]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* remote.c (remote_notice_new_inferior): Use ptid_is_pid. Check
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]) == PACKET_OK)
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231 int pid = ptid_get_pid (currthread);
1232
1233 if (ptid_is_pid (inferior_ptid)
1234 && pid == ptid_get_pid (inferior_ptid))
1235 {
1236 /* inferior_ptid has no thread member yet. This can happen
1237 with the vAttach -> remote_wait,"TAAthread:" path if the
1238 stub doesn't support qC. This is the first stop reported
1239 after an attach, so this is the main thread. Update the
1240 ptid in the thread list. */
1241 if (in_thread_list (pid_to_ptid (pid)))
1242 thread_change_ptid (inferior_ptid, currthread);
1243 else
1244 {
1245 remote_add_thread (currthread, running);
1246 inferior_ptid = currthread;
1247 }
1248 return;
1249 }
1250
1251 if (ptid_equal (magic_null_ptid, inferior_ptid))
1252 {
1253 /* inferior_ptid is not set yet. This can happen with the
1254 vRun -> remote_wait,"TAAthread:" path if the stub
1255 doesn't support qC. This is the first stop reported
1256 after an attach, so this is the main thread. Update the
1257 ptid in the thread list. */
1258 thread_change_ptid (inferior_ptid, currthread);
1259 return;
1260 }
1261
1262 /* When connecting to a target remote, or to a target
1263 extended-remote which already was debugging an inferior, we
1264 may not know about it yet. Add it before adding its child
1265 thread, so notifications are emitted in a sensible order. */
1266 if (!in_inferior_list (ptid_get_pid (currthread)))
1267 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1268
1269 /* This is really a new thread. Add it. */
1270 remote_add_thread (currthread, running);
1271
1272 /* If we found a new inferior, let the common code do whatever
1273 it needs to with it (e.g., read shared libraries, insert
1274 breakpoints). */
1275 if (inf != NULL)
1276 notice_new_inferior (currthread, running, 0);
1277 }
1278 }
1279
1280 /* Call this function as a result of
1281 1) A halt indication (T packet) containing a thread id
1282 2) A direct query of currthread
1283 3) Successful execution of set thread
1284 */
1285
1286 static void
1287 record_currthread (ptid_t currthread)
1288 {
1289 general_thread = currthread;
1290
1291 if (ptid_equal (currthread, minus_one_ptid))
1292 /* We're just invalidating the local thread mirror. */
1293 return;
1294
1295 remote_notice_new_inferior (currthread, 0);
1296 }
1297
1298 static char *last_pass_packet;
1299
1300 /* If 'QPassSignals' is supported, tell the remote stub what signals
1301 it can simply pass through to the inferior without reporting. */
1302
1303 static void
1304 remote_pass_signals (void)
1305 {
1306 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1307 {
1308 char *pass_packet, *p;
1309 int numsigs = (int) TARGET_SIGNAL_LAST;
1310 int count = 0, i;
1311
1312 gdb_assert (numsigs < 256);
1313 for (i = 0; i < numsigs; i++)
1314 {
1315 if (signal_stop_state (i) == 0
1316 && signal_print_state (i) == 0
1317 && signal_pass_state (i) == 1)
1318 count++;
1319 }
1320 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1321 strcpy (pass_packet, "QPassSignals:");
1322 p = pass_packet + strlen (pass_packet);
1323 for (i = 0; i < numsigs; i++)
1324 {
1325 if (signal_stop_state (i) == 0
1326 && signal_print_state (i) == 0
1327 && signal_pass_state (i) == 1)
1328 {
1329 if (i >= 16)
1330 *p++ = tohex (i >> 4);
1331 *p++ = tohex (i & 15);
1332 if (count)
1333 *p++ = ';';
1334 else
1335 break;
1336 count--;
1337 }
1338 }
1339 *p = 0;
1340 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1341 {
1342 struct remote_state *rs = get_remote_state ();
1343 char *buf = rs->buf;
1344
1345 putpkt (pass_packet);
1346 getpkt (&rs->buf, &rs->buf_size, 0);
1347 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1348 if (last_pass_packet)
1349 xfree (last_pass_packet);
1350 last_pass_packet = pass_packet;
1351 }
1352 else
1353 xfree (pass_packet);
1354 }
1355 }
1356
1357 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1358 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1359 thread. If GEN is set, set the general thread, if not, then set
1360 the step/continue thread. */
1361 static void
1362 set_thread (struct ptid ptid, int gen)
1363 {
1364 struct remote_state *rs = get_remote_state ();
1365 ptid_t state = gen ? general_thread : continue_thread;
1366 char *buf = rs->buf;
1367 char *endbuf = rs->buf + get_remote_packet_size ();
1368
1369 if (ptid_equal (state, ptid))
1370 return;
1371
1372 *buf++ = 'H';
1373 *buf++ = gen ? 'g' : 'c';
1374 if (ptid_equal (ptid, magic_null_ptid))
1375 xsnprintf (buf, endbuf - buf, "0");
1376 else if (ptid_equal (ptid, any_thread_ptid))
1377 xsnprintf (buf, endbuf - buf, "0");
1378 else if (ptid_equal (ptid, minus_one_ptid))
1379 xsnprintf (buf, endbuf - buf, "-1");
1380 else
1381 write_ptid (buf, endbuf, ptid);
1382 putpkt (rs->buf);
1383 getpkt (&rs->buf, &rs->buf_size, 0);
1384 if (gen)
1385 general_thread = ptid;
1386 else
1387 continue_thread = ptid;
1388 }
1389
1390 static void
1391 set_general_thread (struct ptid ptid)
1392 {
1393 set_thread (ptid, 1);
1394 }
1395
1396 static void
1397 set_continue_thread (struct ptid ptid)
1398 {
1399 set_thread (ptid, 0);
1400 }
1401
1402 /* Change the remote current process. Which thread within the process
1403 ends up selected isn't important, as long as it is the same process
1404 as what INFERIOR_PTID points to.
1405
1406 This comes from that fact that there is no explicit notion of
1407 "selected process" in the protocol. The selected process for
1408 general operations is the process the selected general thread
1409 belongs to. */
1410
1411 static void
1412 set_general_process (void)
1413 {
1414 struct remote_state *rs = get_remote_state ();
1415
1416 /* If the remote can't handle multiple processes, don't bother. */
1417 if (!remote_multi_process_p (rs))
1418 return;
1419
1420 /* We only need to change the remote current thread if it's pointing
1421 at some other process. */
1422 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1423 set_general_thread (inferior_ptid);
1424 }
1425
1426 \f
1427 /* Return nonzero if the thread PTID is still alive on the remote
1428 system. */
1429
1430 static int
1431 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 int tid = ptid_get_tid (ptid);
1435 char *p, *endp;
1436
1437 if (ptid_equal (ptid, magic_null_ptid))
1438 /* The main thread is always alive. */
1439 return 1;
1440
1441 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1442 /* The main thread is always alive. This can happen after a
1443 vAttach, if the remote side doesn't support
1444 multi-threading. */
1445 return 1;
1446
1447 p = rs->buf;
1448 endp = rs->buf + get_remote_packet_size ();
1449
1450 *p++ = 'T';
1451 write_ptid (p, endp, ptid);
1452
1453 putpkt (rs->buf);
1454 getpkt (&rs->buf, &rs->buf_size, 0);
1455 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1456 }
1457
1458 /* About these extended threadlist and threadinfo packets. They are
1459 variable length packets but, the fields within them are often fixed
1460 length. They are redundent enough to send over UDP as is the
1461 remote protocol in general. There is a matching unit test module
1462 in libstub. */
1463
1464 #define OPAQUETHREADBYTES 8
1465
1466 /* a 64 bit opaque identifier */
1467 typedef unsigned char threadref[OPAQUETHREADBYTES];
1468
1469 /* WARNING: This threadref data structure comes from the remote O.S.,
1470 libstub protocol encoding, and remote.c. it is not particularly
1471 changable. */
1472
1473 /* Right now, the internal structure is int. We want it to be bigger.
1474 Plan to fix this.
1475 */
1476
1477 typedef int gdb_threadref; /* Internal GDB thread reference. */
1478
1479 /* gdb_ext_thread_info is an internal GDB data structure which is
1480 equivalent to the reply of the remote threadinfo packet. */
1481
1482 struct gdb_ext_thread_info
1483 {
1484 threadref threadid; /* External form of thread reference. */
1485 int active; /* Has state interesting to GDB?
1486 regs, stack. */
1487 char display[256]; /* Brief state display, name,
1488 blocked/suspended. */
1489 char shortname[32]; /* To be used to name threads. */
1490 char more_display[256]; /* Long info, statistics, queue depth,
1491 whatever. */
1492 };
1493
1494 /* The volume of remote transfers can be limited by submitting
1495 a mask containing bits specifying the desired information.
1496 Use a union of these values as the 'selection' parameter to
1497 get_thread_info. FIXME: Make these TAG names more thread specific.
1498 */
1499
1500 #define TAG_THREADID 1
1501 #define TAG_EXISTS 2
1502 #define TAG_DISPLAY 4
1503 #define TAG_THREADNAME 8
1504 #define TAG_MOREDISPLAY 16
1505
1506 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1507
1508 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1509
1510 static char *unpack_nibble (char *buf, int *val);
1511
1512 static char *pack_nibble (char *buf, int nibble);
1513
1514 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1515
1516 static char *unpack_byte (char *buf, int *value);
1517
1518 static char *pack_int (char *buf, int value);
1519
1520 static char *unpack_int (char *buf, int *value);
1521
1522 static char *unpack_string (char *src, char *dest, int length);
1523
1524 static char *pack_threadid (char *pkt, threadref *id);
1525
1526 static char *unpack_threadid (char *inbuf, threadref *id);
1527
1528 void int_to_threadref (threadref *id, int value);
1529
1530 static int threadref_to_int (threadref *ref);
1531
1532 static void copy_threadref (threadref *dest, threadref *src);
1533
1534 static int threadmatch (threadref *dest, threadref *src);
1535
1536 static char *pack_threadinfo_request (char *pkt, int mode,
1537 threadref *id);
1538
1539 static int remote_unpack_thread_info_response (char *pkt,
1540 threadref *expectedref,
1541 struct gdb_ext_thread_info
1542 *info);
1543
1544
1545 static int remote_get_threadinfo (threadref *threadid,
1546 int fieldset, /*TAG mask */
1547 struct gdb_ext_thread_info *info);
1548
1549 static char *pack_threadlist_request (char *pkt, int startflag,
1550 int threadcount,
1551 threadref *nextthread);
1552
1553 static int parse_threadlist_response (char *pkt,
1554 int result_limit,
1555 threadref *original_echo,
1556 threadref *resultlist,
1557 int *doneflag);
1558
1559 static int remote_get_threadlist (int startflag,
1560 threadref *nextthread,
1561 int result_limit,
1562 int *done,
1563 int *result_count,
1564 threadref *threadlist);
1565
1566 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1567
1568 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1569 void *context, int looplimit);
1570
1571 static int remote_newthread_step (threadref *ref, void *context);
1572
1573
1574 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1575 buffer we're allowed to write to. Returns
1576 BUF+CHARACTERS_WRITTEN. */
1577
1578 static char *
1579 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1580 {
1581 int pid, tid;
1582 struct remote_state *rs = get_remote_state ();
1583
1584 if (remote_multi_process_p (rs))
1585 {
1586 pid = ptid_get_pid (ptid);
1587 if (pid < 0)
1588 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1589 else
1590 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1591 }
1592 tid = ptid_get_tid (ptid);
1593 if (tid < 0)
1594 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1595 else
1596 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1597
1598 return buf;
1599 }
1600
1601 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1602 passed the last parsed char. Returns null_ptid on error. */
1603
1604 static ptid_t
1605 read_ptid (char *buf, char **obuf)
1606 {
1607 char *p = buf;
1608 char *pp;
1609 ULONGEST pid = 0, tid = 0;
1610 ptid_t ptid;
1611
1612 if (*p == 'p')
1613 {
1614 /* Multi-process ptid. */
1615 pp = unpack_varlen_hex (p + 1, &pid);
1616 if (*pp != '.')
1617 error (_("invalid remote ptid: %s\n"), p);
1618
1619 p = pp;
1620 pp = unpack_varlen_hex (p + 1, &tid);
1621 if (obuf)
1622 *obuf = pp;
1623 return ptid_build (pid, 0, tid);
1624 }
1625
1626 /* No multi-process. Just a tid. */
1627 pp = unpack_varlen_hex (p, &tid);
1628
1629 /* Since the stub is not sending a process id, then default to
1630 what's in inferior_ptid, unless it's null at this point. If so,
1631 then since there's no way to know the pid of the reported
1632 threads, use the magic number. */
1633 if (ptid_equal (inferior_ptid, null_ptid))
1634 pid = ptid_get_pid (magic_null_ptid);
1635 else
1636 pid = ptid_get_pid (inferior_ptid);
1637
1638 if (obuf)
1639 *obuf = pp;
1640 return ptid_build (pid, 0, tid);
1641 }
1642
1643 /* Encode 64 bits in 16 chars of hex. */
1644
1645 static const char hexchars[] = "0123456789abcdef";
1646
1647 static int
1648 ishex (int ch, int *val)
1649 {
1650 if ((ch >= 'a') && (ch <= 'f'))
1651 {
1652 *val = ch - 'a' + 10;
1653 return 1;
1654 }
1655 if ((ch >= 'A') && (ch <= 'F'))
1656 {
1657 *val = ch - 'A' + 10;
1658 return 1;
1659 }
1660 if ((ch >= '0') && (ch <= '9'))
1661 {
1662 *val = ch - '0';
1663 return 1;
1664 }
1665 return 0;
1666 }
1667
1668 static int
1669 stubhex (int ch)
1670 {
1671 if (ch >= 'a' && ch <= 'f')
1672 return ch - 'a' + 10;
1673 if (ch >= '0' && ch <= '9')
1674 return ch - '0';
1675 if (ch >= 'A' && ch <= 'F')
1676 return ch - 'A' + 10;
1677 return -1;
1678 }
1679
1680 static int
1681 stub_unpack_int (char *buff, int fieldlength)
1682 {
1683 int nibble;
1684 int retval = 0;
1685
1686 while (fieldlength)
1687 {
1688 nibble = stubhex (*buff++);
1689 retval |= nibble;
1690 fieldlength--;
1691 if (fieldlength)
1692 retval = retval << 4;
1693 }
1694 return retval;
1695 }
1696
1697 char *
1698 unpack_varlen_hex (char *buff, /* packet to parse */
1699 ULONGEST *result)
1700 {
1701 int nibble;
1702 ULONGEST retval = 0;
1703
1704 while (ishex (*buff, &nibble))
1705 {
1706 buff++;
1707 retval = retval << 4;
1708 retval |= nibble & 0x0f;
1709 }
1710 *result = retval;
1711 return buff;
1712 }
1713
1714 static char *
1715 unpack_nibble (char *buf, int *val)
1716 {
1717 *val = fromhex (*buf++);
1718 return buf;
1719 }
1720
1721 static char *
1722 pack_nibble (char *buf, int nibble)
1723 {
1724 *buf++ = hexchars[(nibble & 0x0f)];
1725 return buf;
1726 }
1727
1728 static char *
1729 pack_hex_byte (char *pkt, int byte)
1730 {
1731 *pkt++ = hexchars[(byte >> 4) & 0xf];
1732 *pkt++ = hexchars[(byte & 0xf)];
1733 return pkt;
1734 }
1735
1736 static char *
1737 unpack_byte (char *buf, int *value)
1738 {
1739 *value = stub_unpack_int (buf, 2);
1740 return buf + 2;
1741 }
1742
1743 static char *
1744 pack_int (char *buf, int value)
1745 {
1746 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1747 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1748 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1749 buf = pack_hex_byte (buf, (value & 0xff));
1750 return buf;
1751 }
1752
1753 static char *
1754 unpack_int (char *buf, int *value)
1755 {
1756 *value = stub_unpack_int (buf, 8);
1757 return buf + 8;
1758 }
1759
1760 #if 0 /* Currently unused, uncomment when needed. */
1761 static char *pack_string (char *pkt, char *string);
1762
1763 static char *
1764 pack_string (char *pkt, char *string)
1765 {
1766 char ch;
1767 int len;
1768
1769 len = strlen (string);
1770 if (len > 200)
1771 len = 200; /* Bigger than most GDB packets, junk??? */
1772 pkt = pack_hex_byte (pkt, len);
1773 while (len-- > 0)
1774 {
1775 ch = *string++;
1776 if ((ch == '\0') || (ch == '#'))
1777 ch = '*'; /* Protect encapsulation. */
1778 *pkt++ = ch;
1779 }
1780 return pkt;
1781 }
1782 #endif /* 0 (unused) */
1783
1784 static char *
1785 unpack_string (char *src, char *dest, int length)
1786 {
1787 while (length--)
1788 *dest++ = *src++;
1789 *dest = '\0';
1790 return src;
1791 }
1792
1793 static char *
1794 pack_threadid (char *pkt, threadref *id)
1795 {
1796 char *limit;
1797 unsigned char *altid;
1798
1799 altid = (unsigned char *) id;
1800 limit = pkt + BUF_THREAD_ID_SIZE;
1801 while (pkt < limit)
1802 pkt = pack_hex_byte (pkt, *altid++);
1803 return pkt;
1804 }
1805
1806
1807 static char *
1808 unpack_threadid (char *inbuf, threadref *id)
1809 {
1810 char *altref;
1811 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1812 int x, y;
1813
1814 altref = (char *) id;
1815
1816 while (inbuf < limit)
1817 {
1818 x = stubhex (*inbuf++);
1819 y = stubhex (*inbuf++);
1820 *altref++ = (x << 4) | y;
1821 }
1822 return inbuf;
1823 }
1824
1825 /* Externally, threadrefs are 64 bits but internally, they are still
1826 ints. This is due to a mismatch of specifications. We would like
1827 to use 64bit thread references internally. This is an adapter
1828 function. */
1829
1830 void
1831 int_to_threadref (threadref *id, int value)
1832 {
1833 unsigned char *scan;
1834
1835 scan = (unsigned char *) id;
1836 {
1837 int i = 4;
1838 while (i--)
1839 *scan++ = 0;
1840 }
1841 *scan++ = (value >> 24) & 0xff;
1842 *scan++ = (value >> 16) & 0xff;
1843 *scan++ = (value >> 8) & 0xff;
1844 *scan++ = (value & 0xff);
1845 }
1846
1847 static int
1848 threadref_to_int (threadref *ref)
1849 {
1850 int i, value = 0;
1851 unsigned char *scan;
1852
1853 scan = *ref;
1854 scan += 4;
1855 i = 4;
1856 while (i-- > 0)
1857 value = (value << 8) | ((*scan++) & 0xff);
1858 return value;
1859 }
1860
1861 static void
1862 copy_threadref (threadref *dest, threadref *src)
1863 {
1864 int i;
1865 unsigned char *csrc, *cdest;
1866
1867 csrc = (unsigned char *) src;
1868 cdest = (unsigned char *) dest;
1869 i = 8;
1870 while (i--)
1871 *cdest++ = *csrc++;
1872 }
1873
1874 static int
1875 threadmatch (threadref *dest, threadref *src)
1876 {
1877 /* Things are broken right now, so just assume we got a match. */
1878 #if 0
1879 unsigned char *srcp, *destp;
1880 int i, result;
1881 srcp = (char *) src;
1882 destp = (char *) dest;
1883
1884 result = 1;
1885 while (i-- > 0)
1886 result &= (*srcp++ == *destp++) ? 1 : 0;
1887 return result;
1888 #endif
1889 return 1;
1890 }
1891
1892 /*
1893 threadid:1, # always request threadid
1894 context_exists:2,
1895 display:4,
1896 unique_name:8,
1897 more_display:16
1898 */
1899
1900 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1901
1902 static char *
1903 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1904 {
1905 *pkt++ = 'q'; /* Info Query */
1906 *pkt++ = 'P'; /* process or thread info */
1907 pkt = pack_int (pkt, mode); /* mode */
1908 pkt = pack_threadid (pkt, id); /* threadid */
1909 *pkt = '\0'; /* terminate */
1910 return pkt;
1911 }
1912
1913 /* These values tag the fields in a thread info response packet. */
1914 /* Tagging the fields allows us to request specific fields and to
1915 add more fields as time goes by. */
1916
1917 #define TAG_THREADID 1 /* Echo the thread identifier. */
1918 #define TAG_EXISTS 2 /* Is this process defined enough to
1919 fetch registers and its stack? */
1920 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1921 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1922 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1923 the process. */
1924
1925 static int
1926 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1927 struct gdb_ext_thread_info *info)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930 int mask, length;
1931 int tag;
1932 threadref ref;
1933 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1934 int retval = 1;
1935
1936 /* info->threadid = 0; FIXME: implement zero_threadref. */
1937 info->active = 0;
1938 info->display[0] = '\0';
1939 info->shortname[0] = '\0';
1940 info->more_display[0] = '\0';
1941
1942 /* Assume the characters indicating the packet type have been
1943 stripped. */
1944 pkt = unpack_int (pkt, &mask); /* arg mask */
1945 pkt = unpack_threadid (pkt, &ref);
1946
1947 if (mask == 0)
1948 warning (_("Incomplete response to threadinfo request."));
1949 if (!threadmatch (&ref, expectedref))
1950 { /* This is an answer to a different request. */
1951 warning (_("ERROR RMT Thread info mismatch."));
1952 return 0;
1953 }
1954 copy_threadref (&info->threadid, &ref);
1955
1956 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1957
1958 /* Packets are terminated with nulls. */
1959 while ((pkt < limit) && mask && *pkt)
1960 {
1961 pkt = unpack_int (pkt, &tag); /* tag */
1962 pkt = unpack_byte (pkt, &length); /* length */
1963 if (!(tag & mask)) /* Tags out of synch with mask. */
1964 {
1965 warning (_("ERROR RMT: threadinfo tag mismatch."));
1966 retval = 0;
1967 break;
1968 }
1969 if (tag == TAG_THREADID)
1970 {
1971 if (length != 16)
1972 {
1973 warning (_("ERROR RMT: length of threadid is not 16."));
1974 retval = 0;
1975 break;
1976 }
1977 pkt = unpack_threadid (pkt, &ref);
1978 mask = mask & ~TAG_THREADID;
1979 continue;
1980 }
1981 if (tag == TAG_EXISTS)
1982 {
1983 info->active = stub_unpack_int (pkt, length);
1984 pkt += length;
1985 mask = mask & ~(TAG_EXISTS);
1986 if (length > 8)
1987 {
1988 warning (_("ERROR RMT: 'exists' length too long."));
1989 retval = 0;
1990 break;
1991 }
1992 continue;
1993 }
1994 if (tag == TAG_THREADNAME)
1995 {
1996 pkt = unpack_string (pkt, &info->shortname[0], length);
1997 mask = mask & ~TAG_THREADNAME;
1998 continue;
1999 }
2000 if (tag == TAG_DISPLAY)
2001 {
2002 pkt = unpack_string (pkt, &info->display[0], length);
2003 mask = mask & ~TAG_DISPLAY;
2004 continue;
2005 }
2006 if (tag == TAG_MOREDISPLAY)
2007 {
2008 pkt = unpack_string (pkt, &info->more_display[0], length);
2009 mask = mask & ~TAG_MOREDISPLAY;
2010 continue;
2011 }
2012 warning (_("ERROR RMT: unknown thread info tag."));
2013 break; /* Not a tag we know about. */
2014 }
2015 return retval;
2016 }
2017
2018 static int
2019 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2020 struct gdb_ext_thread_info *info)
2021 {
2022 struct remote_state *rs = get_remote_state ();
2023 int result;
2024
2025 pack_threadinfo_request (rs->buf, fieldset, threadid);
2026 putpkt (rs->buf);
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2028
2029 if (rs->buf[0] == '\0')
2030 return 0;
2031
2032 result = remote_unpack_thread_info_response (rs->buf + 2,
2033 threadid, info);
2034 return result;
2035 }
2036
2037 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2038
2039 static char *
2040 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2041 threadref *nextthread)
2042 {
2043 *pkt++ = 'q'; /* info query packet */
2044 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2045 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2046 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2047 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2048 *pkt = '\0';
2049 return pkt;
2050 }
2051
2052 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2053
2054 static int
2055 parse_threadlist_response (char *pkt, int result_limit,
2056 threadref *original_echo, threadref *resultlist,
2057 int *doneflag)
2058 {
2059 struct remote_state *rs = get_remote_state ();
2060 char *limit;
2061 int count, resultcount, done;
2062
2063 resultcount = 0;
2064 /* Assume the 'q' and 'M chars have been stripped. */
2065 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2066 /* done parse past here */
2067 pkt = unpack_byte (pkt, &count); /* count field */
2068 pkt = unpack_nibble (pkt, &done);
2069 /* The first threadid is the argument threadid. */
2070 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2071 while ((count-- > 0) && (pkt < limit))
2072 {
2073 pkt = unpack_threadid (pkt, resultlist++);
2074 if (resultcount++ >= result_limit)
2075 break;
2076 }
2077 if (doneflag)
2078 *doneflag = done;
2079 return resultcount;
2080 }
2081
2082 static int
2083 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2084 int *done, int *result_count, threadref *threadlist)
2085 {
2086 struct remote_state *rs = get_remote_state ();
2087 static threadref echo_nextthread;
2088 int result = 1;
2089
2090 /* Trancate result limit to be smaller than the packet size. */
2091 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2092 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2093
2094 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2095 putpkt (rs->buf);
2096 getpkt (&rs->buf, &rs->buf_size, 0);
2097
2098 if (*rs->buf == '\0')
2099 *result_count = 0;
2100 else
2101 *result_count =
2102 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2103 threadlist, done);
2104
2105 if (!threadmatch (&echo_nextthread, nextthread))
2106 {
2107 /* FIXME: This is a good reason to drop the packet. */
2108 /* Possably, there is a duplicate response. */
2109 /* Possabilities :
2110 retransmit immediatly - race conditions
2111 retransmit after timeout - yes
2112 exit
2113 wait for packet, then exit
2114 */
2115 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2116 return 0; /* I choose simply exiting. */
2117 }
2118 if (*result_count <= 0)
2119 {
2120 if (*done != 1)
2121 {
2122 warning (_("RMT ERROR : failed to get remote thread list."));
2123 result = 0;
2124 }
2125 return result; /* break; */
2126 }
2127 if (*result_count > result_limit)
2128 {
2129 *result_count = 0;
2130 warning (_("RMT ERROR: threadlist response longer than requested."));
2131 return 0;
2132 }
2133 return result;
2134 }
2135
2136 /* This is the interface between remote and threads, remotes upper
2137 interface. */
2138
2139 /* remote_find_new_threads retrieves the thread list and for each
2140 thread in the list, looks up the thread in GDB's internal list,
2141 adding the thread if it does not already exist. This involves
2142 getting partial thread lists from the remote target so, polling the
2143 quit_flag is required. */
2144
2145
2146 /* About this many threadisds fit in a packet. */
2147
2148 #define MAXTHREADLISTRESULTS 32
2149
2150 static int
2151 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2152 int looplimit)
2153 {
2154 int done, i, result_count;
2155 int startflag = 1;
2156 int result = 1;
2157 int loopcount = 0;
2158 static threadref nextthread;
2159 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2160
2161 done = 0;
2162 while (!done)
2163 {
2164 if (loopcount++ > looplimit)
2165 {
2166 result = 0;
2167 warning (_("Remote fetch threadlist -infinite loop-."));
2168 break;
2169 }
2170 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2171 &done, &result_count, resultthreadlist))
2172 {
2173 result = 0;
2174 break;
2175 }
2176 /* Clear for later iterations. */
2177 startflag = 0;
2178 /* Setup to resume next batch of thread references, set nextthread. */
2179 if (result_count >= 1)
2180 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2181 i = 0;
2182 while (result_count--)
2183 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2184 break;
2185 }
2186 return result;
2187 }
2188
2189 static int
2190 remote_newthread_step (threadref *ref, void *context)
2191 {
2192 int pid = ptid_get_pid (inferior_ptid);
2193 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2194
2195 if (!in_thread_list (ptid))
2196 add_thread (ptid);
2197 return 1; /* continue iterator */
2198 }
2199
2200 #define CRAZY_MAX_THREADS 1000
2201
2202 static ptid_t
2203 remote_current_thread (ptid_t oldpid)
2204 {
2205 struct remote_state *rs = get_remote_state ();
2206 char *p = rs->buf;
2207 int tid;
2208 int pid;
2209
2210 putpkt ("qC");
2211 getpkt (&rs->buf, &rs->buf_size, 0);
2212 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2213 return read_ptid (&rs->buf[2], NULL);
2214 else
2215 return oldpid;
2216 }
2217
2218 /* Find new threads for info threads command.
2219 * Original version, using John Metzler's thread protocol.
2220 */
2221
2222 static void
2223 remote_find_new_threads (void)
2224 {
2225 remote_threadlist_iterator (remote_newthread_step, 0,
2226 CRAZY_MAX_THREADS);
2227 }
2228
2229 /*
2230 * Find all threads for info threads command.
2231 * Uses new thread protocol contributed by Cisco.
2232 * Falls back and attempts to use the older method (above)
2233 * if the target doesn't respond to the new method.
2234 */
2235
2236 static void
2237 remote_threads_info (struct target_ops *ops)
2238 {
2239 struct remote_state *rs = get_remote_state ();
2240 char *bufp;
2241 ptid_t new_thread;
2242
2243 if (remote_desc == 0) /* paranoia */
2244 error (_("Command can only be used when connected to the remote target."));
2245
2246 if (use_threadinfo_query)
2247 {
2248 putpkt ("qfThreadInfo");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 bufp = rs->buf;
2251 if (bufp[0] != '\0') /* q packet recognized */
2252 {
2253 while (*bufp++ == 'm') /* reply contains one or more TID */
2254 {
2255 do
2256 {
2257 new_thread = read_ptid (bufp, &bufp);
2258 if (!ptid_equal (new_thread, null_ptid))
2259 {
2260 /* In non-stop mode, we assume new found threads
2261 are running until proven otherwise with a
2262 stop reply. In all-stop, we can only get
2263 here if all threads are stopped. */
2264 int running = non_stop ? 1 : 0;
2265
2266 remote_notice_new_inferior (new_thread, running);
2267 }
2268 }
2269 while (*bufp++ == ','); /* comma-separated list */
2270 putpkt ("qsThreadInfo");
2271 getpkt (&rs->buf, &rs->buf_size, 0);
2272 bufp = rs->buf;
2273 }
2274 return; /* done */
2275 }
2276 }
2277
2278 /* Only qfThreadInfo is supported in non-stop mode. */
2279 if (non_stop)
2280 return;
2281
2282 /* Else fall back to old method based on jmetzler protocol. */
2283 use_threadinfo_query = 0;
2284 remote_find_new_threads ();
2285 return;
2286 }
2287
2288 /*
2289 * Collect a descriptive string about the given thread.
2290 * The target may say anything it wants to about the thread
2291 * (typically info about its blocked / runnable state, name, etc.).
2292 * This string will appear in the info threads display.
2293 *
2294 * Optional: targets are not required to implement this function.
2295 */
2296
2297 static char *
2298 remote_threads_extra_info (struct thread_info *tp)
2299 {
2300 struct remote_state *rs = get_remote_state ();
2301 int result;
2302 int set;
2303 threadref id;
2304 struct gdb_ext_thread_info threadinfo;
2305 static char display_buf[100]; /* arbitrary... */
2306 int n = 0; /* position in display_buf */
2307
2308 if (remote_desc == 0) /* paranoia */
2309 internal_error (__FILE__, __LINE__,
2310 _("remote_threads_extra_info"));
2311
2312 if (ptid_equal (tp->ptid, magic_null_ptid)
2313 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2314 /* This is the main thread which was added by GDB. The remote
2315 server doesn't know about it. */
2316 return NULL;
2317
2318 if (use_threadextra_query)
2319 {
2320 char *b = rs->buf;
2321 char *endb = rs->buf + get_remote_packet_size ();
2322
2323 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2324 b += strlen (b);
2325 write_ptid (b, endb, tp->ptid);
2326
2327 putpkt (rs->buf);
2328 getpkt (&rs->buf, &rs->buf_size, 0);
2329 if (rs->buf[0] != 0)
2330 {
2331 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2332 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2333 display_buf [result] = '\0';
2334 return display_buf;
2335 }
2336 }
2337
2338 /* If the above query fails, fall back to the old method. */
2339 use_threadextra_query = 0;
2340 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2341 | TAG_MOREDISPLAY | TAG_DISPLAY;
2342 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2343 if (remote_get_threadinfo (&id, set, &threadinfo))
2344 if (threadinfo.active)
2345 {
2346 if (*threadinfo.shortname)
2347 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2348 " Name: %s,", threadinfo.shortname);
2349 if (*threadinfo.display)
2350 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2351 " State: %s,", threadinfo.display);
2352 if (*threadinfo.more_display)
2353 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2354 " Priority: %s", threadinfo.more_display);
2355
2356 if (n > 0)
2357 {
2358 /* For purely cosmetic reasons, clear up trailing commas. */
2359 if (',' == display_buf[n-1])
2360 display_buf[n-1] = ' ';
2361 return display_buf;
2362 }
2363 }
2364 return NULL;
2365 }
2366 \f
2367
2368 /* Restart the remote side; this is an extended protocol operation. */
2369
2370 static void
2371 extended_remote_restart (void)
2372 {
2373 struct remote_state *rs = get_remote_state ();
2374
2375 /* Send the restart command; for reasons I don't understand the
2376 remote side really expects a number after the "R". */
2377 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2378 putpkt (rs->buf);
2379
2380 remote_fileio_reset ();
2381 }
2382 \f
2383 /* Clean up connection to a remote debugger. */
2384
2385 static void
2386 remote_close (int quitting)
2387 {
2388 if (remote_desc == NULL)
2389 return; /* already closed */
2390
2391 /* Make sure we leave stdin registered in the event loop, and we
2392 don't leave the async SIGINT signal handler installed. */
2393 remote_terminal_ours ();
2394
2395 serial_close (remote_desc);
2396 remote_desc = NULL;
2397
2398 /* We don't have a connection to the remote stub anymore. Get rid
2399 of all the inferiors and their threads we were controlling. */
2400 discard_all_inferiors ();
2401
2402 /* We're no longer interested in any of these events. */
2403 discard_pending_stop_replies (-1);
2404
2405 if (remote_async_inferior_event_token)
2406 delete_async_event_handler (&remote_async_inferior_event_token);
2407 if (remote_async_get_pending_events_token)
2408 delete_async_event_handler (&remote_async_get_pending_events_token);
2409 }
2410
2411 /* Query the remote side for the text, data and bss offsets. */
2412
2413 static void
2414 get_offsets (void)
2415 {
2416 struct remote_state *rs = get_remote_state ();
2417 char *buf;
2418 char *ptr;
2419 int lose, num_segments = 0, do_sections, do_segments;
2420 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2421 struct section_offsets *offs;
2422 struct symfile_segment_data *data;
2423
2424 if (symfile_objfile == NULL)
2425 return;
2426
2427 putpkt ("qOffsets");
2428 getpkt (&rs->buf, &rs->buf_size, 0);
2429 buf = rs->buf;
2430
2431 if (buf[0] == '\000')
2432 return; /* Return silently. Stub doesn't support
2433 this command. */
2434 if (buf[0] == 'E')
2435 {
2436 warning (_("Remote failure reply: %s"), buf);
2437 return;
2438 }
2439
2440 /* Pick up each field in turn. This used to be done with scanf, but
2441 scanf will make trouble if CORE_ADDR size doesn't match
2442 conversion directives correctly. The following code will work
2443 with any size of CORE_ADDR. */
2444 text_addr = data_addr = bss_addr = 0;
2445 ptr = buf;
2446 lose = 0;
2447
2448 if (strncmp (ptr, "Text=", 5) == 0)
2449 {
2450 ptr += 5;
2451 /* Don't use strtol, could lose on big values. */
2452 while (*ptr && *ptr != ';')
2453 text_addr = (text_addr << 4) + fromhex (*ptr++);
2454
2455 if (strncmp (ptr, ";Data=", 6) == 0)
2456 {
2457 ptr += 6;
2458 while (*ptr && *ptr != ';')
2459 data_addr = (data_addr << 4) + fromhex (*ptr++);
2460 }
2461 else
2462 lose = 1;
2463
2464 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2465 {
2466 ptr += 5;
2467 while (*ptr && *ptr != ';')
2468 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2469
2470 if (bss_addr != data_addr)
2471 warning (_("Target reported unsupported offsets: %s"), buf);
2472 }
2473 else
2474 lose = 1;
2475 }
2476 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2477 {
2478 ptr += 8;
2479 /* Don't use strtol, could lose on big values. */
2480 while (*ptr && *ptr != ';')
2481 text_addr = (text_addr << 4) + fromhex (*ptr++);
2482 num_segments = 1;
2483
2484 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2485 {
2486 ptr += 9;
2487 while (*ptr && *ptr != ';')
2488 data_addr = (data_addr << 4) + fromhex (*ptr++);
2489 num_segments++;
2490 }
2491 }
2492 else
2493 lose = 1;
2494
2495 if (lose)
2496 error (_("Malformed response to offset query, %s"), buf);
2497 else if (*ptr != '\0')
2498 warning (_("Target reported unsupported offsets: %s"), buf);
2499
2500 offs = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2502 memcpy (offs, symfile_objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2504
2505 data = get_symfile_segment_data (symfile_objfile->obfd);
2506 do_segments = (data != NULL);
2507 do_sections = num_segments == 0;
2508
2509 if (num_segments > 0)
2510 {
2511 segments[0] = text_addr;
2512 segments[1] = data_addr;
2513 }
2514 /* If we have two segments, we can still try to relocate everything
2515 by assuming that the .text and .data offsets apply to the whole
2516 text and data segments. Convert the offsets given in the packet
2517 to base addresses for symfile_map_offsets_to_segments. */
2518 else if (data && data->num_segments == 2)
2519 {
2520 segments[0] = data->segment_bases[0] + text_addr;
2521 segments[1] = data->segment_bases[1] + data_addr;
2522 num_segments = 2;
2523 }
2524 /* If the object file has only one segment, assume that it is text
2525 rather than data; main programs with no writable data are rare,
2526 but programs with no code are useless. Of course the code might
2527 have ended up in the data segment... to detect that we would need
2528 the permissions here. */
2529 else if (data && data->num_segments == 1)
2530 {
2531 segments[0] = data->segment_bases[0] + text_addr;
2532 num_segments = 1;
2533 }
2534 /* There's no way to relocate by segment. */
2535 else
2536 do_segments = 0;
2537
2538 if (do_segments)
2539 {
2540 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2541 offs, num_segments, segments);
2542
2543 if (ret == 0 && !do_sections)
2544 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2545
2546 if (ret > 0)
2547 do_sections = 0;
2548 }
2549
2550 if (data)
2551 free_symfile_segment_data (data);
2552
2553 if (do_sections)
2554 {
2555 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2556
2557 /* This is a temporary kludge to force data and bss to use the same offsets
2558 because that's what nlmconv does now. The real solution requires changes
2559 to the stub and remote.c that I don't have time to do right now. */
2560
2561 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2562 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2563 }
2564
2565 objfile_relocate (symfile_objfile, offs);
2566 }
2567
2568 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2569 threads we know are stopped already. This is used during the
2570 initial remote connection in non-stop mode --- threads that are
2571 reported as already being stopped are left stopped. */
2572
2573 static int
2574 set_stop_requested_callback (struct thread_info *thread, void *data)
2575 {
2576 /* If we have a stop reply for this thread, it must be stopped. */
2577 if (peek_stop_reply (thread->ptid))
2578 set_stop_requested (thread->ptid, 1);
2579
2580 return 0;
2581 }
2582
2583 /* Stub for catch_exception. */
2584
2585 struct start_remote_args
2586 {
2587 int from_tty;
2588
2589 /* The current target. */
2590 struct target_ops *target;
2591
2592 /* Non-zero if this is an extended-remote target. */
2593 int extended_p;
2594 };
2595
2596 static void
2597 remote_start_remote (struct ui_out *uiout, void *opaque)
2598 {
2599 struct start_remote_args *args = opaque;
2600 struct remote_state *rs = get_remote_state ();
2601 struct packet_config *noack_config;
2602 char *wait_status = NULL;
2603
2604 immediate_quit++; /* Allow user to interrupt it. */
2605
2606 /* Ack any packet which the remote side has already sent. */
2607 serial_write (remote_desc, "+", 1);
2608
2609 /* The first packet we send to the target is the optional "supported
2610 packets" request. If the target can answer this, it will tell us
2611 which later probes to skip. */
2612 remote_query_supported ();
2613
2614 /* Next, we possibly activate noack mode.
2615
2616 If the QStartNoAckMode packet configuration is set to AUTO,
2617 enable noack mode if the stub reported a wish for it with
2618 qSupported.
2619
2620 If set to TRUE, then enable noack mode even if the stub didn't
2621 report it in qSupported. If the stub doesn't reply OK, the
2622 session ends with an error.
2623
2624 If FALSE, then don't activate noack mode, regardless of what the
2625 stub claimed should be the default with qSupported. */
2626
2627 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2628
2629 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2630 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2631 && noack_config->support == PACKET_ENABLE))
2632 {
2633 putpkt ("QStartNoAckMode");
2634 getpkt (&rs->buf, &rs->buf_size, 0);
2635 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2636 rs->noack_mode = 1;
2637 }
2638
2639 if (args->extended_p)
2640 {
2641 /* Tell the remote that we are using the extended protocol. */
2642 putpkt ("!");
2643 getpkt (&rs->buf, &rs->buf_size, 0);
2644 }
2645
2646 /* Next, if the target can specify a description, read it. We do
2647 this before anything involving memory or registers. */
2648 target_find_description ();
2649
2650 /* On OSs where the list of libraries is global to all
2651 processes, we fetch them early. */
2652 if (gdbarch_has_global_solist (target_gdbarch))
2653 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2654
2655 if (non_stop)
2656 {
2657 if (!rs->non_stop_aware)
2658 error (_("Non-stop mode requested, but remote does not support non-stop"));
2659
2660 putpkt ("QNonStop:1");
2661 getpkt (&rs->buf, &rs->buf_size, 0);
2662
2663 if (strcmp (rs->buf, "OK") != 0)
2664 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2665
2666 /* Find about threads and processes the stub is already
2667 controlling. We default to adding them in the running state.
2668 The '?' query below will then tell us about which threads are
2669 stopped. */
2670 remote_threads_info (args->target);
2671 }
2672 else if (rs->non_stop_aware)
2673 {
2674 /* Don't assume that the stub can operate in all-stop mode.
2675 Request it explicitely. */
2676 putpkt ("QNonStop:0");
2677 getpkt (&rs->buf, &rs->buf_size, 0);
2678
2679 if (strcmp (rs->buf, "OK") != 0)
2680 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2681 }
2682
2683 /* Check whether the target is running now. */
2684 putpkt ("?");
2685 getpkt (&rs->buf, &rs->buf_size, 0);
2686
2687 if (!non_stop)
2688 {
2689 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2690 {
2691 if (args->extended_p)
2692 {
2693 /* We're connected, but not running. Drop out before we
2694 call start_remote. */
2695 target_mark_exited (args->target);
2696 return;
2697 }
2698 else
2699 error (_("The target is not running (try extended-remote?)"));
2700 }
2701 else
2702 {
2703 /* Save the reply for later. */
2704 wait_status = alloca (strlen (rs->buf) + 1);
2705 strcpy (wait_status, rs->buf);
2706 }
2707
2708 /* Let the stub know that we want it to return the thread. */
2709 set_continue_thread (minus_one_ptid);
2710
2711 /* Without this, some commands which require an active target
2712 (such as kill) won't work. This variable serves (at least)
2713 double duty as both the pid of the target process (if it has
2714 such), and as a flag indicating that a target is active.
2715 These functions should be split out into seperate variables,
2716 especially since GDB will someday have a notion of debugging
2717 several processes. */
2718 inferior_ptid = magic_null_ptid;
2719
2720 /* Now, if we have thread information, update inferior_ptid. */
2721 inferior_ptid = remote_current_thread (inferior_ptid);
2722
2723 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2724
2725 /* Always add the main thread. */
2726 add_thread_silent (inferior_ptid);
2727
2728 get_offsets (); /* Get text, data & bss offsets. */
2729
2730 /* If we could not find a description using qXfer, and we know
2731 how to do it some other way, try again. This is not
2732 supported for non-stop; it could be, but it is tricky if
2733 there are no stopped threads when we connect. */
2734 if (remote_read_description_p (args->target)
2735 && gdbarch_target_desc (target_gdbarch) == NULL)
2736 {
2737 target_clear_description ();
2738 target_find_description ();
2739 }
2740
2741 /* Use the previously fetched status. */
2742 gdb_assert (wait_status != NULL);
2743 strcpy (rs->buf, wait_status);
2744 rs->cached_wait_status = 1;
2745
2746 immediate_quit--;
2747 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2748 }
2749 else
2750 {
2751 /* Clear WFI global state. Do this before finding about new
2752 threads and inferiors, and setting the current inferior.
2753 Otherwise we would clear the proceed status of the current
2754 inferior when we want its stop_soon state to be preserved
2755 (see notice_new_inferior). */
2756 init_wait_for_inferior ();
2757
2758 /* In non-stop, we will either get an "OK", meaning that there
2759 are no stopped threads at this time; or, a regular stop
2760 reply. In the latter case, there may be more than one thread
2761 stopped --- we pull them all out using the vStopped
2762 mechanism. */
2763 if (strcmp (rs->buf, "OK") != 0)
2764 {
2765 struct stop_reply *stop_reply;
2766 struct cleanup *old_chain;
2767
2768 stop_reply = stop_reply_xmalloc ();
2769 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2770
2771 remote_parse_stop_reply (rs->buf, stop_reply);
2772 discard_cleanups (old_chain);
2773
2774 /* get_pending_stop_replies acks this one, and gets the rest
2775 out. */
2776 pending_stop_reply = stop_reply;
2777 remote_get_pending_stop_replies ();
2778
2779 /* Make sure that threads that were stopped remain
2780 stopped. */
2781 iterate_over_threads (set_stop_requested_callback, NULL);
2782 }
2783
2784 if (target_can_async_p ())
2785 target_async (inferior_event_handler, 0);
2786
2787 if (thread_count () == 0)
2788 {
2789 if (args->extended_p)
2790 {
2791 /* We're connected, but not running. Drop out before we
2792 call start_remote. */
2793 target_mark_exited (args->target);
2794 return;
2795 }
2796 else
2797 error (_("The target is not running (try extended-remote?)"));
2798 }
2799
2800 if (args->extended_p)
2801 target_mark_running (args->target);
2802
2803 /* Let the stub know that we want it to return the thread. */
2804
2805 /* Force the stub to choose a thread. */
2806 set_general_thread (null_ptid);
2807
2808 /* Query it. */
2809 inferior_ptid = remote_current_thread (minus_one_ptid);
2810 if (ptid_equal (inferior_ptid, minus_one_ptid))
2811 error (_("remote didn't report the current thread in non-stop mode"));
2812
2813 get_offsets (); /* Get text, data & bss offsets. */
2814
2815 /* In non-stop mode, any cached wait status will be stored in
2816 the stop reply queue. */
2817 gdb_assert (wait_status == NULL);
2818 }
2819
2820 /* If we connected to a live target, do some additional setup. */
2821 if (target_has_execution)
2822 {
2823 if (exec_bfd) /* No use without an exec file. */
2824 remote_check_symbols (symfile_objfile);
2825 }
2826
2827 /* If code is shared between processes, then breakpoints are global
2828 too; Insert them now. */
2829 if (gdbarch_has_global_solist (target_gdbarch)
2830 && breakpoints_always_inserted_mode ())
2831 insert_breakpoints ();
2832 }
2833
2834 /* Open a connection to a remote debugger.
2835 NAME is the filename used for communication. */
2836
2837 static void
2838 remote_open (char *name, int from_tty)
2839 {
2840 remote_open_1 (name, from_tty, &remote_ops, 0);
2841 }
2842
2843 /* Open a connection to a remote debugger using the extended
2844 remote gdb protocol. NAME is the filename used for communication. */
2845
2846 static void
2847 extended_remote_open (char *name, int from_tty)
2848 {
2849 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2850 }
2851
2852 /* Generic code for opening a connection to a remote target. */
2853
2854 static void
2855 init_all_packet_configs (void)
2856 {
2857 int i;
2858 for (i = 0; i < PACKET_MAX; i++)
2859 update_packet_config (&remote_protocol_packets[i]);
2860 }
2861
2862 /* Symbol look-up. */
2863
2864 static void
2865 remote_check_symbols (struct objfile *objfile)
2866 {
2867 struct remote_state *rs = get_remote_state ();
2868 char *msg, *reply, *tmp;
2869 struct minimal_symbol *sym;
2870 int end;
2871
2872 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2873 return;
2874
2875 /* Make sure the remote is pointing at the right process. */
2876 set_general_process ();
2877
2878 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2879 because we need both at the same time. */
2880 msg = alloca (get_remote_packet_size ());
2881
2882 /* Invite target to request symbol lookups. */
2883
2884 putpkt ("qSymbol::");
2885 getpkt (&rs->buf, &rs->buf_size, 0);
2886 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2887 reply = rs->buf;
2888
2889 while (strncmp (reply, "qSymbol:", 8) == 0)
2890 {
2891 tmp = &reply[8];
2892 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2893 msg[end] = '\0';
2894 sym = lookup_minimal_symbol (msg, NULL, NULL);
2895 if (sym == NULL)
2896 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2897 else
2898 {
2899 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2900
2901 /* If this is a function address, return the start of code
2902 instead of any data function descriptor. */
2903 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2904 sym_addr,
2905 &current_target);
2906
2907 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2908 paddr_nz (sym_addr), &reply[8]);
2909 }
2910
2911 putpkt (msg);
2912 getpkt (&rs->buf, &rs->buf_size, 0);
2913 reply = rs->buf;
2914 }
2915 }
2916
2917 static struct serial *
2918 remote_serial_open (char *name)
2919 {
2920 static int udp_warning = 0;
2921
2922 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2923 of in ser-tcp.c, because it is the remote protocol assuming that the
2924 serial connection is reliable and not the serial connection promising
2925 to be. */
2926 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2927 {
2928 warning (_("\
2929 The remote protocol may be unreliable over UDP.\n\
2930 Some events may be lost, rendering further debugging impossible."));
2931 udp_warning = 1;
2932 }
2933
2934 return serial_open (name);
2935 }
2936
2937 /* This type describes each known response to the qSupported
2938 packet. */
2939 struct protocol_feature
2940 {
2941 /* The name of this protocol feature. */
2942 const char *name;
2943
2944 /* The default for this protocol feature. */
2945 enum packet_support default_support;
2946
2947 /* The function to call when this feature is reported, or after
2948 qSupported processing if the feature is not supported.
2949 The first argument points to this structure. The second
2950 argument indicates whether the packet requested support be
2951 enabled, disabled, or probed (or the default, if this function
2952 is being called at the end of processing and this feature was
2953 not reported). The third argument may be NULL; if not NULL, it
2954 is a NUL-terminated string taken from the packet following
2955 this feature's name and an equals sign. */
2956 void (*func) (const struct protocol_feature *, enum packet_support,
2957 const char *);
2958
2959 /* The corresponding packet for this feature. Only used if
2960 FUNC is remote_supported_packet. */
2961 int packet;
2962 };
2963
2964 static void
2965 remote_supported_packet (const struct protocol_feature *feature,
2966 enum packet_support support,
2967 const char *argument)
2968 {
2969 if (argument)
2970 {
2971 warning (_("Remote qSupported response supplied an unexpected value for"
2972 " \"%s\"."), feature->name);
2973 return;
2974 }
2975
2976 if (remote_protocol_packets[feature->packet].support
2977 == PACKET_SUPPORT_UNKNOWN)
2978 remote_protocol_packets[feature->packet].support = support;
2979 }
2980
2981 static void
2982 remote_packet_size (const struct protocol_feature *feature,
2983 enum packet_support support, const char *value)
2984 {
2985 struct remote_state *rs = get_remote_state ();
2986
2987 int packet_size;
2988 char *value_end;
2989
2990 if (support != PACKET_ENABLE)
2991 return;
2992
2993 if (value == NULL || *value == '\0')
2994 {
2995 warning (_("Remote target reported \"%s\" without a size."),
2996 feature->name);
2997 return;
2998 }
2999
3000 errno = 0;
3001 packet_size = strtol (value, &value_end, 16);
3002 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3003 {
3004 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3005 feature->name, value);
3006 return;
3007 }
3008
3009 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3010 {
3011 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3012 packet_size, MAX_REMOTE_PACKET_SIZE);
3013 packet_size = MAX_REMOTE_PACKET_SIZE;
3014 }
3015
3016 /* Record the new maximum packet size. */
3017 rs->explicit_packet_size = packet_size;
3018 }
3019
3020 static void
3021 remote_multi_process_feature (const struct protocol_feature *feature,
3022 enum packet_support support, const char *value)
3023 {
3024 struct remote_state *rs = get_remote_state ();
3025 rs->multi_process_aware = (support == PACKET_ENABLE);
3026 }
3027
3028 static void
3029 remote_non_stop_feature (const struct protocol_feature *feature,
3030 enum packet_support support, const char *value)
3031 {
3032 struct remote_state *rs = get_remote_state ();
3033 rs->non_stop_aware = (support == PACKET_ENABLE);
3034 }
3035
3036 static struct protocol_feature remote_protocol_features[] = {
3037 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3038 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3039 PACKET_qXfer_auxv },
3040 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3041 PACKET_qXfer_features },
3042 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3043 PACKET_qXfer_libraries },
3044 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3045 PACKET_qXfer_memory_map },
3046 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3047 PACKET_qXfer_spu_read },
3048 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3049 PACKET_qXfer_spu_write },
3050 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3051 PACKET_qXfer_osdata },
3052 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3053 PACKET_QPassSignals },
3054 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3055 PACKET_QStartNoAckMode },
3056 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3057 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3058 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3059 PACKET_qXfer_siginfo_read },
3060 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3061 PACKET_qXfer_siginfo_write },
3062 };
3063
3064 static void
3065 remote_query_supported (void)
3066 {
3067 struct remote_state *rs = get_remote_state ();
3068 char *next;
3069 int i;
3070 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3071
3072 /* The packet support flags are handled differently for this packet
3073 than for most others. We treat an error, a disabled packet, and
3074 an empty response identically: any features which must be reported
3075 to be used will be automatically disabled. An empty buffer
3076 accomplishes this, since that is also the representation for a list
3077 containing no features. */
3078
3079 rs->buf[0] = 0;
3080 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3081 {
3082 if (rs->extended)
3083 putpkt ("qSupported:multiprocess+");
3084 else
3085 putpkt ("qSupported");
3086
3087 getpkt (&rs->buf, &rs->buf_size, 0);
3088
3089 /* If an error occured, warn, but do not return - just reset the
3090 buffer to empty and go on to disable features. */
3091 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3092 == PACKET_ERROR)
3093 {
3094 warning (_("Remote failure reply: %s"), rs->buf);
3095 rs->buf[0] = 0;
3096 }
3097 }
3098
3099 memset (seen, 0, sizeof (seen));
3100
3101 next = rs->buf;
3102 while (*next)
3103 {
3104 enum packet_support is_supported;
3105 char *p, *end, *name_end, *value;
3106
3107 /* First separate out this item from the rest of the packet. If
3108 there's another item after this, we overwrite the separator
3109 (terminated strings are much easier to work with). */
3110 p = next;
3111 end = strchr (p, ';');
3112 if (end == NULL)
3113 {
3114 end = p + strlen (p);
3115 next = end;
3116 }
3117 else
3118 {
3119 *end = '\0';
3120 next = end + 1;
3121
3122 if (end == p)
3123 {
3124 warning (_("empty item in \"qSupported\" response"));
3125 continue;
3126 }
3127 }
3128
3129 name_end = strchr (p, '=');
3130 if (name_end)
3131 {
3132 /* This is a name=value entry. */
3133 is_supported = PACKET_ENABLE;
3134 value = name_end + 1;
3135 *name_end = '\0';
3136 }
3137 else
3138 {
3139 value = NULL;
3140 switch (end[-1])
3141 {
3142 case '+':
3143 is_supported = PACKET_ENABLE;
3144 break;
3145
3146 case '-':
3147 is_supported = PACKET_DISABLE;
3148 break;
3149
3150 case '?':
3151 is_supported = PACKET_SUPPORT_UNKNOWN;
3152 break;
3153
3154 default:
3155 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3156 continue;
3157 }
3158 end[-1] = '\0';
3159 }
3160
3161 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3162 if (strcmp (remote_protocol_features[i].name, p) == 0)
3163 {
3164 const struct protocol_feature *feature;
3165
3166 seen[i] = 1;
3167 feature = &remote_protocol_features[i];
3168 feature->func (feature, is_supported, value);
3169 break;
3170 }
3171 }
3172
3173 /* If we increased the packet size, make sure to increase the global
3174 buffer size also. We delay this until after parsing the entire
3175 qSupported packet, because this is the same buffer we were
3176 parsing. */
3177 if (rs->buf_size < rs->explicit_packet_size)
3178 {
3179 rs->buf_size = rs->explicit_packet_size;
3180 rs->buf = xrealloc (rs->buf, rs->buf_size);
3181 }
3182
3183 /* Handle the defaults for unmentioned features. */
3184 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3185 if (!seen[i])
3186 {
3187 const struct protocol_feature *feature;
3188
3189 feature = &remote_protocol_features[i];
3190 feature->func (feature, feature->default_support, NULL);
3191 }
3192 }
3193
3194
3195 static void
3196 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3197 {
3198 struct remote_state *rs = get_remote_state ();
3199
3200 if (name == 0)
3201 error (_("To open a remote debug connection, you need to specify what\n"
3202 "serial device is attached to the remote system\n"
3203 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3204
3205 /* See FIXME above. */
3206 if (!target_async_permitted)
3207 wait_forever_enabled_p = 1;
3208
3209 /* If we're connected to a running target, target_preopen will kill it.
3210 But if we're connected to a target system with no running process,
3211 then we will still be connected when it returns. Ask this question
3212 first, before target_preopen has a chance to kill anything. */
3213 if (remote_desc != NULL && !target_has_execution)
3214 {
3215 if (!from_tty
3216 || query (_("Already connected to a remote target. Disconnect? ")))
3217 pop_target ();
3218 else
3219 error (_("Still connected."));
3220 }
3221
3222 target_preopen (from_tty);
3223
3224 unpush_target (target);
3225
3226 /* This time without a query. If we were connected to an
3227 extended-remote target and target_preopen killed the running
3228 process, we may still be connected. If we are starting "target
3229 remote" now, the extended-remote target will not have been
3230 removed by unpush_target. */
3231 if (remote_desc != NULL && !target_has_execution)
3232 pop_target ();
3233
3234 /* Make sure we send the passed signals list the next time we resume. */
3235 xfree (last_pass_packet);
3236 last_pass_packet = NULL;
3237
3238 remote_fileio_reset ();
3239 reopen_exec_file ();
3240 reread_symbols ();
3241
3242 remote_desc = remote_serial_open (name);
3243 if (!remote_desc)
3244 perror_with_name (name);
3245
3246 if (baud_rate != -1)
3247 {
3248 if (serial_setbaudrate (remote_desc, baud_rate))
3249 {
3250 /* The requested speed could not be set. Error out to
3251 top level after closing remote_desc. Take care to
3252 set remote_desc to NULL to avoid closing remote_desc
3253 more than once. */
3254 serial_close (remote_desc);
3255 remote_desc = NULL;
3256 perror_with_name (name);
3257 }
3258 }
3259
3260 serial_raw (remote_desc);
3261
3262 /* If there is something sitting in the buffer we might take it as a
3263 response to a command, which would be bad. */
3264 serial_flush_input (remote_desc);
3265
3266 if (from_tty)
3267 {
3268 puts_filtered ("Remote debugging using ");
3269 puts_filtered (name);
3270 puts_filtered ("\n");
3271 }
3272 push_target (target); /* Switch to using remote target now. */
3273
3274 /* Assume that the target is not running, until we learn otherwise. */
3275 if (extended_p)
3276 target_mark_exited (target);
3277
3278 /* Register extra event sources in the event loop. */
3279 remote_async_inferior_event_token
3280 = create_async_event_handler (remote_async_inferior_event_handler,
3281 NULL);
3282 remote_async_get_pending_events_token
3283 = create_async_event_handler (remote_async_get_pending_events_handler,
3284 NULL);
3285
3286 /* Reset the target state; these things will be queried either by
3287 remote_query_supported or as they are needed. */
3288 init_all_packet_configs ();
3289 rs->cached_wait_status = 0;
3290 rs->explicit_packet_size = 0;
3291 rs->noack_mode = 0;
3292 rs->multi_process_aware = 0;
3293 rs->extended = extended_p;
3294 rs->non_stop_aware = 0;
3295 rs->waiting_for_stop_reply = 0;
3296
3297 general_thread = not_sent_ptid;
3298 continue_thread = not_sent_ptid;
3299
3300 /* Probe for ability to use "ThreadInfo" query, as required. */
3301 use_threadinfo_query = 1;
3302 use_threadextra_query = 1;
3303
3304 if (target_async_permitted)
3305 {
3306 /* With this target we start out by owning the terminal. */
3307 remote_async_terminal_ours_p = 1;
3308
3309 /* FIXME: cagney/1999-09-23: During the initial connection it is
3310 assumed that the target is already ready and able to respond to
3311 requests. Unfortunately remote_start_remote() eventually calls
3312 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3313 around this. Eventually a mechanism that allows
3314 wait_for_inferior() to expect/get timeouts will be
3315 implemented. */
3316 wait_forever_enabled_p = 0;
3317 }
3318
3319 /* First delete any symbols previously loaded from shared libraries. */
3320 no_shared_libraries (NULL, 0);
3321
3322 /* Start afresh. */
3323 init_thread_list ();
3324
3325 /* Start the remote connection. If error() or QUIT, discard this
3326 target (we'd otherwise be in an inconsistent state) and then
3327 propogate the error on up the exception chain. This ensures that
3328 the caller doesn't stumble along blindly assuming that the
3329 function succeeded. The CLI doesn't have this problem but other
3330 UI's, such as MI do.
3331
3332 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3333 this function should return an error indication letting the
3334 caller restore the previous state. Unfortunately the command
3335 ``target remote'' is directly wired to this function making that
3336 impossible. On a positive note, the CLI side of this problem has
3337 been fixed - the function set_cmd_context() makes it possible for
3338 all the ``target ....'' commands to share a common callback
3339 function. See cli-dump.c. */
3340 {
3341 struct gdb_exception ex;
3342 struct start_remote_args args;
3343
3344 args.from_tty = from_tty;
3345 args.target = target;
3346 args.extended_p = extended_p;
3347
3348 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3349 if (ex.reason < 0)
3350 {
3351 /* Pop the partially set up target - unless something else did
3352 already before throwing the exception. */
3353 if (remote_desc != NULL)
3354 pop_target ();
3355 if (target_async_permitted)
3356 wait_forever_enabled_p = 1;
3357 throw_exception (ex);
3358 }
3359 }
3360
3361 if (target_async_permitted)
3362 wait_forever_enabled_p = 1;
3363 }
3364
3365 /* This takes a program previously attached to and detaches it. After
3366 this is done, GDB can be used to debug some other program. We
3367 better not have left any breakpoints in the target program or it'll
3368 die when it hits one. */
3369
3370 static void
3371 remote_detach_1 (char *args, int from_tty, int extended)
3372 {
3373 int pid = ptid_get_pid (inferior_ptid);
3374 struct remote_state *rs = get_remote_state ();
3375
3376 if (args)
3377 error (_("Argument given to \"detach\" when remotely debugging."));
3378
3379 if (!target_has_execution)
3380 error (_("No process to detach from."));
3381
3382 /* Tell the remote target to detach. */
3383 if (remote_multi_process_p (rs))
3384 sprintf (rs->buf, "D;%x", pid);
3385 else
3386 strcpy (rs->buf, "D");
3387
3388 putpkt (rs->buf);
3389 getpkt (&rs->buf, &rs->buf_size, 0);
3390
3391 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3392 ;
3393 else if (rs->buf[0] == '\0')
3394 error (_("Remote doesn't know how to detach"));
3395 else
3396 error (_("Can't detach process."));
3397
3398 if (from_tty)
3399 {
3400 if (remote_multi_process_p (rs))
3401 printf_filtered (_("Detached from remote %s.\n"),
3402 target_pid_to_str (pid_to_ptid (pid)));
3403 else
3404 {
3405 if (extended)
3406 puts_filtered (_("Detached from remote process.\n"));
3407 else
3408 puts_filtered (_("Ending remote debugging.\n"));
3409 }
3410 }
3411
3412 discard_pending_stop_replies (pid);
3413 target_mourn_inferior ();
3414 }
3415
3416 static void
3417 remote_detach (struct target_ops *ops, char *args, int from_tty)
3418 {
3419 remote_detach_1 (args, from_tty, 0);
3420 }
3421
3422 static void
3423 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3424 {
3425 remote_detach_1 (args, from_tty, 1);
3426 }
3427
3428 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3429
3430 static void
3431 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3432 {
3433 if (args)
3434 error (_("Argument given to \"disconnect\" when remotely debugging."));
3435
3436 /* Make sure we unpush even the extended remote targets; mourn
3437 won't do it. So call remote_mourn_1 directly instead of
3438 target_mourn_inferior. */
3439 remote_mourn_1 (target);
3440
3441 if (from_tty)
3442 puts_filtered ("Ending remote debugging.\n");
3443 }
3444
3445 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3446 be chatty about it. */
3447
3448 static void
3449 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3450 {
3451 struct remote_state *rs = get_remote_state ();
3452 int pid;
3453 char *dummy;
3454 char *wait_status = NULL;
3455
3456 if (!args)
3457 error_no_arg (_("process-id to attach"));
3458
3459 dummy = args;
3460 pid = strtol (args, &dummy, 0);
3461 /* Some targets don't set errno on errors, grrr! */
3462 if (pid == 0 && args == dummy)
3463 error (_("Illegal process-id: %s."), args);
3464
3465 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3466 error (_("This target does not support attaching to a process"));
3467
3468 sprintf (rs->buf, "vAttach;%x", pid);
3469 putpkt (rs->buf);
3470 getpkt (&rs->buf, &rs->buf_size, 0);
3471
3472 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3473 {
3474 if (from_tty)
3475 printf_unfiltered (_("Attached to %s\n"),
3476 target_pid_to_str (pid_to_ptid (pid)));
3477
3478 if (!non_stop)
3479 {
3480 /* Save the reply for later. */
3481 wait_status = alloca (strlen (rs->buf) + 1);
3482 strcpy (wait_status, rs->buf);
3483 }
3484 else if (strcmp (rs->buf, "OK") != 0)
3485 error (_("Attaching to %s failed with: %s"),
3486 target_pid_to_str (pid_to_ptid (pid)),
3487 rs->buf);
3488 }
3489 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3490 error (_("This target does not support attaching to a process"));
3491 else
3492 error (_("Attaching to %s failed"),
3493 target_pid_to_str (pid_to_ptid (pid)));
3494
3495 remote_add_inferior (pid, 1);
3496
3497 inferior_ptid = pid_to_ptid (pid);
3498
3499 if (non_stop)
3500 {
3501 struct thread_info *thread;
3502
3503 /* Get list of threads. */
3504 remote_threads_info (target);
3505
3506 thread = first_thread_of_process (pid);
3507 if (thread)
3508 inferior_ptid = thread->ptid;
3509 else
3510 inferior_ptid = pid_to_ptid (pid);
3511
3512 /* Invalidate our notion of the remote current thread. */
3513 record_currthread (minus_one_ptid);
3514 }
3515 else
3516 {
3517 /* Now, if we have thread information, update inferior_ptid. */
3518 inferior_ptid = remote_current_thread (inferior_ptid);
3519
3520 /* Add the main thread to the thread list. */
3521 add_thread_silent (inferior_ptid);
3522 }
3523
3524 /* Next, if the target can specify a description, read it. We do
3525 this before anything involving memory or registers. */
3526 target_find_description ();
3527
3528 if (!non_stop)
3529 {
3530 /* Use the previously fetched status. */
3531 gdb_assert (wait_status != NULL);
3532
3533 if (target_can_async_p ())
3534 {
3535 struct stop_reply *stop_reply;
3536 struct cleanup *old_chain;
3537
3538 stop_reply = stop_reply_xmalloc ();
3539 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3540 remote_parse_stop_reply (wait_status, stop_reply);
3541 discard_cleanups (old_chain);
3542 push_stop_reply (stop_reply);
3543
3544 target_async (inferior_event_handler, 0);
3545 }
3546 else
3547 {
3548 gdb_assert (wait_status != NULL);
3549 strcpy (rs->buf, wait_status);
3550 rs->cached_wait_status = 1;
3551 }
3552 }
3553 else
3554 gdb_assert (wait_status == NULL);
3555 }
3556
3557 static void
3558 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3559 {
3560 extended_remote_attach_1 (ops, args, from_tty);
3561 }
3562
3563 /* Convert hex digit A to a number. */
3564
3565 static int
3566 fromhex (int a)
3567 {
3568 if (a >= '0' && a <= '9')
3569 return a - '0';
3570 else if (a >= 'a' && a <= 'f')
3571 return a - 'a' + 10;
3572 else if (a >= 'A' && a <= 'F')
3573 return a - 'A' + 10;
3574 else
3575 error (_("Reply contains invalid hex digit %d"), a);
3576 }
3577
3578 static int
3579 hex2bin (const char *hex, gdb_byte *bin, int count)
3580 {
3581 int i;
3582
3583 for (i = 0; i < count; i++)
3584 {
3585 if (hex[0] == 0 || hex[1] == 0)
3586 {
3587 /* Hex string is short, or of uneven length.
3588 Return the count that has been converted so far. */
3589 return i;
3590 }
3591 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3592 hex += 2;
3593 }
3594 return i;
3595 }
3596
3597 /* Convert number NIB to a hex digit. */
3598
3599 static int
3600 tohex (int nib)
3601 {
3602 if (nib < 10)
3603 return '0' + nib;
3604 else
3605 return 'a' + nib - 10;
3606 }
3607
3608 static int
3609 bin2hex (const gdb_byte *bin, char *hex, int count)
3610 {
3611 int i;
3612 /* May use a length, or a nul-terminated string as input. */
3613 if (count == 0)
3614 count = strlen ((char *) bin);
3615
3616 for (i = 0; i < count; i++)
3617 {
3618 *hex++ = tohex ((*bin >> 4) & 0xf);
3619 *hex++ = tohex (*bin++ & 0xf);
3620 }
3621 *hex = 0;
3622 return i;
3623 }
3624 \f
3625 /* Check for the availability of vCont. This function should also check
3626 the response. */
3627
3628 static void
3629 remote_vcont_probe (struct remote_state *rs)
3630 {
3631 char *buf;
3632
3633 strcpy (rs->buf, "vCont?");
3634 putpkt (rs->buf);
3635 getpkt (&rs->buf, &rs->buf_size, 0);
3636 buf = rs->buf;
3637
3638 /* Make sure that the features we assume are supported. */
3639 if (strncmp (buf, "vCont", 5) == 0)
3640 {
3641 char *p = &buf[5];
3642 int support_s, support_S, support_c, support_C;
3643
3644 support_s = 0;
3645 support_S = 0;
3646 support_c = 0;
3647 support_C = 0;
3648 rs->support_vCont_t = 0;
3649 while (p && *p == ';')
3650 {
3651 p++;
3652 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3653 support_s = 1;
3654 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3655 support_S = 1;
3656 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3657 support_c = 1;
3658 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3659 support_C = 1;
3660 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3661 rs->support_vCont_t = 1;
3662
3663 p = strchr (p, ';');
3664 }
3665
3666 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3667 BUF will make packet_ok disable the packet. */
3668 if (!support_s || !support_S || !support_c || !support_C)
3669 buf[0] = 0;
3670 }
3671
3672 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3673 }
3674
3675 /* Resume the remote inferior by using a "vCont" packet. The thread
3676 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3677 resumed thread should be single-stepped and/or signalled. If PTID
3678 equals minus_one_ptid, then all threads are resumed; the thread to
3679 be stepped and/or signalled is given in the global INFERIOR_PTID.
3680 This function returns non-zero iff it resumes the inferior.
3681
3682 This function issues a strict subset of all possible vCont commands at the
3683 moment. */
3684
3685 static int
3686 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3687 {
3688 struct remote_state *rs = get_remote_state ();
3689 char *p;
3690 char *endp;
3691
3692 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3693 remote_vcont_probe (rs);
3694
3695 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3696 return 0;
3697
3698 p = rs->buf;
3699 endp = rs->buf + get_remote_packet_size ();
3700
3701 /* If we could generate a wider range of packets, we'd have to worry
3702 about overflowing BUF. Should there be a generic
3703 "multi-part-packet" packet? */
3704
3705 if (ptid_equal (ptid, magic_null_ptid))
3706 {
3707 /* MAGIC_NULL_PTID means that we don't have any active threads,
3708 so we don't have any TID numbers the inferior will
3709 understand. Make sure to only send forms that do not specify
3710 a TID. */
3711 if (step && siggnal != TARGET_SIGNAL_0)
3712 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3713 else if (step)
3714 xsnprintf (p, endp - p, "vCont;s");
3715 else if (siggnal != TARGET_SIGNAL_0)
3716 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3717 else
3718 xsnprintf (p, endp - p, "vCont;c");
3719 }
3720 else if (ptid_equal (ptid, minus_one_ptid))
3721 {
3722 /* Resume all threads, with preference for INFERIOR_PTID. */
3723 if (step && siggnal != TARGET_SIGNAL_0)
3724 {
3725 /* Step inferior_ptid with signal. */
3726 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3727 p = write_ptid (p, endp, inferior_ptid);
3728 /* And continue others. */
3729 p += xsnprintf (p, endp - p, ";c");
3730 }
3731 else if (step)
3732 {
3733 /* Step inferior_ptid. */
3734 p += xsnprintf (p, endp - p, "vCont;s:");
3735 p = write_ptid (p, endp, inferior_ptid);
3736 /* And continue others. */
3737 p += xsnprintf (p, endp - p, ";c");
3738 }
3739 else if (siggnal != TARGET_SIGNAL_0)
3740 {
3741 /* Continue inferior_ptid with signal. */
3742 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3743 p = write_ptid (p, endp, inferior_ptid);
3744 /* And continue others. */
3745 p += xsnprintf (p, endp - p, ";c");
3746 }
3747 else
3748 xsnprintf (p, endp - p, "vCont;c");
3749 }
3750 else
3751 {
3752 /* Scheduler locking; resume only PTID. */
3753 if (step && siggnal != TARGET_SIGNAL_0)
3754 {
3755 /* Step ptid with signal. */
3756 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3757 p = write_ptid (p, endp, ptid);
3758 }
3759 else if (step)
3760 {
3761 /* Step ptid. */
3762 p += xsnprintf (p, endp - p, "vCont;s:");
3763 p = write_ptid (p, endp, ptid);
3764 }
3765 else if (siggnal != TARGET_SIGNAL_0)
3766 {
3767 /* Continue ptid with signal. */
3768 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3769 p = write_ptid (p, endp, ptid);
3770 }
3771 else
3772 {
3773 /* Continue ptid. */
3774 p += xsnprintf (p, endp - p, "vCont;c:");
3775 p = write_ptid (p, endp, ptid);
3776 }
3777 }
3778
3779 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3780 putpkt (rs->buf);
3781
3782 if (non_stop)
3783 {
3784 /* In non-stop, the stub replies to vCont with "OK". The stop
3785 reply will be reported asynchronously by means of a `%Stop'
3786 notification. */
3787 getpkt (&rs->buf, &rs->buf_size, 0);
3788 if (strcmp (rs->buf, "OK") != 0)
3789 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3790 }
3791
3792 return 1;
3793 }
3794
3795 /* Tell the remote machine to resume. */
3796
3797 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3798
3799 static int last_sent_step;
3800
3801 static void
3802 remote_resume (struct target_ops *ops,
3803 ptid_t ptid, int step, enum target_signal siggnal)
3804 {
3805 struct remote_state *rs = get_remote_state ();
3806 char *buf;
3807
3808 last_sent_signal = siggnal;
3809 last_sent_step = step;
3810
3811 /* Update the inferior on signals to silently pass, if they've changed. */
3812 remote_pass_signals ();
3813
3814 /* The vCont packet doesn't need to specify threads via Hc. */
3815 if (remote_vcont_resume (ptid, step, siggnal))
3816 goto done;
3817
3818 /* All other supported resume packets do use Hc, so set the continue
3819 thread. */
3820 if (ptid_equal (ptid, minus_one_ptid))
3821 set_continue_thread (any_thread_ptid);
3822 else
3823 set_continue_thread (ptid);
3824
3825 buf = rs->buf;
3826 if (execution_direction == EXEC_REVERSE)
3827 {
3828 /* We don't pass signals to the target in reverse exec mode. */
3829 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3830 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3831 siggnal);
3832 strcpy (buf, step ? "bs" : "bc");
3833 }
3834 else if (siggnal != TARGET_SIGNAL_0)
3835 {
3836 buf[0] = step ? 'S' : 'C';
3837 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3838 buf[2] = tohex (((int) siggnal) & 0xf);
3839 buf[3] = '\0';
3840 }
3841 else
3842 strcpy (buf, step ? "s" : "c");
3843
3844 putpkt (buf);
3845
3846 done:
3847 /* We are about to start executing the inferior, let's register it
3848 with the event loop. NOTE: this is the one place where all the
3849 execution commands end up. We could alternatively do this in each
3850 of the execution commands in infcmd.c. */
3851 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3852 into infcmd.c in order to allow inferior function calls to work
3853 NOT asynchronously. */
3854 if (target_can_async_p ())
3855 target_async (inferior_event_handler, 0);
3856
3857 /* We've just told the target to resume. The remote server will
3858 wait for the inferior to stop, and then send a stop reply. In
3859 the mean time, we can't start another command/query ourselves
3860 because the stub wouldn't be ready to process it. This applies
3861 only to the base all-stop protocol, however. In non-stop (which
3862 only supports vCont), the stub replies with an "OK", and is
3863 immediate able to process further serial input. */
3864 if (!non_stop)
3865 rs->waiting_for_stop_reply = 1;
3866 }
3867 \f
3868
3869 /* Set up the signal handler for SIGINT, while the target is
3870 executing, ovewriting the 'regular' SIGINT signal handler. */
3871 static void
3872 initialize_sigint_signal_handler (void)
3873 {
3874 signal (SIGINT, handle_remote_sigint);
3875 }
3876
3877 /* Signal handler for SIGINT, while the target is executing. */
3878 static void
3879 handle_remote_sigint (int sig)
3880 {
3881 signal (sig, handle_remote_sigint_twice);
3882 mark_async_signal_handler_wrapper (sigint_remote_token);
3883 }
3884
3885 /* Signal handler for SIGINT, installed after SIGINT has already been
3886 sent once. It will take effect the second time that the user sends
3887 a ^C. */
3888 static void
3889 handle_remote_sigint_twice (int sig)
3890 {
3891 signal (sig, handle_remote_sigint);
3892 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3893 }
3894
3895 /* Perform the real interruption of the target execution, in response
3896 to a ^C. */
3897 static void
3898 async_remote_interrupt (gdb_client_data arg)
3899 {
3900 if (remote_debug)
3901 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3902
3903 target_stop (inferior_ptid);
3904 }
3905
3906 /* Perform interrupt, if the first attempt did not succeed. Just give
3907 up on the target alltogether. */
3908 void
3909 async_remote_interrupt_twice (gdb_client_data arg)
3910 {
3911 if (remote_debug)
3912 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3913
3914 interrupt_query ();
3915 }
3916
3917 /* Reinstall the usual SIGINT handlers, after the target has
3918 stopped. */
3919 static void
3920 cleanup_sigint_signal_handler (void *dummy)
3921 {
3922 signal (SIGINT, handle_sigint);
3923 }
3924
3925 /* Send ^C to target to halt it. Target will respond, and send us a
3926 packet. */
3927 static void (*ofunc) (int);
3928
3929 /* The command line interface's stop routine. This function is installed
3930 as a signal handler for SIGINT. The first time a user requests a
3931 stop, we call remote_stop to send a break or ^C. If there is no
3932 response from the target (it didn't stop when the user requested it),
3933 we ask the user if he'd like to detach from the target. */
3934 static void
3935 remote_interrupt (int signo)
3936 {
3937 /* If this doesn't work, try more severe steps. */
3938 signal (signo, remote_interrupt_twice);
3939
3940 gdb_call_async_signal_handler (sigint_remote_token, 1);
3941 }
3942
3943 /* The user typed ^C twice. */
3944
3945 static void
3946 remote_interrupt_twice (int signo)
3947 {
3948 signal (signo, ofunc);
3949 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3950 signal (signo, remote_interrupt);
3951 }
3952
3953 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3954 thread, all threads of a remote process, or all threads of all
3955 processes. */
3956
3957 static void
3958 remote_stop_ns (ptid_t ptid)
3959 {
3960 struct remote_state *rs = get_remote_state ();
3961 char *p = rs->buf;
3962 char *endp = rs->buf + get_remote_packet_size ();
3963 struct stop_reply *reply, *next;
3964
3965 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3966 remote_vcont_probe (rs);
3967
3968 if (!rs->support_vCont_t)
3969 error (_("Remote server does not support stopping threads"));
3970
3971 if (ptid_equal (ptid, minus_one_ptid)
3972 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
3973 p += xsnprintf (p, endp - p, "vCont;t");
3974 else
3975 {
3976 ptid_t nptid;
3977
3978 p += xsnprintf (p, endp - p, "vCont;t:");
3979
3980 if (ptid_is_pid (ptid))
3981 /* All (-1) threads of process. */
3982 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3983 else
3984 {
3985 /* Small optimization: if we already have a stop reply for
3986 this thread, no use in telling the stub we want this
3987 stopped. */
3988 if (peek_stop_reply (ptid))
3989 return;
3990
3991 nptid = ptid;
3992 }
3993
3994 p = write_ptid (p, endp, nptid);
3995 }
3996
3997 /* In non-stop, we get an immediate OK reply. The stop reply will
3998 come in asynchronously by notification. */
3999 putpkt (rs->buf);
4000 getpkt (&rs->buf, &rs->buf_size, 0);
4001 if (strcmp (rs->buf, "OK") != 0)
4002 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4003 }
4004
4005 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4006 remote target. It is undefined which thread of which process
4007 reports the stop. */
4008
4009 static void
4010 remote_stop_as (ptid_t ptid)
4011 {
4012 struct remote_state *rs = get_remote_state ();
4013
4014 /* If the inferior is stopped already, but the core didn't know
4015 about it yet, just ignore the request. The cached wait status
4016 will be collected in remote_wait. */
4017 if (rs->cached_wait_status)
4018 return;
4019
4020 /* Send a break or a ^C, depending on user preference. */
4021
4022 if (remote_break)
4023 serial_send_break (remote_desc);
4024 else
4025 serial_write (remote_desc, "\003", 1);
4026 }
4027
4028 /* This is the generic stop called via the target vector. When a target
4029 interrupt is requested, either by the command line or the GUI, we
4030 will eventually end up here. */
4031
4032 static void
4033 remote_stop (ptid_t ptid)
4034 {
4035 if (remote_debug)
4036 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4037
4038 if (non_stop)
4039 remote_stop_ns (ptid);
4040 else
4041 remote_stop_as (ptid);
4042 }
4043
4044 /* Ask the user what to do when an interrupt is received. */
4045
4046 static void
4047 interrupt_query (void)
4048 {
4049 target_terminal_ours ();
4050
4051 if (target_can_async_p ())
4052 {
4053 signal (SIGINT, handle_sigint);
4054 deprecated_throw_reason (RETURN_QUIT);
4055 }
4056 else
4057 {
4058 if (query (_("Interrupted while waiting for the program.\n\
4059 Give up (and stop debugging it)? ")))
4060 {
4061 pop_target ();
4062 deprecated_throw_reason (RETURN_QUIT);
4063 }
4064 }
4065
4066 target_terminal_inferior ();
4067 }
4068
4069 /* Enable/disable target terminal ownership. Most targets can use
4070 terminal groups to control terminal ownership. Remote targets are
4071 different in that explicit transfer of ownership to/from GDB/target
4072 is required. */
4073
4074 static void
4075 remote_terminal_inferior (void)
4076 {
4077 if (!target_async_permitted)
4078 /* Nothing to do. */
4079 return;
4080
4081 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
4082 sync_execution here. This function should only be called when
4083 GDB is resuming the inferior in the forground. A background
4084 resume (``run&'') should leave GDB in control of the terminal and
4085 consequently should not call this code. */
4086 if (!sync_execution)
4087 return;
4088 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
4089 calls target_terminal_*() idenpotent. The event-loop GDB talking
4090 to an asynchronous target with a synchronous command calls this
4091 function from both event-top.c and infrun.c/infcmd.c. Once GDB
4092 stops trying to transfer the terminal to the target when it
4093 shouldn't this guard can go away. */
4094 if (!remote_async_terminal_ours_p)
4095 return;
4096 delete_file_handler (input_fd);
4097 remote_async_terminal_ours_p = 0;
4098 initialize_sigint_signal_handler ();
4099 /* NOTE: At this point we could also register our selves as the
4100 recipient of all input. Any characters typed could then be
4101 passed on down to the target. */
4102 }
4103
4104 static void
4105 remote_terminal_ours (void)
4106 {
4107 if (!target_async_permitted)
4108 /* Nothing to do. */
4109 return;
4110
4111 /* See FIXME in remote_terminal_inferior. */
4112 if (!sync_execution)
4113 return;
4114 /* See FIXME in remote_terminal_inferior. */
4115 if (remote_async_terminal_ours_p)
4116 return;
4117 cleanup_sigint_signal_handler (NULL);
4118 add_file_handler (input_fd, stdin_event_handler, 0);
4119 remote_async_terminal_ours_p = 1;
4120 }
4121
4122 void
4123 remote_console_output (char *msg)
4124 {
4125 char *p;
4126
4127 for (p = msg; p[0] && p[1]; p += 2)
4128 {
4129 char tb[2];
4130 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4131 tb[0] = c;
4132 tb[1] = 0;
4133 fputs_unfiltered (tb, gdb_stdtarg);
4134 }
4135 gdb_flush (gdb_stdtarg);
4136 }
4137
4138 typedef struct cached_reg
4139 {
4140 int num;
4141 gdb_byte data[MAX_REGISTER_SIZE];
4142 } cached_reg_t;
4143
4144 DEF_VEC_O(cached_reg_t);
4145
4146 struct stop_reply
4147 {
4148 struct stop_reply *next;
4149
4150 ptid_t ptid;
4151
4152 struct target_waitstatus ws;
4153
4154 VEC(cached_reg_t) *regcache;
4155
4156 int stopped_by_watchpoint_p;
4157 CORE_ADDR watch_data_address;
4158
4159 int solibs_changed;
4160 int replay_event;
4161 };
4162
4163 /* The list of already fetched and acknowledged stop events. */
4164 static struct stop_reply *stop_reply_queue;
4165
4166 static struct stop_reply *
4167 stop_reply_xmalloc (void)
4168 {
4169 struct stop_reply *r = XMALLOC (struct stop_reply);
4170 r->next = NULL;
4171 return r;
4172 }
4173
4174 static void
4175 stop_reply_xfree (struct stop_reply *r)
4176 {
4177 if (r != NULL)
4178 {
4179 VEC_free (cached_reg_t, r->regcache);
4180 xfree (r);
4181 }
4182 }
4183
4184 /* Discard all pending stop replies of inferior PID. If PID is -1,
4185 discard everything. */
4186
4187 static void
4188 discard_pending_stop_replies (int pid)
4189 {
4190 struct stop_reply *prev = NULL, *reply, *next;
4191
4192 /* Discard the in-flight notification. */
4193 if (pending_stop_reply != NULL
4194 && (pid == -1
4195 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4196 {
4197 stop_reply_xfree (pending_stop_reply);
4198 pending_stop_reply = NULL;
4199 }
4200
4201 /* Discard the stop replies we have already pulled with
4202 vStopped. */
4203 for (reply = stop_reply_queue; reply; reply = next)
4204 {
4205 next = reply->next;
4206 if (pid == -1
4207 || ptid_get_pid (reply->ptid) == pid)
4208 {
4209 if (reply == stop_reply_queue)
4210 stop_reply_queue = reply->next;
4211 else
4212 prev->next = reply->next;
4213
4214 stop_reply_xfree (reply);
4215 }
4216 else
4217 prev = reply;
4218 }
4219 }
4220
4221 /* Cleanup wrapper. */
4222
4223 static void
4224 do_stop_reply_xfree (void *arg)
4225 {
4226 struct stop_reply *r = arg;
4227 stop_reply_xfree (r);
4228 }
4229
4230 /* Look for a queued stop reply belonging to PTID. If one is found,
4231 remove it from the queue, and return it. Returns NULL if none is
4232 found. If there are still queued events left to process, tell the
4233 event loop to get back to target_wait soon. */
4234
4235 static struct stop_reply *
4236 queued_stop_reply (ptid_t ptid)
4237 {
4238 struct stop_reply *it, *prev;
4239 struct stop_reply head;
4240
4241 head.next = stop_reply_queue;
4242 prev = &head;
4243
4244 it = head.next;
4245
4246 if (!ptid_equal (ptid, minus_one_ptid))
4247 for (; it; prev = it, it = it->next)
4248 if (ptid_equal (ptid, it->ptid))
4249 break;
4250
4251 if (it)
4252 {
4253 prev->next = it->next;
4254 it->next = NULL;
4255 }
4256
4257 stop_reply_queue = head.next;
4258
4259 if (stop_reply_queue)
4260 /* There's still at least an event left. */
4261 mark_async_event_handler (remote_async_inferior_event_token);
4262
4263 return it;
4264 }
4265
4266 /* Push a fully parsed stop reply in the stop reply queue. Since we
4267 know that we now have at least one queued event left to pass to the
4268 core side, tell the event loop to get back to target_wait soon. */
4269
4270 static void
4271 push_stop_reply (struct stop_reply *new_event)
4272 {
4273 struct stop_reply *event;
4274
4275 if (stop_reply_queue)
4276 {
4277 for (event = stop_reply_queue;
4278 event && event->next;
4279 event = event->next)
4280 ;
4281
4282 event->next = new_event;
4283 }
4284 else
4285 stop_reply_queue = new_event;
4286
4287 mark_async_event_handler (remote_async_inferior_event_token);
4288 }
4289
4290 /* Returns true if we have a stop reply for PTID. */
4291
4292 static int
4293 peek_stop_reply (ptid_t ptid)
4294 {
4295 struct stop_reply *it;
4296
4297 for (it = stop_reply_queue; it; it = it->next)
4298 if (ptid_equal (ptid, it->ptid))
4299 {
4300 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4301 return 1;
4302 }
4303
4304 return 0;
4305 }
4306
4307 /* Parse the stop reply in BUF. Either the function succeeds, and the
4308 result is stored in EVENT, or throws an error. */
4309
4310 static void
4311 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4312 {
4313 struct remote_arch_state *rsa = get_remote_arch_state ();
4314 ULONGEST addr;
4315 char *p;
4316
4317 event->ptid = null_ptid;
4318 event->ws.kind = TARGET_WAITKIND_IGNORE;
4319 event->ws.value.integer = 0;
4320 event->solibs_changed = 0;
4321 event->replay_event = 0;
4322 event->stopped_by_watchpoint_p = 0;
4323 event->regcache = NULL;
4324
4325 switch (buf[0])
4326 {
4327 case 'T': /* Status with PC, SP, FP, ... */
4328 {
4329 gdb_byte regs[MAX_REGISTER_SIZE];
4330
4331 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4332 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4333 ss = signal number
4334 n... = register number
4335 r... = register contents
4336 */
4337
4338 p = &buf[3]; /* after Txx */
4339 while (*p)
4340 {
4341 char *p1;
4342 char *p_temp;
4343 int fieldsize;
4344 LONGEST pnum = 0;
4345
4346 /* If the packet contains a register number, save it in
4347 pnum and set p1 to point to the character following it.
4348 Otherwise p1 points to p. */
4349
4350 /* If this packet is an awatch packet, don't parse the 'a'
4351 as a register number. */
4352
4353 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4354 {
4355 /* Read the ``P'' register number. */
4356 pnum = strtol (p, &p_temp, 16);
4357 p1 = p_temp;
4358 }
4359 else
4360 p1 = p;
4361
4362 if (p1 == p) /* No register number present here. */
4363 {
4364 p1 = strchr (p, ':');
4365 if (p1 == NULL)
4366 error (_("Malformed packet(a) (missing colon): %s\n\
4367 Packet: '%s'\n"),
4368 p, buf);
4369 if (strncmp (p, "thread", p1 - p) == 0)
4370 event->ptid = read_ptid (++p1, &p);
4371 else if ((strncmp (p, "watch", p1 - p) == 0)
4372 || (strncmp (p, "rwatch", p1 - p) == 0)
4373 || (strncmp (p, "awatch", p1 - p) == 0))
4374 {
4375 event->stopped_by_watchpoint_p = 1;
4376 p = unpack_varlen_hex (++p1, &addr);
4377 event->watch_data_address = (CORE_ADDR) addr;
4378 }
4379 else if (strncmp (p, "library", p1 - p) == 0)
4380 {
4381 p1++;
4382 p_temp = p1;
4383 while (*p_temp && *p_temp != ';')
4384 p_temp++;
4385
4386 event->solibs_changed = 1;
4387 p = p_temp;
4388 }
4389 else if (strncmp (p, "replaylog", p1 - p) == 0)
4390 {
4391 /* NO_HISTORY event.
4392 p1 will indicate "begin" or "end", but
4393 it makes no difference for now, so ignore it. */
4394 event->replay_event = 1;
4395 p_temp = strchr (p1 + 1, ';');
4396 if (p_temp)
4397 p = p_temp;
4398 }
4399 else
4400 {
4401 /* Silently skip unknown optional info. */
4402 p_temp = strchr (p1 + 1, ';');
4403 if (p_temp)
4404 p = p_temp;
4405 }
4406 }
4407 else
4408 {
4409 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4410 cached_reg_t cached_reg;
4411
4412 p = p1;
4413
4414 if (*p != ':')
4415 error (_("Malformed packet(b) (missing colon): %s\n\
4416 Packet: '%s'\n"),
4417 p, buf);
4418 ++p;
4419
4420 if (reg == NULL)
4421 error (_("Remote sent bad register number %s: %s\n\
4422 Packet: '%s'\n"),
4423 phex_nz (pnum, 0), p, buf);
4424
4425 cached_reg.num = reg->regnum;
4426
4427 fieldsize = hex2bin (p, cached_reg.data,
4428 register_size (target_gdbarch,
4429 reg->regnum));
4430 p += 2 * fieldsize;
4431 if (fieldsize < register_size (target_gdbarch,
4432 reg->regnum))
4433 warning (_("Remote reply is too short: %s"), buf);
4434
4435 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4436 }
4437
4438 if (*p != ';')
4439 error (_("Remote register badly formatted: %s\nhere: %s"),
4440 buf, p);
4441 ++p;
4442 }
4443 }
4444 /* fall through */
4445 case 'S': /* Old style status, just signal only. */
4446 if (event->solibs_changed)
4447 event->ws.kind = TARGET_WAITKIND_LOADED;
4448 else if (event->replay_event)
4449 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4450 else
4451 {
4452 event->ws.kind = TARGET_WAITKIND_STOPPED;
4453 event->ws.value.sig = (enum target_signal)
4454 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4455 }
4456 break;
4457 case 'W': /* Target exited. */
4458 case 'X':
4459 {
4460 char *p;
4461 int pid;
4462 ULONGEST value;
4463
4464 /* GDB used to accept only 2 hex chars here. Stubs should
4465 only send more if they detect GDB supports multi-process
4466 support. */
4467 p = unpack_varlen_hex (&buf[1], &value);
4468
4469 if (buf[0] == 'W')
4470 {
4471 /* The remote process exited. */
4472 event->ws.kind = TARGET_WAITKIND_EXITED;
4473 event->ws.value.integer = value;
4474 }
4475 else
4476 {
4477 /* The remote process exited with a signal. */
4478 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4479 event->ws.value.sig = (enum target_signal) value;
4480 }
4481
4482 /* If no process is specified, assume inferior_ptid. */
4483 pid = ptid_get_pid (inferior_ptid);
4484 if (*p == '\0')
4485 ;
4486 else if (*p == ';')
4487 {
4488 p++;
4489
4490 if (p == '\0')
4491 ;
4492 else if (strncmp (p,
4493 "process:", sizeof ("process:") - 1) == 0)
4494 {
4495 ULONGEST upid;
4496 p += sizeof ("process:") - 1;
4497 unpack_varlen_hex (p, &upid);
4498 pid = upid;
4499 }
4500 else
4501 error (_("unknown stop reply packet: %s"), buf);
4502 }
4503 else
4504 error (_("unknown stop reply packet: %s"), buf);
4505 event->ptid = pid_to_ptid (pid);
4506 }
4507 break;
4508 }
4509
4510 if (non_stop && ptid_equal (event->ptid, null_ptid))
4511 error (_("No process or thread specified in stop reply: %s"), buf);
4512 }
4513
4514 /* When the stub wants to tell GDB about a new stop reply, it sends a
4515 stop notification (%Stop). Those can come it at any time, hence,
4516 we have to make sure that any pending putpkt/getpkt sequence we're
4517 making is finished, before querying the stub for more events with
4518 vStopped. E.g., if we started a vStopped sequence immediatelly
4519 upon receiving the %Stop notification, something like this could
4520 happen:
4521
4522 1.1) --> Hg 1
4523 1.2) <-- OK
4524 1.3) --> g
4525 1.4) <-- %Stop
4526 1.5) --> vStopped
4527 1.6) <-- (registers reply to step #1.3)
4528
4529 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4530 query.
4531
4532 To solve this, whenever we parse a %Stop notification sucessfully,
4533 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4534 doing whatever we were doing:
4535
4536 2.1) --> Hg 1
4537 2.2) <-- OK
4538 2.3) --> g
4539 2.4) <-- %Stop
4540 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4541 2.5) <-- (registers reply to step #2.3)
4542
4543 Eventualy after step #2.5, we return to the event loop, which
4544 notices there's an event on the
4545 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4546 associated callback --- the function below. At this point, we're
4547 always safe to start a vStopped sequence. :
4548
4549 2.6) --> vStopped
4550 2.7) <-- T05 thread:2
4551 2.8) --> vStopped
4552 2.9) --> OK
4553 */
4554
4555 static void
4556 remote_get_pending_stop_replies (void)
4557 {
4558 struct remote_state *rs = get_remote_state ();
4559 int ret;
4560
4561 if (pending_stop_reply)
4562 {
4563 /* acknowledge */
4564 putpkt ("vStopped");
4565
4566 /* Now we can rely on it. */
4567 push_stop_reply (pending_stop_reply);
4568 pending_stop_reply = NULL;
4569
4570 while (1)
4571 {
4572 getpkt (&rs->buf, &rs->buf_size, 0);
4573 if (strcmp (rs->buf, "OK") == 0)
4574 break;
4575 else
4576 {
4577 struct cleanup *old_chain;
4578 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4579
4580 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4581 remote_parse_stop_reply (rs->buf, stop_reply);
4582
4583 /* acknowledge */
4584 putpkt ("vStopped");
4585
4586 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4587 {
4588 /* Now we can rely on it. */
4589 discard_cleanups (old_chain);
4590 push_stop_reply (stop_reply);
4591 }
4592 else
4593 /* We got an unknown stop reply. */
4594 do_cleanups (old_chain);
4595 }
4596 }
4597 }
4598 }
4599
4600
4601 /* Called when it is decided that STOP_REPLY holds the info of the
4602 event that is to be returned to the core. This function always
4603 destroys STOP_REPLY. */
4604
4605 static ptid_t
4606 process_stop_reply (struct stop_reply *stop_reply,
4607 struct target_waitstatus *status)
4608 {
4609 ptid_t ptid;
4610
4611 *status = stop_reply->ws;
4612 ptid = stop_reply->ptid;
4613
4614 /* If no thread/process was reported by the stub, assume the current
4615 inferior. */
4616 if (ptid_equal (ptid, null_ptid))
4617 ptid = inferior_ptid;
4618
4619 if (status->kind != TARGET_WAITKIND_EXITED
4620 && status->kind != TARGET_WAITKIND_SIGNALLED)
4621 {
4622 /* Expedited registers. */
4623 if (stop_reply->regcache)
4624 {
4625 cached_reg_t *reg;
4626 int ix;
4627
4628 for (ix = 0;
4629 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4630 ix++)
4631 regcache_raw_supply (get_thread_regcache (ptid),
4632 reg->num, reg->data);
4633 VEC_free (cached_reg_t, stop_reply->regcache);
4634 }
4635
4636 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4637 remote_watch_data_address = stop_reply->watch_data_address;
4638
4639 remote_notice_new_inferior (ptid, 0);
4640 }
4641
4642 stop_reply_xfree (stop_reply);
4643 return ptid;
4644 }
4645
4646 /* The non-stop mode version of target_wait. */
4647
4648 static ptid_t
4649 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4650 {
4651 struct remote_state *rs = get_remote_state ();
4652 struct remote_arch_state *rsa = get_remote_arch_state ();
4653 ptid_t event_ptid = null_ptid;
4654 struct stop_reply *stop_reply;
4655 int ret;
4656
4657 /* If in non-stop mode, get out of getpkt even if a
4658 notification is received. */
4659
4660 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4661 0 /* forever */);
4662 while (1)
4663 {
4664 if (ret != -1)
4665 switch (rs->buf[0])
4666 {
4667 case 'E': /* Error of some sort. */
4668 /* We're out of sync with the target now. Did it continue
4669 or not? We can't tell which thread it was in non-stop,
4670 so just ignore this. */
4671 warning (_("Remote failure reply: %s"), rs->buf);
4672 break;
4673 case 'O': /* Console output. */
4674 remote_console_output (rs->buf + 1);
4675 break;
4676 default:
4677 warning (_("Invalid remote reply: %s"), rs->buf);
4678 break;
4679 }
4680
4681 /* Acknowledge a pending stop reply that may have arrived in the
4682 mean time. */
4683 if (pending_stop_reply != NULL)
4684 remote_get_pending_stop_replies ();
4685
4686 /* If indeed we noticed a stop reply, we're done. */
4687 stop_reply = queued_stop_reply (ptid);
4688 if (stop_reply != NULL)
4689 return process_stop_reply (stop_reply, status);
4690
4691 /* Still no event. If we're in asynchronous mode, then just
4692 return to the event loop. */
4693 if (remote_is_async_p ())
4694 {
4695 status->kind = TARGET_WAITKIND_IGNORE;
4696 return minus_one_ptid;
4697 }
4698
4699 /* Otherwise, asynchronous mode is masked, so do a blocking
4700 wait. */
4701 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4702 1 /* forever */);
4703 }
4704 }
4705
4706 /* Wait until the remote machine stops, then return, storing status in
4707 STATUS just as `wait' would. */
4708
4709 static ptid_t
4710 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4711 {
4712 struct remote_state *rs = get_remote_state ();
4713 struct remote_arch_state *rsa = get_remote_arch_state ();
4714 ptid_t event_ptid = null_ptid;
4715 ULONGEST addr;
4716 int solibs_changed = 0;
4717 char *buf, *p;
4718 struct stop_reply *stop_reply;
4719
4720 status->kind = TARGET_WAITKIND_IGNORE;
4721 status->value.integer = 0;
4722
4723 stop_reply = queued_stop_reply (ptid);
4724 if (stop_reply != NULL)
4725 return process_stop_reply (stop_reply, status);
4726
4727 if (rs->cached_wait_status)
4728 /* Use the cached wait status, but only once. */
4729 rs->cached_wait_status = 0;
4730 else
4731 {
4732 int ret;
4733
4734 if (!target_is_async_p ())
4735 {
4736 ofunc = signal (SIGINT, remote_interrupt);
4737 /* If the user hit C-c before this packet, or between packets,
4738 pretend that it was hit right here. */
4739 if (quit_flag)
4740 {
4741 quit_flag = 0;
4742 remote_interrupt (SIGINT);
4743 }
4744 }
4745
4746 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4747 _never_ wait for ever -> test on target_is_async_p().
4748 However, before we do that we need to ensure that the caller
4749 knows how to take the target into/out of async mode. */
4750 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4751 if (!target_is_async_p ())
4752 signal (SIGINT, ofunc);
4753 }
4754
4755 buf = rs->buf;
4756
4757 remote_stopped_by_watchpoint_p = 0;
4758
4759 /* We got something. */
4760 rs->waiting_for_stop_reply = 0;
4761
4762 switch (buf[0])
4763 {
4764 case 'E': /* Error of some sort. */
4765 /* We're out of sync with the target now. Did it continue or
4766 not? Not is more likely, so report a stop. */
4767 warning (_("Remote failure reply: %s"), buf);
4768 status->kind = TARGET_WAITKIND_STOPPED;
4769 status->value.sig = TARGET_SIGNAL_0;
4770 break;
4771 case 'F': /* File-I/O request. */
4772 remote_fileio_request (buf);
4773 break;
4774 case 'T': case 'S': case 'X': case 'W':
4775 {
4776 struct stop_reply *stop_reply;
4777 struct cleanup *old_chain;
4778
4779 stop_reply = stop_reply_xmalloc ();
4780 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4781 remote_parse_stop_reply (buf, stop_reply);
4782 discard_cleanups (old_chain);
4783 event_ptid = process_stop_reply (stop_reply, status);
4784 break;
4785 }
4786 case 'O': /* Console output. */
4787 remote_console_output (buf + 1);
4788
4789 /* The target didn't really stop; keep waiting. */
4790 rs->waiting_for_stop_reply = 1;
4791
4792 break;
4793 case '\0':
4794 if (last_sent_signal != TARGET_SIGNAL_0)
4795 {
4796 /* Zero length reply means that we tried 'S' or 'C' and the
4797 remote system doesn't support it. */
4798 target_terminal_ours_for_output ();
4799 printf_filtered
4800 ("Can't send signals to this remote system. %s not sent.\n",
4801 target_signal_to_name (last_sent_signal));
4802 last_sent_signal = TARGET_SIGNAL_0;
4803 target_terminal_inferior ();
4804
4805 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4806 putpkt ((char *) buf);
4807
4808 /* We just told the target to resume, so a stop reply is in
4809 order. */
4810 rs->waiting_for_stop_reply = 1;
4811 break;
4812 }
4813 /* else fallthrough */
4814 default:
4815 warning (_("Invalid remote reply: %s"), buf);
4816 /* Keep waiting. */
4817 rs->waiting_for_stop_reply = 1;
4818 break;
4819 }
4820
4821 if (status->kind == TARGET_WAITKIND_IGNORE)
4822 /* Nothing interesting happened. */
4823 return minus_one_ptid;
4824 else if (status->kind != TARGET_WAITKIND_EXITED
4825 && status->kind != TARGET_WAITKIND_SIGNALLED)
4826 {
4827 if (!ptid_equal (event_ptid, null_ptid))
4828 record_currthread (event_ptid);
4829 else
4830 event_ptid = inferior_ptid;
4831 }
4832 else
4833 /* A process exit. Invalidate our notion of current thread. */
4834 record_currthread (minus_one_ptid);
4835
4836 return event_ptid;
4837 }
4838
4839 /* Wait until the remote machine stops, then return, storing status in
4840 STATUS just as `wait' would. */
4841
4842 static ptid_t
4843 remote_wait (struct target_ops *ops,
4844 ptid_t ptid, struct target_waitstatus *status)
4845 {
4846 ptid_t event_ptid;
4847
4848 if (non_stop)
4849 event_ptid = remote_wait_ns (ptid, status);
4850 else
4851 {
4852 /* In synchronous mode, keep waiting until the target stops. In
4853 asynchronous mode, always return to the event loop. */
4854
4855 do
4856 {
4857 event_ptid = remote_wait_as (ptid, status);
4858 }
4859 while (status->kind == TARGET_WAITKIND_IGNORE
4860 && !target_can_async_p ());
4861 }
4862
4863 if (target_can_async_p ())
4864 {
4865 /* If there are are events left in the queue tell the event loop
4866 to return here. */
4867 if (stop_reply_queue)
4868 mark_async_event_handler (remote_async_inferior_event_token);
4869 }
4870
4871 return event_ptid;
4872 }
4873
4874 /* Fetch a single register using a 'p' packet. */
4875
4876 static int
4877 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4878 {
4879 struct remote_state *rs = get_remote_state ();
4880 char *buf, *p;
4881 char regp[MAX_REGISTER_SIZE];
4882 int i;
4883
4884 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4885 return 0;
4886
4887 if (reg->pnum == -1)
4888 return 0;
4889
4890 p = rs->buf;
4891 *p++ = 'p';
4892 p += hexnumstr (p, reg->pnum);
4893 *p++ = '\0';
4894 remote_send (&rs->buf, &rs->buf_size);
4895
4896 buf = rs->buf;
4897
4898 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4899 {
4900 case PACKET_OK:
4901 break;
4902 case PACKET_UNKNOWN:
4903 return 0;
4904 case PACKET_ERROR:
4905 error (_("Could not fetch register \"%s\""),
4906 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4907 }
4908
4909 /* If this register is unfetchable, tell the regcache. */
4910 if (buf[0] == 'x')
4911 {
4912 regcache_raw_supply (regcache, reg->regnum, NULL);
4913 return 1;
4914 }
4915
4916 /* Otherwise, parse and supply the value. */
4917 p = buf;
4918 i = 0;
4919 while (p[0] != 0)
4920 {
4921 if (p[1] == 0)
4922 error (_("fetch_register_using_p: early buf termination"));
4923
4924 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4925 p += 2;
4926 }
4927 regcache_raw_supply (regcache, reg->regnum, regp);
4928 return 1;
4929 }
4930
4931 /* Fetch the registers included in the target's 'g' packet. */
4932
4933 static int
4934 send_g_packet (void)
4935 {
4936 struct remote_state *rs = get_remote_state ();
4937 int i, buf_len;
4938 char *p;
4939 char *regs;
4940
4941 sprintf (rs->buf, "g");
4942 remote_send (&rs->buf, &rs->buf_size);
4943
4944 /* We can get out of synch in various cases. If the first character
4945 in the buffer is not a hex character, assume that has happened
4946 and try to fetch another packet to read. */
4947 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4948 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4949 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4950 && rs->buf[0] != 'x') /* New: unavailable register value. */
4951 {
4952 if (remote_debug)
4953 fprintf_unfiltered (gdb_stdlog,
4954 "Bad register packet; fetching a new packet\n");
4955 getpkt (&rs->buf, &rs->buf_size, 0);
4956 }
4957
4958 buf_len = strlen (rs->buf);
4959
4960 /* Sanity check the received packet. */
4961 if (buf_len % 2 != 0)
4962 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4963
4964 return buf_len / 2;
4965 }
4966
4967 static void
4968 process_g_packet (struct regcache *regcache)
4969 {
4970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4971 struct remote_state *rs = get_remote_state ();
4972 struct remote_arch_state *rsa = get_remote_arch_state ();
4973 int i, buf_len;
4974 char *p;
4975 char *regs;
4976
4977 buf_len = strlen (rs->buf);
4978
4979 /* Further sanity checks, with knowledge of the architecture. */
4980 if (buf_len > 2 * rsa->sizeof_g_packet)
4981 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4982
4983 /* Save the size of the packet sent to us by the target. It is used
4984 as a heuristic when determining the max size of packets that the
4985 target can safely receive. */
4986 if (rsa->actual_register_packet_size == 0)
4987 rsa->actual_register_packet_size = buf_len;
4988
4989 /* If this is smaller than we guessed the 'g' packet would be,
4990 update our records. A 'g' reply that doesn't include a register's
4991 value implies either that the register is not available, or that
4992 the 'p' packet must be used. */
4993 if (buf_len < 2 * rsa->sizeof_g_packet)
4994 {
4995 rsa->sizeof_g_packet = buf_len / 2;
4996
4997 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4998 {
4999 if (rsa->regs[i].pnum == -1)
5000 continue;
5001
5002 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5003 rsa->regs[i].in_g_packet = 0;
5004 else
5005 rsa->regs[i].in_g_packet = 1;
5006 }
5007 }
5008
5009 regs = alloca (rsa->sizeof_g_packet);
5010
5011 /* Unimplemented registers read as all bits zero. */
5012 memset (regs, 0, rsa->sizeof_g_packet);
5013
5014 /* Reply describes registers byte by byte, each byte encoded as two
5015 hex characters. Suck them all up, then supply them to the
5016 register cacheing/storage mechanism. */
5017
5018 p = rs->buf;
5019 for (i = 0; i < rsa->sizeof_g_packet; i++)
5020 {
5021 if (p[0] == 0 || p[1] == 0)
5022 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5023 internal_error (__FILE__, __LINE__,
5024 "unexpected end of 'g' packet reply");
5025
5026 if (p[0] == 'x' && p[1] == 'x')
5027 regs[i] = 0; /* 'x' */
5028 else
5029 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5030 p += 2;
5031 }
5032
5033 {
5034 int i;
5035 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5036 {
5037 struct packet_reg *r = &rsa->regs[i];
5038 if (r->in_g_packet)
5039 {
5040 if (r->offset * 2 >= strlen (rs->buf))
5041 /* This shouldn't happen - we adjusted in_g_packet above. */
5042 internal_error (__FILE__, __LINE__,
5043 "unexpected end of 'g' packet reply");
5044 else if (rs->buf[r->offset * 2] == 'x')
5045 {
5046 gdb_assert (r->offset * 2 < strlen (rs->buf));
5047 /* The register isn't available, mark it as such (at
5048 the same time setting the value to zero). */
5049 regcache_raw_supply (regcache, r->regnum, NULL);
5050 }
5051 else
5052 regcache_raw_supply (regcache, r->regnum,
5053 regs + r->offset);
5054 }
5055 }
5056 }
5057 }
5058
5059 static void
5060 fetch_registers_using_g (struct regcache *regcache)
5061 {
5062 send_g_packet ();
5063 process_g_packet (regcache);
5064 }
5065
5066 static void
5067 remote_fetch_registers (struct target_ops *ops,
5068 struct regcache *regcache, int regnum)
5069 {
5070 struct remote_state *rs = get_remote_state ();
5071 struct remote_arch_state *rsa = get_remote_arch_state ();
5072 int i;
5073
5074 set_general_thread (inferior_ptid);
5075
5076 if (regnum >= 0)
5077 {
5078 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5079 gdb_assert (reg != NULL);
5080
5081 /* If this register might be in the 'g' packet, try that first -
5082 we are likely to read more than one register. If this is the
5083 first 'g' packet, we might be overly optimistic about its
5084 contents, so fall back to 'p'. */
5085 if (reg->in_g_packet)
5086 {
5087 fetch_registers_using_g (regcache);
5088 if (reg->in_g_packet)
5089 return;
5090 }
5091
5092 if (fetch_register_using_p (regcache, reg))
5093 return;
5094
5095 /* This register is not available. */
5096 regcache_raw_supply (regcache, reg->regnum, NULL);
5097
5098 return;
5099 }
5100
5101 fetch_registers_using_g (regcache);
5102
5103 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5104 if (!rsa->regs[i].in_g_packet)
5105 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5106 {
5107 /* This register is not available. */
5108 regcache_raw_supply (regcache, i, NULL);
5109 }
5110 }
5111
5112 /* Prepare to store registers. Since we may send them all (using a
5113 'G' request), we have to read out the ones we don't want to change
5114 first. */
5115
5116 static void
5117 remote_prepare_to_store (struct regcache *regcache)
5118 {
5119 struct remote_arch_state *rsa = get_remote_arch_state ();
5120 int i;
5121 gdb_byte buf[MAX_REGISTER_SIZE];
5122
5123 /* Make sure the entire registers array is valid. */
5124 switch (remote_protocol_packets[PACKET_P].support)
5125 {
5126 case PACKET_DISABLE:
5127 case PACKET_SUPPORT_UNKNOWN:
5128 /* Make sure all the necessary registers are cached. */
5129 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5130 if (rsa->regs[i].in_g_packet)
5131 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5132 break;
5133 case PACKET_ENABLE:
5134 break;
5135 }
5136 }
5137
5138 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5139 packet was not recognized. */
5140
5141 static int
5142 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5143 {
5144 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5145 struct remote_state *rs = get_remote_state ();
5146 struct remote_arch_state *rsa = get_remote_arch_state ();
5147 /* Try storing a single register. */
5148 char *buf = rs->buf;
5149 gdb_byte regp[MAX_REGISTER_SIZE];
5150 char *p;
5151
5152 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5153 return 0;
5154
5155 if (reg->pnum == -1)
5156 return 0;
5157
5158 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5159 p = buf + strlen (buf);
5160 regcache_raw_collect (regcache, reg->regnum, regp);
5161 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5162 remote_send (&rs->buf, &rs->buf_size);
5163
5164 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5165 {
5166 case PACKET_OK:
5167 return 1;
5168 case PACKET_ERROR:
5169 error (_("Could not write register \"%s\""),
5170 gdbarch_register_name (gdbarch, reg->regnum));
5171 case PACKET_UNKNOWN:
5172 return 0;
5173 default:
5174 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5175 }
5176 }
5177
5178 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5179 contents of the register cache buffer. FIXME: ignores errors. */
5180
5181 static void
5182 store_registers_using_G (const struct regcache *regcache)
5183 {
5184 struct remote_state *rs = get_remote_state ();
5185 struct remote_arch_state *rsa = get_remote_arch_state ();
5186 gdb_byte *regs;
5187 char *p;
5188
5189 /* Extract all the registers in the regcache copying them into a
5190 local buffer. */
5191 {
5192 int i;
5193 regs = alloca (rsa->sizeof_g_packet);
5194 memset (regs, 0, rsa->sizeof_g_packet);
5195 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5196 {
5197 struct packet_reg *r = &rsa->regs[i];
5198 if (r->in_g_packet)
5199 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5200 }
5201 }
5202
5203 /* Command describes registers byte by byte,
5204 each byte encoded as two hex characters. */
5205 p = rs->buf;
5206 *p++ = 'G';
5207 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5208 updated. */
5209 bin2hex (regs, p, rsa->sizeof_g_packet);
5210 remote_send (&rs->buf, &rs->buf_size);
5211 }
5212
5213 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5214 of the register cache buffer. FIXME: ignores errors. */
5215
5216 static void
5217 remote_store_registers (struct target_ops *ops,
5218 struct regcache *regcache, int regnum)
5219 {
5220 struct remote_state *rs = get_remote_state ();
5221 struct remote_arch_state *rsa = get_remote_arch_state ();
5222 int i;
5223
5224 set_general_thread (inferior_ptid);
5225
5226 if (regnum >= 0)
5227 {
5228 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5229 gdb_assert (reg != NULL);
5230
5231 /* Always prefer to store registers using the 'P' packet if
5232 possible; we often change only a small number of registers.
5233 Sometimes we change a larger number; we'd need help from a
5234 higher layer to know to use 'G'. */
5235 if (store_register_using_P (regcache, reg))
5236 return;
5237
5238 /* For now, don't complain if we have no way to write the
5239 register. GDB loses track of unavailable registers too
5240 easily. Some day, this may be an error. We don't have
5241 any way to read the register, either... */
5242 if (!reg->in_g_packet)
5243 return;
5244
5245 store_registers_using_G (regcache);
5246 return;
5247 }
5248
5249 store_registers_using_G (regcache);
5250
5251 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5252 if (!rsa->regs[i].in_g_packet)
5253 if (!store_register_using_P (regcache, &rsa->regs[i]))
5254 /* See above for why we do not issue an error here. */
5255 continue;
5256 }
5257 \f
5258
5259 /* Return the number of hex digits in num. */
5260
5261 static int
5262 hexnumlen (ULONGEST num)
5263 {
5264 int i;
5265
5266 for (i = 0; num != 0; i++)
5267 num >>= 4;
5268
5269 return max (i, 1);
5270 }
5271
5272 /* Set BUF to the minimum number of hex digits representing NUM. */
5273
5274 static int
5275 hexnumstr (char *buf, ULONGEST num)
5276 {
5277 int len = hexnumlen (num);
5278 return hexnumnstr (buf, num, len);
5279 }
5280
5281
5282 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5283
5284 static int
5285 hexnumnstr (char *buf, ULONGEST num, int width)
5286 {
5287 int i;
5288
5289 buf[width] = '\0';
5290
5291 for (i = width - 1; i >= 0; i--)
5292 {
5293 buf[i] = "0123456789abcdef"[(num & 0xf)];
5294 num >>= 4;
5295 }
5296
5297 return width;
5298 }
5299
5300 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5301
5302 static CORE_ADDR
5303 remote_address_masked (CORE_ADDR addr)
5304 {
5305 int address_size = remote_address_size;
5306 /* If "remoteaddresssize" was not set, default to target address size. */
5307 if (!address_size)
5308 address_size = gdbarch_addr_bit (target_gdbarch);
5309
5310 if (address_size > 0
5311 && address_size < (sizeof (ULONGEST) * 8))
5312 {
5313 /* Only create a mask when that mask can safely be constructed
5314 in a ULONGEST variable. */
5315 ULONGEST mask = 1;
5316 mask = (mask << address_size) - 1;
5317 addr &= mask;
5318 }
5319 return addr;
5320 }
5321
5322 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5323 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5324 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5325 (which may be more than *OUT_LEN due to escape characters). The
5326 total number of bytes in the output buffer will be at most
5327 OUT_MAXLEN. */
5328
5329 static int
5330 remote_escape_output (const gdb_byte *buffer, int len,
5331 gdb_byte *out_buf, int *out_len,
5332 int out_maxlen)
5333 {
5334 int input_index, output_index;
5335
5336 output_index = 0;
5337 for (input_index = 0; input_index < len; input_index++)
5338 {
5339 gdb_byte b = buffer[input_index];
5340
5341 if (b == '$' || b == '#' || b == '}')
5342 {
5343 /* These must be escaped. */
5344 if (output_index + 2 > out_maxlen)
5345 break;
5346 out_buf[output_index++] = '}';
5347 out_buf[output_index++] = b ^ 0x20;
5348 }
5349 else
5350 {
5351 if (output_index + 1 > out_maxlen)
5352 break;
5353 out_buf[output_index++] = b;
5354 }
5355 }
5356
5357 *out_len = input_index;
5358 return output_index;
5359 }
5360
5361 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5362 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5363 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5364
5365 This function reverses remote_escape_output. It allows more
5366 escaped characters than that function does, in particular because
5367 '*' must be escaped to avoid the run-length encoding processing
5368 in reading packets. */
5369
5370 static int
5371 remote_unescape_input (const gdb_byte *buffer, int len,
5372 gdb_byte *out_buf, int out_maxlen)
5373 {
5374 int input_index, output_index;
5375 int escaped;
5376
5377 output_index = 0;
5378 escaped = 0;
5379 for (input_index = 0; input_index < len; input_index++)
5380 {
5381 gdb_byte b = buffer[input_index];
5382
5383 if (output_index + 1 > out_maxlen)
5384 {
5385 warning (_("Received too much data from remote target;"
5386 " ignoring overflow."));
5387 return output_index;
5388 }
5389
5390 if (escaped)
5391 {
5392 out_buf[output_index++] = b ^ 0x20;
5393 escaped = 0;
5394 }
5395 else if (b == '}')
5396 escaped = 1;
5397 else
5398 out_buf[output_index++] = b;
5399 }
5400
5401 if (escaped)
5402 error (_("Unmatched escape character in target response."));
5403
5404 return output_index;
5405 }
5406
5407 /* Determine whether the remote target supports binary downloading.
5408 This is accomplished by sending a no-op memory write of zero length
5409 to the target at the specified address. It does not suffice to send
5410 the whole packet, since many stubs strip the eighth bit and
5411 subsequently compute a wrong checksum, which causes real havoc with
5412 remote_write_bytes.
5413
5414 NOTE: This can still lose if the serial line is not eight-bit
5415 clean. In cases like this, the user should clear "remote
5416 X-packet". */
5417
5418 static void
5419 check_binary_download (CORE_ADDR addr)
5420 {
5421 struct remote_state *rs = get_remote_state ();
5422
5423 switch (remote_protocol_packets[PACKET_X].support)
5424 {
5425 case PACKET_DISABLE:
5426 break;
5427 case PACKET_ENABLE:
5428 break;
5429 case PACKET_SUPPORT_UNKNOWN:
5430 {
5431 char *p;
5432
5433 p = rs->buf;
5434 *p++ = 'X';
5435 p += hexnumstr (p, (ULONGEST) addr);
5436 *p++ = ',';
5437 p += hexnumstr (p, (ULONGEST) 0);
5438 *p++ = ':';
5439 *p = '\0';
5440
5441 putpkt_binary (rs->buf, (int) (p - rs->buf));
5442 getpkt (&rs->buf, &rs->buf_size, 0);
5443
5444 if (rs->buf[0] == '\0')
5445 {
5446 if (remote_debug)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "binary downloading NOT suppported by target\n");
5449 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5450 }
5451 else
5452 {
5453 if (remote_debug)
5454 fprintf_unfiltered (gdb_stdlog,
5455 "binary downloading suppported by target\n");
5456 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5457 }
5458 break;
5459 }
5460 }
5461 }
5462
5463 /* Write memory data directly to the remote machine.
5464 This does not inform the data cache; the data cache uses this.
5465 HEADER is the starting part of the packet.
5466 MEMADDR is the address in the remote memory space.
5467 MYADDR is the address of the buffer in our space.
5468 LEN is the number of bytes.
5469 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5470 should send data as binary ('X'), or hex-encoded ('M').
5471
5472 The function creates packet of the form
5473 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5474
5475 where encoding of <DATA> is termined by PACKET_FORMAT.
5476
5477 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5478 are omitted.
5479
5480 Returns the number of bytes transferred, or 0 (setting errno) for
5481 error. Only transfer a single packet. */
5482
5483 static int
5484 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5485 const gdb_byte *myaddr, int len,
5486 char packet_format, int use_length)
5487 {
5488 struct remote_state *rs = get_remote_state ();
5489 char *p;
5490 char *plen = NULL;
5491 int plenlen = 0;
5492 int todo;
5493 int nr_bytes;
5494 int payload_size;
5495 int payload_length;
5496 int header_length;
5497
5498 if (packet_format != 'X' && packet_format != 'M')
5499 internal_error (__FILE__, __LINE__,
5500 "remote_write_bytes_aux: bad packet format");
5501
5502 if (len <= 0)
5503 return 0;
5504
5505 payload_size = get_memory_write_packet_size ();
5506
5507 /* The packet buffer will be large enough for the payload;
5508 get_memory_packet_size ensures this. */
5509 rs->buf[0] = '\0';
5510
5511 /* Compute the size of the actual payload by subtracting out the
5512 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5513 */
5514 payload_size -= strlen ("$,:#NN");
5515 if (!use_length)
5516 /* The comma won't be used. */
5517 payload_size += 1;
5518 header_length = strlen (header);
5519 payload_size -= header_length;
5520 payload_size -= hexnumlen (memaddr);
5521
5522 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5523
5524 strcat (rs->buf, header);
5525 p = rs->buf + strlen (header);
5526
5527 /* Compute a best guess of the number of bytes actually transfered. */
5528 if (packet_format == 'X')
5529 {
5530 /* Best guess at number of bytes that will fit. */
5531 todo = min (len, payload_size);
5532 if (use_length)
5533 payload_size -= hexnumlen (todo);
5534 todo = min (todo, payload_size);
5535 }
5536 else
5537 {
5538 /* Num bytes that will fit. */
5539 todo = min (len, payload_size / 2);
5540 if (use_length)
5541 payload_size -= hexnumlen (todo);
5542 todo = min (todo, payload_size / 2);
5543 }
5544
5545 if (todo <= 0)
5546 internal_error (__FILE__, __LINE__,
5547 _("minumum packet size too small to write data"));
5548
5549 /* If we already need another packet, then try to align the end
5550 of this packet to a useful boundary. */
5551 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5552 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5553
5554 /* Append "<memaddr>". */
5555 memaddr = remote_address_masked (memaddr);
5556 p += hexnumstr (p, (ULONGEST) memaddr);
5557
5558 if (use_length)
5559 {
5560 /* Append ",". */
5561 *p++ = ',';
5562
5563 /* Append <len>. Retain the location/size of <len>. It may need to
5564 be adjusted once the packet body has been created. */
5565 plen = p;
5566 plenlen = hexnumstr (p, (ULONGEST) todo);
5567 p += plenlen;
5568 }
5569
5570 /* Append ":". */
5571 *p++ = ':';
5572 *p = '\0';
5573
5574 /* Append the packet body. */
5575 if (packet_format == 'X')
5576 {
5577 /* Binary mode. Send target system values byte by byte, in
5578 increasing byte addresses. Only escape certain critical
5579 characters. */
5580 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5581 payload_size);
5582
5583 /* If not all TODO bytes fit, then we'll need another packet. Make
5584 a second try to keep the end of the packet aligned. Don't do
5585 this if the packet is tiny. */
5586 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5587 {
5588 int new_nr_bytes;
5589
5590 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5591 - memaddr);
5592 if (new_nr_bytes != nr_bytes)
5593 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5594 p, &nr_bytes,
5595 payload_size);
5596 }
5597
5598 p += payload_length;
5599 if (use_length && nr_bytes < todo)
5600 {
5601 /* Escape chars have filled up the buffer prematurely,
5602 and we have actually sent fewer bytes than planned.
5603 Fix-up the length field of the packet. Use the same
5604 number of characters as before. */
5605 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5606 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5607 }
5608 }
5609 else
5610 {
5611 /* Normal mode: Send target system values byte by byte, in
5612 increasing byte addresses. Each byte is encoded as a two hex
5613 value. */
5614 nr_bytes = bin2hex (myaddr, p, todo);
5615 p += 2 * nr_bytes;
5616 }
5617
5618 putpkt_binary (rs->buf, (int) (p - rs->buf));
5619 getpkt (&rs->buf, &rs->buf_size, 0);
5620
5621 if (rs->buf[0] == 'E')
5622 {
5623 /* There is no correspondance between what the remote protocol
5624 uses for errors and errno codes. We would like a cleaner way
5625 of representing errors (big enough to include errno codes,
5626 bfd_error codes, and others). But for now just return EIO. */
5627 errno = EIO;
5628 return 0;
5629 }
5630
5631 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5632 fewer bytes than we'd planned. */
5633 return nr_bytes;
5634 }
5635
5636 /* Write memory data directly to the remote machine.
5637 This does not inform the data cache; the data cache uses this.
5638 MEMADDR is the address in the remote memory space.
5639 MYADDR is the address of the buffer in our space.
5640 LEN is the number of bytes.
5641
5642 Returns number of bytes transferred, or 0 (setting errno) for
5643 error. Only transfer a single packet. */
5644
5645 int
5646 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5647 {
5648 char *packet_format = 0;
5649
5650 /* Check whether the target supports binary download. */
5651 check_binary_download (memaddr);
5652
5653 switch (remote_protocol_packets[PACKET_X].support)
5654 {
5655 case PACKET_ENABLE:
5656 packet_format = "X";
5657 break;
5658 case PACKET_DISABLE:
5659 packet_format = "M";
5660 break;
5661 case PACKET_SUPPORT_UNKNOWN:
5662 internal_error (__FILE__, __LINE__,
5663 _("remote_write_bytes: bad internal state"));
5664 default:
5665 internal_error (__FILE__, __LINE__, _("bad switch"));
5666 }
5667
5668 return remote_write_bytes_aux (packet_format,
5669 memaddr, myaddr, len, packet_format[0], 1);
5670 }
5671
5672 /* Read memory data directly from the remote machine.
5673 This does not use the data cache; the data cache uses this.
5674 MEMADDR is the address in the remote memory space.
5675 MYADDR is the address of the buffer in our space.
5676 LEN is the number of bytes.
5677
5678 Returns number of bytes transferred, or 0 for error. */
5679
5680 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5681 remote targets) shouldn't attempt to read the entire buffer.
5682 Instead it should read a single packet worth of data and then
5683 return the byte size of that packet to the caller. The caller (its
5684 caller and its callers caller ;-) already contains code for
5685 handling partial reads. */
5686
5687 int
5688 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5689 {
5690 struct remote_state *rs = get_remote_state ();
5691 int max_buf_size; /* Max size of packet output buffer. */
5692 int origlen;
5693
5694 if (len <= 0)
5695 return 0;
5696
5697 max_buf_size = get_memory_read_packet_size ();
5698 /* The packet buffer will be large enough for the payload;
5699 get_memory_packet_size ensures this. */
5700
5701 origlen = len;
5702 while (len > 0)
5703 {
5704 char *p;
5705 int todo;
5706 int i;
5707
5708 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5709
5710 /* construct "m"<memaddr>","<len>" */
5711 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5712 memaddr = remote_address_masked (memaddr);
5713 p = rs->buf;
5714 *p++ = 'm';
5715 p += hexnumstr (p, (ULONGEST) memaddr);
5716 *p++ = ',';
5717 p += hexnumstr (p, (ULONGEST) todo);
5718 *p = '\0';
5719
5720 putpkt (rs->buf);
5721 getpkt (&rs->buf, &rs->buf_size, 0);
5722
5723 if (rs->buf[0] == 'E'
5724 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5725 && rs->buf[3] == '\0')
5726 {
5727 /* There is no correspondance between what the remote
5728 protocol uses for errors and errno codes. We would like
5729 a cleaner way of representing errors (big enough to
5730 include errno codes, bfd_error codes, and others). But
5731 for now just return EIO. */
5732 errno = EIO;
5733 return 0;
5734 }
5735
5736 /* Reply describes memory byte by byte,
5737 each byte encoded as two hex characters. */
5738
5739 p = rs->buf;
5740 if ((i = hex2bin (p, myaddr, todo)) < todo)
5741 {
5742 /* Reply is short. This means that we were able to read
5743 only part of what we wanted to. */
5744 return i + (origlen - len);
5745 }
5746 myaddr += todo;
5747 memaddr += todo;
5748 len -= todo;
5749 }
5750 return origlen;
5751 }
5752 \f
5753
5754 /* Remote notification handler. */
5755
5756 static void
5757 handle_notification (char *buf, size_t length)
5758 {
5759 if (strncmp (buf, "Stop:", 5) == 0)
5760 {
5761 if (pending_stop_reply)
5762 /* We've already parsed the in-flight stop-reply, but the stub
5763 for some reason thought we didn't, possibly due to timeout
5764 on its side. Just ignore it. */
5765 ;
5766 else
5767 {
5768 struct cleanup *old_chain;
5769 struct stop_reply *reply = stop_reply_xmalloc ();
5770 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5771
5772 remote_parse_stop_reply (buf + 5, reply);
5773
5774 discard_cleanups (old_chain);
5775
5776 /* Be careful to only set it after parsing, since an error
5777 may be thrown then. */
5778 pending_stop_reply = reply;
5779
5780 /* Notify the event loop there's a stop reply to acknowledge
5781 and that there may be more events to fetch. */
5782 mark_async_event_handler (remote_async_get_pending_events_token);
5783 }
5784 }
5785 else
5786 /* We ignore notifications we don't recognize, for compatibility
5787 with newer stubs. */
5788 ;
5789 }
5790
5791 \f
5792 /* Read or write LEN bytes from inferior memory at MEMADDR,
5793 transferring to or from debugger address BUFFER. Write to inferior
5794 if SHOULD_WRITE is nonzero. Returns length of data written or
5795 read; 0 for error. TARGET is unused. */
5796
5797 static int
5798 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5799 int should_write, struct mem_attrib *attrib,
5800 struct target_ops *target)
5801 {
5802 int res;
5803
5804 set_general_thread (inferior_ptid);
5805
5806 if (should_write)
5807 res = remote_write_bytes (mem_addr, buffer, mem_len);
5808 else
5809 res = remote_read_bytes (mem_addr, buffer, mem_len);
5810
5811 return res;
5812 }
5813
5814 /* Sends a packet with content determined by the printf format string
5815 FORMAT and the remaining arguments, then gets the reply. Returns
5816 whether the packet was a success, a failure, or unknown. */
5817
5818 static enum packet_result
5819 remote_send_printf (const char *format, ...)
5820 {
5821 struct remote_state *rs = get_remote_state ();
5822 int max_size = get_remote_packet_size ();
5823
5824 va_list ap;
5825 va_start (ap, format);
5826
5827 rs->buf[0] = '\0';
5828 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5829 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5830
5831 if (putpkt (rs->buf) < 0)
5832 error (_("Communication problem with target."));
5833
5834 rs->buf[0] = '\0';
5835 getpkt (&rs->buf, &rs->buf_size, 0);
5836
5837 return packet_check_result (rs->buf);
5838 }
5839
5840 static void
5841 restore_remote_timeout (void *p)
5842 {
5843 int value = *(int *)p;
5844 remote_timeout = value;
5845 }
5846
5847 /* Flash writing can take quite some time. We'll set
5848 effectively infinite timeout for flash operations.
5849 In future, we'll need to decide on a better approach. */
5850 static const int remote_flash_timeout = 1000;
5851
5852 static void
5853 remote_flash_erase (struct target_ops *ops,
5854 ULONGEST address, LONGEST length)
5855 {
5856 int saved_remote_timeout = remote_timeout;
5857 enum packet_result ret;
5858
5859 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5860 &saved_remote_timeout);
5861 remote_timeout = remote_flash_timeout;
5862
5863 ret = remote_send_printf ("vFlashErase:%s,%s",
5864 paddr (address),
5865 phex (length, 4));
5866 switch (ret)
5867 {
5868 case PACKET_UNKNOWN:
5869 error (_("Remote target does not support flash erase"));
5870 case PACKET_ERROR:
5871 error (_("Error erasing flash with vFlashErase packet"));
5872 default:
5873 break;
5874 }
5875
5876 do_cleanups (back_to);
5877 }
5878
5879 static LONGEST
5880 remote_flash_write (struct target_ops *ops,
5881 ULONGEST address, LONGEST length,
5882 const gdb_byte *data)
5883 {
5884 int saved_remote_timeout = remote_timeout;
5885 int ret;
5886 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5887 &saved_remote_timeout);
5888
5889 remote_timeout = remote_flash_timeout;
5890 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5891 do_cleanups (back_to);
5892
5893 return ret;
5894 }
5895
5896 static void
5897 remote_flash_done (struct target_ops *ops)
5898 {
5899 int saved_remote_timeout = remote_timeout;
5900 int ret;
5901 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5902 &saved_remote_timeout);
5903
5904 remote_timeout = remote_flash_timeout;
5905 ret = remote_send_printf ("vFlashDone");
5906 do_cleanups (back_to);
5907
5908 switch (ret)
5909 {
5910 case PACKET_UNKNOWN:
5911 error (_("Remote target does not support vFlashDone"));
5912 case PACKET_ERROR:
5913 error (_("Error finishing flash operation"));
5914 default:
5915 break;
5916 }
5917 }
5918
5919 static void
5920 remote_files_info (struct target_ops *ignore)
5921 {
5922 puts_filtered ("Debugging a target over a serial line.\n");
5923 }
5924 \f
5925 /* Stuff for dealing with the packets which are part of this protocol.
5926 See comment at top of file for details. */
5927
5928 /* Read a single character from the remote end. */
5929
5930 static int
5931 readchar (int timeout)
5932 {
5933 int ch;
5934
5935 ch = serial_readchar (remote_desc, timeout);
5936
5937 if (ch >= 0)
5938 return ch;
5939
5940 switch ((enum serial_rc) ch)
5941 {
5942 case SERIAL_EOF:
5943 pop_target ();
5944 error (_("Remote connection closed"));
5945 /* no return */
5946 case SERIAL_ERROR:
5947 perror_with_name (_("Remote communication error"));
5948 /* no return */
5949 case SERIAL_TIMEOUT:
5950 break;
5951 }
5952 return ch;
5953 }
5954
5955 /* Send the command in *BUF to the remote machine, and read the reply
5956 into *BUF. Report an error if we get an error reply. Resize
5957 *BUF using xrealloc if necessary to hold the result, and update
5958 *SIZEOF_BUF. */
5959
5960 static void
5961 remote_send (char **buf,
5962 long *sizeof_buf)
5963 {
5964 putpkt (*buf);
5965 getpkt (buf, sizeof_buf, 0);
5966
5967 if ((*buf)[0] == 'E')
5968 error (_("Remote failure reply: %s"), *buf);
5969 }
5970
5971 /* Return a pointer to an xmalloc'ed string representing an escaped
5972 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5973 etc. The caller is responsible for releasing the returned
5974 memory. */
5975
5976 static char *
5977 escape_buffer (const char *buf, int n)
5978 {
5979 struct cleanup *old_chain;
5980 struct ui_file *stb;
5981 char *str;
5982 long length;
5983
5984 stb = mem_fileopen ();
5985 old_chain = make_cleanup_ui_file_delete (stb);
5986
5987 fputstrn_unfiltered (buf, n, 0, stb);
5988 str = ui_file_xstrdup (stb, &length);
5989 do_cleanups (old_chain);
5990 return str;
5991 }
5992
5993 /* Display a null-terminated packet on stdout, for debugging, using C
5994 string notation. */
5995
5996 static void
5997 print_packet (char *buf)
5998 {
5999 puts_filtered ("\"");
6000 fputstr_filtered (buf, '"', gdb_stdout);
6001 puts_filtered ("\"");
6002 }
6003
6004 int
6005 putpkt (char *buf)
6006 {
6007 return putpkt_binary (buf, strlen (buf));
6008 }
6009
6010 /* Send a packet to the remote machine, with error checking. The data
6011 of the packet is in BUF. The string in BUF can be at most
6012 get_remote_packet_size () - 5 to account for the $, # and checksum,
6013 and for a possible /0 if we are debugging (remote_debug) and want
6014 to print the sent packet as a string. */
6015
6016 static int
6017 putpkt_binary (char *buf, int cnt)
6018 {
6019 struct remote_state *rs = get_remote_state ();
6020 int i;
6021 unsigned char csum = 0;
6022 char *buf2 = alloca (cnt + 6);
6023
6024 int ch;
6025 int tcount = 0;
6026 char *p;
6027
6028 /* Catch cases like trying to read memory or listing threads while
6029 we're waiting for a stop reply. The remote server wouldn't be
6030 ready to handle this request, so we'd hang and timeout. We don't
6031 have to worry about this in synchronous mode, because in that
6032 case it's not possible to issue a command while the target is
6033 running. This is not a problem in non-stop mode, because in that
6034 case, the stub is always ready to process serial input. */
6035 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6036 error (_("Cannot execute this command while the target is running."));
6037
6038 /* We're sending out a new packet. Make sure we don't look at a
6039 stale cached response. */
6040 rs->cached_wait_status = 0;
6041
6042 /* Copy the packet into buffer BUF2, encapsulating it
6043 and giving it a checksum. */
6044
6045 p = buf2;
6046 *p++ = '$';
6047
6048 for (i = 0; i < cnt; i++)
6049 {
6050 csum += buf[i];
6051 *p++ = buf[i];
6052 }
6053 *p++ = '#';
6054 *p++ = tohex ((csum >> 4) & 0xf);
6055 *p++ = tohex (csum & 0xf);
6056
6057 /* Send it over and over until we get a positive ack. */
6058
6059 while (1)
6060 {
6061 int started_error_output = 0;
6062
6063 if (remote_debug)
6064 {
6065 struct cleanup *old_chain;
6066 char *str;
6067
6068 *p = '\0';
6069 str = escape_buffer (buf2, p - buf2);
6070 old_chain = make_cleanup (xfree, str);
6071 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6072 gdb_flush (gdb_stdlog);
6073 do_cleanups (old_chain);
6074 }
6075 if (serial_write (remote_desc, buf2, p - buf2))
6076 perror_with_name (_("putpkt: write failed"));
6077
6078 /* If this is a no acks version of the remote protocol, send the
6079 packet and move on. */
6080 if (rs->noack_mode)
6081 break;
6082
6083 /* Read until either a timeout occurs (-2) or '+' is read.
6084 Handle any notification that arrives in the mean time. */
6085 while (1)
6086 {
6087 ch = readchar (remote_timeout);
6088
6089 if (remote_debug)
6090 {
6091 switch (ch)
6092 {
6093 case '+':
6094 case '-':
6095 case SERIAL_TIMEOUT:
6096 case '$':
6097 case '%':
6098 if (started_error_output)
6099 {
6100 putchar_unfiltered ('\n');
6101 started_error_output = 0;
6102 }
6103 }
6104 }
6105
6106 switch (ch)
6107 {
6108 case '+':
6109 if (remote_debug)
6110 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6111 return 1;
6112 case '-':
6113 if (remote_debug)
6114 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6115 case SERIAL_TIMEOUT:
6116 tcount++;
6117 if (tcount > 3)
6118 return 0;
6119 break; /* Retransmit buffer. */
6120 case '$':
6121 {
6122 if (remote_debug)
6123 fprintf_unfiltered (gdb_stdlog,
6124 "Packet instead of Ack, ignoring it\n");
6125 /* It's probably an old response sent because an ACK
6126 was lost. Gobble up the packet and ack it so it
6127 doesn't get retransmitted when we resend this
6128 packet. */
6129 skip_frame ();
6130 serial_write (remote_desc, "+", 1);
6131 continue; /* Now, go look for +. */
6132 }
6133
6134 case '%':
6135 {
6136 int val;
6137
6138 /* If we got a notification, handle it, and go back to looking
6139 for an ack. */
6140 /* We've found the start of a notification. Now
6141 collect the data. */
6142 val = read_frame (&rs->buf, &rs->buf_size);
6143 if (val >= 0)
6144 {
6145 if (remote_debug)
6146 {
6147 struct cleanup *old_chain;
6148 char *str;
6149
6150 str = escape_buffer (rs->buf, val);
6151 old_chain = make_cleanup (xfree, str);
6152 fprintf_unfiltered (gdb_stdlog,
6153 " Notification received: %s\n",
6154 str);
6155 do_cleanups (old_chain);
6156 }
6157 handle_notification (rs->buf, val);
6158 /* We're in sync now, rewait for the ack. */
6159 tcount = 0;
6160 }
6161 else
6162 {
6163 if (remote_debug)
6164 {
6165 if (!started_error_output)
6166 {
6167 started_error_output = 1;
6168 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6169 }
6170 fputc_unfiltered (ch & 0177, gdb_stdlog);
6171 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6172 }
6173 }
6174 continue;
6175 }
6176 /* fall-through */
6177 default:
6178 if (remote_debug)
6179 {
6180 if (!started_error_output)
6181 {
6182 started_error_output = 1;
6183 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6184 }
6185 fputc_unfiltered (ch & 0177, gdb_stdlog);
6186 }
6187 continue;
6188 }
6189 break; /* Here to retransmit. */
6190 }
6191
6192 #if 0
6193 /* This is wrong. If doing a long backtrace, the user should be
6194 able to get out next time we call QUIT, without anything as
6195 violent as interrupt_query. If we want to provide a way out of
6196 here without getting to the next QUIT, it should be based on
6197 hitting ^C twice as in remote_wait. */
6198 if (quit_flag)
6199 {
6200 quit_flag = 0;
6201 interrupt_query ();
6202 }
6203 #endif
6204 }
6205 return 0;
6206 }
6207
6208 /* Come here after finding the start of a frame when we expected an
6209 ack. Do our best to discard the rest of this packet. */
6210
6211 static void
6212 skip_frame (void)
6213 {
6214 int c;
6215
6216 while (1)
6217 {
6218 c = readchar (remote_timeout);
6219 switch (c)
6220 {
6221 case SERIAL_TIMEOUT:
6222 /* Nothing we can do. */
6223 return;
6224 case '#':
6225 /* Discard the two bytes of checksum and stop. */
6226 c = readchar (remote_timeout);
6227 if (c >= 0)
6228 c = readchar (remote_timeout);
6229
6230 return;
6231 case '*': /* Run length encoding. */
6232 /* Discard the repeat count. */
6233 c = readchar (remote_timeout);
6234 if (c < 0)
6235 return;
6236 break;
6237 default:
6238 /* A regular character. */
6239 break;
6240 }
6241 }
6242 }
6243
6244 /* Come here after finding the start of the frame. Collect the rest
6245 into *BUF, verifying the checksum, length, and handling run-length
6246 compression. NUL terminate the buffer. If there is not enough room,
6247 expand *BUF using xrealloc.
6248
6249 Returns -1 on error, number of characters in buffer (ignoring the
6250 trailing NULL) on success. (could be extended to return one of the
6251 SERIAL status indications). */
6252
6253 static long
6254 read_frame (char **buf_p,
6255 long *sizeof_buf)
6256 {
6257 unsigned char csum;
6258 long bc;
6259 int c;
6260 char *buf = *buf_p;
6261 struct remote_state *rs = get_remote_state ();
6262
6263 csum = 0;
6264 bc = 0;
6265
6266 while (1)
6267 {
6268 c = readchar (remote_timeout);
6269 switch (c)
6270 {
6271 case SERIAL_TIMEOUT:
6272 if (remote_debug)
6273 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6274 return -1;
6275 case '$':
6276 if (remote_debug)
6277 fputs_filtered ("Saw new packet start in middle of old one\n",
6278 gdb_stdlog);
6279 return -1; /* Start a new packet, count retries. */
6280 case '#':
6281 {
6282 unsigned char pktcsum;
6283 int check_0 = 0;
6284 int check_1 = 0;
6285
6286 buf[bc] = '\0';
6287
6288 check_0 = readchar (remote_timeout);
6289 if (check_0 >= 0)
6290 check_1 = readchar (remote_timeout);
6291
6292 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6293 {
6294 if (remote_debug)
6295 fputs_filtered ("Timeout in checksum, retrying\n",
6296 gdb_stdlog);
6297 return -1;
6298 }
6299 else if (check_0 < 0 || check_1 < 0)
6300 {
6301 if (remote_debug)
6302 fputs_filtered ("Communication error in checksum\n",
6303 gdb_stdlog);
6304 return -1;
6305 }
6306
6307 /* Don't recompute the checksum; with no ack packets we
6308 don't have any way to indicate a packet retransmission
6309 is necessary. */
6310 if (rs->noack_mode)
6311 return bc;
6312
6313 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6314 if (csum == pktcsum)
6315 return bc;
6316
6317 if (remote_debug)
6318 {
6319 struct cleanup *old_chain;
6320 char *str;
6321
6322 str = escape_buffer (buf, bc);
6323 old_chain = make_cleanup (xfree, str);
6324 fprintf_unfiltered (gdb_stdlog,
6325 "\
6326 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6327 pktcsum, csum, str);
6328 do_cleanups (old_chain);
6329 }
6330 /* Number of characters in buffer ignoring trailing
6331 NULL. */
6332 return -1;
6333 }
6334 case '*': /* Run length encoding. */
6335 {
6336 int repeat;
6337 csum += c;
6338
6339 c = readchar (remote_timeout);
6340 csum += c;
6341 repeat = c - ' ' + 3; /* Compute repeat count. */
6342
6343 /* The character before ``*'' is repeated. */
6344
6345 if (repeat > 0 && repeat <= 255 && bc > 0)
6346 {
6347 if (bc + repeat - 1 >= *sizeof_buf - 1)
6348 {
6349 /* Make some more room in the buffer. */
6350 *sizeof_buf += repeat;
6351 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6352 buf = *buf_p;
6353 }
6354
6355 memset (&buf[bc], buf[bc - 1], repeat);
6356 bc += repeat;
6357 continue;
6358 }
6359
6360 buf[bc] = '\0';
6361 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6362 return -1;
6363 }
6364 default:
6365 if (bc >= *sizeof_buf - 1)
6366 {
6367 /* Make some more room in the buffer. */
6368 *sizeof_buf *= 2;
6369 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6370 buf = *buf_p;
6371 }
6372
6373 buf[bc++] = c;
6374 csum += c;
6375 continue;
6376 }
6377 }
6378 }
6379
6380 /* Read a packet from the remote machine, with error checking, and
6381 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6382 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6383 rather than timing out; this is used (in synchronous mode) to wait
6384 for a target that is is executing user code to stop. */
6385 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6386 don't have to change all the calls to getpkt to deal with the
6387 return value, because at the moment I don't know what the right
6388 thing to do it for those. */
6389 void
6390 getpkt (char **buf,
6391 long *sizeof_buf,
6392 int forever)
6393 {
6394 int timed_out;
6395
6396 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6397 }
6398
6399
6400 /* Read a packet from the remote machine, with error checking, and
6401 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6402 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6403 rather than timing out; this is used (in synchronous mode) to wait
6404 for a target that is is executing user code to stop. If FOREVER ==
6405 0, this function is allowed to time out gracefully and return an
6406 indication of this to the caller. Otherwise return the number of
6407 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6408 enough reason to return to the caller. */
6409
6410 static int
6411 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6412 int expecting_notif)
6413 {
6414 struct remote_state *rs = get_remote_state ();
6415 int c;
6416 int tries;
6417 int timeout;
6418 int val;
6419
6420 /* We're reading a new response. Make sure we don't look at a
6421 previously cached response. */
6422 rs->cached_wait_status = 0;
6423
6424 strcpy (*buf, "timeout");
6425
6426 if (forever)
6427 timeout = watchdog > 0 ? watchdog : -1;
6428 else if (expecting_notif)
6429 timeout = 0; /* There should already be a char in the buffer. If
6430 not, bail out. */
6431 else
6432 timeout = remote_timeout;
6433
6434 #define MAX_TRIES 3
6435
6436 /* Process any number of notifications, and then return when
6437 we get a packet. */
6438 for (;;)
6439 {
6440 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6441 times. */
6442 for (tries = 1; tries <= MAX_TRIES; tries++)
6443 {
6444 /* This can loop forever if the remote side sends us
6445 characters continuously, but if it pauses, we'll get
6446 SERIAL_TIMEOUT from readchar because of timeout. Then
6447 we'll count that as a retry.
6448
6449 Note that even when forever is set, we will only wait
6450 forever prior to the start of a packet. After that, we
6451 expect characters to arrive at a brisk pace. They should
6452 show up within remote_timeout intervals. */
6453 do
6454 c = readchar (timeout);
6455 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6456
6457 if (c == SERIAL_TIMEOUT)
6458 {
6459 if (expecting_notif)
6460 return -1; /* Don't complain, it's normal to not get
6461 anything in this case. */
6462
6463 if (forever) /* Watchdog went off? Kill the target. */
6464 {
6465 QUIT;
6466 pop_target ();
6467 error (_("Watchdog timeout has expired. Target detached."));
6468 }
6469 if (remote_debug)
6470 fputs_filtered ("Timed out.\n", gdb_stdlog);
6471 }
6472 else
6473 {
6474 /* We've found the start of a packet or notification.
6475 Now collect the data. */
6476 val = read_frame (buf, sizeof_buf);
6477 if (val >= 0)
6478 break;
6479 }
6480
6481 serial_write (remote_desc, "-", 1);
6482 }
6483
6484 if (tries > MAX_TRIES)
6485 {
6486 /* We have tried hard enough, and just can't receive the
6487 packet/notification. Give up. */
6488 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6489
6490 /* Skip the ack char if we're in no-ack mode. */
6491 if (!rs->noack_mode)
6492 serial_write (remote_desc, "+", 1);
6493 return -1;
6494 }
6495
6496 /* If we got an ordinary packet, return that to our caller. */
6497 if (c == '$')
6498 {
6499 if (remote_debug)
6500 {
6501 struct cleanup *old_chain;
6502 char *str;
6503
6504 str = escape_buffer (*buf, val);
6505 old_chain = make_cleanup (xfree, str);
6506 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6507 do_cleanups (old_chain);
6508 }
6509
6510 /* Skip the ack char if we're in no-ack mode. */
6511 if (!rs->noack_mode)
6512 serial_write (remote_desc, "+", 1);
6513 return val;
6514 }
6515
6516 /* If we got a notification, handle it, and go back to looking
6517 for a packet. */
6518 else
6519 {
6520 gdb_assert (c == '%');
6521
6522 if (remote_debug)
6523 {
6524 struct cleanup *old_chain;
6525 char *str;
6526
6527 str = escape_buffer (*buf, val);
6528 old_chain = make_cleanup (xfree, str);
6529 fprintf_unfiltered (gdb_stdlog,
6530 " Notification received: %s\n",
6531 str);
6532 do_cleanups (old_chain);
6533 }
6534
6535 handle_notification (*buf, val);
6536
6537 /* Notifications require no acknowledgement. */
6538
6539 if (expecting_notif)
6540 return -1;
6541 }
6542 }
6543 }
6544
6545 static int
6546 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6547 {
6548 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6549 }
6550
6551 static int
6552 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6553 {
6554 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6555 }
6556
6557 \f
6558 static void
6559 remote_kill (struct target_ops *ops)
6560 {
6561 /* Use catch_errors so the user can quit from gdb even when we
6562 aren't on speaking terms with the remote system. */
6563 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6564
6565 /* Don't wait for it to die. I'm not really sure it matters whether
6566 we do or not. For the existing stubs, kill is a noop. */
6567 target_mourn_inferior ();
6568 }
6569
6570 static int
6571 remote_vkill (int pid, struct remote_state *rs)
6572 {
6573 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6574 return -1;
6575
6576 /* Tell the remote target to detach. */
6577 sprintf (rs->buf, "vKill;%x", pid);
6578 putpkt (rs->buf);
6579 getpkt (&rs->buf, &rs->buf_size, 0);
6580
6581 if (packet_ok (rs->buf,
6582 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6583 return 0;
6584 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6585 return -1;
6586 else
6587 return 1;
6588 }
6589
6590 static void
6591 extended_remote_kill (struct target_ops *ops)
6592 {
6593 int res;
6594 int pid = ptid_get_pid (inferior_ptid);
6595 struct remote_state *rs = get_remote_state ();
6596
6597 res = remote_vkill (pid, rs);
6598 if (res == -1 && !remote_multi_process_p (rs))
6599 {
6600 /* Don't try 'k' on a multi-process aware stub -- it has no way
6601 to specify the pid. */
6602
6603 putpkt ("k");
6604 #if 0
6605 getpkt (&rs->buf, &rs->buf_size, 0);
6606 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6607 res = 1;
6608 #else
6609 /* Don't wait for it to die. I'm not really sure it matters whether
6610 we do or not. For the existing stubs, kill is a noop. */
6611 res = 0;
6612 #endif
6613 }
6614
6615 if (res != 0)
6616 error (_("Can't kill process"));
6617
6618 target_mourn_inferior ();
6619 }
6620
6621 static void
6622 remote_mourn (struct target_ops *ops)
6623 {
6624 remote_mourn_1 (ops);
6625 }
6626
6627 /* Worker function for remote_mourn. */
6628 static void
6629 remote_mourn_1 (struct target_ops *target)
6630 {
6631 unpush_target (target);
6632
6633 /* remote_close takes care of doing most of the clean up. */
6634 generic_mourn_inferior ();
6635 }
6636
6637 static void
6638 extended_remote_mourn_1 (struct target_ops *target)
6639 {
6640 struct remote_state *rs = get_remote_state ();
6641
6642 /* In case we got here due to an error, but we're going to stay
6643 connected. */
6644 rs->waiting_for_stop_reply = 0;
6645
6646 /* We're no longer interested in these events. */
6647 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6648
6649 /* If the current general thread belonged to the process we just
6650 detached from or has exited, the remote side current general
6651 thread becomes undefined. Considering a case like this:
6652
6653 - We just got here due to a detach.
6654 - The process that we're detaching from happens to immediately
6655 report a global breakpoint being hit in non-stop mode, in the
6656 same thread we had selected before.
6657 - GDB attaches to this process again.
6658 - This event happens to be the next event we handle.
6659
6660 GDB would consider that the current general thread didn't need to
6661 be set on the stub side (with Hg), since for all it knew,
6662 GENERAL_THREAD hadn't changed.
6663
6664 Notice that although in all-stop mode, the remote server always
6665 sets the current thread to the thread reporting the stop event,
6666 that doesn't happen in non-stop mode; in non-stop, the stub *must
6667 not* change the current thread when reporting a breakpoint hit,
6668 due to the decoupling of event reporting and event handling.
6669
6670 To keep things simple, we always invalidate our notion of the
6671 current thread. */
6672 record_currthread (minus_one_ptid);
6673
6674 /* Unlike "target remote", we do not want to unpush the target; then
6675 the next time the user says "run", we won't be connected. */
6676
6677 /* Call common code to mark the inferior as not running. */
6678 generic_mourn_inferior ();
6679
6680 if (!have_inferiors ())
6681 {
6682 if (!remote_multi_process_p (rs))
6683 {
6684 /* Check whether the target is running now - some remote stubs
6685 automatically restart after kill. */
6686 putpkt ("?");
6687 getpkt (&rs->buf, &rs->buf_size, 0);
6688
6689 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6690 {
6691 /* Assume that the target has been restarted. Set inferior_ptid
6692 so that bits of core GDB realizes there's something here, e.g.,
6693 so that the user can say "kill" again. */
6694 inferior_ptid = magic_null_ptid;
6695 }
6696 else
6697 {
6698 /* Mark this (still pushed) target as not executable until we
6699 restart it. */
6700 target_mark_exited (target);
6701 }
6702 }
6703 else
6704 /* Always remove execution if this was the last process. */
6705 target_mark_exited (target);
6706 }
6707 }
6708
6709 static void
6710 extended_remote_mourn (struct target_ops *ops)
6711 {
6712 extended_remote_mourn_1 (ops);
6713 }
6714
6715 static int
6716 extended_remote_run (char *args)
6717 {
6718 struct remote_state *rs = get_remote_state ();
6719 char *p;
6720 int len;
6721
6722 /* If the user has disabled vRun support, or we have detected that
6723 support is not available, do not try it. */
6724 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6725 return -1;
6726
6727 strcpy (rs->buf, "vRun;");
6728 len = strlen (rs->buf);
6729
6730 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6731 error (_("Remote file name too long for run packet"));
6732 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6733
6734 gdb_assert (args != NULL);
6735 if (*args)
6736 {
6737 struct cleanup *back_to;
6738 int i;
6739 char **argv;
6740
6741 argv = gdb_buildargv (args);
6742 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6743 for (i = 0; argv[i] != NULL; i++)
6744 {
6745 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6746 error (_("Argument list too long for run packet"));
6747 rs->buf[len++] = ';';
6748 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6749 }
6750 do_cleanups (back_to);
6751 }
6752
6753 rs->buf[len++] = '\0';
6754
6755 putpkt (rs->buf);
6756 getpkt (&rs->buf, &rs->buf_size, 0);
6757
6758 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6759 {
6760 /* We have a wait response; we don't need it, though. All is well. */
6761 return 0;
6762 }
6763 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6764 /* It wasn't disabled before, but it is now. */
6765 return -1;
6766 else
6767 {
6768 if (remote_exec_file[0] == '\0')
6769 error (_("Running the default executable on the remote target failed; "
6770 "try \"set remote exec-file\"?"));
6771 else
6772 error (_("Running \"%s\" on the remote target failed"),
6773 remote_exec_file);
6774 }
6775 }
6776
6777 /* In the extended protocol we want to be able to do things like
6778 "run" and have them basically work as expected. So we need
6779 a special create_inferior function. We support changing the
6780 executable file and the command line arguments, but not the
6781 environment. */
6782
6783 static void
6784 extended_remote_create_inferior_1 (char *exec_file, char *args,
6785 char **env, int from_tty)
6786 {
6787 /* If running asynchronously, register the target file descriptor
6788 with the event loop. */
6789 if (target_can_async_p ())
6790 target_async (inferior_event_handler, 0);
6791
6792 /* Now restart the remote server. */
6793 if (extended_remote_run (args) == -1)
6794 {
6795 /* vRun was not supported. Fail if we need it to do what the
6796 user requested. */
6797 if (remote_exec_file[0])
6798 error (_("Remote target does not support \"set remote exec-file\""));
6799 if (args[0])
6800 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6801
6802 /* Fall back to "R". */
6803 extended_remote_restart ();
6804 }
6805
6806 /* Clean up from the last time we ran, before we mark the target
6807 running again. This will mark breakpoints uninserted, and
6808 get_offsets may insert breakpoints. */
6809 init_thread_list ();
6810 init_wait_for_inferior ();
6811
6812 /* Now mark the inferior as running before we do anything else. */
6813 inferior_ptid = magic_null_ptid;
6814
6815 /* Now, if we have thread information, update inferior_ptid. */
6816 inferior_ptid = remote_current_thread (inferior_ptid);
6817
6818 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6819 add_thread_silent (inferior_ptid);
6820
6821 /* Get updated offsets, if the stub uses qOffsets. */
6822 get_offsets ();
6823 }
6824
6825 static void
6826 extended_remote_create_inferior (struct target_ops *ops,
6827 char *exec_file, char *args,
6828 char **env, int from_tty)
6829 {
6830 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6831 }
6832 \f
6833
6834 /* Insert a breakpoint. On targets that have software breakpoint
6835 support, we ask the remote target to do the work; on targets
6836 which don't, we insert a traditional memory breakpoint. */
6837
6838 static int
6839 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6840 {
6841 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6842 If it succeeds, then set the support to PACKET_ENABLE. If it
6843 fails, and the user has explicitly requested the Z support then
6844 report an error, otherwise, mark it disabled and go on. */
6845
6846 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6847 {
6848 CORE_ADDR addr = bp_tgt->placed_address;
6849 struct remote_state *rs;
6850 char *p;
6851 int bpsize;
6852
6853 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6854
6855 rs = get_remote_state ();
6856 p = rs->buf;
6857
6858 *(p++) = 'Z';
6859 *(p++) = '0';
6860 *(p++) = ',';
6861 addr = (ULONGEST) remote_address_masked (addr);
6862 p += hexnumstr (p, addr);
6863 sprintf (p, ",%d", bpsize);
6864
6865 putpkt (rs->buf);
6866 getpkt (&rs->buf, &rs->buf_size, 0);
6867
6868 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6869 {
6870 case PACKET_ERROR:
6871 return -1;
6872 case PACKET_OK:
6873 bp_tgt->placed_address = addr;
6874 bp_tgt->placed_size = bpsize;
6875 return 0;
6876 case PACKET_UNKNOWN:
6877 break;
6878 }
6879 }
6880
6881 return memory_insert_breakpoint (bp_tgt);
6882 }
6883
6884 static int
6885 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6886 {
6887 CORE_ADDR addr = bp_tgt->placed_address;
6888 struct remote_state *rs = get_remote_state ();
6889 int bp_size;
6890
6891 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6892 {
6893 char *p = rs->buf;
6894
6895 *(p++) = 'z';
6896 *(p++) = '0';
6897 *(p++) = ',';
6898
6899 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6900 p += hexnumstr (p, addr);
6901 sprintf (p, ",%d", bp_tgt->placed_size);
6902
6903 putpkt (rs->buf);
6904 getpkt (&rs->buf, &rs->buf_size, 0);
6905
6906 return (rs->buf[0] == 'E');
6907 }
6908
6909 return memory_remove_breakpoint (bp_tgt);
6910 }
6911
6912 static int
6913 watchpoint_to_Z_packet (int type)
6914 {
6915 switch (type)
6916 {
6917 case hw_write:
6918 return Z_PACKET_WRITE_WP;
6919 break;
6920 case hw_read:
6921 return Z_PACKET_READ_WP;
6922 break;
6923 case hw_access:
6924 return Z_PACKET_ACCESS_WP;
6925 break;
6926 default:
6927 internal_error (__FILE__, __LINE__,
6928 _("hw_bp_to_z: bad watchpoint type %d"), type);
6929 }
6930 }
6931
6932 static int
6933 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6934 {
6935 struct remote_state *rs = get_remote_state ();
6936 char *p;
6937 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6938
6939 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6940 return -1;
6941
6942 sprintf (rs->buf, "Z%x,", packet);
6943 p = strchr (rs->buf, '\0');
6944 addr = remote_address_masked (addr);
6945 p += hexnumstr (p, (ULONGEST) addr);
6946 sprintf (p, ",%x", len);
6947
6948 putpkt (rs->buf);
6949 getpkt (&rs->buf, &rs->buf_size, 0);
6950
6951 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6952 {
6953 case PACKET_ERROR:
6954 case PACKET_UNKNOWN:
6955 return -1;
6956 case PACKET_OK:
6957 return 0;
6958 }
6959 internal_error (__FILE__, __LINE__,
6960 _("remote_insert_watchpoint: reached end of function"));
6961 }
6962
6963
6964 static int
6965 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6966 {
6967 struct remote_state *rs = get_remote_state ();
6968 char *p;
6969 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6970
6971 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6972 return -1;
6973
6974 sprintf (rs->buf, "z%x,", packet);
6975 p = strchr (rs->buf, '\0');
6976 addr = remote_address_masked (addr);
6977 p += hexnumstr (p, (ULONGEST) addr);
6978 sprintf (p, ",%x", len);
6979 putpkt (rs->buf);
6980 getpkt (&rs->buf, &rs->buf_size, 0);
6981
6982 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6983 {
6984 case PACKET_ERROR:
6985 case PACKET_UNKNOWN:
6986 return -1;
6987 case PACKET_OK:
6988 return 0;
6989 }
6990 internal_error (__FILE__, __LINE__,
6991 _("remote_remove_watchpoint: reached end of function"));
6992 }
6993
6994
6995 int remote_hw_watchpoint_limit = -1;
6996 int remote_hw_breakpoint_limit = -1;
6997
6998 static int
6999 remote_check_watch_resources (int type, int cnt, int ot)
7000 {
7001 if (type == bp_hardware_breakpoint)
7002 {
7003 if (remote_hw_breakpoint_limit == 0)
7004 return 0;
7005 else if (remote_hw_breakpoint_limit < 0)
7006 return 1;
7007 else if (cnt <= remote_hw_breakpoint_limit)
7008 return 1;
7009 }
7010 else
7011 {
7012 if (remote_hw_watchpoint_limit == 0)
7013 return 0;
7014 else if (remote_hw_watchpoint_limit < 0)
7015 return 1;
7016 else if (ot)
7017 return -1;
7018 else if (cnt <= remote_hw_watchpoint_limit)
7019 return 1;
7020 }
7021 return -1;
7022 }
7023
7024 static int
7025 remote_stopped_by_watchpoint (void)
7026 {
7027 return remote_stopped_by_watchpoint_p;
7028 }
7029
7030 static int
7031 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7032 {
7033 int rc = 0;
7034 if (remote_stopped_by_watchpoint ())
7035 {
7036 *addr_p = remote_watch_data_address;
7037 rc = 1;
7038 }
7039
7040 return rc;
7041 }
7042
7043
7044 static int
7045 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7046 {
7047 CORE_ADDR addr;
7048 struct remote_state *rs;
7049 char *p;
7050
7051 /* The length field should be set to the size of a breakpoint
7052 instruction, even though we aren't inserting one ourselves. */
7053
7054 gdbarch_breakpoint_from_pc
7055 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7056
7057 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7058 return -1;
7059
7060 rs = get_remote_state ();
7061 p = rs->buf;
7062
7063 *(p++) = 'Z';
7064 *(p++) = '1';
7065 *(p++) = ',';
7066
7067 addr = remote_address_masked (bp_tgt->placed_address);
7068 p += hexnumstr (p, (ULONGEST) addr);
7069 sprintf (p, ",%x", bp_tgt->placed_size);
7070
7071 putpkt (rs->buf);
7072 getpkt (&rs->buf, &rs->buf_size, 0);
7073
7074 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7075 {
7076 case PACKET_ERROR:
7077 case PACKET_UNKNOWN:
7078 return -1;
7079 case PACKET_OK:
7080 return 0;
7081 }
7082 internal_error (__FILE__, __LINE__,
7083 _("remote_insert_hw_breakpoint: reached end of function"));
7084 }
7085
7086
7087 static int
7088 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7089 {
7090 CORE_ADDR addr;
7091 struct remote_state *rs = get_remote_state ();
7092 char *p = rs->buf;
7093
7094 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7095 return -1;
7096
7097 *(p++) = 'z';
7098 *(p++) = '1';
7099 *(p++) = ',';
7100
7101 addr = remote_address_masked (bp_tgt->placed_address);
7102 p += hexnumstr (p, (ULONGEST) addr);
7103 sprintf (p, ",%x", bp_tgt->placed_size);
7104
7105 putpkt (rs->buf);
7106 getpkt (&rs->buf, &rs->buf_size, 0);
7107
7108 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7109 {
7110 case PACKET_ERROR:
7111 case PACKET_UNKNOWN:
7112 return -1;
7113 case PACKET_OK:
7114 return 0;
7115 }
7116 internal_error (__FILE__, __LINE__,
7117 _("remote_remove_hw_breakpoint: reached end of function"));
7118 }
7119
7120 /* Table used by the crc32 function to calcuate the checksum. */
7121
7122 static unsigned long crc32_table[256] =
7123 {0, 0};
7124
7125 static unsigned long
7126 crc32 (unsigned char *buf, int len, unsigned int crc)
7127 {
7128 if (!crc32_table[1])
7129 {
7130 /* Initialize the CRC table and the decoding table. */
7131 int i, j;
7132 unsigned int c;
7133
7134 for (i = 0; i < 256; i++)
7135 {
7136 for (c = i << 24, j = 8; j > 0; --j)
7137 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7138 crc32_table[i] = c;
7139 }
7140 }
7141
7142 while (len--)
7143 {
7144 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7145 buf++;
7146 }
7147 return crc;
7148 }
7149
7150 /* compare-sections command
7151
7152 With no arguments, compares each loadable section in the exec bfd
7153 with the same memory range on the target, and reports mismatches.
7154 Useful for verifying the image on the target against the exec file.
7155 Depends on the target understanding the new "qCRC:" request. */
7156
7157 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7158 target method (target verify memory) and generic version of the
7159 actual command. This will allow other high-level code (especially
7160 generic_load()) to make use of this target functionality. */
7161
7162 static void
7163 compare_sections_command (char *args, int from_tty)
7164 {
7165 struct remote_state *rs = get_remote_state ();
7166 asection *s;
7167 unsigned long host_crc, target_crc;
7168 extern bfd *exec_bfd;
7169 struct cleanup *old_chain;
7170 char *tmp;
7171 char *sectdata;
7172 const char *sectname;
7173 bfd_size_type size;
7174 bfd_vma lma;
7175 int matched = 0;
7176 int mismatched = 0;
7177
7178 if (!exec_bfd)
7179 error (_("command cannot be used without an exec file"));
7180 if (!current_target.to_shortname ||
7181 strcmp (current_target.to_shortname, "remote") != 0)
7182 error (_("command can only be used with remote target"));
7183
7184 for (s = exec_bfd->sections; s; s = s->next)
7185 {
7186 if (!(s->flags & SEC_LOAD))
7187 continue; /* skip non-loadable section */
7188
7189 size = bfd_get_section_size (s);
7190 if (size == 0)
7191 continue; /* skip zero-length section */
7192
7193 sectname = bfd_get_section_name (exec_bfd, s);
7194 if (args && strcmp (args, sectname) != 0)
7195 continue; /* not the section selected by user */
7196
7197 matched = 1; /* do this section */
7198 lma = s->lma;
7199 /* FIXME: assumes lma can fit into long. */
7200 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7201 (long) lma, (long) size);
7202 putpkt (rs->buf);
7203
7204 /* Be clever; compute the host_crc before waiting for target
7205 reply. */
7206 sectdata = xmalloc (size);
7207 old_chain = make_cleanup (xfree, sectdata);
7208 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7209 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7210
7211 getpkt (&rs->buf, &rs->buf_size, 0);
7212 if (rs->buf[0] == 'E')
7213 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7214 sectname, paddr (lma), paddr (lma + size));
7215 if (rs->buf[0] != 'C')
7216 error (_("remote target does not support this operation"));
7217
7218 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7219 target_crc = target_crc * 16 + fromhex (*tmp);
7220
7221 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7222 sectname, paddr (lma), paddr (lma + size));
7223 if (host_crc == target_crc)
7224 printf_filtered ("matched.\n");
7225 else
7226 {
7227 printf_filtered ("MIS-MATCHED!\n");
7228 mismatched++;
7229 }
7230
7231 do_cleanups (old_chain);
7232 }
7233 if (mismatched > 0)
7234 warning (_("One or more sections of the remote executable does not match\n\
7235 the loaded file\n"));
7236 if (args && !matched)
7237 printf_filtered (_("No loaded section named '%s'.\n"), args);
7238 }
7239
7240 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7241 into remote target. The number of bytes written to the remote
7242 target is returned, or -1 for error. */
7243
7244 static LONGEST
7245 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7246 const char *annex, const gdb_byte *writebuf,
7247 ULONGEST offset, LONGEST len,
7248 struct packet_config *packet)
7249 {
7250 int i, buf_len;
7251 ULONGEST n;
7252 gdb_byte *wbuf;
7253 struct remote_state *rs = get_remote_state ();
7254 int max_size = get_memory_write_packet_size ();
7255
7256 if (packet->support == PACKET_DISABLE)
7257 return -1;
7258
7259 /* Insert header. */
7260 i = snprintf (rs->buf, max_size,
7261 "qXfer:%s:write:%s:%s:",
7262 object_name, annex ? annex : "",
7263 phex_nz (offset, sizeof offset));
7264 max_size -= (i + 1);
7265
7266 /* Escape as much data as fits into rs->buf. */
7267 buf_len = remote_escape_output
7268 (writebuf, len, (rs->buf + i), &max_size, max_size);
7269
7270 if (putpkt_binary (rs->buf, i + buf_len) < 0
7271 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7272 || packet_ok (rs->buf, packet) != PACKET_OK)
7273 return -1;
7274
7275 unpack_varlen_hex (rs->buf, &n);
7276 return n;
7277 }
7278
7279 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7280 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7281 number of bytes read is returned, or 0 for EOF, or -1 for error.
7282 The number of bytes read may be less than LEN without indicating an
7283 EOF. PACKET is checked and updated to indicate whether the remote
7284 target supports this object. */
7285
7286 static LONGEST
7287 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7288 const char *annex,
7289 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7290 struct packet_config *packet)
7291 {
7292 static char *finished_object;
7293 static char *finished_annex;
7294 static ULONGEST finished_offset;
7295
7296 struct remote_state *rs = get_remote_state ();
7297 unsigned int total = 0;
7298 LONGEST i, n, packet_len;
7299
7300 if (packet->support == PACKET_DISABLE)
7301 return -1;
7302
7303 /* Check whether we've cached an end-of-object packet that matches
7304 this request. */
7305 if (finished_object)
7306 {
7307 if (strcmp (object_name, finished_object) == 0
7308 && strcmp (annex ? annex : "", finished_annex) == 0
7309 && offset == finished_offset)
7310 return 0;
7311
7312 /* Otherwise, we're now reading something different. Discard
7313 the cache. */
7314 xfree (finished_object);
7315 xfree (finished_annex);
7316 finished_object = NULL;
7317 finished_annex = NULL;
7318 }
7319
7320 /* Request only enough to fit in a single packet. The actual data
7321 may not, since we don't know how much of it will need to be escaped;
7322 the target is free to respond with slightly less data. We subtract
7323 five to account for the response type and the protocol frame. */
7324 n = min (get_remote_packet_size () - 5, len);
7325 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7326 object_name, annex ? annex : "",
7327 phex_nz (offset, sizeof offset),
7328 phex_nz (n, sizeof n));
7329 i = putpkt (rs->buf);
7330 if (i < 0)
7331 return -1;
7332
7333 rs->buf[0] = '\0';
7334 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7335 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7336 return -1;
7337
7338 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7339 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7340
7341 /* 'm' means there is (or at least might be) more data after this
7342 batch. That does not make sense unless there's at least one byte
7343 of data in this reply. */
7344 if (rs->buf[0] == 'm' && packet_len == 1)
7345 error (_("Remote qXfer reply contained no data."));
7346
7347 /* Got some data. */
7348 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7349
7350 /* 'l' is an EOF marker, possibly including a final block of data,
7351 or possibly empty. If we have the final block of a non-empty
7352 object, record this fact to bypass a subsequent partial read. */
7353 if (rs->buf[0] == 'l' && offset + i > 0)
7354 {
7355 finished_object = xstrdup (object_name);
7356 finished_annex = xstrdup (annex ? annex : "");
7357 finished_offset = offset + i;
7358 }
7359
7360 return i;
7361 }
7362
7363 static LONGEST
7364 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7365 const char *annex, gdb_byte *readbuf,
7366 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7367 {
7368 struct remote_state *rs;
7369 int i;
7370 char *p2;
7371 char query_type;
7372
7373 set_general_thread (inferior_ptid);
7374
7375 rs = get_remote_state ();
7376
7377 /* Handle memory using the standard memory routines. */
7378 if (object == TARGET_OBJECT_MEMORY)
7379 {
7380 int xfered;
7381 errno = 0;
7382
7383 /* If the remote target is connected but not running, we should
7384 pass this request down to a lower stratum (e.g. the executable
7385 file). */
7386 if (!target_has_execution)
7387 return 0;
7388
7389 if (writebuf != NULL)
7390 xfered = remote_write_bytes (offset, writebuf, len);
7391 else
7392 xfered = remote_read_bytes (offset, readbuf, len);
7393
7394 if (xfered > 0)
7395 return xfered;
7396 else if (xfered == 0 && errno == 0)
7397 return 0;
7398 else
7399 return -1;
7400 }
7401
7402 /* Handle SPU memory using qxfer packets. */
7403 if (object == TARGET_OBJECT_SPU)
7404 {
7405 if (readbuf)
7406 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7407 &remote_protocol_packets
7408 [PACKET_qXfer_spu_read]);
7409 else
7410 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7411 &remote_protocol_packets
7412 [PACKET_qXfer_spu_write]);
7413 }
7414
7415 /* Handle extra signal info using qxfer packets. */
7416 if (object == TARGET_OBJECT_SIGNAL_INFO)
7417 {
7418 if (readbuf)
7419 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7420 &remote_protocol_packets
7421 [PACKET_qXfer_siginfo_read]);
7422 else
7423 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7424 &remote_protocol_packets
7425 [PACKET_qXfer_siginfo_write]);
7426 }
7427
7428 /* Only handle flash writes. */
7429 if (writebuf != NULL)
7430 {
7431 LONGEST xfered;
7432
7433 switch (object)
7434 {
7435 case TARGET_OBJECT_FLASH:
7436 xfered = remote_flash_write (ops, offset, len, writebuf);
7437
7438 if (xfered > 0)
7439 return xfered;
7440 else if (xfered == 0 && errno == 0)
7441 return 0;
7442 else
7443 return -1;
7444
7445 default:
7446 return -1;
7447 }
7448 }
7449
7450 /* Map pre-existing objects onto letters. DO NOT do this for new
7451 objects!!! Instead specify new query packets. */
7452 switch (object)
7453 {
7454 case TARGET_OBJECT_AVR:
7455 query_type = 'R';
7456 break;
7457
7458 case TARGET_OBJECT_AUXV:
7459 gdb_assert (annex == NULL);
7460 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7461 &remote_protocol_packets[PACKET_qXfer_auxv]);
7462
7463 case TARGET_OBJECT_AVAILABLE_FEATURES:
7464 return remote_read_qxfer
7465 (ops, "features", annex, readbuf, offset, len,
7466 &remote_protocol_packets[PACKET_qXfer_features]);
7467
7468 case TARGET_OBJECT_LIBRARIES:
7469 return remote_read_qxfer
7470 (ops, "libraries", annex, readbuf, offset, len,
7471 &remote_protocol_packets[PACKET_qXfer_libraries]);
7472
7473 case TARGET_OBJECT_MEMORY_MAP:
7474 gdb_assert (annex == NULL);
7475 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7476 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7477
7478 case TARGET_OBJECT_OSDATA:
7479 /* Should only get here if we're connected. */
7480 gdb_assert (remote_desc);
7481 return remote_read_qxfer
7482 (ops, "osdata", annex, readbuf, offset, len,
7483 &remote_protocol_packets[PACKET_qXfer_osdata]);
7484
7485 default:
7486 return -1;
7487 }
7488
7489 /* Note: a zero OFFSET and LEN can be used to query the minimum
7490 buffer size. */
7491 if (offset == 0 && len == 0)
7492 return (get_remote_packet_size ());
7493 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7494 large enough let the caller deal with it. */
7495 if (len < get_remote_packet_size ())
7496 return -1;
7497 len = get_remote_packet_size ();
7498
7499 /* Except for querying the minimum buffer size, target must be open. */
7500 if (!remote_desc)
7501 error (_("remote query is only available after target open"));
7502
7503 gdb_assert (annex != NULL);
7504 gdb_assert (readbuf != NULL);
7505
7506 p2 = rs->buf;
7507 *p2++ = 'q';
7508 *p2++ = query_type;
7509
7510 /* We used one buffer char for the remote protocol q command and
7511 another for the query type. As the remote protocol encapsulation
7512 uses 4 chars plus one extra in case we are debugging
7513 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7514 string. */
7515 i = 0;
7516 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7517 {
7518 /* Bad caller may have sent forbidden characters. */
7519 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7520 *p2++ = annex[i];
7521 i++;
7522 }
7523 *p2 = '\0';
7524 gdb_assert (annex[i] == '\0');
7525
7526 i = putpkt (rs->buf);
7527 if (i < 0)
7528 return i;
7529
7530 getpkt (&rs->buf, &rs->buf_size, 0);
7531 strcpy ((char *) readbuf, rs->buf);
7532
7533 return strlen ((char *) readbuf);
7534 }
7535
7536 static int
7537 remote_search_memory (struct target_ops* ops,
7538 CORE_ADDR start_addr, ULONGEST search_space_len,
7539 const gdb_byte *pattern, ULONGEST pattern_len,
7540 CORE_ADDR *found_addrp)
7541 {
7542 struct remote_state *rs = get_remote_state ();
7543 int max_size = get_memory_write_packet_size ();
7544 struct packet_config *packet =
7545 &remote_protocol_packets[PACKET_qSearch_memory];
7546 /* number of packet bytes used to encode the pattern,
7547 this could be more than PATTERN_LEN due to escape characters */
7548 int escaped_pattern_len;
7549 /* amount of pattern that was encodable in the packet */
7550 int used_pattern_len;
7551 int i;
7552 int found;
7553 ULONGEST found_addr;
7554
7555 /* Don't go to the target if we don't have to.
7556 This is done before checking packet->support to avoid the possibility that
7557 a success for this edge case means the facility works in general. */
7558 if (pattern_len > search_space_len)
7559 return 0;
7560 if (pattern_len == 0)
7561 {
7562 *found_addrp = start_addr;
7563 return 1;
7564 }
7565
7566 /* If we already know the packet isn't supported, fall back to the simple
7567 way of searching memory. */
7568
7569 if (packet->support == PACKET_DISABLE)
7570 {
7571 /* Target doesn't provided special support, fall back and use the
7572 standard support (copy memory and do the search here). */
7573 return simple_search_memory (ops, start_addr, search_space_len,
7574 pattern, pattern_len, found_addrp);
7575 }
7576
7577 /* Insert header. */
7578 i = snprintf (rs->buf, max_size,
7579 "qSearch:memory:%s;%s;",
7580 paddr_nz (start_addr),
7581 phex_nz (search_space_len, sizeof (search_space_len)));
7582 max_size -= (i + 1);
7583
7584 /* Escape as much data as fits into rs->buf. */
7585 escaped_pattern_len =
7586 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7587 &used_pattern_len, max_size);
7588
7589 /* Bail if the pattern is too large. */
7590 if (used_pattern_len != pattern_len)
7591 error ("Pattern is too large to transmit to remote target.");
7592
7593 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7594 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7595 || packet_ok (rs->buf, packet) != PACKET_OK)
7596 {
7597 /* The request may not have worked because the command is not
7598 supported. If so, fall back to the simple way. */
7599 if (packet->support == PACKET_DISABLE)
7600 {
7601 return simple_search_memory (ops, start_addr, search_space_len,
7602 pattern, pattern_len, found_addrp);
7603 }
7604 return -1;
7605 }
7606
7607 if (rs->buf[0] == '0')
7608 found = 0;
7609 else if (rs->buf[0] == '1')
7610 {
7611 found = 1;
7612 if (rs->buf[1] != ',')
7613 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7614 unpack_varlen_hex (rs->buf + 2, &found_addr);
7615 *found_addrp = found_addr;
7616 }
7617 else
7618 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7619
7620 return found;
7621 }
7622
7623 static void
7624 remote_rcmd (char *command,
7625 struct ui_file *outbuf)
7626 {
7627 struct remote_state *rs = get_remote_state ();
7628 char *p = rs->buf;
7629
7630 if (!remote_desc)
7631 error (_("remote rcmd is only available after target open"));
7632
7633 /* Send a NULL command across as an empty command. */
7634 if (command == NULL)
7635 command = "";
7636
7637 /* The query prefix. */
7638 strcpy (rs->buf, "qRcmd,");
7639 p = strchr (rs->buf, '\0');
7640
7641 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7642 error (_("\"monitor\" command ``%s'' is too long."), command);
7643
7644 /* Encode the actual command. */
7645 bin2hex ((gdb_byte *) command, p, 0);
7646
7647 if (putpkt (rs->buf) < 0)
7648 error (_("Communication problem with target."));
7649
7650 /* get/display the response */
7651 while (1)
7652 {
7653 char *buf;
7654
7655 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7656 rs->buf[0] = '\0';
7657 getpkt (&rs->buf, &rs->buf_size, 0);
7658 buf = rs->buf;
7659 if (buf[0] == '\0')
7660 error (_("Target does not support this command."));
7661 if (buf[0] == 'O' && buf[1] != 'K')
7662 {
7663 remote_console_output (buf + 1); /* 'O' message from stub. */
7664 continue;
7665 }
7666 if (strcmp (buf, "OK") == 0)
7667 break;
7668 if (strlen (buf) == 3 && buf[0] == 'E'
7669 && isdigit (buf[1]) && isdigit (buf[2]))
7670 {
7671 error (_("Protocol error with Rcmd"));
7672 }
7673 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7674 {
7675 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7676 fputc_unfiltered (c, outbuf);
7677 }
7678 break;
7679 }
7680 }
7681
7682 static VEC(mem_region_s) *
7683 remote_memory_map (struct target_ops *ops)
7684 {
7685 VEC(mem_region_s) *result = NULL;
7686 char *text = target_read_stralloc (&current_target,
7687 TARGET_OBJECT_MEMORY_MAP, NULL);
7688
7689 if (text)
7690 {
7691 struct cleanup *back_to = make_cleanup (xfree, text);
7692 result = parse_memory_map (text);
7693 do_cleanups (back_to);
7694 }
7695
7696 return result;
7697 }
7698
7699 static void
7700 packet_command (char *args, int from_tty)
7701 {
7702 struct remote_state *rs = get_remote_state ();
7703
7704 if (!remote_desc)
7705 error (_("command can only be used with remote target"));
7706
7707 if (!args)
7708 error (_("remote-packet command requires packet text as argument"));
7709
7710 puts_filtered ("sending: ");
7711 print_packet (args);
7712 puts_filtered ("\n");
7713 putpkt (args);
7714
7715 getpkt (&rs->buf, &rs->buf_size, 0);
7716 puts_filtered ("received: ");
7717 print_packet (rs->buf);
7718 puts_filtered ("\n");
7719 }
7720
7721 #if 0
7722 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7723
7724 static void display_thread_info (struct gdb_ext_thread_info *info);
7725
7726 static void threadset_test_cmd (char *cmd, int tty);
7727
7728 static void threadalive_test (char *cmd, int tty);
7729
7730 static void threadlist_test_cmd (char *cmd, int tty);
7731
7732 int get_and_display_threadinfo (threadref *ref);
7733
7734 static void threadinfo_test_cmd (char *cmd, int tty);
7735
7736 static int thread_display_step (threadref *ref, void *context);
7737
7738 static void threadlist_update_test_cmd (char *cmd, int tty);
7739
7740 static void init_remote_threadtests (void);
7741
7742 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7743
7744 static void
7745 threadset_test_cmd (char *cmd, int tty)
7746 {
7747 int sample_thread = SAMPLE_THREAD;
7748
7749 printf_filtered (_("Remote threadset test\n"));
7750 set_general_thread (sample_thread);
7751 }
7752
7753
7754 static void
7755 threadalive_test (char *cmd, int tty)
7756 {
7757 int sample_thread = SAMPLE_THREAD;
7758 int pid = ptid_get_pid (inferior_ptid);
7759 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7760
7761 if (remote_thread_alive (ptid))
7762 printf_filtered ("PASS: Thread alive test\n");
7763 else
7764 printf_filtered ("FAIL: Thread alive test\n");
7765 }
7766
7767 void output_threadid (char *title, threadref *ref);
7768
7769 void
7770 output_threadid (char *title, threadref *ref)
7771 {
7772 char hexid[20];
7773
7774 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7775 hexid[16] = 0;
7776 printf_filtered ("%s %s\n", title, (&hexid[0]));
7777 }
7778
7779 static void
7780 threadlist_test_cmd (char *cmd, int tty)
7781 {
7782 int startflag = 1;
7783 threadref nextthread;
7784 int done, result_count;
7785 threadref threadlist[3];
7786
7787 printf_filtered ("Remote Threadlist test\n");
7788 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7789 &result_count, &threadlist[0]))
7790 printf_filtered ("FAIL: threadlist test\n");
7791 else
7792 {
7793 threadref *scan = threadlist;
7794 threadref *limit = scan + result_count;
7795
7796 while (scan < limit)
7797 output_threadid (" thread ", scan++);
7798 }
7799 }
7800
7801 void
7802 display_thread_info (struct gdb_ext_thread_info *info)
7803 {
7804 output_threadid ("Threadid: ", &info->threadid);
7805 printf_filtered ("Name: %s\n ", info->shortname);
7806 printf_filtered ("State: %s\n", info->display);
7807 printf_filtered ("other: %s\n\n", info->more_display);
7808 }
7809
7810 int
7811 get_and_display_threadinfo (threadref *ref)
7812 {
7813 int result;
7814 int set;
7815 struct gdb_ext_thread_info threadinfo;
7816
7817 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7818 | TAG_MOREDISPLAY | TAG_DISPLAY;
7819 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7820 display_thread_info (&threadinfo);
7821 return result;
7822 }
7823
7824 static void
7825 threadinfo_test_cmd (char *cmd, int tty)
7826 {
7827 int athread = SAMPLE_THREAD;
7828 threadref thread;
7829 int set;
7830
7831 int_to_threadref (&thread, athread);
7832 printf_filtered ("Remote Threadinfo test\n");
7833 if (!get_and_display_threadinfo (&thread))
7834 printf_filtered ("FAIL cannot get thread info\n");
7835 }
7836
7837 static int
7838 thread_display_step (threadref *ref, void *context)
7839 {
7840 /* output_threadid(" threadstep ",ref); *//* simple test */
7841 return get_and_display_threadinfo (ref);
7842 }
7843
7844 static void
7845 threadlist_update_test_cmd (char *cmd, int tty)
7846 {
7847 printf_filtered ("Remote Threadlist update test\n");
7848 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7849 }
7850
7851 static void
7852 init_remote_threadtests (void)
7853 {
7854 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7855 Fetch and print the remote list of thread identifiers, one pkt only"));
7856 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7857 _("Fetch and display info about one thread"));
7858 add_com ("tset", class_obscure, threadset_test_cmd,
7859 _("Test setting to a different thread"));
7860 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7861 _("Iterate through updating all remote thread info"));
7862 add_com ("talive", class_obscure, threadalive_test,
7863 _(" Remote thread alive test "));
7864 }
7865
7866 #endif /* 0 */
7867
7868 /* Convert a thread ID to a string. Returns the string in a static
7869 buffer. */
7870
7871 static char *
7872 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7873 {
7874 static char buf[64];
7875 struct remote_state *rs = get_remote_state ();
7876
7877 if (ptid_equal (magic_null_ptid, ptid))
7878 {
7879 xsnprintf (buf, sizeof buf, "Thread <main>");
7880 return buf;
7881 }
7882 else if (remote_multi_process_p (rs)
7883 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7884 {
7885 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7886 ptid_get_pid (ptid), ptid_get_tid (ptid));
7887 return buf;
7888 }
7889 else if (ptid_get_tid (ptid) != 0)
7890 {
7891 xsnprintf (buf, sizeof buf, "Thread %ld",
7892 ptid_get_tid (ptid));
7893 return buf;
7894 }
7895
7896 return normal_pid_to_str (ptid);
7897 }
7898
7899 /* Get the address of the thread local variable in OBJFILE which is
7900 stored at OFFSET within the thread local storage for thread PTID. */
7901
7902 static CORE_ADDR
7903 remote_get_thread_local_address (struct target_ops *ops,
7904 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7905 {
7906 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7907 {
7908 struct remote_state *rs = get_remote_state ();
7909 char *p = rs->buf;
7910 char *endp = rs->buf + get_remote_packet_size ();
7911 enum packet_result result;
7912
7913 strcpy (p, "qGetTLSAddr:");
7914 p += strlen (p);
7915 p = write_ptid (p, endp, ptid);
7916 *p++ = ',';
7917 p += hexnumstr (p, offset);
7918 *p++ = ',';
7919 p += hexnumstr (p, lm);
7920 *p++ = '\0';
7921
7922 putpkt (rs->buf);
7923 getpkt (&rs->buf, &rs->buf_size, 0);
7924 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7925 if (result == PACKET_OK)
7926 {
7927 ULONGEST result;
7928
7929 unpack_varlen_hex (rs->buf, &result);
7930 return result;
7931 }
7932 else if (result == PACKET_UNKNOWN)
7933 throw_error (TLS_GENERIC_ERROR,
7934 _("Remote target doesn't support qGetTLSAddr packet"));
7935 else
7936 throw_error (TLS_GENERIC_ERROR,
7937 _("Remote target failed to process qGetTLSAddr request"));
7938 }
7939 else
7940 throw_error (TLS_GENERIC_ERROR,
7941 _("TLS not supported or disabled on this target"));
7942 /* Not reached. */
7943 return 0;
7944 }
7945
7946 /* Support for inferring a target description based on the current
7947 architecture and the size of a 'g' packet. While the 'g' packet
7948 can have any size (since optional registers can be left off the
7949 end), some sizes are easily recognizable given knowledge of the
7950 approximate architecture. */
7951
7952 struct remote_g_packet_guess
7953 {
7954 int bytes;
7955 const struct target_desc *tdesc;
7956 };
7957 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7958 DEF_VEC_O(remote_g_packet_guess_s);
7959
7960 struct remote_g_packet_data
7961 {
7962 VEC(remote_g_packet_guess_s) *guesses;
7963 };
7964
7965 static struct gdbarch_data *remote_g_packet_data_handle;
7966
7967 static void *
7968 remote_g_packet_data_init (struct obstack *obstack)
7969 {
7970 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7971 }
7972
7973 void
7974 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7975 const struct target_desc *tdesc)
7976 {
7977 struct remote_g_packet_data *data
7978 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7979 struct remote_g_packet_guess new_guess, *guess;
7980 int ix;
7981
7982 gdb_assert (tdesc != NULL);
7983
7984 for (ix = 0;
7985 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7986 ix++)
7987 if (guess->bytes == bytes)
7988 internal_error (__FILE__, __LINE__,
7989 "Duplicate g packet description added for size %d",
7990 bytes);
7991
7992 new_guess.bytes = bytes;
7993 new_guess.tdesc = tdesc;
7994 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7995 }
7996
7997 /* Return 1 if remote_read_description would do anything on this target
7998 and architecture, 0 otherwise. */
7999
8000 static int
8001 remote_read_description_p (struct target_ops *target)
8002 {
8003 struct remote_g_packet_data *data
8004 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8005
8006 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8007 return 1;
8008
8009 return 0;
8010 }
8011
8012 static const struct target_desc *
8013 remote_read_description (struct target_ops *target)
8014 {
8015 struct remote_g_packet_data *data
8016 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8017
8018 /* Do not try this during initial connection, when we do not know
8019 whether there is a running but stopped thread. */
8020 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8021 return NULL;
8022
8023 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8024 {
8025 struct remote_g_packet_guess *guess;
8026 int ix;
8027 int bytes = send_g_packet ();
8028
8029 for (ix = 0;
8030 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8031 ix++)
8032 if (guess->bytes == bytes)
8033 return guess->tdesc;
8034
8035 /* We discard the g packet. A minor optimization would be to
8036 hold on to it, and fill the register cache once we have selected
8037 an architecture, but it's too tricky to do safely. */
8038 }
8039
8040 return NULL;
8041 }
8042
8043 /* Remote file transfer support. This is host-initiated I/O, not
8044 target-initiated; for target-initiated, see remote-fileio.c. */
8045
8046 /* If *LEFT is at least the length of STRING, copy STRING to
8047 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8048 decrease *LEFT. Otherwise raise an error. */
8049
8050 static void
8051 remote_buffer_add_string (char **buffer, int *left, char *string)
8052 {
8053 int len = strlen (string);
8054
8055 if (len > *left)
8056 error (_("Packet too long for target."));
8057
8058 memcpy (*buffer, string, len);
8059 *buffer += len;
8060 *left -= len;
8061
8062 /* NUL-terminate the buffer as a convenience, if there is
8063 room. */
8064 if (*left)
8065 **buffer = '\0';
8066 }
8067
8068 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8069 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8070 decrease *LEFT. Otherwise raise an error. */
8071
8072 static void
8073 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8074 int len)
8075 {
8076 if (2 * len > *left)
8077 error (_("Packet too long for target."));
8078
8079 bin2hex (bytes, *buffer, len);
8080 *buffer += 2 * len;
8081 *left -= 2 * len;
8082
8083 /* NUL-terminate the buffer as a convenience, if there is
8084 room. */
8085 if (*left)
8086 **buffer = '\0';
8087 }
8088
8089 /* If *LEFT is large enough, convert VALUE to hex and add it to
8090 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8091 decrease *LEFT. Otherwise raise an error. */
8092
8093 static void
8094 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8095 {
8096 int len = hexnumlen (value);
8097
8098 if (len > *left)
8099 error (_("Packet too long for target."));
8100
8101 hexnumstr (*buffer, value);
8102 *buffer += len;
8103 *left -= len;
8104
8105 /* NUL-terminate the buffer as a convenience, if there is
8106 room. */
8107 if (*left)
8108 **buffer = '\0';
8109 }
8110
8111 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8112 value, *REMOTE_ERRNO to the remote error number or zero if none
8113 was included, and *ATTACHMENT to point to the start of the annex
8114 if any. The length of the packet isn't needed here; there may
8115 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8116
8117 Return 0 if the packet could be parsed, -1 if it could not. If
8118 -1 is returned, the other variables may not be initialized. */
8119
8120 static int
8121 remote_hostio_parse_result (char *buffer, int *retcode,
8122 int *remote_errno, char **attachment)
8123 {
8124 char *p, *p2;
8125
8126 *remote_errno = 0;
8127 *attachment = NULL;
8128
8129 if (buffer[0] != 'F')
8130 return -1;
8131
8132 errno = 0;
8133 *retcode = strtol (&buffer[1], &p, 16);
8134 if (errno != 0 || p == &buffer[1])
8135 return -1;
8136
8137 /* Check for ",errno". */
8138 if (*p == ',')
8139 {
8140 errno = 0;
8141 *remote_errno = strtol (p + 1, &p2, 16);
8142 if (errno != 0 || p + 1 == p2)
8143 return -1;
8144 p = p2;
8145 }
8146
8147 /* Check for ";attachment". If there is no attachment, the
8148 packet should end here. */
8149 if (*p == ';')
8150 {
8151 *attachment = p + 1;
8152 return 0;
8153 }
8154 else if (*p == '\0')
8155 return 0;
8156 else
8157 return -1;
8158 }
8159
8160 /* Send a prepared I/O packet to the target and read its response.
8161 The prepared packet is in the global RS->BUF before this function
8162 is called, and the answer is there when we return.
8163
8164 COMMAND_BYTES is the length of the request to send, which may include
8165 binary data. WHICH_PACKET is the packet configuration to check
8166 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8167 is set to the error number and -1 is returned. Otherwise the value
8168 returned by the function is returned.
8169
8170 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8171 attachment is expected; an error will be reported if there's a
8172 mismatch. If one is found, *ATTACHMENT will be set to point into
8173 the packet buffer and *ATTACHMENT_LEN will be set to the
8174 attachment's length. */
8175
8176 static int
8177 remote_hostio_send_command (int command_bytes, int which_packet,
8178 int *remote_errno, char **attachment,
8179 int *attachment_len)
8180 {
8181 struct remote_state *rs = get_remote_state ();
8182 int ret, bytes_read;
8183 char *attachment_tmp;
8184
8185 if (!remote_desc
8186 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8187 {
8188 *remote_errno = FILEIO_ENOSYS;
8189 return -1;
8190 }
8191
8192 putpkt_binary (rs->buf, command_bytes);
8193 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8194
8195 /* If it timed out, something is wrong. Don't try to parse the
8196 buffer. */
8197 if (bytes_read < 0)
8198 {
8199 *remote_errno = FILEIO_EINVAL;
8200 return -1;
8201 }
8202
8203 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8204 {
8205 case PACKET_ERROR:
8206 *remote_errno = FILEIO_EINVAL;
8207 return -1;
8208 case PACKET_UNKNOWN:
8209 *remote_errno = FILEIO_ENOSYS;
8210 return -1;
8211 case PACKET_OK:
8212 break;
8213 }
8214
8215 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8216 &attachment_tmp))
8217 {
8218 *remote_errno = FILEIO_EINVAL;
8219 return -1;
8220 }
8221
8222 /* Make sure we saw an attachment if and only if we expected one. */
8223 if ((attachment_tmp == NULL && attachment != NULL)
8224 || (attachment_tmp != NULL && attachment == NULL))
8225 {
8226 *remote_errno = FILEIO_EINVAL;
8227 return -1;
8228 }
8229
8230 /* If an attachment was found, it must point into the packet buffer;
8231 work out how many bytes there were. */
8232 if (attachment_tmp != NULL)
8233 {
8234 *attachment = attachment_tmp;
8235 *attachment_len = bytes_read - (*attachment - rs->buf);
8236 }
8237
8238 return ret;
8239 }
8240
8241 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8242 remote file descriptor, or -1 if an error occurs (and set
8243 *REMOTE_ERRNO). */
8244
8245 static int
8246 remote_hostio_open (const char *filename, int flags, int mode,
8247 int *remote_errno)
8248 {
8249 struct remote_state *rs = get_remote_state ();
8250 char *p = rs->buf;
8251 int left = get_remote_packet_size () - 1;
8252
8253 remote_buffer_add_string (&p, &left, "vFile:open:");
8254
8255 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8256 strlen (filename));
8257 remote_buffer_add_string (&p, &left, ",");
8258
8259 remote_buffer_add_int (&p, &left, flags);
8260 remote_buffer_add_string (&p, &left, ",");
8261
8262 remote_buffer_add_int (&p, &left, mode);
8263
8264 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8265 remote_errno, NULL, NULL);
8266 }
8267
8268 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8269 Return the number of bytes written, or -1 if an error occurs (and
8270 set *REMOTE_ERRNO). */
8271
8272 static int
8273 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8274 ULONGEST offset, int *remote_errno)
8275 {
8276 struct remote_state *rs = get_remote_state ();
8277 char *p = rs->buf;
8278 int left = get_remote_packet_size ();
8279 int out_len;
8280
8281 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8282
8283 remote_buffer_add_int (&p, &left, fd);
8284 remote_buffer_add_string (&p, &left, ",");
8285
8286 remote_buffer_add_int (&p, &left, offset);
8287 remote_buffer_add_string (&p, &left, ",");
8288
8289 p += remote_escape_output (write_buf, len, p, &out_len,
8290 get_remote_packet_size () - (p - rs->buf));
8291
8292 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8293 remote_errno, NULL, NULL);
8294 }
8295
8296 /* Read up to LEN bytes FD on the remote target into READ_BUF
8297 Return the number of bytes read, or -1 if an error occurs (and
8298 set *REMOTE_ERRNO). */
8299
8300 static int
8301 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8302 ULONGEST offset, int *remote_errno)
8303 {
8304 struct remote_state *rs = get_remote_state ();
8305 char *p = rs->buf;
8306 char *attachment;
8307 int left = get_remote_packet_size ();
8308 int ret, attachment_len;
8309 int read_len;
8310
8311 remote_buffer_add_string (&p, &left, "vFile:pread:");
8312
8313 remote_buffer_add_int (&p, &left, fd);
8314 remote_buffer_add_string (&p, &left, ",");
8315
8316 remote_buffer_add_int (&p, &left, len);
8317 remote_buffer_add_string (&p, &left, ",");
8318
8319 remote_buffer_add_int (&p, &left, offset);
8320
8321 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8322 remote_errno, &attachment,
8323 &attachment_len);
8324
8325 if (ret < 0)
8326 return ret;
8327
8328 read_len = remote_unescape_input (attachment, attachment_len,
8329 read_buf, len);
8330 if (read_len != ret)
8331 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8332
8333 return ret;
8334 }
8335
8336 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8337 (and set *REMOTE_ERRNO). */
8338
8339 static int
8340 remote_hostio_close (int fd, int *remote_errno)
8341 {
8342 struct remote_state *rs = get_remote_state ();
8343 char *p = rs->buf;
8344 int left = get_remote_packet_size () - 1;
8345
8346 remote_buffer_add_string (&p, &left, "vFile:close:");
8347
8348 remote_buffer_add_int (&p, &left, fd);
8349
8350 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8351 remote_errno, NULL, NULL);
8352 }
8353
8354 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8355 occurs (and set *REMOTE_ERRNO). */
8356
8357 static int
8358 remote_hostio_unlink (const char *filename, int *remote_errno)
8359 {
8360 struct remote_state *rs = get_remote_state ();
8361 char *p = rs->buf;
8362 int left = get_remote_packet_size () - 1;
8363
8364 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8365
8366 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8367 strlen (filename));
8368
8369 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8370 remote_errno, NULL, NULL);
8371 }
8372
8373 static int
8374 remote_fileio_errno_to_host (int errnum)
8375 {
8376 switch (errnum)
8377 {
8378 case FILEIO_EPERM:
8379 return EPERM;
8380 case FILEIO_ENOENT:
8381 return ENOENT;
8382 case FILEIO_EINTR:
8383 return EINTR;
8384 case FILEIO_EIO:
8385 return EIO;
8386 case FILEIO_EBADF:
8387 return EBADF;
8388 case FILEIO_EACCES:
8389 return EACCES;
8390 case FILEIO_EFAULT:
8391 return EFAULT;
8392 case FILEIO_EBUSY:
8393 return EBUSY;
8394 case FILEIO_EEXIST:
8395 return EEXIST;
8396 case FILEIO_ENODEV:
8397 return ENODEV;
8398 case FILEIO_ENOTDIR:
8399 return ENOTDIR;
8400 case FILEIO_EISDIR:
8401 return EISDIR;
8402 case FILEIO_EINVAL:
8403 return EINVAL;
8404 case FILEIO_ENFILE:
8405 return ENFILE;
8406 case FILEIO_EMFILE:
8407 return EMFILE;
8408 case FILEIO_EFBIG:
8409 return EFBIG;
8410 case FILEIO_ENOSPC:
8411 return ENOSPC;
8412 case FILEIO_ESPIPE:
8413 return ESPIPE;
8414 case FILEIO_EROFS:
8415 return EROFS;
8416 case FILEIO_ENOSYS:
8417 return ENOSYS;
8418 case FILEIO_ENAMETOOLONG:
8419 return ENAMETOOLONG;
8420 }
8421 return -1;
8422 }
8423
8424 static char *
8425 remote_hostio_error (int errnum)
8426 {
8427 int host_error = remote_fileio_errno_to_host (errnum);
8428
8429 if (host_error == -1)
8430 error (_("Unknown remote I/O error %d"), errnum);
8431 else
8432 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8433 }
8434
8435 static void
8436 remote_hostio_close_cleanup (void *opaque)
8437 {
8438 int fd = *(int *) opaque;
8439 int remote_errno;
8440
8441 remote_hostio_close (fd, &remote_errno);
8442 }
8443
8444
8445 static void *
8446 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8447 {
8448 const char *filename = bfd_get_filename (abfd);
8449 int fd, remote_errno;
8450 int *stream;
8451
8452 gdb_assert (remote_filename_p (filename));
8453
8454 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8455 if (fd == -1)
8456 {
8457 errno = remote_fileio_errno_to_host (remote_errno);
8458 bfd_set_error (bfd_error_system_call);
8459 return NULL;
8460 }
8461
8462 stream = xmalloc (sizeof (int));
8463 *stream = fd;
8464 return stream;
8465 }
8466
8467 static int
8468 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8469 {
8470 int fd = *(int *)stream;
8471 int remote_errno;
8472
8473 xfree (stream);
8474
8475 /* Ignore errors on close; these may happen if the remote
8476 connection was already torn down. */
8477 remote_hostio_close (fd, &remote_errno);
8478
8479 return 1;
8480 }
8481
8482 static file_ptr
8483 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8484 file_ptr nbytes, file_ptr offset)
8485 {
8486 int fd = *(int *)stream;
8487 int remote_errno;
8488 file_ptr pos, bytes;
8489
8490 pos = 0;
8491 while (nbytes > pos)
8492 {
8493 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8494 offset + pos, &remote_errno);
8495 if (bytes == 0)
8496 /* Success, but no bytes, means end-of-file. */
8497 break;
8498 if (bytes == -1)
8499 {
8500 errno = remote_fileio_errno_to_host (remote_errno);
8501 bfd_set_error (bfd_error_system_call);
8502 return -1;
8503 }
8504
8505 pos += bytes;
8506 }
8507
8508 return pos;
8509 }
8510
8511 static int
8512 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8513 {
8514 /* FIXME: We should probably implement remote_hostio_stat. */
8515 sb->st_size = INT_MAX;
8516 return 0;
8517 }
8518
8519 int
8520 remote_filename_p (const char *filename)
8521 {
8522 return strncmp (filename, "remote:", 7) == 0;
8523 }
8524
8525 bfd *
8526 remote_bfd_open (const char *remote_file, const char *target)
8527 {
8528 return bfd_openr_iovec (remote_file, target,
8529 remote_bfd_iovec_open, NULL,
8530 remote_bfd_iovec_pread,
8531 remote_bfd_iovec_close,
8532 remote_bfd_iovec_stat);
8533 }
8534
8535 void
8536 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8537 {
8538 struct cleanup *back_to, *close_cleanup;
8539 int retcode, fd, remote_errno, bytes, io_size;
8540 FILE *file;
8541 gdb_byte *buffer;
8542 int bytes_in_buffer;
8543 int saw_eof;
8544 ULONGEST offset;
8545
8546 if (!remote_desc)
8547 error (_("command can only be used with remote target"));
8548
8549 file = fopen (local_file, "rb");
8550 if (file == NULL)
8551 perror_with_name (local_file);
8552 back_to = make_cleanup_fclose (file);
8553
8554 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8555 | FILEIO_O_TRUNC),
8556 0700, &remote_errno);
8557 if (fd == -1)
8558 remote_hostio_error (remote_errno);
8559
8560 /* Send up to this many bytes at once. They won't all fit in the
8561 remote packet limit, so we'll transfer slightly fewer. */
8562 io_size = get_remote_packet_size ();
8563 buffer = xmalloc (io_size);
8564 make_cleanup (xfree, buffer);
8565
8566 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8567
8568 bytes_in_buffer = 0;
8569 saw_eof = 0;
8570 offset = 0;
8571 while (bytes_in_buffer || !saw_eof)
8572 {
8573 if (!saw_eof)
8574 {
8575 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8576 file);
8577 if (bytes == 0)
8578 {
8579 if (ferror (file))
8580 error (_("Error reading %s."), local_file);
8581 else
8582 {
8583 /* EOF. Unless there is something still in the
8584 buffer from the last iteration, we are done. */
8585 saw_eof = 1;
8586 if (bytes_in_buffer == 0)
8587 break;
8588 }
8589 }
8590 }
8591 else
8592 bytes = 0;
8593
8594 bytes += bytes_in_buffer;
8595 bytes_in_buffer = 0;
8596
8597 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8598
8599 if (retcode < 0)
8600 remote_hostio_error (remote_errno);
8601 else if (retcode == 0)
8602 error (_("Remote write of %d bytes returned 0!"), bytes);
8603 else if (retcode < bytes)
8604 {
8605 /* Short write. Save the rest of the read data for the next
8606 write. */
8607 bytes_in_buffer = bytes - retcode;
8608 memmove (buffer, buffer + retcode, bytes_in_buffer);
8609 }
8610
8611 offset += retcode;
8612 }
8613
8614 discard_cleanups (close_cleanup);
8615 if (remote_hostio_close (fd, &remote_errno))
8616 remote_hostio_error (remote_errno);
8617
8618 if (from_tty)
8619 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8620 do_cleanups (back_to);
8621 }
8622
8623 void
8624 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8625 {
8626 struct cleanup *back_to, *close_cleanup;
8627 int retcode, fd, remote_errno, bytes, io_size;
8628 FILE *file;
8629 gdb_byte *buffer;
8630 ULONGEST offset;
8631
8632 if (!remote_desc)
8633 error (_("command can only be used with remote target"));
8634
8635 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8636 if (fd == -1)
8637 remote_hostio_error (remote_errno);
8638
8639 file = fopen (local_file, "wb");
8640 if (file == NULL)
8641 perror_with_name (local_file);
8642 back_to = make_cleanup_fclose (file);
8643
8644 /* Send up to this many bytes at once. They won't all fit in the
8645 remote packet limit, so we'll transfer slightly fewer. */
8646 io_size = get_remote_packet_size ();
8647 buffer = xmalloc (io_size);
8648 make_cleanup (xfree, buffer);
8649
8650 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8651
8652 offset = 0;
8653 while (1)
8654 {
8655 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8656 if (bytes == 0)
8657 /* Success, but no bytes, means end-of-file. */
8658 break;
8659 if (bytes == -1)
8660 remote_hostio_error (remote_errno);
8661
8662 offset += bytes;
8663
8664 bytes = fwrite (buffer, 1, bytes, file);
8665 if (bytes == 0)
8666 perror_with_name (local_file);
8667 }
8668
8669 discard_cleanups (close_cleanup);
8670 if (remote_hostio_close (fd, &remote_errno))
8671 remote_hostio_error (remote_errno);
8672
8673 if (from_tty)
8674 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8675 do_cleanups (back_to);
8676 }
8677
8678 void
8679 remote_file_delete (const char *remote_file, int from_tty)
8680 {
8681 int retcode, remote_errno;
8682
8683 if (!remote_desc)
8684 error (_("command can only be used with remote target"));
8685
8686 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8687 if (retcode == -1)
8688 remote_hostio_error (remote_errno);
8689
8690 if (from_tty)
8691 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8692 }
8693
8694 static void
8695 remote_put_command (char *args, int from_tty)
8696 {
8697 struct cleanup *back_to;
8698 char **argv;
8699
8700 if (args == NULL)
8701 error_no_arg (_("file to put"));
8702
8703 argv = gdb_buildargv (args);
8704 back_to = make_cleanup_freeargv (argv);
8705 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8706 error (_("Invalid parameters to remote put"));
8707
8708 remote_file_put (argv[0], argv[1], from_tty);
8709
8710 do_cleanups (back_to);
8711 }
8712
8713 static void
8714 remote_get_command (char *args, int from_tty)
8715 {
8716 struct cleanup *back_to;
8717 char **argv;
8718
8719 if (args == NULL)
8720 error_no_arg (_("file to get"));
8721
8722 argv = gdb_buildargv (args);
8723 back_to = make_cleanup_freeargv (argv);
8724 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8725 error (_("Invalid parameters to remote get"));
8726
8727 remote_file_get (argv[0], argv[1], from_tty);
8728
8729 do_cleanups (back_to);
8730 }
8731
8732 static void
8733 remote_delete_command (char *args, int from_tty)
8734 {
8735 struct cleanup *back_to;
8736 char **argv;
8737
8738 if (args == NULL)
8739 error_no_arg (_("file to delete"));
8740
8741 argv = gdb_buildargv (args);
8742 back_to = make_cleanup_freeargv (argv);
8743 if (argv[0] == NULL || argv[1] != NULL)
8744 error (_("Invalid parameters to remote delete"));
8745
8746 remote_file_delete (argv[0], from_tty);
8747
8748 do_cleanups (back_to);
8749 }
8750
8751 static void
8752 remote_command (char *args, int from_tty)
8753 {
8754 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8755 }
8756
8757 static int remote_target_can_reverse = 1;
8758
8759 static int
8760 remote_can_execute_reverse (void)
8761 {
8762 return remote_target_can_reverse;
8763 }
8764
8765 static int
8766 remote_supports_non_stop (void)
8767 {
8768 return 1;
8769 }
8770
8771 static int
8772 remote_supports_multi_process (void)
8773 {
8774 struct remote_state *rs = get_remote_state ();
8775 return remote_multi_process_p (rs);
8776 }
8777
8778 static void
8779 init_remote_ops (void)
8780 {
8781 remote_ops.to_shortname = "remote";
8782 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8783 remote_ops.to_doc =
8784 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8785 Specify the serial device it is connected to\n\
8786 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8787 remote_ops.to_open = remote_open;
8788 remote_ops.to_close = remote_close;
8789 remote_ops.to_detach = remote_detach;
8790 remote_ops.to_disconnect = remote_disconnect;
8791 remote_ops.to_resume = remote_resume;
8792 remote_ops.to_wait = remote_wait;
8793 remote_ops.to_fetch_registers = remote_fetch_registers;
8794 remote_ops.to_store_registers = remote_store_registers;
8795 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8796 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8797 remote_ops.to_files_info = remote_files_info;
8798 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8799 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8800 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8801 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8802 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8803 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8804 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8805 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8806 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8807 remote_ops.to_kill = remote_kill;
8808 remote_ops.to_load = generic_load;
8809 remote_ops.to_mourn_inferior = remote_mourn;
8810 remote_ops.to_thread_alive = remote_thread_alive;
8811 remote_ops.to_find_new_threads = remote_threads_info;
8812 remote_ops.to_pid_to_str = remote_pid_to_str;
8813 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8814 remote_ops.to_stop = remote_stop;
8815 remote_ops.to_xfer_partial = remote_xfer_partial;
8816 remote_ops.to_rcmd = remote_rcmd;
8817 remote_ops.to_log_command = serial_log_command;
8818 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8819 remote_ops.to_stratum = process_stratum;
8820 remote_ops.to_has_all_memory = 1;
8821 remote_ops.to_has_memory = 1;
8822 remote_ops.to_has_stack = 1;
8823 remote_ops.to_has_registers = 1;
8824 remote_ops.to_has_execution = 1;
8825 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8826 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8827 remote_ops.to_magic = OPS_MAGIC;
8828 remote_ops.to_memory_map = remote_memory_map;
8829 remote_ops.to_flash_erase = remote_flash_erase;
8830 remote_ops.to_flash_done = remote_flash_done;
8831 remote_ops.to_read_description = remote_read_description;
8832 remote_ops.to_search_memory = remote_search_memory;
8833 remote_ops.to_can_async_p = remote_can_async_p;
8834 remote_ops.to_is_async_p = remote_is_async_p;
8835 remote_ops.to_async = remote_async;
8836 remote_ops.to_async_mask = remote_async_mask;
8837 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8838 remote_ops.to_terminal_ours = remote_terminal_ours;
8839 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8840 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8841 }
8842
8843 /* Set up the extended remote vector by making a copy of the standard
8844 remote vector and adding to it. */
8845
8846 static void
8847 init_extended_remote_ops (void)
8848 {
8849 extended_remote_ops = remote_ops;
8850
8851 extended_remote_ops.to_shortname = "extended-remote";
8852 extended_remote_ops.to_longname =
8853 "Extended remote serial target in gdb-specific protocol";
8854 extended_remote_ops.to_doc =
8855 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8856 Specify the serial device it is connected to (e.g. /dev/ttya).";
8857 extended_remote_ops.to_open = extended_remote_open;
8858 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8859 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8860 extended_remote_ops.to_detach = extended_remote_detach;
8861 extended_remote_ops.to_attach = extended_remote_attach;
8862 extended_remote_ops.to_kill = extended_remote_kill;
8863 }
8864
8865 static int
8866 remote_can_async_p (void)
8867 {
8868 if (!target_async_permitted)
8869 /* We only enable async when the user specifically asks for it. */
8870 return 0;
8871
8872 /* We're async whenever the serial device is. */
8873 return remote_async_mask_value && serial_can_async_p (remote_desc);
8874 }
8875
8876 static int
8877 remote_is_async_p (void)
8878 {
8879 if (!target_async_permitted)
8880 /* We only enable async when the user specifically asks for it. */
8881 return 0;
8882
8883 /* We're async whenever the serial device is. */
8884 return remote_async_mask_value && serial_is_async_p (remote_desc);
8885 }
8886
8887 /* Pass the SERIAL event on and up to the client. One day this code
8888 will be able to delay notifying the client of an event until the
8889 point where an entire packet has been received. */
8890
8891 static void (*async_client_callback) (enum inferior_event_type event_type,
8892 void *context);
8893 static void *async_client_context;
8894 static serial_event_ftype remote_async_serial_handler;
8895
8896 static void
8897 remote_async_serial_handler (struct serial *scb, void *context)
8898 {
8899 /* Don't propogate error information up to the client. Instead let
8900 the client find out about the error by querying the target. */
8901 async_client_callback (INF_REG_EVENT, async_client_context);
8902 }
8903
8904 static void
8905 remote_async_inferior_event_handler (gdb_client_data data)
8906 {
8907 inferior_event_handler (INF_REG_EVENT, NULL);
8908 }
8909
8910 static void
8911 remote_async_get_pending_events_handler (gdb_client_data data)
8912 {
8913 remote_get_pending_stop_replies ();
8914 }
8915
8916 static void
8917 remote_async (void (*callback) (enum inferior_event_type event_type,
8918 void *context), void *context)
8919 {
8920 if (remote_async_mask_value == 0)
8921 internal_error (__FILE__, __LINE__,
8922 _("Calling remote_async when async is masked"));
8923
8924 if (callback != NULL)
8925 {
8926 serial_async (remote_desc, remote_async_serial_handler, NULL);
8927 async_client_callback = callback;
8928 async_client_context = context;
8929 }
8930 else
8931 serial_async (remote_desc, NULL, NULL);
8932 }
8933
8934 static int
8935 remote_async_mask (int new_mask)
8936 {
8937 int curr_mask = remote_async_mask_value;
8938 remote_async_mask_value = new_mask;
8939 return curr_mask;
8940 }
8941
8942 static void
8943 set_remote_cmd (char *args, int from_tty)
8944 {
8945 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8946 }
8947
8948 static void
8949 show_remote_cmd (char *args, int from_tty)
8950 {
8951 /* We can't just use cmd_show_list here, because we want to skip
8952 the redundant "show remote Z-packet" and the legacy aliases. */
8953 struct cleanup *showlist_chain;
8954 struct cmd_list_element *list = remote_show_cmdlist;
8955
8956 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8957 for (; list != NULL; list = list->next)
8958 if (strcmp (list->name, "Z-packet") == 0)
8959 continue;
8960 else if (list->type == not_set_cmd)
8961 /* Alias commands are exactly like the original, except they
8962 don't have the normal type. */
8963 continue;
8964 else
8965 {
8966 struct cleanup *option_chain
8967 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8968 ui_out_field_string (uiout, "name", list->name);
8969 ui_out_text (uiout, ": ");
8970 if (list->type == show_cmd)
8971 do_setshow_command ((char *) NULL, from_tty, list);
8972 else
8973 cmd_func (list, NULL, from_tty);
8974 /* Close the tuple. */
8975 do_cleanups (option_chain);
8976 }
8977
8978 /* Close the tuple. */
8979 do_cleanups (showlist_chain);
8980 }
8981
8982
8983 /* Function to be called whenever a new objfile (shlib) is detected. */
8984 static void
8985 remote_new_objfile (struct objfile *objfile)
8986 {
8987 if (remote_desc != 0) /* Have a remote connection. */
8988 remote_check_symbols (objfile);
8989 }
8990
8991 void
8992 _initialize_remote (void)
8993 {
8994 struct remote_state *rs;
8995
8996 /* architecture specific data */
8997 remote_gdbarch_data_handle =
8998 gdbarch_data_register_post_init (init_remote_state);
8999 remote_g_packet_data_handle =
9000 gdbarch_data_register_pre_init (remote_g_packet_data_init);
9001
9002 /* Initialize the per-target state. At the moment there is only one
9003 of these, not one per target. Only one target is active at a
9004 time. The default buffer size is unimportant; it will be expanded
9005 whenever a larger buffer is needed. */
9006 rs = get_remote_state_raw ();
9007 rs->buf_size = 400;
9008 rs->buf = xmalloc (rs->buf_size);
9009
9010 init_remote_ops ();
9011 add_target (&remote_ops);
9012
9013 init_extended_remote_ops ();
9014 add_target (&extended_remote_ops);
9015
9016 /* Hook into new objfile notification. */
9017 observer_attach_new_objfile (remote_new_objfile);
9018
9019 /* Set up signal handlers. */
9020 sigint_remote_token =
9021 create_async_signal_handler (async_remote_interrupt, NULL);
9022 sigint_remote_twice_token =
9023 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9024
9025 #if 0
9026 init_remote_threadtests ();
9027 #endif
9028
9029 /* set/show remote ... */
9030
9031 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9032 Remote protocol specific variables\n\
9033 Configure various remote-protocol specific variables such as\n\
9034 the packets being used"),
9035 &remote_set_cmdlist, "set remote ",
9036 0 /* allow-unknown */, &setlist);
9037 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9038 Remote protocol specific variables\n\
9039 Configure various remote-protocol specific variables such as\n\
9040 the packets being used"),
9041 &remote_show_cmdlist, "show remote ",
9042 0 /* allow-unknown */, &showlist);
9043
9044 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9045 Compare section data on target to the exec file.\n\
9046 Argument is a single section name (default: all loaded sections)."),
9047 &cmdlist);
9048
9049 add_cmd ("packet", class_maintenance, packet_command, _("\
9050 Send an arbitrary packet to a remote target.\n\
9051 maintenance packet TEXT\n\
9052 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9053 this command sends the string TEXT to the inferior, and displays the\n\
9054 response packet. GDB supplies the initial `$' character, and the\n\
9055 terminating `#' character and checksum."),
9056 &maintenancelist);
9057
9058 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9059 Set whether to send break if interrupted."), _("\
9060 Show whether to send break if interrupted."), _("\
9061 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9062 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9063 &setlist, &showlist);
9064
9065 /* Install commands for configuring memory read/write packets. */
9066
9067 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9068 Set the maximum number of bytes per memory write packet (deprecated)."),
9069 &setlist);
9070 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9071 Show the maximum number of bytes per memory write packet (deprecated)."),
9072 &showlist);
9073 add_cmd ("memory-write-packet-size", no_class,
9074 set_memory_write_packet_size, _("\
9075 Set the maximum number of bytes per memory-write packet.\n\
9076 Specify the number of bytes in a packet or 0 (zero) for the\n\
9077 default packet size. The actual limit is further reduced\n\
9078 dependent on the target. Specify ``fixed'' to disable the\n\
9079 further restriction and ``limit'' to enable that restriction."),
9080 &remote_set_cmdlist);
9081 add_cmd ("memory-read-packet-size", no_class,
9082 set_memory_read_packet_size, _("\
9083 Set the maximum number of bytes per memory-read packet.\n\
9084 Specify the number of bytes in a packet or 0 (zero) for the\n\
9085 default packet size. The actual limit is further reduced\n\
9086 dependent on the target. Specify ``fixed'' to disable the\n\
9087 further restriction and ``limit'' to enable that restriction."),
9088 &remote_set_cmdlist);
9089 add_cmd ("memory-write-packet-size", no_class,
9090 show_memory_write_packet_size,
9091 _("Show the maximum number of bytes per memory-write packet."),
9092 &remote_show_cmdlist);
9093 add_cmd ("memory-read-packet-size", no_class,
9094 show_memory_read_packet_size,
9095 _("Show the maximum number of bytes per memory-read packet."),
9096 &remote_show_cmdlist);
9097
9098 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9099 &remote_hw_watchpoint_limit, _("\
9100 Set the maximum number of target hardware watchpoints."), _("\
9101 Show the maximum number of target hardware watchpoints."), _("\
9102 Specify a negative limit for unlimited."),
9103 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9104 &remote_set_cmdlist, &remote_show_cmdlist);
9105 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9106 &remote_hw_breakpoint_limit, _("\
9107 Set the maximum number of target hardware breakpoints."), _("\
9108 Show the maximum number of target hardware breakpoints."), _("\
9109 Specify a negative limit for unlimited."),
9110 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9111 &remote_set_cmdlist, &remote_show_cmdlist);
9112
9113 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9114 &remote_address_size, _("\
9115 Set the maximum size of the address (in bits) in a memory packet."), _("\
9116 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9117 NULL,
9118 NULL, /* FIXME: i18n: */
9119 &setlist, &showlist);
9120
9121 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9122 "X", "binary-download", 1);
9123
9124 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9125 "vCont", "verbose-resume", 0);
9126
9127 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9128 "QPassSignals", "pass-signals", 0);
9129
9130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9131 "qSymbol", "symbol-lookup", 0);
9132
9133 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9134 "P", "set-register", 1);
9135
9136 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9137 "p", "fetch-register", 1);
9138
9139 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9140 "Z0", "software-breakpoint", 0);
9141
9142 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9143 "Z1", "hardware-breakpoint", 0);
9144
9145 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9146 "Z2", "write-watchpoint", 0);
9147
9148 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9149 "Z3", "read-watchpoint", 0);
9150
9151 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9152 "Z4", "access-watchpoint", 0);
9153
9154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9155 "qXfer:auxv:read", "read-aux-vector", 0);
9156
9157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9158 "qXfer:features:read", "target-features", 0);
9159
9160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9161 "qXfer:libraries:read", "library-info", 0);
9162
9163 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9164 "qXfer:memory-map:read", "memory-map", 0);
9165
9166 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9167 "qXfer:spu:read", "read-spu-object", 0);
9168
9169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9170 "qXfer:spu:write", "write-spu-object", 0);
9171
9172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9173 "qXfer:osdata:read", "osdata", 0);
9174
9175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9176 "qXfer:siginfo:read", "read-siginfo-object", 0);
9177
9178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9179 "qXfer:siginfo:write", "write-siginfo-object", 0);
9180
9181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9182 "qGetTLSAddr", "get-thread-local-storage-address",
9183 0);
9184
9185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9186 "qSupported", "supported-packets", 0);
9187
9188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9189 "qSearch:memory", "search-memory", 0);
9190
9191 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9192 "vFile:open", "hostio-open", 0);
9193
9194 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9195 "vFile:pread", "hostio-pread", 0);
9196
9197 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9198 "vFile:pwrite", "hostio-pwrite", 0);
9199
9200 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9201 "vFile:close", "hostio-close", 0);
9202
9203 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9204 "vFile:unlink", "hostio-unlink", 0);
9205
9206 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9207 "vAttach", "attach", 0);
9208
9209 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9210 "vRun", "run", 0);
9211
9212 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9213 "QStartNoAckMode", "noack", 0);
9214
9215 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9216 "vKill", "kill", 0);
9217
9218 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9219 "qAttached", "query-attached", 0);
9220
9221 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9222 Z sub-packet has its own set and show commands, but users may
9223 have sets to this variable in their .gdbinit files (or in their
9224 documentation). */
9225 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9226 &remote_Z_packet_detect, _("\
9227 Set use of remote protocol `Z' packets"), _("\
9228 Show use of remote protocol `Z' packets "), _("\
9229 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9230 packets."),
9231 set_remote_protocol_Z_packet_cmd,
9232 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9233 &remote_set_cmdlist, &remote_show_cmdlist);
9234
9235 add_prefix_cmd ("remote", class_files, remote_command, _("\
9236 Manipulate files on the remote system\n\
9237 Transfer files to and from the remote target system."),
9238 &remote_cmdlist, "remote ",
9239 0 /* allow-unknown */, &cmdlist);
9240
9241 add_cmd ("put", class_files, remote_put_command,
9242 _("Copy a local file to the remote system."),
9243 &remote_cmdlist);
9244
9245 add_cmd ("get", class_files, remote_get_command,
9246 _("Copy a remote file to the local system."),
9247 &remote_cmdlist);
9248
9249 add_cmd ("delete", class_files, remote_delete_command,
9250 _("Delete a remote file."),
9251 &remote_cmdlist);
9252
9253 remote_exec_file = xstrdup ("");
9254 add_setshow_string_noescape_cmd ("exec-file", class_files,
9255 &remote_exec_file, _("\
9256 Set the remote pathname for \"run\""), _("\
9257 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9258 &remote_set_cmdlist, &remote_show_cmdlist);
9259
9260 /* Eventually initialize fileio. See fileio.c */
9261 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9262
9263 /* Take advantage of the fact that the LWP field is not used, to tag
9264 special ptids with it set to != 0. */
9265 magic_null_ptid = ptid_build (42000, 1, -1);
9266 not_sent_ptid = ptid_build (42000, 1, -2);
9267 any_thread_ptid = ptid_build (42000, 1, 0);
9268 }