {
6634 char buf[MAX_ACTION_SIZE + 1];
6635
6636 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6637 ptid, step, siggnal);
6638
6639 /* Check whether this new action would fit in the vCont packet along
6640 with previous actions. If not, send what we've got so far and
6641 start a new vCont packet. */
6642 size_t rsize = endp - buf;
6643 if (rsize > m_endp - m_p)
6644 {
6645 flush ();
6646 restart ();
6647
6648 /* Should now fit. */
6649 gdb_assert (rsize <= m_endp - m_p);
6650 }
6651
6652 memcpy (m_p, buf, rsize);
6653 m_p += rsize;
6654 *m_p = '\0';
6655 }
6656
6657 /* to_commit_resume implementation. */
6658
6659 void
6660 remote_target::commit_resumed ()
6661 {
6662 /* If connected in all-stop mode, we'd send the remote resume
6663 request directly from remote_resume. Likewise if
6664 reverse-debugging, as there are no defined vCont actions for
6665 reverse execution. */
6666 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6667 return;
6668
6669 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6670 instead of resuming all threads of each process individually.
6671 However, if any thread of a process must remain halted, we can't
6672 send wildcard resumes and must send one action per thread.
6673
6674 Care must be taken to not resume threads/processes the server
6675 side already told us are stopped, but the core doesn't know about
6676 yet, because the events are still in the vStopped notification
6677 queue. For example:
6678
6679 #1 => vCont s:p1.1;c
6680 #2 <= OK
6681 #3 <= %Stopped T05 p1.1
6682 #4 => vStopped
6683 #5 <= T05 p1.2
6684 #6 => vStopped
6685 #7 <= OK
6686 #8 (infrun handles the stop for p1.1 and continues stepping)
6687 #9 => vCont s:p1.1;c
6688
6689 The last vCont above would resume thread p1.2 by mistake, because
6690 the server has no idea that the event for p1.2 had not been
6691 handled yet.
6692
6693 The server side must similarly ignore resume actions for the
6694 thread that has a pending %Stopped notification (and any other
6695 threads with events pending), until GDB acks the notification
6696 with vStopped. Otherwise, e.g., the following case is
6697 mishandled:
6698
6699 #1 => g (or any other packet)
6700 #2 <= [registers]
6701 #3 <= %Stopped T05 p1.2
6702 #4 => vCont s:p1.1;c
6703 #5 <= OK
6704
6705 Above, the server must not resume thread p1.2. GDB can't know
6706 that p1.2 stopped until it acks the %Stopped notification, and
6707 since from GDB's perspective all threads should be running, it
6708 sends a "c" action.
6709
6710 Finally, special care must also be given to handling fork/vfork
6711 events. A (v)fork event actually tells us that two processes
6712 stopped -- the parent and the child. Until we follow the fork,
6713 we must not resume the child. Therefore, if we have a pending
6714 fork follow, we must not send a global wildcard resume action
6715 (vCont;c). We can still send process-wide wildcards though. */
6716
6717 /* Start by assuming a global wildcard (vCont;c) is possible. */
6718 bool may_global_wildcard_vcont = true;
6719
6720 /* And assume every process is individually wildcard-able too. */
6721 for (inferior *inf : all_non_exited_inferiors (this))
6722 {
6723 remote_inferior *priv = get_remote_inferior (inf);
6724
6725 priv->may_wildcard_vcont = true;
6726 }
6727
6728 /* Check for any pending events (not reported or processed yet) and
6729 disable process and global wildcard resumes appropriately. */
6730 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6731
6732 bool any_pending_vcont_resume = false;
6733
6734 for (thread_info *tp : all_non_exited_threads (this))
6735 {
6736 remote_thread_info *priv = get_remote_thread_info (tp);
6737
6738 /* If a thread of a process is not meant to be resumed, then we
6739 can't wildcard that process. */
6740 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6741 {
6742 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6743
6744 /* And if we can't wildcard a process, we can't wildcard
6745 everything either. */
6746 may_global_wildcard_vcont = false;
6747 continue;
6748 }
6749
6750 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6751 any_pending_vcont_resume = true;
6752
6753 /* If a thread is the parent of an unfollowed fork, then we
6754 can't do a global wildcard, as that would resume the fork
6755 child. */
6756 if (is_pending_fork_parent_thread (tp))
6757 may_global_wildcard_vcont = false;
6758 }
6759
6760 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6761 do. */
6762 if (!any_pending_vcont_resume)
6763 return;
6764
6765 /* Now let's build the vCont packet(s). Actions must be appended
6766 from narrower to wider scopes (thread -> process -> global). If
6767 we end up with too many actions for a single packet vcont_builder
6768 flushes the current vCont packet to the remote side and starts a
6769 new one. */
6770 struct vcont_builder vcont_builder (this);
6771
6772 /* Threads first. */
6773 for (thread_info *tp : all_non_exited_threads (this))
6774 {
6775 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6776
6777 /* If the thread was previously vCont-resumed, no need to send a specific
6778 action for it. If we didn't receive a resume request for it, don't
6779 send an action for it either. */
6780 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6781 continue;
6782
6783 gdb_assert (!thread_is_in_step_over_chain (tp));
6784
6785 /* We should never be commit-resuming a thread that has a stop reply.
6786 Otherwise, we would end up reporting a stop event for a thread while
6787 it is running on the remote target. */
6788 remote_state *rs = get_remote_state ();
6789 for (const auto &stop_reply : rs->stop_reply_queue)
6790 gdb_assert (stop_reply->ptid != tp->ptid);
6791
6792 const resumed_pending_vcont_info &info
6793 = remote_thr->resumed_pending_vcont_info ();
6794
6795 /* Check if we need to send a specific action for this thread. If not,
6796 it will be included in a wildcard resume instead. */
6797 if (info.step || info.sig != GDB_SIGNAL_0
6798 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6799 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6800
6801 remote_thr->set_resumed ();
6802 }
6803
6804 /* Now check whether we can send any process-wide wildcard. This is
6805 to avoid sending a global wildcard in the case nothing is
6806 supposed to be resumed. */
6807 bool any_process_wildcard = false;
6808
6809 for (inferior *inf : all_non_exited_inferiors (this))
6810 {
6811 if (get_remote_inferior (inf)->may_wildcard_vcont)
6812 {
6813 any_process_wildcard = true;
6814 break;
6815 }
6816 }
6817
6818 if (any_process_wildcard)
6819 {
6820 /* If all processes are wildcard-able, then send a single "c"
6821 action, otherwise, send an "all (-1) threads of process"
6822 continue action for each running process, if any. */
6823 if (may_global_wildcard_vcont)
6824 {
6825 vcont_builder.push_action (minus_one_ptid,
6826 false, GDB_SIGNAL_0);
6827 }
6828 else
6829 {
6830 for (inferior *inf : all_non_exited_inferiors (this))
6831 {
6832 if (get_remote_inferior (inf)->may_wildcard_vcont)
6833 {
6834 vcont_builder.push_action (ptid_t (inf->pid),
6835 false, GDB_SIGNAL_0);
6836 }
6837 }
6838 }
6839 }
6840
6841 vcont_builder.flush ();
6842 }
6843
6844 /* Implementation of target_has_pending_events. */
6845
6846 bool
6847 remote_target::has_pending_events ()
6848 {
6849 if (target_can_async_p ())
6850 {
6851 remote_state *rs = get_remote_state ();
6852
6853 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6854 return true;
6855
6856 /* Note that BUFCNT can be negative, indicating sticky
6857 error. */
6858 if (rs->remote_desc->bufcnt != 0)
6859 return true;
6860 }
6861 return false;
6862 }
6863
6864 \f
6865
6866 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6867 thread, all threads of a remote process, or all threads of all
6868 processes. */
6869
6870 void
6871 remote_target::remote_stop_ns (ptid_t ptid)
6872 {
6873 struct remote_state *rs = get_remote_state ();
6874 char *p = rs->buf.data ();
6875 char *endp = p + get_remote_packet_size ();
6876
6877 /* If any thread that needs to stop was resumed but pending a vCont
6878 resume, generate a phony stop_reply. However, first check
6879 whether the thread wasn't resumed with a signal. Generating a
6880 phony stop in that case would result in losing the signal. */
6881 bool needs_commit = false;
6882 for (thread_info *tp : all_non_exited_threads (this, ptid))
6883 {
6884 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6885
6886 if (remote_thr->get_resume_state ()
6887 == resume_state::RESUMED_PENDING_VCONT)
6888 {
6889 const resumed_pending_vcont_info &info
6890 = remote_thr->resumed_pending_vcont_info ();
6891 if (info.sig != GDB_SIGNAL_0)
6892 {
6893 /* This signal must be forwarded to the inferior. We
6894 could commit-resume just this thread, but its simpler
6895 to just commit-resume everything. */
6896 needs_commit = true;
6897 break;
6898 }
6899 }
6900 }
6901
6902 if (needs_commit)
6903 commit_resumed ();
6904 else
6905 for (thread_info *tp : all_non_exited_threads (this, ptid))
6906 {
6907 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6908
6909 if (remote_thr->get_resume_state ()
6910 == resume_state::RESUMED_PENDING_VCONT)
6911 {
6912 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6913 "vCont-resume (%d, %ld, %s)", tp->ptid.pid(),
6914 tp->ptid.lwp (),
6915 pulongest (tp->ptid.tid ()));
6916
6917 /* Check that the thread wasn't resumed with a signal.
6918 Generating a phony stop would result in losing the
6919 signal. */
6920 const resumed_pending_vcont_info &info
6921 = remote_thr->resumed_pending_vcont_info ();
6922 gdb_assert (info.sig == GDB_SIGNAL_0);
6923
6924 stop_reply *sr = new stop_reply ();
6925 sr->ptid = tp->ptid;
6926 sr->rs = rs;
6927 sr->ws.set_stopped (GDB_SIGNAL_0);
6928 sr->arch = tp->inf->gdbarch;
6929 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6930 sr->watch_data_address = 0;
6931 sr->core = 0;
6932 this->push_stop_reply (sr);
6933
6934 /* Pretend that this thread was actually resumed on the
6935 remote target, then stopped. If we leave it in the
6936 RESUMED_PENDING_VCONT state and the commit_resumed
6937 method is called while the stop reply is still in the
6938 queue, we'll end up reporting a stop event to the core
6939 for that thread while it is running on the remote
6940 target... that would be bad. */
6941 remote_thr->set_resumed ();
6942 }
6943 }
6944
6945 /* FIXME: This supports_vCont_probed check is a workaround until
6946 packet_support is per-connection. */
6947 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6948 || !rs->supports_vCont_probed)
6949 remote_vcont_probe ();
6950
6951 if (!rs->supports_vCont.t)
6952 error (_("Remote server does not support stopping threads"));
6953
6954 if (ptid == minus_one_ptid
6955 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6956 p += xsnprintf (p, endp - p, "vCont;t");
6957 else
6958 {
6959 ptid_t nptid;
6960
6961 p += xsnprintf (p, endp - p, "vCont;t:");
6962
6963 if (ptid.is_pid ())
6964 /* All (-1) threads of process. */
6965 nptid = ptid_t (ptid.pid (), -1);
6966 else
6967 {
6968 /* Small optimization: if we already have a stop reply for
6969 this thread, no use in telling the stub we want this
6970 stopped. */
6971 if (peek_stop_reply (ptid))
6972 return;
6973
6974 nptid = ptid;
6975 }
6976
6977 write_ptid (p, endp, nptid);
6978 }
6979
6980 /* In non-stop, we get an immediate OK reply. The stop reply will
6981 come in asynchronously by notification. */
6982 putpkt (rs->buf);
6983 getpkt (&rs->buf, 0);
6984 if (strcmp (rs->buf.data (), "OK") != 0)
6985 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6986 rs->buf.data ());
6987 }
6988
6989 /* All-stop version of target_interrupt. Sends a break or a ^C to
6990 interrupt the remote target. It is undefined which thread of which
6991 process reports the interrupt. */
6992
6993 void
6994 remote_target::remote_interrupt_as ()
6995 {
6996 struct remote_state *rs = get_remote_state ();
6997
6998 rs->ctrlc_pending_p = 1;
6999
7000 /* If the inferior is stopped already, but the core didn't know
7001 about it yet, just ignore the request. The cached wait status
7002 will be collected in remote_wait. */
7003 if (rs->cached_wait_status)
7004 return;
7005
7006 /* Send interrupt_sequence to remote target. */
7007 send_interrupt_sequence ();
7008 }
7009
7010 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7011 the remote target. It is undefined which thread of which process
7012 reports the interrupt. Throws an error if the packet is not
7013 supported by the server. */
7014
7015 void
7016 remote_target::remote_interrupt_ns ()
7017 {
7018 struct remote_state *rs = get_remote_state ();
7019 char *p = rs->buf.data ();
7020 char *endp = p + get_remote_packet_size ();
7021
7022 xsnprintf (p, endp - p, "vCtrlC");
7023
7024 /* In non-stop, we get an immediate OK reply. The stop reply will
7025 come in asynchronously by notification. */
7026 putpkt (rs->buf);
7027 getpkt (&rs->buf, 0);
7028
7029 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7030 {
7031 case PACKET_OK:
7032 break;
7033 case PACKET_UNKNOWN:
7034 error (_("No support for interrupting the remote target."));
7035 case PACKET_ERROR:
7036 error (_("Interrupting target failed: %s"), rs->buf.data ());
7037 }
7038 }
7039
7040 /* Implement the to_stop function for the remote targets. */
7041
7042 void
7043 remote_target::stop (ptid_t ptid)
7044 {
7045 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7046
7047 if (target_is_non_stop_p ())
7048 remote_stop_ns (ptid);
7049 else
7050 {
7051 /* We don't currently have a way to transparently pause the
7052 remote target in all-stop mode. Interrupt it instead. */
7053 remote_interrupt_as ();
7054 }
7055 }
7056
7057 /* Implement the to_interrupt function for the remote targets. */
7058
7059 void
7060 remote_target::interrupt ()
7061 {
7062 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7063
7064 if (target_is_non_stop_p ())
7065 remote_interrupt_ns ();
7066 else
7067 remote_interrupt_as ();
7068 }
7069
7070 /* Implement the to_pass_ctrlc function for the remote targets. */
7071
7072 void
7073 remote_target::pass_ctrlc ()
7074 {
7075 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7076
7077 struct remote_state *rs = get_remote_state ();
7078
7079 /* If we're starting up, we're not fully synced yet. Quit
7080 immediately. */
7081 if (rs->starting_up)
7082 quit ();
7083 /* If ^C has already been sent once, offer to disconnect. */
7084 else if (rs->ctrlc_pending_p)
7085 interrupt_query ();
7086 else
7087 target_interrupt ();
7088 }
7089
7090 /* Ask the user what to do when an interrupt is received. */
7091
7092 void
7093 remote_target::interrupt_query ()
7094 {
7095 struct remote_state *rs = get_remote_state ();
7096
7097 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7098 {
7099 if (query (_("The target is not responding to interrupt requests.\n"
7100 "Stop debugging it? ")))
7101 {
7102 remote_unpush_target (this);
7103 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7104 }
7105 }
7106 else
7107 {
7108 if (query (_("Interrupted while waiting for the program.\n"
7109 "Give up waiting? ")))
7110 quit ();
7111 }
7112 }
7113
7114 /* Enable/disable target terminal ownership. Most targets can use
7115 terminal groups to control terminal ownership. Remote targets are
7116 different in that explicit transfer of ownership to/from GDB/target
7117 is required. */
7118
7119 void
7120 remote_target::terminal_inferior ()
7121 {
7122 /* NOTE: At this point we could also register our selves as the
7123 recipient of all input. Any characters typed could then be
7124 passed on down to the target. */
7125 }
7126
7127 void
7128 remote_target::terminal_ours ()
7129 {
7130 }
7131
7132 static void
7133 remote_console_output (const char *msg)
7134 {
7135 const char *p;
7136
7137 for (p = msg; p[0] && p[1]; p += 2)
7138 {
7139 char tb[2];
7140 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7141
7142 tb[0] = c;
7143 tb[1] = 0;
7144 gdb_stdtarg->puts (tb);
7145 }
7146 gdb_stdtarg->flush ();
7147 }
7148
7149 /* Return the length of the stop reply queue. */
7150
7151 int
7152 remote_target::stop_reply_queue_length ()
7153 {
7154 remote_state *rs = get_remote_state ();
7155 return rs->stop_reply_queue.size ();
7156 }
7157
7158 static void
7159 remote_notif_stop_parse (remote_target *remote,
7160 struct notif_client *self, const char *buf,
7161 struct notif_event *event)
7162 {
7163 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7164 }
7165
7166 static void
7167 remote_notif_stop_ack (remote_target *remote,
7168 struct notif_client *self, const char *buf,
7169 struct notif_event *event)
7170 {
7171 struct stop_reply *stop_reply = (struct stop_reply *) event;
7172
7173 /* acknowledge */
7174 putpkt (remote, self->ack_command);
7175
7176 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7177 the notification. It was left in the queue because we need to
7178 acknowledge it and pull the rest of the notifications out. */
7179 if (stop_reply->ws.kind () != TARGET_WAITKIND_IGNORE)
7180 remote->push_stop_reply (stop_reply);
7181 }
7182
7183 static int
7184 remote_notif_stop_can_get_pending_events (remote_target *remote,
7185 struct notif_client *self)
7186 {
7187 /* We can't get pending events in remote_notif_process for
7188 notification stop, and we have to do this in remote_wait_ns
7189 instead. If we fetch all queued events from stub, remote stub
7190 may exit and we have no chance to process them back in
7191 remote_wait_ns. */
7192 remote_state *rs = remote->get_remote_state ();
7193 mark_async_event_handler (rs->remote_async_inferior_event_token);
7194 return 0;
7195 }
7196
7197 stop_reply::~stop_reply ()
7198 {
7199 for (cached_reg_t &reg : regcache)
7200 xfree (reg.data);
7201 }
7202
7203 static notif_event_up
7204 remote_notif_stop_alloc_reply ()
7205 {
7206 return notif_event_up (new struct stop_reply ());
7207 }
7208
7209 /* A client of notification Stop. */
7210
7211 struct notif_client notif_client_stop =
7212 {
7213 "Stop",
7214 "vStopped",
7215 remote_notif_stop_parse,
7216 remote_notif_stop_ack,
7217 remote_notif_stop_can_get_pending_events,
7218 remote_notif_stop_alloc_reply,
7219 REMOTE_NOTIF_STOP,
7220 };
7221
7222 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7223 the pid of the process that owns the threads we want to check, or
7224 -1 if we want to check all threads. */
7225
7226 static int
7227 is_pending_fork_parent (const target_waitstatus *ws, int event_pid,
7228 ptid_t thread_ptid)
7229 {
7230 if (ws->kind () == TARGET_WAITKIND_FORKED
7231 || ws->kind () == TARGET_WAITKIND_VFORKED)
7232 {
7233 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7234 return 1;
7235 }
7236
7237 return 0;
7238 }
7239
7240 /* Return the thread's pending status used to determine whether the
7241 thread is a fork parent stopped at a fork event. */
7242
7243 static const target_waitstatus *
7244 thread_pending_fork_status (struct thread_info *thread)
7245 {
7246 if (thread->has_pending_waitstatus ())
7247 return &thread->pending_waitstatus ();
7248 else
7249 return &thread->pending_follow;
7250 }
7251
7252 /* Determine if THREAD is a pending fork parent thread. */
7253
7254 static int
7255 is_pending_fork_parent_thread (struct thread_info *thread)
7256 {
7257 const target_waitstatus *ws = thread_pending_fork_status (thread);
7258 int pid = -1;
7259
7260 return is_pending_fork_parent (ws, pid, thread->ptid);
7261 }
7262
7263 /* If CONTEXT contains any fork child threads that have not been
7264 reported yet, remove them from the CONTEXT list. If such a
7265 thread exists it is because we are stopped at a fork catchpoint
7266 and have not yet called follow_fork, which will set up the
7267 host-side data structures for the new process. */
7268
7269 void
7270 remote_target::remove_new_fork_children (threads_listing_context *context)
7271 {
7272 int pid = -1;
7273 struct notif_client *notif = &notif_client_stop;
7274
7275 /* For any threads stopped at a fork event, remove the corresponding
7276 fork child threads from the CONTEXT list. */
7277 for (thread_info *thread : all_non_exited_threads (this))
7278 {
7279 const target_waitstatus *ws = thread_pending_fork_status (thread);
7280
7281 if (is_pending_fork_parent (ws, pid, thread->ptid))
7282 context->remove_thread (ws->child_ptid ());
7283 }
7284
7285 /* Check for any pending fork events (not reported or processed yet)
7286 in process PID and remove those fork child threads from the
7287 CONTEXT list as well. */
7288 remote_notif_get_pending_events (notif);
7289 for (auto &event : get_remote_state ()->stop_reply_queue)
7290 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7291 || event->ws.kind () == TARGET_WAITKIND_VFORKED
7292 || event->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
7293 context->remove_thread (event->ws.child_ptid ());
7294 }
7295
7296 /* Check whether any event pending in the vStopped queue would prevent a
7297 global or process wildcard vCont action. Set *may_global_wildcard to
7298 false if we can't do a global wildcard (vCont;c), and clear the event
7299 inferior's may_wildcard_vcont flag if we can't do a process-wide
7300 wildcard resume (vCont;c:pPID.-1). */
7301
7302 void
7303 remote_target::check_pending_events_prevent_wildcard_vcont
7304 (bool *may_global_wildcard)
7305 {
7306 struct notif_client *notif = &notif_client_stop;
7307
7308 remote_notif_get_pending_events (notif);
7309 for (auto &event : get_remote_state ()->stop_reply_queue)
7310 {
7311 if (event->ws.kind () == TARGET_WAITKIND_NO_RESUMED
7312 || event->ws.kind () == TARGET_WAITKIND_NO_HISTORY)
7313 continue;
7314
7315 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7316 || event->ws.kind () == TARGET_WAITKIND_VFORKED)
7317 *may_global_wildcard = false;
7318
7319 /* This may be the first time we heard about this process.
7320 Regardless, we must not do a global wildcard resume, otherwise
7321 we'd resume this process too. */
7322 *may_global_wildcard = false;
7323 if (event->ptid != null_ptid)
7324 {
7325 inferior *inf = find_inferior_ptid (this, event->ptid);
7326 if (inf != NULL)
7327 get_remote_inferior (inf)->may_wildcard_vcont = false;
7328 }
7329 }
7330 }
7331
7332 /* Discard all pending stop replies of inferior INF. */
7333
7334 void
7335 remote_target::discard_pending_stop_replies (struct inferior *inf)
7336 {
7337 struct stop_reply *reply;
7338 struct remote_state *rs = get_remote_state ();
7339 struct remote_notif_state *rns = rs->notif_state;
7340
7341 /* This function can be notified when an inferior exists. When the
7342 target is not remote, the notification state is NULL. */
7343 if (rs->remote_desc == NULL)
7344 return;
7345
7346 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7347
7348 /* Discard the in-flight notification. */
7349 if (reply != NULL && reply->ptid.pid () == inf->pid)
7350 {
7351 /* Leave the notification pending, since the server expects that
7352 we acknowledge it with vStopped. But clear its contents, so
7353 that later on when we acknowledge it, we also discard it. */
7354 reply->ws.set_ignore ();
7355
7356 if (remote_debug)
7357 fprintf_unfiltered (gdb_stdlog,
7358 "discarded in-flight notification\n");
7359 }
7360
7361 /* Discard the stop replies we have already pulled with
7362 vStopped. */
7363 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7364 rs->stop_reply_queue.end (),
7365 [=] (const stop_reply_up &event)
7366 {
7367 return event->ptid.pid () == inf->pid;
7368 });
7369 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7370 }
7371
7372 /* Discard the stop replies for RS in stop_reply_queue. */
7373
7374 void
7375 remote_target::discard_pending_stop_replies_in_queue ()
7376 {
7377 remote_state *rs = get_remote_state ();
7378
7379 /* Discard the stop replies we have already pulled with
7380 vStopped. */
7381 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7382 rs->stop_reply_queue.end (),
7383 [=] (const stop_reply_up &event)
7384 {
7385 return event->rs == rs;
7386 });
7387 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7388 }
7389
7390 /* Remove the first reply in 'stop_reply_queue' which matches
7391 PTID. */
7392
7393 struct stop_reply *
7394 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7395 {
7396 remote_state *rs = get_remote_state ();
7397
7398 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7399 rs->stop_reply_queue.end (),
7400 [=] (const stop_reply_up &event)
7401 {
7402 return event->ptid.matches (ptid);
7403 });
7404 struct stop_reply *result;
7405 if (iter == rs->stop_reply_queue.end ())
7406 result = nullptr;
7407 else
7408 {
7409 result = iter->release ();
7410 rs->stop_reply_queue.erase (iter);
7411 }
7412
7413 if (notif_debug)
7414 fprintf_unfiltered (gdb_stdlog,
7415 "notif: discard queued event: 'Stop' in %s\n",
7416 target_pid_to_str (ptid).c_str ());
7417
7418 return result;
7419 }
7420
7421 /* Look for a queued stop reply belonging to PTID. If one is found,
7422 remove it from the queue, and return it. Returns NULL if none is
7423 found. If there are still queued events left to process, tell the
7424 event loop to get back to target_wait soon. */
7425
7426 struct stop_reply *
7427 remote_target::queued_stop_reply (ptid_t ptid)
7428 {
7429 remote_state *rs = get_remote_state ();
7430 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7431
7432 if (!rs->stop_reply_queue.empty ())
7433 {
7434 /* There's still at least an event left. */
7435 mark_async_event_handler (rs->remote_async_inferior_event_token);
7436 }
7437
7438 return r;
7439 }
7440
7441 /* Push a fully parsed stop reply in the stop reply queue. Since we
7442 know that we now have at least one queued event left to pass to the
7443 core side, tell the event loop to get back to target_wait soon. */
7444
7445 void
7446 remote_target::push_stop_reply (struct stop_reply *new_event)
7447 {
7448 remote_state *rs = get_remote_state ();
7449 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7450
7451 if (notif_debug)
7452 fprintf_unfiltered (gdb_stdlog,
7453 "notif: push 'Stop' %s to queue %d\n",
7454 target_pid_to_str (new_event->ptid).c_str (),
7455 int (rs->stop_reply_queue.size ()));
7456
7457 mark_async_event_handler (rs->remote_async_inferior_event_token);
7458 }
7459
7460 /* Returns true if we have a stop reply for PTID. */
7461
7462 int
7463 remote_target::peek_stop_reply (ptid_t ptid)
7464 {
7465 remote_state *rs = get_remote_state ();
7466 for (auto &event : rs->stop_reply_queue)
7467 if (ptid == event->ptid
7468 && event->ws.kind () == TARGET_WAITKIND_STOPPED)
7469 return 1;
7470 return 0;
7471 }
7472
7473 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7474 starting with P and ending with PEND matches PREFIX. */
7475
7476 static int
7477 strprefix (const char *p, const char *pend, const char *prefix)
7478 {
7479 for ( ; p < pend; p++, prefix++)
7480 if (*p != *prefix)
7481 return 0;
7482 return *prefix == '\0';
7483 }
7484
7485 /* Parse the stop reply in BUF. Either the function succeeds, and the
7486 result is stored in EVENT, or throws an error. */
7487
7488 void
7489 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7490 {
7491 remote_arch_state *rsa = NULL;
7492 ULONGEST addr;
7493 const char *p;
7494 int skipregs = 0;
7495
7496 event->ptid = null_ptid;
7497 event->rs = get_remote_state ();
7498 event->ws.set_ignore ();
7499 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7500 event->regcache.clear ();
7501 event->core = -1;
7502
7503 switch (buf[0])
7504 {
7505 case 'T': /* Status with PC, SP, FP, ... */
7506 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7507 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7508 ss = signal number
7509 n... = register number
7510 r... = register contents
7511 */
7512
7513 p = &buf[3]; /* after Txx */
7514 while (*p)
7515 {
7516 const char *p1;
7517 int fieldsize;
7518
7519 p1 = strchr (p, ':');
7520 if (p1 == NULL)
7521 error (_("Malformed packet(a) (missing colon): %s\n\
7522 Packet: '%s'\n"),
7523 p, buf);
7524 if (p == p1)
7525 error (_("Malformed packet(a) (missing register number): %s\n\
7526 Packet: '%s'\n"),
7527 p, buf);
7528
7529 /* Some "registers" are actually extended stop information.
7530 Note if you're adding a new entry here: GDB 7.9 and
7531 earlier assume that all register "numbers" that start
7532 with an hex digit are real register numbers. Make sure
7533 the server only sends such a packet if it knows the
7534 client understands it. */
7535
7536 if (strprefix (p, p1, "thread"))
7537 event->ptid = read_ptid (++p1, &p);
7538 else if (strprefix (p, p1, "syscall_entry"))
7539 {
7540 ULONGEST sysno;
7541
7542 p = unpack_varlen_hex (++p1, &sysno);
7543 event->ws.set_syscall_entry ((int) sysno);
7544 }
7545 else if (strprefix (p, p1, "syscall_return"))
7546 {
7547 ULONGEST sysno;
7548
7549 p = unpack_varlen_hex (++p1, &sysno);
7550 event->ws.set_syscall_return ((int) sysno);
7551 }
7552 else if (strprefix (p, p1, "watch")
7553 || strprefix (p, p1, "rwatch")
7554 || strprefix (p, p1, "awatch"))
7555 {
7556 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7557 p = unpack_varlen_hex (++p1, &addr);
7558 event->watch_data_address = (CORE_ADDR) addr;
7559 }
7560 else if (strprefix (p, p1, "swbreak"))
7561 {
7562 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7563
7564 /* Make sure the stub doesn't forget to indicate support
7565 with qSupported. */
7566 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7567 error (_("Unexpected swbreak stop reason"));
7568
7569 /* The value part is documented as "must be empty",
7570 though we ignore it, in case we ever decide to make
7571 use of it in a backward compatible way. */
7572 p = strchrnul (p1 + 1, ';');
7573 }
7574 else if (strprefix (p, p1, "hwbreak"))
7575 {
7576 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7577
7578 /* Make sure the stub doesn't forget to indicate support
7579 with qSupported. */
7580 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7581 error (_("Unexpected hwbreak stop reason"));
7582
7583 /* See above. */
7584 p = strchrnul (p1 + 1, ';');
7585 }
7586 else if (strprefix (p, p1, "library"))
7587 {
7588 event->ws.set_loaded ();
7589 p = strchrnul (p1 + 1, ';');
7590 }
7591 else if (strprefix (p, p1, "replaylog"))
7592 {
7593 event->ws.set_no_history ();
7594 /* p1 will indicate "begin" or "end", but it makes
7595 no difference for now, so ignore it. */
7596 p = strchrnul (p1 + 1, ';');
7597 }
7598 else if (strprefix (p, p1, "core"))
7599 {
7600 ULONGEST c;
7601
7602 p = unpack_varlen_hex (++p1, &c);
7603 event->core = c;
7604 }
7605 else if (strprefix (p, p1, "fork"))
7606 event->ws.set_forked (read_ptid (++p1, &p));
7607 else if (strprefix (p, p1, "vfork"))
7608 event->ws.set_vforked (read_ptid (++p1, &p));
7609 else if (strprefix (p, p1, "vforkdone"))
7610 {
7611 event->ws.set_vfork_done ();
7612 p = strchrnul (p1 + 1, ';');
7613 }
7614 else if (strprefix (p, p1, "exec"))
7615 {
7616 ULONGEST ignored;
7617 int pathlen;
7618
7619 /* Determine the length of the execd pathname. */
7620 p = unpack_varlen_hex (++p1, &ignored);
7621 pathlen = (p - p1) / 2;
7622
7623 /* Save the pathname for event reporting and for
7624 the next run command. */
7625 gdb::unique_xmalloc_ptr<char> pathname
7626 ((char *) xmalloc (pathlen + 1));
7627 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7628 pathname.get ()[pathlen] = '\0';
7629
7630 /* This is freed during event handling. */
7631 event->ws.set_execd (std::move (pathname));
7632
7633 /* Skip the registers included in this packet, since
7634 they may be for an architecture different from the
7635 one used by the original program. */
7636 skipregs = 1;
7637 }
7638 else if (strprefix (p, p1, "create"))
7639 {
7640 event->ws.set_thread_created ();
7641 p = strchrnul (p1 + 1, ';');
7642 }
7643 else
7644 {
7645 ULONGEST pnum;
7646 const char *p_temp;
7647
7648 if (skipregs)
7649 {
7650 p = strchrnul (p1 + 1, ';');
7651 p++;
7652 continue;
7653 }
7654
7655 /* Maybe a real ``P'' register number. */
7656 p_temp = unpack_varlen_hex (p, &pnum);
7657 /* If the first invalid character is the colon, we got a
7658 register number. Otherwise, it's an unknown stop
7659 reason. */
7660 if (p_temp == p1)
7661 {
7662 /* If we haven't parsed the event's thread yet, find
7663 it now, in order to find the architecture of the
7664 reported expedited registers. */
7665 if (event->ptid == null_ptid)
7666 {
7667 /* If there is no thread-id information then leave
7668 the event->ptid as null_ptid. Later in
7669 process_stop_reply we will pick a suitable
7670 thread. */
7671 const char *thr = strstr (p1 + 1, ";thread:");
7672 if (thr != NULL)
7673 event->ptid = read_ptid (thr + strlen (";thread:"),
7674 NULL);
7675 }
7676
7677 if (rsa == NULL)
7678 {
7679 inferior *inf
7680 = (event->ptid == null_ptid
7681 ? NULL
7682 : find_inferior_ptid (this, event->ptid));
7683 /* If this is the first time we learn anything
7684 about this process, skip the registers
7685 included in this packet, since we don't yet
7686 know which architecture to use to parse them.
7687 We'll determine the architecture later when
7688 we process the stop reply and retrieve the
7689 target description, via
7690 remote_notice_new_inferior ->
7691 post_create_inferior. */
7692 if (inf == NULL)
7693 {
7694 p = strchrnul (p1 + 1, ';');
7695 p++;
7696 continue;
7697 }
7698
7699 event->arch = inf->gdbarch;
7700 rsa = event->rs->get_remote_arch_state (event->arch);
7701 }
7702
7703 packet_reg *reg
7704 = packet_reg_from_pnum (event->arch, rsa, pnum);
7705 cached_reg_t cached_reg;
7706
7707 if (reg == NULL)
7708 error (_("Remote sent bad register number %s: %s\n\
7709 Packet: '%s'\n"),
7710 hex_string (pnum), p, buf);
7711
7712 cached_reg.num = reg->regnum;
7713 cached_reg.data = (gdb_byte *)
7714 xmalloc (register_size (event->arch, reg->regnum));
7715
7716 p = p1 + 1;
7717 fieldsize = hex2bin (p, cached_reg.data,
7718 register_size (event->arch, reg->regnum));
7719 p += 2 * fieldsize;
7720 if (fieldsize < register_size (event->arch, reg->regnum))
7721 warning (_("Remote reply is too short: %s"), buf);
7722
7723 event->regcache.push_back (cached_reg);
7724 }
7725 else
7726 {
7727 /* Not a number. Silently skip unknown optional
7728 info. */
7729 p = strchrnul (p1 + 1, ';');
7730 }
7731 }
7732
7733 if (*p != ';')
7734 error (_("Remote register badly formatted: %s\nhere: %s"),
7735 buf, p);
7736 ++p;
7737 }
7738
7739 if (event->ws.kind () != TARGET_WAITKIND_IGNORE)
7740 break;
7741
7742 /* fall through */
7743 case 'S': /* Old style status, just signal only. */
7744 {
7745 int sig;
7746
7747 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7748 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7749 event->ws.set_stopped ((enum gdb_signal) sig);
7750 else
7751 event->ws.set_stopped (GDB_SIGNAL_UNKNOWN);
7752 }
7753 break;
7754 case 'w': /* Thread exited. */
7755 {
7756 ULONGEST value;
7757
7758 p = unpack_varlen_hex (&buf[1], &value);
7759 event->ws.set_thread_exited (value);
7760 if (*p != ';')
7761 error (_("stop reply packet badly formatted: %s"), buf);
7762 event->ptid = read_ptid (++p, NULL);
7763 break;
7764 }
7765 case 'W': /* Target exited. */
7766 case 'X':
7767 {
7768 ULONGEST value;
7769
7770 /* GDB used to accept only 2 hex chars here. Stubs should
7771 only send more if they detect GDB supports multi-process
7772 support. */
7773 p = unpack_varlen_hex (&buf[1], &value);
7774
7775 if (buf[0] == 'W')
7776 {
7777 /* The remote process exited. */
7778 event->ws.set_exited (value);
7779 }
7780 else
7781 {
7782 /* The remote process exited with a signal. */
7783 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7784 event->ws.set_signalled ((enum gdb_signal) value);
7785 else
7786 event->ws.set_signalled (GDB_SIGNAL_UNKNOWN);
7787 }
7788
7789 /* If no process is specified, return null_ptid, and let the
7790 caller figure out the right process to use. */
7791 int pid = 0;
7792 if (*p == '\0')
7793 ;
7794 else if (*p == ';')
7795 {
7796 p++;
7797
7798 if (*p == '\0')
7799 ;
7800 else if (startswith (p, "process:"))
7801 {
7802 ULONGEST upid;
7803
7804 p += sizeof ("process:") - 1;
7805 unpack_varlen_hex (p, &upid);
7806 pid = upid;
7807 }
7808 else
7809 error (_("unknown stop reply packet: %s"), buf);
7810 }
7811 else
7812 error (_("unknown stop reply packet: %s"), buf);
7813 event->ptid = ptid_t (pid);
7814 }
7815 break;
7816 case 'N':
7817 event->ws.set_no_resumed ();
7818 event->ptid = minus_one_ptid;
7819 break;
7820 }
7821 }
7822
7823 /* When the stub wants to tell GDB about a new notification reply, it
7824 sends a notification (%Stop, for example). Those can come it at
7825 any time, hence, we have to make sure that any pending
7826 putpkt/getpkt sequence we're making is finished, before querying
7827 the stub for more events with the corresponding ack command
7828 (vStopped, for example). E.g., if we started a vStopped sequence
7829 immediately upon receiving the notification, something like this
7830 could happen:
7831
7832 1.1) --> Hg 1
7833 1.2) <-- OK
7834 1.3) --> g
7835 1.4) <-- %Stop
7836 1.5) --> vStopped
7837 1.6) <-- (registers reply to step #1.3)
7838
7839 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7840 query.
7841
7842 To solve this, whenever we parse a %Stop notification successfully,
7843 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7844 doing whatever we were doing:
7845
7846 2.1) --> Hg 1
7847 2.2) <-- OK
7848 2.3) --> g
7849 2.4) <-- %Stop
7850 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7851 2.5) <-- (registers reply to step #2.3)
7852
7853 Eventually after step #2.5, we return to the event loop, which
7854 notices there's an event on the
7855 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7856 associated callback --- the function below. At this point, we're
7857 always safe to start a vStopped sequence. :
7858
7859 2.6) --> vStopped
7860 2.7) <-- T05 thread:2
7861 2.8) --> vStopped
7862 2.9) --> OK
7863 */
7864
7865 void
7866 remote_target::remote_notif_get_pending_events (notif_client *nc)
7867 {
7868 struct remote_state *rs = get_remote_state ();
7869
7870 if (rs->notif_state->pending_event[nc->id] != NULL)
7871 {
7872 if (notif_debug)
7873 fprintf_unfiltered (gdb_stdlog,
7874 "notif: process: '%s' ack pending event\n",
7875 nc->name);
7876
7877 /* acknowledge */
7878 nc->ack (this, nc, rs->buf.data (),
7879 rs->notif_state->pending_event[nc->id]);
7880 rs->notif_state->pending_event[nc->id] = NULL;
7881
7882 while (1)
7883 {
7884 getpkt (&rs->buf, 0);
7885 if (strcmp (rs->buf.data (), "OK") == 0)
7886 break;
7887 else
7888 remote_notif_ack (this, nc, rs->buf.data ());
7889 }
7890 }
7891 else
7892 {
7893 if (notif_debug)
7894 fprintf_unfiltered (gdb_stdlog,
7895 "notif: process: '%s' no pending reply\n",
7896 nc->name);
7897 }
7898 }
7899
7900 /* Wrapper around remote_target::remote_notif_get_pending_events to
7901 avoid having to export the whole remote_target class. */
7902
7903 void
7904 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7905 {
7906 remote->remote_notif_get_pending_events (nc);
7907 }
7908
7909 /* Called from process_stop_reply when the stop packet we are responding
7910 to didn't include a process-id or thread-id. STATUS is the stop event
7911 we are responding to.
7912
7913 It is the task of this function to select a suitable thread (or process)
7914 and return its ptid, this is the thread (or process) we will assume the
7915 stop event came from.
7916
7917 In some cases there isn't really any choice about which thread (or
7918 process) is selected, a basic remote with a single process containing a
7919 single thread might choose not to send any process-id or thread-id in
7920 its stop packets, this function will select and return the one and only
7921 thread.
7922
7923 However, if a target supports multiple threads (or processes) and still
7924 doesn't include a thread-id (or process-id) in its stop packet then
7925 first, this is a badly behaving target, and second, we're going to have
7926 to select a thread (or process) at random and use that. This function
7927 will print a warning to the user if it detects that there is the
7928 possibility that GDB is guessing which thread (or process) to
7929 report.
7930
7931 Note that this is called before GDB fetches the updated thread list from the
7932 target. So it's possible for the stop reply to be ambiguous and for GDB to
7933 not realize it. For example, if there's initially one thread, the target
7934 spawns a second thread, and then sends a stop reply without an id that
7935 concerns the first thread. GDB will assume the stop reply is about the
7936 first thread - the only thread it knows about - without printing a warning.
7937 Anyway, if the remote meant for the stop reply to be about the second thread,
7938 then it would be really broken, because GDB doesn't know about that thread
7939 yet. */
7940
7941 ptid_t
7942 remote_target::select_thread_for_ambiguous_stop_reply
7943 (const struct target_waitstatus *status)
7944 {
7945 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7946
7947 /* Some stop events apply to all threads in an inferior, while others
7948 only apply to a single thread. */
7949 bool process_wide_stop
7950 = (status->kind () == TARGET_WAITKIND_EXITED
7951 || status->kind () == TARGET_WAITKIND_SIGNALLED);
7952
7953 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7954
7955 thread_info *first_resumed_thread = nullptr;
7956 bool ambiguous = false;
7957
7958 /* Consider all non-exited threads of the target, find the first resumed
7959 one. */
7960 for (thread_info *thr : all_non_exited_threads (this))
7961 {
7962 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7963
7964 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7965 continue;
7966
7967 if (first_resumed_thread == nullptr)
7968 first_resumed_thread = thr;
7969 else if (!process_wide_stop
7970 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7971 ambiguous = true;
7972 }
7973
7974 remote_debug_printf ("first resumed thread is %s",
7975 pid_to_str (first_resumed_thread->ptid).c_str ());
7976 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7977
7978 gdb_assert (first_resumed_thread != nullptr);
7979
7980 /* Warn if the remote target is sending ambiguous stop replies. */
7981 if (ambiguous)
7982 {
7983 static bool warned = false;
7984
7985 if (!warned)
7986 {
7987 /* If you are seeing this warning then the remote target has
7988 stopped without specifying a thread-id, but the target
7989 does have multiple threads (or inferiors), and so GDB is
7990 having to guess which thread stopped.
7991
7992 Examples of what might cause this are the target sending
7993 and 'S' stop packet, or a 'T' stop packet and not
7994 including a thread-id.
7995
7996 Additionally, the target might send a 'W' or 'X packet
7997 without including a process-id, when the target has
7998 multiple running inferiors. */
7999 if (process_wide_stop)
8000 warning (_("multi-inferior target stopped without "
8001 "sending a process-id, using first "
8002 "non-exited inferior"));
8003 else
8004 warning (_("multi-threaded target stopped without "
8005 "sending a thread-id, using first "
8006 "non-exited thread"));
8007 warned = true;
8008 }
8009 }
8010
8011 /* If this is a stop for all threads then don't use a particular threads
8012 ptid, instead create a new ptid where only the pid field is set. */
8013 if (process_wide_stop)
8014 return ptid_t (first_resumed_thread->ptid.pid ());
8015 else
8016 return first_resumed_thread->ptid;
8017 }
8018
8019 /* Called when it is decided that STOP_REPLY holds the info of the
8020 event that is to be returned to the core. This function always
8021 destroys STOP_REPLY. */
8022
8023 ptid_t
8024 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8025 struct target_waitstatus *status)
8026 {
8027 *status = stop_reply->ws;
8028 ptid_t ptid = stop_reply->ptid;
8029
8030 /* If no thread/process was reported by the stub then select a suitable
8031 thread/process. */
8032 if (ptid == null_ptid)
8033 ptid = select_thread_for_ambiguous_stop_reply (status);
8034 gdb_assert (ptid != null_ptid);
8035
8036 if (status->kind () != TARGET_WAITKIND_EXITED
8037 && status->kind () != TARGET_WAITKIND_SIGNALLED
8038 && status->kind () != TARGET_WAITKIND_NO_RESUMED)
8039 {
8040 /* Expedited registers. */
8041 if (!stop_reply->regcache.empty ())
8042 {
8043 struct regcache *regcache
8044 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8045
8046 for (cached_reg_t &reg : stop_reply->regcache)
8047 {
8048 regcache->raw_supply (reg.num, reg.data);
8049 xfree (reg.data);
8050 }
8051
8052 stop_reply->regcache.clear ();
8053 }
8054
8055 remote_notice_new_inferior (ptid, false);
8056 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8057 remote_thr->core = stop_reply->core;
8058 remote_thr->stop_reason = stop_reply->stop_reason;
8059 remote_thr->watch_data_address = stop_reply->watch_data_address;
8060
8061 if (target_is_non_stop_p ())
8062 {
8063 /* If the target works in non-stop mode, a stop-reply indicates that
8064 only this thread stopped. */
8065 remote_thr->set_not_resumed ();
8066 }
8067 else
8068 {
8069 /* If the target works in all-stop mode, a stop-reply indicates that
8070 all the target's threads stopped. */
8071 for (thread_info *tp : all_non_exited_threads (this))
8072 get_remote_thread_info (tp)->set_not_resumed ();
8073 }
8074 }
8075
8076 delete stop_reply;
8077 return ptid;
8078 }
8079
8080 /* The non-stop mode version of target_wait. */
8081
8082 ptid_t
8083 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8084 target_wait_flags options)
8085 {
8086 struct remote_state *rs = get_remote_state ();
8087 struct stop_reply *stop_reply;
8088 int ret;
8089 int is_notif = 0;
8090
8091 /* If in non-stop mode, get out of getpkt even if a
8092 notification is received. */
8093
8094 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8095 while (1)
8096 {
8097 if (ret != -1 && !is_notif)
8098 switch (rs->buf[0])
8099 {
8100 case 'E': /* Error of some sort. */
8101 /* We're out of sync with the target now. Did it continue
8102 or not? We can't tell which thread it was in non-stop,
8103 so just ignore this. */
8104 warning (_("Remote failure reply: %s"), rs->buf.data ());
8105 break;
8106 case 'O': /* Console output. */
8107 remote_console_output (&rs->buf[1]);
8108 break;
8109 default:
8110 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8111 break;
8112 }
8113
8114 /* Acknowledge a pending stop reply that may have arrived in the
8115 mean time. */
8116 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8117 remote_notif_get_pending_events (&notif_client_stop);
8118
8119 /* If indeed we noticed a stop reply, we're done. */
8120 stop_reply = queued_stop_reply (ptid);
8121 if (stop_reply != NULL)
8122 return process_stop_reply (stop_reply, status);
8123
8124 /* Still no event. If we're just polling for an event, then
8125 return to the event loop. */
8126 if (options & TARGET_WNOHANG)
8127 {
8128 status->set_ignore ();
8129 return minus_one_ptid;
8130 }
8131
8132 /* Otherwise do a blocking wait. */
8133 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8134 }
8135 }
8136
8137 /* Return the first resumed thread. */
8138
8139 static ptid_t
8140 first_remote_resumed_thread (remote_target *target)
8141 {
8142 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8143 if (tp->resumed ())
8144 return tp->ptid;
8145 return null_ptid;
8146 }
8147
8148 /* Wait until the remote machine stops, then return, storing status in
8149 STATUS just as `wait' would. */
8150
8151 ptid_t
8152 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8153 target_wait_flags options)
8154 {
8155 struct remote_state *rs = get_remote_state ();
8156 ptid_t event_ptid = null_ptid;
8157 char *buf;
8158 struct stop_reply *stop_reply;
8159
8160 again:
8161
8162 status->set_ignore ();
8163
8164 stop_reply = queued_stop_reply (ptid);
8165 if (stop_reply != NULL)
8166 return process_stop_reply (stop_reply, status);
8167
8168 if (rs->cached_wait_status)
8169 /* Use the cached wait status, but only once. */
8170 rs->cached_wait_status = 0;
8171 else
8172 {
8173 int ret;
8174 int is_notif;
8175 int forever = ((options & TARGET_WNOHANG) == 0
8176 && rs->wait_forever_enabled_p);
8177
8178 if (!rs->waiting_for_stop_reply)
8179 {
8180 status->set_no_resumed ();
8181 return minus_one_ptid;
8182 }
8183
8184 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8185 _never_ wait for ever -> test on target_is_async_p().
8186 However, before we do that we need to ensure that the caller
8187 knows how to take the target into/out of async mode. */
8188 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8189
8190 /* GDB gets a notification. Return to core as this event is
8191 not interesting. */
8192 if (ret != -1 && is_notif)
8193 return minus_one_ptid;
8194
8195 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8196 return minus_one_ptid;
8197 }
8198
8199 buf = rs->buf.data ();
8200
8201 /* Assume that the target has acknowledged Ctrl-C unless we receive
8202 an 'F' or 'O' packet. */
8203 if (buf[0] != 'F' && buf[0] != 'O')
8204 rs->ctrlc_pending_p = 0;
8205
8206 switch (buf[0])
8207 {
8208 case 'E': /* Error of some sort. */
8209 /* We're out of sync with the target now. Did it continue or
8210 not? Not is more likely, so report a stop. */
8211 rs->waiting_for_stop_reply = 0;
8212
8213 warning (_("Remote failure reply: %s"), buf);
8214 status->set_stopped (GDB_SIGNAL_0);
8215 break;
8216 case 'F': /* File-I/O request. */
8217 /* GDB may access the inferior memory while handling the File-I/O
8218 request, but we don't want GDB accessing memory while waiting
8219 for a stop reply. See the comments in putpkt_binary. Set
8220 waiting_for_stop_reply to 0 temporarily. */
8221 rs->waiting_for_stop_reply = 0;
8222 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8223 rs->ctrlc_pending_p = 0;
8224 /* GDB handled the File-I/O request, and the target is running
8225 again. Keep waiting for events. */
8226 rs->waiting_for_stop_reply = 1;
8227 break;
8228 case 'N': case 'T': case 'S': case 'X': case 'W':
8229 {
8230 /* There is a stop reply to handle. */
8231 rs->waiting_for_stop_reply = 0;
8232
8233 stop_reply
8234 = (struct stop_reply *) remote_notif_parse (this,
8235 &notif_client_stop,
8236 rs->buf.data ());
8237
8238 event_ptid = process_stop_reply (stop_reply, status);
8239 break;
8240 }
8241 case 'O': /* Console output. */
8242 remote_console_output (buf + 1);
8243 break;
8244 case '\0':
8245 if (rs->last_sent_signal != GDB_SIGNAL_0)
8246 {
8247 /* Zero length reply means that we tried 'S' or 'C' and the
8248 remote system doesn't support it. */
8249 target_terminal::ours_for_output ();
8250 printf_filtered
8251 ("Can't send signals to this remote system. %s not sent.\n",
8252 gdb_signal_to_name (rs->last_sent_signal));
8253 rs->last_sent_signal = GDB_SIGNAL_0;
8254 target_terminal::inferior ();
8255
8256 strcpy (buf, rs->last_sent_step ? "s" : "c");
8257 putpkt (buf);
8258 break;
8259 }
8260 /* fallthrough */
8261 default:
8262 warning (_("Invalid remote reply: %s"), buf);
8263 break;
8264 }
8265
8266 if (status->kind () == TARGET_WAITKIND_NO_RESUMED)
8267 return minus_one_ptid;
8268 else if (status->kind () == TARGET_WAITKIND_IGNORE)
8269 {
8270 /* Nothing interesting happened. If we're doing a non-blocking
8271 poll, we're done. Otherwise, go back to waiting. */
8272 if (options & TARGET_WNOHANG)
8273 return minus_one_ptid;
8274 else
8275 goto again;
8276 }
8277 else if (status->kind () != TARGET_WAITKIND_EXITED
8278 && status->kind () != TARGET_WAITKIND_SIGNALLED)
8279 {
8280 if (event_ptid != null_ptid)
8281 record_currthread (rs, event_ptid);
8282 else
8283 event_ptid = first_remote_resumed_thread (this);
8284 }
8285 else
8286 {
8287 /* A process exit. Invalidate our notion of current thread. */
8288 record_currthread (rs, minus_one_ptid);
8289 /* It's possible that the packet did not include a pid. */
8290 if (event_ptid == null_ptid)
8291 event_ptid = first_remote_resumed_thread (this);
8292 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8293 if (event_ptid == null_ptid)
8294 event_ptid = magic_null_ptid;
8295 }
8296
8297 return event_ptid;
8298 }
8299
8300 /* Wait until the remote machine stops, then return, storing status in
8301 STATUS just as `wait' would. */
8302
8303 ptid_t
8304 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8305 target_wait_flags options)
8306 {
8307 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8308
8309 remote_state *rs = get_remote_state ();
8310
8311 /* Start by clearing the flag that asks for our wait method to be called,
8312 we'll mark it again at the end if needed. */
8313 if (target_is_async_p ())
8314 clear_async_event_handler (rs->remote_async_inferior_event_token);
8315
8316 ptid_t event_ptid;
8317
8318 if (target_is_non_stop_p ())
8319 event_ptid = wait_ns (ptid, status, options);
8320 else
8321 event_ptid = wait_as (ptid, status, options);
8322
8323 if (target_is_async_p ())
8324 {
8325 /* If there are events left in the queue, or unacknowledged
8326 notifications, then tell the event loop to call us again. */
8327 if (!rs->stop_reply_queue.empty ()
8328 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8329 mark_async_event_handler (rs->remote_async_inferior_event_token);
8330 }
8331
8332 return event_ptid;
8333 }
8334
8335 /* Fetch a single register using a 'p' packet. */
8336
8337 int
8338 remote_target::fetch_register_using_p (struct regcache *regcache,
8339 packet_reg *reg)
8340 {
8341 struct gdbarch *gdbarch = regcache->arch ();
8342 struct remote_state *rs = get_remote_state ();
8343 char *buf, *p;
8344 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8345 int i;
8346
8347 if (packet_support (PACKET_p) == PACKET_DISABLE)
8348 return 0;
8349
8350 if (reg->pnum == -1)
8351 return 0;
8352
8353 p = rs->buf.data ();
8354 *p++ = 'p';
8355 p += hexnumstr (p, reg->pnum);
8356 *p++ = '\0';
8357 putpkt (rs->buf);
8358 getpkt (&rs->buf, 0);
8359
8360 buf = rs->buf.data ();
8361
8362 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8363 {
8364 case PACKET_OK:
8365 break;
8366 case PACKET_UNKNOWN:
8367 return 0;
8368 case PACKET_ERROR:
8369 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8370 gdbarch_register_name (regcache->arch (),
8371 reg->regnum),
8372 buf);
8373 }
8374
8375 /* If this register is unfetchable, tell the regcache. */
8376 if (buf[0] == 'x')
8377 {
8378 regcache->raw_supply (reg->regnum, NULL);
8379 return 1;
8380 }
8381
8382 /* Otherwise, parse and supply the value. */
8383 p = buf;
8384 i = 0;
8385 while (p[0] != 0)
8386 {
8387 if (p[1] == 0)
8388 error (_("fetch_register_using_p: early buf termination"));
8389
8390 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8391 p += 2;
8392 }
8393 regcache->raw_supply (reg->regnum, regp);
8394 return 1;
8395 }
8396
8397 /* Fetch the registers included in the target's 'g' packet. */
8398
8399 int
8400 remote_target::send_g_packet ()
8401 {
8402 struct remote_state *rs = get_remote_state ();
8403 int buf_len;
8404
8405 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8406 putpkt (rs->buf);
8407 getpkt (&rs->buf, 0);
8408 if (packet_check_result (rs->buf) == PACKET_ERROR)
8409 error (_("Could not read registers; remote failure reply '%s'"),
8410 rs->buf.data ());
8411
8412 /* We can get out of synch in various cases. If the first character
8413 in the buffer is not a hex character, assume that has happened
8414 and try to fetch another packet to read. */
8415 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8416 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8417 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8418 && rs->buf[0] != 'x') /* New: unavailable register value. */
8419 {
8420 remote_debug_printf ("Bad register packet; fetching a new packet");
8421 getpkt (&rs->buf, 0);
8422 }
8423
8424 buf_len = strlen (rs->buf.data ());
8425
8426 /* Sanity check the received packet. */
8427 if (buf_len % 2 != 0)
8428 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8429
8430 return buf_len / 2;
8431 }
8432
8433 void
8434 remote_target::process_g_packet (struct regcache *regcache)
8435 {
8436 struct gdbarch *gdbarch = regcache->arch ();
8437 struct remote_state *rs = get_remote_state ();
8438 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8439 int i, buf_len;
8440 char *p;
8441 char *regs;
8442
8443 buf_len = strlen (rs->buf.data ());
8444
8445 /* Further sanity checks, with knowledge of the architecture. */
8446 if (buf_len > 2 * rsa->sizeof_g_packet)
8447 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8448 "bytes): %s"),
8449 rsa->sizeof_g_packet, buf_len / 2,
8450 rs->buf.data ());
8451
8452 /* Save the size of the packet sent to us by the target. It is used
8453 as a heuristic when determining the max size of packets that the
8454 target can safely receive. */
8455 if (rsa->actual_register_packet_size == 0)
8456 rsa->actual_register_packet_size = buf_len;
8457
8458 /* If this is smaller than we guessed the 'g' packet would be,
8459 update our records. A 'g' reply that doesn't include a register's
8460 value implies either that the register is not available, or that
8461 the 'p' packet must be used. */
8462 if (buf_len < 2 * rsa->sizeof_g_packet)
8463 {
8464 long sizeof_g_packet = buf_len / 2;
8465
8466 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8467 {
8468 long offset = rsa->regs[i].offset;
8469 long reg_size = register_size (gdbarch, i);
8470
8471 if (rsa->regs[i].pnum == -1)
8472 continue;
8473
8474 if (offset >= sizeof_g_packet)
8475 rsa->regs[i].in_g_packet = 0;
8476 else if (offset + reg_size > sizeof_g_packet)
8477 error (_("Truncated register %d in remote 'g' packet"), i);
8478 else
8479 rsa->regs[i].in_g_packet = 1;
8480 }
8481
8482 /* Looks valid enough, we can assume this is the correct length
8483 for a 'g' packet. It's important not to adjust
8484 rsa->sizeof_g_packet if we have truncated registers otherwise
8485 this "if" won't be run the next time the method is called
8486 with a packet of the same size and one of the internal errors
8487 below will trigger instead. */
8488 rsa->sizeof_g_packet = sizeof_g_packet;
8489 }
8490
8491 regs = (char *) alloca (rsa->sizeof_g_packet);
8492
8493 /* Unimplemented registers read as all bits zero. */
8494 memset (regs, 0, rsa->sizeof_g_packet);
8495
8496 /* Reply describes registers byte by byte, each byte encoded as two
8497 hex characters. Suck them all up, then supply them to the
8498 register cacheing/storage mechanism. */
8499
8500 p = rs->buf.data ();
8501 for (i = 0; i < rsa->sizeof_g_packet; i++)
8502 {
8503 if (p[0] == 0 || p[1] == 0)
8504 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8505 internal_error (__FILE__, __LINE__,
8506 _("unexpected end of 'g' packet reply"));
8507
8508 if (p[0] == 'x' && p[1] == 'x')
8509 regs[i] = 0; /* 'x' */
8510 else
8511 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8512 p += 2;
8513 }
8514
8515 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8516 {
8517 struct packet_reg *r = &rsa->regs[i];
8518 long reg_size = register_size (gdbarch, i);
8519
8520 if (r->in_g_packet)
8521 {
8522 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8523 /* This shouldn't happen - we adjusted in_g_packet above. */
8524 internal_error (__FILE__, __LINE__,
8525 _("unexpected end of 'g' packet reply"));
8526 else if (rs->buf[r->offset * 2] == 'x')
8527 {
8528 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8529 /* The register isn't available, mark it as such (at
8530 the same time setting the value to zero). */
8531 regcache->raw_supply (r->regnum, NULL);
8532 }
8533 else
8534 regcache->raw_supply (r->regnum, regs + r->offset);
8535 }
8536 }
8537 }
8538
8539 void
8540 remote_target::fetch_registers_using_g (struct regcache *regcache)
8541 {
8542 send_g_packet ();
8543 process_g_packet (regcache);
8544 }
8545
8546 /* Make the remote selected traceframe match GDB's selected
8547 traceframe. */
8548
8549 void
8550 remote_target::set_remote_traceframe ()
8551 {
8552 int newnum;
8553 struct remote_state *rs = get_remote_state ();
8554
8555 if (rs->remote_traceframe_number == get_traceframe_number ())
8556 return;
8557
8558 /* Avoid recursion, remote_trace_find calls us again. */
8559 rs->remote_traceframe_number = get_traceframe_number ();
8560
8561 newnum = target_trace_find (tfind_number,
8562 get_traceframe_number (), 0, 0, NULL);
8563
8564 /* Should not happen. If it does, all bets are off. */
8565 if (newnum != get_traceframe_number ())
8566 warning (_("could not set remote traceframe"));
8567 }
8568
8569 void
8570 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8571 {
8572 struct gdbarch *gdbarch = regcache->arch ();
8573 struct remote_state *rs = get_remote_state ();
8574 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8575 int i;
8576
8577 set_remote_traceframe ();
8578 set_general_thread (regcache->ptid ());
8579
8580 if (regnum >= 0)
8581 {
8582 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8583
8584 gdb_assert (reg != NULL);
8585
8586 /* If this register might be in the 'g' packet, try that first -
8587 we are likely to read more than one register. If this is the
8588 first 'g' packet, we might be overly optimistic about its
8589 contents, so fall back to 'p'. */
8590 if (reg->in_g_packet)
8591 {
8592 fetch_registers_using_g (regcache);
8593 if (reg->in_g_packet)
8594 return;
8595 }
8596
8597 if (fetch_register_using_p (regcache, reg))
8598 return;
8599
8600 /* This register is not available. */
8601 regcache->raw_supply (reg->regnum, NULL);
8602
8603 return;
8604 }
8605
8606 fetch_registers_using_g (regcache);
8607
8608 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8609 if (!rsa->regs[i].in_g_packet)
8610 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8611 {
8612 /* This register is not available. */
8613 regcache->raw_supply (i, NULL);
8614 }
8615 }
8616
8617 /* Prepare to store registers. Since we may send them all (using a
8618 'G' request), we have to read out the ones we don't want to change
8619 first. */
8620
8621 void
8622 remote_target::prepare_to_store (struct regcache *regcache)
8623 {
8624 struct remote_state *rs = get_remote_state ();
8625 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8626 int i;
8627
8628 /* Make sure the entire registers array is valid. */
8629 switch (packet_support (PACKET_P))
8630 {
8631 case PACKET_DISABLE:
8632 case PACKET_SUPPORT_UNKNOWN:
8633 /* Make sure all the necessary registers are cached. */
8634 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8635 if (rsa->regs[i].in_g_packet)
8636 regcache->raw_update (rsa->regs[i].regnum);
8637 break;
8638 case PACKET_ENABLE:
8639 break;
8640 }
8641 }
8642
8643 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8644 packet was not recognized. */
8645
8646 int
8647 remote_target::store_register_using_P (const struct regcache *regcache,
8648 packet_reg *reg)
8649 {
8650 struct gdbarch *gdbarch = regcache->arch ();
8651 struct remote_state *rs = get_remote_state ();
8652 /* Try storing a single register. */
8653 char *buf = rs->buf.data ();
8654 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8655 char *p;
8656
8657 if (packet_support (PACKET_P) == PACKET_DISABLE)
8658 return 0;
8659
8660 if (reg->pnum == -1)
8661 return 0;
8662
8663 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8664 p = buf + strlen (buf);
8665 regcache->raw_collect (reg->regnum, regp);
8666 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8667 putpkt (rs->buf);
8668 getpkt (&rs->buf, 0);
8669
8670 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8671 {
8672 case PACKET_OK:
8673 return 1;
8674 case PACKET_ERROR:
8675 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8676 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8677 case PACKET_UNKNOWN:
8678 return 0;
8679 default:
8680 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8681 }
8682 }
8683
8684 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8685 contents of the register cache buffer. FIXME: ignores errors. */
8686
8687 void
8688 remote_target::store_registers_using_G (const struct regcache *regcache)
8689 {
8690 struct remote_state *rs = get_remote_state ();
8691 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8692 gdb_byte *regs;
8693 char *p;
8694
8695 /* Extract all the registers in the regcache copying them into a
8696 local buffer. */
8697 {
8698 int i;
8699
8700 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8701 memset (regs, 0, rsa->sizeof_g_packet);
8702 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8703 {
8704 struct packet_reg *r = &rsa->regs[i];
8705
8706 if (r->in_g_packet)
8707 regcache->raw_collect (r->regnum, regs + r->offset);
8708 }
8709 }
8710
8711 /* Command describes registers byte by byte,
8712 each byte encoded as two hex characters. */
8713 p = rs->buf.data ();
8714 *p++ = 'G';
8715 bin2hex (regs, p, rsa->sizeof_g_packet);
8716 putpkt (rs->buf);
8717 getpkt (&rs->buf, 0);
8718 if (packet_check_result (rs->buf) == PACKET_ERROR)
8719 error (_("Could not write registers; remote failure reply '%s'"),
8720 rs->buf.data ());
8721 }
8722
8723 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8724 of the register cache buffer. FIXME: ignores errors. */
8725
8726 void
8727 remote_target::store_registers (struct regcache *regcache, int regnum)
8728 {
8729 struct gdbarch *gdbarch = regcache->arch ();
8730 struct remote_state *rs = get_remote_state ();
8731 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8732 int i;
8733
8734 set_remote_traceframe ();
8735 set_general_thread (regcache->ptid ());
8736
8737 if (regnum >= 0)
8738 {
8739 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8740
8741 gdb_assert (reg != NULL);
8742
8743 /* Always prefer to store registers using the 'P' packet if
8744 possible; we often change only a small number of registers.
8745 Sometimes we change a larger number; we'd need help from a
8746 higher layer to know to use 'G'. */
8747 if (store_register_using_P (regcache, reg))
8748 return;
8749
8750 /* For now, don't complain if we have no way to write the
8751 register. GDB loses track of unavailable registers too
8752 easily. Some day, this may be an error. We don't have
8753 any way to read the register, either... */
8754 if (!reg->in_g_packet)
8755 return;
8756
8757 store_registers_using_G (regcache);
8758 return;
8759 }
8760
8761 store_registers_using_G (regcache);
8762
8763 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8764 if (!rsa->regs[i].in_g_packet)
8765 if (!store_register_using_P (regcache, &rsa->regs[i]))
8766 /* See above for why we do not issue an error here. */
8767 continue;
8768 }
8769 \f
8770
8771 /* Return the number of hex digits in num. */
8772
8773 static int
8774 hexnumlen (ULONGEST num)
8775 {
8776 int i;
8777
8778 for (i = 0; num != 0; i++)
8779 num >>= 4;
8780
8781 return std::max (i, 1);
8782 }
8783
8784 /* Set BUF to the minimum number of hex digits representing NUM. */
8785
8786 static int
8787 hexnumstr (char *buf, ULONGEST num)
8788 {
8789 int len = hexnumlen (num);
8790
8791 return hexnumnstr (buf, num, len);
8792 }
8793
8794
8795 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8796
8797 static int
8798 hexnumnstr (char *buf, ULONGEST num, int width)
8799 {
8800 int i;
8801
8802 buf[width] = '\0';
8803
8804 for (i = width - 1; i >= 0; i--)
8805 {
8806 buf[i] = "0123456789abcdef"[(num & 0xf)];
8807 num >>= 4;
8808 }
8809
8810 return width;
8811 }
8812
8813 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8814
8815 static CORE_ADDR
8816 remote_address_masked (CORE_ADDR addr)
8817 {
8818 unsigned int address_size = remote_address_size;
8819
8820 /* If "remoteaddresssize" was not set, default to target address size. */
8821 if (!address_size)
8822 address_size = gdbarch_addr_bit (target_gdbarch ());
8823
8824 if (address_size > 0
8825 && address_size < (sizeof (ULONGEST) * 8))
8826 {
8827 /* Only create a mask when that mask can safely be constructed
8828 in a ULONGEST variable. */
8829 ULONGEST mask = 1;
8830
8831 mask = (mask << address_size) - 1;
8832 addr &= mask;
8833 }
8834 return addr;
8835 }
8836
8837 /* Determine whether the remote target supports binary downloading.
8838 This is accomplished by sending a no-op memory write of zero length
8839 to the target at the specified address. It does not suffice to send
8840 the whole packet, since many stubs strip the eighth bit and
8841 subsequently compute a wrong checksum, which causes real havoc with
8842 remote_write_bytes.
8843
8844 NOTE: This can still lose if the serial line is not eight-bit
8845 clean. In cases like this, the user should clear "remote
8846 X-packet". */
8847
8848 void
8849 remote_target::check_binary_download (CORE_ADDR addr)
8850 {
8851 struct remote_state *rs = get_remote_state ();
8852
8853 switch (packet_support (PACKET_X))
8854 {
8855 case PACKET_DISABLE:
8856 break;
8857 case PACKET_ENABLE:
8858 break;
8859 case PACKET_SUPPORT_UNKNOWN:
8860 {
8861 char *p;
8862
8863 p = rs->buf.data ();
8864 *p++ = 'X';
8865 p += hexnumstr (p, (ULONGEST) addr);
8866 *p++ = ',';
8867 p += hexnumstr (p, (ULONGEST) 0);
8868 *p++ = ':';
8869 *p = '\0';
8870
8871 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8872 getpkt (&rs->buf, 0);
8873
8874 if (rs->buf[0] == '\0')
8875 {
8876 remote_debug_printf ("binary downloading NOT supported by target");
8877 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8878 }
8879 else
8880 {
8881 remote_debug_printf ("binary downloading supported by target");
8882 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8883 }
8884 break;
8885 }
8886 }
8887 }
8888
8889 /* Helper function to resize the payload in order to try to get a good
8890 alignment. We try to write an amount of data such that the next write will
8891 start on an address aligned on REMOTE_ALIGN_WRITES. */
8892
8893 static int
8894 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8895 {
8896 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8897 }
8898
8899 /* Write memory data directly to the remote machine.
8900 This does not inform the data cache; the data cache uses this.
8901 HEADER is the starting part of the packet.
8902 MEMADDR is the address in the remote memory space.
8903 MYADDR is the address of the buffer in our space.
8904 LEN_UNITS is the number of addressable units to write.
8905 UNIT_SIZE is the length in bytes of an addressable unit.
8906 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8907 should send data as binary ('X'), or hex-encoded ('M').
8908
8909 The function creates packet of the form
8910 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8911
8912 where encoding of <DATA> is terminated by PACKET_FORMAT.
8913
8914 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8915 are omitted.
8916
8917 Return the transferred status, error or OK (an
8918 'enum target_xfer_status' value). Save the number of addressable units
8919 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8920
8921 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8922 exchange between gdb and the stub could look like (?? in place of the
8923 checksum):
8924
8925 -> $m1000,4#??
8926 <- aaaabbbbccccdddd
8927
8928 -> $M1000,3:eeeeffffeeee#??
8929 <- OK
8930
8931 -> $m1000,4#??
8932 <- eeeeffffeeeedddd */
8933
8934 target_xfer_status
8935 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8936 const gdb_byte *myaddr,
8937 ULONGEST len_units,
8938 int unit_size,
8939 ULONGEST *xfered_len_units,
8940 char packet_format, int use_length)
8941 {
8942 struct remote_state *rs = get_remote_state ();
8943 char *p;
8944 char *plen = NULL;
8945 int plenlen = 0;
8946 int todo_units;
8947 int units_written;
8948 int payload_capacity_bytes;
8949 int payload_length_bytes;
8950
8951 if (packet_format != 'X' && packet_format != 'M')
8952 internal_error (__FILE__, __LINE__,
8953 _("remote_write_bytes_aux: bad packet format"));
8954
8955 if (len_units == 0)
8956 return TARGET_XFER_EOF;
8957
8958 payload_capacity_bytes = get_memory_write_packet_size ();
8959
8960 /* The packet buffer will be large enough for the payload;
8961 get_memory_packet_size ensures this. */
8962 rs->buf[0] = '\0';
8963
8964 /* Compute the size of the actual payload by subtracting out the
8965 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8966
8967 payload_capacity_bytes -= strlen ("$,:#NN");
8968 if (!use_length)
8969 /* The comma won't be used. */
8970 payload_capacity_bytes += 1;
8971 payload_capacity_bytes -= strlen (header);
8972 payload_capacity_bytes -= hexnumlen (memaddr);
8973
8974 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8975
8976 strcat (rs->buf.data (), header);
8977 p = rs->buf.data () + strlen (header);
8978
8979 /* Compute a best guess of the number of bytes actually transfered. */
8980 if (packet_format == 'X')
8981 {
8982 /* Best guess at number of bytes that will fit. */
8983 todo_units = std::min (len_units,
8984 (ULONGEST) payload_capacity_bytes / unit_size);
8985 if (use_length)
8986 payload_capacity_bytes -= hexnumlen (todo_units);
8987 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8988 }
8989 else
8990 {
8991 /* Number of bytes that will fit. */
8992 todo_units
8993 = std::min (len_units,
8994 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8995 if (use_length)
8996 payload_capacity_bytes -= hexnumlen (todo_units);
8997 todo_units = std::min (todo_units,
8998 (payload_capacity_bytes / unit_size) / 2);
8999 }
9000
9001 if (todo_units <= 0)
9002 internal_error (__FILE__, __LINE__,
9003 _("minimum packet size too small to write data"));
9004
9005 /* If we already need another packet, then try to align the end
9006 of this packet to a useful boundary. */
9007 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9008 todo_units = align_for_efficient_write (todo_units, memaddr);
9009
9010 /* Append "<memaddr>". */
9011 memaddr = remote_address_masked (memaddr);
9012 p += hexnumstr (p, (ULONGEST) memaddr);
9013
9014 if (use_length)
9015 {
9016 /* Append ",". */
9017 *p++ = ',';
9018
9019 /* Append the length and retain its location and size. It may need to be
9020 adjusted once the packet body has been created. */
9021 plen = p;
9022 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9023 p += plenlen;
9024 }
9025
9026 /* Append ":". */
9027 *p++ = ':';
9028 *p = '\0';
9029
9030 /* Append the packet body. */
9031 if (packet_format == 'X')
9032 {
9033 /* Binary mode. Send target system values byte by byte, in
9034 increasing byte addresses. Only escape certain critical
9035 characters. */
9036 payload_length_bytes =
9037 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9038 &units_written, payload_capacity_bytes);
9039
9040 /* If not all TODO units fit, then we'll need another packet. Make
9041 a second try to keep the end of the packet aligned. Don't do
9042 this if the packet is tiny. */
9043 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9044 {
9045 int new_todo_units;
9046
9047 new_todo_units = align_for_efficient_write (units_written, memaddr);
9048
9049 if (new_todo_units != units_written)
9050 payload_length_bytes =
9051 remote_escape_output (myaddr, new_todo_units, unit_size,
9052 (gdb_byte *) p, &units_written,
9053 payload_capacity_bytes);
9054 }
9055
9056 p += payload_length_bytes;
9057 if (use_length && units_written < todo_units)
9058 {
9059 /* Escape chars have filled up the buffer prematurely,
9060 and we have actually sent fewer units than planned.
9061 Fix-up the length field of the packet. Use the same
9062 number of characters as before. */
9063 plen += hexnumnstr (plen, (ULONGEST) units_written,
9064 plenlen);
9065 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9066 }
9067 }
9068 else
9069 {
9070 /* Normal mode: Send target system values byte by byte, in
9071 increasing byte addresses. Each byte is encoded as a two hex
9072 value. */
9073 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9074 units_written = todo_units;
9075 }
9076
9077 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9078 getpkt (&rs->buf, 0);
9079
9080 if (rs->buf[0] == 'E')
9081 return TARGET_XFER_E_IO;
9082
9083 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9084 send fewer units than we'd planned. */
9085 *xfered_len_units = (ULONGEST) units_written;
9086 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9087 }
9088
9089 /* Write memory data directly to the remote machine.
9090 This does not inform the data cache; the data cache uses this.
9091 MEMADDR is the address in the remote memory space.
9092 MYADDR is the address of the buffer in our space.
9093 LEN is the number of bytes.
9094
9095 Return the transferred status, error or OK (an
9096 'enum target_xfer_status' value). Save the number of bytes
9097 transferred in *XFERED_LEN. Only transfer a single packet. */
9098
9099 target_xfer_status
9100 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9101 ULONGEST len, int unit_size,
9102 ULONGEST *xfered_len)
9103 {
9104 const char *packet_format = NULL;
9105
9106 /* Check whether the target supports binary download. */
9107 check_binary_download (memaddr);
9108
9109 switch (packet_support (PACKET_X))
9110 {
9111 case PACKET_ENABLE:
9112 packet_format = "X";
9113 break;
9114 case PACKET_DISABLE:
9115 packet_format = "M";
9116 break;
9117 case PACKET_SUPPORT_UNKNOWN:
9118 internal_error (__FILE__, __LINE__,
9119 _("remote_write_bytes: bad internal state"));
9120 default:
9121 internal_error (__FILE__, __LINE__, _("bad switch"));
9122 }
9123
9124 return remote_write_bytes_aux (packet_format,
9125 memaddr, myaddr, len, unit_size, xfered_len,
9126 packet_format[0], 1);
9127 }
9128
9129 /* Read memory data directly from the remote machine.
9130 This does not use the data cache; the data cache uses this.
9131 MEMADDR is the address in the remote memory space.
9132 MYADDR is the address of the buffer in our space.
9133 LEN_UNITS is the number of addressable memory units to read..
9134 UNIT_SIZE is the length in bytes of an addressable unit.
9135
9136 Return the transferred status, error or OK (an
9137 'enum target_xfer_status' value). Save the number of bytes
9138 transferred in *XFERED_LEN_UNITS.
9139
9140 See the comment of remote_write_bytes_aux for an example of
9141 memory read/write exchange between gdb and the stub. */
9142
9143 target_xfer_status
9144 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9145 ULONGEST len_units,
9146 int unit_size, ULONGEST *xfered_len_units)
9147 {
9148 struct remote_state *rs = get_remote_state ();
9149 int buf_size_bytes; /* Max size of packet output buffer. */
9150 char *p;
9151 int todo_units;
9152 int decoded_bytes;
9153
9154 buf_size_bytes = get_memory_read_packet_size ();
9155 /* The packet buffer will be large enough for the payload;
9156 get_memory_packet_size ensures this. */
9157
9158 /* Number of units that will fit. */
9159 todo_units = std::min (len_units,
9160 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9161
9162 /* Construct "m"<memaddr>","<len>". */
9163 memaddr = remote_address_masked (memaddr);
9164 p = rs->buf.data ();
9165 *p++ = 'm';
9166 p += hexnumstr (p, (ULONGEST) memaddr);
9167 *p++ = ',';
9168 p += hexnumstr (p, (ULONGEST) todo_units);
9169 *p = '\0';
9170 putpkt (rs->buf);
9171 getpkt (&rs->buf, 0);
9172 if (rs->buf[0] == 'E'
9173 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9174 && rs->buf[3] == '\0')
9175 return TARGET_XFER_E_IO;
9176 /* Reply describes memory byte by byte, each byte encoded as two hex
9177 characters. */
9178 p = rs->buf.data ();
9179 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9180 /* Return what we have. Let higher layers handle partial reads. */
9181 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9182 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9183 }
9184
9185 /* Using the set of read-only target sections of remote, read live
9186 read-only memory.
9187
9188 For interface/parameters/return description see target.h,
9189 to_xfer_partial. */
9190
9191 target_xfer_status
9192 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9193 ULONGEST memaddr,
9194 ULONGEST len,
9195 int unit_size,
9196 ULONGEST *xfered_len)
9197 {
9198 const struct target_section *secp;
9199
9200 secp = target_section_by_addr (this, memaddr);
9201 if (secp != NULL
9202 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9203 {
9204 ULONGEST memend = memaddr + len;
9205
9206 const target_section_table *table = target_get_section_table (this);
9207 for (const target_section &p : *table)
9208 {
9209 if (memaddr >= p.addr)
9210 {
9211 if (memend <= p.endaddr)
9212 {
9213 /* Entire transfer is within this section. */
9214 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9215 xfered_len);
9216 }
9217 else if (memaddr >= p.endaddr)
9218 {
9219 /* This section ends before the transfer starts. */
9220 continue;
9221 }
9222 else
9223 {
9224 /* This section overlaps the transfer. Just do half. */
9225 len = p.endaddr - memaddr;
9226 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9227 xfered_len);
9228 }
9229 }
9230 }
9231 }
9232
9233 return TARGET_XFER_EOF;
9234 }
9235
9236 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9237 first if the requested memory is unavailable in traceframe.
9238 Otherwise, fall back to remote_read_bytes_1. */
9239
9240 target_xfer_status
9241 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9242 gdb_byte *myaddr, ULONGEST len, int unit_size,
9243 ULONGEST *xfered_len)
9244 {
9245 if (len == 0)
9246 return TARGET_XFER_EOF;
9247
9248 if (get_traceframe_number () != -1)
9249 {
9250 std::vector<mem_range> available;
9251
9252 /* If we fail to get the set of available memory, then the
9253 target does not support querying traceframe info, and so we
9254 attempt reading from the traceframe anyway (assuming the
9255 target implements the old QTro packet then). */
9256 if (traceframe_available_memory (&available, memaddr, len))
9257 {
9258 if (available.empty () || available[0].start != memaddr)
9259 {
9260 enum target_xfer_status res;
9261
9262 /* Don't read into the traceframe's available
9263 memory. */
9264 if (!available.empty ())
9265 {
9266 LONGEST oldlen = len;
9267
9268 len = available[0].start - memaddr;
9269 gdb_assert (len <= oldlen);
9270 }
9271
9272 /* This goes through the topmost target again. */
9273 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9274 len, unit_size, xfered_len);
9275 if (res == TARGET_XFER_OK)
9276 return TARGET_XFER_OK;
9277 else
9278 {
9279 /* No use trying further, we know some memory starting
9280 at MEMADDR isn't available. */
9281 *xfered_len = len;
9282 return (*xfered_len != 0) ?
9283 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9284 }
9285 }
9286
9287 /* Don't try to read more than how much is available, in
9288 case the target implements the deprecated QTro packet to
9289 cater for older GDBs (the target's knowledge of read-only
9290 sections may be outdated by now). */
9291 len = available[0].length;
9292 }
9293 }
9294
9295 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9296 }
9297
9298 \f
9299
9300 /* Sends a packet with content determined by the printf format string
9301 FORMAT and the remaining arguments, then gets the reply. Returns
9302 whether the packet was a success, a failure, or unknown. */
9303
9304 packet_result
9305 remote_target::remote_send_printf (const char *format, ...)
9306 {
9307 struct remote_state *rs = get_remote_state ();
9308 int max_size = get_remote_packet_size ();
9309 va_list ap;
9310
9311 va_start (ap, format);
9312
9313 rs->buf[0] = '\0';
9314 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9315
9316 va_end (ap);
9317
9318 if (size >= max_size)
9319 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9320
9321 if (putpkt (rs->buf) < 0)
9322 error (_("Communication problem with target."));
9323
9324 rs->buf[0] = '\0';
9325 getpkt (&rs->buf, 0);
9326
9327 return packet_check_result (rs->buf);
9328 }
9329
9330 /* Flash writing can take quite some time. We'll set
9331 effectively infinite timeout for flash operations.
9332 In future, we'll need to decide on a better approach. */
9333 static const int remote_flash_timeout = 1000;
9334
9335 void
9336 remote_target::flash_erase (ULONGEST address, LONGEST length)
9337 {
9338 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9339 enum packet_result ret;
9340 scoped_restore restore_timeout
9341 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9342
9343 ret = remote_send_printf ("vFlashErase:%s,%s",
9344 phex (address, addr_size),
9345 phex (length, 4));
9346 switch (ret)
9347 {
9348 case PACKET_UNKNOWN:
9349 error (_("Remote target does not support flash erase"));
9350 case PACKET_ERROR:
9351 error (_("Error erasing flash with vFlashErase packet"));
9352 default:
9353 break;
9354 }
9355 }
9356
9357 target_xfer_status
9358 remote_target::remote_flash_write (ULONGEST address,
9359 ULONGEST length, ULONGEST *xfered_len,
9360 const gdb_byte *data)
9361 {
9362 scoped_restore restore_timeout
9363 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9364 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9365 xfered_len,'X', 0);
9366 }
9367
9368 void
9369 remote_target::flash_done ()
9370 {
9371 int ret;
9372
9373 scoped_restore restore_timeout
9374 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9375
9376 ret = remote_send_printf ("vFlashDone");
9377
9378 switch (ret)
9379 {
9380 case PACKET_UNKNOWN:
9381 error (_("Remote target does not support vFlashDone"));
9382 case PACKET_ERROR:
9383 error (_("Error finishing flash operation"));
9384 default:
9385 break;
9386 }
9387 }
9388
9389 void
9390 remote_target::files_info ()
9391 {
9392 puts_filtered ("Debugging a target over a serial line.\n");
9393 }
9394 \f
9395 /* Stuff for dealing with the packets which are part of this protocol.
9396 See comment at top of file for details. */
9397
9398 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9399 error to higher layers. Called when a serial error is detected.
9400 The exception message is STRING, followed by a colon and a blank,
9401 the system error message for errno at function entry and final dot
9402 for output compatibility with throw_perror_with_name. */
9403
9404 static void
9405 unpush_and_perror (remote_target *target, const char *string)
9406 {
9407 int saved_errno = errno;
9408
9409 remote_unpush_target (target);
9410 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9411 safe_strerror (saved_errno));
9412 }
9413
9414 /* Read a single character from the remote end. The current quit
9415 handler is overridden to avoid quitting in the middle of packet
9416 sequence, as that would break communication with the remote server.
9417 See remote_serial_quit_handler for more detail. */
9418
9419 int
9420 remote_target::readchar (int timeout)
9421 {
9422 int ch;
9423 struct remote_state *rs = get_remote_state ();
9424
9425 {
9426 scoped_restore restore_quit_target
9427 = make_scoped_restore (&curr_quit_handler_target, this);
9428 scoped_restore restore_quit
9429 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9430
9431 rs->got_ctrlc_during_io = 0;
9432
9433 ch = serial_readchar (rs->remote_desc, timeout);
9434
9435 if (rs->got_ctrlc_during_io)
9436 set_quit_flag ();
9437 }
9438
9439 if (ch >= 0)
9440 return ch;
9441
9442 switch ((enum serial_rc) ch)
9443 {
9444 case SERIAL_EOF:
9445 remote_unpush_target (this);
9446 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9447 /* no return */
9448 case SERIAL_ERROR:
9449 unpush_and_perror (this, _("Remote communication error. "
9450 "Target disconnected."));
9451 /* no return */
9452 case SERIAL_TIMEOUT:
9453 break;
9454 }
9455 return ch;
9456 }
9457
9458 /* Wrapper for serial_write that closes the target and throws if
9459 writing fails. The current quit handler is overridden to avoid
9460 quitting in the middle of packet sequence, as that would break
9461 communication with the remote server. See
9462 remote_serial_quit_handler for more detail. */
9463
9464 void
9465 remote_target::remote_serial_write (const char *str, int len)
9466 {
9467 struct remote_state *rs = get_remote_state ();
9468
9469 scoped_restore restore_quit_target
9470 = make_scoped_restore (&curr_quit_handler_target, this);
9471 scoped_restore restore_quit
9472 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9473
9474 rs->got_ctrlc_during_io = 0;
9475
9476 if (serial_write (rs->remote_desc, str, len))
9477 {
9478 unpush_and_perror (this, _("Remote communication error. "
9479 "Target disconnected."));
9480 }
9481
9482 if (rs->got_ctrlc_during_io)
9483 set_quit_flag ();
9484 }
9485
9486 /* Return a string representing an escaped version of BUF, of len N.
9487 E.g. \n is converted to \\n, \t to \\t, etc. */
9488
9489 static std::string
9490 escape_buffer (const char *buf, int n)
9491 {
9492 string_file stb;
9493
9494 stb.putstrn (buf, n, '\\');
9495 return std::move (stb.string ());
9496 }
9497
9498 /* Display a null-terminated packet on stdout, for debugging, using C
9499 string notation. */
9500
9501 static void
9502 print_packet (const char *buf)
9503 {
9504 puts_filtered ("\"");
9505 fputstr_filtered (buf, '"', gdb_stdout);
9506 puts_filtered ("\"");
9507 }
9508
9509 int
9510 remote_target::putpkt (const char *buf)
9511 {
9512 return putpkt_binary (buf, strlen (buf));
9513 }
9514
9515 /* Wrapper around remote_target::putpkt to avoid exporting
9516 remote_target. */
9517
9518 int
9519 putpkt (remote_target *remote, const char *buf)
9520 {
9521 return remote->putpkt (buf);
9522 }
9523
9524 /* Send a packet to the remote machine, with error checking. The data
9525 of the packet is in BUF. The string in BUF can be at most
9526 get_remote_packet_size () - 5 to account for the $, # and checksum,
9527 and for a possible /0 if we are debugging (remote_debug) and want
9528 to print the sent packet as a string. */
9529
9530 int
9531 remote_target::putpkt_binary (const char *buf, int cnt)
9532 {
9533 struct remote_state *rs = get_remote_state ();
9534 int i;
9535 unsigned char csum = 0;
9536 gdb::def_vector<char> data (cnt + 6);
9537 char *buf2 = data.data ();
9538
9539 int ch;
9540 int tcount = 0;
9541 char *p;
9542
9543 /* Catch cases like trying to read memory or listing threads while
9544 we're waiting for a stop reply. The remote server wouldn't be
9545 ready to handle this request, so we'd hang and timeout. We don't
9546 have to worry about this in synchronous mode, because in that
9547 case it's not possible to issue a command while the target is
9548 running. This is not a problem in non-stop mode, because in that
9549 case, the stub is always ready to process serial input. */
9550 if (!target_is_non_stop_p ()
9551 && target_is_async_p ()
9552 && rs->waiting_for_stop_reply)
9553 {
9554 error (_("Cannot execute this command while the target is running.\n"
9555 "Use the \"interrupt\" command to stop the target\n"
9556 "and then try again."));
9557 }
9558
9559 /* We're sending out a new packet. Make sure we don't look at a
9560 stale cached response. */
9561 rs->cached_wait_status = 0;
9562
9563 /* Copy the packet into buffer BUF2, encapsulating it
9564 and giving it a checksum. */
9565
9566 p = buf2;
9567 *p++ = '$';
9568
9569 for (i = 0; i < cnt; i++)
9570 {
9571 csum += buf[i];
9572 *p++ = buf[i];
9573 }
9574 *p++ = '#';
9575 *p++ = tohex ((csum >> 4) & 0xf);
9576 *p++ = tohex (csum & 0xf);
9577
9578 /* Send it over and over until we get a positive ack. */
9579
9580 while (1)
9581 {
9582 if (remote_debug)
9583 {
9584 *p = '\0';
9585
9586 int len = (int) (p - buf2);
9587 int max_chars;
9588
9589 if (remote_packet_max_chars < 0)
9590 max_chars = len;
9591 else
9592 max_chars = remote_packet_max_chars;
9593
9594 std::string str
9595 = escape_buffer (buf2, std::min (len, max_chars));
9596
9597 if (len > max_chars)
9598 remote_debug_printf_nofunc
9599 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9600 len - max_chars);
9601 else
9602 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9603 }
9604 remote_serial_write (buf2, p - buf2);
9605
9606 /* If this is a no acks version of the remote protocol, send the
9607 packet and move on. */
9608 if (rs->noack_mode)
9609 break;
9610
9611 /* Read until either a timeout occurs (-2) or '+' is read.
9612 Handle any notification that arrives in the mean time. */
9613 while (1)
9614 {
9615 ch = readchar (remote_timeout);
9616
9617 switch (ch)
9618 {
9619 case '+':
9620 remote_debug_printf_nofunc ("Received Ack");
9621 return 1;
9622 case '-':
9623 remote_debug_printf_nofunc ("Received Nak");
9624 /* FALLTHROUGH */
9625 case SERIAL_TIMEOUT:
9626 tcount++;
9627 if (tcount > 3)
9628 return 0;
9629 break; /* Retransmit buffer. */
9630 case '$':
9631 {
9632 remote_debug_printf ("Packet instead of Ack, ignoring it");
9633 /* It's probably an old response sent because an ACK
9634 was lost. Gobble up the packet and ack it so it
9635 doesn't get retransmitted when we resend this
9636 packet. */
9637 skip_frame ();
9638 remote_serial_write ("+", 1);
9639 continue; /* Now, go look for +. */
9640 }
9641
9642 case '%':
9643 {
9644 int val;
9645
9646 /* If we got a notification, handle it, and go back to looking
9647 for an ack. */
9648 /* We've found the start of a notification. Now
9649 collect the data. */
9650 val = read_frame (&rs->buf);
9651 if (val >= 0)
9652 {
9653 remote_debug_printf_nofunc
9654 (" Notification received: %s",
9655 escape_buffer (rs->buf.data (), val).c_str ());
9656
9657 handle_notification (rs->notif_state, rs->buf.data ());
9658 /* We're in sync now, rewait for the ack. */
9659 tcount = 0;
9660 }
9661 else
9662 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9663 rs->buf.data ());
9664 continue;
9665 }
9666 /* fall-through */
9667 default:
9668 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9669 rs->buf.data ());
9670 continue;
9671 }
9672 break; /* Here to retransmit. */
9673 }
9674
9675 #if 0
9676 /* This is wrong. If doing a long backtrace, the user should be
9677 able to get out next time we call QUIT, without anything as
9678 violent as interrupt_query. If we want to provide a way out of
9679 here without getting to the next QUIT, it should be based on
9680 hitting ^C twice as in remote_wait. */
9681 if (quit_flag)
9682 {
9683 quit_flag = 0;
9684 interrupt_query ();
9685 }
9686 #endif
9687 }
9688
9689 return 0;
9690 }
9691
9692 /* Come here after finding the start of a frame when we expected an
9693 ack. Do our best to discard the rest of this packet. */
9694
9695 void
9696 remote_target::skip_frame ()
9697 {
9698 int c;
9699
9700 while (1)
9701 {
9702 c = readchar (remote_timeout);
9703 switch (c)
9704 {
9705 case SERIAL_TIMEOUT:
9706 /* Nothing we can do. */
9707 return;
9708 case '#':
9709 /* Discard the two bytes of checksum and stop. */
9710 c = readchar (remote_timeout);
9711 if (c >= 0)
9712 c = readchar (remote_timeout);
9713
9714 return;
9715 case '*': /* Run length encoding. */
9716 /* Discard the repeat count. */
9717 c = readchar (remote_timeout);
9718 if (c < 0)
9719 return;
9720 break;
9721 default:
9722 /* A regular character. */
9723 break;
9724 }
9725 }
9726 }
9727
9728 /* Come here after finding the start of the frame. Collect the rest
9729 into *BUF, verifying the checksum, length, and handling run-length
9730 compression. NUL terminate the buffer. If there is not enough room,
9731 expand *BUF.
9732
9733 Returns -1 on error, number of characters in buffer (ignoring the
9734 trailing NULL) on success. (could be extended to return one of the
9735 SERIAL status indications). */
9736
9737 long
9738 remote_target::read_frame (gdb::char_vector *buf_p)
9739 {
9740 unsigned char csum;
9741 long bc;
9742 int c;
9743 char *buf = buf_p->data ();
9744 struct remote_state *rs = get_remote_state ();
9745
9746 csum = 0;
9747 bc = 0;
9748
9749 while (1)
9750 {
9751 c = readchar (remote_timeout);
9752 switch (c)
9753 {
9754 case SERIAL_TIMEOUT:
9755 remote_debug_printf ("Timeout in mid-packet, retrying");
9756 return -1;
9757
9758 case '$':
9759 remote_debug_printf ("Saw new packet start in middle of old one");
9760 return -1; /* Start a new packet, count retries. */
9761
9762 case '#':
9763 {
9764 unsigned char pktcsum;
9765 int check_0 = 0;
9766 int check_1 = 0;
9767
9768 buf[bc] = '\0';
9769
9770 check_0 = readchar (remote_timeout);
9771 if (check_0 >= 0)
9772 check_1 = readchar (remote_timeout);
9773
9774 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9775 {
9776 remote_debug_printf ("Timeout in checksum, retrying");
9777 return -1;
9778 }
9779 else if (check_0 < 0 || check_1 < 0)
9780 {
9781 remote_debug_printf ("Communication error in checksum");
9782 return -1;
9783 }
9784
9785 /* Don't recompute the checksum; with no ack packets we
9786 don't have any way to indicate a packet retransmission
9787 is necessary. */
9788 if (rs->noack_mode)
9789 return bc;
9790
9791 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9792 if (csum == pktcsum)
9793 return bc;
9794
9795 remote_debug_printf
9796 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9797 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9798
9799 /* Number of characters in buffer ignoring trailing
9800 NULL. */
9801 return -1;
9802 }
9803 case '*': /* Run length encoding. */
9804 {
9805 int repeat;
9806
9807 csum += c;
9808 c = readchar (remote_timeout);
9809 csum += c;
9810 repeat = c - ' ' + 3; /* Compute repeat count. */
9811
9812 /* The character before ``*'' is repeated. */
9813
9814 if (repeat > 0 && repeat <= 255 && bc > 0)
9815 {
9816 if (bc + repeat - 1 >= buf_p->size () - 1)
9817 {
9818 /* Make some more room in the buffer. */
9819 buf_p->resize (buf_p->size () + repeat);
9820 buf = buf_p->data ();
9821 }
9822
9823 memset (&buf[bc], buf[bc - 1], repeat);
9824 bc += repeat;
9825 continue;
9826 }
9827
9828 buf[bc] = '\0';
9829 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9830 return -1;
9831 }
9832 default:
9833 if (bc >= buf_p->size () - 1)
9834 {
9835 /* Make some more room in the buffer. */
9836 buf_p->resize (buf_p->size () * 2);
9837 buf = buf_p->data ();
9838 }
9839
9840 buf[bc++] = c;
9841 csum += c;
9842 continue;
9843 }
9844 }
9845 }
9846
9847 /* Set this to the maximum number of seconds to wait instead of waiting forever
9848 in target_wait(). If this timer times out, then it generates an error and
9849 the command is aborted. This replaces most of the need for timeouts in the
9850 GDB test suite, and makes it possible to distinguish between a hung target
9851 and one with slow communications. */
9852
9853 static int watchdog = 0;
9854 static void
9855 show_watchdog (struct ui_file *file, int from_tty,
9856 struct cmd_list_element *c, const char *value)
9857 {
9858 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9859 }
9860
9861 /* Read a packet from the remote machine, with error checking, and
9862 store it in *BUF. Resize *BUF if necessary to hold the result. If
9863 FOREVER, wait forever rather than timing out; this is used (in
9864 synchronous mode) to wait for a target that is is executing user
9865 code to stop. */
9866 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9867 don't have to change all the calls to getpkt to deal with the
9868 return value, because at the moment I don't know what the right
9869 thing to do it for those. */
9870
9871 void
9872 remote_target::getpkt (gdb::char_vector *buf, int forever)
9873 {
9874 getpkt_sane (buf, forever);
9875 }
9876
9877
9878 /* Read a packet from the remote machine, with error checking, and
9879 store it in *BUF. Resize *BUF if necessary to hold the result. If
9880 FOREVER, wait forever rather than timing out; this is used (in
9881 synchronous mode) to wait for a target that is is executing user
9882 code to stop. If FOREVER == 0, this function is allowed to time
9883 out gracefully and return an indication of this to the caller.
9884 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9885 consider receiving a notification enough reason to return to the
9886 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9887 holds a notification or not (a regular packet). */
9888
9889 int
9890 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9891 int forever, int expecting_notif,
9892 int *is_notif)
9893 {
9894 struct remote_state *rs = get_remote_state ();
9895 int c;
9896 int tries;
9897 int timeout;
9898 int val = -1;
9899
9900 /* We're reading a new response. Make sure we don't look at a
9901 previously cached response. */
9902 rs->cached_wait_status = 0;
9903
9904 strcpy (buf->data (), "timeout");
9905
9906 if (forever)
9907 timeout = watchdog > 0 ? watchdog : -1;
9908 else if (expecting_notif)
9909 timeout = 0; /* There should already be a char in the buffer. If
9910 not, bail out. */
9911 else
9912 timeout = remote_timeout;
9913
9914 #define MAX_TRIES 3
9915
9916 /* Process any number of notifications, and then return when
9917 we get a packet. */
9918 for (;;)
9919 {
9920 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9921 times. */
9922 for (tries = 1; tries <= MAX_TRIES; tries++)
9923 {
9924 /* This can loop forever if the remote side sends us
9925 characters continuously, but if it pauses, we'll get
9926 SERIAL_TIMEOUT from readchar because of timeout. Then
9927 we'll count that as a retry.
9928
9929 Note that even when forever is set, we will only wait
9930 forever prior to the start of a packet. After that, we
9931 expect characters to arrive at a brisk pace. They should
9932 show up within remote_timeout intervals. */
9933 do
9934 c = readchar (timeout);
9935 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9936
9937 if (c == SERIAL_TIMEOUT)
9938 {
9939 if (expecting_notif)
9940 return -1; /* Don't complain, it's normal to not get
9941 anything in this case. */
9942
9943 if (forever) /* Watchdog went off? Kill the target. */
9944 {
9945 remote_unpush_target (this);
9946 throw_error (TARGET_CLOSE_ERROR,
9947 _("Watchdog timeout has expired. "
9948 "Target detached."));
9949 }
9950
9951 remote_debug_printf ("Timed out.");
9952 }
9953 else
9954 {
9955 /* We've found the start of a packet or notification.
9956 Now collect the data. */
9957 val = read_frame (buf);
9958 if (val >= 0)
9959 break;
9960 }
9961
9962 remote_serial_write ("-", 1);
9963 }
9964
9965 if (tries > MAX_TRIES)
9966 {
9967 /* We have tried hard enough, and just can't receive the
9968 packet/notification. Give up. */
9969 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9970
9971 /* Skip the ack char if we're in no-ack mode. */
9972 if (!rs->noack_mode)
9973 remote_serial_write ("+", 1);
9974 return -1;
9975 }
9976
9977 /* If we got an ordinary packet, return that to our caller. */
9978 if (c == '$')
9979 {
9980 if (remote_debug)
9981 {
9982 int max_chars;
9983
9984 if (remote_packet_max_chars < 0)
9985 max_chars = val;
9986 else
9987 max_chars = remote_packet_max_chars;
9988
9989 std::string str
9990 = escape_buffer (buf->data (),
9991 std::min (val, max_chars));
9992
9993 if (val > max_chars)
9994 remote_debug_printf_nofunc
9995 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9996 val - max_chars);
9997 else
9998 remote_debug_printf_nofunc ("Packet received: %s",
9999 str.c_str ());
10000 }
10001
10002 /* Skip the ack char if we're in no-ack mode. */
10003 if (!rs->noack_mode)
10004 remote_serial_write ("+", 1);
10005 if (is_notif != NULL)
10006 *is_notif = 0;
10007 return val;
10008 }
10009
10010 /* If we got a notification, handle it, and go back to looking
10011 for a packet. */
10012 else
10013 {
10014 gdb_assert (c == '%');
10015
10016 remote_debug_printf_nofunc
10017 (" Notification received: %s",
10018 escape_buffer (buf->data (), val).c_str ());
10019
10020 if (is_notif != NULL)
10021 *is_notif = 1;
10022
10023 handle_notification (rs->notif_state, buf->data ());
10024
10025 /* Notifications require no acknowledgement. */
10026
10027 if (expecting_notif)
10028 return val;
10029 }
10030 }
10031 }
10032
10033 int
10034 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10035 {
10036 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10037 }
10038
10039 int
10040 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10041 int *is_notif)
10042 {
10043 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10044 }
10045
10046 /* Kill any new fork children of process PID that haven't been
10047 processed by follow_fork. */
10048
10049 void
10050 remote_target::kill_new_fork_children (int pid)
10051 {
10052 remote_state *rs = get_remote_state ();
10053 struct notif_client *notif = &notif_client_stop;
10054
10055 /* Kill the fork child threads of any threads in process PID
10056 that are stopped at a fork event. */
10057 for (thread_info *thread : all_non_exited_threads (this))
10058 {
10059 struct target_waitstatus *ws = &thread->pending_follow;
10060
10061 if (is_pending_fork_parent (ws, pid, thread->ptid))
10062 {
10063 int child_pid = ws->child_ptid ().pid ();
10064 int res;
10065
10066 res = remote_vkill (child_pid);
10067 if (res != 0)
10068 error (_("Can't kill fork child process %d"), child_pid);
10069 }
10070 }
10071
10072 /* Check for any pending fork events (not reported or processed yet)
10073 in process PID and kill those fork child threads as well. */
10074 remote_notif_get_pending_events (notif);
10075 for (auto &event : rs->stop_reply_queue)
10076 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10077 {
10078 int child_pid = event->ws.child_ptid ().pid ();
10079 int res;
10080
10081 res = remote_vkill (child_pid);
10082 if (res != 0)
10083 error (_("Can't kill fork child process %d"), child_pid);
10084 }
10085 }
10086
10087 \f
10088 /* Target hook to kill the current inferior. */
10089
10090 void
10091 remote_target::kill ()
10092 {
10093 int res = -1;
10094 int pid = inferior_ptid.pid ();
10095 struct remote_state *rs = get_remote_state ();
10096
10097 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10098 {
10099 /* If we're stopped while forking and we haven't followed yet,
10100 kill the child task. We need to do this before killing the
10101 parent task because if this is a vfork then the parent will
10102 be sleeping. */
10103 kill_new_fork_children (pid);
10104
10105 res = remote_vkill (pid);
10106 if (res == 0)
10107 {
10108 target_mourn_inferior (inferior_ptid);
10109 return;
10110 }
10111 }
10112
10113 /* If we are in 'target remote' mode and we are killing the only
10114 inferior, then we will tell gdbserver to exit and unpush the
10115 target. */
10116 if (res == -1 && !remote_multi_process_p (rs)
10117 && number_of_live_inferiors (this) == 1)
10118 {
10119 remote_kill_k ();
10120
10121 /* We've killed the remote end, we get to mourn it. If we are
10122 not in extended mode, mourning the inferior also unpushes
10123 remote_ops from the target stack, which closes the remote
10124 connection. */
10125 target_mourn_inferior (inferior_ptid);
10126
10127 return;
10128 }
10129
10130 error (_("Can't kill process"));
10131 }
10132
10133 /* Send a kill request to the target using the 'vKill' packet. */
10134
10135 int
10136 remote_target::remote_vkill (int pid)
10137 {
10138 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10139 return -1;
10140
10141 remote_state *rs = get_remote_state ();
10142
10143 /* Tell the remote target to detach. */
10144 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10145 putpkt (rs->buf);
10146 getpkt (&rs->buf, 0);
10147
10148 switch (packet_ok (rs->buf,
10149 &remote_protocol_packets[PACKET_vKill]))
10150 {
10151 case PACKET_OK:
10152 return 0;
10153 case PACKET_ERROR:
10154 return 1;
10155 case PACKET_UNKNOWN:
10156 return -1;
10157 default:
10158 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10159 }
10160 }
10161
10162 /* Send a kill request to the target using the 'k' packet. */
10163
10164 void
10165 remote_target::remote_kill_k ()
10166 {
10167 /* Catch errors so the user can quit from gdb even when we
10168 aren't on speaking terms with the remote system. */
10169 try
10170 {
10171 putpkt ("k");
10172 }
10173 catch (const gdb_exception_error &ex)
10174 {
10175 if (ex.error == TARGET_CLOSE_ERROR)
10176 {
10177 /* If we got an (EOF) error that caused the target
10178 to go away, then we're done, that's what we wanted.
10179 "k" is susceptible to cause a premature EOF, given
10180 that the remote server isn't actually required to
10181 reply to "k", and it can happen that it doesn't
10182 even get to reply ACK to the "k". */
10183 return;
10184 }
10185
10186 /* Otherwise, something went wrong. We didn't actually kill
10187 the target. Just propagate the exception, and let the
10188 user or higher layers decide what to do. */
10189 throw;
10190 }
10191 }
10192
10193 void
10194 remote_target::mourn_inferior ()
10195 {
10196 struct remote_state *rs = get_remote_state ();
10197
10198 /* We're no longer interested in notification events of an inferior
10199 that exited or was killed/detached. */
10200 discard_pending_stop_replies (current_inferior ());
10201
10202 /* In 'target remote' mode with one inferior, we close the connection. */
10203 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10204 {
10205 remote_unpush_target (this);
10206 return;
10207 }
10208
10209 /* In case we got here due to an error, but we're going to stay
10210 connected. */
10211 rs->waiting_for_stop_reply = 0;
10212
10213 /* If the current general thread belonged to the process we just
10214 detached from or has exited, the remote side current general
10215 thread becomes undefined. Considering a case like this:
10216
10217 - We just got here due to a detach.
10218 - The process that we're detaching from happens to immediately
10219 report a global breakpoint being hit in non-stop mode, in the
10220 same thread we had selected before.
10221 - GDB attaches to this process again.
10222 - This event happens to be the next event we handle.
10223
10224 GDB would consider that the current general thread didn't need to
10225 be set on the stub side (with Hg), since for all it knew,
10226 GENERAL_THREAD hadn't changed.
10227
10228 Notice that although in all-stop mode, the remote server always
10229 sets the current thread to the thread reporting the stop event,
10230 that doesn't happen in non-stop mode; in non-stop, the stub *must
10231 not* change the current thread when reporting a breakpoint hit,
10232 due to the decoupling of event reporting and event handling.
10233
10234 To keep things simple, we always invalidate our notion of the
10235 current thread. */
10236 record_currthread (rs, minus_one_ptid);
10237
10238 /* Call common code to mark the inferior as not running. */
10239 generic_mourn_inferior ();
10240 }
10241
10242 bool
10243 extended_remote_target::supports_disable_randomization ()
10244 {
10245 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10246 }
10247
10248 void
10249 remote_target::extended_remote_disable_randomization (int val)
10250 {
10251 struct remote_state *rs = get_remote_state ();
10252 char *reply;
10253
10254 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10255 "QDisableRandomization:%x", val);
10256 putpkt (rs->buf);
10257 reply = remote_get_noisy_reply ();
10258 if (*reply == '\0')
10259 error (_("Target does not support QDisableRandomization."));
10260 if (strcmp (reply, "OK") != 0)
10261 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10262 }
10263
10264 int
10265 remote_target::extended_remote_run (const std::string &args)
10266 {
10267 struct remote_state *rs = get_remote_state ();
10268 int len;
10269 const char *remote_exec_file = get_remote_exec_file ();
10270
10271 /* If the user has disabled vRun support, or we have detected that
10272 support is not available, do not try it. */
10273 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10274 return -1;
10275
10276 strcpy (rs->buf.data (), "vRun;");
10277 len = strlen (rs->buf.data ());
10278
10279 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10280 error (_("Remote file name too long for run packet"));
10281 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10282 strlen (remote_exec_file));
10283
10284 if (!args.empty ())
10285 {
10286 int i;
10287
10288 gdb_argv argv (args.c_str ());
10289 for (i = 0; argv[i] != NULL; i++)
10290 {
10291 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10292 error (_("Argument list too long for run packet"));
10293 rs->buf[len++] = ';';
10294 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10295 strlen (argv[i]));
10296 }
10297 }
10298
10299 rs->buf[len++] = '\0';
10300
10301 putpkt (rs->buf);
10302 getpkt (&rs->buf, 0);
10303
10304 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10305 {
10306 case PACKET_OK:
10307 /* We have a wait response. All is well. */
10308 return 0;
10309 case PACKET_UNKNOWN:
10310 return -1;
10311 case PACKET_ERROR:
10312 if (remote_exec_file[0] == '\0')
10313 error (_("Running the default executable on the remote target failed; "
10314 "try \"set remote exec-file\"?"));
10315 else
10316 error (_("Running \"%s\" on the remote target failed"),
10317 remote_exec_file);
10318 default:
10319 gdb_assert_not_reached (_("bad switch"));
10320 }
10321 }
10322
10323 /* Helper function to send set/unset environment packets. ACTION is
10324 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10325 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10326 sent. */
10327
10328 void
10329 remote_target::send_environment_packet (const char *action,
10330 const char *packet,
10331 const char *value)
10332 {
10333 remote_state *rs = get_remote_state ();
10334
10335 /* Convert the environment variable to an hex string, which
10336 is the best format to be transmitted over the wire. */
10337 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10338 strlen (value));
10339
10340 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10341 "%s:%s", packet, encoded_value.c_str ());
10342
10343 putpkt (rs->buf);
10344 getpkt (&rs->buf, 0);
10345 if (strcmp (rs->buf.data (), "OK") != 0)
10346 warning (_("Unable to %s environment variable '%s' on remote."),
10347 action, value);
10348 }
10349
10350 /* Helper function to handle the QEnvironment* packets. */
10351
10352 void
10353 remote_target::extended_remote_environment_support ()
10354 {
10355 remote_state *rs = get_remote_state ();
10356
10357 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10358 {
10359 putpkt ("QEnvironmentReset");
10360 getpkt (&rs->buf, 0);
10361 if (strcmp (rs->buf.data (), "OK") != 0)
10362 warning (_("Unable to reset environment on remote."));
10363 }
10364
10365 gdb_environ *e = &current_inferior ()->environment;
10366
10367 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10368 for (const std::string &el : e->user_set_env ())
10369 send_environment_packet ("set", "QEnvironmentHexEncoded",
10370 el.c_str ());
10371
10372 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10373 for (const std::string &el : e->user_unset_env ())
10374 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10375 }
10376
10377 /* Helper function to set the current working directory for the
10378 inferior in the remote target. */
10379
10380 void
10381 remote_target::extended_remote_set_inferior_cwd ()
10382 {
10383 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10384 {
10385 const std::string &inferior_cwd = current_inferior ()->cwd ();
10386 remote_state *rs = get_remote_state ();
10387
10388 if (!inferior_cwd.empty ())
10389 {
10390 std::string hexpath
10391 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10392 inferior_cwd.size ());
10393
10394 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10395 "QSetWorkingDir:%s", hexpath.c_str ());
10396 }
10397 else
10398 {
10399 /* An empty inferior_cwd means that the user wants us to
10400 reset the remote server's inferior's cwd. */
10401 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10402 "QSetWorkingDir:");
10403 }
10404
10405 putpkt (rs->buf);
10406 getpkt (&rs->buf, 0);
10407 if (packet_ok (rs->buf,
10408 &remote_protocol_packets[PACKET_QSetWorkingDir])
10409 != PACKET_OK)
10410 error (_("\
10411 Remote replied unexpectedly while setting the inferior's working\n\
10412 directory: %s"),
10413 rs->buf.data ());
10414
10415 }
10416 }
10417
10418 /* In the extended protocol we want to be able to do things like
10419 "run" and have them basically work as expected. So we need
10420 a special create_inferior function. We support changing the
10421 executable file and the command line arguments, but not the
10422 environment. */
10423
10424 void
10425 extended_remote_target::create_inferior (const char *exec_file,
10426 const std::string &args,
10427 char **env, int from_tty)
10428 {
10429 int run_worked;
10430 char *stop_reply;
10431 struct remote_state *rs = get_remote_state ();
10432 const char *remote_exec_file = get_remote_exec_file ();
10433
10434 /* If running asynchronously, register the target file descriptor
10435 with the event loop. */
10436 if (target_can_async_p ())
10437 target_async (1);
10438
10439 /* Disable address space randomization if requested (and supported). */
10440 if (supports_disable_randomization ())
10441 extended_remote_disable_randomization (disable_randomization);
10442
10443 /* If startup-with-shell is on, we inform gdbserver to start the
10444 remote inferior using a shell. */
10445 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10446 {
10447 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10448 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10449 putpkt (rs->buf);
10450 getpkt (&rs->buf, 0);
10451 if (strcmp (rs->buf.data (), "OK") != 0)
10452 error (_("\
10453 Remote replied unexpectedly while setting startup-with-shell: %s"),
10454 rs->buf.data ());
10455 }
10456
10457 extended_remote_environment_support ();
10458
10459 extended_remote_set_inferior_cwd ();
10460
10461 /* Now restart the remote server. */
10462 run_worked = extended_remote_run (args) != -1;
10463 if (!run_worked)
10464 {
10465 /* vRun was not supported. Fail if we need it to do what the
10466 user requested. */
10467 if (remote_exec_file[0])
10468 error (_("Remote target does not support \"set remote exec-file\""));
10469 if (!args.empty ())
10470 error (_("Remote target does not support \"set args\" or run ARGS"));
10471
10472 /* Fall back to "R". */
10473 extended_remote_restart ();
10474 }
10475
10476 /* vRun's success return is a stop reply. */
10477 stop_reply = run_worked ? rs->buf.data () : NULL;
10478 add_current_inferior_and_thread (stop_reply);
10479
10480 /* Get updated offsets, if the stub uses qOffsets. */
10481 get_offsets ();
10482 }
10483 \f
10484
10485 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10486 the list of conditions (in agent expression bytecode format), if any, the
10487 target needs to evaluate. The output is placed into the packet buffer
10488 started from BUF and ended at BUF_END. */
10489
10490 static int
10491 remote_add_target_side_condition (struct gdbarch *gdbarch,
10492 struct bp_target_info *bp_tgt, char *buf,
10493 char *buf_end)
10494 {
10495 if (bp_tgt->conditions.empty ())
10496 return 0;
10497
10498 buf += strlen (buf);
10499 xsnprintf (buf, buf_end - buf, "%s", ";");
10500 buf++;
10501
10502 /* Send conditions to the target. */
10503 for (agent_expr *aexpr : bp_tgt->conditions)
10504 {
10505 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10506 buf += strlen (buf);
10507 for (int i = 0; i < aexpr->len; ++i)
10508 buf = pack_hex_byte (buf, aexpr->buf[i]);
10509 *buf = '\0';
10510 }
10511 return 0;
10512 }
10513
10514 static void
10515 remote_add_target_side_commands (struct gdbarch *gdbarch,
10516 struct bp_target_info *bp_tgt, char *buf)
10517 {
10518 if (bp_tgt->tcommands.empty ())
10519 return;
10520
10521 buf += strlen (buf);
10522
10523 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10524 buf += strlen (buf);
10525
10526 /* Concatenate all the agent expressions that are commands into the
10527 cmds parameter. */
10528 for (agent_expr *aexpr : bp_tgt->tcommands)
10529 {
10530 sprintf (buf, "X%x,", aexpr->len);
10531 buf += strlen (buf);
10532 for (int i = 0; i < aexpr->len; ++i)
10533 buf = pack_hex_byte (buf, aexpr->buf[i]);
10534 *buf = '\0';
10535 }
10536 }
10537
10538 /* Insert a breakpoint. On targets that have software breakpoint
10539 support, we ask the remote target to do the work; on targets
10540 which don't, we insert a traditional memory breakpoint. */
10541
10542 int
10543 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10544 struct bp_target_info *bp_tgt)
10545 {
10546 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10547 If it succeeds, then set the support to PACKET_ENABLE. If it
10548 fails, and the user has explicitly requested the Z support then
10549 report an error, otherwise, mark it disabled and go on. */
10550
10551 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10552 {
10553 CORE_ADDR addr = bp_tgt->reqstd_address;
10554 struct remote_state *rs;
10555 char *p, *endbuf;
10556
10557 /* Make sure the remote is pointing at the right process, if
10558 necessary. */
10559 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10560 set_general_process ();
10561
10562 rs = get_remote_state ();
10563 p = rs->buf.data ();
10564 endbuf = p + get_remote_packet_size ();
10565
10566 *(p++) = 'Z';
10567 *(p++) = '0';
10568 *(p++) = ',';
10569 addr = (ULONGEST) remote_address_masked (addr);
10570 p += hexnumstr (p, addr);
10571 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10572
10573 if (supports_evaluation_of_breakpoint_conditions ())
10574 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10575
10576 if (can_run_breakpoint_commands ())
10577 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10578
10579 putpkt (rs->buf);
10580 getpkt (&rs->buf, 0);
10581
10582 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10583 {
10584 case PACKET_ERROR:
10585 return -1;
10586 case PACKET_OK:
10587 return 0;
10588 case PACKET_UNKNOWN:
10589 break;
10590 }
10591 }
10592
10593 /* If this breakpoint has target-side commands but this stub doesn't
10594 support Z0 packets, throw error. */
10595 if (!bp_tgt->tcommands.empty ())
10596 throw_error (NOT_SUPPORTED_ERROR, _("\
10597 Target doesn't support breakpoints that have target side commands."));
10598
10599 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10600 }
10601
10602 int
10603 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10604 struct bp_target_info *bp_tgt,
10605 enum remove_bp_reason reason)
10606 {
10607 CORE_ADDR addr = bp_tgt->placed_address;
10608 struct remote_state *rs = get_remote_state ();
10609
10610 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10611 {
10612 char *p = rs->buf.data ();
10613 char *endbuf = p + get_remote_packet_size ();
10614
10615 /* Make sure the remote is pointing at the right process, if
10616 necessary. */
10617 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10618 set_general_process ();
10619
10620 *(p++) = 'z';
10621 *(p++) = '0';
10622 *(p++) = ',';
10623
10624 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10625 p += hexnumstr (p, addr);
10626 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10627
10628 putpkt (rs->buf);
10629 getpkt (&rs->buf, 0);
10630
10631 return (rs->buf[0] == 'E');
10632 }
10633
10634 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10635 }
10636
10637 static enum Z_packet_type
10638 watchpoint_to_Z_packet (int type)
10639 {
10640 switch (type)
10641 {
10642 case hw_write:
10643 return Z_PACKET_WRITE_WP;
10644 break;
10645 case hw_read:
10646 return Z_PACKET_READ_WP;
10647 break;
10648 case hw_access:
10649 return Z_PACKET_ACCESS_WP;
10650 break;
10651 default:
10652 internal_error (__FILE__, __LINE__,
10653 _("hw_bp_to_z: bad watchpoint type %d"), type);
10654 }
10655 }
10656
10657 int
10658 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10659 enum target_hw_bp_type type, struct expression *cond)
10660 {
10661 struct remote_state *rs = get_remote_state ();
10662 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10663 char *p;
10664 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10665
10666 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10667 return 1;
10668
10669 /* Make sure the remote is pointing at the right process, if
10670 necessary. */
10671 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10672 set_general_process ();
10673
10674 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10675 p = strchr (rs->buf.data (), '\0');
10676 addr = remote_address_masked (addr);
10677 p += hexnumstr (p, (ULONGEST) addr);
10678 xsnprintf (p, endbuf - p, ",%x", len);
10679
10680 putpkt (rs->buf);
10681 getpkt (&rs->buf, 0);
10682
10683 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10684 {
10685 case PACKET_ERROR:
10686 return -1;
10687 case PACKET_UNKNOWN:
10688 return 1;
10689 case PACKET_OK:
10690 return 0;
10691 }
10692 internal_error (__FILE__, __LINE__,
10693 _("remote_insert_watchpoint: reached end of function"));
10694 }
10695
10696 bool
10697 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10698 CORE_ADDR start, int length)
10699 {
10700 CORE_ADDR diff = remote_address_masked (addr - start);
10701
10702 return diff < length;
10703 }
10704
10705
10706 int
10707 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10708 enum target_hw_bp_type type, struct expression *cond)
10709 {
10710 struct remote_state *rs = get_remote_state ();
10711 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10712 char *p;
10713 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10714
10715 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10716 return -1;
10717
10718 /* Make sure the remote is pointing at the right process, if
10719 necessary. */
10720 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10721 set_general_process ();
10722
10723 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10724 p = strchr (rs->buf.data (), '\0');
10725 addr = remote_address_masked (addr);
10726 p += hexnumstr (p, (ULONGEST) addr);
10727 xsnprintf (p, endbuf - p, ",%x", len);
10728 putpkt (rs->buf);
10729 getpkt (&rs->buf, 0);
10730
10731 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10732 {
10733 case PACKET_ERROR:
10734 case PACKET_UNKNOWN:
10735 return -1;
10736 case PACKET_OK:
10737 return 0;
10738 }
10739 internal_error (__FILE__, __LINE__,
10740 _("remote_remove_watchpoint: reached end of function"));
10741 }
10742
10743
10744 static int remote_hw_watchpoint_limit = -1;
10745 static int remote_hw_watchpoint_length_limit = -1;
10746 static int remote_hw_breakpoint_limit = -1;
10747
10748 int
10749 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10750 {
10751 if (remote_hw_watchpoint_length_limit == 0)
10752 return 0;
10753 else if (remote_hw_watchpoint_length_limit < 0)
10754 return 1;
10755 else if (len <= remote_hw_watchpoint_length_limit)
10756 return 1;
10757 else
10758 return 0;
10759 }
10760
10761 int
10762 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10763 {
10764 if (type == bp_hardware_breakpoint)
10765 {
10766 if (remote_hw_breakpoint_limit == 0)
10767 return 0;
10768 else if (remote_hw_breakpoint_limit < 0)
10769 return 1;
10770 else if (cnt <= remote_hw_breakpoint_limit)
10771 return 1;
10772 }
10773 else
10774 {
10775 if (remote_hw_watchpoint_limit == 0)
10776 return 0;
10777 else if (remote_hw_watchpoint_limit < 0)
10778 return 1;
10779 else if (ot)
10780 return -1;
10781 else if (cnt <= remote_hw_watchpoint_limit)
10782 return 1;
10783 }
10784 return -1;
10785 }
10786
10787 /* The to_stopped_by_sw_breakpoint method of target remote. */
10788
10789 bool
10790 remote_target::stopped_by_sw_breakpoint ()
10791 {
10792 struct thread_info *thread = inferior_thread ();
10793
10794 return (thread->priv != NULL
10795 && (get_remote_thread_info (thread)->stop_reason
10796 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10797 }
10798
10799 /* The to_supports_stopped_by_sw_breakpoint method of target
10800 remote. */
10801
10802 bool
10803 remote_target::supports_stopped_by_sw_breakpoint ()
10804 {
10805 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10806 }
10807
10808 /* The to_stopped_by_hw_breakpoint method of target remote. */
10809
10810 bool
10811 remote_target::stopped_by_hw_breakpoint ()
10812 {
10813 struct thread_info *thread = inferior_thread ();
10814
10815 return (thread->priv != NULL
10816 && (get_remote_thread_info (thread)->stop_reason
10817 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10818 }
10819
10820 /* The to_supports_stopped_by_hw_breakpoint method of target
10821 remote. */
10822
10823 bool
10824 remote_target::supports_stopped_by_hw_breakpoint ()
10825 {
10826 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10827 }
10828
10829 bool
10830 remote_target::stopped_by_watchpoint ()
10831 {
10832 struct thread_info *thread = inferior_thread ();
10833
10834 return (thread->priv != NULL
10835 && (get_remote_thread_info (thread)->stop_reason
10836 == TARGET_STOPPED_BY_WATCHPOINT));
10837 }
10838
10839 bool
10840 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10841 {
10842 struct thread_info *thread = inferior_thread ();
10843
10844 if (thread->priv != NULL
10845 && (get_remote_thread_info (thread)->stop_reason
10846 == TARGET_STOPPED_BY_WATCHPOINT))
10847 {
10848 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10849 return true;
10850 }
10851
10852 return false;
10853 }
10854
10855
10856 int
10857 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10858 struct bp_target_info *bp_tgt)
10859 {
10860 CORE_ADDR addr = bp_tgt->reqstd_address;
10861 struct remote_state *rs;
10862 char *p, *endbuf;
10863 char *message;
10864
10865 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10866 return -1;
10867
10868 /* Make sure the remote is pointing at the right process, if
10869 necessary. */
10870 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10871 set_general_process ();
10872
10873 rs = get_remote_state ();
10874 p = rs->buf.data ();
10875 endbuf = p + get_remote_packet_size ();
10876
10877 *(p++) = 'Z';
10878 *(p++) = '1';
10879 *(p++) = ',';
10880
10881 addr = remote_address_masked (addr);
10882 p += hexnumstr (p, (ULONGEST) addr);
10883 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10884
10885 if (supports_evaluation_of_breakpoint_conditions ())
10886 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10887
10888 if (can_run_breakpoint_commands ())
10889 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10890
10891 putpkt (rs->buf);
10892 getpkt (&rs->buf, 0);
10893
10894 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10895 {
10896 case PACKET_ERROR:
10897 if (rs->buf[1] == '.')
10898 {
10899 message = strchr (&rs->buf[2], '.');
10900 if (message)
10901 error (_("Remote failure reply: %s"), message + 1);
10902 }
10903 return -1;
10904 case PACKET_UNKNOWN:
10905 return -1;
10906 case PACKET_OK:
10907 return 0;
10908 }
10909 internal_error (__FILE__, __LINE__,
10910 _("remote_insert_hw_breakpoint: reached end of function"));
10911 }
10912
10913
10914 int
10915 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10916 struct bp_target_info *bp_tgt)
10917 {
10918 CORE_ADDR addr;
10919 struct remote_state *rs = get_remote_state ();
10920 char *p = rs->buf.data ();
10921 char *endbuf = p + get_remote_packet_size ();
10922
10923 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10924 return -1;
10925
10926 /* Make sure the remote is pointing at the right process, if
10927 necessary. */
10928 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10929 set_general_process ();
10930
10931 *(p++) = 'z';
10932 *(p++) = '1';
10933 *(p++) = ',';
10934
10935 addr = remote_address_masked (bp_tgt->placed_address);
10936 p += hexnumstr (p, (ULONGEST) addr);
10937 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10938
10939 putpkt (rs->buf);
10940 getpkt (&rs->buf, 0);
10941
10942 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10943 {
10944 case PACKET_ERROR:
10945 case PACKET_UNKNOWN:
10946 return -1;
10947 case PACKET_OK:
10948 return 0;
10949 }
10950 internal_error (__FILE__, __LINE__,
10951 _("remote_remove_hw_breakpoint: reached end of function"));
10952 }
10953
10954 /* Verify memory using the "qCRC:" request. */
10955
10956 int
10957 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10958 {
10959 struct remote_state *rs = get_remote_state ();
10960 unsigned long host_crc, target_crc;
10961 char *tmp;
10962
10963 /* It doesn't make sense to use qCRC if the remote target is
10964 connected but not running. */
10965 if (target_has_execution ()
10966 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10967 {
10968 enum packet_result result;
10969
10970 /* Make sure the remote is pointing at the right process. */
10971 set_general_process ();
10972
10973 /* FIXME: assumes lma can fit into long. */
10974 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10975 (long) lma, (long) size);
10976 putpkt (rs->buf);
10977
10978 /* Be clever; compute the host_crc before waiting for target
10979 reply. */
10980 host_crc = xcrc32 (data, size, 0xffffffff);
10981
10982 getpkt (&rs->buf, 0);
10983
10984 result = packet_ok (rs->buf,
10985 &remote_protocol_packets[PACKET_qCRC]);
10986 if (result == PACKET_ERROR)
10987 return -1;
10988 else if (result == PACKET_OK)
10989 {
10990 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10991 target_crc = target_crc * 16 + fromhex (*tmp);
10992
10993 return (host_crc == target_crc);
10994 }
10995 }
10996
10997 return simple_verify_memory (this, data, lma, size);
10998 }
10999
11000 /* compare-sections command
11001
11002 With no arguments, compares each loadable section in the exec bfd
11003 with the same memory range on the target, and reports mismatches.
11004 Useful for verifying the image on the target against the exec file. */
11005
11006 static void
11007 compare_sections_command (const char *args, int from_tty)
11008 {
11009 asection *s;
11010 const char *sectname;
11011 bfd_size_type size;
11012 bfd_vma lma;
11013 int matched = 0;
11014 int mismatched = 0;
11015 int res;
11016 int read_only = 0;
11017
11018 if (!current_program_space->exec_bfd ())
11019 error (_("command cannot be used without an exec file"));
11020
11021 if (args != NULL && strcmp (args, "-r") == 0)
11022 {
11023 read_only = 1;
11024 args = NULL;
11025 }
11026
11027 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11028 {
11029 if (!(s->flags & SEC_LOAD))
11030 continue; /* Skip non-loadable section. */
11031
11032 if (read_only && (s->flags & SEC_READONLY) == 0)
11033 continue; /* Skip writeable sections */
11034
11035 size = bfd_section_size (s);
11036 if (size == 0)
11037 continue; /* Skip zero-length section. */
11038
11039 sectname = bfd_section_name (s);
11040 if (args && strcmp (args, sectname) != 0)
11041 continue; /* Not the section selected by user. */
11042
11043 matched = 1; /* Do this section. */
11044 lma = s->lma;
11045
11046 gdb::byte_vector sectdata (size);
11047 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11048 sectdata.data (), 0, size);
11049
11050 res = target_verify_memory (sectdata.data (), lma, size);
11051
11052 if (res == -1)
11053 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11054 paddress (target_gdbarch (), lma),
11055 paddress (target_gdbarch (), lma + size));
11056
11057 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11058 paddress (target_gdbarch (), lma),
11059 paddress (target_gdbarch (), lma + size));
11060 if (res)
11061 printf_filtered ("matched.\n");
11062 else
11063 {
11064 printf_filtered ("MIS-MATCHED!\n");
11065 mismatched++;
11066 }
11067 }
11068 if (mismatched > 0)
11069 warning (_("One or more sections of the target image does not match\n\
11070 the loaded file\n"));
11071 if (args && !matched)
11072 printf_filtered (_("No loaded section named '%s'.\n"), args);
11073 }
11074
11075 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11076 into remote target. The number of bytes written to the remote
11077 target is returned, or -1 for error. */
11078
11079 target_xfer_status
11080 remote_target::remote_write_qxfer (const char *object_name,
11081 const char *annex, const gdb_byte *writebuf,
11082 ULONGEST offset, LONGEST len,
11083 ULONGEST *xfered_len,
11084 struct packet_config *packet)
11085 {
11086 int i, buf_len;
11087 ULONGEST n;
11088 struct remote_state *rs = get_remote_state ();
11089 int max_size = get_memory_write_packet_size ();
11090
11091 if (packet_config_support (packet) == PACKET_DISABLE)
11092 return TARGET_XFER_E_IO;
11093
11094 /* Insert header. */
11095 i = snprintf (rs->buf.data (), max_size,
11096 "qXfer:%s:write:%s:%s:",
11097 object_name, annex ? annex : "",
11098 phex_nz (offset, sizeof offset));
11099 max_size -= (i + 1);
11100
11101 /* Escape as much data as fits into rs->buf. */
11102 buf_len = remote_escape_output
11103 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11104
11105 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11106 || getpkt_sane (&rs->buf, 0) < 0
11107 || packet_ok (rs->buf, packet) != PACKET_OK)
11108 return TARGET_XFER_E_IO;
11109
11110 unpack_varlen_hex (rs->buf.data (), &n);
11111
11112 *xfered_len = n;
11113 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11114 }
11115
11116 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11117 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11118 number of bytes read is returned, or 0 for EOF, or -1 for error.
11119 The number of bytes read may be less than LEN without indicating an
11120 EOF. PACKET is checked and updated to indicate whether the remote
11121 target supports this object. */
11122
11123 target_xfer_status
11124 remote_target::remote_read_qxfer (const char *object_name,
11125 const char *annex,
11126 gdb_byte *readbuf, ULONGEST offset,
11127 LONGEST len,
11128 ULONGEST *xfered_len,
11129 struct packet_config *packet)
11130 {
11131 struct remote_state *rs = get_remote_state ();
11132 LONGEST i, n, packet_len;
11133
11134 if (packet_config_support (packet) == PACKET_DISABLE)
11135 return TARGET_XFER_E_IO;
11136
11137 /* Check whether we've cached an end-of-object packet that matches
11138 this request. */
11139 if (rs->finished_object)
11140 {
11141 if (strcmp (object_name, rs->finished_object) == 0
11142 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11143 && offset == rs->finished_offset)
11144 return TARGET_XFER_EOF;
11145
11146
11147 /* Otherwise, we're now reading something different. Discard
11148 the cache. */
11149 xfree (rs->finished_object);
11150 xfree (rs->finished_annex);
11151 rs->finished_object = NULL;
11152 rs->finished_annex = NULL;
11153 }
11154
11155 /* Request only enough to fit in a single packet. The actual data
11156 may not, since we don't know how much of it will need to be escaped;
11157 the target is free to respond with slightly less data. We subtract
11158 five to account for the response type and the protocol frame. */
11159 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11160 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11161 "qXfer:%s:read:%s:%s,%s",
11162 object_name, annex ? annex : "",
11163 phex_nz (offset, sizeof offset),
11164 phex_nz (n, sizeof n));
11165 i = putpkt (rs->buf);
11166 if (i < 0)
11167 return TARGET_XFER_E_IO;
11168
11169 rs->buf[0] = '\0';
11170 packet_len = getpkt_sane (&rs->buf, 0);
11171 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11172 return TARGET_XFER_E_IO;
11173
11174 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11175 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11176
11177 /* 'm' means there is (or at least might be) more data after this
11178 batch. That does not make sense unless there's at least one byte
11179 of data in this reply. */
11180 if (rs->buf[0] == 'm' && packet_len == 1)
11181 error (_("Remote qXfer reply contained no data."));
11182
11183 /* Got some data. */
11184 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11185 packet_len - 1, readbuf, n);
11186
11187 /* 'l' is an EOF marker, possibly including a final block of data,
11188 or possibly empty. If we have the final block of a non-empty
11189 object, record this fact to bypass a subsequent partial read. */
11190 if (rs->buf[0] == 'l' && offset + i > 0)
11191 {
11192 rs->finished_object = xstrdup (object_name);
11193 rs->finished_annex = xstrdup (annex ? annex : "");
11194 rs->finished_offset = offset + i;
11195 }
11196
11197 if (i == 0)
11198 return TARGET_XFER_EOF;
11199 else
11200 {
11201 *xfered_len = i;
11202 return TARGET_XFER_OK;
11203 }
11204 }
11205
11206 enum target_xfer_status
11207 remote_target::xfer_partial (enum target_object object,
11208 const char *annex, gdb_byte *readbuf,
11209 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11210 ULONGEST *xfered_len)
11211 {
11212 struct remote_state *rs;
11213 int i;
11214 char *p2;
11215 char query_type;
11216 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11217
11218 set_remote_traceframe ();
11219 set_general_thread (inferior_ptid);
11220
11221 rs = get_remote_state ();
11222
11223 /* Handle memory using the standard memory routines. */
11224 if (object == TARGET_OBJECT_MEMORY)
11225 {
11226 /* If the remote target is connected but not running, we should
11227 pass this request down to a lower stratum (e.g. the executable
11228 file). */
11229 if (!target_has_execution ())
11230 return TARGET_XFER_EOF;
11231
11232 if (writebuf != NULL)
11233 return remote_write_bytes (offset, writebuf, len, unit_size,
11234 xfered_len);
11235 else
11236 return remote_read_bytes (offset, readbuf, len, unit_size,
11237 xfered_len);
11238 }
11239
11240 /* Handle extra signal info using qxfer packets. */
11241 if (object == TARGET_OBJECT_SIGNAL_INFO)
11242 {
11243 if (readbuf)
11244 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11245 xfered_len, &remote_protocol_packets
11246 [PACKET_qXfer_siginfo_read]);
11247 else
11248 return remote_write_qxfer ("siginfo", annex,
11249 writebuf, offset, len, xfered_len,
11250 &remote_protocol_packets
11251 [PACKET_qXfer_siginfo_write]);
11252 }
11253
11254 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11255 {
11256 if (readbuf)
11257 return remote_read_qxfer ("statictrace", annex,
11258 readbuf, offset, len, xfered_len,
11259 &remote_protocol_packets
11260 [PACKET_qXfer_statictrace_read]);
11261 else
11262 return TARGET_XFER_E_IO;
11263 }
11264
11265 /* Only handle flash writes. */
11266 if (writebuf != NULL)
11267 {
11268 switch (object)
11269 {
11270 case TARGET_OBJECT_FLASH:
11271 return remote_flash_write (offset, len, xfered_len,
11272 writebuf);
11273
11274 default:
11275 return TARGET_XFER_E_IO;
11276 }
11277 }
11278
11279 /* Map pre-existing objects onto letters. DO NOT do this for new
11280 objects!!! Instead specify new query packets. */
11281 switch (object)
11282 {
11283 case TARGET_OBJECT_AVR:
11284 query_type = 'R';
11285 break;
11286
11287 case TARGET_OBJECT_AUXV:
11288 gdb_assert (annex == NULL);
11289 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11290 xfered_len,
11291 &remote_protocol_packets[PACKET_qXfer_auxv]);
11292
11293 case TARGET_OBJECT_AVAILABLE_FEATURES:
11294 return remote_read_qxfer
11295 ("features", annex, readbuf, offset, len, xfered_len,
11296 &remote_protocol_packets[PACKET_qXfer_features]);
11297
11298 case TARGET_OBJECT_LIBRARIES:
11299 return remote_read_qxfer
11300 ("libraries", annex, readbuf, offset, len, xfered_len,
11301 &remote_protocol_packets[PACKET_qXfer_libraries]);
11302
11303 case TARGET_OBJECT_LIBRARIES_SVR4:
11304 return remote_read_qxfer
11305 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11306 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11307
11308 case TARGET_OBJECT_MEMORY_MAP:
11309 gdb_assert (annex == NULL);
11310 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11311 xfered_len,
11312 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11313
11314 case TARGET_OBJECT_OSDATA:
11315 /* Should only get here if we're connected. */
11316 gdb_assert (rs->remote_desc);
11317 return remote_read_qxfer
11318 ("osdata", annex, readbuf, offset, len, xfered_len,
11319 &remote_protocol_packets[PACKET_qXfer_osdata]);
11320
11321 case TARGET_OBJECT_THREADS:
11322 gdb_assert (annex == NULL);
11323 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11324 xfered_len,
11325 &remote_protocol_packets[PACKET_qXfer_threads]);
11326
11327 case TARGET_OBJECT_TRACEFRAME_INFO:
11328 gdb_assert (annex == NULL);
11329 return remote_read_qxfer
11330 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11331 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11332
11333 case TARGET_OBJECT_FDPIC:
11334 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11335 xfered_len,
11336 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11337
11338 case TARGET_OBJECT_OPENVMS_UIB:
11339 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11340 xfered_len,
11341 &remote_protocol_packets[PACKET_qXfer_uib]);
11342
11343 case TARGET_OBJECT_BTRACE:
11344 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11345 xfered_len,
11346 &remote_protocol_packets[PACKET_qXfer_btrace]);
11347
11348 case TARGET_OBJECT_BTRACE_CONF:
11349 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11350 len, xfered_len,
11351 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11352
11353 case TARGET_OBJECT_EXEC_FILE:
11354 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11355 len, xfered_len,
11356 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11357
11358 default:
11359 return TARGET_XFER_E_IO;
11360 }
11361
11362 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11363 large enough let the caller deal with it. */
11364 if (len < get_remote_packet_size ())
11365 return TARGET_XFER_E_IO;
11366 len = get_remote_packet_size ();
11367
11368 /* Except for querying the minimum buffer size, target must be open. */
11369 if (!rs->remote_desc)
11370 error (_("remote query is only available after target open"));
11371
11372 gdb_assert (annex != NULL);
11373 gdb_assert (readbuf != NULL);
11374
11375 p2 = rs->buf.data ();
11376 *p2++ = 'q';
11377 *p2++ = query_type;
11378
11379 /* We used one buffer char for the remote protocol q command and
11380 another for the query type. As the remote protocol encapsulation
11381 uses 4 chars plus one extra in case we are debugging
11382 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11383 string. */
11384 i = 0;
11385 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11386 {
11387 /* Bad caller may have sent forbidden characters. */
11388 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11389 *p2++ = annex[i];
11390 i++;
11391 }
11392 *p2 = '\0';
11393 gdb_assert (annex[i] == '\0');
11394
11395 i = putpkt (rs->buf);
11396 if (i < 0)
11397 return TARGET_XFER_E_IO;
11398
11399 getpkt (&rs->buf, 0);
11400 strcpy ((char *) readbuf, rs->buf.data ());
11401
11402 *xfered_len = strlen ((char *) readbuf);
11403 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11404 }
11405
11406 /* Implementation of to_get_memory_xfer_limit. */
11407
11408 ULONGEST
11409 remote_target::get_memory_xfer_limit ()
11410 {
11411 return get_memory_write_packet_size ();
11412 }
11413
11414 int
11415 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11416 const gdb_byte *pattern, ULONGEST pattern_len,
11417 CORE_ADDR *found_addrp)
11418 {
11419 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11420 struct remote_state *rs = get_remote_state ();
11421 int max_size = get_memory_write_packet_size ();
11422 struct packet_config *packet =
11423 &remote_protocol_packets[PACKET_qSearch_memory];
11424 /* Number of packet bytes used to encode the pattern;
11425 this could be more than PATTERN_LEN due to escape characters. */
11426 int escaped_pattern_len;
11427 /* Amount of pattern that was encodable in the packet. */
11428 int used_pattern_len;
11429 int i;
11430 int found;
11431 ULONGEST found_addr;
11432
11433 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11434 {
11435 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11436 == len);
11437 };
11438
11439 /* Don't go to the target if we don't have to. This is done before
11440 checking packet_config_support to avoid the possibility that a
11441 success for this edge case means the facility works in
11442 general. */
11443 if (pattern_len > search_space_len)
11444 return 0;
11445 if (pattern_len == 0)
11446 {
11447 *found_addrp = start_addr;
11448 return 1;
11449 }
11450
11451 /* If we already know the packet isn't supported, fall back to the simple
11452 way of searching memory. */
11453
11454 if (packet_config_support (packet) == PACKET_DISABLE)
11455 {
11456 /* Target doesn't provided special support, fall back and use the
11457 standard support (copy memory and do the search here). */
11458 return simple_search_memory (read_memory, start_addr, search_space_len,
11459 pattern, pattern_len, found_addrp);
11460 }
11461
11462 /* Make sure the remote is pointing at the right process. */
11463 set_general_process ();
11464
11465 /* Insert header. */
11466 i = snprintf (rs->buf.data (), max_size,
11467 "qSearch:memory:%s;%s;",
11468 phex_nz (start_addr, addr_size),
11469 phex_nz (search_space_len, sizeof (search_space_len)));
11470 max_size -= (i + 1);
11471
11472 /* Escape as much data as fits into rs->buf. */
11473 escaped_pattern_len =
11474 remote_escape_output (pattern, pattern_len, 1,
11475 (gdb_byte *) rs->buf.data () + i,
11476 &used_pattern_len, max_size);
11477
11478 /* Bail if the pattern is too large. */
11479 if (used_pattern_len != pattern_len)
11480 error (_("Pattern is too large to transmit to remote target."));
11481
11482 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11483 || getpkt_sane (&rs->buf, 0) < 0
11484 || packet_ok (rs->buf, packet) != PACKET_OK)
11485 {
11486 /* The request may not have worked because the command is not
11487 supported. If so, fall back to the simple way. */
11488 if (packet_config_support (packet) == PACKET_DISABLE)
11489 {
11490 return simple_search_memory (read_memory, start_addr, search_space_len,
11491 pattern, pattern_len, found_addrp);
11492 }
11493 return -1;
11494 }
11495
11496 if (rs->buf[0] == '0')
11497 found = 0;
11498 else if (rs->buf[0] == '1')
11499 {
11500 found = 1;
11501 if (rs->buf[1] != ',')
11502 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11503 unpack_varlen_hex (&rs->buf[2], &found_addr);
11504 *found_addrp = found_addr;
11505 }
11506 else
11507 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11508
11509 return found;
11510 }
11511
11512 void
11513 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11514 {
11515 struct remote_state *rs = get_remote_state ();
11516 char *p = rs->buf.data ();
11517
11518 if (!rs->remote_desc)
11519 error (_("remote rcmd is only available after target open"));
11520
11521 /* Send a NULL command across as an empty command. */
11522 if (command == NULL)
11523 command = "";
11524
11525 /* The query prefix. */
11526 strcpy (rs->buf.data (), "qRcmd,");
11527 p = strchr (rs->buf.data (), '\0');
11528
11529 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11530 > get_remote_packet_size ())
11531 error (_("\"monitor\" command ``%s'' is too long."), command);
11532
11533 /* Encode the actual command. */
11534 bin2hex ((const gdb_byte *) command, p, strlen (command));
11535
11536 if (putpkt (rs->buf) < 0)
11537 error (_("Communication problem with target."));
11538
11539 /* get/display the response */
11540 while (1)
11541 {
11542 char *buf;
11543
11544 /* XXX - see also remote_get_noisy_reply(). */
11545 QUIT; /* Allow user to bail out with ^C. */
11546 rs->buf[0] = '\0';
11547 if (getpkt_sane (&rs->buf, 0) == -1)
11548 {
11549 /* Timeout. Continue to (try to) read responses.
11550 This is better than stopping with an error, assuming the stub
11551 is still executing the (long) monitor command.
11552 If needed, the user can interrupt gdb using C-c, obtaining
11553 an effect similar to stop on timeout. */
11554 continue;
11555 }
11556 buf = rs->buf.data ();
11557 if (buf[0] == '\0')
11558 error (_("Target does not support this command."));
11559 if (buf[0] == 'O' && buf[1] != 'K')
11560 {
11561 remote_console_output (buf + 1); /* 'O' message from stub. */
11562 continue;
11563 }
11564 if (strcmp (buf, "OK") == 0)
11565 break;
11566 if (strlen (buf) == 3 && buf[0] == 'E'
11567 && isdigit (buf[1]) && isdigit (buf[2]))
11568 {
11569 error (_("Protocol error with Rcmd"));
11570 }
11571 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11572 {
11573 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11574
11575 fputc_unfiltered (c, outbuf);
11576 }
11577 break;
11578 }
11579 }
11580
11581 std::vector<mem_region>
11582 remote_target::memory_map ()
11583 {
11584 std::vector<mem_region> result;
11585 gdb::optional<gdb::char_vector> text
11586 = target_read_stralloc (current_inferior ()->top_target (),
11587 TARGET_OBJECT_MEMORY_MAP, NULL);
11588
11589 if (text)
11590 result = parse_memory_map (text->data ());
11591
11592 return result;
11593 }
11594
11595 static void
11596 packet_command (const char *args, int from_tty)
11597 {
11598 remote_target *remote = get_current_remote_target ();
11599
11600 if (remote == nullptr)
11601 error (_("command can only be used with remote target"));
11602
11603 remote->packet_command (args, from_tty);
11604 }
11605
11606 void
11607 remote_target::packet_command (const char *args, int from_tty)
11608 {
11609 if (!args)
11610 error (_("remote-packet command requires packet text as argument"));
11611
11612 puts_filtered ("sending: ");
11613 print_packet (args);
11614 puts_filtered ("\n");
11615 putpkt (args);
11616
11617 remote_state *rs = get_remote_state ();
11618
11619 getpkt (&rs->buf, 0);
11620 puts_filtered ("received: ");
11621 print_packet (rs->buf.data ());
11622 puts_filtered ("\n");
11623 }
11624
11625 #if 0
11626 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11627
11628 static void display_thread_info (struct gdb_ext_thread_info *info);
11629
11630 static void threadset_test_cmd (char *cmd, int tty);
11631
11632 static void threadalive_test (char *cmd, int tty);
11633
11634 static void threadlist_test_cmd (char *cmd, int tty);
11635
11636 int get_and_display_threadinfo (threadref *ref);
11637
11638 static void threadinfo_test_cmd (char *cmd, int tty);
11639
11640 static int thread_display_step (threadref *ref, void *context);
11641
11642 static void threadlist_update_test_cmd (char *cmd, int tty);
11643
11644 static void init_remote_threadtests (void);
11645
11646 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11647
11648 static void
11649 threadset_test_cmd (const char *cmd, int tty)
11650 {
11651 int sample_thread = SAMPLE_THREAD;
11652
11653 printf_filtered (_("Remote threadset test\n"));
11654 set_general_thread (sample_thread);
11655 }
11656
11657
11658 static void
11659 threadalive_test (const char *cmd, int tty)
11660 {
11661 int sample_thread = SAMPLE_THREAD;
11662 int pid = inferior_ptid.pid ();
11663 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11664
11665 if (remote_thread_alive (ptid))
11666 printf_filtered ("PASS: Thread alive test\n");
11667 else
11668 printf_filtered ("FAIL: Thread alive test\n");
11669 }
11670
11671 void output_threadid (char *title, threadref *ref);
11672
11673 void
11674 output_threadid (char *title, threadref *ref)
11675 {
11676 char hexid[20];
11677
11678 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11679 hexid[16] = 0;
11680 printf_filtered ("%s %s\n", title, (&hexid[0]));
11681 }
11682
11683 static void
11684 threadlist_test_cmd (const char *cmd, int tty)
11685 {
11686 int startflag = 1;
11687 threadref nextthread;
11688 int done, result_count;
11689 threadref threadlist[3];
11690
11691 printf_filtered ("Remote Threadlist test\n");
11692 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11693 &result_count, &threadlist[0]))
11694 printf_filtered ("FAIL: threadlist test\n");
11695 else
11696 {
11697 threadref *scan = threadlist;
11698 threadref *limit = scan + result_count;
11699
11700 while (scan < limit)
11701 output_threadid (" thread ", scan++);
11702 }
11703 }
11704
11705 void
11706 display_thread_info (struct gdb_ext_thread_info *info)
11707 {
11708 output_threadid ("Threadid: ", &info->threadid);
11709 printf_filtered ("Name: %s\n ", info->shortname);
11710 printf_filtered ("State: %s\n", info->display);
11711 printf_filtered ("other: %s\n\n", info->more_display);
11712 }
11713
11714 int
11715 get_and_display_threadinfo (threadref *ref)
11716 {
11717 int result;
11718 int set;
11719 struct gdb_ext_thread_info threadinfo;
11720
11721 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11722 | TAG_MOREDISPLAY | TAG_DISPLAY;
11723 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11724 display_thread_info (&threadinfo);
11725 return result;
11726 }
11727
11728 static void
11729 threadinfo_test_cmd (const char *cmd, int tty)
11730 {
11731 int athread = SAMPLE_THREAD;
11732 threadref thread;
11733 int set;
11734
11735 int_to_threadref (&thread, athread);
11736 printf_filtered ("Remote Threadinfo test\n");
11737 if (!get_and_display_threadinfo (&thread))
11738 printf_filtered ("FAIL cannot get thread info\n");
11739 }
11740
11741 static int
11742 thread_display_step (threadref *ref, void *context)
11743 {
11744 /* output_threadid(" threadstep ",ref); *//* simple test */
11745 return get_and_display_threadinfo (ref);
11746 }
11747
11748 static void
11749 threadlist_update_test_cmd (const char *cmd, int tty)
11750 {
11751 printf_filtered ("Remote Threadlist update test\n");
11752 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11753 }
11754
11755 static void
11756 init_remote_threadtests (void)
11757 {
11758 add_com ("tlist", class_obscure, threadlist_test_cmd,
11759 _("Fetch and print the remote list of "
11760 "thread identifiers, one pkt only."));
11761 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11762 _("Fetch and display info about one thread."));
11763 add_com ("tset", class_obscure, threadset_test_cmd,
11764 _("Test setting to a different thread."));
11765 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11766 _("Iterate through updating all remote thread info."));
11767 add_com ("talive", class_obscure, threadalive_test,
11768 _("Remote thread alive test."));
11769 }
11770
11771 #endif /* 0 */
11772
11773 /* Convert a thread ID to a string. */
11774
11775 std::string
11776 remote_target::pid_to_str (ptid_t ptid)
11777 {
11778 struct remote_state *rs = get_remote_state ();
11779
11780 if (ptid == null_ptid)
11781 return normal_pid_to_str (ptid);
11782 else if (ptid.is_pid ())
11783 {
11784 /* Printing an inferior target id. */
11785
11786 /* When multi-process extensions are off, there's no way in the
11787 remote protocol to know the remote process id, if there's any
11788 at all. There's one exception --- when we're connected with
11789 target extended-remote, and we manually attached to a process
11790 with "attach PID". We don't record anywhere a flag that
11791 allows us to distinguish that case from the case of
11792 connecting with extended-remote and the stub already being
11793 attached to a process, and reporting yes to qAttached, hence
11794 no smart special casing here. */
11795 if (!remote_multi_process_p (rs))
11796 return "Remote target";
11797
11798 return normal_pid_to_str (ptid);
11799 }
11800 else
11801 {
11802 if (magic_null_ptid == ptid)
11803 return "Thread <main>";
11804 else if (remote_multi_process_p (rs))
11805 if (ptid.lwp () == 0)
11806 return normal_pid_to_str (ptid);
11807 else
11808 return string_printf ("Thread %d.%ld",
11809 ptid.pid (), ptid.lwp ());
11810 else
11811 return string_printf ("Thread %ld", ptid.lwp ());
11812 }
11813 }
11814
11815 /* Get the address of the thread local variable in OBJFILE which is
11816 stored at OFFSET within the thread local storage for thread PTID. */
11817
11818 CORE_ADDR
11819 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11820 CORE_ADDR offset)
11821 {
11822 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11823 {
11824 struct remote_state *rs = get_remote_state ();
11825 char *p = rs->buf.data ();
11826 char *endp = p + get_remote_packet_size ();
11827 enum packet_result result;
11828
11829 strcpy (p, "qGetTLSAddr:");
11830 p += strlen (p);
11831 p = write_ptid (p, endp, ptid);
11832 *p++ = ',';
11833 p += hexnumstr (p, offset);
11834 *p++ = ',';
11835 p += hexnumstr (p, lm);
11836 *p++ = '\0';
11837
11838 putpkt (rs->buf);
11839 getpkt (&rs->buf, 0);
11840 result = packet_ok (rs->buf,
11841 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11842 if (result == PACKET_OK)
11843 {
11844 ULONGEST addr;
11845
11846 unpack_varlen_hex (rs->buf.data (), &addr);
11847 return addr;
11848 }
11849 else if (result == PACKET_UNKNOWN)
11850 throw_error (TLS_GENERIC_ERROR,
11851 _("Remote target doesn't support qGetTLSAddr packet"));
11852 else
11853 throw_error (TLS_GENERIC_ERROR,
11854 _("Remote target failed to process qGetTLSAddr request"));
11855 }
11856 else
11857 throw_error (TLS_GENERIC_ERROR,
11858 _("TLS not supported or disabled on this target"));
11859 /* Not reached. */
11860 return 0;
11861 }
11862
11863 /* Provide thread local base, i.e. Thread Information Block address.
11864 Returns 1 if ptid is found and thread_local_base is non zero. */
11865
11866 bool
11867 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11868 {
11869 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11870 {
11871 struct remote_state *rs = get_remote_state ();
11872 char *p = rs->buf.data ();
11873 char *endp = p + get_remote_packet_size ();
11874 enum packet_result result;
11875
11876 strcpy (p, "qGetTIBAddr:");
11877 p += strlen (p);
11878 p = write_ptid (p, endp, ptid);
11879 *p++ = '\0';
11880
11881 putpkt (rs->buf);
11882 getpkt (&rs->buf, 0);
11883 result = packet_ok (rs->buf,
11884 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11885 if (result == PACKET_OK)
11886 {
11887 ULONGEST val;
11888 unpack_varlen_hex (rs->buf.data (), &val);
11889 if (addr)
11890 *addr = (CORE_ADDR) val;
11891 return true;
11892 }
11893 else if (result == PACKET_UNKNOWN)
11894 error (_("Remote target doesn't support qGetTIBAddr packet"));
11895 else
11896 error (_("Remote target failed to process qGetTIBAddr request"));
11897 }
11898 else
11899 error (_("qGetTIBAddr not supported or disabled on this target"));
11900 /* Not reached. */
11901 return false;
11902 }
11903
11904 /* Support for inferring a target description based on the current
11905 architecture and the size of a 'g' packet. While the 'g' packet
11906 can have any size (since optional registers can be left off the
11907 end), some sizes are easily recognizable given knowledge of the
11908 approximate architecture. */
11909
11910 struct remote_g_packet_guess
11911 {
11912 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11913 : bytes (bytes_),
11914 tdesc (tdesc_)
11915 {
11916 }
11917
11918 int bytes;
11919 const struct target_desc *tdesc;
11920 };
11921
11922 struct remote_g_packet_data : public allocate_on_obstack
11923 {
11924 std::vector<remote_g_packet_guess> guesses;
11925 };
11926
11927 static struct gdbarch_data *remote_g_packet_data_handle;
11928
11929 static void *
11930 remote_g_packet_data_init (struct obstack *obstack)
11931 {
11932 return new (obstack) remote_g_packet_data;
11933 }
11934
11935 void
11936 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11937 const struct target_desc *tdesc)
11938 {
11939 struct remote_g_packet_data *data
11940 = ((struct remote_g_packet_data *)
11941 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11942
11943 gdb_assert (tdesc != NULL);
11944
11945 for (const remote_g_packet_guess &guess : data->guesses)
11946 if (guess.bytes == bytes)
11947 internal_error (__FILE__, __LINE__,
11948 _("Duplicate g packet description added for size %d"),
11949 bytes);
11950
11951 data->guesses.emplace_back (bytes, tdesc);
11952 }
11953
11954 /* Return true if remote_read_description would do anything on this target
11955 and architecture, false otherwise. */
11956
11957 static bool
11958 remote_read_description_p (struct target_ops *target)
11959 {
11960 struct remote_g_packet_data *data
11961 = ((struct remote_g_packet_data *)
11962 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11963
11964 return !data->guesses.empty ();
11965 }
11966
11967 const struct target_desc *
11968 remote_target::read_description ()
11969 {
11970 struct remote_g_packet_data *data
11971 = ((struct remote_g_packet_data *)
11972 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11973
11974 /* Do not try this during initial connection, when we do not know
11975 whether there is a running but stopped thread. */
11976 if (!target_has_execution () || inferior_ptid == null_ptid)
11977 return beneath ()->read_description ();
11978
11979 if (!data->guesses.empty ())
11980 {
11981 int bytes = send_g_packet ();
11982
11983 for (const remote_g_packet_guess &guess : data->guesses)
11984 if (guess.bytes == bytes)
11985 return guess.tdesc;
11986
11987 /* We discard the g packet. A minor optimization would be to
11988 hold on to it, and fill the register cache once we have selected
11989 an architecture, but it's too tricky to do safely. */
11990 }
11991
11992 return beneath ()->read_description ();
11993 }
11994
11995 /* Remote file transfer support. This is host-initiated I/O, not
11996 target-initiated; for target-initiated, see remote-fileio.c. */
11997
11998 /* If *LEFT is at least the length of STRING, copy STRING to
11999 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12000 decrease *LEFT. Otherwise raise an error. */
12001
12002 static void
12003 remote_buffer_add_string (char **buffer, int *left, const char *string)
12004 {
12005 int len = strlen (string);
12006
12007 if (len > *left)
12008 error (_("Packet too long for target."));
12009
12010 memcpy (*buffer, string, len);
12011 *buffer += len;
12012 *left -= len;
12013
12014 /* NUL-terminate the buffer as a convenience, if there is
12015 room. */
12016 if (*left)
12017 **buffer = '\0';
12018 }
12019
12020 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12021 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12022 decrease *LEFT. Otherwise raise an error. */
12023
12024 static void
12025 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12026 int len)
12027 {
12028 if (2 * len > *left)
12029 error (_("Packet too long for target."));
12030
12031 bin2hex (bytes, *buffer, len);
12032 *buffer += 2 * len;
12033 *left -= 2 * len;
12034
12035 /* NUL-terminate the buffer as a convenience, if there is
12036 room. */
12037 if (*left)
12038 **buffer = '\0';
12039 }
12040
12041 /* If *LEFT is large enough, convert VALUE to hex and add it to
12042 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12043 decrease *LEFT. Otherwise raise an error. */
12044
12045 static void
12046 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12047 {
12048 int len = hexnumlen (value);
12049
12050 if (len > *left)
12051 error (_("Packet too long for target."));
12052
12053 hexnumstr (*buffer, value);
12054 *buffer += len;
12055 *left -= len;
12056
12057 /* NUL-terminate the buffer as a convenience, if there is
12058 room. */
12059 if (*left)
12060 **buffer = '\0';
12061 }
12062
12063 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12064 value, *REMOTE_ERRNO to the remote error number or zero if none
12065 was included, and *ATTACHMENT to point to the start of the annex
12066 if any. The length of the packet isn't needed here; there may
12067 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12068
12069 Return 0 if the packet could be parsed, -1 if it could not. If
12070 -1 is returned, the other variables may not be initialized. */
12071
12072 static int
12073 remote_hostio_parse_result (const char *buffer, int *retcode,
12074 int *remote_errno, const char **attachment)
12075 {
12076 char *p, *p2;
12077
12078 *remote_errno = 0;
12079 *attachment = NULL;
12080
12081 if (buffer[0] != 'F')
12082 return -1;
12083
12084 errno = 0;
12085 *retcode = strtol (&buffer[1], &p, 16);
12086 if (errno != 0 || p == &buffer[1])
12087 return -1;
12088
12089 /* Check for ",errno". */
12090 if (*p == ',')
12091 {
12092 errno = 0;
12093 *remote_errno = strtol (p + 1, &p2, 16);
12094 if (errno != 0 || p + 1 == p2)
12095 return -1;
12096 p = p2;
12097 }
12098
12099 /* Check for ";attachment". If there is no attachment, the
12100 packet should end here. */
12101 if (*p == ';')
12102 {
12103 *attachment = p + 1;
12104 return 0;
12105 }
12106 else if (*p == '\0')
12107 return 0;
12108 else
12109 return -1;
12110 }
12111
12112 /* Send a prepared I/O packet to the target and read its response.
12113 The prepared packet is in the global RS->BUF before this function
12114 is called, and the answer is there when we return.
12115
12116 COMMAND_BYTES is the length of the request to send, which may include
12117 binary data. WHICH_PACKET is the packet configuration to check
12118 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12119 is set to the error number and -1 is returned. Otherwise the value
12120 returned by the function is returned.
12121
12122 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12123 attachment is expected; an error will be reported if there's a
12124 mismatch. If one is found, *ATTACHMENT will be set to point into
12125 the packet buffer and *ATTACHMENT_LEN will be set to the
12126 attachment's length. */
12127
12128 int
12129 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12130 int *remote_errno, const char **attachment,
12131 int *attachment_len)
12132 {
12133 struct remote_state *rs = get_remote_state ();
12134 int ret, bytes_read;
12135 const char *attachment_tmp;
12136
12137 if (packet_support (which_packet) == PACKET_DISABLE)
12138 {
12139 *remote_errno = FILEIO_ENOSYS;
12140 return -1;
12141 }
12142
12143 putpkt_binary (rs->buf.data (), command_bytes);
12144 bytes_read = getpkt_sane (&rs->buf, 0);
12145
12146 /* If it timed out, something is wrong. Don't try to parse the
12147 buffer. */
12148 if (bytes_read < 0)
12149 {
12150 *remote_errno = FILEIO_EINVAL;
12151 return -1;
12152 }
12153
12154 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12155 {
12156 case PACKET_ERROR:
12157 *remote_errno = FILEIO_EINVAL;
12158 return -1;
12159 case PACKET_UNKNOWN:
12160 *remote_errno = FILEIO_ENOSYS;
12161 return -1;
12162 case PACKET_OK:
12163 break;
12164 }
12165
12166 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12167 &attachment_tmp))
12168 {
12169 *remote_errno = FILEIO_EINVAL;
12170 return -1;
12171 }
12172
12173 /* Make sure we saw an attachment if and only if we expected one. */
12174 if ((attachment_tmp == NULL && attachment != NULL)
12175 || (attachment_tmp != NULL && attachment == NULL))
12176 {
12177 *remote_errno = FILEIO_EINVAL;
12178 return -1;
12179 }
12180
12181 /* If an attachment was found, it must point into the packet buffer;
12182 work out how many bytes there were. */
12183 if (attachment_tmp != NULL)
12184 {
12185 *attachment = attachment_tmp;
12186 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12187 }
12188
12189 return ret;
12190 }
12191
12192 /* See declaration.h. */
12193
12194 void
12195 readahead_cache::invalidate ()
12196 {
12197 this->fd = -1;
12198 }
12199
12200 /* See declaration.h. */
12201
12202 void
12203 readahead_cache::invalidate_fd (int fd)
12204 {
12205 if (this->fd == fd)
12206 this->fd = -1;
12207 }
12208
12209 /* Set the filesystem remote_hostio functions that take FILENAME
12210 arguments will use. Return 0 on success, or -1 if an error
12211 occurs (and set *REMOTE_ERRNO). */
12212
12213 int
12214 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12215 int *remote_errno)
12216 {
12217 struct remote_state *rs = get_remote_state ();
12218 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12219 char *p = rs->buf.data ();
12220 int left = get_remote_packet_size () - 1;
12221 char arg[9];
12222 int ret;
12223
12224 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12225 return 0;
12226
12227 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12228 return 0;
12229
12230 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12231
12232 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12233 remote_buffer_add_string (&p, &left, arg);
12234
12235 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12236 remote_errno, NULL, NULL);
12237
12238 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12239 return 0;
12240
12241 if (ret == 0)
12242 rs->fs_pid = required_pid;
12243
12244 return ret;
12245 }
12246
12247 /* Implementation of to_fileio_open. */
12248
12249 int
12250 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12251 int flags, int mode, int warn_if_slow,
12252 int *remote_errno)
12253 {
12254 struct remote_state *rs = get_remote_state ();
12255 char *p = rs->buf.data ();
12256 int left = get_remote_packet_size () - 1;
12257
12258 if (warn_if_slow)
12259 {
12260 static int warning_issued = 0;
12261
12262 printf_unfiltered (_("Reading %s from remote target...\n"),
12263 filename);
12264
12265 if (!warning_issued)
12266 {
12267 warning (_("File transfers from remote targets can be slow."
12268 " Use \"set sysroot\" to access files locally"
12269 " instead."));
12270 warning_issued = 1;
12271 }
12272 }
12273
12274 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12275 return -1;
12276
12277 remote_buffer_add_string (&p, &left, "vFile:open:");
12278
12279 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12280 strlen (filename));
12281 remote_buffer_add_string (&p, &left, ",");
12282
12283 remote_buffer_add_int (&p, &left, flags);
12284 remote_buffer_add_string (&p, &left, ",");
12285
12286 remote_buffer_add_int (&p, &left, mode);
12287
12288 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12289 remote_errno, NULL, NULL);
12290 }
12291
12292 int
12293 remote_target::fileio_open (struct inferior *inf, const char *filename,
12294 int flags, int mode, int warn_if_slow,
12295 int *remote_errno)
12296 {
12297 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12298 remote_errno);
12299 }
12300
12301 /* Implementation of to_fileio_pwrite. */
12302
12303 int
12304 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12305 ULONGEST offset, int *remote_errno)
12306 {
12307 struct remote_state *rs = get_remote_state ();
12308 char *p = rs->buf.data ();
12309 int left = get_remote_packet_size ();
12310 int out_len;
12311
12312 rs->readahead_cache.invalidate_fd (fd);
12313
12314 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12315
12316 remote_buffer_add_int (&p, &left, fd);
12317 remote_buffer_add_string (&p, &left, ",");
12318
12319 remote_buffer_add_int (&p, &left, offset);
12320 remote_buffer_add_string (&p, &left, ",");
12321
12322 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12323 (get_remote_packet_size ()
12324 - (p - rs->buf.data ())));
12325
12326 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12327 remote_errno, NULL, NULL);
12328 }
12329
12330 int
12331 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12332 ULONGEST offset, int *remote_errno)
12333 {
12334 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12335 }
12336
12337 /* Helper for the implementation of to_fileio_pread. Read the file
12338 from the remote side with vFile:pread. */
12339
12340 int
12341 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12342 ULONGEST offset, int *remote_errno)
12343 {
12344 struct remote_state *rs = get_remote_state ();
12345 char *p = rs->buf.data ();
12346 const char *attachment;
12347 int left = get_remote_packet_size ();
12348 int ret, attachment_len;
12349 int read_len;
12350
12351 remote_buffer_add_string (&p, &left, "vFile:pread:");
12352
12353 remote_buffer_add_int (&p, &left, fd);
12354 remote_buffer_add_string (&p, &left, ",");
12355
12356 remote_buffer_add_int (&p, &left, len);
12357 remote_buffer_add_string (&p, &left, ",");
12358
12359 remote_buffer_add_int (&p, &left, offset);
12360
12361 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12362 remote_errno, &attachment,
12363 &attachment_len);
12364
12365 if (ret < 0)
12366 return ret;
12367
12368 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12369 read_buf, len);
12370 if (read_len != ret)
12371 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12372
12373 return ret;
12374 }
12375
12376 /* See declaration.h. */
12377
12378 int
12379 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12380 ULONGEST offset)
12381 {
12382 if (this->fd == fd
12383 && this->offset <= offset
12384 && offset < this->offset + this->bufsize)
12385 {
12386 ULONGEST max = this->offset + this->bufsize;
12387
12388 if (offset + len > max)
12389 len = max - offset;
12390
12391 memcpy (read_buf, this->buf + offset - this->offset, len);
12392 return len;
12393 }
12394
12395 return 0;
12396 }
12397
12398 /* Implementation of to_fileio_pread. */
12399
12400 int
12401 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12402 ULONGEST offset, int *remote_errno)
12403 {
12404 int ret;
12405 struct remote_state *rs = get_remote_state ();
12406 readahead_cache *cache = &rs->readahead_cache;
12407
12408 ret = cache->pread (fd, read_buf, len, offset);
12409 if (ret > 0)
12410 {
12411 cache->hit_count++;
12412
12413 remote_debug_printf ("readahead cache hit %s",
12414 pulongest (cache->hit_count));
12415 return ret;
12416 }
12417
12418 cache->miss_count++;
12419
12420 remote_debug_printf ("readahead cache miss %s",
12421 pulongest (cache->miss_count));
12422
12423 cache->fd = fd;
12424 cache->offset = offset;
12425 cache->bufsize = get_remote_packet_size ();
12426 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12427
12428 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12429 cache->offset, remote_errno);
12430 if (ret <= 0)
12431 {
12432 cache->invalidate_fd (fd);
12433 return ret;
12434 }
12435
12436 cache->bufsize = ret;
12437 return cache->pread (fd, read_buf, len, offset);
12438 }
12439
12440 int
12441 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12442 ULONGEST offset, int *remote_errno)
12443 {
12444 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12445 }
12446
12447 /* Implementation of to_fileio_close. */
12448
12449 int
12450 remote_target::remote_hostio_close (int fd, int *remote_errno)
12451 {
12452 struct remote_state *rs = get_remote_state ();
12453 char *p = rs->buf.data ();
12454 int left = get_remote_packet_size () - 1;
12455
12456 rs->readahead_cache.invalidate_fd (fd);
12457
12458 remote_buffer_add_string (&p, &left, "vFile:close:");
12459
12460 remote_buffer_add_int (&p, &left, fd);
12461
12462 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12463 remote_errno, NULL, NULL);
12464 }
12465
12466 int
12467 remote_target::fileio_close (int fd, int *remote_errno)
12468 {
12469 return remote_hostio_close (fd, remote_errno);
12470 }
12471
12472 /* Implementation of to_fileio_unlink. */
12473
12474 int
12475 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12476 int *remote_errno)
12477 {
12478 struct remote_state *rs = get_remote_state ();
12479 char *p = rs->buf.data ();
12480 int left = get_remote_packet_size () - 1;
12481
12482 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12483 return -1;
12484
12485 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12486
12487 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12488 strlen (filename));
12489
12490 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12491 remote_errno, NULL, NULL);
12492 }
12493
12494 int
12495 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12496 int *remote_errno)
12497 {
12498 return remote_hostio_unlink (inf, filename, remote_errno);
12499 }
12500
12501 /* Implementation of to_fileio_readlink. */
12502
12503 gdb::optional<std::string>
12504 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12505 int *remote_errno)
12506 {
12507 struct remote_state *rs = get_remote_state ();
12508 char *p = rs->buf.data ();
12509 const char *attachment;
12510 int left = get_remote_packet_size ();
12511 int len, attachment_len;
12512 int read_len;
12513
12514 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12515 return {};
12516
12517 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12518
12519 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12520 strlen (filename));
12521
12522 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12523 remote_errno, &attachment,
12524 &attachment_len);
12525
12526 if (len < 0)
12527 return {};
12528
12529 std::string ret (len, '\0');
12530
12531 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12532 (gdb_byte *) &ret[0], len);
12533 if (read_len != len)
12534 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12535
12536 return ret;
12537 }
12538
12539 /* Implementation of to_fileio_fstat. */
12540
12541 int
12542 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12543 {
12544 struct remote_state *rs = get_remote_state ();
12545 char *p = rs->buf.data ();
12546 int left = get_remote_packet_size ();
12547 int attachment_len, ret;
12548 const char *attachment;
12549 struct fio_stat fst;
12550 int read_len;
12551
12552 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12553
12554 remote_buffer_add_int (&p, &left, fd);
12555
12556 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12557 remote_errno, &attachment,
12558 &attachment_len);
12559 if (ret < 0)
12560 {
12561 if (*remote_errno != FILEIO_ENOSYS)
12562 return ret;
12563
12564 /* Strictly we should return -1, ENOSYS here, but when
12565 "set sysroot remote:" was implemented in August 2008
12566 BFD's need for a stat function was sidestepped with
12567 this hack. This was not remedied until March 2015
12568 so we retain the previous behavior to avoid breaking
12569 compatibility.
12570
12571 Note that the memset is a March 2015 addition; older
12572 GDBs set st_size *and nothing else* so the structure
12573 would have garbage in all other fields. This might
12574 break something but retaining the previous behavior
12575 here would be just too wrong. */
12576
12577 memset (st, 0, sizeof (struct stat));
12578 st->st_size = INT_MAX;
12579 return 0;
12580 }
12581
12582 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12583 (gdb_byte *) &fst, sizeof (fst));
12584
12585 if (read_len != ret)
12586 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12587
12588 if (read_len != sizeof (fst))
12589 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12590 read_len, (int) sizeof (fst));
12591
12592 remote_fileio_to_host_stat (&fst, st);
12593
12594 return 0;
12595 }
12596
12597 /* Implementation of to_filesystem_is_local. */
12598
12599 bool
12600 remote_target::filesystem_is_local ()
12601 {
12602 /* Valgrind GDB presents itself as a remote target but works
12603 on the local filesystem: it does not implement remote get
12604 and users are not expected to set a sysroot. To handle
12605 this case we treat the remote filesystem as local if the
12606 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12607 does not support vFile:open. */
12608 if (gdb_sysroot == TARGET_SYSROOT_PREFIX)
12609 {
12610 enum packet_support ps = packet_support (PACKET_vFile_open);
12611
12612 if (ps == PACKET_SUPPORT_UNKNOWN)
12613 {
12614 int fd, remote_errno;
12615
12616 /* Try opening a file to probe support. The supplied
12617 filename is irrelevant, we only care about whether
12618 the stub recognizes the packet or not. */
12619 fd = remote_hostio_open (NULL, "just probing",
12620 FILEIO_O_RDONLY, 0700, 0,
12621 &remote_errno);
12622
12623 if (fd >= 0)
12624 remote_hostio_close (fd, &remote_errno);
12625
12626 ps = packet_support (PACKET_vFile_open);
12627 }
12628
12629 if (ps == PACKET_DISABLE)
12630 {
12631 static int warning_issued = 0;
12632
12633 if (!warning_issued)
12634 {
12635 warning (_("remote target does not support file"
12636 " transfer, attempting to access files"
12637 " from local filesystem."));
12638 warning_issued = 1;
12639 }
12640
12641 return true;
12642 }
12643 }
12644
12645 return false;
12646 }
12647
12648 static int
12649 remote_fileio_errno_to_host (int errnum)
12650 {
12651 switch (errnum)
12652 {
12653 case FILEIO_EPERM:
12654 return EPERM;
12655 case FILEIO_ENOENT:
12656 return ENOENT;
12657 case FILEIO_EINTR:
12658 return EINTR;
12659 case FILEIO_EIO:
12660 return EIO;
12661 case FILEIO_EBADF:
12662 return EBADF;
12663 case FILEIO_EACCES:
12664 return EACCES;
12665 case FILEIO_EFAULT:
12666 return EFAULT;
12667 case FILEIO_EBUSY:
12668 return EBUSY;
12669 case FILEIO_EEXIST:
12670 return EEXIST;
12671 case FILEIO_ENODEV:
12672 return ENODEV;
12673 case FILEIO_ENOTDIR:
12674 return ENOTDIR;
12675 case FILEIO_EISDIR:
12676 return EISDIR;
12677 case FILEIO_EINVAL:
12678 return EINVAL;
12679 case FILEIO_ENFILE:
12680 return ENFILE;
12681 case FILEIO_EMFILE:
12682 return EMFILE;
12683 case FILEIO_EFBIG:
12684 return EFBIG;
12685 case FILEIO_ENOSPC:
12686 return ENOSPC;
12687 case FILEIO_ESPIPE:
12688 return ESPIPE;
12689 case FILEIO_EROFS:
12690 return EROFS;
12691 case FILEIO_ENOSYS:
12692 return ENOSYS;
12693 case FILEIO_ENAMETOOLONG:
12694 return ENAMETOOLONG;
12695 }
12696 return -1;
12697 }
12698
12699 static char *
12700 remote_hostio_error (int errnum)
12701 {
12702 int host_error = remote_fileio_errno_to_host (errnum);
12703
12704 if (host_error == -1)
12705 error (_("Unknown remote I/O error %d"), errnum);
12706 else
12707 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12708 }
12709
12710 /* A RAII wrapper around a remote file descriptor. */
12711
12712 class scoped_remote_fd
12713 {
12714 public:
12715 scoped_remote_fd (remote_target *remote, int fd)
12716 : m_remote (remote), m_fd (fd)
12717 {
12718 }
12719
12720 ~scoped_remote_fd ()
12721 {
12722 if (m_fd != -1)
12723 {
12724 try
12725 {
12726 int remote_errno;
12727 m_remote->remote_hostio_close (m_fd, &remote_errno);
12728 }
12729 catch (...)
12730 {
12731 /* Swallow exception before it escapes the dtor. If
12732 something goes wrong, likely the connection is gone,
12733 and there's nothing else that can be done. */
12734 }
12735 }
12736 }
12737
12738 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12739
12740 /* Release ownership of the file descriptor, and return it. */
12741 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12742 {
12743 int fd = m_fd;
12744 m_fd = -1;
12745 return fd;
12746 }
12747
12748 /* Return the owned file descriptor. */
12749 int get () const noexcept
12750 {
12751 return m_fd;
12752 }
12753
12754 private:
12755 /* The remote target. */
12756 remote_target *m_remote;
12757
12758 /* The owned remote I/O file descriptor. */
12759 int m_fd;
12760 };
12761
12762 void
12763 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12764 {
12765 remote_target *remote = get_current_remote_target ();
12766
12767 if (remote == nullptr)
12768 error (_("command can only be used with remote target"));
12769
12770 remote->remote_file_put (local_file, remote_file, from_tty);
12771 }
12772
12773 void
12774 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12775 int from_tty)
12776 {
12777 int retcode, remote_errno, bytes, io_size;
12778 int bytes_in_buffer;
12779 int saw_eof;
12780 ULONGEST offset;
12781
12782 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12783 if (file == NULL)
12784 perror_with_name (local_file);
12785
12786 scoped_remote_fd fd
12787 (this, remote_hostio_open (NULL,
12788 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12789 | FILEIO_O_TRUNC),
12790 0700, 0, &remote_errno));
12791 if (fd.get () == -1)
12792 remote_hostio_error (remote_errno);
12793
12794 /* Send up to this many bytes at once. They won't all fit in the
12795 remote packet limit, so we'll transfer slightly fewer. */
12796 io_size = get_remote_packet_size ();
12797 gdb::byte_vector buffer (io_size);
12798
12799 bytes_in_buffer = 0;
12800 saw_eof = 0;
12801 offset = 0;
12802 while (bytes_in_buffer || !saw_eof)
12803 {
12804 if (!saw_eof)
12805 {
12806 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12807 io_size - bytes_in_buffer,
12808 file.get ());
12809 if (bytes == 0)
12810 {
12811 if (ferror (file.get ()))
12812 error (_("Error reading %s."), local_file);
12813 else
12814 {
12815 /* EOF. Unless there is something still in the
12816 buffer from the last iteration, we are done. */
12817 saw_eof = 1;
12818 if (bytes_in_buffer == 0)
12819 break;
12820 }
12821 }
12822 }
12823 else
12824 bytes = 0;
12825
12826 bytes += bytes_in_buffer;
12827 bytes_in_buffer = 0;
12828
12829 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12830 offset, &remote_errno);
12831
12832 if (retcode < 0)
12833 remote_hostio_error (remote_errno);
12834 else if (retcode == 0)
12835 error (_("Remote write of %d bytes returned 0!"), bytes);
12836 else if (retcode < bytes)
12837 {
12838 /* Short write. Save the rest of the read data for the next
12839 write. */
12840 bytes_in_buffer = bytes - retcode;
12841 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12842 }
12843
12844 offset += retcode;
12845 }
12846
12847 if (remote_hostio_close (fd.release (), &remote_errno))
12848 remote_hostio_error (remote_errno);
12849
12850 if (from_tty)
12851 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12852 }
12853
12854 void
12855 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12856 {
12857 remote_target *remote = get_current_remote_target ();
12858
12859 if (remote == nullptr)
12860 error (_("command can only be used with remote target"));
12861
12862 remote->remote_file_get (remote_file, local_file, from_tty);
12863 }
12864
12865 void
12866 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12867 int from_tty)
12868 {
12869 int remote_errno, bytes, io_size;
12870 ULONGEST offset;
12871
12872 scoped_remote_fd fd
12873 (this, remote_hostio_open (NULL,
12874 remote_file, FILEIO_O_RDONLY, 0, 0,
12875 &remote_errno));
12876 if (fd.get () == -1)
12877 remote_hostio_error (remote_errno);
12878
12879 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12880 if (file == NULL)
12881 perror_with_name (local_file);
12882
12883 /* Send up to this many bytes at once. They won't all fit in the
12884 remote packet limit, so we'll transfer slightly fewer. */
12885 io_size = get_remote_packet_size ();
12886 gdb::byte_vector buffer (io_size);
12887
12888 offset = 0;
12889 while (1)
12890 {
12891 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12892 &remote_errno);
12893 if (bytes == 0)
12894 /* Success, but no bytes, means end-of-file. */
12895 break;
12896 if (bytes == -1)
12897 remote_hostio_error (remote_errno);
12898
12899 offset += bytes;
12900
12901 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12902 if (bytes == 0)
12903 perror_with_name (local_file);
12904 }
12905
12906 if (remote_hostio_close (fd.release (), &remote_errno))
12907 remote_hostio_error (remote_errno);
12908
12909 if (from_tty)
12910 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12911 }
12912
12913 void
12914 remote_file_delete (const char *remote_file, int from_tty)
12915 {
12916 remote_target *remote = get_current_remote_target ();
12917
12918 if (remote == nullptr)
12919 error (_("command can only be used with remote target"));
12920
12921 remote->remote_file_delete (remote_file, from_tty);
12922 }
12923
12924 void
12925 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12926 {
12927 int retcode, remote_errno;
12928
12929 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12930 if (retcode == -1)
12931 remote_hostio_error (remote_errno);
12932
12933 if (from_tty)
12934 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12935 }
12936
12937 static void
12938 remote_put_command (const char *args, int from_tty)
12939 {
12940 if (args == NULL)
12941 error_no_arg (_("file to put"));
12942
12943 gdb_argv argv (args);
12944 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12945 error (_("Invalid parameters to remote put"));
12946
12947 remote_file_put (argv[0], argv[1], from_tty);
12948 }
12949
12950 static void
12951 remote_get_command (const char *args, int from_tty)
12952 {
12953 if (args == NULL)
12954 error_no_arg (_("file to get"));
12955
12956 gdb_argv argv (args);
12957 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12958 error (_("Invalid parameters to remote get"));
12959
12960 remote_file_get (argv[0], argv[1], from_tty);
12961 }
12962
12963 static void
12964 remote_delete_command (const char *args, int from_tty)
12965 {
12966 if (args == NULL)
12967 error_no_arg (_("file to delete"));
12968
12969 gdb_argv argv (args);
12970 if (argv[0] == NULL || argv[1] != NULL)
12971 error (_("Invalid parameters to remote delete"));
12972
12973 remote_file_delete (argv[0], from_tty);
12974 }
12975
12976 bool
12977 remote_target::can_execute_reverse ()
12978 {
12979 if (packet_support (PACKET_bs) == PACKET_ENABLE
12980 || packet_support (PACKET_bc) == PACKET_ENABLE)
12981 return true;
12982 else
12983 return false;
12984 }
12985
12986 bool
12987 remote_target::supports_non_stop ()
12988 {
12989 return true;
12990 }
12991
12992 bool
12993 remote_target::supports_disable_randomization ()
12994 {
12995 /* Only supported in extended mode. */
12996 return false;
12997 }
12998
12999 bool
13000 remote_target::supports_multi_process ()
13001 {
13002 struct remote_state *rs = get_remote_state ();
13003
13004 return remote_multi_process_p (rs);
13005 }
13006
13007 static int
13008 remote_supports_cond_tracepoints ()
13009 {
13010 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13011 }
13012
13013 bool
13014 remote_target::supports_evaluation_of_breakpoint_conditions ()
13015 {
13016 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13017 }
13018
13019 static int
13020 remote_supports_fast_tracepoints ()
13021 {
13022 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13023 }
13024
13025 static int
13026 remote_supports_static_tracepoints ()
13027 {
13028 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13029 }
13030
13031 static int
13032 remote_supports_install_in_trace ()
13033 {
13034 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13035 }
13036
13037 bool
13038 remote_target::supports_enable_disable_tracepoint ()
13039 {
13040 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13041 == PACKET_ENABLE);
13042 }
13043
13044 bool
13045 remote_target::supports_string_tracing ()
13046 {
13047 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13048 }
13049
13050 bool
13051 remote_target::can_run_breakpoint_commands ()
13052 {
13053 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13054 }
13055
13056 void
13057 remote_target::trace_init ()
13058 {
13059 struct remote_state *rs = get_remote_state ();
13060
13061 putpkt ("QTinit");
13062 remote_get_noisy_reply ();
13063 if (strcmp (rs->buf.data (), "OK") != 0)
13064 error (_("Target does not support this command."));
13065 }
13066
13067 /* Recursive routine to walk through command list including loops, and
13068 download packets for each command. */
13069
13070 void
13071 remote_target::remote_download_command_source (int num, ULONGEST addr,
13072 struct command_line *cmds)
13073 {
13074 struct remote_state *rs = get_remote_state ();
13075 struct command_line *cmd;
13076
13077 for (cmd = cmds; cmd; cmd = cmd->next)
13078 {
13079 QUIT; /* Allow user to bail out with ^C. */
13080 strcpy (rs->buf.data (), "QTDPsrc:");
13081 encode_source_string (num, addr, "cmd", cmd->line,
13082 rs->buf.data () + strlen (rs->buf.data ()),
13083 rs->buf.size () - strlen (rs->buf.data ()));
13084 putpkt (rs->buf);
13085 remote_get_noisy_reply ();
13086 if (strcmp (rs->buf.data (), "OK"))
13087 warning (_("Target does not support source download."));
13088
13089 if (cmd->control_type == while_control
13090 || cmd->control_type == while_stepping_control)
13091 {
13092 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13093
13094 QUIT; /* Allow user to bail out with ^C. */
13095 strcpy (rs->buf.data (), "QTDPsrc:");
13096 encode_source_string (num, addr, "cmd", "end",
13097 rs->buf.data () + strlen (rs->buf.data ()),
13098 rs->buf.size () - strlen (rs->buf.data ()));
13099 putpkt (rs->buf);
13100 remote_get_noisy_reply ();
13101 if (strcmp (rs->buf.data (), "OK"))
13102 warning (_("Target does not support source download."));
13103 }
13104 }
13105 }
13106
13107 void
13108 remote_target::download_tracepoint (struct bp_location *loc)
13109 {
13110 CORE_ADDR tpaddr;
13111 char addrbuf[40];
13112 std::vector<std::string> tdp_actions;
13113 std::vector<std::string> stepping_actions;
13114 char *pkt;
13115 struct breakpoint *b = loc->owner;
13116 struct tracepoint *t = (struct tracepoint *) b;
13117 struct remote_state *rs = get_remote_state ();
13118 int ret;
13119 const char *err_msg = _("Tracepoint packet too large for target.");
13120 size_t size_left;
13121
13122 /* We use a buffer other than rs->buf because we'll build strings
13123 across multiple statements, and other statements in between could
13124 modify rs->buf. */
13125 gdb::char_vector buf (get_remote_packet_size ());
13126
13127 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13128
13129 tpaddr = loc->address;
13130 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13131 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13132 b->number, addrbuf, /* address */
13133 (b->enable_state == bp_enabled ? 'E' : 'D'),
13134 t->step_count, t->pass_count);
13135
13136 if (ret < 0 || ret >= buf.size ())
13137 error ("%s", err_msg);
13138
13139 /* Fast tracepoints are mostly handled by the target, but we can
13140 tell the target how big of an instruction block should be moved
13141 around. */
13142 if (b->type == bp_fast_tracepoint)
13143 {
13144 /* Only test for support at download time; we may not know
13145 target capabilities at definition time. */
13146 if (remote_supports_fast_tracepoints ())
13147 {
13148 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13149 NULL))
13150 {
13151 size_left = buf.size () - strlen (buf.data ());
13152 ret = snprintf (buf.data () + strlen (buf.data ()),
13153 size_left, ":F%x",
13154 gdb_insn_length (loc->gdbarch, tpaddr));
13155
13156 if (ret < 0 || ret >= size_left)
13157 error ("%s", err_msg);
13158 }
13159 else
13160 /* If it passed validation at definition but fails now,
13161 something is very wrong. */
13162 internal_error (__FILE__, __LINE__,
13163 _("Fast tracepoint not "
13164 "valid during download"));
13165 }
13166 else
13167 /* Fast tracepoints are functionally identical to regular
13168 tracepoints, so don't take lack of support as a reason to
13169 give up on the trace run. */
13170 warning (_("Target does not support fast tracepoints, "
13171 "downloading %d as regular tracepoint"), b->number);
13172 }
13173 else if (b->type == bp_static_tracepoint)
13174 {
13175 /* Only test for support at download time; we may not know
13176 target capabilities at definition time. */
13177 if (remote_supports_static_tracepoints ())
13178 {
13179 struct static_tracepoint_marker marker;
13180
13181 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13182 {
13183 size_left = buf.size () - strlen (buf.data ());
13184 ret = snprintf (buf.data () + strlen (buf.data ()),
13185 size_left, ":S");
13186
13187 if (ret < 0 || ret >= size_left)
13188 error ("%s", err_msg);
13189 }
13190 else
13191 error (_("Static tracepoint not valid during download"));
13192 }
13193 else
13194 /* Fast tracepoints are functionally identical to regular
13195 tracepoints, so don't take lack of support as a reason
13196 to give up on the trace run. */
13197 error (_("Target does not support static tracepoints"));
13198 }
13199 /* If the tracepoint has a conditional, make it into an agent
13200 expression and append to the definition. */
13201 if (loc->cond)
13202 {
13203 /* Only test support at download time, we may not know target
13204 capabilities at definition time. */
13205 if (remote_supports_cond_tracepoints ())
13206 {
13207 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13208 loc->cond.get ());
13209
13210 size_left = buf.size () - strlen (buf.data ());
13211
13212 ret = snprintf (buf.data () + strlen (buf.data ()),
13213 size_left, ":X%x,", aexpr->len);
13214
13215 if (ret < 0 || ret >= size_left)
13216 error ("%s", err_msg);
13217
13218 size_left = buf.size () - strlen (buf.data ());
13219
13220 /* Two bytes to encode each aexpr byte, plus the terminating
13221 null byte. */
13222 if (aexpr->len * 2 + 1 > size_left)
13223 error ("%s", err_msg);
13224
13225 pkt = buf.data () + strlen (buf.data ());
13226
13227 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13228 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13229 *pkt = '\0';
13230 }
13231 else
13232 warning (_("Target does not support conditional tracepoints, "
13233 "ignoring tp %d cond"), b->number);
13234 }
13235
13236 if (b->commands || !default_collect.empty ())
13237 {
13238 size_left = buf.size () - strlen (buf.data ());
13239
13240 ret = snprintf (buf.data () + strlen (buf.data ()),
13241 size_left, "-");
13242
13243 if (ret < 0 || ret >= size_left)
13244 error ("%s", err_msg);
13245 }
13246
13247 putpkt (buf.data ());
13248 remote_get_noisy_reply ();
13249 if (strcmp (rs->buf.data (), "OK"))
13250 error (_("Target does not support tracepoints."));
13251
13252 /* do_single_steps (t); */
13253 for (auto action_it = tdp_actions.begin ();
13254 action_it != tdp_actions.end (); action_it++)
13255 {
13256 QUIT; /* Allow user to bail out with ^C. */
13257
13258 bool has_more = ((action_it + 1) != tdp_actions.end ()
13259 || !stepping_actions.empty ());
13260
13261 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13262 b->number, addrbuf, /* address */
13263 action_it->c_str (),
13264 has_more ? '-' : 0);
13265
13266 if (ret < 0 || ret >= buf.size ())
13267 error ("%s", err_msg);
13268
13269 putpkt (buf.data ());
13270 remote_get_noisy_reply ();
13271 if (strcmp (rs->buf.data (), "OK"))
13272 error (_("Error on target while setting tracepoints."));
13273 }
13274
13275 for (auto action_it = stepping_actions.begin ();
13276 action_it != stepping_actions.end (); action_it++)
13277 {
13278 QUIT; /* Allow user to bail out with ^C. */
13279
13280 bool is_first = action_it == stepping_actions.begin ();
13281 bool has_more = (action_it + 1) != stepping_actions.end ();
13282
13283 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13284 b->number, addrbuf, /* address */
13285 is_first ? "S" : "",
13286 action_it->c_str (),
13287 has_more ? "-" : "");
13288
13289 if (ret < 0 || ret >= buf.size ())
13290 error ("%s", err_msg);
13291
13292 putpkt (buf.data ());
13293 remote_get_noisy_reply ();
13294 if (strcmp (rs->buf.data (), "OK"))
13295 error (_("Error on target while setting tracepoints."));
13296 }
13297
13298 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13299 {
13300 if (b->location != NULL)
13301 {
13302 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13303
13304 if (ret < 0 || ret >= buf.size ())
13305 error ("%s", err_msg);
13306
13307 encode_source_string (b->number, loc->address, "at",
13308 event_location_to_string (b->location.get ()),
13309 buf.data () + strlen (buf.data ()),
13310 buf.size () - strlen (buf.data ()));
13311 putpkt (buf.data ());
13312 remote_get_noisy_reply ();
13313 if (strcmp (rs->buf.data (), "OK"))
13314 warning (_("Target does not support source download."));
13315 }
13316 if (b->cond_string)
13317 {
13318 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13319
13320 if (ret < 0 || ret >= buf.size ())
13321 error ("%s", err_msg);
13322
13323 encode_source_string (b->number, loc->address,
13324 "cond", b->cond_string.get (),
13325 buf.data () + strlen (buf.data ()),
13326 buf.size () - strlen (buf.data ()));
13327 putpkt (buf.data ());
13328 remote_get_noisy_reply ();
13329 if (strcmp (rs->buf.data (), "OK"))
13330 warning (_("Target does not support source download."));
13331 }
13332 remote_download_command_source (b->number, loc->address,
13333 breakpoint_commands (b));
13334 }
13335 }
13336
13337 bool
13338 remote_target::can_download_tracepoint ()
13339 {
13340 struct remote_state *rs = get_remote_state ();
13341 struct trace_status *ts;
13342 int status;
13343
13344 /* Don't try to install tracepoints until we've relocated our
13345 symbols, and fetched and merged the target's tracepoint list with
13346 ours. */
13347 if (rs->starting_up)
13348 return false;
13349
13350 ts = current_trace_status ();
13351 status = get_trace_status (ts);
13352
13353 if (status == -1 || !ts->running_known || !ts->running)
13354 return false;
13355
13356 /* If we are in a tracing experiment, but remote stub doesn't support
13357 installing tracepoint in trace, we have to return. */
13358 if (!remote_supports_install_in_trace ())
13359 return false;
13360
13361 return true;
13362 }
13363
13364
13365 void
13366 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13367 {
13368 struct remote_state *rs = get_remote_state ();
13369 char *p;
13370
13371 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13372 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13373 tsv.builtin);
13374 p = rs->buf.data () + strlen (rs->buf.data ());
13375 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13376 >= get_remote_packet_size ())
13377 error (_("Trace state variable name too long for tsv definition packet"));
13378 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13379 *p++ = '\0';
13380 putpkt (rs->buf);
13381 remote_get_noisy_reply ();
13382 if (rs->buf[0] == '\0')
13383 error (_("Target does not support this command."));
13384 if (strcmp (rs->buf.data (), "OK") != 0)
13385 error (_("Error on target while downloading trace state variable."));
13386 }
13387
13388 void
13389 remote_target::enable_tracepoint (struct bp_location *location)
13390 {
13391 struct remote_state *rs = get_remote_state ();
13392
13393 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13394 location->owner->number,
13395 phex (location->address, sizeof (CORE_ADDR)));
13396 putpkt (rs->buf);
13397 remote_get_noisy_reply ();
13398 if (rs->buf[0] == '\0')
13399 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13400 if (strcmp (rs->buf.data (), "OK") != 0)
13401 error (_("Error on target while enabling tracepoint."));
13402 }
13403
13404 void
13405 remote_target::disable_tracepoint (struct bp_location *location)
13406 {
13407 struct remote_state *rs = get_remote_state ();
13408
13409 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13410 location->owner->number,
13411 phex (location->address, sizeof (CORE_ADDR)));
13412 putpkt (rs->buf);
13413 remote_get_noisy_reply ();
13414 if (rs->buf[0] == '\0')
13415 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13416 if (strcmp (rs->buf.data (), "OK") != 0)
13417 error (_("Error on target while disabling tracepoint."));
13418 }
13419
13420 void
13421 remote_target::trace_set_readonly_regions ()
13422 {
13423 asection *s;
13424 bfd_size_type size;
13425 bfd_vma vma;
13426 int anysecs = 0;
13427 int offset = 0;
13428
13429 if (!current_program_space->exec_bfd ())
13430 return; /* No information to give. */
13431
13432 struct remote_state *rs = get_remote_state ();
13433
13434 strcpy (rs->buf.data (), "QTro");
13435 offset = strlen (rs->buf.data ());
13436 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13437 {
13438 char tmp1[40], tmp2[40];
13439 int sec_length;
13440
13441 if ((s->flags & SEC_LOAD) == 0 ||
13442 /* (s->flags & SEC_CODE) == 0 || */
13443 (s->flags & SEC_READONLY) == 0)
13444 continue;
13445
13446 anysecs = 1;
13447 vma = bfd_section_vma (s);
13448 size = bfd_section_size (s);
13449 sprintf_vma (tmp1, vma);
13450 sprintf_vma (tmp2, vma + size);
13451 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13452 if (offset + sec_length + 1 > rs->buf.size ())
13453 {
13454 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13455 warning (_("\
13456 Too many sections for read-only sections definition packet."));
13457 break;
13458 }
13459 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13460 tmp1, tmp2);
13461 offset += sec_length;
13462 }
13463 if (anysecs)
13464 {
13465 putpkt (rs->buf);
13466 getpkt (&rs->buf, 0);
13467 }
13468 }
13469
13470 void
13471 remote_target::trace_start ()
13472 {
13473 struct remote_state *rs = get_remote_state ();
13474
13475 putpkt ("QTStart");
13476 remote_get_noisy_reply ();
13477 if (rs->buf[0] == '\0')
13478 error (_("Target does not support this command."));
13479 if (strcmp (rs->buf.data (), "OK") != 0)
13480 error (_("Bogus reply from target: %s"), rs->buf.data ());
13481 }
13482
13483 int
13484 remote_target::get_trace_status (struct trace_status *ts)
13485 {
13486 /* Initialize it just to avoid a GCC false warning. */
13487 char *p = NULL;
13488 enum packet_result result;
13489 struct remote_state *rs = get_remote_state ();
13490
13491 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13492 return -1;
13493
13494 /* FIXME we need to get register block size some other way. */
13495 trace_regblock_size
13496 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13497
13498 putpkt ("qTStatus");
13499
13500 try
13501 {
13502 p = remote_get_noisy_reply ();
13503 }
13504 catch (const gdb_exception_error &ex)
13505 {
13506 if (ex.error != TARGET_CLOSE_ERROR)
13507 {
13508 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13509 return -1;
13510 }
13511 throw;
13512 }
13513
13514 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13515
13516 /* If the remote target doesn't do tracing, flag it. */
13517 if (result == PACKET_UNKNOWN)
13518 return -1;
13519
13520 /* We're working with a live target. */
13521 ts->filename = NULL;
13522
13523 if (*p++ != 'T')
13524 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13525
13526 /* Function 'parse_trace_status' sets default value of each field of
13527 'ts' at first, so we don't have to do it here. */
13528 parse_trace_status (p, ts);
13529
13530 return ts->running;
13531 }
13532
13533 void
13534 remote_target::get_tracepoint_status (struct breakpoint *bp,
13535 struct uploaded_tp *utp)
13536 {
13537 struct remote_state *rs = get_remote_state ();
13538 char *reply;
13539 struct tracepoint *tp = (struct tracepoint *) bp;
13540 size_t size = get_remote_packet_size ();
13541
13542 if (tp)
13543 {
13544 tp->hit_count = 0;
13545 tp->traceframe_usage = 0;
13546 for (bp_location *loc : tp->locations ())
13547 {
13548 /* If the tracepoint was never downloaded, don't go asking for
13549 any status. */
13550 if (tp->number_on_target == 0)
13551 continue;
13552 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13553 phex_nz (loc->address, 0));
13554 putpkt (rs->buf);
13555 reply = remote_get_noisy_reply ();
13556 if (reply && *reply)
13557 {
13558 if (*reply == 'V')
13559 parse_tracepoint_status (reply + 1, bp, utp);
13560 }
13561 }
13562 }
13563 else if (utp)
13564 {
13565 utp->hit_count = 0;
13566 utp->traceframe_usage = 0;
13567 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13568 phex_nz (utp->addr, 0));
13569 putpkt (rs->buf);
13570 reply = remote_get_noisy_reply ();
13571 if (reply && *reply)
13572 {
13573 if (*reply == 'V')
13574 parse_tracepoint_status (reply + 1, bp, utp);
13575 }
13576 }
13577 }
13578
13579 void
13580 remote_target::trace_stop ()
13581 {
13582 struct remote_state *rs = get_remote_state ();
13583
13584 putpkt ("QTStop");
13585 remote_get_noisy_reply ();
13586 if (rs->buf[0] == '\0')
13587 error (_("Target does not support this command."));
13588 if (strcmp (rs->buf.data (), "OK") != 0)
13589 error (_("Bogus reply from target: %s"), rs->buf.data ());
13590 }
13591
13592 int
13593 remote_target::trace_find (enum trace_find_type type, int num,
13594 CORE_ADDR addr1, CORE_ADDR addr2,
13595 int *tpp)
13596 {
13597 struct remote_state *rs = get_remote_state ();
13598 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13599 char *p, *reply;
13600 int target_frameno = -1, target_tracept = -1;
13601
13602 /* Lookups other than by absolute frame number depend on the current
13603 trace selected, so make sure it is correct on the remote end
13604 first. */
13605 if (type != tfind_number)
13606 set_remote_traceframe ();
13607
13608 p = rs->buf.data ();
13609 strcpy (p, "QTFrame:");
13610 p = strchr (p, '\0');
13611 switch (type)
13612 {
13613 case tfind_number:
13614 xsnprintf (p, endbuf - p, "%x", num);
13615 break;
13616 case tfind_pc:
13617 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13618 break;
13619 case tfind_tp:
13620 xsnprintf (p, endbuf - p, "tdp:%x", num);
13621 break;
13622 case tfind_range:
13623 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13624 phex_nz (addr2, 0));
13625 break;
13626 case tfind_outside:
13627 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13628 phex_nz (addr2, 0));
13629 break;
13630 default:
13631 error (_("Unknown trace find type %d"), type);
13632 }
13633
13634 putpkt (rs->buf);
13635 reply = remote_get_noisy_reply ();
13636 if (*reply == '\0')
13637 error (_("Target does not support this command."));
13638
13639 while (reply && *reply)
13640 switch (*reply)
13641 {
13642 case 'F':
13643 p = ++reply;
13644 target_frameno = (int) strtol (p, &reply, 16);
13645 if (reply == p)
13646 error (_("Unable to parse trace frame number"));
13647 /* Don't update our remote traceframe number cache on failure
13648 to select a remote traceframe. */
13649 if (target_frameno == -1)
13650 return -1;
13651 break;
13652 case 'T':
13653 p = ++reply;
13654 target_tracept = (int) strtol (p, &reply, 16);
13655 if (reply == p)
13656 error (_("Unable to parse tracepoint number"));
13657 break;
13658 case 'O': /* "OK"? */
13659 if (reply[1] == 'K' && reply[2] == '\0')
13660 reply += 2;
13661 else
13662 error (_("Bogus reply from target: %s"), reply);
13663 break;
13664 default:
13665 error (_("Bogus reply from target: %s"), reply);
13666 }
13667 if (tpp)
13668 *tpp = target_tracept;
13669
13670 rs->remote_traceframe_number = target_frameno;
13671 return target_frameno;
13672 }
13673
13674 bool
13675 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13676 {
13677 struct remote_state *rs = get_remote_state ();
13678 char *reply;
13679 ULONGEST uval;
13680
13681 set_remote_traceframe ();
13682
13683 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13684 putpkt (rs->buf);
13685 reply = remote_get_noisy_reply ();
13686 if (reply && *reply)
13687 {
13688 if (*reply == 'V')
13689 {
13690 unpack_varlen_hex (reply + 1, &uval);
13691 *val = (LONGEST) uval;
13692 return true;
13693 }
13694 }
13695 return false;
13696 }
13697
13698 int
13699 remote_target::save_trace_data (const char *filename)
13700 {
13701 struct remote_state *rs = get_remote_state ();
13702 char *p, *reply;
13703
13704 p = rs->buf.data ();
13705 strcpy (p, "QTSave:");
13706 p += strlen (p);
13707 if ((p - rs->buf.data ()) + strlen (filename) * 2
13708 >= get_remote_packet_size ())
13709 error (_("Remote file name too long for trace save packet"));
13710 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13711 *p++ = '\0';
13712 putpkt (rs->buf);
13713 reply = remote_get_noisy_reply ();
13714 if (*reply == '\0')
13715 error (_("Target does not support this command."));
13716 if (strcmp (reply, "OK") != 0)
13717 error (_("Bogus reply from target: %s"), reply);
13718 return 0;
13719 }
13720
13721 /* This is basically a memory transfer, but needs to be its own packet
13722 because we don't know how the target actually organizes its trace
13723 memory, plus we want to be able to ask for as much as possible, but
13724 not be unhappy if we don't get as much as we ask for. */
13725
13726 LONGEST
13727 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13728 {
13729 struct remote_state *rs = get_remote_state ();
13730 char *reply;
13731 char *p;
13732 int rslt;
13733
13734 p = rs->buf.data ();
13735 strcpy (p, "qTBuffer:");
13736 p += strlen (p);
13737 p += hexnumstr (p, offset);
13738 *p++ = ',';
13739 p += hexnumstr (p, len);
13740 *p++ = '\0';
13741
13742 putpkt (rs->buf);
13743 reply = remote_get_noisy_reply ();
13744 if (reply && *reply)
13745 {
13746 /* 'l' by itself means we're at the end of the buffer and
13747 there is nothing more to get. */
13748 if (*reply == 'l')
13749 return 0;
13750
13751 /* Convert the reply into binary. Limit the number of bytes to
13752 convert according to our passed-in buffer size, rather than
13753 what was returned in the packet; if the target is
13754 unexpectedly generous and gives us a bigger reply than we
13755 asked for, we don't want to crash. */
13756 rslt = hex2bin (reply, buf, len);
13757 return rslt;
13758 }
13759
13760 /* Something went wrong, flag as an error. */
13761 return -1;
13762 }
13763
13764 void
13765 remote_target::set_disconnected_tracing (int val)
13766 {
13767 struct remote_state *rs = get_remote_state ();
13768
13769 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13770 {
13771 char *reply;
13772
13773 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13774 "QTDisconnected:%x", val);
13775 putpkt (rs->buf);
13776 reply = remote_get_noisy_reply ();
13777 if (*reply == '\0')
13778 error (_("Target does not support this command."));
13779 if (strcmp (reply, "OK") != 0)
13780 error (_("Bogus reply from target: %s"), reply);
13781 }
13782 else if (val)
13783 warning (_("Target does not support disconnected tracing."));
13784 }
13785
13786 int
13787 remote_target::core_of_thread (ptid_t ptid)
13788 {
13789 thread_info *info = find_thread_ptid (this, ptid);
13790
13791 if (info != NULL && info->priv != NULL)
13792 return get_remote_thread_info (info)->core;
13793
13794 return -1;
13795 }
13796
13797 void
13798 remote_target::set_circular_trace_buffer (int val)
13799 {
13800 struct remote_state *rs = get_remote_state ();
13801 char *reply;
13802
13803 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13804 "QTBuffer:circular:%x", val);
13805 putpkt (rs->buf);
13806 reply = remote_get_noisy_reply ();
13807 if (*reply == '\0')
13808 error (_("Target does not support this command."));
13809 if (strcmp (reply, "OK") != 0)
13810 error (_("Bogus reply from target: %s"), reply);
13811 }
13812
13813 traceframe_info_up
13814 remote_target::traceframe_info ()
13815 {
13816 gdb::optional<gdb::char_vector> text
13817 = target_read_stralloc (current_inferior ()->top_target (),
13818 TARGET_OBJECT_TRACEFRAME_INFO,
13819 NULL);
13820 if (text)
13821 return parse_traceframe_info (text->data ());
13822
13823 return NULL;
13824 }
13825
13826 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13827 instruction on which a fast tracepoint may be placed. Returns -1
13828 if the packet is not supported, and 0 if the minimum instruction
13829 length is unknown. */
13830
13831 int
13832 remote_target::get_min_fast_tracepoint_insn_len ()
13833 {
13834 struct remote_state *rs = get_remote_state ();
13835 char *reply;
13836
13837 /* If we're not debugging a process yet, the IPA can't be
13838 loaded. */
13839 if (!target_has_execution ())
13840 return 0;
13841
13842 /* Make sure the remote is pointing at the right process. */
13843 set_general_process ();
13844
13845 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13846 putpkt (rs->buf);
13847 reply = remote_get_noisy_reply ();
13848 if (*reply == '\0')
13849 return -1;
13850 else
13851 {
13852 ULONGEST min_insn_len;
13853
13854 unpack_varlen_hex (reply, &min_insn_len);
13855
13856 return (int) min_insn_len;
13857 }
13858 }
13859
13860 void
13861 remote_target::set_trace_buffer_size (LONGEST val)
13862 {
13863 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13864 {
13865 struct remote_state *rs = get_remote_state ();
13866 char *buf = rs->buf.data ();
13867 char *endbuf = buf + get_remote_packet_size ();
13868 enum packet_result result;
13869
13870 gdb_assert (val >= 0 || val == -1);
13871 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13872 /* Send -1 as literal "-1" to avoid host size dependency. */
13873 if (val < 0)
13874 {
13875 *buf++ = '-';
13876 buf += hexnumstr (buf, (ULONGEST) -val);
13877 }
13878 else
13879 buf += hexnumstr (buf, (ULONGEST) val);
13880
13881 putpkt (rs->buf);
13882 remote_get_noisy_reply ();
13883 result = packet_ok (rs->buf,
13884 &remote_protocol_packets[PACKET_QTBuffer_size]);
13885
13886 if (result != PACKET_OK)
13887 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13888 }
13889 }
13890
13891 bool
13892 remote_target::set_trace_notes (const char *user, const char *notes,
13893 const char *stop_notes)
13894 {
13895 struct remote_state *rs = get_remote_state ();
13896 char *reply;
13897 char *buf = rs->buf.data ();
13898 char *endbuf = buf + get_remote_packet_size ();
13899 int nbytes;
13900
13901 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13902 if (user)
13903 {
13904 buf += xsnprintf (buf, endbuf - buf, "user:");
13905 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13906 buf += 2 * nbytes;
13907 *buf++ = ';';
13908 }
13909 if (notes)
13910 {
13911 buf += xsnprintf (buf, endbuf - buf, "notes:");
13912 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13913 buf += 2 * nbytes;
13914 *buf++ = ';';
13915 }
13916 if (stop_notes)
13917 {
13918 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13919 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13920 buf += 2 * nbytes;
13921 *buf++ = ';';
13922 }
13923 /* Ensure the buffer is terminated. */
13924 *buf = '\0';
13925
13926 putpkt (rs->buf);
13927 reply = remote_get_noisy_reply ();
13928 if (*reply == '\0')
13929 return false;
13930
13931 if (strcmp (reply, "OK") != 0)
13932 error (_("Bogus reply from target: %s"), reply);
13933
13934 return true;
13935 }
13936
13937 bool
13938 remote_target::use_agent (bool use)
13939 {
13940 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13941 {
13942 struct remote_state *rs = get_remote_state ();
13943
13944 /* If the stub supports QAgent. */
13945 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13946 putpkt (rs->buf);
13947 getpkt (&rs->buf, 0);
13948
13949 if (strcmp (rs->buf.data (), "OK") == 0)
13950 {
13951 ::use_agent = use;
13952 return true;
13953 }
13954 }
13955
13956 return false;
13957 }
13958
13959 bool
13960 remote_target::can_use_agent ()
13961 {
13962 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13963 }
13964
13965 struct btrace_target_info
13966 {
13967 /* The ptid of the traced thread. */
13968 ptid_t ptid;
13969
13970 /* The obtained branch trace configuration. */
13971 struct btrace_config conf;
13972 };
13973
13974 /* Reset our idea of our target's btrace configuration. */
13975
13976 static void
13977 remote_btrace_reset (remote_state *rs)
13978 {
13979 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13980 }
13981
13982 /* Synchronize the configuration with the target. */
13983
13984 void
13985 remote_target::btrace_sync_conf (const btrace_config *conf)
13986 {
13987 struct packet_config *packet;
13988 struct remote_state *rs;
13989 char *buf, *pos, *endbuf;
13990
13991 rs = get_remote_state ();
13992 buf = rs->buf.data ();
13993 endbuf = buf + get_remote_packet_size ();
13994
13995 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13996 if (packet_config_support (packet) == PACKET_ENABLE
13997 && conf->bts.size != rs->btrace_config.bts.size)
13998 {
13999 pos = buf;
14000 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14001 conf->bts.size);
14002
14003 putpkt (buf);
14004 getpkt (&rs->buf, 0);
14005
14006 if (packet_ok (buf, packet) == PACKET_ERROR)
14007 {
14008 if (buf[0] == 'E' && buf[1] == '.')
14009 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14010 else
14011 error (_("Failed to configure the BTS buffer size."));
14012 }
14013
14014 rs->btrace_config.bts.size = conf->bts.size;
14015 }
14016
14017 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14018 if (packet_config_support (packet) == PACKET_ENABLE
14019 && conf->pt.size != rs->btrace_config.pt.size)
14020 {
14021 pos = buf;
14022 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14023 conf->pt.size);
14024
14025 putpkt (buf);
14026 getpkt (&rs->buf, 0);
14027
14028 if (packet_ok (buf, packet) == PACKET_ERROR)
14029 {
14030 if (buf[0] == 'E' && buf[1] == '.')
14031 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14032 else
14033 error (_("Failed to configure the trace buffer size."));
14034 }
14035
14036 rs->btrace_config.pt.size = conf->pt.size;
14037 }
14038 }
14039
14040 /* Read the current thread's btrace configuration from the target and
14041 store it into CONF. */
14042
14043 static void
14044 btrace_read_config (struct btrace_config *conf)
14045 {
14046 gdb::optional<gdb::char_vector> xml
14047 = target_read_stralloc (current_inferior ()->top_target (),
14048 TARGET_OBJECT_BTRACE_CONF, "");
14049 if (xml)
14050 parse_xml_btrace_conf (conf, xml->data ());
14051 }
14052
14053 /* Maybe reopen target btrace. */
14054
14055 void
14056 remote_target::remote_btrace_maybe_reopen ()
14057 {
14058 struct remote_state *rs = get_remote_state ();
14059 int btrace_target_pushed = 0;
14060 #if !defined (HAVE_LIBIPT)
14061 int warned = 0;
14062 #endif
14063
14064 /* Don't bother walking the entirety of the remote thread list when
14065 we know the feature isn't supported by the remote. */
14066 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14067 return;
14068
14069 scoped_restore_current_thread restore_thread;
14070
14071 for (thread_info *tp : all_non_exited_threads (this))
14072 {
14073 set_general_thread (tp->ptid);
14074
14075 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14076 btrace_read_config (&rs->btrace_config);
14077
14078 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14079 continue;
14080
14081 #if !defined (HAVE_LIBIPT)
14082 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14083 {
14084 if (!warned)
14085 {
14086 warned = 1;
14087 warning (_("Target is recording using Intel Processor Trace "
14088 "but support was disabled at compile time."));
14089 }
14090
14091 continue;
14092 }
14093 #endif /* !defined (HAVE_LIBIPT) */
14094
14095 /* Push target, once, but before anything else happens. This way our
14096 changes to the threads will be cleaned up by unpushing the target
14097 in case btrace_read_config () throws. */
14098 if (!btrace_target_pushed)
14099 {
14100 btrace_target_pushed = 1;
14101 record_btrace_push_target ();
14102 printf_filtered (_("Target is recording using %s.\n"),
14103 btrace_format_string (rs->btrace_config.format));
14104 }
14105
14106 tp->btrace.target = XCNEW (struct btrace_target_info);
14107 tp->btrace.target->ptid = tp->ptid;
14108 tp->btrace.target->conf = rs->btrace_config;
14109 }
14110 }
14111
14112 /* Enable branch tracing. */
14113
14114 struct btrace_target_info *
14115 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14116 {
14117 struct btrace_target_info *tinfo = NULL;
14118 struct packet_config *packet = NULL;
14119 struct remote_state *rs = get_remote_state ();
14120 char *buf = rs->buf.data ();
14121 char *endbuf = buf + get_remote_packet_size ();
14122
14123 switch (conf->format)
14124 {
14125 case BTRACE_FORMAT_BTS:
14126 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14127 break;
14128
14129 case BTRACE_FORMAT_PT:
14130 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14131 break;
14132 }
14133
14134 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14135 error (_("Target does not support branch tracing."));
14136
14137 btrace_sync_conf (conf);
14138
14139 set_general_thread (ptid);
14140
14141 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14142 putpkt (rs->buf);
14143 getpkt (&rs->buf, 0);
14144
14145 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14146 {
14147 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14148 error (_("Could not enable branch tracing for %s: %s"),
14149 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14150 else
14151 error (_("Could not enable branch tracing for %s."),
14152 target_pid_to_str (ptid).c_str ());
14153 }
14154
14155 tinfo = XCNEW (struct btrace_target_info);
14156 tinfo->ptid = ptid;
14157
14158 /* If we fail to read the configuration, we lose some information, but the
14159 tracing itself is not impacted. */
14160 try
14161 {
14162 btrace_read_config (&tinfo->conf);
14163 }
14164 catch (const gdb_exception_error &err)
14165 {
14166 if (err.message != NULL)
14167 warning ("%s", err.what ());
14168 }
14169
14170 return tinfo;
14171 }
14172
14173 /* Disable branch tracing. */
14174
14175 void
14176 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14177 {
14178 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14179 struct remote_state *rs = get_remote_state ();
14180 char *buf = rs->buf.data ();
14181 char *endbuf = buf + get_remote_packet_size ();
14182
14183 if (packet_config_support (packet) != PACKET_ENABLE)
14184 error (_("Target does not support branch tracing."));
14185
14186 set_general_thread (tinfo->ptid);
14187
14188 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14189 putpkt (rs->buf);
14190 getpkt (&rs->buf, 0);
14191
14192 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14193 {
14194 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14195 error (_("Could not disable branch tracing for %s: %s"),
14196 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14197 else
14198 error (_("Could not disable branch tracing for %s."),
14199 target_pid_to_str (tinfo->ptid).c_str ());
14200 }
14201
14202 xfree (tinfo);
14203 }
14204
14205 /* Teardown branch tracing. */
14206
14207 void
14208 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14209 {
14210 /* We must not talk to the target during teardown. */
14211 xfree (tinfo);
14212 }
14213
14214 /* Read the branch trace. */
14215
14216 enum btrace_error
14217 remote_target::read_btrace (struct btrace_data *btrace,
14218 struct btrace_target_info *tinfo,
14219 enum btrace_read_type type)
14220 {
14221 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14222 const char *annex;
14223
14224 if (packet_config_support (packet) != PACKET_ENABLE)
14225 error (_("Target does not support branch tracing."));
14226
14227 #if !defined(HAVE_LIBEXPAT)
14228 error (_("Cannot process branch tracing result. XML parsing not supported."));
14229 #endif
14230
14231 switch (type)
14232 {
14233 case BTRACE_READ_ALL:
14234 annex = "all";
14235 break;
14236 case BTRACE_READ_NEW:
14237 annex = "new";
14238 break;
14239 case BTRACE_READ_DELTA:
14240 annex = "delta";
14241 break;
14242 default:
14243 internal_error (__FILE__, __LINE__,
14244 _("Bad branch tracing read type: %u."),
14245 (unsigned int) type);
14246 }
14247
14248 gdb::optional<gdb::char_vector> xml
14249 = target_read_stralloc (current_inferior ()->top_target (),
14250 TARGET_OBJECT_BTRACE, annex);
14251 if (!xml)
14252 return BTRACE_ERR_UNKNOWN;
14253
14254 parse_xml_btrace (btrace, xml->data ());
14255
14256 return BTRACE_ERR_NONE;
14257 }
14258
14259 const struct btrace_config *
14260 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14261 {
14262 return &tinfo->conf;
14263 }
14264
14265 bool
14266 remote_target::augmented_libraries_svr4_read ()
14267 {
14268 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14269 == PACKET_ENABLE);
14270 }
14271
14272 /* Implementation of to_load. */
14273
14274 void
14275 remote_target::load (const char *name, int from_tty)
14276 {
14277 generic_load (name, from_tty);
14278 }
14279
14280 /* Accepts an integer PID; returns a string representing a file that
14281 can be opened on the remote side to get the symbols for the child
14282 process. Returns NULL if the operation is not supported. */
14283
14284 char *
14285 remote_target::pid_to_exec_file (int pid)
14286 {
14287 static gdb::optional<gdb::char_vector> filename;
14288 char *annex = NULL;
14289
14290 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14291 return NULL;
14292
14293 inferior *inf = find_inferior_pid (this, pid);
14294 if (inf == NULL)
14295 internal_error (__FILE__, __LINE__,
14296 _("not currently attached to process %d"), pid);
14297
14298 if (!inf->fake_pid_p)
14299 {
14300 const int annex_size = 9;
14301
14302 annex = (char *) alloca (annex_size);
14303 xsnprintf (annex, annex_size, "%x", pid);
14304 }
14305
14306 filename = target_read_stralloc (current_inferior ()->top_target (),
14307 TARGET_OBJECT_EXEC_FILE, annex);
14308
14309 return filename ? filename->data () : nullptr;
14310 }
14311
14312 /* Implement the to_can_do_single_step target_ops method. */
14313
14314 int
14315 remote_target::can_do_single_step ()
14316 {
14317 /* We can only tell whether target supports single step or not by
14318 supported s and S vCont actions if the stub supports vContSupported
14319 feature. If the stub doesn't support vContSupported feature,
14320 we have conservatively to think target doesn't supports single
14321 step. */
14322 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14323 {
14324 struct remote_state *rs = get_remote_state ();
14325
14326 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14327 remote_vcont_probe ();
14328
14329 return rs->supports_vCont.s && rs->supports_vCont.S;
14330 }
14331 else
14332 return 0;
14333 }
14334
14335 /* Implementation of the to_execution_direction method for the remote
14336 target. */
14337
14338 enum exec_direction_kind
14339 remote_target::execution_direction ()
14340 {
14341 struct remote_state *rs = get_remote_state ();
14342
14343 return rs->last_resume_exec_dir;
14344 }
14345
14346 /* Return pointer to the thread_info struct which corresponds to
14347 THREAD_HANDLE (having length HANDLE_LEN). */
14348
14349 thread_info *
14350 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14351 int handle_len,
14352 inferior *inf)
14353 {
14354 for (thread_info *tp : all_non_exited_threads (this))
14355 {
14356 remote_thread_info *priv = get_remote_thread_info (tp);
14357
14358 if (tp->inf == inf && priv != NULL)
14359 {
14360 if (handle_len != priv->thread_handle.size ())
14361 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14362 handle_len, priv->thread_handle.size ());
14363 if (memcmp (thread_handle, priv->thread_handle.data (),
14364 handle_len) == 0)
14365 return tp;
14366 }
14367 }
14368
14369 return NULL;
14370 }
14371
14372 gdb::byte_vector
14373 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14374 {
14375 remote_thread_info *priv = get_remote_thread_info (tp);
14376 return priv->thread_handle;
14377 }
14378
14379 bool
14380 remote_target::can_async_p ()
14381 {
14382 struct remote_state *rs = get_remote_state ();
14383
14384 /* We don't go async if the user has explicitly prevented it with the
14385 "maint set target-async" command. */
14386 if (!target_async_permitted)
14387 return false;
14388
14389 /* We're async whenever the serial device is. */
14390 return serial_can_async_p (rs->remote_desc);
14391 }
14392
14393 bool
14394 remote_target::is_async_p ()
14395 {
14396 struct remote_state *rs = get_remote_state ();
14397
14398 if (!target_async_permitted)
14399 /* We only enable async when the user specifically asks for it. */
14400 return false;
14401
14402 /* We're async whenever the serial device is. */
14403 return serial_is_async_p (rs->remote_desc);
14404 }
14405
14406 /* Pass the SERIAL event on and up to the client. One day this code
14407 will be able to delay notifying the client of an event until the
14408 point where an entire packet has been received. */
14409
14410 static serial_event_ftype remote_async_serial_handler;
14411
14412 static void
14413 remote_async_serial_handler (struct serial *scb, void *context)
14414 {
14415 /* Don't propogate error information up to the client. Instead let
14416 the client find out about the error by querying the target. */
14417 inferior_event_handler (INF_REG_EVENT);
14418 }
14419
14420 static void
14421 remote_async_inferior_event_handler (gdb_client_data data)
14422 {
14423 inferior_event_handler (INF_REG_EVENT);
14424 }
14425
14426 int
14427 remote_target::async_wait_fd ()
14428 {
14429 struct remote_state *rs = get_remote_state ();
14430 return rs->remote_desc->fd;
14431 }
14432
14433 void
14434 remote_target::async (int enable)
14435 {
14436 struct remote_state *rs = get_remote_state ();
14437
14438 if (enable)
14439 {
14440 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14441
14442 /* If there are pending events in the stop reply queue tell the
14443 event loop to process them. */
14444 if (!rs->stop_reply_queue.empty ())
14445 mark_async_event_handler (rs->remote_async_inferior_event_token);
14446 /* For simplicity, below we clear the pending events token
14447 without remembering whether it is marked, so here we always
14448 mark it. If there's actually no pending notification to
14449 process, this ends up being a no-op (other than a spurious
14450 event-loop wakeup). */
14451 if (target_is_non_stop_p ())
14452 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14453 }
14454 else
14455 {
14456 serial_async (rs->remote_desc, NULL, NULL);
14457 /* If the core is disabling async, it doesn't want to be
14458 disturbed with target events. Clear all async event sources
14459 too. */
14460 clear_async_event_handler (rs->remote_async_inferior_event_token);
14461 if (target_is_non_stop_p ())
14462 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14463 }
14464 }
14465
14466 /* Implementation of the to_thread_events method. */
14467
14468 void
14469 remote_target::thread_events (int enable)
14470 {
14471 struct remote_state *rs = get_remote_state ();
14472 size_t size = get_remote_packet_size ();
14473
14474 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14475 return;
14476
14477 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14478 putpkt (rs->buf);
14479 getpkt (&rs->buf, 0);
14480
14481 switch (packet_ok (rs->buf,
14482 &remote_protocol_packets[PACKET_QThreadEvents]))
14483 {
14484 case PACKET_OK:
14485 if (strcmp (rs->buf.data (), "OK") != 0)
14486 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14487 break;
14488 case PACKET_ERROR:
14489 warning (_("Remote failure reply: %s"), rs->buf.data ());
14490 break;
14491 case PACKET_UNKNOWN:
14492 break;
14493 }
14494 }
14495
14496 static void
14497 show_remote_cmd (const char *args, int from_tty)
14498 {
14499 /* We can't just use cmd_show_list here, because we want to skip
14500 the redundant "show remote Z-packet" and the legacy aliases. */
14501 struct cmd_list_element *list = remote_show_cmdlist;
14502 struct ui_out *uiout = current_uiout;
14503
14504 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14505 for (; list != NULL; list = list->next)
14506 if (strcmp (list->name, "Z-packet") == 0)
14507 continue;
14508 else if (list->type == not_set_cmd)
14509 /* Alias commands are exactly like the original, except they
14510 don't have the normal type. */
14511 continue;
14512 else
14513 {
14514 ui_out_emit_tuple option_emitter (uiout, "option");
14515
14516 uiout->field_string ("name", list->name);
14517 uiout->text (": ");
14518 if (list->type == show_cmd)
14519 do_show_command (NULL, from_tty, list);
14520 else
14521 cmd_func (list, NULL, from_tty);
14522 }
14523 }
14524
14525
14526 /* Function to be called whenever a new objfile (shlib) is detected. */
14527 static void
14528 remote_new_objfile (struct objfile *objfile)
14529 {
14530 remote_target *remote = get_current_remote_target ();
14531
14532 /* First, check whether the current inferior's process target is a remote
14533 target. */
14534 if (remote == nullptr)
14535 return;
14536
14537 /* When we are attaching or handling a fork child and the shared library
14538 subsystem reads the list of loaded libraries, we receive new objfile
14539 events in between each found library. The libraries are read in an
14540 undefined order, so if we gave the remote side a chance to look up
14541 symbols between each objfile, we might give it an inconsistent picture
14542 of the inferior. It could appear that a library A appears loaded but
14543 a library B does not, even though library A requires library B. That
14544 would present a state that couldn't normally exist in the inferior.
14545
14546 So, skip these events, we'll give the remote a chance to look up symbols
14547 once all the loaded libraries and their symbols are known to GDB. */
14548 if (current_inferior ()->in_initial_library_scan)
14549 return;
14550
14551 remote->remote_check_symbols ();
14552 }
14553
14554 /* Pull all the tracepoints defined on the target and create local
14555 data structures representing them. We don't want to create real
14556 tracepoints yet, we don't want to mess up the user's existing
14557 collection. */
14558
14559 int
14560 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14561 {
14562 struct remote_state *rs = get_remote_state ();
14563 char *p;
14564
14565 /* Ask for a first packet of tracepoint definition. */
14566 putpkt ("qTfP");
14567 getpkt (&rs->buf, 0);
14568 p = rs->buf.data ();
14569 while (*p && *p != 'l')
14570 {
14571 parse_tracepoint_definition (p, utpp);
14572 /* Ask for another packet of tracepoint definition. */
14573 putpkt ("qTsP");
14574 getpkt (&rs->buf, 0);
14575 p = rs->buf.data ();
14576 }
14577 return 0;
14578 }
14579
14580 int
14581 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14582 {
14583 struct remote_state *rs = get_remote_state ();
14584 char *p;
14585
14586 /* Ask for a first packet of variable definition. */
14587 putpkt ("qTfV");
14588 getpkt (&rs->buf, 0);
14589 p = rs->buf.data ();
14590 while (*p && *p != 'l')
14591 {
14592 parse_tsv_definition (p, utsvp);
14593 /* Ask for another packet of variable definition. */
14594 putpkt ("qTsV");
14595 getpkt (&rs->buf, 0);
14596 p = rs->buf.data ();
14597 }
14598 return 0;
14599 }
14600
14601 /* The "set/show range-stepping" show hook. */
14602
14603 static void
14604 show_range_stepping (struct ui_file *file, int from_tty,
14605 struct cmd_list_element *c,
14606 const char *value)
14607 {
14608 fprintf_filtered (file,
14609 _("Debugger's willingness to use range stepping "
14610 "is %s.\n"), value);
14611 }
14612
14613 /* Return true if the vCont;r action is supported by the remote
14614 stub. */
14615
14616 bool
14617 remote_target::vcont_r_supported ()
14618 {
14619 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14620 remote_vcont_probe ();
14621
14622 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14623 && get_remote_state ()->supports_vCont.r);
14624 }
14625
14626 /* The "set/show range-stepping" set hook. */
14627
14628 static void
14629 set_range_stepping (const char *ignore_args, int from_tty,
14630 struct cmd_list_element *c)
14631 {
14632 /* When enabling, check whether range stepping is actually supported
14633 by the target, and warn if not. */
14634 if (use_range_stepping)
14635 {
14636 remote_target *remote = get_current_remote_target ();
14637 if (remote == NULL
14638 || !remote->vcont_r_supported ())
14639 warning (_("Range stepping is not supported by the current target"));
14640 }
14641 }
14642
14643 static void
14644 show_remote_debug (struct ui_file *file, int from_tty,
14645 struct cmd_list_element *c, const char *value)
14646 {
14647 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14648 value);
14649 }
14650
14651 static void
14652 show_remote_timeout (struct ui_file *file, int from_tty,
14653 struct cmd_list_element *c, const char *value)
14654 {
14655 fprintf_filtered (file,
14656 _("Timeout limit to wait for target to respond is %s.\n"),
14657 value);
14658 }
14659
14660 /* Implement the "supports_memory_tagging" target_ops method. */
14661
14662 bool
14663 remote_target::supports_memory_tagging ()
14664 {
14665 return remote_memory_tagging_p ();
14666 }
14667
14668 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14669
14670 static void
14671 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14672 size_t len, int type)
14673 {
14674 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14675
14676 std::string request = string_printf ("qMemTags:%s,%s:%s",
14677 phex_nz (address, addr_size),
14678 phex_nz (len, sizeof (len)),
14679 phex_nz (type, sizeof (type)));
14680
14681 strcpy (packet.data (), request.c_str ());
14682 }
14683
14684 /* Parse the qMemTags packet reply into TAGS.
14685
14686 Return true if successful, false otherwise. */
14687
14688 static bool
14689 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14690 gdb::byte_vector &tags)
14691 {
14692 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14693 return false;
14694
14695 /* Copy the tag data. */
14696 tags = hex2bin (reply.data () + 1);
14697
14698 return true;
14699 }
14700
14701 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14702
14703 static void
14704 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14705 size_t len, int type,
14706 const gdb::byte_vector &tags)
14707 {
14708 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14709
14710 /* Put together the main packet, address and length. */
14711 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14712 phex_nz (address, addr_size),
14713 phex_nz (len, sizeof (len)),
14714 phex_nz (type, sizeof (type)));
14715 request += bin2hex (tags.data (), tags.size ());
14716
14717 /* Check if we have exceeded the maximum packet size. */
14718 if (packet.size () < request.length ())
14719 error (_("Contents too big for packet QMemTags."));
14720
14721 strcpy (packet.data (), request.c_str ());
14722 }
14723
14724 /* Implement the "fetch_memtags" target_ops method. */
14725
14726 bool
14727 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14728 gdb::byte_vector &tags, int type)
14729 {
14730 /* Make sure the qMemTags packet is supported. */
14731 if (!remote_memory_tagging_p ())
14732 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14733
14734 struct remote_state *rs = get_remote_state ();
14735
14736 create_fetch_memtags_request (rs->buf, address, len, type);
14737
14738 putpkt (rs->buf);
14739 getpkt (&rs->buf, 0);
14740
14741 return parse_fetch_memtags_reply (rs->buf, tags);
14742 }
14743
14744 /* Implement the "store_memtags" target_ops method. */
14745
14746 bool
14747 remote_target::store_memtags (CORE_ADDR address, size_t len,
14748 const gdb::byte_vector &tags, int type)
14749 {
14750 /* Make sure the QMemTags packet is supported. */
14751 if (!remote_memory_tagging_p ())
14752 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14753
14754 struct remote_state *rs = get_remote_state ();
14755
14756 create_store_memtags_request (rs->buf, address, len, type, tags);
14757
14758 putpkt (rs->buf);
14759 getpkt (&rs->buf, 0);
14760
14761 /* Verify if the request was successful. */
14762 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14763 }
14764
14765 /* Return true if remote target T is non-stop. */
14766
14767 bool
14768 remote_target_is_non_stop_p (remote_target *t)
14769 {
14770 scoped_restore_current_thread restore_thread;
14771 switch_to_target_no_thread (t);
14772
14773 return target_is_non_stop_p ();
14774 }
14775
14776 #if GDB_SELF_TEST
14777
14778 namespace selftests {
14779
14780 static void
14781 test_memory_tagging_functions ()
14782 {
14783 remote_target remote;
14784
14785 struct packet_config *config
14786 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14787
14788 scoped_restore restore_memtag_support_
14789 = make_scoped_restore (&config->support);
14790
14791 /* Test memory tagging packet support. */
14792 config->support = PACKET_SUPPORT_UNKNOWN;
14793 SELF_CHECK (remote.supports_memory_tagging () == false);
14794 config->support = PACKET_DISABLE;
14795 SELF_CHECK (remote.supports_memory_tagging () == false);
14796 config->support = PACKET_ENABLE;
14797 SELF_CHECK (remote.supports_memory_tagging () == true);
14798
14799 /* Setup testing. */
14800 gdb::char_vector packet;
14801 gdb::byte_vector tags, bv;
14802 std::string expected, reply;
14803 packet.resize (32000);
14804
14805 /* Test creating a qMemTags request. */
14806
14807 expected = "qMemTags:0,0:0";
14808 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14809 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14810
14811 expected = "qMemTags:deadbeef,10:1";
14812 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14813 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14814
14815 /* Test parsing a qMemTags reply. */
14816
14817 /* Error reply, tags vector unmodified. */
14818 reply = "E00";
14819 strcpy (packet.data (), reply.c_str ());
14820 tags.resize (0);
14821 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14822 SELF_CHECK (tags.size () == 0);
14823
14824 /* Valid reply, tags vector updated. */
14825 tags.resize (0);
14826 bv.resize (0);
14827
14828 for (int i = 0; i < 5; i++)
14829 bv.push_back (i);
14830
14831 reply = "m" + bin2hex (bv.data (), bv.size ());
14832 strcpy (packet.data (), reply.c_str ());
14833
14834 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14835 SELF_CHECK (tags.size () == 5);
14836
14837 for (int i = 0; i < 5; i++)
14838 SELF_CHECK (tags[i] == i);
14839
14840 /* Test creating a QMemTags request. */
14841
14842 /* Empty tag data. */
14843 tags.resize (0);
14844 expected = "QMemTags:0,0:0:";
14845 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14846 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14847 expected.length ()) == 0);
14848
14849 /* Non-empty tag data. */
14850 tags.resize (0);
14851 for (int i = 0; i < 5; i++)
14852 tags.push_back (i);
14853 expected = "QMemTags:deadbeef,ff:1:0001020304";
14854 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14855 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14856 expected.length ()) == 0);
14857 }
14858
14859 } // namespace selftests
14860 #endif /* GDB_SELF_TEST */
14861
14862 void _initialize_remote ();
14863 void
14864 _initialize_remote ()
14865 {
14866 /* architecture specific data */
14867 remote_g_packet_data_handle =
14868 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14869
14870 add_target (remote_target_info, remote_target::open);
14871 add_target (extended_remote_target_info, extended_remote_target::open);
14872
14873 /* Hook into new objfile notification. */
14874 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14875
14876 #if 0
14877 init_remote_threadtests ();
14878 #endif
14879
14880 /* set/show remote ... */
14881
14882 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14883 Remote protocol specific variables.\n\
14884 Configure various remote-protocol specific variables such as\n\
14885 the packets being used."),
14886 &remote_set_cmdlist,
14887 0 /* allow-unknown */, &setlist);
14888 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14889 Remote protocol specific variables.\n\
14890 Configure various remote-protocol specific variables such as\n\
14891 the packets being used."),
14892 &remote_show_cmdlist,
14893 0 /* allow-unknown */, &showlist);
14894
14895 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14896 Compare section data on target to the exec file.\n\
14897 Argument is a single section name (default: all loaded sections).\n\
14898 To compare only read-only loaded sections, specify the -r option."),
14899 &cmdlist);
14900
14901 add_cmd ("packet", class_maintenance, packet_command, _("\
14902 Send an arbitrary packet to a remote target.\n\
14903 maintenance packet TEXT\n\
14904 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14905 this command sends the string TEXT to the inferior, and displays the\n\
14906 response packet. GDB supplies the initial `$' character, and the\n\
14907 terminating `#' character and checksum."),
14908 &maintenancelist);
14909
14910 set_show_commands remotebreak_cmds
14911 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14912 Set whether to send break if interrupted."), _("\
14913 Show whether to send break if interrupted."), _("\
14914 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14915 set_remotebreak, show_remotebreak,
14916 &setlist, &showlist);
14917 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14918 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14919
14920 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14921 interrupt_sequence_modes, &interrupt_sequence_mode,
14922 _("\
14923 Set interrupt sequence to remote target."), _("\
14924 Show interrupt sequence to remote target."), _("\
14925 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14926 NULL, show_interrupt_sequence,
14927 &remote_set_cmdlist,
14928 &remote_show_cmdlist);
14929
14930 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14931 &interrupt_on_connect, _("\
14932 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14933 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14934 If set, interrupt sequence is sent to remote target."),
14935 NULL, NULL,
14936 &remote_set_cmdlist, &remote_show_cmdlist);
14937
14938 /* Install commands for configuring memory read/write packets. */
14939
14940 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14941 Set the maximum number of bytes per memory write packet (deprecated)."),
14942 &setlist);
14943 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14944 Show the maximum number of bytes per memory write packet (deprecated)."),
14945 &showlist);
14946 add_cmd ("memory-write-packet-size", no_class,
14947 set_memory_write_packet_size, _("\
14948 Set the maximum number of bytes per memory-write packet.\n\
14949 Specify the number of bytes in a packet or 0 (zero) for the\n\
14950 default packet size. The actual limit is further reduced\n\
14951 dependent on the target. Specify ``fixed'' to disable the\n\
14952 further restriction and ``limit'' to enable that restriction."),
14953 &remote_set_cmdlist);
14954 add_cmd ("memory-read-packet-size", no_class,
14955 set_memory_read_packet_size, _("\
14956 Set the maximum number of bytes per memory-read packet.\n\
14957 Specify the number of bytes in a packet or 0 (zero) for the\n\
14958 default packet size. The actual limit is further reduced\n\
14959 dependent on the target. Specify ``fixed'' to disable the\n\
14960 further restriction and ``limit'' to enable that restriction."),
14961 &remote_set_cmdlist);
14962 add_cmd ("memory-write-packet-size", no_class,
14963 show_memory_write_packet_size,
14964 _("Show the maximum number of bytes per memory-write packet."),
14965 &remote_show_cmdlist);
14966 add_cmd ("memory-read-packet-size", no_class,
14967 show_memory_read_packet_size,
14968 _("Show the maximum number of bytes per memory-read packet."),
14969 &remote_show_cmdlist);
14970
14971 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14972 &remote_hw_watchpoint_limit, _("\
14973 Set the maximum number of target hardware watchpoints."), _("\
14974 Show the maximum number of target hardware watchpoints."), _("\
14975 Specify \"unlimited\" for unlimited hardware watchpoints."),
14976 NULL, show_hardware_watchpoint_limit,
14977 &remote_set_cmdlist,
14978 &remote_show_cmdlist);
14979 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14980 no_class,
14981 &remote_hw_watchpoint_length_limit, _("\
14982 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14983 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14984 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14985 NULL, show_hardware_watchpoint_length_limit,
14986 &remote_set_cmdlist, &remote_show_cmdlist);
14987 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14988 &remote_hw_breakpoint_limit, _("\
14989 Set the maximum number of target hardware breakpoints."), _("\
14990 Show the maximum number of target hardware breakpoints."), _("\
14991 Specify \"unlimited\" for unlimited hardware breakpoints."),
14992 NULL, show_hardware_breakpoint_limit,
14993 &remote_set_cmdlist, &remote_show_cmdlist);
14994
14995 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14996 &remote_address_size, _("\
14997 Set the maximum size of the address (in bits) in a memory packet."), _("\
14998 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14999 NULL,
15000 NULL, /* FIXME: i18n: */
15001 &setlist, &showlist);
15002
15003 init_all_packet_configs ();
15004
15005 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15006 "X", "binary-download", 1);
15007
15008 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15009 "vCont", "verbose-resume", 0);
15010
15011 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15012 "QPassSignals", "pass-signals", 0);
15013
15014 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15015 "QCatchSyscalls", "catch-syscalls", 0);
15016
15017 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15018 "QProgramSignals", "program-signals", 0);
15019
15020 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15021 "QSetWorkingDir", "set-working-dir", 0);
15022
15023 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15024 "QStartupWithShell", "startup-with-shell", 0);
15025
15026 add_packet_config_cmd (&remote_protocol_packets
15027 [PACKET_QEnvironmentHexEncoded],
15028 "QEnvironmentHexEncoded", "environment-hex-encoded",
15029 0);
15030
15031 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15032 "QEnvironmentReset", "environment-reset",
15033 0);
15034
15035 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15036 "QEnvironmentUnset", "environment-unset",
15037 0);
15038
15039 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15040 "qSymbol", "symbol-lookup", 0);
15041
15042 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15043 "P", "set-register", 1);
15044
15045 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15046 "p", "fetch-register", 1);
15047
15048 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15049 "Z0", "software-breakpoint", 0);
15050
15051 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15052 "Z1", "hardware-breakpoint", 0);
15053
15054 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15055 "Z2", "write-watchpoint", 0);
15056
15057 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15058 "Z3", "read-watchpoint", 0);
15059
15060 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15061 "Z4", "access-watchpoint", 0);
15062
15063 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15064 "qXfer:auxv:read", "read-aux-vector", 0);
15065
15066 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15067 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15068
15069 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15070 "qXfer:features:read", "target-features", 0);
15071
15072 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15073 "qXfer:libraries:read", "library-info", 0);
15074
15075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15076 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15077
15078 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15079 "qXfer:memory-map:read", "memory-map", 0);
15080
15081 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15082 "qXfer:osdata:read", "osdata", 0);
15083
15084 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15085 "qXfer:threads:read", "threads", 0);
15086
15087 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15088 "qXfer:siginfo:read", "read-siginfo-object", 0);
15089
15090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15091 "qXfer:siginfo:write", "write-siginfo-object", 0);
15092
15093 add_packet_config_cmd
15094 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15095 "qXfer:traceframe-info:read", "traceframe-info", 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15098 "qXfer:uib:read", "unwind-info-block", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15101 "qGetTLSAddr", "get-thread-local-storage-address",
15102 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15105 "qGetTIBAddr", "get-thread-information-block-address",
15106 0);
15107
15108 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15109 "bc", "reverse-continue", 0);
15110
15111 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15112 "bs", "reverse-step", 0);
15113
15114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15115 "qSupported", "supported-packets", 0);
15116
15117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15118 "qSearch:memory", "search-memory", 0);
15119
15120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15121 "qTStatus", "trace-status", 0);
15122
15123 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15124 "vFile:setfs", "hostio-setfs", 0);
15125
15126 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15127 "vFile:open", "hostio-open", 0);
15128
15129 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15130 "vFile:pread", "hostio-pread", 0);
15131
15132 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15133 "vFile:pwrite", "hostio-pwrite", 0);
15134
15135 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15136 "vFile:close", "hostio-close", 0);
15137
15138 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15139 "vFile:unlink", "hostio-unlink", 0);
15140
15141 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15142 "vFile:readlink", "hostio-readlink", 0);
15143
15144 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15145 "vFile:fstat", "hostio-fstat", 0);
15146
15147 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15148 "vAttach", "attach", 0);
15149
15150 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15151 "vRun", "run", 0);
15152
15153 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15154 "QStartNoAckMode", "noack", 0);
15155
15156 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15157 "vKill", "kill", 0);
15158
15159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15160 "qAttached", "query-attached", 0);
15161
15162 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15163 "ConditionalTracepoints",
15164 "conditional-tracepoints", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15167 "ConditionalBreakpoints",
15168 "conditional-breakpoints", 0);
15169
15170 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15171 "BreakpointCommands",
15172 "breakpoint-commands", 0);
15173
15174 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15175 "FastTracepoints", "fast-tracepoints", 0);
15176
15177 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15178 "TracepointSource", "TracepointSource", 0);
15179
15180 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15181 "QAllow", "allow", 0);
15182
15183 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15184 "StaticTracepoints", "static-tracepoints", 0);
15185
15186 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15187 "InstallInTrace", "install-in-trace", 0);
15188
15189 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15190 "qXfer:statictrace:read", "read-sdata-object", 0);
15191
15192 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15193 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15194
15195 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15196 "QDisableRandomization", "disable-randomization", 0);
15197
15198 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15199 "QAgent", "agent", 0);
15200
15201 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15202 "QTBuffer:size", "trace-buffer-size", 0);
15203
15204 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15205 "Qbtrace:off", "disable-btrace", 0);
15206
15207 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15208 "Qbtrace:bts", "enable-btrace-bts", 0);
15209
15210 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15211 "Qbtrace:pt", "enable-btrace-pt", 0);
15212
15213 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15214 "qXfer:btrace", "read-btrace", 0);
15215
15216 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15217 "qXfer:btrace-conf", "read-btrace-conf", 0);
15218
15219 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15220 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15221
15222 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15223 "multiprocess-feature", "multiprocess-feature", 0);
15224
15225 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15226 "swbreak-feature", "swbreak-feature", 0);
15227
15228 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15229 "hwbreak-feature", "hwbreak-feature", 0);
15230
15231 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15232 "fork-event-feature", "fork-event-feature", 0);
15233
15234 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15235 "vfork-event-feature", "vfork-event-feature", 0);
15236
15237 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15238 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15239
15240 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15241 "vContSupported", "verbose-resume-supported", 0);
15242
15243 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15244 "exec-event-feature", "exec-event-feature", 0);
15245
15246 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15247 "vCtrlC", "ctrl-c", 0);
15248
15249 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15250 "QThreadEvents", "thread-events", 0);
15251
15252 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15253 "N stop reply", "no-resumed-stop-reply", 0);
15254
15255 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15256 "memory-tagging-feature", "memory-tagging-feature", 0);
15257
15258 /* Assert that we've registered "set remote foo-packet" commands
15259 for all packet configs. */
15260 {
15261 int i;
15262
15263 for (i = 0; i < PACKET_MAX; i++)
15264 {
15265 /* Ideally all configs would have a command associated. Some
15266 still don't though. */
15267 int excepted;
15268
15269 switch (i)
15270 {
15271 case PACKET_QNonStop:
15272 case PACKET_EnableDisableTracepoints_feature:
15273 case PACKET_tracenz_feature:
15274 case PACKET_DisconnectedTracing_feature:
15275 case PACKET_augmented_libraries_svr4_read_feature:
15276 case PACKET_qCRC:
15277 /* Additions to this list need to be well justified:
15278 pre-existing packets are OK; new packets are not. */
15279 excepted = 1;
15280 break;
15281 default:
15282 excepted = 0;
15283 break;
15284 }
15285
15286 /* This catches both forgetting to add a config command, and
15287 forgetting to remove a packet from the exception list. */
15288 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15289 }
15290 }
15291
15292 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15293 Z sub-packet has its own set and show commands, but users may
15294 have sets to this variable in their .gdbinit files (or in their
15295 documentation). */
15296 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15297 &remote_Z_packet_detect, _("\
15298 Set use of remote protocol `Z' packets."), _("\
15299 Show use of remote protocol `Z' packets."), _("\
15300 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15301 packets."),
15302 set_remote_protocol_Z_packet_cmd,
15303 show_remote_protocol_Z_packet_cmd,
15304 /* FIXME: i18n: Use of remote protocol
15305 `Z' packets is %s. */
15306 &remote_set_cmdlist, &remote_show_cmdlist);
15307
15308 add_basic_prefix_cmd ("remote", class_files, _("\
15309 Manipulate files on the remote system.\n\
15310 Transfer files to and from the remote target system."),
15311 &remote_cmdlist,
15312 0 /* allow-unknown */, &cmdlist);
15313
15314 add_cmd ("put", class_files, remote_put_command,
15315 _("Copy a local file to the remote system."),
15316 &remote_cmdlist);
15317
15318 add_cmd ("get", class_files, remote_get_command,
15319 _("Copy a remote file to the local system."),
15320 &remote_cmdlist);
15321
15322 add_cmd ("delete", class_files, remote_delete_command,
15323 _("Delete a remote file."),
15324 &remote_cmdlist);
15325
15326 add_setshow_string_noescape_cmd ("exec-file", class_files,
15327 &remote_exec_file_var, _("\
15328 Set the remote pathname for \"run\"."), _("\
15329 Show the remote pathname for \"run\"."), NULL,
15330 set_remote_exec_file,
15331 show_remote_exec_file,
15332 &remote_set_cmdlist,
15333 &remote_show_cmdlist);
15334
15335 add_setshow_boolean_cmd ("range-stepping", class_run,
15336 &use_range_stepping, _("\
15337 Enable or disable range stepping."), _("\
15338 Show whether target-assisted range stepping is enabled."), _("\
15339 If on, and the target supports it, when stepping a source line, GDB\n\
15340 tells the target to step the corresponding range of addresses itself instead\n\
15341 of issuing multiple single-steps. This speeds up source level\n\
15342 stepping. If off, GDB always issues single-steps, even if range\n\
15343 stepping is supported by the target. The default is on."),
15344 set_range_stepping,
15345 show_range_stepping,
15346 &setlist,
15347 &showlist);
15348
15349 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15350 Set watchdog timer."), _("\
15351 Show watchdog timer."), _("\
15352 When non-zero, this timeout is used instead of waiting forever for a target\n\
15353 to finish a low-level step or continue operation. If the specified amount\n\
15354 of time passes without a response from the target, an error occurs."),
15355 NULL,
15356 show_watchdog,
15357 &setlist, &showlist);
15358
15359 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15360 &remote_packet_max_chars, _("\
15361 Set the maximum number of characters to display for each remote packet."), _("\
15362 Show the maximum number of characters to display for each remote packet."), _("\
15363 Specify \"unlimited\" to display all the characters."),
15364 NULL, show_remote_packet_max_chars,
15365 &setdebuglist, &showdebuglist);
15366
15367 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15368 _("Set debugging of remote protocol."),
15369 _("Show debugging of remote protocol."),
15370 _("\
15371 When enabled, each packet sent or received with the remote target\n\
15372 is displayed."),
15373 NULL,
15374 show_remote_debug,
15375 &setdebuglist, &showdebuglist);
15376
15377 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15378 &remote_timeout, _("\
15379 Set timeout limit to wait for target to respond."), _("\
15380 Show timeout limit to wait for target to respond."), _("\
15381 This value is used to set the time limit for gdb to wait for a response\n\
15382 from the target."),
15383 NULL,
15384 show_remote_timeout,
15385 &setlist, &showlist);
15386
15387 /* Eventually initialize fileio. See fileio.c */
15388 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15389
15390 #if GDB_SELF_TEST
15391 selftests::register_test ("remote_memory_tagging",
15392 selftests::test_memory_tagging_functions);
15393 #endif
15394 }