]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
[gdb, hurd] Avoid using 'PATH_MAX' in 'gdb/remote.c'
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 static void stop_reply_xfree (struct stop_reply *);
100
101 struct stop_reply_deleter
102 {
103 void operator() (stop_reply *r) const
104 {
105 stop_reply_xfree (r);
106 }
107 };
108
109 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111 /* Generic configuration support for packets the stub optionally
112 supports. Allows the user to specify the use of the packet as well
113 as allowing GDB to auto-detect support in the remote stub. */
114
115 enum packet_support
116 {
117 PACKET_SUPPORT_UNKNOWN = 0,
118 PACKET_ENABLE,
119 PACKET_DISABLE
120 };
121
122 /* Analyze a packet's return value and update the packet config
123 accordingly. */
124
125 enum packet_result
126 {
127 PACKET_ERROR,
128 PACKET_OK,
129 PACKET_UNKNOWN
130 };
131
132 struct threads_listing_context;
133
134 /* Stub vCont actions support.
135
136 Each field is a boolean flag indicating whether the stub reports
137 support for the corresponding action. */
138
139 struct vCont_action_support
140 {
141 /* vCont;t */
142 bool t = false;
143
144 /* vCont;r */
145 bool r = false;
146
147 /* vCont;s */
148 bool s = false;
149
150 /* vCont;S */
151 bool S = false;
152 };
153
154 /* About this many threadisds fit in a packet. */
155
156 #define MAXTHREADLISTRESULTS 32
157
158 /* Data for the vFile:pread readahead cache. */
159
160 struct readahead_cache
161 {
162 /* Invalidate the readahead cache. */
163 void invalidate ();
164
165 /* Invalidate the readahead cache if it is holding data for FD. */
166 void invalidate_fd (int fd);
167
168 /* Serve pread from the readahead cache. Returns number of bytes
169 read, or 0 if the request can't be served from the cache. */
170 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172 /* The file descriptor for the file that is being cached. -1 if the
173 cache is invalid. */
174 int fd = -1;
175
176 /* The offset into the file that the cache buffer corresponds
177 to. */
178 ULONGEST offset = 0;
179
180 /* The buffer holding the cache contents. */
181 gdb_byte *buf = nullptr;
182 /* The buffer's size. We try to read as much as fits into a packet
183 at a time. */
184 size_t bufsize = 0;
185
186 /* Cache hit and miss counters. */
187 ULONGEST hit_count = 0;
188 ULONGEST miss_count = 0;
189 };
190
191 /* Description of the remote protocol for a given architecture. */
192
193 struct packet_reg
194 {
195 long offset; /* Offset into G packet. */
196 long regnum; /* GDB's internal register number. */
197 LONGEST pnum; /* Remote protocol register number. */
198 int in_g_packet; /* Always part of G packet. */
199 /* long size in bytes; == register_size (target_gdbarch (), regnum);
200 at present. */
201 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202 at present. */
203 };
204
205 struct remote_arch_state
206 {
207 explicit remote_arch_state (struct gdbarch *gdbarch);
208
209 /* Description of the remote protocol registers. */
210 long sizeof_g_packet;
211
212 /* Description of the remote protocol registers indexed by REGNUM
213 (making an array gdbarch_num_regs in size). */
214 std::unique_ptr<packet_reg[]> regs;
215
216 /* This is the size (in chars) of the first response to the ``g''
217 packet. It is used as a heuristic when determining the maximum
218 size of memory-read and memory-write packets. A target will
219 typically only reserve a buffer large enough to hold the ``g''
220 packet. The size does not include packet overhead (headers and
221 trailers). */
222 long actual_register_packet_size;
223
224 /* This is the maximum size (in chars) of a non read/write packet.
225 It is also used as a cap on the size of read/write packets. */
226 long remote_packet_size;
227 };
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 class remote_state
234 {
235 public:
236
237 remote_state ();
238 ~remote_state ();
239
240 /* Get the remote arch state for GDBARCH. */
241 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243 public: /* data */
244
245 /* A buffer to use for incoming packets, and its current size. The
246 buffer is grown dynamically for larger incoming packets.
247 Outgoing packets may also be constructed in this buffer.
248 The size of the buffer is always at least REMOTE_PACKET_SIZE;
249 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250 packets. */
251 gdb::char_vector buf;
252
253 /* True if we're going through initial connection setup (finding out
254 about the remote side's threads, relocating symbols, etc.). */
255 bool starting_up = false;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size = 0;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status = 0;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 bool noack_mode = false;
276
277 /* True if we're connected in extended remote mode. */
278 bool extended = false;
279
280 /* True if we resumed the target and we're waiting for the target to
281 stop. In the mean time, we can't start another command/query.
282 The remote server wouldn't be ready to process it, so we'd
283 timeout waiting for a reply that would never come and eventually
284 we'd close the connection. This can happen in asynchronous mode
285 because we allow GDB commands while the target is running. */
286 bool waiting_for_stop_reply = false;
287
288 /* The status of the stub support for the various vCont actions. */
289 vCont_action_support supports_vCont;
290
291 /* True if the user has pressed Ctrl-C, but the target hasn't
292 responded to that. */
293 bool ctrlc_pending_p = false;
294
295 /* True if we saw a Ctrl-C while reading or writing from/to the
296 remote descriptor. At that point it is not safe to send a remote
297 interrupt packet, so we instead remember we saw the Ctrl-C and
298 process it once we're done with sending/receiving the current
299 packet, which should be shortly. If however that takes too long,
300 and the user presses Ctrl-C again, we offer to disconnect. */
301 bool got_ctrlc_during_io = false;
302
303 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
304 remote_open knows that we don't have a file open when the program
305 starts. */
306 struct serial *remote_desc = nullptr;
307
308 /* These are the threads which we last sent to the remote system. The
309 TID member will be -1 for all or -2 for not sent yet. */
310 ptid_t general_thread = null_ptid;
311 ptid_t continue_thread = null_ptid;
312
313 /* This is the traceframe which we last selected on the remote system.
314 It will be -1 if no traceframe is selected. */
315 int remote_traceframe_number = -1;
316
317 char *last_pass_packet = nullptr;
318
319 /* The last QProgramSignals packet sent to the target. We bypass
320 sending a new program signals list down to the target if the new
321 packet is exactly the same as the last we sent. IOW, we only let
322 the target know about program signals list changes. */
323 char *last_program_signals_packet = nullptr;
324
325 gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327 bool last_sent_step = false;
328
329 /* The execution direction of the last resume we got. */
330 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332 char *finished_object = nullptr;
333 char *finished_annex = nullptr;
334 ULONGEST finished_offset = 0;
335
336 /* Should we try the 'ThreadInfo' query packet?
337
338 This variable (NOT available to the user: auto-detect only!)
339 determines whether GDB will use the new, simpler "ThreadInfo"
340 query or the older, more complex syntax for thread queries.
341 This is an auto-detect variable (set to true at each connect,
342 and set to false when the target fails to recognize it). */
343 bool use_threadinfo_query = false;
344 bool use_threadextra_query = false;
345
346 threadref echo_nextthread {};
347 threadref nextthread {};
348 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350 /* The state of remote notification. */
351 struct remote_notif_state *notif_state = nullptr;
352
353 /* The branch trace configuration. */
354 struct btrace_config btrace_config {};
355
356 /* The argument to the last "vFile:setfs:" packet we sent, used
357 to avoid sending repeated unnecessary "vFile:setfs:" packets.
358 Initialized to -1 to indicate that no "vFile:setfs:" packet
359 has yet been sent. */
360 int fs_pid = -1;
361
362 /* A readahead cache for vFile:pread. Often, reading a binary
363 involves a sequence of small reads. E.g., when parsing an ELF
364 file. A readahead cache helps mostly the case of remote
365 debugging on a connection with higher latency, due to the
366 request/reply nature of the RSP. We only cache data for a single
367 file descriptor at a time. */
368 struct readahead_cache readahead_cache;
369
370 /* The list of already fetched and acknowledged stop events. This
371 queue is used for notification Stop, and other notifications
372 don't need queue for their events, because the notification
373 events of Stop can't be consumed immediately, so that events
374 should be queued first, and be consumed by remote_wait_{ns,as}
375 one per time. Other notifications can consume their events
376 immediately, so queue is not needed for them. */
377 std::vector<stop_reply_up> stop_reply_queue;
378
379 /* Asynchronous signal handle registered as event loop source for
380 when we have pending events ready to be passed to the core. */
381 struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384 ``forever'' still use the normal timeout mechanism. This is
385 currently used by the ASYNC code to guarentee that target reads
386 during the initial connect always time-out. Once getpkt has been
387 modified to return a timeout indication and, in turn
388 remote_wait()/wait_for_inferior() have gained a timeout parameter
389 this can go away. */
390 int wait_forever_enabled_p = 1;
391
392 private:
393 /* Mapping of remote protocol data for each gdbarch. Usually there
394 is only one entry here, though we may see more with stubs that
395 support multi-process. */
396 std::unordered_map<struct gdbarch *, remote_arch_state>
397 m_arch_states;
398 };
399
400 static const target_info remote_target_info = {
401 "remote",
402 N_("Remote serial target in gdb-specific protocol"),
403 remote_doc
404 };
405
406 class remote_target : public process_stratum_target
407 {
408 public:
409 remote_target () = default;
410 ~remote_target () override;
411
412 const target_info &info () const override
413 { return remote_target_info; }
414
415 thread_control_capabilities get_thread_control_capabilities () override
416 { return tc_schedlock; }
417
418 /* Open a remote connection. */
419 static void open (const char *, int);
420
421 void close () override;
422
423 void detach (inferior *, int) override;
424 void disconnect (const char *, int) override;
425
426 void commit_resume () override;
427 void resume (ptid_t, int, enum gdb_signal) override;
428 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
429
430 void fetch_registers (struct regcache *, int) override;
431 void store_registers (struct regcache *, int) override;
432 void prepare_to_store (struct regcache *) override;
433
434 void files_info () override;
435
436 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
437
438 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
439 enum remove_bp_reason) override;
440
441
442 bool stopped_by_sw_breakpoint () override;
443 bool supports_stopped_by_sw_breakpoint () override;
444
445 bool stopped_by_hw_breakpoint () override;
446
447 bool supports_stopped_by_hw_breakpoint () override;
448
449 bool stopped_by_watchpoint () override;
450
451 bool stopped_data_address (CORE_ADDR *) override;
452
453 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
454
455 int can_use_hw_breakpoint (enum bptype, int, int) override;
456
457 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
462
463 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
467 struct expression *) override;
468
469 void kill () override;
470
471 void load (const char *, int) override;
472
473 void mourn_inferior () override;
474
475 void pass_signals (gdb::array_view<const unsigned char>) override;
476
477 int set_syscall_catchpoint (int, bool, int,
478 gdb::array_view<const int>) override;
479
480 void program_signals (gdb::array_view<const unsigned char>) override;
481
482 bool thread_alive (ptid_t ptid) override;
483
484 const char *thread_name (struct thread_info *) override;
485
486 void update_thread_list () override;
487
488 const char *pid_to_str (ptid_t) override;
489
490 const char *extra_thread_info (struct thread_info *) override;
491
492 ptid_t get_ada_task_ptid (long lwp, long thread) override;
493
494 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
495 int handle_len,
496 inferior *inf) override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 void thread_events (int) override;
547
548 int can_do_single_step () override;
549
550 void terminal_inferior () override;
551
552 void terminal_ours () override;
553
554 bool supports_non_stop () override;
555
556 bool supports_multi_process () override;
557
558 bool supports_disable_randomization () override;
559
560 bool filesystem_is_local () override;
561
562
563 int fileio_open (struct inferior *inf, const char *filename,
564 int flags, int mode, int warn_if_slow,
565 int *target_errno) override;
566
567 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
568 ULONGEST offset, int *target_errno) override;
569
570 int fileio_pread (int fd, gdb_byte *read_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
574
575 int fileio_close (int fd, int *target_errno) override;
576
577 int fileio_unlink (struct inferior *inf,
578 const char *filename,
579 int *target_errno) override;
580
581 gdb::optional<std::string>
582 fileio_readlink (struct inferior *inf,
583 const char *filename,
584 int *target_errno) override;
585
586 bool supports_enable_disable_tracepoint () override;
587
588 bool supports_string_tracing () override;
589
590 bool supports_evaluation_of_breakpoint_conditions () override;
591
592 bool can_run_breakpoint_commands () override;
593
594 void trace_init () override;
595
596 void download_tracepoint (struct bp_location *location) override;
597
598 bool can_download_tracepoint () override;
599
600 void download_trace_state_variable (const trace_state_variable &tsv) override;
601
602 void enable_tracepoint (struct bp_location *location) override;
603
604 void disable_tracepoint (struct bp_location *location) override;
605
606 void trace_set_readonly_regions () override;
607
608 void trace_start () override;
609
610 int get_trace_status (struct trace_status *ts) override;
611
612 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
613 override;
614
615 void trace_stop () override;
616
617 int trace_find (enum trace_find_type type, int num,
618 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
619
620 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
621
622 int save_trace_data (const char *filename) override;
623
624 int upload_tracepoints (struct uploaded_tp **utpp) override;
625
626 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
627
628 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
629
630 int get_min_fast_tracepoint_insn_len () override;
631
632 void set_disconnected_tracing (int val) override;
633
634 void set_circular_trace_buffer (int val) override;
635
636 void set_trace_buffer_size (LONGEST val) override;
637
638 bool set_trace_notes (const char *user, const char *notes,
639 const char *stopnotes) override;
640
641 int core_of_thread (ptid_t ptid) override;
642
643 int verify_memory (const gdb_byte *data,
644 CORE_ADDR memaddr, ULONGEST size) override;
645
646
647 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
648
649 void set_permissions () override;
650
651 bool static_tracepoint_marker_at (CORE_ADDR,
652 struct static_tracepoint_marker *marker)
653 override;
654
655 std::vector<static_tracepoint_marker>
656 static_tracepoint_markers_by_strid (const char *id) override;
657
658 traceframe_info_up traceframe_info () override;
659
660 bool use_agent (bool use) override;
661 bool can_use_agent () override;
662
663 struct btrace_target_info *enable_btrace (ptid_t ptid,
664 const struct btrace_config *conf) override;
665
666 void disable_btrace (struct btrace_target_info *tinfo) override;
667
668 void teardown_btrace (struct btrace_target_info *tinfo) override;
669
670 enum btrace_error read_btrace (struct btrace_data *data,
671 struct btrace_target_info *btinfo,
672 enum btrace_read_type type) override;
673
674 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
675 bool augmented_libraries_svr4_read () override;
676 int follow_fork (int, int) override;
677 void follow_exec (struct inferior *, char *) override;
678 int insert_fork_catchpoint (int) override;
679 int remove_fork_catchpoint (int) override;
680 int insert_vfork_catchpoint (int) override;
681 int remove_vfork_catchpoint (int) override;
682 int insert_exec_catchpoint (int) override;
683 int remove_exec_catchpoint (int) override;
684 enum exec_direction_kind execution_direction () override;
685
686 public: /* Remote specific methods. */
687
688 void remote_download_command_source (int num, ULONGEST addr,
689 struct command_line *cmds);
690
691 void remote_file_put (const char *local_file, const char *remote_file,
692 int from_tty);
693 void remote_file_get (const char *remote_file, const char *local_file,
694 int from_tty);
695 void remote_file_delete (const char *remote_file, int from_tty);
696
697 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
698 ULONGEST offset, int *remote_errno);
699 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
702 ULONGEST offset, int *remote_errno);
703
704 int remote_hostio_send_command (int command_bytes, int which_packet,
705 int *remote_errno, char **attachment,
706 int *attachment_len);
707 int remote_hostio_set_filesystem (struct inferior *inf,
708 int *remote_errno);
709 /* We should get rid of this and use fileio_open directly. */
710 int remote_hostio_open (struct inferior *inf, const char *filename,
711 int flags, int mode, int warn_if_slow,
712 int *remote_errno);
713 int remote_hostio_close (int fd, int *remote_errno);
714
715 int remote_hostio_unlink (inferior *inf, const char *filename,
716 int *remote_errno);
717
718 struct remote_state *get_remote_state ();
719
720 long get_remote_packet_size (void);
721 long get_memory_packet_size (struct memory_packet_config *config);
722
723 long get_memory_write_packet_size ();
724 long get_memory_read_packet_size ();
725
726 char *append_pending_thread_resumptions (char *p, char *endp,
727 ptid_t ptid);
728 static void open_1 (const char *name, int from_tty, int extended_p);
729 void start_remote (int from_tty, int extended_p);
730 void remote_detach_1 (struct inferior *inf, int from_tty);
731
732 char *append_resumption (char *p, char *endp,
733 ptid_t ptid, int step, gdb_signal siggnal);
734 int remote_resume_with_vcont (ptid_t ptid, int step,
735 gdb_signal siggnal);
736
737 void add_current_inferior_and_thread (char *wait_status);
738
739 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
740 int options);
741 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
742 int options);
743
744 ptid_t process_stop_reply (struct stop_reply *stop_reply,
745 target_waitstatus *status);
746
747 void remote_notice_new_inferior (ptid_t currthread, int executing);
748
749 void process_initial_stop_replies (int from_tty);
750
751 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
752
753 void btrace_sync_conf (const btrace_config *conf);
754
755 void remote_btrace_maybe_reopen ();
756
757 void remove_new_fork_children (threads_listing_context *context);
758 void kill_new_fork_children (int pid);
759 void discard_pending_stop_replies (struct inferior *inf);
760 int stop_reply_queue_length ();
761
762 void check_pending_events_prevent_wildcard_vcont
763 (int *may_global_wildcard_vcont);
764
765 void discard_pending_stop_replies_in_queue ();
766 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
767 struct stop_reply *queued_stop_reply (ptid_t ptid);
768 int peek_stop_reply (ptid_t ptid);
769 void remote_parse_stop_reply (const char *buf, stop_reply *event);
770
771 void remote_stop_ns (ptid_t ptid);
772 void remote_interrupt_as ();
773 void remote_interrupt_ns ();
774
775 char *remote_get_noisy_reply ();
776 int remote_query_attached (int pid);
777 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
778 int try_open_exec);
779
780 ptid_t remote_current_thread (ptid_t oldpid);
781 ptid_t get_current_thread (char *wait_status);
782
783 void set_thread (ptid_t ptid, int gen);
784 void set_general_thread (ptid_t ptid);
785 void set_continue_thread (ptid_t ptid);
786 void set_general_process ();
787
788 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
789
790 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
791 gdb_ext_thread_info *info);
792 int remote_get_threadinfo (threadref *threadid, int fieldset,
793 gdb_ext_thread_info *info);
794
795 int parse_threadlist_response (char *pkt, int result_limit,
796 threadref *original_echo,
797 threadref *resultlist,
798 int *doneflag);
799 int remote_get_threadlist (int startflag, threadref *nextthread,
800 int result_limit, int *done, int *result_count,
801 threadref *threadlist);
802
803 int remote_threadlist_iterator (rmt_thread_action stepfunction,
804 void *context, int looplimit);
805
806 int remote_get_threads_with_ql (threads_listing_context *context);
807 int remote_get_threads_with_qxfer (threads_listing_context *context);
808 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
809
810 void extended_remote_restart ();
811
812 void get_offsets ();
813
814 void remote_check_symbols ();
815
816 void remote_supported_packet (const struct protocol_feature *feature,
817 enum packet_support support,
818 const char *argument);
819
820 void remote_query_supported ();
821
822 void remote_packet_size (const protocol_feature *feature,
823 packet_support support, const char *value);
824
825 void remote_serial_quit_handler ();
826
827 void remote_detach_pid (int pid);
828
829 void remote_vcont_probe ();
830
831 void remote_resume_with_hc (ptid_t ptid, int step,
832 gdb_signal siggnal);
833
834 void send_interrupt_sequence ();
835 void interrupt_query ();
836
837 void remote_notif_get_pending_events (notif_client *nc);
838
839 int fetch_register_using_p (struct regcache *regcache,
840 packet_reg *reg);
841 int send_g_packet ();
842 void process_g_packet (struct regcache *regcache);
843 void fetch_registers_using_g (struct regcache *regcache);
844 int store_register_using_P (const struct regcache *regcache,
845 packet_reg *reg);
846 void store_registers_using_G (const struct regcache *regcache);
847
848 void set_remote_traceframe ();
849
850 void check_binary_download (CORE_ADDR addr);
851
852 target_xfer_status remote_write_bytes_aux (const char *header,
853 CORE_ADDR memaddr,
854 const gdb_byte *myaddr,
855 ULONGEST len_units,
856 int unit_size,
857 ULONGEST *xfered_len_units,
858 char packet_format,
859 int use_length);
860
861 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
862 const gdb_byte *myaddr, ULONGEST len,
863 int unit_size, ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
866 ULONGEST len_units,
867 int unit_size, ULONGEST *xfered_len_units);
868
869 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
870 ULONGEST memaddr,
871 ULONGEST len,
872 int unit_size,
873 ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
876 gdb_byte *myaddr, ULONGEST len,
877 int unit_size,
878 ULONGEST *xfered_len);
879
880 packet_result remote_send_printf (const char *format, ...)
881 ATTRIBUTE_PRINTF (2, 3);
882
883 target_xfer_status remote_flash_write (ULONGEST address,
884 ULONGEST length, ULONGEST *xfered_len,
885 const gdb_byte *data);
886
887 int readchar (int timeout);
888
889 void remote_serial_write (const char *str, int len);
890
891 int putpkt (const char *buf);
892 int putpkt_binary (const char *buf, int cnt);
893
894 int putpkt (const gdb::char_vector &buf)
895 {
896 return putpkt (buf.data ());
897 }
898
899 void skip_frame ();
900 long read_frame (gdb::char_vector *buf_p);
901 void getpkt (gdb::char_vector *buf, int forever);
902 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
903 int expecting_notif, int *is_notif);
904 int getpkt_sane (gdb::char_vector *buf, int forever);
905 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
906 int *is_notif);
907 int remote_vkill (int pid);
908 void remote_kill_k ();
909
910 void extended_remote_disable_randomization (int val);
911 int extended_remote_run (const std::string &args);
912
913 void send_environment_packet (const char *action,
914 const char *packet,
915 const char *value);
916
917 void extended_remote_environment_support ();
918 void extended_remote_set_inferior_cwd ();
919
920 target_xfer_status remote_write_qxfer (const char *object_name,
921 const char *annex,
922 const gdb_byte *writebuf,
923 ULONGEST offset, LONGEST len,
924 ULONGEST *xfered_len,
925 struct packet_config *packet);
926
927 target_xfer_status remote_read_qxfer (const char *object_name,
928 const char *annex,
929 gdb_byte *readbuf, ULONGEST offset,
930 LONGEST len,
931 ULONGEST *xfered_len,
932 struct packet_config *packet);
933
934 void push_stop_reply (struct stop_reply *new_event);
935
936 bool vcont_r_supported ();
937
938 void packet_command (const char *args, int from_tty);
939
940 private: /* data fields */
941
942 /* The remote state. Don't reference this directly. Use the
943 get_remote_state method instead. */
944 remote_state m_remote_state;
945 };
946
947 static const target_info extended_remote_target_info = {
948 "extended-remote",
949 N_("Extended remote serial target in gdb-specific protocol"),
950 remote_doc
951 };
952
953 /* Set up the extended remote target by extending the standard remote
954 target and adding to it. */
955
956 class extended_remote_target final : public remote_target
957 {
958 public:
959 const target_info &info () const override
960 { return extended_remote_target_info; }
961
962 /* Open an extended-remote connection. */
963 static void open (const char *, int);
964
965 bool can_create_inferior () override { return true; }
966 void create_inferior (const char *, const std::string &,
967 char **, int) override;
968
969 void detach (inferior *, int) override;
970
971 bool can_attach () override { return true; }
972 void attach (const char *, int) override;
973
974 void post_attach (int) override;
975 bool supports_disable_randomization () override;
976 };
977
978 /* Per-program-space data key. */
979 static const struct program_space_data *remote_pspace_data;
980
981 /* The variable registered as the control variable used by the
982 remote exec-file commands. While the remote exec-file setting is
983 per-program-space, the set/show machinery uses this as the
984 location of the remote exec-file value. */
985 static char *remote_exec_file_var;
986
987 /* The size to align memory write packets, when practical. The protocol
988 does not guarantee any alignment, and gdb will generate short
989 writes and unaligned writes, but even as a best-effort attempt this
990 can improve bulk transfers. For instance, if a write is misaligned
991 relative to the target's data bus, the stub may need to make an extra
992 round trip fetching data from the target. This doesn't make a
993 huge difference, but it's easy to do, so we try to be helpful.
994
995 The alignment chosen is arbitrary; usually data bus width is
996 important here, not the possibly larger cache line size. */
997 enum { REMOTE_ALIGN_WRITES = 16 };
998
999 /* Prototypes for local functions. */
1000
1001 static int hexnumlen (ULONGEST num);
1002
1003 static int stubhex (int ch);
1004
1005 static int hexnumstr (char *, ULONGEST);
1006
1007 static int hexnumnstr (char *, ULONGEST, int);
1008
1009 static CORE_ADDR remote_address_masked (CORE_ADDR);
1010
1011 static void print_packet (const char *);
1012
1013 static int stub_unpack_int (char *buff, int fieldlength);
1014
1015 struct packet_config;
1016
1017 static void show_packet_config_cmd (struct packet_config *config);
1018
1019 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1020 int from_tty,
1021 struct cmd_list_element *c,
1022 const char *value);
1023
1024 static ptid_t read_ptid (const char *buf, const char **obuf);
1025
1026 static void remote_async_inferior_event_handler (gdb_client_data);
1027
1028 static bool remote_read_description_p (struct target_ops *target);
1029
1030 static void remote_console_output (const char *msg);
1031
1032 static void remote_btrace_reset (remote_state *rs);
1033
1034 static void remote_unpush_and_throw (void);
1035
1036 /* For "remote". */
1037
1038 static struct cmd_list_element *remote_cmdlist;
1039
1040 /* For "set remote" and "show remote". */
1041
1042 static struct cmd_list_element *remote_set_cmdlist;
1043 static struct cmd_list_element *remote_show_cmdlist;
1044
1045 /* Controls whether GDB is willing to use range stepping. */
1046
1047 static int use_range_stepping = 1;
1048
1049 /* The max number of chars in debug output. The rest of chars are
1050 omitted. */
1051
1052 #define REMOTE_DEBUG_MAX_CHAR 512
1053
1054 /* Private data that we'll store in (struct thread_info)->priv. */
1055 struct remote_thread_info : public private_thread_info
1056 {
1057 std::string extra;
1058 std::string name;
1059 int core = -1;
1060
1061 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1062 sequence of bytes. */
1063 gdb::byte_vector thread_handle;
1064
1065 /* Whether the target stopped for a breakpoint/watchpoint. */
1066 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1067
1068 /* This is set to the data address of the access causing the target
1069 to stop for a watchpoint. */
1070 CORE_ADDR watch_data_address = 0;
1071
1072 /* Fields used by the vCont action coalescing implemented in
1073 remote_resume / remote_commit_resume. remote_resume stores each
1074 thread's last resume request in these fields, so that a later
1075 remote_commit_resume knows which is the proper action for this
1076 thread to include in the vCont packet. */
1077
1078 /* True if the last target_resume call for this thread was a step
1079 request, false if a continue request. */
1080 int last_resume_step = 0;
1081
1082 /* The signal specified in the last target_resume call for this
1083 thread. */
1084 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1085
1086 /* Whether this thread was already vCont-resumed on the remote
1087 side. */
1088 int vcont_resumed = 0;
1089 };
1090
1091 remote_state::remote_state ()
1092 : buf (400)
1093 {
1094 }
1095
1096 remote_state::~remote_state ()
1097 {
1098 xfree (this->last_pass_packet);
1099 xfree (this->last_program_signals_packet);
1100 xfree (this->finished_object);
1101 xfree (this->finished_annex);
1102 }
1103
1104 /* Utility: generate error from an incoming stub packet. */
1105 static void
1106 trace_error (char *buf)
1107 {
1108 if (*buf++ != 'E')
1109 return; /* not an error msg */
1110 switch (*buf)
1111 {
1112 case '1': /* malformed packet error */
1113 if (*++buf == '0') /* general case: */
1114 error (_("remote.c: error in outgoing packet."));
1115 else
1116 error (_("remote.c: error in outgoing packet at field #%ld."),
1117 strtol (buf, NULL, 16));
1118 default:
1119 error (_("Target returns error code '%s'."), buf);
1120 }
1121 }
1122
1123 /* Utility: wait for reply from stub, while accepting "O" packets. */
1124
1125 char *
1126 remote_target::remote_get_noisy_reply ()
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 do /* Loop on reply from remote stub. */
1131 {
1132 char *buf;
1133
1134 QUIT; /* Allow user to bail out with ^C. */
1135 getpkt (&rs->buf, 0);
1136 buf = rs->buf.data ();
1137 if (buf[0] == 'E')
1138 trace_error (buf);
1139 else if (startswith (buf, "qRelocInsn:"))
1140 {
1141 ULONGEST ul;
1142 CORE_ADDR from, to, org_to;
1143 const char *p, *pp;
1144 int adjusted_size = 0;
1145 int relocated = 0;
1146
1147 p = buf + strlen ("qRelocInsn:");
1148 pp = unpack_varlen_hex (p, &ul);
1149 if (*pp != ';')
1150 error (_("invalid qRelocInsn packet: %s"), buf);
1151 from = ul;
1152
1153 p = pp + 1;
1154 unpack_varlen_hex (p, &ul);
1155 to = ul;
1156
1157 org_to = to;
1158
1159 TRY
1160 {
1161 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1162 relocated = 1;
1163 }
1164 CATCH (ex, RETURN_MASK_ALL)
1165 {
1166 if (ex.error == MEMORY_ERROR)
1167 {
1168 /* Propagate memory errors silently back to the
1169 target. The stub may have limited the range of
1170 addresses we can write to, for example. */
1171 }
1172 else
1173 {
1174 /* Something unexpectedly bad happened. Be verbose
1175 so we can tell what, and propagate the error back
1176 to the stub, so it doesn't get stuck waiting for
1177 a response. */
1178 exception_fprintf (gdb_stderr, ex,
1179 _("warning: relocating instruction: "));
1180 }
1181 putpkt ("E01");
1182 }
1183 END_CATCH
1184
1185 if (relocated)
1186 {
1187 adjusted_size = to - org_to;
1188
1189 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1190 putpkt (buf);
1191 }
1192 }
1193 else if (buf[0] == 'O' && buf[1] != 'K')
1194 remote_console_output (buf + 1); /* 'O' message from stub */
1195 else
1196 return buf; /* Here's the actual reply. */
1197 }
1198 while (1);
1199 }
1200
1201 struct remote_arch_state *
1202 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1203 {
1204 remote_arch_state *rsa;
1205
1206 auto it = this->m_arch_states.find (gdbarch);
1207 if (it == this->m_arch_states.end ())
1208 {
1209 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1210 std::forward_as_tuple (gdbarch),
1211 std::forward_as_tuple (gdbarch));
1212 rsa = &p.first->second;
1213
1214 /* Make sure that the packet buffer is plenty big enough for
1215 this architecture. */
1216 if (this->buf.size () < rsa->remote_packet_size)
1217 this->buf.resize (2 * rsa->remote_packet_size);
1218 }
1219 else
1220 rsa = &it->second;
1221
1222 return rsa;
1223 }
1224
1225 /* Fetch the global remote target state. */
1226
1227 remote_state *
1228 remote_target::get_remote_state ()
1229 {
1230 /* Make sure that the remote architecture state has been
1231 initialized, because doing so might reallocate rs->buf. Any
1232 function which calls getpkt also needs to be mindful of changes
1233 to rs->buf, but this call limits the number of places which run
1234 into trouble. */
1235 m_remote_state.get_remote_arch_state (target_gdbarch ());
1236
1237 return &m_remote_state;
1238 }
1239
1240 /* Cleanup routine for the remote module's pspace data. */
1241
1242 static void
1243 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1244 {
1245 char *remote_exec_file = (char *) arg;
1246
1247 xfree (remote_exec_file);
1248 }
1249
1250 /* Fetch the remote exec-file from the current program space. */
1251
1252 static const char *
1253 get_remote_exec_file (void)
1254 {
1255 char *remote_exec_file;
1256
1257 remote_exec_file
1258 = (char *) program_space_data (current_program_space,
1259 remote_pspace_data);
1260 if (remote_exec_file == NULL)
1261 return "";
1262
1263 return remote_exec_file;
1264 }
1265
1266 /* Set the remote exec file for PSPACE. */
1267
1268 static void
1269 set_pspace_remote_exec_file (struct program_space *pspace,
1270 char *remote_exec_file)
1271 {
1272 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1273
1274 xfree (old_file);
1275 set_program_space_data (pspace, remote_pspace_data,
1276 xstrdup (remote_exec_file));
1277 }
1278
1279 /* The "set/show remote exec-file" set command hook. */
1280
1281 static void
1282 set_remote_exec_file (const char *ignored, int from_tty,
1283 struct cmd_list_element *c)
1284 {
1285 gdb_assert (remote_exec_file_var != NULL);
1286 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1287 }
1288
1289 /* The "set/show remote exec-file" show command hook. */
1290
1291 static void
1292 show_remote_exec_file (struct ui_file *file, int from_tty,
1293 struct cmd_list_element *cmd, const char *value)
1294 {
1295 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1296 }
1297
1298 static int
1299 compare_pnums (const void *lhs_, const void *rhs_)
1300 {
1301 const struct packet_reg * const *lhs
1302 = (const struct packet_reg * const *) lhs_;
1303 const struct packet_reg * const *rhs
1304 = (const struct packet_reg * const *) rhs_;
1305
1306 if ((*lhs)->pnum < (*rhs)->pnum)
1307 return -1;
1308 else if ((*lhs)->pnum == (*rhs)->pnum)
1309 return 0;
1310 else
1311 return 1;
1312 }
1313
1314 static int
1315 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1316 {
1317 int regnum, num_remote_regs, offset;
1318 struct packet_reg **remote_regs;
1319
1320 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1321 {
1322 struct packet_reg *r = &regs[regnum];
1323
1324 if (register_size (gdbarch, regnum) == 0)
1325 /* Do not try to fetch zero-sized (placeholder) registers. */
1326 r->pnum = -1;
1327 else
1328 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1329
1330 r->regnum = regnum;
1331 }
1332
1333 /* Define the g/G packet format as the contents of each register
1334 with a remote protocol number, in order of ascending protocol
1335 number. */
1336
1337 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1338 for (num_remote_regs = 0, regnum = 0;
1339 regnum < gdbarch_num_regs (gdbarch);
1340 regnum++)
1341 if (regs[regnum].pnum != -1)
1342 remote_regs[num_remote_regs++] = &regs[regnum];
1343
1344 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1345 compare_pnums);
1346
1347 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1348 {
1349 remote_regs[regnum]->in_g_packet = 1;
1350 remote_regs[regnum]->offset = offset;
1351 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1352 }
1353
1354 return offset;
1355 }
1356
1357 /* Given the architecture described by GDBARCH, return the remote
1358 protocol register's number and the register's offset in the g/G
1359 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1360 If the target does not have a mapping for REGNUM, return false,
1361 otherwise, return true. */
1362
1363 int
1364 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1365 int *pnum, int *poffset)
1366 {
1367 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1368
1369 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1370
1371 map_regcache_remote_table (gdbarch, regs.data ());
1372
1373 *pnum = regs[regnum].pnum;
1374 *poffset = regs[regnum].offset;
1375
1376 return *pnum != -1;
1377 }
1378
1379 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1380 {
1381 /* Use the architecture to build a regnum<->pnum table, which will be
1382 1:1 unless a feature set specifies otherwise. */
1383 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1384
1385 /* Record the maximum possible size of the g packet - it may turn out
1386 to be smaller. */
1387 this->sizeof_g_packet
1388 = map_regcache_remote_table (gdbarch, this->regs.get ());
1389
1390 /* Default maximum number of characters in a packet body. Many
1391 remote stubs have a hardwired buffer size of 400 bytes
1392 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1393 as the maximum packet-size to ensure that the packet and an extra
1394 NUL character can always fit in the buffer. This stops GDB
1395 trashing stubs that try to squeeze an extra NUL into what is
1396 already a full buffer (As of 1999-12-04 that was most stubs). */
1397 this->remote_packet_size = 400 - 1;
1398
1399 /* This one is filled in when a ``g'' packet is received. */
1400 this->actual_register_packet_size = 0;
1401
1402 /* Should rsa->sizeof_g_packet needs more space than the
1403 default, adjust the size accordingly. Remember that each byte is
1404 encoded as two characters. 32 is the overhead for the packet
1405 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1406 (``$NN:G...#NN'') is a better guess, the below has been padded a
1407 little. */
1408 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1409 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1410 }
1411
1412 /* Get a pointer to the current remote target. If not connected to a
1413 remote target, return NULL. */
1414
1415 static remote_target *
1416 get_current_remote_target ()
1417 {
1418 target_ops *proc_target = find_target_at (process_stratum);
1419 return dynamic_cast<remote_target *> (proc_target);
1420 }
1421
1422 /* Return the current allowed size of a remote packet. This is
1423 inferred from the current architecture, and should be used to
1424 limit the length of outgoing packets. */
1425 long
1426 remote_target::get_remote_packet_size ()
1427 {
1428 struct remote_state *rs = get_remote_state ();
1429 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1430
1431 if (rs->explicit_packet_size)
1432 return rs->explicit_packet_size;
1433
1434 return rsa->remote_packet_size;
1435 }
1436
1437 static struct packet_reg *
1438 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1439 long regnum)
1440 {
1441 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1442 return NULL;
1443 else
1444 {
1445 struct packet_reg *r = &rsa->regs[regnum];
1446
1447 gdb_assert (r->regnum == regnum);
1448 return r;
1449 }
1450 }
1451
1452 static struct packet_reg *
1453 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1454 LONGEST pnum)
1455 {
1456 int i;
1457
1458 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1459 {
1460 struct packet_reg *r = &rsa->regs[i];
1461
1462 if (r->pnum == pnum)
1463 return r;
1464 }
1465 return NULL;
1466 }
1467
1468 /* Allow the user to specify what sequence to send to the remote
1469 when he requests a program interruption: Although ^C is usually
1470 what remote systems expect (this is the default, here), it is
1471 sometimes preferable to send a break. On other systems such
1472 as the Linux kernel, a break followed by g, which is Magic SysRq g
1473 is required in order to interrupt the execution. */
1474 const char interrupt_sequence_control_c[] = "Ctrl-C";
1475 const char interrupt_sequence_break[] = "BREAK";
1476 const char interrupt_sequence_break_g[] = "BREAK-g";
1477 static const char *const interrupt_sequence_modes[] =
1478 {
1479 interrupt_sequence_control_c,
1480 interrupt_sequence_break,
1481 interrupt_sequence_break_g,
1482 NULL
1483 };
1484 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1485
1486 static void
1487 show_interrupt_sequence (struct ui_file *file, int from_tty,
1488 struct cmd_list_element *c,
1489 const char *value)
1490 {
1491 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1492 fprintf_filtered (file,
1493 _("Send the ASCII ETX character (Ctrl-c) "
1494 "to the remote target to interrupt the "
1495 "execution of the program.\n"));
1496 else if (interrupt_sequence_mode == interrupt_sequence_break)
1497 fprintf_filtered (file,
1498 _("send a break signal to the remote target "
1499 "to interrupt the execution of the program.\n"));
1500 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1501 fprintf_filtered (file,
1502 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1503 "the remote target to interrupt the execution "
1504 "of Linux kernel.\n"));
1505 else
1506 internal_error (__FILE__, __LINE__,
1507 _("Invalid value for interrupt_sequence_mode: %s."),
1508 interrupt_sequence_mode);
1509 }
1510
1511 /* This boolean variable specifies whether interrupt_sequence is sent
1512 to the remote target when gdb connects to it.
1513 This is mostly needed when you debug the Linux kernel: The Linux kernel
1514 expects BREAK g which is Magic SysRq g for connecting gdb. */
1515 static int interrupt_on_connect = 0;
1516
1517 /* This variable is used to implement the "set/show remotebreak" commands.
1518 Since these commands are now deprecated in favor of "set/show remote
1519 interrupt-sequence", it no longer has any effect on the code. */
1520 static int remote_break;
1521
1522 static void
1523 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1524 {
1525 if (remote_break)
1526 interrupt_sequence_mode = interrupt_sequence_break;
1527 else
1528 interrupt_sequence_mode = interrupt_sequence_control_c;
1529 }
1530
1531 static void
1532 show_remotebreak (struct ui_file *file, int from_tty,
1533 struct cmd_list_element *c,
1534 const char *value)
1535 {
1536 }
1537
1538 /* This variable sets the number of bits in an address that are to be
1539 sent in a memory ("M" or "m") packet. Normally, after stripping
1540 leading zeros, the entire address would be sent. This variable
1541 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1542 initial implementation of remote.c restricted the address sent in
1543 memory packets to ``host::sizeof long'' bytes - (typically 32
1544 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1545 address was never sent. Since fixing this bug may cause a break in
1546 some remote targets this variable is principly provided to
1547 facilitate backward compatibility. */
1548
1549 static unsigned int remote_address_size;
1550
1551 \f
1552 /* User configurable variables for the number of characters in a
1553 memory read/write packet. MIN (rsa->remote_packet_size,
1554 rsa->sizeof_g_packet) is the default. Some targets need smaller
1555 values (fifo overruns, et.al.) and some users need larger values
1556 (speed up transfers). The variables ``preferred_*'' (the user
1557 request), ``current_*'' (what was actually set) and ``forced_*''
1558 (Positive - a soft limit, negative - a hard limit). */
1559
1560 struct memory_packet_config
1561 {
1562 const char *name;
1563 long size;
1564 int fixed_p;
1565 };
1566
1567 /* The default max memory-write-packet-size, when the setting is
1568 "fixed". The 16k is historical. (It came from older GDB's using
1569 alloca for buffers and the knowledge (folklore?) that some hosts
1570 don't cope very well with large alloca calls.) */
1571 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1572
1573 /* The minimum remote packet size for memory transfers. Ensures we
1574 can write at least one byte. */
1575 #define MIN_MEMORY_PACKET_SIZE 20
1576
1577 /* Get the memory packet size, assuming it is fixed. */
1578
1579 static long
1580 get_fixed_memory_packet_size (struct memory_packet_config *config)
1581 {
1582 gdb_assert (config->fixed_p);
1583
1584 if (config->size <= 0)
1585 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1586 else
1587 return config->size;
1588 }
1589
1590 /* Compute the current size of a read/write packet. Since this makes
1591 use of ``actual_register_packet_size'' the computation is dynamic. */
1592
1593 long
1594 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1595 {
1596 struct remote_state *rs = get_remote_state ();
1597 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1598
1599 long what_they_get;
1600 if (config->fixed_p)
1601 what_they_get = get_fixed_memory_packet_size (config);
1602 else
1603 {
1604 what_they_get = get_remote_packet_size ();
1605 /* Limit the packet to the size specified by the user. */
1606 if (config->size > 0
1607 && what_they_get > config->size)
1608 what_they_get = config->size;
1609
1610 /* Limit it to the size of the targets ``g'' response unless we have
1611 permission from the stub to use a larger packet size. */
1612 if (rs->explicit_packet_size == 0
1613 && rsa->actual_register_packet_size > 0
1614 && what_they_get > rsa->actual_register_packet_size)
1615 what_they_get = rsa->actual_register_packet_size;
1616 }
1617 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1618 what_they_get = MIN_MEMORY_PACKET_SIZE;
1619
1620 /* Make sure there is room in the global buffer for this packet
1621 (including its trailing NUL byte). */
1622 if (rs->buf.size () < what_they_get + 1)
1623 rs->buf.resize (2 * what_they_get);
1624
1625 return what_they_get;
1626 }
1627
1628 /* Update the size of a read/write packet. If they user wants
1629 something really big then do a sanity check. */
1630
1631 static void
1632 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1633 {
1634 int fixed_p = config->fixed_p;
1635 long size = config->size;
1636
1637 if (args == NULL)
1638 error (_("Argument required (integer, `fixed' or `limited')."));
1639 else if (strcmp (args, "hard") == 0
1640 || strcmp (args, "fixed") == 0)
1641 fixed_p = 1;
1642 else if (strcmp (args, "soft") == 0
1643 || strcmp (args, "limit") == 0)
1644 fixed_p = 0;
1645 else
1646 {
1647 char *end;
1648
1649 size = strtoul (args, &end, 0);
1650 if (args == end)
1651 error (_("Invalid %s (bad syntax)."), config->name);
1652
1653 /* Instead of explicitly capping the size of a packet to or
1654 disallowing it, the user is allowed to set the size to
1655 something arbitrarily large. */
1656 }
1657
1658 /* Extra checks? */
1659 if (fixed_p && !config->fixed_p)
1660 {
1661 /* So that the query shows the correct value. */
1662 long query_size = (size <= 0
1663 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1664 : size);
1665
1666 if (! query (_("The target may not be able to correctly handle a %s\n"
1667 "of %ld bytes. Change the packet size? "),
1668 config->name, query_size))
1669 error (_("Packet size not changed."));
1670 }
1671 /* Update the config. */
1672 config->fixed_p = fixed_p;
1673 config->size = size;
1674 }
1675
1676 static void
1677 show_memory_packet_size (struct memory_packet_config *config)
1678 {
1679 if (config->size == 0)
1680 printf_filtered (_("The %s is 0 (default). "), config->name);
1681 else
1682 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1683 if (config->fixed_p)
1684 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1685 get_fixed_memory_packet_size (config));
1686 else
1687 {
1688 remote_target *remote = get_current_remote_target ();
1689
1690 if (remote != NULL)
1691 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1692 remote->get_memory_packet_size (config));
1693 else
1694 puts_filtered ("The actual limit will be further reduced "
1695 "dependent on the target.\n");
1696 }
1697 }
1698
1699 static struct memory_packet_config memory_write_packet_config =
1700 {
1701 "memory-write-packet-size",
1702 };
1703
1704 static void
1705 set_memory_write_packet_size (const char *args, int from_tty)
1706 {
1707 set_memory_packet_size (args, &memory_write_packet_config);
1708 }
1709
1710 static void
1711 show_memory_write_packet_size (const char *args, int from_tty)
1712 {
1713 show_memory_packet_size (&memory_write_packet_config);
1714 }
1715
1716 /* Show the number of hardware watchpoints that can be used. */
1717
1718 static void
1719 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("The maximum number of target hardware "
1724 "watchpoints is %s.\n"), value);
1725 }
1726
1727 /* Show the length limit (in bytes) for hardware watchpoints. */
1728
1729 static void
1730 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1731 struct cmd_list_element *c,
1732 const char *value)
1733 {
1734 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1735 "hardware watchpoint is %s.\n"), value);
1736 }
1737
1738 /* Show the number of hardware breakpoints that can be used. */
1739
1740 static void
1741 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1742 struct cmd_list_element *c,
1743 const char *value)
1744 {
1745 fprintf_filtered (file, _("The maximum number of target hardware "
1746 "breakpoints is %s.\n"), value);
1747 }
1748
1749 long
1750 remote_target::get_memory_write_packet_size ()
1751 {
1752 return get_memory_packet_size (&memory_write_packet_config);
1753 }
1754
1755 static struct memory_packet_config memory_read_packet_config =
1756 {
1757 "memory-read-packet-size",
1758 };
1759
1760 static void
1761 set_memory_read_packet_size (const char *args, int from_tty)
1762 {
1763 set_memory_packet_size (args, &memory_read_packet_config);
1764 }
1765
1766 static void
1767 show_memory_read_packet_size (const char *args, int from_tty)
1768 {
1769 show_memory_packet_size (&memory_read_packet_config);
1770 }
1771
1772 long
1773 remote_target::get_memory_read_packet_size ()
1774 {
1775 long size = get_memory_packet_size (&memory_read_packet_config);
1776
1777 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1778 extra buffer size argument before the memory read size can be
1779 increased beyond this. */
1780 if (size > get_remote_packet_size ())
1781 size = get_remote_packet_size ();
1782 return size;
1783 }
1784
1785 \f
1786
1787 struct packet_config
1788 {
1789 const char *name;
1790 const char *title;
1791
1792 /* If auto, GDB auto-detects support for this packet or feature,
1793 either through qSupported, or by trying the packet and looking
1794 at the response. If true, GDB assumes the target supports this
1795 packet. If false, the packet is disabled. Configs that don't
1796 have an associated command always have this set to auto. */
1797 enum auto_boolean detect;
1798
1799 /* Does the target support this packet? */
1800 enum packet_support support;
1801 };
1802
1803 static enum packet_support packet_config_support (struct packet_config *config);
1804 static enum packet_support packet_support (int packet);
1805
1806 static void
1807 show_packet_config_cmd (struct packet_config *config)
1808 {
1809 const char *support = "internal-error";
1810
1811 switch (packet_config_support (config))
1812 {
1813 case PACKET_ENABLE:
1814 support = "enabled";
1815 break;
1816 case PACKET_DISABLE:
1817 support = "disabled";
1818 break;
1819 case PACKET_SUPPORT_UNKNOWN:
1820 support = "unknown";
1821 break;
1822 }
1823 switch (config->detect)
1824 {
1825 case AUTO_BOOLEAN_AUTO:
1826 printf_filtered (_("Support for the `%s' packet "
1827 "is auto-detected, currently %s.\n"),
1828 config->name, support);
1829 break;
1830 case AUTO_BOOLEAN_TRUE:
1831 case AUTO_BOOLEAN_FALSE:
1832 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1833 config->name, support);
1834 break;
1835 }
1836 }
1837
1838 static void
1839 add_packet_config_cmd (struct packet_config *config, const char *name,
1840 const char *title, int legacy)
1841 {
1842 char *set_doc;
1843 char *show_doc;
1844 char *cmd_name;
1845
1846 config->name = name;
1847 config->title = title;
1848 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1849 name, title);
1850 show_doc = xstrprintf ("Show current use of remote "
1851 "protocol `%s' (%s) packet",
1852 name, title);
1853 /* set/show TITLE-packet {auto,on,off} */
1854 cmd_name = xstrprintf ("%s-packet", title);
1855 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1856 &config->detect, set_doc,
1857 show_doc, NULL, /* help_doc */
1858 NULL,
1859 show_remote_protocol_packet_cmd,
1860 &remote_set_cmdlist, &remote_show_cmdlist);
1861 /* The command code copies the documentation strings. */
1862 xfree (set_doc);
1863 xfree (show_doc);
1864 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1865 if (legacy)
1866 {
1867 char *legacy_name;
1868
1869 legacy_name = xstrprintf ("%s-packet", name);
1870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1871 &remote_set_cmdlist);
1872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1873 &remote_show_cmdlist);
1874 }
1875 }
1876
1877 static enum packet_result
1878 packet_check_result (const char *buf)
1879 {
1880 if (buf[0] != '\0')
1881 {
1882 /* The stub recognized the packet request. Check that the
1883 operation succeeded. */
1884 if (buf[0] == 'E'
1885 && isxdigit (buf[1]) && isxdigit (buf[2])
1886 && buf[3] == '\0')
1887 /* "Enn" - definitly an error. */
1888 return PACKET_ERROR;
1889
1890 /* Always treat "E." as an error. This will be used for
1891 more verbose error messages, such as E.memtypes. */
1892 if (buf[0] == 'E' && buf[1] == '.')
1893 return PACKET_ERROR;
1894
1895 /* The packet may or may not be OK. Just assume it is. */
1896 return PACKET_OK;
1897 }
1898 else
1899 /* The stub does not support the packet. */
1900 return PACKET_UNKNOWN;
1901 }
1902
1903 static enum packet_result
1904 packet_check_result (const gdb::char_vector &buf)
1905 {
1906 return packet_check_result (buf.data ());
1907 }
1908
1909 static enum packet_result
1910 packet_ok (const char *buf, struct packet_config *config)
1911 {
1912 enum packet_result result;
1913
1914 if (config->detect != AUTO_BOOLEAN_TRUE
1915 && config->support == PACKET_DISABLE)
1916 internal_error (__FILE__, __LINE__,
1917 _("packet_ok: attempt to use a disabled packet"));
1918
1919 result = packet_check_result (buf);
1920 switch (result)
1921 {
1922 case PACKET_OK:
1923 case PACKET_ERROR:
1924 /* The stub recognized the packet request. */
1925 if (config->support == PACKET_SUPPORT_UNKNOWN)
1926 {
1927 if (remote_debug)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "Packet %s (%s) is supported\n",
1930 config->name, config->title);
1931 config->support = PACKET_ENABLE;
1932 }
1933 break;
1934 case PACKET_UNKNOWN:
1935 /* The stub does not support the packet. */
1936 if (config->detect == AUTO_BOOLEAN_AUTO
1937 && config->support == PACKET_ENABLE)
1938 {
1939 /* If the stub previously indicated that the packet was
1940 supported then there is a protocol error. */
1941 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1942 config->name, config->title);
1943 }
1944 else if (config->detect == AUTO_BOOLEAN_TRUE)
1945 {
1946 /* The user set it wrong. */
1947 error (_("Enabled packet %s (%s) not recognized by stub"),
1948 config->name, config->title);
1949 }
1950
1951 if (remote_debug)
1952 fprintf_unfiltered (gdb_stdlog,
1953 "Packet %s (%s) is NOT supported\n",
1954 config->name, config->title);
1955 config->support = PACKET_DISABLE;
1956 break;
1957 }
1958
1959 return result;
1960 }
1961
1962 static enum packet_result
1963 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1964 {
1965 return packet_ok (buf.data (), config);
1966 }
1967
1968 enum {
1969 PACKET_vCont = 0,
1970 PACKET_X,
1971 PACKET_qSymbol,
1972 PACKET_P,
1973 PACKET_p,
1974 PACKET_Z0,
1975 PACKET_Z1,
1976 PACKET_Z2,
1977 PACKET_Z3,
1978 PACKET_Z4,
1979 PACKET_vFile_setfs,
1980 PACKET_vFile_open,
1981 PACKET_vFile_pread,
1982 PACKET_vFile_pwrite,
1983 PACKET_vFile_close,
1984 PACKET_vFile_unlink,
1985 PACKET_vFile_readlink,
1986 PACKET_vFile_fstat,
1987 PACKET_qXfer_auxv,
1988 PACKET_qXfer_features,
1989 PACKET_qXfer_exec_file,
1990 PACKET_qXfer_libraries,
1991 PACKET_qXfer_libraries_svr4,
1992 PACKET_qXfer_memory_map,
1993 PACKET_qXfer_spu_read,
1994 PACKET_qXfer_spu_write,
1995 PACKET_qXfer_osdata,
1996 PACKET_qXfer_threads,
1997 PACKET_qXfer_statictrace_read,
1998 PACKET_qXfer_traceframe_info,
1999 PACKET_qXfer_uib,
2000 PACKET_qGetTIBAddr,
2001 PACKET_qGetTLSAddr,
2002 PACKET_qSupported,
2003 PACKET_qTStatus,
2004 PACKET_QPassSignals,
2005 PACKET_QCatchSyscalls,
2006 PACKET_QProgramSignals,
2007 PACKET_QSetWorkingDir,
2008 PACKET_QStartupWithShell,
2009 PACKET_QEnvironmentHexEncoded,
2010 PACKET_QEnvironmentReset,
2011 PACKET_QEnvironmentUnset,
2012 PACKET_qCRC,
2013 PACKET_qSearch_memory,
2014 PACKET_vAttach,
2015 PACKET_vRun,
2016 PACKET_QStartNoAckMode,
2017 PACKET_vKill,
2018 PACKET_qXfer_siginfo_read,
2019 PACKET_qXfer_siginfo_write,
2020 PACKET_qAttached,
2021
2022 /* Support for conditional tracepoints. */
2023 PACKET_ConditionalTracepoints,
2024
2025 /* Support for target-side breakpoint conditions. */
2026 PACKET_ConditionalBreakpoints,
2027
2028 /* Support for target-side breakpoint commands. */
2029 PACKET_BreakpointCommands,
2030
2031 /* Support for fast tracepoints. */
2032 PACKET_FastTracepoints,
2033
2034 /* Support for static tracepoints. */
2035 PACKET_StaticTracepoints,
2036
2037 /* Support for installing tracepoints while a trace experiment is
2038 running. */
2039 PACKET_InstallInTrace,
2040
2041 PACKET_bc,
2042 PACKET_bs,
2043 PACKET_TracepointSource,
2044 PACKET_QAllow,
2045 PACKET_qXfer_fdpic,
2046 PACKET_QDisableRandomization,
2047 PACKET_QAgent,
2048 PACKET_QTBuffer_size,
2049 PACKET_Qbtrace_off,
2050 PACKET_Qbtrace_bts,
2051 PACKET_Qbtrace_pt,
2052 PACKET_qXfer_btrace,
2053
2054 /* Support for the QNonStop packet. */
2055 PACKET_QNonStop,
2056
2057 /* Support for the QThreadEvents packet. */
2058 PACKET_QThreadEvents,
2059
2060 /* Support for multi-process extensions. */
2061 PACKET_multiprocess_feature,
2062
2063 /* Support for enabling and disabling tracepoints while a trace
2064 experiment is running. */
2065 PACKET_EnableDisableTracepoints_feature,
2066
2067 /* Support for collecting strings using the tracenz bytecode. */
2068 PACKET_tracenz_feature,
2069
2070 /* Support for continuing to run a trace experiment while GDB is
2071 disconnected. */
2072 PACKET_DisconnectedTracing_feature,
2073
2074 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2075 PACKET_augmented_libraries_svr4_read_feature,
2076
2077 /* Support for the qXfer:btrace-conf:read packet. */
2078 PACKET_qXfer_btrace_conf,
2079
2080 /* Support for the Qbtrace-conf:bts:size packet. */
2081 PACKET_Qbtrace_conf_bts_size,
2082
2083 /* Support for swbreak+ feature. */
2084 PACKET_swbreak_feature,
2085
2086 /* Support for hwbreak+ feature. */
2087 PACKET_hwbreak_feature,
2088
2089 /* Support for fork events. */
2090 PACKET_fork_event_feature,
2091
2092 /* Support for vfork events. */
2093 PACKET_vfork_event_feature,
2094
2095 /* Support for the Qbtrace-conf:pt:size packet. */
2096 PACKET_Qbtrace_conf_pt_size,
2097
2098 /* Support for exec events. */
2099 PACKET_exec_event_feature,
2100
2101 /* Support for query supported vCont actions. */
2102 PACKET_vContSupported,
2103
2104 /* Support remote CTRL-C. */
2105 PACKET_vCtrlC,
2106
2107 /* Support TARGET_WAITKIND_NO_RESUMED. */
2108 PACKET_no_resumed,
2109
2110 PACKET_MAX
2111 };
2112
2113 static struct packet_config remote_protocol_packets[PACKET_MAX];
2114
2115 /* Returns the packet's corresponding "set remote foo-packet" command
2116 state. See struct packet_config for more details. */
2117
2118 static enum auto_boolean
2119 packet_set_cmd_state (int packet)
2120 {
2121 return remote_protocol_packets[packet].detect;
2122 }
2123
2124 /* Returns whether a given packet or feature is supported. This takes
2125 into account the state of the corresponding "set remote foo-packet"
2126 command, which may be used to bypass auto-detection. */
2127
2128 static enum packet_support
2129 packet_config_support (struct packet_config *config)
2130 {
2131 switch (config->detect)
2132 {
2133 case AUTO_BOOLEAN_TRUE:
2134 return PACKET_ENABLE;
2135 case AUTO_BOOLEAN_FALSE:
2136 return PACKET_DISABLE;
2137 case AUTO_BOOLEAN_AUTO:
2138 return config->support;
2139 default:
2140 gdb_assert_not_reached (_("bad switch"));
2141 }
2142 }
2143
2144 /* Same as packet_config_support, but takes the packet's enum value as
2145 argument. */
2146
2147 static enum packet_support
2148 packet_support (int packet)
2149 {
2150 struct packet_config *config = &remote_protocol_packets[packet];
2151
2152 return packet_config_support (config);
2153 }
2154
2155 static void
2156 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2157 struct cmd_list_element *c,
2158 const char *value)
2159 {
2160 struct packet_config *packet;
2161
2162 for (packet = remote_protocol_packets;
2163 packet < &remote_protocol_packets[PACKET_MAX];
2164 packet++)
2165 {
2166 if (&packet->detect == c->var)
2167 {
2168 show_packet_config_cmd (packet);
2169 return;
2170 }
2171 }
2172 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2173 c->name);
2174 }
2175
2176 /* Should we try one of the 'Z' requests? */
2177
2178 enum Z_packet_type
2179 {
2180 Z_PACKET_SOFTWARE_BP,
2181 Z_PACKET_HARDWARE_BP,
2182 Z_PACKET_WRITE_WP,
2183 Z_PACKET_READ_WP,
2184 Z_PACKET_ACCESS_WP,
2185 NR_Z_PACKET_TYPES
2186 };
2187
2188 /* For compatibility with older distributions. Provide a ``set remote
2189 Z-packet ...'' command that updates all the Z packet types. */
2190
2191 static enum auto_boolean remote_Z_packet_detect;
2192
2193 static void
2194 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2195 struct cmd_list_element *c)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2201 }
2202
2203 static void
2204 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2205 struct cmd_list_element *c,
2206 const char *value)
2207 {
2208 int i;
2209
2210 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2211 {
2212 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2213 }
2214 }
2215
2216 /* Returns true if the multi-process extensions are in effect. */
2217
2218 static int
2219 remote_multi_process_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Returns true if fork events are supported. */
2225
2226 static int
2227 remote_fork_event_p (struct remote_state *rs)
2228 {
2229 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2230 }
2231
2232 /* Returns true if vfork events are supported. */
2233
2234 static int
2235 remote_vfork_event_p (struct remote_state *rs)
2236 {
2237 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2238 }
2239
2240 /* Returns true if exec events are supported. */
2241
2242 static int
2243 remote_exec_event_p (struct remote_state *rs)
2244 {
2245 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2246 }
2247
2248 /* Insert fork catchpoint target routine. If fork events are enabled
2249 then return success, nothing more to do. */
2250
2251 int
2252 remote_target::insert_fork_catchpoint (int pid)
2253 {
2254 struct remote_state *rs = get_remote_state ();
2255
2256 return !remote_fork_event_p (rs);
2257 }
2258
2259 /* Remove fork catchpoint target routine. Nothing to do, just
2260 return success. */
2261
2262 int
2263 remote_target::remove_fork_catchpoint (int pid)
2264 {
2265 return 0;
2266 }
2267
2268 /* Insert vfork catchpoint target routine. If vfork events are enabled
2269 then return success, nothing more to do. */
2270
2271 int
2272 remote_target::insert_vfork_catchpoint (int pid)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 return !remote_vfork_event_p (rs);
2277 }
2278
2279 /* Remove vfork catchpoint target routine. Nothing to do, just
2280 return success. */
2281
2282 int
2283 remote_target::remove_vfork_catchpoint (int pid)
2284 {
2285 return 0;
2286 }
2287
2288 /* Insert exec catchpoint target routine. If exec events are
2289 enabled, just return success. */
2290
2291 int
2292 remote_target::insert_exec_catchpoint (int pid)
2293 {
2294 struct remote_state *rs = get_remote_state ();
2295
2296 return !remote_exec_event_p (rs);
2297 }
2298
2299 /* Remove exec catchpoint target routine. Nothing to do, just
2300 return success. */
2301
2302 int
2303 remote_target::remove_exec_catchpoint (int pid)
2304 {
2305 return 0;
2306 }
2307
2308 \f
2309
2310 static ptid_t magic_null_ptid;
2311 static ptid_t not_sent_ptid;
2312 static ptid_t any_thread_ptid;
2313
2314 /* Find out if the stub attached to PID (and hence GDB should offer to
2315 detach instead of killing it when bailing out). */
2316
2317 int
2318 remote_target::remote_query_attached (int pid)
2319 {
2320 struct remote_state *rs = get_remote_state ();
2321 size_t size = get_remote_packet_size ();
2322
2323 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2324 return 0;
2325
2326 if (remote_multi_process_p (rs))
2327 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2328 else
2329 xsnprintf (rs->buf.data (), size, "qAttached");
2330
2331 putpkt (rs->buf);
2332 getpkt (&rs->buf, 0);
2333
2334 switch (packet_ok (rs->buf,
2335 &remote_protocol_packets[PACKET_qAttached]))
2336 {
2337 case PACKET_OK:
2338 if (strcmp (rs->buf.data (), "1") == 0)
2339 return 1;
2340 break;
2341 case PACKET_ERROR:
2342 warning (_("Remote failure reply: %s"), rs->buf.data ());
2343 break;
2344 case PACKET_UNKNOWN:
2345 break;
2346 }
2347
2348 return 0;
2349 }
2350
2351 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2352 has been invented by GDB, instead of reported by the target. Since
2353 we can be connected to a remote system before before knowing about
2354 any inferior, mark the target with execution when we find the first
2355 inferior. If ATTACHED is 1, then we had just attached to this
2356 inferior. If it is 0, then we just created this inferior. If it
2357 is -1, then try querying the remote stub to find out if it had
2358 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2359 attempt to open this inferior's executable as the main executable
2360 if no main executable is open already. */
2361
2362 inferior *
2363 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2364 int try_open_exec)
2365 {
2366 struct inferior *inf;
2367
2368 /* Check whether this process we're learning about is to be
2369 considered attached, or if is to be considered to have been
2370 spawned by the stub. */
2371 if (attached == -1)
2372 attached = remote_query_attached (pid);
2373
2374 if (gdbarch_has_global_solist (target_gdbarch ()))
2375 {
2376 /* If the target shares code across all inferiors, then every
2377 attach adds a new inferior. */
2378 inf = add_inferior (pid);
2379
2380 /* ... and every inferior is bound to the same program space.
2381 However, each inferior may still have its own address
2382 space. */
2383 inf->aspace = maybe_new_address_space ();
2384 inf->pspace = current_program_space;
2385 }
2386 else
2387 {
2388 /* In the traditional debugging scenario, there's a 1-1 match
2389 between program/address spaces. We simply bind the inferior
2390 to the program space's address space. */
2391 inf = current_inferior ();
2392 inferior_appeared (inf, pid);
2393 }
2394
2395 inf->attach_flag = attached;
2396 inf->fake_pid_p = fake_pid_p;
2397
2398 /* If no main executable is currently open then attempt to
2399 open the file that was executed to create this inferior. */
2400 if (try_open_exec && get_exec_file (0) == NULL)
2401 exec_file_locate_attach (pid, 0, 1);
2402
2403 return inf;
2404 }
2405
2406 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2407 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2408
2409 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2410 according to RUNNING. */
2411
2412 thread_info *
2413 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2414 {
2415 struct remote_state *rs = get_remote_state ();
2416 struct thread_info *thread;
2417
2418 /* GDB historically didn't pull threads in the initial connection
2419 setup. If the remote target doesn't even have a concept of
2420 threads (e.g., a bare-metal target), even if internally we
2421 consider that a single-threaded target, mentioning a new thread
2422 might be confusing to the user. Be silent then, preserving the
2423 age old behavior. */
2424 if (rs->starting_up)
2425 thread = add_thread_silent (ptid);
2426 else
2427 thread = add_thread (ptid);
2428
2429 get_remote_thread_info (thread)->vcont_resumed = executing;
2430 set_executing (ptid, executing);
2431 set_running (ptid, running);
2432
2433 return thread;
2434 }
2435
2436 /* Come here when we learn about a thread id from the remote target.
2437 It may be the first time we hear about such thread, so take the
2438 opportunity to add it to GDB's thread list. In case this is the
2439 first time we're noticing its corresponding inferior, add it to
2440 GDB's inferior list as well. EXECUTING indicates whether the
2441 thread is (internally) executing or stopped. */
2442
2443 void
2444 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2445 {
2446 /* In non-stop mode, we assume new found threads are (externally)
2447 running until proven otherwise with a stop reply. In all-stop,
2448 we can only get here if all threads are stopped. */
2449 int running = target_is_non_stop_p () ? 1 : 0;
2450
2451 /* If this is a new thread, add it to GDB's thread list.
2452 If we leave it up to WFI to do this, bad things will happen. */
2453
2454 thread_info *tp = find_thread_ptid (currthread);
2455 if (tp != NULL && tp->state == THREAD_EXITED)
2456 {
2457 /* We're seeing an event on a thread id we knew had exited.
2458 This has to be a new thread reusing the old id. Add it. */
2459 remote_add_thread (currthread, running, executing);
2460 return;
2461 }
2462
2463 if (!in_thread_list (currthread))
2464 {
2465 struct inferior *inf = NULL;
2466 int pid = currthread.pid ();
2467
2468 if (inferior_ptid.is_pid ()
2469 && pid == inferior_ptid.pid ())
2470 {
2471 /* inferior_ptid has no thread member yet. This can happen
2472 with the vAttach -> remote_wait,"TAAthread:" path if the
2473 stub doesn't support qC. This is the first stop reported
2474 after an attach, so this is the main thread. Update the
2475 ptid in the thread list. */
2476 if (in_thread_list (ptid_t (pid)))
2477 thread_change_ptid (inferior_ptid, currthread);
2478 else
2479 {
2480 remote_add_thread (currthread, running, executing);
2481 inferior_ptid = currthread;
2482 }
2483 return;
2484 }
2485
2486 if (magic_null_ptid == inferior_ptid)
2487 {
2488 /* inferior_ptid is not set yet. This can happen with the
2489 vRun -> remote_wait,"TAAthread:" path if the stub
2490 doesn't support qC. This is the first stop reported
2491 after an attach, so this is the main thread. Update the
2492 ptid in the thread list. */
2493 thread_change_ptid (inferior_ptid, currthread);
2494 return;
2495 }
2496
2497 /* When connecting to a target remote, or to a target
2498 extended-remote which already was debugging an inferior, we
2499 may not know about it yet. Add it before adding its child
2500 thread, so notifications are emitted in a sensible order. */
2501 if (find_inferior_pid (currthread.pid ()) == NULL)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504 int fake_pid_p = !remote_multi_process_p (rs);
2505
2506 inf = remote_add_inferior (fake_pid_p,
2507 currthread.pid (), -1, 1);
2508 }
2509
2510 /* This is really a new thread. Add it. */
2511 thread_info *new_thr
2512 = remote_add_thread (currthread, running, executing);
2513
2514 /* If we found a new inferior, let the common code do whatever
2515 it needs to with it (e.g., read shared libraries, insert
2516 breakpoints), unless we're just setting up an all-stop
2517 connection. */
2518 if (inf != NULL)
2519 {
2520 struct remote_state *rs = get_remote_state ();
2521
2522 if (!rs->starting_up)
2523 notice_new_inferior (new_thr, executing, 0);
2524 }
2525 }
2526 }
2527
2528 /* Return THREAD's private thread data, creating it if necessary. */
2529
2530 static remote_thread_info *
2531 get_remote_thread_info (thread_info *thread)
2532 {
2533 gdb_assert (thread != NULL);
2534
2535 if (thread->priv == NULL)
2536 thread->priv.reset (new remote_thread_info);
2537
2538 return static_cast<remote_thread_info *> (thread->priv.get ());
2539 }
2540
2541 static remote_thread_info *
2542 get_remote_thread_info (ptid_t ptid)
2543 {
2544 thread_info *thr = find_thread_ptid (ptid);
2545 return get_remote_thread_info (thr);
2546 }
2547
2548 /* Call this function as a result of
2549 1) A halt indication (T packet) containing a thread id
2550 2) A direct query of currthread
2551 3) Successful execution of set thread */
2552
2553 static void
2554 record_currthread (struct remote_state *rs, ptid_t currthread)
2555 {
2556 rs->general_thread = currthread;
2557 }
2558
2559 /* If 'QPassSignals' is supported, tell the remote stub what signals
2560 it can simply pass through to the inferior without reporting. */
2561
2562 void
2563 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2564 {
2565 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2566 {
2567 char *pass_packet, *p;
2568 int count = 0;
2569 struct remote_state *rs = get_remote_state ();
2570
2571 gdb_assert (pass_signals.size () < 256);
2572 for (size_t i = 0; i < pass_signals.size (); i++)
2573 {
2574 if (pass_signals[i])
2575 count++;
2576 }
2577 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2578 strcpy (pass_packet, "QPassSignals:");
2579 p = pass_packet + strlen (pass_packet);
2580 for (size_t i = 0; i < pass_signals.size (); i++)
2581 {
2582 if (pass_signals[i])
2583 {
2584 if (i >= 16)
2585 *p++ = tohex (i >> 4);
2586 *p++ = tohex (i & 15);
2587 if (count)
2588 *p++ = ';';
2589 else
2590 break;
2591 count--;
2592 }
2593 }
2594 *p = 0;
2595 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2596 {
2597 putpkt (pass_packet);
2598 getpkt (&rs->buf, 0);
2599 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2600 if (rs->last_pass_packet)
2601 xfree (rs->last_pass_packet);
2602 rs->last_pass_packet = pass_packet;
2603 }
2604 else
2605 xfree (pass_packet);
2606 }
2607 }
2608
2609 /* If 'QCatchSyscalls' is supported, tell the remote stub
2610 to report syscalls to GDB. */
2611
2612 int
2613 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2614 gdb::array_view<const int> syscall_counts)
2615 {
2616 const char *catch_packet;
2617 enum packet_result result;
2618 int n_sysno = 0;
2619
2620 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2621 {
2622 /* Not supported. */
2623 return 1;
2624 }
2625
2626 if (needed && any_count == 0)
2627 {
2628 /* Count how many syscalls are to be caught. */
2629 for (size_t i = 0; i < syscall_counts.size (); i++)
2630 {
2631 if (syscall_counts[i] != 0)
2632 n_sysno++;
2633 }
2634 }
2635
2636 if (remote_debug)
2637 {
2638 fprintf_unfiltered (gdb_stdlog,
2639 "remote_set_syscall_catchpoint "
2640 "pid %d needed %d any_count %d n_sysno %d\n",
2641 pid, needed, any_count, n_sysno);
2642 }
2643
2644 std::string built_packet;
2645 if (needed)
2646 {
2647 /* Prepare a packet with the sysno list, assuming max 8+1
2648 characters for a sysno. If the resulting packet size is too
2649 big, fallback on the non-selective packet. */
2650 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2651 built_packet.reserve (maxpktsz);
2652 built_packet = "QCatchSyscalls:1";
2653 if (any_count == 0)
2654 {
2655 /* Add in each syscall to be caught. */
2656 for (size_t i = 0; i < syscall_counts.size (); i++)
2657 {
2658 if (syscall_counts[i] != 0)
2659 string_appendf (built_packet, ";%zx", i);
2660 }
2661 }
2662 if (built_packet.size () > get_remote_packet_size ())
2663 {
2664 /* catch_packet too big. Fallback to less efficient
2665 non selective mode, with GDB doing the filtering. */
2666 catch_packet = "QCatchSyscalls:1";
2667 }
2668 else
2669 catch_packet = built_packet.c_str ();
2670 }
2671 else
2672 catch_packet = "QCatchSyscalls:0";
2673
2674 struct remote_state *rs = get_remote_state ();
2675
2676 putpkt (catch_packet);
2677 getpkt (&rs->buf, 0);
2678 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2679 if (result == PACKET_OK)
2680 return 0;
2681 else
2682 return -1;
2683 }
2684
2685 /* If 'QProgramSignals' is supported, tell the remote stub what
2686 signals it should pass through to the inferior when detaching. */
2687
2688 void
2689 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2690 {
2691 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2692 {
2693 char *packet, *p;
2694 int count = 0;
2695 struct remote_state *rs = get_remote_state ();
2696
2697 gdb_assert (signals.size () < 256);
2698 for (size_t i = 0; i < signals.size (); i++)
2699 {
2700 if (signals[i])
2701 count++;
2702 }
2703 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2704 strcpy (packet, "QProgramSignals:");
2705 p = packet + strlen (packet);
2706 for (size_t i = 0; i < signals.size (); i++)
2707 {
2708 if (signal_pass_state (i))
2709 {
2710 if (i >= 16)
2711 *p++ = tohex (i >> 4);
2712 *p++ = tohex (i & 15);
2713 if (count)
2714 *p++ = ';';
2715 else
2716 break;
2717 count--;
2718 }
2719 }
2720 *p = 0;
2721 if (!rs->last_program_signals_packet
2722 || strcmp (rs->last_program_signals_packet, packet) != 0)
2723 {
2724 putpkt (packet);
2725 getpkt (&rs->buf, 0);
2726 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2727 xfree (rs->last_program_signals_packet);
2728 rs->last_program_signals_packet = packet;
2729 }
2730 else
2731 xfree (packet);
2732 }
2733 }
2734
2735 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2736 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2737 thread. If GEN is set, set the general thread, if not, then set
2738 the step/continue thread. */
2739 void
2740 remote_target::set_thread (ptid_t ptid, int gen)
2741 {
2742 struct remote_state *rs = get_remote_state ();
2743 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2744 char *buf = rs->buf.data ();
2745 char *endbuf = buf + get_remote_packet_size ();
2746
2747 if (state == ptid)
2748 return;
2749
2750 *buf++ = 'H';
2751 *buf++ = gen ? 'g' : 'c';
2752 if (ptid == magic_null_ptid)
2753 xsnprintf (buf, endbuf - buf, "0");
2754 else if (ptid == any_thread_ptid)
2755 xsnprintf (buf, endbuf - buf, "0");
2756 else if (ptid == minus_one_ptid)
2757 xsnprintf (buf, endbuf - buf, "-1");
2758 else
2759 write_ptid (buf, endbuf, ptid);
2760 putpkt (rs->buf);
2761 getpkt (&rs->buf, 0);
2762 if (gen)
2763 rs->general_thread = ptid;
2764 else
2765 rs->continue_thread = ptid;
2766 }
2767
2768 void
2769 remote_target::set_general_thread (ptid_t ptid)
2770 {
2771 set_thread (ptid, 1);
2772 }
2773
2774 void
2775 remote_target::set_continue_thread (ptid_t ptid)
2776 {
2777 set_thread (ptid, 0);
2778 }
2779
2780 /* Change the remote current process. Which thread within the process
2781 ends up selected isn't important, as long as it is the same process
2782 as what INFERIOR_PTID points to.
2783
2784 This comes from that fact that there is no explicit notion of
2785 "selected process" in the protocol. The selected process for
2786 general operations is the process the selected general thread
2787 belongs to. */
2788
2789 void
2790 remote_target::set_general_process ()
2791 {
2792 struct remote_state *rs = get_remote_state ();
2793
2794 /* If the remote can't handle multiple processes, don't bother. */
2795 if (!remote_multi_process_p (rs))
2796 return;
2797
2798 /* We only need to change the remote current thread if it's pointing
2799 at some other process. */
2800 if (rs->general_thread.pid () != inferior_ptid.pid ())
2801 set_general_thread (inferior_ptid);
2802 }
2803
2804 \f
2805 /* Return nonzero if this is the main thread that we made up ourselves
2806 to model non-threaded targets as single-threaded. */
2807
2808 static int
2809 remote_thread_always_alive (ptid_t ptid)
2810 {
2811 if (ptid == magic_null_ptid)
2812 /* The main thread is always alive. */
2813 return 1;
2814
2815 if (ptid.pid () != 0 && ptid.lwp () == 0)
2816 /* The main thread is always alive. This can happen after a
2817 vAttach, if the remote side doesn't support
2818 multi-threading. */
2819 return 1;
2820
2821 return 0;
2822 }
2823
2824 /* Return nonzero if the thread PTID is still alive on the remote
2825 system. */
2826
2827 bool
2828 remote_target::thread_alive (ptid_t ptid)
2829 {
2830 struct remote_state *rs = get_remote_state ();
2831 char *p, *endp;
2832
2833 /* Check if this is a thread that we made up ourselves to model
2834 non-threaded targets as single-threaded. */
2835 if (remote_thread_always_alive (ptid))
2836 return 1;
2837
2838 p = rs->buf.data ();
2839 endp = p + get_remote_packet_size ();
2840
2841 *p++ = 'T';
2842 write_ptid (p, endp, ptid);
2843
2844 putpkt (rs->buf);
2845 getpkt (&rs->buf, 0);
2846 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2847 }
2848
2849 /* Return a pointer to a thread name if we know it and NULL otherwise.
2850 The thread_info object owns the memory for the name. */
2851
2852 const char *
2853 remote_target::thread_name (struct thread_info *info)
2854 {
2855 if (info->priv != NULL)
2856 {
2857 const std::string &name = get_remote_thread_info (info)->name;
2858 return !name.empty () ? name.c_str () : NULL;
2859 }
2860
2861 return NULL;
2862 }
2863
2864 /* About these extended threadlist and threadinfo packets. They are
2865 variable length packets but, the fields within them are often fixed
2866 length. They are redundent enough to send over UDP as is the
2867 remote protocol in general. There is a matching unit test module
2868 in libstub. */
2869
2870 /* WARNING: This threadref data structure comes from the remote O.S.,
2871 libstub protocol encoding, and remote.c. It is not particularly
2872 changable. */
2873
2874 /* Right now, the internal structure is int. We want it to be bigger.
2875 Plan to fix this. */
2876
2877 typedef int gdb_threadref; /* Internal GDB thread reference. */
2878
2879 /* gdb_ext_thread_info is an internal GDB data structure which is
2880 equivalent to the reply of the remote threadinfo packet. */
2881
2882 struct gdb_ext_thread_info
2883 {
2884 threadref threadid; /* External form of thread reference. */
2885 int active; /* Has state interesting to GDB?
2886 regs, stack. */
2887 char display[256]; /* Brief state display, name,
2888 blocked/suspended. */
2889 char shortname[32]; /* To be used to name threads. */
2890 char more_display[256]; /* Long info, statistics, queue depth,
2891 whatever. */
2892 };
2893
2894 /* The volume of remote transfers can be limited by submitting
2895 a mask containing bits specifying the desired information.
2896 Use a union of these values as the 'selection' parameter to
2897 get_thread_info. FIXME: Make these TAG names more thread specific. */
2898
2899 #define TAG_THREADID 1
2900 #define TAG_EXISTS 2
2901 #define TAG_DISPLAY 4
2902 #define TAG_THREADNAME 8
2903 #define TAG_MOREDISPLAY 16
2904
2905 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2906
2907 static char *unpack_nibble (char *buf, int *val);
2908
2909 static char *unpack_byte (char *buf, int *value);
2910
2911 static char *pack_int (char *buf, int value);
2912
2913 static char *unpack_int (char *buf, int *value);
2914
2915 static char *unpack_string (char *src, char *dest, int length);
2916
2917 static char *pack_threadid (char *pkt, threadref *id);
2918
2919 static char *unpack_threadid (char *inbuf, threadref *id);
2920
2921 void int_to_threadref (threadref *id, int value);
2922
2923 static int threadref_to_int (threadref *ref);
2924
2925 static void copy_threadref (threadref *dest, threadref *src);
2926
2927 static int threadmatch (threadref *dest, threadref *src);
2928
2929 static char *pack_threadinfo_request (char *pkt, int mode,
2930 threadref *id);
2931
2932 static char *pack_threadlist_request (char *pkt, int startflag,
2933 int threadcount,
2934 threadref *nextthread);
2935
2936 static int remote_newthread_step (threadref *ref, void *context);
2937
2938
2939 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2940 buffer we're allowed to write to. Returns
2941 BUF+CHARACTERS_WRITTEN. */
2942
2943 char *
2944 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2945 {
2946 int pid, tid;
2947 struct remote_state *rs = get_remote_state ();
2948
2949 if (remote_multi_process_p (rs))
2950 {
2951 pid = ptid.pid ();
2952 if (pid < 0)
2953 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2954 else
2955 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2956 }
2957 tid = ptid.lwp ();
2958 if (tid < 0)
2959 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2960 else
2961 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2962
2963 return buf;
2964 }
2965
2966 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2967 last parsed char. Returns null_ptid if no thread id is found, and
2968 throws an error if the thread id has an invalid format. */
2969
2970 static ptid_t
2971 read_ptid (const char *buf, const char **obuf)
2972 {
2973 const char *p = buf;
2974 const char *pp;
2975 ULONGEST pid = 0, tid = 0;
2976
2977 if (*p == 'p')
2978 {
2979 /* Multi-process ptid. */
2980 pp = unpack_varlen_hex (p + 1, &pid);
2981 if (*pp != '.')
2982 error (_("invalid remote ptid: %s"), p);
2983
2984 p = pp;
2985 pp = unpack_varlen_hex (p + 1, &tid);
2986 if (obuf)
2987 *obuf = pp;
2988 return ptid_t (pid, tid, 0);
2989 }
2990
2991 /* No multi-process. Just a tid. */
2992 pp = unpack_varlen_hex (p, &tid);
2993
2994 /* Return null_ptid when no thread id is found. */
2995 if (p == pp)
2996 {
2997 if (obuf)
2998 *obuf = pp;
2999 return null_ptid;
3000 }
3001
3002 /* Since the stub is not sending a process id, then default to
3003 what's in inferior_ptid, unless it's null at this point. If so,
3004 then since there's no way to know the pid of the reported
3005 threads, use the magic number. */
3006 if (inferior_ptid == null_ptid)
3007 pid = magic_null_ptid.pid ();
3008 else
3009 pid = inferior_ptid.pid ();
3010
3011 if (obuf)
3012 *obuf = pp;
3013 return ptid_t (pid, tid, 0);
3014 }
3015
3016 static int
3017 stubhex (int ch)
3018 {
3019 if (ch >= 'a' && ch <= 'f')
3020 return ch - 'a' + 10;
3021 if (ch >= '0' && ch <= '9')
3022 return ch - '0';
3023 if (ch >= 'A' && ch <= 'F')
3024 return ch - 'A' + 10;
3025 return -1;
3026 }
3027
3028 static int
3029 stub_unpack_int (char *buff, int fieldlength)
3030 {
3031 int nibble;
3032 int retval = 0;
3033
3034 while (fieldlength)
3035 {
3036 nibble = stubhex (*buff++);
3037 retval |= nibble;
3038 fieldlength--;
3039 if (fieldlength)
3040 retval = retval << 4;
3041 }
3042 return retval;
3043 }
3044
3045 static char *
3046 unpack_nibble (char *buf, int *val)
3047 {
3048 *val = fromhex (*buf++);
3049 return buf;
3050 }
3051
3052 static char *
3053 unpack_byte (char *buf, int *value)
3054 {
3055 *value = stub_unpack_int (buf, 2);
3056 return buf + 2;
3057 }
3058
3059 static char *
3060 pack_int (char *buf, int value)
3061 {
3062 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3063 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3064 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3065 buf = pack_hex_byte (buf, (value & 0xff));
3066 return buf;
3067 }
3068
3069 static char *
3070 unpack_int (char *buf, int *value)
3071 {
3072 *value = stub_unpack_int (buf, 8);
3073 return buf + 8;
3074 }
3075
3076 #if 0 /* Currently unused, uncomment when needed. */
3077 static char *pack_string (char *pkt, char *string);
3078
3079 static char *
3080 pack_string (char *pkt, char *string)
3081 {
3082 char ch;
3083 int len;
3084
3085 len = strlen (string);
3086 if (len > 200)
3087 len = 200; /* Bigger than most GDB packets, junk??? */
3088 pkt = pack_hex_byte (pkt, len);
3089 while (len-- > 0)
3090 {
3091 ch = *string++;
3092 if ((ch == '\0') || (ch == '#'))
3093 ch = '*'; /* Protect encapsulation. */
3094 *pkt++ = ch;
3095 }
3096 return pkt;
3097 }
3098 #endif /* 0 (unused) */
3099
3100 static char *
3101 unpack_string (char *src, char *dest, int length)
3102 {
3103 while (length--)
3104 *dest++ = *src++;
3105 *dest = '\0';
3106 return src;
3107 }
3108
3109 static char *
3110 pack_threadid (char *pkt, threadref *id)
3111 {
3112 char *limit;
3113 unsigned char *altid;
3114
3115 altid = (unsigned char *) id;
3116 limit = pkt + BUF_THREAD_ID_SIZE;
3117 while (pkt < limit)
3118 pkt = pack_hex_byte (pkt, *altid++);
3119 return pkt;
3120 }
3121
3122
3123 static char *
3124 unpack_threadid (char *inbuf, threadref *id)
3125 {
3126 char *altref;
3127 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3128 int x, y;
3129
3130 altref = (char *) id;
3131
3132 while (inbuf < limit)
3133 {
3134 x = stubhex (*inbuf++);
3135 y = stubhex (*inbuf++);
3136 *altref++ = (x << 4) | y;
3137 }
3138 return inbuf;
3139 }
3140
3141 /* Externally, threadrefs are 64 bits but internally, they are still
3142 ints. This is due to a mismatch of specifications. We would like
3143 to use 64bit thread references internally. This is an adapter
3144 function. */
3145
3146 void
3147 int_to_threadref (threadref *id, int value)
3148 {
3149 unsigned char *scan;
3150
3151 scan = (unsigned char *) id;
3152 {
3153 int i = 4;
3154 while (i--)
3155 *scan++ = 0;
3156 }
3157 *scan++ = (value >> 24) & 0xff;
3158 *scan++ = (value >> 16) & 0xff;
3159 *scan++ = (value >> 8) & 0xff;
3160 *scan++ = (value & 0xff);
3161 }
3162
3163 static int
3164 threadref_to_int (threadref *ref)
3165 {
3166 int i, value = 0;
3167 unsigned char *scan;
3168
3169 scan = *ref;
3170 scan += 4;
3171 i = 4;
3172 while (i-- > 0)
3173 value = (value << 8) | ((*scan++) & 0xff);
3174 return value;
3175 }
3176
3177 static void
3178 copy_threadref (threadref *dest, threadref *src)
3179 {
3180 int i;
3181 unsigned char *csrc, *cdest;
3182
3183 csrc = (unsigned char *) src;
3184 cdest = (unsigned char *) dest;
3185 i = 8;
3186 while (i--)
3187 *cdest++ = *csrc++;
3188 }
3189
3190 static int
3191 threadmatch (threadref *dest, threadref *src)
3192 {
3193 /* Things are broken right now, so just assume we got a match. */
3194 #if 0
3195 unsigned char *srcp, *destp;
3196 int i, result;
3197 srcp = (char *) src;
3198 destp = (char *) dest;
3199
3200 result = 1;
3201 while (i-- > 0)
3202 result &= (*srcp++ == *destp++) ? 1 : 0;
3203 return result;
3204 #endif
3205 return 1;
3206 }
3207
3208 /*
3209 threadid:1, # always request threadid
3210 context_exists:2,
3211 display:4,
3212 unique_name:8,
3213 more_display:16
3214 */
3215
3216 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3217
3218 static char *
3219 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3220 {
3221 *pkt++ = 'q'; /* Info Query */
3222 *pkt++ = 'P'; /* process or thread info */
3223 pkt = pack_int (pkt, mode); /* mode */
3224 pkt = pack_threadid (pkt, id); /* threadid */
3225 *pkt = '\0'; /* terminate */
3226 return pkt;
3227 }
3228
3229 /* These values tag the fields in a thread info response packet. */
3230 /* Tagging the fields allows us to request specific fields and to
3231 add more fields as time goes by. */
3232
3233 #define TAG_THREADID 1 /* Echo the thread identifier. */
3234 #define TAG_EXISTS 2 /* Is this process defined enough to
3235 fetch registers and its stack? */
3236 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3237 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3238 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3239 the process. */
3240
3241 int
3242 remote_target::remote_unpack_thread_info_response (char *pkt,
3243 threadref *expectedref,
3244 gdb_ext_thread_info *info)
3245 {
3246 struct remote_state *rs = get_remote_state ();
3247 int mask, length;
3248 int tag;
3249 threadref ref;
3250 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3251 int retval = 1;
3252
3253 /* info->threadid = 0; FIXME: implement zero_threadref. */
3254 info->active = 0;
3255 info->display[0] = '\0';
3256 info->shortname[0] = '\0';
3257 info->more_display[0] = '\0';
3258
3259 /* Assume the characters indicating the packet type have been
3260 stripped. */
3261 pkt = unpack_int (pkt, &mask); /* arg mask */
3262 pkt = unpack_threadid (pkt, &ref);
3263
3264 if (mask == 0)
3265 warning (_("Incomplete response to threadinfo request."));
3266 if (!threadmatch (&ref, expectedref))
3267 { /* This is an answer to a different request. */
3268 warning (_("ERROR RMT Thread info mismatch."));
3269 return 0;
3270 }
3271 copy_threadref (&info->threadid, &ref);
3272
3273 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3274
3275 /* Packets are terminated with nulls. */
3276 while ((pkt < limit) && mask && *pkt)
3277 {
3278 pkt = unpack_int (pkt, &tag); /* tag */
3279 pkt = unpack_byte (pkt, &length); /* length */
3280 if (!(tag & mask)) /* Tags out of synch with mask. */
3281 {
3282 warning (_("ERROR RMT: threadinfo tag mismatch."));
3283 retval = 0;
3284 break;
3285 }
3286 if (tag == TAG_THREADID)
3287 {
3288 if (length != 16)
3289 {
3290 warning (_("ERROR RMT: length of threadid is not 16."));
3291 retval = 0;
3292 break;
3293 }
3294 pkt = unpack_threadid (pkt, &ref);
3295 mask = mask & ~TAG_THREADID;
3296 continue;
3297 }
3298 if (tag == TAG_EXISTS)
3299 {
3300 info->active = stub_unpack_int (pkt, length);
3301 pkt += length;
3302 mask = mask & ~(TAG_EXISTS);
3303 if (length > 8)
3304 {
3305 warning (_("ERROR RMT: 'exists' length too long."));
3306 retval = 0;
3307 break;
3308 }
3309 continue;
3310 }
3311 if (tag == TAG_THREADNAME)
3312 {
3313 pkt = unpack_string (pkt, &info->shortname[0], length);
3314 mask = mask & ~TAG_THREADNAME;
3315 continue;
3316 }
3317 if (tag == TAG_DISPLAY)
3318 {
3319 pkt = unpack_string (pkt, &info->display[0], length);
3320 mask = mask & ~TAG_DISPLAY;
3321 continue;
3322 }
3323 if (tag == TAG_MOREDISPLAY)
3324 {
3325 pkt = unpack_string (pkt, &info->more_display[0], length);
3326 mask = mask & ~TAG_MOREDISPLAY;
3327 continue;
3328 }
3329 warning (_("ERROR RMT: unknown thread info tag."));
3330 break; /* Not a tag we know about. */
3331 }
3332 return retval;
3333 }
3334
3335 int
3336 remote_target::remote_get_threadinfo (threadref *threadid,
3337 int fieldset,
3338 gdb_ext_thread_info *info)
3339 {
3340 struct remote_state *rs = get_remote_state ();
3341 int result;
3342
3343 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3344 putpkt (rs->buf);
3345 getpkt (&rs->buf, 0);
3346
3347 if (rs->buf[0] == '\0')
3348 return 0;
3349
3350 result = remote_unpack_thread_info_response (&rs->buf[2],
3351 threadid, info);
3352 return result;
3353 }
3354
3355 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3356
3357 static char *
3358 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3359 threadref *nextthread)
3360 {
3361 *pkt++ = 'q'; /* info query packet */
3362 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3363 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3364 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3365 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3366 *pkt = '\0';
3367 return pkt;
3368 }
3369
3370 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3371
3372 int
3373 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3374 threadref *original_echo,
3375 threadref *resultlist,
3376 int *doneflag)
3377 {
3378 struct remote_state *rs = get_remote_state ();
3379 char *limit;
3380 int count, resultcount, done;
3381
3382 resultcount = 0;
3383 /* Assume the 'q' and 'M chars have been stripped. */
3384 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3385 /* done parse past here */
3386 pkt = unpack_byte (pkt, &count); /* count field */
3387 pkt = unpack_nibble (pkt, &done);
3388 /* The first threadid is the argument threadid. */
3389 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3390 while ((count-- > 0) && (pkt < limit))
3391 {
3392 pkt = unpack_threadid (pkt, resultlist++);
3393 if (resultcount++ >= result_limit)
3394 break;
3395 }
3396 if (doneflag)
3397 *doneflag = done;
3398 return resultcount;
3399 }
3400
3401 /* Fetch the next batch of threads from the remote. Returns -1 if the
3402 qL packet is not supported, 0 on error and 1 on success. */
3403
3404 int
3405 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3406 int result_limit, int *done, int *result_count,
3407 threadref *threadlist)
3408 {
3409 struct remote_state *rs = get_remote_state ();
3410 int result = 1;
3411
3412 /* Trancate result limit to be smaller than the packet size. */
3413 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3414 >= get_remote_packet_size ())
3415 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3416
3417 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3418 nextthread);
3419 putpkt (rs->buf);
3420 getpkt (&rs->buf, 0);
3421 if (rs->buf[0] == '\0')
3422 {
3423 /* Packet not supported. */
3424 return -1;
3425 }
3426
3427 *result_count =
3428 parse_threadlist_response (&rs->buf[2], result_limit,
3429 &rs->echo_nextthread, threadlist, done);
3430
3431 if (!threadmatch (&rs->echo_nextthread, nextthread))
3432 {
3433 /* FIXME: This is a good reason to drop the packet. */
3434 /* Possably, there is a duplicate response. */
3435 /* Possabilities :
3436 retransmit immediatly - race conditions
3437 retransmit after timeout - yes
3438 exit
3439 wait for packet, then exit
3440 */
3441 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3442 return 0; /* I choose simply exiting. */
3443 }
3444 if (*result_count <= 0)
3445 {
3446 if (*done != 1)
3447 {
3448 warning (_("RMT ERROR : failed to get remote thread list."));
3449 result = 0;
3450 }
3451 return result; /* break; */
3452 }
3453 if (*result_count > result_limit)
3454 {
3455 *result_count = 0;
3456 warning (_("RMT ERROR: threadlist response longer than requested."));
3457 return 0;
3458 }
3459 return result;
3460 }
3461
3462 /* Fetch the list of remote threads, with the qL packet, and call
3463 STEPFUNCTION for each thread found. Stops iterating and returns 1
3464 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3465 STEPFUNCTION returns false. If the packet is not supported,
3466 returns -1. */
3467
3468 int
3469 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3470 void *context, int looplimit)
3471 {
3472 struct remote_state *rs = get_remote_state ();
3473 int done, i, result_count;
3474 int startflag = 1;
3475 int result = 1;
3476 int loopcount = 0;
3477
3478 done = 0;
3479 while (!done)
3480 {
3481 if (loopcount++ > looplimit)
3482 {
3483 result = 0;
3484 warning (_("Remote fetch threadlist -infinite loop-."));
3485 break;
3486 }
3487 result = remote_get_threadlist (startflag, &rs->nextthread,
3488 MAXTHREADLISTRESULTS,
3489 &done, &result_count,
3490 rs->resultthreadlist);
3491 if (result <= 0)
3492 break;
3493 /* Clear for later iterations. */
3494 startflag = 0;
3495 /* Setup to resume next batch of thread references, set nextthread. */
3496 if (result_count >= 1)
3497 copy_threadref (&rs->nextthread,
3498 &rs->resultthreadlist[result_count - 1]);
3499 i = 0;
3500 while (result_count--)
3501 {
3502 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3503 {
3504 result = 0;
3505 break;
3506 }
3507 }
3508 }
3509 return result;
3510 }
3511
3512 /* A thread found on the remote target. */
3513
3514 struct thread_item
3515 {
3516 explicit thread_item (ptid_t ptid_)
3517 : ptid (ptid_)
3518 {}
3519
3520 thread_item (thread_item &&other) = default;
3521 thread_item &operator= (thread_item &&other) = default;
3522
3523 DISABLE_COPY_AND_ASSIGN (thread_item);
3524
3525 /* The thread's PTID. */
3526 ptid_t ptid;
3527
3528 /* The thread's extra info. */
3529 std::string extra;
3530
3531 /* The thread's name. */
3532 std::string name;
3533
3534 /* The core the thread was running on. -1 if not known. */
3535 int core = -1;
3536
3537 /* The thread handle associated with the thread. */
3538 gdb::byte_vector thread_handle;
3539 };
3540
3541 /* Context passed around to the various methods listing remote
3542 threads. As new threads are found, they're added to the ITEMS
3543 vector. */
3544
3545 struct threads_listing_context
3546 {
3547 /* Return true if this object contains an entry for a thread with ptid
3548 PTID. */
3549
3550 bool contains_thread (ptid_t ptid) const
3551 {
3552 auto match_ptid = [&] (const thread_item &item)
3553 {
3554 return item.ptid == ptid;
3555 };
3556
3557 auto it = std::find_if (this->items.begin (),
3558 this->items.end (),
3559 match_ptid);
3560
3561 return it != this->items.end ();
3562 }
3563
3564 /* Remove the thread with ptid PTID. */
3565
3566 void remove_thread (ptid_t ptid)
3567 {
3568 auto match_ptid = [&] (const thread_item &item)
3569 {
3570 return item.ptid == ptid;
3571 };
3572
3573 auto it = std::remove_if (this->items.begin (),
3574 this->items.end (),
3575 match_ptid);
3576
3577 if (it != this->items.end ())
3578 this->items.erase (it);
3579 }
3580
3581 /* The threads found on the remote target. */
3582 std::vector<thread_item> items;
3583 };
3584
3585 static int
3586 remote_newthread_step (threadref *ref, void *data)
3587 {
3588 struct threads_listing_context *context
3589 = (struct threads_listing_context *) data;
3590 int pid = inferior_ptid.pid ();
3591 int lwp = threadref_to_int (ref);
3592 ptid_t ptid (pid, lwp);
3593
3594 context->items.emplace_back (ptid);
3595
3596 return 1; /* continue iterator */
3597 }
3598
3599 #define CRAZY_MAX_THREADS 1000
3600
3601 ptid_t
3602 remote_target::remote_current_thread (ptid_t oldpid)
3603 {
3604 struct remote_state *rs = get_remote_state ();
3605
3606 putpkt ("qC");
3607 getpkt (&rs->buf, 0);
3608 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3609 {
3610 const char *obuf;
3611 ptid_t result;
3612
3613 result = read_ptid (&rs->buf[2], &obuf);
3614 if (*obuf != '\0' && remote_debug)
3615 fprintf_unfiltered (gdb_stdlog,
3616 "warning: garbage in qC reply\n");
3617
3618 return result;
3619 }
3620 else
3621 return oldpid;
3622 }
3623
3624 /* List remote threads using the deprecated qL packet. */
3625
3626 int
3627 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3628 {
3629 if (remote_threadlist_iterator (remote_newthread_step, context,
3630 CRAZY_MAX_THREADS) >= 0)
3631 return 1;
3632
3633 return 0;
3634 }
3635
3636 #if defined(HAVE_LIBEXPAT)
3637
3638 static void
3639 start_thread (struct gdb_xml_parser *parser,
3640 const struct gdb_xml_element *element,
3641 void *user_data,
3642 std::vector<gdb_xml_value> &attributes)
3643 {
3644 struct threads_listing_context *data
3645 = (struct threads_listing_context *) user_data;
3646 struct gdb_xml_value *attr;
3647
3648 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3649 ptid_t ptid = read_ptid (id, NULL);
3650
3651 data->items.emplace_back (ptid);
3652 thread_item &item = data->items.back ();
3653
3654 attr = xml_find_attribute (attributes, "core");
3655 if (attr != NULL)
3656 item.core = *(ULONGEST *) attr->value.get ();
3657
3658 attr = xml_find_attribute (attributes, "name");
3659 if (attr != NULL)
3660 item.name = (const char *) attr->value.get ();
3661
3662 attr = xml_find_attribute (attributes, "handle");
3663 if (attr != NULL)
3664 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3665 }
3666
3667 static void
3668 end_thread (struct gdb_xml_parser *parser,
3669 const struct gdb_xml_element *element,
3670 void *user_data, const char *body_text)
3671 {
3672 struct threads_listing_context *data
3673 = (struct threads_listing_context *) user_data;
3674
3675 if (body_text != NULL && *body_text != '\0')
3676 data->items.back ().extra = body_text;
3677 }
3678
3679 const struct gdb_xml_attribute thread_attributes[] = {
3680 { "id", GDB_XML_AF_NONE, NULL, NULL },
3681 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3682 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3683 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3684 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3685 };
3686
3687 const struct gdb_xml_element thread_children[] = {
3688 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3689 };
3690
3691 const struct gdb_xml_element threads_children[] = {
3692 { "thread", thread_attributes, thread_children,
3693 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3694 start_thread, end_thread },
3695 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696 };
3697
3698 const struct gdb_xml_element threads_elements[] = {
3699 { "threads", NULL, threads_children,
3700 GDB_XML_EF_NONE, NULL, NULL },
3701 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3702 };
3703
3704 #endif
3705
3706 /* List remote threads using qXfer:threads:read. */
3707
3708 int
3709 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3710 {
3711 #if defined(HAVE_LIBEXPAT)
3712 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3713 {
3714 gdb::optional<gdb::char_vector> xml
3715 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3716
3717 if (xml && (*xml)[0] != '\0')
3718 {
3719 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3720 threads_elements, xml->data (), context);
3721 }
3722
3723 return 1;
3724 }
3725 #endif
3726
3727 return 0;
3728 }
3729
3730 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3731
3732 int
3733 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3734 {
3735 struct remote_state *rs = get_remote_state ();
3736
3737 if (rs->use_threadinfo_query)
3738 {
3739 const char *bufp;
3740
3741 putpkt ("qfThreadInfo");
3742 getpkt (&rs->buf, 0);
3743 bufp = rs->buf.data ();
3744 if (bufp[0] != '\0') /* q packet recognized */
3745 {
3746 while (*bufp++ == 'm') /* reply contains one or more TID */
3747 {
3748 do
3749 {
3750 ptid_t ptid = read_ptid (bufp, &bufp);
3751 context->items.emplace_back (ptid);
3752 }
3753 while (*bufp++ == ','); /* comma-separated list */
3754 putpkt ("qsThreadInfo");
3755 getpkt (&rs->buf, 0);
3756 bufp = rs->buf.data ();
3757 }
3758 return 1;
3759 }
3760 else
3761 {
3762 /* Packet not recognized. */
3763 rs->use_threadinfo_query = 0;
3764 }
3765 }
3766
3767 return 0;
3768 }
3769
3770 /* Implement the to_update_thread_list function for the remote
3771 targets. */
3772
3773 void
3774 remote_target::update_thread_list ()
3775 {
3776 struct threads_listing_context context;
3777 int got_list = 0;
3778
3779 /* We have a few different mechanisms to fetch the thread list. Try
3780 them all, starting with the most preferred one first, falling
3781 back to older methods. */
3782 if (remote_get_threads_with_qxfer (&context)
3783 || remote_get_threads_with_qthreadinfo (&context)
3784 || remote_get_threads_with_ql (&context))
3785 {
3786 got_list = 1;
3787
3788 if (context.items.empty ()
3789 && remote_thread_always_alive (inferior_ptid))
3790 {
3791 /* Some targets don't really support threads, but still
3792 reply an (empty) thread list in response to the thread
3793 listing packets, instead of replying "packet not
3794 supported". Exit early so we don't delete the main
3795 thread. */
3796 return;
3797 }
3798
3799 /* CONTEXT now holds the current thread list on the remote
3800 target end. Delete GDB-side threads no longer found on the
3801 target. */
3802 for (thread_info *tp : all_threads_safe ())
3803 {
3804 if (!context.contains_thread (tp->ptid))
3805 {
3806 /* Not found. */
3807 delete_thread (tp);
3808 }
3809 }
3810
3811 /* Remove any unreported fork child threads from CONTEXT so
3812 that we don't interfere with follow fork, which is where
3813 creation of such threads is handled. */
3814 remove_new_fork_children (&context);
3815
3816 /* And now add threads we don't know about yet to our list. */
3817 for (thread_item &item : context.items)
3818 {
3819 if (item.ptid != null_ptid)
3820 {
3821 /* In non-stop mode, we assume new found threads are
3822 executing until proven otherwise with a stop reply.
3823 In all-stop, we can only get here if all threads are
3824 stopped. */
3825 int executing = target_is_non_stop_p () ? 1 : 0;
3826
3827 remote_notice_new_inferior (item.ptid, executing);
3828
3829 thread_info *tp = find_thread_ptid (item.ptid);
3830 remote_thread_info *info = get_remote_thread_info (tp);
3831 info->core = item.core;
3832 info->extra = std::move (item.extra);
3833 info->name = std::move (item.name);
3834 info->thread_handle = std::move (item.thread_handle);
3835 }
3836 }
3837 }
3838
3839 if (!got_list)
3840 {
3841 /* If no thread listing method is supported, then query whether
3842 each known thread is alive, one by one, with the T packet.
3843 If the target doesn't support threads at all, then this is a
3844 no-op. See remote_thread_alive. */
3845 prune_threads ();
3846 }
3847 }
3848
3849 /*
3850 * Collect a descriptive string about the given thread.
3851 * The target may say anything it wants to about the thread
3852 * (typically info about its blocked / runnable state, name, etc.).
3853 * This string will appear in the info threads display.
3854 *
3855 * Optional: targets are not required to implement this function.
3856 */
3857
3858 const char *
3859 remote_target::extra_thread_info (thread_info *tp)
3860 {
3861 struct remote_state *rs = get_remote_state ();
3862 int set;
3863 threadref id;
3864 struct gdb_ext_thread_info threadinfo;
3865
3866 if (rs->remote_desc == 0) /* paranoia */
3867 internal_error (__FILE__, __LINE__,
3868 _("remote_threads_extra_info"));
3869
3870 if (tp->ptid == magic_null_ptid
3871 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3872 /* This is the main thread which was added by GDB. The remote
3873 server doesn't know about it. */
3874 return NULL;
3875
3876 std::string &extra = get_remote_thread_info (tp)->extra;
3877
3878 /* If already have cached info, use it. */
3879 if (!extra.empty ())
3880 return extra.c_str ();
3881
3882 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3883 {
3884 /* If we're using qXfer:threads:read, then the extra info is
3885 included in the XML. So if we didn't have anything cached,
3886 it's because there's really no extra info. */
3887 return NULL;
3888 }
3889
3890 if (rs->use_threadextra_query)
3891 {
3892 char *b = rs->buf.data ();
3893 char *endb = b + get_remote_packet_size ();
3894
3895 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3896 b += strlen (b);
3897 write_ptid (b, endb, tp->ptid);
3898
3899 putpkt (rs->buf);
3900 getpkt (&rs->buf, 0);
3901 if (rs->buf[0] != 0)
3902 {
3903 extra.resize (strlen (rs->buf.data ()) / 2);
3904 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3905 return extra.c_str ();
3906 }
3907 }
3908
3909 /* If the above query fails, fall back to the old method. */
3910 rs->use_threadextra_query = 0;
3911 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3912 | TAG_MOREDISPLAY | TAG_DISPLAY;
3913 int_to_threadref (&id, tp->ptid.lwp ());
3914 if (remote_get_threadinfo (&id, set, &threadinfo))
3915 if (threadinfo.active)
3916 {
3917 if (*threadinfo.shortname)
3918 string_appendf (extra, " Name: %s", threadinfo.shortname);
3919 if (*threadinfo.display)
3920 {
3921 if (!extra.empty ())
3922 extra += ',';
3923 string_appendf (extra, " State: %s", threadinfo.display);
3924 }
3925 if (*threadinfo.more_display)
3926 {
3927 if (!extra.empty ())
3928 extra += ',';
3929 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3930 }
3931 return extra.c_str ();
3932 }
3933 return NULL;
3934 }
3935 \f
3936
3937 bool
3938 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3939 struct static_tracepoint_marker *marker)
3940 {
3941 struct remote_state *rs = get_remote_state ();
3942 char *p = rs->buf.data ();
3943
3944 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3945 p += strlen (p);
3946 p += hexnumstr (p, addr);
3947 putpkt (rs->buf);
3948 getpkt (&rs->buf, 0);
3949 p = rs->buf.data ();
3950
3951 if (*p == 'E')
3952 error (_("Remote failure reply: %s"), p);
3953
3954 if (*p++ == 'm')
3955 {
3956 parse_static_tracepoint_marker_definition (p, NULL, marker);
3957 return true;
3958 }
3959
3960 return false;
3961 }
3962
3963 std::vector<static_tracepoint_marker>
3964 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3965 {
3966 struct remote_state *rs = get_remote_state ();
3967 std::vector<static_tracepoint_marker> markers;
3968 const char *p;
3969 static_tracepoint_marker marker;
3970
3971 /* Ask for a first packet of static tracepoint marker
3972 definition. */
3973 putpkt ("qTfSTM");
3974 getpkt (&rs->buf, 0);
3975 p = rs->buf.data ();
3976 if (*p == 'E')
3977 error (_("Remote failure reply: %s"), p);
3978
3979 while (*p++ == 'm')
3980 {
3981 do
3982 {
3983 parse_static_tracepoint_marker_definition (p, &p, &marker);
3984
3985 if (strid == NULL || marker.str_id == strid)
3986 markers.push_back (std::move (marker));
3987 }
3988 while (*p++ == ','); /* comma-separated list */
3989 /* Ask for another packet of static tracepoint definition. */
3990 putpkt ("qTsSTM");
3991 getpkt (&rs->buf, 0);
3992 p = rs->buf.data ();
3993 }
3994
3995 return markers;
3996 }
3997
3998 \f
3999 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4000
4001 ptid_t
4002 remote_target::get_ada_task_ptid (long lwp, long thread)
4003 {
4004 return ptid_t (inferior_ptid.pid (), lwp, 0);
4005 }
4006 \f
4007
4008 /* Restart the remote side; this is an extended protocol operation. */
4009
4010 void
4011 remote_target::extended_remote_restart ()
4012 {
4013 struct remote_state *rs = get_remote_state ();
4014
4015 /* Send the restart command; for reasons I don't understand the
4016 remote side really expects a number after the "R". */
4017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4018 putpkt (rs->buf);
4019
4020 remote_fileio_reset ();
4021 }
4022 \f
4023 /* Clean up connection to a remote debugger. */
4024
4025 void
4026 remote_target::close ()
4027 {
4028 /* Make sure we leave stdin registered in the event loop. */
4029 terminal_ours ();
4030
4031 /* We don't have a connection to the remote stub anymore. Get rid
4032 of all the inferiors and their threads we were controlling.
4033 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4034 will be unable to find the thread corresponding to (pid, 0, 0). */
4035 inferior_ptid = null_ptid;
4036 discard_all_inferiors ();
4037
4038 trace_reset_local_state ();
4039
4040 delete this;
4041 }
4042
4043 remote_target::~remote_target ()
4044 {
4045 struct remote_state *rs = get_remote_state ();
4046
4047 /* Check for NULL because we may get here with a partially
4048 constructed target/connection. */
4049 if (rs->remote_desc == nullptr)
4050 return;
4051
4052 serial_close (rs->remote_desc);
4053
4054 /* We are destroying the remote target, so we should discard
4055 everything of this target. */
4056 discard_pending_stop_replies_in_queue ();
4057
4058 if (rs->remote_async_inferior_event_token)
4059 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4060
4061 remote_notif_state_xfree (rs->notif_state);
4062 }
4063
4064 /* Query the remote side for the text, data and bss offsets. */
4065
4066 void
4067 remote_target::get_offsets ()
4068 {
4069 struct remote_state *rs = get_remote_state ();
4070 char *buf;
4071 char *ptr;
4072 int lose, num_segments = 0, do_sections, do_segments;
4073 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4074 struct section_offsets *offs;
4075 struct symfile_segment_data *data;
4076
4077 if (symfile_objfile == NULL)
4078 return;
4079
4080 putpkt ("qOffsets");
4081 getpkt (&rs->buf, 0);
4082 buf = rs->buf.data ();
4083
4084 if (buf[0] == '\000')
4085 return; /* Return silently. Stub doesn't support
4086 this command. */
4087 if (buf[0] == 'E')
4088 {
4089 warning (_("Remote failure reply: %s"), buf);
4090 return;
4091 }
4092
4093 /* Pick up each field in turn. This used to be done with scanf, but
4094 scanf will make trouble if CORE_ADDR size doesn't match
4095 conversion directives correctly. The following code will work
4096 with any size of CORE_ADDR. */
4097 text_addr = data_addr = bss_addr = 0;
4098 ptr = buf;
4099 lose = 0;
4100
4101 if (startswith (ptr, "Text="))
4102 {
4103 ptr += 5;
4104 /* Don't use strtol, could lose on big values. */
4105 while (*ptr && *ptr != ';')
4106 text_addr = (text_addr << 4) + fromhex (*ptr++);
4107
4108 if (startswith (ptr, ";Data="))
4109 {
4110 ptr += 6;
4111 while (*ptr && *ptr != ';')
4112 data_addr = (data_addr << 4) + fromhex (*ptr++);
4113 }
4114 else
4115 lose = 1;
4116
4117 if (!lose && startswith (ptr, ";Bss="))
4118 {
4119 ptr += 5;
4120 while (*ptr && *ptr != ';')
4121 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4122
4123 if (bss_addr != data_addr)
4124 warning (_("Target reported unsupported offsets: %s"), buf);
4125 }
4126 else
4127 lose = 1;
4128 }
4129 else if (startswith (ptr, "TextSeg="))
4130 {
4131 ptr += 8;
4132 /* Don't use strtol, could lose on big values. */
4133 while (*ptr && *ptr != ';')
4134 text_addr = (text_addr << 4) + fromhex (*ptr++);
4135 num_segments = 1;
4136
4137 if (startswith (ptr, ";DataSeg="))
4138 {
4139 ptr += 9;
4140 while (*ptr && *ptr != ';')
4141 data_addr = (data_addr << 4) + fromhex (*ptr++);
4142 num_segments++;
4143 }
4144 }
4145 else
4146 lose = 1;
4147
4148 if (lose)
4149 error (_("Malformed response to offset query, %s"), buf);
4150 else if (*ptr != '\0')
4151 warning (_("Target reported unsupported offsets: %s"), buf);
4152
4153 offs = ((struct section_offsets *)
4154 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4155 memcpy (offs, symfile_objfile->section_offsets,
4156 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4157
4158 data = get_symfile_segment_data (symfile_objfile->obfd);
4159 do_segments = (data != NULL);
4160 do_sections = num_segments == 0;
4161
4162 if (num_segments > 0)
4163 {
4164 segments[0] = text_addr;
4165 segments[1] = data_addr;
4166 }
4167 /* If we have two segments, we can still try to relocate everything
4168 by assuming that the .text and .data offsets apply to the whole
4169 text and data segments. Convert the offsets given in the packet
4170 to base addresses for symfile_map_offsets_to_segments. */
4171 else if (data && data->num_segments == 2)
4172 {
4173 segments[0] = data->segment_bases[0] + text_addr;
4174 segments[1] = data->segment_bases[1] + data_addr;
4175 num_segments = 2;
4176 }
4177 /* If the object file has only one segment, assume that it is text
4178 rather than data; main programs with no writable data are rare,
4179 but programs with no code are useless. Of course the code might
4180 have ended up in the data segment... to detect that we would need
4181 the permissions here. */
4182 else if (data && data->num_segments == 1)
4183 {
4184 segments[0] = data->segment_bases[0] + text_addr;
4185 num_segments = 1;
4186 }
4187 /* There's no way to relocate by segment. */
4188 else
4189 do_segments = 0;
4190
4191 if (do_segments)
4192 {
4193 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4194 offs, num_segments, segments);
4195
4196 if (ret == 0 && !do_sections)
4197 error (_("Can not handle qOffsets TextSeg "
4198 "response with this symbol file"));
4199
4200 if (ret > 0)
4201 do_sections = 0;
4202 }
4203
4204 if (data)
4205 free_symfile_segment_data (data);
4206
4207 if (do_sections)
4208 {
4209 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4210
4211 /* This is a temporary kludge to force data and bss to use the
4212 same offsets because that's what nlmconv does now. The real
4213 solution requires changes to the stub and remote.c that I
4214 don't have time to do right now. */
4215
4216 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4217 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4218 }
4219
4220 objfile_relocate (symfile_objfile, offs);
4221 }
4222
4223 /* Send interrupt_sequence to remote target. */
4224
4225 void
4226 remote_target::send_interrupt_sequence ()
4227 {
4228 struct remote_state *rs = get_remote_state ();
4229
4230 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4231 remote_serial_write ("\x03", 1);
4232 else if (interrupt_sequence_mode == interrupt_sequence_break)
4233 serial_send_break (rs->remote_desc);
4234 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4235 {
4236 serial_send_break (rs->remote_desc);
4237 remote_serial_write ("g", 1);
4238 }
4239 else
4240 internal_error (__FILE__, __LINE__,
4241 _("Invalid value for interrupt_sequence_mode: %s."),
4242 interrupt_sequence_mode);
4243 }
4244
4245
4246 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4247 and extract the PTID. Returns NULL_PTID if not found. */
4248
4249 static ptid_t
4250 stop_reply_extract_thread (char *stop_reply)
4251 {
4252 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4253 {
4254 const char *p;
4255
4256 /* Txx r:val ; r:val (...) */
4257 p = &stop_reply[3];
4258
4259 /* Look for "register" named "thread". */
4260 while (*p != '\0')
4261 {
4262 const char *p1;
4263
4264 p1 = strchr (p, ':');
4265 if (p1 == NULL)
4266 return null_ptid;
4267
4268 if (strncmp (p, "thread", p1 - p) == 0)
4269 return read_ptid (++p1, &p);
4270
4271 p1 = strchr (p, ';');
4272 if (p1 == NULL)
4273 return null_ptid;
4274 p1++;
4275
4276 p = p1;
4277 }
4278 }
4279
4280 return null_ptid;
4281 }
4282
4283 /* Determine the remote side's current thread. If we have a stop
4284 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4285 "thread" register we can extract the current thread from. If not,
4286 ask the remote which is the current thread with qC. The former
4287 method avoids a roundtrip. */
4288
4289 ptid_t
4290 remote_target::get_current_thread (char *wait_status)
4291 {
4292 ptid_t ptid = null_ptid;
4293
4294 /* Note we don't use remote_parse_stop_reply as that makes use of
4295 the target architecture, which we haven't yet fully determined at
4296 this point. */
4297 if (wait_status != NULL)
4298 ptid = stop_reply_extract_thread (wait_status);
4299 if (ptid == null_ptid)
4300 ptid = remote_current_thread (inferior_ptid);
4301
4302 return ptid;
4303 }
4304
4305 /* Query the remote target for which is the current thread/process,
4306 add it to our tables, and update INFERIOR_PTID. The caller is
4307 responsible for setting the state such that the remote end is ready
4308 to return the current thread.
4309
4310 This function is called after handling the '?' or 'vRun' packets,
4311 whose response is a stop reply from which we can also try
4312 extracting the thread. If the target doesn't support the explicit
4313 qC query, we infer the current thread from that stop reply, passed
4314 in in WAIT_STATUS, which may be NULL. */
4315
4316 void
4317 remote_target::add_current_inferior_and_thread (char *wait_status)
4318 {
4319 struct remote_state *rs = get_remote_state ();
4320 int fake_pid_p = 0;
4321
4322 inferior_ptid = null_ptid;
4323
4324 /* Now, if we have thread information, update inferior_ptid. */
4325 ptid_t curr_ptid = get_current_thread (wait_status);
4326
4327 if (curr_ptid != null_ptid)
4328 {
4329 if (!remote_multi_process_p (rs))
4330 fake_pid_p = 1;
4331 }
4332 else
4333 {
4334 /* Without this, some commands which require an active target
4335 (such as kill) won't work. This variable serves (at least)
4336 double duty as both the pid of the target process (if it has
4337 such), and as a flag indicating that a target is active. */
4338 curr_ptid = magic_null_ptid;
4339 fake_pid_p = 1;
4340 }
4341
4342 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4343
4344 /* Add the main thread and switch to it. Don't try reading
4345 registers yet, since we haven't fetched the target description
4346 yet. */
4347 thread_info *tp = add_thread_silent (curr_ptid);
4348 switch_to_thread_no_regs (tp);
4349 }
4350
4351 /* Print info about a thread that was found already stopped on
4352 connection. */
4353
4354 static void
4355 print_one_stopped_thread (struct thread_info *thread)
4356 {
4357 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4358
4359 switch_to_thread (thread);
4360 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4361 set_current_sal_from_frame (get_current_frame ());
4362
4363 thread->suspend.waitstatus_pending_p = 0;
4364
4365 if (ws->kind == TARGET_WAITKIND_STOPPED)
4366 {
4367 enum gdb_signal sig = ws->value.sig;
4368
4369 if (signal_print_state (sig))
4370 gdb::observers::signal_received.notify (sig);
4371 }
4372 gdb::observers::normal_stop.notify (NULL, 1);
4373 }
4374
4375 /* Process all initial stop replies the remote side sent in response
4376 to the ? packet. These indicate threads that were already stopped
4377 on initial connection. We mark these threads as stopped and print
4378 their current frame before giving the user the prompt. */
4379
4380 void
4381 remote_target::process_initial_stop_replies (int from_tty)
4382 {
4383 int pending_stop_replies = stop_reply_queue_length ();
4384 struct thread_info *selected = NULL;
4385 struct thread_info *lowest_stopped = NULL;
4386 struct thread_info *first = NULL;
4387
4388 /* Consume the initial pending events. */
4389 while (pending_stop_replies-- > 0)
4390 {
4391 ptid_t waiton_ptid = minus_one_ptid;
4392 ptid_t event_ptid;
4393 struct target_waitstatus ws;
4394 int ignore_event = 0;
4395
4396 memset (&ws, 0, sizeof (ws));
4397 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4398 if (remote_debug)
4399 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4400
4401 switch (ws.kind)
4402 {
4403 case TARGET_WAITKIND_IGNORE:
4404 case TARGET_WAITKIND_NO_RESUMED:
4405 case TARGET_WAITKIND_SIGNALLED:
4406 case TARGET_WAITKIND_EXITED:
4407 /* We shouldn't see these, but if we do, just ignore. */
4408 if (remote_debug)
4409 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4410 ignore_event = 1;
4411 break;
4412
4413 case TARGET_WAITKIND_EXECD:
4414 xfree (ws.value.execd_pathname);
4415 break;
4416 default:
4417 break;
4418 }
4419
4420 if (ignore_event)
4421 continue;
4422
4423 struct thread_info *evthread = find_thread_ptid (event_ptid);
4424
4425 if (ws.kind == TARGET_WAITKIND_STOPPED)
4426 {
4427 enum gdb_signal sig = ws.value.sig;
4428
4429 /* Stubs traditionally report SIGTRAP as initial signal,
4430 instead of signal 0. Suppress it. */
4431 if (sig == GDB_SIGNAL_TRAP)
4432 sig = GDB_SIGNAL_0;
4433 evthread->suspend.stop_signal = sig;
4434 ws.value.sig = sig;
4435 }
4436
4437 evthread->suspend.waitstatus = ws;
4438
4439 if (ws.kind != TARGET_WAITKIND_STOPPED
4440 || ws.value.sig != GDB_SIGNAL_0)
4441 evthread->suspend.waitstatus_pending_p = 1;
4442
4443 set_executing (event_ptid, 0);
4444 set_running (event_ptid, 0);
4445 get_remote_thread_info (evthread)->vcont_resumed = 0;
4446 }
4447
4448 /* "Notice" the new inferiors before anything related to
4449 registers/memory. */
4450 for (inferior *inf : all_non_exited_inferiors ())
4451 {
4452 inf->needs_setup = 1;
4453
4454 if (non_stop)
4455 {
4456 thread_info *thread = any_live_thread_of_inferior (inf);
4457 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4458 from_tty);
4459 }
4460 }
4461
4462 /* If all-stop on top of non-stop, pause all threads. Note this
4463 records the threads' stop pc, so must be done after "noticing"
4464 the inferiors. */
4465 if (!non_stop)
4466 {
4467 stop_all_threads ();
4468
4469 /* If all threads of an inferior were already stopped, we
4470 haven't setup the inferior yet. */
4471 for (inferior *inf : all_non_exited_inferiors ())
4472 {
4473 if (inf->needs_setup)
4474 {
4475 thread_info *thread = any_live_thread_of_inferior (inf);
4476 switch_to_thread_no_regs (thread);
4477 setup_inferior (0);
4478 }
4479 }
4480 }
4481
4482 /* Now go over all threads that are stopped, and print their current
4483 frame. If all-stop, then if there's a signalled thread, pick
4484 that as current. */
4485 for (thread_info *thread : all_non_exited_threads ())
4486 {
4487 if (first == NULL)
4488 first = thread;
4489
4490 if (!non_stop)
4491 thread->set_running (false);
4492 else if (thread->state != THREAD_STOPPED)
4493 continue;
4494
4495 if (selected == NULL
4496 && thread->suspend.waitstatus_pending_p)
4497 selected = thread;
4498
4499 if (lowest_stopped == NULL
4500 || thread->inf->num < lowest_stopped->inf->num
4501 || thread->per_inf_num < lowest_stopped->per_inf_num)
4502 lowest_stopped = thread;
4503
4504 if (non_stop)
4505 print_one_stopped_thread (thread);
4506 }
4507
4508 /* In all-stop, we only print the status of one thread, and leave
4509 others with their status pending. */
4510 if (!non_stop)
4511 {
4512 thread_info *thread = selected;
4513 if (thread == NULL)
4514 thread = lowest_stopped;
4515 if (thread == NULL)
4516 thread = first;
4517
4518 print_one_stopped_thread (thread);
4519 }
4520
4521 /* For "info program". */
4522 thread_info *thread = inferior_thread ();
4523 if (thread->state == THREAD_STOPPED)
4524 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4525 }
4526
4527 /* Start the remote connection and sync state. */
4528
4529 void
4530 remote_target::start_remote (int from_tty, int extended_p)
4531 {
4532 struct remote_state *rs = get_remote_state ();
4533 struct packet_config *noack_config;
4534 char *wait_status = NULL;
4535
4536 /* Signal other parts that we're going through the initial setup,
4537 and so things may not be stable yet. E.g., we don't try to
4538 install tracepoints until we've relocated symbols. Also, a
4539 Ctrl-C before we're connected and synced up can't interrupt the
4540 target. Instead, it offers to drop the (potentially wedged)
4541 connection. */
4542 rs->starting_up = 1;
4543
4544 QUIT;
4545
4546 if (interrupt_on_connect)
4547 send_interrupt_sequence ();
4548
4549 /* Ack any packet which the remote side has already sent. */
4550 remote_serial_write ("+", 1);
4551
4552 /* The first packet we send to the target is the optional "supported
4553 packets" request. If the target can answer this, it will tell us
4554 which later probes to skip. */
4555 remote_query_supported ();
4556
4557 /* If the stub wants to get a QAllow, compose one and send it. */
4558 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4559 set_permissions ();
4560
4561 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4562 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4563 as a reply to known packet. For packet "vFile:setfs:" it is an
4564 invalid reply and GDB would return error in
4565 remote_hostio_set_filesystem, making remote files access impossible.
4566 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4567 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4568 {
4569 const char v_mustreplyempty[] = "vMustReplyEmpty";
4570
4571 putpkt (v_mustreplyempty);
4572 getpkt (&rs->buf, 0);
4573 if (strcmp (rs->buf.data (), "OK") == 0)
4574 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4575 else if (strcmp (rs->buf.data (), "") != 0)
4576 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4577 rs->buf.data ());
4578 }
4579
4580 /* Next, we possibly activate noack mode.
4581
4582 If the QStartNoAckMode packet configuration is set to AUTO,
4583 enable noack mode if the stub reported a wish for it with
4584 qSupported.
4585
4586 If set to TRUE, then enable noack mode even if the stub didn't
4587 report it in qSupported. If the stub doesn't reply OK, the
4588 session ends with an error.
4589
4590 If FALSE, then don't activate noack mode, regardless of what the
4591 stub claimed should be the default with qSupported. */
4592
4593 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4594 if (packet_config_support (noack_config) != PACKET_DISABLE)
4595 {
4596 putpkt ("QStartNoAckMode");
4597 getpkt (&rs->buf, 0);
4598 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4599 rs->noack_mode = 1;
4600 }
4601
4602 if (extended_p)
4603 {
4604 /* Tell the remote that we are using the extended protocol. */
4605 putpkt ("!");
4606 getpkt (&rs->buf, 0);
4607 }
4608
4609 /* Let the target know which signals it is allowed to pass down to
4610 the program. */
4611 update_signals_program_target ();
4612
4613 /* Next, if the target can specify a description, read it. We do
4614 this before anything involving memory or registers. */
4615 target_find_description ();
4616
4617 /* Next, now that we know something about the target, update the
4618 address spaces in the program spaces. */
4619 update_address_spaces ();
4620
4621 /* On OSs where the list of libraries is global to all
4622 processes, we fetch them early. */
4623 if (gdbarch_has_global_solist (target_gdbarch ()))
4624 solib_add (NULL, from_tty, auto_solib_add);
4625
4626 if (target_is_non_stop_p ())
4627 {
4628 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4629 error (_("Non-stop mode requested, but remote "
4630 "does not support non-stop"));
4631
4632 putpkt ("QNonStop:1");
4633 getpkt (&rs->buf, 0);
4634
4635 if (strcmp (rs->buf.data (), "OK") != 0)
4636 error (_("Remote refused setting non-stop mode with: %s"),
4637 rs->buf.data ());
4638
4639 /* Find about threads and processes the stub is already
4640 controlling. We default to adding them in the running state.
4641 The '?' query below will then tell us about which threads are
4642 stopped. */
4643 this->update_thread_list ();
4644 }
4645 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4646 {
4647 /* Don't assume that the stub can operate in all-stop mode.
4648 Request it explicitly. */
4649 putpkt ("QNonStop:0");
4650 getpkt (&rs->buf, 0);
4651
4652 if (strcmp (rs->buf.data (), "OK") != 0)
4653 error (_("Remote refused setting all-stop mode with: %s"),
4654 rs->buf.data ());
4655 }
4656
4657 /* Upload TSVs regardless of whether the target is running or not. The
4658 remote stub, such as GDBserver, may have some predefined or builtin
4659 TSVs, even if the target is not running. */
4660 if (get_trace_status (current_trace_status ()) != -1)
4661 {
4662 struct uploaded_tsv *uploaded_tsvs = NULL;
4663
4664 upload_trace_state_variables (&uploaded_tsvs);
4665 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4666 }
4667
4668 /* Check whether the target is running now. */
4669 putpkt ("?");
4670 getpkt (&rs->buf, 0);
4671
4672 if (!target_is_non_stop_p ())
4673 {
4674 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4675 {
4676 if (!extended_p)
4677 error (_("The target is not running (try extended-remote?)"));
4678
4679 /* We're connected, but not running. Drop out before we
4680 call start_remote. */
4681 rs->starting_up = 0;
4682 return;
4683 }
4684 else
4685 {
4686 /* Save the reply for later. */
4687 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4688 strcpy (wait_status, rs->buf.data ());
4689 }
4690
4691 /* Fetch thread list. */
4692 target_update_thread_list ();
4693
4694 /* Let the stub know that we want it to return the thread. */
4695 set_continue_thread (minus_one_ptid);
4696
4697 if (thread_count () == 0)
4698 {
4699 /* Target has no concept of threads at all. GDB treats
4700 non-threaded target as single-threaded; add a main
4701 thread. */
4702 add_current_inferior_and_thread (wait_status);
4703 }
4704 else
4705 {
4706 /* We have thread information; select the thread the target
4707 says should be current. If we're reconnecting to a
4708 multi-threaded program, this will ideally be the thread
4709 that last reported an event before GDB disconnected. */
4710 inferior_ptid = get_current_thread (wait_status);
4711 if (inferior_ptid == null_ptid)
4712 {
4713 /* Odd... The target was able to list threads, but not
4714 tell us which thread was current (no "thread"
4715 register in T stop reply?). Just pick the first
4716 thread in the thread list then. */
4717
4718 if (remote_debug)
4719 fprintf_unfiltered (gdb_stdlog,
4720 "warning: couldn't determine remote "
4721 "current thread; picking first in list.\n");
4722
4723 inferior_ptid = inferior_list->thread_list->ptid;
4724 }
4725 }
4726
4727 /* init_wait_for_inferior should be called before get_offsets in order
4728 to manage `inserted' flag in bp loc in a correct state.
4729 breakpoint_init_inferior, called from init_wait_for_inferior, set
4730 `inserted' flag to 0, while before breakpoint_re_set, called from
4731 start_remote, set `inserted' flag to 1. In the initialization of
4732 inferior, breakpoint_init_inferior should be called first, and then
4733 breakpoint_re_set can be called. If this order is broken, state of
4734 `inserted' flag is wrong, and cause some problems on breakpoint
4735 manipulation. */
4736 init_wait_for_inferior ();
4737
4738 get_offsets (); /* Get text, data & bss offsets. */
4739
4740 /* If we could not find a description using qXfer, and we know
4741 how to do it some other way, try again. This is not
4742 supported for non-stop; it could be, but it is tricky if
4743 there are no stopped threads when we connect. */
4744 if (remote_read_description_p (this)
4745 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4746 {
4747 target_clear_description ();
4748 target_find_description ();
4749 }
4750
4751 /* Use the previously fetched status. */
4752 gdb_assert (wait_status != NULL);
4753 strcpy (rs->buf.data (), wait_status);
4754 rs->cached_wait_status = 1;
4755
4756 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4757 }
4758 else
4759 {
4760 /* Clear WFI global state. Do this before finding about new
4761 threads and inferiors, and setting the current inferior.
4762 Otherwise we would clear the proceed status of the current
4763 inferior when we want its stop_soon state to be preserved
4764 (see notice_new_inferior). */
4765 init_wait_for_inferior ();
4766
4767 /* In non-stop, we will either get an "OK", meaning that there
4768 are no stopped threads at this time; or, a regular stop
4769 reply. In the latter case, there may be more than one thread
4770 stopped --- we pull them all out using the vStopped
4771 mechanism. */
4772 if (strcmp (rs->buf.data (), "OK") != 0)
4773 {
4774 struct notif_client *notif = &notif_client_stop;
4775
4776 /* remote_notif_get_pending_replies acks this one, and gets
4777 the rest out. */
4778 rs->notif_state->pending_event[notif_client_stop.id]
4779 = remote_notif_parse (this, notif, rs->buf.data ());
4780 remote_notif_get_pending_events (notif);
4781 }
4782
4783 if (thread_count () == 0)
4784 {
4785 if (!extended_p)
4786 error (_("The target is not running (try extended-remote?)"));
4787
4788 /* We're connected, but not running. Drop out before we
4789 call start_remote. */
4790 rs->starting_up = 0;
4791 return;
4792 }
4793
4794 /* In non-stop mode, any cached wait status will be stored in
4795 the stop reply queue. */
4796 gdb_assert (wait_status == NULL);
4797
4798 /* Report all signals during attach/startup. */
4799 pass_signals ({});
4800
4801 /* If there are already stopped threads, mark them stopped and
4802 report their stops before giving the prompt to the user. */
4803 process_initial_stop_replies (from_tty);
4804
4805 if (target_can_async_p ())
4806 target_async (1);
4807 }
4808
4809 /* If we connected to a live target, do some additional setup. */
4810 if (target_has_execution)
4811 {
4812 if (symfile_objfile) /* No use without a symbol-file. */
4813 remote_check_symbols ();
4814 }
4815
4816 /* Possibly the target has been engaged in a trace run started
4817 previously; find out where things are at. */
4818 if (get_trace_status (current_trace_status ()) != -1)
4819 {
4820 struct uploaded_tp *uploaded_tps = NULL;
4821
4822 if (current_trace_status ()->running)
4823 printf_filtered (_("Trace is already running on the target.\n"));
4824
4825 upload_tracepoints (&uploaded_tps);
4826
4827 merge_uploaded_tracepoints (&uploaded_tps);
4828 }
4829
4830 /* Possibly the target has been engaged in a btrace record started
4831 previously; find out where things are at. */
4832 remote_btrace_maybe_reopen ();
4833
4834 /* The thread and inferior lists are now synchronized with the
4835 target, our symbols have been relocated, and we're merged the
4836 target's tracepoints with ours. We're done with basic start
4837 up. */
4838 rs->starting_up = 0;
4839
4840 /* Maybe breakpoints are global and need to be inserted now. */
4841 if (breakpoints_should_be_inserted_now ())
4842 insert_breakpoints ();
4843 }
4844
4845 /* Open a connection to a remote debugger.
4846 NAME is the filename used for communication. */
4847
4848 void
4849 remote_target::open (const char *name, int from_tty)
4850 {
4851 open_1 (name, from_tty, 0);
4852 }
4853
4854 /* Open a connection to a remote debugger using the extended
4855 remote gdb protocol. NAME is the filename used for communication. */
4856
4857 void
4858 extended_remote_target::open (const char *name, int from_tty)
4859 {
4860 open_1 (name, from_tty, 1 /*extended_p */);
4861 }
4862
4863 /* Reset all packets back to "unknown support". Called when opening a
4864 new connection to a remote target. */
4865
4866 static void
4867 reset_all_packet_configs_support (void)
4868 {
4869 int i;
4870
4871 for (i = 0; i < PACKET_MAX; i++)
4872 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4873 }
4874
4875 /* Initialize all packet configs. */
4876
4877 static void
4878 init_all_packet_configs (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 {
4884 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4885 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4886 }
4887 }
4888
4889 /* Symbol look-up. */
4890
4891 void
4892 remote_target::remote_check_symbols ()
4893 {
4894 char *tmp;
4895 int end;
4896
4897 /* The remote side has no concept of inferiors that aren't running
4898 yet, it only knows about running processes. If we're connected
4899 but our current inferior is not running, we should not invite the
4900 remote target to request symbol lookups related to its
4901 (unrelated) current process. */
4902 if (!target_has_execution)
4903 return;
4904
4905 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4906 return;
4907
4908 /* Make sure the remote is pointing at the right process. Note
4909 there's no way to select "no process". */
4910 set_general_process ();
4911
4912 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4913 because we need both at the same time. */
4914 gdb::char_vector msg (get_remote_packet_size ());
4915 gdb::char_vector reply (get_remote_packet_size ());
4916
4917 /* Invite target to request symbol lookups. */
4918
4919 putpkt ("qSymbol::");
4920 getpkt (&reply, 0);
4921 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4922
4923 while (startswith (reply.data (), "qSymbol:"))
4924 {
4925 struct bound_minimal_symbol sym;
4926
4927 tmp = &reply[8];
4928 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4929 strlen (tmp) / 2);
4930 msg[end] = '\0';
4931 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4932 if (sym.minsym == NULL)
4933 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4934 &reply[8]);
4935 else
4936 {
4937 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4938 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4939
4940 /* If this is a function address, return the start of code
4941 instead of any data function descriptor. */
4942 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4943 sym_addr,
4944 current_top_target ());
4945
4946 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4947 phex_nz (sym_addr, addr_size), &reply[8]);
4948 }
4949
4950 putpkt (msg.data ());
4951 getpkt (&reply, 0);
4952 }
4953 }
4954
4955 static struct serial *
4956 remote_serial_open (const char *name)
4957 {
4958 static int udp_warning = 0;
4959
4960 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4961 of in ser-tcp.c, because it is the remote protocol assuming that the
4962 serial connection is reliable and not the serial connection promising
4963 to be. */
4964 if (!udp_warning && startswith (name, "udp:"))
4965 {
4966 warning (_("The remote protocol may be unreliable over UDP.\n"
4967 "Some events may be lost, rendering further debugging "
4968 "impossible."));
4969 udp_warning = 1;
4970 }
4971
4972 return serial_open (name);
4973 }
4974
4975 /* Inform the target of our permission settings. The permission flags
4976 work without this, but if the target knows the settings, it can do
4977 a couple things. First, it can add its own check, to catch cases
4978 that somehow manage to get by the permissions checks in target
4979 methods. Second, if the target is wired to disallow particular
4980 settings (for instance, a system in the field that is not set up to
4981 be able to stop at a breakpoint), it can object to any unavailable
4982 permissions. */
4983
4984 void
4985 remote_target::set_permissions ()
4986 {
4987 struct remote_state *rs = get_remote_state ();
4988
4989 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4990 "WriteReg:%x;WriteMem:%x;"
4991 "InsertBreak:%x;InsertTrace:%x;"
4992 "InsertFastTrace:%x;Stop:%x",
4993 may_write_registers, may_write_memory,
4994 may_insert_breakpoints, may_insert_tracepoints,
4995 may_insert_fast_tracepoints, may_stop);
4996 putpkt (rs->buf);
4997 getpkt (&rs->buf, 0);
4998
4999 /* If the target didn't like the packet, warn the user. Do not try
5000 to undo the user's settings, that would just be maddening. */
5001 if (strcmp (rs->buf.data (), "OK") != 0)
5002 warning (_("Remote refused setting permissions with: %s"),
5003 rs->buf.data ());
5004 }
5005
5006 /* This type describes each known response to the qSupported
5007 packet. */
5008 struct protocol_feature
5009 {
5010 /* The name of this protocol feature. */
5011 const char *name;
5012
5013 /* The default for this protocol feature. */
5014 enum packet_support default_support;
5015
5016 /* The function to call when this feature is reported, or after
5017 qSupported processing if the feature is not supported.
5018 The first argument points to this structure. The second
5019 argument indicates whether the packet requested support be
5020 enabled, disabled, or probed (or the default, if this function
5021 is being called at the end of processing and this feature was
5022 not reported). The third argument may be NULL; if not NULL, it
5023 is a NUL-terminated string taken from the packet following
5024 this feature's name and an equals sign. */
5025 void (*func) (remote_target *remote, const struct protocol_feature *,
5026 enum packet_support, const char *);
5027
5028 /* The corresponding packet for this feature. Only used if
5029 FUNC is remote_supported_packet. */
5030 int packet;
5031 };
5032
5033 static void
5034 remote_supported_packet (remote_target *remote,
5035 const struct protocol_feature *feature,
5036 enum packet_support support,
5037 const char *argument)
5038 {
5039 if (argument)
5040 {
5041 warning (_("Remote qSupported response supplied an unexpected value for"
5042 " \"%s\"."), feature->name);
5043 return;
5044 }
5045
5046 remote_protocol_packets[feature->packet].support = support;
5047 }
5048
5049 void
5050 remote_target::remote_packet_size (const protocol_feature *feature,
5051 enum packet_support support, const char *value)
5052 {
5053 struct remote_state *rs = get_remote_state ();
5054
5055 int packet_size;
5056 char *value_end;
5057
5058 if (support != PACKET_ENABLE)
5059 return;
5060
5061 if (value == NULL || *value == '\0')
5062 {
5063 warning (_("Remote target reported \"%s\" without a size."),
5064 feature->name);
5065 return;
5066 }
5067
5068 errno = 0;
5069 packet_size = strtol (value, &value_end, 16);
5070 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5071 {
5072 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5073 feature->name, value);
5074 return;
5075 }
5076
5077 /* Record the new maximum packet size. */
5078 rs->explicit_packet_size = packet_size;
5079 }
5080
5081 void
5082 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5083 enum packet_support support, const char *value)
5084 {
5085 remote->remote_packet_size (feature, support, value);
5086 }
5087
5088 static const struct protocol_feature remote_protocol_features[] = {
5089 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5090 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_auxv },
5092 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_exec_file },
5094 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_features },
5096 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_libraries },
5098 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_libraries_svr4 },
5100 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5101 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5102 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_memory_map },
5104 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_spu_read },
5106 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_spu_write },
5108 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_qXfer_osdata },
5110 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_qXfer_threads },
5112 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_qXfer_traceframe_info },
5114 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QPassSignals },
5116 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QCatchSyscalls },
5118 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QProgramSignals },
5120 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QSetWorkingDir },
5122 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QStartupWithShell },
5124 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_QEnvironmentHexEncoded },
5126 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_QEnvironmentReset },
5128 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_QEnvironmentUnset },
5130 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_QStartNoAckMode },
5132 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_multiprocess_feature },
5134 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5135 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_siginfo_read },
5137 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_qXfer_siginfo_write },
5139 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_ConditionalTracepoints },
5141 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_ConditionalBreakpoints },
5143 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_BreakpointCommands },
5145 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_FastTracepoints },
5147 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_StaticTracepoints },
5149 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_InstallInTrace},
5151 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_DisconnectedTracing_feature },
5153 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_bc },
5155 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_bs },
5157 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_TracepointSource },
5159 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QAllow },
5161 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_EnableDisableTracepoints_feature },
5163 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_qXfer_fdpic },
5165 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_qXfer_uib },
5167 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_QDisableRandomization },
5169 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5170 { "QTBuffer:size", PACKET_DISABLE,
5171 remote_supported_packet, PACKET_QTBuffer_size},
5172 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5173 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5174 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5175 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5176 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_qXfer_btrace },
5178 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_btrace_conf },
5180 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_Qbtrace_conf_bts_size },
5182 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5183 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5184 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_fork_event_feature },
5186 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_vfork_event_feature },
5188 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_exec_event_feature },
5190 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_Qbtrace_conf_pt_size },
5192 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5193 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5194 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5195 };
5196
5197 static char *remote_support_xml;
5198
5199 /* Register string appended to "xmlRegisters=" in qSupported query. */
5200
5201 void
5202 register_remote_support_xml (const char *xml)
5203 {
5204 #if defined(HAVE_LIBEXPAT)
5205 if (remote_support_xml == NULL)
5206 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5207 else
5208 {
5209 char *copy = xstrdup (remote_support_xml + 13);
5210 char *p = strtok (copy, ",");
5211
5212 do
5213 {
5214 if (strcmp (p, xml) == 0)
5215 {
5216 /* already there */
5217 xfree (copy);
5218 return;
5219 }
5220 }
5221 while ((p = strtok (NULL, ",")) != NULL);
5222 xfree (copy);
5223
5224 remote_support_xml = reconcat (remote_support_xml,
5225 remote_support_xml, ",", xml,
5226 (char *) NULL);
5227 }
5228 #endif
5229 }
5230
5231 static void
5232 remote_query_supported_append (std::string *msg, const char *append)
5233 {
5234 if (!msg->empty ())
5235 msg->append (";");
5236 msg->append (append);
5237 }
5238
5239 void
5240 remote_target::remote_query_supported ()
5241 {
5242 struct remote_state *rs = get_remote_state ();
5243 char *next;
5244 int i;
5245 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5246
5247 /* The packet support flags are handled differently for this packet
5248 than for most others. We treat an error, a disabled packet, and
5249 an empty response identically: any features which must be reported
5250 to be used will be automatically disabled. An empty buffer
5251 accomplishes this, since that is also the representation for a list
5252 containing no features. */
5253
5254 rs->buf[0] = 0;
5255 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5256 {
5257 std::string q;
5258
5259 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5260 remote_query_supported_append (&q, "multiprocess+");
5261
5262 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5263 remote_query_supported_append (&q, "swbreak+");
5264 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "hwbreak+");
5266
5267 remote_query_supported_append (&q, "qRelocInsn+");
5268
5269 if (packet_set_cmd_state (PACKET_fork_event_feature)
5270 != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "fork-events+");
5272 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5273 != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "vfork-events+");
5275 if (packet_set_cmd_state (PACKET_exec_event_feature)
5276 != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "exec-events+");
5278
5279 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "vContSupported+");
5281
5282 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5283 remote_query_supported_append (&q, "QThreadEvents+");
5284
5285 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5286 remote_query_supported_append (&q, "no-resumed+");
5287
5288 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5289 the qSupported:xmlRegisters=i386 handling. */
5290 if (remote_support_xml != NULL
5291 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5292 remote_query_supported_append (&q, remote_support_xml);
5293
5294 q = "qSupported:" + q;
5295 putpkt (q.c_str ());
5296
5297 getpkt (&rs->buf, 0);
5298
5299 /* If an error occured, warn, but do not return - just reset the
5300 buffer to empty and go on to disable features. */
5301 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5302 == PACKET_ERROR)
5303 {
5304 warning (_("Remote failure reply: %s"), rs->buf.data ());
5305 rs->buf[0] = 0;
5306 }
5307 }
5308
5309 memset (seen, 0, sizeof (seen));
5310
5311 next = rs->buf.data ();
5312 while (*next)
5313 {
5314 enum packet_support is_supported;
5315 char *p, *end, *name_end, *value;
5316
5317 /* First separate out this item from the rest of the packet. If
5318 there's another item after this, we overwrite the separator
5319 (terminated strings are much easier to work with). */
5320 p = next;
5321 end = strchr (p, ';');
5322 if (end == NULL)
5323 {
5324 end = p + strlen (p);
5325 next = end;
5326 }
5327 else
5328 {
5329 *end = '\0';
5330 next = end + 1;
5331
5332 if (end == p)
5333 {
5334 warning (_("empty item in \"qSupported\" response"));
5335 continue;
5336 }
5337 }
5338
5339 name_end = strchr (p, '=');
5340 if (name_end)
5341 {
5342 /* This is a name=value entry. */
5343 is_supported = PACKET_ENABLE;
5344 value = name_end + 1;
5345 *name_end = '\0';
5346 }
5347 else
5348 {
5349 value = NULL;
5350 switch (end[-1])
5351 {
5352 case '+':
5353 is_supported = PACKET_ENABLE;
5354 break;
5355
5356 case '-':
5357 is_supported = PACKET_DISABLE;
5358 break;
5359
5360 case '?':
5361 is_supported = PACKET_SUPPORT_UNKNOWN;
5362 break;
5363
5364 default:
5365 warning (_("unrecognized item \"%s\" "
5366 "in \"qSupported\" response"), p);
5367 continue;
5368 }
5369 end[-1] = '\0';
5370 }
5371
5372 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5373 if (strcmp (remote_protocol_features[i].name, p) == 0)
5374 {
5375 const struct protocol_feature *feature;
5376
5377 seen[i] = 1;
5378 feature = &remote_protocol_features[i];
5379 feature->func (this, feature, is_supported, value);
5380 break;
5381 }
5382 }
5383
5384 /* If we increased the packet size, make sure to increase the global
5385 buffer size also. We delay this until after parsing the entire
5386 qSupported packet, because this is the same buffer we were
5387 parsing. */
5388 if (rs->buf.size () < rs->explicit_packet_size)
5389 rs->buf.resize (rs->explicit_packet_size);
5390
5391 /* Handle the defaults for unmentioned features. */
5392 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5393 if (!seen[i])
5394 {
5395 const struct protocol_feature *feature;
5396
5397 feature = &remote_protocol_features[i];
5398 feature->func (this, feature, feature->default_support, NULL);
5399 }
5400 }
5401
5402 /* Serial QUIT handler for the remote serial descriptor.
5403
5404 Defers handling a Ctrl-C until we're done with the current
5405 command/response packet sequence, unless:
5406
5407 - We're setting up the connection. Don't send a remote interrupt
5408 request, as we're not fully synced yet. Quit immediately
5409 instead.
5410
5411 - The target has been resumed in the foreground
5412 (target_terminal::is_ours is false) with a synchronous resume
5413 packet, and we're blocked waiting for the stop reply, thus a
5414 Ctrl-C should be immediately sent to the target.
5415
5416 - We get a second Ctrl-C while still within the same serial read or
5417 write. In that case the serial is seemingly wedged --- offer to
5418 quit/disconnect.
5419
5420 - We see a second Ctrl-C without target response, after having
5421 previously interrupted the target. In that case the target/stub
5422 is probably wedged --- offer to quit/disconnect.
5423 */
5424
5425 void
5426 remote_target::remote_serial_quit_handler ()
5427 {
5428 struct remote_state *rs = get_remote_state ();
5429
5430 if (check_quit_flag ())
5431 {
5432 /* If we're starting up, we're not fully synced yet. Quit
5433 immediately. */
5434 if (rs->starting_up)
5435 quit ();
5436 else if (rs->got_ctrlc_during_io)
5437 {
5438 if (query (_("The target is not responding to GDB commands.\n"
5439 "Stop debugging it? ")))
5440 remote_unpush_and_throw ();
5441 }
5442 /* If ^C has already been sent once, offer to disconnect. */
5443 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5444 interrupt_query ();
5445 /* All-stop protocol, and blocked waiting for stop reply. Send
5446 an interrupt request. */
5447 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5448 target_interrupt ();
5449 else
5450 rs->got_ctrlc_during_io = 1;
5451 }
5452 }
5453
5454 /* The remote_target that is current while the quit handler is
5455 overridden with remote_serial_quit_handler. */
5456 static remote_target *curr_quit_handler_target;
5457
5458 static void
5459 remote_serial_quit_handler ()
5460 {
5461 curr_quit_handler_target->remote_serial_quit_handler ();
5462 }
5463
5464 /* Remove any of the remote.c targets from target stack. Upper targets depend
5465 on it so remove them first. */
5466
5467 static void
5468 remote_unpush_target (void)
5469 {
5470 pop_all_targets_at_and_above (process_stratum);
5471 }
5472
5473 static void
5474 remote_unpush_and_throw (void)
5475 {
5476 remote_unpush_target ();
5477 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5478 }
5479
5480 void
5481 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5482 {
5483 remote_target *curr_remote = get_current_remote_target ();
5484
5485 if (name == 0)
5486 error (_("To open a remote debug connection, you need to specify what\n"
5487 "serial device is attached to the remote system\n"
5488 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5489
5490 /* If we're connected to a running target, target_preopen will kill it.
5491 Ask this question first, before target_preopen has a chance to kill
5492 anything. */
5493 if (curr_remote != NULL && !have_inferiors ())
5494 {
5495 if (from_tty
5496 && !query (_("Already connected to a remote target. Disconnect? ")))
5497 error (_("Still connected."));
5498 }
5499
5500 /* Here the possibly existing remote target gets unpushed. */
5501 target_preopen (from_tty);
5502
5503 remote_fileio_reset ();
5504 reopen_exec_file ();
5505 reread_symbols ();
5506
5507 remote_target *remote
5508 = (extended_p ? new extended_remote_target () : new remote_target ());
5509 target_ops_up target_holder (remote);
5510
5511 remote_state *rs = remote->get_remote_state ();
5512
5513 /* See FIXME above. */
5514 if (!target_async_permitted)
5515 rs->wait_forever_enabled_p = 1;
5516
5517 rs->remote_desc = remote_serial_open (name);
5518 if (!rs->remote_desc)
5519 perror_with_name (name);
5520
5521 if (baud_rate != -1)
5522 {
5523 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5524 {
5525 /* The requested speed could not be set. Error out to
5526 top level after closing remote_desc. Take care to
5527 set remote_desc to NULL to avoid closing remote_desc
5528 more than once. */
5529 serial_close (rs->remote_desc);
5530 rs->remote_desc = NULL;
5531 perror_with_name (name);
5532 }
5533 }
5534
5535 serial_setparity (rs->remote_desc, serial_parity);
5536 serial_raw (rs->remote_desc);
5537
5538 /* If there is something sitting in the buffer we might take it as a
5539 response to a command, which would be bad. */
5540 serial_flush_input (rs->remote_desc);
5541
5542 if (from_tty)
5543 {
5544 puts_filtered ("Remote debugging using ");
5545 puts_filtered (name);
5546 puts_filtered ("\n");
5547 }
5548
5549 /* Switch to using the remote target now. */
5550 push_target (remote);
5551 /* The target stack owns the target now. */
5552 target_holder.release ();
5553
5554 /* Register extra event sources in the event loop. */
5555 rs->remote_async_inferior_event_token
5556 = create_async_event_handler (remote_async_inferior_event_handler,
5557 remote);
5558 rs->notif_state = remote_notif_state_allocate (remote);
5559
5560 /* Reset the target state; these things will be queried either by
5561 remote_query_supported or as they are needed. */
5562 reset_all_packet_configs_support ();
5563 rs->cached_wait_status = 0;
5564 rs->explicit_packet_size = 0;
5565 rs->noack_mode = 0;
5566 rs->extended = extended_p;
5567 rs->waiting_for_stop_reply = 0;
5568 rs->ctrlc_pending_p = 0;
5569 rs->got_ctrlc_during_io = 0;
5570
5571 rs->general_thread = not_sent_ptid;
5572 rs->continue_thread = not_sent_ptid;
5573 rs->remote_traceframe_number = -1;
5574
5575 rs->last_resume_exec_dir = EXEC_FORWARD;
5576
5577 /* Probe for ability to use "ThreadInfo" query, as required. */
5578 rs->use_threadinfo_query = 1;
5579 rs->use_threadextra_query = 1;
5580
5581 rs->readahead_cache.invalidate ();
5582
5583 if (target_async_permitted)
5584 {
5585 /* FIXME: cagney/1999-09-23: During the initial connection it is
5586 assumed that the target is already ready and able to respond to
5587 requests. Unfortunately remote_start_remote() eventually calls
5588 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5589 around this. Eventually a mechanism that allows
5590 wait_for_inferior() to expect/get timeouts will be
5591 implemented. */
5592 rs->wait_forever_enabled_p = 0;
5593 }
5594
5595 /* First delete any symbols previously loaded from shared libraries. */
5596 no_shared_libraries (NULL, 0);
5597
5598 /* Start the remote connection. If error() or QUIT, discard this
5599 target (we'd otherwise be in an inconsistent state) and then
5600 propogate the error on up the exception chain. This ensures that
5601 the caller doesn't stumble along blindly assuming that the
5602 function succeeded. The CLI doesn't have this problem but other
5603 UI's, such as MI do.
5604
5605 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5606 this function should return an error indication letting the
5607 caller restore the previous state. Unfortunately the command
5608 ``target remote'' is directly wired to this function making that
5609 impossible. On a positive note, the CLI side of this problem has
5610 been fixed - the function set_cmd_context() makes it possible for
5611 all the ``target ....'' commands to share a common callback
5612 function. See cli-dump.c. */
5613 {
5614
5615 TRY
5616 {
5617 remote->start_remote (from_tty, extended_p);
5618 }
5619 CATCH (ex, RETURN_MASK_ALL)
5620 {
5621 /* Pop the partially set up target - unless something else did
5622 already before throwing the exception. */
5623 if (ex.error != TARGET_CLOSE_ERROR)
5624 remote_unpush_target ();
5625 throw_exception (ex);
5626 }
5627 END_CATCH
5628 }
5629
5630 remote_btrace_reset (rs);
5631
5632 if (target_async_permitted)
5633 rs->wait_forever_enabled_p = 1;
5634 }
5635
5636 /* Detach the specified process. */
5637
5638 void
5639 remote_target::remote_detach_pid (int pid)
5640 {
5641 struct remote_state *rs = get_remote_state ();
5642
5643 /* This should not be necessary, but the handling for D;PID in
5644 GDBserver versions prior to 8.2 incorrectly assumes that the
5645 selected process points to the same process we're detaching,
5646 leading to misbehavior (and possibly GDBserver crashing) when it
5647 does not. Since it's easy and cheap, work around it by forcing
5648 GDBserver to select GDB's current process. */
5649 set_general_process ();
5650
5651 if (remote_multi_process_p (rs))
5652 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5653 else
5654 strcpy (rs->buf.data (), "D");
5655
5656 putpkt (rs->buf);
5657 getpkt (&rs->buf, 0);
5658
5659 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5660 ;
5661 else if (rs->buf[0] == '\0')
5662 error (_("Remote doesn't know how to detach"));
5663 else
5664 error (_("Can't detach process."));
5665 }
5666
5667 /* This detaches a program to which we previously attached, using
5668 inferior_ptid to identify the process. After this is done, GDB
5669 can be used to debug some other program. We better not have left
5670 any breakpoints in the target program or it'll die when it hits
5671 one. */
5672
5673 void
5674 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5675 {
5676 int pid = inferior_ptid.pid ();
5677 struct remote_state *rs = get_remote_state ();
5678 int is_fork_parent;
5679
5680 if (!target_has_execution)
5681 error (_("No process to detach from."));
5682
5683 target_announce_detach (from_tty);
5684
5685 /* Tell the remote target to detach. */
5686 remote_detach_pid (pid);
5687
5688 /* Exit only if this is the only active inferior. */
5689 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5690 puts_filtered (_("Ending remote debugging.\n"));
5691
5692 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5693
5694 /* Check to see if we are detaching a fork parent. Note that if we
5695 are detaching a fork child, tp == NULL. */
5696 is_fork_parent = (tp != NULL
5697 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5698
5699 /* If doing detach-on-fork, we don't mourn, because that will delete
5700 breakpoints that should be available for the followed inferior. */
5701 if (!is_fork_parent)
5702 {
5703 /* Save the pid as a string before mourning, since that will
5704 unpush the remote target, and we need the string after. */
5705 std::string infpid = target_pid_to_str (ptid_t (pid));
5706
5707 target_mourn_inferior (inferior_ptid);
5708 if (print_inferior_events)
5709 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5710 inf->num, infpid.c_str ());
5711 }
5712 else
5713 {
5714 inferior_ptid = null_ptid;
5715 detach_inferior (current_inferior ());
5716 }
5717 }
5718
5719 void
5720 remote_target::detach (inferior *inf, int from_tty)
5721 {
5722 remote_detach_1 (inf, from_tty);
5723 }
5724
5725 void
5726 extended_remote_target::detach (inferior *inf, int from_tty)
5727 {
5728 remote_detach_1 (inf, from_tty);
5729 }
5730
5731 /* Target follow-fork function for remote targets. On entry, and
5732 at return, the current inferior is the fork parent.
5733
5734 Note that although this is currently only used for extended-remote,
5735 it is named remote_follow_fork in anticipation of using it for the
5736 remote target as well. */
5737
5738 int
5739 remote_target::follow_fork (int follow_child, int detach_fork)
5740 {
5741 struct remote_state *rs = get_remote_state ();
5742 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5743
5744 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5745 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5746 {
5747 /* When following the parent and detaching the child, we detach
5748 the child here. For the case of following the child and
5749 detaching the parent, the detach is done in the target-
5750 independent follow fork code in infrun.c. We can't use
5751 target_detach when detaching an unfollowed child because
5752 the client side doesn't know anything about the child. */
5753 if (detach_fork && !follow_child)
5754 {
5755 /* Detach the fork child. */
5756 ptid_t child_ptid;
5757 pid_t child_pid;
5758
5759 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5760 child_pid = child_ptid.pid ();
5761
5762 remote_detach_pid (child_pid);
5763 }
5764 }
5765 return 0;
5766 }
5767
5768 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5769 in the program space of the new inferior. On entry and at return the
5770 current inferior is the exec'ing inferior. INF is the new exec'd
5771 inferior, which may be the same as the exec'ing inferior unless
5772 follow-exec-mode is "new". */
5773
5774 void
5775 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5776 {
5777 /* We know that this is a target file name, so if it has the "target:"
5778 prefix we strip it off before saving it in the program space. */
5779 if (is_target_filename (execd_pathname))
5780 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5781
5782 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5783 }
5784
5785 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5786
5787 void
5788 remote_target::disconnect (const char *args, int from_tty)
5789 {
5790 if (args)
5791 error (_("Argument given to \"disconnect\" when remotely debugging."));
5792
5793 /* Make sure we unpush even the extended remote targets. Calling
5794 target_mourn_inferior won't unpush, and remote_mourn won't
5795 unpush if there is more than one inferior left. */
5796 unpush_target (this);
5797 generic_mourn_inferior ();
5798
5799 if (from_tty)
5800 puts_filtered ("Ending remote debugging.\n");
5801 }
5802
5803 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5804 be chatty about it. */
5805
5806 void
5807 extended_remote_target::attach (const char *args, int from_tty)
5808 {
5809 struct remote_state *rs = get_remote_state ();
5810 int pid;
5811 char *wait_status = NULL;
5812
5813 pid = parse_pid_to_attach (args);
5814
5815 /* Remote PID can be freely equal to getpid, do not check it here the same
5816 way as in other targets. */
5817
5818 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5819 error (_("This target does not support attaching to a process"));
5820
5821 if (from_tty)
5822 {
5823 char *exec_file = get_exec_file (0);
5824
5825 if (exec_file)
5826 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5827 target_pid_to_str (ptid_t (pid)));
5828 else
5829 printf_unfiltered (_("Attaching to %s\n"),
5830 target_pid_to_str (ptid_t (pid)));
5831
5832 gdb_flush (gdb_stdout);
5833 }
5834
5835 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5836 putpkt (rs->buf);
5837 getpkt (&rs->buf, 0);
5838
5839 switch (packet_ok (rs->buf,
5840 &remote_protocol_packets[PACKET_vAttach]))
5841 {
5842 case PACKET_OK:
5843 if (!target_is_non_stop_p ())
5844 {
5845 /* Save the reply for later. */
5846 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5847 strcpy (wait_status, rs->buf.data ());
5848 }
5849 else if (strcmp (rs->buf.data (), "OK") != 0)
5850 error (_("Attaching to %s failed with: %s"),
5851 target_pid_to_str (ptid_t (pid)),
5852 rs->buf.data ());
5853 break;
5854 case PACKET_UNKNOWN:
5855 error (_("This target does not support attaching to a process"));
5856 default:
5857 error (_("Attaching to %s failed"),
5858 target_pid_to_str (ptid_t (pid)));
5859 }
5860
5861 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5862
5863 inferior_ptid = ptid_t (pid);
5864
5865 if (target_is_non_stop_p ())
5866 {
5867 struct thread_info *thread;
5868
5869 /* Get list of threads. */
5870 update_thread_list ();
5871
5872 thread = first_thread_of_inferior (current_inferior ());
5873 if (thread)
5874 inferior_ptid = thread->ptid;
5875 else
5876 inferior_ptid = ptid_t (pid);
5877
5878 /* Invalidate our notion of the remote current thread. */
5879 record_currthread (rs, minus_one_ptid);
5880 }
5881 else
5882 {
5883 /* Now, if we have thread information, update inferior_ptid. */
5884 inferior_ptid = remote_current_thread (inferior_ptid);
5885
5886 /* Add the main thread to the thread list. */
5887 thread_info *thr = add_thread_silent (inferior_ptid);
5888 /* Don't consider the thread stopped until we've processed the
5889 saved stop reply. */
5890 set_executing (thr->ptid, true);
5891 }
5892
5893 /* Next, if the target can specify a description, read it. We do
5894 this before anything involving memory or registers. */
5895 target_find_description ();
5896
5897 if (!target_is_non_stop_p ())
5898 {
5899 /* Use the previously fetched status. */
5900 gdb_assert (wait_status != NULL);
5901
5902 if (target_can_async_p ())
5903 {
5904 struct notif_event *reply
5905 = remote_notif_parse (this, &notif_client_stop, wait_status);
5906
5907 push_stop_reply ((struct stop_reply *) reply);
5908
5909 target_async (1);
5910 }
5911 else
5912 {
5913 gdb_assert (wait_status != NULL);
5914 strcpy (rs->buf.data (), wait_status);
5915 rs->cached_wait_status = 1;
5916 }
5917 }
5918 else
5919 gdb_assert (wait_status == NULL);
5920 }
5921
5922 /* Implementation of the to_post_attach method. */
5923
5924 void
5925 extended_remote_target::post_attach (int pid)
5926 {
5927 /* Get text, data & bss offsets. */
5928 get_offsets ();
5929
5930 /* In certain cases GDB might not have had the chance to start
5931 symbol lookup up until now. This could happen if the debugged
5932 binary is not using shared libraries, the vsyscall page is not
5933 present (on Linux) and the binary itself hadn't changed since the
5934 debugging process was started. */
5935 if (symfile_objfile != NULL)
5936 remote_check_symbols();
5937 }
5938
5939 \f
5940 /* Check for the availability of vCont. This function should also check
5941 the response. */
5942
5943 void
5944 remote_target::remote_vcont_probe ()
5945 {
5946 remote_state *rs = get_remote_state ();
5947 char *buf;
5948
5949 strcpy (rs->buf.data (), "vCont?");
5950 putpkt (rs->buf);
5951 getpkt (&rs->buf, 0);
5952 buf = rs->buf.data ();
5953
5954 /* Make sure that the features we assume are supported. */
5955 if (startswith (buf, "vCont"))
5956 {
5957 char *p = &buf[5];
5958 int support_c, support_C;
5959
5960 rs->supports_vCont.s = 0;
5961 rs->supports_vCont.S = 0;
5962 support_c = 0;
5963 support_C = 0;
5964 rs->supports_vCont.t = 0;
5965 rs->supports_vCont.r = 0;
5966 while (p && *p == ';')
5967 {
5968 p++;
5969 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5970 rs->supports_vCont.s = 1;
5971 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5972 rs->supports_vCont.S = 1;
5973 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5974 support_c = 1;
5975 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5976 support_C = 1;
5977 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5978 rs->supports_vCont.t = 1;
5979 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5980 rs->supports_vCont.r = 1;
5981
5982 p = strchr (p, ';');
5983 }
5984
5985 /* If c, and C are not all supported, we can't use vCont. Clearing
5986 BUF will make packet_ok disable the packet. */
5987 if (!support_c || !support_C)
5988 buf[0] = 0;
5989 }
5990
5991 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5992 }
5993
5994 /* Helper function for building "vCont" resumptions. Write a
5995 resumption to P. ENDP points to one-passed-the-end of the buffer
5996 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5997 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5998 resumed thread should be single-stepped and/or signalled. If PTID
5999 equals minus_one_ptid, then all threads are resumed; if PTID
6000 represents a process, then all threads of the process are resumed;
6001 the thread to be stepped and/or signalled is given in the global
6002 INFERIOR_PTID. */
6003
6004 char *
6005 remote_target::append_resumption (char *p, char *endp,
6006 ptid_t ptid, int step, gdb_signal siggnal)
6007 {
6008 struct remote_state *rs = get_remote_state ();
6009
6010 if (step && siggnal != GDB_SIGNAL_0)
6011 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6012 else if (step
6013 /* GDB is willing to range step. */
6014 && use_range_stepping
6015 /* Target supports range stepping. */
6016 && rs->supports_vCont.r
6017 /* We don't currently support range stepping multiple
6018 threads with a wildcard (though the protocol allows it,
6019 so stubs shouldn't make an active effort to forbid
6020 it). */
6021 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6022 {
6023 struct thread_info *tp;
6024
6025 if (ptid == minus_one_ptid)
6026 {
6027 /* If we don't know about the target thread's tid, then
6028 we're resuming magic_null_ptid (see caller). */
6029 tp = find_thread_ptid (magic_null_ptid);
6030 }
6031 else
6032 tp = find_thread_ptid (ptid);
6033 gdb_assert (tp != NULL);
6034
6035 if (tp->control.may_range_step)
6036 {
6037 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6038
6039 p += xsnprintf (p, endp - p, ";r%s,%s",
6040 phex_nz (tp->control.step_range_start,
6041 addr_size),
6042 phex_nz (tp->control.step_range_end,
6043 addr_size));
6044 }
6045 else
6046 p += xsnprintf (p, endp - p, ";s");
6047 }
6048 else if (step)
6049 p += xsnprintf (p, endp - p, ";s");
6050 else if (siggnal != GDB_SIGNAL_0)
6051 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6052 else
6053 p += xsnprintf (p, endp - p, ";c");
6054
6055 if (remote_multi_process_p (rs) && ptid.is_pid ())
6056 {
6057 ptid_t nptid;
6058
6059 /* All (-1) threads of process. */
6060 nptid = ptid_t (ptid.pid (), -1, 0);
6061
6062 p += xsnprintf (p, endp - p, ":");
6063 p = write_ptid (p, endp, nptid);
6064 }
6065 else if (ptid != minus_one_ptid)
6066 {
6067 p += xsnprintf (p, endp - p, ":");
6068 p = write_ptid (p, endp, ptid);
6069 }
6070
6071 return p;
6072 }
6073
6074 /* Clear the thread's private info on resume. */
6075
6076 static void
6077 resume_clear_thread_private_info (struct thread_info *thread)
6078 {
6079 if (thread->priv != NULL)
6080 {
6081 remote_thread_info *priv = get_remote_thread_info (thread);
6082
6083 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6084 priv->watch_data_address = 0;
6085 }
6086 }
6087
6088 /* Append a vCont continue-with-signal action for threads that have a
6089 non-zero stop signal. */
6090
6091 char *
6092 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6093 ptid_t ptid)
6094 {
6095 for (thread_info *thread : all_non_exited_threads (ptid))
6096 if (inferior_ptid != thread->ptid
6097 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6098 {
6099 p = append_resumption (p, endp, thread->ptid,
6100 0, thread->suspend.stop_signal);
6101 thread->suspend.stop_signal = GDB_SIGNAL_0;
6102 resume_clear_thread_private_info (thread);
6103 }
6104
6105 return p;
6106 }
6107
6108 /* Set the target running, using the packets that use Hc
6109 (c/s/C/S). */
6110
6111 void
6112 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6113 gdb_signal siggnal)
6114 {
6115 struct remote_state *rs = get_remote_state ();
6116 char *buf;
6117
6118 rs->last_sent_signal = siggnal;
6119 rs->last_sent_step = step;
6120
6121 /* The c/s/C/S resume packets use Hc, so set the continue
6122 thread. */
6123 if (ptid == minus_one_ptid)
6124 set_continue_thread (any_thread_ptid);
6125 else
6126 set_continue_thread (ptid);
6127
6128 for (thread_info *thread : all_non_exited_threads ())
6129 resume_clear_thread_private_info (thread);
6130
6131 buf = rs->buf.data ();
6132 if (::execution_direction == EXEC_REVERSE)
6133 {
6134 /* We don't pass signals to the target in reverse exec mode. */
6135 if (info_verbose && siggnal != GDB_SIGNAL_0)
6136 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6137 siggnal);
6138
6139 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6140 error (_("Remote reverse-step not supported."));
6141 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6142 error (_("Remote reverse-continue not supported."));
6143
6144 strcpy (buf, step ? "bs" : "bc");
6145 }
6146 else if (siggnal != GDB_SIGNAL_0)
6147 {
6148 buf[0] = step ? 'S' : 'C';
6149 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6150 buf[2] = tohex (((int) siggnal) & 0xf);
6151 buf[3] = '\0';
6152 }
6153 else
6154 strcpy (buf, step ? "s" : "c");
6155
6156 putpkt (buf);
6157 }
6158
6159 /* Resume the remote inferior by using a "vCont" packet. The thread
6160 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6161 resumed thread should be single-stepped and/or signalled. If PTID
6162 equals minus_one_ptid, then all threads are resumed; the thread to
6163 be stepped and/or signalled is given in the global INFERIOR_PTID.
6164 This function returns non-zero iff it resumes the inferior.
6165
6166 This function issues a strict subset of all possible vCont commands
6167 at the moment. */
6168
6169 int
6170 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6171 enum gdb_signal siggnal)
6172 {
6173 struct remote_state *rs = get_remote_state ();
6174 char *p;
6175 char *endp;
6176
6177 /* No reverse execution actions defined for vCont. */
6178 if (::execution_direction == EXEC_REVERSE)
6179 return 0;
6180
6181 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6182 remote_vcont_probe ();
6183
6184 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6185 return 0;
6186
6187 p = rs->buf.data ();
6188 endp = p + get_remote_packet_size ();
6189
6190 /* If we could generate a wider range of packets, we'd have to worry
6191 about overflowing BUF. Should there be a generic
6192 "multi-part-packet" packet? */
6193
6194 p += xsnprintf (p, endp - p, "vCont");
6195
6196 if (ptid == magic_null_ptid)
6197 {
6198 /* MAGIC_NULL_PTID means that we don't have any active threads,
6199 so we don't have any TID numbers the inferior will
6200 understand. Make sure to only send forms that do not specify
6201 a TID. */
6202 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6203 }
6204 else if (ptid == minus_one_ptid || ptid.is_pid ())
6205 {
6206 /* Resume all threads (of all processes, or of a single
6207 process), with preference for INFERIOR_PTID. This assumes
6208 inferior_ptid belongs to the set of all threads we are about
6209 to resume. */
6210 if (step || siggnal != GDB_SIGNAL_0)
6211 {
6212 /* Step inferior_ptid, with or without signal. */
6213 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6214 }
6215
6216 /* Also pass down any pending signaled resumption for other
6217 threads not the current. */
6218 p = append_pending_thread_resumptions (p, endp, ptid);
6219
6220 /* And continue others without a signal. */
6221 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6222 }
6223 else
6224 {
6225 /* Scheduler locking; resume only PTID. */
6226 append_resumption (p, endp, ptid, step, siggnal);
6227 }
6228
6229 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6230 putpkt (rs->buf);
6231
6232 if (target_is_non_stop_p ())
6233 {
6234 /* In non-stop, the stub replies to vCont with "OK". The stop
6235 reply will be reported asynchronously by means of a `%Stop'
6236 notification. */
6237 getpkt (&rs->buf, 0);
6238 if (strcmp (rs->buf.data (), "OK") != 0)
6239 error (_("Unexpected vCont reply in non-stop mode: %s"),
6240 rs->buf.data ());
6241 }
6242
6243 return 1;
6244 }
6245
6246 /* Tell the remote machine to resume. */
6247
6248 void
6249 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6250 {
6251 struct remote_state *rs = get_remote_state ();
6252
6253 /* When connected in non-stop mode, the core resumes threads
6254 individually. Resuming remote threads directly in target_resume
6255 would thus result in sending one packet per thread. Instead, to
6256 minimize roundtrip latency, here we just store the resume
6257 request; the actual remote resumption will be done in
6258 target_commit_resume / remote_commit_resume, where we'll be able
6259 to do vCont action coalescing. */
6260 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6261 {
6262 remote_thread_info *remote_thr;
6263
6264 if (minus_one_ptid == ptid || ptid.is_pid ())
6265 remote_thr = get_remote_thread_info (inferior_ptid);
6266 else
6267 remote_thr = get_remote_thread_info (ptid);
6268
6269 remote_thr->last_resume_step = step;
6270 remote_thr->last_resume_sig = siggnal;
6271 return;
6272 }
6273
6274 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6275 (explained in remote-notif.c:handle_notification) so
6276 remote_notif_process is not called. We need find a place where
6277 it is safe to start a 'vNotif' sequence. It is good to do it
6278 before resuming inferior, because inferior was stopped and no RSP
6279 traffic at that moment. */
6280 if (!target_is_non_stop_p ())
6281 remote_notif_process (rs->notif_state, &notif_client_stop);
6282
6283 rs->last_resume_exec_dir = ::execution_direction;
6284
6285 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6286 if (!remote_resume_with_vcont (ptid, step, siggnal))
6287 remote_resume_with_hc (ptid, step, siggnal);
6288
6289 /* We are about to start executing the inferior, let's register it
6290 with the event loop. NOTE: this is the one place where all the
6291 execution commands end up. We could alternatively do this in each
6292 of the execution commands in infcmd.c. */
6293 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6294 into infcmd.c in order to allow inferior function calls to work
6295 NOT asynchronously. */
6296 if (target_can_async_p ())
6297 target_async (1);
6298
6299 /* We've just told the target to resume. The remote server will
6300 wait for the inferior to stop, and then send a stop reply. In
6301 the mean time, we can't start another command/query ourselves
6302 because the stub wouldn't be ready to process it. This applies
6303 only to the base all-stop protocol, however. In non-stop (which
6304 only supports vCont), the stub replies with an "OK", and is
6305 immediate able to process further serial input. */
6306 if (!target_is_non_stop_p ())
6307 rs->waiting_for_stop_reply = 1;
6308 }
6309
6310 static int is_pending_fork_parent_thread (struct thread_info *thread);
6311
6312 /* Private per-inferior info for target remote processes. */
6313
6314 struct remote_inferior : public private_inferior
6315 {
6316 /* Whether we can send a wildcard vCont for this process. */
6317 bool may_wildcard_vcont = true;
6318 };
6319
6320 /* Get the remote private inferior data associated to INF. */
6321
6322 static remote_inferior *
6323 get_remote_inferior (inferior *inf)
6324 {
6325 if (inf->priv == NULL)
6326 inf->priv.reset (new remote_inferior);
6327
6328 return static_cast<remote_inferior *> (inf->priv.get ());
6329 }
6330
6331 /* Class used to track the construction of a vCont packet in the
6332 outgoing packet buffer. This is used to send multiple vCont
6333 packets if we have more actions than would fit a single packet. */
6334
6335 class vcont_builder
6336 {
6337 public:
6338 explicit vcont_builder (remote_target *remote)
6339 : m_remote (remote)
6340 {
6341 restart ();
6342 }
6343
6344 void flush ();
6345 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6346
6347 private:
6348 void restart ();
6349
6350 /* The remote target. */
6351 remote_target *m_remote;
6352
6353 /* Pointer to the first action. P points here if no action has been
6354 appended yet. */
6355 char *m_first_action;
6356
6357 /* Where the next action will be appended. */
6358 char *m_p;
6359
6360 /* The end of the buffer. Must never write past this. */
6361 char *m_endp;
6362 };
6363
6364 /* Prepare the outgoing buffer for a new vCont packet. */
6365
6366 void
6367 vcont_builder::restart ()
6368 {
6369 struct remote_state *rs = m_remote->get_remote_state ();
6370
6371 m_p = rs->buf.data ();
6372 m_endp = m_p + m_remote->get_remote_packet_size ();
6373 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6374 m_first_action = m_p;
6375 }
6376
6377 /* If the vCont packet being built has any action, send it to the
6378 remote end. */
6379
6380 void
6381 vcont_builder::flush ()
6382 {
6383 struct remote_state *rs;
6384
6385 if (m_p == m_first_action)
6386 return;
6387
6388 rs = m_remote->get_remote_state ();
6389 m_remote->putpkt (rs->buf);
6390 m_remote->getpkt (&rs->buf, 0);
6391 if (strcmp (rs->buf.data (), "OK") != 0)
6392 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6393 }
6394
6395 /* The largest action is range-stepping, with its two addresses. This
6396 is more than sufficient. If a new, bigger action is created, it'll
6397 quickly trigger a failed assertion in append_resumption (and we'll
6398 just bump this). */
6399 #define MAX_ACTION_SIZE 200
6400
6401 /* Append a new vCont action in the outgoing packet being built. If
6402 the action doesn't fit the packet along with previous actions, push
6403 what we've got so far to the remote end and start over a new vCont
6404 packet (with the new action). */
6405
6406 void
6407 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6408 {
6409 char buf[MAX_ACTION_SIZE + 1];
6410
6411 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6412 ptid, step, siggnal);
6413
6414 /* Check whether this new action would fit in the vCont packet along
6415 with previous actions. If not, send what we've got so far and
6416 start a new vCont packet. */
6417 size_t rsize = endp - buf;
6418 if (rsize > m_endp - m_p)
6419 {
6420 flush ();
6421 restart ();
6422
6423 /* Should now fit. */
6424 gdb_assert (rsize <= m_endp - m_p);
6425 }
6426
6427 memcpy (m_p, buf, rsize);
6428 m_p += rsize;
6429 *m_p = '\0';
6430 }
6431
6432 /* to_commit_resume implementation. */
6433
6434 void
6435 remote_target::commit_resume ()
6436 {
6437 int any_process_wildcard;
6438 int may_global_wildcard_vcont;
6439
6440 /* If connected in all-stop mode, we'd send the remote resume
6441 request directly from remote_resume. Likewise if
6442 reverse-debugging, as there are no defined vCont actions for
6443 reverse execution. */
6444 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6445 return;
6446
6447 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6448 instead of resuming all threads of each process individually.
6449 However, if any thread of a process must remain halted, we can't
6450 send wildcard resumes and must send one action per thread.
6451
6452 Care must be taken to not resume threads/processes the server
6453 side already told us are stopped, but the core doesn't know about
6454 yet, because the events are still in the vStopped notification
6455 queue. For example:
6456
6457 #1 => vCont s:p1.1;c
6458 #2 <= OK
6459 #3 <= %Stopped T05 p1.1
6460 #4 => vStopped
6461 #5 <= T05 p1.2
6462 #6 => vStopped
6463 #7 <= OK
6464 #8 (infrun handles the stop for p1.1 and continues stepping)
6465 #9 => vCont s:p1.1;c
6466
6467 The last vCont above would resume thread p1.2 by mistake, because
6468 the server has no idea that the event for p1.2 had not been
6469 handled yet.
6470
6471 The server side must similarly ignore resume actions for the
6472 thread that has a pending %Stopped notification (and any other
6473 threads with events pending), until GDB acks the notification
6474 with vStopped. Otherwise, e.g., the following case is
6475 mishandled:
6476
6477 #1 => g (or any other packet)
6478 #2 <= [registers]
6479 #3 <= %Stopped T05 p1.2
6480 #4 => vCont s:p1.1;c
6481 #5 <= OK
6482
6483 Above, the server must not resume thread p1.2. GDB can't know
6484 that p1.2 stopped until it acks the %Stopped notification, and
6485 since from GDB's perspective all threads should be running, it
6486 sends a "c" action.
6487
6488 Finally, special care must also be given to handling fork/vfork
6489 events. A (v)fork event actually tells us that two processes
6490 stopped -- the parent and the child. Until we follow the fork,
6491 we must not resume the child. Therefore, if we have a pending
6492 fork follow, we must not send a global wildcard resume action
6493 (vCont;c). We can still send process-wide wildcards though. */
6494
6495 /* Start by assuming a global wildcard (vCont;c) is possible. */
6496 may_global_wildcard_vcont = 1;
6497
6498 /* And assume every process is individually wildcard-able too. */
6499 for (inferior *inf : all_non_exited_inferiors ())
6500 {
6501 remote_inferior *priv = get_remote_inferior (inf);
6502
6503 priv->may_wildcard_vcont = true;
6504 }
6505
6506 /* Check for any pending events (not reported or processed yet) and
6507 disable process and global wildcard resumes appropriately. */
6508 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6509
6510 for (thread_info *tp : all_non_exited_threads ())
6511 {
6512 /* If a thread of a process is not meant to be resumed, then we
6513 can't wildcard that process. */
6514 if (!tp->executing)
6515 {
6516 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6517
6518 /* And if we can't wildcard a process, we can't wildcard
6519 everything either. */
6520 may_global_wildcard_vcont = 0;
6521 continue;
6522 }
6523
6524 /* If a thread is the parent of an unfollowed fork, then we
6525 can't do a global wildcard, as that would resume the fork
6526 child. */
6527 if (is_pending_fork_parent_thread (tp))
6528 may_global_wildcard_vcont = 0;
6529 }
6530
6531 /* Now let's build the vCont packet(s). Actions must be appended
6532 from narrower to wider scopes (thread -> process -> global). If
6533 we end up with too many actions for a single packet vcont_builder
6534 flushes the current vCont packet to the remote side and starts a
6535 new one. */
6536 struct vcont_builder vcont_builder (this);
6537
6538 /* Threads first. */
6539 for (thread_info *tp : all_non_exited_threads ())
6540 {
6541 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6542
6543 if (!tp->executing || remote_thr->vcont_resumed)
6544 continue;
6545
6546 gdb_assert (!thread_is_in_step_over_chain (tp));
6547
6548 if (!remote_thr->last_resume_step
6549 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6550 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6551 {
6552 /* We'll send a wildcard resume instead. */
6553 remote_thr->vcont_resumed = 1;
6554 continue;
6555 }
6556
6557 vcont_builder.push_action (tp->ptid,
6558 remote_thr->last_resume_step,
6559 remote_thr->last_resume_sig);
6560 remote_thr->vcont_resumed = 1;
6561 }
6562
6563 /* Now check whether we can send any process-wide wildcard. This is
6564 to avoid sending a global wildcard in the case nothing is
6565 supposed to be resumed. */
6566 any_process_wildcard = 0;
6567
6568 for (inferior *inf : all_non_exited_inferiors ())
6569 {
6570 if (get_remote_inferior (inf)->may_wildcard_vcont)
6571 {
6572 any_process_wildcard = 1;
6573 break;
6574 }
6575 }
6576
6577 if (any_process_wildcard)
6578 {
6579 /* If all processes are wildcard-able, then send a single "c"
6580 action, otherwise, send an "all (-1) threads of process"
6581 continue action for each running process, if any. */
6582 if (may_global_wildcard_vcont)
6583 {
6584 vcont_builder.push_action (minus_one_ptid,
6585 false, GDB_SIGNAL_0);
6586 }
6587 else
6588 {
6589 for (inferior *inf : all_non_exited_inferiors ())
6590 {
6591 if (get_remote_inferior (inf)->may_wildcard_vcont)
6592 {
6593 vcont_builder.push_action (ptid_t (inf->pid),
6594 false, GDB_SIGNAL_0);
6595 }
6596 }
6597 }
6598 }
6599
6600 vcont_builder.flush ();
6601 }
6602
6603 \f
6604
6605 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6606 thread, all threads of a remote process, or all threads of all
6607 processes. */
6608
6609 void
6610 remote_target::remote_stop_ns (ptid_t ptid)
6611 {
6612 struct remote_state *rs = get_remote_state ();
6613 char *p = rs->buf.data ();
6614 char *endp = p + get_remote_packet_size ();
6615
6616 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6617 remote_vcont_probe ();
6618
6619 if (!rs->supports_vCont.t)
6620 error (_("Remote server does not support stopping threads"));
6621
6622 if (ptid == minus_one_ptid
6623 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6624 p += xsnprintf (p, endp - p, "vCont;t");
6625 else
6626 {
6627 ptid_t nptid;
6628
6629 p += xsnprintf (p, endp - p, "vCont;t:");
6630
6631 if (ptid.is_pid ())
6632 /* All (-1) threads of process. */
6633 nptid = ptid_t (ptid.pid (), -1, 0);
6634 else
6635 {
6636 /* Small optimization: if we already have a stop reply for
6637 this thread, no use in telling the stub we want this
6638 stopped. */
6639 if (peek_stop_reply (ptid))
6640 return;
6641
6642 nptid = ptid;
6643 }
6644
6645 write_ptid (p, endp, nptid);
6646 }
6647
6648 /* In non-stop, we get an immediate OK reply. The stop reply will
6649 come in asynchronously by notification. */
6650 putpkt (rs->buf);
6651 getpkt (&rs->buf, 0);
6652 if (strcmp (rs->buf.data (), "OK") != 0)
6653 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid),
6654 rs->buf.data ());
6655 }
6656
6657 /* All-stop version of target_interrupt. Sends a break or a ^C to
6658 interrupt the remote target. It is undefined which thread of which
6659 process reports the interrupt. */
6660
6661 void
6662 remote_target::remote_interrupt_as ()
6663 {
6664 struct remote_state *rs = get_remote_state ();
6665
6666 rs->ctrlc_pending_p = 1;
6667
6668 /* If the inferior is stopped already, but the core didn't know
6669 about it yet, just ignore the request. The cached wait status
6670 will be collected in remote_wait. */
6671 if (rs->cached_wait_status)
6672 return;
6673
6674 /* Send interrupt_sequence to remote target. */
6675 send_interrupt_sequence ();
6676 }
6677
6678 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6679 the remote target. It is undefined which thread of which process
6680 reports the interrupt. Throws an error if the packet is not
6681 supported by the server. */
6682
6683 void
6684 remote_target::remote_interrupt_ns ()
6685 {
6686 struct remote_state *rs = get_remote_state ();
6687 char *p = rs->buf.data ();
6688 char *endp = p + get_remote_packet_size ();
6689
6690 xsnprintf (p, endp - p, "vCtrlC");
6691
6692 /* In non-stop, we get an immediate OK reply. The stop reply will
6693 come in asynchronously by notification. */
6694 putpkt (rs->buf);
6695 getpkt (&rs->buf, 0);
6696
6697 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6698 {
6699 case PACKET_OK:
6700 break;
6701 case PACKET_UNKNOWN:
6702 error (_("No support for interrupting the remote target."));
6703 case PACKET_ERROR:
6704 error (_("Interrupting target failed: %s"), rs->buf.data ());
6705 }
6706 }
6707
6708 /* Implement the to_stop function for the remote targets. */
6709
6710 void
6711 remote_target::stop (ptid_t ptid)
6712 {
6713 if (remote_debug)
6714 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6715
6716 if (target_is_non_stop_p ())
6717 remote_stop_ns (ptid);
6718 else
6719 {
6720 /* We don't currently have a way to transparently pause the
6721 remote target in all-stop mode. Interrupt it instead. */
6722 remote_interrupt_as ();
6723 }
6724 }
6725
6726 /* Implement the to_interrupt function for the remote targets. */
6727
6728 void
6729 remote_target::interrupt ()
6730 {
6731 if (remote_debug)
6732 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6733
6734 if (target_is_non_stop_p ())
6735 remote_interrupt_ns ();
6736 else
6737 remote_interrupt_as ();
6738 }
6739
6740 /* Implement the to_pass_ctrlc function for the remote targets. */
6741
6742 void
6743 remote_target::pass_ctrlc ()
6744 {
6745 struct remote_state *rs = get_remote_state ();
6746
6747 if (remote_debug)
6748 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6749
6750 /* If we're starting up, we're not fully synced yet. Quit
6751 immediately. */
6752 if (rs->starting_up)
6753 quit ();
6754 /* If ^C has already been sent once, offer to disconnect. */
6755 else if (rs->ctrlc_pending_p)
6756 interrupt_query ();
6757 else
6758 target_interrupt ();
6759 }
6760
6761 /* Ask the user what to do when an interrupt is received. */
6762
6763 void
6764 remote_target::interrupt_query ()
6765 {
6766 struct remote_state *rs = get_remote_state ();
6767
6768 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6769 {
6770 if (query (_("The target is not responding to interrupt requests.\n"
6771 "Stop debugging it? ")))
6772 {
6773 remote_unpush_target ();
6774 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6775 }
6776 }
6777 else
6778 {
6779 if (query (_("Interrupted while waiting for the program.\n"
6780 "Give up waiting? ")))
6781 quit ();
6782 }
6783 }
6784
6785 /* Enable/disable target terminal ownership. Most targets can use
6786 terminal groups to control terminal ownership. Remote targets are
6787 different in that explicit transfer of ownership to/from GDB/target
6788 is required. */
6789
6790 void
6791 remote_target::terminal_inferior ()
6792 {
6793 /* NOTE: At this point we could also register our selves as the
6794 recipient of all input. Any characters typed could then be
6795 passed on down to the target. */
6796 }
6797
6798 void
6799 remote_target::terminal_ours ()
6800 {
6801 }
6802
6803 static void
6804 remote_console_output (const char *msg)
6805 {
6806 const char *p;
6807
6808 for (p = msg; p[0] && p[1]; p += 2)
6809 {
6810 char tb[2];
6811 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6812
6813 tb[0] = c;
6814 tb[1] = 0;
6815 fputs_unfiltered (tb, gdb_stdtarg);
6816 }
6817 gdb_flush (gdb_stdtarg);
6818 }
6819
6820 DEF_VEC_O(cached_reg_t);
6821
6822 typedef struct stop_reply
6823 {
6824 struct notif_event base;
6825
6826 /* The identifier of the thread about this event */
6827 ptid_t ptid;
6828
6829 /* The remote state this event is associated with. When the remote
6830 connection, represented by a remote_state object, is closed,
6831 all the associated stop_reply events should be released. */
6832 struct remote_state *rs;
6833
6834 struct target_waitstatus ws;
6835
6836 /* The architecture associated with the expedited registers. */
6837 gdbarch *arch;
6838
6839 /* Expedited registers. This makes remote debugging a bit more
6840 efficient for those targets that provide critical registers as
6841 part of their normal status mechanism (as another roundtrip to
6842 fetch them is avoided). */
6843 VEC(cached_reg_t) *regcache;
6844
6845 enum target_stop_reason stop_reason;
6846
6847 CORE_ADDR watch_data_address;
6848
6849 int core;
6850 } *stop_reply_p;
6851
6852 static void
6853 stop_reply_xfree (struct stop_reply *r)
6854 {
6855 notif_event_xfree ((struct notif_event *) r);
6856 }
6857
6858 /* Return the length of the stop reply queue. */
6859
6860 int
6861 remote_target::stop_reply_queue_length ()
6862 {
6863 remote_state *rs = get_remote_state ();
6864 return rs->stop_reply_queue.size ();
6865 }
6866
6867 void
6868 remote_notif_stop_parse (remote_target *remote,
6869 struct notif_client *self, const char *buf,
6870 struct notif_event *event)
6871 {
6872 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6873 }
6874
6875 static void
6876 remote_notif_stop_ack (remote_target *remote,
6877 struct notif_client *self, const char *buf,
6878 struct notif_event *event)
6879 {
6880 struct stop_reply *stop_reply = (struct stop_reply *) event;
6881
6882 /* acknowledge */
6883 putpkt (remote, self->ack_command);
6884
6885 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6886 {
6887 /* We got an unknown stop reply. */
6888 error (_("Unknown stop reply"));
6889 }
6890
6891 remote->push_stop_reply (stop_reply);
6892 }
6893
6894 static int
6895 remote_notif_stop_can_get_pending_events (remote_target *remote,
6896 struct notif_client *self)
6897 {
6898 /* We can't get pending events in remote_notif_process for
6899 notification stop, and we have to do this in remote_wait_ns
6900 instead. If we fetch all queued events from stub, remote stub
6901 may exit and we have no chance to process them back in
6902 remote_wait_ns. */
6903 remote_state *rs = remote->get_remote_state ();
6904 mark_async_event_handler (rs->remote_async_inferior_event_token);
6905 return 0;
6906 }
6907
6908 static void
6909 stop_reply_dtr (struct notif_event *event)
6910 {
6911 struct stop_reply *r = (struct stop_reply *) event;
6912 cached_reg_t *reg;
6913 int ix;
6914
6915 for (ix = 0;
6916 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6917 ix++)
6918 xfree (reg->data);
6919
6920 VEC_free (cached_reg_t, r->regcache);
6921 }
6922
6923 static struct notif_event *
6924 remote_notif_stop_alloc_reply (void)
6925 {
6926 /* We cast to a pointer to the "base class". */
6927 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6928
6929 r->dtr = stop_reply_dtr;
6930
6931 return r;
6932 }
6933
6934 /* A client of notification Stop. */
6935
6936 struct notif_client notif_client_stop =
6937 {
6938 "Stop",
6939 "vStopped",
6940 remote_notif_stop_parse,
6941 remote_notif_stop_ack,
6942 remote_notif_stop_can_get_pending_events,
6943 remote_notif_stop_alloc_reply,
6944 REMOTE_NOTIF_STOP,
6945 };
6946
6947 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6948 the pid of the process that owns the threads we want to check, or
6949 -1 if we want to check all threads. */
6950
6951 static int
6952 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6953 ptid_t thread_ptid)
6954 {
6955 if (ws->kind == TARGET_WAITKIND_FORKED
6956 || ws->kind == TARGET_WAITKIND_VFORKED)
6957 {
6958 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6959 return 1;
6960 }
6961
6962 return 0;
6963 }
6964
6965 /* Return the thread's pending status used to determine whether the
6966 thread is a fork parent stopped at a fork event. */
6967
6968 static struct target_waitstatus *
6969 thread_pending_fork_status (struct thread_info *thread)
6970 {
6971 if (thread->suspend.waitstatus_pending_p)
6972 return &thread->suspend.waitstatus;
6973 else
6974 return &thread->pending_follow;
6975 }
6976
6977 /* Determine if THREAD is a pending fork parent thread. */
6978
6979 static int
6980 is_pending_fork_parent_thread (struct thread_info *thread)
6981 {
6982 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6983 int pid = -1;
6984
6985 return is_pending_fork_parent (ws, pid, thread->ptid);
6986 }
6987
6988 /* If CONTEXT contains any fork child threads that have not been
6989 reported yet, remove them from the CONTEXT list. If such a
6990 thread exists it is because we are stopped at a fork catchpoint
6991 and have not yet called follow_fork, which will set up the
6992 host-side data structures for the new process. */
6993
6994 void
6995 remote_target::remove_new_fork_children (threads_listing_context *context)
6996 {
6997 int pid = -1;
6998 struct notif_client *notif = &notif_client_stop;
6999
7000 /* For any threads stopped at a fork event, remove the corresponding
7001 fork child threads from the CONTEXT list. */
7002 for (thread_info *thread : all_non_exited_threads ())
7003 {
7004 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7005
7006 if (is_pending_fork_parent (ws, pid, thread->ptid))
7007 context->remove_thread (ws->value.related_pid);
7008 }
7009
7010 /* Check for any pending fork events (not reported or processed yet)
7011 in process PID and remove those fork child threads from the
7012 CONTEXT list as well. */
7013 remote_notif_get_pending_events (notif);
7014 for (auto &event : get_remote_state ()->stop_reply_queue)
7015 if (event->ws.kind == TARGET_WAITKIND_FORKED
7016 || event->ws.kind == TARGET_WAITKIND_VFORKED
7017 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7018 context->remove_thread (event->ws.value.related_pid);
7019 }
7020
7021 /* Check whether any event pending in the vStopped queue would prevent
7022 a global or process wildcard vCont action. Clear
7023 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7024 and clear the event inferior's may_wildcard_vcont flag if we can't
7025 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7026
7027 void
7028 remote_target::check_pending_events_prevent_wildcard_vcont
7029 (int *may_global_wildcard)
7030 {
7031 struct notif_client *notif = &notif_client_stop;
7032
7033 remote_notif_get_pending_events (notif);
7034 for (auto &event : get_remote_state ()->stop_reply_queue)
7035 {
7036 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7037 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7038 continue;
7039
7040 if (event->ws.kind == TARGET_WAITKIND_FORKED
7041 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7042 *may_global_wildcard = 0;
7043
7044 struct inferior *inf = find_inferior_ptid (event->ptid);
7045
7046 /* This may be the first time we heard about this process.
7047 Regardless, we must not do a global wildcard resume, otherwise
7048 we'd resume this process too. */
7049 *may_global_wildcard = 0;
7050 if (inf != NULL)
7051 get_remote_inferior (inf)->may_wildcard_vcont = false;
7052 }
7053 }
7054
7055 /* Discard all pending stop replies of inferior INF. */
7056
7057 void
7058 remote_target::discard_pending_stop_replies (struct inferior *inf)
7059 {
7060 struct stop_reply *reply;
7061 struct remote_state *rs = get_remote_state ();
7062 struct remote_notif_state *rns = rs->notif_state;
7063
7064 /* This function can be notified when an inferior exists. When the
7065 target is not remote, the notification state is NULL. */
7066 if (rs->remote_desc == NULL)
7067 return;
7068
7069 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7070
7071 /* Discard the in-flight notification. */
7072 if (reply != NULL && reply->ptid.pid () == inf->pid)
7073 {
7074 stop_reply_xfree (reply);
7075 rns->pending_event[notif_client_stop.id] = NULL;
7076 }
7077
7078 /* Discard the stop replies we have already pulled with
7079 vStopped. */
7080 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7081 rs->stop_reply_queue.end (),
7082 [=] (const stop_reply_up &event)
7083 {
7084 return event->ptid.pid () == inf->pid;
7085 });
7086 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7087 }
7088
7089 /* Discard the stop replies for RS in stop_reply_queue. */
7090
7091 void
7092 remote_target::discard_pending_stop_replies_in_queue ()
7093 {
7094 remote_state *rs = get_remote_state ();
7095
7096 /* Discard the stop replies we have already pulled with
7097 vStopped. */
7098 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7099 rs->stop_reply_queue.end (),
7100 [=] (const stop_reply_up &event)
7101 {
7102 return event->rs == rs;
7103 });
7104 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7105 }
7106
7107 /* Remove the first reply in 'stop_reply_queue' which matches
7108 PTID. */
7109
7110 struct stop_reply *
7111 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7112 {
7113 remote_state *rs = get_remote_state ();
7114
7115 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7116 rs->stop_reply_queue.end (),
7117 [=] (const stop_reply_up &event)
7118 {
7119 return event->ptid.matches (ptid);
7120 });
7121 struct stop_reply *result;
7122 if (iter == rs->stop_reply_queue.end ())
7123 result = nullptr;
7124 else
7125 {
7126 result = iter->release ();
7127 rs->stop_reply_queue.erase (iter);
7128 }
7129
7130 if (notif_debug)
7131 fprintf_unfiltered (gdb_stdlog,
7132 "notif: discard queued event: 'Stop' in %s\n",
7133 target_pid_to_str (ptid));
7134
7135 return result;
7136 }
7137
7138 /* Look for a queued stop reply belonging to PTID. If one is found,
7139 remove it from the queue, and return it. Returns NULL if none is
7140 found. If there are still queued events left to process, tell the
7141 event loop to get back to target_wait soon. */
7142
7143 struct stop_reply *
7144 remote_target::queued_stop_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7148
7149 if (!rs->stop_reply_queue.empty ())
7150 {
7151 /* There's still at least an event left. */
7152 mark_async_event_handler (rs->remote_async_inferior_event_token);
7153 }
7154
7155 return r;
7156 }
7157
7158 /* Push a fully parsed stop reply in the stop reply queue. Since we
7159 know that we now have at least one queued event left to pass to the
7160 core side, tell the event loop to get back to target_wait soon. */
7161
7162 void
7163 remote_target::push_stop_reply (struct stop_reply *new_event)
7164 {
7165 remote_state *rs = get_remote_state ();
7166 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7167
7168 if (notif_debug)
7169 fprintf_unfiltered (gdb_stdlog,
7170 "notif: push 'Stop' %s to queue %d\n",
7171 target_pid_to_str (new_event->ptid),
7172 int (rs->stop_reply_queue.size ()));
7173
7174 mark_async_event_handler (rs->remote_async_inferior_event_token);
7175 }
7176
7177 /* Returns true if we have a stop reply for PTID. */
7178
7179 int
7180 remote_target::peek_stop_reply (ptid_t ptid)
7181 {
7182 remote_state *rs = get_remote_state ();
7183 for (auto &event : rs->stop_reply_queue)
7184 if (ptid == event->ptid
7185 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7186 return 1;
7187 return 0;
7188 }
7189
7190 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7191 starting with P and ending with PEND matches PREFIX. */
7192
7193 static int
7194 strprefix (const char *p, const char *pend, const char *prefix)
7195 {
7196 for ( ; p < pend; p++, prefix++)
7197 if (*p != *prefix)
7198 return 0;
7199 return *prefix == '\0';
7200 }
7201
7202 /* Parse the stop reply in BUF. Either the function succeeds, and the
7203 result is stored in EVENT, or throws an error. */
7204
7205 void
7206 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7207 {
7208 remote_arch_state *rsa = NULL;
7209 ULONGEST addr;
7210 const char *p;
7211 int skipregs = 0;
7212
7213 event->ptid = null_ptid;
7214 event->rs = get_remote_state ();
7215 event->ws.kind = TARGET_WAITKIND_IGNORE;
7216 event->ws.value.integer = 0;
7217 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7218 event->regcache = NULL;
7219 event->core = -1;
7220
7221 switch (buf[0])
7222 {
7223 case 'T': /* Status with PC, SP, FP, ... */
7224 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7225 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7226 ss = signal number
7227 n... = register number
7228 r... = register contents
7229 */
7230
7231 p = &buf[3]; /* after Txx */
7232 while (*p)
7233 {
7234 const char *p1;
7235 int fieldsize;
7236
7237 p1 = strchr (p, ':');
7238 if (p1 == NULL)
7239 error (_("Malformed packet(a) (missing colon): %s\n\
7240 Packet: '%s'\n"),
7241 p, buf);
7242 if (p == p1)
7243 error (_("Malformed packet(a) (missing register number): %s\n\
7244 Packet: '%s'\n"),
7245 p, buf);
7246
7247 /* Some "registers" are actually extended stop information.
7248 Note if you're adding a new entry here: GDB 7.9 and
7249 earlier assume that all register "numbers" that start
7250 with an hex digit are real register numbers. Make sure
7251 the server only sends such a packet if it knows the
7252 client understands it. */
7253
7254 if (strprefix (p, p1, "thread"))
7255 event->ptid = read_ptid (++p1, &p);
7256 else if (strprefix (p, p1, "syscall_entry"))
7257 {
7258 ULONGEST sysno;
7259
7260 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7261 p = unpack_varlen_hex (++p1, &sysno);
7262 event->ws.value.syscall_number = (int) sysno;
7263 }
7264 else if (strprefix (p, p1, "syscall_return"))
7265 {
7266 ULONGEST sysno;
7267
7268 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7269 p = unpack_varlen_hex (++p1, &sysno);
7270 event->ws.value.syscall_number = (int) sysno;
7271 }
7272 else if (strprefix (p, p1, "watch")
7273 || strprefix (p, p1, "rwatch")
7274 || strprefix (p, p1, "awatch"))
7275 {
7276 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7277 p = unpack_varlen_hex (++p1, &addr);
7278 event->watch_data_address = (CORE_ADDR) addr;
7279 }
7280 else if (strprefix (p, p1, "swbreak"))
7281 {
7282 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7283
7284 /* Make sure the stub doesn't forget to indicate support
7285 with qSupported. */
7286 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7287 error (_("Unexpected swbreak stop reason"));
7288
7289 /* The value part is documented as "must be empty",
7290 though we ignore it, in case we ever decide to make
7291 use of it in a backward compatible way. */
7292 p = strchrnul (p1 + 1, ';');
7293 }
7294 else if (strprefix (p, p1, "hwbreak"))
7295 {
7296 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7297
7298 /* Make sure the stub doesn't forget to indicate support
7299 with qSupported. */
7300 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7301 error (_("Unexpected hwbreak stop reason"));
7302
7303 /* See above. */
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else if (strprefix (p, p1, "library"))
7307 {
7308 event->ws.kind = TARGET_WAITKIND_LOADED;
7309 p = strchrnul (p1 + 1, ';');
7310 }
7311 else if (strprefix (p, p1, "replaylog"))
7312 {
7313 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7314 /* p1 will indicate "begin" or "end", but it makes
7315 no difference for now, so ignore it. */
7316 p = strchrnul (p1 + 1, ';');
7317 }
7318 else if (strprefix (p, p1, "core"))
7319 {
7320 ULONGEST c;
7321
7322 p = unpack_varlen_hex (++p1, &c);
7323 event->core = c;
7324 }
7325 else if (strprefix (p, p1, "fork"))
7326 {
7327 event->ws.value.related_pid = read_ptid (++p1, &p);
7328 event->ws.kind = TARGET_WAITKIND_FORKED;
7329 }
7330 else if (strprefix (p, p1, "vfork"))
7331 {
7332 event->ws.value.related_pid = read_ptid (++p1, &p);
7333 event->ws.kind = TARGET_WAITKIND_VFORKED;
7334 }
7335 else if (strprefix (p, p1, "vforkdone"))
7336 {
7337 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7338 p = strchrnul (p1 + 1, ';');
7339 }
7340 else if (strprefix (p, p1, "exec"))
7341 {
7342 ULONGEST ignored;
7343 int pathlen;
7344
7345 /* Determine the length of the execd pathname. */
7346 p = unpack_varlen_hex (++p1, &ignored);
7347 pathlen = (p - p1) / 2;
7348
7349 /* Save the pathname for event reporting and for
7350 the next run command. */
7351 char *pathname = (char *) xmalloc (pathlen + 1);
7352 struct cleanup *old_chain = make_cleanup (xfree, pathname);
7353 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7354 pathname[pathlen] = '\0';
7355 discard_cleanups (old_chain);
7356
7357 /* This is freed during event handling. */
7358 event->ws.value.execd_pathname = pathname;
7359 event->ws.kind = TARGET_WAITKIND_EXECD;
7360
7361 /* Skip the registers included in this packet, since
7362 they may be for an architecture different from the
7363 one used by the original program. */
7364 skipregs = 1;
7365 }
7366 else if (strprefix (p, p1, "create"))
7367 {
7368 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7369 p = strchrnul (p1 + 1, ';');
7370 }
7371 else
7372 {
7373 ULONGEST pnum;
7374 const char *p_temp;
7375
7376 if (skipregs)
7377 {
7378 p = strchrnul (p1 + 1, ';');
7379 p++;
7380 continue;
7381 }
7382
7383 /* Maybe a real ``P'' register number. */
7384 p_temp = unpack_varlen_hex (p, &pnum);
7385 /* If the first invalid character is the colon, we got a
7386 register number. Otherwise, it's an unknown stop
7387 reason. */
7388 if (p_temp == p1)
7389 {
7390 /* If we haven't parsed the event's thread yet, find
7391 it now, in order to find the architecture of the
7392 reported expedited registers. */
7393 if (event->ptid == null_ptid)
7394 {
7395 const char *thr = strstr (p1 + 1, ";thread:");
7396 if (thr != NULL)
7397 event->ptid = read_ptid (thr + strlen (";thread:"),
7398 NULL);
7399 else
7400 {
7401 /* Either the current thread hasn't changed,
7402 or the inferior is not multi-threaded.
7403 The event must be for the thread we last
7404 set as (or learned as being) current. */
7405 event->ptid = event->rs->general_thread;
7406 }
7407 }
7408
7409 if (rsa == NULL)
7410 {
7411 inferior *inf = (event->ptid == null_ptid
7412 ? NULL
7413 : find_inferior_ptid (event->ptid));
7414 /* If this is the first time we learn anything
7415 about this process, skip the registers
7416 included in this packet, since we don't yet
7417 know which architecture to use to parse them.
7418 We'll determine the architecture later when
7419 we process the stop reply and retrieve the
7420 target description, via
7421 remote_notice_new_inferior ->
7422 post_create_inferior. */
7423 if (inf == NULL)
7424 {
7425 p = strchrnul (p1 + 1, ';');
7426 p++;
7427 continue;
7428 }
7429
7430 event->arch = inf->gdbarch;
7431 rsa = event->rs->get_remote_arch_state (event->arch);
7432 }
7433
7434 packet_reg *reg
7435 = packet_reg_from_pnum (event->arch, rsa, pnum);
7436 cached_reg_t cached_reg;
7437
7438 if (reg == NULL)
7439 error (_("Remote sent bad register number %s: %s\n\
7440 Packet: '%s'\n"),
7441 hex_string (pnum), p, buf);
7442
7443 cached_reg.num = reg->regnum;
7444 cached_reg.data = (gdb_byte *)
7445 xmalloc (register_size (event->arch, reg->regnum));
7446
7447 p = p1 + 1;
7448 fieldsize = hex2bin (p, cached_reg.data,
7449 register_size (event->arch, reg->regnum));
7450 p += 2 * fieldsize;
7451 if (fieldsize < register_size (event->arch, reg->regnum))
7452 warning (_("Remote reply is too short: %s"), buf);
7453
7454 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7455 }
7456 else
7457 {
7458 /* Not a number. Silently skip unknown optional
7459 info. */
7460 p = strchrnul (p1 + 1, ';');
7461 }
7462 }
7463
7464 if (*p != ';')
7465 error (_("Remote register badly formatted: %s\nhere: %s"),
7466 buf, p);
7467 ++p;
7468 }
7469
7470 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7471 break;
7472
7473 /* fall through */
7474 case 'S': /* Old style status, just signal only. */
7475 {
7476 int sig;
7477
7478 event->ws.kind = TARGET_WAITKIND_STOPPED;
7479 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7480 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7481 event->ws.value.sig = (enum gdb_signal) sig;
7482 else
7483 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7484 }
7485 break;
7486 case 'w': /* Thread exited. */
7487 {
7488 ULONGEST value;
7489
7490 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7491 p = unpack_varlen_hex (&buf[1], &value);
7492 event->ws.value.integer = value;
7493 if (*p != ';')
7494 error (_("stop reply packet badly formatted: %s"), buf);
7495 event->ptid = read_ptid (++p, NULL);
7496 break;
7497 }
7498 case 'W': /* Target exited. */
7499 case 'X':
7500 {
7501 int pid;
7502 ULONGEST value;
7503
7504 /* GDB used to accept only 2 hex chars here. Stubs should
7505 only send more if they detect GDB supports multi-process
7506 support. */
7507 p = unpack_varlen_hex (&buf[1], &value);
7508
7509 if (buf[0] == 'W')
7510 {
7511 /* The remote process exited. */
7512 event->ws.kind = TARGET_WAITKIND_EXITED;
7513 event->ws.value.integer = value;
7514 }
7515 else
7516 {
7517 /* The remote process exited with a signal. */
7518 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7519 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7520 event->ws.value.sig = (enum gdb_signal) value;
7521 else
7522 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7523 }
7524
7525 /* If no process is specified, assume inferior_ptid. */
7526 pid = inferior_ptid.pid ();
7527 if (*p == '\0')
7528 ;
7529 else if (*p == ';')
7530 {
7531 p++;
7532
7533 if (*p == '\0')
7534 ;
7535 else if (startswith (p, "process:"))
7536 {
7537 ULONGEST upid;
7538
7539 p += sizeof ("process:") - 1;
7540 unpack_varlen_hex (p, &upid);
7541 pid = upid;
7542 }
7543 else
7544 error (_("unknown stop reply packet: %s"), buf);
7545 }
7546 else
7547 error (_("unknown stop reply packet: %s"), buf);
7548 event->ptid = ptid_t (pid);
7549 }
7550 break;
7551 case 'N':
7552 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7553 event->ptid = minus_one_ptid;
7554 break;
7555 }
7556
7557 if (target_is_non_stop_p () && event->ptid == null_ptid)
7558 error (_("No process or thread specified in stop reply: %s"), buf);
7559 }
7560
7561 /* When the stub wants to tell GDB about a new notification reply, it
7562 sends a notification (%Stop, for example). Those can come it at
7563 any time, hence, we have to make sure that any pending
7564 putpkt/getpkt sequence we're making is finished, before querying
7565 the stub for more events with the corresponding ack command
7566 (vStopped, for example). E.g., if we started a vStopped sequence
7567 immediately upon receiving the notification, something like this
7568 could happen:
7569
7570 1.1) --> Hg 1
7571 1.2) <-- OK
7572 1.3) --> g
7573 1.4) <-- %Stop
7574 1.5) --> vStopped
7575 1.6) <-- (registers reply to step #1.3)
7576
7577 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7578 query.
7579
7580 To solve this, whenever we parse a %Stop notification successfully,
7581 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7582 doing whatever we were doing:
7583
7584 2.1) --> Hg 1
7585 2.2) <-- OK
7586 2.3) --> g
7587 2.4) <-- %Stop
7588 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7589 2.5) <-- (registers reply to step #2.3)
7590
7591 Eventualy after step #2.5, we return to the event loop, which
7592 notices there's an event on the
7593 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7594 associated callback --- the function below. At this point, we're
7595 always safe to start a vStopped sequence. :
7596
7597 2.6) --> vStopped
7598 2.7) <-- T05 thread:2
7599 2.8) --> vStopped
7600 2.9) --> OK
7601 */
7602
7603 void
7604 remote_target::remote_notif_get_pending_events (notif_client *nc)
7605 {
7606 struct remote_state *rs = get_remote_state ();
7607
7608 if (rs->notif_state->pending_event[nc->id] != NULL)
7609 {
7610 if (notif_debug)
7611 fprintf_unfiltered (gdb_stdlog,
7612 "notif: process: '%s' ack pending event\n",
7613 nc->name);
7614
7615 /* acknowledge */
7616 nc->ack (this, nc, rs->buf.data (),
7617 rs->notif_state->pending_event[nc->id]);
7618 rs->notif_state->pending_event[nc->id] = NULL;
7619
7620 while (1)
7621 {
7622 getpkt (&rs->buf, 0);
7623 if (strcmp (rs->buf.data (), "OK") == 0)
7624 break;
7625 else
7626 remote_notif_ack (this, nc, rs->buf.data ());
7627 }
7628 }
7629 else
7630 {
7631 if (notif_debug)
7632 fprintf_unfiltered (gdb_stdlog,
7633 "notif: process: '%s' no pending reply\n",
7634 nc->name);
7635 }
7636 }
7637
7638 /* Wrapper around remote_target::remote_notif_get_pending_events to
7639 avoid having to export the whole remote_target class. */
7640
7641 void
7642 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7643 {
7644 remote->remote_notif_get_pending_events (nc);
7645 }
7646
7647 /* Called when it is decided that STOP_REPLY holds the info of the
7648 event that is to be returned to the core. This function always
7649 destroys STOP_REPLY. */
7650
7651 ptid_t
7652 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7653 struct target_waitstatus *status)
7654 {
7655 ptid_t ptid;
7656
7657 *status = stop_reply->ws;
7658 ptid = stop_reply->ptid;
7659
7660 /* If no thread/process was reported by the stub, assume the current
7661 inferior. */
7662 if (ptid == null_ptid)
7663 ptid = inferior_ptid;
7664
7665 if (status->kind != TARGET_WAITKIND_EXITED
7666 && status->kind != TARGET_WAITKIND_SIGNALLED
7667 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7668 {
7669 /* Expedited registers. */
7670 if (stop_reply->regcache)
7671 {
7672 struct regcache *regcache
7673 = get_thread_arch_regcache (ptid, stop_reply->arch);
7674 cached_reg_t *reg;
7675 int ix;
7676
7677 for (ix = 0;
7678 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7679 ix++)
7680 {
7681 regcache->raw_supply (reg->num, reg->data);
7682 xfree (reg->data);
7683 }
7684
7685 VEC_free (cached_reg_t, stop_reply->regcache);
7686 }
7687
7688 remote_notice_new_inferior (ptid, 0);
7689 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7690 remote_thr->core = stop_reply->core;
7691 remote_thr->stop_reason = stop_reply->stop_reason;
7692 remote_thr->watch_data_address = stop_reply->watch_data_address;
7693 remote_thr->vcont_resumed = 0;
7694 }
7695
7696 stop_reply_xfree (stop_reply);
7697 return ptid;
7698 }
7699
7700 /* The non-stop mode version of target_wait. */
7701
7702 ptid_t
7703 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7704 {
7705 struct remote_state *rs = get_remote_state ();
7706 struct stop_reply *stop_reply;
7707 int ret;
7708 int is_notif = 0;
7709
7710 /* If in non-stop mode, get out of getpkt even if a
7711 notification is received. */
7712
7713 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7714 while (1)
7715 {
7716 if (ret != -1 && !is_notif)
7717 switch (rs->buf[0])
7718 {
7719 case 'E': /* Error of some sort. */
7720 /* We're out of sync with the target now. Did it continue
7721 or not? We can't tell which thread it was in non-stop,
7722 so just ignore this. */
7723 warning (_("Remote failure reply: %s"), rs->buf.data ());
7724 break;
7725 case 'O': /* Console output. */
7726 remote_console_output (&rs->buf[1]);
7727 break;
7728 default:
7729 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7730 break;
7731 }
7732
7733 /* Acknowledge a pending stop reply that may have arrived in the
7734 mean time. */
7735 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7736 remote_notif_get_pending_events (&notif_client_stop);
7737
7738 /* If indeed we noticed a stop reply, we're done. */
7739 stop_reply = queued_stop_reply (ptid);
7740 if (stop_reply != NULL)
7741 return process_stop_reply (stop_reply, status);
7742
7743 /* Still no event. If we're just polling for an event, then
7744 return to the event loop. */
7745 if (options & TARGET_WNOHANG)
7746 {
7747 status->kind = TARGET_WAITKIND_IGNORE;
7748 return minus_one_ptid;
7749 }
7750
7751 /* Otherwise do a blocking wait. */
7752 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7753 }
7754 }
7755
7756 /* Wait until the remote machine stops, then return, storing status in
7757 STATUS just as `wait' would. */
7758
7759 ptid_t
7760 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7761 {
7762 struct remote_state *rs = get_remote_state ();
7763 ptid_t event_ptid = null_ptid;
7764 char *buf;
7765 struct stop_reply *stop_reply;
7766
7767 again:
7768
7769 status->kind = TARGET_WAITKIND_IGNORE;
7770 status->value.integer = 0;
7771
7772 stop_reply = queued_stop_reply (ptid);
7773 if (stop_reply != NULL)
7774 return process_stop_reply (stop_reply, status);
7775
7776 if (rs->cached_wait_status)
7777 /* Use the cached wait status, but only once. */
7778 rs->cached_wait_status = 0;
7779 else
7780 {
7781 int ret;
7782 int is_notif;
7783 int forever = ((options & TARGET_WNOHANG) == 0
7784 && rs->wait_forever_enabled_p);
7785
7786 if (!rs->waiting_for_stop_reply)
7787 {
7788 status->kind = TARGET_WAITKIND_NO_RESUMED;
7789 return minus_one_ptid;
7790 }
7791
7792 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7793 _never_ wait for ever -> test on target_is_async_p().
7794 However, before we do that we need to ensure that the caller
7795 knows how to take the target into/out of async mode. */
7796 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7797
7798 /* GDB gets a notification. Return to core as this event is
7799 not interesting. */
7800 if (ret != -1 && is_notif)
7801 return minus_one_ptid;
7802
7803 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7804 return minus_one_ptid;
7805 }
7806
7807 buf = rs->buf.data ();
7808
7809 /* Assume that the target has acknowledged Ctrl-C unless we receive
7810 an 'F' or 'O' packet. */
7811 if (buf[0] != 'F' && buf[0] != 'O')
7812 rs->ctrlc_pending_p = 0;
7813
7814 switch (buf[0])
7815 {
7816 case 'E': /* Error of some sort. */
7817 /* We're out of sync with the target now. Did it continue or
7818 not? Not is more likely, so report a stop. */
7819 rs->waiting_for_stop_reply = 0;
7820
7821 warning (_("Remote failure reply: %s"), buf);
7822 status->kind = TARGET_WAITKIND_STOPPED;
7823 status->value.sig = GDB_SIGNAL_0;
7824 break;
7825 case 'F': /* File-I/O request. */
7826 /* GDB may access the inferior memory while handling the File-I/O
7827 request, but we don't want GDB accessing memory while waiting
7828 for a stop reply. See the comments in putpkt_binary. Set
7829 waiting_for_stop_reply to 0 temporarily. */
7830 rs->waiting_for_stop_reply = 0;
7831 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7832 rs->ctrlc_pending_p = 0;
7833 /* GDB handled the File-I/O request, and the target is running
7834 again. Keep waiting for events. */
7835 rs->waiting_for_stop_reply = 1;
7836 break;
7837 case 'N': case 'T': case 'S': case 'X': case 'W':
7838 {
7839 /* There is a stop reply to handle. */
7840 rs->waiting_for_stop_reply = 0;
7841
7842 stop_reply
7843 = (struct stop_reply *) remote_notif_parse (this,
7844 &notif_client_stop,
7845 rs->buf.data ());
7846
7847 event_ptid = process_stop_reply (stop_reply, status);
7848 break;
7849 }
7850 case 'O': /* Console output. */
7851 remote_console_output (buf + 1);
7852 break;
7853 case '\0':
7854 if (rs->last_sent_signal != GDB_SIGNAL_0)
7855 {
7856 /* Zero length reply means that we tried 'S' or 'C' and the
7857 remote system doesn't support it. */
7858 target_terminal::ours_for_output ();
7859 printf_filtered
7860 ("Can't send signals to this remote system. %s not sent.\n",
7861 gdb_signal_to_name (rs->last_sent_signal));
7862 rs->last_sent_signal = GDB_SIGNAL_0;
7863 target_terminal::inferior ();
7864
7865 strcpy (buf, rs->last_sent_step ? "s" : "c");
7866 putpkt (buf);
7867 break;
7868 }
7869 /* fallthrough */
7870 default:
7871 warning (_("Invalid remote reply: %s"), buf);
7872 break;
7873 }
7874
7875 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7876 return minus_one_ptid;
7877 else if (status->kind == TARGET_WAITKIND_IGNORE)
7878 {
7879 /* Nothing interesting happened. If we're doing a non-blocking
7880 poll, we're done. Otherwise, go back to waiting. */
7881 if (options & TARGET_WNOHANG)
7882 return minus_one_ptid;
7883 else
7884 goto again;
7885 }
7886 else if (status->kind != TARGET_WAITKIND_EXITED
7887 && status->kind != TARGET_WAITKIND_SIGNALLED)
7888 {
7889 if (event_ptid != null_ptid)
7890 record_currthread (rs, event_ptid);
7891 else
7892 event_ptid = inferior_ptid;
7893 }
7894 else
7895 /* A process exit. Invalidate our notion of current thread. */
7896 record_currthread (rs, minus_one_ptid);
7897
7898 return event_ptid;
7899 }
7900
7901 /* Wait until the remote machine stops, then return, storing status in
7902 STATUS just as `wait' would. */
7903
7904 ptid_t
7905 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7906 {
7907 ptid_t event_ptid;
7908
7909 if (target_is_non_stop_p ())
7910 event_ptid = wait_ns (ptid, status, options);
7911 else
7912 event_ptid = wait_as (ptid, status, options);
7913
7914 if (target_is_async_p ())
7915 {
7916 remote_state *rs = get_remote_state ();
7917
7918 /* If there are are events left in the queue tell the event loop
7919 to return here. */
7920 if (!rs->stop_reply_queue.empty ())
7921 mark_async_event_handler (rs->remote_async_inferior_event_token);
7922 }
7923
7924 return event_ptid;
7925 }
7926
7927 /* Fetch a single register using a 'p' packet. */
7928
7929 int
7930 remote_target::fetch_register_using_p (struct regcache *regcache,
7931 packet_reg *reg)
7932 {
7933 struct gdbarch *gdbarch = regcache->arch ();
7934 struct remote_state *rs = get_remote_state ();
7935 char *buf, *p;
7936 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7937 int i;
7938
7939 if (packet_support (PACKET_p) == PACKET_DISABLE)
7940 return 0;
7941
7942 if (reg->pnum == -1)
7943 return 0;
7944
7945 p = rs->buf.data ();
7946 *p++ = 'p';
7947 p += hexnumstr (p, reg->pnum);
7948 *p++ = '\0';
7949 putpkt (rs->buf);
7950 getpkt (&rs->buf, 0);
7951
7952 buf = rs->buf.data ();
7953
7954 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7955 {
7956 case PACKET_OK:
7957 break;
7958 case PACKET_UNKNOWN:
7959 return 0;
7960 case PACKET_ERROR:
7961 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7962 gdbarch_register_name (regcache->arch (),
7963 reg->regnum),
7964 buf);
7965 }
7966
7967 /* If this register is unfetchable, tell the regcache. */
7968 if (buf[0] == 'x')
7969 {
7970 regcache->raw_supply (reg->regnum, NULL);
7971 return 1;
7972 }
7973
7974 /* Otherwise, parse and supply the value. */
7975 p = buf;
7976 i = 0;
7977 while (p[0] != 0)
7978 {
7979 if (p[1] == 0)
7980 error (_("fetch_register_using_p: early buf termination"));
7981
7982 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7983 p += 2;
7984 }
7985 regcache->raw_supply (reg->regnum, regp);
7986 return 1;
7987 }
7988
7989 /* Fetch the registers included in the target's 'g' packet. */
7990
7991 int
7992 remote_target::send_g_packet ()
7993 {
7994 struct remote_state *rs = get_remote_state ();
7995 int buf_len;
7996
7997 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7998 putpkt (rs->buf);
7999 getpkt (&rs->buf, 0);
8000 if (packet_check_result (rs->buf) == PACKET_ERROR)
8001 error (_("Could not read registers; remote failure reply '%s'"),
8002 rs->buf.data ());
8003
8004 /* We can get out of synch in various cases. If the first character
8005 in the buffer is not a hex character, assume that has happened
8006 and try to fetch another packet to read. */
8007 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8008 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8009 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8010 && rs->buf[0] != 'x') /* New: unavailable register value. */
8011 {
8012 if (remote_debug)
8013 fprintf_unfiltered (gdb_stdlog,
8014 "Bad register packet; fetching a new packet\n");
8015 getpkt (&rs->buf, 0);
8016 }
8017
8018 buf_len = strlen (rs->buf.data ());
8019
8020 /* Sanity check the received packet. */
8021 if (buf_len % 2 != 0)
8022 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8023
8024 return buf_len / 2;
8025 }
8026
8027 void
8028 remote_target::process_g_packet (struct regcache *regcache)
8029 {
8030 struct gdbarch *gdbarch = regcache->arch ();
8031 struct remote_state *rs = get_remote_state ();
8032 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8033 int i, buf_len;
8034 char *p;
8035 char *regs;
8036
8037 buf_len = strlen (rs->buf.data ());
8038
8039 /* Further sanity checks, with knowledge of the architecture. */
8040 if (buf_len > 2 * rsa->sizeof_g_packet)
8041 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8042 "bytes): %s"),
8043 rsa->sizeof_g_packet, buf_len / 2,
8044 rs->buf.data ());
8045
8046 /* Save the size of the packet sent to us by the target. It is used
8047 as a heuristic when determining the max size of packets that the
8048 target can safely receive. */
8049 if (rsa->actual_register_packet_size == 0)
8050 rsa->actual_register_packet_size = buf_len;
8051
8052 /* If this is smaller than we guessed the 'g' packet would be,
8053 update our records. A 'g' reply that doesn't include a register's
8054 value implies either that the register is not available, or that
8055 the 'p' packet must be used. */
8056 if (buf_len < 2 * rsa->sizeof_g_packet)
8057 {
8058 long sizeof_g_packet = buf_len / 2;
8059
8060 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8061 {
8062 long offset = rsa->regs[i].offset;
8063 long reg_size = register_size (gdbarch, i);
8064
8065 if (rsa->regs[i].pnum == -1)
8066 continue;
8067
8068 if (offset >= sizeof_g_packet)
8069 rsa->regs[i].in_g_packet = 0;
8070 else if (offset + reg_size > sizeof_g_packet)
8071 error (_("Truncated register %d in remote 'g' packet"), i);
8072 else
8073 rsa->regs[i].in_g_packet = 1;
8074 }
8075
8076 /* Looks valid enough, we can assume this is the correct length
8077 for a 'g' packet. It's important not to adjust
8078 rsa->sizeof_g_packet if we have truncated registers otherwise
8079 this "if" won't be run the next time the method is called
8080 with a packet of the same size and one of the internal errors
8081 below will trigger instead. */
8082 rsa->sizeof_g_packet = sizeof_g_packet;
8083 }
8084
8085 regs = (char *) alloca (rsa->sizeof_g_packet);
8086
8087 /* Unimplemented registers read as all bits zero. */
8088 memset (regs, 0, rsa->sizeof_g_packet);
8089
8090 /* Reply describes registers byte by byte, each byte encoded as two
8091 hex characters. Suck them all up, then supply them to the
8092 register cacheing/storage mechanism. */
8093
8094 p = rs->buf.data ();
8095 for (i = 0; i < rsa->sizeof_g_packet; i++)
8096 {
8097 if (p[0] == 0 || p[1] == 0)
8098 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8099 internal_error (__FILE__, __LINE__,
8100 _("unexpected end of 'g' packet reply"));
8101
8102 if (p[0] == 'x' && p[1] == 'x')
8103 regs[i] = 0; /* 'x' */
8104 else
8105 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8106 p += 2;
8107 }
8108
8109 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8110 {
8111 struct packet_reg *r = &rsa->regs[i];
8112 long reg_size = register_size (gdbarch, i);
8113
8114 if (r->in_g_packet)
8115 {
8116 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8117 /* This shouldn't happen - we adjusted in_g_packet above. */
8118 internal_error (__FILE__, __LINE__,
8119 _("unexpected end of 'g' packet reply"));
8120 else if (rs->buf[r->offset * 2] == 'x')
8121 {
8122 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8123 /* The register isn't available, mark it as such (at
8124 the same time setting the value to zero). */
8125 regcache->raw_supply (r->regnum, NULL);
8126 }
8127 else
8128 regcache->raw_supply (r->regnum, regs + r->offset);
8129 }
8130 }
8131 }
8132
8133 void
8134 remote_target::fetch_registers_using_g (struct regcache *regcache)
8135 {
8136 send_g_packet ();
8137 process_g_packet (regcache);
8138 }
8139
8140 /* Make the remote selected traceframe match GDB's selected
8141 traceframe. */
8142
8143 void
8144 remote_target::set_remote_traceframe ()
8145 {
8146 int newnum;
8147 struct remote_state *rs = get_remote_state ();
8148
8149 if (rs->remote_traceframe_number == get_traceframe_number ())
8150 return;
8151
8152 /* Avoid recursion, remote_trace_find calls us again. */
8153 rs->remote_traceframe_number = get_traceframe_number ();
8154
8155 newnum = target_trace_find (tfind_number,
8156 get_traceframe_number (), 0, 0, NULL);
8157
8158 /* Should not happen. If it does, all bets are off. */
8159 if (newnum != get_traceframe_number ())
8160 warning (_("could not set remote traceframe"));
8161 }
8162
8163 void
8164 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8165 {
8166 struct gdbarch *gdbarch = regcache->arch ();
8167 struct remote_state *rs = get_remote_state ();
8168 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8169 int i;
8170
8171 set_remote_traceframe ();
8172 set_general_thread (regcache->ptid ());
8173
8174 if (regnum >= 0)
8175 {
8176 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8177
8178 gdb_assert (reg != NULL);
8179
8180 /* If this register might be in the 'g' packet, try that first -
8181 we are likely to read more than one register. If this is the
8182 first 'g' packet, we might be overly optimistic about its
8183 contents, so fall back to 'p'. */
8184 if (reg->in_g_packet)
8185 {
8186 fetch_registers_using_g (regcache);
8187 if (reg->in_g_packet)
8188 return;
8189 }
8190
8191 if (fetch_register_using_p (regcache, reg))
8192 return;
8193
8194 /* This register is not available. */
8195 regcache->raw_supply (reg->regnum, NULL);
8196
8197 return;
8198 }
8199
8200 fetch_registers_using_g (regcache);
8201
8202 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8203 if (!rsa->regs[i].in_g_packet)
8204 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8205 {
8206 /* This register is not available. */
8207 regcache->raw_supply (i, NULL);
8208 }
8209 }
8210
8211 /* Prepare to store registers. Since we may send them all (using a
8212 'G' request), we have to read out the ones we don't want to change
8213 first. */
8214
8215 void
8216 remote_target::prepare_to_store (struct regcache *regcache)
8217 {
8218 struct remote_state *rs = get_remote_state ();
8219 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8220 int i;
8221
8222 /* Make sure the entire registers array is valid. */
8223 switch (packet_support (PACKET_P))
8224 {
8225 case PACKET_DISABLE:
8226 case PACKET_SUPPORT_UNKNOWN:
8227 /* Make sure all the necessary registers are cached. */
8228 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8229 if (rsa->regs[i].in_g_packet)
8230 regcache->raw_update (rsa->regs[i].regnum);
8231 break;
8232 case PACKET_ENABLE:
8233 break;
8234 }
8235 }
8236
8237 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8238 packet was not recognized. */
8239
8240 int
8241 remote_target::store_register_using_P (const struct regcache *regcache,
8242 packet_reg *reg)
8243 {
8244 struct gdbarch *gdbarch = regcache->arch ();
8245 struct remote_state *rs = get_remote_state ();
8246 /* Try storing a single register. */
8247 char *buf = rs->buf.data ();
8248 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8249 char *p;
8250
8251 if (packet_support (PACKET_P) == PACKET_DISABLE)
8252 return 0;
8253
8254 if (reg->pnum == -1)
8255 return 0;
8256
8257 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8258 p = buf + strlen (buf);
8259 regcache->raw_collect (reg->regnum, regp);
8260 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8261 putpkt (rs->buf);
8262 getpkt (&rs->buf, 0);
8263
8264 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8265 {
8266 case PACKET_OK:
8267 return 1;
8268 case PACKET_ERROR:
8269 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8270 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8271 case PACKET_UNKNOWN:
8272 return 0;
8273 default:
8274 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8275 }
8276 }
8277
8278 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8279 contents of the register cache buffer. FIXME: ignores errors. */
8280
8281 void
8282 remote_target::store_registers_using_G (const struct regcache *regcache)
8283 {
8284 struct remote_state *rs = get_remote_state ();
8285 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8286 gdb_byte *regs;
8287 char *p;
8288
8289 /* Extract all the registers in the regcache copying them into a
8290 local buffer. */
8291 {
8292 int i;
8293
8294 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8295 memset (regs, 0, rsa->sizeof_g_packet);
8296 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8297 {
8298 struct packet_reg *r = &rsa->regs[i];
8299
8300 if (r->in_g_packet)
8301 regcache->raw_collect (r->regnum, regs + r->offset);
8302 }
8303 }
8304
8305 /* Command describes registers byte by byte,
8306 each byte encoded as two hex characters. */
8307 p = rs->buf.data ();
8308 *p++ = 'G';
8309 bin2hex (regs, p, rsa->sizeof_g_packet);
8310 putpkt (rs->buf);
8311 getpkt (&rs->buf, 0);
8312 if (packet_check_result (rs->buf) == PACKET_ERROR)
8313 error (_("Could not write registers; remote failure reply '%s'"),
8314 rs->buf.data ());
8315 }
8316
8317 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8318 of the register cache buffer. FIXME: ignores errors. */
8319
8320 void
8321 remote_target::store_registers (struct regcache *regcache, int regnum)
8322 {
8323 struct gdbarch *gdbarch = regcache->arch ();
8324 struct remote_state *rs = get_remote_state ();
8325 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8326 int i;
8327
8328 set_remote_traceframe ();
8329 set_general_thread (regcache->ptid ());
8330
8331 if (regnum >= 0)
8332 {
8333 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8334
8335 gdb_assert (reg != NULL);
8336
8337 /* Always prefer to store registers using the 'P' packet if
8338 possible; we often change only a small number of registers.
8339 Sometimes we change a larger number; we'd need help from a
8340 higher layer to know to use 'G'. */
8341 if (store_register_using_P (regcache, reg))
8342 return;
8343
8344 /* For now, don't complain if we have no way to write the
8345 register. GDB loses track of unavailable registers too
8346 easily. Some day, this may be an error. We don't have
8347 any way to read the register, either... */
8348 if (!reg->in_g_packet)
8349 return;
8350
8351 store_registers_using_G (regcache);
8352 return;
8353 }
8354
8355 store_registers_using_G (regcache);
8356
8357 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8358 if (!rsa->regs[i].in_g_packet)
8359 if (!store_register_using_P (regcache, &rsa->regs[i]))
8360 /* See above for why we do not issue an error here. */
8361 continue;
8362 }
8363 \f
8364
8365 /* Return the number of hex digits in num. */
8366
8367 static int
8368 hexnumlen (ULONGEST num)
8369 {
8370 int i;
8371
8372 for (i = 0; num != 0; i++)
8373 num >>= 4;
8374
8375 return std::max (i, 1);
8376 }
8377
8378 /* Set BUF to the minimum number of hex digits representing NUM. */
8379
8380 static int
8381 hexnumstr (char *buf, ULONGEST num)
8382 {
8383 int len = hexnumlen (num);
8384
8385 return hexnumnstr (buf, num, len);
8386 }
8387
8388
8389 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8390
8391 static int
8392 hexnumnstr (char *buf, ULONGEST num, int width)
8393 {
8394 int i;
8395
8396 buf[width] = '\0';
8397
8398 for (i = width - 1; i >= 0; i--)
8399 {
8400 buf[i] = "0123456789abcdef"[(num & 0xf)];
8401 num >>= 4;
8402 }
8403
8404 return width;
8405 }
8406
8407 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8408
8409 static CORE_ADDR
8410 remote_address_masked (CORE_ADDR addr)
8411 {
8412 unsigned int address_size = remote_address_size;
8413
8414 /* If "remoteaddresssize" was not set, default to target address size. */
8415 if (!address_size)
8416 address_size = gdbarch_addr_bit (target_gdbarch ());
8417
8418 if (address_size > 0
8419 && address_size < (sizeof (ULONGEST) * 8))
8420 {
8421 /* Only create a mask when that mask can safely be constructed
8422 in a ULONGEST variable. */
8423 ULONGEST mask = 1;
8424
8425 mask = (mask << address_size) - 1;
8426 addr &= mask;
8427 }
8428 return addr;
8429 }
8430
8431 /* Determine whether the remote target supports binary downloading.
8432 This is accomplished by sending a no-op memory write of zero length
8433 to the target at the specified address. It does not suffice to send
8434 the whole packet, since many stubs strip the eighth bit and
8435 subsequently compute a wrong checksum, which causes real havoc with
8436 remote_write_bytes.
8437
8438 NOTE: This can still lose if the serial line is not eight-bit
8439 clean. In cases like this, the user should clear "remote
8440 X-packet". */
8441
8442 void
8443 remote_target::check_binary_download (CORE_ADDR addr)
8444 {
8445 struct remote_state *rs = get_remote_state ();
8446
8447 switch (packet_support (PACKET_X))
8448 {
8449 case PACKET_DISABLE:
8450 break;
8451 case PACKET_ENABLE:
8452 break;
8453 case PACKET_SUPPORT_UNKNOWN:
8454 {
8455 char *p;
8456
8457 p = rs->buf.data ();
8458 *p++ = 'X';
8459 p += hexnumstr (p, (ULONGEST) addr);
8460 *p++ = ',';
8461 p += hexnumstr (p, (ULONGEST) 0);
8462 *p++ = ':';
8463 *p = '\0';
8464
8465 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8466 getpkt (&rs->buf, 0);
8467
8468 if (rs->buf[0] == '\0')
8469 {
8470 if (remote_debug)
8471 fprintf_unfiltered (gdb_stdlog,
8472 "binary downloading NOT "
8473 "supported by target\n");
8474 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8475 }
8476 else
8477 {
8478 if (remote_debug)
8479 fprintf_unfiltered (gdb_stdlog,
8480 "binary downloading supported by target\n");
8481 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8482 }
8483 break;
8484 }
8485 }
8486 }
8487
8488 /* Helper function to resize the payload in order to try to get a good
8489 alignment. We try to write an amount of data such that the next write will
8490 start on an address aligned on REMOTE_ALIGN_WRITES. */
8491
8492 static int
8493 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8494 {
8495 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8496 }
8497
8498 /* Write memory data directly to the remote machine.
8499 This does not inform the data cache; the data cache uses this.
8500 HEADER is the starting part of the packet.
8501 MEMADDR is the address in the remote memory space.
8502 MYADDR is the address of the buffer in our space.
8503 LEN_UNITS is the number of addressable units to write.
8504 UNIT_SIZE is the length in bytes of an addressable unit.
8505 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8506 should send data as binary ('X'), or hex-encoded ('M').
8507
8508 The function creates packet of the form
8509 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8510
8511 where encoding of <DATA> is terminated by PACKET_FORMAT.
8512
8513 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8514 are omitted.
8515
8516 Return the transferred status, error or OK (an
8517 'enum target_xfer_status' value). Save the number of addressable units
8518 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8519
8520 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8521 exchange between gdb and the stub could look like (?? in place of the
8522 checksum):
8523
8524 -> $m1000,4#??
8525 <- aaaabbbbccccdddd
8526
8527 -> $M1000,3:eeeeffffeeee#??
8528 <- OK
8529
8530 -> $m1000,4#??
8531 <- eeeeffffeeeedddd */
8532
8533 target_xfer_status
8534 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8535 const gdb_byte *myaddr,
8536 ULONGEST len_units,
8537 int unit_size,
8538 ULONGEST *xfered_len_units,
8539 char packet_format, int use_length)
8540 {
8541 struct remote_state *rs = get_remote_state ();
8542 char *p;
8543 char *plen = NULL;
8544 int plenlen = 0;
8545 int todo_units;
8546 int units_written;
8547 int payload_capacity_bytes;
8548 int payload_length_bytes;
8549
8550 if (packet_format != 'X' && packet_format != 'M')
8551 internal_error (__FILE__, __LINE__,
8552 _("remote_write_bytes_aux: bad packet format"));
8553
8554 if (len_units == 0)
8555 return TARGET_XFER_EOF;
8556
8557 payload_capacity_bytes = get_memory_write_packet_size ();
8558
8559 /* The packet buffer will be large enough for the payload;
8560 get_memory_packet_size ensures this. */
8561 rs->buf[0] = '\0';
8562
8563 /* Compute the size of the actual payload by subtracting out the
8564 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8565
8566 payload_capacity_bytes -= strlen ("$,:#NN");
8567 if (!use_length)
8568 /* The comma won't be used. */
8569 payload_capacity_bytes += 1;
8570 payload_capacity_bytes -= strlen (header);
8571 payload_capacity_bytes -= hexnumlen (memaddr);
8572
8573 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8574
8575 strcat (rs->buf.data (), header);
8576 p = rs->buf.data () + strlen (header);
8577
8578 /* Compute a best guess of the number of bytes actually transfered. */
8579 if (packet_format == 'X')
8580 {
8581 /* Best guess at number of bytes that will fit. */
8582 todo_units = std::min (len_units,
8583 (ULONGEST) payload_capacity_bytes / unit_size);
8584 if (use_length)
8585 payload_capacity_bytes -= hexnumlen (todo_units);
8586 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8587 }
8588 else
8589 {
8590 /* Number of bytes that will fit. */
8591 todo_units
8592 = std::min (len_units,
8593 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8594 if (use_length)
8595 payload_capacity_bytes -= hexnumlen (todo_units);
8596 todo_units = std::min (todo_units,
8597 (payload_capacity_bytes / unit_size) / 2);
8598 }
8599
8600 if (todo_units <= 0)
8601 internal_error (__FILE__, __LINE__,
8602 _("minimum packet size too small to write data"));
8603
8604 /* If we already need another packet, then try to align the end
8605 of this packet to a useful boundary. */
8606 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8607 todo_units = align_for_efficient_write (todo_units, memaddr);
8608
8609 /* Append "<memaddr>". */
8610 memaddr = remote_address_masked (memaddr);
8611 p += hexnumstr (p, (ULONGEST) memaddr);
8612
8613 if (use_length)
8614 {
8615 /* Append ",". */
8616 *p++ = ',';
8617
8618 /* Append the length and retain its location and size. It may need to be
8619 adjusted once the packet body has been created. */
8620 plen = p;
8621 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8622 p += plenlen;
8623 }
8624
8625 /* Append ":". */
8626 *p++ = ':';
8627 *p = '\0';
8628
8629 /* Append the packet body. */
8630 if (packet_format == 'X')
8631 {
8632 /* Binary mode. Send target system values byte by byte, in
8633 increasing byte addresses. Only escape certain critical
8634 characters. */
8635 payload_length_bytes =
8636 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8637 &units_written, payload_capacity_bytes);
8638
8639 /* If not all TODO units fit, then we'll need another packet. Make
8640 a second try to keep the end of the packet aligned. Don't do
8641 this if the packet is tiny. */
8642 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8643 {
8644 int new_todo_units;
8645
8646 new_todo_units = align_for_efficient_write (units_written, memaddr);
8647
8648 if (new_todo_units != units_written)
8649 payload_length_bytes =
8650 remote_escape_output (myaddr, new_todo_units, unit_size,
8651 (gdb_byte *) p, &units_written,
8652 payload_capacity_bytes);
8653 }
8654
8655 p += payload_length_bytes;
8656 if (use_length && units_written < todo_units)
8657 {
8658 /* Escape chars have filled up the buffer prematurely,
8659 and we have actually sent fewer units than planned.
8660 Fix-up the length field of the packet. Use the same
8661 number of characters as before. */
8662 plen += hexnumnstr (plen, (ULONGEST) units_written,
8663 plenlen);
8664 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8665 }
8666 }
8667 else
8668 {
8669 /* Normal mode: Send target system values byte by byte, in
8670 increasing byte addresses. Each byte is encoded as a two hex
8671 value. */
8672 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8673 units_written = todo_units;
8674 }
8675
8676 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8677 getpkt (&rs->buf, 0);
8678
8679 if (rs->buf[0] == 'E')
8680 return TARGET_XFER_E_IO;
8681
8682 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8683 send fewer units than we'd planned. */
8684 *xfered_len_units = (ULONGEST) units_written;
8685 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8686 }
8687
8688 /* Write memory data directly to the remote machine.
8689 This does not inform the data cache; the data cache uses this.
8690 MEMADDR is the address in the remote memory space.
8691 MYADDR is the address of the buffer in our space.
8692 LEN is the number of bytes.
8693
8694 Return the transferred status, error or OK (an
8695 'enum target_xfer_status' value). Save the number of bytes
8696 transferred in *XFERED_LEN. Only transfer a single packet. */
8697
8698 target_xfer_status
8699 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8700 ULONGEST len, int unit_size,
8701 ULONGEST *xfered_len)
8702 {
8703 const char *packet_format = NULL;
8704
8705 /* Check whether the target supports binary download. */
8706 check_binary_download (memaddr);
8707
8708 switch (packet_support (PACKET_X))
8709 {
8710 case PACKET_ENABLE:
8711 packet_format = "X";
8712 break;
8713 case PACKET_DISABLE:
8714 packet_format = "M";
8715 break;
8716 case PACKET_SUPPORT_UNKNOWN:
8717 internal_error (__FILE__, __LINE__,
8718 _("remote_write_bytes: bad internal state"));
8719 default:
8720 internal_error (__FILE__, __LINE__, _("bad switch"));
8721 }
8722
8723 return remote_write_bytes_aux (packet_format,
8724 memaddr, myaddr, len, unit_size, xfered_len,
8725 packet_format[0], 1);
8726 }
8727
8728 /* Read memory data directly from the remote machine.
8729 This does not use the data cache; the data cache uses this.
8730 MEMADDR is the address in the remote memory space.
8731 MYADDR is the address of the buffer in our space.
8732 LEN_UNITS is the number of addressable memory units to read..
8733 UNIT_SIZE is the length in bytes of an addressable unit.
8734
8735 Return the transferred status, error or OK (an
8736 'enum target_xfer_status' value). Save the number of bytes
8737 transferred in *XFERED_LEN_UNITS.
8738
8739 See the comment of remote_write_bytes_aux for an example of
8740 memory read/write exchange between gdb and the stub. */
8741
8742 target_xfer_status
8743 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8744 ULONGEST len_units,
8745 int unit_size, ULONGEST *xfered_len_units)
8746 {
8747 struct remote_state *rs = get_remote_state ();
8748 int buf_size_bytes; /* Max size of packet output buffer. */
8749 char *p;
8750 int todo_units;
8751 int decoded_bytes;
8752
8753 buf_size_bytes = get_memory_read_packet_size ();
8754 /* The packet buffer will be large enough for the payload;
8755 get_memory_packet_size ensures this. */
8756
8757 /* Number of units that will fit. */
8758 todo_units = std::min (len_units,
8759 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8760
8761 /* Construct "m"<memaddr>","<len>". */
8762 memaddr = remote_address_masked (memaddr);
8763 p = rs->buf.data ();
8764 *p++ = 'm';
8765 p += hexnumstr (p, (ULONGEST) memaddr);
8766 *p++ = ',';
8767 p += hexnumstr (p, (ULONGEST) todo_units);
8768 *p = '\0';
8769 putpkt (rs->buf);
8770 getpkt (&rs->buf, 0);
8771 if (rs->buf[0] == 'E'
8772 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8773 && rs->buf[3] == '\0')
8774 return TARGET_XFER_E_IO;
8775 /* Reply describes memory byte by byte, each byte encoded as two hex
8776 characters. */
8777 p = rs->buf.data ();
8778 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8779 /* Return what we have. Let higher layers handle partial reads. */
8780 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8781 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8782 }
8783
8784 /* Using the set of read-only target sections of remote, read live
8785 read-only memory.
8786
8787 For interface/parameters/return description see target.h,
8788 to_xfer_partial. */
8789
8790 target_xfer_status
8791 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8792 ULONGEST memaddr,
8793 ULONGEST len,
8794 int unit_size,
8795 ULONGEST *xfered_len)
8796 {
8797 struct target_section *secp;
8798 struct target_section_table *table;
8799
8800 secp = target_section_by_addr (this, memaddr);
8801 if (secp != NULL
8802 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8803 secp->the_bfd_section)
8804 & SEC_READONLY))
8805 {
8806 struct target_section *p;
8807 ULONGEST memend = memaddr + len;
8808
8809 table = target_get_section_table (this);
8810
8811 for (p = table->sections; p < table->sections_end; p++)
8812 {
8813 if (memaddr >= p->addr)
8814 {
8815 if (memend <= p->endaddr)
8816 {
8817 /* Entire transfer is within this section. */
8818 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8819 xfered_len);
8820 }
8821 else if (memaddr >= p->endaddr)
8822 {
8823 /* This section ends before the transfer starts. */
8824 continue;
8825 }
8826 else
8827 {
8828 /* This section overlaps the transfer. Just do half. */
8829 len = p->endaddr - memaddr;
8830 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8831 xfered_len);
8832 }
8833 }
8834 }
8835 }
8836
8837 return TARGET_XFER_EOF;
8838 }
8839
8840 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8841 first if the requested memory is unavailable in traceframe.
8842 Otherwise, fall back to remote_read_bytes_1. */
8843
8844 target_xfer_status
8845 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8846 gdb_byte *myaddr, ULONGEST len, int unit_size,
8847 ULONGEST *xfered_len)
8848 {
8849 if (len == 0)
8850 return TARGET_XFER_EOF;
8851
8852 if (get_traceframe_number () != -1)
8853 {
8854 std::vector<mem_range> available;
8855
8856 /* If we fail to get the set of available memory, then the
8857 target does not support querying traceframe info, and so we
8858 attempt reading from the traceframe anyway (assuming the
8859 target implements the old QTro packet then). */
8860 if (traceframe_available_memory (&available, memaddr, len))
8861 {
8862 if (available.empty () || available[0].start != memaddr)
8863 {
8864 enum target_xfer_status res;
8865
8866 /* Don't read into the traceframe's available
8867 memory. */
8868 if (!available.empty ())
8869 {
8870 LONGEST oldlen = len;
8871
8872 len = available[0].start - memaddr;
8873 gdb_assert (len <= oldlen);
8874 }
8875
8876 /* This goes through the topmost target again. */
8877 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8878 len, unit_size, xfered_len);
8879 if (res == TARGET_XFER_OK)
8880 return TARGET_XFER_OK;
8881 else
8882 {
8883 /* No use trying further, we know some memory starting
8884 at MEMADDR isn't available. */
8885 *xfered_len = len;
8886 return (*xfered_len != 0) ?
8887 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8888 }
8889 }
8890
8891 /* Don't try to read more than how much is available, in
8892 case the target implements the deprecated QTro packet to
8893 cater for older GDBs (the target's knowledge of read-only
8894 sections may be outdated by now). */
8895 len = available[0].length;
8896 }
8897 }
8898
8899 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8900 }
8901
8902 \f
8903
8904 /* Sends a packet with content determined by the printf format string
8905 FORMAT and the remaining arguments, then gets the reply. Returns
8906 whether the packet was a success, a failure, or unknown. */
8907
8908 packet_result
8909 remote_target::remote_send_printf (const char *format, ...)
8910 {
8911 struct remote_state *rs = get_remote_state ();
8912 int max_size = get_remote_packet_size ();
8913 va_list ap;
8914
8915 va_start (ap, format);
8916
8917 rs->buf[0] = '\0';
8918 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8919
8920 va_end (ap);
8921
8922 if (size >= max_size)
8923 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8924
8925 if (putpkt (rs->buf) < 0)
8926 error (_("Communication problem with target."));
8927
8928 rs->buf[0] = '\0';
8929 getpkt (&rs->buf, 0);
8930
8931 return packet_check_result (rs->buf);
8932 }
8933
8934 /* Flash writing can take quite some time. We'll set
8935 effectively infinite timeout for flash operations.
8936 In future, we'll need to decide on a better approach. */
8937 static const int remote_flash_timeout = 1000;
8938
8939 void
8940 remote_target::flash_erase (ULONGEST address, LONGEST length)
8941 {
8942 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8943 enum packet_result ret;
8944 scoped_restore restore_timeout
8945 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8946
8947 ret = remote_send_printf ("vFlashErase:%s,%s",
8948 phex (address, addr_size),
8949 phex (length, 4));
8950 switch (ret)
8951 {
8952 case PACKET_UNKNOWN:
8953 error (_("Remote target does not support flash erase"));
8954 case PACKET_ERROR:
8955 error (_("Error erasing flash with vFlashErase packet"));
8956 default:
8957 break;
8958 }
8959 }
8960
8961 target_xfer_status
8962 remote_target::remote_flash_write (ULONGEST address,
8963 ULONGEST length, ULONGEST *xfered_len,
8964 const gdb_byte *data)
8965 {
8966 scoped_restore restore_timeout
8967 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8968 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8969 xfered_len,'X', 0);
8970 }
8971
8972 void
8973 remote_target::flash_done ()
8974 {
8975 int ret;
8976
8977 scoped_restore restore_timeout
8978 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8979
8980 ret = remote_send_printf ("vFlashDone");
8981
8982 switch (ret)
8983 {
8984 case PACKET_UNKNOWN:
8985 error (_("Remote target does not support vFlashDone"));
8986 case PACKET_ERROR:
8987 error (_("Error finishing flash operation"));
8988 default:
8989 break;
8990 }
8991 }
8992
8993 void
8994 remote_target::files_info ()
8995 {
8996 puts_filtered ("Debugging a target over a serial line.\n");
8997 }
8998 \f
8999 /* Stuff for dealing with the packets which are part of this protocol.
9000 See comment at top of file for details. */
9001
9002 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9003 error to higher layers. Called when a serial error is detected.
9004 The exception message is STRING, followed by a colon and a blank,
9005 the system error message for errno at function entry and final dot
9006 for output compatibility with throw_perror_with_name. */
9007
9008 static void
9009 unpush_and_perror (const char *string)
9010 {
9011 int saved_errno = errno;
9012
9013 remote_unpush_target ();
9014 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9015 safe_strerror (saved_errno));
9016 }
9017
9018 /* Read a single character from the remote end. The current quit
9019 handler is overridden to avoid quitting in the middle of packet
9020 sequence, as that would break communication with the remote server.
9021 See remote_serial_quit_handler for more detail. */
9022
9023 int
9024 remote_target::readchar (int timeout)
9025 {
9026 int ch;
9027 struct remote_state *rs = get_remote_state ();
9028
9029 {
9030 scoped_restore restore_quit_target
9031 = make_scoped_restore (&curr_quit_handler_target, this);
9032 scoped_restore restore_quit
9033 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9034
9035 rs->got_ctrlc_during_io = 0;
9036
9037 ch = serial_readchar (rs->remote_desc, timeout);
9038
9039 if (rs->got_ctrlc_during_io)
9040 set_quit_flag ();
9041 }
9042
9043 if (ch >= 0)
9044 return ch;
9045
9046 switch ((enum serial_rc) ch)
9047 {
9048 case SERIAL_EOF:
9049 remote_unpush_target ();
9050 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9051 /* no return */
9052 case SERIAL_ERROR:
9053 unpush_and_perror (_("Remote communication error. "
9054 "Target disconnected."));
9055 /* no return */
9056 case SERIAL_TIMEOUT:
9057 break;
9058 }
9059 return ch;
9060 }
9061
9062 /* Wrapper for serial_write that closes the target and throws if
9063 writing fails. The current quit handler is overridden to avoid
9064 quitting in the middle of packet sequence, as that would break
9065 communication with the remote server. See
9066 remote_serial_quit_handler for more detail. */
9067
9068 void
9069 remote_target::remote_serial_write (const char *str, int len)
9070 {
9071 struct remote_state *rs = get_remote_state ();
9072
9073 scoped_restore restore_quit_target
9074 = make_scoped_restore (&curr_quit_handler_target, this);
9075 scoped_restore restore_quit
9076 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9077
9078 rs->got_ctrlc_during_io = 0;
9079
9080 if (serial_write (rs->remote_desc, str, len))
9081 {
9082 unpush_and_perror (_("Remote communication error. "
9083 "Target disconnected."));
9084 }
9085
9086 if (rs->got_ctrlc_during_io)
9087 set_quit_flag ();
9088 }
9089
9090 /* Return a string representing an escaped version of BUF, of len N.
9091 E.g. \n is converted to \\n, \t to \\t, etc. */
9092
9093 static std::string
9094 escape_buffer (const char *buf, int n)
9095 {
9096 string_file stb;
9097
9098 stb.putstrn (buf, n, '\\');
9099 return std::move (stb.string ());
9100 }
9101
9102 /* Display a null-terminated packet on stdout, for debugging, using C
9103 string notation. */
9104
9105 static void
9106 print_packet (const char *buf)
9107 {
9108 puts_filtered ("\"");
9109 fputstr_filtered (buf, '"', gdb_stdout);
9110 puts_filtered ("\"");
9111 }
9112
9113 int
9114 remote_target::putpkt (const char *buf)
9115 {
9116 return putpkt_binary (buf, strlen (buf));
9117 }
9118
9119 /* Wrapper around remote_target::putpkt to avoid exporting
9120 remote_target. */
9121
9122 int
9123 putpkt (remote_target *remote, const char *buf)
9124 {
9125 return remote->putpkt (buf);
9126 }
9127
9128 /* Send a packet to the remote machine, with error checking. The data
9129 of the packet is in BUF. The string in BUF can be at most
9130 get_remote_packet_size () - 5 to account for the $, # and checksum,
9131 and for a possible /0 if we are debugging (remote_debug) and want
9132 to print the sent packet as a string. */
9133
9134 int
9135 remote_target::putpkt_binary (const char *buf, int cnt)
9136 {
9137 struct remote_state *rs = get_remote_state ();
9138 int i;
9139 unsigned char csum = 0;
9140 gdb::def_vector<char> data (cnt + 6);
9141 char *buf2 = data.data ();
9142
9143 int ch;
9144 int tcount = 0;
9145 char *p;
9146
9147 /* Catch cases like trying to read memory or listing threads while
9148 we're waiting for a stop reply. The remote server wouldn't be
9149 ready to handle this request, so we'd hang and timeout. We don't
9150 have to worry about this in synchronous mode, because in that
9151 case it's not possible to issue a command while the target is
9152 running. This is not a problem in non-stop mode, because in that
9153 case, the stub is always ready to process serial input. */
9154 if (!target_is_non_stop_p ()
9155 && target_is_async_p ()
9156 && rs->waiting_for_stop_reply)
9157 {
9158 error (_("Cannot execute this command while the target is running.\n"
9159 "Use the \"interrupt\" command to stop the target\n"
9160 "and then try again."));
9161 }
9162
9163 /* We're sending out a new packet. Make sure we don't look at a
9164 stale cached response. */
9165 rs->cached_wait_status = 0;
9166
9167 /* Copy the packet into buffer BUF2, encapsulating it
9168 and giving it a checksum. */
9169
9170 p = buf2;
9171 *p++ = '$';
9172
9173 for (i = 0; i < cnt; i++)
9174 {
9175 csum += buf[i];
9176 *p++ = buf[i];
9177 }
9178 *p++ = '#';
9179 *p++ = tohex ((csum >> 4) & 0xf);
9180 *p++ = tohex (csum & 0xf);
9181
9182 /* Send it over and over until we get a positive ack. */
9183
9184 while (1)
9185 {
9186 int started_error_output = 0;
9187
9188 if (remote_debug)
9189 {
9190 *p = '\0';
9191
9192 int len = (int) (p - buf2);
9193
9194 std::string str
9195 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9196
9197 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9198
9199 if (len > REMOTE_DEBUG_MAX_CHAR)
9200 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9201 len - REMOTE_DEBUG_MAX_CHAR);
9202
9203 fprintf_unfiltered (gdb_stdlog, "...");
9204
9205 gdb_flush (gdb_stdlog);
9206 }
9207 remote_serial_write (buf2, p - buf2);
9208
9209 /* If this is a no acks version of the remote protocol, send the
9210 packet and move on. */
9211 if (rs->noack_mode)
9212 break;
9213
9214 /* Read until either a timeout occurs (-2) or '+' is read.
9215 Handle any notification that arrives in the mean time. */
9216 while (1)
9217 {
9218 ch = readchar (remote_timeout);
9219
9220 if (remote_debug)
9221 {
9222 switch (ch)
9223 {
9224 case '+':
9225 case '-':
9226 case SERIAL_TIMEOUT:
9227 case '$':
9228 case '%':
9229 if (started_error_output)
9230 {
9231 putchar_unfiltered ('\n');
9232 started_error_output = 0;
9233 }
9234 }
9235 }
9236
9237 switch (ch)
9238 {
9239 case '+':
9240 if (remote_debug)
9241 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9242 return 1;
9243 case '-':
9244 if (remote_debug)
9245 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9246 /* FALLTHROUGH */
9247 case SERIAL_TIMEOUT:
9248 tcount++;
9249 if (tcount > 3)
9250 return 0;
9251 break; /* Retransmit buffer. */
9252 case '$':
9253 {
9254 if (remote_debug)
9255 fprintf_unfiltered (gdb_stdlog,
9256 "Packet instead of Ack, ignoring it\n");
9257 /* It's probably an old response sent because an ACK
9258 was lost. Gobble up the packet and ack it so it
9259 doesn't get retransmitted when we resend this
9260 packet. */
9261 skip_frame ();
9262 remote_serial_write ("+", 1);
9263 continue; /* Now, go look for +. */
9264 }
9265
9266 case '%':
9267 {
9268 int val;
9269
9270 /* If we got a notification, handle it, and go back to looking
9271 for an ack. */
9272 /* We've found the start of a notification. Now
9273 collect the data. */
9274 val = read_frame (&rs->buf);
9275 if (val >= 0)
9276 {
9277 if (remote_debug)
9278 {
9279 std::string str = escape_buffer (rs->buf.data (), val);
9280
9281 fprintf_unfiltered (gdb_stdlog,
9282 " Notification received: %s\n",
9283 str.c_str ());
9284 }
9285 handle_notification (rs->notif_state, rs->buf.data ());
9286 /* We're in sync now, rewait for the ack. */
9287 tcount = 0;
9288 }
9289 else
9290 {
9291 if (remote_debug)
9292 {
9293 if (!started_error_output)
9294 {
9295 started_error_output = 1;
9296 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9297 }
9298 fputc_unfiltered (ch & 0177, gdb_stdlog);
9299 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9300 }
9301 }
9302 continue;
9303 }
9304 /* fall-through */
9305 default:
9306 if (remote_debug)
9307 {
9308 if (!started_error_output)
9309 {
9310 started_error_output = 1;
9311 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9312 }
9313 fputc_unfiltered (ch & 0177, gdb_stdlog);
9314 }
9315 continue;
9316 }
9317 break; /* Here to retransmit. */
9318 }
9319
9320 #if 0
9321 /* This is wrong. If doing a long backtrace, the user should be
9322 able to get out next time we call QUIT, without anything as
9323 violent as interrupt_query. If we want to provide a way out of
9324 here without getting to the next QUIT, it should be based on
9325 hitting ^C twice as in remote_wait. */
9326 if (quit_flag)
9327 {
9328 quit_flag = 0;
9329 interrupt_query ();
9330 }
9331 #endif
9332 }
9333
9334 return 0;
9335 }
9336
9337 /* Come here after finding the start of a frame when we expected an
9338 ack. Do our best to discard the rest of this packet. */
9339
9340 void
9341 remote_target::skip_frame ()
9342 {
9343 int c;
9344
9345 while (1)
9346 {
9347 c = readchar (remote_timeout);
9348 switch (c)
9349 {
9350 case SERIAL_TIMEOUT:
9351 /* Nothing we can do. */
9352 return;
9353 case '#':
9354 /* Discard the two bytes of checksum and stop. */
9355 c = readchar (remote_timeout);
9356 if (c >= 0)
9357 c = readchar (remote_timeout);
9358
9359 return;
9360 case '*': /* Run length encoding. */
9361 /* Discard the repeat count. */
9362 c = readchar (remote_timeout);
9363 if (c < 0)
9364 return;
9365 break;
9366 default:
9367 /* A regular character. */
9368 break;
9369 }
9370 }
9371 }
9372
9373 /* Come here after finding the start of the frame. Collect the rest
9374 into *BUF, verifying the checksum, length, and handling run-length
9375 compression. NUL terminate the buffer. If there is not enough room,
9376 expand *BUF.
9377
9378 Returns -1 on error, number of characters in buffer (ignoring the
9379 trailing NULL) on success. (could be extended to return one of the
9380 SERIAL status indications). */
9381
9382 long
9383 remote_target::read_frame (gdb::char_vector *buf_p)
9384 {
9385 unsigned char csum;
9386 long bc;
9387 int c;
9388 char *buf = buf_p->data ();
9389 struct remote_state *rs = get_remote_state ();
9390
9391 csum = 0;
9392 bc = 0;
9393
9394 while (1)
9395 {
9396 c = readchar (remote_timeout);
9397 switch (c)
9398 {
9399 case SERIAL_TIMEOUT:
9400 if (remote_debug)
9401 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9402 return -1;
9403 case '$':
9404 if (remote_debug)
9405 fputs_filtered ("Saw new packet start in middle of old one\n",
9406 gdb_stdlog);
9407 return -1; /* Start a new packet, count retries. */
9408 case '#':
9409 {
9410 unsigned char pktcsum;
9411 int check_0 = 0;
9412 int check_1 = 0;
9413
9414 buf[bc] = '\0';
9415
9416 check_0 = readchar (remote_timeout);
9417 if (check_0 >= 0)
9418 check_1 = readchar (remote_timeout);
9419
9420 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9421 {
9422 if (remote_debug)
9423 fputs_filtered ("Timeout in checksum, retrying\n",
9424 gdb_stdlog);
9425 return -1;
9426 }
9427 else if (check_0 < 0 || check_1 < 0)
9428 {
9429 if (remote_debug)
9430 fputs_filtered ("Communication error in checksum\n",
9431 gdb_stdlog);
9432 return -1;
9433 }
9434
9435 /* Don't recompute the checksum; with no ack packets we
9436 don't have any way to indicate a packet retransmission
9437 is necessary. */
9438 if (rs->noack_mode)
9439 return bc;
9440
9441 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9442 if (csum == pktcsum)
9443 return bc;
9444
9445 if (remote_debug)
9446 {
9447 std::string str = escape_buffer (buf, bc);
9448
9449 fprintf_unfiltered (gdb_stdlog,
9450 "Bad checksum, sentsum=0x%x, "
9451 "csum=0x%x, buf=%s\n",
9452 pktcsum, csum, str.c_str ());
9453 }
9454 /* Number of characters in buffer ignoring trailing
9455 NULL. */
9456 return -1;
9457 }
9458 case '*': /* Run length encoding. */
9459 {
9460 int repeat;
9461
9462 csum += c;
9463 c = readchar (remote_timeout);
9464 csum += c;
9465 repeat = c - ' ' + 3; /* Compute repeat count. */
9466
9467 /* The character before ``*'' is repeated. */
9468
9469 if (repeat > 0 && repeat <= 255 && bc > 0)
9470 {
9471 if (bc + repeat - 1 >= buf_p->size () - 1)
9472 {
9473 /* Make some more room in the buffer. */
9474 buf_p->resize (buf_p->size () + repeat);
9475 buf = buf_p->data ();
9476 }
9477
9478 memset (&buf[bc], buf[bc - 1], repeat);
9479 bc += repeat;
9480 continue;
9481 }
9482
9483 buf[bc] = '\0';
9484 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9485 return -1;
9486 }
9487 default:
9488 if (bc >= buf_p->size () - 1)
9489 {
9490 /* Make some more room in the buffer. */
9491 buf_p->resize (buf_p->size () * 2);
9492 buf = buf_p->data ();
9493 }
9494
9495 buf[bc++] = c;
9496 csum += c;
9497 continue;
9498 }
9499 }
9500 }
9501
9502 /* Read a packet from the remote machine, with error checking, and
9503 store it in *BUF. Resize *BUF if necessary to hold the result. If
9504 FOREVER, wait forever rather than timing out; this is used (in
9505 synchronous mode) to wait for a target that is is executing user
9506 code to stop. */
9507 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9508 don't have to change all the calls to getpkt to deal with the
9509 return value, because at the moment I don't know what the right
9510 thing to do it for those. */
9511
9512 void
9513 remote_target::getpkt (gdb::char_vector *buf, int forever)
9514 {
9515 getpkt_sane (buf, forever);
9516 }
9517
9518
9519 /* Read a packet from the remote machine, with error checking, and
9520 store it in *BUF. Resize *BUF if necessary to hold the result. If
9521 FOREVER, wait forever rather than timing out; this is used (in
9522 synchronous mode) to wait for a target that is is executing user
9523 code to stop. If FOREVER == 0, this function is allowed to time
9524 out gracefully and return an indication of this to the caller.
9525 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9526 consider receiving a notification enough reason to return to the
9527 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9528 holds a notification or not (a regular packet). */
9529
9530 int
9531 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9532 int forever, int expecting_notif,
9533 int *is_notif)
9534 {
9535 struct remote_state *rs = get_remote_state ();
9536 int c;
9537 int tries;
9538 int timeout;
9539 int val = -1;
9540
9541 /* We're reading a new response. Make sure we don't look at a
9542 previously cached response. */
9543 rs->cached_wait_status = 0;
9544
9545 strcpy (buf->data (), "timeout");
9546
9547 if (forever)
9548 timeout = watchdog > 0 ? watchdog : -1;
9549 else if (expecting_notif)
9550 timeout = 0; /* There should already be a char in the buffer. If
9551 not, bail out. */
9552 else
9553 timeout = remote_timeout;
9554
9555 #define MAX_TRIES 3
9556
9557 /* Process any number of notifications, and then return when
9558 we get a packet. */
9559 for (;;)
9560 {
9561 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9562 times. */
9563 for (tries = 1; tries <= MAX_TRIES; tries++)
9564 {
9565 /* This can loop forever if the remote side sends us
9566 characters continuously, but if it pauses, we'll get
9567 SERIAL_TIMEOUT from readchar because of timeout. Then
9568 we'll count that as a retry.
9569
9570 Note that even when forever is set, we will only wait
9571 forever prior to the start of a packet. After that, we
9572 expect characters to arrive at a brisk pace. They should
9573 show up within remote_timeout intervals. */
9574 do
9575 c = readchar (timeout);
9576 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9577
9578 if (c == SERIAL_TIMEOUT)
9579 {
9580 if (expecting_notif)
9581 return -1; /* Don't complain, it's normal to not get
9582 anything in this case. */
9583
9584 if (forever) /* Watchdog went off? Kill the target. */
9585 {
9586 remote_unpush_target ();
9587 throw_error (TARGET_CLOSE_ERROR,
9588 _("Watchdog timeout has expired. "
9589 "Target detached."));
9590 }
9591 if (remote_debug)
9592 fputs_filtered ("Timed out.\n", gdb_stdlog);
9593 }
9594 else
9595 {
9596 /* We've found the start of a packet or notification.
9597 Now collect the data. */
9598 val = read_frame (buf);
9599 if (val >= 0)
9600 break;
9601 }
9602
9603 remote_serial_write ("-", 1);
9604 }
9605
9606 if (tries > MAX_TRIES)
9607 {
9608 /* We have tried hard enough, and just can't receive the
9609 packet/notification. Give up. */
9610 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9611
9612 /* Skip the ack char if we're in no-ack mode. */
9613 if (!rs->noack_mode)
9614 remote_serial_write ("+", 1);
9615 return -1;
9616 }
9617
9618 /* If we got an ordinary packet, return that to our caller. */
9619 if (c == '$')
9620 {
9621 if (remote_debug)
9622 {
9623 std::string str
9624 = escape_buffer (buf->data (),
9625 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9626
9627 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9628 str.c_str ());
9629
9630 if (val > REMOTE_DEBUG_MAX_CHAR)
9631 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9632 val - REMOTE_DEBUG_MAX_CHAR);
9633
9634 fprintf_unfiltered (gdb_stdlog, "\n");
9635 }
9636
9637 /* Skip the ack char if we're in no-ack mode. */
9638 if (!rs->noack_mode)
9639 remote_serial_write ("+", 1);
9640 if (is_notif != NULL)
9641 *is_notif = 0;
9642 return val;
9643 }
9644
9645 /* If we got a notification, handle it, and go back to looking
9646 for a packet. */
9647 else
9648 {
9649 gdb_assert (c == '%');
9650
9651 if (remote_debug)
9652 {
9653 std::string str = escape_buffer (buf->data (), val);
9654
9655 fprintf_unfiltered (gdb_stdlog,
9656 " Notification received: %s\n",
9657 str.c_str ());
9658 }
9659 if (is_notif != NULL)
9660 *is_notif = 1;
9661
9662 handle_notification (rs->notif_state, buf->data ());
9663
9664 /* Notifications require no acknowledgement. */
9665
9666 if (expecting_notif)
9667 return val;
9668 }
9669 }
9670 }
9671
9672 int
9673 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9674 {
9675 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9676 }
9677
9678 int
9679 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9680 int *is_notif)
9681 {
9682 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9683 }
9684
9685 /* Kill any new fork children of process PID that haven't been
9686 processed by follow_fork. */
9687
9688 void
9689 remote_target::kill_new_fork_children (int pid)
9690 {
9691 remote_state *rs = get_remote_state ();
9692 struct notif_client *notif = &notif_client_stop;
9693
9694 /* Kill the fork child threads of any threads in process PID
9695 that are stopped at a fork event. */
9696 for (thread_info *thread : all_non_exited_threads ())
9697 {
9698 struct target_waitstatus *ws = &thread->pending_follow;
9699
9700 if (is_pending_fork_parent (ws, pid, thread->ptid))
9701 {
9702 int child_pid = ws->value.related_pid.pid ();
9703 int res;
9704
9705 res = remote_vkill (child_pid);
9706 if (res != 0)
9707 error (_("Can't kill fork child process %d"), child_pid);
9708 }
9709 }
9710
9711 /* Check for any pending fork events (not reported or processed yet)
9712 in process PID and kill those fork child threads as well. */
9713 remote_notif_get_pending_events (notif);
9714 for (auto &event : rs->stop_reply_queue)
9715 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9716 {
9717 int child_pid = event->ws.value.related_pid.pid ();
9718 int res;
9719
9720 res = remote_vkill (child_pid);
9721 if (res != 0)
9722 error (_("Can't kill fork child process %d"), child_pid);
9723 }
9724 }
9725
9726 \f
9727 /* Target hook to kill the current inferior. */
9728
9729 void
9730 remote_target::kill ()
9731 {
9732 int res = -1;
9733 int pid = inferior_ptid.pid ();
9734 struct remote_state *rs = get_remote_state ();
9735
9736 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9737 {
9738 /* If we're stopped while forking and we haven't followed yet,
9739 kill the child task. We need to do this before killing the
9740 parent task because if this is a vfork then the parent will
9741 be sleeping. */
9742 kill_new_fork_children (pid);
9743
9744 res = remote_vkill (pid);
9745 if (res == 0)
9746 {
9747 target_mourn_inferior (inferior_ptid);
9748 return;
9749 }
9750 }
9751
9752 /* If we are in 'target remote' mode and we are killing the only
9753 inferior, then we will tell gdbserver to exit and unpush the
9754 target. */
9755 if (res == -1 && !remote_multi_process_p (rs)
9756 && number_of_live_inferiors () == 1)
9757 {
9758 remote_kill_k ();
9759
9760 /* We've killed the remote end, we get to mourn it. If we are
9761 not in extended mode, mourning the inferior also unpushes
9762 remote_ops from the target stack, which closes the remote
9763 connection. */
9764 target_mourn_inferior (inferior_ptid);
9765
9766 return;
9767 }
9768
9769 error (_("Can't kill process"));
9770 }
9771
9772 /* Send a kill request to the target using the 'vKill' packet. */
9773
9774 int
9775 remote_target::remote_vkill (int pid)
9776 {
9777 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9778 return -1;
9779
9780 remote_state *rs = get_remote_state ();
9781
9782 /* Tell the remote target to detach. */
9783 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9784 putpkt (rs->buf);
9785 getpkt (&rs->buf, 0);
9786
9787 switch (packet_ok (rs->buf,
9788 &remote_protocol_packets[PACKET_vKill]))
9789 {
9790 case PACKET_OK:
9791 return 0;
9792 case PACKET_ERROR:
9793 return 1;
9794 case PACKET_UNKNOWN:
9795 return -1;
9796 default:
9797 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9798 }
9799 }
9800
9801 /* Send a kill request to the target using the 'k' packet. */
9802
9803 void
9804 remote_target::remote_kill_k ()
9805 {
9806 /* Catch errors so the user can quit from gdb even when we
9807 aren't on speaking terms with the remote system. */
9808 TRY
9809 {
9810 putpkt ("k");
9811 }
9812 CATCH (ex, RETURN_MASK_ERROR)
9813 {
9814 if (ex.error == TARGET_CLOSE_ERROR)
9815 {
9816 /* If we got an (EOF) error that caused the target
9817 to go away, then we're done, that's what we wanted.
9818 "k" is susceptible to cause a premature EOF, given
9819 that the remote server isn't actually required to
9820 reply to "k", and it can happen that it doesn't
9821 even get to reply ACK to the "k". */
9822 return;
9823 }
9824
9825 /* Otherwise, something went wrong. We didn't actually kill
9826 the target. Just propagate the exception, and let the
9827 user or higher layers decide what to do. */
9828 throw_exception (ex);
9829 }
9830 END_CATCH
9831 }
9832
9833 void
9834 remote_target::mourn_inferior ()
9835 {
9836 struct remote_state *rs = get_remote_state ();
9837
9838 /* We're no longer interested in notification events of an inferior
9839 that exited or was killed/detached. */
9840 discard_pending_stop_replies (current_inferior ());
9841
9842 /* In 'target remote' mode with one inferior, we close the connection. */
9843 if (!rs->extended && number_of_live_inferiors () <= 1)
9844 {
9845 unpush_target (this);
9846
9847 /* remote_close takes care of doing most of the clean up. */
9848 generic_mourn_inferior ();
9849 return;
9850 }
9851
9852 /* In case we got here due to an error, but we're going to stay
9853 connected. */
9854 rs->waiting_for_stop_reply = 0;
9855
9856 /* If the current general thread belonged to the process we just
9857 detached from or has exited, the remote side current general
9858 thread becomes undefined. Considering a case like this:
9859
9860 - We just got here due to a detach.
9861 - The process that we're detaching from happens to immediately
9862 report a global breakpoint being hit in non-stop mode, in the
9863 same thread we had selected before.
9864 - GDB attaches to this process again.
9865 - This event happens to be the next event we handle.
9866
9867 GDB would consider that the current general thread didn't need to
9868 be set on the stub side (with Hg), since for all it knew,
9869 GENERAL_THREAD hadn't changed.
9870
9871 Notice that although in all-stop mode, the remote server always
9872 sets the current thread to the thread reporting the stop event,
9873 that doesn't happen in non-stop mode; in non-stop, the stub *must
9874 not* change the current thread when reporting a breakpoint hit,
9875 due to the decoupling of event reporting and event handling.
9876
9877 To keep things simple, we always invalidate our notion of the
9878 current thread. */
9879 record_currthread (rs, minus_one_ptid);
9880
9881 /* Call common code to mark the inferior as not running. */
9882 generic_mourn_inferior ();
9883
9884 if (!have_inferiors ())
9885 {
9886 if (!remote_multi_process_p (rs))
9887 {
9888 /* Check whether the target is running now - some remote stubs
9889 automatically restart after kill. */
9890 putpkt ("?");
9891 getpkt (&rs->buf, 0);
9892
9893 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9894 {
9895 /* Assume that the target has been restarted. Set
9896 inferior_ptid so that bits of core GDB realizes
9897 there's something here, e.g., so that the user can
9898 say "kill" again. */
9899 inferior_ptid = magic_null_ptid;
9900 }
9901 }
9902 }
9903 }
9904
9905 bool
9906 extended_remote_target::supports_disable_randomization ()
9907 {
9908 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9909 }
9910
9911 void
9912 remote_target::extended_remote_disable_randomization (int val)
9913 {
9914 struct remote_state *rs = get_remote_state ();
9915 char *reply;
9916
9917 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9918 "QDisableRandomization:%x", val);
9919 putpkt (rs->buf);
9920 reply = remote_get_noisy_reply ();
9921 if (*reply == '\0')
9922 error (_("Target does not support QDisableRandomization."));
9923 if (strcmp (reply, "OK") != 0)
9924 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9925 }
9926
9927 int
9928 remote_target::extended_remote_run (const std::string &args)
9929 {
9930 struct remote_state *rs = get_remote_state ();
9931 int len;
9932 const char *remote_exec_file = get_remote_exec_file ();
9933
9934 /* If the user has disabled vRun support, or we have detected that
9935 support is not available, do not try it. */
9936 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9937 return -1;
9938
9939 strcpy (rs->buf.data (), "vRun;");
9940 len = strlen (rs->buf.data ());
9941
9942 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9943 error (_("Remote file name too long for run packet"));
9944 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9945 strlen (remote_exec_file));
9946
9947 if (!args.empty ())
9948 {
9949 int i;
9950
9951 gdb_argv argv (args.c_str ());
9952 for (i = 0; argv[i] != NULL; i++)
9953 {
9954 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9955 error (_("Argument list too long for run packet"));
9956 rs->buf[len++] = ';';
9957 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9958 strlen (argv[i]));
9959 }
9960 }
9961
9962 rs->buf[len++] = '\0';
9963
9964 putpkt (rs->buf);
9965 getpkt (&rs->buf, 0);
9966
9967 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9968 {
9969 case PACKET_OK:
9970 /* We have a wait response. All is well. */
9971 return 0;
9972 case PACKET_UNKNOWN:
9973 return -1;
9974 case PACKET_ERROR:
9975 if (remote_exec_file[0] == '\0')
9976 error (_("Running the default executable on the remote target failed; "
9977 "try \"set remote exec-file\"?"));
9978 else
9979 error (_("Running \"%s\" on the remote target failed"),
9980 remote_exec_file);
9981 default:
9982 gdb_assert_not_reached (_("bad switch"));
9983 }
9984 }
9985
9986 /* Helper function to send set/unset environment packets. ACTION is
9987 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9988 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9989 sent. */
9990
9991 void
9992 remote_target::send_environment_packet (const char *action,
9993 const char *packet,
9994 const char *value)
9995 {
9996 remote_state *rs = get_remote_state ();
9997
9998 /* Convert the environment variable to an hex string, which
9999 is the best format to be transmitted over the wire. */
10000 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10001 strlen (value));
10002
10003 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10004 "%s:%s", packet, encoded_value.c_str ());
10005
10006 putpkt (rs->buf);
10007 getpkt (&rs->buf, 0);
10008 if (strcmp (rs->buf.data (), "OK") != 0)
10009 warning (_("Unable to %s environment variable '%s' on remote."),
10010 action, value);
10011 }
10012
10013 /* Helper function to handle the QEnvironment* packets. */
10014
10015 void
10016 remote_target::extended_remote_environment_support ()
10017 {
10018 remote_state *rs = get_remote_state ();
10019
10020 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10021 {
10022 putpkt ("QEnvironmentReset");
10023 getpkt (&rs->buf, 0);
10024 if (strcmp (rs->buf.data (), "OK") != 0)
10025 warning (_("Unable to reset environment on remote."));
10026 }
10027
10028 gdb_environ *e = &current_inferior ()->environment;
10029
10030 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10031 for (const std::string &el : e->user_set_env ())
10032 send_environment_packet ("set", "QEnvironmentHexEncoded",
10033 el.c_str ());
10034
10035 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10036 for (const std::string &el : e->user_unset_env ())
10037 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10038 }
10039
10040 /* Helper function to set the current working directory for the
10041 inferior in the remote target. */
10042
10043 void
10044 remote_target::extended_remote_set_inferior_cwd ()
10045 {
10046 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10047 {
10048 const char *inferior_cwd = get_inferior_cwd ();
10049 remote_state *rs = get_remote_state ();
10050
10051 if (inferior_cwd != NULL)
10052 {
10053 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10054 strlen (inferior_cwd));
10055
10056 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10057 "QSetWorkingDir:%s", hexpath.c_str ());
10058 }
10059 else
10060 {
10061 /* An empty inferior_cwd means that the user wants us to
10062 reset the remote server's inferior's cwd. */
10063 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10064 "QSetWorkingDir:");
10065 }
10066
10067 putpkt (rs->buf);
10068 getpkt (&rs->buf, 0);
10069 if (packet_ok (rs->buf,
10070 &remote_protocol_packets[PACKET_QSetWorkingDir])
10071 != PACKET_OK)
10072 error (_("\
10073 Remote replied unexpectedly while setting the inferior's working\n\
10074 directory: %s"),
10075 rs->buf.data ());
10076
10077 }
10078 }
10079
10080 /* In the extended protocol we want to be able to do things like
10081 "run" and have them basically work as expected. So we need
10082 a special create_inferior function. We support changing the
10083 executable file and the command line arguments, but not the
10084 environment. */
10085
10086 void
10087 extended_remote_target::create_inferior (const char *exec_file,
10088 const std::string &args,
10089 char **env, int from_tty)
10090 {
10091 int run_worked;
10092 char *stop_reply;
10093 struct remote_state *rs = get_remote_state ();
10094 const char *remote_exec_file = get_remote_exec_file ();
10095
10096 /* If running asynchronously, register the target file descriptor
10097 with the event loop. */
10098 if (target_can_async_p ())
10099 target_async (1);
10100
10101 /* Disable address space randomization if requested (and supported). */
10102 if (supports_disable_randomization ())
10103 extended_remote_disable_randomization (disable_randomization);
10104
10105 /* If startup-with-shell is on, we inform gdbserver to start the
10106 remote inferior using a shell. */
10107 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10108 {
10109 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10110 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10111 putpkt (rs->buf);
10112 getpkt (&rs->buf, 0);
10113 if (strcmp (rs->buf.data (), "OK") != 0)
10114 error (_("\
10115 Remote replied unexpectedly while setting startup-with-shell: %s"),
10116 rs->buf.data ());
10117 }
10118
10119 extended_remote_environment_support ();
10120
10121 extended_remote_set_inferior_cwd ();
10122
10123 /* Now restart the remote server. */
10124 run_worked = extended_remote_run (args) != -1;
10125 if (!run_worked)
10126 {
10127 /* vRun was not supported. Fail if we need it to do what the
10128 user requested. */
10129 if (remote_exec_file[0])
10130 error (_("Remote target does not support \"set remote exec-file\""));
10131 if (!args.empty ())
10132 error (_("Remote target does not support \"set args\" or run ARGS"));
10133
10134 /* Fall back to "R". */
10135 extended_remote_restart ();
10136 }
10137
10138 /* vRun's success return is a stop reply. */
10139 stop_reply = run_worked ? rs->buf.data () : NULL;
10140 add_current_inferior_and_thread (stop_reply);
10141
10142 /* Get updated offsets, if the stub uses qOffsets. */
10143 get_offsets ();
10144 }
10145 \f
10146
10147 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10148 the list of conditions (in agent expression bytecode format), if any, the
10149 target needs to evaluate. The output is placed into the packet buffer
10150 started from BUF and ended at BUF_END. */
10151
10152 static int
10153 remote_add_target_side_condition (struct gdbarch *gdbarch,
10154 struct bp_target_info *bp_tgt, char *buf,
10155 char *buf_end)
10156 {
10157 if (bp_tgt->conditions.empty ())
10158 return 0;
10159
10160 buf += strlen (buf);
10161 xsnprintf (buf, buf_end - buf, "%s", ";");
10162 buf++;
10163
10164 /* Send conditions to the target. */
10165 for (agent_expr *aexpr : bp_tgt->conditions)
10166 {
10167 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10168 buf += strlen (buf);
10169 for (int i = 0; i < aexpr->len; ++i)
10170 buf = pack_hex_byte (buf, aexpr->buf[i]);
10171 *buf = '\0';
10172 }
10173 return 0;
10174 }
10175
10176 static void
10177 remote_add_target_side_commands (struct gdbarch *gdbarch,
10178 struct bp_target_info *bp_tgt, char *buf)
10179 {
10180 if (bp_tgt->tcommands.empty ())
10181 return;
10182
10183 buf += strlen (buf);
10184
10185 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10186 buf += strlen (buf);
10187
10188 /* Concatenate all the agent expressions that are commands into the
10189 cmds parameter. */
10190 for (agent_expr *aexpr : bp_tgt->tcommands)
10191 {
10192 sprintf (buf, "X%x,", aexpr->len);
10193 buf += strlen (buf);
10194 for (int i = 0; i < aexpr->len; ++i)
10195 buf = pack_hex_byte (buf, aexpr->buf[i]);
10196 *buf = '\0';
10197 }
10198 }
10199
10200 /* Insert a breakpoint. On targets that have software breakpoint
10201 support, we ask the remote target to do the work; on targets
10202 which don't, we insert a traditional memory breakpoint. */
10203
10204 int
10205 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10206 struct bp_target_info *bp_tgt)
10207 {
10208 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10209 If it succeeds, then set the support to PACKET_ENABLE. If it
10210 fails, and the user has explicitly requested the Z support then
10211 report an error, otherwise, mark it disabled and go on. */
10212
10213 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10214 {
10215 CORE_ADDR addr = bp_tgt->reqstd_address;
10216 struct remote_state *rs;
10217 char *p, *endbuf;
10218
10219 /* Make sure the remote is pointing at the right process, if
10220 necessary. */
10221 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10222 set_general_process ();
10223
10224 rs = get_remote_state ();
10225 p = rs->buf.data ();
10226 endbuf = p + get_remote_packet_size ();
10227
10228 *(p++) = 'Z';
10229 *(p++) = '0';
10230 *(p++) = ',';
10231 addr = (ULONGEST) remote_address_masked (addr);
10232 p += hexnumstr (p, addr);
10233 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10234
10235 if (supports_evaluation_of_breakpoint_conditions ())
10236 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10237
10238 if (can_run_breakpoint_commands ())
10239 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10240
10241 putpkt (rs->buf);
10242 getpkt (&rs->buf, 0);
10243
10244 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10245 {
10246 case PACKET_ERROR:
10247 return -1;
10248 case PACKET_OK:
10249 return 0;
10250 case PACKET_UNKNOWN:
10251 break;
10252 }
10253 }
10254
10255 /* If this breakpoint has target-side commands but this stub doesn't
10256 support Z0 packets, throw error. */
10257 if (!bp_tgt->tcommands.empty ())
10258 throw_error (NOT_SUPPORTED_ERROR, _("\
10259 Target doesn't support breakpoints that have target side commands."));
10260
10261 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10262 }
10263
10264 int
10265 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10266 struct bp_target_info *bp_tgt,
10267 enum remove_bp_reason reason)
10268 {
10269 CORE_ADDR addr = bp_tgt->placed_address;
10270 struct remote_state *rs = get_remote_state ();
10271
10272 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10273 {
10274 char *p = rs->buf.data ();
10275 char *endbuf = p + get_remote_packet_size ();
10276
10277 /* Make sure the remote is pointing at the right process, if
10278 necessary. */
10279 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10280 set_general_process ();
10281
10282 *(p++) = 'z';
10283 *(p++) = '0';
10284 *(p++) = ',';
10285
10286 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10287 p += hexnumstr (p, addr);
10288 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10289
10290 putpkt (rs->buf);
10291 getpkt (&rs->buf, 0);
10292
10293 return (rs->buf[0] == 'E');
10294 }
10295
10296 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10297 }
10298
10299 static enum Z_packet_type
10300 watchpoint_to_Z_packet (int type)
10301 {
10302 switch (type)
10303 {
10304 case hw_write:
10305 return Z_PACKET_WRITE_WP;
10306 break;
10307 case hw_read:
10308 return Z_PACKET_READ_WP;
10309 break;
10310 case hw_access:
10311 return Z_PACKET_ACCESS_WP;
10312 break;
10313 default:
10314 internal_error (__FILE__, __LINE__,
10315 _("hw_bp_to_z: bad watchpoint type %d"), type);
10316 }
10317 }
10318
10319 int
10320 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10321 enum target_hw_bp_type type, struct expression *cond)
10322 {
10323 struct remote_state *rs = get_remote_state ();
10324 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10325 char *p;
10326 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10327
10328 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10329 return 1;
10330
10331 /* Make sure the remote is pointing at the right process, if
10332 necessary. */
10333 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10334 set_general_process ();
10335
10336 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10337 p = strchr (rs->buf.data (), '\0');
10338 addr = remote_address_masked (addr);
10339 p += hexnumstr (p, (ULONGEST) addr);
10340 xsnprintf (p, endbuf - p, ",%x", len);
10341
10342 putpkt (rs->buf);
10343 getpkt (&rs->buf, 0);
10344
10345 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10346 {
10347 case PACKET_ERROR:
10348 return -1;
10349 case PACKET_UNKNOWN:
10350 return 1;
10351 case PACKET_OK:
10352 return 0;
10353 }
10354 internal_error (__FILE__, __LINE__,
10355 _("remote_insert_watchpoint: reached end of function"));
10356 }
10357
10358 bool
10359 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10360 CORE_ADDR start, int length)
10361 {
10362 CORE_ADDR diff = remote_address_masked (addr - start);
10363
10364 return diff < length;
10365 }
10366
10367
10368 int
10369 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10370 enum target_hw_bp_type type, struct expression *cond)
10371 {
10372 struct remote_state *rs = get_remote_state ();
10373 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10374 char *p;
10375 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10376
10377 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10378 return -1;
10379
10380 /* Make sure the remote is pointing at the right process, if
10381 necessary. */
10382 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10383 set_general_process ();
10384
10385 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10386 p = strchr (rs->buf.data (), '\0');
10387 addr = remote_address_masked (addr);
10388 p += hexnumstr (p, (ULONGEST) addr);
10389 xsnprintf (p, endbuf - p, ",%x", len);
10390 putpkt (rs->buf);
10391 getpkt (&rs->buf, 0);
10392
10393 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10394 {
10395 case PACKET_ERROR:
10396 case PACKET_UNKNOWN:
10397 return -1;
10398 case PACKET_OK:
10399 return 0;
10400 }
10401 internal_error (__FILE__, __LINE__,
10402 _("remote_remove_watchpoint: reached end of function"));
10403 }
10404
10405
10406 int remote_hw_watchpoint_limit = -1;
10407 int remote_hw_watchpoint_length_limit = -1;
10408 int remote_hw_breakpoint_limit = -1;
10409
10410 int
10411 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10412 {
10413 if (remote_hw_watchpoint_length_limit == 0)
10414 return 0;
10415 else if (remote_hw_watchpoint_length_limit < 0)
10416 return 1;
10417 else if (len <= remote_hw_watchpoint_length_limit)
10418 return 1;
10419 else
10420 return 0;
10421 }
10422
10423 int
10424 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10425 {
10426 if (type == bp_hardware_breakpoint)
10427 {
10428 if (remote_hw_breakpoint_limit == 0)
10429 return 0;
10430 else if (remote_hw_breakpoint_limit < 0)
10431 return 1;
10432 else if (cnt <= remote_hw_breakpoint_limit)
10433 return 1;
10434 }
10435 else
10436 {
10437 if (remote_hw_watchpoint_limit == 0)
10438 return 0;
10439 else if (remote_hw_watchpoint_limit < 0)
10440 return 1;
10441 else if (ot)
10442 return -1;
10443 else if (cnt <= remote_hw_watchpoint_limit)
10444 return 1;
10445 }
10446 return -1;
10447 }
10448
10449 /* The to_stopped_by_sw_breakpoint method of target remote. */
10450
10451 bool
10452 remote_target::stopped_by_sw_breakpoint ()
10453 {
10454 struct thread_info *thread = inferior_thread ();
10455
10456 return (thread->priv != NULL
10457 && (get_remote_thread_info (thread)->stop_reason
10458 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10459 }
10460
10461 /* The to_supports_stopped_by_sw_breakpoint method of target
10462 remote. */
10463
10464 bool
10465 remote_target::supports_stopped_by_sw_breakpoint ()
10466 {
10467 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10468 }
10469
10470 /* The to_stopped_by_hw_breakpoint method of target remote. */
10471
10472 bool
10473 remote_target::stopped_by_hw_breakpoint ()
10474 {
10475 struct thread_info *thread = inferior_thread ();
10476
10477 return (thread->priv != NULL
10478 && (get_remote_thread_info (thread)->stop_reason
10479 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10480 }
10481
10482 /* The to_supports_stopped_by_hw_breakpoint method of target
10483 remote. */
10484
10485 bool
10486 remote_target::supports_stopped_by_hw_breakpoint ()
10487 {
10488 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10489 }
10490
10491 bool
10492 remote_target::stopped_by_watchpoint ()
10493 {
10494 struct thread_info *thread = inferior_thread ();
10495
10496 return (thread->priv != NULL
10497 && (get_remote_thread_info (thread)->stop_reason
10498 == TARGET_STOPPED_BY_WATCHPOINT));
10499 }
10500
10501 bool
10502 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10503 {
10504 struct thread_info *thread = inferior_thread ();
10505
10506 if (thread->priv != NULL
10507 && (get_remote_thread_info (thread)->stop_reason
10508 == TARGET_STOPPED_BY_WATCHPOINT))
10509 {
10510 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10511 return true;
10512 }
10513
10514 return false;
10515 }
10516
10517
10518 int
10519 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10520 struct bp_target_info *bp_tgt)
10521 {
10522 CORE_ADDR addr = bp_tgt->reqstd_address;
10523 struct remote_state *rs;
10524 char *p, *endbuf;
10525 char *message;
10526
10527 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10528 return -1;
10529
10530 /* Make sure the remote is pointing at the right process, if
10531 necessary. */
10532 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10533 set_general_process ();
10534
10535 rs = get_remote_state ();
10536 p = rs->buf.data ();
10537 endbuf = p + get_remote_packet_size ();
10538
10539 *(p++) = 'Z';
10540 *(p++) = '1';
10541 *(p++) = ',';
10542
10543 addr = remote_address_masked (addr);
10544 p += hexnumstr (p, (ULONGEST) addr);
10545 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10546
10547 if (supports_evaluation_of_breakpoint_conditions ())
10548 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10549
10550 if (can_run_breakpoint_commands ())
10551 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10552
10553 putpkt (rs->buf);
10554 getpkt (&rs->buf, 0);
10555
10556 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10557 {
10558 case PACKET_ERROR:
10559 if (rs->buf[1] == '.')
10560 {
10561 message = strchr (&rs->buf[2], '.');
10562 if (message)
10563 error (_("Remote failure reply: %s"), message + 1);
10564 }
10565 return -1;
10566 case PACKET_UNKNOWN:
10567 return -1;
10568 case PACKET_OK:
10569 return 0;
10570 }
10571 internal_error (__FILE__, __LINE__,
10572 _("remote_insert_hw_breakpoint: reached end of function"));
10573 }
10574
10575
10576 int
10577 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10578 struct bp_target_info *bp_tgt)
10579 {
10580 CORE_ADDR addr;
10581 struct remote_state *rs = get_remote_state ();
10582 char *p = rs->buf.data ();
10583 char *endbuf = p + get_remote_packet_size ();
10584
10585 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10586 return -1;
10587
10588 /* Make sure the remote is pointing at the right process, if
10589 necessary. */
10590 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10591 set_general_process ();
10592
10593 *(p++) = 'z';
10594 *(p++) = '1';
10595 *(p++) = ',';
10596
10597 addr = remote_address_masked (bp_tgt->placed_address);
10598 p += hexnumstr (p, (ULONGEST) addr);
10599 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10600
10601 putpkt (rs->buf);
10602 getpkt (&rs->buf, 0);
10603
10604 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10605 {
10606 case PACKET_ERROR:
10607 case PACKET_UNKNOWN:
10608 return -1;
10609 case PACKET_OK:
10610 return 0;
10611 }
10612 internal_error (__FILE__, __LINE__,
10613 _("remote_remove_hw_breakpoint: reached end of function"));
10614 }
10615
10616 /* Verify memory using the "qCRC:" request. */
10617
10618 int
10619 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10620 {
10621 struct remote_state *rs = get_remote_state ();
10622 unsigned long host_crc, target_crc;
10623 char *tmp;
10624
10625 /* It doesn't make sense to use qCRC if the remote target is
10626 connected but not running. */
10627 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10628 {
10629 enum packet_result result;
10630
10631 /* Make sure the remote is pointing at the right process. */
10632 set_general_process ();
10633
10634 /* FIXME: assumes lma can fit into long. */
10635 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10636 (long) lma, (long) size);
10637 putpkt (rs->buf);
10638
10639 /* Be clever; compute the host_crc before waiting for target
10640 reply. */
10641 host_crc = xcrc32 (data, size, 0xffffffff);
10642
10643 getpkt (&rs->buf, 0);
10644
10645 result = packet_ok (rs->buf,
10646 &remote_protocol_packets[PACKET_qCRC]);
10647 if (result == PACKET_ERROR)
10648 return -1;
10649 else if (result == PACKET_OK)
10650 {
10651 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10652 target_crc = target_crc * 16 + fromhex (*tmp);
10653
10654 return (host_crc == target_crc);
10655 }
10656 }
10657
10658 return simple_verify_memory (this, data, lma, size);
10659 }
10660
10661 /* compare-sections command
10662
10663 With no arguments, compares each loadable section in the exec bfd
10664 with the same memory range on the target, and reports mismatches.
10665 Useful for verifying the image on the target against the exec file. */
10666
10667 static void
10668 compare_sections_command (const char *args, int from_tty)
10669 {
10670 asection *s;
10671 const char *sectname;
10672 bfd_size_type size;
10673 bfd_vma lma;
10674 int matched = 0;
10675 int mismatched = 0;
10676 int res;
10677 int read_only = 0;
10678
10679 if (!exec_bfd)
10680 error (_("command cannot be used without an exec file"));
10681
10682 if (args != NULL && strcmp (args, "-r") == 0)
10683 {
10684 read_only = 1;
10685 args = NULL;
10686 }
10687
10688 for (s = exec_bfd->sections; s; s = s->next)
10689 {
10690 if (!(s->flags & SEC_LOAD))
10691 continue; /* Skip non-loadable section. */
10692
10693 if (read_only && (s->flags & SEC_READONLY) == 0)
10694 continue; /* Skip writeable sections */
10695
10696 size = bfd_get_section_size (s);
10697 if (size == 0)
10698 continue; /* Skip zero-length section. */
10699
10700 sectname = bfd_get_section_name (exec_bfd, s);
10701 if (args && strcmp (args, sectname) != 0)
10702 continue; /* Not the section selected by user. */
10703
10704 matched = 1; /* Do this section. */
10705 lma = s->lma;
10706
10707 gdb::byte_vector sectdata (size);
10708 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10709
10710 res = target_verify_memory (sectdata.data (), lma, size);
10711
10712 if (res == -1)
10713 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10714 paddress (target_gdbarch (), lma),
10715 paddress (target_gdbarch (), lma + size));
10716
10717 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10718 paddress (target_gdbarch (), lma),
10719 paddress (target_gdbarch (), lma + size));
10720 if (res)
10721 printf_filtered ("matched.\n");
10722 else
10723 {
10724 printf_filtered ("MIS-MATCHED!\n");
10725 mismatched++;
10726 }
10727 }
10728 if (mismatched > 0)
10729 warning (_("One or more sections of the target image does not match\n\
10730 the loaded file\n"));
10731 if (args && !matched)
10732 printf_filtered (_("No loaded section named '%s'.\n"), args);
10733 }
10734
10735 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10736 into remote target. The number of bytes written to the remote
10737 target is returned, or -1 for error. */
10738
10739 target_xfer_status
10740 remote_target::remote_write_qxfer (const char *object_name,
10741 const char *annex, const gdb_byte *writebuf,
10742 ULONGEST offset, LONGEST len,
10743 ULONGEST *xfered_len,
10744 struct packet_config *packet)
10745 {
10746 int i, buf_len;
10747 ULONGEST n;
10748 struct remote_state *rs = get_remote_state ();
10749 int max_size = get_memory_write_packet_size ();
10750
10751 if (packet_config_support (packet) == PACKET_DISABLE)
10752 return TARGET_XFER_E_IO;
10753
10754 /* Insert header. */
10755 i = snprintf (rs->buf.data (), max_size,
10756 "qXfer:%s:write:%s:%s:",
10757 object_name, annex ? annex : "",
10758 phex_nz (offset, sizeof offset));
10759 max_size -= (i + 1);
10760
10761 /* Escape as much data as fits into rs->buf. */
10762 buf_len = remote_escape_output
10763 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10764
10765 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10766 || getpkt_sane (&rs->buf, 0) < 0
10767 || packet_ok (rs->buf, packet) != PACKET_OK)
10768 return TARGET_XFER_E_IO;
10769
10770 unpack_varlen_hex (rs->buf.data (), &n);
10771
10772 *xfered_len = n;
10773 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10774 }
10775
10776 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10777 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10778 number of bytes read is returned, or 0 for EOF, or -1 for error.
10779 The number of bytes read may be less than LEN without indicating an
10780 EOF. PACKET is checked and updated to indicate whether the remote
10781 target supports this object. */
10782
10783 target_xfer_status
10784 remote_target::remote_read_qxfer (const char *object_name,
10785 const char *annex,
10786 gdb_byte *readbuf, ULONGEST offset,
10787 LONGEST len,
10788 ULONGEST *xfered_len,
10789 struct packet_config *packet)
10790 {
10791 struct remote_state *rs = get_remote_state ();
10792 LONGEST i, n, packet_len;
10793
10794 if (packet_config_support (packet) == PACKET_DISABLE)
10795 return TARGET_XFER_E_IO;
10796
10797 /* Check whether we've cached an end-of-object packet that matches
10798 this request. */
10799 if (rs->finished_object)
10800 {
10801 if (strcmp (object_name, rs->finished_object) == 0
10802 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10803 && offset == rs->finished_offset)
10804 return TARGET_XFER_EOF;
10805
10806
10807 /* Otherwise, we're now reading something different. Discard
10808 the cache. */
10809 xfree (rs->finished_object);
10810 xfree (rs->finished_annex);
10811 rs->finished_object = NULL;
10812 rs->finished_annex = NULL;
10813 }
10814
10815 /* Request only enough to fit in a single packet. The actual data
10816 may not, since we don't know how much of it will need to be escaped;
10817 the target is free to respond with slightly less data. We subtract
10818 five to account for the response type and the protocol frame. */
10819 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10820 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10821 "qXfer:%s:read:%s:%s,%s",
10822 object_name, annex ? annex : "",
10823 phex_nz (offset, sizeof offset),
10824 phex_nz (n, sizeof n));
10825 i = putpkt (rs->buf);
10826 if (i < 0)
10827 return TARGET_XFER_E_IO;
10828
10829 rs->buf[0] = '\0';
10830 packet_len = getpkt_sane (&rs->buf, 0);
10831 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10832 return TARGET_XFER_E_IO;
10833
10834 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10835 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10836
10837 /* 'm' means there is (or at least might be) more data after this
10838 batch. That does not make sense unless there's at least one byte
10839 of data in this reply. */
10840 if (rs->buf[0] == 'm' && packet_len == 1)
10841 error (_("Remote qXfer reply contained no data."));
10842
10843 /* Got some data. */
10844 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10845 packet_len - 1, readbuf, n);
10846
10847 /* 'l' is an EOF marker, possibly including a final block of data,
10848 or possibly empty. If we have the final block of a non-empty
10849 object, record this fact to bypass a subsequent partial read. */
10850 if (rs->buf[0] == 'l' && offset + i > 0)
10851 {
10852 rs->finished_object = xstrdup (object_name);
10853 rs->finished_annex = xstrdup (annex ? annex : "");
10854 rs->finished_offset = offset + i;
10855 }
10856
10857 if (i == 0)
10858 return TARGET_XFER_EOF;
10859 else
10860 {
10861 *xfered_len = i;
10862 return TARGET_XFER_OK;
10863 }
10864 }
10865
10866 enum target_xfer_status
10867 remote_target::xfer_partial (enum target_object object,
10868 const char *annex, gdb_byte *readbuf,
10869 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10870 ULONGEST *xfered_len)
10871 {
10872 struct remote_state *rs;
10873 int i;
10874 char *p2;
10875 char query_type;
10876 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10877
10878 set_remote_traceframe ();
10879 set_general_thread (inferior_ptid);
10880
10881 rs = get_remote_state ();
10882
10883 /* Handle memory using the standard memory routines. */
10884 if (object == TARGET_OBJECT_MEMORY)
10885 {
10886 /* If the remote target is connected but not running, we should
10887 pass this request down to a lower stratum (e.g. the executable
10888 file). */
10889 if (!target_has_execution)
10890 return TARGET_XFER_EOF;
10891
10892 if (writebuf != NULL)
10893 return remote_write_bytes (offset, writebuf, len, unit_size,
10894 xfered_len);
10895 else
10896 return remote_read_bytes (offset, readbuf, len, unit_size,
10897 xfered_len);
10898 }
10899
10900 /* Handle SPU memory using qxfer packets. */
10901 if (object == TARGET_OBJECT_SPU)
10902 {
10903 if (readbuf)
10904 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10905 xfered_len, &remote_protocol_packets
10906 [PACKET_qXfer_spu_read]);
10907 else
10908 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10909 xfered_len, &remote_protocol_packets
10910 [PACKET_qXfer_spu_write]);
10911 }
10912
10913 /* Handle extra signal info using qxfer packets. */
10914 if (object == TARGET_OBJECT_SIGNAL_INFO)
10915 {
10916 if (readbuf)
10917 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10918 xfered_len, &remote_protocol_packets
10919 [PACKET_qXfer_siginfo_read]);
10920 else
10921 return remote_write_qxfer ("siginfo", annex,
10922 writebuf, offset, len, xfered_len,
10923 &remote_protocol_packets
10924 [PACKET_qXfer_siginfo_write]);
10925 }
10926
10927 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10928 {
10929 if (readbuf)
10930 return remote_read_qxfer ("statictrace", annex,
10931 readbuf, offset, len, xfered_len,
10932 &remote_protocol_packets
10933 [PACKET_qXfer_statictrace_read]);
10934 else
10935 return TARGET_XFER_E_IO;
10936 }
10937
10938 /* Only handle flash writes. */
10939 if (writebuf != NULL)
10940 {
10941 switch (object)
10942 {
10943 case TARGET_OBJECT_FLASH:
10944 return remote_flash_write (offset, len, xfered_len,
10945 writebuf);
10946
10947 default:
10948 return TARGET_XFER_E_IO;
10949 }
10950 }
10951
10952 /* Map pre-existing objects onto letters. DO NOT do this for new
10953 objects!!! Instead specify new query packets. */
10954 switch (object)
10955 {
10956 case TARGET_OBJECT_AVR:
10957 query_type = 'R';
10958 break;
10959
10960 case TARGET_OBJECT_AUXV:
10961 gdb_assert (annex == NULL);
10962 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10963 xfered_len,
10964 &remote_protocol_packets[PACKET_qXfer_auxv]);
10965
10966 case TARGET_OBJECT_AVAILABLE_FEATURES:
10967 return remote_read_qxfer
10968 ("features", annex, readbuf, offset, len, xfered_len,
10969 &remote_protocol_packets[PACKET_qXfer_features]);
10970
10971 case TARGET_OBJECT_LIBRARIES:
10972 return remote_read_qxfer
10973 ("libraries", annex, readbuf, offset, len, xfered_len,
10974 &remote_protocol_packets[PACKET_qXfer_libraries]);
10975
10976 case TARGET_OBJECT_LIBRARIES_SVR4:
10977 return remote_read_qxfer
10978 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10979 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10980
10981 case TARGET_OBJECT_MEMORY_MAP:
10982 gdb_assert (annex == NULL);
10983 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10984 xfered_len,
10985 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10986
10987 case TARGET_OBJECT_OSDATA:
10988 /* Should only get here if we're connected. */
10989 gdb_assert (rs->remote_desc);
10990 return remote_read_qxfer
10991 ("osdata", annex, readbuf, offset, len, xfered_len,
10992 &remote_protocol_packets[PACKET_qXfer_osdata]);
10993
10994 case TARGET_OBJECT_THREADS:
10995 gdb_assert (annex == NULL);
10996 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10997 xfered_len,
10998 &remote_protocol_packets[PACKET_qXfer_threads]);
10999
11000 case TARGET_OBJECT_TRACEFRAME_INFO:
11001 gdb_assert (annex == NULL);
11002 return remote_read_qxfer
11003 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11004 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11005
11006 case TARGET_OBJECT_FDPIC:
11007 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11008 xfered_len,
11009 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11010
11011 case TARGET_OBJECT_OPENVMS_UIB:
11012 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11013 xfered_len,
11014 &remote_protocol_packets[PACKET_qXfer_uib]);
11015
11016 case TARGET_OBJECT_BTRACE:
11017 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11018 xfered_len,
11019 &remote_protocol_packets[PACKET_qXfer_btrace]);
11020
11021 case TARGET_OBJECT_BTRACE_CONF:
11022 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11023 len, xfered_len,
11024 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11025
11026 case TARGET_OBJECT_EXEC_FILE:
11027 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11028 len, xfered_len,
11029 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11030
11031 default:
11032 return TARGET_XFER_E_IO;
11033 }
11034
11035 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11036 large enough let the caller deal with it. */
11037 if (len < get_remote_packet_size ())
11038 return TARGET_XFER_E_IO;
11039 len = get_remote_packet_size ();
11040
11041 /* Except for querying the minimum buffer size, target must be open. */
11042 if (!rs->remote_desc)
11043 error (_("remote query is only available after target open"));
11044
11045 gdb_assert (annex != NULL);
11046 gdb_assert (readbuf != NULL);
11047
11048 p2 = rs->buf.data ();
11049 *p2++ = 'q';
11050 *p2++ = query_type;
11051
11052 /* We used one buffer char for the remote protocol q command and
11053 another for the query type. As the remote protocol encapsulation
11054 uses 4 chars plus one extra in case we are debugging
11055 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11056 string. */
11057 i = 0;
11058 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11059 {
11060 /* Bad caller may have sent forbidden characters. */
11061 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11062 *p2++ = annex[i];
11063 i++;
11064 }
11065 *p2 = '\0';
11066 gdb_assert (annex[i] == '\0');
11067
11068 i = putpkt (rs->buf);
11069 if (i < 0)
11070 return TARGET_XFER_E_IO;
11071
11072 getpkt (&rs->buf, 0);
11073 strcpy ((char *) readbuf, rs->buf.data ());
11074
11075 *xfered_len = strlen ((char *) readbuf);
11076 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11077 }
11078
11079 /* Implementation of to_get_memory_xfer_limit. */
11080
11081 ULONGEST
11082 remote_target::get_memory_xfer_limit ()
11083 {
11084 return get_memory_write_packet_size ();
11085 }
11086
11087 int
11088 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11089 const gdb_byte *pattern, ULONGEST pattern_len,
11090 CORE_ADDR *found_addrp)
11091 {
11092 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11093 struct remote_state *rs = get_remote_state ();
11094 int max_size = get_memory_write_packet_size ();
11095 struct packet_config *packet =
11096 &remote_protocol_packets[PACKET_qSearch_memory];
11097 /* Number of packet bytes used to encode the pattern;
11098 this could be more than PATTERN_LEN due to escape characters. */
11099 int escaped_pattern_len;
11100 /* Amount of pattern that was encodable in the packet. */
11101 int used_pattern_len;
11102 int i;
11103 int found;
11104 ULONGEST found_addr;
11105
11106 /* Don't go to the target if we don't have to. This is done before
11107 checking packet_config_support to avoid the possibility that a
11108 success for this edge case means the facility works in
11109 general. */
11110 if (pattern_len > search_space_len)
11111 return 0;
11112 if (pattern_len == 0)
11113 {
11114 *found_addrp = start_addr;
11115 return 1;
11116 }
11117
11118 /* If we already know the packet isn't supported, fall back to the simple
11119 way of searching memory. */
11120
11121 if (packet_config_support (packet) == PACKET_DISABLE)
11122 {
11123 /* Target doesn't provided special support, fall back and use the
11124 standard support (copy memory and do the search here). */
11125 return simple_search_memory (this, start_addr, search_space_len,
11126 pattern, pattern_len, found_addrp);
11127 }
11128
11129 /* Make sure the remote is pointing at the right process. */
11130 set_general_process ();
11131
11132 /* Insert header. */
11133 i = snprintf (rs->buf.data (), max_size,
11134 "qSearch:memory:%s;%s;",
11135 phex_nz (start_addr, addr_size),
11136 phex_nz (search_space_len, sizeof (search_space_len)));
11137 max_size -= (i + 1);
11138
11139 /* Escape as much data as fits into rs->buf. */
11140 escaped_pattern_len =
11141 remote_escape_output (pattern, pattern_len, 1,
11142 (gdb_byte *) rs->buf.data () + i,
11143 &used_pattern_len, max_size);
11144
11145 /* Bail if the pattern is too large. */
11146 if (used_pattern_len != pattern_len)
11147 error (_("Pattern is too large to transmit to remote target."));
11148
11149 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11150 || getpkt_sane (&rs->buf, 0) < 0
11151 || packet_ok (rs->buf, packet) != PACKET_OK)
11152 {
11153 /* The request may not have worked because the command is not
11154 supported. If so, fall back to the simple way. */
11155 if (packet_config_support (packet) == PACKET_DISABLE)
11156 {
11157 return simple_search_memory (this, start_addr, search_space_len,
11158 pattern, pattern_len, found_addrp);
11159 }
11160 return -1;
11161 }
11162
11163 if (rs->buf[0] == '0')
11164 found = 0;
11165 else if (rs->buf[0] == '1')
11166 {
11167 found = 1;
11168 if (rs->buf[1] != ',')
11169 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11170 unpack_varlen_hex (&rs->buf[2], &found_addr);
11171 *found_addrp = found_addr;
11172 }
11173 else
11174 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11175
11176 return found;
11177 }
11178
11179 void
11180 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11181 {
11182 struct remote_state *rs = get_remote_state ();
11183 char *p = rs->buf.data ();
11184
11185 if (!rs->remote_desc)
11186 error (_("remote rcmd is only available after target open"));
11187
11188 /* Send a NULL command across as an empty command. */
11189 if (command == NULL)
11190 command = "";
11191
11192 /* The query prefix. */
11193 strcpy (rs->buf.data (), "qRcmd,");
11194 p = strchr (rs->buf.data (), '\0');
11195
11196 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11197 > get_remote_packet_size ())
11198 error (_("\"monitor\" command ``%s'' is too long."), command);
11199
11200 /* Encode the actual command. */
11201 bin2hex ((const gdb_byte *) command, p, strlen (command));
11202
11203 if (putpkt (rs->buf) < 0)
11204 error (_("Communication problem with target."));
11205
11206 /* get/display the response */
11207 while (1)
11208 {
11209 char *buf;
11210
11211 /* XXX - see also remote_get_noisy_reply(). */
11212 QUIT; /* Allow user to bail out with ^C. */
11213 rs->buf[0] = '\0';
11214 if (getpkt_sane (&rs->buf, 0) == -1)
11215 {
11216 /* Timeout. Continue to (try to) read responses.
11217 This is better than stopping with an error, assuming the stub
11218 is still executing the (long) monitor command.
11219 If needed, the user can interrupt gdb using C-c, obtaining
11220 an effect similar to stop on timeout. */
11221 continue;
11222 }
11223 buf = rs->buf.data ();
11224 if (buf[0] == '\0')
11225 error (_("Target does not support this command."));
11226 if (buf[0] == 'O' && buf[1] != 'K')
11227 {
11228 remote_console_output (buf + 1); /* 'O' message from stub. */
11229 continue;
11230 }
11231 if (strcmp (buf, "OK") == 0)
11232 break;
11233 if (strlen (buf) == 3 && buf[0] == 'E'
11234 && isdigit (buf[1]) && isdigit (buf[2]))
11235 {
11236 error (_("Protocol error with Rcmd"));
11237 }
11238 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11239 {
11240 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11241
11242 fputc_unfiltered (c, outbuf);
11243 }
11244 break;
11245 }
11246 }
11247
11248 std::vector<mem_region>
11249 remote_target::memory_map ()
11250 {
11251 std::vector<mem_region> result;
11252 gdb::optional<gdb::char_vector> text
11253 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11254
11255 if (text)
11256 result = parse_memory_map (text->data ());
11257
11258 return result;
11259 }
11260
11261 static void
11262 packet_command (const char *args, int from_tty)
11263 {
11264 remote_target *remote = get_current_remote_target ();
11265
11266 if (remote == nullptr)
11267 error (_("command can only be used with remote target"));
11268
11269 remote->packet_command (args, from_tty);
11270 }
11271
11272 void
11273 remote_target::packet_command (const char *args, int from_tty)
11274 {
11275 if (!args)
11276 error (_("remote-packet command requires packet text as argument"));
11277
11278 puts_filtered ("sending: ");
11279 print_packet (args);
11280 puts_filtered ("\n");
11281 putpkt (args);
11282
11283 remote_state *rs = get_remote_state ();
11284
11285 getpkt (&rs->buf, 0);
11286 puts_filtered ("received: ");
11287 print_packet (rs->buf.data ());
11288 puts_filtered ("\n");
11289 }
11290
11291 #if 0
11292 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11293
11294 static void display_thread_info (struct gdb_ext_thread_info *info);
11295
11296 static void threadset_test_cmd (char *cmd, int tty);
11297
11298 static void threadalive_test (char *cmd, int tty);
11299
11300 static void threadlist_test_cmd (char *cmd, int tty);
11301
11302 int get_and_display_threadinfo (threadref *ref);
11303
11304 static void threadinfo_test_cmd (char *cmd, int tty);
11305
11306 static int thread_display_step (threadref *ref, void *context);
11307
11308 static void threadlist_update_test_cmd (char *cmd, int tty);
11309
11310 static void init_remote_threadtests (void);
11311
11312 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11313
11314 static void
11315 threadset_test_cmd (const char *cmd, int tty)
11316 {
11317 int sample_thread = SAMPLE_THREAD;
11318
11319 printf_filtered (_("Remote threadset test\n"));
11320 set_general_thread (sample_thread);
11321 }
11322
11323
11324 static void
11325 threadalive_test (const char *cmd, int tty)
11326 {
11327 int sample_thread = SAMPLE_THREAD;
11328 int pid = inferior_ptid.pid ();
11329 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11330
11331 if (remote_thread_alive (ptid))
11332 printf_filtered ("PASS: Thread alive test\n");
11333 else
11334 printf_filtered ("FAIL: Thread alive test\n");
11335 }
11336
11337 void output_threadid (char *title, threadref *ref);
11338
11339 void
11340 output_threadid (char *title, threadref *ref)
11341 {
11342 char hexid[20];
11343
11344 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11345 hexid[16] = 0;
11346 printf_filtered ("%s %s\n", title, (&hexid[0]));
11347 }
11348
11349 static void
11350 threadlist_test_cmd (const char *cmd, int tty)
11351 {
11352 int startflag = 1;
11353 threadref nextthread;
11354 int done, result_count;
11355 threadref threadlist[3];
11356
11357 printf_filtered ("Remote Threadlist test\n");
11358 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11359 &result_count, &threadlist[0]))
11360 printf_filtered ("FAIL: threadlist test\n");
11361 else
11362 {
11363 threadref *scan = threadlist;
11364 threadref *limit = scan + result_count;
11365
11366 while (scan < limit)
11367 output_threadid (" thread ", scan++);
11368 }
11369 }
11370
11371 void
11372 display_thread_info (struct gdb_ext_thread_info *info)
11373 {
11374 output_threadid ("Threadid: ", &info->threadid);
11375 printf_filtered ("Name: %s\n ", info->shortname);
11376 printf_filtered ("State: %s\n", info->display);
11377 printf_filtered ("other: %s\n\n", info->more_display);
11378 }
11379
11380 int
11381 get_and_display_threadinfo (threadref *ref)
11382 {
11383 int result;
11384 int set;
11385 struct gdb_ext_thread_info threadinfo;
11386
11387 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11388 | TAG_MOREDISPLAY | TAG_DISPLAY;
11389 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11390 display_thread_info (&threadinfo);
11391 return result;
11392 }
11393
11394 static void
11395 threadinfo_test_cmd (const char *cmd, int tty)
11396 {
11397 int athread = SAMPLE_THREAD;
11398 threadref thread;
11399 int set;
11400
11401 int_to_threadref (&thread, athread);
11402 printf_filtered ("Remote Threadinfo test\n");
11403 if (!get_and_display_threadinfo (&thread))
11404 printf_filtered ("FAIL cannot get thread info\n");
11405 }
11406
11407 static int
11408 thread_display_step (threadref *ref, void *context)
11409 {
11410 /* output_threadid(" threadstep ",ref); *//* simple test */
11411 return get_and_display_threadinfo (ref);
11412 }
11413
11414 static void
11415 threadlist_update_test_cmd (const char *cmd, int tty)
11416 {
11417 printf_filtered ("Remote Threadlist update test\n");
11418 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11419 }
11420
11421 static void
11422 init_remote_threadtests (void)
11423 {
11424 add_com ("tlist", class_obscure, threadlist_test_cmd,
11425 _("Fetch and print the remote list of "
11426 "thread identifiers, one pkt only"));
11427 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11428 _("Fetch and display info about one thread"));
11429 add_com ("tset", class_obscure, threadset_test_cmd,
11430 _("Test setting to a different thread"));
11431 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11432 _("Iterate through updating all remote thread info"));
11433 add_com ("talive", class_obscure, threadalive_test,
11434 _(" Remote thread alive test "));
11435 }
11436
11437 #endif /* 0 */
11438
11439 /* Convert a thread ID to a string. Returns the string in a static
11440 buffer. */
11441
11442 const char *
11443 remote_target::pid_to_str (ptid_t ptid)
11444 {
11445 static char buf[64];
11446 struct remote_state *rs = get_remote_state ();
11447
11448 if (ptid == null_ptid)
11449 return normal_pid_to_str (ptid);
11450 else if (ptid.is_pid ())
11451 {
11452 /* Printing an inferior target id. */
11453
11454 /* When multi-process extensions are off, there's no way in the
11455 remote protocol to know the remote process id, if there's any
11456 at all. There's one exception --- when we're connected with
11457 target extended-remote, and we manually attached to a process
11458 with "attach PID". We don't record anywhere a flag that
11459 allows us to distinguish that case from the case of
11460 connecting with extended-remote and the stub already being
11461 attached to a process, and reporting yes to qAttached, hence
11462 no smart special casing here. */
11463 if (!remote_multi_process_p (rs))
11464 {
11465 xsnprintf (buf, sizeof buf, "Remote target");
11466 return buf;
11467 }
11468
11469 return normal_pid_to_str (ptid);
11470 }
11471 else
11472 {
11473 if (magic_null_ptid == ptid)
11474 xsnprintf (buf, sizeof buf, "Thread <main>");
11475 else if (remote_multi_process_p (rs))
11476 if (ptid.lwp () == 0)
11477 return normal_pid_to_str (ptid);
11478 else
11479 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11480 ptid.pid (), ptid.lwp ());
11481 else
11482 xsnprintf (buf, sizeof buf, "Thread %ld",
11483 ptid.lwp ());
11484 return buf;
11485 }
11486 }
11487
11488 /* Get the address of the thread local variable in OBJFILE which is
11489 stored at OFFSET within the thread local storage for thread PTID. */
11490
11491 CORE_ADDR
11492 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11493 CORE_ADDR offset)
11494 {
11495 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11496 {
11497 struct remote_state *rs = get_remote_state ();
11498 char *p = rs->buf.data ();
11499 char *endp = p + get_remote_packet_size ();
11500 enum packet_result result;
11501
11502 strcpy (p, "qGetTLSAddr:");
11503 p += strlen (p);
11504 p = write_ptid (p, endp, ptid);
11505 *p++ = ',';
11506 p += hexnumstr (p, offset);
11507 *p++ = ',';
11508 p += hexnumstr (p, lm);
11509 *p++ = '\0';
11510
11511 putpkt (rs->buf);
11512 getpkt (&rs->buf, 0);
11513 result = packet_ok (rs->buf,
11514 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11515 if (result == PACKET_OK)
11516 {
11517 ULONGEST addr;
11518
11519 unpack_varlen_hex (rs->buf.data (), &addr);
11520 return addr;
11521 }
11522 else if (result == PACKET_UNKNOWN)
11523 throw_error (TLS_GENERIC_ERROR,
11524 _("Remote target doesn't support qGetTLSAddr packet"));
11525 else
11526 throw_error (TLS_GENERIC_ERROR,
11527 _("Remote target failed to process qGetTLSAddr request"));
11528 }
11529 else
11530 throw_error (TLS_GENERIC_ERROR,
11531 _("TLS not supported or disabled on this target"));
11532 /* Not reached. */
11533 return 0;
11534 }
11535
11536 /* Provide thread local base, i.e. Thread Information Block address.
11537 Returns 1 if ptid is found and thread_local_base is non zero. */
11538
11539 bool
11540 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11541 {
11542 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11543 {
11544 struct remote_state *rs = get_remote_state ();
11545 char *p = rs->buf.data ();
11546 char *endp = p + get_remote_packet_size ();
11547 enum packet_result result;
11548
11549 strcpy (p, "qGetTIBAddr:");
11550 p += strlen (p);
11551 p = write_ptid (p, endp, ptid);
11552 *p++ = '\0';
11553
11554 putpkt (rs->buf);
11555 getpkt (&rs->buf, 0);
11556 result = packet_ok (rs->buf,
11557 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11558 if (result == PACKET_OK)
11559 {
11560 ULONGEST val;
11561 unpack_varlen_hex (rs->buf.data (), &val);
11562 if (addr)
11563 *addr = (CORE_ADDR) val;
11564 return true;
11565 }
11566 else if (result == PACKET_UNKNOWN)
11567 error (_("Remote target doesn't support qGetTIBAddr packet"));
11568 else
11569 error (_("Remote target failed to process qGetTIBAddr request"));
11570 }
11571 else
11572 error (_("qGetTIBAddr not supported or disabled on this target"));
11573 /* Not reached. */
11574 return false;
11575 }
11576
11577 /* Support for inferring a target description based on the current
11578 architecture and the size of a 'g' packet. While the 'g' packet
11579 can have any size (since optional registers can be left off the
11580 end), some sizes are easily recognizable given knowledge of the
11581 approximate architecture. */
11582
11583 struct remote_g_packet_guess
11584 {
11585 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11586 : bytes (bytes_),
11587 tdesc (tdesc_)
11588 {
11589 }
11590
11591 int bytes;
11592 const struct target_desc *tdesc;
11593 };
11594
11595 struct remote_g_packet_data : public allocate_on_obstack
11596 {
11597 std::vector<remote_g_packet_guess> guesses;
11598 };
11599
11600 static struct gdbarch_data *remote_g_packet_data_handle;
11601
11602 static void *
11603 remote_g_packet_data_init (struct obstack *obstack)
11604 {
11605 return new (obstack) remote_g_packet_data;
11606 }
11607
11608 void
11609 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11610 const struct target_desc *tdesc)
11611 {
11612 struct remote_g_packet_data *data
11613 = ((struct remote_g_packet_data *)
11614 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11615
11616 gdb_assert (tdesc != NULL);
11617
11618 for (const remote_g_packet_guess &guess : data->guesses)
11619 if (guess.bytes == bytes)
11620 internal_error (__FILE__, __LINE__,
11621 _("Duplicate g packet description added for size %d"),
11622 bytes);
11623
11624 data->guesses.emplace_back (bytes, tdesc);
11625 }
11626
11627 /* Return true if remote_read_description would do anything on this target
11628 and architecture, false otherwise. */
11629
11630 static bool
11631 remote_read_description_p (struct target_ops *target)
11632 {
11633 struct remote_g_packet_data *data
11634 = ((struct remote_g_packet_data *)
11635 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11636
11637 return !data->guesses.empty ();
11638 }
11639
11640 const struct target_desc *
11641 remote_target::read_description ()
11642 {
11643 struct remote_g_packet_data *data
11644 = ((struct remote_g_packet_data *)
11645 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11646
11647 /* Do not try this during initial connection, when we do not know
11648 whether there is a running but stopped thread. */
11649 if (!target_has_execution || inferior_ptid == null_ptid)
11650 return beneath ()->read_description ();
11651
11652 if (!data->guesses.empty ())
11653 {
11654 int bytes = send_g_packet ();
11655
11656 for (const remote_g_packet_guess &guess : data->guesses)
11657 if (guess.bytes == bytes)
11658 return guess.tdesc;
11659
11660 /* We discard the g packet. A minor optimization would be to
11661 hold on to it, and fill the register cache once we have selected
11662 an architecture, but it's too tricky to do safely. */
11663 }
11664
11665 return beneath ()->read_description ();
11666 }
11667
11668 /* Remote file transfer support. This is host-initiated I/O, not
11669 target-initiated; for target-initiated, see remote-fileio.c. */
11670
11671 /* If *LEFT is at least the length of STRING, copy STRING to
11672 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11673 decrease *LEFT. Otherwise raise an error. */
11674
11675 static void
11676 remote_buffer_add_string (char **buffer, int *left, const char *string)
11677 {
11678 int len = strlen (string);
11679
11680 if (len > *left)
11681 error (_("Packet too long for target."));
11682
11683 memcpy (*buffer, string, len);
11684 *buffer += len;
11685 *left -= len;
11686
11687 /* NUL-terminate the buffer as a convenience, if there is
11688 room. */
11689 if (*left)
11690 **buffer = '\0';
11691 }
11692
11693 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11694 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11695 decrease *LEFT. Otherwise raise an error. */
11696
11697 static void
11698 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11699 int len)
11700 {
11701 if (2 * len > *left)
11702 error (_("Packet too long for target."));
11703
11704 bin2hex (bytes, *buffer, len);
11705 *buffer += 2 * len;
11706 *left -= 2 * len;
11707
11708 /* NUL-terminate the buffer as a convenience, if there is
11709 room. */
11710 if (*left)
11711 **buffer = '\0';
11712 }
11713
11714 /* If *LEFT is large enough, convert VALUE to hex and add it to
11715 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11716 decrease *LEFT. Otherwise raise an error. */
11717
11718 static void
11719 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11720 {
11721 int len = hexnumlen (value);
11722
11723 if (len > *left)
11724 error (_("Packet too long for target."));
11725
11726 hexnumstr (*buffer, value);
11727 *buffer += len;
11728 *left -= len;
11729
11730 /* NUL-terminate the buffer as a convenience, if there is
11731 room. */
11732 if (*left)
11733 **buffer = '\0';
11734 }
11735
11736 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11737 value, *REMOTE_ERRNO to the remote error number or zero if none
11738 was included, and *ATTACHMENT to point to the start of the annex
11739 if any. The length of the packet isn't needed here; there may
11740 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11741
11742 Return 0 if the packet could be parsed, -1 if it could not. If
11743 -1 is returned, the other variables may not be initialized. */
11744
11745 static int
11746 remote_hostio_parse_result (char *buffer, int *retcode,
11747 int *remote_errno, char **attachment)
11748 {
11749 char *p, *p2;
11750
11751 *remote_errno = 0;
11752 *attachment = NULL;
11753
11754 if (buffer[0] != 'F')
11755 return -1;
11756
11757 errno = 0;
11758 *retcode = strtol (&buffer[1], &p, 16);
11759 if (errno != 0 || p == &buffer[1])
11760 return -1;
11761
11762 /* Check for ",errno". */
11763 if (*p == ',')
11764 {
11765 errno = 0;
11766 *remote_errno = strtol (p + 1, &p2, 16);
11767 if (errno != 0 || p + 1 == p2)
11768 return -1;
11769 p = p2;
11770 }
11771
11772 /* Check for ";attachment". If there is no attachment, the
11773 packet should end here. */
11774 if (*p == ';')
11775 {
11776 *attachment = p + 1;
11777 return 0;
11778 }
11779 else if (*p == '\0')
11780 return 0;
11781 else
11782 return -1;
11783 }
11784
11785 /* Send a prepared I/O packet to the target and read its response.
11786 The prepared packet is in the global RS->BUF before this function
11787 is called, and the answer is there when we return.
11788
11789 COMMAND_BYTES is the length of the request to send, which may include
11790 binary data. WHICH_PACKET is the packet configuration to check
11791 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11792 is set to the error number and -1 is returned. Otherwise the value
11793 returned by the function is returned.
11794
11795 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11796 attachment is expected; an error will be reported if there's a
11797 mismatch. If one is found, *ATTACHMENT will be set to point into
11798 the packet buffer and *ATTACHMENT_LEN will be set to the
11799 attachment's length. */
11800
11801 int
11802 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11803 int *remote_errno, char **attachment,
11804 int *attachment_len)
11805 {
11806 struct remote_state *rs = get_remote_state ();
11807 int ret, bytes_read;
11808 char *attachment_tmp;
11809
11810 if (packet_support (which_packet) == PACKET_DISABLE)
11811 {
11812 *remote_errno = FILEIO_ENOSYS;
11813 return -1;
11814 }
11815
11816 putpkt_binary (rs->buf.data (), command_bytes);
11817 bytes_read = getpkt_sane (&rs->buf, 0);
11818
11819 /* If it timed out, something is wrong. Don't try to parse the
11820 buffer. */
11821 if (bytes_read < 0)
11822 {
11823 *remote_errno = FILEIO_EINVAL;
11824 return -1;
11825 }
11826
11827 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11828 {
11829 case PACKET_ERROR:
11830 *remote_errno = FILEIO_EINVAL;
11831 return -1;
11832 case PACKET_UNKNOWN:
11833 *remote_errno = FILEIO_ENOSYS;
11834 return -1;
11835 case PACKET_OK:
11836 break;
11837 }
11838
11839 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11840 &attachment_tmp))
11841 {
11842 *remote_errno = FILEIO_EINVAL;
11843 return -1;
11844 }
11845
11846 /* Make sure we saw an attachment if and only if we expected one. */
11847 if ((attachment_tmp == NULL && attachment != NULL)
11848 || (attachment_tmp != NULL && attachment == NULL))
11849 {
11850 *remote_errno = FILEIO_EINVAL;
11851 return -1;
11852 }
11853
11854 /* If an attachment was found, it must point into the packet buffer;
11855 work out how many bytes there were. */
11856 if (attachment_tmp != NULL)
11857 {
11858 *attachment = attachment_tmp;
11859 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11860 }
11861
11862 return ret;
11863 }
11864
11865 /* See declaration.h. */
11866
11867 void
11868 readahead_cache::invalidate ()
11869 {
11870 this->fd = -1;
11871 }
11872
11873 /* See declaration.h. */
11874
11875 void
11876 readahead_cache::invalidate_fd (int fd)
11877 {
11878 if (this->fd == fd)
11879 this->fd = -1;
11880 }
11881
11882 /* Set the filesystem remote_hostio functions that take FILENAME
11883 arguments will use. Return 0 on success, or -1 if an error
11884 occurs (and set *REMOTE_ERRNO). */
11885
11886 int
11887 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11888 int *remote_errno)
11889 {
11890 struct remote_state *rs = get_remote_state ();
11891 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11892 char *p = rs->buf.data ();
11893 int left = get_remote_packet_size () - 1;
11894 char arg[9];
11895 int ret;
11896
11897 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11898 return 0;
11899
11900 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11901 return 0;
11902
11903 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11904
11905 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11906 remote_buffer_add_string (&p, &left, arg);
11907
11908 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11909 remote_errno, NULL, NULL);
11910
11911 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11912 return 0;
11913
11914 if (ret == 0)
11915 rs->fs_pid = required_pid;
11916
11917 return ret;
11918 }
11919
11920 /* Implementation of to_fileio_open. */
11921
11922 int
11923 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11924 int flags, int mode, int warn_if_slow,
11925 int *remote_errno)
11926 {
11927 struct remote_state *rs = get_remote_state ();
11928 char *p = rs->buf.data ();
11929 int left = get_remote_packet_size () - 1;
11930
11931 if (warn_if_slow)
11932 {
11933 static int warning_issued = 0;
11934
11935 printf_unfiltered (_("Reading %s from remote target...\n"),
11936 filename);
11937
11938 if (!warning_issued)
11939 {
11940 warning (_("File transfers from remote targets can be slow."
11941 " Use \"set sysroot\" to access files locally"
11942 " instead."));
11943 warning_issued = 1;
11944 }
11945 }
11946
11947 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11948 return -1;
11949
11950 remote_buffer_add_string (&p, &left, "vFile:open:");
11951
11952 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11953 strlen (filename));
11954 remote_buffer_add_string (&p, &left, ",");
11955
11956 remote_buffer_add_int (&p, &left, flags);
11957 remote_buffer_add_string (&p, &left, ",");
11958
11959 remote_buffer_add_int (&p, &left, mode);
11960
11961 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11962 remote_errno, NULL, NULL);
11963 }
11964
11965 int
11966 remote_target::fileio_open (struct inferior *inf, const char *filename,
11967 int flags, int mode, int warn_if_slow,
11968 int *remote_errno)
11969 {
11970 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11971 remote_errno);
11972 }
11973
11974 /* Implementation of to_fileio_pwrite. */
11975
11976 int
11977 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11978 ULONGEST offset, int *remote_errno)
11979 {
11980 struct remote_state *rs = get_remote_state ();
11981 char *p = rs->buf.data ();
11982 int left = get_remote_packet_size ();
11983 int out_len;
11984
11985 rs->readahead_cache.invalidate_fd (fd);
11986
11987 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11988
11989 remote_buffer_add_int (&p, &left, fd);
11990 remote_buffer_add_string (&p, &left, ",");
11991
11992 remote_buffer_add_int (&p, &left, offset);
11993 remote_buffer_add_string (&p, &left, ",");
11994
11995 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11996 (get_remote_packet_size ()
11997 - (p - rs->buf.data ())));
11998
11999 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12000 remote_errno, NULL, NULL);
12001 }
12002
12003 int
12004 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12005 ULONGEST offset, int *remote_errno)
12006 {
12007 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12008 }
12009
12010 /* Helper for the implementation of to_fileio_pread. Read the file
12011 from the remote side with vFile:pread. */
12012
12013 int
12014 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12015 ULONGEST offset, int *remote_errno)
12016 {
12017 struct remote_state *rs = get_remote_state ();
12018 char *p = rs->buf.data ();
12019 char *attachment;
12020 int left = get_remote_packet_size ();
12021 int ret, attachment_len;
12022 int read_len;
12023
12024 remote_buffer_add_string (&p, &left, "vFile:pread:");
12025
12026 remote_buffer_add_int (&p, &left, fd);
12027 remote_buffer_add_string (&p, &left, ",");
12028
12029 remote_buffer_add_int (&p, &left, len);
12030 remote_buffer_add_string (&p, &left, ",");
12031
12032 remote_buffer_add_int (&p, &left, offset);
12033
12034 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12035 remote_errno, &attachment,
12036 &attachment_len);
12037
12038 if (ret < 0)
12039 return ret;
12040
12041 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12042 read_buf, len);
12043 if (read_len != ret)
12044 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12045
12046 return ret;
12047 }
12048
12049 /* See declaration.h. */
12050
12051 int
12052 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12053 ULONGEST offset)
12054 {
12055 if (this->fd == fd
12056 && this->offset <= offset
12057 && offset < this->offset + this->bufsize)
12058 {
12059 ULONGEST max = this->offset + this->bufsize;
12060
12061 if (offset + len > max)
12062 len = max - offset;
12063
12064 memcpy (read_buf, this->buf + offset - this->offset, len);
12065 return len;
12066 }
12067
12068 return 0;
12069 }
12070
12071 /* Implementation of to_fileio_pread. */
12072
12073 int
12074 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12075 ULONGEST offset, int *remote_errno)
12076 {
12077 int ret;
12078 struct remote_state *rs = get_remote_state ();
12079 readahead_cache *cache = &rs->readahead_cache;
12080
12081 ret = cache->pread (fd, read_buf, len, offset);
12082 if (ret > 0)
12083 {
12084 cache->hit_count++;
12085
12086 if (remote_debug)
12087 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12088 pulongest (cache->hit_count));
12089 return ret;
12090 }
12091
12092 cache->miss_count++;
12093 if (remote_debug)
12094 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12095 pulongest (cache->miss_count));
12096
12097 cache->fd = fd;
12098 cache->offset = offset;
12099 cache->bufsize = get_remote_packet_size ();
12100 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12101
12102 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12103 cache->offset, remote_errno);
12104 if (ret <= 0)
12105 {
12106 cache->invalidate_fd (fd);
12107 return ret;
12108 }
12109
12110 cache->bufsize = ret;
12111 return cache->pread (fd, read_buf, len, offset);
12112 }
12113
12114 int
12115 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12116 ULONGEST offset, int *remote_errno)
12117 {
12118 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12119 }
12120
12121 /* Implementation of to_fileio_close. */
12122
12123 int
12124 remote_target::remote_hostio_close (int fd, int *remote_errno)
12125 {
12126 struct remote_state *rs = get_remote_state ();
12127 char *p = rs->buf.data ();
12128 int left = get_remote_packet_size () - 1;
12129
12130 rs->readahead_cache.invalidate_fd (fd);
12131
12132 remote_buffer_add_string (&p, &left, "vFile:close:");
12133
12134 remote_buffer_add_int (&p, &left, fd);
12135
12136 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12137 remote_errno, NULL, NULL);
12138 }
12139
12140 int
12141 remote_target::fileio_close (int fd, int *remote_errno)
12142 {
12143 return remote_hostio_close (fd, remote_errno);
12144 }
12145
12146 /* Implementation of to_fileio_unlink. */
12147
12148 int
12149 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12150 int *remote_errno)
12151 {
12152 struct remote_state *rs = get_remote_state ();
12153 char *p = rs->buf.data ();
12154 int left = get_remote_packet_size () - 1;
12155
12156 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12157 return -1;
12158
12159 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12160
12161 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12162 strlen (filename));
12163
12164 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12165 remote_errno, NULL, NULL);
12166 }
12167
12168 int
12169 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12170 int *remote_errno)
12171 {
12172 return remote_hostio_unlink (inf, filename, remote_errno);
12173 }
12174
12175 /* Implementation of to_fileio_readlink. */
12176
12177 gdb::optional<std::string>
12178 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12179 int *remote_errno)
12180 {
12181 struct remote_state *rs = get_remote_state ();
12182 char *p = rs->buf.data ();
12183 char *attachment;
12184 int left = get_remote_packet_size ();
12185 int len, attachment_len;
12186 int read_len;
12187
12188 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12189 return {};
12190
12191 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12192
12193 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12194 strlen (filename));
12195
12196 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12197 remote_errno, &attachment,
12198 &attachment_len);
12199
12200 if (len < 0)
12201 return {};
12202
12203 std::string ret (len, '\0');
12204
12205 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12206 (gdb_byte *) &ret[0], len);
12207 if (read_len != len)
12208 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12209
12210 return ret;
12211 }
12212
12213 /* Implementation of to_fileio_fstat. */
12214
12215 int
12216 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12217 {
12218 struct remote_state *rs = get_remote_state ();
12219 char *p = rs->buf.data ();
12220 int left = get_remote_packet_size ();
12221 int attachment_len, ret;
12222 char *attachment;
12223 struct fio_stat fst;
12224 int read_len;
12225
12226 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12227
12228 remote_buffer_add_int (&p, &left, fd);
12229
12230 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12231 remote_errno, &attachment,
12232 &attachment_len);
12233 if (ret < 0)
12234 {
12235 if (*remote_errno != FILEIO_ENOSYS)
12236 return ret;
12237
12238 /* Strictly we should return -1, ENOSYS here, but when
12239 "set sysroot remote:" was implemented in August 2008
12240 BFD's need for a stat function was sidestepped with
12241 this hack. This was not remedied until March 2015
12242 so we retain the previous behavior to avoid breaking
12243 compatibility.
12244
12245 Note that the memset is a March 2015 addition; older
12246 GDBs set st_size *and nothing else* so the structure
12247 would have garbage in all other fields. This might
12248 break something but retaining the previous behavior
12249 here would be just too wrong. */
12250
12251 memset (st, 0, sizeof (struct stat));
12252 st->st_size = INT_MAX;
12253 return 0;
12254 }
12255
12256 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12257 (gdb_byte *) &fst, sizeof (fst));
12258
12259 if (read_len != ret)
12260 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12261
12262 if (read_len != sizeof (fst))
12263 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12264 read_len, (int) sizeof (fst));
12265
12266 remote_fileio_to_host_stat (&fst, st);
12267
12268 return 0;
12269 }
12270
12271 /* Implementation of to_filesystem_is_local. */
12272
12273 bool
12274 remote_target::filesystem_is_local ()
12275 {
12276 /* Valgrind GDB presents itself as a remote target but works
12277 on the local filesystem: it does not implement remote get
12278 and users are not expected to set a sysroot. To handle
12279 this case we treat the remote filesystem as local if the
12280 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12281 does not support vFile:open. */
12282 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12283 {
12284 enum packet_support ps = packet_support (PACKET_vFile_open);
12285
12286 if (ps == PACKET_SUPPORT_UNKNOWN)
12287 {
12288 int fd, remote_errno;
12289
12290 /* Try opening a file to probe support. The supplied
12291 filename is irrelevant, we only care about whether
12292 the stub recognizes the packet or not. */
12293 fd = remote_hostio_open (NULL, "just probing",
12294 FILEIO_O_RDONLY, 0700, 0,
12295 &remote_errno);
12296
12297 if (fd >= 0)
12298 remote_hostio_close (fd, &remote_errno);
12299
12300 ps = packet_support (PACKET_vFile_open);
12301 }
12302
12303 if (ps == PACKET_DISABLE)
12304 {
12305 static int warning_issued = 0;
12306
12307 if (!warning_issued)
12308 {
12309 warning (_("remote target does not support file"
12310 " transfer, attempting to access files"
12311 " from local filesystem."));
12312 warning_issued = 1;
12313 }
12314
12315 return true;
12316 }
12317 }
12318
12319 return false;
12320 }
12321
12322 static int
12323 remote_fileio_errno_to_host (int errnum)
12324 {
12325 switch (errnum)
12326 {
12327 case FILEIO_EPERM:
12328 return EPERM;
12329 case FILEIO_ENOENT:
12330 return ENOENT;
12331 case FILEIO_EINTR:
12332 return EINTR;
12333 case FILEIO_EIO:
12334 return EIO;
12335 case FILEIO_EBADF:
12336 return EBADF;
12337 case FILEIO_EACCES:
12338 return EACCES;
12339 case FILEIO_EFAULT:
12340 return EFAULT;
12341 case FILEIO_EBUSY:
12342 return EBUSY;
12343 case FILEIO_EEXIST:
12344 return EEXIST;
12345 case FILEIO_ENODEV:
12346 return ENODEV;
12347 case FILEIO_ENOTDIR:
12348 return ENOTDIR;
12349 case FILEIO_EISDIR:
12350 return EISDIR;
12351 case FILEIO_EINVAL:
12352 return EINVAL;
12353 case FILEIO_ENFILE:
12354 return ENFILE;
12355 case FILEIO_EMFILE:
12356 return EMFILE;
12357 case FILEIO_EFBIG:
12358 return EFBIG;
12359 case FILEIO_ENOSPC:
12360 return ENOSPC;
12361 case FILEIO_ESPIPE:
12362 return ESPIPE;
12363 case FILEIO_EROFS:
12364 return EROFS;
12365 case FILEIO_ENOSYS:
12366 return ENOSYS;
12367 case FILEIO_ENAMETOOLONG:
12368 return ENAMETOOLONG;
12369 }
12370 return -1;
12371 }
12372
12373 static char *
12374 remote_hostio_error (int errnum)
12375 {
12376 int host_error = remote_fileio_errno_to_host (errnum);
12377
12378 if (host_error == -1)
12379 error (_("Unknown remote I/O error %d"), errnum);
12380 else
12381 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12382 }
12383
12384 /* A RAII wrapper around a remote file descriptor. */
12385
12386 class scoped_remote_fd
12387 {
12388 public:
12389 scoped_remote_fd (remote_target *remote, int fd)
12390 : m_remote (remote), m_fd (fd)
12391 {
12392 }
12393
12394 ~scoped_remote_fd ()
12395 {
12396 if (m_fd != -1)
12397 {
12398 try
12399 {
12400 int remote_errno;
12401 m_remote->remote_hostio_close (m_fd, &remote_errno);
12402 }
12403 catch (...)
12404 {
12405 /* Swallow exception before it escapes the dtor. If
12406 something goes wrong, likely the connection is gone,
12407 and there's nothing else that can be done. */
12408 }
12409 }
12410 }
12411
12412 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12413
12414 /* Release ownership of the file descriptor, and return it. */
12415 int release () noexcept
12416 {
12417 int fd = m_fd;
12418 m_fd = -1;
12419 return fd;
12420 }
12421
12422 /* Return the owned file descriptor. */
12423 int get () const noexcept
12424 {
12425 return m_fd;
12426 }
12427
12428 private:
12429 /* The remote target. */
12430 remote_target *m_remote;
12431
12432 /* The owned remote I/O file descriptor. */
12433 int m_fd;
12434 };
12435
12436 void
12437 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12438 {
12439 remote_target *remote = get_current_remote_target ();
12440
12441 if (remote == nullptr)
12442 error (_("command can only be used with remote target"));
12443
12444 remote->remote_file_put (local_file, remote_file, from_tty);
12445 }
12446
12447 void
12448 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12449 int from_tty)
12450 {
12451 int retcode, remote_errno, bytes, io_size;
12452 int bytes_in_buffer;
12453 int saw_eof;
12454 ULONGEST offset;
12455
12456 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12457 if (file == NULL)
12458 perror_with_name (local_file);
12459
12460 scoped_remote_fd fd
12461 (this, remote_hostio_open (NULL,
12462 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12463 | FILEIO_O_TRUNC),
12464 0700, 0, &remote_errno));
12465 if (fd.get () == -1)
12466 remote_hostio_error (remote_errno);
12467
12468 /* Send up to this many bytes at once. They won't all fit in the
12469 remote packet limit, so we'll transfer slightly fewer. */
12470 io_size = get_remote_packet_size ();
12471 gdb::byte_vector buffer (io_size);
12472
12473 bytes_in_buffer = 0;
12474 saw_eof = 0;
12475 offset = 0;
12476 while (bytes_in_buffer || !saw_eof)
12477 {
12478 if (!saw_eof)
12479 {
12480 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12481 io_size - bytes_in_buffer,
12482 file.get ());
12483 if (bytes == 0)
12484 {
12485 if (ferror (file.get ()))
12486 error (_("Error reading %s."), local_file);
12487 else
12488 {
12489 /* EOF. Unless there is something still in the
12490 buffer from the last iteration, we are done. */
12491 saw_eof = 1;
12492 if (bytes_in_buffer == 0)
12493 break;
12494 }
12495 }
12496 }
12497 else
12498 bytes = 0;
12499
12500 bytes += bytes_in_buffer;
12501 bytes_in_buffer = 0;
12502
12503 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12504 offset, &remote_errno);
12505
12506 if (retcode < 0)
12507 remote_hostio_error (remote_errno);
12508 else if (retcode == 0)
12509 error (_("Remote write of %d bytes returned 0!"), bytes);
12510 else if (retcode < bytes)
12511 {
12512 /* Short write. Save the rest of the read data for the next
12513 write. */
12514 bytes_in_buffer = bytes - retcode;
12515 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12516 }
12517
12518 offset += retcode;
12519 }
12520
12521 if (remote_hostio_close (fd.release (), &remote_errno))
12522 remote_hostio_error (remote_errno);
12523
12524 if (from_tty)
12525 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12526 }
12527
12528 void
12529 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12530 {
12531 remote_target *remote = get_current_remote_target ();
12532
12533 if (remote == nullptr)
12534 error (_("command can only be used with remote target"));
12535
12536 remote->remote_file_get (remote_file, local_file, from_tty);
12537 }
12538
12539 void
12540 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12541 int from_tty)
12542 {
12543 int remote_errno, bytes, io_size;
12544 ULONGEST offset;
12545
12546 scoped_remote_fd fd
12547 (this, remote_hostio_open (NULL,
12548 remote_file, FILEIO_O_RDONLY, 0, 0,
12549 &remote_errno));
12550 if (fd.get () == -1)
12551 remote_hostio_error (remote_errno);
12552
12553 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12554 if (file == NULL)
12555 perror_with_name (local_file);
12556
12557 /* Send up to this many bytes at once. They won't all fit in the
12558 remote packet limit, so we'll transfer slightly fewer. */
12559 io_size = get_remote_packet_size ();
12560 gdb::byte_vector buffer (io_size);
12561
12562 offset = 0;
12563 while (1)
12564 {
12565 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12566 &remote_errno);
12567 if (bytes == 0)
12568 /* Success, but no bytes, means end-of-file. */
12569 break;
12570 if (bytes == -1)
12571 remote_hostio_error (remote_errno);
12572
12573 offset += bytes;
12574
12575 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12576 if (bytes == 0)
12577 perror_with_name (local_file);
12578 }
12579
12580 if (remote_hostio_close (fd.release (), &remote_errno))
12581 remote_hostio_error (remote_errno);
12582
12583 if (from_tty)
12584 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12585 }
12586
12587 void
12588 remote_file_delete (const char *remote_file, int from_tty)
12589 {
12590 remote_target *remote = get_current_remote_target ();
12591
12592 if (remote == nullptr)
12593 error (_("command can only be used with remote target"));
12594
12595 remote->remote_file_delete (remote_file, from_tty);
12596 }
12597
12598 void
12599 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12600 {
12601 int retcode, remote_errno;
12602
12603 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12604 if (retcode == -1)
12605 remote_hostio_error (remote_errno);
12606
12607 if (from_tty)
12608 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12609 }
12610
12611 static void
12612 remote_put_command (const char *args, int from_tty)
12613 {
12614 if (args == NULL)
12615 error_no_arg (_("file to put"));
12616
12617 gdb_argv argv (args);
12618 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12619 error (_("Invalid parameters to remote put"));
12620
12621 remote_file_put (argv[0], argv[1], from_tty);
12622 }
12623
12624 static void
12625 remote_get_command (const char *args, int from_tty)
12626 {
12627 if (args == NULL)
12628 error_no_arg (_("file to get"));
12629
12630 gdb_argv argv (args);
12631 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12632 error (_("Invalid parameters to remote get"));
12633
12634 remote_file_get (argv[0], argv[1], from_tty);
12635 }
12636
12637 static void
12638 remote_delete_command (const char *args, int from_tty)
12639 {
12640 if (args == NULL)
12641 error_no_arg (_("file to delete"));
12642
12643 gdb_argv argv (args);
12644 if (argv[0] == NULL || argv[1] != NULL)
12645 error (_("Invalid parameters to remote delete"));
12646
12647 remote_file_delete (argv[0], from_tty);
12648 }
12649
12650 static void
12651 remote_command (const char *args, int from_tty)
12652 {
12653 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12654 }
12655
12656 bool
12657 remote_target::can_execute_reverse ()
12658 {
12659 if (packet_support (PACKET_bs) == PACKET_ENABLE
12660 || packet_support (PACKET_bc) == PACKET_ENABLE)
12661 return true;
12662 else
12663 return false;
12664 }
12665
12666 bool
12667 remote_target::supports_non_stop ()
12668 {
12669 return true;
12670 }
12671
12672 bool
12673 remote_target::supports_disable_randomization ()
12674 {
12675 /* Only supported in extended mode. */
12676 return false;
12677 }
12678
12679 bool
12680 remote_target::supports_multi_process ()
12681 {
12682 struct remote_state *rs = get_remote_state ();
12683
12684 return remote_multi_process_p (rs);
12685 }
12686
12687 static int
12688 remote_supports_cond_tracepoints ()
12689 {
12690 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12691 }
12692
12693 bool
12694 remote_target::supports_evaluation_of_breakpoint_conditions ()
12695 {
12696 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12697 }
12698
12699 static int
12700 remote_supports_fast_tracepoints ()
12701 {
12702 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12703 }
12704
12705 static int
12706 remote_supports_static_tracepoints ()
12707 {
12708 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12709 }
12710
12711 static int
12712 remote_supports_install_in_trace ()
12713 {
12714 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12715 }
12716
12717 bool
12718 remote_target::supports_enable_disable_tracepoint ()
12719 {
12720 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12721 == PACKET_ENABLE);
12722 }
12723
12724 bool
12725 remote_target::supports_string_tracing ()
12726 {
12727 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12728 }
12729
12730 bool
12731 remote_target::can_run_breakpoint_commands ()
12732 {
12733 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12734 }
12735
12736 void
12737 remote_target::trace_init ()
12738 {
12739 struct remote_state *rs = get_remote_state ();
12740
12741 putpkt ("QTinit");
12742 remote_get_noisy_reply ();
12743 if (strcmp (rs->buf.data (), "OK") != 0)
12744 error (_("Target does not support this command."));
12745 }
12746
12747 /* Recursive routine to walk through command list including loops, and
12748 download packets for each command. */
12749
12750 void
12751 remote_target::remote_download_command_source (int num, ULONGEST addr,
12752 struct command_line *cmds)
12753 {
12754 struct remote_state *rs = get_remote_state ();
12755 struct command_line *cmd;
12756
12757 for (cmd = cmds; cmd; cmd = cmd->next)
12758 {
12759 QUIT; /* Allow user to bail out with ^C. */
12760 strcpy (rs->buf.data (), "QTDPsrc:");
12761 encode_source_string (num, addr, "cmd", cmd->line,
12762 rs->buf.data () + strlen (rs->buf.data ()),
12763 rs->buf.size () - strlen (rs->buf.data ()));
12764 putpkt (rs->buf);
12765 remote_get_noisy_reply ();
12766 if (strcmp (rs->buf.data (), "OK"))
12767 warning (_("Target does not support source download."));
12768
12769 if (cmd->control_type == while_control
12770 || cmd->control_type == while_stepping_control)
12771 {
12772 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12773
12774 QUIT; /* Allow user to bail out with ^C. */
12775 strcpy (rs->buf.data (), "QTDPsrc:");
12776 encode_source_string (num, addr, "cmd", "end",
12777 rs->buf.data () + strlen (rs->buf.data ()),
12778 rs->buf.size () - strlen (rs->buf.data ()));
12779 putpkt (rs->buf);
12780 remote_get_noisy_reply ();
12781 if (strcmp (rs->buf.data (), "OK"))
12782 warning (_("Target does not support source download."));
12783 }
12784 }
12785 }
12786
12787 void
12788 remote_target::download_tracepoint (struct bp_location *loc)
12789 {
12790 CORE_ADDR tpaddr;
12791 char addrbuf[40];
12792 std::vector<std::string> tdp_actions;
12793 std::vector<std::string> stepping_actions;
12794 char *pkt;
12795 struct breakpoint *b = loc->owner;
12796 struct tracepoint *t = (struct tracepoint *) b;
12797 struct remote_state *rs = get_remote_state ();
12798 int ret;
12799 const char *err_msg = _("Tracepoint packet too large for target.");
12800 size_t size_left;
12801
12802 /* We use a buffer other than rs->buf because we'll build strings
12803 across multiple statements, and other statements in between could
12804 modify rs->buf. */
12805 gdb::char_vector buf (get_remote_packet_size ());
12806
12807 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12808
12809 tpaddr = loc->address;
12810 sprintf_vma (addrbuf, tpaddr);
12811 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12812 b->number, addrbuf, /* address */
12813 (b->enable_state == bp_enabled ? 'E' : 'D'),
12814 t->step_count, t->pass_count);
12815
12816 if (ret < 0 || ret >= buf.size ())
12817 error ("%s", err_msg);
12818
12819 /* Fast tracepoints are mostly handled by the target, but we can
12820 tell the target how big of an instruction block should be moved
12821 around. */
12822 if (b->type == bp_fast_tracepoint)
12823 {
12824 /* Only test for support at download time; we may not know
12825 target capabilities at definition time. */
12826 if (remote_supports_fast_tracepoints ())
12827 {
12828 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12829 NULL))
12830 {
12831 size_left = buf.size () - strlen (buf.data ());
12832 ret = snprintf (buf.data () + strlen (buf.data ()),
12833 size_left, ":F%x",
12834 gdb_insn_length (loc->gdbarch, tpaddr));
12835
12836 if (ret < 0 || ret >= size_left)
12837 error ("%s", err_msg);
12838 }
12839 else
12840 /* If it passed validation at definition but fails now,
12841 something is very wrong. */
12842 internal_error (__FILE__, __LINE__,
12843 _("Fast tracepoint not "
12844 "valid during download"));
12845 }
12846 else
12847 /* Fast tracepoints are functionally identical to regular
12848 tracepoints, so don't take lack of support as a reason to
12849 give up on the trace run. */
12850 warning (_("Target does not support fast tracepoints, "
12851 "downloading %d as regular tracepoint"), b->number);
12852 }
12853 else if (b->type == bp_static_tracepoint)
12854 {
12855 /* Only test for support at download time; we may not know
12856 target capabilities at definition time. */
12857 if (remote_supports_static_tracepoints ())
12858 {
12859 struct static_tracepoint_marker marker;
12860
12861 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12862 {
12863 size_left = buf.size () - strlen (buf.data ());
12864 ret = snprintf (buf.data () + strlen (buf.data ()),
12865 size_left, ":S");
12866
12867 if (ret < 0 || ret >= size_left)
12868 error ("%s", err_msg);
12869 }
12870 else
12871 error (_("Static tracepoint not valid during download"));
12872 }
12873 else
12874 /* Fast tracepoints are functionally identical to regular
12875 tracepoints, so don't take lack of support as a reason
12876 to give up on the trace run. */
12877 error (_("Target does not support static tracepoints"));
12878 }
12879 /* If the tracepoint has a conditional, make it into an agent
12880 expression and append to the definition. */
12881 if (loc->cond)
12882 {
12883 /* Only test support at download time, we may not know target
12884 capabilities at definition time. */
12885 if (remote_supports_cond_tracepoints ())
12886 {
12887 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12888 loc->cond.get ());
12889
12890 size_left = buf.size () - strlen (buf.data ());
12891
12892 ret = snprintf (buf.data () + strlen (buf.data ()),
12893 size_left, ":X%x,", aexpr->len);
12894
12895 if (ret < 0 || ret >= size_left)
12896 error ("%s", err_msg);
12897
12898 size_left = buf.size () - strlen (buf.data ());
12899
12900 /* Two bytes to encode each aexpr byte, plus the terminating
12901 null byte. */
12902 if (aexpr->len * 2 + 1 > size_left)
12903 error ("%s", err_msg);
12904
12905 pkt = buf.data () + strlen (buf.data ());
12906
12907 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12908 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12909 *pkt = '\0';
12910 }
12911 else
12912 warning (_("Target does not support conditional tracepoints, "
12913 "ignoring tp %d cond"), b->number);
12914 }
12915
12916 if (b->commands || *default_collect)
12917 {
12918 size_left = buf.size () - strlen (buf.data ());
12919
12920 ret = snprintf (buf.data () + strlen (buf.data ()),
12921 size_left, "-");
12922
12923 if (ret < 0 || ret >= size_left)
12924 error ("%s", err_msg);
12925 }
12926
12927 putpkt (buf.data ());
12928 remote_get_noisy_reply ();
12929 if (strcmp (rs->buf.data (), "OK"))
12930 error (_("Target does not support tracepoints."));
12931
12932 /* do_single_steps (t); */
12933 for (auto action_it = tdp_actions.begin ();
12934 action_it != tdp_actions.end (); action_it++)
12935 {
12936 QUIT; /* Allow user to bail out with ^C. */
12937
12938 bool has_more = ((action_it + 1) != tdp_actions.end ()
12939 || !stepping_actions.empty ());
12940
12941 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12942 b->number, addrbuf, /* address */
12943 action_it->c_str (),
12944 has_more ? '-' : 0);
12945
12946 if (ret < 0 || ret >= buf.size ())
12947 error ("%s", err_msg);
12948
12949 putpkt (buf.data ());
12950 remote_get_noisy_reply ();
12951 if (strcmp (rs->buf.data (), "OK"))
12952 error (_("Error on target while setting tracepoints."));
12953 }
12954
12955 for (auto action_it = stepping_actions.begin ();
12956 action_it != stepping_actions.end (); action_it++)
12957 {
12958 QUIT; /* Allow user to bail out with ^C. */
12959
12960 bool is_first = action_it == stepping_actions.begin ();
12961 bool has_more = (action_it + 1) != stepping_actions.end ();
12962
12963 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12964 b->number, addrbuf, /* address */
12965 is_first ? "S" : "",
12966 action_it->c_str (),
12967 has_more ? "-" : "");
12968
12969 if (ret < 0 || ret >= buf.size ())
12970 error ("%s", err_msg);
12971
12972 putpkt (buf.data ());
12973 remote_get_noisy_reply ();
12974 if (strcmp (rs->buf.data (), "OK"))
12975 error (_("Error on target while setting tracepoints."));
12976 }
12977
12978 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12979 {
12980 if (b->location != NULL)
12981 {
12982 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12983
12984 if (ret < 0 || ret >= buf.size ())
12985 error ("%s", err_msg);
12986
12987 encode_source_string (b->number, loc->address, "at",
12988 event_location_to_string (b->location.get ()),
12989 buf.data () + strlen (buf.data ()),
12990 buf.size () - strlen (buf.data ()));
12991 putpkt (buf.data ());
12992 remote_get_noisy_reply ();
12993 if (strcmp (rs->buf.data (), "OK"))
12994 warning (_("Target does not support source download."));
12995 }
12996 if (b->cond_string)
12997 {
12998 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12999
13000 if (ret < 0 || ret >= buf.size ())
13001 error ("%s", err_msg);
13002
13003 encode_source_string (b->number, loc->address,
13004 "cond", b->cond_string,
13005 buf.data () + strlen (buf.data ()),
13006 buf.size () - strlen (buf.data ()));
13007 putpkt (buf.data ());
13008 remote_get_noisy_reply ();
13009 if (strcmp (rs->buf.data (), "OK"))
13010 warning (_("Target does not support source download."));
13011 }
13012 remote_download_command_source (b->number, loc->address,
13013 breakpoint_commands (b));
13014 }
13015 }
13016
13017 bool
13018 remote_target::can_download_tracepoint ()
13019 {
13020 struct remote_state *rs = get_remote_state ();
13021 struct trace_status *ts;
13022 int status;
13023
13024 /* Don't try to install tracepoints until we've relocated our
13025 symbols, and fetched and merged the target's tracepoint list with
13026 ours. */
13027 if (rs->starting_up)
13028 return false;
13029
13030 ts = current_trace_status ();
13031 status = get_trace_status (ts);
13032
13033 if (status == -1 || !ts->running_known || !ts->running)
13034 return false;
13035
13036 /* If we are in a tracing experiment, but remote stub doesn't support
13037 installing tracepoint in trace, we have to return. */
13038 if (!remote_supports_install_in_trace ())
13039 return false;
13040
13041 return true;
13042 }
13043
13044
13045 void
13046 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13047 {
13048 struct remote_state *rs = get_remote_state ();
13049 char *p;
13050
13051 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13052 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13053 tsv.builtin);
13054 p = rs->buf.data () + strlen (rs->buf.data ());
13055 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13056 >= get_remote_packet_size ())
13057 error (_("Trace state variable name too long for tsv definition packet"));
13058 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13059 *p++ = '\0';
13060 putpkt (rs->buf);
13061 remote_get_noisy_reply ();
13062 if (rs->buf[0] == '\0')
13063 error (_("Target does not support this command."));
13064 if (strcmp (rs->buf.data (), "OK") != 0)
13065 error (_("Error on target while downloading trace state variable."));
13066 }
13067
13068 void
13069 remote_target::enable_tracepoint (struct bp_location *location)
13070 {
13071 struct remote_state *rs = get_remote_state ();
13072 char addr_buf[40];
13073
13074 sprintf_vma (addr_buf, location->address);
13075 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13076 location->owner->number, addr_buf);
13077 putpkt (rs->buf);
13078 remote_get_noisy_reply ();
13079 if (rs->buf[0] == '\0')
13080 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13081 if (strcmp (rs->buf.data (), "OK") != 0)
13082 error (_("Error on target while enabling tracepoint."));
13083 }
13084
13085 void
13086 remote_target::disable_tracepoint (struct bp_location *location)
13087 {
13088 struct remote_state *rs = get_remote_state ();
13089 char addr_buf[40];
13090
13091 sprintf_vma (addr_buf, location->address);
13092 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13093 location->owner->number, addr_buf);
13094 putpkt (rs->buf);
13095 remote_get_noisy_reply ();
13096 if (rs->buf[0] == '\0')
13097 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13098 if (strcmp (rs->buf.data (), "OK") != 0)
13099 error (_("Error on target while disabling tracepoint."));
13100 }
13101
13102 void
13103 remote_target::trace_set_readonly_regions ()
13104 {
13105 asection *s;
13106 bfd *abfd = NULL;
13107 bfd_size_type size;
13108 bfd_vma vma;
13109 int anysecs = 0;
13110 int offset = 0;
13111
13112 if (!exec_bfd)
13113 return; /* No information to give. */
13114
13115 struct remote_state *rs = get_remote_state ();
13116
13117 strcpy (rs->buf.data (), "QTro");
13118 offset = strlen (rs->buf.data ());
13119 for (s = exec_bfd->sections; s; s = s->next)
13120 {
13121 char tmp1[40], tmp2[40];
13122 int sec_length;
13123
13124 if ((s->flags & SEC_LOAD) == 0 ||
13125 /* (s->flags & SEC_CODE) == 0 || */
13126 (s->flags & SEC_READONLY) == 0)
13127 continue;
13128
13129 anysecs = 1;
13130 vma = bfd_get_section_vma (abfd, s);
13131 size = bfd_get_section_size (s);
13132 sprintf_vma (tmp1, vma);
13133 sprintf_vma (tmp2, vma + size);
13134 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13135 if (offset + sec_length + 1 > rs->buf.size ())
13136 {
13137 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13138 warning (_("\
13139 Too many sections for read-only sections definition packet."));
13140 break;
13141 }
13142 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13143 tmp1, tmp2);
13144 offset += sec_length;
13145 }
13146 if (anysecs)
13147 {
13148 putpkt (rs->buf);
13149 getpkt (&rs->buf, 0);
13150 }
13151 }
13152
13153 void
13154 remote_target::trace_start ()
13155 {
13156 struct remote_state *rs = get_remote_state ();
13157
13158 putpkt ("QTStart");
13159 remote_get_noisy_reply ();
13160 if (rs->buf[0] == '\0')
13161 error (_("Target does not support this command."));
13162 if (strcmp (rs->buf.data (), "OK") != 0)
13163 error (_("Bogus reply from target: %s"), rs->buf.data ());
13164 }
13165
13166 int
13167 remote_target::get_trace_status (struct trace_status *ts)
13168 {
13169 /* Initialize it just to avoid a GCC false warning. */
13170 char *p = NULL;
13171 /* FIXME we need to get register block size some other way. */
13172 extern int trace_regblock_size;
13173 enum packet_result result;
13174 struct remote_state *rs = get_remote_state ();
13175
13176 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13177 return -1;
13178
13179 trace_regblock_size
13180 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13181
13182 putpkt ("qTStatus");
13183
13184 TRY
13185 {
13186 p = remote_get_noisy_reply ();
13187 }
13188 CATCH (ex, RETURN_MASK_ERROR)
13189 {
13190 if (ex.error != TARGET_CLOSE_ERROR)
13191 {
13192 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13193 return -1;
13194 }
13195 throw_exception (ex);
13196 }
13197 END_CATCH
13198
13199 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13200
13201 /* If the remote target doesn't do tracing, flag it. */
13202 if (result == PACKET_UNKNOWN)
13203 return -1;
13204
13205 /* We're working with a live target. */
13206 ts->filename = NULL;
13207
13208 if (*p++ != 'T')
13209 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13210
13211 /* Function 'parse_trace_status' sets default value of each field of
13212 'ts' at first, so we don't have to do it here. */
13213 parse_trace_status (p, ts);
13214
13215 return ts->running;
13216 }
13217
13218 void
13219 remote_target::get_tracepoint_status (struct breakpoint *bp,
13220 struct uploaded_tp *utp)
13221 {
13222 struct remote_state *rs = get_remote_state ();
13223 char *reply;
13224 struct bp_location *loc;
13225 struct tracepoint *tp = (struct tracepoint *) bp;
13226 size_t size = get_remote_packet_size ();
13227
13228 if (tp)
13229 {
13230 tp->hit_count = 0;
13231 tp->traceframe_usage = 0;
13232 for (loc = tp->loc; loc; loc = loc->next)
13233 {
13234 /* If the tracepoint was never downloaded, don't go asking for
13235 any status. */
13236 if (tp->number_on_target == 0)
13237 continue;
13238 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13239 phex_nz (loc->address, 0));
13240 putpkt (rs->buf);
13241 reply = remote_get_noisy_reply ();
13242 if (reply && *reply)
13243 {
13244 if (*reply == 'V')
13245 parse_tracepoint_status (reply + 1, bp, utp);
13246 }
13247 }
13248 }
13249 else if (utp)
13250 {
13251 utp->hit_count = 0;
13252 utp->traceframe_usage = 0;
13253 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13254 phex_nz (utp->addr, 0));
13255 putpkt (rs->buf);
13256 reply = remote_get_noisy_reply ();
13257 if (reply && *reply)
13258 {
13259 if (*reply == 'V')
13260 parse_tracepoint_status (reply + 1, bp, utp);
13261 }
13262 }
13263 }
13264
13265 void
13266 remote_target::trace_stop ()
13267 {
13268 struct remote_state *rs = get_remote_state ();
13269
13270 putpkt ("QTStop");
13271 remote_get_noisy_reply ();
13272 if (rs->buf[0] == '\0')
13273 error (_("Target does not support this command."));
13274 if (strcmp (rs->buf.data (), "OK") != 0)
13275 error (_("Bogus reply from target: %s"), rs->buf.data ());
13276 }
13277
13278 int
13279 remote_target::trace_find (enum trace_find_type type, int num,
13280 CORE_ADDR addr1, CORE_ADDR addr2,
13281 int *tpp)
13282 {
13283 struct remote_state *rs = get_remote_state ();
13284 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13285 char *p, *reply;
13286 int target_frameno = -1, target_tracept = -1;
13287
13288 /* Lookups other than by absolute frame number depend on the current
13289 trace selected, so make sure it is correct on the remote end
13290 first. */
13291 if (type != tfind_number)
13292 set_remote_traceframe ();
13293
13294 p = rs->buf.data ();
13295 strcpy (p, "QTFrame:");
13296 p = strchr (p, '\0');
13297 switch (type)
13298 {
13299 case tfind_number:
13300 xsnprintf (p, endbuf - p, "%x", num);
13301 break;
13302 case tfind_pc:
13303 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13304 break;
13305 case tfind_tp:
13306 xsnprintf (p, endbuf - p, "tdp:%x", num);
13307 break;
13308 case tfind_range:
13309 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13310 phex_nz (addr2, 0));
13311 break;
13312 case tfind_outside:
13313 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13314 phex_nz (addr2, 0));
13315 break;
13316 default:
13317 error (_("Unknown trace find type %d"), type);
13318 }
13319
13320 putpkt (rs->buf);
13321 reply = remote_get_noisy_reply ();
13322 if (*reply == '\0')
13323 error (_("Target does not support this command."));
13324
13325 while (reply && *reply)
13326 switch (*reply)
13327 {
13328 case 'F':
13329 p = ++reply;
13330 target_frameno = (int) strtol (p, &reply, 16);
13331 if (reply == p)
13332 error (_("Unable to parse trace frame number"));
13333 /* Don't update our remote traceframe number cache on failure
13334 to select a remote traceframe. */
13335 if (target_frameno == -1)
13336 return -1;
13337 break;
13338 case 'T':
13339 p = ++reply;
13340 target_tracept = (int) strtol (p, &reply, 16);
13341 if (reply == p)
13342 error (_("Unable to parse tracepoint number"));
13343 break;
13344 case 'O': /* "OK"? */
13345 if (reply[1] == 'K' && reply[2] == '\0')
13346 reply += 2;
13347 else
13348 error (_("Bogus reply from target: %s"), reply);
13349 break;
13350 default:
13351 error (_("Bogus reply from target: %s"), reply);
13352 }
13353 if (tpp)
13354 *tpp = target_tracept;
13355
13356 rs->remote_traceframe_number = target_frameno;
13357 return target_frameno;
13358 }
13359
13360 bool
13361 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13362 {
13363 struct remote_state *rs = get_remote_state ();
13364 char *reply;
13365 ULONGEST uval;
13366
13367 set_remote_traceframe ();
13368
13369 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13370 putpkt (rs->buf);
13371 reply = remote_get_noisy_reply ();
13372 if (reply && *reply)
13373 {
13374 if (*reply == 'V')
13375 {
13376 unpack_varlen_hex (reply + 1, &uval);
13377 *val = (LONGEST) uval;
13378 return true;
13379 }
13380 }
13381 return false;
13382 }
13383
13384 int
13385 remote_target::save_trace_data (const char *filename)
13386 {
13387 struct remote_state *rs = get_remote_state ();
13388 char *p, *reply;
13389
13390 p = rs->buf.data ();
13391 strcpy (p, "QTSave:");
13392 p += strlen (p);
13393 if ((p - rs->buf.data ()) + strlen (filename) * 2
13394 >= get_remote_packet_size ())
13395 error (_("Remote file name too long for trace save packet"));
13396 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13397 *p++ = '\0';
13398 putpkt (rs->buf);
13399 reply = remote_get_noisy_reply ();
13400 if (*reply == '\0')
13401 error (_("Target does not support this command."));
13402 if (strcmp (reply, "OK") != 0)
13403 error (_("Bogus reply from target: %s"), reply);
13404 return 0;
13405 }
13406
13407 /* This is basically a memory transfer, but needs to be its own packet
13408 because we don't know how the target actually organizes its trace
13409 memory, plus we want to be able to ask for as much as possible, but
13410 not be unhappy if we don't get as much as we ask for. */
13411
13412 LONGEST
13413 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13414 {
13415 struct remote_state *rs = get_remote_state ();
13416 char *reply;
13417 char *p;
13418 int rslt;
13419
13420 p = rs->buf.data ();
13421 strcpy (p, "qTBuffer:");
13422 p += strlen (p);
13423 p += hexnumstr (p, offset);
13424 *p++ = ',';
13425 p += hexnumstr (p, len);
13426 *p++ = '\0';
13427
13428 putpkt (rs->buf);
13429 reply = remote_get_noisy_reply ();
13430 if (reply && *reply)
13431 {
13432 /* 'l' by itself means we're at the end of the buffer and
13433 there is nothing more to get. */
13434 if (*reply == 'l')
13435 return 0;
13436
13437 /* Convert the reply into binary. Limit the number of bytes to
13438 convert according to our passed-in buffer size, rather than
13439 what was returned in the packet; if the target is
13440 unexpectedly generous and gives us a bigger reply than we
13441 asked for, we don't want to crash. */
13442 rslt = hex2bin (reply, buf, len);
13443 return rslt;
13444 }
13445
13446 /* Something went wrong, flag as an error. */
13447 return -1;
13448 }
13449
13450 void
13451 remote_target::set_disconnected_tracing (int val)
13452 {
13453 struct remote_state *rs = get_remote_state ();
13454
13455 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13456 {
13457 char *reply;
13458
13459 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13460 "QTDisconnected:%x", val);
13461 putpkt (rs->buf);
13462 reply = remote_get_noisy_reply ();
13463 if (*reply == '\0')
13464 error (_("Target does not support this command."));
13465 if (strcmp (reply, "OK") != 0)
13466 error (_("Bogus reply from target: %s"), reply);
13467 }
13468 else if (val)
13469 warning (_("Target does not support disconnected tracing."));
13470 }
13471
13472 int
13473 remote_target::core_of_thread (ptid_t ptid)
13474 {
13475 struct thread_info *info = find_thread_ptid (ptid);
13476
13477 if (info != NULL && info->priv != NULL)
13478 return get_remote_thread_info (info)->core;
13479
13480 return -1;
13481 }
13482
13483 void
13484 remote_target::set_circular_trace_buffer (int val)
13485 {
13486 struct remote_state *rs = get_remote_state ();
13487 char *reply;
13488
13489 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13490 "QTBuffer:circular:%x", val);
13491 putpkt (rs->buf);
13492 reply = remote_get_noisy_reply ();
13493 if (*reply == '\0')
13494 error (_("Target does not support this command."));
13495 if (strcmp (reply, "OK") != 0)
13496 error (_("Bogus reply from target: %s"), reply);
13497 }
13498
13499 traceframe_info_up
13500 remote_target::traceframe_info ()
13501 {
13502 gdb::optional<gdb::char_vector> text
13503 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13504 NULL);
13505 if (text)
13506 return parse_traceframe_info (text->data ());
13507
13508 return NULL;
13509 }
13510
13511 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13512 instruction on which a fast tracepoint may be placed. Returns -1
13513 if the packet is not supported, and 0 if the minimum instruction
13514 length is unknown. */
13515
13516 int
13517 remote_target::get_min_fast_tracepoint_insn_len ()
13518 {
13519 struct remote_state *rs = get_remote_state ();
13520 char *reply;
13521
13522 /* If we're not debugging a process yet, the IPA can't be
13523 loaded. */
13524 if (!target_has_execution)
13525 return 0;
13526
13527 /* Make sure the remote is pointing at the right process. */
13528 set_general_process ();
13529
13530 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13531 putpkt (rs->buf);
13532 reply = remote_get_noisy_reply ();
13533 if (*reply == '\0')
13534 return -1;
13535 else
13536 {
13537 ULONGEST min_insn_len;
13538
13539 unpack_varlen_hex (reply, &min_insn_len);
13540
13541 return (int) min_insn_len;
13542 }
13543 }
13544
13545 void
13546 remote_target::set_trace_buffer_size (LONGEST val)
13547 {
13548 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13549 {
13550 struct remote_state *rs = get_remote_state ();
13551 char *buf = rs->buf.data ();
13552 char *endbuf = buf + get_remote_packet_size ();
13553 enum packet_result result;
13554
13555 gdb_assert (val >= 0 || val == -1);
13556 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13557 /* Send -1 as literal "-1" to avoid host size dependency. */
13558 if (val < 0)
13559 {
13560 *buf++ = '-';
13561 buf += hexnumstr (buf, (ULONGEST) -val);
13562 }
13563 else
13564 buf += hexnumstr (buf, (ULONGEST) val);
13565
13566 putpkt (rs->buf);
13567 remote_get_noisy_reply ();
13568 result = packet_ok (rs->buf,
13569 &remote_protocol_packets[PACKET_QTBuffer_size]);
13570
13571 if (result != PACKET_OK)
13572 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13573 }
13574 }
13575
13576 bool
13577 remote_target::set_trace_notes (const char *user, const char *notes,
13578 const char *stop_notes)
13579 {
13580 struct remote_state *rs = get_remote_state ();
13581 char *reply;
13582 char *buf = rs->buf.data ();
13583 char *endbuf = buf + get_remote_packet_size ();
13584 int nbytes;
13585
13586 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13587 if (user)
13588 {
13589 buf += xsnprintf (buf, endbuf - buf, "user:");
13590 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13591 buf += 2 * nbytes;
13592 *buf++ = ';';
13593 }
13594 if (notes)
13595 {
13596 buf += xsnprintf (buf, endbuf - buf, "notes:");
13597 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13598 buf += 2 * nbytes;
13599 *buf++ = ';';
13600 }
13601 if (stop_notes)
13602 {
13603 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13604 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13605 buf += 2 * nbytes;
13606 *buf++ = ';';
13607 }
13608 /* Ensure the buffer is terminated. */
13609 *buf = '\0';
13610
13611 putpkt (rs->buf);
13612 reply = remote_get_noisy_reply ();
13613 if (*reply == '\0')
13614 return false;
13615
13616 if (strcmp (reply, "OK") != 0)
13617 error (_("Bogus reply from target: %s"), reply);
13618
13619 return true;
13620 }
13621
13622 bool
13623 remote_target::use_agent (bool use)
13624 {
13625 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13626 {
13627 struct remote_state *rs = get_remote_state ();
13628
13629 /* If the stub supports QAgent. */
13630 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13631 putpkt (rs->buf);
13632 getpkt (&rs->buf, 0);
13633
13634 if (strcmp (rs->buf.data (), "OK") == 0)
13635 {
13636 ::use_agent = use;
13637 return true;
13638 }
13639 }
13640
13641 return false;
13642 }
13643
13644 bool
13645 remote_target::can_use_agent ()
13646 {
13647 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13648 }
13649
13650 struct btrace_target_info
13651 {
13652 /* The ptid of the traced thread. */
13653 ptid_t ptid;
13654
13655 /* The obtained branch trace configuration. */
13656 struct btrace_config conf;
13657 };
13658
13659 /* Reset our idea of our target's btrace configuration. */
13660
13661 static void
13662 remote_btrace_reset (remote_state *rs)
13663 {
13664 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13665 }
13666
13667 /* Synchronize the configuration with the target. */
13668
13669 void
13670 remote_target::btrace_sync_conf (const btrace_config *conf)
13671 {
13672 struct packet_config *packet;
13673 struct remote_state *rs;
13674 char *buf, *pos, *endbuf;
13675
13676 rs = get_remote_state ();
13677 buf = rs->buf.data ();
13678 endbuf = buf + get_remote_packet_size ();
13679
13680 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13681 if (packet_config_support (packet) == PACKET_ENABLE
13682 && conf->bts.size != rs->btrace_config.bts.size)
13683 {
13684 pos = buf;
13685 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13686 conf->bts.size);
13687
13688 putpkt (buf);
13689 getpkt (&rs->buf, 0);
13690
13691 if (packet_ok (buf, packet) == PACKET_ERROR)
13692 {
13693 if (buf[0] == 'E' && buf[1] == '.')
13694 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13695 else
13696 error (_("Failed to configure the BTS buffer size."));
13697 }
13698
13699 rs->btrace_config.bts.size = conf->bts.size;
13700 }
13701
13702 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13703 if (packet_config_support (packet) == PACKET_ENABLE
13704 && conf->pt.size != rs->btrace_config.pt.size)
13705 {
13706 pos = buf;
13707 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13708 conf->pt.size);
13709
13710 putpkt (buf);
13711 getpkt (&rs->buf, 0);
13712
13713 if (packet_ok (buf, packet) == PACKET_ERROR)
13714 {
13715 if (buf[0] == 'E' && buf[1] == '.')
13716 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13717 else
13718 error (_("Failed to configure the trace buffer size."));
13719 }
13720
13721 rs->btrace_config.pt.size = conf->pt.size;
13722 }
13723 }
13724
13725 /* Read the current thread's btrace configuration from the target and
13726 store it into CONF. */
13727
13728 static void
13729 btrace_read_config (struct btrace_config *conf)
13730 {
13731 gdb::optional<gdb::char_vector> xml
13732 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13733 if (xml)
13734 parse_xml_btrace_conf (conf, xml->data ());
13735 }
13736
13737 /* Maybe reopen target btrace. */
13738
13739 void
13740 remote_target::remote_btrace_maybe_reopen ()
13741 {
13742 struct remote_state *rs = get_remote_state ();
13743 int btrace_target_pushed = 0;
13744 #if !defined (HAVE_LIBIPT)
13745 int warned = 0;
13746 #endif
13747
13748 scoped_restore_current_thread restore_thread;
13749
13750 for (thread_info *tp : all_non_exited_threads ())
13751 {
13752 set_general_thread (tp->ptid);
13753
13754 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13755 btrace_read_config (&rs->btrace_config);
13756
13757 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13758 continue;
13759
13760 #if !defined (HAVE_LIBIPT)
13761 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13762 {
13763 if (!warned)
13764 {
13765 warned = 1;
13766 warning (_("Target is recording using Intel Processor Trace "
13767 "but support was disabled at compile time."));
13768 }
13769
13770 continue;
13771 }
13772 #endif /* !defined (HAVE_LIBIPT) */
13773
13774 /* Push target, once, but before anything else happens. This way our
13775 changes to the threads will be cleaned up by unpushing the target
13776 in case btrace_read_config () throws. */
13777 if (!btrace_target_pushed)
13778 {
13779 btrace_target_pushed = 1;
13780 record_btrace_push_target ();
13781 printf_filtered (_("Target is recording using %s.\n"),
13782 btrace_format_string (rs->btrace_config.format));
13783 }
13784
13785 tp->btrace.target = XCNEW (struct btrace_target_info);
13786 tp->btrace.target->ptid = tp->ptid;
13787 tp->btrace.target->conf = rs->btrace_config;
13788 }
13789 }
13790
13791 /* Enable branch tracing. */
13792
13793 struct btrace_target_info *
13794 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13795 {
13796 struct btrace_target_info *tinfo = NULL;
13797 struct packet_config *packet = NULL;
13798 struct remote_state *rs = get_remote_state ();
13799 char *buf = rs->buf.data ();
13800 char *endbuf = buf + get_remote_packet_size ();
13801
13802 switch (conf->format)
13803 {
13804 case BTRACE_FORMAT_BTS:
13805 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13806 break;
13807
13808 case BTRACE_FORMAT_PT:
13809 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13810 break;
13811 }
13812
13813 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13814 error (_("Target does not support branch tracing."));
13815
13816 btrace_sync_conf (conf);
13817
13818 set_general_thread (ptid);
13819
13820 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13821 putpkt (rs->buf);
13822 getpkt (&rs->buf, 0);
13823
13824 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13825 {
13826 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13827 error (_("Could not enable branch tracing for %s: %s"),
13828 target_pid_to_str (ptid), &rs->buf[2]);
13829 else
13830 error (_("Could not enable branch tracing for %s."),
13831 target_pid_to_str (ptid));
13832 }
13833
13834 tinfo = XCNEW (struct btrace_target_info);
13835 tinfo->ptid = ptid;
13836
13837 /* If we fail to read the configuration, we lose some information, but the
13838 tracing itself is not impacted. */
13839 TRY
13840 {
13841 btrace_read_config (&tinfo->conf);
13842 }
13843 CATCH (err, RETURN_MASK_ERROR)
13844 {
13845 if (err.message != NULL)
13846 warning ("%s", err.message);
13847 }
13848 END_CATCH
13849
13850 return tinfo;
13851 }
13852
13853 /* Disable branch tracing. */
13854
13855 void
13856 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13857 {
13858 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13859 struct remote_state *rs = get_remote_state ();
13860 char *buf = rs->buf.data ();
13861 char *endbuf = buf + get_remote_packet_size ();
13862
13863 if (packet_config_support (packet) != PACKET_ENABLE)
13864 error (_("Target does not support branch tracing."));
13865
13866 set_general_thread (tinfo->ptid);
13867
13868 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13869 putpkt (rs->buf);
13870 getpkt (&rs->buf, 0);
13871
13872 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13873 {
13874 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13875 error (_("Could not disable branch tracing for %s: %s"),
13876 target_pid_to_str (tinfo->ptid), &rs->buf[2]);
13877 else
13878 error (_("Could not disable branch tracing for %s."),
13879 target_pid_to_str (tinfo->ptid));
13880 }
13881
13882 xfree (tinfo);
13883 }
13884
13885 /* Teardown branch tracing. */
13886
13887 void
13888 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13889 {
13890 /* We must not talk to the target during teardown. */
13891 xfree (tinfo);
13892 }
13893
13894 /* Read the branch trace. */
13895
13896 enum btrace_error
13897 remote_target::read_btrace (struct btrace_data *btrace,
13898 struct btrace_target_info *tinfo,
13899 enum btrace_read_type type)
13900 {
13901 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13902 const char *annex;
13903
13904 if (packet_config_support (packet) != PACKET_ENABLE)
13905 error (_("Target does not support branch tracing."));
13906
13907 #if !defined(HAVE_LIBEXPAT)
13908 error (_("Cannot process branch tracing result. XML parsing not supported."));
13909 #endif
13910
13911 switch (type)
13912 {
13913 case BTRACE_READ_ALL:
13914 annex = "all";
13915 break;
13916 case BTRACE_READ_NEW:
13917 annex = "new";
13918 break;
13919 case BTRACE_READ_DELTA:
13920 annex = "delta";
13921 break;
13922 default:
13923 internal_error (__FILE__, __LINE__,
13924 _("Bad branch tracing read type: %u."),
13925 (unsigned int) type);
13926 }
13927
13928 gdb::optional<gdb::char_vector> xml
13929 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13930 if (!xml)
13931 return BTRACE_ERR_UNKNOWN;
13932
13933 parse_xml_btrace (btrace, xml->data ());
13934
13935 return BTRACE_ERR_NONE;
13936 }
13937
13938 const struct btrace_config *
13939 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13940 {
13941 return &tinfo->conf;
13942 }
13943
13944 bool
13945 remote_target::augmented_libraries_svr4_read ()
13946 {
13947 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13948 == PACKET_ENABLE);
13949 }
13950
13951 /* Implementation of to_load. */
13952
13953 void
13954 remote_target::load (const char *name, int from_tty)
13955 {
13956 generic_load (name, from_tty);
13957 }
13958
13959 /* Accepts an integer PID; returns a string representing a file that
13960 can be opened on the remote side to get the symbols for the child
13961 process. Returns NULL if the operation is not supported. */
13962
13963 char *
13964 remote_target::pid_to_exec_file (int pid)
13965 {
13966 static gdb::optional<gdb::char_vector> filename;
13967 struct inferior *inf;
13968 char *annex = NULL;
13969
13970 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13971 return NULL;
13972
13973 inf = find_inferior_pid (pid);
13974 if (inf == NULL)
13975 internal_error (__FILE__, __LINE__,
13976 _("not currently attached to process %d"), pid);
13977
13978 if (!inf->fake_pid_p)
13979 {
13980 const int annex_size = 9;
13981
13982 annex = (char *) alloca (annex_size);
13983 xsnprintf (annex, annex_size, "%x", pid);
13984 }
13985
13986 filename = target_read_stralloc (current_top_target (),
13987 TARGET_OBJECT_EXEC_FILE, annex);
13988
13989 return filename ? filename->data () : nullptr;
13990 }
13991
13992 /* Implement the to_can_do_single_step target_ops method. */
13993
13994 int
13995 remote_target::can_do_single_step ()
13996 {
13997 /* We can only tell whether target supports single step or not by
13998 supported s and S vCont actions if the stub supports vContSupported
13999 feature. If the stub doesn't support vContSupported feature,
14000 we have conservatively to think target doesn't supports single
14001 step. */
14002 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14003 {
14004 struct remote_state *rs = get_remote_state ();
14005
14006 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14007 remote_vcont_probe ();
14008
14009 return rs->supports_vCont.s && rs->supports_vCont.S;
14010 }
14011 else
14012 return 0;
14013 }
14014
14015 /* Implementation of the to_execution_direction method for the remote
14016 target. */
14017
14018 enum exec_direction_kind
14019 remote_target::execution_direction ()
14020 {
14021 struct remote_state *rs = get_remote_state ();
14022
14023 return rs->last_resume_exec_dir;
14024 }
14025
14026 /* Return pointer to the thread_info struct which corresponds to
14027 THREAD_HANDLE (having length HANDLE_LEN). */
14028
14029 thread_info *
14030 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14031 int handle_len,
14032 inferior *inf)
14033 {
14034 for (thread_info *tp : all_non_exited_threads ())
14035 {
14036 remote_thread_info *priv = get_remote_thread_info (tp);
14037
14038 if (tp->inf == inf && priv != NULL)
14039 {
14040 if (handle_len != priv->thread_handle.size ())
14041 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14042 handle_len, priv->thread_handle.size ());
14043 if (memcmp (thread_handle, priv->thread_handle.data (),
14044 handle_len) == 0)
14045 return tp;
14046 }
14047 }
14048
14049 return NULL;
14050 }
14051
14052 bool
14053 remote_target::can_async_p ()
14054 {
14055 struct remote_state *rs = get_remote_state ();
14056
14057 /* We don't go async if the user has explicitly prevented it with the
14058 "maint set target-async" command. */
14059 if (!target_async_permitted)
14060 return false;
14061
14062 /* We're async whenever the serial device is. */
14063 return serial_can_async_p (rs->remote_desc);
14064 }
14065
14066 bool
14067 remote_target::is_async_p ()
14068 {
14069 struct remote_state *rs = get_remote_state ();
14070
14071 if (!target_async_permitted)
14072 /* We only enable async when the user specifically asks for it. */
14073 return false;
14074
14075 /* We're async whenever the serial device is. */
14076 return serial_is_async_p (rs->remote_desc);
14077 }
14078
14079 /* Pass the SERIAL event on and up to the client. One day this code
14080 will be able to delay notifying the client of an event until the
14081 point where an entire packet has been received. */
14082
14083 static serial_event_ftype remote_async_serial_handler;
14084
14085 static void
14086 remote_async_serial_handler (struct serial *scb, void *context)
14087 {
14088 /* Don't propogate error information up to the client. Instead let
14089 the client find out about the error by querying the target. */
14090 inferior_event_handler (INF_REG_EVENT, NULL);
14091 }
14092
14093 static void
14094 remote_async_inferior_event_handler (gdb_client_data data)
14095 {
14096 inferior_event_handler (INF_REG_EVENT, data);
14097 }
14098
14099 void
14100 remote_target::async (int enable)
14101 {
14102 struct remote_state *rs = get_remote_state ();
14103
14104 if (enable)
14105 {
14106 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14107
14108 /* If there are pending events in the stop reply queue tell the
14109 event loop to process them. */
14110 if (!rs->stop_reply_queue.empty ())
14111 mark_async_event_handler (rs->remote_async_inferior_event_token);
14112 /* For simplicity, below we clear the pending events token
14113 without remembering whether it is marked, so here we always
14114 mark it. If there's actually no pending notification to
14115 process, this ends up being a no-op (other than a spurious
14116 event-loop wakeup). */
14117 if (target_is_non_stop_p ())
14118 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14119 }
14120 else
14121 {
14122 serial_async (rs->remote_desc, NULL, NULL);
14123 /* If the core is disabling async, it doesn't want to be
14124 disturbed with target events. Clear all async event sources
14125 too. */
14126 clear_async_event_handler (rs->remote_async_inferior_event_token);
14127 if (target_is_non_stop_p ())
14128 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14129 }
14130 }
14131
14132 /* Implementation of the to_thread_events method. */
14133
14134 void
14135 remote_target::thread_events (int enable)
14136 {
14137 struct remote_state *rs = get_remote_state ();
14138 size_t size = get_remote_packet_size ();
14139
14140 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14141 return;
14142
14143 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14144 putpkt (rs->buf);
14145 getpkt (&rs->buf, 0);
14146
14147 switch (packet_ok (rs->buf,
14148 &remote_protocol_packets[PACKET_QThreadEvents]))
14149 {
14150 case PACKET_OK:
14151 if (strcmp (rs->buf.data (), "OK") != 0)
14152 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14153 break;
14154 case PACKET_ERROR:
14155 warning (_("Remote failure reply: %s"), rs->buf.data ());
14156 break;
14157 case PACKET_UNKNOWN:
14158 break;
14159 }
14160 }
14161
14162 static void
14163 set_remote_cmd (const char *args, int from_tty)
14164 {
14165 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14166 }
14167
14168 static void
14169 show_remote_cmd (const char *args, int from_tty)
14170 {
14171 /* We can't just use cmd_show_list here, because we want to skip
14172 the redundant "show remote Z-packet" and the legacy aliases. */
14173 struct cmd_list_element *list = remote_show_cmdlist;
14174 struct ui_out *uiout = current_uiout;
14175
14176 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14177 for (; list != NULL; list = list->next)
14178 if (strcmp (list->name, "Z-packet") == 0)
14179 continue;
14180 else if (list->type == not_set_cmd)
14181 /* Alias commands are exactly like the original, except they
14182 don't have the normal type. */
14183 continue;
14184 else
14185 {
14186 ui_out_emit_tuple option_emitter (uiout, "option");
14187
14188 uiout->field_string ("name", list->name);
14189 uiout->text (": ");
14190 if (list->type == show_cmd)
14191 do_show_command (NULL, from_tty, list);
14192 else
14193 cmd_func (list, NULL, from_tty);
14194 }
14195 }
14196
14197
14198 /* Function to be called whenever a new objfile (shlib) is detected. */
14199 static void
14200 remote_new_objfile (struct objfile *objfile)
14201 {
14202 remote_target *remote = get_current_remote_target ();
14203
14204 if (remote != NULL) /* Have a remote connection. */
14205 remote->remote_check_symbols ();
14206 }
14207
14208 /* Pull all the tracepoints defined on the target and create local
14209 data structures representing them. We don't want to create real
14210 tracepoints yet, we don't want to mess up the user's existing
14211 collection. */
14212
14213 int
14214 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14215 {
14216 struct remote_state *rs = get_remote_state ();
14217 char *p;
14218
14219 /* Ask for a first packet of tracepoint definition. */
14220 putpkt ("qTfP");
14221 getpkt (&rs->buf, 0);
14222 p = rs->buf.data ();
14223 while (*p && *p != 'l')
14224 {
14225 parse_tracepoint_definition (p, utpp);
14226 /* Ask for another packet of tracepoint definition. */
14227 putpkt ("qTsP");
14228 getpkt (&rs->buf, 0);
14229 p = rs->buf.data ();
14230 }
14231 return 0;
14232 }
14233
14234 int
14235 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14236 {
14237 struct remote_state *rs = get_remote_state ();
14238 char *p;
14239
14240 /* Ask for a first packet of variable definition. */
14241 putpkt ("qTfV");
14242 getpkt (&rs->buf, 0);
14243 p = rs->buf.data ();
14244 while (*p && *p != 'l')
14245 {
14246 parse_tsv_definition (p, utsvp);
14247 /* Ask for another packet of variable definition. */
14248 putpkt ("qTsV");
14249 getpkt (&rs->buf, 0);
14250 p = rs->buf.data ();
14251 }
14252 return 0;
14253 }
14254
14255 /* The "set/show range-stepping" show hook. */
14256
14257 static void
14258 show_range_stepping (struct ui_file *file, int from_tty,
14259 struct cmd_list_element *c,
14260 const char *value)
14261 {
14262 fprintf_filtered (file,
14263 _("Debugger's willingness to use range stepping "
14264 "is %s.\n"), value);
14265 }
14266
14267 /* Return true if the vCont;r action is supported by the remote
14268 stub. */
14269
14270 bool
14271 remote_target::vcont_r_supported ()
14272 {
14273 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14274 remote_vcont_probe ();
14275
14276 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14277 && get_remote_state ()->supports_vCont.r);
14278 }
14279
14280 /* The "set/show range-stepping" set hook. */
14281
14282 static void
14283 set_range_stepping (const char *ignore_args, int from_tty,
14284 struct cmd_list_element *c)
14285 {
14286 /* When enabling, check whether range stepping is actually supported
14287 by the target, and warn if not. */
14288 if (use_range_stepping)
14289 {
14290 remote_target *remote = get_current_remote_target ();
14291 if (remote == NULL
14292 || !remote->vcont_r_supported ())
14293 warning (_("Range stepping is not supported by the current target"));
14294 }
14295 }
14296
14297 void
14298 _initialize_remote (void)
14299 {
14300 struct cmd_list_element *cmd;
14301 const char *cmd_name;
14302
14303 /* architecture specific data */
14304 remote_g_packet_data_handle =
14305 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14306
14307 remote_pspace_data
14308 = register_program_space_data_with_cleanup (NULL,
14309 remote_pspace_data_cleanup);
14310
14311 add_target (remote_target_info, remote_target::open);
14312 add_target (extended_remote_target_info, extended_remote_target::open);
14313
14314 /* Hook into new objfile notification. */
14315 gdb::observers::new_objfile.attach (remote_new_objfile);
14316
14317 #if 0
14318 init_remote_threadtests ();
14319 #endif
14320
14321 /* set/show remote ... */
14322
14323 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14324 Remote protocol specific variables\n\
14325 Configure various remote-protocol specific variables such as\n\
14326 the packets being used"),
14327 &remote_set_cmdlist, "set remote ",
14328 0 /* allow-unknown */, &setlist);
14329 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14330 Remote protocol specific variables\n\
14331 Configure various remote-protocol specific variables such as\n\
14332 the packets being used"),
14333 &remote_show_cmdlist, "show remote ",
14334 0 /* allow-unknown */, &showlist);
14335
14336 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14337 Compare section data on target to the exec file.\n\
14338 Argument is a single section name (default: all loaded sections).\n\
14339 To compare only read-only loaded sections, specify the -r option."),
14340 &cmdlist);
14341
14342 add_cmd ("packet", class_maintenance, packet_command, _("\
14343 Send an arbitrary packet to a remote target.\n\
14344 maintenance packet TEXT\n\
14345 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14346 this command sends the string TEXT to the inferior, and displays the\n\
14347 response packet. GDB supplies the initial `$' character, and the\n\
14348 terminating `#' character and checksum."),
14349 &maintenancelist);
14350
14351 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14352 Set whether to send break if interrupted."), _("\
14353 Show whether to send break if interrupted."), _("\
14354 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14355 set_remotebreak, show_remotebreak,
14356 &setlist, &showlist);
14357 cmd_name = "remotebreak";
14358 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14359 deprecate_cmd (cmd, "set remote interrupt-sequence");
14360 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14361 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14362 deprecate_cmd (cmd, "show remote interrupt-sequence");
14363
14364 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14365 interrupt_sequence_modes, &interrupt_sequence_mode,
14366 _("\
14367 Set interrupt sequence to remote target."), _("\
14368 Show interrupt sequence to remote target."), _("\
14369 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14370 NULL, show_interrupt_sequence,
14371 &remote_set_cmdlist,
14372 &remote_show_cmdlist);
14373
14374 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14375 &interrupt_on_connect, _("\
14376 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14377 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14378 If set, interrupt sequence is sent to remote target."),
14379 NULL, NULL,
14380 &remote_set_cmdlist, &remote_show_cmdlist);
14381
14382 /* Install commands for configuring memory read/write packets. */
14383
14384 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14385 Set the maximum number of bytes per memory write packet (deprecated)."),
14386 &setlist);
14387 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14388 Show the maximum number of bytes per memory write packet (deprecated)."),
14389 &showlist);
14390 add_cmd ("memory-write-packet-size", no_class,
14391 set_memory_write_packet_size, _("\
14392 Set the maximum number of bytes per memory-write packet.\n\
14393 Specify the number of bytes in a packet or 0 (zero) for the\n\
14394 default packet size. The actual limit is further reduced\n\
14395 dependent on the target. Specify ``fixed'' to disable the\n\
14396 further restriction and ``limit'' to enable that restriction."),
14397 &remote_set_cmdlist);
14398 add_cmd ("memory-read-packet-size", no_class,
14399 set_memory_read_packet_size, _("\
14400 Set the maximum number of bytes per memory-read packet.\n\
14401 Specify the number of bytes in a packet or 0 (zero) for the\n\
14402 default packet size. The actual limit is further reduced\n\
14403 dependent on the target. Specify ``fixed'' to disable the\n\
14404 further restriction and ``limit'' to enable that restriction."),
14405 &remote_set_cmdlist);
14406 add_cmd ("memory-write-packet-size", no_class,
14407 show_memory_write_packet_size,
14408 _("Show the maximum number of bytes per memory-write packet."),
14409 &remote_show_cmdlist);
14410 add_cmd ("memory-read-packet-size", no_class,
14411 show_memory_read_packet_size,
14412 _("Show the maximum number of bytes per memory-read packet."),
14413 &remote_show_cmdlist);
14414
14415 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14416 &remote_hw_watchpoint_limit, _("\
14417 Set the maximum number of target hardware watchpoints."), _("\
14418 Show the maximum number of target hardware watchpoints."), _("\
14419 Specify \"unlimited\" for unlimited hardware watchpoints."),
14420 NULL, show_hardware_watchpoint_limit,
14421 &remote_set_cmdlist,
14422 &remote_show_cmdlist);
14423 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14424 no_class,
14425 &remote_hw_watchpoint_length_limit, _("\
14426 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14427 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14428 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14429 NULL, show_hardware_watchpoint_length_limit,
14430 &remote_set_cmdlist, &remote_show_cmdlist);
14431 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14432 &remote_hw_breakpoint_limit, _("\
14433 Set the maximum number of target hardware breakpoints."), _("\
14434 Show the maximum number of target hardware breakpoints."), _("\
14435 Specify \"unlimited\" for unlimited hardware breakpoints."),
14436 NULL, show_hardware_breakpoint_limit,
14437 &remote_set_cmdlist, &remote_show_cmdlist);
14438
14439 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14440 &remote_address_size, _("\
14441 Set the maximum size of the address (in bits) in a memory packet."), _("\
14442 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14443 NULL,
14444 NULL, /* FIXME: i18n: */
14445 &setlist, &showlist);
14446
14447 init_all_packet_configs ();
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14450 "X", "binary-download", 1);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14453 "vCont", "verbose-resume", 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14456 "QPassSignals", "pass-signals", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14459 "QCatchSyscalls", "catch-syscalls", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14462 "QProgramSignals", "program-signals", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14465 "QSetWorkingDir", "set-working-dir", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14468 "QStartupWithShell", "startup-with-shell", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets
14471 [PACKET_QEnvironmentHexEncoded],
14472 "QEnvironmentHexEncoded", "environment-hex-encoded",
14473 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14476 "QEnvironmentReset", "environment-reset",
14477 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14480 "QEnvironmentUnset", "environment-unset",
14481 0);
14482
14483 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14484 "qSymbol", "symbol-lookup", 0);
14485
14486 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14487 "P", "set-register", 1);
14488
14489 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14490 "p", "fetch-register", 1);
14491
14492 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14493 "Z0", "software-breakpoint", 0);
14494
14495 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14496 "Z1", "hardware-breakpoint", 0);
14497
14498 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14499 "Z2", "write-watchpoint", 0);
14500
14501 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14502 "Z3", "read-watchpoint", 0);
14503
14504 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14505 "Z4", "access-watchpoint", 0);
14506
14507 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14508 "qXfer:auxv:read", "read-aux-vector", 0);
14509
14510 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14511 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14514 "qXfer:features:read", "target-features", 0);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14517 "qXfer:libraries:read", "library-info", 0);
14518
14519 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14520 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14521
14522 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14523 "qXfer:memory-map:read", "memory-map", 0);
14524
14525 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14526 "qXfer:spu:read", "read-spu-object", 0);
14527
14528 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14529 "qXfer:spu:write", "write-spu-object", 0);
14530
14531 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14532 "qXfer:osdata:read", "osdata", 0);
14533
14534 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14535 "qXfer:threads:read", "threads", 0);
14536
14537 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14538 "qXfer:siginfo:read", "read-siginfo-object", 0);
14539
14540 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14541 "qXfer:siginfo:write", "write-siginfo-object", 0);
14542
14543 add_packet_config_cmd
14544 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14545 "qXfer:traceframe-info:read", "traceframe-info", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14548 "qXfer:uib:read", "unwind-info-block", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14551 "qGetTLSAddr", "get-thread-local-storage-address",
14552 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14555 "qGetTIBAddr", "get-thread-information-block-address",
14556 0);
14557
14558 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14559 "bc", "reverse-continue", 0);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14562 "bs", "reverse-step", 0);
14563
14564 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14565 "qSupported", "supported-packets", 0);
14566
14567 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14568 "qSearch:memory", "search-memory", 0);
14569
14570 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14571 "qTStatus", "trace-status", 0);
14572
14573 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14574 "vFile:setfs", "hostio-setfs", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14577 "vFile:open", "hostio-open", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14580 "vFile:pread", "hostio-pread", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14583 "vFile:pwrite", "hostio-pwrite", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14586 "vFile:close", "hostio-close", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14589 "vFile:unlink", "hostio-unlink", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14592 "vFile:readlink", "hostio-readlink", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14595 "vFile:fstat", "hostio-fstat", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14598 "vAttach", "attach", 0);
14599
14600 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14601 "vRun", "run", 0);
14602
14603 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14604 "QStartNoAckMode", "noack", 0);
14605
14606 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14607 "vKill", "kill", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14610 "qAttached", "query-attached", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14613 "ConditionalTracepoints",
14614 "conditional-tracepoints", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14617 "ConditionalBreakpoints",
14618 "conditional-breakpoints", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14621 "BreakpointCommands",
14622 "breakpoint-commands", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14625 "FastTracepoints", "fast-tracepoints", 0);
14626
14627 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14628 "TracepointSource", "TracepointSource", 0);
14629
14630 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14631 "QAllow", "allow", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14634 "StaticTracepoints", "static-tracepoints", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14637 "InstallInTrace", "install-in-trace", 0);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14640 "qXfer:statictrace:read", "read-sdata-object", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14643 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14646 "QDisableRandomization", "disable-randomization", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14649 "QAgent", "agent", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14652 "QTBuffer:size", "trace-buffer-size", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14655 "Qbtrace:off", "disable-btrace", 0);
14656
14657 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14658 "Qbtrace:bts", "enable-btrace-bts", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14661 "Qbtrace:pt", "enable-btrace-pt", 0);
14662
14663 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14664 "qXfer:btrace", "read-btrace", 0);
14665
14666 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14667 "qXfer:btrace-conf", "read-btrace-conf", 0);
14668
14669 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14670 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14671
14672 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14673 "multiprocess-feature", "multiprocess-feature", 0);
14674
14675 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14676 "swbreak-feature", "swbreak-feature", 0);
14677
14678 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14679 "hwbreak-feature", "hwbreak-feature", 0);
14680
14681 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14682 "fork-event-feature", "fork-event-feature", 0);
14683
14684 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14685 "vfork-event-feature", "vfork-event-feature", 0);
14686
14687 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14688 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14689
14690 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14691 "vContSupported", "verbose-resume-supported", 0);
14692
14693 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14694 "exec-event-feature", "exec-event-feature", 0);
14695
14696 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14697 "vCtrlC", "ctrl-c", 0);
14698
14699 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14700 "QThreadEvents", "thread-events", 0);
14701
14702 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14703 "N stop reply", "no-resumed-stop-reply", 0);
14704
14705 /* Assert that we've registered "set remote foo-packet" commands
14706 for all packet configs. */
14707 {
14708 int i;
14709
14710 for (i = 0; i < PACKET_MAX; i++)
14711 {
14712 /* Ideally all configs would have a command associated. Some
14713 still don't though. */
14714 int excepted;
14715
14716 switch (i)
14717 {
14718 case PACKET_QNonStop:
14719 case PACKET_EnableDisableTracepoints_feature:
14720 case PACKET_tracenz_feature:
14721 case PACKET_DisconnectedTracing_feature:
14722 case PACKET_augmented_libraries_svr4_read_feature:
14723 case PACKET_qCRC:
14724 /* Additions to this list need to be well justified:
14725 pre-existing packets are OK; new packets are not. */
14726 excepted = 1;
14727 break;
14728 default:
14729 excepted = 0;
14730 break;
14731 }
14732
14733 /* This catches both forgetting to add a config command, and
14734 forgetting to remove a packet from the exception list. */
14735 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14736 }
14737 }
14738
14739 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14740 Z sub-packet has its own set and show commands, but users may
14741 have sets to this variable in their .gdbinit files (or in their
14742 documentation). */
14743 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14744 &remote_Z_packet_detect, _("\
14745 Set use of remote protocol `Z' packets"), _("\
14746 Show use of remote protocol `Z' packets "), _("\
14747 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14748 packets."),
14749 set_remote_protocol_Z_packet_cmd,
14750 show_remote_protocol_Z_packet_cmd,
14751 /* FIXME: i18n: Use of remote protocol
14752 `Z' packets is %s. */
14753 &remote_set_cmdlist, &remote_show_cmdlist);
14754
14755 add_prefix_cmd ("remote", class_files, remote_command, _("\
14756 Manipulate files on the remote system\n\
14757 Transfer files to and from the remote target system."),
14758 &remote_cmdlist, "remote ",
14759 0 /* allow-unknown */, &cmdlist);
14760
14761 add_cmd ("put", class_files, remote_put_command,
14762 _("Copy a local file to the remote system."),
14763 &remote_cmdlist);
14764
14765 add_cmd ("get", class_files, remote_get_command,
14766 _("Copy a remote file to the local system."),
14767 &remote_cmdlist);
14768
14769 add_cmd ("delete", class_files, remote_delete_command,
14770 _("Delete a remote file."),
14771 &remote_cmdlist);
14772
14773 add_setshow_string_noescape_cmd ("exec-file", class_files,
14774 &remote_exec_file_var, _("\
14775 Set the remote pathname for \"run\""), _("\
14776 Show the remote pathname for \"run\""), NULL,
14777 set_remote_exec_file,
14778 show_remote_exec_file,
14779 &remote_set_cmdlist,
14780 &remote_show_cmdlist);
14781
14782 add_setshow_boolean_cmd ("range-stepping", class_run,
14783 &use_range_stepping, _("\
14784 Enable or disable range stepping."), _("\
14785 Show whether target-assisted range stepping is enabled."), _("\
14786 If on, and the target supports it, when stepping a source line, GDB\n\
14787 tells the target to step the corresponding range of addresses itself instead\n\
14788 of issuing multiple single-steps. This speeds up source level\n\
14789 stepping. If off, GDB always issues single-steps, even if range\n\
14790 stepping is supported by the target. The default is on."),
14791 set_range_stepping,
14792 show_range_stepping,
14793 &setlist,
14794 &showlist);
14795
14796 /* Eventually initialize fileio. See fileio.c */
14797 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14798
14799 /* Take advantage of the fact that the TID field is not used, to tag
14800 special ptids with it set to != 0. */
14801 magic_null_ptid = ptid_t (42000, -1, 1);
14802 not_sent_ptid = ptid_t (42000, -2, 1);
14803 any_thread_ptid = ptid_t (42000, 0, 1);
14804 }