]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Improve remote attach round-trips without btrace
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 std::string pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
489 override;
490
491 void stop (ptid_t) override;
492
493 void interrupt () override;
494
495 void pass_ctrlc () override;
496
497 enum target_xfer_status xfer_partial (enum target_object object,
498 const char *annex,
499 gdb_byte *readbuf,
500 const gdb_byte *writebuf,
501 ULONGEST offset, ULONGEST len,
502 ULONGEST *xfered_len) override;
503
504 ULONGEST get_memory_xfer_limit () override;
505
506 void rcmd (const char *command, struct ui_file *output) override;
507
508 char *pid_to_exec_file (int pid) override;
509
510 void log_command (const char *cmd) override
511 {
512 serial_log_command (this, cmd);
513 }
514
515 CORE_ADDR get_thread_local_address (ptid_t ptid,
516 CORE_ADDR load_module_addr,
517 CORE_ADDR offset) override;
518
519 bool can_execute_reverse () override;
520
521 std::vector<mem_region> memory_map () override;
522
523 void flash_erase (ULONGEST address, LONGEST length) override;
524
525 void flash_done () override;
526
527 const struct target_desc *read_description () override;
528
529 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
530 const gdb_byte *pattern, ULONGEST pattern_len,
531 CORE_ADDR *found_addrp) override;
532
533 bool can_async_p () override;
534
535 bool is_async_p () override;
536
537 void async (int) override;
538
539 void thread_events (int) override;
540
541 int can_do_single_step () override;
542
543 void terminal_inferior () override;
544
545 void terminal_ours () override;
546
547 bool supports_non_stop () override;
548
549 bool supports_multi_process () override;
550
551 bool supports_disable_randomization () override;
552
553 bool filesystem_is_local () override;
554
555
556 int fileio_open (struct inferior *inf, const char *filename,
557 int flags, int mode, int warn_if_slow,
558 int *target_errno) override;
559
560 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_pread (int fd, gdb_byte *read_buf, int len,
564 ULONGEST offset, int *target_errno) override;
565
566 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
567
568 int fileio_close (int fd, int *target_errno) override;
569
570 int fileio_unlink (struct inferior *inf,
571 const char *filename,
572 int *target_errno) override;
573
574 gdb::optional<std::string>
575 fileio_readlink (struct inferior *inf,
576 const char *filename,
577 int *target_errno) override;
578
579 bool supports_enable_disable_tracepoint () override;
580
581 bool supports_string_tracing () override;
582
583 bool supports_evaluation_of_breakpoint_conditions () override;
584
585 bool can_run_breakpoint_commands () override;
586
587 void trace_init () override;
588
589 void download_tracepoint (struct bp_location *location) override;
590
591 bool can_download_tracepoint () override;
592
593 void download_trace_state_variable (const trace_state_variable &tsv) override;
594
595 void enable_tracepoint (struct bp_location *location) override;
596
597 void disable_tracepoint (struct bp_location *location) override;
598
599 void trace_set_readonly_regions () override;
600
601 void trace_start () override;
602
603 int get_trace_status (struct trace_status *ts) override;
604
605 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
606 override;
607
608 void trace_stop () override;
609
610 int trace_find (enum trace_find_type type, int num,
611 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
612
613 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
614
615 int save_trace_data (const char *filename) override;
616
617 int upload_tracepoints (struct uploaded_tp **utpp) override;
618
619 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
620
621 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
622
623 int get_min_fast_tracepoint_insn_len () override;
624
625 void set_disconnected_tracing (int val) override;
626
627 void set_circular_trace_buffer (int val) override;
628
629 void set_trace_buffer_size (LONGEST val) override;
630
631 bool set_trace_notes (const char *user, const char *notes,
632 const char *stopnotes) override;
633
634 int core_of_thread (ptid_t ptid) override;
635
636 int verify_memory (const gdb_byte *data,
637 CORE_ADDR memaddr, ULONGEST size) override;
638
639
640 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
641
642 void set_permissions () override;
643
644 bool static_tracepoint_marker_at (CORE_ADDR,
645 struct static_tracepoint_marker *marker)
646 override;
647
648 std::vector<static_tracepoint_marker>
649 static_tracepoint_markers_by_strid (const char *id) override;
650
651 traceframe_info_up traceframe_info () override;
652
653 bool use_agent (bool use) override;
654 bool can_use_agent () override;
655
656 struct btrace_target_info *enable_btrace (ptid_t ptid,
657 const struct btrace_config *conf) override;
658
659 void disable_btrace (struct btrace_target_info *tinfo) override;
660
661 void teardown_btrace (struct btrace_target_info *tinfo) override;
662
663 enum btrace_error read_btrace (struct btrace_data *data,
664 struct btrace_target_info *btinfo,
665 enum btrace_read_type type) override;
666
667 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
668 bool augmented_libraries_svr4_read () override;
669 int follow_fork (int, int) override;
670 void follow_exec (struct inferior *, const char *) override;
671 int insert_fork_catchpoint (int) override;
672 int remove_fork_catchpoint (int) override;
673 int insert_vfork_catchpoint (int) override;
674 int remove_vfork_catchpoint (int) override;
675 int insert_exec_catchpoint (int) override;
676 int remove_exec_catchpoint (int) override;
677 enum exec_direction_kind execution_direction () override;
678
679 public: /* Remote specific methods. */
680
681 void remote_download_command_source (int num, ULONGEST addr,
682 struct command_line *cmds);
683
684 void remote_file_put (const char *local_file, const char *remote_file,
685 int from_tty);
686 void remote_file_get (const char *remote_file, const char *local_file,
687 int from_tty);
688 void remote_file_delete (const char *remote_file, int from_tty);
689
690 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
691 ULONGEST offset, int *remote_errno);
692 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
693 ULONGEST offset, int *remote_errno);
694 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
695 ULONGEST offset, int *remote_errno);
696
697 int remote_hostio_send_command (int command_bytes, int which_packet,
698 int *remote_errno, char **attachment,
699 int *attachment_len);
700 int remote_hostio_set_filesystem (struct inferior *inf,
701 int *remote_errno);
702 /* We should get rid of this and use fileio_open directly. */
703 int remote_hostio_open (struct inferior *inf, const char *filename,
704 int flags, int mode, int warn_if_slow,
705 int *remote_errno);
706 int remote_hostio_close (int fd, int *remote_errno);
707
708 int remote_hostio_unlink (inferior *inf, const char *filename,
709 int *remote_errno);
710
711 struct remote_state *get_remote_state ();
712
713 long get_remote_packet_size (void);
714 long get_memory_packet_size (struct memory_packet_config *config);
715
716 long get_memory_write_packet_size ();
717 long get_memory_read_packet_size ();
718
719 char *append_pending_thread_resumptions (char *p, char *endp,
720 ptid_t ptid);
721 static void open_1 (const char *name, int from_tty, int extended_p);
722 void start_remote (int from_tty, int extended_p);
723 void remote_detach_1 (struct inferior *inf, int from_tty);
724
725 char *append_resumption (char *p, char *endp,
726 ptid_t ptid, int step, gdb_signal siggnal);
727 int remote_resume_with_vcont (ptid_t ptid, int step,
728 gdb_signal siggnal);
729
730 void add_current_inferior_and_thread (char *wait_status);
731
732 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
733 int options);
734 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
735 int options);
736
737 ptid_t process_stop_reply (struct stop_reply *stop_reply,
738 target_waitstatus *status);
739
740 void remote_notice_new_inferior (ptid_t currthread, int executing);
741
742 void process_initial_stop_replies (int from_tty);
743
744 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
745
746 void btrace_sync_conf (const btrace_config *conf);
747
748 void remote_btrace_maybe_reopen ();
749
750 void remove_new_fork_children (threads_listing_context *context);
751 void kill_new_fork_children (int pid);
752 void discard_pending_stop_replies (struct inferior *inf);
753 int stop_reply_queue_length ();
754
755 void check_pending_events_prevent_wildcard_vcont
756 (int *may_global_wildcard_vcont);
757
758 void discard_pending_stop_replies_in_queue ();
759 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
760 struct stop_reply *queued_stop_reply (ptid_t ptid);
761 int peek_stop_reply (ptid_t ptid);
762 void remote_parse_stop_reply (const char *buf, stop_reply *event);
763
764 void remote_stop_ns (ptid_t ptid);
765 void remote_interrupt_as ();
766 void remote_interrupt_ns ();
767
768 char *remote_get_noisy_reply ();
769 int remote_query_attached (int pid);
770 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
771 int try_open_exec);
772
773 ptid_t remote_current_thread (ptid_t oldpid);
774 ptid_t get_current_thread (char *wait_status);
775
776 void set_thread (ptid_t ptid, int gen);
777 void set_general_thread (ptid_t ptid);
778 void set_continue_thread (ptid_t ptid);
779 void set_general_process ();
780
781 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
782
783 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
784 gdb_ext_thread_info *info);
785 int remote_get_threadinfo (threadref *threadid, int fieldset,
786 gdb_ext_thread_info *info);
787
788 int parse_threadlist_response (char *pkt, int result_limit,
789 threadref *original_echo,
790 threadref *resultlist,
791 int *doneflag);
792 int remote_get_threadlist (int startflag, threadref *nextthread,
793 int result_limit, int *done, int *result_count,
794 threadref *threadlist);
795
796 int remote_threadlist_iterator (rmt_thread_action stepfunction,
797 void *context, int looplimit);
798
799 int remote_get_threads_with_ql (threads_listing_context *context);
800 int remote_get_threads_with_qxfer (threads_listing_context *context);
801 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
802
803 void extended_remote_restart ();
804
805 void get_offsets ();
806
807 void remote_check_symbols ();
808
809 void remote_supported_packet (const struct protocol_feature *feature,
810 enum packet_support support,
811 const char *argument);
812
813 void remote_query_supported ();
814
815 void remote_packet_size (const protocol_feature *feature,
816 packet_support support, const char *value);
817
818 void remote_serial_quit_handler ();
819
820 void remote_detach_pid (int pid);
821
822 void remote_vcont_probe ();
823
824 void remote_resume_with_hc (ptid_t ptid, int step,
825 gdb_signal siggnal);
826
827 void send_interrupt_sequence ();
828 void interrupt_query ();
829
830 void remote_notif_get_pending_events (notif_client *nc);
831
832 int fetch_register_using_p (struct regcache *regcache,
833 packet_reg *reg);
834 int send_g_packet ();
835 void process_g_packet (struct regcache *regcache);
836 void fetch_registers_using_g (struct regcache *regcache);
837 int store_register_using_P (const struct regcache *regcache,
838 packet_reg *reg);
839 void store_registers_using_G (const struct regcache *regcache);
840
841 void set_remote_traceframe ();
842
843 void check_binary_download (CORE_ADDR addr);
844
845 target_xfer_status remote_write_bytes_aux (const char *header,
846 CORE_ADDR memaddr,
847 const gdb_byte *myaddr,
848 ULONGEST len_units,
849 int unit_size,
850 ULONGEST *xfered_len_units,
851 char packet_format,
852 int use_length);
853
854 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
855 const gdb_byte *myaddr, ULONGEST len,
856 int unit_size, ULONGEST *xfered_len);
857
858 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
859 ULONGEST len_units,
860 int unit_size, ULONGEST *xfered_len_units);
861
862 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
863 ULONGEST memaddr,
864 ULONGEST len,
865 int unit_size,
866 ULONGEST *xfered_len);
867
868 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
869 gdb_byte *myaddr, ULONGEST len,
870 int unit_size,
871 ULONGEST *xfered_len);
872
873 packet_result remote_send_printf (const char *format, ...)
874 ATTRIBUTE_PRINTF (2, 3);
875
876 target_xfer_status remote_flash_write (ULONGEST address,
877 ULONGEST length, ULONGEST *xfered_len,
878 const gdb_byte *data);
879
880 int readchar (int timeout);
881
882 void remote_serial_write (const char *str, int len);
883
884 int putpkt (const char *buf);
885 int putpkt_binary (const char *buf, int cnt);
886
887 int putpkt (const gdb::char_vector &buf)
888 {
889 return putpkt (buf.data ());
890 }
891
892 void skip_frame ();
893 long read_frame (gdb::char_vector *buf_p);
894 void getpkt (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
896 int expecting_notif, int *is_notif);
897 int getpkt_sane (gdb::char_vector *buf, int forever);
898 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
899 int *is_notif);
900 int remote_vkill (int pid);
901 void remote_kill_k ();
902
903 void extended_remote_disable_randomization (int val);
904 int extended_remote_run (const std::string &args);
905
906 void send_environment_packet (const char *action,
907 const char *packet,
908 const char *value);
909
910 void extended_remote_environment_support ();
911 void extended_remote_set_inferior_cwd ();
912
913 target_xfer_status remote_write_qxfer (const char *object_name,
914 const char *annex,
915 const gdb_byte *writebuf,
916 ULONGEST offset, LONGEST len,
917 ULONGEST *xfered_len,
918 struct packet_config *packet);
919
920 target_xfer_status remote_read_qxfer (const char *object_name,
921 const char *annex,
922 gdb_byte *readbuf, ULONGEST offset,
923 LONGEST len,
924 ULONGEST *xfered_len,
925 struct packet_config *packet);
926
927 void push_stop_reply (struct stop_reply *new_event);
928
929 bool vcont_r_supported ();
930
931 void packet_command (const char *args, int from_tty);
932
933 private: /* data fields */
934
935 /* The remote state. Don't reference this directly. Use the
936 get_remote_state method instead. */
937 remote_state m_remote_state;
938 };
939
940 static const target_info extended_remote_target_info = {
941 "extended-remote",
942 N_("Extended remote serial target in gdb-specific protocol"),
943 remote_doc
944 };
945
946 /* Set up the extended remote target by extending the standard remote
947 target and adding to it. */
948
949 class extended_remote_target final : public remote_target
950 {
951 public:
952 const target_info &info () const override
953 { return extended_remote_target_info; }
954
955 /* Open an extended-remote connection. */
956 static void open (const char *, int);
957
958 bool can_create_inferior () override { return true; }
959 void create_inferior (const char *, const std::string &,
960 char **, int) override;
961
962 void detach (inferior *, int) override;
963
964 bool can_attach () override { return true; }
965 void attach (const char *, int) override;
966
967 void post_attach (int) override;
968 bool supports_disable_randomization () override;
969 };
970
971 /* Per-program-space data key. */
972 static const struct program_space_key<char, gdb::xfree_deleter<char>>
973 remote_pspace_data;
974
975 /* The variable registered as the control variable used by the
976 remote exec-file commands. While the remote exec-file setting is
977 per-program-space, the set/show machinery uses this as the
978 location of the remote exec-file value. */
979 static char *remote_exec_file_var;
980
981 /* The size to align memory write packets, when practical. The protocol
982 does not guarantee any alignment, and gdb will generate short
983 writes and unaligned writes, but even as a best-effort attempt this
984 can improve bulk transfers. For instance, if a write is misaligned
985 relative to the target's data bus, the stub may need to make an extra
986 round trip fetching data from the target. This doesn't make a
987 huge difference, but it's easy to do, so we try to be helpful.
988
989 The alignment chosen is arbitrary; usually data bus width is
990 important here, not the possibly larger cache line size. */
991 enum { REMOTE_ALIGN_WRITES = 16 };
992
993 /* Prototypes for local functions. */
994
995 static int hexnumlen (ULONGEST num);
996
997 static int stubhex (int ch);
998
999 static int hexnumstr (char *, ULONGEST);
1000
1001 static int hexnumnstr (char *, ULONGEST, int);
1002
1003 static CORE_ADDR remote_address_masked (CORE_ADDR);
1004
1005 static void print_packet (const char *);
1006
1007 static int stub_unpack_int (char *buff, int fieldlength);
1008
1009 struct packet_config;
1010
1011 static void show_packet_config_cmd (struct packet_config *config);
1012
1013 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1014 int from_tty,
1015 struct cmd_list_element *c,
1016 const char *value);
1017
1018 static ptid_t read_ptid (const char *buf, const char **obuf);
1019
1020 static void remote_async_inferior_event_handler (gdb_client_data);
1021
1022 static bool remote_read_description_p (struct target_ops *target);
1023
1024 static void remote_console_output (const char *msg);
1025
1026 static void remote_btrace_reset (remote_state *rs);
1027
1028 static void remote_unpush_and_throw (void);
1029
1030 /* For "remote". */
1031
1032 static struct cmd_list_element *remote_cmdlist;
1033
1034 /* For "set remote" and "show remote". */
1035
1036 static struct cmd_list_element *remote_set_cmdlist;
1037 static struct cmd_list_element *remote_show_cmdlist;
1038
1039 /* Controls whether GDB is willing to use range stepping. */
1040
1041 static int use_range_stepping = 1;
1042
1043 /* The max number of chars in debug output. The rest of chars are
1044 omitted. */
1045
1046 #define REMOTE_DEBUG_MAX_CHAR 512
1047
1048 /* Private data that we'll store in (struct thread_info)->priv. */
1049 struct remote_thread_info : public private_thread_info
1050 {
1051 std::string extra;
1052 std::string name;
1053 int core = -1;
1054
1055 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1056 sequence of bytes. */
1057 gdb::byte_vector thread_handle;
1058
1059 /* Whether the target stopped for a breakpoint/watchpoint. */
1060 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1061
1062 /* This is set to the data address of the access causing the target
1063 to stop for a watchpoint. */
1064 CORE_ADDR watch_data_address = 0;
1065
1066 /* Fields used by the vCont action coalescing implemented in
1067 remote_resume / remote_commit_resume. remote_resume stores each
1068 thread's last resume request in these fields, so that a later
1069 remote_commit_resume knows which is the proper action for this
1070 thread to include in the vCont packet. */
1071
1072 /* True if the last target_resume call for this thread was a step
1073 request, false if a continue request. */
1074 int last_resume_step = 0;
1075
1076 /* The signal specified in the last target_resume call for this
1077 thread. */
1078 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1079
1080 /* Whether this thread was already vCont-resumed on the remote
1081 side. */
1082 int vcont_resumed = 0;
1083 };
1084
1085 remote_state::remote_state ()
1086 : buf (400)
1087 {
1088 }
1089
1090 remote_state::~remote_state ()
1091 {
1092 xfree (this->last_pass_packet);
1093 xfree (this->last_program_signals_packet);
1094 xfree (this->finished_object);
1095 xfree (this->finished_annex);
1096 }
1097
1098 /* Utility: generate error from an incoming stub packet. */
1099 static void
1100 trace_error (char *buf)
1101 {
1102 if (*buf++ != 'E')
1103 return; /* not an error msg */
1104 switch (*buf)
1105 {
1106 case '1': /* malformed packet error */
1107 if (*++buf == '0') /* general case: */
1108 error (_("remote.c: error in outgoing packet."));
1109 else
1110 error (_("remote.c: error in outgoing packet at field #%ld."),
1111 strtol (buf, NULL, 16));
1112 default:
1113 error (_("Target returns error code '%s'."), buf);
1114 }
1115 }
1116
1117 /* Utility: wait for reply from stub, while accepting "O" packets. */
1118
1119 char *
1120 remote_target::remote_get_noisy_reply ()
1121 {
1122 struct remote_state *rs = get_remote_state ();
1123
1124 do /* Loop on reply from remote stub. */
1125 {
1126 char *buf;
1127
1128 QUIT; /* Allow user to bail out with ^C. */
1129 getpkt (&rs->buf, 0);
1130 buf = rs->buf.data ();
1131 if (buf[0] == 'E')
1132 trace_error (buf);
1133 else if (startswith (buf, "qRelocInsn:"))
1134 {
1135 ULONGEST ul;
1136 CORE_ADDR from, to, org_to;
1137 const char *p, *pp;
1138 int adjusted_size = 0;
1139 int relocated = 0;
1140
1141 p = buf + strlen ("qRelocInsn:");
1142 pp = unpack_varlen_hex (p, &ul);
1143 if (*pp != ';')
1144 error (_("invalid qRelocInsn packet: %s"), buf);
1145 from = ul;
1146
1147 p = pp + 1;
1148 unpack_varlen_hex (p, &ul);
1149 to = ul;
1150
1151 org_to = to;
1152
1153 try
1154 {
1155 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1156 relocated = 1;
1157 }
1158 catch (const gdb_exception &ex)
1159 {
1160 if (ex.error == MEMORY_ERROR)
1161 {
1162 /* Propagate memory errors silently back to the
1163 target. The stub may have limited the range of
1164 addresses we can write to, for example. */
1165 }
1166 else
1167 {
1168 /* Something unexpectedly bad happened. Be verbose
1169 so we can tell what, and propagate the error back
1170 to the stub, so it doesn't get stuck waiting for
1171 a response. */
1172 exception_fprintf (gdb_stderr, ex,
1173 _("warning: relocating instruction: "));
1174 }
1175 putpkt ("E01");
1176 }
1177
1178 if (relocated)
1179 {
1180 adjusted_size = to - org_to;
1181
1182 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1183 putpkt (buf);
1184 }
1185 }
1186 else if (buf[0] == 'O' && buf[1] != 'K')
1187 remote_console_output (buf + 1); /* 'O' message from stub */
1188 else
1189 return buf; /* Here's the actual reply. */
1190 }
1191 while (1);
1192 }
1193
1194 struct remote_arch_state *
1195 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1196 {
1197 remote_arch_state *rsa;
1198
1199 auto it = this->m_arch_states.find (gdbarch);
1200 if (it == this->m_arch_states.end ())
1201 {
1202 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1203 std::forward_as_tuple (gdbarch),
1204 std::forward_as_tuple (gdbarch));
1205 rsa = &p.first->second;
1206
1207 /* Make sure that the packet buffer is plenty big enough for
1208 this architecture. */
1209 if (this->buf.size () < rsa->remote_packet_size)
1210 this->buf.resize (2 * rsa->remote_packet_size);
1211 }
1212 else
1213 rsa = &it->second;
1214
1215 return rsa;
1216 }
1217
1218 /* Fetch the global remote target state. */
1219
1220 remote_state *
1221 remote_target::get_remote_state ()
1222 {
1223 /* Make sure that the remote architecture state has been
1224 initialized, because doing so might reallocate rs->buf. Any
1225 function which calls getpkt also needs to be mindful of changes
1226 to rs->buf, but this call limits the number of places which run
1227 into trouble. */
1228 m_remote_state.get_remote_arch_state (target_gdbarch ());
1229
1230 return &m_remote_state;
1231 }
1232
1233 /* Fetch the remote exec-file from the current program space. */
1234
1235 static const char *
1236 get_remote_exec_file (void)
1237 {
1238 char *remote_exec_file;
1239
1240 remote_exec_file = remote_pspace_data.get (current_program_space);
1241 if (remote_exec_file == NULL)
1242 return "";
1243
1244 return remote_exec_file;
1245 }
1246
1247 /* Set the remote exec file for PSPACE. */
1248
1249 static void
1250 set_pspace_remote_exec_file (struct program_space *pspace,
1251 const char *remote_exec_file)
1252 {
1253 char *old_file = remote_pspace_data.get (pspace);
1254
1255 xfree (old_file);
1256 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1257 }
1258
1259 /* The "set/show remote exec-file" set command hook. */
1260
1261 static void
1262 set_remote_exec_file (const char *ignored, int from_tty,
1263 struct cmd_list_element *c)
1264 {
1265 gdb_assert (remote_exec_file_var != NULL);
1266 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1267 }
1268
1269 /* The "set/show remote exec-file" show command hook. */
1270
1271 static void
1272 show_remote_exec_file (struct ui_file *file, int from_tty,
1273 struct cmd_list_element *cmd, const char *value)
1274 {
1275 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1276 }
1277
1278 static int
1279 compare_pnums (const void *lhs_, const void *rhs_)
1280 {
1281 const struct packet_reg * const *lhs
1282 = (const struct packet_reg * const *) lhs_;
1283 const struct packet_reg * const *rhs
1284 = (const struct packet_reg * const *) rhs_;
1285
1286 if ((*lhs)->pnum < (*rhs)->pnum)
1287 return -1;
1288 else if ((*lhs)->pnum == (*rhs)->pnum)
1289 return 0;
1290 else
1291 return 1;
1292 }
1293
1294 static int
1295 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1296 {
1297 int regnum, num_remote_regs, offset;
1298 struct packet_reg **remote_regs;
1299
1300 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1301 {
1302 struct packet_reg *r = &regs[regnum];
1303
1304 if (register_size (gdbarch, regnum) == 0)
1305 /* Do not try to fetch zero-sized (placeholder) registers. */
1306 r->pnum = -1;
1307 else
1308 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1309
1310 r->regnum = regnum;
1311 }
1312
1313 /* Define the g/G packet format as the contents of each register
1314 with a remote protocol number, in order of ascending protocol
1315 number. */
1316
1317 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1318 for (num_remote_regs = 0, regnum = 0;
1319 regnum < gdbarch_num_regs (gdbarch);
1320 regnum++)
1321 if (regs[regnum].pnum != -1)
1322 remote_regs[num_remote_regs++] = &regs[regnum];
1323
1324 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1325 compare_pnums);
1326
1327 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1328 {
1329 remote_regs[regnum]->in_g_packet = 1;
1330 remote_regs[regnum]->offset = offset;
1331 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1332 }
1333
1334 return offset;
1335 }
1336
1337 /* Given the architecture described by GDBARCH, return the remote
1338 protocol register's number and the register's offset in the g/G
1339 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1340 If the target does not have a mapping for REGNUM, return false,
1341 otherwise, return true. */
1342
1343 int
1344 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1345 int *pnum, int *poffset)
1346 {
1347 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1348
1349 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1350
1351 map_regcache_remote_table (gdbarch, regs.data ());
1352
1353 *pnum = regs[regnum].pnum;
1354 *poffset = regs[regnum].offset;
1355
1356 return *pnum != -1;
1357 }
1358
1359 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1360 {
1361 /* Use the architecture to build a regnum<->pnum table, which will be
1362 1:1 unless a feature set specifies otherwise. */
1363 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1364
1365 /* Record the maximum possible size of the g packet - it may turn out
1366 to be smaller. */
1367 this->sizeof_g_packet
1368 = map_regcache_remote_table (gdbarch, this->regs.get ());
1369
1370 /* Default maximum number of characters in a packet body. Many
1371 remote stubs have a hardwired buffer size of 400 bytes
1372 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1373 as the maximum packet-size to ensure that the packet and an extra
1374 NUL character can always fit in the buffer. This stops GDB
1375 trashing stubs that try to squeeze an extra NUL into what is
1376 already a full buffer (As of 1999-12-04 that was most stubs). */
1377 this->remote_packet_size = 400 - 1;
1378
1379 /* This one is filled in when a ``g'' packet is received. */
1380 this->actual_register_packet_size = 0;
1381
1382 /* Should rsa->sizeof_g_packet needs more space than the
1383 default, adjust the size accordingly. Remember that each byte is
1384 encoded as two characters. 32 is the overhead for the packet
1385 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1386 (``$NN:G...#NN'') is a better guess, the below has been padded a
1387 little. */
1388 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1389 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1390 }
1391
1392 /* Get a pointer to the current remote target. If not connected to a
1393 remote target, return NULL. */
1394
1395 static remote_target *
1396 get_current_remote_target ()
1397 {
1398 target_ops *proc_target = find_target_at (process_stratum);
1399 return dynamic_cast<remote_target *> (proc_target);
1400 }
1401
1402 /* Return the current allowed size of a remote packet. This is
1403 inferred from the current architecture, and should be used to
1404 limit the length of outgoing packets. */
1405 long
1406 remote_target::get_remote_packet_size ()
1407 {
1408 struct remote_state *rs = get_remote_state ();
1409 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1410
1411 if (rs->explicit_packet_size)
1412 return rs->explicit_packet_size;
1413
1414 return rsa->remote_packet_size;
1415 }
1416
1417 static struct packet_reg *
1418 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1419 long regnum)
1420 {
1421 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1422 return NULL;
1423 else
1424 {
1425 struct packet_reg *r = &rsa->regs[regnum];
1426
1427 gdb_assert (r->regnum == regnum);
1428 return r;
1429 }
1430 }
1431
1432 static struct packet_reg *
1433 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1434 LONGEST pnum)
1435 {
1436 int i;
1437
1438 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1439 {
1440 struct packet_reg *r = &rsa->regs[i];
1441
1442 if (r->pnum == pnum)
1443 return r;
1444 }
1445 return NULL;
1446 }
1447
1448 /* Allow the user to specify what sequence to send to the remote
1449 when he requests a program interruption: Although ^C is usually
1450 what remote systems expect (this is the default, here), it is
1451 sometimes preferable to send a break. On other systems such
1452 as the Linux kernel, a break followed by g, which is Magic SysRq g
1453 is required in order to interrupt the execution. */
1454 const char interrupt_sequence_control_c[] = "Ctrl-C";
1455 const char interrupt_sequence_break[] = "BREAK";
1456 const char interrupt_sequence_break_g[] = "BREAK-g";
1457 static const char *const interrupt_sequence_modes[] =
1458 {
1459 interrupt_sequence_control_c,
1460 interrupt_sequence_break,
1461 interrupt_sequence_break_g,
1462 NULL
1463 };
1464 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1465
1466 static void
1467 show_interrupt_sequence (struct ui_file *file, int from_tty,
1468 struct cmd_list_element *c,
1469 const char *value)
1470 {
1471 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1472 fprintf_filtered (file,
1473 _("Send the ASCII ETX character (Ctrl-c) "
1474 "to the remote target to interrupt the "
1475 "execution of the program.\n"));
1476 else if (interrupt_sequence_mode == interrupt_sequence_break)
1477 fprintf_filtered (file,
1478 _("send a break signal to the remote target "
1479 "to interrupt the execution of the program.\n"));
1480 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1481 fprintf_filtered (file,
1482 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1483 "the remote target to interrupt the execution "
1484 "of Linux kernel.\n"));
1485 else
1486 internal_error (__FILE__, __LINE__,
1487 _("Invalid value for interrupt_sequence_mode: %s."),
1488 interrupt_sequence_mode);
1489 }
1490
1491 /* This boolean variable specifies whether interrupt_sequence is sent
1492 to the remote target when gdb connects to it.
1493 This is mostly needed when you debug the Linux kernel: The Linux kernel
1494 expects BREAK g which is Magic SysRq g for connecting gdb. */
1495 static int interrupt_on_connect = 0;
1496
1497 /* This variable is used to implement the "set/show remotebreak" commands.
1498 Since these commands are now deprecated in favor of "set/show remote
1499 interrupt-sequence", it no longer has any effect on the code. */
1500 static int remote_break;
1501
1502 static void
1503 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1504 {
1505 if (remote_break)
1506 interrupt_sequence_mode = interrupt_sequence_break;
1507 else
1508 interrupt_sequence_mode = interrupt_sequence_control_c;
1509 }
1510
1511 static void
1512 show_remotebreak (struct ui_file *file, int from_tty,
1513 struct cmd_list_element *c,
1514 const char *value)
1515 {
1516 }
1517
1518 /* This variable sets the number of bits in an address that are to be
1519 sent in a memory ("M" or "m") packet. Normally, after stripping
1520 leading zeros, the entire address would be sent. This variable
1521 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1522 initial implementation of remote.c restricted the address sent in
1523 memory packets to ``host::sizeof long'' bytes - (typically 32
1524 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1525 address was never sent. Since fixing this bug may cause a break in
1526 some remote targets this variable is principly provided to
1527 facilitate backward compatibility. */
1528
1529 static unsigned int remote_address_size;
1530
1531 \f
1532 /* User configurable variables for the number of characters in a
1533 memory read/write packet. MIN (rsa->remote_packet_size,
1534 rsa->sizeof_g_packet) is the default. Some targets need smaller
1535 values (fifo overruns, et.al.) and some users need larger values
1536 (speed up transfers). The variables ``preferred_*'' (the user
1537 request), ``current_*'' (what was actually set) and ``forced_*''
1538 (Positive - a soft limit, negative - a hard limit). */
1539
1540 struct memory_packet_config
1541 {
1542 const char *name;
1543 long size;
1544 int fixed_p;
1545 };
1546
1547 /* The default max memory-write-packet-size, when the setting is
1548 "fixed". The 16k is historical. (It came from older GDB's using
1549 alloca for buffers and the knowledge (folklore?) that some hosts
1550 don't cope very well with large alloca calls.) */
1551 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1552
1553 /* The minimum remote packet size for memory transfers. Ensures we
1554 can write at least one byte. */
1555 #define MIN_MEMORY_PACKET_SIZE 20
1556
1557 /* Get the memory packet size, assuming it is fixed. */
1558
1559 static long
1560 get_fixed_memory_packet_size (struct memory_packet_config *config)
1561 {
1562 gdb_assert (config->fixed_p);
1563
1564 if (config->size <= 0)
1565 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1566 else
1567 return config->size;
1568 }
1569
1570 /* Compute the current size of a read/write packet. Since this makes
1571 use of ``actual_register_packet_size'' the computation is dynamic. */
1572
1573 long
1574 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1575 {
1576 struct remote_state *rs = get_remote_state ();
1577 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1578
1579 long what_they_get;
1580 if (config->fixed_p)
1581 what_they_get = get_fixed_memory_packet_size (config);
1582 else
1583 {
1584 what_they_get = get_remote_packet_size ();
1585 /* Limit the packet to the size specified by the user. */
1586 if (config->size > 0
1587 && what_they_get > config->size)
1588 what_they_get = config->size;
1589
1590 /* Limit it to the size of the targets ``g'' response unless we have
1591 permission from the stub to use a larger packet size. */
1592 if (rs->explicit_packet_size == 0
1593 && rsa->actual_register_packet_size > 0
1594 && what_they_get > rsa->actual_register_packet_size)
1595 what_they_get = rsa->actual_register_packet_size;
1596 }
1597 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1598 what_they_get = MIN_MEMORY_PACKET_SIZE;
1599
1600 /* Make sure there is room in the global buffer for this packet
1601 (including its trailing NUL byte). */
1602 if (rs->buf.size () < what_they_get + 1)
1603 rs->buf.resize (2 * what_they_get);
1604
1605 return what_they_get;
1606 }
1607
1608 /* Update the size of a read/write packet. If they user wants
1609 something really big then do a sanity check. */
1610
1611 static void
1612 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1613 {
1614 int fixed_p = config->fixed_p;
1615 long size = config->size;
1616
1617 if (args == NULL)
1618 error (_("Argument required (integer, `fixed' or `limited')."));
1619 else if (strcmp (args, "hard") == 0
1620 || strcmp (args, "fixed") == 0)
1621 fixed_p = 1;
1622 else if (strcmp (args, "soft") == 0
1623 || strcmp (args, "limit") == 0)
1624 fixed_p = 0;
1625 else
1626 {
1627 char *end;
1628
1629 size = strtoul (args, &end, 0);
1630 if (args == end)
1631 error (_("Invalid %s (bad syntax)."), config->name);
1632
1633 /* Instead of explicitly capping the size of a packet to or
1634 disallowing it, the user is allowed to set the size to
1635 something arbitrarily large. */
1636 }
1637
1638 /* Extra checks? */
1639 if (fixed_p && !config->fixed_p)
1640 {
1641 /* So that the query shows the correct value. */
1642 long query_size = (size <= 0
1643 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1644 : size);
1645
1646 if (! query (_("The target may not be able to correctly handle a %s\n"
1647 "of %ld bytes. Change the packet size? "),
1648 config->name, query_size))
1649 error (_("Packet size not changed."));
1650 }
1651 /* Update the config. */
1652 config->fixed_p = fixed_p;
1653 config->size = size;
1654 }
1655
1656 static void
1657 show_memory_packet_size (struct memory_packet_config *config)
1658 {
1659 if (config->size == 0)
1660 printf_filtered (_("The %s is 0 (default). "), config->name);
1661 else
1662 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1663 if (config->fixed_p)
1664 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1665 get_fixed_memory_packet_size (config));
1666 else
1667 {
1668 remote_target *remote = get_current_remote_target ();
1669
1670 if (remote != NULL)
1671 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1672 remote->get_memory_packet_size (config));
1673 else
1674 puts_filtered ("The actual limit will be further reduced "
1675 "dependent on the target.\n");
1676 }
1677 }
1678
1679 static struct memory_packet_config memory_write_packet_config =
1680 {
1681 "memory-write-packet-size",
1682 };
1683
1684 static void
1685 set_memory_write_packet_size (const char *args, int from_tty)
1686 {
1687 set_memory_packet_size (args, &memory_write_packet_config);
1688 }
1689
1690 static void
1691 show_memory_write_packet_size (const char *args, int from_tty)
1692 {
1693 show_memory_packet_size (&memory_write_packet_config);
1694 }
1695
1696 /* Show the number of hardware watchpoints that can be used. */
1697
1698 static void
1699 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1700 struct cmd_list_element *c,
1701 const char *value)
1702 {
1703 fprintf_filtered (file, _("The maximum number of target hardware "
1704 "watchpoints is %s.\n"), value);
1705 }
1706
1707 /* Show the length limit (in bytes) for hardware watchpoints. */
1708
1709 static void
1710 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c,
1712 const char *value)
1713 {
1714 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1715 "hardware watchpoint is %s.\n"), value);
1716 }
1717
1718 /* Show the number of hardware breakpoints that can be used. */
1719
1720 static void
1721 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1722 struct cmd_list_element *c,
1723 const char *value)
1724 {
1725 fprintf_filtered (file, _("The maximum number of target hardware "
1726 "breakpoints is %s.\n"), value);
1727 }
1728
1729 long
1730 remote_target::get_memory_write_packet_size ()
1731 {
1732 return get_memory_packet_size (&memory_write_packet_config);
1733 }
1734
1735 static struct memory_packet_config memory_read_packet_config =
1736 {
1737 "memory-read-packet-size",
1738 };
1739
1740 static void
1741 set_memory_read_packet_size (const char *args, int from_tty)
1742 {
1743 set_memory_packet_size (args, &memory_read_packet_config);
1744 }
1745
1746 static void
1747 show_memory_read_packet_size (const char *args, int from_tty)
1748 {
1749 show_memory_packet_size (&memory_read_packet_config);
1750 }
1751
1752 long
1753 remote_target::get_memory_read_packet_size ()
1754 {
1755 long size = get_memory_packet_size (&memory_read_packet_config);
1756
1757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1758 extra buffer size argument before the memory read size can be
1759 increased beyond this. */
1760 if (size > get_remote_packet_size ())
1761 size = get_remote_packet_size ();
1762 return size;
1763 }
1764
1765 \f
1766
1767 struct packet_config
1768 {
1769 const char *name;
1770 const char *title;
1771
1772 /* If auto, GDB auto-detects support for this packet or feature,
1773 either through qSupported, or by trying the packet and looking
1774 at the response. If true, GDB assumes the target supports this
1775 packet. If false, the packet is disabled. Configs that don't
1776 have an associated command always have this set to auto. */
1777 enum auto_boolean detect;
1778
1779 /* Does the target support this packet? */
1780 enum packet_support support;
1781 };
1782
1783 static enum packet_support packet_config_support (struct packet_config *config);
1784 static enum packet_support packet_support (int packet);
1785
1786 static void
1787 show_packet_config_cmd (struct packet_config *config)
1788 {
1789 const char *support = "internal-error";
1790
1791 switch (packet_config_support (config))
1792 {
1793 case PACKET_ENABLE:
1794 support = "enabled";
1795 break;
1796 case PACKET_DISABLE:
1797 support = "disabled";
1798 break;
1799 case PACKET_SUPPORT_UNKNOWN:
1800 support = "unknown";
1801 break;
1802 }
1803 switch (config->detect)
1804 {
1805 case AUTO_BOOLEAN_AUTO:
1806 printf_filtered (_("Support for the `%s' packet "
1807 "is auto-detected, currently %s.\n"),
1808 config->name, support);
1809 break;
1810 case AUTO_BOOLEAN_TRUE:
1811 case AUTO_BOOLEAN_FALSE:
1812 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1813 config->name, support);
1814 break;
1815 }
1816 }
1817
1818 static void
1819 add_packet_config_cmd (struct packet_config *config, const char *name,
1820 const char *title, int legacy)
1821 {
1822 char *set_doc;
1823 char *show_doc;
1824 char *cmd_name;
1825
1826 config->name = name;
1827 config->title = title;
1828 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1829 name, title);
1830 show_doc = xstrprintf ("Show current use of remote "
1831 "protocol `%s' (%s) packet.",
1832 name, title);
1833 /* set/show TITLE-packet {auto,on,off} */
1834 cmd_name = xstrprintf ("%s-packet", title);
1835 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1836 &config->detect, set_doc,
1837 show_doc, NULL, /* help_doc */
1838 NULL,
1839 show_remote_protocol_packet_cmd,
1840 &remote_set_cmdlist, &remote_show_cmdlist);
1841 /* The command code copies the documentation strings. */
1842 xfree (set_doc);
1843 xfree (show_doc);
1844 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1845 if (legacy)
1846 {
1847 char *legacy_name;
1848
1849 legacy_name = xstrprintf ("%s-packet", name);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_set_cmdlist);
1852 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1853 &remote_show_cmdlist);
1854 }
1855 }
1856
1857 static enum packet_result
1858 packet_check_result (const char *buf)
1859 {
1860 if (buf[0] != '\0')
1861 {
1862 /* The stub recognized the packet request. Check that the
1863 operation succeeded. */
1864 if (buf[0] == 'E'
1865 && isxdigit (buf[1]) && isxdigit (buf[2])
1866 && buf[3] == '\0')
1867 /* "Enn" - definitly an error. */
1868 return PACKET_ERROR;
1869
1870 /* Always treat "E." as an error. This will be used for
1871 more verbose error messages, such as E.memtypes. */
1872 if (buf[0] == 'E' && buf[1] == '.')
1873 return PACKET_ERROR;
1874
1875 /* The packet may or may not be OK. Just assume it is. */
1876 return PACKET_OK;
1877 }
1878 else
1879 /* The stub does not support the packet. */
1880 return PACKET_UNKNOWN;
1881 }
1882
1883 static enum packet_result
1884 packet_check_result (const gdb::char_vector &buf)
1885 {
1886 return packet_check_result (buf.data ());
1887 }
1888
1889 static enum packet_result
1890 packet_ok (const char *buf, struct packet_config *config)
1891 {
1892 enum packet_result result;
1893
1894 if (config->detect != AUTO_BOOLEAN_TRUE
1895 && config->support == PACKET_DISABLE)
1896 internal_error (__FILE__, __LINE__,
1897 _("packet_ok: attempt to use a disabled packet"));
1898
1899 result = packet_check_result (buf);
1900 switch (result)
1901 {
1902 case PACKET_OK:
1903 case PACKET_ERROR:
1904 /* The stub recognized the packet request. */
1905 if (config->support == PACKET_SUPPORT_UNKNOWN)
1906 {
1907 if (remote_debug)
1908 fprintf_unfiltered (gdb_stdlog,
1909 "Packet %s (%s) is supported\n",
1910 config->name, config->title);
1911 config->support = PACKET_ENABLE;
1912 }
1913 break;
1914 case PACKET_UNKNOWN:
1915 /* The stub does not support the packet. */
1916 if (config->detect == AUTO_BOOLEAN_AUTO
1917 && config->support == PACKET_ENABLE)
1918 {
1919 /* If the stub previously indicated that the packet was
1920 supported then there is a protocol error. */
1921 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1922 config->name, config->title);
1923 }
1924 else if (config->detect == AUTO_BOOLEAN_TRUE)
1925 {
1926 /* The user set it wrong. */
1927 error (_("Enabled packet %s (%s) not recognized by stub"),
1928 config->name, config->title);
1929 }
1930
1931 if (remote_debug)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "Packet %s (%s) is NOT supported\n",
1934 config->name, config->title);
1935 config->support = PACKET_DISABLE;
1936 break;
1937 }
1938
1939 return result;
1940 }
1941
1942 static enum packet_result
1943 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1944 {
1945 return packet_ok (buf.data (), config);
1946 }
1947
1948 enum {
1949 PACKET_vCont = 0,
1950 PACKET_X,
1951 PACKET_qSymbol,
1952 PACKET_P,
1953 PACKET_p,
1954 PACKET_Z0,
1955 PACKET_Z1,
1956 PACKET_Z2,
1957 PACKET_Z3,
1958 PACKET_Z4,
1959 PACKET_vFile_setfs,
1960 PACKET_vFile_open,
1961 PACKET_vFile_pread,
1962 PACKET_vFile_pwrite,
1963 PACKET_vFile_close,
1964 PACKET_vFile_unlink,
1965 PACKET_vFile_readlink,
1966 PACKET_vFile_fstat,
1967 PACKET_qXfer_auxv,
1968 PACKET_qXfer_features,
1969 PACKET_qXfer_exec_file,
1970 PACKET_qXfer_libraries,
1971 PACKET_qXfer_libraries_svr4,
1972 PACKET_qXfer_memory_map,
1973 PACKET_qXfer_spu_read,
1974 PACKET_qXfer_spu_write,
1975 PACKET_qXfer_osdata,
1976 PACKET_qXfer_threads,
1977 PACKET_qXfer_statictrace_read,
1978 PACKET_qXfer_traceframe_info,
1979 PACKET_qXfer_uib,
1980 PACKET_qGetTIBAddr,
1981 PACKET_qGetTLSAddr,
1982 PACKET_qSupported,
1983 PACKET_qTStatus,
1984 PACKET_QPassSignals,
1985 PACKET_QCatchSyscalls,
1986 PACKET_QProgramSignals,
1987 PACKET_QSetWorkingDir,
1988 PACKET_QStartupWithShell,
1989 PACKET_QEnvironmentHexEncoded,
1990 PACKET_QEnvironmentReset,
1991 PACKET_QEnvironmentUnset,
1992 PACKET_qCRC,
1993 PACKET_qSearch_memory,
1994 PACKET_vAttach,
1995 PACKET_vRun,
1996 PACKET_QStartNoAckMode,
1997 PACKET_vKill,
1998 PACKET_qXfer_siginfo_read,
1999 PACKET_qXfer_siginfo_write,
2000 PACKET_qAttached,
2001
2002 /* Support for conditional tracepoints. */
2003 PACKET_ConditionalTracepoints,
2004
2005 /* Support for target-side breakpoint conditions. */
2006 PACKET_ConditionalBreakpoints,
2007
2008 /* Support for target-side breakpoint commands. */
2009 PACKET_BreakpointCommands,
2010
2011 /* Support for fast tracepoints. */
2012 PACKET_FastTracepoints,
2013
2014 /* Support for static tracepoints. */
2015 PACKET_StaticTracepoints,
2016
2017 /* Support for installing tracepoints while a trace experiment is
2018 running. */
2019 PACKET_InstallInTrace,
2020
2021 PACKET_bc,
2022 PACKET_bs,
2023 PACKET_TracepointSource,
2024 PACKET_QAllow,
2025 PACKET_qXfer_fdpic,
2026 PACKET_QDisableRandomization,
2027 PACKET_QAgent,
2028 PACKET_QTBuffer_size,
2029 PACKET_Qbtrace_off,
2030 PACKET_Qbtrace_bts,
2031 PACKET_Qbtrace_pt,
2032 PACKET_qXfer_btrace,
2033
2034 /* Support for the QNonStop packet. */
2035 PACKET_QNonStop,
2036
2037 /* Support for the QThreadEvents packet. */
2038 PACKET_QThreadEvents,
2039
2040 /* Support for multi-process extensions. */
2041 PACKET_multiprocess_feature,
2042
2043 /* Support for enabling and disabling tracepoints while a trace
2044 experiment is running. */
2045 PACKET_EnableDisableTracepoints_feature,
2046
2047 /* Support for collecting strings using the tracenz bytecode. */
2048 PACKET_tracenz_feature,
2049
2050 /* Support for continuing to run a trace experiment while GDB is
2051 disconnected. */
2052 PACKET_DisconnectedTracing_feature,
2053
2054 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2055 PACKET_augmented_libraries_svr4_read_feature,
2056
2057 /* Support for the qXfer:btrace-conf:read packet. */
2058 PACKET_qXfer_btrace_conf,
2059
2060 /* Support for the Qbtrace-conf:bts:size packet. */
2061 PACKET_Qbtrace_conf_bts_size,
2062
2063 /* Support for swbreak+ feature. */
2064 PACKET_swbreak_feature,
2065
2066 /* Support for hwbreak+ feature. */
2067 PACKET_hwbreak_feature,
2068
2069 /* Support for fork events. */
2070 PACKET_fork_event_feature,
2071
2072 /* Support for vfork events. */
2073 PACKET_vfork_event_feature,
2074
2075 /* Support for the Qbtrace-conf:pt:size packet. */
2076 PACKET_Qbtrace_conf_pt_size,
2077
2078 /* Support for exec events. */
2079 PACKET_exec_event_feature,
2080
2081 /* Support for query supported vCont actions. */
2082 PACKET_vContSupported,
2083
2084 /* Support remote CTRL-C. */
2085 PACKET_vCtrlC,
2086
2087 /* Support TARGET_WAITKIND_NO_RESUMED. */
2088 PACKET_no_resumed,
2089
2090 PACKET_MAX
2091 };
2092
2093 static struct packet_config remote_protocol_packets[PACKET_MAX];
2094
2095 /* Returns the packet's corresponding "set remote foo-packet" command
2096 state. See struct packet_config for more details. */
2097
2098 static enum auto_boolean
2099 packet_set_cmd_state (int packet)
2100 {
2101 return remote_protocol_packets[packet].detect;
2102 }
2103
2104 /* Returns whether a given packet or feature is supported. This takes
2105 into account the state of the corresponding "set remote foo-packet"
2106 command, which may be used to bypass auto-detection. */
2107
2108 static enum packet_support
2109 packet_config_support (struct packet_config *config)
2110 {
2111 switch (config->detect)
2112 {
2113 case AUTO_BOOLEAN_TRUE:
2114 return PACKET_ENABLE;
2115 case AUTO_BOOLEAN_FALSE:
2116 return PACKET_DISABLE;
2117 case AUTO_BOOLEAN_AUTO:
2118 return config->support;
2119 default:
2120 gdb_assert_not_reached (_("bad switch"));
2121 }
2122 }
2123
2124 /* Same as packet_config_support, but takes the packet's enum value as
2125 argument. */
2126
2127 static enum packet_support
2128 packet_support (int packet)
2129 {
2130 struct packet_config *config = &remote_protocol_packets[packet];
2131
2132 return packet_config_support (config);
2133 }
2134
2135 static void
2136 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2137 struct cmd_list_element *c,
2138 const char *value)
2139 {
2140 struct packet_config *packet;
2141
2142 for (packet = remote_protocol_packets;
2143 packet < &remote_protocol_packets[PACKET_MAX];
2144 packet++)
2145 {
2146 if (&packet->detect == c->var)
2147 {
2148 show_packet_config_cmd (packet);
2149 return;
2150 }
2151 }
2152 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2153 c->name);
2154 }
2155
2156 /* Should we try one of the 'Z' requests? */
2157
2158 enum Z_packet_type
2159 {
2160 Z_PACKET_SOFTWARE_BP,
2161 Z_PACKET_HARDWARE_BP,
2162 Z_PACKET_WRITE_WP,
2163 Z_PACKET_READ_WP,
2164 Z_PACKET_ACCESS_WP,
2165 NR_Z_PACKET_TYPES
2166 };
2167
2168 /* For compatibility with older distributions. Provide a ``set remote
2169 Z-packet ...'' command that updates all the Z packet types. */
2170
2171 static enum auto_boolean remote_Z_packet_detect;
2172
2173 static void
2174 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2175 struct cmd_list_element *c)
2176 {
2177 int i;
2178
2179 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2180 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2181 }
2182
2183 static void
2184 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2185 struct cmd_list_element *c,
2186 const char *value)
2187 {
2188 int i;
2189
2190 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2191 {
2192 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2193 }
2194 }
2195
2196 /* Returns true if the multi-process extensions are in effect. */
2197
2198 static int
2199 remote_multi_process_p (struct remote_state *rs)
2200 {
2201 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2202 }
2203
2204 /* Returns true if fork events are supported. */
2205
2206 static int
2207 remote_fork_event_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Returns true if vfork events are supported. */
2213
2214 static int
2215 remote_vfork_event_p (struct remote_state *rs)
2216 {
2217 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2218 }
2219
2220 /* Returns true if exec events are supported. */
2221
2222 static int
2223 remote_exec_event_p (struct remote_state *rs)
2224 {
2225 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2226 }
2227
2228 /* Insert fork catchpoint target routine. If fork events are enabled
2229 then return success, nothing more to do. */
2230
2231 int
2232 remote_target::insert_fork_catchpoint (int pid)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235
2236 return !remote_fork_event_p (rs);
2237 }
2238
2239 /* Remove fork catchpoint target routine. Nothing to do, just
2240 return success. */
2241
2242 int
2243 remote_target::remove_fork_catchpoint (int pid)
2244 {
2245 return 0;
2246 }
2247
2248 /* Insert vfork catchpoint target routine. If vfork events are enabled
2249 then return success, nothing more to do. */
2250
2251 int
2252 remote_target::insert_vfork_catchpoint (int pid)
2253 {
2254 struct remote_state *rs = get_remote_state ();
2255
2256 return !remote_vfork_event_p (rs);
2257 }
2258
2259 /* Remove vfork catchpoint target routine. Nothing to do, just
2260 return success. */
2261
2262 int
2263 remote_target::remove_vfork_catchpoint (int pid)
2264 {
2265 return 0;
2266 }
2267
2268 /* Insert exec catchpoint target routine. If exec events are
2269 enabled, just return success. */
2270
2271 int
2272 remote_target::insert_exec_catchpoint (int pid)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 return !remote_exec_event_p (rs);
2277 }
2278
2279 /* Remove exec catchpoint target routine. Nothing to do, just
2280 return success. */
2281
2282 int
2283 remote_target::remove_exec_catchpoint (int pid)
2284 {
2285 return 0;
2286 }
2287
2288 \f
2289
2290 /* Take advantage of the fact that the TID field is not used, to tag
2291 special ptids with it set to != 0. */
2292 static const ptid_t magic_null_ptid (42000, -1, 1);
2293 static const ptid_t not_sent_ptid (42000, -2, 1);
2294 static const ptid_t any_thread_ptid (42000, 0, 1);
2295
2296 /* Find out if the stub attached to PID (and hence GDB should offer to
2297 detach instead of killing it when bailing out). */
2298
2299 int
2300 remote_target::remote_query_attached (int pid)
2301 {
2302 struct remote_state *rs = get_remote_state ();
2303 size_t size = get_remote_packet_size ();
2304
2305 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2306 return 0;
2307
2308 if (remote_multi_process_p (rs))
2309 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2310 else
2311 xsnprintf (rs->buf.data (), size, "qAttached");
2312
2313 putpkt (rs->buf);
2314 getpkt (&rs->buf, 0);
2315
2316 switch (packet_ok (rs->buf,
2317 &remote_protocol_packets[PACKET_qAttached]))
2318 {
2319 case PACKET_OK:
2320 if (strcmp (rs->buf.data (), "1") == 0)
2321 return 1;
2322 break;
2323 case PACKET_ERROR:
2324 warning (_("Remote failure reply: %s"), rs->buf.data ());
2325 break;
2326 case PACKET_UNKNOWN:
2327 break;
2328 }
2329
2330 return 0;
2331 }
2332
2333 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2334 has been invented by GDB, instead of reported by the target. Since
2335 we can be connected to a remote system before before knowing about
2336 any inferior, mark the target with execution when we find the first
2337 inferior. If ATTACHED is 1, then we had just attached to this
2338 inferior. If it is 0, then we just created this inferior. If it
2339 is -1, then try querying the remote stub to find out if it had
2340 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2341 attempt to open this inferior's executable as the main executable
2342 if no main executable is open already. */
2343
2344 inferior *
2345 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2346 int try_open_exec)
2347 {
2348 struct inferior *inf;
2349
2350 /* Check whether this process we're learning about is to be
2351 considered attached, or if is to be considered to have been
2352 spawned by the stub. */
2353 if (attached == -1)
2354 attached = remote_query_attached (pid);
2355
2356 if (gdbarch_has_global_solist (target_gdbarch ()))
2357 {
2358 /* If the target shares code across all inferiors, then every
2359 attach adds a new inferior. */
2360 inf = add_inferior (pid);
2361
2362 /* ... and every inferior is bound to the same program space.
2363 However, each inferior may still have its own address
2364 space. */
2365 inf->aspace = maybe_new_address_space ();
2366 inf->pspace = current_program_space;
2367 }
2368 else
2369 {
2370 /* In the traditional debugging scenario, there's a 1-1 match
2371 between program/address spaces. We simply bind the inferior
2372 to the program space's address space. */
2373 inf = current_inferior ();
2374 inferior_appeared (inf, pid);
2375 }
2376
2377 inf->attach_flag = attached;
2378 inf->fake_pid_p = fake_pid_p;
2379
2380 /* If no main executable is currently open then attempt to
2381 open the file that was executed to create this inferior. */
2382 if (try_open_exec && get_exec_file (0) == NULL)
2383 exec_file_locate_attach (pid, 0, 1);
2384
2385 return inf;
2386 }
2387
2388 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2389 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2390
2391 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2392 according to RUNNING. */
2393
2394 thread_info *
2395 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2396 {
2397 struct remote_state *rs = get_remote_state ();
2398 struct thread_info *thread;
2399
2400 /* GDB historically didn't pull threads in the initial connection
2401 setup. If the remote target doesn't even have a concept of
2402 threads (e.g., a bare-metal target), even if internally we
2403 consider that a single-threaded target, mentioning a new thread
2404 might be confusing to the user. Be silent then, preserving the
2405 age old behavior. */
2406 if (rs->starting_up)
2407 thread = add_thread_silent (ptid);
2408 else
2409 thread = add_thread (ptid);
2410
2411 get_remote_thread_info (thread)->vcont_resumed = executing;
2412 set_executing (ptid, executing);
2413 set_running (ptid, running);
2414
2415 return thread;
2416 }
2417
2418 /* Come here when we learn about a thread id from the remote target.
2419 It may be the first time we hear about such thread, so take the
2420 opportunity to add it to GDB's thread list. In case this is the
2421 first time we're noticing its corresponding inferior, add it to
2422 GDB's inferior list as well. EXECUTING indicates whether the
2423 thread is (internally) executing or stopped. */
2424
2425 void
2426 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2427 {
2428 /* In non-stop mode, we assume new found threads are (externally)
2429 running until proven otherwise with a stop reply. In all-stop,
2430 we can only get here if all threads are stopped. */
2431 int running = target_is_non_stop_p () ? 1 : 0;
2432
2433 /* If this is a new thread, add it to GDB's thread list.
2434 If we leave it up to WFI to do this, bad things will happen. */
2435
2436 thread_info *tp = find_thread_ptid (currthread);
2437 if (tp != NULL && tp->state == THREAD_EXITED)
2438 {
2439 /* We're seeing an event on a thread id we knew had exited.
2440 This has to be a new thread reusing the old id. Add it. */
2441 remote_add_thread (currthread, running, executing);
2442 return;
2443 }
2444
2445 if (!in_thread_list (currthread))
2446 {
2447 struct inferior *inf = NULL;
2448 int pid = currthread.pid ();
2449
2450 if (inferior_ptid.is_pid ()
2451 && pid == inferior_ptid.pid ())
2452 {
2453 /* inferior_ptid has no thread member yet. This can happen
2454 with the vAttach -> remote_wait,"TAAthread:" path if the
2455 stub doesn't support qC. This is the first stop reported
2456 after an attach, so this is the main thread. Update the
2457 ptid in the thread list. */
2458 if (in_thread_list (ptid_t (pid)))
2459 thread_change_ptid (inferior_ptid, currthread);
2460 else
2461 {
2462 remote_add_thread (currthread, running, executing);
2463 inferior_ptid = currthread;
2464 }
2465 return;
2466 }
2467
2468 if (magic_null_ptid == inferior_ptid)
2469 {
2470 /* inferior_ptid is not set yet. This can happen with the
2471 vRun -> remote_wait,"TAAthread:" path if the stub
2472 doesn't support qC. This is the first stop reported
2473 after an attach, so this is the main thread. Update the
2474 ptid in the thread list. */
2475 thread_change_ptid (inferior_ptid, currthread);
2476 return;
2477 }
2478
2479 /* When connecting to a target remote, or to a target
2480 extended-remote which already was debugging an inferior, we
2481 may not know about it yet. Add it before adding its child
2482 thread, so notifications are emitted in a sensible order. */
2483 if (find_inferior_pid (currthread.pid ()) == NULL)
2484 {
2485 struct remote_state *rs = get_remote_state ();
2486 bool fake_pid_p = !remote_multi_process_p (rs);
2487
2488 inf = remote_add_inferior (fake_pid_p,
2489 currthread.pid (), -1, 1);
2490 }
2491
2492 /* This is really a new thread. Add it. */
2493 thread_info *new_thr
2494 = remote_add_thread (currthread, running, executing);
2495
2496 /* If we found a new inferior, let the common code do whatever
2497 it needs to with it (e.g., read shared libraries, insert
2498 breakpoints), unless we're just setting up an all-stop
2499 connection. */
2500 if (inf != NULL)
2501 {
2502 struct remote_state *rs = get_remote_state ();
2503
2504 if (!rs->starting_up)
2505 notice_new_inferior (new_thr, executing, 0);
2506 }
2507 }
2508 }
2509
2510 /* Return THREAD's private thread data, creating it if necessary. */
2511
2512 static remote_thread_info *
2513 get_remote_thread_info (thread_info *thread)
2514 {
2515 gdb_assert (thread != NULL);
2516
2517 if (thread->priv == NULL)
2518 thread->priv.reset (new remote_thread_info);
2519
2520 return static_cast<remote_thread_info *> (thread->priv.get ());
2521 }
2522
2523 static remote_thread_info *
2524 get_remote_thread_info (ptid_t ptid)
2525 {
2526 thread_info *thr = find_thread_ptid (ptid);
2527 return get_remote_thread_info (thr);
2528 }
2529
2530 /* Call this function as a result of
2531 1) A halt indication (T packet) containing a thread id
2532 2) A direct query of currthread
2533 3) Successful execution of set thread */
2534
2535 static void
2536 record_currthread (struct remote_state *rs, ptid_t currthread)
2537 {
2538 rs->general_thread = currthread;
2539 }
2540
2541 /* If 'QPassSignals' is supported, tell the remote stub what signals
2542 it can simply pass through to the inferior without reporting. */
2543
2544 void
2545 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2546 {
2547 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2548 {
2549 char *pass_packet, *p;
2550 int count = 0;
2551 struct remote_state *rs = get_remote_state ();
2552
2553 gdb_assert (pass_signals.size () < 256);
2554 for (size_t i = 0; i < pass_signals.size (); i++)
2555 {
2556 if (pass_signals[i])
2557 count++;
2558 }
2559 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2560 strcpy (pass_packet, "QPassSignals:");
2561 p = pass_packet + strlen (pass_packet);
2562 for (size_t i = 0; i < pass_signals.size (); i++)
2563 {
2564 if (pass_signals[i])
2565 {
2566 if (i >= 16)
2567 *p++ = tohex (i >> 4);
2568 *p++ = tohex (i & 15);
2569 if (count)
2570 *p++ = ';';
2571 else
2572 break;
2573 count--;
2574 }
2575 }
2576 *p = 0;
2577 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2578 {
2579 putpkt (pass_packet);
2580 getpkt (&rs->buf, 0);
2581 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2582 if (rs->last_pass_packet)
2583 xfree (rs->last_pass_packet);
2584 rs->last_pass_packet = pass_packet;
2585 }
2586 else
2587 xfree (pass_packet);
2588 }
2589 }
2590
2591 /* If 'QCatchSyscalls' is supported, tell the remote stub
2592 to report syscalls to GDB. */
2593
2594 int
2595 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2596 gdb::array_view<const int> syscall_counts)
2597 {
2598 const char *catch_packet;
2599 enum packet_result result;
2600 int n_sysno = 0;
2601
2602 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2603 {
2604 /* Not supported. */
2605 return 1;
2606 }
2607
2608 if (needed && any_count == 0)
2609 {
2610 /* Count how many syscalls are to be caught. */
2611 for (size_t i = 0; i < syscall_counts.size (); i++)
2612 {
2613 if (syscall_counts[i] != 0)
2614 n_sysno++;
2615 }
2616 }
2617
2618 if (remote_debug)
2619 {
2620 fprintf_unfiltered (gdb_stdlog,
2621 "remote_set_syscall_catchpoint "
2622 "pid %d needed %d any_count %d n_sysno %d\n",
2623 pid, needed, any_count, n_sysno);
2624 }
2625
2626 std::string built_packet;
2627 if (needed)
2628 {
2629 /* Prepare a packet with the sysno list, assuming max 8+1
2630 characters for a sysno. If the resulting packet size is too
2631 big, fallback on the non-selective packet. */
2632 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2633 built_packet.reserve (maxpktsz);
2634 built_packet = "QCatchSyscalls:1";
2635 if (any_count == 0)
2636 {
2637 /* Add in each syscall to be caught. */
2638 for (size_t i = 0; i < syscall_counts.size (); i++)
2639 {
2640 if (syscall_counts[i] != 0)
2641 string_appendf (built_packet, ";%zx", i);
2642 }
2643 }
2644 if (built_packet.size () > get_remote_packet_size ())
2645 {
2646 /* catch_packet too big. Fallback to less efficient
2647 non selective mode, with GDB doing the filtering. */
2648 catch_packet = "QCatchSyscalls:1";
2649 }
2650 else
2651 catch_packet = built_packet.c_str ();
2652 }
2653 else
2654 catch_packet = "QCatchSyscalls:0";
2655
2656 struct remote_state *rs = get_remote_state ();
2657
2658 putpkt (catch_packet);
2659 getpkt (&rs->buf, 0);
2660 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2661 if (result == PACKET_OK)
2662 return 0;
2663 else
2664 return -1;
2665 }
2666
2667 /* If 'QProgramSignals' is supported, tell the remote stub what
2668 signals it should pass through to the inferior when detaching. */
2669
2670 void
2671 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2672 {
2673 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2674 {
2675 char *packet, *p;
2676 int count = 0;
2677 struct remote_state *rs = get_remote_state ();
2678
2679 gdb_assert (signals.size () < 256);
2680 for (size_t i = 0; i < signals.size (); i++)
2681 {
2682 if (signals[i])
2683 count++;
2684 }
2685 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2686 strcpy (packet, "QProgramSignals:");
2687 p = packet + strlen (packet);
2688 for (size_t i = 0; i < signals.size (); i++)
2689 {
2690 if (signal_pass_state (i))
2691 {
2692 if (i >= 16)
2693 *p++ = tohex (i >> 4);
2694 *p++ = tohex (i & 15);
2695 if (count)
2696 *p++ = ';';
2697 else
2698 break;
2699 count--;
2700 }
2701 }
2702 *p = 0;
2703 if (!rs->last_program_signals_packet
2704 || strcmp (rs->last_program_signals_packet, packet) != 0)
2705 {
2706 putpkt (packet);
2707 getpkt (&rs->buf, 0);
2708 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2709 xfree (rs->last_program_signals_packet);
2710 rs->last_program_signals_packet = packet;
2711 }
2712 else
2713 xfree (packet);
2714 }
2715 }
2716
2717 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2718 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2719 thread. If GEN is set, set the general thread, if not, then set
2720 the step/continue thread. */
2721 void
2722 remote_target::set_thread (ptid_t ptid, int gen)
2723 {
2724 struct remote_state *rs = get_remote_state ();
2725 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2726 char *buf = rs->buf.data ();
2727 char *endbuf = buf + get_remote_packet_size ();
2728
2729 if (state == ptid)
2730 return;
2731
2732 *buf++ = 'H';
2733 *buf++ = gen ? 'g' : 'c';
2734 if (ptid == magic_null_ptid)
2735 xsnprintf (buf, endbuf - buf, "0");
2736 else if (ptid == any_thread_ptid)
2737 xsnprintf (buf, endbuf - buf, "0");
2738 else if (ptid == minus_one_ptid)
2739 xsnprintf (buf, endbuf - buf, "-1");
2740 else
2741 write_ptid (buf, endbuf, ptid);
2742 putpkt (rs->buf);
2743 getpkt (&rs->buf, 0);
2744 if (gen)
2745 rs->general_thread = ptid;
2746 else
2747 rs->continue_thread = ptid;
2748 }
2749
2750 void
2751 remote_target::set_general_thread (ptid_t ptid)
2752 {
2753 set_thread (ptid, 1);
2754 }
2755
2756 void
2757 remote_target::set_continue_thread (ptid_t ptid)
2758 {
2759 set_thread (ptid, 0);
2760 }
2761
2762 /* Change the remote current process. Which thread within the process
2763 ends up selected isn't important, as long as it is the same process
2764 as what INFERIOR_PTID points to.
2765
2766 This comes from that fact that there is no explicit notion of
2767 "selected process" in the protocol. The selected process for
2768 general operations is the process the selected general thread
2769 belongs to. */
2770
2771 void
2772 remote_target::set_general_process ()
2773 {
2774 struct remote_state *rs = get_remote_state ();
2775
2776 /* If the remote can't handle multiple processes, don't bother. */
2777 if (!remote_multi_process_p (rs))
2778 return;
2779
2780 /* We only need to change the remote current thread if it's pointing
2781 at some other process. */
2782 if (rs->general_thread.pid () != inferior_ptid.pid ())
2783 set_general_thread (inferior_ptid);
2784 }
2785
2786 \f
2787 /* Return nonzero if this is the main thread that we made up ourselves
2788 to model non-threaded targets as single-threaded. */
2789
2790 static int
2791 remote_thread_always_alive (ptid_t ptid)
2792 {
2793 if (ptid == magic_null_ptid)
2794 /* The main thread is always alive. */
2795 return 1;
2796
2797 if (ptid.pid () != 0 && ptid.lwp () == 0)
2798 /* The main thread is always alive. This can happen after a
2799 vAttach, if the remote side doesn't support
2800 multi-threading. */
2801 return 1;
2802
2803 return 0;
2804 }
2805
2806 /* Return nonzero if the thread PTID is still alive on the remote
2807 system. */
2808
2809 bool
2810 remote_target::thread_alive (ptid_t ptid)
2811 {
2812 struct remote_state *rs = get_remote_state ();
2813 char *p, *endp;
2814
2815 /* Check if this is a thread that we made up ourselves to model
2816 non-threaded targets as single-threaded. */
2817 if (remote_thread_always_alive (ptid))
2818 return 1;
2819
2820 p = rs->buf.data ();
2821 endp = p + get_remote_packet_size ();
2822
2823 *p++ = 'T';
2824 write_ptid (p, endp, ptid);
2825
2826 putpkt (rs->buf);
2827 getpkt (&rs->buf, 0);
2828 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2829 }
2830
2831 /* Return a pointer to a thread name if we know it and NULL otherwise.
2832 The thread_info object owns the memory for the name. */
2833
2834 const char *
2835 remote_target::thread_name (struct thread_info *info)
2836 {
2837 if (info->priv != NULL)
2838 {
2839 const std::string &name = get_remote_thread_info (info)->name;
2840 return !name.empty () ? name.c_str () : NULL;
2841 }
2842
2843 return NULL;
2844 }
2845
2846 /* About these extended threadlist and threadinfo packets. They are
2847 variable length packets but, the fields within them are often fixed
2848 length. They are redundent enough to send over UDP as is the
2849 remote protocol in general. There is a matching unit test module
2850 in libstub. */
2851
2852 /* WARNING: This threadref data structure comes from the remote O.S.,
2853 libstub protocol encoding, and remote.c. It is not particularly
2854 changable. */
2855
2856 /* Right now, the internal structure is int. We want it to be bigger.
2857 Plan to fix this. */
2858
2859 typedef int gdb_threadref; /* Internal GDB thread reference. */
2860
2861 /* gdb_ext_thread_info is an internal GDB data structure which is
2862 equivalent to the reply of the remote threadinfo packet. */
2863
2864 struct gdb_ext_thread_info
2865 {
2866 threadref threadid; /* External form of thread reference. */
2867 int active; /* Has state interesting to GDB?
2868 regs, stack. */
2869 char display[256]; /* Brief state display, name,
2870 blocked/suspended. */
2871 char shortname[32]; /* To be used to name threads. */
2872 char more_display[256]; /* Long info, statistics, queue depth,
2873 whatever. */
2874 };
2875
2876 /* The volume of remote transfers can be limited by submitting
2877 a mask containing bits specifying the desired information.
2878 Use a union of these values as the 'selection' parameter to
2879 get_thread_info. FIXME: Make these TAG names more thread specific. */
2880
2881 #define TAG_THREADID 1
2882 #define TAG_EXISTS 2
2883 #define TAG_DISPLAY 4
2884 #define TAG_THREADNAME 8
2885 #define TAG_MOREDISPLAY 16
2886
2887 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2888
2889 static char *unpack_nibble (char *buf, int *val);
2890
2891 static char *unpack_byte (char *buf, int *value);
2892
2893 static char *pack_int (char *buf, int value);
2894
2895 static char *unpack_int (char *buf, int *value);
2896
2897 static char *unpack_string (char *src, char *dest, int length);
2898
2899 static char *pack_threadid (char *pkt, threadref *id);
2900
2901 static char *unpack_threadid (char *inbuf, threadref *id);
2902
2903 void int_to_threadref (threadref *id, int value);
2904
2905 static int threadref_to_int (threadref *ref);
2906
2907 static void copy_threadref (threadref *dest, threadref *src);
2908
2909 static int threadmatch (threadref *dest, threadref *src);
2910
2911 static char *pack_threadinfo_request (char *pkt, int mode,
2912 threadref *id);
2913
2914 static char *pack_threadlist_request (char *pkt, int startflag,
2915 int threadcount,
2916 threadref *nextthread);
2917
2918 static int remote_newthread_step (threadref *ref, void *context);
2919
2920
2921 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2922 buffer we're allowed to write to. Returns
2923 BUF+CHARACTERS_WRITTEN. */
2924
2925 char *
2926 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2927 {
2928 int pid, tid;
2929 struct remote_state *rs = get_remote_state ();
2930
2931 if (remote_multi_process_p (rs))
2932 {
2933 pid = ptid.pid ();
2934 if (pid < 0)
2935 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2936 else
2937 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2938 }
2939 tid = ptid.lwp ();
2940 if (tid < 0)
2941 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2942 else
2943 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2944
2945 return buf;
2946 }
2947
2948 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2949 last parsed char. Returns null_ptid if no thread id is found, and
2950 throws an error if the thread id has an invalid format. */
2951
2952 static ptid_t
2953 read_ptid (const char *buf, const char **obuf)
2954 {
2955 const char *p = buf;
2956 const char *pp;
2957 ULONGEST pid = 0, tid = 0;
2958
2959 if (*p == 'p')
2960 {
2961 /* Multi-process ptid. */
2962 pp = unpack_varlen_hex (p + 1, &pid);
2963 if (*pp != '.')
2964 error (_("invalid remote ptid: %s"), p);
2965
2966 p = pp;
2967 pp = unpack_varlen_hex (p + 1, &tid);
2968 if (obuf)
2969 *obuf = pp;
2970 return ptid_t (pid, tid, 0);
2971 }
2972
2973 /* No multi-process. Just a tid. */
2974 pp = unpack_varlen_hex (p, &tid);
2975
2976 /* Return null_ptid when no thread id is found. */
2977 if (p == pp)
2978 {
2979 if (obuf)
2980 *obuf = pp;
2981 return null_ptid;
2982 }
2983
2984 /* Since the stub is not sending a process id, then default to
2985 what's in inferior_ptid, unless it's null at this point. If so,
2986 then since there's no way to know the pid of the reported
2987 threads, use the magic number. */
2988 if (inferior_ptid == null_ptid)
2989 pid = magic_null_ptid.pid ();
2990 else
2991 pid = inferior_ptid.pid ();
2992
2993 if (obuf)
2994 *obuf = pp;
2995 return ptid_t (pid, tid, 0);
2996 }
2997
2998 static int
2999 stubhex (int ch)
3000 {
3001 if (ch >= 'a' && ch <= 'f')
3002 return ch - 'a' + 10;
3003 if (ch >= '0' && ch <= '9')
3004 return ch - '0';
3005 if (ch >= 'A' && ch <= 'F')
3006 return ch - 'A' + 10;
3007 return -1;
3008 }
3009
3010 static int
3011 stub_unpack_int (char *buff, int fieldlength)
3012 {
3013 int nibble;
3014 int retval = 0;
3015
3016 while (fieldlength)
3017 {
3018 nibble = stubhex (*buff++);
3019 retval |= nibble;
3020 fieldlength--;
3021 if (fieldlength)
3022 retval = retval << 4;
3023 }
3024 return retval;
3025 }
3026
3027 static char *
3028 unpack_nibble (char *buf, int *val)
3029 {
3030 *val = fromhex (*buf++);
3031 return buf;
3032 }
3033
3034 static char *
3035 unpack_byte (char *buf, int *value)
3036 {
3037 *value = stub_unpack_int (buf, 2);
3038 return buf + 2;
3039 }
3040
3041 static char *
3042 pack_int (char *buf, int value)
3043 {
3044 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3045 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3046 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3047 buf = pack_hex_byte (buf, (value & 0xff));
3048 return buf;
3049 }
3050
3051 static char *
3052 unpack_int (char *buf, int *value)
3053 {
3054 *value = stub_unpack_int (buf, 8);
3055 return buf + 8;
3056 }
3057
3058 #if 0 /* Currently unused, uncomment when needed. */
3059 static char *pack_string (char *pkt, char *string);
3060
3061 static char *
3062 pack_string (char *pkt, char *string)
3063 {
3064 char ch;
3065 int len;
3066
3067 len = strlen (string);
3068 if (len > 200)
3069 len = 200; /* Bigger than most GDB packets, junk??? */
3070 pkt = pack_hex_byte (pkt, len);
3071 while (len-- > 0)
3072 {
3073 ch = *string++;
3074 if ((ch == '\0') || (ch == '#'))
3075 ch = '*'; /* Protect encapsulation. */
3076 *pkt++ = ch;
3077 }
3078 return pkt;
3079 }
3080 #endif /* 0 (unused) */
3081
3082 static char *
3083 unpack_string (char *src, char *dest, int length)
3084 {
3085 while (length--)
3086 *dest++ = *src++;
3087 *dest = '\0';
3088 return src;
3089 }
3090
3091 static char *
3092 pack_threadid (char *pkt, threadref *id)
3093 {
3094 char *limit;
3095 unsigned char *altid;
3096
3097 altid = (unsigned char *) id;
3098 limit = pkt + BUF_THREAD_ID_SIZE;
3099 while (pkt < limit)
3100 pkt = pack_hex_byte (pkt, *altid++);
3101 return pkt;
3102 }
3103
3104
3105 static char *
3106 unpack_threadid (char *inbuf, threadref *id)
3107 {
3108 char *altref;
3109 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3110 int x, y;
3111
3112 altref = (char *) id;
3113
3114 while (inbuf < limit)
3115 {
3116 x = stubhex (*inbuf++);
3117 y = stubhex (*inbuf++);
3118 *altref++ = (x << 4) | y;
3119 }
3120 return inbuf;
3121 }
3122
3123 /* Externally, threadrefs are 64 bits but internally, they are still
3124 ints. This is due to a mismatch of specifications. We would like
3125 to use 64bit thread references internally. This is an adapter
3126 function. */
3127
3128 void
3129 int_to_threadref (threadref *id, int value)
3130 {
3131 unsigned char *scan;
3132
3133 scan = (unsigned char *) id;
3134 {
3135 int i = 4;
3136 while (i--)
3137 *scan++ = 0;
3138 }
3139 *scan++ = (value >> 24) & 0xff;
3140 *scan++ = (value >> 16) & 0xff;
3141 *scan++ = (value >> 8) & 0xff;
3142 *scan++ = (value & 0xff);
3143 }
3144
3145 static int
3146 threadref_to_int (threadref *ref)
3147 {
3148 int i, value = 0;
3149 unsigned char *scan;
3150
3151 scan = *ref;
3152 scan += 4;
3153 i = 4;
3154 while (i-- > 0)
3155 value = (value << 8) | ((*scan++) & 0xff);
3156 return value;
3157 }
3158
3159 static void
3160 copy_threadref (threadref *dest, threadref *src)
3161 {
3162 int i;
3163 unsigned char *csrc, *cdest;
3164
3165 csrc = (unsigned char *) src;
3166 cdest = (unsigned char *) dest;
3167 i = 8;
3168 while (i--)
3169 *cdest++ = *csrc++;
3170 }
3171
3172 static int
3173 threadmatch (threadref *dest, threadref *src)
3174 {
3175 /* Things are broken right now, so just assume we got a match. */
3176 #if 0
3177 unsigned char *srcp, *destp;
3178 int i, result;
3179 srcp = (char *) src;
3180 destp = (char *) dest;
3181
3182 result = 1;
3183 while (i-- > 0)
3184 result &= (*srcp++ == *destp++) ? 1 : 0;
3185 return result;
3186 #endif
3187 return 1;
3188 }
3189
3190 /*
3191 threadid:1, # always request threadid
3192 context_exists:2,
3193 display:4,
3194 unique_name:8,
3195 more_display:16
3196 */
3197
3198 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3199
3200 static char *
3201 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3202 {
3203 *pkt++ = 'q'; /* Info Query */
3204 *pkt++ = 'P'; /* process or thread info */
3205 pkt = pack_int (pkt, mode); /* mode */
3206 pkt = pack_threadid (pkt, id); /* threadid */
3207 *pkt = '\0'; /* terminate */
3208 return pkt;
3209 }
3210
3211 /* These values tag the fields in a thread info response packet. */
3212 /* Tagging the fields allows us to request specific fields and to
3213 add more fields as time goes by. */
3214
3215 #define TAG_THREADID 1 /* Echo the thread identifier. */
3216 #define TAG_EXISTS 2 /* Is this process defined enough to
3217 fetch registers and its stack? */
3218 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3219 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3220 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3221 the process. */
3222
3223 int
3224 remote_target::remote_unpack_thread_info_response (char *pkt,
3225 threadref *expectedref,
3226 gdb_ext_thread_info *info)
3227 {
3228 struct remote_state *rs = get_remote_state ();
3229 int mask, length;
3230 int tag;
3231 threadref ref;
3232 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3233 int retval = 1;
3234
3235 /* info->threadid = 0; FIXME: implement zero_threadref. */
3236 info->active = 0;
3237 info->display[0] = '\0';
3238 info->shortname[0] = '\0';
3239 info->more_display[0] = '\0';
3240
3241 /* Assume the characters indicating the packet type have been
3242 stripped. */
3243 pkt = unpack_int (pkt, &mask); /* arg mask */
3244 pkt = unpack_threadid (pkt, &ref);
3245
3246 if (mask == 0)
3247 warning (_("Incomplete response to threadinfo request."));
3248 if (!threadmatch (&ref, expectedref))
3249 { /* This is an answer to a different request. */
3250 warning (_("ERROR RMT Thread info mismatch."));
3251 return 0;
3252 }
3253 copy_threadref (&info->threadid, &ref);
3254
3255 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3256
3257 /* Packets are terminated with nulls. */
3258 while ((pkt < limit) && mask && *pkt)
3259 {
3260 pkt = unpack_int (pkt, &tag); /* tag */
3261 pkt = unpack_byte (pkt, &length); /* length */
3262 if (!(tag & mask)) /* Tags out of synch with mask. */
3263 {
3264 warning (_("ERROR RMT: threadinfo tag mismatch."));
3265 retval = 0;
3266 break;
3267 }
3268 if (tag == TAG_THREADID)
3269 {
3270 if (length != 16)
3271 {
3272 warning (_("ERROR RMT: length of threadid is not 16."));
3273 retval = 0;
3274 break;
3275 }
3276 pkt = unpack_threadid (pkt, &ref);
3277 mask = mask & ~TAG_THREADID;
3278 continue;
3279 }
3280 if (tag == TAG_EXISTS)
3281 {
3282 info->active = stub_unpack_int (pkt, length);
3283 pkt += length;
3284 mask = mask & ~(TAG_EXISTS);
3285 if (length > 8)
3286 {
3287 warning (_("ERROR RMT: 'exists' length too long."));
3288 retval = 0;
3289 break;
3290 }
3291 continue;
3292 }
3293 if (tag == TAG_THREADNAME)
3294 {
3295 pkt = unpack_string (pkt, &info->shortname[0], length);
3296 mask = mask & ~TAG_THREADNAME;
3297 continue;
3298 }
3299 if (tag == TAG_DISPLAY)
3300 {
3301 pkt = unpack_string (pkt, &info->display[0], length);
3302 mask = mask & ~TAG_DISPLAY;
3303 continue;
3304 }
3305 if (tag == TAG_MOREDISPLAY)
3306 {
3307 pkt = unpack_string (pkt, &info->more_display[0], length);
3308 mask = mask & ~TAG_MOREDISPLAY;
3309 continue;
3310 }
3311 warning (_("ERROR RMT: unknown thread info tag."));
3312 break; /* Not a tag we know about. */
3313 }
3314 return retval;
3315 }
3316
3317 int
3318 remote_target::remote_get_threadinfo (threadref *threadid,
3319 int fieldset,
3320 gdb_ext_thread_info *info)
3321 {
3322 struct remote_state *rs = get_remote_state ();
3323 int result;
3324
3325 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3326 putpkt (rs->buf);
3327 getpkt (&rs->buf, 0);
3328
3329 if (rs->buf[0] == '\0')
3330 return 0;
3331
3332 result = remote_unpack_thread_info_response (&rs->buf[2],
3333 threadid, info);
3334 return result;
3335 }
3336
3337 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3338
3339 static char *
3340 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3341 threadref *nextthread)
3342 {
3343 *pkt++ = 'q'; /* info query packet */
3344 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3345 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3346 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3347 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3348 *pkt = '\0';
3349 return pkt;
3350 }
3351
3352 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3353
3354 int
3355 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3356 threadref *original_echo,
3357 threadref *resultlist,
3358 int *doneflag)
3359 {
3360 struct remote_state *rs = get_remote_state ();
3361 char *limit;
3362 int count, resultcount, done;
3363
3364 resultcount = 0;
3365 /* Assume the 'q' and 'M chars have been stripped. */
3366 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3367 /* done parse past here */
3368 pkt = unpack_byte (pkt, &count); /* count field */
3369 pkt = unpack_nibble (pkt, &done);
3370 /* The first threadid is the argument threadid. */
3371 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3372 while ((count-- > 0) && (pkt < limit))
3373 {
3374 pkt = unpack_threadid (pkt, resultlist++);
3375 if (resultcount++ >= result_limit)
3376 break;
3377 }
3378 if (doneflag)
3379 *doneflag = done;
3380 return resultcount;
3381 }
3382
3383 /* Fetch the next batch of threads from the remote. Returns -1 if the
3384 qL packet is not supported, 0 on error and 1 on success. */
3385
3386 int
3387 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3388 int result_limit, int *done, int *result_count,
3389 threadref *threadlist)
3390 {
3391 struct remote_state *rs = get_remote_state ();
3392 int result = 1;
3393
3394 /* Trancate result limit to be smaller than the packet size. */
3395 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3396 >= get_remote_packet_size ())
3397 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3398
3399 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3400 nextthread);
3401 putpkt (rs->buf);
3402 getpkt (&rs->buf, 0);
3403 if (rs->buf[0] == '\0')
3404 {
3405 /* Packet not supported. */
3406 return -1;
3407 }
3408
3409 *result_count =
3410 parse_threadlist_response (&rs->buf[2], result_limit,
3411 &rs->echo_nextthread, threadlist, done);
3412
3413 if (!threadmatch (&rs->echo_nextthread, nextthread))
3414 {
3415 /* FIXME: This is a good reason to drop the packet. */
3416 /* Possably, there is a duplicate response. */
3417 /* Possabilities :
3418 retransmit immediatly - race conditions
3419 retransmit after timeout - yes
3420 exit
3421 wait for packet, then exit
3422 */
3423 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3424 return 0; /* I choose simply exiting. */
3425 }
3426 if (*result_count <= 0)
3427 {
3428 if (*done != 1)
3429 {
3430 warning (_("RMT ERROR : failed to get remote thread list."));
3431 result = 0;
3432 }
3433 return result; /* break; */
3434 }
3435 if (*result_count > result_limit)
3436 {
3437 *result_count = 0;
3438 warning (_("RMT ERROR: threadlist response longer than requested."));
3439 return 0;
3440 }
3441 return result;
3442 }
3443
3444 /* Fetch the list of remote threads, with the qL packet, and call
3445 STEPFUNCTION for each thread found. Stops iterating and returns 1
3446 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3447 STEPFUNCTION returns false. If the packet is not supported,
3448 returns -1. */
3449
3450 int
3451 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3452 void *context, int looplimit)
3453 {
3454 struct remote_state *rs = get_remote_state ();
3455 int done, i, result_count;
3456 int startflag = 1;
3457 int result = 1;
3458 int loopcount = 0;
3459
3460 done = 0;
3461 while (!done)
3462 {
3463 if (loopcount++ > looplimit)
3464 {
3465 result = 0;
3466 warning (_("Remote fetch threadlist -infinite loop-."));
3467 break;
3468 }
3469 result = remote_get_threadlist (startflag, &rs->nextthread,
3470 MAXTHREADLISTRESULTS,
3471 &done, &result_count,
3472 rs->resultthreadlist);
3473 if (result <= 0)
3474 break;
3475 /* Clear for later iterations. */
3476 startflag = 0;
3477 /* Setup to resume next batch of thread references, set nextthread. */
3478 if (result_count >= 1)
3479 copy_threadref (&rs->nextthread,
3480 &rs->resultthreadlist[result_count - 1]);
3481 i = 0;
3482 while (result_count--)
3483 {
3484 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3485 {
3486 result = 0;
3487 break;
3488 }
3489 }
3490 }
3491 return result;
3492 }
3493
3494 /* A thread found on the remote target. */
3495
3496 struct thread_item
3497 {
3498 explicit thread_item (ptid_t ptid_)
3499 : ptid (ptid_)
3500 {}
3501
3502 thread_item (thread_item &&other) = default;
3503 thread_item &operator= (thread_item &&other) = default;
3504
3505 DISABLE_COPY_AND_ASSIGN (thread_item);
3506
3507 /* The thread's PTID. */
3508 ptid_t ptid;
3509
3510 /* The thread's extra info. */
3511 std::string extra;
3512
3513 /* The thread's name. */
3514 std::string name;
3515
3516 /* The core the thread was running on. -1 if not known. */
3517 int core = -1;
3518
3519 /* The thread handle associated with the thread. */
3520 gdb::byte_vector thread_handle;
3521 };
3522
3523 /* Context passed around to the various methods listing remote
3524 threads. As new threads are found, they're added to the ITEMS
3525 vector. */
3526
3527 struct threads_listing_context
3528 {
3529 /* Return true if this object contains an entry for a thread with ptid
3530 PTID. */
3531
3532 bool contains_thread (ptid_t ptid) const
3533 {
3534 auto match_ptid = [&] (const thread_item &item)
3535 {
3536 return item.ptid == ptid;
3537 };
3538
3539 auto it = std::find_if (this->items.begin (),
3540 this->items.end (),
3541 match_ptid);
3542
3543 return it != this->items.end ();
3544 }
3545
3546 /* Remove the thread with ptid PTID. */
3547
3548 void remove_thread (ptid_t ptid)
3549 {
3550 auto match_ptid = [&] (const thread_item &item)
3551 {
3552 return item.ptid == ptid;
3553 };
3554
3555 auto it = std::remove_if (this->items.begin (),
3556 this->items.end (),
3557 match_ptid);
3558
3559 if (it != this->items.end ())
3560 this->items.erase (it);
3561 }
3562
3563 /* The threads found on the remote target. */
3564 std::vector<thread_item> items;
3565 };
3566
3567 static int
3568 remote_newthread_step (threadref *ref, void *data)
3569 {
3570 struct threads_listing_context *context
3571 = (struct threads_listing_context *) data;
3572 int pid = inferior_ptid.pid ();
3573 int lwp = threadref_to_int (ref);
3574 ptid_t ptid (pid, lwp);
3575
3576 context->items.emplace_back (ptid);
3577
3578 return 1; /* continue iterator */
3579 }
3580
3581 #define CRAZY_MAX_THREADS 1000
3582
3583 ptid_t
3584 remote_target::remote_current_thread (ptid_t oldpid)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587
3588 putpkt ("qC");
3589 getpkt (&rs->buf, 0);
3590 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3591 {
3592 const char *obuf;
3593 ptid_t result;
3594
3595 result = read_ptid (&rs->buf[2], &obuf);
3596 if (*obuf != '\0' && remote_debug)
3597 fprintf_unfiltered (gdb_stdlog,
3598 "warning: garbage in qC reply\n");
3599
3600 return result;
3601 }
3602 else
3603 return oldpid;
3604 }
3605
3606 /* List remote threads using the deprecated qL packet. */
3607
3608 int
3609 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3610 {
3611 if (remote_threadlist_iterator (remote_newthread_step, context,
3612 CRAZY_MAX_THREADS) >= 0)
3613 return 1;
3614
3615 return 0;
3616 }
3617
3618 #if defined(HAVE_LIBEXPAT)
3619
3620 static void
3621 start_thread (struct gdb_xml_parser *parser,
3622 const struct gdb_xml_element *element,
3623 void *user_data,
3624 std::vector<gdb_xml_value> &attributes)
3625 {
3626 struct threads_listing_context *data
3627 = (struct threads_listing_context *) user_data;
3628 struct gdb_xml_value *attr;
3629
3630 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3631 ptid_t ptid = read_ptid (id, NULL);
3632
3633 data->items.emplace_back (ptid);
3634 thread_item &item = data->items.back ();
3635
3636 attr = xml_find_attribute (attributes, "core");
3637 if (attr != NULL)
3638 item.core = *(ULONGEST *) attr->value.get ();
3639
3640 attr = xml_find_attribute (attributes, "name");
3641 if (attr != NULL)
3642 item.name = (const char *) attr->value.get ();
3643
3644 attr = xml_find_attribute (attributes, "handle");
3645 if (attr != NULL)
3646 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3647 }
3648
3649 static void
3650 end_thread (struct gdb_xml_parser *parser,
3651 const struct gdb_xml_element *element,
3652 void *user_data, const char *body_text)
3653 {
3654 struct threads_listing_context *data
3655 = (struct threads_listing_context *) user_data;
3656
3657 if (body_text != NULL && *body_text != '\0')
3658 data->items.back ().extra = body_text;
3659 }
3660
3661 const struct gdb_xml_attribute thread_attributes[] = {
3662 { "id", GDB_XML_AF_NONE, NULL, NULL },
3663 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3664 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3665 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3666 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3667 };
3668
3669 const struct gdb_xml_element thread_children[] = {
3670 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3671 };
3672
3673 const struct gdb_xml_element threads_children[] = {
3674 { "thread", thread_attributes, thread_children,
3675 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3676 start_thread, end_thread },
3677 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3678 };
3679
3680 const struct gdb_xml_element threads_elements[] = {
3681 { "threads", NULL, threads_children,
3682 GDB_XML_EF_NONE, NULL, NULL },
3683 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3684 };
3685
3686 #endif
3687
3688 /* List remote threads using qXfer:threads:read. */
3689
3690 int
3691 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3692 {
3693 #if defined(HAVE_LIBEXPAT)
3694 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3695 {
3696 gdb::optional<gdb::char_vector> xml
3697 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3698
3699 if (xml && (*xml)[0] != '\0')
3700 {
3701 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3702 threads_elements, xml->data (), context);
3703 }
3704
3705 return 1;
3706 }
3707 #endif
3708
3709 return 0;
3710 }
3711
3712 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3713
3714 int
3715 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3716 {
3717 struct remote_state *rs = get_remote_state ();
3718
3719 if (rs->use_threadinfo_query)
3720 {
3721 const char *bufp;
3722
3723 putpkt ("qfThreadInfo");
3724 getpkt (&rs->buf, 0);
3725 bufp = rs->buf.data ();
3726 if (bufp[0] != '\0') /* q packet recognized */
3727 {
3728 while (*bufp++ == 'm') /* reply contains one or more TID */
3729 {
3730 do
3731 {
3732 ptid_t ptid = read_ptid (bufp, &bufp);
3733 context->items.emplace_back (ptid);
3734 }
3735 while (*bufp++ == ','); /* comma-separated list */
3736 putpkt ("qsThreadInfo");
3737 getpkt (&rs->buf, 0);
3738 bufp = rs->buf.data ();
3739 }
3740 return 1;
3741 }
3742 else
3743 {
3744 /* Packet not recognized. */
3745 rs->use_threadinfo_query = 0;
3746 }
3747 }
3748
3749 return 0;
3750 }
3751
3752 /* Implement the to_update_thread_list function for the remote
3753 targets. */
3754
3755 void
3756 remote_target::update_thread_list ()
3757 {
3758 struct threads_listing_context context;
3759 int got_list = 0;
3760
3761 /* We have a few different mechanisms to fetch the thread list. Try
3762 them all, starting with the most preferred one first, falling
3763 back to older methods. */
3764 if (remote_get_threads_with_qxfer (&context)
3765 || remote_get_threads_with_qthreadinfo (&context)
3766 || remote_get_threads_with_ql (&context))
3767 {
3768 got_list = 1;
3769
3770 if (context.items.empty ()
3771 && remote_thread_always_alive (inferior_ptid))
3772 {
3773 /* Some targets don't really support threads, but still
3774 reply an (empty) thread list in response to the thread
3775 listing packets, instead of replying "packet not
3776 supported". Exit early so we don't delete the main
3777 thread. */
3778 return;
3779 }
3780
3781 /* CONTEXT now holds the current thread list on the remote
3782 target end. Delete GDB-side threads no longer found on the
3783 target. */
3784 for (thread_info *tp : all_threads_safe ())
3785 {
3786 if (!context.contains_thread (tp->ptid))
3787 {
3788 /* Not found. */
3789 delete_thread (tp);
3790 }
3791 }
3792
3793 /* Remove any unreported fork child threads from CONTEXT so
3794 that we don't interfere with follow fork, which is where
3795 creation of such threads is handled. */
3796 remove_new_fork_children (&context);
3797
3798 /* And now add threads we don't know about yet to our list. */
3799 for (thread_item &item : context.items)
3800 {
3801 if (item.ptid != null_ptid)
3802 {
3803 /* In non-stop mode, we assume new found threads are
3804 executing until proven otherwise with a stop reply.
3805 In all-stop, we can only get here if all threads are
3806 stopped. */
3807 int executing = target_is_non_stop_p () ? 1 : 0;
3808
3809 remote_notice_new_inferior (item.ptid, executing);
3810
3811 thread_info *tp = find_thread_ptid (item.ptid);
3812 remote_thread_info *info = get_remote_thread_info (tp);
3813 info->core = item.core;
3814 info->extra = std::move (item.extra);
3815 info->name = std::move (item.name);
3816 info->thread_handle = std::move (item.thread_handle);
3817 }
3818 }
3819 }
3820
3821 if (!got_list)
3822 {
3823 /* If no thread listing method is supported, then query whether
3824 each known thread is alive, one by one, with the T packet.
3825 If the target doesn't support threads at all, then this is a
3826 no-op. See remote_thread_alive. */
3827 prune_threads ();
3828 }
3829 }
3830
3831 /*
3832 * Collect a descriptive string about the given thread.
3833 * The target may say anything it wants to about the thread
3834 * (typically info about its blocked / runnable state, name, etc.).
3835 * This string will appear in the info threads display.
3836 *
3837 * Optional: targets are not required to implement this function.
3838 */
3839
3840 const char *
3841 remote_target::extra_thread_info (thread_info *tp)
3842 {
3843 struct remote_state *rs = get_remote_state ();
3844 int set;
3845 threadref id;
3846 struct gdb_ext_thread_info threadinfo;
3847
3848 if (rs->remote_desc == 0) /* paranoia */
3849 internal_error (__FILE__, __LINE__,
3850 _("remote_threads_extra_info"));
3851
3852 if (tp->ptid == magic_null_ptid
3853 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3854 /* This is the main thread which was added by GDB. The remote
3855 server doesn't know about it. */
3856 return NULL;
3857
3858 std::string &extra = get_remote_thread_info (tp)->extra;
3859
3860 /* If already have cached info, use it. */
3861 if (!extra.empty ())
3862 return extra.c_str ();
3863
3864 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3865 {
3866 /* If we're using qXfer:threads:read, then the extra info is
3867 included in the XML. So if we didn't have anything cached,
3868 it's because there's really no extra info. */
3869 return NULL;
3870 }
3871
3872 if (rs->use_threadextra_query)
3873 {
3874 char *b = rs->buf.data ();
3875 char *endb = b + get_remote_packet_size ();
3876
3877 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3878 b += strlen (b);
3879 write_ptid (b, endb, tp->ptid);
3880
3881 putpkt (rs->buf);
3882 getpkt (&rs->buf, 0);
3883 if (rs->buf[0] != 0)
3884 {
3885 extra.resize (strlen (rs->buf.data ()) / 2);
3886 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3887 return extra.c_str ();
3888 }
3889 }
3890
3891 /* If the above query fails, fall back to the old method. */
3892 rs->use_threadextra_query = 0;
3893 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3894 | TAG_MOREDISPLAY | TAG_DISPLAY;
3895 int_to_threadref (&id, tp->ptid.lwp ());
3896 if (remote_get_threadinfo (&id, set, &threadinfo))
3897 if (threadinfo.active)
3898 {
3899 if (*threadinfo.shortname)
3900 string_appendf (extra, " Name: %s", threadinfo.shortname);
3901 if (*threadinfo.display)
3902 {
3903 if (!extra.empty ())
3904 extra += ',';
3905 string_appendf (extra, " State: %s", threadinfo.display);
3906 }
3907 if (*threadinfo.more_display)
3908 {
3909 if (!extra.empty ())
3910 extra += ',';
3911 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3912 }
3913 return extra.c_str ();
3914 }
3915 return NULL;
3916 }
3917 \f
3918
3919 bool
3920 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3921 struct static_tracepoint_marker *marker)
3922 {
3923 struct remote_state *rs = get_remote_state ();
3924 char *p = rs->buf.data ();
3925
3926 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3927 p += strlen (p);
3928 p += hexnumstr (p, addr);
3929 putpkt (rs->buf);
3930 getpkt (&rs->buf, 0);
3931 p = rs->buf.data ();
3932
3933 if (*p == 'E')
3934 error (_("Remote failure reply: %s"), p);
3935
3936 if (*p++ == 'm')
3937 {
3938 parse_static_tracepoint_marker_definition (p, NULL, marker);
3939 return true;
3940 }
3941
3942 return false;
3943 }
3944
3945 std::vector<static_tracepoint_marker>
3946 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3947 {
3948 struct remote_state *rs = get_remote_state ();
3949 std::vector<static_tracepoint_marker> markers;
3950 const char *p;
3951 static_tracepoint_marker marker;
3952
3953 /* Ask for a first packet of static tracepoint marker
3954 definition. */
3955 putpkt ("qTfSTM");
3956 getpkt (&rs->buf, 0);
3957 p = rs->buf.data ();
3958 if (*p == 'E')
3959 error (_("Remote failure reply: %s"), p);
3960
3961 while (*p++ == 'm')
3962 {
3963 do
3964 {
3965 parse_static_tracepoint_marker_definition (p, &p, &marker);
3966
3967 if (strid == NULL || marker.str_id == strid)
3968 markers.push_back (std::move (marker));
3969 }
3970 while (*p++ == ','); /* comma-separated list */
3971 /* Ask for another packet of static tracepoint definition. */
3972 putpkt ("qTsSTM");
3973 getpkt (&rs->buf, 0);
3974 p = rs->buf.data ();
3975 }
3976
3977 return markers;
3978 }
3979
3980 \f
3981 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3982
3983 ptid_t
3984 remote_target::get_ada_task_ptid (long lwp, long thread)
3985 {
3986 return ptid_t (inferior_ptid.pid (), lwp, 0);
3987 }
3988 \f
3989
3990 /* Restart the remote side; this is an extended protocol operation. */
3991
3992 void
3993 remote_target::extended_remote_restart ()
3994 {
3995 struct remote_state *rs = get_remote_state ();
3996
3997 /* Send the restart command; for reasons I don't understand the
3998 remote side really expects a number after the "R". */
3999 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4000 putpkt (rs->buf);
4001
4002 remote_fileio_reset ();
4003 }
4004 \f
4005 /* Clean up connection to a remote debugger. */
4006
4007 void
4008 remote_target::close ()
4009 {
4010 /* Make sure we leave stdin registered in the event loop. */
4011 terminal_ours ();
4012
4013 /* We don't have a connection to the remote stub anymore. Get rid
4014 of all the inferiors and their threads we were controlling.
4015 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4016 will be unable to find the thread corresponding to (pid, 0, 0). */
4017 inferior_ptid = null_ptid;
4018 discard_all_inferiors ();
4019
4020 trace_reset_local_state ();
4021
4022 delete this;
4023 }
4024
4025 remote_target::~remote_target ()
4026 {
4027 struct remote_state *rs = get_remote_state ();
4028
4029 /* Check for NULL because we may get here with a partially
4030 constructed target/connection. */
4031 if (rs->remote_desc == nullptr)
4032 return;
4033
4034 serial_close (rs->remote_desc);
4035
4036 /* We are destroying the remote target, so we should discard
4037 everything of this target. */
4038 discard_pending_stop_replies_in_queue ();
4039
4040 if (rs->remote_async_inferior_event_token)
4041 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4042
4043 delete rs->notif_state;
4044 }
4045
4046 /* Query the remote side for the text, data and bss offsets. */
4047
4048 void
4049 remote_target::get_offsets ()
4050 {
4051 struct remote_state *rs = get_remote_state ();
4052 char *buf;
4053 char *ptr;
4054 int lose, num_segments = 0, do_sections, do_segments;
4055 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4056 struct section_offsets *offs;
4057 struct symfile_segment_data *data;
4058
4059 if (symfile_objfile == NULL)
4060 return;
4061
4062 putpkt ("qOffsets");
4063 getpkt (&rs->buf, 0);
4064 buf = rs->buf.data ();
4065
4066 if (buf[0] == '\000')
4067 return; /* Return silently. Stub doesn't support
4068 this command. */
4069 if (buf[0] == 'E')
4070 {
4071 warning (_("Remote failure reply: %s"), buf);
4072 return;
4073 }
4074
4075 /* Pick up each field in turn. This used to be done with scanf, but
4076 scanf will make trouble if CORE_ADDR size doesn't match
4077 conversion directives correctly. The following code will work
4078 with any size of CORE_ADDR. */
4079 text_addr = data_addr = bss_addr = 0;
4080 ptr = buf;
4081 lose = 0;
4082
4083 if (startswith (ptr, "Text="))
4084 {
4085 ptr += 5;
4086 /* Don't use strtol, could lose on big values. */
4087 while (*ptr && *ptr != ';')
4088 text_addr = (text_addr << 4) + fromhex (*ptr++);
4089
4090 if (startswith (ptr, ";Data="))
4091 {
4092 ptr += 6;
4093 while (*ptr && *ptr != ';')
4094 data_addr = (data_addr << 4) + fromhex (*ptr++);
4095 }
4096 else
4097 lose = 1;
4098
4099 if (!lose && startswith (ptr, ";Bss="))
4100 {
4101 ptr += 5;
4102 while (*ptr && *ptr != ';')
4103 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4104
4105 if (bss_addr != data_addr)
4106 warning (_("Target reported unsupported offsets: %s"), buf);
4107 }
4108 else
4109 lose = 1;
4110 }
4111 else if (startswith (ptr, "TextSeg="))
4112 {
4113 ptr += 8;
4114 /* Don't use strtol, could lose on big values. */
4115 while (*ptr && *ptr != ';')
4116 text_addr = (text_addr << 4) + fromhex (*ptr++);
4117 num_segments = 1;
4118
4119 if (startswith (ptr, ";DataSeg="))
4120 {
4121 ptr += 9;
4122 while (*ptr && *ptr != ';')
4123 data_addr = (data_addr << 4) + fromhex (*ptr++);
4124 num_segments++;
4125 }
4126 }
4127 else
4128 lose = 1;
4129
4130 if (lose)
4131 error (_("Malformed response to offset query, %s"), buf);
4132 else if (*ptr != '\0')
4133 warning (_("Target reported unsupported offsets: %s"), buf);
4134
4135 offs = ((struct section_offsets *)
4136 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4137 memcpy (offs, symfile_objfile->section_offsets,
4138 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4139
4140 data = get_symfile_segment_data (symfile_objfile->obfd);
4141 do_segments = (data != NULL);
4142 do_sections = num_segments == 0;
4143
4144 if (num_segments > 0)
4145 {
4146 segments[0] = text_addr;
4147 segments[1] = data_addr;
4148 }
4149 /* If we have two segments, we can still try to relocate everything
4150 by assuming that the .text and .data offsets apply to the whole
4151 text and data segments. Convert the offsets given in the packet
4152 to base addresses for symfile_map_offsets_to_segments. */
4153 else if (data && data->num_segments == 2)
4154 {
4155 segments[0] = data->segment_bases[0] + text_addr;
4156 segments[1] = data->segment_bases[1] + data_addr;
4157 num_segments = 2;
4158 }
4159 /* If the object file has only one segment, assume that it is text
4160 rather than data; main programs with no writable data are rare,
4161 but programs with no code are useless. Of course the code might
4162 have ended up in the data segment... to detect that we would need
4163 the permissions here. */
4164 else if (data && data->num_segments == 1)
4165 {
4166 segments[0] = data->segment_bases[0] + text_addr;
4167 num_segments = 1;
4168 }
4169 /* There's no way to relocate by segment. */
4170 else
4171 do_segments = 0;
4172
4173 if (do_segments)
4174 {
4175 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4176 offs, num_segments, segments);
4177
4178 if (ret == 0 && !do_sections)
4179 error (_("Can not handle qOffsets TextSeg "
4180 "response with this symbol file"));
4181
4182 if (ret > 0)
4183 do_sections = 0;
4184 }
4185
4186 if (data)
4187 free_symfile_segment_data (data);
4188
4189 if (do_sections)
4190 {
4191 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4192
4193 /* This is a temporary kludge to force data and bss to use the
4194 same offsets because that's what nlmconv does now. The real
4195 solution requires changes to the stub and remote.c that I
4196 don't have time to do right now. */
4197
4198 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4199 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4200 }
4201
4202 objfile_relocate (symfile_objfile, offs);
4203 }
4204
4205 /* Send interrupt_sequence to remote target. */
4206
4207 void
4208 remote_target::send_interrupt_sequence ()
4209 {
4210 struct remote_state *rs = get_remote_state ();
4211
4212 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4213 remote_serial_write ("\x03", 1);
4214 else if (interrupt_sequence_mode == interrupt_sequence_break)
4215 serial_send_break (rs->remote_desc);
4216 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4217 {
4218 serial_send_break (rs->remote_desc);
4219 remote_serial_write ("g", 1);
4220 }
4221 else
4222 internal_error (__FILE__, __LINE__,
4223 _("Invalid value for interrupt_sequence_mode: %s."),
4224 interrupt_sequence_mode);
4225 }
4226
4227
4228 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4229 and extract the PTID. Returns NULL_PTID if not found. */
4230
4231 static ptid_t
4232 stop_reply_extract_thread (char *stop_reply)
4233 {
4234 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4235 {
4236 const char *p;
4237
4238 /* Txx r:val ; r:val (...) */
4239 p = &stop_reply[3];
4240
4241 /* Look for "register" named "thread". */
4242 while (*p != '\0')
4243 {
4244 const char *p1;
4245
4246 p1 = strchr (p, ':');
4247 if (p1 == NULL)
4248 return null_ptid;
4249
4250 if (strncmp (p, "thread", p1 - p) == 0)
4251 return read_ptid (++p1, &p);
4252
4253 p1 = strchr (p, ';');
4254 if (p1 == NULL)
4255 return null_ptid;
4256 p1++;
4257
4258 p = p1;
4259 }
4260 }
4261
4262 return null_ptid;
4263 }
4264
4265 /* Determine the remote side's current thread. If we have a stop
4266 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4267 "thread" register we can extract the current thread from. If not,
4268 ask the remote which is the current thread with qC. The former
4269 method avoids a roundtrip. */
4270
4271 ptid_t
4272 remote_target::get_current_thread (char *wait_status)
4273 {
4274 ptid_t ptid = null_ptid;
4275
4276 /* Note we don't use remote_parse_stop_reply as that makes use of
4277 the target architecture, which we haven't yet fully determined at
4278 this point. */
4279 if (wait_status != NULL)
4280 ptid = stop_reply_extract_thread (wait_status);
4281 if (ptid == null_ptid)
4282 ptid = remote_current_thread (inferior_ptid);
4283
4284 return ptid;
4285 }
4286
4287 /* Query the remote target for which is the current thread/process,
4288 add it to our tables, and update INFERIOR_PTID. The caller is
4289 responsible for setting the state such that the remote end is ready
4290 to return the current thread.
4291
4292 This function is called after handling the '?' or 'vRun' packets,
4293 whose response is a stop reply from which we can also try
4294 extracting the thread. If the target doesn't support the explicit
4295 qC query, we infer the current thread from that stop reply, passed
4296 in in WAIT_STATUS, which may be NULL. */
4297
4298 void
4299 remote_target::add_current_inferior_and_thread (char *wait_status)
4300 {
4301 struct remote_state *rs = get_remote_state ();
4302 bool fake_pid_p = false;
4303
4304 inferior_ptid = null_ptid;
4305
4306 /* Now, if we have thread information, update inferior_ptid. */
4307 ptid_t curr_ptid = get_current_thread (wait_status);
4308
4309 if (curr_ptid != null_ptid)
4310 {
4311 if (!remote_multi_process_p (rs))
4312 fake_pid_p = true;
4313 }
4314 else
4315 {
4316 /* Without this, some commands which require an active target
4317 (such as kill) won't work. This variable serves (at least)
4318 double duty as both the pid of the target process (if it has
4319 such), and as a flag indicating that a target is active. */
4320 curr_ptid = magic_null_ptid;
4321 fake_pid_p = true;
4322 }
4323
4324 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4325
4326 /* Add the main thread and switch to it. Don't try reading
4327 registers yet, since we haven't fetched the target description
4328 yet. */
4329 thread_info *tp = add_thread_silent (curr_ptid);
4330 switch_to_thread_no_regs (tp);
4331 }
4332
4333 /* Print info about a thread that was found already stopped on
4334 connection. */
4335
4336 static void
4337 print_one_stopped_thread (struct thread_info *thread)
4338 {
4339 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4340
4341 switch_to_thread (thread);
4342 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4343 set_current_sal_from_frame (get_current_frame ());
4344
4345 thread->suspend.waitstatus_pending_p = 0;
4346
4347 if (ws->kind == TARGET_WAITKIND_STOPPED)
4348 {
4349 enum gdb_signal sig = ws->value.sig;
4350
4351 if (signal_print_state (sig))
4352 gdb::observers::signal_received.notify (sig);
4353 }
4354 gdb::observers::normal_stop.notify (NULL, 1);
4355 }
4356
4357 /* Process all initial stop replies the remote side sent in response
4358 to the ? packet. These indicate threads that were already stopped
4359 on initial connection. We mark these threads as stopped and print
4360 their current frame before giving the user the prompt. */
4361
4362 void
4363 remote_target::process_initial_stop_replies (int from_tty)
4364 {
4365 int pending_stop_replies = stop_reply_queue_length ();
4366 struct thread_info *selected = NULL;
4367 struct thread_info *lowest_stopped = NULL;
4368 struct thread_info *first = NULL;
4369
4370 /* Consume the initial pending events. */
4371 while (pending_stop_replies-- > 0)
4372 {
4373 ptid_t waiton_ptid = minus_one_ptid;
4374 ptid_t event_ptid;
4375 struct target_waitstatus ws;
4376 int ignore_event = 0;
4377
4378 memset (&ws, 0, sizeof (ws));
4379 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4380 if (remote_debug)
4381 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4382
4383 switch (ws.kind)
4384 {
4385 case TARGET_WAITKIND_IGNORE:
4386 case TARGET_WAITKIND_NO_RESUMED:
4387 case TARGET_WAITKIND_SIGNALLED:
4388 case TARGET_WAITKIND_EXITED:
4389 /* We shouldn't see these, but if we do, just ignore. */
4390 if (remote_debug)
4391 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4392 ignore_event = 1;
4393 break;
4394
4395 case TARGET_WAITKIND_EXECD:
4396 xfree (ws.value.execd_pathname);
4397 break;
4398 default:
4399 break;
4400 }
4401
4402 if (ignore_event)
4403 continue;
4404
4405 struct thread_info *evthread = find_thread_ptid (event_ptid);
4406
4407 if (ws.kind == TARGET_WAITKIND_STOPPED)
4408 {
4409 enum gdb_signal sig = ws.value.sig;
4410
4411 /* Stubs traditionally report SIGTRAP as initial signal,
4412 instead of signal 0. Suppress it. */
4413 if (sig == GDB_SIGNAL_TRAP)
4414 sig = GDB_SIGNAL_0;
4415 evthread->suspend.stop_signal = sig;
4416 ws.value.sig = sig;
4417 }
4418
4419 evthread->suspend.waitstatus = ws;
4420
4421 if (ws.kind != TARGET_WAITKIND_STOPPED
4422 || ws.value.sig != GDB_SIGNAL_0)
4423 evthread->suspend.waitstatus_pending_p = 1;
4424
4425 set_executing (event_ptid, 0);
4426 set_running (event_ptid, 0);
4427 get_remote_thread_info (evthread)->vcont_resumed = 0;
4428 }
4429
4430 /* "Notice" the new inferiors before anything related to
4431 registers/memory. */
4432 for (inferior *inf : all_non_exited_inferiors ())
4433 {
4434 inf->needs_setup = 1;
4435
4436 if (non_stop)
4437 {
4438 thread_info *thread = any_live_thread_of_inferior (inf);
4439 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4440 from_tty);
4441 }
4442 }
4443
4444 /* If all-stop on top of non-stop, pause all threads. Note this
4445 records the threads' stop pc, so must be done after "noticing"
4446 the inferiors. */
4447 if (!non_stop)
4448 {
4449 stop_all_threads ();
4450
4451 /* If all threads of an inferior were already stopped, we
4452 haven't setup the inferior yet. */
4453 for (inferior *inf : all_non_exited_inferiors ())
4454 {
4455 if (inf->needs_setup)
4456 {
4457 thread_info *thread = any_live_thread_of_inferior (inf);
4458 switch_to_thread_no_regs (thread);
4459 setup_inferior (0);
4460 }
4461 }
4462 }
4463
4464 /* Now go over all threads that are stopped, and print their current
4465 frame. If all-stop, then if there's a signalled thread, pick
4466 that as current. */
4467 for (thread_info *thread : all_non_exited_threads ())
4468 {
4469 if (first == NULL)
4470 first = thread;
4471
4472 if (!non_stop)
4473 thread->set_running (false);
4474 else if (thread->state != THREAD_STOPPED)
4475 continue;
4476
4477 if (selected == NULL
4478 && thread->suspend.waitstatus_pending_p)
4479 selected = thread;
4480
4481 if (lowest_stopped == NULL
4482 || thread->inf->num < lowest_stopped->inf->num
4483 || thread->per_inf_num < lowest_stopped->per_inf_num)
4484 lowest_stopped = thread;
4485
4486 if (non_stop)
4487 print_one_stopped_thread (thread);
4488 }
4489
4490 /* In all-stop, we only print the status of one thread, and leave
4491 others with their status pending. */
4492 if (!non_stop)
4493 {
4494 thread_info *thread = selected;
4495 if (thread == NULL)
4496 thread = lowest_stopped;
4497 if (thread == NULL)
4498 thread = first;
4499
4500 print_one_stopped_thread (thread);
4501 }
4502
4503 /* For "info program". */
4504 thread_info *thread = inferior_thread ();
4505 if (thread->state == THREAD_STOPPED)
4506 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4507 }
4508
4509 /* Start the remote connection and sync state. */
4510
4511 void
4512 remote_target::start_remote (int from_tty, int extended_p)
4513 {
4514 struct remote_state *rs = get_remote_state ();
4515 struct packet_config *noack_config;
4516 char *wait_status = NULL;
4517
4518 /* Signal other parts that we're going through the initial setup,
4519 and so things may not be stable yet. E.g., we don't try to
4520 install tracepoints until we've relocated symbols. Also, a
4521 Ctrl-C before we're connected and synced up can't interrupt the
4522 target. Instead, it offers to drop the (potentially wedged)
4523 connection. */
4524 rs->starting_up = 1;
4525
4526 QUIT;
4527
4528 if (interrupt_on_connect)
4529 send_interrupt_sequence ();
4530
4531 /* Ack any packet which the remote side has already sent. */
4532 remote_serial_write ("+", 1);
4533
4534 /* The first packet we send to the target is the optional "supported
4535 packets" request. If the target can answer this, it will tell us
4536 which later probes to skip. */
4537 remote_query_supported ();
4538
4539 /* If the stub wants to get a QAllow, compose one and send it. */
4540 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4541 set_permissions ();
4542
4543 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4544 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4545 as a reply to known packet. For packet "vFile:setfs:" it is an
4546 invalid reply and GDB would return error in
4547 remote_hostio_set_filesystem, making remote files access impossible.
4548 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4549 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4550 {
4551 const char v_mustreplyempty[] = "vMustReplyEmpty";
4552
4553 putpkt (v_mustreplyempty);
4554 getpkt (&rs->buf, 0);
4555 if (strcmp (rs->buf.data (), "OK") == 0)
4556 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4557 else if (strcmp (rs->buf.data (), "") != 0)
4558 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4559 rs->buf.data ());
4560 }
4561
4562 /* Next, we possibly activate noack mode.
4563
4564 If the QStartNoAckMode packet configuration is set to AUTO,
4565 enable noack mode if the stub reported a wish for it with
4566 qSupported.
4567
4568 If set to TRUE, then enable noack mode even if the stub didn't
4569 report it in qSupported. If the stub doesn't reply OK, the
4570 session ends with an error.
4571
4572 If FALSE, then don't activate noack mode, regardless of what the
4573 stub claimed should be the default with qSupported. */
4574
4575 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4576 if (packet_config_support (noack_config) != PACKET_DISABLE)
4577 {
4578 putpkt ("QStartNoAckMode");
4579 getpkt (&rs->buf, 0);
4580 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4581 rs->noack_mode = 1;
4582 }
4583
4584 if (extended_p)
4585 {
4586 /* Tell the remote that we are using the extended protocol. */
4587 putpkt ("!");
4588 getpkt (&rs->buf, 0);
4589 }
4590
4591 /* Let the target know which signals it is allowed to pass down to
4592 the program. */
4593 update_signals_program_target ();
4594
4595 /* Next, if the target can specify a description, read it. We do
4596 this before anything involving memory or registers. */
4597 target_find_description ();
4598
4599 /* Next, now that we know something about the target, update the
4600 address spaces in the program spaces. */
4601 update_address_spaces ();
4602
4603 /* On OSs where the list of libraries is global to all
4604 processes, we fetch them early. */
4605 if (gdbarch_has_global_solist (target_gdbarch ()))
4606 solib_add (NULL, from_tty, auto_solib_add);
4607
4608 if (target_is_non_stop_p ())
4609 {
4610 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4611 error (_("Non-stop mode requested, but remote "
4612 "does not support non-stop"));
4613
4614 putpkt ("QNonStop:1");
4615 getpkt (&rs->buf, 0);
4616
4617 if (strcmp (rs->buf.data (), "OK") != 0)
4618 error (_("Remote refused setting non-stop mode with: %s"),
4619 rs->buf.data ());
4620
4621 /* Find about threads and processes the stub is already
4622 controlling. We default to adding them in the running state.
4623 The '?' query below will then tell us about which threads are
4624 stopped. */
4625 this->update_thread_list ();
4626 }
4627 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4628 {
4629 /* Don't assume that the stub can operate in all-stop mode.
4630 Request it explicitly. */
4631 putpkt ("QNonStop:0");
4632 getpkt (&rs->buf, 0);
4633
4634 if (strcmp (rs->buf.data (), "OK") != 0)
4635 error (_("Remote refused setting all-stop mode with: %s"),
4636 rs->buf.data ());
4637 }
4638
4639 /* Upload TSVs regardless of whether the target is running or not. The
4640 remote stub, such as GDBserver, may have some predefined or builtin
4641 TSVs, even if the target is not running. */
4642 if (get_trace_status (current_trace_status ()) != -1)
4643 {
4644 struct uploaded_tsv *uploaded_tsvs = NULL;
4645
4646 upload_trace_state_variables (&uploaded_tsvs);
4647 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4648 }
4649
4650 /* Check whether the target is running now. */
4651 putpkt ("?");
4652 getpkt (&rs->buf, 0);
4653
4654 if (!target_is_non_stop_p ())
4655 {
4656 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4657 {
4658 if (!extended_p)
4659 error (_("The target is not running (try extended-remote?)"));
4660
4661 /* We're connected, but not running. Drop out before we
4662 call start_remote. */
4663 rs->starting_up = 0;
4664 return;
4665 }
4666 else
4667 {
4668 /* Save the reply for later. */
4669 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4670 strcpy (wait_status, rs->buf.data ());
4671 }
4672
4673 /* Fetch thread list. */
4674 target_update_thread_list ();
4675
4676 /* Let the stub know that we want it to return the thread. */
4677 set_continue_thread (minus_one_ptid);
4678
4679 if (thread_count () == 0)
4680 {
4681 /* Target has no concept of threads at all. GDB treats
4682 non-threaded target as single-threaded; add a main
4683 thread. */
4684 add_current_inferior_and_thread (wait_status);
4685 }
4686 else
4687 {
4688 /* We have thread information; select the thread the target
4689 says should be current. If we're reconnecting to a
4690 multi-threaded program, this will ideally be the thread
4691 that last reported an event before GDB disconnected. */
4692 inferior_ptid = get_current_thread (wait_status);
4693 if (inferior_ptid == null_ptid)
4694 {
4695 /* Odd... The target was able to list threads, but not
4696 tell us which thread was current (no "thread"
4697 register in T stop reply?). Just pick the first
4698 thread in the thread list then. */
4699
4700 if (remote_debug)
4701 fprintf_unfiltered (gdb_stdlog,
4702 "warning: couldn't determine remote "
4703 "current thread; picking first in list.\n");
4704
4705 inferior_ptid = inferior_list->thread_list->ptid;
4706 }
4707 }
4708
4709 /* init_wait_for_inferior should be called before get_offsets in order
4710 to manage `inserted' flag in bp loc in a correct state.
4711 breakpoint_init_inferior, called from init_wait_for_inferior, set
4712 `inserted' flag to 0, while before breakpoint_re_set, called from
4713 start_remote, set `inserted' flag to 1. In the initialization of
4714 inferior, breakpoint_init_inferior should be called first, and then
4715 breakpoint_re_set can be called. If this order is broken, state of
4716 `inserted' flag is wrong, and cause some problems on breakpoint
4717 manipulation. */
4718 init_wait_for_inferior ();
4719
4720 get_offsets (); /* Get text, data & bss offsets. */
4721
4722 /* If we could not find a description using qXfer, and we know
4723 how to do it some other way, try again. This is not
4724 supported for non-stop; it could be, but it is tricky if
4725 there are no stopped threads when we connect. */
4726 if (remote_read_description_p (this)
4727 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4728 {
4729 target_clear_description ();
4730 target_find_description ();
4731 }
4732
4733 /* Use the previously fetched status. */
4734 gdb_assert (wait_status != NULL);
4735 strcpy (rs->buf.data (), wait_status);
4736 rs->cached_wait_status = 1;
4737
4738 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4739 }
4740 else
4741 {
4742 /* Clear WFI global state. Do this before finding about new
4743 threads and inferiors, and setting the current inferior.
4744 Otherwise we would clear the proceed status of the current
4745 inferior when we want its stop_soon state to be preserved
4746 (see notice_new_inferior). */
4747 init_wait_for_inferior ();
4748
4749 /* In non-stop, we will either get an "OK", meaning that there
4750 are no stopped threads at this time; or, a regular stop
4751 reply. In the latter case, there may be more than one thread
4752 stopped --- we pull them all out using the vStopped
4753 mechanism. */
4754 if (strcmp (rs->buf.data (), "OK") != 0)
4755 {
4756 struct notif_client *notif = &notif_client_stop;
4757
4758 /* remote_notif_get_pending_replies acks this one, and gets
4759 the rest out. */
4760 rs->notif_state->pending_event[notif_client_stop.id]
4761 = remote_notif_parse (this, notif, rs->buf.data ());
4762 remote_notif_get_pending_events (notif);
4763 }
4764
4765 if (thread_count () == 0)
4766 {
4767 if (!extended_p)
4768 error (_("The target is not running (try extended-remote?)"));
4769
4770 /* We're connected, but not running. Drop out before we
4771 call start_remote. */
4772 rs->starting_up = 0;
4773 return;
4774 }
4775
4776 /* In non-stop mode, any cached wait status will be stored in
4777 the stop reply queue. */
4778 gdb_assert (wait_status == NULL);
4779
4780 /* Report all signals during attach/startup. */
4781 pass_signals ({});
4782
4783 /* If there are already stopped threads, mark them stopped and
4784 report their stops before giving the prompt to the user. */
4785 process_initial_stop_replies (from_tty);
4786
4787 if (target_can_async_p ())
4788 target_async (1);
4789 }
4790
4791 /* If we connected to a live target, do some additional setup. */
4792 if (target_has_execution)
4793 {
4794 if (symfile_objfile) /* No use without a symbol-file. */
4795 remote_check_symbols ();
4796 }
4797
4798 /* Possibly the target has been engaged in a trace run started
4799 previously; find out where things are at. */
4800 if (get_trace_status (current_trace_status ()) != -1)
4801 {
4802 struct uploaded_tp *uploaded_tps = NULL;
4803
4804 if (current_trace_status ()->running)
4805 printf_filtered (_("Trace is already running on the target.\n"));
4806
4807 upload_tracepoints (&uploaded_tps);
4808
4809 merge_uploaded_tracepoints (&uploaded_tps);
4810 }
4811
4812 /* Possibly the target has been engaged in a btrace record started
4813 previously; find out where things are at. */
4814 remote_btrace_maybe_reopen ();
4815
4816 /* The thread and inferior lists are now synchronized with the
4817 target, our symbols have been relocated, and we're merged the
4818 target's tracepoints with ours. We're done with basic start
4819 up. */
4820 rs->starting_up = 0;
4821
4822 /* Maybe breakpoints are global and need to be inserted now. */
4823 if (breakpoints_should_be_inserted_now ())
4824 insert_breakpoints ();
4825 }
4826
4827 /* Open a connection to a remote debugger.
4828 NAME is the filename used for communication. */
4829
4830 void
4831 remote_target::open (const char *name, int from_tty)
4832 {
4833 open_1 (name, from_tty, 0);
4834 }
4835
4836 /* Open a connection to a remote debugger using the extended
4837 remote gdb protocol. NAME is the filename used for communication. */
4838
4839 void
4840 extended_remote_target::open (const char *name, int from_tty)
4841 {
4842 open_1 (name, from_tty, 1 /*extended_p */);
4843 }
4844
4845 /* Reset all packets back to "unknown support". Called when opening a
4846 new connection to a remote target. */
4847
4848 static void
4849 reset_all_packet_configs_support (void)
4850 {
4851 int i;
4852
4853 for (i = 0; i < PACKET_MAX; i++)
4854 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4855 }
4856
4857 /* Initialize all packet configs. */
4858
4859 static void
4860 init_all_packet_configs (void)
4861 {
4862 int i;
4863
4864 for (i = 0; i < PACKET_MAX; i++)
4865 {
4866 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4867 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4868 }
4869 }
4870
4871 /* Symbol look-up. */
4872
4873 void
4874 remote_target::remote_check_symbols ()
4875 {
4876 char *tmp;
4877 int end;
4878
4879 /* The remote side has no concept of inferiors that aren't running
4880 yet, it only knows about running processes. If we're connected
4881 but our current inferior is not running, we should not invite the
4882 remote target to request symbol lookups related to its
4883 (unrelated) current process. */
4884 if (!target_has_execution)
4885 return;
4886
4887 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4888 return;
4889
4890 /* Make sure the remote is pointing at the right process. Note
4891 there's no way to select "no process". */
4892 set_general_process ();
4893
4894 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4895 because we need both at the same time. */
4896 gdb::char_vector msg (get_remote_packet_size ());
4897 gdb::char_vector reply (get_remote_packet_size ());
4898
4899 /* Invite target to request symbol lookups. */
4900
4901 putpkt ("qSymbol::");
4902 getpkt (&reply, 0);
4903 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4904
4905 while (startswith (reply.data (), "qSymbol:"))
4906 {
4907 struct bound_minimal_symbol sym;
4908
4909 tmp = &reply[8];
4910 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4911 strlen (tmp) / 2);
4912 msg[end] = '\0';
4913 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4914 if (sym.minsym == NULL)
4915 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4916 &reply[8]);
4917 else
4918 {
4919 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4920 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4921
4922 /* If this is a function address, return the start of code
4923 instead of any data function descriptor. */
4924 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4925 sym_addr,
4926 current_top_target ());
4927
4928 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4929 phex_nz (sym_addr, addr_size), &reply[8]);
4930 }
4931
4932 putpkt (msg.data ());
4933 getpkt (&reply, 0);
4934 }
4935 }
4936
4937 static struct serial *
4938 remote_serial_open (const char *name)
4939 {
4940 static int udp_warning = 0;
4941
4942 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4943 of in ser-tcp.c, because it is the remote protocol assuming that the
4944 serial connection is reliable and not the serial connection promising
4945 to be. */
4946 if (!udp_warning && startswith (name, "udp:"))
4947 {
4948 warning (_("The remote protocol may be unreliable over UDP.\n"
4949 "Some events may be lost, rendering further debugging "
4950 "impossible."));
4951 udp_warning = 1;
4952 }
4953
4954 return serial_open (name);
4955 }
4956
4957 /* Inform the target of our permission settings. The permission flags
4958 work without this, but if the target knows the settings, it can do
4959 a couple things. First, it can add its own check, to catch cases
4960 that somehow manage to get by the permissions checks in target
4961 methods. Second, if the target is wired to disallow particular
4962 settings (for instance, a system in the field that is not set up to
4963 be able to stop at a breakpoint), it can object to any unavailable
4964 permissions. */
4965
4966 void
4967 remote_target::set_permissions ()
4968 {
4969 struct remote_state *rs = get_remote_state ();
4970
4971 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4972 "WriteReg:%x;WriteMem:%x;"
4973 "InsertBreak:%x;InsertTrace:%x;"
4974 "InsertFastTrace:%x;Stop:%x",
4975 may_write_registers, may_write_memory,
4976 may_insert_breakpoints, may_insert_tracepoints,
4977 may_insert_fast_tracepoints, may_stop);
4978 putpkt (rs->buf);
4979 getpkt (&rs->buf, 0);
4980
4981 /* If the target didn't like the packet, warn the user. Do not try
4982 to undo the user's settings, that would just be maddening. */
4983 if (strcmp (rs->buf.data (), "OK") != 0)
4984 warning (_("Remote refused setting permissions with: %s"),
4985 rs->buf.data ());
4986 }
4987
4988 /* This type describes each known response to the qSupported
4989 packet. */
4990 struct protocol_feature
4991 {
4992 /* The name of this protocol feature. */
4993 const char *name;
4994
4995 /* The default for this protocol feature. */
4996 enum packet_support default_support;
4997
4998 /* The function to call when this feature is reported, or after
4999 qSupported processing if the feature is not supported.
5000 The first argument points to this structure. The second
5001 argument indicates whether the packet requested support be
5002 enabled, disabled, or probed (or the default, if this function
5003 is being called at the end of processing and this feature was
5004 not reported). The third argument may be NULL; if not NULL, it
5005 is a NUL-terminated string taken from the packet following
5006 this feature's name and an equals sign. */
5007 void (*func) (remote_target *remote, const struct protocol_feature *,
5008 enum packet_support, const char *);
5009
5010 /* The corresponding packet for this feature. Only used if
5011 FUNC is remote_supported_packet. */
5012 int packet;
5013 };
5014
5015 static void
5016 remote_supported_packet (remote_target *remote,
5017 const struct protocol_feature *feature,
5018 enum packet_support support,
5019 const char *argument)
5020 {
5021 if (argument)
5022 {
5023 warning (_("Remote qSupported response supplied an unexpected value for"
5024 " \"%s\"."), feature->name);
5025 return;
5026 }
5027
5028 remote_protocol_packets[feature->packet].support = support;
5029 }
5030
5031 void
5032 remote_target::remote_packet_size (const protocol_feature *feature,
5033 enum packet_support support, const char *value)
5034 {
5035 struct remote_state *rs = get_remote_state ();
5036
5037 int packet_size;
5038 char *value_end;
5039
5040 if (support != PACKET_ENABLE)
5041 return;
5042
5043 if (value == NULL || *value == '\0')
5044 {
5045 warning (_("Remote target reported \"%s\" without a size."),
5046 feature->name);
5047 return;
5048 }
5049
5050 errno = 0;
5051 packet_size = strtol (value, &value_end, 16);
5052 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5053 {
5054 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5055 feature->name, value);
5056 return;
5057 }
5058
5059 /* Record the new maximum packet size. */
5060 rs->explicit_packet_size = packet_size;
5061 }
5062
5063 void
5064 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5065 enum packet_support support, const char *value)
5066 {
5067 remote->remote_packet_size (feature, support, value);
5068 }
5069
5070 static const struct protocol_feature remote_protocol_features[] = {
5071 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5072 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5073 PACKET_qXfer_auxv },
5074 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5075 PACKET_qXfer_exec_file },
5076 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_qXfer_features },
5078 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5079 PACKET_qXfer_libraries },
5080 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_libraries_svr4 },
5082 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5083 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5084 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_memory_map },
5086 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_spu_read },
5088 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_spu_write },
5090 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_osdata },
5092 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_threads },
5094 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_traceframe_info },
5096 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_QPassSignals },
5098 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_QCatchSyscalls },
5100 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_QProgramSignals },
5102 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_QSetWorkingDir },
5104 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QStartupWithShell },
5106 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QEnvironmentHexEncoded },
5108 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QEnvironmentReset },
5110 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QEnvironmentUnset },
5112 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QStartNoAckMode },
5114 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_multiprocess_feature },
5116 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5117 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_siginfo_read },
5119 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_siginfo_write },
5121 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_ConditionalTracepoints },
5123 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_ConditionalBreakpoints },
5125 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_BreakpointCommands },
5127 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_FastTracepoints },
5129 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_StaticTracepoints },
5131 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_InstallInTrace},
5133 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_DisconnectedTracing_feature },
5135 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_bc },
5137 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_bs },
5139 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_TracepointSource },
5141 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QAllow },
5143 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_EnableDisableTracepoints_feature },
5145 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_qXfer_fdpic },
5147 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_qXfer_uib },
5149 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QDisableRandomization },
5151 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5152 { "QTBuffer:size", PACKET_DISABLE,
5153 remote_supported_packet, PACKET_QTBuffer_size},
5154 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5155 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5156 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5157 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5158 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_qXfer_btrace },
5160 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_btrace_conf },
5162 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_Qbtrace_conf_bts_size },
5164 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5165 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5166 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_fork_event_feature },
5168 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_vfork_event_feature },
5170 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_exec_event_feature },
5172 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_Qbtrace_conf_pt_size },
5174 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5175 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5176 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5177 };
5178
5179 static char *remote_support_xml;
5180
5181 /* Register string appended to "xmlRegisters=" in qSupported query. */
5182
5183 void
5184 register_remote_support_xml (const char *xml)
5185 {
5186 #if defined(HAVE_LIBEXPAT)
5187 if (remote_support_xml == NULL)
5188 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5189 else
5190 {
5191 char *copy = xstrdup (remote_support_xml + 13);
5192 char *p = strtok (copy, ",");
5193
5194 do
5195 {
5196 if (strcmp (p, xml) == 0)
5197 {
5198 /* already there */
5199 xfree (copy);
5200 return;
5201 }
5202 }
5203 while ((p = strtok (NULL, ",")) != NULL);
5204 xfree (copy);
5205
5206 remote_support_xml = reconcat (remote_support_xml,
5207 remote_support_xml, ",", xml,
5208 (char *) NULL);
5209 }
5210 #endif
5211 }
5212
5213 static void
5214 remote_query_supported_append (std::string *msg, const char *append)
5215 {
5216 if (!msg->empty ())
5217 msg->append (";");
5218 msg->append (append);
5219 }
5220
5221 void
5222 remote_target::remote_query_supported ()
5223 {
5224 struct remote_state *rs = get_remote_state ();
5225 char *next;
5226 int i;
5227 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5228
5229 /* The packet support flags are handled differently for this packet
5230 than for most others. We treat an error, a disabled packet, and
5231 an empty response identically: any features which must be reported
5232 to be used will be automatically disabled. An empty buffer
5233 accomplishes this, since that is also the representation for a list
5234 containing no features. */
5235
5236 rs->buf[0] = 0;
5237 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5238 {
5239 std::string q;
5240
5241 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5242 remote_query_supported_append (&q, "multiprocess+");
5243
5244 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5245 remote_query_supported_append (&q, "swbreak+");
5246 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5247 remote_query_supported_append (&q, "hwbreak+");
5248
5249 remote_query_supported_append (&q, "qRelocInsn+");
5250
5251 if (packet_set_cmd_state (PACKET_fork_event_feature)
5252 != AUTO_BOOLEAN_FALSE)
5253 remote_query_supported_append (&q, "fork-events+");
5254 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5255 != AUTO_BOOLEAN_FALSE)
5256 remote_query_supported_append (&q, "vfork-events+");
5257 if (packet_set_cmd_state (PACKET_exec_event_feature)
5258 != AUTO_BOOLEAN_FALSE)
5259 remote_query_supported_append (&q, "exec-events+");
5260
5261 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5262 remote_query_supported_append (&q, "vContSupported+");
5263
5264 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "QThreadEvents+");
5266
5267 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "no-resumed+");
5269
5270 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5271 the qSupported:xmlRegisters=i386 handling. */
5272 if (remote_support_xml != NULL
5273 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5274 remote_query_supported_append (&q, remote_support_xml);
5275
5276 q = "qSupported:" + q;
5277 putpkt (q.c_str ());
5278
5279 getpkt (&rs->buf, 0);
5280
5281 /* If an error occured, warn, but do not return - just reset the
5282 buffer to empty and go on to disable features. */
5283 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5284 == PACKET_ERROR)
5285 {
5286 warning (_("Remote failure reply: %s"), rs->buf.data ());
5287 rs->buf[0] = 0;
5288 }
5289 }
5290
5291 memset (seen, 0, sizeof (seen));
5292
5293 next = rs->buf.data ();
5294 while (*next)
5295 {
5296 enum packet_support is_supported;
5297 char *p, *end, *name_end, *value;
5298
5299 /* First separate out this item from the rest of the packet. If
5300 there's another item after this, we overwrite the separator
5301 (terminated strings are much easier to work with). */
5302 p = next;
5303 end = strchr (p, ';');
5304 if (end == NULL)
5305 {
5306 end = p + strlen (p);
5307 next = end;
5308 }
5309 else
5310 {
5311 *end = '\0';
5312 next = end + 1;
5313
5314 if (end == p)
5315 {
5316 warning (_("empty item in \"qSupported\" response"));
5317 continue;
5318 }
5319 }
5320
5321 name_end = strchr (p, '=');
5322 if (name_end)
5323 {
5324 /* This is a name=value entry. */
5325 is_supported = PACKET_ENABLE;
5326 value = name_end + 1;
5327 *name_end = '\0';
5328 }
5329 else
5330 {
5331 value = NULL;
5332 switch (end[-1])
5333 {
5334 case '+':
5335 is_supported = PACKET_ENABLE;
5336 break;
5337
5338 case '-':
5339 is_supported = PACKET_DISABLE;
5340 break;
5341
5342 case '?':
5343 is_supported = PACKET_SUPPORT_UNKNOWN;
5344 break;
5345
5346 default:
5347 warning (_("unrecognized item \"%s\" "
5348 "in \"qSupported\" response"), p);
5349 continue;
5350 }
5351 end[-1] = '\0';
5352 }
5353
5354 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5355 if (strcmp (remote_protocol_features[i].name, p) == 0)
5356 {
5357 const struct protocol_feature *feature;
5358
5359 seen[i] = 1;
5360 feature = &remote_protocol_features[i];
5361 feature->func (this, feature, is_supported, value);
5362 break;
5363 }
5364 }
5365
5366 /* If we increased the packet size, make sure to increase the global
5367 buffer size also. We delay this until after parsing the entire
5368 qSupported packet, because this is the same buffer we were
5369 parsing. */
5370 if (rs->buf.size () < rs->explicit_packet_size)
5371 rs->buf.resize (rs->explicit_packet_size);
5372
5373 /* Handle the defaults for unmentioned features. */
5374 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5375 if (!seen[i])
5376 {
5377 const struct protocol_feature *feature;
5378
5379 feature = &remote_protocol_features[i];
5380 feature->func (this, feature, feature->default_support, NULL);
5381 }
5382 }
5383
5384 /* Serial QUIT handler for the remote serial descriptor.
5385
5386 Defers handling a Ctrl-C until we're done with the current
5387 command/response packet sequence, unless:
5388
5389 - We're setting up the connection. Don't send a remote interrupt
5390 request, as we're not fully synced yet. Quit immediately
5391 instead.
5392
5393 - The target has been resumed in the foreground
5394 (target_terminal::is_ours is false) with a synchronous resume
5395 packet, and we're blocked waiting for the stop reply, thus a
5396 Ctrl-C should be immediately sent to the target.
5397
5398 - We get a second Ctrl-C while still within the same serial read or
5399 write. In that case the serial is seemingly wedged --- offer to
5400 quit/disconnect.
5401
5402 - We see a second Ctrl-C without target response, after having
5403 previously interrupted the target. In that case the target/stub
5404 is probably wedged --- offer to quit/disconnect.
5405 */
5406
5407 void
5408 remote_target::remote_serial_quit_handler ()
5409 {
5410 struct remote_state *rs = get_remote_state ();
5411
5412 if (check_quit_flag ())
5413 {
5414 /* If we're starting up, we're not fully synced yet. Quit
5415 immediately. */
5416 if (rs->starting_up)
5417 quit ();
5418 else if (rs->got_ctrlc_during_io)
5419 {
5420 if (query (_("The target is not responding to GDB commands.\n"
5421 "Stop debugging it? ")))
5422 remote_unpush_and_throw ();
5423 }
5424 /* If ^C has already been sent once, offer to disconnect. */
5425 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5426 interrupt_query ();
5427 /* All-stop protocol, and blocked waiting for stop reply. Send
5428 an interrupt request. */
5429 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5430 target_interrupt ();
5431 else
5432 rs->got_ctrlc_during_io = 1;
5433 }
5434 }
5435
5436 /* The remote_target that is current while the quit handler is
5437 overridden with remote_serial_quit_handler. */
5438 static remote_target *curr_quit_handler_target;
5439
5440 static void
5441 remote_serial_quit_handler ()
5442 {
5443 curr_quit_handler_target->remote_serial_quit_handler ();
5444 }
5445
5446 /* Remove any of the remote.c targets from target stack. Upper targets depend
5447 on it so remove them first. */
5448
5449 static void
5450 remote_unpush_target (void)
5451 {
5452 pop_all_targets_at_and_above (process_stratum);
5453 }
5454
5455 static void
5456 remote_unpush_and_throw (void)
5457 {
5458 remote_unpush_target ();
5459 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5460 }
5461
5462 void
5463 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5464 {
5465 remote_target *curr_remote = get_current_remote_target ();
5466
5467 if (name == 0)
5468 error (_("To open a remote debug connection, you need to specify what\n"
5469 "serial device is attached to the remote system\n"
5470 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5471
5472 /* If we're connected to a running target, target_preopen will kill it.
5473 Ask this question first, before target_preopen has a chance to kill
5474 anything. */
5475 if (curr_remote != NULL && !have_inferiors ())
5476 {
5477 if (from_tty
5478 && !query (_("Already connected to a remote target. Disconnect? ")))
5479 error (_("Still connected."));
5480 }
5481
5482 /* Here the possibly existing remote target gets unpushed. */
5483 target_preopen (from_tty);
5484
5485 remote_fileio_reset ();
5486 reopen_exec_file ();
5487 reread_symbols ();
5488
5489 remote_target *remote
5490 = (extended_p ? new extended_remote_target () : new remote_target ());
5491 target_ops_up target_holder (remote);
5492
5493 remote_state *rs = remote->get_remote_state ();
5494
5495 /* See FIXME above. */
5496 if (!target_async_permitted)
5497 rs->wait_forever_enabled_p = 1;
5498
5499 rs->remote_desc = remote_serial_open (name);
5500 if (!rs->remote_desc)
5501 perror_with_name (name);
5502
5503 if (baud_rate != -1)
5504 {
5505 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5506 {
5507 /* The requested speed could not be set. Error out to
5508 top level after closing remote_desc. Take care to
5509 set remote_desc to NULL to avoid closing remote_desc
5510 more than once. */
5511 serial_close (rs->remote_desc);
5512 rs->remote_desc = NULL;
5513 perror_with_name (name);
5514 }
5515 }
5516
5517 serial_setparity (rs->remote_desc, serial_parity);
5518 serial_raw (rs->remote_desc);
5519
5520 /* If there is something sitting in the buffer we might take it as a
5521 response to a command, which would be bad. */
5522 serial_flush_input (rs->remote_desc);
5523
5524 if (from_tty)
5525 {
5526 puts_filtered ("Remote debugging using ");
5527 puts_filtered (name);
5528 puts_filtered ("\n");
5529 }
5530
5531 /* Switch to using the remote target now. */
5532 push_target (std::move (target_holder));
5533
5534 /* Register extra event sources in the event loop. */
5535 rs->remote_async_inferior_event_token
5536 = create_async_event_handler (remote_async_inferior_event_handler,
5537 remote);
5538 rs->notif_state = remote_notif_state_allocate (remote);
5539
5540 /* Reset the target state; these things will be queried either by
5541 remote_query_supported or as they are needed. */
5542 reset_all_packet_configs_support ();
5543 rs->cached_wait_status = 0;
5544 rs->explicit_packet_size = 0;
5545 rs->noack_mode = 0;
5546 rs->extended = extended_p;
5547 rs->waiting_for_stop_reply = 0;
5548 rs->ctrlc_pending_p = 0;
5549 rs->got_ctrlc_during_io = 0;
5550
5551 rs->general_thread = not_sent_ptid;
5552 rs->continue_thread = not_sent_ptid;
5553 rs->remote_traceframe_number = -1;
5554
5555 rs->last_resume_exec_dir = EXEC_FORWARD;
5556
5557 /* Probe for ability to use "ThreadInfo" query, as required. */
5558 rs->use_threadinfo_query = 1;
5559 rs->use_threadextra_query = 1;
5560
5561 rs->readahead_cache.invalidate ();
5562
5563 if (target_async_permitted)
5564 {
5565 /* FIXME: cagney/1999-09-23: During the initial connection it is
5566 assumed that the target is already ready and able to respond to
5567 requests. Unfortunately remote_start_remote() eventually calls
5568 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5569 around this. Eventually a mechanism that allows
5570 wait_for_inferior() to expect/get timeouts will be
5571 implemented. */
5572 rs->wait_forever_enabled_p = 0;
5573 }
5574
5575 /* First delete any symbols previously loaded from shared libraries. */
5576 no_shared_libraries (NULL, 0);
5577
5578 /* Start the remote connection. If error() or QUIT, discard this
5579 target (we'd otherwise be in an inconsistent state) and then
5580 propogate the error on up the exception chain. This ensures that
5581 the caller doesn't stumble along blindly assuming that the
5582 function succeeded. The CLI doesn't have this problem but other
5583 UI's, such as MI do.
5584
5585 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5586 this function should return an error indication letting the
5587 caller restore the previous state. Unfortunately the command
5588 ``target remote'' is directly wired to this function making that
5589 impossible. On a positive note, the CLI side of this problem has
5590 been fixed - the function set_cmd_context() makes it possible for
5591 all the ``target ....'' commands to share a common callback
5592 function. See cli-dump.c. */
5593 {
5594
5595 try
5596 {
5597 remote->start_remote (from_tty, extended_p);
5598 }
5599 catch (const gdb_exception &ex)
5600 {
5601 /* Pop the partially set up target - unless something else did
5602 already before throwing the exception. */
5603 if (ex.error != TARGET_CLOSE_ERROR)
5604 remote_unpush_target ();
5605 throw;
5606 }
5607 }
5608
5609 remote_btrace_reset (rs);
5610
5611 if (target_async_permitted)
5612 rs->wait_forever_enabled_p = 1;
5613 }
5614
5615 /* Detach the specified process. */
5616
5617 void
5618 remote_target::remote_detach_pid (int pid)
5619 {
5620 struct remote_state *rs = get_remote_state ();
5621
5622 /* This should not be necessary, but the handling for D;PID in
5623 GDBserver versions prior to 8.2 incorrectly assumes that the
5624 selected process points to the same process we're detaching,
5625 leading to misbehavior (and possibly GDBserver crashing) when it
5626 does not. Since it's easy and cheap, work around it by forcing
5627 GDBserver to select GDB's current process. */
5628 set_general_process ();
5629
5630 if (remote_multi_process_p (rs))
5631 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5632 else
5633 strcpy (rs->buf.data (), "D");
5634
5635 putpkt (rs->buf);
5636 getpkt (&rs->buf, 0);
5637
5638 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5639 ;
5640 else if (rs->buf[0] == '\0')
5641 error (_("Remote doesn't know how to detach"));
5642 else
5643 error (_("Can't detach process."));
5644 }
5645
5646 /* This detaches a program to which we previously attached, using
5647 inferior_ptid to identify the process. After this is done, GDB
5648 can be used to debug some other program. We better not have left
5649 any breakpoints in the target program or it'll die when it hits
5650 one. */
5651
5652 void
5653 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5654 {
5655 int pid = inferior_ptid.pid ();
5656 struct remote_state *rs = get_remote_state ();
5657 int is_fork_parent;
5658
5659 if (!target_has_execution)
5660 error (_("No process to detach from."));
5661
5662 target_announce_detach (from_tty);
5663
5664 /* Tell the remote target to detach. */
5665 remote_detach_pid (pid);
5666
5667 /* Exit only if this is the only active inferior. */
5668 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5669 puts_filtered (_("Ending remote debugging.\n"));
5670
5671 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5672
5673 /* Check to see if we are detaching a fork parent. Note that if we
5674 are detaching a fork child, tp == NULL. */
5675 is_fork_parent = (tp != NULL
5676 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5677
5678 /* If doing detach-on-fork, we don't mourn, because that will delete
5679 breakpoints that should be available for the followed inferior. */
5680 if (!is_fork_parent)
5681 {
5682 /* Save the pid as a string before mourning, since that will
5683 unpush the remote target, and we need the string after. */
5684 std::string infpid = target_pid_to_str (ptid_t (pid));
5685
5686 target_mourn_inferior (inferior_ptid);
5687 if (print_inferior_events)
5688 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5689 inf->num, infpid.c_str ());
5690 }
5691 else
5692 {
5693 inferior_ptid = null_ptid;
5694 detach_inferior (current_inferior ());
5695 }
5696 }
5697
5698 void
5699 remote_target::detach (inferior *inf, int from_tty)
5700 {
5701 remote_detach_1 (inf, from_tty);
5702 }
5703
5704 void
5705 extended_remote_target::detach (inferior *inf, int from_tty)
5706 {
5707 remote_detach_1 (inf, from_tty);
5708 }
5709
5710 /* Target follow-fork function for remote targets. On entry, and
5711 at return, the current inferior is the fork parent.
5712
5713 Note that although this is currently only used for extended-remote,
5714 it is named remote_follow_fork in anticipation of using it for the
5715 remote target as well. */
5716
5717 int
5718 remote_target::follow_fork (int follow_child, int detach_fork)
5719 {
5720 struct remote_state *rs = get_remote_state ();
5721 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5722
5723 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5724 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5725 {
5726 /* When following the parent and detaching the child, we detach
5727 the child here. For the case of following the child and
5728 detaching the parent, the detach is done in the target-
5729 independent follow fork code in infrun.c. We can't use
5730 target_detach when detaching an unfollowed child because
5731 the client side doesn't know anything about the child. */
5732 if (detach_fork && !follow_child)
5733 {
5734 /* Detach the fork child. */
5735 ptid_t child_ptid;
5736 pid_t child_pid;
5737
5738 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5739 child_pid = child_ptid.pid ();
5740
5741 remote_detach_pid (child_pid);
5742 }
5743 }
5744 return 0;
5745 }
5746
5747 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5748 in the program space of the new inferior. On entry and at return the
5749 current inferior is the exec'ing inferior. INF is the new exec'd
5750 inferior, which may be the same as the exec'ing inferior unless
5751 follow-exec-mode is "new". */
5752
5753 void
5754 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5755 {
5756 /* We know that this is a target file name, so if it has the "target:"
5757 prefix we strip it off before saving it in the program space. */
5758 if (is_target_filename (execd_pathname))
5759 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5760
5761 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5762 }
5763
5764 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5765
5766 void
5767 remote_target::disconnect (const char *args, int from_tty)
5768 {
5769 if (args)
5770 error (_("Argument given to \"disconnect\" when remotely debugging."));
5771
5772 /* Make sure we unpush even the extended remote targets. Calling
5773 target_mourn_inferior won't unpush, and remote_mourn won't
5774 unpush if there is more than one inferior left. */
5775 unpush_target (this);
5776 generic_mourn_inferior ();
5777
5778 if (from_tty)
5779 puts_filtered ("Ending remote debugging.\n");
5780 }
5781
5782 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5783 be chatty about it. */
5784
5785 void
5786 extended_remote_target::attach (const char *args, int from_tty)
5787 {
5788 struct remote_state *rs = get_remote_state ();
5789 int pid;
5790 char *wait_status = NULL;
5791
5792 pid = parse_pid_to_attach (args);
5793
5794 /* Remote PID can be freely equal to getpid, do not check it here the same
5795 way as in other targets. */
5796
5797 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5798 error (_("This target does not support attaching to a process"));
5799
5800 if (from_tty)
5801 {
5802 char *exec_file = get_exec_file (0);
5803
5804 if (exec_file)
5805 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5806 target_pid_to_str (ptid_t (pid)).c_str ());
5807 else
5808 printf_unfiltered (_("Attaching to %s\n"),
5809 target_pid_to_str (ptid_t (pid)).c_str ());
5810 }
5811
5812 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5813 putpkt (rs->buf);
5814 getpkt (&rs->buf, 0);
5815
5816 switch (packet_ok (rs->buf,
5817 &remote_protocol_packets[PACKET_vAttach]))
5818 {
5819 case PACKET_OK:
5820 if (!target_is_non_stop_p ())
5821 {
5822 /* Save the reply for later. */
5823 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5824 strcpy (wait_status, rs->buf.data ());
5825 }
5826 else if (strcmp (rs->buf.data (), "OK") != 0)
5827 error (_("Attaching to %s failed with: %s"),
5828 target_pid_to_str (ptid_t (pid)).c_str (),
5829 rs->buf.data ());
5830 break;
5831 case PACKET_UNKNOWN:
5832 error (_("This target does not support attaching to a process"));
5833 default:
5834 error (_("Attaching to %s failed"),
5835 target_pid_to_str (ptid_t (pid)).c_str ());
5836 }
5837
5838 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5839
5840 inferior_ptid = ptid_t (pid);
5841
5842 if (target_is_non_stop_p ())
5843 {
5844 struct thread_info *thread;
5845
5846 /* Get list of threads. */
5847 update_thread_list ();
5848
5849 thread = first_thread_of_inferior (current_inferior ());
5850 if (thread)
5851 inferior_ptid = thread->ptid;
5852 else
5853 inferior_ptid = ptid_t (pid);
5854
5855 /* Invalidate our notion of the remote current thread. */
5856 record_currthread (rs, minus_one_ptid);
5857 }
5858 else
5859 {
5860 /* Now, if we have thread information, update inferior_ptid. */
5861 inferior_ptid = remote_current_thread (inferior_ptid);
5862
5863 /* Add the main thread to the thread list. */
5864 thread_info *thr = add_thread_silent (inferior_ptid);
5865 /* Don't consider the thread stopped until we've processed the
5866 saved stop reply. */
5867 set_executing (thr->ptid, true);
5868 }
5869
5870 /* Next, if the target can specify a description, read it. We do
5871 this before anything involving memory or registers. */
5872 target_find_description ();
5873
5874 if (!target_is_non_stop_p ())
5875 {
5876 /* Use the previously fetched status. */
5877 gdb_assert (wait_status != NULL);
5878
5879 if (target_can_async_p ())
5880 {
5881 struct notif_event *reply
5882 = remote_notif_parse (this, &notif_client_stop, wait_status);
5883
5884 push_stop_reply ((struct stop_reply *) reply);
5885
5886 target_async (1);
5887 }
5888 else
5889 {
5890 gdb_assert (wait_status != NULL);
5891 strcpy (rs->buf.data (), wait_status);
5892 rs->cached_wait_status = 1;
5893 }
5894 }
5895 else
5896 gdb_assert (wait_status == NULL);
5897 }
5898
5899 /* Implementation of the to_post_attach method. */
5900
5901 void
5902 extended_remote_target::post_attach (int pid)
5903 {
5904 /* Get text, data & bss offsets. */
5905 get_offsets ();
5906
5907 /* In certain cases GDB might not have had the chance to start
5908 symbol lookup up until now. This could happen if the debugged
5909 binary is not using shared libraries, the vsyscall page is not
5910 present (on Linux) and the binary itself hadn't changed since the
5911 debugging process was started. */
5912 if (symfile_objfile != NULL)
5913 remote_check_symbols();
5914 }
5915
5916 \f
5917 /* Check for the availability of vCont. This function should also check
5918 the response. */
5919
5920 void
5921 remote_target::remote_vcont_probe ()
5922 {
5923 remote_state *rs = get_remote_state ();
5924 char *buf;
5925
5926 strcpy (rs->buf.data (), "vCont?");
5927 putpkt (rs->buf);
5928 getpkt (&rs->buf, 0);
5929 buf = rs->buf.data ();
5930
5931 /* Make sure that the features we assume are supported. */
5932 if (startswith (buf, "vCont"))
5933 {
5934 char *p = &buf[5];
5935 int support_c, support_C;
5936
5937 rs->supports_vCont.s = 0;
5938 rs->supports_vCont.S = 0;
5939 support_c = 0;
5940 support_C = 0;
5941 rs->supports_vCont.t = 0;
5942 rs->supports_vCont.r = 0;
5943 while (p && *p == ';')
5944 {
5945 p++;
5946 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5947 rs->supports_vCont.s = 1;
5948 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5949 rs->supports_vCont.S = 1;
5950 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5951 support_c = 1;
5952 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5953 support_C = 1;
5954 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5955 rs->supports_vCont.t = 1;
5956 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5957 rs->supports_vCont.r = 1;
5958
5959 p = strchr (p, ';');
5960 }
5961
5962 /* If c, and C are not all supported, we can't use vCont. Clearing
5963 BUF will make packet_ok disable the packet. */
5964 if (!support_c || !support_C)
5965 buf[0] = 0;
5966 }
5967
5968 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5969 }
5970
5971 /* Helper function for building "vCont" resumptions. Write a
5972 resumption to P. ENDP points to one-passed-the-end of the buffer
5973 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5974 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5975 resumed thread should be single-stepped and/or signalled. If PTID
5976 equals minus_one_ptid, then all threads are resumed; if PTID
5977 represents a process, then all threads of the process are resumed;
5978 the thread to be stepped and/or signalled is given in the global
5979 INFERIOR_PTID. */
5980
5981 char *
5982 remote_target::append_resumption (char *p, char *endp,
5983 ptid_t ptid, int step, gdb_signal siggnal)
5984 {
5985 struct remote_state *rs = get_remote_state ();
5986
5987 if (step && siggnal != GDB_SIGNAL_0)
5988 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5989 else if (step
5990 /* GDB is willing to range step. */
5991 && use_range_stepping
5992 /* Target supports range stepping. */
5993 && rs->supports_vCont.r
5994 /* We don't currently support range stepping multiple
5995 threads with a wildcard (though the protocol allows it,
5996 so stubs shouldn't make an active effort to forbid
5997 it). */
5998 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
5999 {
6000 struct thread_info *tp;
6001
6002 if (ptid == minus_one_ptid)
6003 {
6004 /* If we don't know about the target thread's tid, then
6005 we're resuming magic_null_ptid (see caller). */
6006 tp = find_thread_ptid (magic_null_ptid);
6007 }
6008 else
6009 tp = find_thread_ptid (ptid);
6010 gdb_assert (tp != NULL);
6011
6012 if (tp->control.may_range_step)
6013 {
6014 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6015
6016 p += xsnprintf (p, endp - p, ";r%s,%s",
6017 phex_nz (tp->control.step_range_start,
6018 addr_size),
6019 phex_nz (tp->control.step_range_end,
6020 addr_size));
6021 }
6022 else
6023 p += xsnprintf (p, endp - p, ";s");
6024 }
6025 else if (step)
6026 p += xsnprintf (p, endp - p, ";s");
6027 else if (siggnal != GDB_SIGNAL_0)
6028 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6029 else
6030 p += xsnprintf (p, endp - p, ";c");
6031
6032 if (remote_multi_process_p (rs) && ptid.is_pid ())
6033 {
6034 ptid_t nptid;
6035
6036 /* All (-1) threads of process. */
6037 nptid = ptid_t (ptid.pid (), -1, 0);
6038
6039 p += xsnprintf (p, endp - p, ":");
6040 p = write_ptid (p, endp, nptid);
6041 }
6042 else if (ptid != minus_one_ptid)
6043 {
6044 p += xsnprintf (p, endp - p, ":");
6045 p = write_ptid (p, endp, ptid);
6046 }
6047
6048 return p;
6049 }
6050
6051 /* Clear the thread's private info on resume. */
6052
6053 static void
6054 resume_clear_thread_private_info (struct thread_info *thread)
6055 {
6056 if (thread->priv != NULL)
6057 {
6058 remote_thread_info *priv = get_remote_thread_info (thread);
6059
6060 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6061 priv->watch_data_address = 0;
6062 }
6063 }
6064
6065 /* Append a vCont continue-with-signal action for threads that have a
6066 non-zero stop signal. */
6067
6068 char *
6069 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6070 ptid_t ptid)
6071 {
6072 for (thread_info *thread : all_non_exited_threads (ptid))
6073 if (inferior_ptid != thread->ptid
6074 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6075 {
6076 p = append_resumption (p, endp, thread->ptid,
6077 0, thread->suspend.stop_signal);
6078 thread->suspend.stop_signal = GDB_SIGNAL_0;
6079 resume_clear_thread_private_info (thread);
6080 }
6081
6082 return p;
6083 }
6084
6085 /* Set the target running, using the packets that use Hc
6086 (c/s/C/S). */
6087
6088 void
6089 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6090 gdb_signal siggnal)
6091 {
6092 struct remote_state *rs = get_remote_state ();
6093 char *buf;
6094
6095 rs->last_sent_signal = siggnal;
6096 rs->last_sent_step = step;
6097
6098 /* The c/s/C/S resume packets use Hc, so set the continue
6099 thread. */
6100 if (ptid == minus_one_ptid)
6101 set_continue_thread (any_thread_ptid);
6102 else
6103 set_continue_thread (ptid);
6104
6105 for (thread_info *thread : all_non_exited_threads ())
6106 resume_clear_thread_private_info (thread);
6107
6108 buf = rs->buf.data ();
6109 if (::execution_direction == EXEC_REVERSE)
6110 {
6111 /* We don't pass signals to the target in reverse exec mode. */
6112 if (info_verbose && siggnal != GDB_SIGNAL_0)
6113 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6114 siggnal);
6115
6116 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6117 error (_("Remote reverse-step not supported."));
6118 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6119 error (_("Remote reverse-continue not supported."));
6120
6121 strcpy (buf, step ? "bs" : "bc");
6122 }
6123 else if (siggnal != GDB_SIGNAL_0)
6124 {
6125 buf[0] = step ? 'S' : 'C';
6126 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6127 buf[2] = tohex (((int) siggnal) & 0xf);
6128 buf[3] = '\0';
6129 }
6130 else
6131 strcpy (buf, step ? "s" : "c");
6132
6133 putpkt (buf);
6134 }
6135
6136 /* Resume the remote inferior by using a "vCont" packet. The thread
6137 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6138 resumed thread should be single-stepped and/or signalled. If PTID
6139 equals minus_one_ptid, then all threads are resumed; the thread to
6140 be stepped and/or signalled is given in the global INFERIOR_PTID.
6141 This function returns non-zero iff it resumes the inferior.
6142
6143 This function issues a strict subset of all possible vCont commands
6144 at the moment. */
6145
6146 int
6147 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6148 enum gdb_signal siggnal)
6149 {
6150 struct remote_state *rs = get_remote_state ();
6151 char *p;
6152 char *endp;
6153
6154 /* No reverse execution actions defined for vCont. */
6155 if (::execution_direction == EXEC_REVERSE)
6156 return 0;
6157
6158 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6159 remote_vcont_probe ();
6160
6161 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6162 return 0;
6163
6164 p = rs->buf.data ();
6165 endp = p + get_remote_packet_size ();
6166
6167 /* If we could generate a wider range of packets, we'd have to worry
6168 about overflowing BUF. Should there be a generic
6169 "multi-part-packet" packet? */
6170
6171 p += xsnprintf (p, endp - p, "vCont");
6172
6173 if (ptid == magic_null_ptid)
6174 {
6175 /* MAGIC_NULL_PTID means that we don't have any active threads,
6176 so we don't have any TID numbers the inferior will
6177 understand. Make sure to only send forms that do not specify
6178 a TID. */
6179 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6180 }
6181 else if (ptid == minus_one_ptid || ptid.is_pid ())
6182 {
6183 /* Resume all threads (of all processes, or of a single
6184 process), with preference for INFERIOR_PTID. This assumes
6185 inferior_ptid belongs to the set of all threads we are about
6186 to resume. */
6187 if (step || siggnal != GDB_SIGNAL_0)
6188 {
6189 /* Step inferior_ptid, with or without signal. */
6190 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6191 }
6192
6193 /* Also pass down any pending signaled resumption for other
6194 threads not the current. */
6195 p = append_pending_thread_resumptions (p, endp, ptid);
6196
6197 /* And continue others without a signal. */
6198 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6199 }
6200 else
6201 {
6202 /* Scheduler locking; resume only PTID. */
6203 append_resumption (p, endp, ptid, step, siggnal);
6204 }
6205
6206 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6207 putpkt (rs->buf);
6208
6209 if (target_is_non_stop_p ())
6210 {
6211 /* In non-stop, the stub replies to vCont with "OK". The stop
6212 reply will be reported asynchronously by means of a `%Stop'
6213 notification. */
6214 getpkt (&rs->buf, 0);
6215 if (strcmp (rs->buf.data (), "OK") != 0)
6216 error (_("Unexpected vCont reply in non-stop mode: %s"),
6217 rs->buf.data ());
6218 }
6219
6220 return 1;
6221 }
6222
6223 /* Tell the remote machine to resume. */
6224
6225 void
6226 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6227 {
6228 struct remote_state *rs = get_remote_state ();
6229
6230 /* When connected in non-stop mode, the core resumes threads
6231 individually. Resuming remote threads directly in target_resume
6232 would thus result in sending one packet per thread. Instead, to
6233 minimize roundtrip latency, here we just store the resume
6234 request; the actual remote resumption will be done in
6235 target_commit_resume / remote_commit_resume, where we'll be able
6236 to do vCont action coalescing. */
6237 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6238 {
6239 remote_thread_info *remote_thr;
6240
6241 if (minus_one_ptid == ptid || ptid.is_pid ())
6242 remote_thr = get_remote_thread_info (inferior_ptid);
6243 else
6244 remote_thr = get_remote_thread_info (ptid);
6245
6246 remote_thr->last_resume_step = step;
6247 remote_thr->last_resume_sig = siggnal;
6248 return;
6249 }
6250
6251 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6252 (explained in remote-notif.c:handle_notification) so
6253 remote_notif_process is not called. We need find a place where
6254 it is safe to start a 'vNotif' sequence. It is good to do it
6255 before resuming inferior, because inferior was stopped and no RSP
6256 traffic at that moment. */
6257 if (!target_is_non_stop_p ())
6258 remote_notif_process (rs->notif_state, &notif_client_stop);
6259
6260 rs->last_resume_exec_dir = ::execution_direction;
6261
6262 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6263 if (!remote_resume_with_vcont (ptid, step, siggnal))
6264 remote_resume_with_hc (ptid, step, siggnal);
6265
6266 /* We are about to start executing the inferior, let's register it
6267 with the event loop. NOTE: this is the one place where all the
6268 execution commands end up. We could alternatively do this in each
6269 of the execution commands in infcmd.c. */
6270 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6271 into infcmd.c in order to allow inferior function calls to work
6272 NOT asynchronously. */
6273 if (target_can_async_p ())
6274 target_async (1);
6275
6276 /* We've just told the target to resume. The remote server will
6277 wait for the inferior to stop, and then send a stop reply. In
6278 the mean time, we can't start another command/query ourselves
6279 because the stub wouldn't be ready to process it. This applies
6280 only to the base all-stop protocol, however. In non-stop (which
6281 only supports vCont), the stub replies with an "OK", and is
6282 immediate able to process further serial input. */
6283 if (!target_is_non_stop_p ())
6284 rs->waiting_for_stop_reply = 1;
6285 }
6286
6287 static int is_pending_fork_parent_thread (struct thread_info *thread);
6288
6289 /* Private per-inferior info for target remote processes. */
6290
6291 struct remote_inferior : public private_inferior
6292 {
6293 /* Whether we can send a wildcard vCont for this process. */
6294 bool may_wildcard_vcont = true;
6295 };
6296
6297 /* Get the remote private inferior data associated to INF. */
6298
6299 static remote_inferior *
6300 get_remote_inferior (inferior *inf)
6301 {
6302 if (inf->priv == NULL)
6303 inf->priv.reset (new remote_inferior);
6304
6305 return static_cast<remote_inferior *> (inf->priv.get ());
6306 }
6307
6308 /* Class used to track the construction of a vCont packet in the
6309 outgoing packet buffer. This is used to send multiple vCont
6310 packets if we have more actions than would fit a single packet. */
6311
6312 class vcont_builder
6313 {
6314 public:
6315 explicit vcont_builder (remote_target *remote)
6316 : m_remote (remote)
6317 {
6318 restart ();
6319 }
6320
6321 void flush ();
6322 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6323
6324 private:
6325 void restart ();
6326
6327 /* The remote target. */
6328 remote_target *m_remote;
6329
6330 /* Pointer to the first action. P points here if no action has been
6331 appended yet. */
6332 char *m_first_action;
6333
6334 /* Where the next action will be appended. */
6335 char *m_p;
6336
6337 /* The end of the buffer. Must never write past this. */
6338 char *m_endp;
6339 };
6340
6341 /* Prepare the outgoing buffer for a new vCont packet. */
6342
6343 void
6344 vcont_builder::restart ()
6345 {
6346 struct remote_state *rs = m_remote->get_remote_state ();
6347
6348 m_p = rs->buf.data ();
6349 m_endp = m_p + m_remote->get_remote_packet_size ();
6350 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6351 m_first_action = m_p;
6352 }
6353
6354 /* If the vCont packet being built has any action, send it to the
6355 remote end. */
6356
6357 void
6358 vcont_builder::flush ()
6359 {
6360 struct remote_state *rs;
6361
6362 if (m_p == m_first_action)
6363 return;
6364
6365 rs = m_remote->get_remote_state ();
6366 m_remote->putpkt (rs->buf);
6367 m_remote->getpkt (&rs->buf, 0);
6368 if (strcmp (rs->buf.data (), "OK") != 0)
6369 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6370 }
6371
6372 /* The largest action is range-stepping, with its two addresses. This
6373 is more than sufficient. If a new, bigger action is created, it'll
6374 quickly trigger a failed assertion in append_resumption (and we'll
6375 just bump this). */
6376 #define MAX_ACTION_SIZE 200
6377
6378 /* Append a new vCont action in the outgoing packet being built. If
6379 the action doesn't fit the packet along with previous actions, push
6380 what we've got so far to the remote end and start over a new vCont
6381 packet (with the new action). */
6382
6383 void
6384 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6385 {
6386 char buf[MAX_ACTION_SIZE + 1];
6387
6388 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6389 ptid, step, siggnal);
6390
6391 /* Check whether this new action would fit in the vCont packet along
6392 with previous actions. If not, send what we've got so far and
6393 start a new vCont packet. */
6394 size_t rsize = endp - buf;
6395 if (rsize > m_endp - m_p)
6396 {
6397 flush ();
6398 restart ();
6399
6400 /* Should now fit. */
6401 gdb_assert (rsize <= m_endp - m_p);
6402 }
6403
6404 memcpy (m_p, buf, rsize);
6405 m_p += rsize;
6406 *m_p = '\0';
6407 }
6408
6409 /* to_commit_resume implementation. */
6410
6411 void
6412 remote_target::commit_resume ()
6413 {
6414 int any_process_wildcard;
6415 int may_global_wildcard_vcont;
6416
6417 /* If connected in all-stop mode, we'd send the remote resume
6418 request directly from remote_resume. Likewise if
6419 reverse-debugging, as there are no defined vCont actions for
6420 reverse execution. */
6421 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6422 return;
6423
6424 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6425 instead of resuming all threads of each process individually.
6426 However, if any thread of a process must remain halted, we can't
6427 send wildcard resumes and must send one action per thread.
6428
6429 Care must be taken to not resume threads/processes the server
6430 side already told us are stopped, but the core doesn't know about
6431 yet, because the events are still in the vStopped notification
6432 queue. For example:
6433
6434 #1 => vCont s:p1.1;c
6435 #2 <= OK
6436 #3 <= %Stopped T05 p1.1
6437 #4 => vStopped
6438 #5 <= T05 p1.2
6439 #6 => vStopped
6440 #7 <= OK
6441 #8 (infrun handles the stop for p1.1 and continues stepping)
6442 #9 => vCont s:p1.1;c
6443
6444 The last vCont above would resume thread p1.2 by mistake, because
6445 the server has no idea that the event for p1.2 had not been
6446 handled yet.
6447
6448 The server side must similarly ignore resume actions for the
6449 thread that has a pending %Stopped notification (and any other
6450 threads with events pending), until GDB acks the notification
6451 with vStopped. Otherwise, e.g., the following case is
6452 mishandled:
6453
6454 #1 => g (or any other packet)
6455 #2 <= [registers]
6456 #3 <= %Stopped T05 p1.2
6457 #4 => vCont s:p1.1;c
6458 #5 <= OK
6459
6460 Above, the server must not resume thread p1.2. GDB can't know
6461 that p1.2 stopped until it acks the %Stopped notification, and
6462 since from GDB's perspective all threads should be running, it
6463 sends a "c" action.
6464
6465 Finally, special care must also be given to handling fork/vfork
6466 events. A (v)fork event actually tells us that two processes
6467 stopped -- the parent and the child. Until we follow the fork,
6468 we must not resume the child. Therefore, if we have a pending
6469 fork follow, we must not send a global wildcard resume action
6470 (vCont;c). We can still send process-wide wildcards though. */
6471
6472 /* Start by assuming a global wildcard (vCont;c) is possible. */
6473 may_global_wildcard_vcont = 1;
6474
6475 /* And assume every process is individually wildcard-able too. */
6476 for (inferior *inf : all_non_exited_inferiors ())
6477 {
6478 remote_inferior *priv = get_remote_inferior (inf);
6479
6480 priv->may_wildcard_vcont = true;
6481 }
6482
6483 /* Check for any pending events (not reported or processed yet) and
6484 disable process and global wildcard resumes appropriately. */
6485 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6486
6487 for (thread_info *tp : all_non_exited_threads ())
6488 {
6489 /* If a thread of a process is not meant to be resumed, then we
6490 can't wildcard that process. */
6491 if (!tp->executing)
6492 {
6493 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6494
6495 /* And if we can't wildcard a process, we can't wildcard
6496 everything either. */
6497 may_global_wildcard_vcont = 0;
6498 continue;
6499 }
6500
6501 /* If a thread is the parent of an unfollowed fork, then we
6502 can't do a global wildcard, as that would resume the fork
6503 child. */
6504 if (is_pending_fork_parent_thread (tp))
6505 may_global_wildcard_vcont = 0;
6506 }
6507
6508 /* Now let's build the vCont packet(s). Actions must be appended
6509 from narrower to wider scopes (thread -> process -> global). If
6510 we end up with too many actions for a single packet vcont_builder
6511 flushes the current vCont packet to the remote side and starts a
6512 new one. */
6513 struct vcont_builder vcont_builder (this);
6514
6515 /* Threads first. */
6516 for (thread_info *tp : all_non_exited_threads ())
6517 {
6518 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6519
6520 if (!tp->executing || remote_thr->vcont_resumed)
6521 continue;
6522
6523 gdb_assert (!thread_is_in_step_over_chain (tp));
6524
6525 if (!remote_thr->last_resume_step
6526 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6527 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6528 {
6529 /* We'll send a wildcard resume instead. */
6530 remote_thr->vcont_resumed = 1;
6531 continue;
6532 }
6533
6534 vcont_builder.push_action (tp->ptid,
6535 remote_thr->last_resume_step,
6536 remote_thr->last_resume_sig);
6537 remote_thr->vcont_resumed = 1;
6538 }
6539
6540 /* Now check whether we can send any process-wide wildcard. This is
6541 to avoid sending a global wildcard in the case nothing is
6542 supposed to be resumed. */
6543 any_process_wildcard = 0;
6544
6545 for (inferior *inf : all_non_exited_inferiors ())
6546 {
6547 if (get_remote_inferior (inf)->may_wildcard_vcont)
6548 {
6549 any_process_wildcard = 1;
6550 break;
6551 }
6552 }
6553
6554 if (any_process_wildcard)
6555 {
6556 /* If all processes are wildcard-able, then send a single "c"
6557 action, otherwise, send an "all (-1) threads of process"
6558 continue action for each running process, if any. */
6559 if (may_global_wildcard_vcont)
6560 {
6561 vcont_builder.push_action (minus_one_ptid,
6562 false, GDB_SIGNAL_0);
6563 }
6564 else
6565 {
6566 for (inferior *inf : all_non_exited_inferiors ())
6567 {
6568 if (get_remote_inferior (inf)->may_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (ptid_t (inf->pid),
6571 false, GDB_SIGNAL_0);
6572 }
6573 }
6574 }
6575 }
6576
6577 vcont_builder.flush ();
6578 }
6579
6580 \f
6581
6582 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6583 thread, all threads of a remote process, or all threads of all
6584 processes. */
6585
6586 void
6587 remote_target::remote_stop_ns (ptid_t ptid)
6588 {
6589 struct remote_state *rs = get_remote_state ();
6590 char *p = rs->buf.data ();
6591 char *endp = p + get_remote_packet_size ();
6592
6593 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6594 remote_vcont_probe ();
6595
6596 if (!rs->supports_vCont.t)
6597 error (_("Remote server does not support stopping threads"));
6598
6599 if (ptid == minus_one_ptid
6600 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6601 p += xsnprintf (p, endp - p, "vCont;t");
6602 else
6603 {
6604 ptid_t nptid;
6605
6606 p += xsnprintf (p, endp - p, "vCont;t:");
6607
6608 if (ptid.is_pid ())
6609 /* All (-1) threads of process. */
6610 nptid = ptid_t (ptid.pid (), -1, 0);
6611 else
6612 {
6613 /* Small optimization: if we already have a stop reply for
6614 this thread, no use in telling the stub we want this
6615 stopped. */
6616 if (peek_stop_reply (ptid))
6617 return;
6618
6619 nptid = ptid;
6620 }
6621
6622 write_ptid (p, endp, nptid);
6623 }
6624
6625 /* In non-stop, we get an immediate OK reply. The stop reply will
6626 come in asynchronously by notification. */
6627 putpkt (rs->buf);
6628 getpkt (&rs->buf, 0);
6629 if (strcmp (rs->buf.data (), "OK") != 0)
6630 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6631 rs->buf.data ());
6632 }
6633
6634 /* All-stop version of target_interrupt. Sends a break or a ^C to
6635 interrupt the remote target. It is undefined which thread of which
6636 process reports the interrupt. */
6637
6638 void
6639 remote_target::remote_interrupt_as ()
6640 {
6641 struct remote_state *rs = get_remote_state ();
6642
6643 rs->ctrlc_pending_p = 1;
6644
6645 /* If the inferior is stopped already, but the core didn't know
6646 about it yet, just ignore the request. The cached wait status
6647 will be collected in remote_wait. */
6648 if (rs->cached_wait_status)
6649 return;
6650
6651 /* Send interrupt_sequence to remote target. */
6652 send_interrupt_sequence ();
6653 }
6654
6655 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6656 the remote target. It is undefined which thread of which process
6657 reports the interrupt. Throws an error if the packet is not
6658 supported by the server. */
6659
6660 void
6661 remote_target::remote_interrupt_ns ()
6662 {
6663 struct remote_state *rs = get_remote_state ();
6664 char *p = rs->buf.data ();
6665 char *endp = p + get_remote_packet_size ();
6666
6667 xsnprintf (p, endp - p, "vCtrlC");
6668
6669 /* In non-stop, we get an immediate OK reply. The stop reply will
6670 come in asynchronously by notification. */
6671 putpkt (rs->buf);
6672 getpkt (&rs->buf, 0);
6673
6674 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6675 {
6676 case PACKET_OK:
6677 break;
6678 case PACKET_UNKNOWN:
6679 error (_("No support for interrupting the remote target."));
6680 case PACKET_ERROR:
6681 error (_("Interrupting target failed: %s"), rs->buf.data ());
6682 }
6683 }
6684
6685 /* Implement the to_stop function for the remote targets. */
6686
6687 void
6688 remote_target::stop (ptid_t ptid)
6689 {
6690 if (remote_debug)
6691 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6692
6693 if (target_is_non_stop_p ())
6694 remote_stop_ns (ptid);
6695 else
6696 {
6697 /* We don't currently have a way to transparently pause the
6698 remote target in all-stop mode. Interrupt it instead. */
6699 remote_interrupt_as ();
6700 }
6701 }
6702
6703 /* Implement the to_interrupt function for the remote targets. */
6704
6705 void
6706 remote_target::interrupt ()
6707 {
6708 if (remote_debug)
6709 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6710
6711 if (target_is_non_stop_p ())
6712 remote_interrupt_ns ();
6713 else
6714 remote_interrupt_as ();
6715 }
6716
6717 /* Implement the to_pass_ctrlc function for the remote targets. */
6718
6719 void
6720 remote_target::pass_ctrlc ()
6721 {
6722 struct remote_state *rs = get_remote_state ();
6723
6724 if (remote_debug)
6725 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6726
6727 /* If we're starting up, we're not fully synced yet. Quit
6728 immediately. */
6729 if (rs->starting_up)
6730 quit ();
6731 /* If ^C has already been sent once, offer to disconnect. */
6732 else if (rs->ctrlc_pending_p)
6733 interrupt_query ();
6734 else
6735 target_interrupt ();
6736 }
6737
6738 /* Ask the user what to do when an interrupt is received. */
6739
6740 void
6741 remote_target::interrupt_query ()
6742 {
6743 struct remote_state *rs = get_remote_state ();
6744
6745 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6746 {
6747 if (query (_("The target is not responding to interrupt requests.\n"
6748 "Stop debugging it? ")))
6749 {
6750 remote_unpush_target ();
6751 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6752 }
6753 }
6754 else
6755 {
6756 if (query (_("Interrupted while waiting for the program.\n"
6757 "Give up waiting? ")))
6758 quit ();
6759 }
6760 }
6761
6762 /* Enable/disable target terminal ownership. Most targets can use
6763 terminal groups to control terminal ownership. Remote targets are
6764 different in that explicit transfer of ownership to/from GDB/target
6765 is required. */
6766
6767 void
6768 remote_target::terminal_inferior ()
6769 {
6770 /* NOTE: At this point we could also register our selves as the
6771 recipient of all input. Any characters typed could then be
6772 passed on down to the target. */
6773 }
6774
6775 void
6776 remote_target::terminal_ours ()
6777 {
6778 }
6779
6780 static void
6781 remote_console_output (const char *msg)
6782 {
6783 const char *p;
6784
6785 for (p = msg; p[0] && p[1]; p += 2)
6786 {
6787 char tb[2];
6788 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6789
6790 tb[0] = c;
6791 tb[1] = 0;
6792 fputs_unfiltered (tb, gdb_stdtarg);
6793 }
6794 gdb_flush (gdb_stdtarg);
6795 }
6796
6797 struct stop_reply : public notif_event
6798 {
6799 ~stop_reply ();
6800
6801 /* The identifier of the thread about this event */
6802 ptid_t ptid;
6803
6804 /* The remote state this event is associated with. When the remote
6805 connection, represented by a remote_state object, is closed,
6806 all the associated stop_reply events should be released. */
6807 struct remote_state *rs;
6808
6809 struct target_waitstatus ws;
6810
6811 /* The architecture associated with the expedited registers. */
6812 gdbarch *arch;
6813
6814 /* Expedited registers. This makes remote debugging a bit more
6815 efficient for those targets that provide critical registers as
6816 part of their normal status mechanism (as another roundtrip to
6817 fetch them is avoided). */
6818 std::vector<cached_reg_t> regcache;
6819
6820 enum target_stop_reason stop_reason;
6821
6822 CORE_ADDR watch_data_address;
6823
6824 int core;
6825 };
6826
6827 /* Return the length of the stop reply queue. */
6828
6829 int
6830 remote_target::stop_reply_queue_length ()
6831 {
6832 remote_state *rs = get_remote_state ();
6833 return rs->stop_reply_queue.size ();
6834 }
6835
6836 void
6837 remote_notif_stop_parse (remote_target *remote,
6838 struct notif_client *self, const char *buf,
6839 struct notif_event *event)
6840 {
6841 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6842 }
6843
6844 static void
6845 remote_notif_stop_ack (remote_target *remote,
6846 struct notif_client *self, const char *buf,
6847 struct notif_event *event)
6848 {
6849 struct stop_reply *stop_reply = (struct stop_reply *) event;
6850
6851 /* acknowledge */
6852 putpkt (remote, self->ack_command);
6853
6854 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6855 {
6856 /* We got an unknown stop reply. */
6857 error (_("Unknown stop reply"));
6858 }
6859
6860 remote->push_stop_reply (stop_reply);
6861 }
6862
6863 static int
6864 remote_notif_stop_can_get_pending_events (remote_target *remote,
6865 struct notif_client *self)
6866 {
6867 /* We can't get pending events in remote_notif_process for
6868 notification stop, and we have to do this in remote_wait_ns
6869 instead. If we fetch all queued events from stub, remote stub
6870 may exit and we have no chance to process them back in
6871 remote_wait_ns. */
6872 remote_state *rs = remote->get_remote_state ();
6873 mark_async_event_handler (rs->remote_async_inferior_event_token);
6874 return 0;
6875 }
6876
6877 stop_reply::~stop_reply ()
6878 {
6879 for (cached_reg_t &reg : regcache)
6880 xfree (reg.data);
6881 }
6882
6883 static notif_event_up
6884 remote_notif_stop_alloc_reply ()
6885 {
6886 return notif_event_up (new struct stop_reply ());
6887 }
6888
6889 /* A client of notification Stop. */
6890
6891 struct notif_client notif_client_stop =
6892 {
6893 "Stop",
6894 "vStopped",
6895 remote_notif_stop_parse,
6896 remote_notif_stop_ack,
6897 remote_notif_stop_can_get_pending_events,
6898 remote_notif_stop_alloc_reply,
6899 REMOTE_NOTIF_STOP,
6900 };
6901
6902 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6903 the pid of the process that owns the threads we want to check, or
6904 -1 if we want to check all threads. */
6905
6906 static int
6907 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6908 ptid_t thread_ptid)
6909 {
6910 if (ws->kind == TARGET_WAITKIND_FORKED
6911 || ws->kind == TARGET_WAITKIND_VFORKED)
6912 {
6913 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6914 return 1;
6915 }
6916
6917 return 0;
6918 }
6919
6920 /* Return the thread's pending status used to determine whether the
6921 thread is a fork parent stopped at a fork event. */
6922
6923 static struct target_waitstatus *
6924 thread_pending_fork_status (struct thread_info *thread)
6925 {
6926 if (thread->suspend.waitstatus_pending_p)
6927 return &thread->suspend.waitstatus;
6928 else
6929 return &thread->pending_follow;
6930 }
6931
6932 /* Determine if THREAD is a pending fork parent thread. */
6933
6934 static int
6935 is_pending_fork_parent_thread (struct thread_info *thread)
6936 {
6937 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6938 int pid = -1;
6939
6940 return is_pending_fork_parent (ws, pid, thread->ptid);
6941 }
6942
6943 /* If CONTEXT contains any fork child threads that have not been
6944 reported yet, remove them from the CONTEXT list. If such a
6945 thread exists it is because we are stopped at a fork catchpoint
6946 and have not yet called follow_fork, which will set up the
6947 host-side data structures for the new process. */
6948
6949 void
6950 remote_target::remove_new_fork_children (threads_listing_context *context)
6951 {
6952 int pid = -1;
6953 struct notif_client *notif = &notif_client_stop;
6954
6955 /* For any threads stopped at a fork event, remove the corresponding
6956 fork child threads from the CONTEXT list. */
6957 for (thread_info *thread : all_non_exited_threads ())
6958 {
6959 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6960
6961 if (is_pending_fork_parent (ws, pid, thread->ptid))
6962 context->remove_thread (ws->value.related_pid);
6963 }
6964
6965 /* Check for any pending fork events (not reported or processed yet)
6966 in process PID and remove those fork child threads from the
6967 CONTEXT list as well. */
6968 remote_notif_get_pending_events (notif);
6969 for (auto &event : get_remote_state ()->stop_reply_queue)
6970 if (event->ws.kind == TARGET_WAITKIND_FORKED
6971 || event->ws.kind == TARGET_WAITKIND_VFORKED
6972 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6973 context->remove_thread (event->ws.value.related_pid);
6974 }
6975
6976 /* Check whether any event pending in the vStopped queue would prevent
6977 a global or process wildcard vCont action. Clear
6978 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6979 and clear the event inferior's may_wildcard_vcont flag if we can't
6980 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6981
6982 void
6983 remote_target::check_pending_events_prevent_wildcard_vcont
6984 (int *may_global_wildcard)
6985 {
6986 struct notif_client *notif = &notif_client_stop;
6987
6988 remote_notif_get_pending_events (notif);
6989 for (auto &event : get_remote_state ()->stop_reply_queue)
6990 {
6991 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6992 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6993 continue;
6994
6995 if (event->ws.kind == TARGET_WAITKIND_FORKED
6996 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6997 *may_global_wildcard = 0;
6998
6999 struct inferior *inf = find_inferior_ptid (event->ptid);
7000
7001 /* This may be the first time we heard about this process.
7002 Regardless, we must not do a global wildcard resume, otherwise
7003 we'd resume this process too. */
7004 *may_global_wildcard = 0;
7005 if (inf != NULL)
7006 get_remote_inferior (inf)->may_wildcard_vcont = false;
7007 }
7008 }
7009
7010 /* Discard all pending stop replies of inferior INF. */
7011
7012 void
7013 remote_target::discard_pending_stop_replies (struct inferior *inf)
7014 {
7015 struct stop_reply *reply;
7016 struct remote_state *rs = get_remote_state ();
7017 struct remote_notif_state *rns = rs->notif_state;
7018
7019 /* This function can be notified when an inferior exists. When the
7020 target is not remote, the notification state is NULL. */
7021 if (rs->remote_desc == NULL)
7022 return;
7023
7024 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7025
7026 /* Discard the in-flight notification. */
7027 if (reply != NULL && reply->ptid.pid () == inf->pid)
7028 {
7029 delete reply;
7030 rns->pending_event[notif_client_stop.id] = NULL;
7031 }
7032
7033 /* Discard the stop replies we have already pulled with
7034 vStopped. */
7035 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7036 rs->stop_reply_queue.end (),
7037 [=] (const stop_reply_up &event)
7038 {
7039 return event->ptid.pid () == inf->pid;
7040 });
7041 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7042 }
7043
7044 /* Discard the stop replies for RS in stop_reply_queue. */
7045
7046 void
7047 remote_target::discard_pending_stop_replies_in_queue ()
7048 {
7049 remote_state *rs = get_remote_state ();
7050
7051 /* Discard the stop replies we have already pulled with
7052 vStopped. */
7053 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7054 rs->stop_reply_queue.end (),
7055 [=] (const stop_reply_up &event)
7056 {
7057 return event->rs == rs;
7058 });
7059 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7060 }
7061
7062 /* Remove the first reply in 'stop_reply_queue' which matches
7063 PTID. */
7064
7065 struct stop_reply *
7066 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7067 {
7068 remote_state *rs = get_remote_state ();
7069
7070 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7071 rs->stop_reply_queue.end (),
7072 [=] (const stop_reply_up &event)
7073 {
7074 return event->ptid.matches (ptid);
7075 });
7076 struct stop_reply *result;
7077 if (iter == rs->stop_reply_queue.end ())
7078 result = nullptr;
7079 else
7080 {
7081 result = iter->release ();
7082 rs->stop_reply_queue.erase (iter);
7083 }
7084
7085 if (notif_debug)
7086 fprintf_unfiltered (gdb_stdlog,
7087 "notif: discard queued event: 'Stop' in %s\n",
7088 target_pid_to_str (ptid).c_str ());
7089
7090 return result;
7091 }
7092
7093 /* Look for a queued stop reply belonging to PTID. If one is found,
7094 remove it from the queue, and return it. Returns NULL if none is
7095 found. If there are still queued events left to process, tell the
7096 event loop to get back to target_wait soon. */
7097
7098 struct stop_reply *
7099 remote_target::queued_stop_reply (ptid_t ptid)
7100 {
7101 remote_state *rs = get_remote_state ();
7102 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7103
7104 if (!rs->stop_reply_queue.empty ())
7105 {
7106 /* There's still at least an event left. */
7107 mark_async_event_handler (rs->remote_async_inferior_event_token);
7108 }
7109
7110 return r;
7111 }
7112
7113 /* Push a fully parsed stop reply in the stop reply queue. Since we
7114 know that we now have at least one queued event left to pass to the
7115 core side, tell the event loop to get back to target_wait soon. */
7116
7117 void
7118 remote_target::push_stop_reply (struct stop_reply *new_event)
7119 {
7120 remote_state *rs = get_remote_state ();
7121 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7122
7123 if (notif_debug)
7124 fprintf_unfiltered (gdb_stdlog,
7125 "notif: push 'Stop' %s to queue %d\n",
7126 target_pid_to_str (new_event->ptid).c_str (),
7127 int (rs->stop_reply_queue.size ()));
7128
7129 mark_async_event_handler (rs->remote_async_inferior_event_token);
7130 }
7131
7132 /* Returns true if we have a stop reply for PTID. */
7133
7134 int
7135 remote_target::peek_stop_reply (ptid_t ptid)
7136 {
7137 remote_state *rs = get_remote_state ();
7138 for (auto &event : rs->stop_reply_queue)
7139 if (ptid == event->ptid
7140 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7141 return 1;
7142 return 0;
7143 }
7144
7145 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7146 starting with P and ending with PEND matches PREFIX. */
7147
7148 static int
7149 strprefix (const char *p, const char *pend, const char *prefix)
7150 {
7151 for ( ; p < pend; p++, prefix++)
7152 if (*p != *prefix)
7153 return 0;
7154 return *prefix == '\0';
7155 }
7156
7157 /* Parse the stop reply in BUF. Either the function succeeds, and the
7158 result is stored in EVENT, or throws an error. */
7159
7160 void
7161 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7162 {
7163 remote_arch_state *rsa = NULL;
7164 ULONGEST addr;
7165 const char *p;
7166 int skipregs = 0;
7167
7168 event->ptid = null_ptid;
7169 event->rs = get_remote_state ();
7170 event->ws.kind = TARGET_WAITKIND_IGNORE;
7171 event->ws.value.integer = 0;
7172 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7173 event->regcache.clear ();
7174 event->core = -1;
7175
7176 switch (buf[0])
7177 {
7178 case 'T': /* Status with PC, SP, FP, ... */
7179 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7180 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7181 ss = signal number
7182 n... = register number
7183 r... = register contents
7184 */
7185
7186 p = &buf[3]; /* after Txx */
7187 while (*p)
7188 {
7189 const char *p1;
7190 int fieldsize;
7191
7192 p1 = strchr (p, ':');
7193 if (p1 == NULL)
7194 error (_("Malformed packet(a) (missing colon): %s\n\
7195 Packet: '%s'\n"),
7196 p, buf);
7197 if (p == p1)
7198 error (_("Malformed packet(a) (missing register number): %s\n\
7199 Packet: '%s'\n"),
7200 p, buf);
7201
7202 /* Some "registers" are actually extended stop information.
7203 Note if you're adding a new entry here: GDB 7.9 and
7204 earlier assume that all register "numbers" that start
7205 with an hex digit are real register numbers. Make sure
7206 the server only sends such a packet if it knows the
7207 client understands it. */
7208
7209 if (strprefix (p, p1, "thread"))
7210 event->ptid = read_ptid (++p1, &p);
7211 else if (strprefix (p, p1, "syscall_entry"))
7212 {
7213 ULONGEST sysno;
7214
7215 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7216 p = unpack_varlen_hex (++p1, &sysno);
7217 event->ws.value.syscall_number = (int) sysno;
7218 }
7219 else if (strprefix (p, p1, "syscall_return"))
7220 {
7221 ULONGEST sysno;
7222
7223 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7224 p = unpack_varlen_hex (++p1, &sysno);
7225 event->ws.value.syscall_number = (int) sysno;
7226 }
7227 else if (strprefix (p, p1, "watch")
7228 || strprefix (p, p1, "rwatch")
7229 || strprefix (p, p1, "awatch"))
7230 {
7231 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7232 p = unpack_varlen_hex (++p1, &addr);
7233 event->watch_data_address = (CORE_ADDR) addr;
7234 }
7235 else if (strprefix (p, p1, "swbreak"))
7236 {
7237 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7238
7239 /* Make sure the stub doesn't forget to indicate support
7240 with qSupported. */
7241 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7242 error (_("Unexpected swbreak stop reason"));
7243
7244 /* The value part is documented as "must be empty",
7245 though we ignore it, in case we ever decide to make
7246 use of it in a backward compatible way. */
7247 p = strchrnul (p1 + 1, ';');
7248 }
7249 else if (strprefix (p, p1, "hwbreak"))
7250 {
7251 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7252
7253 /* Make sure the stub doesn't forget to indicate support
7254 with qSupported. */
7255 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7256 error (_("Unexpected hwbreak stop reason"));
7257
7258 /* See above. */
7259 p = strchrnul (p1 + 1, ';');
7260 }
7261 else if (strprefix (p, p1, "library"))
7262 {
7263 event->ws.kind = TARGET_WAITKIND_LOADED;
7264 p = strchrnul (p1 + 1, ';');
7265 }
7266 else if (strprefix (p, p1, "replaylog"))
7267 {
7268 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7269 /* p1 will indicate "begin" or "end", but it makes
7270 no difference for now, so ignore it. */
7271 p = strchrnul (p1 + 1, ';');
7272 }
7273 else if (strprefix (p, p1, "core"))
7274 {
7275 ULONGEST c;
7276
7277 p = unpack_varlen_hex (++p1, &c);
7278 event->core = c;
7279 }
7280 else if (strprefix (p, p1, "fork"))
7281 {
7282 event->ws.value.related_pid = read_ptid (++p1, &p);
7283 event->ws.kind = TARGET_WAITKIND_FORKED;
7284 }
7285 else if (strprefix (p, p1, "vfork"))
7286 {
7287 event->ws.value.related_pid = read_ptid (++p1, &p);
7288 event->ws.kind = TARGET_WAITKIND_VFORKED;
7289 }
7290 else if (strprefix (p, p1, "vforkdone"))
7291 {
7292 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7293 p = strchrnul (p1 + 1, ';');
7294 }
7295 else if (strprefix (p, p1, "exec"))
7296 {
7297 ULONGEST ignored;
7298 int pathlen;
7299
7300 /* Determine the length of the execd pathname. */
7301 p = unpack_varlen_hex (++p1, &ignored);
7302 pathlen = (p - p1) / 2;
7303
7304 /* Save the pathname for event reporting and for
7305 the next run command. */
7306 gdb::unique_xmalloc_ptr<char[]> pathname
7307 ((char *) xmalloc (pathlen + 1));
7308 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7309 pathname[pathlen] = '\0';
7310
7311 /* This is freed during event handling. */
7312 event->ws.value.execd_pathname = pathname.release ();
7313 event->ws.kind = TARGET_WAITKIND_EXECD;
7314
7315 /* Skip the registers included in this packet, since
7316 they may be for an architecture different from the
7317 one used by the original program. */
7318 skipregs = 1;
7319 }
7320 else if (strprefix (p, p1, "create"))
7321 {
7322 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7323 p = strchrnul (p1 + 1, ';');
7324 }
7325 else
7326 {
7327 ULONGEST pnum;
7328 const char *p_temp;
7329
7330 if (skipregs)
7331 {
7332 p = strchrnul (p1 + 1, ';');
7333 p++;
7334 continue;
7335 }
7336
7337 /* Maybe a real ``P'' register number. */
7338 p_temp = unpack_varlen_hex (p, &pnum);
7339 /* If the first invalid character is the colon, we got a
7340 register number. Otherwise, it's an unknown stop
7341 reason. */
7342 if (p_temp == p1)
7343 {
7344 /* If we haven't parsed the event's thread yet, find
7345 it now, in order to find the architecture of the
7346 reported expedited registers. */
7347 if (event->ptid == null_ptid)
7348 {
7349 const char *thr = strstr (p1 + 1, ";thread:");
7350 if (thr != NULL)
7351 event->ptid = read_ptid (thr + strlen (";thread:"),
7352 NULL);
7353 else
7354 {
7355 /* Either the current thread hasn't changed,
7356 or the inferior is not multi-threaded.
7357 The event must be for the thread we last
7358 set as (or learned as being) current. */
7359 event->ptid = event->rs->general_thread;
7360 }
7361 }
7362
7363 if (rsa == NULL)
7364 {
7365 inferior *inf = (event->ptid == null_ptid
7366 ? NULL
7367 : find_inferior_ptid (event->ptid));
7368 /* If this is the first time we learn anything
7369 about this process, skip the registers
7370 included in this packet, since we don't yet
7371 know which architecture to use to parse them.
7372 We'll determine the architecture later when
7373 we process the stop reply and retrieve the
7374 target description, via
7375 remote_notice_new_inferior ->
7376 post_create_inferior. */
7377 if (inf == NULL)
7378 {
7379 p = strchrnul (p1 + 1, ';');
7380 p++;
7381 continue;
7382 }
7383
7384 event->arch = inf->gdbarch;
7385 rsa = event->rs->get_remote_arch_state (event->arch);
7386 }
7387
7388 packet_reg *reg
7389 = packet_reg_from_pnum (event->arch, rsa, pnum);
7390 cached_reg_t cached_reg;
7391
7392 if (reg == NULL)
7393 error (_("Remote sent bad register number %s: %s\n\
7394 Packet: '%s'\n"),
7395 hex_string (pnum), p, buf);
7396
7397 cached_reg.num = reg->regnum;
7398 cached_reg.data = (gdb_byte *)
7399 xmalloc (register_size (event->arch, reg->regnum));
7400
7401 p = p1 + 1;
7402 fieldsize = hex2bin (p, cached_reg.data,
7403 register_size (event->arch, reg->regnum));
7404 p += 2 * fieldsize;
7405 if (fieldsize < register_size (event->arch, reg->regnum))
7406 warning (_("Remote reply is too short: %s"), buf);
7407
7408 event->regcache.push_back (cached_reg);
7409 }
7410 else
7411 {
7412 /* Not a number. Silently skip unknown optional
7413 info. */
7414 p = strchrnul (p1 + 1, ';');
7415 }
7416 }
7417
7418 if (*p != ';')
7419 error (_("Remote register badly formatted: %s\nhere: %s"),
7420 buf, p);
7421 ++p;
7422 }
7423
7424 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7425 break;
7426
7427 /* fall through */
7428 case 'S': /* Old style status, just signal only. */
7429 {
7430 int sig;
7431
7432 event->ws.kind = TARGET_WAITKIND_STOPPED;
7433 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7434 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7435 event->ws.value.sig = (enum gdb_signal) sig;
7436 else
7437 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7438 }
7439 break;
7440 case 'w': /* Thread exited. */
7441 {
7442 ULONGEST value;
7443
7444 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7445 p = unpack_varlen_hex (&buf[1], &value);
7446 event->ws.value.integer = value;
7447 if (*p != ';')
7448 error (_("stop reply packet badly formatted: %s"), buf);
7449 event->ptid = read_ptid (++p, NULL);
7450 break;
7451 }
7452 case 'W': /* Target exited. */
7453 case 'X':
7454 {
7455 int pid;
7456 ULONGEST value;
7457
7458 /* GDB used to accept only 2 hex chars here. Stubs should
7459 only send more if they detect GDB supports multi-process
7460 support. */
7461 p = unpack_varlen_hex (&buf[1], &value);
7462
7463 if (buf[0] == 'W')
7464 {
7465 /* The remote process exited. */
7466 event->ws.kind = TARGET_WAITKIND_EXITED;
7467 event->ws.value.integer = value;
7468 }
7469 else
7470 {
7471 /* The remote process exited with a signal. */
7472 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7473 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7474 event->ws.value.sig = (enum gdb_signal) value;
7475 else
7476 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7477 }
7478
7479 /* If no process is specified, assume inferior_ptid. */
7480 pid = inferior_ptid.pid ();
7481 if (*p == '\0')
7482 ;
7483 else if (*p == ';')
7484 {
7485 p++;
7486
7487 if (*p == '\0')
7488 ;
7489 else if (startswith (p, "process:"))
7490 {
7491 ULONGEST upid;
7492
7493 p += sizeof ("process:") - 1;
7494 unpack_varlen_hex (p, &upid);
7495 pid = upid;
7496 }
7497 else
7498 error (_("unknown stop reply packet: %s"), buf);
7499 }
7500 else
7501 error (_("unknown stop reply packet: %s"), buf);
7502 event->ptid = ptid_t (pid);
7503 }
7504 break;
7505 case 'N':
7506 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7507 event->ptid = minus_one_ptid;
7508 break;
7509 }
7510
7511 if (target_is_non_stop_p () && event->ptid == null_ptid)
7512 error (_("No process or thread specified in stop reply: %s"), buf);
7513 }
7514
7515 /* When the stub wants to tell GDB about a new notification reply, it
7516 sends a notification (%Stop, for example). Those can come it at
7517 any time, hence, we have to make sure that any pending
7518 putpkt/getpkt sequence we're making is finished, before querying
7519 the stub for more events with the corresponding ack command
7520 (vStopped, for example). E.g., if we started a vStopped sequence
7521 immediately upon receiving the notification, something like this
7522 could happen:
7523
7524 1.1) --> Hg 1
7525 1.2) <-- OK
7526 1.3) --> g
7527 1.4) <-- %Stop
7528 1.5) --> vStopped
7529 1.6) <-- (registers reply to step #1.3)
7530
7531 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7532 query.
7533
7534 To solve this, whenever we parse a %Stop notification successfully,
7535 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7536 doing whatever we were doing:
7537
7538 2.1) --> Hg 1
7539 2.2) <-- OK
7540 2.3) --> g
7541 2.4) <-- %Stop
7542 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7543 2.5) <-- (registers reply to step #2.3)
7544
7545 Eventualy after step #2.5, we return to the event loop, which
7546 notices there's an event on the
7547 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7548 associated callback --- the function below. At this point, we're
7549 always safe to start a vStopped sequence. :
7550
7551 2.6) --> vStopped
7552 2.7) <-- T05 thread:2
7553 2.8) --> vStopped
7554 2.9) --> OK
7555 */
7556
7557 void
7558 remote_target::remote_notif_get_pending_events (notif_client *nc)
7559 {
7560 struct remote_state *rs = get_remote_state ();
7561
7562 if (rs->notif_state->pending_event[nc->id] != NULL)
7563 {
7564 if (notif_debug)
7565 fprintf_unfiltered (gdb_stdlog,
7566 "notif: process: '%s' ack pending event\n",
7567 nc->name);
7568
7569 /* acknowledge */
7570 nc->ack (this, nc, rs->buf.data (),
7571 rs->notif_state->pending_event[nc->id]);
7572 rs->notif_state->pending_event[nc->id] = NULL;
7573
7574 while (1)
7575 {
7576 getpkt (&rs->buf, 0);
7577 if (strcmp (rs->buf.data (), "OK") == 0)
7578 break;
7579 else
7580 remote_notif_ack (this, nc, rs->buf.data ());
7581 }
7582 }
7583 else
7584 {
7585 if (notif_debug)
7586 fprintf_unfiltered (gdb_stdlog,
7587 "notif: process: '%s' no pending reply\n",
7588 nc->name);
7589 }
7590 }
7591
7592 /* Wrapper around remote_target::remote_notif_get_pending_events to
7593 avoid having to export the whole remote_target class. */
7594
7595 void
7596 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7597 {
7598 remote->remote_notif_get_pending_events (nc);
7599 }
7600
7601 /* Called when it is decided that STOP_REPLY holds the info of the
7602 event that is to be returned to the core. This function always
7603 destroys STOP_REPLY. */
7604
7605 ptid_t
7606 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7607 struct target_waitstatus *status)
7608 {
7609 ptid_t ptid;
7610
7611 *status = stop_reply->ws;
7612 ptid = stop_reply->ptid;
7613
7614 /* If no thread/process was reported by the stub, assume the current
7615 inferior. */
7616 if (ptid == null_ptid)
7617 ptid = inferior_ptid;
7618
7619 if (status->kind != TARGET_WAITKIND_EXITED
7620 && status->kind != TARGET_WAITKIND_SIGNALLED
7621 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7622 {
7623 /* Expedited registers. */
7624 if (!stop_reply->regcache.empty ())
7625 {
7626 struct regcache *regcache
7627 = get_thread_arch_regcache (ptid, stop_reply->arch);
7628
7629 for (cached_reg_t &reg : stop_reply->regcache)
7630 {
7631 regcache->raw_supply (reg.num, reg.data);
7632 xfree (reg.data);
7633 }
7634
7635 stop_reply->regcache.clear ();
7636 }
7637
7638 remote_notice_new_inferior (ptid, 0);
7639 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7640 remote_thr->core = stop_reply->core;
7641 remote_thr->stop_reason = stop_reply->stop_reason;
7642 remote_thr->watch_data_address = stop_reply->watch_data_address;
7643 remote_thr->vcont_resumed = 0;
7644 }
7645
7646 delete stop_reply;
7647 return ptid;
7648 }
7649
7650 /* The non-stop mode version of target_wait. */
7651
7652 ptid_t
7653 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7654 {
7655 struct remote_state *rs = get_remote_state ();
7656 struct stop_reply *stop_reply;
7657 int ret;
7658 int is_notif = 0;
7659
7660 /* If in non-stop mode, get out of getpkt even if a
7661 notification is received. */
7662
7663 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7664 while (1)
7665 {
7666 if (ret != -1 && !is_notif)
7667 switch (rs->buf[0])
7668 {
7669 case 'E': /* Error of some sort. */
7670 /* We're out of sync with the target now. Did it continue
7671 or not? We can't tell which thread it was in non-stop,
7672 so just ignore this. */
7673 warning (_("Remote failure reply: %s"), rs->buf.data ());
7674 break;
7675 case 'O': /* Console output. */
7676 remote_console_output (&rs->buf[1]);
7677 break;
7678 default:
7679 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7680 break;
7681 }
7682
7683 /* Acknowledge a pending stop reply that may have arrived in the
7684 mean time. */
7685 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7686 remote_notif_get_pending_events (&notif_client_stop);
7687
7688 /* If indeed we noticed a stop reply, we're done. */
7689 stop_reply = queued_stop_reply (ptid);
7690 if (stop_reply != NULL)
7691 return process_stop_reply (stop_reply, status);
7692
7693 /* Still no event. If we're just polling for an event, then
7694 return to the event loop. */
7695 if (options & TARGET_WNOHANG)
7696 {
7697 status->kind = TARGET_WAITKIND_IGNORE;
7698 return minus_one_ptid;
7699 }
7700
7701 /* Otherwise do a blocking wait. */
7702 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7703 }
7704 }
7705
7706 /* Wait until the remote machine stops, then return, storing status in
7707 STATUS just as `wait' would. */
7708
7709 ptid_t
7710 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7711 {
7712 struct remote_state *rs = get_remote_state ();
7713 ptid_t event_ptid = null_ptid;
7714 char *buf;
7715 struct stop_reply *stop_reply;
7716
7717 again:
7718
7719 status->kind = TARGET_WAITKIND_IGNORE;
7720 status->value.integer = 0;
7721
7722 stop_reply = queued_stop_reply (ptid);
7723 if (stop_reply != NULL)
7724 return process_stop_reply (stop_reply, status);
7725
7726 if (rs->cached_wait_status)
7727 /* Use the cached wait status, but only once. */
7728 rs->cached_wait_status = 0;
7729 else
7730 {
7731 int ret;
7732 int is_notif;
7733 int forever = ((options & TARGET_WNOHANG) == 0
7734 && rs->wait_forever_enabled_p);
7735
7736 if (!rs->waiting_for_stop_reply)
7737 {
7738 status->kind = TARGET_WAITKIND_NO_RESUMED;
7739 return minus_one_ptid;
7740 }
7741
7742 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7743 _never_ wait for ever -> test on target_is_async_p().
7744 However, before we do that we need to ensure that the caller
7745 knows how to take the target into/out of async mode. */
7746 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7747
7748 /* GDB gets a notification. Return to core as this event is
7749 not interesting. */
7750 if (ret != -1 && is_notif)
7751 return minus_one_ptid;
7752
7753 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7754 return minus_one_ptid;
7755 }
7756
7757 buf = rs->buf.data ();
7758
7759 /* Assume that the target has acknowledged Ctrl-C unless we receive
7760 an 'F' or 'O' packet. */
7761 if (buf[0] != 'F' && buf[0] != 'O')
7762 rs->ctrlc_pending_p = 0;
7763
7764 switch (buf[0])
7765 {
7766 case 'E': /* Error of some sort. */
7767 /* We're out of sync with the target now. Did it continue or
7768 not? Not is more likely, so report a stop. */
7769 rs->waiting_for_stop_reply = 0;
7770
7771 warning (_("Remote failure reply: %s"), buf);
7772 status->kind = TARGET_WAITKIND_STOPPED;
7773 status->value.sig = GDB_SIGNAL_0;
7774 break;
7775 case 'F': /* File-I/O request. */
7776 /* GDB may access the inferior memory while handling the File-I/O
7777 request, but we don't want GDB accessing memory while waiting
7778 for a stop reply. See the comments in putpkt_binary. Set
7779 waiting_for_stop_reply to 0 temporarily. */
7780 rs->waiting_for_stop_reply = 0;
7781 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7782 rs->ctrlc_pending_p = 0;
7783 /* GDB handled the File-I/O request, and the target is running
7784 again. Keep waiting for events. */
7785 rs->waiting_for_stop_reply = 1;
7786 break;
7787 case 'N': case 'T': case 'S': case 'X': case 'W':
7788 {
7789 /* There is a stop reply to handle. */
7790 rs->waiting_for_stop_reply = 0;
7791
7792 stop_reply
7793 = (struct stop_reply *) remote_notif_parse (this,
7794 &notif_client_stop,
7795 rs->buf.data ());
7796
7797 event_ptid = process_stop_reply (stop_reply, status);
7798 break;
7799 }
7800 case 'O': /* Console output. */
7801 remote_console_output (buf + 1);
7802 break;
7803 case '\0':
7804 if (rs->last_sent_signal != GDB_SIGNAL_0)
7805 {
7806 /* Zero length reply means that we tried 'S' or 'C' and the
7807 remote system doesn't support it. */
7808 target_terminal::ours_for_output ();
7809 printf_filtered
7810 ("Can't send signals to this remote system. %s not sent.\n",
7811 gdb_signal_to_name (rs->last_sent_signal));
7812 rs->last_sent_signal = GDB_SIGNAL_0;
7813 target_terminal::inferior ();
7814
7815 strcpy (buf, rs->last_sent_step ? "s" : "c");
7816 putpkt (buf);
7817 break;
7818 }
7819 /* fallthrough */
7820 default:
7821 warning (_("Invalid remote reply: %s"), buf);
7822 break;
7823 }
7824
7825 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7826 return minus_one_ptid;
7827 else if (status->kind == TARGET_WAITKIND_IGNORE)
7828 {
7829 /* Nothing interesting happened. If we're doing a non-blocking
7830 poll, we're done. Otherwise, go back to waiting. */
7831 if (options & TARGET_WNOHANG)
7832 return minus_one_ptid;
7833 else
7834 goto again;
7835 }
7836 else if (status->kind != TARGET_WAITKIND_EXITED
7837 && status->kind != TARGET_WAITKIND_SIGNALLED)
7838 {
7839 if (event_ptid != null_ptid)
7840 record_currthread (rs, event_ptid);
7841 else
7842 event_ptid = inferior_ptid;
7843 }
7844 else
7845 /* A process exit. Invalidate our notion of current thread. */
7846 record_currthread (rs, minus_one_ptid);
7847
7848 return event_ptid;
7849 }
7850
7851 /* Wait until the remote machine stops, then return, storing status in
7852 STATUS just as `wait' would. */
7853
7854 ptid_t
7855 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7856 {
7857 ptid_t event_ptid;
7858
7859 if (target_is_non_stop_p ())
7860 event_ptid = wait_ns (ptid, status, options);
7861 else
7862 event_ptid = wait_as (ptid, status, options);
7863
7864 if (target_is_async_p ())
7865 {
7866 remote_state *rs = get_remote_state ();
7867
7868 /* If there are are events left in the queue tell the event loop
7869 to return here. */
7870 if (!rs->stop_reply_queue.empty ())
7871 mark_async_event_handler (rs->remote_async_inferior_event_token);
7872 }
7873
7874 return event_ptid;
7875 }
7876
7877 /* Fetch a single register using a 'p' packet. */
7878
7879 int
7880 remote_target::fetch_register_using_p (struct regcache *regcache,
7881 packet_reg *reg)
7882 {
7883 struct gdbarch *gdbarch = regcache->arch ();
7884 struct remote_state *rs = get_remote_state ();
7885 char *buf, *p;
7886 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7887 int i;
7888
7889 if (packet_support (PACKET_p) == PACKET_DISABLE)
7890 return 0;
7891
7892 if (reg->pnum == -1)
7893 return 0;
7894
7895 p = rs->buf.data ();
7896 *p++ = 'p';
7897 p += hexnumstr (p, reg->pnum);
7898 *p++ = '\0';
7899 putpkt (rs->buf);
7900 getpkt (&rs->buf, 0);
7901
7902 buf = rs->buf.data ();
7903
7904 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7905 {
7906 case PACKET_OK:
7907 break;
7908 case PACKET_UNKNOWN:
7909 return 0;
7910 case PACKET_ERROR:
7911 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7912 gdbarch_register_name (regcache->arch (),
7913 reg->regnum),
7914 buf);
7915 }
7916
7917 /* If this register is unfetchable, tell the regcache. */
7918 if (buf[0] == 'x')
7919 {
7920 regcache->raw_supply (reg->regnum, NULL);
7921 return 1;
7922 }
7923
7924 /* Otherwise, parse and supply the value. */
7925 p = buf;
7926 i = 0;
7927 while (p[0] != 0)
7928 {
7929 if (p[1] == 0)
7930 error (_("fetch_register_using_p: early buf termination"));
7931
7932 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7933 p += 2;
7934 }
7935 regcache->raw_supply (reg->regnum, regp);
7936 return 1;
7937 }
7938
7939 /* Fetch the registers included in the target's 'g' packet. */
7940
7941 int
7942 remote_target::send_g_packet ()
7943 {
7944 struct remote_state *rs = get_remote_state ();
7945 int buf_len;
7946
7947 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7948 putpkt (rs->buf);
7949 getpkt (&rs->buf, 0);
7950 if (packet_check_result (rs->buf) == PACKET_ERROR)
7951 error (_("Could not read registers; remote failure reply '%s'"),
7952 rs->buf.data ());
7953
7954 /* We can get out of synch in various cases. If the first character
7955 in the buffer is not a hex character, assume that has happened
7956 and try to fetch another packet to read. */
7957 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7958 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7959 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7960 && rs->buf[0] != 'x') /* New: unavailable register value. */
7961 {
7962 if (remote_debug)
7963 fprintf_unfiltered (gdb_stdlog,
7964 "Bad register packet; fetching a new packet\n");
7965 getpkt (&rs->buf, 0);
7966 }
7967
7968 buf_len = strlen (rs->buf.data ());
7969
7970 /* Sanity check the received packet. */
7971 if (buf_len % 2 != 0)
7972 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7973
7974 return buf_len / 2;
7975 }
7976
7977 void
7978 remote_target::process_g_packet (struct regcache *regcache)
7979 {
7980 struct gdbarch *gdbarch = regcache->arch ();
7981 struct remote_state *rs = get_remote_state ();
7982 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7983 int i, buf_len;
7984 char *p;
7985 char *regs;
7986
7987 buf_len = strlen (rs->buf.data ());
7988
7989 /* Further sanity checks, with knowledge of the architecture. */
7990 if (buf_len > 2 * rsa->sizeof_g_packet)
7991 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7992 "bytes): %s"),
7993 rsa->sizeof_g_packet, buf_len / 2,
7994 rs->buf.data ());
7995
7996 /* Save the size of the packet sent to us by the target. It is used
7997 as a heuristic when determining the max size of packets that the
7998 target can safely receive. */
7999 if (rsa->actual_register_packet_size == 0)
8000 rsa->actual_register_packet_size = buf_len;
8001
8002 /* If this is smaller than we guessed the 'g' packet would be,
8003 update our records. A 'g' reply that doesn't include a register's
8004 value implies either that the register is not available, or that
8005 the 'p' packet must be used. */
8006 if (buf_len < 2 * rsa->sizeof_g_packet)
8007 {
8008 long sizeof_g_packet = buf_len / 2;
8009
8010 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8011 {
8012 long offset = rsa->regs[i].offset;
8013 long reg_size = register_size (gdbarch, i);
8014
8015 if (rsa->regs[i].pnum == -1)
8016 continue;
8017
8018 if (offset >= sizeof_g_packet)
8019 rsa->regs[i].in_g_packet = 0;
8020 else if (offset + reg_size > sizeof_g_packet)
8021 error (_("Truncated register %d in remote 'g' packet"), i);
8022 else
8023 rsa->regs[i].in_g_packet = 1;
8024 }
8025
8026 /* Looks valid enough, we can assume this is the correct length
8027 for a 'g' packet. It's important not to adjust
8028 rsa->sizeof_g_packet if we have truncated registers otherwise
8029 this "if" won't be run the next time the method is called
8030 with a packet of the same size and one of the internal errors
8031 below will trigger instead. */
8032 rsa->sizeof_g_packet = sizeof_g_packet;
8033 }
8034
8035 regs = (char *) alloca (rsa->sizeof_g_packet);
8036
8037 /* Unimplemented registers read as all bits zero. */
8038 memset (regs, 0, rsa->sizeof_g_packet);
8039
8040 /* Reply describes registers byte by byte, each byte encoded as two
8041 hex characters. Suck them all up, then supply them to the
8042 register cacheing/storage mechanism. */
8043
8044 p = rs->buf.data ();
8045 for (i = 0; i < rsa->sizeof_g_packet; i++)
8046 {
8047 if (p[0] == 0 || p[1] == 0)
8048 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8049 internal_error (__FILE__, __LINE__,
8050 _("unexpected end of 'g' packet reply"));
8051
8052 if (p[0] == 'x' && p[1] == 'x')
8053 regs[i] = 0; /* 'x' */
8054 else
8055 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8056 p += 2;
8057 }
8058
8059 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8060 {
8061 struct packet_reg *r = &rsa->regs[i];
8062 long reg_size = register_size (gdbarch, i);
8063
8064 if (r->in_g_packet)
8065 {
8066 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8067 /* This shouldn't happen - we adjusted in_g_packet above. */
8068 internal_error (__FILE__, __LINE__,
8069 _("unexpected end of 'g' packet reply"));
8070 else if (rs->buf[r->offset * 2] == 'x')
8071 {
8072 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8073 /* The register isn't available, mark it as such (at
8074 the same time setting the value to zero). */
8075 regcache->raw_supply (r->regnum, NULL);
8076 }
8077 else
8078 regcache->raw_supply (r->regnum, regs + r->offset);
8079 }
8080 }
8081 }
8082
8083 void
8084 remote_target::fetch_registers_using_g (struct regcache *regcache)
8085 {
8086 send_g_packet ();
8087 process_g_packet (regcache);
8088 }
8089
8090 /* Make the remote selected traceframe match GDB's selected
8091 traceframe. */
8092
8093 void
8094 remote_target::set_remote_traceframe ()
8095 {
8096 int newnum;
8097 struct remote_state *rs = get_remote_state ();
8098
8099 if (rs->remote_traceframe_number == get_traceframe_number ())
8100 return;
8101
8102 /* Avoid recursion, remote_trace_find calls us again. */
8103 rs->remote_traceframe_number = get_traceframe_number ();
8104
8105 newnum = target_trace_find (tfind_number,
8106 get_traceframe_number (), 0, 0, NULL);
8107
8108 /* Should not happen. If it does, all bets are off. */
8109 if (newnum != get_traceframe_number ())
8110 warning (_("could not set remote traceframe"));
8111 }
8112
8113 void
8114 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8115 {
8116 struct gdbarch *gdbarch = regcache->arch ();
8117 struct remote_state *rs = get_remote_state ();
8118 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8119 int i;
8120
8121 set_remote_traceframe ();
8122 set_general_thread (regcache->ptid ());
8123
8124 if (regnum >= 0)
8125 {
8126 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8127
8128 gdb_assert (reg != NULL);
8129
8130 /* If this register might be in the 'g' packet, try that first -
8131 we are likely to read more than one register. If this is the
8132 first 'g' packet, we might be overly optimistic about its
8133 contents, so fall back to 'p'. */
8134 if (reg->in_g_packet)
8135 {
8136 fetch_registers_using_g (regcache);
8137 if (reg->in_g_packet)
8138 return;
8139 }
8140
8141 if (fetch_register_using_p (regcache, reg))
8142 return;
8143
8144 /* This register is not available. */
8145 regcache->raw_supply (reg->regnum, NULL);
8146
8147 return;
8148 }
8149
8150 fetch_registers_using_g (regcache);
8151
8152 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8153 if (!rsa->regs[i].in_g_packet)
8154 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8155 {
8156 /* This register is not available. */
8157 regcache->raw_supply (i, NULL);
8158 }
8159 }
8160
8161 /* Prepare to store registers. Since we may send them all (using a
8162 'G' request), we have to read out the ones we don't want to change
8163 first. */
8164
8165 void
8166 remote_target::prepare_to_store (struct regcache *regcache)
8167 {
8168 struct remote_state *rs = get_remote_state ();
8169 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8170 int i;
8171
8172 /* Make sure the entire registers array is valid. */
8173 switch (packet_support (PACKET_P))
8174 {
8175 case PACKET_DISABLE:
8176 case PACKET_SUPPORT_UNKNOWN:
8177 /* Make sure all the necessary registers are cached. */
8178 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8179 if (rsa->regs[i].in_g_packet)
8180 regcache->raw_update (rsa->regs[i].regnum);
8181 break;
8182 case PACKET_ENABLE:
8183 break;
8184 }
8185 }
8186
8187 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8188 packet was not recognized. */
8189
8190 int
8191 remote_target::store_register_using_P (const struct regcache *regcache,
8192 packet_reg *reg)
8193 {
8194 struct gdbarch *gdbarch = regcache->arch ();
8195 struct remote_state *rs = get_remote_state ();
8196 /* Try storing a single register. */
8197 char *buf = rs->buf.data ();
8198 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8199 char *p;
8200
8201 if (packet_support (PACKET_P) == PACKET_DISABLE)
8202 return 0;
8203
8204 if (reg->pnum == -1)
8205 return 0;
8206
8207 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8208 p = buf + strlen (buf);
8209 regcache->raw_collect (reg->regnum, regp);
8210 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8211 putpkt (rs->buf);
8212 getpkt (&rs->buf, 0);
8213
8214 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8215 {
8216 case PACKET_OK:
8217 return 1;
8218 case PACKET_ERROR:
8219 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8220 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8221 case PACKET_UNKNOWN:
8222 return 0;
8223 default:
8224 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8225 }
8226 }
8227
8228 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8229 contents of the register cache buffer. FIXME: ignores errors. */
8230
8231 void
8232 remote_target::store_registers_using_G (const struct regcache *regcache)
8233 {
8234 struct remote_state *rs = get_remote_state ();
8235 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8236 gdb_byte *regs;
8237 char *p;
8238
8239 /* Extract all the registers in the regcache copying them into a
8240 local buffer. */
8241 {
8242 int i;
8243
8244 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8245 memset (regs, 0, rsa->sizeof_g_packet);
8246 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8247 {
8248 struct packet_reg *r = &rsa->regs[i];
8249
8250 if (r->in_g_packet)
8251 regcache->raw_collect (r->regnum, regs + r->offset);
8252 }
8253 }
8254
8255 /* Command describes registers byte by byte,
8256 each byte encoded as two hex characters. */
8257 p = rs->buf.data ();
8258 *p++ = 'G';
8259 bin2hex (regs, p, rsa->sizeof_g_packet);
8260 putpkt (rs->buf);
8261 getpkt (&rs->buf, 0);
8262 if (packet_check_result (rs->buf) == PACKET_ERROR)
8263 error (_("Could not write registers; remote failure reply '%s'"),
8264 rs->buf.data ());
8265 }
8266
8267 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8268 of the register cache buffer. FIXME: ignores errors. */
8269
8270 void
8271 remote_target::store_registers (struct regcache *regcache, int regnum)
8272 {
8273 struct gdbarch *gdbarch = regcache->arch ();
8274 struct remote_state *rs = get_remote_state ();
8275 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8276 int i;
8277
8278 set_remote_traceframe ();
8279 set_general_thread (regcache->ptid ());
8280
8281 if (regnum >= 0)
8282 {
8283 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8284
8285 gdb_assert (reg != NULL);
8286
8287 /* Always prefer to store registers using the 'P' packet if
8288 possible; we often change only a small number of registers.
8289 Sometimes we change a larger number; we'd need help from a
8290 higher layer to know to use 'G'. */
8291 if (store_register_using_P (regcache, reg))
8292 return;
8293
8294 /* For now, don't complain if we have no way to write the
8295 register. GDB loses track of unavailable registers too
8296 easily. Some day, this may be an error. We don't have
8297 any way to read the register, either... */
8298 if (!reg->in_g_packet)
8299 return;
8300
8301 store_registers_using_G (regcache);
8302 return;
8303 }
8304
8305 store_registers_using_G (regcache);
8306
8307 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8308 if (!rsa->regs[i].in_g_packet)
8309 if (!store_register_using_P (regcache, &rsa->regs[i]))
8310 /* See above for why we do not issue an error here. */
8311 continue;
8312 }
8313 \f
8314
8315 /* Return the number of hex digits in num. */
8316
8317 static int
8318 hexnumlen (ULONGEST num)
8319 {
8320 int i;
8321
8322 for (i = 0; num != 0; i++)
8323 num >>= 4;
8324
8325 return std::max (i, 1);
8326 }
8327
8328 /* Set BUF to the minimum number of hex digits representing NUM. */
8329
8330 static int
8331 hexnumstr (char *buf, ULONGEST num)
8332 {
8333 int len = hexnumlen (num);
8334
8335 return hexnumnstr (buf, num, len);
8336 }
8337
8338
8339 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8340
8341 static int
8342 hexnumnstr (char *buf, ULONGEST num, int width)
8343 {
8344 int i;
8345
8346 buf[width] = '\0';
8347
8348 for (i = width - 1; i >= 0; i--)
8349 {
8350 buf[i] = "0123456789abcdef"[(num & 0xf)];
8351 num >>= 4;
8352 }
8353
8354 return width;
8355 }
8356
8357 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8358
8359 static CORE_ADDR
8360 remote_address_masked (CORE_ADDR addr)
8361 {
8362 unsigned int address_size = remote_address_size;
8363
8364 /* If "remoteaddresssize" was not set, default to target address size. */
8365 if (!address_size)
8366 address_size = gdbarch_addr_bit (target_gdbarch ());
8367
8368 if (address_size > 0
8369 && address_size < (sizeof (ULONGEST) * 8))
8370 {
8371 /* Only create a mask when that mask can safely be constructed
8372 in a ULONGEST variable. */
8373 ULONGEST mask = 1;
8374
8375 mask = (mask << address_size) - 1;
8376 addr &= mask;
8377 }
8378 return addr;
8379 }
8380
8381 /* Determine whether the remote target supports binary downloading.
8382 This is accomplished by sending a no-op memory write of zero length
8383 to the target at the specified address. It does not suffice to send
8384 the whole packet, since many stubs strip the eighth bit and
8385 subsequently compute a wrong checksum, which causes real havoc with
8386 remote_write_bytes.
8387
8388 NOTE: This can still lose if the serial line is not eight-bit
8389 clean. In cases like this, the user should clear "remote
8390 X-packet". */
8391
8392 void
8393 remote_target::check_binary_download (CORE_ADDR addr)
8394 {
8395 struct remote_state *rs = get_remote_state ();
8396
8397 switch (packet_support (PACKET_X))
8398 {
8399 case PACKET_DISABLE:
8400 break;
8401 case PACKET_ENABLE:
8402 break;
8403 case PACKET_SUPPORT_UNKNOWN:
8404 {
8405 char *p;
8406
8407 p = rs->buf.data ();
8408 *p++ = 'X';
8409 p += hexnumstr (p, (ULONGEST) addr);
8410 *p++ = ',';
8411 p += hexnumstr (p, (ULONGEST) 0);
8412 *p++ = ':';
8413 *p = '\0';
8414
8415 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8416 getpkt (&rs->buf, 0);
8417
8418 if (rs->buf[0] == '\0')
8419 {
8420 if (remote_debug)
8421 fprintf_unfiltered (gdb_stdlog,
8422 "binary downloading NOT "
8423 "supported by target\n");
8424 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8425 }
8426 else
8427 {
8428 if (remote_debug)
8429 fprintf_unfiltered (gdb_stdlog,
8430 "binary downloading supported by target\n");
8431 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8432 }
8433 break;
8434 }
8435 }
8436 }
8437
8438 /* Helper function to resize the payload in order to try to get a good
8439 alignment. We try to write an amount of data such that the next write will
8440 start on an address aligned on REMOTE_ALIGN_WRITES. */
8441
8442 static int
8443 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8444 {
8445 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8446 }
8447
8448 /* Write memory data directly to the remote machine.
8449 This does not inform the data cache; the data cache uses this.
8450 HEADER is the starting part of the packet.
8451 MEMADDR is the address in the remote memory space.
8452 MYADDR is the address of the buffer in our space.
8453 LEN_UNITS is the number of addressable units to write.
8454 UNIT_SIZE is the length in bytes of an addressable unit.
8455 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8456 should send data as binary ('X'), or hex-encoded ('M').
8457
8458 The function creates packet of the form
8459 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8460
8461 where encoding of <DATA> is terminated by PACKET_FORMAT.
8462
8463 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8464 are omitted.
8465
8466 Return the transferred status, error or OK (an
8467 'enum target_xfer_status' value). Save the number of addressable units
8468 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8469
8470 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8471 exchange between gdb and the stub could look like (?? in place of the
8472 checksum):
8473
8474 -> $m1000,4#??
8475 <- aaaabbbbccccdddd
8476
8477 -> $M1000,3:eeeeffffeeee#??
8478 <- OK
8479
8480 -> $m1000,4#??
8481 <- eeeeffffeeeedddd */
8482
8483 target_xfer_status
8484 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8485 const gdb_byte *myaddr,
8486 ULONGEST len_units,
8487 int unit_size,
8488 ULONGEST *xfered_len_units,
8489 char packet_format, int use_length)
8490 {
8491 struct remote_state *rs = get_remote_state ();
8492 char *p;
8493 char *plen = NULL;
8494 int plenlen = 0;
8495 int todo_units;
8496 int units_written;
8497 int payload_capacity_bytes;
8498 int payload_length_bytes;
8499
8500 if (packet_format != 'X' && packet_format != 'M')
8501 internal_error (__FILE__, __LINE__,
8502 _("remote_write_bytes_aux: bad packet format"));
8503
8504 if (len_units == 0)
8505 return TARGET_XFER_EOF;
8506
8507 payload_capacity_bytes = get_memory_write_packet_size ();
8508
8509 /* The packet buffer will be large enough for the payload;
8510 get_memory_packet_size ensures this. */
8511 rs->buf[0] = '\0';
8512
8513 /* Compute the size of the actual payload by subtracting out the
8514 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8515
8516 payload_capacity_bytes -= strlen ("$,:#NN");
8517 if (!use_length)
8518 /* The comma won't be used. */
8519 payload_capacity_bytes += 1;
8520 payload_capacity_bytes -= strlen (header);
8521 payload_capacity_bytes -= hexnumlen (memaddr);
8522
8523 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8524
8525 strcat (rs->buf.data (), header);
8526 p = rs->buf.data () + strlen (header);
8527
8528 /* Compute a best guess of the number of bytes actually transfered. */
8529 if (packet_format == 'X')
8530 {
8531 /* Best guess at number of bytes that will fit. */
8532 todo_units = std::min (len_units,
8533 (ULONGEST) payload_capacity_bytes / unit_size);
8534 if (use_length)
8535 payload_capacity_bytes -= hexnumlen (todo_units);
8536 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8537 }
8538 else
8539 {
8540 /* Number of bytes that will fit. */
8541 todo_units
8542 = std::min (len_units,
8543 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8544 if (use_length)
8545 payload_capacity_bytes -= hexnumlen (todo_units);
8546 todo_units = std::min (todo_units,
8547 (payload_capacity_bytes / unit_size) / 2);
8548 }
8549
8550 if (todo_units <= 0)
8551 internal_error (__FILE__, __LINE__,
8552 _("minimum packet size too small to write data"));
8553
8554 /* If we already need another packet, then try to align the end
8555 of this packet to a useful boundary. */
8556 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8557 todo_units = align_for_efficient_write (todo_units, memaddr);
8558
8559 /* Append "<memaddr>". */
8560 memaddr = remote_address_masked (memaddr);
8561 p += hexnumstr (p, (ULONGEST) memaddr);
8562
8563 if (use_length)
8564 {
8565 /* Append ",". */
8566 *p++ = ',';
8567
8568 /* Append the length and retain its location and size. It may need to be
8569 adjusted once the packet body has been created. */
8570 plen = p;
8571 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8572 p += plenlen;
8573 }
8574
8575 /* Append ":". */
8576 *p++ = ':';
8577 *p = '\0';
8578
8579 /* Append the packet body. */
8580 if (packet_format == 'X')
8581 {
8582 /* Binary mode. Send target system values byte by byte, in
8583 increasing byte addresses. Only escape certain critical
8584 characters. */
8585 payload_length_bytes =
8586 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8587 &units_written, payload_capacity_bytes);
8588
8589 /* If not all TODO units fit, then we'll need another packet. Make
8590 a second try to keep the end of the packet aligned. Don't do
8591 this if the packet is tiny. */
8592 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8593 {
8594 int new_todo_units;
8595
8596 new_todo_units = align_for_efficient_write (units_written, memaddr);
8597
8598 if (new_todo_units != units_written)
8599 payload_length_bytes =
8600 remote_escape_output (myaddr, new_todo_units, unit_size,
8601 (gdb_byte *) p, &units_written,
8602 payload_capacity_bytes);
8603 }
8604
8605 p += payload_length_bytes;
8606 if (use_length && units_written < todo_units)
8607 {
8608 /* Escape chars have filled up the buffer prematurely,
8609 and we have actually sent fewer units than planned.
8610 Fix-up the length field of the packet. Use the same
8611 number of characters as before. */
8612 plen += hexnumnstr (plen, (ULONGEST) units_written,
8613 plenlen);
8614 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8615 }
8616 }
8617 else
8618 {
8619 /* Normal mode: Send target system values byte by byte, in
8620 increasing byte addresses. Each byte is encoded as a two hex
8621 value. */
8622 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8623 units_written = todo_units;
8624 }
8625
8626 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8627 getpkt (&rs->buf, 0);
8628
8629 if (rs->buf[0] == 'E')
8630 return TARGET_XFER_E_IO;
8631
8632 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8633 send fewer units than we'd planned. */
8634 *xfered_len_units = (ULONGEST) units_written;
8635 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8636 }
8637
8638 /* Write memory data directly to the remote machine.
8639 This does not inform the data cache; the data cache uses this.
8640 MEMADDR is the address in the remote memory space.
8641 MYADDR is the address of the buffer in our space.
8642 LEN is the number of bytes.
8643
8644 Return the transferred status, error or OK (an
8645 'enum target_xfer_status' value). Save the number of bytes
8646 transferred in *XFERED_LEN. Only transfer a single packet. */
8647
8648 target_xfer_status
8649 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8650 ULONGEST len, int unit_size,
8651 ULONGEST *xfered_len)
8652 {
8653 const char *packet_format = NULL;
8654
8655 /* Check whether the target supports binary download. */
8656 check_binary_download (memaddr);
8657
8658 switch (packet_support (PACKET_X))
8659 {
8660 case PACKET_ENABLE:
8661 packet_format = "X";
8662 break;
8663 case PACKET_DISABLE:
8664 packet_format = "M";
8665 break;
8666 case PACKET_SUPPORT_UNKNOWN:
8667 internal_error (__FILE__, __LINE__,
8668 _("remote_write_bytes: bad internal state"));
8669 default:
8670 internal_error (__FILE__, __LINE__, _("bad switch"));
8671 }
8672
8673 return remote_write_bytes_aux (packet_format,
8674 memaddr, myaddr, len, unit_size, xfered_len,
8675 packet_format[0], 1);
8676 }
8677
8678 /* Read memory data directly from the remote machine.
8679 This does not use the data cache; the data cache uses this.
8680 MEMADDR is the address in the remote memory space.
8681 MYADDR is the address of the buffer in our space.
8682 LEN_UNITS is the number of addressable memory units to read..
8683 UNIT_SIZE is the length in bytes of an addressable unit.
8684
8685 Return the transferred status, error or OK (an
8686 'enum target_xfer_status' value). Save the number of bytes
8687 transferred in *XFERED_LEN_UNITS.
8688
8689 See the comment of remote_write_bytes_aux for an example of
8690 memory read/write exchange between gdb and the stub. */
8691
8692 target_xfer_status
8693 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8694 ULONGEST len_units,
8695 int unit_size, ULONGEST *xfered_len_units)
8696 {
8697 struct remote_state *rs = get_remote_state ();
8698 int buf_size_bytes; /* Max size of packet output buffer. */
8699 char *p;
8700 int todo_units;
8701 int decoded_bytes;
8702
8703 buf_size_bytes = get_memory_read_packet_size ();
8704 /* The packet buffer will be large enough for the payload;
8705 get_memory_packet_size ensures this. */
8706
8707 /* Number of units that will fit. */
8708 todo_units = std::min (len_units,
8709 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8710
8711 /* Construct "m"<memaddr>","<len>". */
8712 memaddr = remote_address_masked (memaddr);
8713 p = rs->buf.data ();
8714 *p++ = 'm';
8715 p += hexnumstr (p, (ULONGEST) memaddr);
8716 *p++ = ',';
8717 p += hexnumstr (p, (ULONGEST) todo_units);
8718 *p = '\0';
8719 putpkt (rs->buf);
8720 getpkt (&rs->buf, 0);
8721 if (rs->buf[0] == 'E'
8722 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8723 && rs->buf[3] == '\0')
8724 return TARGET_XFER_E_IO;
8725 /* Reply describes memory byte by byte, each byte encoded as two hex
8726 characters. */
8727 p = rs->buf.data ();
8728 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8729 /* Return what we have. Let higher layers handle partial reads. */
8730 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8731 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8732 }
8733
8734 /* Using the set of read-only target sections of remote, read live
8735 read-only memory.
8736
8737 For interface/parameters/return description see target.h,
8738 to_xfer_partial. */
8739
8740 target_xfer_status
8741 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8742 ULONGEST memaddr,
8743 ULONGEST len,
8744 int unit_size,
8745 ULONGEST *xfered_len)
8746 {
8747 struct target_section *secp;
8748 struct target_section_table *table;
8749
8750 secp = target_section_by_addr (this, memaddr);
8751 if (secp != NULL
8752 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8753 secp->the_bfd_section)
8754 & SEC_READONLY))
8755 {
8756 struct target_section *p;
8757 ULONGEST memend = memaddr + len;
8758
8759 table = target_get_section_table (this);
8760
8761 for (p = table->sections; p < table->sections_end; p++)
8762 {
8763 if (memaddr >= p->addr)
8764 {
8765 if (memend <= p->endaddr)
8766 {
8767 /* Entire transfer is within this section. */
8768 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8769 xfered_len);
8770 }
8771 else if (memaddr >= p->endaddr)
8772 {
8773 /* This section ends before the transfer starts. */
8774 continue;
8775 }
8776 else
8777 {
8778 /* This section overlaps the transfer. Just do half. */
8779 len = p->endaddr - memaddr;
8780 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8781 xfered_len);
8782 }
8783 }
8784 }
8785 }
8786
8787 return TARGET_XFER_EOF;
8788 }
8789
8790 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8791 first if the requested memory is unavailable in traceframe.
8792 Otherwise, fall back to remote_read_bytes_1. */
8793
8794 target_xfer_status
8795 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8796 gdb_byte *myaddr, ULONGEST len, int unit_size,
8797 ULONGEST *xfered_len)
8798 {
8799 if (len == 0)
8800 return TARGET_XFER_EOF;
8801
8802 if (get_traceframe_number () != -1)
8803 {
8804 std::vector<mem_range> available;
8805
8806 /* If we fail to get the set of available memory, then the
8807 target does not support querying traceframe info, and so we
8808 attempt reading from the traceframe anyway (assuming the
8809 target implements the old QTro packet then). */
8810 if (traceframe_available_memory (&available, memaddr, len))
8811 {
8812 if (available.empty () || available[0].start != memaddr)
8813 {
8814 enum target_xfer_status res;
8815
8816 /* Don't read into the traceframe's available
8817 memory. */
8818 if (!available.empty ())
8819 {
8820 LONGEST oldlen = len;
8821
8822 len = available[0].start - memaddr;
8823 gdb_assert (len <= oldlen);
8824 }
8825
8826 /* This goes through the topmost target again. */
8827 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8828 len, unit_size, xfered_len);
8829 if (res == TARGET_XFER_OK)
8830 return TARGET_XFER_OK;
8831 else
8832 {
8833 /* No use trying further, we know some memory starting
8834 at MEMADDR isn't available. */
8835 *xfered_len = len;
8836 return (*xfered_len != 0) ?
8837 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8838 }
8839 }
8840
8841 /* Don't try to read more than how much is available, in
8842 case the target implements the deprecated QTro packet to
8843 cater for older GDBs (the target's knowledge of read-only
8844 sections may be outdated by now). */
8845 len = available[0].length;
8846 }
8847 }
8848
8849 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8850 }
8851
8852 \f
8853
8854 /* Sends a packet with content determined by the printf format string
8855 FORMAT and the remaining arguments, then gets the reply. Returns
8856 whether the packet was a success, a failure, or unknown. */
8857
8858 packet_result
8859 remote_target::remote_send_printf (const char *format, ...)
8860 {
8861 struct remote_state *rs = get_remote_state ();
8862 int max_size = get_remote_packet_size ();
8863 va_list ap;
8864
8865 va_start (ap, format);
8866
8867 rs->buf[0] = '\0';
8868 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8869
8870 va_end (ap);
8871
8872 if (size >= max_size)
8873 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8874
8875 if (putpkt (rs->buf) < 0)
8876 error (_("Communication problem with target."));
8877
8878 rs->buf[0] = '\0';
8879 getpkt (&rs->buf, 0);
8880
8881 return packet_check_result (rs->buf);
8882 }
8883
8884 /* Flash writing can take quite some time. We'll set
8885 effectively infinite timeout for flash operations.
8886 In future, we'll need to decide on a better approach. */
8887 static const int remote_flash_timeout = 1000;
8888
8889 void
8890 remote_target::flash_erase (ULONGEST address, LONGEST length)
8891 {
8892 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8893 enum packet_result ret;
8894 scoped_restore restore_timeout
8895 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8896
8897 ret = remote_send_printf ("vFlashErase:%s,%s",
8898 phex (address, addr_size),
8899 phex (length, 4));
8900 switch (ret)
8901 {
8902 case PACKET_UNKNOWN:
8903 error (_("Remote target does not support flash erase"));
8904 case PACKET_ERROR:
8905 error (_("Error erasing flash with vFlashErase packet"));
8906 default:
8907 break;
8908 }
8909 }
8910
8911 target_xfer_status
8912 remote_target::remote_flash_write (ULONGEST address,
8913 ULONGEST length, ULONGEST *xfered_len,
8914 const gdb_byte *data)
8915 {
8916 scoped_restore restore_timeout
8917 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8918 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8919 xfered_len,'X', 0);
8920 }
8921
8922 void
8923 remote_target::flash_done ()
8924 {
8925 int ret;
8926
8927 scoped_restore restore_timeout
8928 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8929
8930 ret = remote_send_printf ("vFlashDone");
8931
8932 switch (ret)
8933 {
8934 case PACKET_UNKNOWN:
8935 error (_("Remote target does not support vFlashDone"));
8936 case PACKET_ERROR:
8937 error (_("Error finishing flash operation"));
8938 default:
8939 break;
8940 }
8941 }
8942
8943 void
8944 remote_target::files_info ()
8945 {
8946 puts_filtered ("Debugging a target over a serial line.\n");
8947 }
8948 \f
8949 /* Stuff for dealing with the packets which are part of this protocol.
8950 See comment at top of file for details. */
8951
8952 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8953 error to higher layers. Called when a serial error is detected.
8954 The exception message is STRING, followed by a colon and a blank,
8955 the system error message for errno at function entry and final dot
8956 for output compatibility with throw_perror_with_name. */
8957
8958 static void
8959 unpush_and_perror (const char *string)
8960 {
8961 int saved_errno = errno;
8962
8963 remote_unpush_target ();
8964 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8965 safe_strerror (saved_errno));
8966 }
8967
8968 /* Read a single character from the remote end. The current quit
8969 handler is overridden to avoid quitting in the middle of packet
8970 sequence, as that would break communication with the remote server.
8971 See remote_serial_quit_handler for more detail. */
8972
8973 int
8974 remote_target::readchar (int timeout)
8975 {
8976 int ch;
8977 struct remote_state *rs = get_remote_state ();
8978
8979 {
8980 scoped_restore restore_quit_target
8981 = make_scoped_restore (&curr_quit_handler_target, this);
8982 scoped_restore restore_quit
8983 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8984
8985 rs->got_ctrlc_during_io = 0;
8986
8987 ch = serial_readchar (rs->remote_desc, timeout);
8988
8989 if (rs->got_ctrlc_during_io)
8990 set_quit_flag ();
8991 }
8992
8993 if (ch >= 0)
8994 return ch;
8995
8996 switch ((enum serial_rc) ch)
8997 {
8998 case SERIAL_EOF:
8999 remote_unpush_target ();
9000 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9001 /* no return */
9002 case SERIAL_ERROR:
9003 unpush_and_perror (_("Remote communication error. "
9004 "Target disconnected."));
9005 /* no return */
9006 case SERIAL_TIMEOUT:
9007 break;
9008 }
9009 return ch;
9010 }
9011
9012 /* Wrapper for serial_write that closes the target and throws if
9013 writing fails. The current quit handler is overridden to avoid
9014 quitting in the middle of packet sequence, as that would break
9015 communication with the remote server. See
9016 remote_serial_quit_handler for more detail. */
9017
9018 void
9019 remote_target::remote_serial_write (const char *str, int len)
9020 {
9021 struct remote_state *rs = get_remote_state ();
9022
9023 scoped_restore restore_quit_target
9024 = make_scoped_restore (&curr_quit_handler_target, this);
9025 scoped_restore restore_quit
9026 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9027
9028 rs->got_ctrlc_during_io = 0;
9029
9030 if (serial_write (rs->remote_desc, str, len))
9031 {
9032 unpush_and_perror (_("Remote communication error. "
9033 "Target disconnected."));
9034 }
9035
9036 if (rs->got_ctrlc_during_io)
9037 set_quit_flag ();
9038 }
9039
9040 /* Return a string representing an escaped version of BUF, of len N.
9041 E.g. \n is converted to \\n, \t to \\t, etc. */
9042
9043 static std::string
9044 escape_buffer (const char *buf, int n)
9045 {
9046 string_file stb;
9047
9048 stb.putstrn (buf, n, '\\');
9049 return std::move (stb.string ());
9050 }
9051
9052 /* Display a null-terminated packet on stdout, for debugging, using C
9053 string notation. */
9054
9055 static void
9056 print_packet (const char *buf)
9057 {
9058 puts_filtered ("\"");
9059 fputstr_filtered (buf, '"', gdb_stdout);
9060 puts_filtered ("\"");
9061 }
9062
9063 int
9064 remote_target::putpkt (const char *buf)
9065 {
9066 return putpkt_binary (buf, strlen (buf));
9067 }
9068
9069 /* Wrapper around remote_target::putpkt to avoid exporting
9070 remote_target. */
9071
9072 int
9073 putpkt (remote_target *remote, const char *buf)
9074 {
9075 return remote->putpkt (buf);
9076 }
9077
9078 /* Send a packet to the remote machine, with error checking. The data
9079 of the packet is in BUF. The string in BUF can be at most
9080 get_remote_packet_size () - 5 to account for the $, # and checksum,
9081 and for a possible /0 if we are debugging (remote_debug) and want
9082 to print the sent packet as a string. */
9083
9084 int
9085 remote_target::putpkt_binary (const char *buf, int cnt)
9086 {
9087 struct remote_state *rs = get_remote_state ();
9088 int i;
9089 unsigned char csum = 0;
9090 gdb::def_vector<char> data (cnt + 6);
9091 char *buf2 = data.data ();
9092
9093 int ch;
9094 int tcount = 0;
9095 char *p;
9096
9097 /* Catch cases like trying to read memory or listing threads while
9098 we're waiting for a stop reply. The remote server wouldn't be
9099 ready to handle this request, so we'd hang and timeout. We don't
9100 have to worry about this in synchronous mode, because in that
9101 case it's not possible to issue a command while the target is
9102 running. This is not a problem in non-stop mode, because in that
9103 case, the stub is always ready to process serial input. */
9104 if (!target_is_non_stop_p ()
9105 && target_is_async_p ()
9106 && rs->waiting_for_stop_reply)
9107 {
9108 error (_("Cannot execute this command while the target is running.\n"
9109 "Use the \"interrupt\" command to stop the target\n"
9110 "and then try again."));
9111 }
9112
9113 /* We're sending out a new packet. Make sure we don't look at a
9114 stale cached response. */
9115 rs->cached_wait_status = 0;
9116
9117 /* Copy the packet into buffer BUF2, encapsulating it
9118 and giving it a checksum. */
9119
9120 p = buf2;
9121 *p++ = '$';
9122
9123 for (i = 0; i < cnt; i++)
9124 {
9125 csum += buf[i];
9126 *p++ = buf[i];
9127 }
9128 *p++ = '#';
9129 *p++ = tohex ((csum >> 4) & 0xf);
9130 *p++ = tohex (csum & 0xf);
9131
9132 /* Send it over and over until we get a positive ack. */
9133
9134 while (1)
9135 {
9136 int started_error_output = 0;
9137
9138 if (remote_debug)
9139 {
9140 *p = '\0';
9141
9142 int len = (int) (p - buf2);
9143
9144 std::string str
9145 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9146
9147 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9148
9149 if (len > REMOTE_DEBUG_MAX_CHAR)
9150 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9151 len - REMOTE_DEBUG_MAX_CHAR);
9152
9153 fprintf_unfiltered (gdb_stdlog, "...");
9154
9155 gdb_flush (gdb_stdlog);
9156 }
9157 remote_serial_write (buf2, p - buf2);
9158
9159 /* If this is a no acks version of the remote protocol, send the
9160 packet and move on. */
9161 if (rs->noack_mode)
9162 break;
9163
9164 /* Read until either a timeout occurs (-2) or '+' is read.
9165 Handle any notification that arrives in the mean time. */
9166 while (1)
9167 {
9168 ch = readchar (remote_timeout);
9169
9170 if (remote_debug)
9171 {
9172 switch (ch)
9173 {
9174 case '+':
9175 case '-':
9176 case SERIAL_TIMEOUT:
9177 case '$':
9178 case '%':
9179 if (started_error_output)
9180 {
9181 putchar_unfiltered ('\n');
9182 started_error_output = 0;
9183 }
9184 }
9185 }
9186
9187 switch (ch)
9188 {
9189 case '+':
9190 if (remote_debug)
9191 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9192 return 1;
9193 case '-':
9194 if (remote_debug)
9195 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9196 /* FALLTHROUGH */
9197 case SERIAL_TIMEOUT:
9198 tcount++;
9199 if (tcount > 3)
9200 return 0;
9201 break; /* Retransmit buffer. */
9202 case '$':
9203 {
9204 if (remote_debug)
9205 fprintf_unfiltered (gdb_stdlog,
9206 "Packet instead of Ack, ignoring it\n");
9207 /* It's probably an old response sent because an ACK
9208 was lost. Gobble up the packet and ack it so it
9209 doesn't get retransmitted when we resend this
9210 packet. */
9211 skip_frame ();
9212 remote_serial_write ("+", 1);
9213 continue; /* Now, go look for +. */
9214 }
9215
9216 case '%':
9217 {
9218 int val;
9219
9220 /* If we got a notification, handle it, and go back to looking
9221 for an ack. */
9222 /* We've found the start of a notification. Now
9223 collect the data. */
9224 val = read_frame (&rs->buf);
9225 if (val >= 0)
9226 {
9227 if (remote_debug)
9228 {
9229 std::string str = escape_buffer (rs->buf.data (), val);
9230
9231 fprintf_unfiltered (gdb_stdlog,
9232 " Notification received: %s\n",
9233 str.c_str ());
9234 }
9235 handle_notification (rs->notif_state, rs->buf.data ());
9236 /* We're in sync now, rewait for the ack. */
9237 tcount = 0;
9238 }
9239 else
9240 {
9241 if (remote_debug)
9242 {
9243 if (!started_error_output)
9244 {
9245 started_error_output = 1;
9246 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9247 }
9248 fputc_unfiltered (ch & 0177, gdb_stdlog);
9249 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9250 }
9251 }
9252 continue;
9253 }
9254 /* fall-through */
9255 default:
9256 if (remote_debug)
9257 {
9258 if (!started_error_output)
9259 {
9260 started_error_output = 1;
9261 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9262 }
9263 fputc_unfiltered (ch & 0177, gdb_stdlog);
9264 }
9265 continue;
9266 }
9267 break; /* Here to retransmit. */
9268 }
9269
9270 #if 0
9271 /* This is wrong. If doing a long backtrace, the user should be
9272 able to get out next time we call QUIT, without anything as
9273 violent as interrupt_query. If we want to provide a way out of
9274 here without getting to the next QUIT, it should be based on
9275 hitting ^C twice as in remote_wait. */
9276 if (quit_flag)
9277 {
9278 quit_flag = 0;
9279 interrupt_query ();
9280 }
9281 #endif
9282 }
9283
9284 return 0;
9285 }
9286
9287 /* Come here after finding the start of a frame when we expected an
9288 ack. Do our best to discard the rest of this packet. */
9289
9290 void
9291 remote_target::skip_frame ()
9292 {
9293 int c;
9294
9295 while (1)
9296 {
9297 c = readchar (remote_timeout);
9298 switch (c)
9299 {
9300 case SERIAL_TIMEOUT:
9301 /* Nothing we can do. */
9302 return;
9303 case '#':
9304 /* Discard the two bytes of checksum and stop. */
9305 c = readchar (remote_timeout);
9306 if (c >= 0)
9307 c = readchar (remote_timeout);
9308
9309 return;
9310 case '*': /* Run length encoding. */
9311 /* Discard the repeat count. */
9312 c = readchar (remote_timeout);
9313 if (c < 0)
9314 return;
9315 break;
9316 default:
9317 /* A regular character. */
9318 break;
9319 }
9320 }
9321 }
9322
9323 /* Come here after finding the start of the frame. Collect the rest
9324 into *BUF, verifying the checksum, length, and handling run-length
9325 compression. NUL terminate the buffer. If there is not enough room,
9326 expand *BUF.
9327
9328 Returns -1 on error, number of characters in buffer (ignoring the
9329 trailing NULL) on success. (could be extended to return one of the
9330 SERIAL status indications). */
9331
9332 long
9333 remote_target::read_frame (gdb::char_vector *buf_p)
9334 {
9335 unsigned char csum;
9336 long bc;
9337 int c;
9338 char *buf = buf_p->data ();
9339 struct remote_state *rs = get_remote_state ();
9340
9341 csum = 0;
9342 bc = 0;
9343
9344 while (1)
9345 {
9346 c = readchar (remote_timeout);
9347 switch (c)
9348 {
9349 case SERIAL_TIMEOUT:
9350 if (remote_debug)
9351 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9352 return -1;
9353 case '$':
9354 if (remote_debug)
9355 fputs_filtered ("Saw new packet start in middle of old one\n",
9356 gdb_stdlog);
9357 return -1; /* Start a new packet, count retries. */
9358 case '#':
9359 {
9360 unsigned char pktcsum;
9361 int check_0 = 0;
9362 int check_1 = 0;
9363
9364 buf[bc] = '\0';
9365
9366 check_0 = readchar (remote_timeout);
9367 if (check_0 >= 0)
9368 check_1 = readchar (remote_timeout);
9369
9370 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9371 {
9372 if (remote_debug)
9373 fputs_filtered ("Timeout in checksum, retrying\n",
9374 gdb_stdlog);
9375 return -1;
9376 }
9377 else if (check_0 < 0 || check_1 < 0)
9378 {
9379 if (remote_debug)
9380 fputs_filtered ("Communication error in checksum\n",
9381 gdb_stdlog);
9382 return -1;
9383 }
9384
9385 /* Don't recompute the checksum; with no ack packets we
9386 don't have any way to indicate a packet retransmission
9387 is necessary. */
9388 if (rs->noack_mode)
9389 return bc;
9390
9391 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9392 if (csum == pktcsum)
9393 return bc;
9394
9395 if (remote_debug)
9396 {
9397 std::string str = escape_buffer (buf, bc);
9398
9399 fprintf_unfiltered (gdb_stdlog,
9400 "Bad checksum, sentsum=0x%x, "
9401 "csum=0x%x, buf=%s\n",
9402 pktcsum, csum, str.c_str ());
9403 }
9404 /* Number of characters in buffer ignoring trailing
9405 NULL. */
9406 return -1;
9407 }
9408 case '*': /* Run length encoding. */
9409 {
9410 int repeat;
9411
9412 csum += c;
9413 c = readchar (remote_timeout);
9414 csum += c;
9415 repeat = c - ' ' + 3; /* Compute repeat count. */
9416
9417 /* The character before ``*'' is repeated. */
9418
9419 if (repeat > 0 && repeat <= 255 && bc > 0)
9420 {
9421 if (bc + repeat - 1 >= buf_p->size () - 1)
9422 {
9423 /* Make some more room in the buffer. */
9424 buf_p->resize (buf_p->size () + repeat);
9425 buf = buf_p->data ();
9426 }
9427
9428 memset (&buf[bc], buf[bc - 1], repeat);
9429 bc += repeat;
9430 continue;
9431 }
9432
9433 buf[bc] = '\0';
9434 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9435 return -1;
9436 }
9437 default:
9438 if (bc >= buf_p->size () - 1)
9439 {
9440 /* Make some more room in the buffer. */
9441 buf_p->resize (buf_p->size () * 2);
9442 buf = buf_p->data ();
9443 }
9444
9445 buf[bc++] = c;
9446 csum += c;
9447 continue;
9448 }
9449 }
9450 }
9451
9452 /* Set this to the maximum number of seconds to wait instead of waiting forever
9453 in target_wait(). If this timer times out, then it generates an error and
9454 the command is aborted. This replaces most of the need for timeouts in the
9455 GDB test suite, and makes it possible to distinguish between a hung target
9456 and one with slow communications. */
9457
9458 static int watchdog = 0;
9459 static void
9460 show_watchdog (struct ui_file *file, int from_tty,
9461 struct cmd_list_element *c, const char *value)
9462 {
9463 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9464 }
9465
9466 /* Read a packet from the remote machine, with error checking, and
9467 store it in *BUF. Resize *BUF if necessary to hold the result. If
9468 FOREVER, wait forever rather than timing out; this is used (in
9469 synchronous mode) to wait for a target that is is executing user
9470 code to stop. */
9471 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9472 don't have to change all the calls to getpkt to deal with the
9473 return value, because at the moment I don't know what the right
9474 thing to do it for those. */
9475
9476 void
9477 remote_target::getpkt (gdb::char_vector *buf, int forever)
9478 {
9479 getpkt_sane (buf, forever);
9480 }
9481
9482
9483 /* Read a packet from the remote machine, with error checking, and
9484 store it in *BUF. Resize *BUF if necessary to hold the result. If
9485 FOREVER, wait forever rather than timing out; this is used (in
9486 synchronous mode) to wait for a target that is is executing user
9487 code to stop. If FOREVER == 0, this function is allowed to time
9488 out gracefully and return an indication of this to the caller.
9489 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9490 consider receiving a notification enough reason to return to the
9491 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9492 holds a notification or not (a regular packet). */
9493
9494 int
9495 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9496 int forever, int expecting_notif,
9497 int *is_notif)
9498 {
9499 struct remote_state *rs = get_remote_state ();
9500 int c;
9501 int tries;
9502 int timeout;
9503 int val = -1;
9504
9505 /* We're reading a new response. Make sure we don't look at a
9506 previously cached response. */
9507 rs->cached_wait_status = 0;
9508
9509 strcpy (buf->data (), "timeout");
9510
9511 if (forever)
9512 timeout = watchdog > 0 ? watchdog : -1;
9513 else if (expecting_notif)
9514 timeout = 0; /* There should already be a char in the buffer. If
9515 not, bail out. */
9516 else
9517 timeout = remote_timeout;
9518
9519 #define MAX_TRIES 3
9520
9521 /* Process any number of notifications, and then return when
9522 we get a packet. */
9523 for (;;)
9524 {
9525 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9526 times. */
9527 for (tries = 1; tries <= MAX_TRIES; tries++)
9528 {
9529 /* This can loop forever if the remote side sends us
9530 characters continuously, but if it pauses, we'll get
9531 SERIAL_TIMEOUT from readchar because of timeout. Then
9532 we'll count that as a retry.
9533
9534 Note that even when forever is set, we will only wait
9535 forever prior to the start of a packet. After that, we
9536 expect characters to arrive at a brisk pace. They should
9537 show up within remote_timeout intervals. */
9538 do
9539 c = readchar (timeout);
9540 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9541
9542 if (c == SERIAL_TIMEOUT)
9543 {
9544 if (expecting_notif)
9545 return -1; /* Don't complain, it's normal to not get
9546 anything in this case. */
9547
9548 if (forever) /* Watchdog went off? Kill the target. */
9549 {
9550 remote_unpush_target ();
9551 throw_error (TARGET_CLOSE_ERROR,
9552 _("Watchdog timeout has expired. "
9553 "Target detached."));
9554 }
9555 if (remote_debug)
9556 fputs_filtered ("Timed out.\n", gdb_stdlog);
9557 }
9558 else
9559 {
9560 /* We've found the start of a packet or notification.
9561 Now collect the data. */
9562 val = read_frame (buf);
9563 if (val >= 0)
9564 break;
9565 }
9566
9567 remote_serial_write ("-", 1);
9568 }
9569
9570 if (tries > MAX_TRIES)
9571 {
9572 /* We have tried hard enough, and just can't receive the
9573 packet/notification. Give up. */
9574 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9575
9576 /* Skip the ack char if we're in no-ack mode. */
9577 if (!rs->noack_mode)
9578 remote_serial_write ("+", 1);
9579 return -1;
9580 }
9581
9582 /* If we got an ordinary packet, return that to our caller. */
9583 if (c == '$')
9584 {
9585 if (remote_debug)
9586 {
9587 std::string str
9588 = escape_buffer (buf->data (),
9589 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9590
9591 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9592 str.c_str ());
9593
9594 if (val > REMOTE_DEBUG_MAX_CHAR)
9595 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9596 val - REMOTE_DEBUG_MAX_CHAR);
9597
9598 fprintf_unfiltered (gdb_stdlog, "\n");
9599 }
9600
9601 /* Skip the ack char if we're in no-ack mode. */
9602 if (!rs->noack_mode)
9603 remote_serial_write ("+", 1);
9604 if (is_notif != NULL)
9605 *is_notif = 0;
9606 return val;
9607 }
9608
9609 /* If we got a notification, handle it, and go back to looking
9610 for a packet. */
9611 else
9612 {
9613 gdb_assert (c == '%');
9614
9615 if (remote_debug)
9616 {
9617 std::string str = escape_buffer (buf->data (), val);
9618
9619 fprintf_unfiltered (gdb_stdlog,
9620 " Notification received: %s\n",
9621 str.c_str ());
9622 }
9623 if (is_notif != NULL)
9624 *is_notif = 1;
9625
9626 handle_notification (rs->notif_state, buf->data ());
9627
9628 /* Notifications require no acknowledgement. */
9629
9630 if (expecting_notif)
9631 return val;
9632 }
9633 }
9634 }
9635
9636 int
9637 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9638 {
9639 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9640 }
9641
9642 int
9643 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9644 int *is_notif)
9645 {
9646 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9647 }
9648
9649 /* Kill any new fork children of process PID that haven't been
9650 processed by follow_fork. */
9651
9652 void
9653 remote_target::kill_new_fork_children (int pid)
9654 {
9655 remote_state *rs = get_remote_state ();
9656 struct notif_client *notif = &notif_client_stop;
9657
9658 /* Kill the fork child threads of any threads in process PID
9659 that are stopped at a fork event. */
9660 for (thread_info *thread : all_non_exited_threads ())
9661 {
9662 struct target_waitstatus *ws = &thread->pending_follow;
9663
9664 if (is_pending_fork_parent (ws, pid, thread->ptid))
9665 {
9666 int child_pid = ws->value.related_pid.pid ();
9667 int res;
9668
9669 res = remote_vkill (child_pid);
9670 if (res != 0)
9671 error (_("Can't kill fork child process %d"), child_pid);
9672 }
9673 }
9674
9675 /* Check for any pending fork events (not reported or processed yet)
9676 in process PID and kill those fork child threads as well. */
9677 remote_notif_get_pending_events (notif);
9678 for (auto &event : rs->stop_reply_queue)
9679 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9680 {
9681 int child_pid = event->ws.value.related_pid.pid ();
9682 int res;
9683
9684 res = remote_vkill (child_pid);
9685 if (res != 0)
9686 error (_("Can't kill fork child process %d"), child_pid);
9687 }
9688 }
9689
9690 \f
9691 /* Target hook to kill the current inferior. */
9692
9693 void
9694 remote_target::kill ()
9695 {
9696 int res = -1;
9697 int pid = inferior_ptid.pid ();
9698 struct remote_state *rs = get_remote_state ();
9699
9700 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9701 {
9702 /* If we're stopped while forking and we haven't followed yet,
9703 kill the child task. We need to do this before killing the
9704 parent task because if this is a vfork then the parent will
9705 be sleeping. */
9706 kill_new_fork_children (pid);
9707
9708 res = remote_vkill (pid);
9709 if (res == 0)
9710 {
9711 target_mourn_inferior (inferior_ptid);
9712 return;
9713 }
9714 }
9715
9716 /* If we are in 'target remote' mode and we are killing the only
9717 inferior, then we will tell gdbserver to exit and unpush the
9718 target. */
9719 if (res == -1 && !remote_multi_process_p (rs)
9720 && number_of_live_inferiors () == 1)
9721 {
9722 remote_kill_k ();
9723
9724 /* We've killed the remote end, we get to mourn it. If we are
9725 not in extended mode, mourning the inferior also unpushes
9726 remote_ops from the target stack, which closes the remote
9727 connection. */
9728 target_mourn_inferior (inferior_ptid);
9729
9730 return;
9731 }
9732
9733 error (_("Can't kill process"));
9734 }
9735
9736 /* Send a kill request to the target using the 'vKill' packet. */
9737
9738 int
9739 remote_target::remote_vkill (int pid)
9740 {
9741 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9742 return -1;
9743
9744 remote_state *rs = get_remote_state ();
9745
9746 /* Tell the remote target to detach. */
9747 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9748 putpkt (rs->buf);
9749 getpkt (&rs->buf, 0);
9750
9751 switch (packet_ok (rs->buf,
9752 &remote_protocol_packets[PACKET_vKill]))
9753 {
9754 case PACKET_OK:
9755 return 0;
9756 case PACKET_ERROR:
9757 return 1;
9758 case PACKET_UNKNOWN:
9759 return -1;
9760 default:
9761 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9762 }
9763 }
9764
9765 /* Send a kill request to the target using the 'k' packet. */
9766
9767 void
9768 remote_target::remote_kill_k ()
9769 {
9770 /* Catch errors so the user can quit from gdb even when we
9771 aren't on speaking terms with the remote system. */
9772 try
9773 {
9774 putpkt ("k");
9775 }
9776 catch (const gdb_exception_error &ex)
9777 {
9778 if (ex.error == TARGET_CLOSE_ERROR)
9779 {
9780 /* If we got an (EOF) error that caused the target
9781 to go away, then we're done, that's what we wanted.
9782 "k" is susceptible to cause a premature EOF, given
9783 that the remote server isn't actually required to
9784 reply to "k", and it can happen that it doesn't
9785 even get to reply ACK to the "k". */
9786 return;
9787 }
9788
9789 /* Otherwise, something went wrong. We didn't actually kill
9790 the target. Just propagate the exception, and let the
9791 user or higher layers decide what to do. */
9792 throw;
9793 }
9794 }
9795
9796 void
9797 remote_target::mourn_inferior ()
9798 {
9799 struct remote_state *rs = get_remote_state ();
9800
9801 /* We're no longer interested in notification events of an inferior
9802 that exited or was killed/detached. */
9803 discard_pending_stop_replies (current_inferior ());
9804
9805 /* In 'target remote' mode with one inferior, we close the connection. */
9806 if (!rs->extended && number_of_live_inferiors () <= 1)
9807 {
9808 unpush_target (this);
9809
9810 /* remote_close takes care of doing most of the clean up. */
9811 generic_mourn_inferior ();
9812 return;
9813 }
9814
9815 /* In case we got here due to an error, but we're going to stay
9816 connected. */
9817 rs->waiting_for_stop_reply = 0;
9818
9819 /* If the current general thread belonged to the process we just
9820 detached from or has exited, the remote side current general
9821 thread becomes undefined. Considering a case like this:
9822
9823 - We just got here due to a detach.
9824 - The process that we're detaching from happens to immediately
9825 report a global breakpoint being hit in non-stop mode, in the
9826 same thread we had selected before.
9827 - GDB attaches to this process again.
9828 - This event happens to be the next event we handle.
9829
9830 GDB would consider that the current general thread didn't need to
9831 be set on the stub side (with Hg), since for all it knew,
9832 GENERAL_THREAD hadn't changed.
9833
9834 Notice that although in all-stop mode, the remote server always
9835 sets the current thread to the thread reporting the stop event,
9836 that doesn't happen in non-stop mode; in non-stop, the stub *must
9837 not* change the current thread when reporting a breakpoint hit,
9838 due to the decoupling of event reporting and event handling.
9839
9840 To keep things simple, we always invalidate our notion of the
9841 current thread. */
9842 record_currthread (rs, minus_one_ptid);
9843
9844 /* Call common code to mark the inferior as not running. */
9845 generic_mourn_inferior ();
9846
9847 if (!have_inferiors ())
9848 {
9849 if (!remote_multi_process_p (rs))
9850 {
9851 /* Check whether the target is running now - some remote stubs
9852 automatically restart after kill. */
9853 putpkt ("?");
9854 getpkt (&rs->buf, 0);
9855
9856 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9857 {
9858 /* Assume that the target has been restarted. Set
9859 inferior_ptid so that bits of core GDB realizes
9860 there's something here, e.g., so that the user can
9861 say "kill" again. */
9862 inferior_ptid = magic_null_ptid;
9863 }
9864 }
9865 }
9866 }
9867
9868 bool
9869 extended_remote_target::supports_disable_randomization ()
9870 {
9871 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9872 }
9873
9874 void
9875 remote_target::extended_remote_disable_randomization (int val)
9876 {
9877 struct remote_state *rs = get_remote_state ();
9878 char *reply;
9879
9880 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9881 "QDisableRandomization:%x", val);
9882 putpkt (rs->buf);
9883 reply = remote_get_noisy_reply ();
9884 if (*reply == '\0')
9885 error (_("Target does not support QDisableRandomization."));
9886 if (strcmp (reply, "OK") != 0)
9887 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9888 }
9889
9890 int
9891 remote_target::extended_remote_run (const std::string &args)
9892 {
9893 struct remote_state *rs = get_remote_state ();
9894 int len;
9895 const char *remote_exec_file = get_remote_exec_file ();
9896
9897 /* If the user has disabled vRun support, or we have detected that
9898 support is not available, do not try it. */
9899 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9900 return -1;
9901
9902 strcpy (rs->buf.data (), "vRun;");
9903 len = strlen (rs->buf.data ());
9904
9905 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9906 error (_("Remote file name too long for run packet"));
9907 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9908 strlen (remote_exec_file));
9909
9910 if (!args.empty ())
9911 {
9912 int i;
9913
9914 gdb_argv argv (args.c_str ());
9915 for (i = 0; argv[i] != NULL; i++)
9916 {
9917 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9918 error (_("Argument list too long for run packet"));
9919 rs->buf[len++] = ';';
9920 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9921 strlen (argv[i]));
9922 }
9923 }
9924
9925 rs->buf[len++] = '\0';
9926
9927 putpkt (rs->buf);
9928 getpkt (&rs->buf, 0);
9929
9930 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9931 {
9932 case PACKET_OK:
9933 /* We have a wait response. All is well. */
9934 return 0;
9935 case PACKET_UNKNOWN:
9936 return -1;
9937 case PACKET_ERROR:
9938 if (remote_exec_file[0] == '\0')
9939 error (_("Running the default executable on the remote target failed; "
9940 "try \"set remote exec-file\"?"));
9941 else
9942 error (_("Running \"%s\" on the remote target failed"),
9943 remote_exec_file);
9944 default:
9945 gdb_assert_not_reached (_("bad switch"));
9946 }
9947 }
9948
9949 /* Helper function to send set/unset environment packets. ACTION is
9950 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9951 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9952 sent. */
9953
9954 void
9955 remote_target::send_environment_packet (const char *action,
9956 const char *packet,
9957 const char *value)
9958 {
9959 remote_state *rs = get_remote_state ();
9960
9961 /* Convert the environment variable to an hex string, which
9962 is the best format to be transmitted over the wire. */
9963 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9964 strlen (value));
9965
9966 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9967 "%s:%s", packet, encoded_value.c_str ());
9968
9969 putpkt (rs->buf);
9970 getpkt (&rs->buf, 0);
9971 if (strcmp (rs->buf.data (), "OK") != 0)
9972 warning (_("Unable to %s environment variable '%s' on remote."),
9973 action, value);
9974 }
9975
9976 /* Helper function to handle the QEnvironment* packets. */
9977
9978 void
9979 remote_target::extended_remote_environment_support ()
9980 {
9981 remote_state *rs = get_remote_state ();
9982
9983 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9984 {
9985 putpkt ("QEnvironmentReset");
9986 getpkt (&rs->buf, 0);
9987 if (strcmp (rs->buf.data (), "OK") != 0)
9988 warning (_("Unable to reset environment on remote."));
9989 }
9990
9991 gdb_environ *e = &current_inferior ()->environment;
9992
9993 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9994 for (const std::string &el : e->user_set_env ())
9995 send_environment_packet ("set", "QEnvironmentHexEncoded",
9996 el.c_str ());
9997
9998 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9999 for (const std::string &el : e->user_unset_env ())
10000 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10001 }
10002
10003 /* Helper function to set the current working directory for the
10004 inferior in the remote target. */
10005
10006 void
10007 remote_target::extended_remote_set_inferior_cwd ()
10008 {
10009 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10010 {
10011 const char *inferior_cwd = get_inferior_cwd ();
10012 remote_state *rs = get_remote_state ();
10013
10014 if (inferior_cwd != NULL)
10015 {
10016 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10017 strlen (inferior_cwd));
10018
10019 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10020 "QSetWorkingDir:%s", hexpath.c_str ());
10021 }
10022 else
10023 {
10024 /* An empty inferior_cwd means that the user wants us to
10025 reset the remote server's inferior's cwd. */
10026 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10027 "QSetWorkingDir:");
10028 }
10029
10030 putpkt (rs->buf);
10031 getpkt (&rs->buf, 0);
10032 if (packet_ok (rs->buf,
10033 &remote_protocol_packets[PACKET_QSetWorkingDir])
10034 != PACKET_OK)
10035 error (_("\
10036 Remote replied unexpectedly while setting the inferior's working\n\
10037 directory: %s"),
10038 rs->buf.data ());
10039
10040 }
10041 }
10042
10043 /* In the extended protocol we want to be able to do things like
10044 "run" and have them basically work as expected. So we need
10045 a special create_inferior function. We support changing the
10046 executable file and the command line arguments, but not the
10047 environment. */
10048
10049 void
10050 extended_remote_target::create_inferior (const char *exec_file,
10051 const std::string &args,
10052 char **env, int from_tty)
10053 {
10054 int run_worked;
10055 char *stop_reply;
10056 struct remote_state *rs = get_remote_state ();
10057 const char *remote_exec_file = get_remote_exec_file ();
10058
10059 /* If running asynchronously, register the target file descriptor
10060 with the event loop. */
10061 if (target_can_async_p ())
10062 target_async (1);
10063
10064 /* Disable address space randomization if requested (and supported). */
10065 if (supports_disable_randomization ())
10066 extended_remote_disable_randomization (disable_randomization);
10067
10068 /* If startup-with-shell is on, we inform gdbserver to start the
10069 remote inferior using a shell. */
10070 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10071 {
10072 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10073 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10074 putpkt (rs->buf);
10075 getpkt (&rs->buf, 0);
10076 if (strcmp (rs->buf.data (), "OK") != 0)
10077 error (_("\
10078 Remote replied unexpectedly while setting startup-with-shell: %s"),
10079 rs->buf.data ());
10080 }
10081
10082 extended_remote_environment_support ();
10083
10084 extended_remote_set_inferior_cwd ();
10085
10086 /* Now restart the remote server. */
10087 run_worked = extended_remote_run (args) != -1;
10088 if (!run_worked)
10089 {
10090 /* vRun was not supported. Fail if we need it to do what the
10091 user requested. */
10092 if (remote_exec_file[0])
10093 error (_("Remote target does not support \"set remote exec-file\""));
10094 if (!args.empty ())
10095 error (_("Remote target does not support \"set args\" or run ARGS"));
10096
10097 /* Fall back to "R". */
10098 extended_remote_restart ();
10099 }
10100
10101 /* vRun's success return is a stop reply. */
10102 stop_reply = run_worked ? rs->buf.data () : NULL;
10103 add_current_inferior_and_thread (stop_reply);
10104
10105 /* Get updated offsets, if the stub uses qOffsets. */
10106 get_offsets ();
10107 }
10108 \f
10109
10110 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10111 the list of conditions (in agent expression bytecode format), if any, the
10112 target needs to evaluate. The output is placed into the packet buffer
10113 started from BUF and ended at BUF_END. */
10114
10115 static int
10116 remote_add_target_side_condition (struct gdbarch *gdbarch,
10117 struct bp_target_info *bp_tgt, char *buf,
10118 char *buf_end)
10119 {
10120 if (bp_tgt->conditions.empty ())
10121 return 0;
10122
10123 buf += strlen (buf);
10124 xsnprintf (buf, buf_end - buf, "%s", ";");
10125 buf++;
10126
10127 /* Send conditions to the target. */
10128 for (agent_expr *aexpr : bp_tgt->conditions)
10129 {
10130 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10131 buf += strlen (buf);
10132 for (int i = 0; i < aexpr->len; ++i)
10133 buf = pack_hex_byte (buf, aexpr->buf[i]);
10134 *buf = '\0';
10135 }
10136 return 0;
10137 }
10138
10139 static void
10140 remote_add_target_side_commands (struct gdbarch *gdbarch,
10141 struct bp_target_info *bp_tgt, char *buf)
10142 {
10143 if (bp_tgt->tcommands.empty ())
10144 return;
10145
10146 buf += strlen (buf);
10147
10148 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10149 buf += strlen (buf);
10150
10151 /* Concatenate all the agent expressions that are commands into the
10152 cmds parameter. */
10153 for (agent_expr *aexpr : bp_tgt->tcommands)
10154 {
10155 sprintf (buf, "X%x,", aexpr->len);
10156 buf += strlen (buf);
10157 for (int i = 0; i < aexpr->len; ++i)
10158 buf = pack_hex_byte (buf, aexpr->buf[i]);
10159 *buf = '\0';
10160 }
10161 }
10162
10163 /* Insert a breakpoint. On targets that have software breakpoint
10164 support, we ask the remote target to do the work; on targets
10165 which don't, we insert a traditional memory breakpoint. */
10166
10167 int
10168 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10169 struct bp_target_info *bp_tgt)
10170 {
10171 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10172 If it succeeds, then set the support to PACKET_ENABLE. If it
10173 fails, and the user has explicitly requested the Z support then
10174 report an error, otherwise, mark it disabled and go on. */
10175
10176 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10177 {
10178 CORE_ADDR addr = bp_tgt->reqstd_address;
10179 struct remote_state *rs;
10180 char *p, *endbuf;
10181
10182 /* Make sure the remote is pointing at the right process, if
10183 necessary. */
10184 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10185 set_general_process ();
10186
10187 rs = get_remote_state ();
10188 p = rs->buf.data ();
10189 endbuf = p + get_remote_packet_size ();
10190
10191 *(p++) = 'Z';
10192 *(p++) = '0';
10193 *(p++) = ',';
10194 addr = (ULONGEST) remote_address_masked (addr);
10195 p += hexnumstr (p, addr);
10196 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10197
10198 if (supports_evaluation_of_breakpoint_conditions ())
10199 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10200
10201 if (can_run_breakpoint_commands ())
10202 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10203
10204 putpkt (rs->buf);
10205 getpkt (&rs->buf, 0);
10206
10207 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10208 {
10209 case PACKET_ERROR:
10210 return -1;
10211 case PACKET_OK:
10212 return 0;
10213 case PACKET_UNKNOWN:
10214 break;
10215 }
10216 }
10217
10218 /* If this breakpoint has target-side commands but this stub doesn't
10219 support Z0 packets, throw error. */
10220 if (!bp_tgt->tcommands.empty ())
10221 throw_error (NOT_SUPPORTED_ERROR, _("\
10222 Target doesn't support breakpoints that have target side commands."));
10223
10224 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10225 }
10226
10227 int
10228 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10229 struct bp_target_info *bp_tgt,
10230 enum remove_bp_reason reason)
10231 {
10232 CORE_ADDR addr = bp_tgt->placed_address;
10233 struct remote_state *rs = get_remote_state ();
10234
10235 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10236 {
10237 char *p = rs->buf.data ();
10238 char *endbuf = p + get_remote_packet_size ();
10239
10240 /* Make sure the remote is pointing at the right process, if
10241 necessary. */
10242 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10243 set_general_process ();
10244
10245 *(p++) = 'z';
10246 *(p++) = '0';
10247 *(p++) = ',';
10248
10249 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10250 p += hexnumstr (p, addr);
10251 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10252
10253 putpkt (rs->buf);
10254 getpkt (&rs->buf, 0);
10255
10256 return (rs->buf[0] == 'E');
10257 }
10258
10259 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10260 }
10261
10262 static enum Z_packet_type
10263 watchpoint_to_Z_packet (int type)
10264 {
10265 switch (type)
10266 {
10267 case hw_write:
10268 return Z_PACKET_WRITE_WP;
10269 break;
10270 case hw_read:
10271 return Z_PACKET_READ_WP;
10272 break;
10273 case hw_access:
10274 return Z_PACKET_ACCESS_WP;
10275 break;
10276 default:
10277 internal_error (__FILE__, __LINE__,
10278 _("hw_bp_to_z: bad watchpoint type %d"), type);
10279 }
10280 }
10281
10282 int
10283 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10284 enum target_hw_bp_type type, struct expression *cond)
10285 {
10286 struct remote_state *rs = get_remote_state ();
10287 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10288 char *p;
10289 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10290
10291 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10292 return 1;
10293
10294 /* Make sure the remote is pointing at the right process, if
10295 necessary. */
10296 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10297 set_general_process ();
10298
10299 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10300 p = strchr (rs->buf.data (), '\0');
10301 addr = remote_address_masked (addr);
10302 p += hexnumstr (p, (ULONGEST) addr);
10303 xsnprintf (p, endbuf - p, ",%x", len);
10304
10305 putpkt (rs->buf);
10306 getpkt (&rs->buf, 0);
10307
10308 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10309 {
10310 case PACKET_ERROR:
10311 return -1;
10312 case PACKET_UNKNOWN:
10313 return 1;
10314 case PACKET_OK:
10315 return 0;
10316 }
10317 internal_error (__FILE__, __LINE__,
10318 _("remote_insert_watchpoint: reached end of function"));
10319 }
10320
10321 bool
10322 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10323 CORE_ADDR start, int length)
10324 {
10325 CORE_ADDR diff = remote_address_masked (addr - start);
10326
10327 return diff < length;
10328 }
10329
10330
10331 int
10332 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10333 enum target_hw_bp_type type, struct expression *cond)
10334 {
10335 struct remote_state *rs = get_remote_state ();
10336 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10337 char *p;
10338 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10339
10340 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10341 return -1;
10342
10343 /* Make sure the remote is pointing at the right process, if
10344 necessary. */
10345 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10346 set_general_process ();
10347
10348 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10349 p = strchr (rs->buf.data (), '\0');
10350 addr = remote_address_masked (addr);
10351 p += hexnumstr (p, (ULONGEST) addr);
10352 xsnprintf (p, endbuf - p, ",%x", len);
10353 putpkt (rs->buf);
10354 getpkt (&rs->buf, 0);
10355
10356 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10357 {
10358 case PACKET_ERROR:
10359 case PACKET_UNKNOWN:
10360 return -1;
10361 case PACKET_OK:
10362 return 0;
10363 }
10364 internal_error (__FILE__, __LINE__,
10365 _("remote_remove_watchpoint: reached end of function"));
10366 }
10367
10368
10369 static int remote_hw_watchpoint_limit = -1;
10370 static int remote_hw_watchpoint_length_limit = -1;
10371 static int remote_hw_breakpoint_limit = -1;
10372
10373 int
10374 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10375 {
10376 if (remote_hw_watchpoint_length_limit == 0)
10377 return 0;
10378 else if (remote_hw_watchpoint_length_limit < 0)
10379 return 1;
10380 else if (len <= remote_hw_watchpoint_length_limit)
10381 return 1;
10382 else
10383 return 0;
10384 }
10385
10386 int
10387 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10388 {
10389 if (type == bp_hardware_breakpoint)
10390 {
10391 if (remote_hw_breakpoint_limit == 0)
10392 return 0;
10393 else if (remote_hw_breakpoint_limit < 0)
10394 return 1;
10395 else if (cnt <= remote_hw_breakpoint_limit)
10396 return 1;
10397 }
10398 else
10399 {
10400 if (remote_hw_watchpoint_limit == 0)
10401 return 0;
10402 else if (remote_hw_watchpoint_limit < 0)
10403 return 1;
10404 else if (ot)
10405 return -1;
10406 else if (cnt <= remote_hw_watchpoint_limit)
10407 return 1;
10408 }
10409 return -1;
10410 }
10411
10412 /* The to_stopped_by_sw_breakpoint method of target remote. */
10413
10414 bool
10415 remote_target::stopped_by_sw_breakpoint ()
10416 {
10417 struct thread_info *thread = inferior_thread ();
10418
10419 return (thread->priv != NULL
10420 && (get_remote_thread_info (thread)->stop_reason
10421 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10422 }
10423
10424 /* The to_supports_stopped_by_sw_breakpoint method of target
10425 remote. */
10426
10427 bool
10428 remote_target::supports_stopped_by_sw_breakpoint ()
10429 {
10430 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10431 }
10432
10433 /* The to_stopped_by_hw_breakpoint method of target remote. */
10434
10435 bool
10436 remote_target::stopped_by_hw_breakpoint ()
10437 {
10438 struct thread_info *thread = inferior_thread ();
10439
10440 return (thread->priv != NULL
10441 && (get_remote_thread_info (thread)->stop_reason
10442 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10443 }
10444
10445 /* The to_supports_stopped_by_hw_breakpoint method of target
10446 remote. */
10447
10448 bool
10449 remote_target::supports_stopped_by_hw_breakpoint ()
10450 {
10451 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10452 }
10453
10454 bool
10455 remote_target::stopped_by_watchpoint ()
10456 {
10457 struct thread_info *thread = inferior_thread ();
10458
10459 return (thread->priv != NULL
10460 && (get_remote_thread_info (thread)->stop_reason
10461 == TARGET_STOPPED_BY_WATCHPOINT));
10462 }
10463
10464 bool
10465 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10466 {
10467 struct thread_info *thread = inferior_thread ();
10468
10469 if (thread->priv != NULL
10470 && (get_remote_thread_info (thread)->stop_reason
10471 == TARGET_STOPPED_BY_WATCHPOINT))
10472 {
10473 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10474 return true;
10475 }
10476
10477 return false;
10478 }
10479
10480
10481 int
10482 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10483 struct bp_target_info *bp_tgt)
10484 {
10485 CORE_ADDR addr = bp_tgt->reqstd_address;
10486 struct remote_state *rs;
10487 char *p, *endbuf;
10488 char *message;
10489
10490 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10491 return -1;
10492
10493 /* Make sure the remote is pointing at the right process, if
10494 necessary. */
10495 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10496 set_general_process ();
10497
10498 rs = get_remote_state ();
10499 p = rs->buf.data ();
10500 endbuf = p + get_remote_packet_size ();
10501
10502 *(p++) = 'Z';
10503 *(p++) = '1';
10504 *(p++) = ',';
10505
10506 addr = remote_address_masked (addr);
10507 p += hexnumstr (p, (ULONGEST) addr);
10508 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10509
10510 if (supports_evaluation_of_breakpoint_conditions ())
10511 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10512
10513 if (can_run_breakpoint_commands ())
10514 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10515
10516 putpkt (rs->buf);
10517 getpkt (&rs->buf, 0);
10518
10519 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10520 {
10521 case PACKET_ERROR:
10522 if (rs->buf[1] == '.')
10523 {
10524 message = strchr (&rs->buf[2], '.');
10525 if (message)
10526 error (_("Remote failure reply: %s"), message + 1);
10527 }
10528 return -1;
10529 case PACKET_UNKNOWN:
10530 return -1;
10531 case PACKET_OK:
10532 return 0;
10533 }
10534 internal_error (__FILE__, __LINE__,
10535 _("remote_insert_hw_breakpoint: reached end of function"));
10536 }
10537
10538
10539 int
10540 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10541 struct bp_target_info *bp_tgt)
10542 {
10543 CORE_ADDR addr;
10544 struct remote_state *rs = get_remote_state ();
10545 char *p = rs->buf.data ();
10546 char *endbuf = p + get_remote_packet_size ();
10547
10548 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10549 return -1;
10550
10551 /* Make sure the remote is pointing at the right process, if
10552 necessary. */
10553 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10554 set_general_process ();
10555
10556 *(p++) = 'z';
10557 *(p++) = '1';
10558 *(p++) = ',';
10559
10560 addr = remote_address_masked (bp_tgt->placed_address);
10561 p += hexnumstr (p, (ULONGEST) addr);
10562 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10563
10564 putpkt (rs->buf);
10565 getpkt (&rs->buf, 0);
10566
10567 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10568 {
10569 case PACKET_ERROR:
10570 case PACKET_UNKNOWN:
10571 return -1;
10572 case PACKET_OK:
10573 return 0;
10574 }
10575 internal_error (__FILE__, __LINE__,
10576 _("remote_remove_hw_breakpoint: reached end of function"));
10577 }
10578
10579 /* Verify memory using the "qCRC:" request. */
10580
10581 int
10582 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10583 {
10584 struct remote_state *rs = get_remote_state ();
10585 unsigned long host_crc, target_crc;
10586 char *tmp;
10587
10588 /* It doesn't make sense to use qCRC if the remote target is
10589 connected but not running. */
10590 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10591 {
10592 enum packet_result result;
10593
10594 /* Make sure the remote is pointing at the right process. */
10595 set_general_process ();
10596
10597 /* FIXME: assumes lma can fit into long. */
10598 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10599 (long) lma, (long) size);
10600 putpkt (rs->buf);
10601
10602 /* Be clever; compute the host_crc before waiting for target
10603 reply. */
10604 host_crc = xcrc32 (data, size, 0xffffffff);
10605
10606 getpkt (&rs->buf, 0);
10607
10608 result = packet_ok (rs->buf,
10609 &remote_protocol_packets[PACKET_qCRC]);
10610 if (result == PACKET_ERROR)
10611 return -1;
10612 else if (result == PACKET_OK)
10613 {
10614 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10615 target_crc = target_crc * 16 + fromhex (*tmp);
10616
10617 return (host_crc == target_crc);
10618 }
10619 }
10620
10621 return simple_verify_memory (this, data, lma, size);
10622 }
10623
10624 /* compare-sections command
10625
10626 With no arguments, compares each loadable section in the exec bfd
10627 with the same memory range on the target, and reports mismatches.
10628 Useful for verifying the image on the target against the exec file. */
10629
10630 static void
10631 compare_sections_command (const char *args, int from_tty)
10632 {
10633 asection *s;
10634 const char *sectname;
10635 bfd_size_type size;
10636 bfd_vma lma;
10637 int matched = 0;
10638 int mismatched = 0;
10639 int res;
10640 int read_only = 0;
10641
10642 if (!exec_bfd)
10643 error (_("command cannot be used without an exec file"));
10644
10645 if (args != NULL && strcmp (args, "-r") == 0)
10646 {
10647 read_only = 1;
10648 args = NULL;
10649 }
10650
10651 for (s = exec_bfd->sections; s; s = s->next)
10652 {
10653 if (!(s->flags & SEC_LOAD))
10654 continue; /* Skip non-loadable section. */
10655
10656 if (read_only && (s->flags & SEC_READONLY) == 0)
10657 continue; /* Skip writeable sections */
10658
10659 size = bfd_get_section_size (s);
10660 if (size == 0)
10661 continue; /* Skip zero-length section. */
10662
10663 sectname = bfd_get_section_name (exec_bfd, s);
10664 if (args && strcmp (args, sectname) != 0)
10665 continue; /* Not the section selected by user. */
10666
10667 matched = 1; /* Do this section. */
10668 lma = s->lma;
10669
10670 gdb::byte_vector sectdata (size);
10671 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10672
10673 res = target_verify_memory (sectdata.data (), lma, size);
10674
10675 if (res == -1)
10676 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10677 paddress (target_gdbarch (), lma),
10678 paddress (target_gdbarch (), lma + size));
10679
10680 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10681 paddress (target_gdbarch (), lma),
10682 paddress (target_gdbarch (), lma + size));
10683 if (res)
10684 printf_filtered ("matched.\n");
10685 else
10686 {
10687 printf_filtered ("MIS-MATCHED!\n");
10688 mismatched++;
10689 }
10690 }
10691 if (mismatched > 0)
10692 warning (_("One or more sections of the target image does not match\n\
10693 the loaded file\n"));
10694 if (args && !matched)
10695 printf_filtered (_("No loaded section named '%s'.\n"), args);
10696 }
10697
10698 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10699 into remote target. The number of bytes written to the remote
10700 target is returned, or -1 for error. */
10701
10702 target_xfer_status
10703 remote_target::remote_write_qxfer (const char *object_name,
10704 const char *annex, const gdb_byte *writebuf,
10705 ULONGEST offset, LONGEST len,
10706 ULONGEST *xfered_len,
10707 struct packet_config *packet)
10708 {
10709 int i, buf_len;
10710 ULONGEST n;
10711 struct remote_state *rs = get_remote_state ();
10712 int max_size = get_memory_write_packet_size ();
10713
10714 if (packet_config_support (packet) == PACKET_DISABLE)
10715 return TARGET_XFER_E_IO;
10716
10717 /* Insert header. */
10718 i = snprintf (rs->buf.data (), max_size,
10719 "qXfer:%s:write:%s:%s:",
10720 object_name, annex ? annex : "",
10721 phex_nz (offset, sizeof offset));
10722 max_size -= (i + 1);
10723
10724 /* Escape as much data as fits into rs->buf. */
10725 buf_len = remote_escape_output
10726 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10727
10728 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10729 || getpkt_sane (&rs->buf, 0) < 0
10730 || packet_ok (rs->buf, packet) != PACKET_OK)
10731 return TARGET_XFER_E_IO;
10732
10733 unpack_varlen_hex (rs->buf.data (), &n);
10734
10735 *xfered_len = n;
10736 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10737 }
10738
10739 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10740 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10741 number of bytes read is returned, or 0 for EOF, or -1 for error.
10742 The number of bytes read may be less than LEN without indicating an
10743 EOF. PACKET is checked and updated to indicate whether the remote
10744 target supports this object. */
10745
10746 target_xfer_status
10747 remote_target::remote_read_qxfer (const char *object_name,
10748 const char *annex,
10749 gdb_byte *readbuf, ULONGEST offset,
10750 LONGEST len,
10751 ULONGEST *xfered_len,
10752 struct packet_config *packet)
10753 {
10754 struct remote_state *rs = get_remote_state ();
10755 LONGEST i, n, packet_len;
10756
10757 if (packet_config_support (packet) == PACKET_DISABLE)
10758 return TARGET_XFER_E_IO;
10759
10760 /* Check whether we've cached an end-of-object packet that matches
10761 this request. */
10762 if (rs->finished_object)
10763 {
10764 if (strcmp (object_name, rs->finished_object) == 0
10765 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10766 && offset == rs->finished_offset)
10767 return TARGET_XFER_EOF;
10768
10769
10770 /* Otherwise, we're now reading something different. Discard
10771 the cache. */
10772 xfree (rs->finished_object);
10773 xfree (rs->finished_annex);
10774 rs->finished_object = NULL;
10775 rs->finished_annex = NULL;
10776 }
10777
10778 /* Request only enough to fit in a single packet. The actual data
10779 may not, since we don't know how much of it will need to be escaped;
10780 the target is free to respond with slightly less data. We subtract
10781 five to account for the response type and the protocol frame. */
10782 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10783 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10784 "qXfer:%s:read:%s:%s,%s",
10785 object_name, annex ? annex : "",
10786 phex_nz (offset, sizeof offset),
10787 phex_nz (n, sizeof n));
10788 i = putpkt (rs->buf);
10789 if (i < 0)
10790 return TARGET_XFER_E_IO;
10791
10792 rs->buf[0] = '\0';
10793 packet_len = getpkt_sane (&rs->buf, 0);
10794 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10795 return TARGET_XFER_E_IO;
10796
10797 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10798 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10799
10800 /* 'm' means there is (or at least might be) more data after this
10801 batch. That does not make sense unless there's at least one byte
10802 of data in this reply. */
10803 if (rs->buf[0] == 'm' && packet_len == 1)
10804 error (_("Remote qXfer reply contained no data."));
10805
10806 /* Got some data. */
10807 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10808 packet_len - 1, readbuf, n);
10809
10810 /* 'l' is an EOF marker, possibly including a final block of data,
10811 or possibly empty. If we have the final block of a non-empty
10812 object, record this fact to bypass a subsequent partial read. */
10813 if (rs->buf[0] == 'l' && offset + i > 0)
10814 {
10815 rs->finished_object = xstrdup (object_name);
10816 rs->finished_annex = xstrdup (annex ? annex : "");
10817 rs->finished_offset = offset + i;
10818 }
10819
10820 if (i == 0)
10821 return TARGET_XFER_EOF;
10822 else
10823 {
10824 *xfered_len = i;
10825 return TARGET_XFER_OK;
10826 }
10827 }
10828
10829 enum target_xfer_status
10830 remote_target::xfer_partial (enum target_object object,
10831 const char *annex, gdb_byte *readbuf,
10832 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10833 ULONGEST *xfered_len)
10834 {
10835 struct remote_state *rs;
10836 int i;
10837 char *p2;
10838 char query_type;
10839 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10840
10841 set_remote_traceframe ();
10842 set_general_thread (inferior_ptid);
10843
10844 rs = get_remote_state ();
10845
10846 /* Handle memory using the standard memory routines. */
10847 if (object == TARGET_OBJECT_MEMORY)
10848 {
10849 /* If the remote target is connected but not running, we should
10850 pass this request down to a lower stratum (e.g. the executable
10851 file). */
10852 if (!target_has_execution)
10853 return TARGET_XFER_EOF;
10854
10855 if (writebuf != NULL)
10856 return remote_write_bytes (offset, writebuf, len, unit_size,
10857 xfered_len);
10858 else
10859 return remote_read_bytes (offset, readbuf, len, unit_size,
10860 xfered_len);
10861 }
10862
10863 /* Handle SPU memory using qxfer packets. */
10864 if (object == TARGET_OBJECT_SPU)
10865 {
10866 if (readbuf)
10867 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10868 xfered_len, &remote_protocol_packets
10869 [PACKET_qXfer_spu_read]);
10870 else
10871 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10872 xfered_len, &remote_protocol_packets
10873 [PACKET_qXfer_spu_write]);
10874 }
10875
10876 /* Handle extra signal info using qxfer packets. */
10877 if (object == TARGET_OBJECT_SIGNAL_INFO)
10878 {
10879 if (readbuf)
10880 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10881 xfered_len, &remote_protocol_packets
10882 [PACKET_qXfer_siginfo_read]);
10883 else
10884 return remote_write_qxfer ("siginfo", annex,
10885 writebuf, offset, len, xfered_len,
10886 &remote_protocol_packets
10887 [PACKET_qXfer_siginfo_write]);
10888 }
10889
10890 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10891 {
10892 if (readbuf)
10893 return remote_read_qxfer ("statictrace", annex,
10894 readbuf, offset, len, xfered_len,
10895 &remote_protocol_packets
10896 [PACKET_qXfer_statictrace_read]);
10897 else
10898 return TARGET_XFER_E_IO;
10899 }
10900
10901 /* Only handle flash writes. */
10902 if (writebuf != NULL)
10903 {
10904 switch (object)
10905 {
10906 case TARGET_OBJECT_FLASH:
10907 return remote_flash_write (offset, len, xfered_len,
10908 writebuf);
10909
10910 default:
10911 return TARGET_XFER_E_IO;
10912 }
10913 }
10914
10915 /* Map pre-existing objects onto letters. DO NOT do this for new
10916 objects!!! Instead specify new query packets. */
10917 switch (object)
10918 {
10919 case TARGET_OBJECT_AVR:
10920 query_type = 'R';
10921 break;
10922
10923 case TARGET_OBJECT_AUXV:
10924 gdb_assert (annex == NULL);
10925 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10926 xfered_len,
10927 &remote_protocol_packets[PACKET_qXfer_auxv]);
10928
10929 case TARGET_OBJECT_AVAILABLE_FEATURES:
10930 return remote_read_qxfer
10931 ("features", annex, readbuf, offset, len, xfered_len,
10932 &remote_protocol_packets[PACKET_qXfer_features]);
10933
10934 case TARGET_OBJECT_LIBRARIES:
10935 return remote_read_qxfer
10936 ("libraries", annex, readbuf, offset, len, xfered_len,
10937 &remote_protocol_packets[PACKET_qXfer_libraries]);
10938
10939 case TARGET_OBJECT_LIBRARIES_SVR4:
10940 return remote_read_qxfer
10941 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10942 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10943
10944 case TARGET_OBJECT_MEMORY_MAP:
10945 gdb_assert (annex == NULL);
10946 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10947 xfered_len,
10948 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10949
10950 case TARGET_OBJECT_OSDATA:
10951 /* Should only get here if we're connected. */
10952 gdb_assert (rs->remote_desc);
10953 return remote_read_qxfer
10954 ("osdata", annex, readbuf, offset, len, xfered_len,
10955 &remote_protocol_packets[PACKET_qXfer_osdata]);
10956
10957 case TARGET_OBJECT_THREADS:
10958 gdb_assert (annex == NULL);
10959 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10960 xfered_len,
10961 &remote_protocol_packets[PACKET_qXfer_threads]);
10962
10963 case TARGET_OBJECT_TRACEFRAME_INFO:
10964 gdb_assert (annex == NULL);
10965 return remote_read_qxfer
10966 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10968
10969 case TARGET_OBJECT_FDPIC:
10970 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10971 xfered_len,
10972 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10973
10974 case TARGET_OBJECT_OPENVMS_UIB:
10975 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10976 xfered_len,
10977 &remote_protocol_packets[PACKET_qXfer_uib]);
10978
10979 case TARGET_OBJECT_BTRACE:
10980 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10981 xfered_len,
10982 &remote_protocol_packets[PACKET_qXfer_btrace]);
10983
10984 case TARGET_OBJECT_BTRACE_CONF:
10985 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10986 len, xfered_len,
10987 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10988
10989 case TARGET_OBJECT_EXEC_FILE:
10990 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10991 len, xfered_len,
10992 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10993
10994 default:
10995 return TARGET_XFER_E_IO;
10996 }
10997
10998 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10999 large enough let the caller deal with it. */
11000 if (len < get_remote_packet_size ())
11001 return TARGET_XFER_E_IO;
11002 len = get_remote_packet_size ();
11003
11004 /* Except for querying the minimum buffer size, target must be open. */
11005 if (!rs->remote_desc)
11006 error (_("remote query is only available after target open"));
11007
11008 gdb_assert (annex != NULL);
11009 gdb_assert (readbuf != NULL);
11010
11011 p2 = rs->buf.data ();
11012 *p2++ = 'q';
11013 *p2++ = query_type;
11014
11015 /* We used one buffer char for the remote protocol q command and
11016 another for the query type. As the remote protocol encapsulation
11017 uses 4 chars plus one extra in case we are debugging
11018 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11019 string. */
11020 i = 0;
11021 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11022 {
11023 /* Bad caller may have sent forbidden characters. */
11024 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11025 *p2++ = annex[i];
11026 i++;
11027 }
11028 *p2 = '\0';
11029 gdb_assert (annex[i] == '\0');
11030
11031 i = putpkt (rs->buf);
11032 if (i < 0)
11033 return TARGET_XFER_E_IO;
11034
11035 getpkt (&rs->buf, 0);
11036 strcpy ((char *) readbuf, rs->buf.data ());
11037
11038 *xfered_len = strlen ((char *) readbuf);
11039 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11040 }
11041
11042 /* Implementation of to_get_memory_xfer_limit. */
11043
11044 ULONGEST
11045 remote_target::get_memory_xfer_limit ()
11046 {
11047 return get_memory_write_packet_size ();
11048 }
11049
11050 int
11051 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11052 const gdb_byte *pattern, ULONGEST pattern_len,
11053 CORE_ADDR *found_addrp)
11054 {
11055 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11056 struct remote_state *rs = get_remote_state ();
11057 int max_size = get_memory_write_packet_size ();
11058 struct packet_config *packet =
11059 &remote_protocol_packets[PACKET_qSearch_memory];
11060 /* Number of packet bytes used to encode the pattern;
11061 this could be more than PATTERN_LEN due to escape characters. */
11062 int escaped_pattern_len;
11063 /* Amount of pattern that was encodable in the packet. */
11064 int used_pattern_len;
11065 int i;
11066 int found;
11067 ULONGEST found_addr;
11068
11069 /* Don't go to the target if we don't have to. This is done before
11070 checking packet_config_support to avoid the possibility that a
11071 success for this edge case means the facility works in
11072 general. */
11073 if (pattern_len > search_space_len)
11074 return 0;
11075 if (pattern_len == 0)
11076 {
11077 *found_addrp = start_addr;
11078 return 1;
11079 }
11080
11081 /* If we already know the packet isn't supported, fall back to the simple
11082 way of searching memory. */
11083
11084 if (packet_config_support (packet) == PACKET_DISABLE)
11085 {
11086 /* Target doesn't provided special support, fall back and use the
11087 standard support (copy memory and do the search here). */
11088 return simple_search_memory (this, start_addr, search_space_len,
11089 pattern, pattern_len, found_addrp);
11090 }
11091
11092 /* Make sure the remote is pointing at the right process. */
11093 set_general_process ();
11094
11095 /* Insert header. */
11096 i = snprintf (rs->buf.data (), max_size,
11097 "qSearch:memory:%s;%s;",
11098 phex_nz (start_addr, addr_size),
11099 phex_nz (search_space_len, sizeof (search_space_len)));
11100 max_size -= (i + 1);
11101
11102 /* Escape as much data as fits into rs->buf. */
11103 escaped_pattern_len =
11104 remote_escape_output (pattern, pattern_len, 1,
11105 (gdb_byte *) rs->buf.data () + i,
11106 &used_pattern_len, max_size);
11107
11108 /* Bail if the pattern is too large. */
11109 if (used_pattern_len != pattern_len)
11110 error (_("Pattern is too large to transmit to remote target."));
11111
11112 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11113 || getpkt_sane (&rs->buf, 0) < 0
11114 || packet_ok (rs->buf, packet) != PACKET_OK)
11115 {
11116 /* The request may not have worked because the command is not
11117 supported. If so, fall back to the simple way. */
11118 if (packet_config_support (packet) == PACKET_DISABLE)
11119 {
11120 return simple_search_memory (this, start_addr, search_space_len,
11121 pattern, pattern_len, found_addrp);
11122 }
11123 return -1;
11124 }
11125
11126 if (rs->buf[0] == '0')
11127 found = 0;
11128 else if (rs->buf[0] == '1')
11129 {
11130 found = 1;
11131 if (rs->buf[1] != ',')
11132 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11133 unpack_varlen_hex (&rs->buf[2], &found_addr);
11134 *found_addrp = found_addr;
11135 }
11136 else
11137 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11138
11139 return found;
11140 }
11141
11142 void
11143 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11144 {
11145 struct remote_state *rs = get_remote_state ();
11146 char *p = rs->buf.data ();
11147
11148 if (!rs->remote_desc)
11149 error (_("remote rcmd is only available after target open"));
11150
11151 /* Send a NULL command across as an empty command. */
11152 if (command == NULL)
11153 command = "";
11154
11155 /* The query prefix. */
11156 strcpy (rs->buf.data (), "qRcmd,");
11157 p = strchr (rs->buf.data (), '\0');
11158
11159 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11160 > get_remote_packet_size ())
11161 error (_("\"monitor\" command ``%s'' is too long."), command);
11162
11163 /* Encode the actual command. */
11164 bin2hex ((const gdb_byte *) command, p, strlen (command));
11165
11166 if (putpkt (rs->buf) < 0)
11167 error (_("Communication problem with target."));
11168
11169 /* get/display the response */
11170 while (1)
11171 {
11172 char *buf;
11173
11174 /* XXX - see also remote_get_noisy_reply(). */
11175 QUIT; /* Allow user to bail out with ^C. */
11176 rs->buf[0] = '\0';
11177 if (getpkt_sane (&rs->buf, 0) == -1)
11178 {
11179 /* Timeout. Continue to (try to) read responses.
11180 This is better than stopping with an error, assuming the stub
11181 is still executing the (long) monitor command.
11182 If needed, the user can interrupt gdb using C-c, obtaining
11183 an effect similar to stop on timeout. */
11184 continue;
11185 }
11186 buf = rs->buf.data ();
11187 if (buf[0] == '\0')
11188 error (_("Target does not support this command."));
11189 if (buf[0] == 'O' && buf[1] != 'K')
11190 {
11191 remote_console_output (buf + 1); /* 'O' message from stub. */
11192 continue;
11193 }
11194 if (strcmp (buf, "OK") == 0)
11195 break;
11196 if (strlen (buf) == 3 && buf[0] == 'E'
11197 && isdigit (buf[1]) && isdigit (buf[2]))
11198 {
11199 error (_("Protocol error with Rcmd"));
11200 }
11201 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11202 {
11203 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11204
11205 fputc_unfiltered (c, outbuf);
11206 }
11207 break;
11208 }
11209 }
11210
11211 std::vector<mem_region>
11212 remote_target::memory_map ()
11213 {
11214 std::vector<mem_region> result;
11215 gdb::optional<gdb::char_vector> text
11216 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11217
11218 if (text)
11219 result = parse_memory_map (text->data ());
11220
11221 return result;
11222 }
11223
11224 static void
11225 packet_command (const char *args, int from_tty)
11226 {
11227 remote_target *remote = get_current_remote_target ();
11228
11229 if (remote == nullptr)
11230 error (_("command can only be used with remote target"));
11231
11232 remote->packet_command (args, from_tty);
11233 }
11234
11235 void
11236 remote_target::packet_command (const char *args, int from_tty)
11237 {
11238 if (!args)
11239 error (_("remote-packet command requires packet text as argument"));
11240
11241 puts_filtered ("sending: ");
11242 print_packet (args);
11243 puts_filtered ("\n");
11244 putpkt (args);
11245
11246 remote_state *rs = get_remote_state ();
11247
11248 getpkt (&rs->buf, 0);
11249 puts_filtered ("received: ");
11250 print_packet (rs->buf.data ());
11251 puts_filtered ("\n");
11252 }
11253
11254 #if 0
11255 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11256
11257 static void display_thread_info (struct gdb_ext_thread_info *info);
11258
11259 static void threadset_test_cmd (char *cmd, int tty);
11260
11261 static void threadalive_test (char *cmd, int tty);
11262
11263 static void threadlist_test_cmd (char *cmd, int tty);
11264
11265 int get_and_display_threadinfo (threadref *ref);
11266
11267 static void threadinfo_test_cmd (char *cmd, int tty);
11268
11269 static int thread_display_step (threadref *ref, void *context);
11270
11271 static void threadlist_update_test_cmd (char *cmd, int tty);
11272
11273 static void init_remote_threadtests (void);
11274
11275 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11276
11277 static void
11278 threadset_test_cmd (const char *cmd, int tty)
11279 {
11280 int sample_thread = SAMPLE_THREAD;
11281
11282 printf_filtered (_("Remote threadset test\n"));
11283 set_general_thread (sample_thread);
11284 }
11285
11286
11287 static void
11288 threadalive_test (const char *cmd, int tty)
11289 {
11290 int sample_thread = SAMPLE_THREAD;
11291 int pid = inferior_ptid.pid ();
11292 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11293
11294 if (remote_thread_alive (ptid))
11295 printf_filtered ("PASS: Thread alive test\n");
11296 else
11297 printf_filtered ("FAIL: Thread alive test\n");
11298 }
11299
11300 void output_threadid (char *title, threadref *ref);
11301
11302 void
11303 output_threadid (char *title, threadref *ref)
11304 {
11305 char hexid[20];
11306
11307 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11308 hexid[16] = 0;
11309 printf_filtered ("%s %s\n", title, (&hexid[0]));
11310 }
11311
11312 static void
11313 threadlist_test_cmd (const char *cmd, int tty)
11314 {
11315 int startflag = 1;
11316 threadref nextthread;
11317 int done, result_count;
11318 threadref threadlist[3];
11319
11320 printf_filtered ("Remote Threadlist test\n");
11321 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11322 &result_count, &threadlist[0]))
11323 printf_filtered ("FAIL: threadlist test\n");
11324 else
11325 {
11326 threadref *scan = threadlist;
11327 threadref *limit = scan + result_count;
11328
11329 while (scan < limit)
11330 output_threadid (" thread ", scan++);
11331 }
11332 }
11333
11334 void
11335 display_thread_info (struct gdb_ext_thread_info *info)
11336 {
11337 output_threadid ("Threadid: ", &info->threadid);
11338 printf_filtered ("Name: %s\n ", info->shortname);
11339 printf_filtered ("State: %s\n", info->display);
11340 printf_filtered ("other: %s\n\n", info->more_display);
11341 }
11342
11343 int
11344 get_and_display_threadinfo (threadref *ref)
11345 {
11346 int result;
11347 int set;
11348 struct gdb_ext_thread_info threadinfo;
11349
11350 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11351 | TAG_MOREDISPLAY | TAG_DISPLAY;
11352 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11353 display_thread_info (&threadinfo);
11354 return result;
11355 }
11356
11357 static void
11358 threadinfo_test_cmd (const char *cmd, int tty)
11359 {
11360 int athread = SAMPLE_THREAD;
11361 threadref thread;
11362 int set;
11363
11364 int_to_threadref (&thread, athread);
11365 printf_filtered ("Remote Threadinfo test\n");
11366 if (!get_and_display_threadinfo (&thread))
11367 printf_filtered ("FAIL cannot get thread info\n");
11368 }
11369
11370 static int
11371 thread_display_step (threadref *ref, void *context)
11372 {
11373 /* output_threadid(" threadstep ",ref); *//* simple test */
11374 return get_and_display_threadinfo (ref);
11375 }
11376
11377 static void
11378 threadlist_update_test_cmd (const char *cmd, int tty)
11379 {
11380 printf_filtered ("Remote Threadlist update test\n");
11381 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11382 }
11383
11384 static void
11385 init_remote_threadtests (void)
11386 {
11387 add_com ("tlist", class_obscure, threadlist_test_cmd,
11388 _("Fetch and print the remote list of "
11389 "thread identifiers, one pkt only."));
11390 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11391 _("Fetch and display info about one thread."));
11392 add_com ("tset", class_obscure, threadset_test_cmd,
11393 _("Test setting to a different thread."));
11394 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11395 _("Iterate through updating all remote thread info."));
11396 add_com ("talive", class_obscure, threadalive_test,
11397 _("Remote thread alive test."));
11398 }
11399
11400 #endif /* 0 */
11401
11402 /* Convert a thread ID to a string. */
11403
11404 std::string
11405 remote_target::pid_to_str (ptid_t ptid)
11406 {
11407 struct remote_state *rs = get_remote_state ();
11408
11409 if (ptid == null_ptid)
11410 return normal_pid_to_str (ptid);
11411 else if (ptid.is_pid ())
11412 {
11413 /* Printing an inferior target id. */
11414
11415 /* When multi-process extensions are off, there's no way in the
11416 remote protocol to know the remote process id, if there's any
11417 at all. There's one exception --- when we're connected with
11418 target extended-remote, and we manually attached to a process
11419 with "attach PID". We don't record anywhere a flag that
11420 allows us to distinguish that case from the case of
11421 connecting with extended-remote and the stub already being
11422 attached to a process, and reporting yes to qAttached, hence
11423 no smart special casing here. */
11424 if (!remote_multi_process_p (rs))
11425 return "Remote target";
11426
11427 return normal_pid_to_str (ptid);
11428 }
11429 else
11430 {
11431 if (magic_null_ptid == ptid)
11432 return "Thread <main>";
11433 else if (remote_multi_process_p (rs))
11434 if (ptid.lwp () == 0)
11435 return normal_pid_to_str (ptid);
11436 else
11437 return string_printf ("Thread %d.%ld",
11438 ptid.pid (), ptid.lwp ());
11439 else
11440 return string_printf ("Thread %ld", ptid.lwp ());
11441 }
11442 }
11443
11444 /* Get the address of the thread local variable in OBJFILE which is
11445 stored at OFFSET within the thread local storage for thread PTID. */
11446
11447 CORE_ADDR
11448 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11449 CORE_ADDR offset)
11450 {
11451 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11452 {
11453 struct remote_state *rs = get_remote_state ();
11454 char *p = rs->buf.data ();
11455 char *endp = p + get_remote_packet_size ();
11456 enum packet_result result;
11457
11458 strcpy (p, "qGetTLSAddr:");
11459 p += strlen (p);
11460 p = write_ptid (p, endp, ptid);
11461 *p++ = ',';
11462 p += hexnumstr (p, offset);
11463 *p++ = ',';
11464 p += hexnumstr (p, lm);
11465 *p++ = '\0';
11466
11467 putpkt (rs->buf);
11468 getpkt (&rs->buf, 0);
11469 result = packet_ok (rs->buf,
11470 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11471 if (result == PACKET_OK)
11472 {
11473 ULONGEST addr;
11474
11475 unpack_varlen_hex (rs->buf.data (), &addr);
11476 return addr;
11477 }
11478 else if (result == PACKET_UNKNOWN)
11479 throw_error (TLS_GENERIC_ERROR,
11480 _("Remote target doesn't support qGetTLSAddr packet"));
11481 else
11482 throw_error (TLS_GENERIC_ERROR,
11483 _("Remote target failed to process qGetTLSAddr request"));
11484 }
11485 else
11486 throw_error (TLS_GENERIC_ERROR,
11487 _("TLS not supported or disabled on this target"));
11488 /* Not reached. */
11489 return 0;
11490 }
11491
11492 /* Provide thread local base, i.e. Thread Information Block address.
11493 Returns 1 if ptid is found and thread_local_base is non zero. */
11494
11495 bool
11496 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11497 {
11498 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11499 {
11500 struct remote_state *rs = get_remote_state ();
11501 char *p = rs->buf.data ();
11502 char *endp = p + get_remote_packet_size ();
11503 enum packet_result result;
11504
11505 strcpy (p, "qGetTIBAddr:");
11506 p += strlen (p);
11507 p = write_ptid (p, endp, ptid);
11508 *p++ = '\0';
11509
11510 putpkt (rs->buf);
11511 getpkt (&rs->buf, 0);
11512 result = packet_ok (rs->buf,
11513 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11514 if (result == PACKET_OK)
11515 {
11516 ULONGEST val;
11517 unpack_varlen_hex (rs->buf.data (), &val);
11518 if (addr)
11519 *addr = (CORE_ADDR) val;
11520 return true;
11521 }
11522 else if (result == PACKET_UNKNOWN)
11523 error (_("Remote target doesn't support qGetTIBAddr packet"));
11524 else
11525 error (_("Remote target failed to process qGetTIBAddr request"));
11526 }
11527 else
11528 error (_("qGetTIBAddr not supported or disabled on this target"));
11529 /* Not reached. */
11530 return false;
11531 }
11532
11533 /* Support for inferring a target description based on the current
11534 architecture and the size of a 'g' packet. While the 'g' packet
11535 can have any size (since optional registers can be left off the
11536 end), some sizes are easily recognizable given knowledge of the
11537 approximate architecture. */
11538
11539 struct remote_g_packet_guess
11540 {
11541 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11542 : bytes (bytes_),
11543 tdesc (tdesc_)
11544 {
11545 }
11546
11547 int bytes;
11548 const struct target_desc *tdesc;
11549 };
11550
11551 struct remote_g_packet_data : public allocate_on_obstack
11552 {
11553 std::vector<remote_g_packet_guess> guesses;
11554 };
11555
11556 static struct gdbarch_data *remote_g_packet_data_handle;
11557
11558 static void *
11559 remote_g_packet_data_init (struct obstack *obstack)
11560 {
11561 return new (obstack) remote_g_packet_data;
11562 }
11563
11564 void
11565 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11566 const struct target_desc *tdesc)
11567 {
11568 struct remote_g_packet_data *data
11569 = ((struct remote_g_packet_data *)
11570 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11571
11572 gdb_assert (tdesc != NULL);
11573
11574 for (const remote_g_packet_guess &guess : data->guesses)
11575 if (guess.bytes == bytes)
11576 internal_error (__FILE__, __LINE__,
11577 _("Duplicate g packet description added for size %d"),
11578 bytes);
11579
11580 data->guesses.emplace_back (bytes, tdesc);
11581 }
11582
11583 /* Return true if remote_read_description would do anything on this target
11584 and architecture, false otherwise. */
11585
11586 static bool
11587 remote_read_description_p (struct target_ops *target)
11588 {
11589 struct remote_g_packet_data *data
11590 = ((struct remote_g_packet_data *)
11591 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11592
11593 return !data->guesses.empty ();
11594 }
11595
11596 const struct target_desc *
11597 remote_target::read_description ()
11598 {
11599 struct remote_g_packet_data *data
11600 = ((struct remote_g_packet_data *)
11601 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11602
11603 /* Do not try this during initial connection, when we do not know
11604 whether there is a running but stopped thread. */
11605 if (!target_has_execution || inferior_ptid == null_ptid)
11606 return beneath ()->read_description ();
11607
11608 if (!data->guesses.empty ())
11609 {
11610 int bytes = send_g_packet ();
11611
11612 for (const remote_g_packet_guess &guess : data->guesses)
11613 if (guess.bytes == bytes)
11614 return guess.tdesc;
11615
11616 /* We discard the g packet. A minor optimization would be to
11617 hold on to it, and fill the register cache once we have selected
11618 an architecture, but it's too tricky to do safely. */
11619 }
11620
11621 return beneath ()->read_description ();
11622 }
11623
11624 /* Remote file transfer support. This is host-initiated I/O, not
11625 target-initiated; for target-initiated, see remote-fileio.c. */
11626
11627 /* If *LEFT is at least the length of STRING, copy STRING to
11628 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11629 decrease *LEFT. Otherwise raise an error. */
11630
11631 static void
11632 remote_buffer_add_string (char **buffer, int *left, const char *string)
11633 {
11634 int len = strlen (string);
11635
11636 if (len > *left)
11637 error (_("Packet too long for target."));
11638
11639 memcpy (*buffer, string, len);
11640 *buffer += len;
11641 *left -= len;
11642
11643 /* NUL-terminate the buffer as a convenience, if there is
11644 room. */
11645 if (*left)
11646 **buffer = '\0';
11647 }
11648
11649 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11650 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11651 decrease *LEFT. Otherwise raise an error. */
11652
11653 static void
11654 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11655 int len)
11656 {
11657 if (2 * len > *left)
11658 error (_("Packet too long for target."));
11659
11660 bin2hex (bytes, *buffer, len);
11661 *buffer += 2 * len;
11662 *left -= 2 * len;
11663
11664 /* NUL-terminate the buffer as a convenience, if there is
11665 room. */
11666 if (*left)
11667 **buffer = '\0';
11668 }
11669
11670 /* If *LEFT is large enough, convert VALUE to hex and add it to
11671 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11672 decrease *LEFT. Otherwise raise an error. */
11673
11674 static void
11675 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11676 {
11677 int len = hexnumlen (value);
11678
11679 if (len > *left)
11680 error (_("Packet too long for target."));
11681
11682 hexnumstr (*buffer, value);
11683 *buffer += len;
11684 *left -= len;
11685
11686 /* NUL-terminate the buffer as a convenience, if there is
11687 room. */
11688 if (*left)
11689 **buffer = '\0';
11690 }
11691
11692 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11693 value, *REMOTE_ERRNO to the remote error number or zero if none
11694 was included, and *ATTACHMENT to point to the start of the annex
11695 if any. The length of the packet isn't needed here; there may
11696 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11697
11698 Return 0 if the packet could be parsed, -1 if it could not. If
11699 -1 is returned, the other variables may not be initialized. */
11700
11701 static int
11702 remote_hostio_parse_result (char *buffer, int *retcode,
11703 int *remote_errno, char **attachment)
11704 {
11705 char *p, *p2;
11706
11707 *remote_errno = 0;
11708 *attachment = NULL;
11709
11710 if (buffer[0] != 'F')
11711 return -1;
11712
11713 errno = 0;
11714 *retcode = strtol (&buffer[1], &p, 16);
11715 if (errno != 0 || p == &buffer[1])
11716 return -1;
11717
11718 /* Check for ",errno". */
11719 if (*p == ',')
11720 {
11721 errno = 0;
11722 *remote_errno = strtol (p + 1, &p2, 16);
11723 if (errno != 0 || p + 1 == p2)
11724 return -1;
11725 p = p2;
11726 }
11727
11728 /* Check for ";attachment". If there is no attachment, the
11729 packet should end here. */
11730 if (*p == ';')
11731 {
11732 *attachment = p + 1;
11733 return 0;
11734 }
11735 else if (*p == '\0')
11736 return 0;
11737 else
11738 return -1;
11739 }
11740
11741 /* Send a prepared I/O packet to the target and read its response.
11742 The prepared packet is in the global RS->BUF before this function
11743 is called, and the answer is there when we return.
11744
11745 COMMAND_BYTES is the length of the request to send, which may include
11746 binary data. WHICH_PACKET is the packet configuration to check
11747 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11748 is set to the error number and -1 is returned. Otherwise the value
11749 returned by the function is returned.
11750
11751 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11752 attachment is expected; an error will be reported if there's a
11753 mismatch. If one is found, *ATTACHMENT will be set to point into
11754 the packet buffer and *ATTACHMENT_LEN will be set to the
11755 attachment's length. */
11756
11757 int
11758 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11759 int *remote_errno, char **attachment,
11760 int *attachment_len)
11761 {
11762 struct remote_state *rs = get_remote_state ();
11763 int ret, bytes_read;
11764 char *attachment_tmp;
11765
11766 if (packet_support (which_packet) == PACKET_DISABLE)
11767 {
11768 *remote_errno = FILEIO_ENOSYS;
11769 return -1;
11770 }
11771
11772 putpkt_binary (rs->buf.data (), command_bytes);
11773 bytes_read = getpkt_sane (&rs->buf, 0);
11774
11775 /* If it timed out, something is wrong. Don't try to parse the
11776 buffer. */
11777 if (bytes_read < 0)
11778 {
11779 *remote_errno = FILEIO_EINVAL;
11780 return -1;
11781 }
11782
11783 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11784 {
11785 case PACKET_ERROR:
11786 *remote_errno = FILEIO_EINVAL;
11787 return -1;
11788 case PACKET_UNKNOWN:
11789 *remote_errno = FILEIO_ENOSYS;
11790 return -1;
11791 case PACKET_OK:
11792 break;
11793 }
11794
11795 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11796 &attachment_tmp))
11797 {
11798 *remote_errno = FILEIO_EINVAL;
11799 return -1;
11800 }
11801
11802 /* Make sure we saw an attachment if and only if we expected one. */
11803 if ((attachment_tmp == NULL && attachment != NULL)
11804 || (attachment_tmp != NULL && attachment == NULL))
11805 {
11806 *remote_errno = FILEIO_EINVAL;
11807 return -1;
11808 }
11809
11810 /* If an attachment was found, it must point into the packet buffer;
11811 work out how many bytes there were. */
11812 if (attachment_tmp != NULL)
11813 {
11814 *attachment = attachment_tmp;
11815 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11816 }
11817
11818 return ret;
11819 }
11820
11821 /* See declaration.h. */
11822
11823 void
11824 readahead_cache::invalidate ()
11825 {
11826 this->fd = -1;
11827 }
11828
11829 /* See declaration.h. */
11830
11831 void
11832 readahead_cache::invalidate_fd (int fd)
11833 {
11834 if (this->fd == fd)
11835 this->fd = -1;
11836 }
11837
11838 /* Set the filesystem remote_hostio functions that take FILENAME
11839 arguments will use. Return 0 on success, or -1 if an error
11840 occurs (and set *REMOTE_ERRNO). */
11841
11842 int
11843 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11844 int *remote_errno)
11845 {
11846 struct remote_state *rs = get_remote_state ();
11847 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11848 char *p = rs->buf.data ();
11849 int left = get_remote_packet_size () - 1;
11850 char arg[9];
11851 int ret;
11852
11853 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11854 return 0;
11855
11856 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11857 return 0;
11858
11859 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11860
11861 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11862 remote_buffer_add_string (&p, &left, arg);
11863
11864 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11865 remote_errno, NULL, NULL);
11866
11867 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11868 return 0;
11869
11870 if (ret == 0)
11871 rs->fs_pid = required_pid;
11872
11873 return ret;
11874 }
11875
11876 /* Implementation of to_fileio_open. */
11877
11878 int
11879 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11880 int flags, int mode, int warn_if_slow,
11881 int *remote_errno)
11882 {
11883 struct remote_state *rs = get_remote_state ();
11884 char *p = rs->buf.data ();
11885 int left = get_remote_packet_size () - 1;
11886
11887 if (warn_if_slow)
11888 {
11889 static int warning_issued = 0;
11890
11891 printf_unfiltered (_("Reading %s from remote target...\n"),
11892 filename);
11893
11894 if (!warning_issued)
11895 {
11896 warning (_("File transfers from remote targets can be slow."
11897 " Use \"set sysroot\" to access files locally"
11898 " instead."));
11899 warning_issued = 1;
11900 }
11901 }
11902
11903 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11904 return -1;
11905
11906 remote_buffer_add_string (&p, &left, "vFile:open:");
11907
11908 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11909 strlen (filename));
11910 remote_buffer_add_string (&p, &left, ",");
11911
11912 remote_buffer_add_int (&p, &left, flags);
11913 remote_buffer_add_string (&p, &left, ",");
11914
11915 remote_buffer_add_int (&p, &left, mode);
11916
11917 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11918 remote_errno, NULL, NULL);
11919 }
11920
11921 int
11922 remote_target::fileio_open (struct inferior *inf, const char *filename,
11923 int flags, int mode, int warn_if_slow,
11924 int *remote_errno)
11925 {
11926 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11927 remote_errno);
11928 }
11929
11930 /* Implementation of to_fileio_pwrite. */
11931
11932 int
11933 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11934 ULONGEST offset, int *remote_errno)
11935 {
11936 struct remote_state *rs = get_remote_state ();
11937 char *p = rs->buf.data ();
11938 int left = get_remote_packet_size ();
11939 int out_len;
11940
11941 rs->readahead_cache.invalidate_fd (fd);
11942
11943 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11944
11945 remote_buffer_add_int (&p, &left, fd);
11946 remote_buffer_add_string (&p, &left, ",");
11947
11948 remote_buffer_add_int (&p, &left, offset);
11949 remote_buffer_add_string (&p, &left, ",");
11950
11951 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11952 (get_remote_packet_size ()
11953 - (p - rs->buf.data ())));
11954
11955 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11956 remote_errno, NULL, NULL);
11957 }
11958
11959 int
11960 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11961 ULONGEST offset, int *remote_errno)
11962 {
11963 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11964 }
11965
11966 /* Helper for the implementation of to_fileio_pread. Read the file
11967 from the remote side with vFile:pread. */
11968
11969 int
11970 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11971 ULONGEST offset, int *remote_errno)
11972 {
11973 struct remote_state *rs = get_remote_state ();
11974 char *p = rs->buf.data ();
11975 char *attachment;
11976 int left = get_remote_packet_size ();
11977 int ret, attachment_len;
11978 int read_len;
11979
11980 remote_buffer_add_string (&p, &left, "vFile:pread:");
11981
11982 remote_buffer_add_int (&p, &left, fd);
11983 remote_buffer_add_string (&p, &left, ",");
11984
11985 remote_buffer_add_int (&p, &left, len);
11986 remote_buffer_add_string (&p, &left, ",");
11987
11988 remote_buffer_add_int (&p, &left, offset);
11989
11990 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11991 remote_errno, &attachment,
11992 &attachment_len);
11993
11994 if (ret < 0)
11995 return ret;
11996
11997 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11998 read_buf, len);
11999 if (read_len != ret)
12000 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12001
12002 return ret;
12003 }
12004
12005 /* See declaration.h. */
12006
12007 int
12008 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12009 ULONGEST offset)
12010 {
12011 if (this->fd == fd
12012 && this->offset <= offset
12013 && offset < this->offset + this->bufsize)
12014 {
12015 ULONGEST max = this->offset + this->bufsize;
12016
12017 if (offset + len > max)
12018 len = max - offset;
12019
12020 memcpy (read_buf, this->buf + offset - this->offset, len);
12021 return len;
12022 }
12023
12024 return 0;
12025 }
12026
12027 /* Implementation of to_fileio_pread. */
12028
12029 int
12030 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12031 ULONGEST offset, int *remote_errno)
12032 {
12033 int ret;
12034 struct remote_state *rs = get_remote_state ();
12035 readahead_cache *cache = &rs->readahead_cache;
12036
12037 ret = cache->pread (fd, read_buf, len, offset);
12038 if (ret > 0)
12039 {
12040 cache->hit_count++;
12041
12042 if (remote_debug)
12043 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12044 pulongest (cache->hit_count));
12045 return ret;
12046 }
12047
12048 cache->miss_count++;
12049 if (remote_debug)
12050 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12051 pulongest (cache->miss_count));
12052
12053 cache->fd = fd;
12054 cache->offset = offset;
12055 cache->bufsize = get_remote_packet_size ();
12056 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12057
12058 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12059 cache->offset, remote_errno);
12060 if (ret <= 0)
12061 {
12062 cache->invalidate_fd (fd);
12063 return ret;
12064 }
12065
12066 cache->bufsize = ret;
12067 return cache->pread (fd, read_buf, len, offset);
12068 }
12069
12070 int
12071 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12072 ULONGEST offset, int *remote_errno)
12073 {
12074 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12075 }
12076
12077 /* Implementation of to_fileio_close. */
12078
12079 int
12080 remote_target::remote_hostio_close (int fd, int *remote_errno)
12081 {
12082 struct remote_state *rs = get_remote_state ();
12083 char *p = rs->buf.data ();
12084 int left = get_remote_packet_size () - 1;
12085
12086 rs->readahead_cache.invalidate_fd (fd);
12087
12088 remote_buffer_add_string (&p, &left, "vFile:close:");
12089
12090 remote_buffer_add_int (&p, &left, fd);
12091
12092 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12093 remote_errno, NULL, NULL);
12094 }
12095
12096 int
12097 remote_target::fileio_close (int fd, int *remote_errno)
12098 {
12099 return remote_hostio_close (fd, remote_errno);
12100 }
12101
12102 /* Implementation of to_fileio_unlink. */
12103
12104 int
12105 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12106 int *remote_errno)
12107 {
12108 struct remote_state *rs = get_remote_state ();
12109 char *p = rs->buf.data ();
12110 int left = get_remote_packet_size () - 1;
12111
12112 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12113 return -1;
12114
12115 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12116
12117 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12118 strlen (filename));
12119
12120 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12121 remote_errno, NULL, NULL);
12122 }
12123
12124 int
12125 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12126 int *remote_errno)
12127 {
12128 return remote_hostio_unlink (inf, filename, remote_errno);
12129 }
12130
12131 /* Implementation of to_fileio_readlink. */
12132
12133 gdb::optional<std::string>
12134 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12135 int *remote_errno)
12136 {
12137 struct remote_state *rs = get_remote_state ();
12138 char *p = rs->buf.data ();
12139 char *attachment;
12140 int left = get_remote_packet_size ();
12141 int len, attachment_len;
12142 int read_len;
12143
12144 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12145 return {};
12146
12147 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12148
12149 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12150 strlen (filename));
12151
12152 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12153 remote_errno, &attachment,
12154 &attachment_len);
12155
12156 if (len < 0)
12157 return {};
12158
12159 std::string ret (len, '\0');
12160
12161 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12162 (gdb_byte *) &ret[0], len);
12163 if (read_len != len)
12164 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12165
12166 return ret;
12167 }
12168
12169 /* Implementation of to_fileio_fstat. */
12170
12171 int
12172 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12173 {
12174 struct remote_state *rs = get_remote_state ();
12175 char *p = rs->buf.data ();
12176 int left = get_remote_packet_size ();
12177 int attachment_len, ret;
12178 char *attachment;
12179 struct fio_stat fst;
12180 int read_len;
12181
12182 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12183
12184 remote_buffer_add_int (&p, &left, fd);
12185
12186 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12187 remote_errno, &attachment,
12188 &attachment_len);
12189 if (ret < 0)
12190 {
12191 if (*remote_errno != FILEIO_ENOSYS)
12192 return ret;
12193
12194 /* Strictly we should return -1, ENOSYS here, but when
12195 "set sysroot remote:" was implemented in August 2008
12196 BFD's need for a stat function was sidestepped with
12197 this hack. This was not remedied until March 2015
12198 so we retain the previous behavior to avoid breaking
12199 compatibility.
12200
12201 Note that the memset is a March 2015 addition; older
12202 GDBs set st_size *and nothing else* so the structure
12203 would have garbage in all other fields. This might
12204 break something but retaining the previous behavior
12205 here would be just too wrong. */
12206
12207 memset (st, 0, sizeof (struct stat));
12208 st->st_size = INT_MAX;
12209 return 0;
12210 }
12211
12212 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12213 (gdb_byte *) &fst, sizeof (fst));
12214
12215 if (read_len != ret)
12216 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12217
12218 if (read_len != sizeof (fst))
12219 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12220 read_len, (int) sizeof (fst));
12221
12222 remote_fileio_to_host_stat (&fst, st);
12223
12224 return 0;
12225 }
12226
12227 /* Implementation of to_filesystem_is_local. */
12228
12229 bool
12230 remote_target::filesystem_is_local ()
12231 {
12232 /* Valgrind GDB presents itself as a remote target but works
12233 on the local filesystem: it does not implement remote get
12234 and users are not expected to set a sysroot. To handle
12235 this case we treat the remote filesystem as local if the
12236 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12237 does not support vFile:open. */
12238 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12239 {
12240 enum packet_support ps = packet_support (PACKET_vFile_open);
12241
12242 if (ps == PACKET_SUPPORT_UNKNOWN)
12243 {
12244 int fd, remote_errno;
12245
12246 /* Try opening a file to probe support. The supplied
12247 filename is irrelevant, we only care about whether
12248 the stub recognizes the packet or not. */
12249 fd = remote_hostio_open (NULL, "just probing",
12250 FILEIO_O_RDONLY, 0700, 0,
12251 &remote_errno);
12252
12253 if (fd >= 0)
12254 remote_hostio_close (fd, &remote_errno);
12255
12256 ps = packet_support (PACKET_vFile_open);
12257 }
12258
12259 if (ps == PACKET_DISABLE)
12260 {
12261 static int warning_issued = 0;
12262
12263 if (!warning_issued)
12264 {
12265 warning (_("remote target does not support file"
12266 " transfer, attempting to access files"
12267 " from local filesystem."));
12268 warning_issued = 1;
12269 }
12270
12271 return true;
12272 }
12273 }
12274
12275 return false;
12276 }
12277
12278 static int
12279 remote_fileio_errno_to_host (int errnum)
12280 {
12281 switch (errnum)
12282 {
12283 case FILEIO_EPERM:
12284 return EPERM;
12285 case FILEIO_ENOENT:
12286 return ENOENT;
12287 case FILEIO_EINTR:
12288 return EINTR;
12289 case FILEIO_EIO:
12290 return EIO;
12291 case FILEIO_EBADF:
12292 return EBADF;
12293 case FILEIO_EACCES:
12294 return EACCES;
12295 case FILEIO_EFAULT:
12296 return EFAULT;
12297 case FILEIO_EBUSY:
12298 return EBUSY;
12299 case FILEIO_EEXIST:
12300 return EEXIST;
12301 case FILEIO_ENODEV:
12302 return ENODEV;
12303 case FILEIO_ENOTDIR:
12304 return ENOTDIR;
12305 case FILEIO_EISDIR:
12306 return EISDIR;
12307 case FILEIO_EINVAL:
12308 return EINVAL;
12309 case FILEIO_ENFILE:
12310 return ENFILE;
12311 case FILEIO_EMFILE:
12312 return EMFILE;
12313 case FILEIO_EFBIG:
12314 return EFBIG;
12315 case FILEIO_ENOSPC:
12316 return ENOSPC;
12317 case FILEIO_ESPIPE:
12318 return ESPIPE;
12319 case FILEIO_EROFS:
12320 return EROFS;
12321 case FILEIO_ENOSYS:
12322 return ENOSYS;
12323 case FILEIO_ENAMETOOLONG:
12324 return ENAMETOOLONG;
12325 }
12326 return -1;
12327 }
12328
12329 static char *
12330 remote_hostio_error (int errnum)
12331 {
12332 int host_error = remote_fileio_errno_to_host (errnum);
12333
12334 if (host_error == -1)
12335 error (_("Unknown remote I/O error %d"), errnum);
12336 else
12337 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12338 }
12339
12340 /* A RAII wrapper around a remote file descriptor. */
12341
12342 class scoped_remote_fd
12343 {
12344 public:
12345 scoped_remote_fd (remote_target *remote, int fd)
12346 : m_remote (remote), m_fd (fd)
12347 {
12348 }
12349
12350 ~scoped_remote_fd ()
12351 {
12352 if (m_fd != -1)
12353 {
12354 try
12355 {
12356 int remote_errno;
12357 m_remote->remote_hostio_close (m_fd, &remote_errno);
12358 }
12359 catch (...)
12360 {
12361 /* Swallow exception before it escapes the dtor. If
12362 something goes wrong, likely the connection is gone,
12363 and there's nothing else that can be done. */
12364 }
12365 }
12366 }
12367
12368 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12369
12370 /* Release ownership of the file descriptor, and return it. */
12371 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12372 {
12373 int fd = m_fd;
12374 m_fd = -1;
12375 return fd;
12376 }
12377
12378 /* Return the owned file descriptor. */
12379 int get () const noexcept
12380 {
12381 return m_fd;
12382 }
12383
12384 private:
12385 /* The remote target. */
12386 remote_target *m_remote;
12387
12388 /* The owned remote I/O file descriptor. */
12389 int m_fd;
12390 };
12391
12392 void
12393 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12394 {
12395 remote_target *remote = get_current_remote_target ();
12396
12397 if (remote == nullptr)
12398 error (_("command can only be used with remote target"));
12399
12400 remote->remote_file_put (local_file, remote_file, from_tty);
12401 }
12402
12403 void
12404 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12405 int from_tty)
12406 {
12407 int retcode, remote_errno, bytes, io_size;
12408 int bytes_in_buffer;
12409 int saw_eof;
12410 ULONGEST offset;
12411
12412 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12413 if (file == NULL)
12414 perror_with_name (local_file);
12415
12416 scoped_remote_fd fd
12417 (this, remote_hostio_open (NULL,
12418 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12419 | FILEIO_O_TRUNC),
12420 0700, 0, &remote_errno));
12421 if (fd.get () == -1)
12422 remote_hostio_error (remote_errno);
12423
12424 /* Send up to this many bytes at once. They won't all fit in the
12425 remote packet limit, so we'll transfer slightly fewer. */
12426 io_size = get_remote_packet_size ();
12427 gdb::byte_vector buffer (io_size);
12428
12429 bytes_in_buffer = 0;
12430 saw_eof = 0;
12431 offset = 0;
12432 while (bytes_in_buffer || !saw_eof)
12433 {
12434 if (!saw_eof)
12435 {
12436 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12437 io_size - bytes_in_buffer,
12438 file.get ());
12439 if (bytes == 0)
12440 {
12441 if (ferror (file.get ()))
12442 error (_("Error reading %s."), local_file);
12443 else
12444 {
12445 /* EOF. Unless there is something still in the
12446 buffer from the last iteration, we are done. */
12447 saw_eof = 1;
12448 if (bytes_in_buffer == 0)
12449 break;
12450 }
12451 }
12452 }
12453 else
12454 bytes = 0;
12455
12456 bytes += bytes_in_buffer;
12457 bytes_in_buffer = 0;
12458
12459 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12460 offset, &remote_errno);
12461
12462 if (retcode < 0)
12463 remote_hostio_error (remote_errno);
12464 else if (retcode == 0)
12465 error (_("Remote write of %d bytes returned 0!"), bytes);
12466 else if (retcode < bytes)
12467 {
12468 /* Short write. Save the rest of the read data for the next
12469 write. */
12470 bytes_in_buffer = bytes - retcode;
12471 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12472 }
12473
12474 offset += retcode;
12475 }
12476
12477 if (remote_hostio_close (fd.release (), &remote_errno))
12478 remote_hostio_error (remote_errno);
12479
12480 if (from_tty)
12481 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12482 }
12483
12484 void
12485 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12486 {
12487 remote_target *remote = get_current_remote_target ();
12488
12489 if (remote == nullptr)
12490 error (_("command can only be used with remote target"));
12491
12492 remote->remote_file_get (remote_file, local_file, from_tty);
12493 }
12494
12495 void
12496 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12497 int from_tty)
12498 {
12499 int remote_errno, bytes, io_size;
12500 ULONGEST offset;
12501
12502 scoped_remote_fd fd
12503 (this, remote_hostio_open (NULL,
12504 remote_file, FILEIO_O_RDONLY, 0, 0,
12505 &remote_errno));
12506 if (fd.get () == -1)
12507 remote_hostio_error (remote_errno);
12508
12509 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12510 if (file == NULL)
12511 perror_with_name (local_file);
12512
12513 /* Send up to this many bytes at once. They won't all fit in the
12514 remote packet limit, so we'll transfer slightly fewer. */
12515 io_size = get_remote_packet_size ();
12516 gdb::byte_vector buffer (io_size);
12517
12518 offset = 0;
12519 while (1)
12520 {
12521 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12522 &remote_errno);
12523 if (bytes == 0)
12524 /* Success, but no bytes, means end-of-file. */
12525 break;
12526 if (bytes == -1)
12527 remote_hostio_error (remote_errno);
12528
12529 offset += bytes;
12530
12531 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12532 if (bytes == 0)
12533 perror_with_name (local_file);
12534 }
12535
12536 if (remote_hostio_close (fd.release (), &remote_errno))
12537 remote_hostio_error (remote_errno);
12538
12539 if (from_tty)
12540 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12541 }
12542
12543 void
12544 remote_file_delete (const char *remote_file, int from_tty)
12545 {
12546 remote_target *remote = get_current_remote_target ();
12547
12548 if (remote == nullptr)
12549 error (_("command can only be used with remote target"));
12550
12551 remote->remote_file_delete (remote_file, from_tty);
12552 }
12553
12554 void
12555 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12556 {
12557 int retcode, remote_errno;
12558
12559 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12560 if (retcode == -1)
12561 remote_hostio_error (remote_errno);
12562
12563 if (from_tty)
12564 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12565 }
12566
12567 static void
12568 remote_put_command (const char *args, int from_tty)
12569 {
12570 if (args == NULL)
12571 error_no_arg (_("file to put"));
12572
12573 gdb_argv argv (args);
12574 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12575 error (_("Invalid parameters to remote put"));
12576
12577 remote_file_put (argv[0], argv[1], from_tty);
12578 }
12579
12580 static void
12581 remote_get_command (const char *args, int from_tty)
12582 {
12583 if (args == NULL)
12584 error_no_arg (_("file to get"));
12585
12586 gdb_argv argv (args);
12587 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12588 error (_("Invalid parameters to remote get"));
12589
12590 remote_file_get (argv[0], argv[1], from_tty);
12591 }
12592
12593 static void
12594 remote_delete_command (const char *args, int from_tty)
12595 {
12596 if (args == NULL)
12597 error_no_arg (_("file to delete"));
12598
12599 gdb_argv argv (args);
12600 if (argv[0] == NULL || argv[1] != NULL)
12601 error (_("Invalid parameters to remote delete"));
12602
12603 remote_file_delete (argv[0], from_tty);
12604 }
12605
12606 static void
12607 remote_command (const char *args, int from_tty)
12608 {
12609 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12610 }
12611
12612 bool
12613 remote_target::can_execute_reverse ()
12614 {
12615 if (packet_support (PACKET_bs) == PACKET_ENABLE
12616 || packet_support (PACKET_bc) == PACKET_ENABLE)
12617 return true;
12618 else
12619 return false;
12620 }
12621
12622 bool
12623 remote_target::supports_non_stop ()
12624 {
12625 return true;
12626 }
12627
12628 bool
12629 remote_target::supports_disable_randomization ()
12630 {
12631 /* Only supported in extended mode. */
12632 return false;
12633 }
12634
12635 bool
12636 remote_target::supports_multi_process ()
12637 {
12638 struct remote_state *rs = get_remote_state ();
12639
12640 return remote_multi_process_p (rs);
12641 }
12642
12643 static int
12644 remote_supports_cond_tracepoints ()
12645 {
12646 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12647 }
12648
12649 bool
12650 remote_target::supports_evaluation_of_breakpoint_conditions ()
12651 {
12652 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12653 }
12654
12655 static int
12656 remote_supports_fast_tracepoints ()
12657 {
12658 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12659 }
12660
12661 static int
12662 remote_supports_static_tracepoints ()
12663 {
12664 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12665 }
12666
12667 static int
12668 remote_supports_install_in_trace ()
12669 {
12670 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12671 }
12672
12673 bool
12674 remote_target::supports_enable_disable_tracepoint ()
12675 {
12676 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12677 == PACKET_ENABLE);
12678 }
12679
12680 bool
12681 remote_target::supports_string_tracing ()
12682 {
12683 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12684 }
12685
12686 bool
12687 remote_target::can_run_breakpoint_commands ()
12688 {
12689 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12690 }
12691
12692 void
12693 remote_target::trace_init ()
12694 {
12695 struct remote_state *rs = get_remote_state ();
12696
12697 putpkt ("QTinit");
12698 remote_get_noisy_reply ();
12699 if (strcmp (rs->buf.data (), "OK") != 0)
12700 error (_("Target does not support this command."));
12701 }
12702
12703 /* Recursive routine to walk through command list including loops, and
12704 download packets for each command. */
12705
12706 void
12707 remote_target::remote_download_command_source (int num, ULONGEST addr,
12708 struct command_line *cmds)
12709 {
12710 struct remote_state *rs = get_remote_state ();
12711 struct command_line *cmd;
12712
12713 for (cmd = cmds; cmd; cmd = cmd->next)
12714 {
12715 QUIT; /* Allow user to bail out with ^C. */
12716 strcpy (rs->buf.data (), "QTDPsrc:");
12717 encode_source_string (num, addr, "cmd", cmd->line,
12718 rs->buf.data () + strlen (rs->buf.data ()),
12719 rs->buf.size () - strlen (rs->buf.data ()));
12720 putpkt (rs->buf);
12721 remote_get_noisy_reply ();
12722 if (strcmp (rs->buf.data (), "OK"))
12723 warning (_("Target does not support source download."));
12724
12725 if (cmd->control_type == while_control
12726 || cmd->control_type == while_stepping_control)
12727 {
12728 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12729
12730 QUIT; /* Allow user to bail out with ^C. */
12731 strcpy (rs->buf.data (), "QTDPsrc:");
12732 encode_source_string (num, addr, "cmd", "end",
12733 rs->buf.data () + strlen (rs->buf.data ()),
12734 rs->buf.size () - strlen (rs->buf.data ()));
12735 putpkt (rs->buf);
12736 remote_get_noisy_reply ();
12737 if (strcmp (rs->buf.data (), "OK"))
12738 warning (_("Target does not support source download."));
12739 }
12740 }
12741 }
12742
12743 void
12744 remote_target::download_tracepoint (struct bp_location *loc)
12745 {
12746 CORE_ADDR tpaddr;
12747 char addrbuf[40];
12748 std::vector<std::string> tdp_actions;
12749 std::vector<std::string> stepping_actions;
12750 char *pkt;
12751 struct breakpoint *b = loc->owner;
12752 struct tracepoint *t = (struct tracepoint *) b;
12753 struct remote_state *rs = get_remote_state ();
12754 int ret;
12755 const char *err_msg = _("Tracepoint packet too large for target.");
12756 size_t size_left;
12757
12758 /* We use a buffer other than rs->buf because we'll build strings
12759 across multiple statements, and other statements in between could
12760 modify rs->buf. */
12761 gdb::char_vector buf (get_remote_packet_size ());
12762
12763 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12764
12765 tpaddr = loc->address;
12766 sprintf_vma (addrbuf, tpaddr);
12767 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12768 b->number, addrbuf, /* address */
12769 (b->enable_state == bp_enabled ? 'E' : 'D'),
12770 t->step_count, t->pass_count);
12771
12772 if (ret < 0 || ret >= buf.size ())
12773 error ("%s", err_msg);
12774
12775 /* Fast tracepoints are mostly handled by the target, but we can
12776 tell the target how big of an instruction block should be moved
12777 around. */
12778 if (b->type == bp_fast_tracepoint)
12779 {
12780 /* Only test for support at download time; we may not know
12781 target capabilities at definition time. */
12782 if (remote_supports_fast_tracepoints ())
12783 {
12784 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12785 NULL))
12786 {
12787 size_left = buf.size () - strlen (buf.data ());
12788 ret = snprintf (buf.data () + strlen (buf.data ()),
12789 size_left, ":F%x",
12790 gdb_insn_length (loc->gdbarch, tpaddr));
12791
12792 if (ret < 0 || ret >= size_left)
12793 error ("%s", err_msg);
12794 }
12795 else
12796 /* If it passed validation at definition but fails now,
12797 something is very wrong. */
12798 internal_error (__FILE__, __LINE__,
12799 _("Fast tracepoint not "
12800 "valid during download"));
12801 }
12802 else
12803 /* Fast tracepoints are functionally identical to regular
12804 tracepoints, so don't take lack of support as a reason to
12805 give up on the trace run. */
12806 warning (_("Target does not support fast tracepoints, "
12807 "downloading %d as regular tracepoint"), b->number);
12808 }
12809 else if (b->type == bp_static_tracepoint)
12810 {
12811 /* Only test for support at download time; we may not know
12812 target capabilities at definition time. */
12813 if (remote_supports_static_tracepoints ())
12814 {
12815 struct static_tracepoint_marker marker;
12816
12817 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12818 {
12819 size_left = buf.size () - strlen (buf.data ());
12820 ret = snprintf (buf.data () + strlen (buf.data ()),
12821 size_left, ":S");
12822
12823 if (ret < 0 || ret >= size_left)
12824 error ("%s", err_msg);
12825 }
12826 else
12827 error (_("Static tracepoint not valid during download"));
12828 }
12829 else
12830 /* Fast tracepoints are functionally identical to regular
12831 tracepoints, so don't take lack of support as a reason
12832 to give up on the trace run. */
12833 error (_("Target does not support static tracepoints"));
12834 }
12835 /* If the tracepoint has a conditional, make it into an agent
12836 expression and append to the definition. */
12837 if (loc->cond)
12838 {
12839 /* Only test support at download time, we may not know target
12840 capabilities at definition time. */
12841 if (remote_supports_cond_tracepoints ())
12842 {
12843 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12844 loc->cond.get ());
12845
12846 size_left = buf.size () - strlen (buf.data ());
12847
12848 ret = snprintf (buf.data () + strlen (buf.data ()),
12849 size_left, ":X%x,", aexpr->len);
12850
12851 if (ret < 0 || ret >= size_left)
12852 error ("%s", err_msg);
12853
12854 size_left = buf.size () - strlen (buf.data ());
12855
12856 /* Two bytes to encode each aexpr byte, plus the terminating
12857 null byte. */
12858 if (aexpr->len * 2 + 1 > size_left)
12859 error ("%s", err_msg);
12860
12861 pkt = buf.data () + strlen (buf.data ());
12862
12863 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12864 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12865 *pkt = '\0';
12866 }
12867 else
12868 warning (_("Target does not support conditional tracepoints, "
12869 "ignoring tp %d cond"), b->number);
12870 }
12871
12872 if (b->commands || *default_collect)
12873 {
12874 size_left = buf.size () - strlen (buf.data ());
12875
12876 ret = snprintf (buf.data () + strlen (buf.data ()),
12877 size_left, "-");
12878
12879 if (ret < 0 || ret >= size_left)
12880 error ("%s", err_msg);
12881 }
12882
12883 putpkt (buf.data ());
12884 remote_get_noisy_reply ();
12885 if (strcmp (rs->buf.data (), "OK"))
12886 error (_("Target does not support tracepoints."));
12887
12888 /* do_single_steps (t); */
12889 for (auto action_it = tdp_actions.begin ();
12890 action_it != tdp_actions.end (); action_it++)
12891 {
12892 QUIT; /* Allow user to bail out with ^C. */
12893
12894 bool has_more = ((action_it + 1) != tdp_actions.end ()
12895 || !stepping_actions.empty ());
12896
12897 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12898 b->number, addrbuf, /* address */
12899 action_it->c_str (),
12900 has_more ? '-' : 0);
12901
12902 if (ret < 0 || ret >= buf.size ())
12903 error ("%s", err_msg);
12904
12905 putpkt (buf.data ());
12906 remote_get_noisy_reply ();
12907 if (strcmp (rs->buf.data (), "OK"))
12908 error (_("Error on target while setting tracepoints."));
12909 }
12910
12911 for (auto action_it = stepping_actions.begin ();
12912 action_it != stepping_actions.end (); action_it++)
12913 {
12914 QUIT; /* Allow user to bail out with ^C. */
12915
12916 bool is_first = action_it == stepping_actions.begin ();
12917 bool has_more = (action_it + 1) != stepping_actions.end ();
12918
12919 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12920 b->number, addrbuf, /* address */
12921 is_first ? "S" : "",
12922 action_it->c_str (),
12923 has_more ? "-" : "");
12924
12925 if (ret < 0 || ret >= buf.size ())
12926 error ("%s", err_msg);
12927
12928 putpkt (buf.data ());
12929 remote_get_noisy_reply ();
12930 if (strcmp (rs->buf.data (), "OK"))
12931 error (_("Error on target while setting tracepoints."));
12932 }
12933
12934 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12935 {
12936 if (b->location != NULL)
12937 {
12938 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12939
12940 if (ret < 0 || ret >= buf.size ())
12941 error ("%s", err_msg);
12942
12943 encode_source_string (b->number, loc->address, "at",
12944 event_location_to_string (b->location.get ()),
12945 buf.data () + strlen (buf.data ()),
12946 buf.size () - strlen (buf.data ()));
12947 putpkt (buf.data ());
12948 remote_get_noisy_reply ();
12949 if (strcmp (rs->buf.data (), "OK"))
12950 warning (_("Target does not support source download."));
12951 }
12952 if (b->cond_string)
12953 {
12954 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12955
12956 if (ret < 0 || ret >= buf.size ())
12957 error ("%s", err_msg);
12958
12959 encode_source_string (b->number, loc->address,
12960 "cond", b->cond_string,
12961 buf.data () + strlen (buf.data ()),
12962 buf.size () - strlen (buf.data ()));
12963 putpkt (buf.data ());
12964 remote_get_noisy_reply ();
12965 if (strcmp (rs->buf.data (), "OK"))
12966 warning (_("Target does not support source download."));
12967 }
12968 remote_download_command_source (b->number, loc->address,
12969 breakpoint_commands (b));
12970 }
12971 }
12972
12973 bool
12974 remote_target::can_download_tracepoint ()
12975 {
12976 struct remote_state *rs = get_remote_state ();
12977 struct trace_status *ts;
12978 int status;
12979
12980 /* Don't try to install tracepoints until we've relocated our
12981 symbols, and fetched and merged the target's tracepoint list with
12982 ours. */
12983 if (rs->starting_up)
12984 return false;
12985
12986 ts = current_trace_status ();
12987 status = get_trace_status (ts);
12988
12989 if (status == -1 || !ts->running_known || !ts->running)
12990 return false;
12991
12992 /* If we are in a tracing experiment, but remote stub doesn't support
12993 installing tracepoint in trace, we have to return. */
12994 if (!remote_supports_install_in_trace ())
12995 return false;
12996
12997 return true;
12998 }
12999
13000
13001 void
13002 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13003 {
13004 struct remote_state *rs = get_remote_state ();
13005 char *p;
13006
13007 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13008 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13009 tsv.builtin);
13010 p = rs->buf.data () + strlen (rs->buf.data ());
13011 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13012 >= get_remote_packet_size ())
13013 error (_("Trace state variable name too long for tsv definition packet"));
13014 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13015 *p++ = '\0';
13016 putpkt (rs->buf);
13017 remote_get_noisy_reply ();
13018 if (rs->buf[0] == '\0')
13019 error (_("Target does not support this command."));
13020 if (strcmp (rs->buf.data (), "OK") != 0)
13021 error (_("Error on target while downloading trace state variable."));
13022 }
13023
13024 void
13025 remote_target::enable_tracepoint (struct bp_location *location)
13026 {
13027 struct remote_state *rs = get_remote_state ();
13028 char addr_buf[40];
13029
13030 sprintf_vma (addr_buf, location->address);
13031 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13032 location->owner->number, addr_buf);
13033 putpkt (rs->buf);
13034 remote_get_noisy_reply ();
13035 if (rs->buf[0] == '\0')
13036 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13037 if (strcmp (rs->buf.data (), "OK") != 0)
13038 error (_("Error on target while enabling tracepoint."));
13039 }
13040
13041 void
13042 remote_target::disable_tracepoint (struct bp_location *location)
13043 {
13044 struct remote_state *rs = get_remote_state ();
13045 char addr_buf[40];
13046
13047 sprintf_vma (addr_buf, location->address);
13048 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13049 location->owner->number, addr_buf);
13050 putpkt (rs->buf);
13051 remote_get_noisy_reply ();
13052 if (rs->buf[0] == '\0')
13053 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13054 if (strcmp (rs->buf.data (), "OK") != 0)
13055 error (_("Error on target while disabling tracepoint."));
13056 }
13057
13058 void
13059 remote_target::trace_set_readonly_regions ()
13060 {
13061 asection *s;
13062 bfd *abfd = NULL;
13063 bfd_size_type size;
13064 bfd_vma vma;
13065 int anysecs = 0;
13066 int offset = 0;
13067
13068 if (!exec_bfd)
13069 return; /* No information to give. */
13070
13071 struct remote_state *rs = get_remote_state ();
13072
13073 strcpy (rs->buf.data (), "QTro");
13074 offset = strlen (rs->buf.data ());
13075 for (s = exec_bfd->sections; s; s = s->next)
13076 {
13077 char tmp1[40], tmp2[40];
13078 int sec_length;
13079
13080 if ((s->flags & SEC_LOAD) == 0 ||
13081 /* (s->flags & SEC_CODE) == 0 || */
13082 (s->flags & SEC_READONLY) == 0)
13083 continue;
13084
13085 anysecs = 1;
13086 vma = bfd_get_section_vma (abfd, s);
13087 size = bfd_get_section_size (s);
13088 sprintf_vma (tmp1, vma);
13089 sprintf_vma (tmp2, vma + size);
13090 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13091 if (offset + sec_length + 1 > rs->buf.size ())
13092 {
13093 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13094 warning (_("\
13095 Too many sections for read-only sections definition packet."));
13096 break;
13097 }
13098 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13099 tmp1, tmp2);
13100 offset += sec_length;
13101 }
13102 if (anysecs)
13103 {
13104 putpkt (rs->buf);
13105 getpkt (&rs->buf, 0);
13106 }
13107 }
13108
13109 void
13110 remote_target::trace_start ()
13111 {
13112 struct remote_state *rs = get_remote_state ();
13113
13114 putpkt ("QTStart");
13115 remote_get_noisy_reply ();
13116 if (rs->buf[0] == '\0')
13117 error (_("Target does not support this command."));
13118 if (strcmp (rs->buf.data (), "OK") != 0)
13119 error (_("Bogus reply from target: %s"), rs->buf.data ());
13120 }
13121
13122 int
13123 remote_target::get_trace_status (struct trace_status *ts)
13124 {
13125 /* Initialize it just to avoid a GCC false warning. */
13126 char *p = NULL;
13127 /* FIXME we need to get register block size some other way. */
13128 extern int trace_regblock_size;
13129 enum packet_result result;
13130 struct remote_state *rs = get_remote_state ();
13131
13132 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13133 return -1;
13134
13135 trace_regblock_size
13136 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13137
13138 putpkt ("qTStatus");
13139
13140 try
13141 {
13142 p = remote_get_noisy_reply ();
13143 }
13144 catch (const gdb_exception_error &ex)
13145 {
13146 if (ex.error != TARGET_CLOSE_ERROR)
13147 {
13148 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13149 return -1;
13150 }
13151 throw;
13152 }
13153
13154 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13155
13156 /* If the remote target doesn't do tracing, flag it. */
13157 if (result == PACKET_UNKNOWN)
13158 return -1;
13159
13160 /* We're working with a live target. */
13161 ts->filename = NULL;
13162
13163 if (*p++ != 'T')
13164 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13165
13166 /* Function 'parse_trace_status' sets default value of each field of
13167 'ts' at first, so we don't have to do it here. */
13168 parse_trace_status (p, ts);
13169
13170 return ts->running;
13171 }
13172
13173 void
13174 remote_target::get_tracepoint_status (struct breakpoint *bp,
13175 struct uploaded_tp *utp)
13176 {
13177 struct remote_state *rs = get_remote_state ();
13178 char *reply;
13179 struct bp_location *loc;
13180 struct tracepoint *tp = (struct tracepoint *) bp;
13181 size_t size = get_remote_packet_size ();
13182
13183 if (tp)
13184 {
13185 tp->hit_count = 0;
13186 tp->traceframe_usage = 0;
13187 for (loc = tp->loc; loc; loc = loc->next)
13188 {
13189 /* If the tracepoint was never downloaded, don't go asking for
13190 any status. */
13191 if (tp->number_on_target == 0)
13192 continue;
13193 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13194 phex_nz (loc->address, 0));
13195 putpkt (rs->buf);
13196 reply = remote_get_noisy_reply ();
13197 if (reply && *reply)
13198 {
13199 if (*reply == 'V')
13200 parse_tracepoint_status (reply + 1, bp, utp);
13201 }
13202 }
13203 }
13204 else if (utp)
13205 {
13206 utp->hit_count = 0;
13207 utp->traceframe_usage = 0;
13208 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13209 phex_nz (utp->addr, 0));
13210 putpkt (rs->buf);
13211 reply = remote_get_noisy_reply ();
13212 if (reply && *reply)
13213 {
13214 if (*reply == 'V')
13215 parse_tracepoint_status (reply + 1, bp, utp);
13216 }
13217 }
13218 }
13219
13220 void
13221 remote_target::trace_stop ()
13222 {
13223 struct remote_state *rs = get_remote_state ();
13224
13225 putpkt ("QTStop");
13226 remote_get_noisy_reply ();
13227 if (rs->buf[0] == '\0')
13228 error (_("Target does not support this command."));
13229 if (strcmp (rs->buf.data (), "OK") != 0)
13230 error (_("Bogus reply from target: %s"), rs->buf.data ());
13231 }
13232
13233 int
13234 remote_target::trace_find (enum trace_find_type type, int num,
13235 CORE_ADDR addr1, CORE_ADDR addr2,
13236 int *tpp)
13237 {
13238 struct remote_state *rs = get_remote_state ();
13239 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13240 char *p, *reply;
13241 int target_frameno = -1, target_tracept = -1;
13242
13243 /* Lookups other than by absolute frame number depend on the current
13244 trace selected, so make sure it is correct on the remote end
13245 first. */
13246 if (type != tfind_number)
13247 set_remote_traceframe ();
13248
13249 p = rs->buf.data ();
13250 strcpy (p, "QTFrame:");
13251 p = strchr (p, '\0');
13252 switch (type)
13253 {
13254 case tfind_number:
13255 xsnprintf (p, endbuf - p, "%x", num);
13256 break;
13257 case tfind_pc:
13258 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13259 break;
13260 case tfind_tp:
13261 xsnprintf (p, endbuf - p, "tdp:%x", num);
13262 break;
13263 case tfind_range:
13264 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13265 phex_nz (addr2, 0));
13266 break;
13267 case tfind_outside:
13268 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13269 phex_nz (addr2, 0));
13270 break;
13271 default:
13272 error (_("Unknown trace find type %d"), type);
13273 }
13274
13275 putpkt (rs->buf);
13276 reply = remote_get_noisy_reply ();
13277 if (*reply == '\0')
13278 error (_("Target does not support this command."));
13279
13280 while (reply && *reply)
13281 switch (*reply)
13282 {
13283 case 'F':
13284 p = ++reply;
13285 target_frameno = (int) strtol (p, &reply, 16);
13286 if (reply == p)
13287 error (_("Unable to parse trace frame number"));
13288 /* Don't update our remote traceframe number cache on failure
13289 to select a remote traceframe. */
13290 if (target_frameno == -1)
13291 return -1;
13292 break;
13293 case 'T':
13294 p = ++reply;
13295 target_tracept = (int) strtol (p, &reply, 16);
13296 if (reply == p)
13297 error (_("Unable to parse tracepoint number"));
13298 break;
13299 case 'O': /* "OK"? */
13300 if (reply[1] == 'K' && reply[2] == '\0')
13301 reply += 2;
13302 else
13303 error (_("Bogus reply from target: %s"), reply);
13304 break;
13305 default:
13306 error (_("Bogus reply from target: %s"), reply);
13307 }
13308 if (tpp)
13309 *tpp = target_tracept;
13310
13311 rs->remote_traceframe_number = target_frameno;
13312 return target_frameno;
13313 }
13314
13315 bool
13316 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13317 {
13318 struct remote_state *rs = get_remote_state ();
13319 char *reply;
13320 ULONGEST uval;
13321
13322 set_remote_traceframe ();
13323
13324 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13325 putpkt (rs->buf);
13326 reply = remote_get_noisy_reply ();
13327 if (reply && *reply)
13328 {
13329 if (*reply == 'V')
13330 {
13331 unpack_varlen_hex (reply + 1, &uval);
13332 *val = (LONGEST) uval;
13333 return true;
13334 }
13335 }
13336 return false;
13337 }
13338
13339 int
13340 remote_target::save_trace_data (const char *filename)
13341 {
13342 struct remote_state *rs = get_remote_state ();
13343 char *p, *reply;
13344
13345 p = rs->buf.data ();
13346 strcpy (p, "QTSave:");
13347 p += strlen (p);
13348 if ((p - rs->buf.data ()) + strlen (filename) * 2
13349 >= get_remote_packet_size ())
13350 error (_("Remote file name too long for trace save packet"));
13351 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13352 *p++ = '\0';
13353 putpkt (rs->buf);
13354 reply = remote_get_noisy_reply ();
13355 if (*reply == '\0')
13356 error (_("Target does not support this command."));
13357 if (strcmp (reply, "OK") != 0)
13358 error (_("Bogus reply from target: %s"), reply);
13359 return 0;
13360 }
13361
13362 /* This is basically a memory transfer, but needs to be its own packet
13363 because we don't know how the target actually organizes its trace
13364 memory, plus we want to be able to ask for as much as possible, but
13365 not be unhappy if we don't get as much as we ask for. */
13366
13367 LONGEST
13368 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13369 {
13370 struct remote_state *rs = get_remote_state ();
13371 char *reply;
13372 char *p;
13373 int rslt;
13374
13375 p = rs->buf.data ();
13376 strcpy (p, "qTBuffer:");
13377 p += strlen (p);
13378 p += hexnumstr (p, offset);
13379 *p++ = ',';
13380 p += hexnumstr (p, len);
13381 *p++ = '\0';
13382
13383 putpkt (rs->buf);
13384 reply = remote_get_noisy_reply ();
13385 if (reply && *reply)
13386 {
13387 /* 'l' by itself means we're at the end of the buffer and
13388 there is nothing more to get. */
13389 if (*reply == 'l')
13390 return 0;
13391
13392 /* Convert the reply into binary. Limit the number of bytes to
13393 convert according to our passed-in buffer size, rather than
13394 what was returned in the packet; if the target is
13395 unexpectedly generous and gives us a bigger reply than we
13396 asked for, we don't want to crash. */
13397 rslt = hex2bin (reply, buf, len);
13398 return rslt;
13399 }
13400
13401 /* Something went wrong, flag as an error. */
13402 return -1;
13403 }
13404
13405 void
13406 remote_target::set_disconnected_tracing (int val)
13407 {
13408 struct remote_state *rs = get_remote_state ();
13409
13410 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13411 {
13412 char *reply;
13413
13414 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13415 "QTDisconnected:%x", val);
13416 putpkt (rs->buf);
13417 reply = remote_get_noisy_reply ();
13418 if (*reply == '\0')
13419 error (_("Target does not support this command."));
13420 if (strcmp (reply, "OK") != 0)
13421 error (_("Bogus reply from target: %s"), reply);
13422 }
13423 else if (val)
13424 warning (_("Target does not support disconnected tracing."));
13425 }
13426
13427 int
13428 remote_target::core_of_thread (ptid_t ptid)
13429 {
13430 struct thread_info *info = find_thread_ptid (ptid);
13431
13432 if (info != NULL && info->priv != NULL)
13433 return get_remote_thread_info (info)->core;
13434
13435 return -1;
13436 }
13437
13438 void
13439 remote_target::set_circular_trace_buffer (int val)
13440 {
13441 struct remote_state *rs = get_remote_state ();
13442 char *reply;
13443
13444 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13445 "QTBuffer:circular:%x", val);
13446 putpkt (rs->buf);
13447 reply = remote_get_noisy_reply ();
13448 if (*reply == '\0')
13449 error (_("Target does not support this command."));
13450 if (strcmp (reply, "OK") != 0)
13451 error (_("Bogus reply from target: %s"), reply);
13452 }
13453
13454 traceframe_info_up
13455 remote_target::traceframe_info ()
13456 {
13457 gdb::optional<gdb::char_vector> text
13458 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13459 NULL);
13460 if (text)
13461 return parse_traceframe_info (text->data ());
13462
13463 return NULL;
13464 }
13465
13466 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13467 instruction on which a fast tracepoint may be placed. Returns -1
13468 if the packet is not supported, and 0 if the minimum instruction
13469 length is unknown. */
13470
13471 int
13472 remote_target::get_min_fast_tracepoint_insn_len ()
13473 {
13474 struct remote_state *rs = get_remote_state ();
13475 char *reply;
13476
13477 /* If we're not debugging a process yet, the IPA can't be
13478 loaded. */
13479 if (!target_has_execution)
13480 return 0;
13481
13482 /* Make sure the remote is pointing at the right process. */
13483 set_general_process ();
13484
13485 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13486 putpkt (rs->buf);
13487 reply = remote_get_noisy_reply ();
13488 if (*reply == '\0')
13489 return -1;
13490 else
13491 {
13492 ULONGEST min_insn_len;
13493
13494 unpack_varlen_hex (reply, &min_insn_len);
13495
13496 return (int) min_insn_len;
13497 }
13498 }
13499
13500 void
13501 remote_target::set_trace_buffer_size (LONGEST val)
13502 {
13503 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13504 {
13505 struct remote_state *rs = get_remote_state ();
13506 char *buf = rs->buf.data ();
13507 char *endbuf = buf + get_remote_packet_size ();
13508 enum packet_result result;
13509
13510 gdb_assert (val >= 0 || val == -1);
13511 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13512 /* Send -1 as literal "-1" to avoid host size dependency. */
13513 if (val < 0)
13514 {
13515 *buf++ = '-';
13516 buf += hexnumstr (buf, (ULONGEST) -val);
13517 }
13518 else
13519 buf += hexnumstr (buf, (ULONGEST) val);
13520
13521 putpkt (rs->buf);
13522 remote_get_noisy_reply ();
13523 result = packet_ok (rs->buf,
13524 &remote_protocol_packets[PACKET_QTBuffer_size]);
13525
13526 if (result != PACKET_OK)
13527 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13528 }
13529 }
13530
13531 bool
13532 remote_target::set_trace_notes (const char *user, const char *notes,
13533 const char *stop_notes)
13534 {
13535 struct remote_state *rs = get_remote_state ();
13536 char *reply;
13537 char *buf = rs->buf.data ();
13538 char *endbuf = buf + get_remote_packet_size ();
13539 int nbytes;
13540
13541 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13542 if (user)
13543 {
13544 buf += xsnprintf (buf, endbuf - buf, "user:");
13545 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13546 buf += 2 * nbytes;
13547 *buf++ = ';';
13548 }
13549 if (notes)
13550 {
13551 buf += xsnprintf (buf, endbuf - buf, "notes:");
13552 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13553 buf += 2 * nbytes;
13554 *buf++ = ';';
13555 }
13556 if (stop_notes)
13557 {
13558 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13559 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13560 buf += 2 * nbytes;
13561 *buf++ = ';';
13562 }
13563 /* Ensure the buffer is terminated. */
13564 *buf = '\0';
13565
13566 putpkt (rs->buf);
13567 reply = remote_get_noisy_reply ();
13568 if (*reply == '\0')
13569 return false;
13570
13571 if (strcmp (reply, "OK") != 0)
13572 error (_("Bogus reply from target: %s"), reply);
13573
13574 return true;
13575 }
13576
13577 bool
13578 remote_target::use_agent (bool use)
13579 {
13580 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13581 {
13582 struct remote_state *rs = get_remote_state ();
13583
13584 /* If the stub supports QAgent. */
13585 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13586 putpkt (rs->buf);
13587 getpkt (&rs->buf, 0);
13588
13589 if (strcmp (rs->buf.data (), "OK") == 0)
13590 {
13591 ::use_agent = use;
13592 return true;
13593 }
13594 }
13595
13596 return false;
13597 }
13598
13599 bool
13600 remote_target::can_use_agent ()
13601 {
13602 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13603 }
13604
13605 struct btrace_target_info
13606 {
13607 /* The ptid of the traced thread. */
13608 ptid_t ptid;
13609
13610 /* The obtained branch trace configuration. */
13611 struct btrace_config conf;
13612 };
13613
13614 /* Reset our idea of our target's btrace configuration. */
13615
13616 static void
13617 remote_btrace_reset (remote_state *rs)
13618 {
13619 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13620 }
13621
13622 /* Synchronize the configuration with the target. */
13623
13624 void
13625 remote_target::btrace_sync_conf (const btrace_config *conf)
13626 {
13627 struct packet_config *packet;
13628 struct remote_state *rs;
13629 char *buf, *pos, *endbuf;
13630
13631 rs = get_remote_state ();
13632 buf = rs->buf.data ();
13633 endbuf = buf + get_remote_packet_size ();
13634
13635 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13636 if (packet_config_support (packet) == PACKET_ENABLE
13637 && conf->bts.size != rs->btrace_config.bts.size)
13638 {
13639 pos = buf;
13640 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13641 conf->bts.size);
13642
13643 putpkt (buf);
13644 getpkt (&rs->buf, 0);
13645
13646 if (packet_ok (buf, packet) == PACKET_ERROR)
13647 {
13648 if (buf[0] == 'E' && buf[1] == '.')
13649 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13650 else
13651 error (_("Failed to configure the BTS buffer size."));
13652 }
13653
13654 rs->btrace_config.bts.size = conf->bts.size;
13655 }
13656
13657 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13658 if (packet_config_support (packet) == PACKET_ENABLE
13659 && conf->pt.size != rs->btrace_config.pt.size)
13660 {
13661 pos = buf;
13662 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13663 conf->pt.size);
13664
13665 putpkt (buf);
13666 getpkt (&rs->buf, 0);
13667
13668 if (packet_ok (buf, packet) == PACKET_ERROR)
13669 {
13670 if (buf[0] == 'E' && buf[1] == '.')
13671 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13672 else
13673 error (_("Failed to configure the trace buffer size."));
13674 }
13675
13676 rs->btrace_config.pt.size = conf->pt.size;
13677 }
13678 }
13679
13680 /* Read the current thread's btrace configuration from the target and
13681 store it into CONF. */
13682
13683 static void
13684 btrace_read_config (struct btrace_config *conf)
13685 {
13686 gdb::optional<gdb::char_vector> xml
13687 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13688 if (xml)
13689 parse_xml_btrace_conf (conf, xml->data ());
13690 }
13691
13692 /* Maybe reopen target btrace. */
13693
13694 void
13695 remote_target::remote_btrace_maybe_reopen ()
13696 {
13697 struct remote_state *rs = get_remote_state ();
13698 int btrace_target_pushed = 0;
13699 #if !defined (HAVE_LIBIPT)
13700 int warned = 0;
13701 #endif
13702
13703 /* Don't bother walking the entirety of the remote thread list when
13704 we know the feature isn't supported by the remote. */
13705 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13706 return;
13707
13708 scoped_restore_current_thread restore_thread;
13709
13710 for (thread_info *tp : all_non_exited_threads ())
13711 {
13712 set_general_thread (tp->ptid);
13713
13714 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13715 btrace_read_config (&rs->btrace_config);
13716
13717 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13718 continue;
13719
13720 #if !defined (HAVE_LIBIPT)
13721 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13722 {
13723 if (!warned)
13724 {
13725 warned = 1;
13726 warning (_("Target is recording using Intel Processor Trace "
13727 "but support was disabled at compile time."));
13728 }
13729
13730 continue;
13731 }
13732 #endif /* !defined (HAVE_LIBIPT) */
13733
13734 /* Push target, once, but before anything else happens. This way our
13735 changes to the threads will be cleaned up by unpushing the target
13736 in case btrace_read_config () throws. */
13737 if (!btrace_target_pushed)
13738 {
13739 btrace_target_pushed = 1;
13740 record_btrace_push_target ();
13741 printf_filtered (_("Target is recording using %s.\n"),
13742 btrace_format_string (rs->btrace_config.format));
13743 }
13744
13745 tp->btrace.target = XCNEW (struct btrace_target_info);
13746 tp->btrace.target->ptid = tp->ptid;
13747 tp->btrace.target->conf = rs->btrace_config;
13748 }
13749 }
13750
13751 /* Enable branch tracing. */
13752
13753 struct btrace_target_info *
13754 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13755 {
13756 struct btrace_target_info *tinfo = NULL;
13757 struct packet_config *packet = NULL;
13758 struct remote_state *rs = get_remote_state ();
13759 char *buf = rs->buf.data ();
13760 char *endbuf = buf + get_remote_packet_size ();
13761
13762 switch (conf->format)
13763 {
13764 case BTRACE_FORMAT_BTS:
13765 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13766 break;
13767
13768 case BTRACE_FORMAT_PT:
13769 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13770 break;
13771 }
13772
13773 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13774 error (_("Target does not support branch tracing."));
13775
13776 btrace_sync_conf (conf);
13777
13778 set_general_thread (ptid);
13779
13780 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13781 putpkt (rs->buf);
13782 getpkt (&rs->buf, 0);
13783
13784 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13785 {
13786 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13787 error (_("Could not enable branch tracing for %s: %s"),
13788 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13789 else
13790 error (_("Could not enable branch tracing for %s."),
13791 target_pid_to_str (ptid).c_str ());
13792 }
13793
13794 tinfo = XCNEW (struct btrace_target_info);
13795 tinfo->ptid = ptid;
13796
13797 /* If we fail to read the configuration, we lose some information, but the
13798 tracing itself is not impacted. */
13799 try
13800 {
13801 btrace_read_config (&tinfo->conf);
13802 }
13803 catch (const gdb_exception_error &err)
13804 {
13805 if (err.message != NULL)
13806 warning ("%s", err.what ());
13807 }
13808
13809 return tinfo;
13810 }
13811
13812 /* Disable branch tracing. */
13813
13814 void
13815 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13816 {
13817 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13818 struct remote_state *rs = get_remote_state ();
13819 char *buf = rs->buf.data ();
13820 char *endbuf = buf + get_remote_packet_size ();
13821
13822 if (packet_config_support (packet) != PACKET_ENABLE)
13823 error (_("Target does not support branch tracing."));
13824
13825 set_general_thread (tinfo->ptid);
13826
13827 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13828 putpkt (rs->buf);
13829 getpkt (&rs->buf, 0);
13830
13831 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13832 {
13833 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13834 error (_("Could not disable branch tracing for %s: %s"),
13835 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13836 else
13837 error (_("Could not disable branch tracing for %s."),
13838 target_pid_to_str (tinfo->ptid).c_str ());
13839 }
13840
13841 xfree (tinfo);
13842 }
13843
13844 /* Teardown branch tracing. */
13845
13846 void
13847 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13848 {
13849 /* We must not talk to the target during teardown. */
13850 xfree (tinfo);
13851 }
13852
13853 /* Read the branch trace. */
13854
13855 enum btrace_error
13856 remote_target::read_btrace (struct btrace_data *btrace,
13857 struct btrace_target_info *tinfo,
13858 enum btrace_read_type type)
13859 {
13860 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13861 const char *annex;
13862
13863 if (packet_config_support (packet) != PACKET_ENABLE)
13864 error (_("Target does not support branch tracing."));
13865
13866 #if !defined(HAVE_LIBEXPAT)
13867 error (_("Cannot process branch tracing result. XML parsing not supported."));
13868 #endif
13869
13870 switch (type)
13871 {
13872 case BTRACE_READ_ALL:
13873 annex = "all";
13874 break;
13875 case BTRACE_READ_NEW:
13876 annex = "new";
13877 break;
13878 case BTRACE_READ_DELTA:
13879 annex = "delta";
13880 break;
13881 default:
13882 internal_error (__FILE__, __LINE__,
13883 _("Bad branch tracing read type: %u."),
13884 (unsigned int) type);
13885 }
13886
13887 gdb::optional<gdb::char_vector> xml
13888 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13889 if (!xml)
13890 return BTRACE_ERR_UNKNOWN;
13891
13892 parse_xml_btrace (btrace, xml->data ());
13893
13894 return BTRACE_ERR_NONE;
13895 }
13896
13897 const struct btrace_config *
13898 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13899 {
13900 return &tinfo->conf;
13901 }
13902
13903 bool
13904 remote_target::augmented_libraries_svr4_read ()
13905 {
13906 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13907 == PACKET_ENABLE);
13908 }
13909
13910 /* Implementation of to_load. */
13911
13912 void
13913 remote_target::load (const char *name, int from_tty)
13914 {
13915 generic_load (name, from_tty);
13916 }
13917
13918 /* Accepts an integer PID; returns a string representing a file that
13919 can be opened on the remote side to get the symbols for the child
13920 process. Returns NULL if the operation is not supported. */
13921
13922 char *
13923 remote_target::pid_to_exec_file (int pid)
13924 {
13925 static gdb::optional<gdb::char_vector> filename;
13926 struct inferior *inf;
13927 char *annex = NULL;
13928
13929 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13930 return NULL;
13931
13932 inf = find_inferior_pid (pid);
13933 if (inf == NULL)
13934 internal_error (__FILE__, __LINE__,
13935 _("not currently attached to process %d"), pid);
13936
13937 if (!inf->fake_pid_p)
13938 {
13939 const int annex_size = 9;
13940
13941 annex = (char *) alloca (annex_size);
13942 xsnprintf (annex, annex_size, "%x", pid);
13943 }
13944
13945 filename = target_read_stralloc (current_top_target (),
13946 TARGET_OBJECT_EXEC_FILE, annex);
13947
13948 return filename ? filename->data () : nullptr;
13949 }
13950
13951 /* Implement the to_can_do_single_step target_ops method. */
13952
13953 int
13954 remote_target::can_do_single_step ()
13955 {
13956 /* We can only tell whether target supports single step or not by
13957 supported s and S vCont actions if the stub supports vContSupported
13958 feature. If the stub doesn't support vContSupported feature,
13959 we have conservatively to think target doesn't supports single
13960 step. */
13961 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13962 {
13963 struct remote_state *rs = get_remote_state ();
13964
13965 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13966 remote_vcont_probe ();
13967
13968 return rs->supports_vCont.s && rs->supports_vCont.S;
13969 }
13970 else
13971 return 0;
13972 }
13973
13974 /* Implementation of the to_execution_direction method for the remote
13975 target. */
13976
13977 enum exec_direction_kind
13978 remote_target::execution_direction ()
13979 {
13980 struct remote_state *rs = get_remote_state ();
13981
13982 return rs->last_resume_exec_dir;
13983 }
13984
13985 /* Return pointer to the thread_info struct which corresponds to
13986 THREAD_HANDLE (having length HANDLE_LEN). */
13987
13988 thread_info *
13989 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13990 int handle_len,
13991 inferior *inf)
13992 {
13993 for (thread_info *tp : all_non_exited_threads ())
13994 {
13995 remote_thread_info *priv = get_remote_thread_info (tp);
13996
13997 if (tp->inf == inf && priv != NULL)
13998 {
13999 if (handle_len != priv->thread_handle.size ())
14000 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14001 handle_len, priv->thread_handle.size ());
14002 if (memcmp (thread_handle, priv->thread_handle.data (),
14003 handle_len) == 0)
14004 return tp;
14005 }
14006 }
14007
14008 return NULL;
14009 }
14010
14011 gdb::byte_vector
14012 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14013 {
14014 remote_thread_info *priv = get_remote_thread_info (tp);
14015 return priv->thread_handle;
14016 }
14017
14018 bool
14019 remote_target::can_async_p ()
14020 {
14021 struct remote_state *rs = get_remote_state ();
14022
14023 /* We don't go async if the user has explicitly prevented it with the
14024 "maint set target-async" command. */
14025 if (!target_async_permitted)
14026 return false;
14027
14028 /* We're async whenever the serial device is. */
14029 return serial_can_async_p (rs->remote_desc);
14030 }
14031
14032 bool
14033 remote_target::is_async_p ()
14034 {
14035 struct remote_state *rs = get_remote_state ();
14036
14037 if (!target_async_permitted)
14038 /* We only enable async when the user specifically asks for it. */
14039 return false;
14040
14041 /* We're async whenever the serial device is. */
14042 return serial_is_async_p (rs->remote_desc);
14043 }
14044
14045 /* Pass the SERIAL event on and up to the client. One day this code
14046 will be able to delay notifying the client of an event until the
14047 point where an entire packet has been received. */
14048
14049 static serial_event_ftype remote_async_serial_handler;
14050
14051 static void
14052 remote_async_serial_handler (struct serial *scb, void *context)
14053 {
14054 /* Don't propogate error information up to the client. Instead let
14055 the client find out about the error by querying the target. */
14056 inferior_event_handler (INF_REG_EVENT, NULL);
14057 }
14058
14059 static void
14060 remote_async_inferior_event_handler (gdb_client_data data)
14061 {
14062 inferior_event_handler (INF_REG_EVENT, data);
14063 }
14064
14065 void
14066 remote_target::async (int enable)
14067 {
14068 struct remote_state *rs = get_remote_state ();
14069
14070 if (enable)
14071 {
14072 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14073
14074 /* If there are pending events in the stop reply queue tell the
14075 event loop to process them. */
14076 if (!rs->stop_reply_queue.empty ())
14077 mark_async_event_handler (rs->remote_async_inferior_event_token);
14078 /* For simplicity, below we clear the pending events token
14079 without remembering whether it is marked, so here we always
14080 mark it. If there's actually no pending notification to
14081 process, this ends up being a no-op (other than a spurious
14082 event-loop wakeup). */
14083 if (target_is_non_stop_p ())
14084 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14085 }
14086 else
14087 {
14088 serial_async (rs->remote_desc, NULL, NULL);
14089 /* If the core is disabling async, it doesn't want to be
14090 disturbed with target events. Clear all async event sources
14091 too. */
14092 clear_async_event_handler (rs->remote_async_inferior_event_token);
14093 if (target_is_non_stop_p ())
14094 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14095 }
14096 }
14097
14098 /* Implementation of the to_thread_events method. */
14099
14100 void
14101 remote_target::thread_events (int enable)
14102 {
14103 struct remote_state *rs = get_remote_state ();
14104 size_t size = get_remote_packet_size ();
14105
14106 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14107 return;
14108
14109 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14110 putpkt (rs->buf);
14111 getpkt (&rs->buf, 0);
14112
14113 switch (packet_ok (rs->buf,
14114 &remote_protocol_packets[PACKET_QThreadEvents]))
14115 {
14116 case PACKET_OK:
14117 if (strcmp (rs->buf.data (), "OK") != 0)
14118 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14119 break;
14120 case PACKET_ERROR:
14121 warning (_("Remote failure reply: %s"), rs->buf.data ());
14122 break;
14123 case PACKET_UNKNOWN:
14124 break;
14125 }
14126 }
14127
14128 static void
14129 set_remote_cmd (const char *args, int from_tty)
14130 {
14131 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14132 }
14133
14134 static void
14135 show_remote_cmd (const char *args, int from_tty)
14136 {
14137 /* We can't just use cmd_show_list here, because we want to skip
14138 the redundant "show remote Z-packet" and the legacy aliases. */
14139 struct cmd_list_element *list = remote_show_cmdlist;
14140 struct ui_out *uiout = current_uiout;
14141
14142 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14143 for (; list != NULL; list = list->next)
14144 if (strcmp (list->name, "Z-packet") == 0)
14145 continue;
14146 else if (list->type == not_set_cmd)
14147 /* Alias commands are exactly like the original, except they
14148 don't have the normal type. */
14149 continue;
14150 else
14151 {
14152 ui_out_emit_tuple option_emitter (uiout, "option");
14153
14154 uiout->field_string ("name", list->name);
14155 uiout->text (": ");
14156 if (list->type == show_cmd)
14157 do_show_command (NULL, from_tty, list);
14158 else
14159 cmd_func (list, NULL, from_tty);
14160 }
14161 }
14162
14163
14164 /* Function to be called whenever a new objfile (shlib) is detected. */
14165 static void
14166 remote_new_objfile (struct objfile *objfile)
14167 {
14168 remote_target *remote = get_current_remote_target ();
14169
14170 if (remote != NULL) /* Have a remote connection. */
14171 remote->remote_check_symbols ();
14172 }
14173
14174 /* Pull all the tracepoints defined on the target and create local
14175 data structures representing them. We don't want to create real
14176 tracepoints yet, we don't want to mess up the user's existing
14177 collection. */
14178
14179 int
14180 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14181 {
14182 struct remote_state *rs = get_remote_state ();
14183 char *p;
14184
14185 /* Ask for a first packet of tracepoint definition. */
14186 putpkt ("qTfP");
14187 getpkt (&rs->buf, 0);
14188 p = rs->buf.data ();
14189 while (*p && *p != 'l')
14190 {
14191 parse_tracepoint_definition (p, utpp);
14192 /* Ask for another packet of tracepoint definition. */
14193 putpkt ("qTsP");
14194 getpkt (&rs->buf, 0);
14195 p = rs->buf.data ();
14196 }
14197 return 0;
14198 }
14199
14200 int
14201 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14202 {
14203 struct remote_state *rs = get_remote_state ();
14204 char *p;
14205
14206 /* Ask for a first packet of variable definition. */
14207 putpkt ("qTfV");
14208 getpkt (&rs->buf, 0);
14209 p = rs->buf.data ();
14210 while (*p && *p != 'l')
14211 {
14212 parse_tsv_definition (p, utsvp);
14213 /* Ask for another packet of variable definition. */
14214 putpkt ("qTsV");
14215 getpkt (&rs->buf, 0);
14216 p = rs->buf.data ();
14217 }
14218 return 0;
14219 }
14220
14221 /* The "set/show range-stepping" show hook. */
14222
14223 static void
14224 show_range_stepping (struct ui_file *file, int from_tty,
14225 struct cmd_list_element *c,
14226 const char *value)
14227 {
14228 fprintf_filtered (file,
14229 _("Debugger's willingness to use range stepping "
14230 "is %s.\n"), value);
14231 }
14232
14233 /* Return true if the vCont;r action is supported by the remote
14234 stub. */
14235
14236 bool
14237 remote_target::vcont_r_supported ()
14238 {
14239 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14240 remote_vcont_probe ();
14241
14242 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14243 && get_remote_state ()->supports_vCont.r);
14244 }
14245
14246 /* The "set/show range-stepping" set hook. */
14247
14248 static void
14249 set_range_stepping (const char *ignore_args, int from_tty,
14250 struct cmd_list_element *c)
14251 {
14252 /* When enabling, check whether range stepping is actually supported
14253 by the target, and warn if not. */
14254 if (use_range_stepping)
14255 {
14256 remote_target *remote = get_current_remote_target ();
14257 if (remote == NULL
14258 || !remote->vcont_r_supported ())
14259 warning (_("Range stepping is not supported by the current target"));
14260 }
14261 }
14262
14263 void
14264 _initialize_remote (void)
14265 {
14266 struct cmd_list_element *cmd;
14267 const char *cmd_name;
14268
14269 /* architecture specific data */
14270 remote_g_packet_data_handle =
14271 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14272
14273 add_target (remote_target_info, remote_target::open);
14274 add_target (extended_remote_target_info, extended_remote_target::open);
14275
14276 /* Hook into new objfile notification. */
14277 gdb::observers::new_objfile.attach (remote_new_objfile);
14278
14279 #if 0
14280 init_remote_threadtests ();
14281 #endif
14282
14283 /* set/show remote ... */
14284
14285 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14286 Remote protocol specific variables.\n\
14287 Configure various remote-protocol specific variables such as\n\
14288 the packets being used."),
14289 &remote_set_cmdlist, "set remote ",
14290 0 /* allow-unknown */, &setlist);
14291 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14292 Remote protocol specific variables.\n\
14293 Configure various remote-protocol specific variables such as\n\
14294 the packets being used."),
14295 &remote_show_cmdlist, "show remote ",
14296 0 /* allow-unknown */, &showlist);
14297
14298 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14299 Compare section data on target to the exec file.\n\
14300 Argument is a single section name (default: all loaded sections).\n\
14301 To compare only read-only loaded sections, specify the -r option."),
14302 &cmdlist);
14303
14304 add_cmd ("packet", class_maintenance, packet_command, _("\
14305 Send an arbitrary packet to a remote target.\n\
14306 maintenance packet TEXT\n\
14307 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14308 this command sends the string TEXT to the inferior, and displays the\n\
14309 response packet. GDB supplies the initial `$' character, and the\n\
14310 terminating `#' character and checksum."),
14311 &maintenancelist);
14312
14313 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14314 Set whether to send break if interrupted."), _("\
14315 Show whether to send break if interrupted."), _("\
14316 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14317 set_remotebreak, show_remotebreak,
14318 &setlist, &showlist);
14319 cmd_name = "remotebreak";
14320 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14321 deprecate_cmd (cmd, "set remote interrupt-sequence");
14322 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14323 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14324 deprecate_cmd (cmd, "show remote interrupt-sequence");
14325
14326 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14327 interrupt_sequence_modes, &interrupt_sequence_mode,
14328 _("\
14329 Set interrupt sequence to remote target."), _("\
14330 Show interrupt sequence to remote target."), _("\
14331 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14332 NULL, show_interrupt_sequence,
14333 &remote_set_cmdlist,
14334 &remote_show_cmdlist);
14335
14336 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14337 &interrupt_on_connect, _("\
14338 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14339 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14340 If set, interrupt sequence is sent to remote target."),
14341 NULL, NULL,
14342 &remote_set_cmdlist, &remote_show_cmdlist);
14343
14344 /* Install commands for configuring memory read/write packets. */
14345
14346 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14347 Set the maximum number of bytes per memory write packet (deprecated)."),
14348 &setlist);
14349 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14350 Show the maximum number of bytes per memory write packet (deprecated)."),
14351 &showlist);
14352 add_cmd ("memory-write-packet-size", no_class,
14353 set_memory_write_packet_size, _("\
14354 Set the maximum number of bytes per memory-write packet.\n\
14355 Specify the number of bytes in a packet or 0 (zero) for the\n\
14356 default packet size. The actual limit is further reduced\n\
14357 dependent on the target. Specify ``fixed'' to disable the\n\
14358 further restriction and ``limit'' to enable that restriction."),
14359 &remote_set_cmdlist);
14360 add_cmd ("memory-read-packet-size", no_class,
14361 set_memory_read_packet_size, _("\
14362 Set the maximum number of bytes per memory-read packet.\n\
14363 Specify the number of bytes in a packet or 0 (zero) for the\n\
14364 default packet size. The actual limit is further reduced\n\
14365 dependent on the target. Specify ``fixed'' to disable the\n\
14366 further restriction and ``limit'' to enable that restriction."),
14367 &remote_set_cmdlist);
14368 add_cmd ("memory-write-packet-size", no_class,
14369 show_memory_write_packet_size,
14370 _("Show the maximum number of bytes per memory-write packet."),
14371 &remote_show_cmdlist);
14372 add_cmd ("memory-read-packet-size", no_class,
14373 show_memory_read_packet_size,
14374 _("Show the maximum number of bytes per memory-read packet."),
14375 &remote_show_cmdlist);
14376
14377 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14378 &remote_hw_watchpoint_limit, _("\
14379 Set the maximum number of target hardware watchpoints."), _("\
14380 Show the maximum number of target hardware watchpoints."), _("\
14381 Specify \"unlimited\" for unlimited hardware watchpoints."),
14382 NULL, show_hardware_watchpoint_limit,
14383 &remote_set_cmdlist,
14384 &remote_show_cmdlist);
14385 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14386 no_class,
14387 &remote_hw_watchpoint_length_limit, _("\
14388 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14389 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14390 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14391 NULL, show_hardware_watchpoint_length_limit,
14392 &remote_set_cmdlist, &remote_show_cmdlist);
14393 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14394 &remote_hw_breakpoint_limit, _("\
14395 Set the maximum number of target hardware breakpoints."), _("\
14396 Show the maximum number of target hardware breakpoints."), _("\
14397 Specify \"unlimited\" for unlimited hardware breakpoints."),
14398 NULL, show_hardware_breakpoint_limit,
14399 &remote_set_cmdlist, &remote_show_cmdlist);
14400
14401 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14402 &remote_address_size, _("\
14403 Set the maximum size of the address (in bits) in a memory packet."), _("\
14404 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14405 NULL,
14406 NULL, /* FIXME: i18n: */
14407 &setlist, &showlist);
14408
14409 init_all_packet_configs ();
14410
14411 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14412 "X", "binary-download", 1);
14413
14414 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14415 "vCont", "verbose-resume", 0);
14416
14417 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14418 "QPassSignals", "pass-signals", 0);
14419
14420 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14421 "QCatchSyscalls", "catch-syscalls", 0);
14422
14423 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14424 "QProgramSignals", "program-signals", 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14427 "QSetWorkingDir", "set-working-dir", 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14430 "QStartupWithShell", "startup-with-shell", 0);
14431
14432 add_packet_config_cmd (&remote_protocol_packets
14433 [PACKET_QEnvironmentHexEncoded],
14434 "QEnvironmentHexEncoded", "environment-hex-encoded",
14435 0);
14436
14437 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14438 "QEnvironmentReset", "environment-reset",
14439 0);
14440
14441 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14442 "QEnvironmentUnset", "environment-unset",
14443 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14446 "qSymbol", "symbol-lookup", 0);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14449 "P", "set-register", 1);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14452 "p", "fetch-register", 1);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14455 "Z0", "software-breakpoint", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14458 "Z1", "hardware-breakpoint", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14461 "Z2", "write-watchpoint", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14464 "Z3", "read-watchpoint", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14467 "Z4", "access-watchpoint", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14470 "qXfer:auxv:read", "read-aux-vector", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14473 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14476 "qXfer:features:read", "target-features", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14479 "qXfer:libraries:read", "library-info", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14482 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14485 "qXfer:memory-map:read", "memory-map", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14488 "qXfer:spu:read", "read-spu-object", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14491 "qXfer:spu:write", "write-spu-object", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14494 "qXfer:osdata:read", "osdata", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14497 "qXfer:threads:read", "threads", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14500 "qXfer:siginfo:read", "read-siginfo-object", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14503 "qXfer:siginfo:write", "write-siginfo-object", 0);
14504
14505 add_packet_config_cmd
14506 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14507 "qXfer:traceframe-info:read", "traceframe-info", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14510 "qXfer:uib:read", "unwind-info-block", 0);
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14513 "qGetTLSAddr", "get-thread-local-storage-address",
14514 0);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14517 "qGetTIBAddr", "get-thread-information-block-address",
14518 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14521 "bc", "reverse-continue", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14524 "bs", "reverse-step", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14527 "qSupported", "supported-packets", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14530 "qSearch:memory", "search-memory", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14533 "qTStatus", "trace-status", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14536 "vFile:setfs", "hostio-setfs", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14539 "vFile:open", "hostio-open", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14542 "vFile:pread", "hostio-pread", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14545 "vFile:pwrite", "hostio-pwrite", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14548 "vFile:close", "hostio-close", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14551 "vFile:unlink", "hostio-unlink", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14554 "vFile:readlink", "hostio-readlink", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14557 "vFile:fstat", "hostio-fstat", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14560 "vAttach", "attach", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14563 "vRun", "run", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14566 "QStartNoAckMode", "noack", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14569 "vKill", "kill", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14572 "qAttached", "query-attached", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14575 "ConditionalTracepoints",
14576 "conditional-tracepoints", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14579 "ConditionalBreakpoints",
14580 "conditional-breakpoints", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14583 "BreakpointCommands",
14584 "breakpoint-commands", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14587 "FastTracepoints", "fast-tracepoints", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14590 "TracepointSource", "TracepointSource", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14593 "QAllow", "allow", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14596 "StaticTracepoints", "static-tracepoints", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14599 "InstallInTrace", "install-in-trace", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14602 "qXfer:statictrace:read", "read-sdata-object", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14605 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14608 "QDisableRandomization", "disable-randomization", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14611 "QAgent", "agent", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14614 "QTBuffer:size", "trace-buffer-size", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14617 "Qbtrace:off", "disable-btrace", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14620 "Qbtrace:bts", "enable-btrace-bts", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14623 "Qbtrace:pt", "enable-btrace-pt", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14626 "qXfer:btrace", "read-btrace", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14629 "qXfer:btrace-conf", "read-btrace-conf", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14632 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14635 "multiprocess-feature", "multiprocess-feature", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14638 "swbreak-feature", "swbreak-feature", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14641 "hwbreak-feature", "hwbreak-feature", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14644 "fork-event-feature", "fork-event-feature", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14647 "vfork-event-feature", "vfork-event-feature", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14650 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14653 "vContSupported", "verbose-resume-supported", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14656 "exec-event-feature", "exec-event-feature", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14659 "vCtrlC", "ctrl-c", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14662 "QThreadEvents", "thread-events", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14665 "N stop reply", "no-resumed-stop-reply", 0);
14666
14667 /* Assert that we've registered "set remote foo-packet" commands
14668 for all packet configs. */
14669 {
14670 int i;
14671
14672 for (i = 0; i < PACKET_MAX; i++)
14673 {
14674 /* Ideally all configs would have a command associated. Some
14675 still don't though. */
14676 int excepted;
14677
14678 switch (i)
14679 {
14680 case PACKET_QNonStop:
14681 case PACKET_EnableDisableTracepoints_feature:
14682 case PACKET_tracenz_feature:
14683 case PACKET_DisconnectedTracing_feature:
14684 case PACKET_augmented_libraries_svr4_read_feature:
14685 case PACKET_qCRC:
14686 /* Additions to this list need to be well justified:
14687 pre-existing packets are OK; new packets are not. */
14688 excepted = 1;
14689 break;
14690 default:
14691 excepted = 0;
14692 break;
14693 }
14694
14695 /* This catches both forgetting to add a config command, and
14696 forgetting to remove a packet from the exception list. */
14697 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14698 }
14699 }
14700
14701 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14702 Z sub-packet has its own set and show commands, but users may
14703 have sets to this variable in their .gdbinit files (or in their
14704 documentation). */
14705 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14706 &remote_Z_packet_detect, _("\
14707 Set use of remote protocol `Z' packets."), _("\
14708 Show use of remote protocol `Z' packets."), _("\
14709 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14710 packets."),
14711 set_remote_protocol_Z_packet_cmd,
14712 show_remote_protocol_Z_packet_cmd,
14713 /* FIXME: i18n: Use of remote protocol
14714 `Z' packets is %s. */
14715 &remote_set_cmdlist, &remote_show_cmdlist);
14716
14717 add_prefix_cmd ("remote", class_files, remote_command, _("\
14718 Manipulate files on the remote system.\n\
14719 Transfer files to and from the remote target system."),
14720 &remote_cmdlist, "remote ",
14721 0 /* allow-unknown */, &cmdlist);
14722
14723 add_cmd ("put", class_files, remote_put_command,
14724 _("Copy a local file to the remote system."),
14725 &remote_cmdlist);
14726
14727 add_cmd ("get", class_files, remote_get_command,
14728 _("Copy a remote file to the local system."),
14729 &remote_cmdlist);
14730
14731 add_cmd ("delete", class_files, remote_delete_command,
14732 _("Delete a remote file."),
14733 &remote_cmdlist);
14734
14735 add_setshow_string_noescape_cmd ("exec-file", class_files,
14736 &remote_exec_file_var, _("\
14737 Set the remote pathname for \"run\"."), _("\
14738 Show the remote pathname for \"run\"."), NULL,
14739 set_remote_exec_file,
14740 show_remote_exec_file,
14741 &remote_set_cmdlist,
14742 &remote_show_cmdlist);
14743
14744 add_setshow_boolean_cmd ("range-stepping", class_run,
14745 &use_range_stepping, _("\
14746 Enable or disable range stepping."), _("\
14747 Show whether target-assisted range stepping is enabled."), _("\
14748 If on, and the target supports it, when stepping a source line, GDB\n\
14749 tells the target to step the corresponding range of addresses itself instead\n\
14750 of issuing multiple single-steps. This speeds up source level\n\
14751 stepping. If off, GDB always issues single-steps, even if range\n\
14752 stepping is supported by the target. The default is on."),
14753 set_range_stepping,
14754 show_range_stepping,
14755 &setlist,
14756 &showlist);
14757
14758 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14759 Set watchdog timer."), _("\
14760 Show watchdog timer."), _("\
14761 When non-zero, this timeout is used instead of waiting forever for a target\n\
14762 to finish a low-level step or continue operation. If the specified amount\n\
14763 of time passes without a response from the target, an error occurs."),
14764 NULL,
14765 show_watchdog,
14766 &setlist, &showlist);
14767
14768 /* Eventually initialize fileio. See fileio.c */
14769 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14770 }