]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Eliminate make_cleanup_ui_file_delete / make ui_file a class hierarchy
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75
76 /* Temp hacks for tracepoint encoding migration. */
77 static char *target_buf;
78 static long target_buf_size;
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *remote_pspace_data;
82
83 /* The variable registered as the control variable used by the
84 remote exec-file commands. While the remote exec-file setting is
85 per-program-space, the set/show machinery uses this as the
86 location of the remote exec-file value. */
87 static char *remote_exec_file_var;
88
89 /* The size to align memory write packets, when practical. The protocol
90 does not guarantee any alignment, and gdb will generate short
91 writes and unaligned writes, but even as a best-effort attempt this
92 can improve bulk transfers. For instance, if a write is misaligned
93 relative to the target's data bus, the stub may need to make an extra
94 round trip fetching data from the target. This doesn't make a
95 huge difference, but it's easy to do, so we try to be helpful.
96
97 The alignment chosen is arbitrary; usually data bus width is
98 important here, not the possibly larger cache line size. */
99 enum { REMOTE_ALIGN_WRITES = 16 };
100
101 /* Prototypes for local functions. */
102 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
103 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
104 int forever, int *is_notif);
105
106 static void remote_files_info (struct target_ops *ignore);
107
108 static void remote_prepare_to_store (struct target_ops *self,
109 struct regcache *regcache);
110
111 static void remote_open_1 (const char *, int, struct target_ops *,
112 int extended_p);
113
114 static void remote_close (struct target_ops *self);
115
116 struct remote_state;
117
118 static int remote_vkill (int pid, struct remote_state *rs);
119
120 static void remote_kill_k (void);
121
122 static void remote_mourn (struct target_ops *ops);
123
124 static void extended_remote_restart (void);
125
126 static void remote_send (char **buf, long *sizeof_buf_p);
127
128 static int readchar (int timeout);
129
130 static void remote_serial_write (const char *str, int len);
131
132 static void remote_kill (struct target_ops *ops);
133
134 static int remote_can_async_p (struct target_ops *);
135
136 static int remote_is_async_p (struct target_ops *);
137
138 static void remote_async (struct target_ops *ops, int enable);
139
140 static void remote_thread_events (struct target_ops *ops, int enable);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (struct target_ops *self, ptid_t);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (const char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static int putpkt_binary (const char *buf, int cnt);
180
181 static void check_binary_download (CORE_ADDR addr);
182
183 struct packet_config;
184
185 static void show_packet_config_cmd (struct packet_config *config);
186
187 static void show_remote_protocol_packet_cmd (struct ui_file *file,
188 int from_tty,
189 struct cmd_list_element *c,
190 const char *value);
191
192 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
193 static ptid_t read_ptid (char *buf, char **obuf);
194
195 static void remote_set_permissions (struct target_ops *self);
196
197 static int remote_get_trace_status (struct target_ops *self,
198 struct trace_status *ts);
199
200 static int remote_upload_tracepoints (struct target_ops *self,
201 struct uploaded_tp **utpp);
202
203 static int remote_upload_trace_state_variables (struct target_ops *self,
204 struct uploaded_tsv **utsvp);
205
206 static void remote_query_supported (void);
207
208 static void remote_check_symbols (void);
209
210 void _initialize_remote (void);
211
212 struct stop_reply;
213 static void stop_reply_xfree (struct stop_reply *);
214 static void remote_parse_stop_reply (char *, struct stop_reply *);
215 static void push_stop_reply (struct stop_reply *);
216 static void discard_pending_stop_replies_in_queue (struct remote_state *);
217 static int peek_stop_reply (ptid_t ptid);
218
219 struct threads_listing_context;
220 static void remove_new_fork_children (struct threads_listing_context *);
221
222 static void remote_async_inferior_event_handler (gdb_client_data);
223
224 static void remote_terminal_ours (struct target_ops *self);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 static void remote_console_output (char *msg);
229
230 static int remote_supports_cond_breakpoints (struct target_ops *self);
231
232 static int remote_can_run_breakpoint_commands (struct target_ops *self);
233
234 static void remote_btrace_reset (void);
235
236 static void remote_btrace_maybe_reopen (void);
237
238 static int stop_reply_queue_length (void);
239
240 static void readahead_cache_invalidate (void);
241
242 static void remote_unpush_and_throw (void);
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Stub vCont actions support.
254
255 Each field is a boolean flag indicating whether the stub reports
256 support for the corresponding action. */
257
258 struct vCont_action_support
259 {
260 /* vCont;t */
261 int t;
262
263 /* vCont;r */
264 int r;
265
266 /* vCont;s */
267 int s;
268
269 /* vCont;S */
270 int S;
271 };
272
273 /* Controls whether GDB is willing to use range stepping. */
274
275 static int use_range_stepping = 1;
276
277 #define OPAQUETHREADBYTES 8
278
279 /* a 64 bit opaque identifier */
280 typedef unsigned char threadref[OPAQUETHREADBYTES];
281
282 /* About this many threadisds fit in a packet. */
283
284 #define MAXTHREADLISTRESULTS 32
285
286 /* The max number of chars in debug output. The rest of chars are
287 omitted. */
288
289 #define REMOTE_DEBUG_MAX_CHAR 512
290
291 /* Data for the vFile:pread readahead cache. */
292
293 struct readahead_cache
294 {
295 /* The file descriptor for the file that is being cached. -1 if the
296 cache is invalid. */
297 int fd;
298
299 /* The offset into the file that the cache buffer corresponds
300 to. */
301 ULONGEST offset;
302
303 /* The buffer holding the cache contents. */
304 gdb_byte *buf;
305 /* The buffer's size. We try to read as much as fits into a packet
306 at a time. */
307 size_t bufsize;
308
309 /* Cache hit and miss counters. */
310 ULONGEST hit_count;
311 ULONGEST miss_count;
312 };
313
314 /* Description of the remote protocol state for the currently
315 connected target. This is per-target state, and independent of the
316 selected architecture. */
317
318 struct remote_state
319 {
320 /* A buffer to use for incoming packets, and its current size. The
321 buffer is grown dynamically for larger incoming packets.
322 Outgoing packets may also be constructed in this buffer.
323 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
324 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
325 packets. */
326 char *buf;
327 long buf_size;
328
329 /* True if we're going through initial connection setup (finding out
330 about the remote side's threads, relocating symbols, etc.). */
331 int starting_up;
332
333 /* If we negotiated packet size explicitly (and thus can bypass
334 heuristics for the largest packet size that will not overflow
335 a buffer in the stub), this will be set to that packet size.
336 Otherwise zero, meaning to use the guessed size. */
337 long explicit_packet_size;
338
339 /* remote_wait is normally called when the target is running and
340 waits for a stop reply packet. But sometimes we need to call it
341 when the target is already stopped. We can send a "?" packet
342 and have remote_wait read the response. Or, if we already have
343 the response, we can stash it in BUF and tell remote_wait to
344 skip calling getpkt. This flag is set when BUF contains a
345 stop reply packet and the target is not waiting. */
346 int cached_wait_status;
347
348 /* True, if in no ack mode. That is, neither GDB nor the stub will
349 expect acks from each other. The connection is assumed to be
350 reliable. */
351 int noack_mode;
352
353 /* True if we're connected in extended remote mode. */
354 int extended;
355
356 /* True if we resumed the target and we're waiting for the target to
357 stop. In the mean time, we can't start another command/query.
358 The remote server wouldn't be ready to process it, so we'd
359 timeout waiting for a reply that would never come and eventually
360 we'd close the connection. This can happen in asynchronous mode
361 because we allow GDB commands while the target is running. */
362 int waiting_for_stop_reply;
363
364 /* The status of the stub support for the various vCont actions. */
365 struct vCont_action_support supports_vCont;
366
367 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
368 responded to that. */
369 int ctrlc_pending_p;
370
371 /* True if we saw a Ctrl-C while reading or writing from/to the
372 remote descriptor. At that point it is not safe to send a remote
373 interrupt packet, so we instead remember we saw the Ctrl-C and
374 process it once we're done with sending/receiving the current
375 packet, which should be shortly. If however that takes too long,
376 and the user presses Ctrl-C again, we offer to disconnect. */
377 int got_ctrlc_during_io;
378
379 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
380 remote_open knows that we don't have a file open when the program
381 starts. */
382 struct serial *remote_desc;
383
384 /* These are the threads which we last sent to the remote system. The
385 TID member will be -1 for all or -2 for not sent yet. */
386 ptid_t general_thread;
387 ptid_t continue_thread;
388
389 /* This is the traceframe which we last selected on the remote system.
390 It will be -1 if no traceframe is selected. */
391 int remote_traceframe_number;
392
393 char *last_pass_packet;
394
395 /* The last QProgramSignals packet sent to the target. We bypass
396 sending a new program signals list down to the target if the new
397 packet is exactly the same as the last we sent. IOW, we only let
398 the target know about program signals list changes. */
399 char *last_program_signals_packet;
400
401 enum gdb_signal last_sent_signal;
402
403 int last_sent_step;
404
405 /* The execution direction of the last resume we got. */
406 enum exec_direction_kind last_resume_exec_dir;
407
408 char *finished_object;
409 char *finished_annex;
410 ULONGEST finished_offset;
411
412 /* Should we try the 'ThreadInfo' query packet?
413
414 This variable (NOT available to the user: auto-detect only!)
415 determines whether GDB will use the new, simpler "ThreadInfo"
416 query or the older, more complex syntax for thread queries.
417 This is an auto-detect variable (set to true at each connect,
418 and set to false when the target fails to recognize it). */
419 int use_threadinfo_query;
420 int use_threadextra_query;
421
422 threadref echo_nextthread;
423 threadref nextthread;
424 threadref resultthreadlist[MAXTHREADLISTRESULTS];
425
426 /* The state of remote notification. */
427 struct remote_notif_state *notif_state;
428
429 /* The branch trace configuration. */
430 struct btrace_config btrace_config;
431
432 /* The argument to the last "vFile:setfs:" packet we sent, used
433 to avoid sending repeated unnecessary "vFile:setfs:" packets.
434 Initialized to -1 to indicate that no "vFile:setfs:" packet
435 has yet been sent. */
436 int fs_pid;
437
438 /* A readahead cache for vFile:pread. Often, reading a binary
439 involves a sequence of small reads. E.g., when parsing an ELF
440 file. A readahead cache helps mostly the case of remote
441 debugging on a connection with higher latency, due to the
442 request/reply nature of the RSP. We only cache data for a single
443 file descriptor at a time. */
444 struct readahead_cache readahead_cache;
445 };
446
447 /* Private data that we'll store in (struct thread_info)->private. */
448 struct private_thread_info
449 {
450 char *extra;
451 char *name;
452 int core;
453
454 /* Whether the target stopped for a breakpoint/watchpoint. */
455 enum target_stop_reason stop_reason;
456
457 /* This is set to the data address of the access causing the target
458 to stop for a watchpoint. */
459 CORE_ADDR watch_data_address;
460
461 /* Fields used by the vCont action coalescing implemented in
462 remote_resume / remote_commit_resume. remote_resume stores each
463 thread's last resume request in these fields, so that a later
464 remote_commit_resume knows which is the proper action for this
465 thread to include in the vCont packet. */
466
467 /* True if the last target_resume call for this thread was a step
468 request, false if a continue request. */
469 int last_resume_step;
470
471 /* The signal specified in the last target_resume call for this
472 thread. */
473 enum gdb_signal last_resume_sig;
474
475 /* Whether this thread was already vCont-resumed on the remote
476 side. */
477 int vcont_resumed;
478 };
479
480 static void
481 free_private_thread_info (struct private_thread_info *info)
482 {
483 xfree (info->extra);
484 xfree (info->name);
485 xfree (info);
486 }
487
488 /* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492 static struct remote_state *remote_state;
493
494 static struct remote_state *
495 get_remote_state_raw (void)
496 {
497 return remote_state;
498 }
499
500 /* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503 static struct remote_state *
504 new_remote_state (void)
505 {
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518 }
519
520 /* Description of the remote protocol for a given architecture. */
521
522 struct packet_reg
523 {
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532 };
533
534 struct remote_arch_state
535 {
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554 };
555
556 /* Utility: generate error from an incoming stub packet. */
557 static void
558 trace_error (char *buf)
559 {
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573 }
574
575 /* Utility: wait for reply from stub, while accepting "O" packets. */
576 static char *
577 remote_get_noisy_reply (char **buf_p,
578 long *sizeof_buf)
579 {
580 do /* Loop on reply from remote stub. */
581 {
582 char *buf;
583
584 QUIT; /* Allow user to bail out with ^C. */
585 getpkt (buf_p, sizeof_buf, 0);
586 buf = *buf_p;
587 if (buf[0] == 'E')
588 trace_error (buf);
589 else if (startswith (buf, "qRelocInsn:"))
590 {
591 ULONGEST ul;
592 CORE_ADDR from, to, org_to;
593 char *p, *pp;
594 int adjusted_size = 0;
595 int relocated = 0;
596
597 p = buf + strlen ("qRelocInsn:");
598 pp = unpack_varlen_hex (p, &ul);
599 if (*pp != ';')
600 error (_("invalid qRelocInsn packet: %s"), buf);
601 from = ul;
602
603 p = pp + 1;
604 unpack_varlen_hex (p, &ul);
605 to = ul;
606
607 org_to = to;
608
609 TRY
610 {
611 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
612 relocated = 1;
613 }
614 CATCH (ex, RETURN_MASK_ALL)
615 {
616 if (ex.error == MEMORY_ERROR)
617 {
618 /* Propagate memory errors silently back to the
619 target. The stub may have limited the range of
620 addresses we can write to, for example. */
621 }
622 else
623 {
624 /* Something unexpectedly bad happened. Be verbose
625 so we can tell what, and propagate the error back
626 to the stub, so it doesn't get stuck waiting for
627 a response. */
628 exception_fprintf (gdb_stderr, ex,
629 _("warning: relocating instruction: "));
630 }
631 putpkt ("E01");
632 }
633 END_CATCH
634
635 if (relocated)
636 {
637 adjusted_size = to - org_to;
638
639 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
640 putpkt (buf);
641 }
642 }
643 else if (buf[0] == 'O' && buf[1] != 'K')
644 remote_console_output (buf + 1); /* 'O' message from stub */
645 else
646 return buf; /* Here's the actual reply. */
647 }
648 while (1);
649 }
650
651 /* Handle for retreving the remote protocol data from gdbarch. */
652 static struct gdbarch_data *remote_gdbarch_data_handle;
653
654 static struct remote_arch_state *
655 get_remote_arch_state (void)
656 {
657 gdb_assert (target_gdbarch () != NULL);
658 return ((struct remote_arch_state *)
659 gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle));
660 }
661
662 /* Fetch the global remote target state. */
663
664 static struct remote_state *
665 get_remote_state (void)
666 {
667 /* Make sure that the remote architecture state has been
668 initialized, because doing so might reallocate rs->buf. Any
669 function which calls getpkt also needs to be mindful of changes
670 to rs->buf, but this call limits the number of places which run
671 into trouble. */
672 get_remote_arch_state ();
673
674 return get_remote_state_raw ();
675 }
676
677 /* Cleanup routine for the remote module's pspace data. */
678
679 static void
680 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
681 {
682 char *remote_exec_file = (char *) arg;
683
684 xfree (remote_exec_file);
685 }
686
687 /* Fetch the remote exec-file from the current program space. */
688
689 static const char *
690 get_remote_exec_file (void)
691 {
692 char *remote_exec_file;
693
694 remote_exec_file
695 = (char *) program_space_data (current_program_space,
696 remote_pspace_data);
697 if (remote_exec_file == NULL)
698 return "";
699
700 return remote_exec_file;
701 }
702
703 /* Set the remote exec file for PSPACE. */
704
705 static void
706 set_pspace_remote_exec_file (struct program_space *pspace,
707 char *remote_exec_file)
708 {
709 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
710
711 xfree (old_file);
712 set_program_space_data (pspace, remote_pspace_data,
713 xstrdup (remote_exec_file));
714 }
715
716 /* The "set/show remote exec-file" set command hook. */
717
718 static void
719 set_remote_exec_file (char *ignored, int from_tty,
720 struct cmd_list_element *c)
721 {
722 gdb_assert (remote_exec_file_var != NULL);
723 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
724 }
725
726 /* The "set/show remote exec-file" show command hook. */
727
728 static void
729 show_remote_exec_file (struct ui_file *file, int from_tty,
730 struct cmd_list_element *cmd, const char *value)
731 {
732 fprintf_filtered (file, "%s\n", remote_exec_file_var);
733 }
734
735 static int
736 compare_pnums (const void *lhs_, const void *rhs_)
737 {
738 const struct packet_reg * const *lhs
739 = (const struct packet_reg * const *) lhs_;
740 const struct packet_reg * const *rhs
741 = (const struct packet_reg * const *) rhs_;
742
743 if ((*lhs)->pnum < (*rhs)->pnum)
744 return -1;
745 else if ((*lhs)->pnum == (*rhs)->pnum)
746 return 0;
747 else
748 return 1;
749 }
750
751 static int
752 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
753 {
754 int regnum, num_remote_regs, offset;
755 struct packet_reg **remote_regs;
756
757 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
758 {
759 struct packet_reg *r = &regs[regnum];
760
761 if (register_size (gdbarch, regnum) == 0)
762 /* Do not try to fetch zero-sized (placeholder) registers. */
763 r->pnum = -1;
764 else
765 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
766
767 r->regnum = regnum;
768 }
769
770 /* Define the g/G packet format as the contents of each register
771 with a remote protocol number, in order of ascending protocol
772 number. */
773
774 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
775 for (num_remote_regs = 0, regnum = 0;
776 regnum < gdbarch_num_regs (gdbarch);
777 regnum++)
778 if (regs[regnum].pnum != -1)
779 remote_regs[num_remote_regs++] = &regs[regnum];
780
781 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
782 compare_pnums);
783
784 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
785 {
786 remote_regs[regnum]->in_g_packet = 1;
787 remote_regs[regnum]->offset = offset;
788 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
789 }
790
791 return offset;
792 }
793
794 /* Given the architecture described by GDBARCH, return the remote
795 protocol register's number and the register's offset in the g/G
796 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
797 If the target does not have a mapping for REGNUM, return false,
798 otherwise, return true. */
799
800 int
801 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
802 int *pnum, int *poffset)
803 {
804 struct packet_reg *regs;
805 struct cleanup *old_chain;
806
807 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
808
809 regs = XCNEWVEC (struct packet_reg, gdbarch_num_regs (gdbarch));
810 old_chain = make_cleanup (xfree, regs);
811
812 map_regcache_remote_table (gdbarch, regs);
813
814 *pnum = regs[regnum].pnum;
815 *poffset = regs[regnum].offset;
816
817 do_cleanups (old_chain);
818
819 return *pnum != -1;
820 }
821
822 static void *
823 init_remote_state (struct gdbarch *gdbarch)
824 {
825 struct remote_state *rs = get_remote_state_raw ();
826 struct remote_arch_state *rsa;
827
828 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
829
830 /* Use the architecture to build a regnum<->pnum table, which will be
831 1:1 unless a feature set specifies otherwise. */
832 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
833 gdbarch_num_regs (gdbarch),
834 struct packet_reg);
835
836 /* Record the maximum possible size of the g packet - it may turn out
837 to be smaller. */
838 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
839
840 /* Default maximum number of characters in a packet body. Many
841 remote stubs have a hardwired buffer size of 400 bytes
842 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
843 as the maximum packet-size to ensure that the packet and an extra
844 NUL character can always fit in the buffer. This stops GDB
845 trashing stubs that try to squeeze an extra NUL into what is
846 already a full buffer (As of 1999-12-04 that was most stubs). */
847 rsa->remote_packet_size = 400 - 1;
848
849 /* This one is filled in when a ``g'' packet is received. */
850 rsa->actual_register_packet_size = 0;
851
852 /* Should rsa->sizeof_g_packet needs more space than the
853 default, adjust the size accordingly. Remember that each byte is
854 encoded as two characters. 32 is the overhead for the packet
855 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
856 (``$NN:G...#NN'') is a better guess, the below has been padded a
857 little. */
858 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
859 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
860
861 /* Make sure that the packet buffer is plenty big enough for
862 this architecture. */
863 if (rs->buf_size < rsa->remote_packet_size)
864 {
865 rs->buf_size = 2 * rsa->remote_packet_size;
866 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
867 }
868
869 return rsa;
870 }
871
872 /* Return the current allowed size of a remote packet. This is
873 inferred from the current architecture, and should be used to
874 limit the length of outgoing packets. */
875 static long
876 get_remote_packet_size (void)
877 {
878 struct remote_state *rs = get_remote_state ();
879 struct remote_arch_state *rsa = get_remote_arch_state ();
880
881 if (rs->explicit_packet_size)
882 return rs->explicit_packet_size;
883
884 return rsa->remote_packet_size;
885 }
886
887 static struct packet_reg *
888 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
889 {
890 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
891 return NULL;
892 else
893 {
894 struct packet_reg *r = &rsa->regs[regnum];
895
896 gdb_assert (r->regnum == regnum);
897 return r;
898 }
899 }
900
901 static struct packet_reg *
902 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
903 {
904 int i;
905
906 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
907 {
908 struct packet_reg *r = &rsa->regs[i];
909
910 if (r->pnum == pnum)
911 return r;
912 }
913 return NULL;
914 }
915
916 static struct target_ops remote_ops;
917
918 static struct target_ops extended_remote_ops;
919
920 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
921 ``forever'' still use the normal timeout mechanism. This is
922 currently used by the ASYNC code to guarentee that target reads
923 during the initial connect always time-out. Once getpkt has been
924 modified to return a timeout indication and, in turn
925 remote_wait()/wait_for_inferior() have gained a timeout parameter
926 this can go away. */
927 static int wait_forever_enabled_p = 1;
928
929 /* Allow the user to specify what sequence to send to the remote
930 when he requests a program interruption: Although ^C is usually
931 what remote systems expect (this is the default, here), it is
932 sometimes preferable to send a break. On other systems such
933 as the Linux kernel, a break followed by g, which is Magic SysRq g
934 is required in order to interrupt the execution. */
935 const char interrupt_sequence_control_c[] = "Ctrl-C";
936 const char interrupt_sequence_break[] = "BREAK";
937 const char interrupt_sequence_break_g[] = "BREAK-g";
938 static const char *const interrupt_sequence_modes[] =
939 {
940 interrupt_sequence_control_c,
941 interrupt_sequence_break,
942 interrupt_sequence_break_g,
943 NULL
944 };
945 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
946
947 static void
948 show_interrupt_sequence (struct ui_file *file, int from_tty,
949 struct cmd_list_element *c,
950 const char *value)
951 {
952 if (interrupt_sequence_mode == interrupt_sequence_control_c)
953 fprintf_filtered (file,
954 _("Send the ASCII ETX character (Ctrl-c) "
955 "to the remote target to interrupt the "
956 "execution of the program.\n"));
957 else if (interrupt_sequence_mode == interrupt_sequence_break)
958 fprintf_filtered (file,
959 _("send a break signal to the remote target "
960 "to interrupt the execution of the program.\n"));
961 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
962 fprintf_filtered (file,
963 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
964 "the remote target to interrupt the execution "
965 "of Linux kernel.\n"));
966 else
967 internal_error (__FILE__, __LINE__,
968 _("Invalid value for interrupt_sequence_mode: %s."),
969 interrupt_sequence_mode);
970 }
971
972 /* This boolean variable specifies whether interrupt_sequence is sent
973 to the remote target when gdb connects to it.
974 This is mostly needed when you debug the Linux kernel: The Linux kernel
975 expects BREAK g which is Magic SysRq g for connecting gdb. */
976 static int interrupt_on_connect = 0;
977
978 /* This variable is used to implement the "set/show remotebreak" commands.
979 Since these commands are now deprecated in favor of "set/show remote
980 interrupt-sequence", it no longer has any effect on the code. */
981 static int remote_break;
982
983 static void
984 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
985 {
986 if (remote_break)
987 interrupt_sequence_mode = interrupt_sequence_break;
988 else
989 interrupt_sequence_mode = interrupt_sequence_control_c;
990 }
991
992 static void
993 show_remotebreak (struct ui_file *file, int from_tty,
994 struct cmd_list_element *c,
995 const char *value)
996 {
997 }
998
999 /* This variable sets the number of bits in an address that are to be
1000 sent in a memory ("M" or "m") packet. Normally, after stripping
1001 leading zeros, the entire address would be sent. This variable
1002 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1003 initial implementation of remote.c restricted the address sent in
1004 memory packets to ``host::sizeof long'' bytes - (typically 32
1005 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1006 address was never sent. Since fixing this bug may cause a break in
1007 some remote targets this variable is principly provided to
1008 facilitate backward compatibility. */
1009
1010 static unsigned int remote_address_size;
1011
1012 /* Temporary to track who currently owns the terminal. See
1013 remote_terminal_* for more details. */
1014
1015 static int remote_async_terminal_ours_p;
1016
1017 \f
1018 /* User configurable variables for the number of characters in a
1019 memory read/write packet. MIN (rsa->remote_packet_size,
1020 rsa->sizeof_g_packet) is the default. Some targets need smaller
1021 values (fifo overruns, et.al.) and some users need larger values
1022 (speed up transfers). The variables ``preferred_*'' (the user
1023 request), ``current_*'' (what was actually set) and ``forced_*''
1024 (Positive - a soft limit, negative - a hard limit). */
1025
1026 struct memory_packet_config
1027 {
1028 char *name;
1029 long size;
1030 int fixed_p;
1031 };
1032
1033 /* The default max memory-write-packet-size. The 16k is historical.
1034 (It came from older GDB's using alloca for buffers and the
1035 knowledge (folklore?) that some hosts don't cope very well with
1036 large alloca calls.) */
1037 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1038
1039 /* The minimum remote packet size for memory transfers. Ensures we
1040 can write at least one byte. */
1041 #define MIN_MEMORY_PACKET_SIZE 20
1042
1043 /* Compute the current size of a read/write packet. Since this makes
1044 use of ``actual_register_packet_size'' the computation is dynamic. */
1045
1046 static long
1047 get_memory_packet_size (struct memory_packet_config *config)
1048 {
1049 struct remote_state *rs = get_remote_state ();
1050 struct remote_arch_state *rsa = get_remote_arch_state ();
1051
1052 long what_they_get;
1053 if (config->fixed_p)
1054 {
1055 if (config->size <= 0)
1056 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1057 else
1058 what_they_get = config->size;
1059 }
1060 else
1061 {
1062 what_they_get = get_remote_packet_size ();
1063 /* Limit the packet to the size specified by the user. */
1064 if (config->size > 0
1065 && what_they_get > config->size)
1066 what_they_get = config->size;
1067
1068 /* Limit it to the size of the targets ``g'' response unless we have
1069 permission from the stub to use a larger packet size. */
1070 if (rs->explicit_packet_size == 0
1071 && rsa->actual_register_packet_size > 0
1072 && what_they_get > rsa->actual_register_packet_size)
1073 what_they_get = rsa->actual_register_packet_size;
1074 }
1075 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1076 what_they_get = MIN_MEMORY_PACKET_SIZE;
1077
1078 /* Make sure there is room in the global buffer for this packet
1079 (including its trailing NUL byte). */
1080 if (rs->buf_size < what_they_get + 1)
1081 {
1082 rs->buf_size = 2 * what_they_get;
1083 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1084 }
1085
1086 return what_they_get;
1087 }
1088
1089 /* Update the size of a read/write packet. If they user wants
1090 something really big then do a sanity check. */
1091
1092 static void
1093 set_memory_packet_size (char *args, struct memory_packet_config *config)
1094 {
1095 int fixed_p = config->fixed_p;
1096 long size = config->size;
1097
1098 if (args == NULL)
1099 error (_("Argument required (integer, `fixed' or `limited')."));
1100 else if (strcmp (args, "hard") == 0
1101 || strcmp (args, "fixed") == 0)
1102 fixed_p = 1;
1103 else if (strcmp (args, "soft") == 0
1104 || strcmp (args, "limit") == 0)
1105 fixed_p = 0;
1106 else
1107 {
1108 char *end;
1109
1110 size = strtoul (args, &end, 0);
1111 if (args == end)
1112 error (_("Invalid %s (bad syntax)."), config->name);
1113
1114 /* Instead of explicitly capping the size of a packet to or
1115 disallowing it, the user is allowed to set the size to
1116 something arbitrarily large. */
1117 }
1118
1119 /* So that the query shows the correct value. */
1120 if (size <= 0)
1121 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1122
1123 /* Extra checks? */
1124 if (fixed_p && !config->fixed_p)
1125 {
1126 if (! query (_("The target may not be able to correctly handle a %s\n"
1127 "of %ld bytes. Change the packet size? "),
1128 config->name, size))
1129 error (_("Packet size not changed."));
1130 }
1131 /* Update the config. */
1132 config->fixed_p = fixed_p;
1133 config->size = size;
1134 }
1135
1136 static void
1137 show_memory_packet_size (struct memory_packet_config *config)
1138 {
1139 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1140 if (config->fixed_p)
1141 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1142 get_memory_packet_size (config));
1143 else
1144 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1145 get_memory_packet_size (config));
1146 }
1147
1148 static struct memory_packet_config memory_write_packet_config =
1149 {
1150 "memory-write-packet-size",
1151 };
1152
1153 static void
1154 set_memory_write_packet_size (char *args, int from_tty)
1155 {
1156 set_memory_packet_size (args, &memory_write_packet_config);
1157 }
1158
1159 static void
1160 show_memory_write_packet_size (char *args, int from_tty)
1161 {
1162 show_memory_packet_size (&memory_write_packet_config);
1163 }
1164
1165 static long
1166 get_memory_write_packet_size (void)
1167 {
1168 return get_memory_packet_size (&memory_write_packet_config);
1169 }
1170
1171 static struct memory_packet_config memory_read_packet_config =
1172 {
1173 "memory-read-packet-size",
1174 };
1175
1176 static void
1177 set_memory_read_packet_size (char *args, int from_tty)
1178 {
1179 set_memory_packet_size (args, &memory_read_packet_config);
1180 }
1181
1182 static void
1183 show_memory_read_packet_size (char *args, int from_tty)
1184 {
1185 show_memory_packet_size (&memory_read_packet_config);
1186 }
1187
1188 static long
1189 get_memory_read_packet_size (void)
1190 {
1191 long size = get_memory_packet_size (&memory_read_packet_config);
1192
1193 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1194 extra buffer size argument before the memory read size can be
1195 increased beyond this. */
1196 if (size > get_remote_packet_size ())
1197 size = get_remote_packet_size ();
1198 return size;
1199 }
1200
1201 \f
1202 /* Generic configuration support for packets the stub optionally
1203 supports. Allows the user to specify the use of the packet as well
1204 as allowing GDB to auto-detect support in the remote stub. */
1205
1206 enum packet_support
1207 {
1208 PACKET_SUPPORT_UNKNOWN = 0,
1209 PACKET_ENABLE,
1210 PACKET_DISABLE
1211 };
1212
1213 struct packet_config
1214 {
1215 const char *name;
1216 const char *title;
1217
1218 /* If auto, GDB auto-detects support for this packet or feature,
1219 either through qSupported, or by trying the packet and looking
1220 at the response. If true, GDB assumes the target supports this
1221 packet. If false, the packet is disabled. Configs that don't
1222 have an associated command always have this set to auto. */
1223 enum auto_boolean detect;
1224
1225 /* Does the target support this packet? */
1226 enum packet_support support;
1227 };
1228
1229 /* Analyze a packet's return value and update the packet config
1230 accordingly. */
1231
1232 enum packet_result
1233 {
1234 PACKET_ERROR,
1235 PACKET_OK,
1236 PACKET_UNKNOWN
1237 };
1238
1239 static enum packet_support packet_config_support (struct packet_config *config);
1240 static enum packet_support packet_support (int packet);
1241
1242 static void
1243 show_packet_config_cmd (struct packet_config *config)
1244 {
1245 char *support = "internal-error";
1246
1247 switch (packet_config_support (config))
1248 {
1249 case PACKET_ENABLE:
1250 support = "enabled";
1251 break;
1252 case PACKET_DISABLE:
1253 support = "disabled";
1254 break;
1255 case PACKET_SUPPORT_UNKNOWN:
1256 support = "unknown";
1257 break;
1258 }
1259 switch (config->detect)
1260 {
1261 case AUTO_BOOLEAN_AUTO:
1262 printf_filtered (_("Support for the `%s' packet "
1263 "is auto-detected, currently %s.\n"),
1264 config->name, support);
1265 break;
1266 case AUTO_BOOLEAN_TRUE:
1267 case AUTO_BOOLEAN_FALSE:
1268 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1269 config->name, support);
1270 break;
1271 }
1272 }
1273
1274 static void
1275 add_packet_config_cmd (struct packet_config *config, const char *name,
1276 const char *title, int legacy)
1277 {
1278 char *set_doc;
1279 char *show_doc;
1280 char *cmd_name;
1281
1282 config->name = name;
1283 config->title = title;
1284 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1285 name, title);
1286 show_doc = xstrprintf ("Show current use of remote "
1287 "protocol `%s' (%s) packet",
1288 name, title);
1289 /* set/show TITLE-packet {auto,on,off} */
1290 cmd_name = xstrprintf ("%s-packet", title);
1291 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1292 &config->detect, set_doc,
1293 show_doc, NULL, /* help_doc */
1294 NULL,
1295 show_remote_protocol_packet_cmd,
1296 &remote_set_cmdlist, &remote_show_cmdlist);
1297 /* The command code copies the documentation strings. */
1298 xfree (set_doc);
1299 xfree (show_doc);
1300 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1301 if (legacy)
1302 {
1303 char *legacy_name;
1304
1305 legacy_name = xstrprintf ("%s-packet", name);
1306 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1307 &remote_set_cmdlist);
1308 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1309 &remote_show_cmdlist);
1310 }
1311 }
1312
1313 static enum packet_result
1314 packet_check_result (const char *buf)
1315 {
1316 if (buf[0] != '\0')
1317 {
1318 /* The stub recognized the packet request. Check that the
1319 operation succeeded. */
1320 if (buf[0] == 'E'
1321 && isxdigit (buf[1]) && isxdigit (buf[2])
1322 && buf[3] == '\0')
1323 /* "Enn" - definitly an error. */
1324 return PACKET_ERROR;
1325
1326 /* Always treat "E." as an error. This will be used for
1327 more verbose error messages, such as E.memtypes. */
1328 if (buf[0] == 'E' && buf[1] == '.')
1329 return PACKET_ERROR;
1330
1331 /* The packet may or may not be OK. Just assume it is. */
1332 return PACKET_OK;
1333 }
1334 else
1335 /* The stub does not support the packet. */
1336 return PACKET_UNKNOWN;
1337 }
1338
1339 static enum packet_result
1340 packet_ok (const char *buf, struct packet_config *config)
1341 {
1342 enum packet_result result;
1343
1344 if (config->detect != AUTO_BOOLEAN_TRUE
1345 && config->support == PACKET_DISABLE)
1346 internal_error (__FILE__, __LINE__,
1347 _("packet_ok: attempt to use a disabled packet"));
1348
1349 result = packet_check_result (buf);
1350 switch (result)
1351 {
1352 case PACKET_OK:
1353 case PACKET_ERROR:
1354 /* The stub recognized the packet request. */
1355 if (config->support == PACKET_SUPPORT_UNKNOWN)
1356 {
1357 if (remote_debug)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "Packet %s (%s) is supported\n",
1360 config->name, config->title);
1361 config->support = PACKET_ENABLE;
1362 }
1363 break;
1364 case PACKET_UNKNOWN:
1365 /* The stub does not support the packet. */
1366 if (config->detect == AUTO_BOOLEAN_AUTO
1367 && config->support == PACKET_ENABLE)
1368 {
1369 /* If the stub previously indicated that the packet was
1370 supported then there is a protocol error. */
1371 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1372 config->name, config->title);
1373 }
1374 else if (config->detect == AUTO_BOOLEAN_TRUE)
1375 {
1376 /* The user set it wrong. */
1377 error (_("Enabled packet %s (%s) not recognized by stub"),
1378 config->name, config->title);
1379 }
1380
1381 if (remote_debug)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "Packet %s (%s) is NOT supported\n",
1384 config->name, config->title);
1385 config->support = PACKET_DISABLE;
1386 break;
1387 }
1388
1389 return result;
1390 }
1391
1392 enum {
1393 PACKET_vCont = 0,
1394 PACKET_X,
1395 PACKET_qSymbol,
1396 PACKET_P,
1397 PACKET_p,
1398 PACKET_Z0,
1399 PACKET_Z1,
1400 PACKET_Z2,
1401 PACKET_Z3,
1402 PACKET_Z4,
1403 PACKET_vFile_setfs,
1404 PACKET_vFile_open,
1405 PACKET_vFile_pread,
1406 PACKET_vFile_pwrite,
1407 PACKET_vFile_close,
1408 PACKET_vFile_unlink,
1409 PACKET_vFile_readlink,
1410 PACKET_vFile_fstat,
1411 PACKET_qXfer_auxv,
1412 PACKET_qXfer_features,
1413 PACKET_qXfer_exec_file,
1414 PACKET_qXfer_libraries,
1415 PACKET_qXfer_libraries_svr4,
1416 PACKET_qXfer_memory_map,
1417 PACKET_qXfer_spu_read,
1418 PACKET_qXfer_spu_write,
1419 PACKET_qXfer_osdata,
1420 PACKET_qXfer_threads,
1421 PACKET_qXfer_statictrace_read,
1422 PACKET_qXfer_traceframe_info,
1423 PACKET_qXfer_uib,
1424 PACKET_qGetTIBAddr,
1425 PACKET_qGetTLSAddr,
1426 PACKET_qSupported,
1427 PACKET_qTStatus,
1428 PACKET_QPassSignals,
1429 PACKET_QCatchSyscalls,
1430 PACKET_QProgramSignals,
1431 PACKET_qCRC,
1432 PACKET_qSearch_memory,
1433 PACKET_vAttach,
1434 PACKET_vRun,
1435 PACKET_QStartNoAckMode,
1436 PACKET_vKill,
1437 PACKET_qXfer_siginfo_read,
1438 PACKET_qXfer_siginfo_write,
1439 PACKET_qAttached,
1440
1441 /* Support for conditional tracepoints. */
1442 PACKET_ConditionalTracepoints,
1443
1444 /* Support for target-side breakpoint conditions. */
1445 PACKET_ConditionalBreakpoints,
1446
1447 /* Support for target-side breakpoint commands. */
1448 PACKET_BreakpointCommands,
1449
1450 /* Support for fast tracepoints. */
1451 PACKET_FastTracepoints,
1452
1453 /* Support for static tracepoints. */
1454 PACKET_StaticTracepoints,
1455
1456 /* Support for installing tracepoints while a trace experiment is
1457 running. */
1458 PACKET_InstallInTrace,
1459
1460 PACKET_bc,
1461 PACKET_bs,
1462 PACKET_TracepointSource,
1463 PACKET_QAllow,
1464 PACKET_qXfer_fdpic,
1465 PACKET_QDisableRandomization,
1466 PACKET_QAgent,
1467 PACKET_QTBuffer_size,
1468 PACKET_Qbtrace_off,
1469 PACKET_Qbtrace_bts,
1470 PACKET_Qbtrace_pt,
1471 PACKET_qXfer_btrace,
1472
1473 /* Support for the QNonStop packet. */
1474 PACKET_QNonStop,
1475
1476 /* Support for the QThreadEvents packet. */
1477 PACKET_QThreadEvents,
1478
1479 /* Support for multi-process extensions. */
1480 PACKET_multiprocess_feature,
1481
1482 /* Support for enabling and disabling tracepoints while a trace
1483 experiment is running. */
1484 PACKET_EnableDisableTracepoints_feature,
1485
1486 /* Support for collecting strings using the tracenz bytecode. */
1487 PACKET_tracenz_feature,
1488
1489 /* Support for continuing to run a trace experiment while GDB is
1490 disconnected. */
1491 PACKET_DisconnectedTracing_feature,
1492
1493 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1494 PACKET_augmented_libraries_svr4_read_feature,
1495
1496 /* Support for the qXfer:btrace-conf:read packet. */
1497 PACKET_qXfer_btrace_conf,
1498
1499 /* Support for the Qbtrace-conf:bts:size packet. */
1500 PACKET_Qbtrace_conf_bts_size,
1501
1502 /* Support for swbreak+ feature. */
1503 PACKET_swbreak_feature,
1504
1505 /* Support for hwbreak+ feature. */
1506 PACKET_hwbreak_feature,
1507
1508 /* Support for fork events. */
1509 PACKET_fork_event_feature,
1510
1511 /* Support for vfork events. */
1512 PACKET_vfork_event_feature,
1513
1514 /* Support for the Qbtrace-conf:pt:size packet. */
1515 PACKET_Qbtrace_conf_pt_size,
1516
1517 /* Support for exec events. */
1518 PACKET_exec_event_feature,
1519
1520 /* Support for query supported vCont actions. */
1521 PACKET_vContSupported,
1522
1523 /* Support remote CTRL-C. */
1524 PACKET_vCtrlC,
1525
1526 /* Support TARGET_WAITKIND_NO_RESUMED. */
1527 PACKET_no_resumed,
1528
1529 PACKET_MAX
1530 };
1531
1532 static struct packet_config remote_protocol_packets[PACKET_MAX];
1533
1534 /* Returns the packet's corresponding "set remote foo-packet" command
1535 state. See struct packet_config for more details. */
1536
1537 static enum auto_boolean
1538 packet_set_cmd_state (int packet)
1539 {
1540 return remote_protocol_packets[packet].detect;
1541 }
1542
1543 /* Returns whether a given packet or feature is supported. This takes
1544 into account the state of the corresponding "set remote foo-packet"
1545 command, which may be used to bypass auto-detection. */
1546
1547 static enum packet_support
1548 packet_config_support (struct packet_config *config)
1549 {
1550 switch (config->detect)
1551 {
1552 case AUTO_BOOLEAN_TRUE:
1553 return PACKET_ENABLE;
1554 case AUTO_BOOLEAN_FALSE:
1555 return PACKET_DISABLE;
1556 case AUTO_BOOLEAN_AUTO:
1557 return config->support;
1558 default:
1559 gdb_assert_not_reached (_("bad switch"));
1560 }
1561 }
1562
1563 /* Same as packet_config_support, but takes the packet's enum value as
1564 argument. */
1565
1566 static enum packet_support
1567 packet_support (int packet)
1568 {
1569 struct packet_config *config = &remote_protocol_packets[packet];
1570
1571 return packet_config_support (config);
1572 }
1573
1574 static void
1575 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1576 struct cmd_list_element *c,
1577 const char *value)
1578 {
1579 struct packet_config *packet;
1580
1581 for (packet = remote_protocol_packets;
1582 packet < &remote_protocol_packets[PACKET_MAX];
1583 packet++)
1584 {
1585 if (&packet->detect == c->var)
1586 {
1587 show_packet_config_cmd (packet);
1588 return;
1589 }
1590 }
1591 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1592 c->name);
1593 }
1594
1595 /* Should we try one of the 'Z' requests? */
1596
1597 enum Z_packet_type
1598 {
1599 Z_PACKET_SOFTWARE_BP,
1600 Z_PACKET_HARDWARE_BP,
1601 Z_PACKET_WRITE_WP,
1602 Z_PACKET_READ_WP,
1603 Z_PACKET_ACCESS_WP,
1604 NR_Z_PACKET_TYPES
1605 };
1606
1607 /* For compatibility with older distributions. Provide a ``set remote
1608 Z-packet ...'' command that updates all the Z packet types. */
1609
1610 static enum auto_boolean remote_Z_packet_detect;
1611
1612 static void
1613 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1614 struct cmd_list_element *c)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1620 }
1621
1622 static void
1623 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c,
1625 const char *value)
1626 {
1627 int i;
1628
1629 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1630 {
1631 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1632 }
1633 }
1634
1635 /* Returns true if the multi-process extensions are in effect. */
1636
1637 static int
1638 remote_multi_process_p (struct remote_state *rs)
1639 {
1640 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1641 }
1642
1643 /* Returns true if fork events are supported. */
1644
1645 static int
1646 remote_fork_event_p (struct remote_state *rs)
1647 {
1648 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1649 }
1650
1651 /* Returns true if vfork events are supported. */
1652
1653 static int
1654 remote_vfork_event_p (struct remote_state *rs)
1655 {
1656 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1657 }
1658
1659 /* Returns true if exec events are supported. */
1660
1661 static int
1662 remote_exec_event_p (struct remote_state *rs)
1663 {
1664 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1665 }
1666
1667 /* Insert fork catchpoint target routine. If fork events are enabled
1668 then return success, nothing more to do. */
1669
1670 static int
1671 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 struct remote_state *rs = get_remote_state ();
1674
1675 return !remote_fork_event_p (rs);
1676 }
1677
1678 /* Remove fork catchpoint target routine. Nothing to do, just
1679 return success. */
1680
1681 static int
1682 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1683 {
1684 return 0;
1685 }
1686
1687 /* Insert vfork catchpoint target routine. If vfork events are enabled
1688 then return success, nothing more to do. */
1689
1690 static int
1691 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 struct remote_state *rs = get_remote_state ();
1694
1695 return !remote_vfork_event_p (rs);
1696 }
1697
1698 /* Remove vfork catchpoint target routine. Nothing to do, just
1699 return success. */
1700
1701 static int
1702 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1703 {
1704 return 0;
1705 }
1706
1707 /* Insert exec catchpoint target routine. If exec events are
1708 enabled, just return success. */
1709
1710 static int
1711 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 struct remote_state *rs = get_remote_state ();
1714
1715 return !remote_exec_event_p (rs);
1716 }
1717
1718 /* Remove exec catchpoint target routine. Nothing to do, just
1719 return success. */
1720
1721 static int
1722 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1723 {
1724 return 0;
1725 }
1726
1727 \f
1728 /* Asynchronous signal handle registered as event loop source for
1729 when we have pending events ready to be passed to the core. */
1730
1731 static struct async_event_handler *remote_async_inferior_event_token;
1732
1733 \f
1734
1735 static ptid_t magic_null_ptid;
1736 static ptid_t not_sent_ptid;
1737 static ptid_t any_thread_ptid;
1738
1739 /* Find out if the stub attached to PID (and hence GDB should offer to
1740 detach instead of killing it when bailing out). */
1741
1742 static int
1743 remote_query_attached (int pid)
1744 {
1745 struct remote_state *rs = get_remote_state ();
1746 size_t size = get_remote_packet_size ();
1747
1748 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1749 return 0;
1750
1751 if (remote_multi_process_p (rs))
1752 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1753 else
1754 xsnprintf (rs->buf, size, "qAttached");
1755
1756 putpkt (rs->buf);
1757 getpkt (&rs->buf, &rs->buf_size, 0);
1758
1759 switch (packet_ok (rs->buf,
1760 &remote_protocol_packets[PACKET_qAttached]))
1761 {
1762 case PACKET_OK:
1763 if (strcmp (rs->buf, "1") == 0)
1764 return 1;
1765 break;
1766 case PACKET_ERROR:
1767 warning (_("Remote failure reply: %s"), rs->buf);
1768 break;
1769 case PACKET_UNKNOWN:
1770 break;
1771 }
1772
1773 return 0;
1774 }
1775
1776 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1777 has been invented by GDB, instead of reported by the target. Since
1778 we can be connected to a remote system before before knowing about
1779 any inferior, mark the target with execution when we find the first
1780 inferior. If ATTACHED is 1, then we had just attached to this
1781 inferior. If it is 0, then we just created this inferior. If it
1782 is -1, then try querying the remote stub to find out if it had
1783 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1784 attempt to open this inferior's executable as the main executable
1785 if no main executable is open already. */
1786
1787 static struct inferior *
1788 remote_add_inferior (int fake_pid_p, int pid, int attached,
1789 int try_open_exec)
1790 {
1791 struct inferior *inf;
1792
1793 /* Check whether this process we're learning about is to be
1794 considered attached, or if is to be considered to have been
1795 spawned by the stub. */
1796 if (attached == -1)
1797 attached = remote_query_attached (pid);
1798
1799 if (gdbarch_has_global_solist (target_gdbarch ()))
1800 {
1801 /* If the target shares code across all inferiors, then every
1802 attach adds a new inferior. */
1803 inf = add_inferior (pid);
1804
1805 /* ... and every inferior is bound to the same program space.
1806 However, each inferior may still have its own address
1807 space. */
1808 inf->aspace = maybe_new_address_space ();
1809 inf->pspace = current_program_space;
1810 }
1811 else
1812 {
1813 /* In the traditional debugging scenario, there's a 1-1 match
1814 between program/address spaces. We simply bind the inferior
1815 to the program space's address space. */
1816 inf = current_inferior ();
1817 inferior_appeared (inf, pid);
1818 }
1819
1820 inf->attach_flag = attached;
1821 inf->fake_pid_p = fake_pid_p;
1822
1823 /* If no main executable is currently open then attempt to
1824 open the file that was executed to create this inferior. */
1825 if (try_open_exec && get_exec_file (0) == NULL)
1826 exec_file_locate_attach (pid, 0, 1);
1827
1828 return inf;
1829 }
1830
1831 static struct private_thread_info *
1832 get_private_info_thread (struct thread_info *info);
1833
1834 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1835 according to RUNNING. */
1836
1837 static void
1838 remote_add_thread (ptid_t ptid, int running, int executing)
1839 {
1840 struct remote_state *rs = get_remote_state ();
1841 struct thread_info *thread;
1842
1843 /* GDB historically didn't pull threads in the initial connection
1844 setup. If the remote target doesn't even have a concept of
1845 threads (e.g., a bare-metal target), even if internally we
1846 consider that a single-threaded target, mentioning a new thread
1847 might be confusing to the user. Be silent then, preserving the
1848 age old behavior. */
1849 if (rs->starting_up)
1850 thread = add_thread_silent (ptid);
1851 else
1852 thread = add_thread (ptid);
1853
1854 get_private_info_thread (thread)->vcont_resumed = executing;
1855 set_executing (ptid, executing);
1856 set_running (ptid, running);
1857 }
1858
1859 /* Come here when we learn about a thread id from the remote target.
1860 It may be the first time we hear about such thread, so take the
1861 opportunity to add it to GDB's thread list. In case this is the
1862 first time we're noticing its corresponding inferior, add it to
1863 GDB's inferior list as well. EXECUTING indicates whether the
1864 thread is (internally) executing or stopped. */
1865
1866 static void
1867 remote_notice_new_inferior (ptid_t currthread, int executing)
1868 {
1869 /* In non-stop mode, we assume new found threads are (externally)
1870 running until proven otherwise with a stop reply. In all-stop,
1871 we can only get here if all threads are stopped. */
1872 int running = target_is_non_stop_p () ? 1 : 0;
1873
1874 /* If this is a new thread, add it to GDB's thread list.
1875 If we leave it up to WFI to do this, bad things will happen. */
1876
1877 if (in_thread_list (currthread) && is_exited (currthread))
1878 {
1879 /* We're seeing an event on a thread id we knew had exited.
1880 This has to be a new thread reusing the old id. Add it. */
1881 remote_add_thread (currthread, running, executing);
1882 return;
1883 }
1884
1885 if (!in_thread_list (currthread))
1886 {
1887 struct inferior *inf = NULL;
1888 int pid = ptid_get_pid (currthread);
1889
1890 if (ptid_is_pid (inferior_ptid)
1891 && pid == ptid_get_pid (inferior_ptid))
1892 {
1893 /* inferior_ptid has no thread member yet. This can happen
1894 with the vAttach -> remote_wait,"TAAthread:" path if the
1895 stub doesn't support qC. This is the first stop reported
1896 after an attach, so this is the main thread. Update the
1897 ptid in the thread list. */
1898 if (in_thread_list (pid_to_ptid (pid)))
1899 thread_change_ptid (inferior_ptid, currthread);
1900 else
1901 {
1902 remote_add_thread (currthread, running, executing);
1903 inferior_ptid = currthread;
1904 }
1905 return;
1906 }
1907
1908 if (ptid_equal (magic_null_ptid, inferior_ptid))
1909 {
1910 /* inferior_ptid is not set yet. This can happen with the
1911 vRun -> remote_wait,"TAAthread:" path if the stub
1912 doesn't support qC. This is the first stop reported
1913 after an attach, so this is the main thread. Update the
1914 ptid in the thread list. */
1915 thread_change_ptid (inferior_ptid, currthread);
1916 return;
1917 }
1918
1919 /* When connecting to a target remote, or to a target
1920 extended-remote which already was debugging an inferior, we
1921 may not know about it yet. Add it before adding its child
1922 thread, so notifications are emitted in a sensible order. */
1923 if (!in_inferior_list (ptid_get_pid (currthread)))
1924 {
1925 struct remote_state *rs = get_remote_state ();
1926 int fake_pid_p = !remote_multi_process_p (rs);
1927
1928 inf = remote_add_inferior (fake_pid_p,
1929 ptid_get_pid (currthread), -1, 1);
1930 }
1931
1932 /* This is really a new thread. Add it. */
1933 remote_add_thread (currthread, running, executing);
1934
1935 /* If we found a new inferior, let the common code do whatever
1936 it needs to with it (e.g., read shared libraries, insert
1937 breakpoints), unless we're just setting up an all-stop
1938 connection. */
1939 if (inf != NULL)
1940 {
1941 struct remote_state *rs = get_remote_state ();
1942
1943 if (!rs->starting_up)
1944 notice_new_inferior (currthread, executing, 0);
1945 }
1946 }
1947 }
1948
1949 /* Return THREAD's private thread data, creating it if necessary. */
1950
1951 static struct private_thread_info *
1952 get_private_info_thread (struct thread_info *thread)
1953 {
1954 gdb_assert (thread != NULL);
1955
1956 if (thread->priv == NULL)
1957 {
1958 struct private_thread_info *priv = XNEW (struct private_thread_info);
1959
1960 thread->private_dtor = free_private_thread_info;
1961 thread->priv = priv;
1962
1963 priv->core = -1;
1964 priv->extra = NULL;
1965 priv->name = NULL;
1966 priv->name = NULL;
1967 priv->last_resume_step = 0;
1968 priv->last_resume_sig = GDB_SIGNAL_0;
1969 priv->vcont_resumed = 0;
1970 }
1971
1972 return thread->priv;
1973 }
1974
1975 /* Return PTID's private thread data, creating it if necessary. */
1976
1977 static struct private_thread_info *
1978 get_private_info_ptid (ptid_t ptid)
1979 {
1980 struct thread_info *info = find_thread_ptid (ptid);
1981
1982 return get_private_info_thread (info);
1983 }
1984
1985 /* Call this function as a result of
1986 1) A halt indication (T packet) containing a thread id
1987 2) A direct query of currthread
1988 3) Successful execution of set thread */
1989
1990 static void
1991 record_currthread (struct remote_state *rs, ptid_t currthread)
1992 {
1993 rs->general_thread = currthread;
1994 }
1995
1996 /* If 'QPassSignals' is supported, tell the remote stub what signals
1997 it can simply pass through to the inferior without reporting. */
1998
1999 static void
2000 remote_pass_signals (struct target_ops *self,
2001 int numsigs, unsigned char *pass_signals)
2002 {
2003 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2004 {
2005 char *pass_packet, *p;
2006 int count = 0, i;
2007 struct remote_state *rs = get_remote_state ();
2008
2009 gdb_assert (numsigs < 256);
2010 for (i = 0; i < numsigs; i++)
2011 {
2012 if (pass_signals[i])
2013 count++;
2014 }
2015 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2016 strcpy (pass_packet, "QPassSignals:");
2017 p = pass_packet + strlen (pass_packet);
2018 for (i = 0; i < numsigs; i++)
2019 {
2020 if (pass_signals[i])
2021 {
2022 if (i >= 16)
2023 *p++ = tohex (i >> 4);
2024 *p++ = tohex (i & 15);
2025 if (count)
2026 *p++ = ';';
2027 else
2028 break;
2029 count--;
2030 }
2031 }
2032 *p = 0;
2033 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2034 {
2035 putpkt (pass_packet);
2036 getpkt (&rs->buf, &rs->buf_size, 0);
2037 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2038 if (rs->last_pass_packet)
2039 xfree (rs->last_pass_packet);
2040 rs->last_pass_packet = pass_packet;
2041 }
2042 else
2043 xfree (pass_packet);
2044 }
2045 }
2046
2047 /* If 'QCatchSyscalls' is supported, tell the remote stub
2048 to report syscalls to GDB. */
2049
2050 static int
2051 remote_set_syscall_catchpoint (struct target_ops *self,
2052 int pid, int needed, int any_count,
2053 int table_size, int *table)
2054 {
2055 char *catch_packet;
2056 enum packet_result result;
2057 int n_sysno = 0;
2058
2059 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2060 {
2061 /* Not supported. */
2062 return 1;
2063 }
2064
2065 if (needed && !any_count)
2066 {
2067 int i;
2068
2069 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2070 for (i = 0; i < table_size; i++)
2071 {
2072 if (table[i] != 0)
2073 n_sysno++;
2074 }
2075 }
2076
2077 if (remote_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "remote_set_syscall_catchpoint "
2081 "pid %d needed %d any_count %d n_sysno %d\n",
2082 pid, needed, any_count, n_sysno);
2083 }
2084
2085 if (needed)
2086 {
2087 /* Prepare a packet with the sysno list, assuming max 8+1
2088 characters for a sysno. If the resulting packet size is too
2089 big, fallback on the non-selective packet. */
2090 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2091
2092 catch_packet = (char *) xmalloc (maxpktsz);
2093 strcpy (catch_packet, "QCatchSyscalls:1");
2094 if (!any_count)
2095 {
2096 int i;
2097 char *p;
2098
2099 p = catch_packet;
2100 p += strlen (p);
2101
2102 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2103 for (i = 0; i < table_size; i++)
2104 {
2105 if (table[i] != 0)
2106 p += xsnprintf (p, catch_packet + maxpktsz - p, ";%x", i);
2107 }
2108 }
2109 if (strlen (catch_packet) > get_remote_packet_size ())
2110 {
2111 /* catch_packet too big. Fallback to less efficient
2112 non selective mode, with GDB doing the filtering. */
2113 catch_packet[sizeof ("QCatchSyscalls:1") - 1] = 0;
2114 }
2115 }
2116 else
2117 catch_packet = xstrdup ("QCatchSyscalls:0");
2118
2119 {
2120 struct cleanup *old_chain = make_cleanup (xfree, catch_packet);
2121 struct remote_state *rs = get_remote_state ();
2122
2123 putpkt (catch_packet);
2124 getpkt (&rs->buf, &rs->buf_size, 0);
2125 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2126 do_cleanups (old_chain);
2127 if (result == PACKET_OK)
2128 return 0;
2129 else
2130 return -1;
2131 }
2132 }
2133
2134 /* If 'QProgramSignals' is supported, tell the remote stub what
2135 signals it should pass through to the inferior when detaching. */
2136
2137 static void
2138 remote_program_signals (struct target_ops *self,
2139 int numsigs, unsigned char *signals)
2140 {
2141 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2142 {
2143 char *packet, *p;
2144 int count = 0, i;
2145 struct remote_state *rs = get_remote_state ();
2146
2147 gdb_assert (numsigs < 256);
2148 for (i = 0; i < numsigs; i++)
2149 {
2150 if (signals[i])
2151 count++;
2152 }
2153 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2154 strcpy (packet, "QProgramSignals:");
2155 p = packet + strlen (packet);
2156 for (i = 0; i < numsigs; i++)
2157 {
2158 if (signal_pass_state (i))
2159 {
2160 if (i >= 16)
2161 *p++ = tohex (i >> 4);
2162 *p++ = tohex (i & 15);
2163 if (count)
2164 *p++ = ';';
2165 else
2166 break;
2167 count--;
2168 }
2169 }
2170 *p = 0;
2171 if (!rs->last_program_signals_packet
2172 || strcmp (rs->last_program_signals_packet, packet) != 0)
2173 {
2174 putpkt (packet);
2175 getpkt (&rs->buf, &rs->buf_size, 0);
2176 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2177 xfree (rs->last_program_signals_packet);
2178 rs->last_program_signals_packet = packet;
2179 }
2180 else
2181 xfree (packet);
2182 }
2183 }
2184
2185 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2186 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2187 thread. If GEN is set, set the general thread, if not, then set
2188 the step/continue thread. */
2189 static void
2190 set_thread (struct ptid ptid, int gen)
2191 {
2192 struct remote_state *rs = get_remote_state ();
2193 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2194 char *buf = rs->buf;
2195 char *endbuf = rs->buf + get_remote_packet_size ();
2196
2197 if (ptid_equal (state, ptid))
2198 return;
2199
2200 *buf++ = 'H';
2201 *buf++ = gen ? 'g' : 'c';
2202 if (ptid_equal (ptid, magic_null_ptid))
2203 xsnprintf (buf, endbuf - buf, "0");
2204 else if (ptid_equal (ptid, any_thread_ptid))
2205 xsnprintf (buf, endbuf - buf, "0");
2206 else if (ptid_equal (ptid, minus_one_ptid))
2207 xsnprintf (buf, endbuf - buf, "-1");
2208 else
2209 write_ptid (buf, endbuf, ptid);
2210 putpkt (rs->buf);
2211 getpkt (&rs->buf, &rs->buf_size, 0);
2212 if (gen)
2213 rs->general_thread = ptid;
2214 else
2215 rs->continue_thread = ptid;
2216 }
2217
2218 static void
2219 set_general_thread (struct ptid ptid)
2220 {
2221 set_thread (ptid, 1);
2222 }
2223
2224 static void
2225 set_continue_thread (struct ptid ptid)
2226 {
2227 set_thread (ptid, 0);
2228 }
2229
2230 /* Change the remote current process. Which thread within the process
2231 ends up selected isn't important, as long as it is the same process
2232 as what INFERIOR_PTID points to.
2233
2234 This comes from that fact that there is no explicit notion of
2235 "selected process" in the protocol. The selected process for
2236 general operations is the process the selected general thread
2237 belongs to. */
2238
2239 static void
2240 set_general_process (void)
2241 {
2242 struct remote_state *rs = get_remote_state ();
2243
2244 /* If the remote can't handle multiple processes, don't bother. */
2245 if (!remote_multi_process_p (rs))
2246 return;
2247
2248 /* We only need to change the remote current thread if it's pointing
2249 at some other process. */
2250 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2251 set_general_thread (inferior_ptid);
2252 }
2253
2254 \f
2255 /* Return nonzero if this is the main thread that we made up ourselves
2256 to model non-threaded targets as single-threaded. */
2257
2258 static int
2259 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2260 {
2261 if (ptid_equal (ptid, magic_null_ptid))
2262 /* The main thread is always alive. */
2263 return 1;
2264
2265 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2266 /* The main thread is always alive. This can happen after a
2267 vAttach, if the remote side doesn't support
2268 multi-threading. */
2269 return 1;
2270
2271 return 0;
2272 }
2273
2274 /* Return nonzero if the thread PTID is still alive on the remote
2275 system. */
2276
2277 static int
2278 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2279 {
2280 struct remote_state *rs = get_remote_state ();
2281 char *p, *endp;
2282
2283 /* Check if this is a thread that we made up ourselves to model
2284 non-threaded targets as single-threaded. */
2285 if (remote_thread_always_alive (ops, ptid))
2286 return 1;
2287
2288 p = rs->buf;
2289 endp = rs->buf + get_remote_packet_size ();
2290
2291 *p++ = 'T';
2292 write_ptid (p, endp, ptid);
2293
2294 putpkt (rs->buf);
2295 getpkt (&rs->buf, &rs->buf_size, 0);
2296 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2297 }
2298
2299 /* Return a pointer to a thread name if we know it and NULL otherwise.
2300 The thread_info object owns the memory for the name. */
2301
2302 static const char *
2303 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2304 {
2305 if (info->priv != NULL)
2306 return info->priv->name;
2307
2308 return NULL;
2309 }
2310
2311 /* About these extended threadlist and threadinfo packets. They are
2312 variable length packets but, the fields within them are often fixed
2313 length. They are redundent enough to send over UDP as is the
2314 remote protocol in general. There is a matching unit test module
2315 in libstub. */
2316
2317 /* WARNING: This threadref data structure comes from the remote O.S.,
2318 libstub protocol encoding, and remote.c. It is not particularly
2319 changable. */
2320
2321 /* Right now, the internal structure is int. We want it to be bigger.
2322 Plan to fix this. */
2323
2324 typedef int gdb_threadref; /* Internal GDB thread reference. */
2325
2326 /* gdb_ext_thread_info is an internal GDB data structure which is
2327 equivalent to the reply of the remote threadinfo packet. */
2328
2329 struct gdb_ext_thread_info
2330 {
2331 threadref threadid; /* External form of thread reference. */
2332 int active; /* Has state interesting to GDB?
2333 regs, stack. */
2334 char display[256]; /* Brief state display, name,
2335 blocked/suspended. */
2336 char shortname[32]; /* To be used to name threads. */
2337 char more_display[256]; /* Long info, statistics, queue depth,
2338 whatever. */
2339 };
2340
2341 /* The volume of remote transfers can be limited by submitting
2342 a mask containing bits specifying the desired information.
2343 Use a union of these values as the 'selection' parameter to
2344 get_thread_info. FIXME: Make these TAG names more thread specific. */
2345
2346 #define TAG_THREADID 1
2347 #define TAG_EXISTS 2
2348 #define TAG_DISPLAY 4
2349 #define TAG_THREADNAME 8
2350 #define TAG_MOREDISPLAY 16
2351
2352 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2353
2354 static char *unpack_nibble (char *buf, int *val);
2355
2356 static char *unpack_byte (char *buf, int *value);
2357
2358 static char *pack_int (char *buf, int value);
2359
2360 static char *unpack_int (char *buf, int *value);
2361
2362 static char *unpack_string (char *src, char *dest, int length);
2363
2364 static char *pack_threadid (char *pkt, threadref *id);
2365
2366 static char *unpack_threadid (char *inbuf, threadref *id);
2367
2368 void int_to_threadref (threadref *id, int value);
2369
2370 static int threadref_to_int (threadref *ref);
2371
2372 static void copy_threadref (threadref *dest, threadref *src);
2373
2374 static int threadmatch (threadref *dest, threadref *src);
2375
2376 static char *pack_threadinfo_request (char *pkt, int mode,
2377 threadref *id);
2378
2379 static int remote_unpack_thread_info_response (char *pkt,
2380 threadref *expectedref,
2381 struct gdb_ext_thread_info
2382 *info);
2383
2384
2385 static int remote_get_threadinfo (threadref *threadid,
2386 int fieldset, /*TAG mask */
2387 struct gdb_ext_thread_info *info);
2388
2389 static char *pack_threadlist_request (char *pkt, int startflag,
2390 int threadcount,
2391 threadref *nextthread);
2392
2393 static int parse_threadlist_response (char *pkt,
2394 int result_limit,
2395 threadref *original_echo,
2396 threadref *resultlist,
2397 int *doneflag);
2398
2399 static int remote_get_threadlist (int startflag,
2400 threadref *nextthread,
2401 int result_limit,
2402 int *done,
2403 int *result_count,
2404 threadref *threadlist);
2405
2406 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2407
2408 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2409 void *context, int looplimit);
2410
2411 static int remote_newthread_step (threadref *ref, void *context);
2412
2413
2414 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2415 buffer we're allowed to write to. Returns
2416 BUF+CHARACTERS_WRITTEN. */
2417
2418 static char *
2419 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2420 {
2421 int pid, tid;
2422 struct remote_state *rs = get_remote_state ();
2423
2424 if (remote_multi_process_p (rs))
2425 {
2426 pid = ptid_get_pid (ptid);
2427 if (pid < 0)
2428 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2429 else
2430 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2431 }
2432 tid = ptid_get_lwp (ptid);
2433 if (tid < 0)
2434 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2435 else
2436 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2437
2438 return buf;
2439 }
2440
2441 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2442 passed the last parsed char. Returns null_ptid on error. */
2443
2444 static ptid_t
2445 read_ptid (char *buf, char **obuf)
2446 {
2447 char *p = buf;
2448 char *pp;
2449 ULONGEST pid = 0, tid = 0;
2450
2451 if (*p == 'p')
2452 {
2453 /* Multi-process ptid. */
2454 pp = unpack_varlen_hex (p + 1, &pid);
2455 if (*pp != '.')
2456 error (_("invalid remote ptid: %s"), p);
2457
2458 p = pp;
2459 pp = unpack_varlen_hex (p + 1, &tid);
2460 if (obuf)
2461 *obuf = pp;
2462 return ptid_build (pid, tid, 0);
2463 }
2464
2465 /* No multi-process. Just a tid. */
2466 pp = unpack_varlen_hex (p, &tid);
2467
2468 /* Return null_ptid when no thread id is found. */
2469 if (p == pp)
2470 {
2471 if (obuf)
2472 *obuf = pp;
2473 return null_ptid;
2474 }
2475
2476 /* Since the stub is not sending a process id, then default to
2477 what's in inferior_ptid, unless it's null at this point. If so,
2478 then since there's no way to know the pid of the reported
2479 threads, use the magic number. */
2480 if (ptid_equal (inferior_ptid, null_ptid))
2481 pid = ptid_get_pid (magic_null_ptid);
2482 else
2483 pid = ptid_get_pid (inferior_ptid);
2484
2485 if (obuf)
2486 *obuf = pp;
2487 return ptid_build (pid, tid, 0);
2488 }
2489
2490 static int
2491 stubhex (int ch)
2492 {
2493 if (ch >= 'a' && ch <= 'f')
2494 return ch - 'a' + 10;
2495 if (ch >= '0' && ch <= '9')
2496 return ch - '0';
2497 if (ch >= 'A' && ch <= 'F')
2498 return ch - 'A' + 10;
2499 return -1;
2500 }
2501
2502 static int
2503 stub_unpack_int (char *buff, int fieldlength)
2504 {
2505 int nibble;
2506 int retval = 0;
2507
2508 while (fieldlength)
2509 {
2510 nibble = stubhex (*buff++);
2511 retval |= nibble;
2512 fieldlength--;
2513 if (fieldlength)
2514 retval = retval << 4;
2515 }
2516 return retval;
2517 }
2518
2519 static char *
2520 unpack_nibble (char *buf, int *val)
2521 {
2522 *val = fromhex (*buf++);
2523 return buf;
2524 }
2525
2526 static char *
2527 unpack_byte (char *buf, int *value)
2528 {
2529 *value = stub_unpack_int (buf, 2);
2530 return buf + 2;
2531 }
2532
2533 static char *
2534 pack_int (char *buf, int value)
2535 {
2536 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2537 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2538 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2539 buf = pack_hex_byte (buf, (value & 0xff));
2540 return buf;
2541 }
2542
2543 static char *
2544 unpack_int (char *buf, int *value)
2545 {
2546 *value = stub_unpack_int (buf, 8);
2547 return buf + 8;
2548 }
2549
2550 #if 0 /* Currently unused, uncomment when needed. */
2551 static char *pack_string (char *pkt, char *string);
2552
2553 static char *
2554 pack_string (char *pkt, char *string)
2555 {
2556 char ch;
2557 int len;
2558
2559 len = strlen (string);
2560 if (len > 200)
2561 len = 200; /* Bigger than most GDB packets, junk??? */
2562 pkt = pack_hex_byte (pkt, len);
2563 while (len-- > 0)
2564 {
2565 ch = *string++;
2566 if ((ch == '\0') || (ch == '#'))
2567 ch = '*'; /* Protect encapsulation. */
2568 *pkt++ = ch;
2569 }
2570 return pkt;
2571 }
2572 #endif /* 0 (unused) */
2573
2574 static char *
2575 unpack_string (char *src, char *dest, int length)
2576 {
2577 while (length--)
2578 *dest++ = *src++;
2579 *dest = '\0';
2580 return src;
2581 }
2582
2583 static char *
2584 pack_threadid (char *pkt, threadref *id)
2585 {
2586 char *limit;
2587 unsigned char *altid;
2588
2589 altid = (unsigned char *) id;
2590 limit = pkt + BUF_THREAD_ID_SIZE;
2591 while (pkt < limit)
2592 pkt = pack_hex_byte (pkt, *altid++);
2593 return pkt;
2594 }
2595
2596
2597 static char *
2598 unpack_threadid (char *inbuf, threadref *id)
2599 {
2600 char *altref;
2601 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2602 int x, y;
2603
2604 altref = (char *) id;
2605
2606 while (inbuf < limit)
2607 {
2608 x = stubhex (*inbuf++);
2609 y = stubhex (*inbuf++);
2610 *altref++ = (x << 4) | y;
2611 }
2612 return inbuf;
2613 }
2614
2615 /* Externally, threadrefs are 64 bits but internally, they are still
2616 ints. This is due to a mismatch of specifications. We would like
2617 to use 64bit thread references internally. This is an adapter
2618 function. */
2619
2620 void
2621 int_to_threadref (threadref *id, int value)
2622 {
2623 unsigned char *scan;
2624
2625 scan = (unsigned char *) id;
2626 {
2627 int i = 4;
2628 while (i--)
2629 *scan++ = 0;
2630 }
2631 *scan++ = (value >> 24) & 0xff;
2632 *scan++ = (value >> 16) & 0xff;
2633 *scan++ = (value >> 8) & 0xff;
2634 *scan++ = (value & 0xff);
2635 }
2636
2637 static int
2638 threadref_to_int (threadref *ref)
2639 {
2640 int i, value = 0;
2641 unsigned char *scan;
2642
2643 scan = *ref;
2644 scan += 4;
2645 i = 4;
2646 while (i-- > 0)
2647 value = (value << 8) | ((*scan++) & 0xff);
2648 return value;
2649 }
2650
2651 static void
2652 copy_threadref (threadref *dest, threadref *src)
2653 {
2654 int i;
2655 unsigned char *csrc, *cdest;
2656
2657 csrc = (unsigned char *) src;
2658 cdest = (unsigned char *) dest;
2659 i = 8;
2660 while (i--)
2661 *cdest++ = *csrc++;
2662 }
2663
2664 static int
2665 threadmatch (threadref *dest, threadref *src)
2666 {
2667 /* Things are broken right now, so just assume we got a match. */
2668 #if 0
2669 unsigned char *srcp, *destp;
2670 int i, result;
2671 srcp = (char *) src;
2672 destp = (char *) dest;
2673
2674 result = 1;
2675 while (i-- > 0)
2676 result &= (*srcp++ == *destp++) ? 1 : 0;
2677 return result;
2678 #endif
2679 return 1;
2680 }
2681
2682 /*
2683 threadid:1, # always request threadid
2684 context_exists:2,
2685 display:4,
2686 unique_name:8,
2687 more_display:16
2688 */
2689
2690 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2691
2692 static char *
2693 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2694 {
2695 *pkt++ = 'q'; /* Info Query */
2696 *pkt++ = 'P'; /* process or thread info */
2697 pkt = pack_int (pkt, mode); /* mode */
2698 pkt = pack_threadid (pkt, id); /* threadid */
2699 *pkt = '\0'; /* terminate */
2700 return pkt;
2701 }
2702
2703 /* These values tag the fields in a thread info response packet. */
2704 /* Tagging the fields allows us to request specific fields and to
2705 add more fields as time goes by. */
2706
2707 #define TAG_THREADID 1 /* Echo the thread identifier. */
2708 #define TAG_EXISTS 2 /* Is this process defined enough to
2709 fetch registers and its stack? */
2710 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2711 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2712 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2713 the process. */
2714
2715 static int
2716 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2717 struct gdb_ext_thread_info *info)
2718 {
2719 struct remote_state *rs = get_remote_state ();
2720 int mask, length;
2721 int tag;
2722 threadref ref;
2723 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2724 int retval = 1;
2725
2726 /* info->threadid = 0; FIXME: implement zero_threadref. */
2727 info->active = 0;
2728 info->display[0] = '\0';
2729 info->shortname[0] = '\0';
2730 info->more_display[0] = '\0';
2731
2732 /* Assume the characters indicating the packet type have been
2733 stripped. */
2734 pkt = unpack_int (pkt, &mask); /* arg mask */
2735 pkt = unpack_threadid (pkt, &ref);
2736
2737 if (mask == 0)
2738 warning (_("Incomplete response to threadinfo request."));
2739 if (!threadmatch (&ref, expectedref))
2740 { /* This is an answer to a different request. */
2741 warning (_("ERROR RMT Thread info mismatch."));
2742 return 0;
2743 }
2744 copy_threadref (&info->threadid, &ref);
2745
2746 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2747
2748 /* Packets are terminated with nulls. */
2749 while ((pkt < limit) && mask && *pkt)
2750 {
2751 pkt = unpack_int (pkt, &tag); /* tag */
2752 pkt = unpack_byte (pkt, &length); /* length */
2753 if (!(tag & mask)) /* Tags out of synch with mask. */
2754 {
2755 warning (_("ERROR RMT: threadinfo tag mismatch."));
2756 retval = 0;
2757 break;
2758 }
2759 if (tag == TAG_THREADID)
2760 {
2761 if (length != 16)
2762 {
2763 warning (_("ERROR RMT: length of threadid is not 16."));
2764 retval = 0;
2765 break;
2766 }
2767 pkt = unpack_threadid (pkt, &ref);
2768 mask = mask & ~TAG_THREADID;
2769 continue;
2770 }
2771 if (tag == TAG_EXISTS)
2772 {
2773 info->active = stub_unpack_int (pkt, length);
2774 pkt += length;
2775 mask = mask & ~(TAG_EXISTS);
2776 if (length > 8)
2777 {
2778 warning (_("ERROR RMT: 'exists' length too long."));
2779 retval = 0;
2780 break;
2781 }
2782 continue;
2783 }
2784 if (tag == TAG_THREADNAME)
2785 {
2786 pkt = unpack_string (pkt, &info->shortname[0], length);
2787 mask = mask & ~TAG_THREADNAME;
2788 continue;
2789 }
2790 if (tag == TAG_DISPLAY)
2791 {
2792 pkt = unpack_string (pkt, &info->display[0], length);
2793 mask = mask & ~TAG_DISPLAY;
2794 continue;
2795 }
2796 if (tag == TAG_MOREDISPLAY)
2797 {
2798 pkt = unpack_string (pkt, &info->more_display[0], length);
2799 mask = mask & ~TAG_MOREDISPLAY;
2800 continue;
2801 }
2802 warning (_("ERROR RMT: unknown thread info tag."));
2803 break; /* Not a tag we know about. */
2804 }
2805 return retval;
2806 }
2807
2808 static int
2809 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2810 struct gdb_ext_thread_info *info)
2811 {
2812 struct remote_state *rs = get_remote_state ();
2813 int result;
2814
2815 pack_threadinfo_request (rs->buf, fieldset, threadid);
2816 putpkt (rs->buf);
2817 getpkt (&rs->buf, &rs->buf_size, 0);
2818
2819 if (rs->buf[0] == '\0')
2820 return 0;
2821
2822 result = remote_unpack_thread_info_response (rs->buf + 2,
2823 threadid, info);
2824 return result;
2825 }
2826
2827 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2828
2829 static char *
2830 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2831 threadref *nextthread)
2832 {
2833 *pkt++ = 'q'; /* info query packet */
2834 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2835 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2836 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2837 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2838 *pkt = '\0';
2839 return pkt;
2840 }
2841
2842 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2843
2844 static int
2845 parse_threadlist_response (char *pkt, int result_limit,
2846 threadref *original_echo, threadref *resultlist,
2847 int *doneflag)
2848 {
2849 struct remote_state *rs = get_remote_state ();
2850 char *limit;
2851 int count, resultcount, done;
2852
2853 resultcount = 0;
2854 /* Assume the 'q' and 'M chars have been stripped. */
2855 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2856 /* done parse past here */
2857 pkt = unpack_byte (pkt, &count); /* count field */
2858 pkt = unpack_nibble (pkt, &done);
2859 /* The first threadid is the argument threadid. */
2860 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2861 while ((count-- > 0) && (pkt < limit))
2862 {
2863 pkt = unpack_threadid (pkt, resultlist++);
2864 if (resultcount++ >= result_limit)
2865 break;
2866 }
2867 if (doneflag)
2868 *doneflag = done;
2869 return resultcount;
2870 }
2871
2872 /* Fetch the next batch of threads from the remote. Returns -1 if the
2873 qL packet is not supported, 0 on error and 1 on success. */
2874
2875 static int
2876 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2877 int *done, int *result_count, threadref *threadlist)
2878 {
2879 struct remote_state *rs = get_remote_state ();
2880 int result = 1;
2881
2882 /* Trancate result limit to be smaller than the packet size. */
2883 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2884 >= get_remote_packet_size ())
2885 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2886
2887 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2888 putpkt (rs->buf);
2889 getpkt (&rs->buf, &rs->buf_size, 0);
2890 if (*rs->buf == '\0')
2891 {
2892 /* Packet not supported. */
2893 return -1;
2894 }
2895
2896 *result_count =
2897 parse_threadlist_response (rs->buf + 2, result_limit,
2898 &rs->echo_nextthread, threadlist, done);
2899
2900 if (!threadmatch (&rs->echo_nextthread, nextthread))
2901 {
2902 /* FIXME: This is a good reason to drop the packet. */
2903 /* Possably, there is a duplicate response. */
2904 /* Possabilities :
2905 retransmit immediatly - race conditions
2906 retransmit after timeout - yes
2907 exit
2908 wait for packet, then exit
2909 */
2910 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2911 return 0; /* I choose simply exiting. */
2912 }
2913 if (*result_count <= 0)
2914 {
2915 if (*done != 1)
2916 {
2917 warning (_("RMT ERROR : failed to get remote thread list."));
2918 result = 0;
2919 }
2920 return result; /* break; */
2921 }
2922 if (*result_count > result_limit)
2923 {
2924 *result_count = 0;
2925 warning (_("RMT ERROR: threadlist response longer than requested."));
2926 return 0;
2927 }
2928 return result;
2929 }
2930
2931 /* Fetch the list of remote threads, with the qL packet, and call
2932 STEPFUNCTION for each thread found. Stops iterating and returns 1
2933 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2934 STEPFUNCTION returns false. If the packet is not supported,
2935 returns -1. */
2936
2937 static int
2938 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2939 int looplimit)
2940 {
2941 struct remote_state *rs = get_remote_state ();
2942 int done, i, result_count;
2943 int startflag = 1;
2944 int result = 1;
2945 int loopcount = 0;
2946
2947 done = 0;
2948 while (!done)
2949 {
2950 if (loopcount++ > looplimit)
2951 {
2952 result = 0;
2953 warning (_("Remote fetch threadlist -infinite loop-."));
2954 break;
2955 }
2956 result = remote_get_threadlist (startflag, &rs->nextthread,
2957 MAXTHREADLISTRESULTS,
2958 &done, &result_count,
2959 rs->resultthreadlist);
2960 if (result <= 0)
2961 break;
2962 /* Clear for later iterations. */
2963 startflag = 0;
2964 /* Setup to resume next batch of thread references, set nextthread. */
2965 if (result_count >= 1)
2966 copy_threadref (&rs->nextthread,
2967 &rs->resultthreadlist[result_count - 1]);
2968 i = 0;
2969 while (result_count--)
2970 {
2971 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2972 {
2973 result = 0;
2974 break;
2975 }
2976 }
2977 }
2978 return result;
2979 }
2980
2981 /* A thread found on the remote target. */
2982
2983 typedef struct thread_item
2984 {
2985 /* The thread's PTID. */
2986 ptid_t ptid;
2987
2988 /* The thread's extra info. May be NULL. */
2989 char *extra;
2990
2991 /* The thread's name. May be NULL. */
2992 char *name;
2993
2994 /* The core the thread was running on. -1 if not known. */
2995 int core;
2996 } thread_item_t;
2997 DEF_VEC_O(thread_item_t);
2998
2999 /* Context passed around to the various methods listing remote
3000 threads. As new threads are found, they're added to the ITEMS
3001 vector. */
3002
3003 struct threads_listing_context
3004 {
3005 /* The threads found on the remote target. */
3006 VEC (thread_item_t) *items;
3007 };
3008
3009 /* Discard the contents of the constructed thread listing context. */
3010
3011 static void
3012 clear_threads_listing_context (void *p)
3013 {
3014 struct threads_listing_context *context
3015 = (struct threads_listing_context *) p;
3016 int i;
3017 struct thread_item *item;
3018
3019 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3020 {
3021 xfree (item->extra);
3022 xfree (item->name);
3023 }
3024
3025 VEC_free (thread_item_t, context->items);
3026 }
3027
3028 /* Remove the thread specified as the related_pid field of WS
3029 from the CONTEXT list. */
3030
3031 static void
3032 threads_listing_context_remove (struct target_waitstatus *ws,
3033 struct threads_listing_context *context)
3034 {
3035 struct thread_item *item;
3036 int i;
3037 ptid_t child_ptid = ws->value.related_pid;
3038
3039 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3040 {
3041 if (ptid_equal (item->ptid, child_ptid))
3042 {
3043 VEC_ordered_remove (thread_item_t, context->items, i);
3044 break;
3045 }
3046 }
3047 }
3048
3049 static int
3050 remote_newthread_step (threadref *ref, void *data)
3051 {
3052 struct threads_listing_context *context
3053 = (struct threads_listing_context *) data;
3054 struct thread_item item;
3055 int pid = ptid_get_pid (inferior_ptid);
3056
3057 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3058 item.core = -1;
3059 item.name = NULL;
3060 item.extra = NULL;
3061
3062 VEC_safe_push (thread_item_t, context->items, &item);
3063
3064 return 1; /* continue iterator */
3065 }
3066
3067 #define CRAZY_MAX_THREADS 1000
3068
3069 static ptid_t
3070 remote_current_thread (ptid_t oldpid)
3071 {
3072 struct remote_state *rs = get_remote_state ();
3073
3074 putpkt ("qC");
3075 getpkt (&rs->buf, &rs->buf_size, 0);
3076 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3077 {
3078 char *obuf;
3079 ptid_t result;
3080
3081 result = read_ptid (&rs->buf[2], &obuf);
3082 if (*obuf != '\0' && remote_debug)
3083 fprintf_unfiltered (gdb_stdlog,
3084 "warning: garbage in qC reply\n");
3085
3086 return result;
3087 }
3088 else
3089 return oldpid;
3090 }
3091
3092 /* List remote threads using the deprecated qL packet. */
3093
3094 static int
3095 remote_get_threads_with_ql (struct target_ops *ops,
3096 struct threads_listing_context *context)
3097 {
3098 if (remote_threadlist_iterator (remote_newthread_step, context,
3099 CRAZY_MAX_THREADS) >= 0)
3100 return 1;
3101
3102 return 0;
3103 }
3104
3105 #if defined(HAVE_LIBEXPAT)
3106
3107 static void
3108 start_thread (struct gdb_xml_parser *parser,
3109 const struct gdb_xml_element *element,
3110 void *user_data, VEC(gdb_xml_value_s) *attributes)
3111 {
3112 struct threads_listing_context *data
3113 = (struct threads_listing_context *) user_data;
3114
3115 struct thread_item item;
3116 char *id;
3117 struct gdb_xml_value *attr;
3118
3119 id = (char *) xml_find_attribute (attributes, "id")->value;
3120 item.ptid = read_ptid (id, NULL);
3121
3122 attr = xml_find_attribute (attributes, "core");
3123 if (attr != NULL)
3124 item.core = *(ULONGEST *) attr->value;
3125 else
3126 item.core = -1;
3127
3128 attr = xml_find_attribute (attributes, "name");
3129 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3130
3131 item.extra = 0;
3132
3133 VEC_safe_push (thread_item_t, data->items, &item);
3134 }
3135
3136 static void
3137 end_thread (struct gdb_xml_parser *parser,
3138 const struct gdb_xml_element *element,
3139 void *user_data, const char *body_text)
3140 {
3141 struct threads_listing_context *data
3142 = (struct threads_listing_context *) user_data;
3143
3144 if (body_text && *body_text)
3145 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3146 }
3147
3148 const struct gdb_xml_attribute thread_attributes[] = {
3149 { "id", GDB_XML_AF_NONE, NULL, NULL },
3150 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3151 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3152 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3153 };
3154
3155 const struct gdb_xml_element thread_children[] = {
3156 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3157 };
3158
3159 const struct gdb_xml_element threads_children[] = {
3160 { "thread", thread_attributes, thread_children,
3161 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3162 start_thread, end_thread },
3163 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3164 };
3165
3166 const struct gdb_xml_element threads_elements[] = {
3167 { "threads", NULL, threads_children,
3168 GDB_XML_EF_NONE, NULL, NULL },
3169 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3170 };
3171
3172 #endif
3173
3174 /* List remote threads using qXfer:threads:read. */
3175
3176 static int
3177 remote_get_threads_with_qxfer (struct target_ops *ops,
3178 struct threads_listing_context *context)
3179 {
3180 #if defined(HAVE_LIBEXPAT)
3181 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3182 {
3183 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3184 struct cleanup *back_to = make_cleanup (xfree, xml);
3185
3186 if (xml != NULL && *xml != '\0')
3187 {
3188 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3189 threads_elements, xml, context);
3190 }
3191
3192 do_cleanups (back_to);
3193 return 1;
3194 }
3195 #endif
3196
3197 return 0;
3198 }
3199
3200 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3201
3202 static int
3203 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3204 struct threads_listing_context *context)
3205 {
3206 struct remote_state *rs = get_remote_state ();
3207
3208 if (rs->use_threadinfo_query)
3209 {
3210 char *bufp;
3211
3212 putpkt ("qfThreadInfo");
3213 getpkt (&rs->buf, &rs->buf_size, 0);
3214 bufp = rs->buf;
3215 if (bufp[0] != '\0') /* q packet recognized */
3216 {
3217 while (*bufp++ == 'm') /* reply contains one or more TID */
3218 {
3219 do
3220 {
3221 struct thread_item item;
3222
3223 item.ptid = read_ptid (bufp, &bufp);
3224 item.core = -1;
3225 item.name = NULL;
3226 item.extra = NULL;
3227
3228 VEC_safe_push (thread_item_t, context->items, &item);
3229 }
3230 while (*bufp++ == ','); /* comma-separated list */
3231 putpkt ("qsThreadInfo");
3232 getpkt (&rs->buf, &rs->buf_size, 0);
3233 bufp = rs->buf;
3234 }
3235 return 1;
3236 }
3237 else
3238 {
3239 /* Packet not recognized. */
3240 rs->use_threadinfo_query = 0;
3241 }
3242 }
3243
3244 return 0;
3245 }
3246
3247 /* Implement the to_update_thread_list function for the remote
3248 targets. */
3249
3250 static void
3251 remote_update_thread_list (struct target_ops *ops)
3252 {
3253 struct threads_listing_context context;
3254 struct cleanup *old_chain;
3255 int got_list = 0;
3256
3257 context.items = NULL;
3258 old_chain = make_cleanup (clear_threads_listing_context, &context);
3259
3260 /* We have a few different mechanisms to fetch the thread list. Try
3261 them all, starting with the most preferred one first, falling
3262 back to older methods. */
3263 if (remote_get_threads_with_qxfer (ops, &context)
3264 || remote_get_threads_with_qthreadinfo (ops, &context)
3265 || remote_get_threads_with_ql (ops, &context))
3266 {
3267 int i;
3268 struct thread_item *item;
3269 struct thread_info *tp, *tmp;
3270
3271 got_list = 1;
3272
3273 if (VEC_empty (thread_item_t, context.items)
3274 && remote_thread_always_alive (ops, inferior_ptid))
3275 {
3276 /* Some targets don't really support threads, but still
3277 reply an (empty) thread list in response to the thread
3278 listing packets, instead of replying "packet not
3279 supported". Exit early so we don't delete the main
3280 thread. */
3281 do_cleanups (old_chain);
3282 return;
3283 }
3284
3285 /* CONTEXT now holds the current thread list on the remote
3286 target end. Delete GDB-side threads no longer found on the
3287 target. */
3288 ALL_THREADS_SAFE (tp, tmp)
3289 {
3290 for (i = 0;
3291 VEC_iterate (thread_item_t, context.items, i, item);
3292 ++i)
3293 {
3294 if (ptid_equal (item->ptid, tp->ptid))
3295 break;
3296 }
3297
3298 if (i == VEC_length (thread_item_t, context.items))
3299 {
3300 /* Not found. */
3301 delete_thread (tp->ptid);
3302 }
3303 }
3304
3305 /* Remove any unreported fork child threads from CONTEXT so
3306 that we don't interfere with follow fork, which is where
3307 creation of such threads is handled. */
3308 remove_new_fork_children (&context);
3309
3310 /* And now add threads we don't know about yet to our list. */
3311 for (i = 0;
3312 VEC_iterate (thread_item_t, context.items, i, item);
3313 ++i)
3314 {
3315 if (!ptid_equal (item->ptid, null_ptid))
3316 {
3317 struct private_thread_info *info;
3318 /* In non-stop mode, we assume new found threads are
3319 executing until proven otherwise with a stop reply.
3320 In all-stop, we can only get here if all threads are
3321 stopped. */
3322 int executing = target_is_non_stop_p () ? 1 : 0;
3323
3324 remote_notice_new_inferior (item->ptid, executing);
3325
3326 info = get_private_info_ptid (item->ptid);
3327 info->core = item->core;
3328 info->extra = item->extra;
3329 item->extra = NULL;
3330 info->name = item->name;
3331 item->name = NULL;
3332 }
3333 }
3334 }
3335
3336 if (!got_list)
3337 {
3338 /* If no thread listing method is supported, then query whether
3339 each known thread is alive, one by one, with the T packet.
3340 If the target doesn't support threads at all, then this is a
3341 no-op. See remote_thread_alive. */
3342 prune_threads ();
3343 }
3344
3345 do_cleanups (old_chain);
3346 }
3347
3348 /*
3349 * Collect a descriptive string about the given thread.
3350 * The target may say anything it wants to about the thread
3351 * (typically info about its blocked / runnable state, name, etc.).
3352 * This string will appear in the info threads display.
3353 *
3354 * Optional: targets are not required to implement this function.
3355 */
3356
3357 static char *
3358 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3359 {
3360 struct remote_state *rs = get_remote_state ();
3361 int result;
3362 int set;
3363 threadref id;
3364 struct gdb_ext_thread_info threadinfo;
3365 static char display_buf[100]; /* arbitrary... */
3366 int n = 0; /* position in display_buf */
3367
3368 if (rs->remote_desc == 0) /* paranoia */
3369 internal_error (__FILE__, __LINE__,
3370 _("remote_threads_extra_info"));
3371
3372 if (ptid_equal (tp->ptid, magic_null_ptid)
3373 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3374 /* This is the main thread which was added by GDB. The remote
3375 server doesn't know about it. */
3376 return NULL;
3377
3378 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3379 {
3380 struct thread_info *info = find_thread_ptid (tp->ptid);
3381
3382 if (info && info->priv)
3383 return info->priv->extra;
3384 else
3385 return NULL;
3386 }
3387
3388 if (rs->use_threadextra_query)
3389 {
3390 char *b = rs->buf;
3391 char *endb = rs->buf + get_remote_packet_size ();
3392
3393 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3394 b += strlen (b);
3395 write_ptid (b, endb, tp->ptid);
3396
3397 putpkt (rs->buf);
3398 getpkt (&rs->buf, &rs->buf_size, 0);
3399 if (rs->buf[0] != 0)
3400 {
3401 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3402 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3403 display_buf [result] = '\0';
3404 return display_buf;
3405 }
3406 }
3407
3408 /* If the above query fails, fall back to the old method. */
3409 rs->use_threadextra_query = 0;
3410 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3411 | TAG_MOREDISPLAY | TAG_DISPLAY;
3412 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3413 if (remote_get_threadinfo (&id, set, &threadinfo))
3414 if (threadinfo.active)
3415 {
3416 if (*threadinfo.shortname)
3417 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3418 " Name: %s,", threadinfo.shortname);
3419 if (*threadinfo.display)
3420 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3421 " State: %s,", threadinfo.display);
3422 if (*threadinfo.more_display)
3423 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3424 " Priority: %s", threadinfo.more_display);
3425
3426 if (n > 0)
3427 {
3428 /* For purely cosmetic reasons, clear up trailing commas. */
3429 if (',' == display_buf[n-1])
3430 display_buf[n-1] = ' ';
3431 return display_buf;
3432 }
3433 }
3434 return NULL;
3435 }
3436 \f
3437
3438 static int
3439 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3440 struct static_tracepoint_marker *marker)
3441 {
3442 struct remote_state *rs = get_remote_state ();
3443 char *p = rs->buf;
3444
3445 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3446 p += strlen (p);
3447 p += hexnumstr (p, addr);
3448 putpkt (rs->buf);
3449 getpkt (&rs->buf, &rs->buf_size, 0);
3450 p = rs->buf;
3451
3452 if (*p == 'E')
3453 error (_("Remote failure reply: %s"), p);
3454
3455 if (*p++ == 'm')
3456 {
3457 parse_static_tracepoint_marker_definition (p, &p, marker);
3458 return 1;
3459 }
3460
3461 return 0;
3462 }
3463
3464 static VEC(static_tracepoint_marker_p) *
3465 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3466 const char *strid)
3467 {
3468 struct remote_state *rs = get_remote_state ();
3469 VEC(static_tracepoint_marker_p) *markers = NULL;
3470 struct static_tracepoint_marker *marker = NULL;
3471 struct cleanup *old_chain;
3472 char *p;
3473
3474 /* Ask for a first packet of static tracepoint marker
3475 definition. */
3476 putpkt ("qTfSTM");
3477 getpkt (&rs->buf, &rs->buf_size, 0);
3478 p = rs->buf;
3479 if (*p == 'E')
3480 error (_("Remote failure reply: %s"), p);
3481
3482 old_chain = make_cleanup (free_current_marker, &marker);
3483
3484 while (*p++ == 'm')
3485 {
3486 if (marker == NULL)
3487 marker = XCNEW (struct static_tracepoint_marker);
3488
3489 do
3490 {
3491 parse_static_tracepoint_marker_definition (p, &p, marker);
3492
3493 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3494 {
3495 VEC_safe_push (static_tracepoint_marker_p,
3496 markers, marker);
3497 marker = NULL;
3498 }
3499 else
3500 {
3501 release_static_tracepoint_marker (marker);
3502 memset (marker, 0, sizeof (*marker));
3503 }
3504 }
3505 while (*p++ == ','); /* comma-separated list */
3506 /* Ask for another packet of static tracepoint definition. */
3507 putpkt ("qTsSTM");
3508 getpkt (&rs->buf, &rs->buf_size, 0);
3509 p = rs->buf;
3510 }
3511
3512 do_cleanups (old_chain);
3513 return markers;
3514 }
3515
3516 \f
3517 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3518
3519 static ptid_t
3520 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3521 {
3522 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3523 }
3524 \f
3525
3526 /* Restart the remote side; this is an extended protocol operation. */
3527
3528 static void
3529 extended_remote_restart (void)
3530 {
3531 struct remote_state *rs = get_remote_state ();
3532
3533 /* Send the restart command; for reasons I don't understand the
3534 remote side really expects a number after the "R". */
3535 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3536 putpkt (rs->buf);
3537
3538 remote_fileio_reset ();
3539 }
3540 \f
3541 /* Clean up connection to a remote debugger. */
3542
3543 static void
3544 remote_close (struct target_ops *self)
3545 {
3546 struct remote_state *rs = get_remote_state ();
3547
3548 if (rs->remote_desc == NULL)
3549 return; /* already closed */
3550
3551 /* Make sure we leave stdin registered in the event loop. */
3552 remote_terminal_ours (self);
3553
3554 serial_close (rs->remote_desc);
3555 rs->remote_desc = NULL;
3556
3557 /* We don't have a connection to the remote stub anymore. Get rid
3558 of all the inferiors and their threads we were controlling.
3559 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3560 will be unable to find the thread corresponding to (pid, 0, 0). */
3561 inferior_ptid = null_ptid;
3562 discard_all_inferiors ();
3563
3564 /* We are closing the remote target, so we should discard
3565 everything of this target. */
3566 discard_pending_stop_replies_in_queue (rs);
3567
3568 if (remote_async_inferior_event_token)
3569 delete_async_event_handler (&remote_async_inferior_event_token);
3570
3571 remote_notif_state_xfree (rs->notif_state);
3572
3573 trace_reset_local_state ();
3574 }
3575
3576 /* Query the remote side for the text, data and bss offsets. */
3577
3578 static void
3579 get_offsets (void)
3580 {
3581 struct remote_state *rs = get_remote_state ();
3582 char *buf;
3583 char *ptr;
3584 int lose, num_segments = 0, do_sections, do_segments;
3585 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3586 struct section_offsets *offs;
3587 struct symfile_segment_data *data;
3588
3589 if (symfile_objfile == NULL)
3590 return;
3591
3592 putpkt ("qOffsets");
3593 getpkt (&rs->buf, &rs->buf_size, 0);
3594 buf = rs->buf;
3595
3596 if (buf[0] == '\000')
3597 return; /* Return silently. Stub doesn't support
3598 this command. */
3599 if (buf[0] == 'E')
3600 {
3601 warning (_("Remote failure reply: %s"), buf);
3602 return;
3603 }
3604
3605 /* Pick up each field in turn. This used to be done with scanf, but
3606 scanf will make trouble if CORE_ADDR size doesn't match
3607 conversion directives correctly. The following code will work
3608 with any size of CORE_ADDR. */
3609 text_addr = data_addr = bss_addr = 0;
3610 ptr = buf;
3611 lose = 0;
3612
3613 if (startswith (ptr, "Text="))
3614 {
3615 ptr += 5;
3616 /* Don't use strtol, could lose on big values. */
3617 while (*ptr && *ptr != ';')
3618 text_addr = (text_addr << 4) + fromhex (*ptr++);
3619
3620 if (startswith (ptr, ";Data="))
3621 {
3622 ptr += 6;
3623 while (*ptr && *ptr != ';')
3624 data_addr = (data_addr << 4) + fromhex (*ptr++);
3625 }
3626 else
3627 lose = 1;
3628
3629 if (!lose && startswith (ptr, ";Bss="))
3630 {
3631 ptr += 5;
3632 while (*ptr && *ptr != ';')
3633 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3634
3635 if (bss_addr != data_addr)
3636 warning (_("Target reported unsupported offsets: %s"), buf);
3637 }
3638 else
3639 lose = 1;
3640 }
3641 else if (startswith (ptr, "TextSeg="))
3642 {
3643 ptr += 8;
3644 /* Don't use strtol, could lose on big values. */
3645 while (*ptr && *ptr != ';')
3646 text_addr = (text_addr << 4) + fromhex (*ptr++);
3647 num_segments = 1;
3648
3649 if (startswith (ptr, ";DataSeg="))
3650 {
3651 ptr += 9;
3652 while (*ptr && *ptr != ';')
3653 data_addr = (data_addr << 4) + fromhex (*ptr++);
3654 num_segments++;
3655 }
3656 }
3657 else
3658 lose = 1;
3659
3660 if (lose)
3661 error (_("Malformed response to offset query, %s"), buf);
3662 else if (*ptr != '\0')
3663 warning (_("Target reported unsupported offsets: %s"), buf);
3664
3665 offs = ((struct section_offsets *)
3666 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3667 memcpy (offs, symfile_objfile->section_offsets,
3668 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3669
3670 data = get_symfile_segment_data (symfile_objfile->obfd);
3671 do_segments = (data != NULL);
3672 do_sections = num_segments == 0;
3673
3674 if (num_segments > 0)
3675 {
3676 segments[0] = text_addr;
3677 segments[1] = data_addr;
3678 }
3679 /* If we have two segments, we can still try to relocate everything
3680 by assuming that the .text and .data offsets apply to the whole
3681 text and data segments. Convert the offsets given in the packet
3682 to base addresses for symfile_map_offsets_to_segments. */
3683 else if (data && data->num_segments == 2)
3684 {
3685 segments[0] = data->segment_bases[0] + text_addr;
3686 segments[1] = data->segment_bases[1] + data_addr;
3687 num_segments = 2;
3688 }
3689 /* If the object file has only one segment, assume that it is text
3690 rather than data; main programs with no writable data are rare,
3691 but programs with no code are useless. Of course the code might
3692 have ended up in the data segment... to detect that we would need
3693 the permissions here. */
3694 else if (data && data->num_segments == 1)
3695 {
3696 segments[0] = data->segment_bases[0] + text_addr;
3697 num_segments = 1;
3698 }
3699 /* There's no way to relocate by segment. */
3700 else
3701 do_segments = 0;
3702
3703 if (do_segments)
3704 {
3705 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3706 offs, num_segments, segments);
3707
3708 if (ret == 0 && !do_sections)
3709 error (_("Can not handle qOffsets TextSeg "
3710 "response with this symbol file"));
3711
3712 if (ret > 0)
3713 do_sections = 0;
3714 }
3715
3716 if (data)
3717 free_symfile_segment_data (data);
3718
3719 if (do_sections)
3720 {
3721 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3722
3723 /* This is a temporary kludge to force data and bss to use the
3724 same offsets because that's what nlmconv does now. The real
3725 solution requires changes to the stub and remote.c that I
3726 don't have time to do right now. */
3727
3728 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3729 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3730 }
3731
3732 objfile_relocate (symfile_objfile, offs);
3733 }
3734
3735 /* Send interrupt_sequence to remote target. */
3736 static void
3737 send_interrupt_sequence (void)
3738 {
3739 struct remote_state *rs = get_remote_state ();
3740
3741 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3742 remote_serial_write ("\x03", 1);
3743 else if (interrupt_sequence_mode == interrupt_sequence_break)
3744 serial_send_break (rs->remote_desc);
3745 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3746 {
3747 serial_send_break (rs->remote_desc);
3748 remote_serial_write ("g", 1);
3749 }
3750 else
3751 internal_error (__FILE__, __LINE__,
3752 _("Invalid value for interrupt_sequence_mode: %s."),
3753 interrupt_sequence_mode);
3754 }
3755
3756
3757 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3758 and extract the PTID. Returns NULL_PTID if not found. */
3759
3760 static ptid_t
3761 stop_reply_extract_thread (char *stop_reply)
3762 {
3763 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3764 {
3765 char *p;
3766
3767 /* Txx r:val ; r:val (...) */
3768 p = &stop_reply[3];
3769
3770 /* Look for "register" named "thread". */
3771 while (*p != '\0')
3772 {
3773 char *p1;
3774
3775 p1 = strchr (p, ':');
3776 if (p1 == NULL)
3777 return null_ptid;
3778
3779 if (strncmp (p, "thread", p1 - p) == 0)
3780 return read_ptid (++p1, &p);
3781
3782 p1 = strchr (p, ';');
3783 if (p1 == NULL)
3784 return null_ptid;
3785 p1++;
3786
3787 p = p1;
3788 }
3789 }
3790
3791 return null_ptid;
3792 }
3793
3794 /* Determine the remote side's current thread. If we have a stop
3795 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3796 "thread" register we can extract the current thread from. If not,
3797 ask the remote which is the current thread with qC. The former
3798 method avoids a roundtrip. */
3799
3800 static ptid_t
3801 get_current_thread (char *wait_status)
3802 {
3803 ptid_t ptid = null_ptid;
3804
3805 /* Note we don't use remote_parse_stop_reply as that makes use of
3806 the target architecture, which we haven't yet fully determined at
3807 this point. */
3808 if (wait_status != NULL)
3809 ptid = stop_reply_extract_thread (wait_status);
3810 if (ptid_equal (ptid, null_ptid))
3811 ptid = remote_current_thread (inferior_ptid);
3812
3813 return ptid;
3814 }
3815
3816 /* Query the remote target for which is the current thread/process,
3817 add it to our tables, and update INFERIOR_PTID. The caller is
3818 responsible for setting the state such that the remote end is ready
3819 to return the current thread.
3820
3821 This function is called after handling the '?' or 'vRun' packets,
3822 whose response is a stop reply from which we can also try
3823 extracting the thread. If the target doesn't support the explicit
3824 qC query, we infer the current thread from that stop reply, passed
3825 in in WAIT_STATUS, which may be NULL. */
3826
3827 static void
3828 add_current_inferior_and_thread (char *wait_status)
3829 {
3830 struct remote_state *rs = get_remote_state ();
3831 int fake_pid_p = 0;
3832 ptid_t ptid;
3833
3834 inferior_ptid = null_ptid;
3835
3836 /* Now, if we have thread information, update inferior_ptid. */
3837 ptid = get_current_thread (wait_status);
3838
3839 if (!ptid_equal (ptid, null_ptid))
3840 {
3841 if (!remote_multi_process_p (rs))
3842 fake_pid_p = 1;
3843
3844 inferior_ptid = ptid;
3845 }
3846 else
3847 {
3848 /* Without this, some commands which require an active target
3849 (such as kill) won't work. This variable serves (at least)
3850 double duty as both the pid of the target process (if it has
3851 such), and as a flag indicating that a target is active. */
3852 inferior_ptid = magic_null_ptid;
3853 fake_pid_p = 1;
3854 }
3855
3856 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1, 1);
3857
3858 /* Add the main thread. */
3859 add_thread_silent (inferior_ptid);
3860 }
3861
3862 /* Print info about a thread that was found already stopped on
3863 connection. */
3864
3865 static void
3866 print_one_stopped_thread (struct thread_info *thread)
3867 {
3868 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3869
3870 switch_to_thread (thread->ptid);
3871 stop_pc = get_frame_pc (get_current_frame ());
3872 set_current_sal_from_frame (get_current_frame ());
3873
3874 thread->suspend.waitstatus_pending_p = 0;
3875
3876 if (ws->kind == TARGET_WAITKIND_STOPPED)
3877 {
3878 enum gdb_signal sig = ws->value.sig;
3879
3880 if (signal_print_state (sig))
3881 observer_notify_signal_received (sig);
3882 }
3883 observer_notify_normal_stop (NULL, 1);
3884 }
3885
3886 /* Process all initial stop replies the remote side sent in response
3887 to the ? packet. These indicate threads that were already stopped
3888 on initial connection. We mark these threads as stopped and print
3889 their current frame before giving the user the prompt. */
3890
3891 static void
3892 process_initial_stop_replies (int from_tty)
3893 {
3894 int pending_stop_replies = stop_reply_queue_length ();
3895 struct inferior *inf;
3896 struct thread_info *thread;
3897 struct thread_info *selected = NULL;
3898 struct thread_info *lowest_stopped = NULL;
3899 struct thread_info *first = NULL;
3900
3901 /* Consume the initial pending events. */
3902 while (pending_stop_replies-- > 0)
3903 {
3904 ptid_t waiton_ptid = minus_one_ptid;
3905 ptid_t event_ptid;
3906 struct target_waitstatus ws;
3907 int ignore_event = 0;
3908 struct thread_info *thread;
3909
3910 memset (&ws, 0, sizeof (ws));
3911 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3912 if (remote_debug)
3913 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3914
3915 switch (ws.kind)
3916 {
3917 case TARGET_WAITKIND_IGNORE:
3918 case TARGET_WAITKIND_NO_RESUMED:
3919 case TARGET_WAITKIND_SIGNALLED:
3920 case TARGET_WAITKIND_EXITED:
3921 /* We shouldn't see these, but if we do, just ignore. */
3922 if (remote_debug)
3923 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3924 ignore_event = 1;
3925 break;
3926
3927 case TARGET_WAITKIND_EXECD:
3928 xfree (ws.value.execd_pathname);
3929 break;
3930 default:
3931 break;
3932 }
3933
3934 if (ignore_event)
3935 continue;
3936
3937 thread = find_thread_ptid (event_ptid);
3938
3939 if (ws.kind == TARGET_WAITKIND_STOPPED)
3940 {
3941 enum gdb_signal sig = ws.value.sig;
3942
3943 /* Stubs traditionally report SIGTRAP as initial signal,
3944 instead of signal 0. Suppress it. */
3945 if (sig == GDB_SIGNAL_TRAP)
3946 sig = GDB_SIGNAL_0;
3947 thread->suspend.stop_signal = sig;
3948 ws.value.sig = sig;
3949 }
3950
3951 thread->suspend.waitstatus = ws;
3952
3953 if (ws.kind != TARGET_WAITKIND_STOPPED
3954 || ws.value.sig != GDB_SIGNAL_0)
3955 thread->suspend.waitstatus_pending_p = 1;
3956
3957 set_executing (event_ptid, 0);
3958 set_running (event_ptid, 0);
3959 thread->priv->vcont_resumed = 0;
3960 }
3961
3962 /* "Notice" the new inferiors before anything related to
3963 registers/memory. */
3964 ALL_INFERIORS (inf)
3965 {
3966 if (inf->pid == 0)
3967 continue;
3968
3969 inf->needs_setup = 1;
3970
3971 if (non_stop)
3972 {
3973 thread = any_live_thread_of_process (inf->pid);
3974 notice_new_inferior (thread->ptid,
3975 thread->state == THREAD_RUNNING,
3976 from_tty);
3977 }
3978 }
3979
3980 /* If all-stop on top of non-stop, pause all threads. Note this
3981 records the threads' stop pc, so must be done after "noticing"
3982 the inferiors. */
3983 if (!non_stop)
3984 {
3985 stop_all_threads ();
3986
3987 /* If all threads of an inferior were already stopped, we
3988 haven't setup the inferior yet. */
3989 ALL_INFERIORS (inf)
3990 {
3991 if (inf->pid == 0)
3992 continue;
3993
3994 if (inf->needs_setup)
3995 {
3996 thread = any_live_thread_of_process (inf->pid);
3997 switch_to_thread_no_regs (thread);
3998 setup_inferior (0);
3999 }
4000 }
4001 }
4002
4003 /* Now go over all threads that are stopped, and print their current
4004 frame. If all-stop, then if there's a signalled thread, pick
4005 that as current. */
4006 ALL_NON_EXITED_THREADS (thread)
4007 {
4008 if (first == NULL)
4009 first = thread;
4010
4011 if (!non_stop)
4012 set_running (thread->ptid, 0);
4013 else if (thread->state != THREAD_STOPPED)
4014 continue;
4015
4016 if (selected == NULL
4017 && thread->suspend.waitstatus_pending_p)
4018 selected = thread;
4019
4020 if (lowest_stopped == NULL
4021 || thread->inf->num < lowest_stopped->inf->num
4022 || thread->per_inf_num < lowest_stopped->per_inf_num)
4023 lowest_stopped = thread;
4024
4025 if (non_stop)
4026 print_one_stopped_thread (thread);
4027 }
4028
4029 /* In all-stop, we only print the status of one thread, and leave
4030 others with their status pending. */
4031 if (!non_stop)
4032 {
4033 thread = selected;
4034 if (thread == NULL)
4035 thread = lowest_stopped;
4036 if (thread == NULL)
4037 thread = first;
4038
4039 print_one_stopped_thread (thread);
4040 }
4041
4042 /* For "info program". */
4043 thread = inferior_thread ();
4044 if (thread->state == THREAD_STOPPED)
4045 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4046 }
4047
4048 /* Start the remote connection and sync state. */
4049
4050 static void
4051 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4052 {
4053 struct remote_state *rs = get_remote_state ();
4054 struct packet_config *noack_config;
4055 char *wait_status = NULL;
4056
4057 /* Signal other parts that we're going through the initial setup,
4058 and so things may not be stable yet. E.g., we don't try to
4059 install tracepoints until we've relocated symbols. Also, a
4060 Ctrl-C before we're connected and synced up can't interrupt the
4061 target. Instead, it offers to drop the (potentially wedged)
4062 connection. */
4063 rs->starting_up = 1;
4064
4065 QUIT;
4066
4067 if (interrupt_on_connect)
4068 send_interrupt_sequence ();
4069
4070 /* Ack any packet which the remote side has already sent. */
4071 remote_serial_write ("+", 1);
4072
4073 /* The first packet we send to the target is the optional "supported
4074 packets" request. If the target can answer this, it will tell us
4075 which later probes to skip. */
4076 remote_query_supported ();
4077
4078 /* If the stub wants to get a QAllow, compose one and send it. */
4079 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4080 remote_set_permissions (target);
4081
4082 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4083 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4084 as a reply to known packet. For packet "vFile:setfs:" it is an
4085 invalid reply and GDB would return error in
4086 remote_hostio_set_filesystem, making remote files access impossible.
4087 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4088 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4089 {
4090 const char v_mustreplyempty[] = "vMustReplyEmpty";
4091
4092 putpkt (v_mustreplyempty);
4093 getpkt (&rs->buf, &rs->buf_size, 0);
4094 if (strcmp (rs->buf, "OK") == 0)
4095 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4096 else if (strcmp (rs->buf, "") != 0)
4097 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4098 rs->buf);
4099 }
4100
4101 /* Next, we possibly activate noack mode.
4102
4103 If the QStartNoAckMode packet configuration is set to AUTO,
4104 enable noack mode if the stub reported a wish for it with
4105 qSupported.
4106
4107 If set to TRUE, then enable noack mode even if the stub didn't
4108 report it in qSupported. If the stub doesn't reply OK, the
4109 session ends with an error.
4110
4111 If FALSE, then don't activate noack mode, regardless of what the
4112 stub claimed should be the default with qSupported. */
4113
4114 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4115 if (packet_config_support (noack_config) != PACKET_DISABLE)
4116 {
4117 putpkt ("QStartNoAckMode");
4118 getpkt (&rs->buf, &rs->buf_size, 0);
4119 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4120 rs->noack_mode = 1;
4121 }
4122
4123 if (extended_p)
4124 {
4125 /* Tell the remote that we are using the extended protocol. */
4126 putpkt ("!");
4127 getpkt (&rs->buf, &rs->buf_size, 0);
4128 }
4129
4130 /* Let the target know which signals it is allowed to pass down to
4131 the program. */
4132 update_signals_program_target ();
4133
4134 /* Next, if the target can specify a description, read it. We do
4135 this before anything involving memory or registers. */
4136 target_find_description ();
4137
4138 /* Next, now that we know something about the target, update the
4139 address spaces in the program spaces. */
4140 update_address_spaces ();
4141
4142 /* On OSs where the list of libraries is global to all
4143 processes, we fetch them early. */
4144 if (gdbarch_has_global_solist (target_gdbarch ()))
4145 solib_add (NULL, from_tty, target, auto_solib_add);
4146
4147 if (target_is_non_stop_p ())
4148 {
4149 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4150 error (_("Non-stop mode requested, but remote "
4151 "does not support non-stop"));
4152
4153 putpkt ("QNonStop:1");
4154 getpkt (&rs->buf, &rs->buf_size, 0);
4155
4156 if (strcmp (rs->buf, "OK") != 0)
4157 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4158
4159 /* Find about threads and processes the stub is already
4160 controlling. We default to adding them in the running state.
4161 The '?' query below will then tell us about which threads are
4162 stopped. */
4163 remote_update_thread_list (target);
4164 }
4165 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4166 {
4167 /* Don't assume that the stub can operate in all-stop mode.
4168 Request it explicitly. */
4169 putpkt ("QNonStop:0");
4170 getpkt (&rs->buf, &rs->buf_size, 0);
4171
4172 if (strcmp (rs->buf, "OK") != 0)
4173 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4174 }
4175
4176 /* Upload TSVs regardless of whether the target is running or not. The
4177 remote stub, such as GDBserver, may have some predefined or builtin
4178 TSVs, even if the target is not running. */
4179 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4180 {
4181 struct uploaded_tsv *uploaded_tsvs = NULL;
4182
4183 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4184 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4185 }
4186
4187 /* Check whether the target is running now. */
4188 putpkt ("?");
4189 getpkt (&rs->buf, &rs->buf_size, 0);
4190
4191 if (!target_is_non_stop_p ())
4192 {
4193 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4194 {
4195 if (!extended_p)
4196 error (_("The target is not running (try extended-remote?)"));
4197
4198 /* We're connected, but not running. Drop out before we
4199 call start_remote. */
4200 rs->starting_up = 0;
4201 return;
4202 }
4203 else
4204 {
4205 /* Save the reply for later. */
4206 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4207 strcpy (wait_status, rs->buf);
4208 }
4209
4210 /* Fetch thread list. */
4211 target_update_thread_list ();
4212
4213 /* Let the stub know that we want it to return the thread. */
4214 set_continue_thread (minus_one_ptid);
4215
4216 if (thread_count () == 0)
4217 {
4218 /* Target has no concept of threads at all. GDB treats
4219 non-threaded target as single-threaded; add a main
4220 thread. */
4221 add_current_inferior_and_thread (wait_status);
4222 }
4223 else
4224 {
4225 /* We have thread information; select the thread the target
4226 says should be current. If we're reconnecting to a
4227 multi-threaded program, this will ideally be the thread
4228 that last reported an event before GDB disconnected. */
4229 inferior_ptid = get_current_thread (wait_status);
4230 if (ptid_equal (inferior_ptid, null_ptid))
4231 {
4232 /* Odd... The target was able to list threads, but not
4233 tell us which thread was current (no "thread"
4234 register in T stop reply?). Just pick the first
4235 thread in the thread list then. */
4236
4237 if (remote_debug)
4238 fprintf_unfiltered (gdb_stdlog,
4239 "warning: couldn't determine remote "
4240 "current thread; picking first in list.\n");
4241
4242 inferior_ptid = thread_list->ptid;
4243 }
4244 }
4245
4246 /* init_wait_for_inferior should be called before get_offsets in order
4247 to manage `inserted' flag in bp loc in a correct state.
4248 breakpoint_init_inferior, called from init_wait_for_inferior, set
4249 `inserted' flag to 0, while before breakpoint_re_set, called from
4250 start_remote, set `inserted' flag to 1. In the initialization of
4251 inferior, breakpoint_init_inferior should be called first, and then
4252 breakpoint_re_set can be called. If this order is broken, state of
4253 `inserted' flag is wrong, and cause some problems on breakpoint
4254 manipulation. */
4255 init_wait_for_inferior ();
4256
4257 get_offsets (); /* Get text, data & bss offsets. */
4258
4259 /* If we could not find a description using qXfer, and we know
4260 how to do it some other way, try again. This is not
4261 supported for non-stop; it could be, but it is tricky if
4262 there are no stopped threads when we connect. */
4263 if (remote_read_description_p (target)
4264 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4265 {
4266 target_clear_description ();
4267 target_find_description ();
4268 }
4269
4270 /* Use the previously fetched status. */
4271 gdb_assert (wait_status != NULL);
4272 strcpy (rs->buf, wait_status);
4273 rs->cached_wait_status = 1;
4274
4275 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4276 }
4277 else
4278 {
4279 /* Clear WFI global state. Do this before finding about new
4280 threads and inferiors, and setting the current inferior.
4281 Otherwise we would clear the proceed status of the current
4282 inferior when we want its stop_soon state to be preserved
4283 (see notice_new_inferior). */
4284 init_wait_for_inferior ();
4285
4286 /* In non-stop, we will either get an "OK", meaning that there
4287 are no stopped threads at this time; or, a regular stop
4288 reply. In the latter case, there may be more than one thread
4289 stopped --- we pull them all out using the vStopped
4290 mechanism. */
4291 if (strcmp (rs->buf, "OK") != 0)
4292 {
4293 struct notif_client *notif = &notif_client_stop;
4294
4295 /* remote_notif_get_pending_replies acks this one, and gets
4296 the rest out. */
4297 rs->notif_state->pending_event[notif_client_stop.id]
4298 = remote_notif_parse (notif, rs->buf);
4299 remote_notif_get_pending_events (notif);
4300 }
4301
4302 if (thread_count () == 0)
4303 {
4304 if (!extended_p)
4305 error (_("The target is not running (try extended-remote?)"));
4306
4307 /* We're connected, but not running. Drop out before we
4308 call start_remote. */
4309 rs->starting_up = 0;
4310 return;
4311 }
4312
4313 /* In non-stop mode, any cached wait status will be stored in
4314 the stop reply queue. */
4315 gdb_assert (wait_status == NULL);
4316
4317 /* Report all signals during attach/startup. */
4318 remote_pass_signals (target, 0, NULL);
4319
4320 /* If there are already stopped threads, mark them stopped and
4321 report their stops before giving the prompt to the user. */
4322 process_initial_stop_replies (from_tty);
4323
4324 if (target_can_async_p ())
4325 target_async (1);
4326 }
4327
4328 /* If we connected to a live target, do some additional setup. */
4329 if (target_has_execution)
4330 {
4331 if (symfile_objfile) /* No use without a symbol-file. */
4332 remote_check_symbols ();
4333 }
4334
4335 /* Possibly the target has been engaged in a trace run started
4336 previously; find out where things are at. */
4337 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4338 {
4339 struct uploaded_tp *uploaded_tps = NULL;
4340
4341 if (current_trace_status ()->running)
4342 printf_filtered (_("Trace is already running on the target.\n"));
4343
4344 remote_upload_tracepoints (target, &uploaded_tps);
4345
4346 merge_uploaded_tracepoints (&uploaded_tps);
4347 }
4348
4349 /* Possibly the target has been engaged in a btrace record started
4350 previously; find out where things are at. */
4351 remote_btrace_maybe_reopen ();
4352
4353 /* The thread and inferior lists are now synchronized with the
4354 target, our symbols have been relocated, and we're merged the
4355 target's tracepoints with ours. We're done with basic start
4356 up. */
4357 rs->starting_up = 0;
4358
4359 /* Maybe breakpoints are global and need to be inserted now. */
4360 if (breakpoints_should_be_inserted_now ())
4361 insert_breakpoints ();
4362 }
4363
4364 /* Open a connection to a remote debugger.
4365 NAME is the filename used for communication. */
4366
4367 static void
4368 remote_open (const char *name, int from_tty)
4369 {
4370 remote_open_1 (name, from_tty, &remote_ops, 0);
4371 }
4372
4373 /* Open a connection to a remote debugger using the extended
4374 remote gdb protocol. NAME is the filename used for communication. */
4375
4376 static void
4377 extended_remote_open (const char *name, int from_tty)
4378 {
4379 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4380 }
4381
4382 /* Reset all packets back to "unknown support". Called when opening a
4383 new connection to a remote target. */
4384
4385 static void
4386 reset_all_packet_configs_support (void)
4387 {
4388 int i;
4389
4390 for (i = 0; i < PACKET_MAX; i++)
4391 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4392 }
4393
4394 /* Initialize all packet configs. */
4395
4396 static void
4397 init_all_packet_configs (void)
4398 {
4399 int i;
4400
4401 for (i = 0; i < PACKET_MAX; i++)
4402 {
4403 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4404 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4405 }
4406 }
4407
4408 /* Symbol look-up. */
4409
4410 static void
4411 remote_check_symbols (void)
4412 {
4413 struct remote_state *rs = get_remote_state ();
4414 char *msg, *reply, *tmp;
4415 int end;
4416 long reply_size;
4417 struct cleanup *old_chain;
4418
4419 /* The remote side has no concept of inferiors that aren't running
4420 yet, it only knows about running processes. If we're connected
4421 but our current inferior is not running, we should not invite the
4422 remote target to request symbol lookups related to its
4423 (unrelated) current process. */
4424 if (!target_has_execution)
4425 return;
4426
4427 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4428 return;
4429
4430 /* Make sure the remote is pointing at the right process. Note
4431 there's no way to select "no process". */
4432 set_general_process ();
4433
4434 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4435 because we need both at the same time. */
4436 msg = (char *) xmalloc (get_remote_packet_size ());
4437 old_chain = make_cleanup (xfree, msg);
4438 reply = (char *) xmalloc (get_remote_packet_size ());
4439 make_cleanup (free_current_contents, &reply);
4440 reply_size = get_remote_packet_size ();
4441
4442 /* Invite target to request symbol lookups. */
4443
4444 putpkt ("qSymbol::");
4445 getpkt (&reply, &reply_size, 0);
4446 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4447
4448 while (startswith (reply, "qSymbol:"))
4449 {
4450 struct bound_minimal_symbol sym;
4451
4452 tmp = &reply[8];
4453 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4454 msg[end] = '\0';
4455 sym = lookup_minimal_symbol (msg, NULL, NULL);
4456 if (sym.minsym == NULL)
4457 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4458 else
4459 {
4460 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4461 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4462
4463 /* If this is a function address, return the start of code
4464 instead of any data function descriptor. */
4465 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4466 sym_addr,
4467 &current_target);
4468
4469 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4470 phex_nz (sym_addr, addr_size), &reply[8]);
4471 }
4472
4473 putpkt (msg);
4474 getpkt (&reply, &reply_size, 0);
4475 }
4476
4477 do_cleanups (old_chain);
4478 }
4479
4480 static struct serial *
4481 remote_serial_open (const char *name)
4482 {
4483 static int udp_warning = 0;
4484
4485 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4486 of in ser-tcp.c, because it is the remote protocol assuming that the
4487 serial connection is reliable and not the serial connection promising
4488 to be. */
4489 if (!udp_warning && startswith (name, "udp:"))
4490 {
4491 warning (_("The remote protocol may be unreliable over UDP.\n"
4492 "Some events may be lost, rendering further debugging "
4493 "impossible."));
4494 udp_warning = 1;
4495 }
4496
4497 return serial_open (name);
4498 }
4499
4500 /* Inform the target of our permission settings. The permission flags
4501 work without this, but if the target knows the settings, it can do
4502 a couple things. First, it can add its own check, to catch cases
4503 that somehow manage to get by the permissions checks in target
4504 methods. Second, if the target is wired to disallow particular
4505 settings (for instance, a system in the field that is not set up to
4506 be able to stop at a breakpoint), it can object to any unavailable
4507 permissions. */
4508
4509 void
4510 remote_set_permissions (struct target_ops *self)
4511 {
4512 struct remote_state *rs = get_remote_state ();
4513
4514 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4515 "WriteReg:%x;WriteMem:%x;"
4516 "InsertBreak:%x;InsertTrace:%x;"
4517 "InsertFastTrace:%x;Stop:%x",
4518 may_write_registers, may_write_memory,
4519 may_insert_breakpoints, may_insert_tracepoints,
4520 may_insert_fast_tracepoints, may_stop);
4521 putpkt (rs->buf);
4522 getpkt (&rs->buf, &rs->buf_size, 0);
4523
4524 /* If the target didn't like the packet, warn the user. Do not try
4525 to undo the user's settings, that would just be maddening. */
4526 if (strcmp (rs->buf, "OK") != 0)
4527 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4528 }
4529
4530 /* This type describes each known response to the qSupported
4531 packet. */
4532 struct protocol_feature
4533 {
4534 /* The name of this protocol feature. */
4535 const char *name;
4536
4537 /* The default for this protocol feature. */
4538 enum packet_support default_support;
4539
4540 /* The function to call when this feature is reported, or after
4541 qSupported processing if the feature is not supported.
4542 The first argument points to this structure. The second
4543 argument indicates whether the packet requested support be
4544 enabled, disabled, or probed (or the default, if this function
4545 is being called at the end of processing and this feature was
4546 not reported). The third argument may be NULL; if not NULL, it
4547 is a NUL-terminated string taken from the packet following
4548 this feature's name and an equals sign. */
4549 void (*func) (const struct protocol_feature *, enum packet_support,
4550 const char *);
4551
4552 /* The corresponding packet for this feature. Only used if
4553 FUNC is remote_supported_packet. */
4554 int packet;
4555 };
4556
4557 static void
4558 remote_supported_packet (const struct protocol_feature *feature,
4559 enum packet_support support,
4560 const char *argument)
4561 {
4562 if (argument)
4563 {
4564 warning (_("Remote qSupported response supplied an unexpected value for"
4565 " \"%s\"."), feature->name);
4566 return;
4567 }
4568
4569 remote_protocol_packets[feature->packet].support = support;
4570 }
4571
4572 static void
4573 remote_packet_size (const struct protocol_feature *feature,
4574 enum packet_support support, const char *value)
4575 {
4576 struct remote_state *rs = get_remote_state ();
4577
4578 int packet_size;
4579 char *value_end;
4580
4581 if (support != PACKET_ENABLE)
4582 return;
4583
4584 if (value == NULL || *value == '\0')
4585 {
4586 warning (_("Remote target reported \"%s\" without a size."),
4587 feature->name);
4588 return;
4589 }
4590
4591 errno = 0;
4592 packet_size = strtol (value, &value_end, 16);
4593 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4594 {
4595 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4596 feature->name, value);
4597 return;
4598 }
4599
4600 /* Record the new maximum packet size. */
4601 rs->explicit_packet_size = packet_size;
4602 }
4603
4604 static const struct protocol_feature remote_protocol_features[] = {
4605 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4606 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_qXfer_auxv },
4608 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_qXfer_exec_file },
4610 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_qXfer_features },
4612 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_qXfer_libraries },
4614 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_qXfer_libraries_svr4 },
4616 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4617 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4618 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_qXfer_memory_map },
4620 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_qXfer_spu_read },
4622 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_qXfer_spu_write },
4624 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_osdata },
4626 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_threads },
4628 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_qXfer_traceframe_info },
4630 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4631 PACKET_QPassSignals },
4632 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4633 PACKET_QCatchSyscalls },
4634 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_QProgramSignals },
4636 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_QStartNoAckMode },
4638 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_multiprocess_feature },
4640 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4641 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_qXfer_siginfo_read },
4643 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4644 PACKET_qXfer_siginfo_write },
4645 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4646 PACKET_ConditionalTracepoints },
4647 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4648 PACKET_ConditionalBreakpoints },
4649 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4650 PACKET_BreakpointCommands },
4651 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4652 PACKET_FastTracepoints },
4653 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4654 PACKET_StaticTracepoints },
4655 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4656 PACKET_InstallInTrace},
4657 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4658 PACKET_DisconnectedTracing_feature },
4659 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4660 PACKET_bc },
4661 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4662 PACKET_bs },
4663 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4664 PACKET_TracepointSource },
4665 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4666 PACKET_QAllow },
4667 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4668 PACKET_EnableDisableTracepoints_feature },
4669 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4670 PACKET_qXfer_fdpic },
4671 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4672 PACKET_qXfer_uib },
4673 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4674 PACKET_QDisableRandomization },
4675 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4676 { "QTBuffer:size", PACKET_DISABLE,
4677 remote_supported_packet, PACKET_QTBuffer_size},
4678 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4679 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4680 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4681 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4682 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4683 PACKET_qXfer_btrace },
4684 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4685 PACKET_qXfer_btrace_conf },
4686 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4687 PACKET_Qbtrace_conf_bts_size },
4688 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4689 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4690 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4691 PACKET_fork_event_feature },
4692 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4693 PACKET_vfork_event_feature },
4694 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4695 PACKET_exec_event_feature },
4696 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4697 PACKET_Qbtrace_conf_pt_size },
4698 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4699 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4700 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4701 };
4702
4703 static char *remote_support_xml;
4704
4705 /* Register string appended to "xmlRegisters=" in qSupported query. */
4706
4707 void
4708 register_remote_support_xml (const char *xml)
4709 {
4710 #if defined(HAVE_LIBEXPAT)
4711 if (remote_support_xml == NULL)
4712 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4713 else
4714 {
4715 char *copy = xstrdup (remote_support_xml + 13);
4716 char *p = strtok (copy, ",");
4717
4718 do
4719 {
4720 if (strcmp (p, xml) == 0)
4721 {
4722 /* already there */
4723 xfree (copy);
4724 return;
4725 }
4726 }
4727 while ((p = strtok (NULL, ",")) != NULL);
4728 xfree (copy);
4729
4730 remote_support_xml = reconcat (remote_support_xml,
4731 remote_support_xml, ",", xml,
4732 (char *) NULL);
4733 }
4734 #endif
4735 }
4736
4737 static char *
4738 remote_query_supported_append (char *msg, const char *append)
4739 {
4740 if (msg)
4741 return reconcat (msg, msg, ";", append, (char *) NULL);
4742 else
4743 return xstrdup (append);
4744 }
4745
4746 static void
4747 remote_query_supported (void)
4748 {
4749 struct remote_state *rs = get_remote_state ();
4750 char *next;
4751 int i;
4752 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4753
4754 /* The packet support flags are handled differently for this packet
4755 than for most others. We treat an error, a disabled packet, and
4756 an empty response identically: any features which must be reported
4757 to be used will be automatically disabled. An empty buffer
4758 accomplishes this, since that is also the representation for a list
4759 containing no features. */
4760
4761 rs->buf[0] = 0;
4762 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4763 {
4764 char *q = NULL;
4765 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4766
4767 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4768 q = remote_query_supported_append (q, "multiprocess+");
4769
4770 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4771 q = remote_query_supported_append (q, "swbreak+");
4772 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4773 q = remote_query_supported_append (q, "hwbreak+");
4774
4775 q = remote_query_supported_append (q, "qRelocInsn+");
4776
4777 if (packet_set_cmd_state (PACKET_fork_event_feature)
4778 != AUTO_BOOLEAN_FALSE)
4779 q = remote_query_supported_append (q, "fork-events+");
4780 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4781 != AUTO_BOOLEAN_FALSE)
4782 q = remote_query_supported_append (q, "vfork-events+");
4783 if (packet_set_cmd_state (PACKET_exec_event_feature)
4784 != AUTO_BOOLEAN_FALSE)
4785 q = remote_query_supported_append (q, "exec-events+");
4786
4787 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4788 q = remote_query_supported_append (q, "vContSupported+");
4789
4790 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4791 q = remote_query_supported_append (q, "QThreadEvents+");
4792
4793 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4794 q = remote_query_supported_append (q, "no-resumed+");
4795
4796 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4797 the qSupported:xmlRegisters=i386 handling. */
4798 if (remote_support_xml != NULL)
4799 q = remote_query_supported_append (q, remote_support_xml);
4800
4801 q = reconcat (q, "qSupported:", q, (char *) NULL);
4802 putpkt (q);
4803
4804 do_cleanups (old_chain);
4805
4806 getpkt (&rs->buf, &rs->buf_size, 0);
4807
4808 /* If an error occured, warn, but do not return - just reset the
4809 buffer to empty and go on to disable features. */
4810 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4811 == PACKET_ERROR)
4812 {
4813 warning (_("Remote failure reply: %s"), rs->buf);
4814 rs->buf[0] = 0;
4815 }
4816 }
4817
4818 memset (seen, 0, sizeof (seen));
4819
4820 next = rs->buf;
4821 while (*next)
4822 {
4823 enum packet_support is_supported;
4824 char *p, *end, *name_end, *value;
4825
4826 /* First separate out this item from the rest of the packet. If
4827 there's another item after this, we overwrite the separator
4828 (terminated strings are much easier to work with). */
4829 p = next;
4830 end = strchr (p, ';');
4831 if (end == NULL)
4832 {
4833 end = p + strlen (p);
4834 next = end;
4835 }
4836 else
4837 {
4838 *end = '\0';
4839 next = end + 1;
4840
4841 if (end == p)
4842 {
4843 warning (_("empty item in \"qSupported\" response"));
4844 continue;
4845 }
4846 }
4847
4848 name_end = strchr (p, '=');
4849 if (name_end)
4850 {
4851 /* This is a name=value entry. */
4852 is_supported = PACKET_ENABLE;
4853 value = name_end + 1;
4854 *name_end = '\0';
4855 }
4856 else
4857 {
4858 value = NULL;
4859 switch (end[-1])
4860 {
4861 case '+':
4862 is_supported = PACKET_ENABLE;
4863 break;
4864
4865 case '-':
4866 is_supported = PACKET_DISABLE;
4867 break;
4868
4869 case '?':
4870 is_supported = PACKET_SUPPORT_UNKNOWN;
4871 break;
4872
4873 default:
4874 warning (_("unrecognized item \"%s\" "
4875 "in \"qSupported\" response"), p);
4876 continue;
4877 }
4878 end[-1] = '\0';
4879 }
4880
4881 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4882 if (strcmp (remote_protocol_features[i].name, p) == 0)
4883 {
4884 const struct protocol_feature *feature;
4885
4886 seen[i] = 1;
4887 feature = &remote_protocol_features[i];
4888 feature->func (feature, is_supported, value);
4889 break;
4890 }
4891 }
4892
4893 /* If we increased the packet size, make sure to increase the global
4894 buffer size also. We delay this until after parsing the entire
4895 qSupported packet, because this is the same buffer we were
4896 parsing. */
4897 if (rs->buf_size < rs->explicit_packet_size)
4898 {
4899 rs->buf_size = rs->explicit_packet_size;
4900 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4901 }
4902
4903 /* Handle the defaults for unmentioned features. */
4904 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4905 if (!seen[i])
4906 {
4907 const struct protocol_feature *feature;
4908
4909 feature = &remote_protocol_features[i];
4910 feature->func (feature, feature->default_support, NULL);
4911 }
4912 }
4913
4914 /* Serial QUIT handler for the remote serial descriptor.
4915
4916 Defers handling a Ctrl-C until we're done with the current
4917 command/response packet sequence, unless:
4918
4919 - We're setting up the connection. Don't send a remote interrupt
4920 request, as we're not fully synced yet. Quit immediately
4921 instead.
4922
4923 - The target has been resumed in the foreground
4924 (target_terminal_is_ours is false) with a synchronous resume
4925 packet, and we're blocked waiting for the stop reply, thus a
4926 Ctrl-C should be immediately sent to the target.
4927
4928 - We get a second Ctrl-C while still within the same serial read or
4929 write. In that case the serial is seemingly wedged --- offer to
4930 quit/disconnect.
4931
4932 - We see a second Ctrl-C without target response, after having
4933 previously interrupted the target. In that case the target/stub
4934 is probably wedged --- offer to quit/disconnect.
4935 */
4936
4937 static void
4938 remote_serial_quit_handler (void)
4939 {
4940 struct remote_state *rs = get_remote_state ();
4941
4942 if (check_quit_flag ())
4943 {
4944 /* If we're starting up, we're not fully synced yet. Quit
4945 immediately. */
4946 if (rs->starting_up)
4947 quit ();
4948 else if (rs->got_ctrlc_during_io)
4949 {
4950 if (query (_("The target is not responding to GDB commands.\n"
4951 "Stop debugging it? ")))
4952 remote_unpush_and_throw ();
4953 }
4954 /* If ^C has already been sent once, offer to disconnect. */
4955 else if (!target_terminal_is_ours () && rs->ctrlc_pending_p)
4956 interrupt_query ();
4957 /* All-stop protocol, and blocked waiting for stop reply. Send
4958 an interrupt request. */
4959 else if (!target_terminal_is_ours () && rs->waiting_for_stop_reply)
4960 target_interrupt (inferior_ptid);
4961 else
4962 rs->got_ctrlc_during_io = 1;
4963 }
4964 }
4965
4966 /* Remove any of the remote.c targets from target stack. Upper targets depend
4967 on it so remove them first. */
4968
4969 static void
4970 remote_unpush_target (void)
4971 {
4972 pop_all_targets_at_and_above (process_stratum);
4973 }
4974
4975 static void
4976 remote_unpush_and_throw (void)
4977 {
4978 remote_unpush_target ();
4979 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4980 }
4981
4982 static void
4983 remote_open_1 (const char *name, int from_tty,
4984 struct target_ops *target, int extended_p)
4985 {
4986 struct remote_state *rs = get_remote_state ();
4987
4988 if (name == 0)
4989 error (_("To open a remote debug connection, you need to specify what\n"
4990 "serial device is attached to the remote system\n"
4991 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4992
4993 /* See FIXME above. */
4994 if (!target_async_permitted)
4995 wait_forever_enabled_p = 1;
4996
4997 /* If we're connected to a running target, target_preopen will kill it.
4998 Ask this question first, before target_preopen has a chance to kill
4999 anything. */
5000 if (rs->remote_desc != NULL && !have_inferiors ())
5001 {
5002 if (from_tty
5003 && !query (_("Already connected to a remote target. Disconnect? ")))
5004 error (_("Still connected."));
5005 }
5006
5007 /* Here the possibly existing remote target gets unpushed. */
5008 target_preopen (from_tty);
5009
5010 /* Make sure we send the passed signals list the next time we resume. */
5011 xfree (rs->last_pass_packet);
5012 rs->last_pass_packet = NULL;
5013
5014 /* Make sure we send the program signals list the next time we
5015 resume. */
5016 xfree (rs->last_program_signals_packet);
5017 rs->last_program_signals_packet = NULL;
5018
5019 remote_fileio_reset ();
5020 reopen_exec_file ();
5021 reread_symbols ();
5022
5023 rs->remote_desc = remote_serial_open (name);
5024 if (!rs->remote_desc)
5025 perror_with_name (name);
5026
5027 if (baud_rate != -1)
5028 {
5029 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5030 {
5031 /* The requested speed could not be set. Error out to
5032 top level after closing remote_desc. Take care to
5033 set remote_desc to NULL to avoid closing remote_desc
5034 more than once. */
5035 serial_close (rs->remote_desc);
5036 rs->remote_desc = NULL;
5037 perror_with_name (name);
5038 }
5039 }
5040
5041 serial_setparity (rs->remote_desc, serial_parity);
5042 serial_raw (rs->remote_desc);
5043
5044 /* If there is something sitting in the buffer we might take it as a
5045 response to a command, which would be bad. */
5046 serial_flush_input (rs->remote_desc);
5047
5048 if (from_tty)
5049 {
5050 puts_filtered ("Remote debugging using ");
5051 puts_filtered (name);
5052 puts_filtered ("\n");
5053 }
5054 push_target (target); /* Switch to using remote target now. */
5055
5056 /* Register extra event sources in the event loop. */
5057 remote_async_inferior_event_token
5058 = create_async_event_handler (remote_async_inferior_event_handler,
5059 NULL);
5060 rs->notif_state = remote_notif_state_allocate ();
5061
5062 /* Reset the target state; these things will be queried either by
5063 remote_query_supported or as they are needed. */
5064 reset_all_packet_configs_support ();
5065 rs->cached_wait_status = 0;
5066 rs->explicit_packet_size = 0;
5067 rs->noack_mode = 0;
5068 rs->extended = extended_p;
5069 rs->waiting_for_stop_reply = 0;
5070 rs->ctrlc_pending_p = 0;
5071 rs->got_ctrlc_during_io = 0;
5072
5073 rs->general_thread = not_sent_ptid;
5074 rs->continue_thread = not_sent_ptid;
5075 rs->remote_traceframe_number = -1;
5076
5077 rs->last_resume_exec_dir = EXEC_FORWARD;
5078
5079 /* Probe for ability to use "ThreadInfo" query, as required. */
5080 rs->use_threadinfo_query = 1;
5081 rs->use_threadextra_query = 1;
5082
5083 readahead_cache_invalidate ();
5084
5085 /* Start out by owning the terminal. */
5086 remote_async_terminal_ours_p = 1;
5087
5088 if (target_async_permitted)
5089 {
5090 /* FIXME: cagney/1999-09-23: During the initial connection it is
5091 assumed that the target is already ready and able to respond to
5092 requests. Unfortunately remote_start_remote() eventually calls
5093 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5094 around this. Eventually a mechanism that allows
5095 wait_for_inferior() to expect/get timeouts will be
5096 implemented. */
5097 wait_forever_enabled_p = 0;
5098 }
5099
5100 /* First delete any symbols previously loaded from shared libraries. */
5101 no_shared_libraries (NULL, 0);
5102
5103 /* Start afresh. */
5104 init_thread_list ();
5105
5106 /* Start the remote connection. If error() or QUIT, discard this
5107 target (we'd otherwise be in an inconsistent state) and then
5108 propogate the error on up the exception chain. This ensures that
5109 the caller doesn't stumble along blindly assuming that the
5110 function succeeded. The CLI doesn't have this problem but other
5111 UI's, such as MI do.
5112
5113 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5114 this function should return an error indication letting the
5115 caller restore the previous state. Unfortunately the command
5116 ``target remote'' is directly wired to this function making that
5117 impossible. On a positive note, the CLI side of this problem has
5118 been fixed - the function set_cmd_context() makes it possible for
5119 all the ``target ....'' commands to share a common callback
5120 function. See cli-dump.c. */
5121 {
5122
5123 TRY
5124 {
5125 remote_start_remote (from_tty, target, extended_p);
5126 }
5127 CATCH (ex, RETURN_MASK_ALL)
5128 {
5129 /* Pop the partially set up target - unless something else did
5130 already before throwing the exception. */
5131 if (rs->remote_desc != NULL)
5132 remote_unpush_target ();
5133 if (target_async_permitted)
5134 wait_forever_enabled_p = 1;
5135 throw_exception (ex);
5136 }
5137 END_CATCH
5138 }
5139
5140 remote_btrace_reset ();
5141
5142 if (target_async_permitted)
5143 wait_forever_enabled_p = 1;
5144 }
5145
5146 /* Detach the specified process. */
5147
5148 static void
5149 remote_detach_pid (int pid)
5150 {
5151 struct remote_state *rs = get_remote_state ();
5152
5153 if (remote_multi_process_p (rs))
5154 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5155 else
5156 strcpy (rs->buf, "D");
5157
5158 putpkt (rs->buf);
5159 getpkt (&rs->buf, &rs->buf_size, 0);
5160
5161 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5162 ;
5163 else if (rs->buf[0] == '\0')
5164 error (_("Remote doesn't know how to detach"));
5165 else
5166 error (_("Can't detach process."));
5167 }
5168
5169 /* This detaches a program to which we previously attached, using
5170 inferior_ptid to identify the process. After this is done, GDB
5171 can be used to debug some other program. We better not have left
5172 any breakpoints in the target program or it'll die when it hits
5173 one. */
5174
5175 static void
5176 remote_detach_1 (const char *args, int from_tty)
5177 {
5178 int pid = ptid_get_pid (inferior_ptid);
5179 struct remote_state *rs = get_remote_state ();
5180 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5181 int is_fork_parent;
5182
5183 if (args)
5184 error (_("Argument given to \"detach\" when remotely debugging."));
5185
5186 if (!target_has_execution)
5187 error (_("No process to detach from."));
5188
5189 target_announce_detach (from_tty);
5190
5191 /* Tell the remote target to detach. */
5192 remote_detach_pid (pid);
5193
5194 /* Exit only if this is the only active inferior. */
5195 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5196 puts_filtered (_("Ending remote debugging.\n"));
5197
5198 /* Check to see if we are detaching a fork parent. Note that if we
5199 are detaching a fork child, tp == NULL. */
5200 is_fork_parent = (tp != NULL
5201 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5202
5203 /* If doing detach-on-fork, we don't mourn, because that will delete
5204 breakpoints that should be available for the followed inferior. */
5205 if (!is_fork_parent)
5206 target_mourn_inferior (inferior_ptid);
5207 else
5208 {
5209 inferior_ptid = null_ptid;
5210 detach_inferior (pid);
5211 }
5212 }
5213
5214 static void
5215 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5216 {
5217 remote_detach_1 (args, from_tty);
5218 }
5219
5220 static void
5221 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5222 {
5223 remote_detach_1 (args, from_tty);
5224 }
5225
5226 /* Target follow-fork function for remote targets. On entry, and
5227 at return, the current inferior is the fork parent.
5228
5229 Note that although this is currently only used for extended-remote,
5230 it is named remote_follow_fork in anticipation of using it for the
5231 remote target as well. */
5232
5233 static int
5234 remote_follow_fork (struct target_ops *ops, int follow_child,
5235 int detach_fork)
5236 {
5237 struct remote_state *rs = get_remote_state ();
5238 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5239
5240 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5241 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5242 {
5243 /* When following the parent and detaching the child, we detach
5244 the child here. For the case of following the child and
5245 detaching the parent, the detach is done in the target-
5246 independent follow fork code in infrun.c. We can't use
5247 target_detach when detaching an unfollowed child because
5248 the client side doesn't know anything about the child. */
5249 if (detach_fork && !follow_child)
5250 {
5251 /* Detach the fork child. */
5252 ptid_t child_ptid;
5253 pid_t child_pid;
5254
5255 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5256 child_pid = ptid_get_pid (child_ptid);
5257
5258 remote_detach_pid (child_pid);
5259 detach_inferior (child_pid);
5260 }
5261 }
5262 return 0;
5263 }
5264
5265 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5266 in the program space of the new inferior. On entry and at return the
5267 current inferior is the exec'ing inferior. INF is the new exec'd
5268 inferior, which may be the same as the exec'ing inferior unless
5269 follow-exec-mode is "new". */
5270
5271 static void
5272 remote_follow_exec (struct target_ops *ops,
5273 struct inferior *inf, char *execd_pathname)
5274 {
5275 /* We know that this is a target file name, so if it has the "target:"
5276 prefix we strip it off before saving it in the program space. */
5277 if (is_target_filename (execd_pathname))
5278 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5279
5280 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5281 }
5282
5283 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5284
5285 static void
5286 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5287 {
5288 if (args)
5289 error (_("Argument given to \"disconnect\" when remotely debugging."));
5290
5291 /* Make sure we unpush even the extended remote targets. Calling
5292 target_mourn_inferior won't unpush, and remote_mourn won't
5293 unpush if there is more than one inferior left. */
5294 unpush_target (target);
5295 generic_mourn_inferior ();
5296
5297 if (from_tty)
5298 puts_filtered ("Ending remote debugging.\n");
5299 }
5300
5301 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5302 be chatty about it. */
5303
5304 static void
5305 extended_remote_attach (struct target_ops *target, const char *args,
5306 int from_tty)
5307 {
5308 struct remote_state *rs = get_remote_state ();
5309 int pid;
5310 char *wait_status = NULL;
5311
5312 pid = parse_pid_to_attach (args);
5313
5314 /* Remote PID can be freely equal to getpid, do not check it here the same
5315 way as in other targets. */
5316
5317 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5318 error (_("This target does not support attaching to a process"));
5319
5320 if (from_tty)
5321 {
5322 char *exec_file = get_exec_file (0);
5323
5324 if (exec_file)
5325 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5326 target_pid_to_str (pid_to_ptid (pid)));
5327 else
5328 printf_unfiltered (_("Attaching to %s\n"),
5329 target_pid_to_str (pid_to_ptid (pid)));
5330
5331 gdb_flush (gdb_stdout);
5332 }
5333
5334 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5335 putpkt (rs->buf);
5336 getpkt (&rs->buf, &rs->buf_size, 0);
5337
5338 switch (packet_ok (rs->buf,
5339 &remote_protocol_packets[PACKET_vAttach]))
5340 {
5341 case PACKET_OK:
5342 if (!target_is_non_stop_p ())
5343 {
5344 /* Save the reply for later. */
5345 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5346 strcpy (wait_status, rs->buf);
5347 }
5348 else if (strcmp (rs->buf, "OK") != 0)
5349 error (_("Attaching to %s failed with: %s"),
5350 target_pid_to_str (pid_to_ptid (pid)),
5351 rs->buf);
5352 break;
5353 case PACKET_UNKNOWN:
5354 error (_("This target does not support attaching to a process"));
5355 default:
5356 error (_("Attaching to %s failed"),
5357 target_pid_to_str (pid_to_ptid (pid)));
5358 }
5359
5360 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5361
5362 inferior_ptid = pid_to_ptid (pid);
5363
5364 if (target_is_non_stop_p ())
5365 {
5366 struct thread_info *thread;
5367
5368 /* Get list of threads. */
5369 remote_update_thread_list (target);
5370
5371 thread = first_thread_of_process (pid);
5372 if (thread)
5373 inferior_ptid = thread->ptid;
5374 else
5375 inferior_ptid = pid_to_ptid (pid);
5376
5377 /* Invalidate our notion of the remote current thread. */
5378 record_currthread (rs, minus_one_ptid);
5379 }
5380 else
5381 {
5382 /* Now, if we have thread information, update inferior_ptid. */
5383 inferior_ptid = remote_current_thread (inferior_ptid);
5384
5385 /* Add the main thread to the thread list. */
5386 add_thread_silent (inferior_ptid);
5387 }
5388
5389 /* Next, if the target can specify a description, read it. We do
5390 this before anything involving memory or registers. */
5391 target_find_description ();
5392
5393 if (!target_is_non_stop_p ())
5394 {
5395 /* Use the previously fetched status. */
5396 gdb_assert (wait_status != NULL);
5397
5398 if (target_can_async_p ())
5399 {
5400 struct notif_event *reply
5401 = remote_notif_parse (&notif_client_stop, wait_status);
5402
5403 push_stop_reply ((struct stop_reply *) reply);
5404
5405 target_async (1);
5406 }
5407 else
5408 {
5409 gdb_assert (wait_status != NULL);
5410 strcpy (rs->buf, wait_status);
5411 rs->cached_wait_status = 1;
5412 }
5413 }
5414 else
5415 gdb_assert (wait_status == NULL);
5416 }
5417
5418 /* Implementation of the to_post_attach method. */
5419
5420 static void
5421 extended_remote_post_attach (struct target_ops *ops, int pid)
5422 {
5423 /* Get text, data & bss offsets. */
5424 get_offsets ();
5425
5426 /* In certain cases GDB might not have had the chance to start
5427 symbol lookup up until now. This could happen if the debugged
5428 binary is not using shared libraries, the vsyscall page is not
5429 present (on Linux) and the binary itself hadn't changed since the
5430 debugging process was started. */
5431 if (symfile_objfile != NULL)
5432 remote_check_symbols();
5433 }
5434
5435 \f
5436 /* Check for the availability of vCont. This function should also check
5437 the response. */
5438
5439 static void
5440 remote_vcont_probe (struct remote_state *rs)
5441 {
5442 char *buf;
5443
5444 strcpy (rs->buf, "vCont?");
5445 putpkt (rs->buf);
5446 getpkt (&rs->buf, &rs->buf_size, 0);
5447 buf = rs->buf;
5448
5449 /* Make sure that the features we assume are supported. */
5450 if (startswith (buf, "vCont"))
5451 {
5452 char *p = &buf[5];
5453 int support_c, support_C;
5454
5455 rs->supports_vCont.s = 0;
5456 rs->supports_vCont.S = 0;
5457 support_c = 0;
5458 support_C = 0;
5459 rs->supports_vCont.t = 0;
5460 rs->supports_vCont.r = 0;
5461 while (p && *p == ';')
5462 {
5463 p++;
5464 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5465 rs->supports_vCont.s = 1;
5466 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5467 rs->supports_vCont.S = 1;
5468 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5469 support_c = 1;
5470 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5471 support_C = 1;
5472 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5473 rs->supports_vCont.t = 1;
5474 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5475 rs->supports_vCont.r = 1;
5476
5477 p = strchr (p, ';');
5478 }
5479
5480 /* If c, and C are not all supported, we can't use vCont. Clearing
5481 BUF will make packet_ok disable the packet. */
5482 if (!support_c || !support_C)
5483 buf[0] = 0;
5484 }
5485
5486 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5487 }
5488
5489 /* Helper function for building "vCont" resumptions. Write a
5490 resumption to P. ENDP points to one-passed-the-end of the buffer
5491 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5492 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5493 resumed thread should be single-stepped and/or signalled. If PTID
5494 equals minus_one_ptid, then all threads are resumed; if PTID
5495 represents a process, then all threads of the process are resumed;
5496 the thread to be stepped and/or signalled is given in the global
5497 INFERIOR_PTID. */
5498
5499 static char *
5500 append_resumption (char *p, char *endp,
5501 ptid_t ptid, int step, enum gdb_signal siggnal)
5502 {
5503 struct remote_state *rs = get_remote_state ();
5504
5505 if (step && siggnal != GDB_SIGNAL_0)
5506 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5507 else if (step
5508 /* GDB is willing to range step. */
5509 && use_range_stepping
5510 /* Target supports range stepping. */
5511 && rs->supports_vCont.r
5512 /* We don't currently support range stepping multiple
5513 threads with a wildcard (though the protocol allows it,
5514 so stubs shouldn't make an active effort to forbid
5515 it). */
5516 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5517 {
5518 struct thread_info *tp;
5519
5520 if (ptid_equal (ptid, minus_one_ptid))
5521 {
5522 /* If we don't know about the target thread's tid, then
5523 we're resuming magic_null_ptid (see caller). */
5524 tp = find_thread_ptid (magic_null_ptid);
5525 }
5526 else
5527 tp = find_thread_ptid (ptid);
5528 gdb_assert (tp != NULL);
5529
5530 if (tp->control.may_range_step)
5531 {
5532 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5533
5534 p += xsnprintf (p, endp - p, ";r%s,%s",
5535 phex_nz (tp->control.step_range_start,
5536 addr_size),
5537 phex_nz (tp->control.step_range_end,
5538 addr_size));
5539 }
5540 else
5541 p += xsnprintf (p, endp - p, ";s");
5542 }
5543 else if (step)
5544 p += xsnprintf (p, endp - p, ";s");
5545 else if (siggnal != GDB_SIGNAL_0)
5546 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5547 else
5548 p += xsnprintf (p, endp - p, ";c");
5549
5550 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5551 {
5552 ptid_t nptid;
5553
5554 /* All (-1) threads of process. */
5555 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5556
5557 p += xsnprintf (p, endp - p, ":");
5558 p = write_ptid (p, endp, nptid);
5559 }
5560 else if (!ptid_equal (ptid, minus_one_ptid))
5561 {
5562 p += xsnprintf (p, endp - p, ":");
5563 p = write_ptid (p, endp, ptid);
5564 }
5565
5566 return p;
5567 }
5568
5569 /* Clear the thread's private info on resume. */
5570
5571 static void
5572 resume_clear_thread_private_info (struct thread_info *thread)
5573 {
5574 if (thread->priv != NULL)
5575 {
5576 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5577 thread->priv->watch_data_address = 0;
5578 }
5579 }
5580
5581 /* Append a vCont continue-with-signal action for threads that have a
5582 non-zero stop signal. */
5583
5584 static char *
5585 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5586 {
5587 struct thread_info *thread;
5588
5589 ALL_NON_EXITED_THREADS (thread)
5590 if (ptid_match (thread->ptid, ptid)
5591 && !ptid_equal (inferior_ptid, thread->ptid)
5592 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5593 {
5594 p = append_resumption (p, endp, thread->ptid,
5595 0, thread->suspend.stop_signal);
5596 thread->suspend.stop_signal = GDB_SIGNAL_0;
5597 resume_clear_thread_private_info (thread);
5598 }
5599
5600 return p;
5601 }
5602
5603 /* Set the target running, using the packets that use Hc
5604 (c/s/C/S). */
5605
5606 static void
5607 remote_resume_with_hc (struct target_ops *ops,
5608 ptid_t ptid, int step, enum gdb_signal siggnal)
5609 {
5610 struct remote_state *rs = get_remote_state ();
5611 struct thread_info *thread;
5612 char *buf;
5613
5614 rs->last_sent_signal = siggnal;
5615 rs->last_sent_step = step;
5616
5617 /* The c/s/C/S resume packets use Hc, so set the continue
5618 thread. */
5619 if (ptid_equal (ptid, minus_one_ptid))
5620 set_continue_thread (any_thread_ptid);
5621 else
5622 set_continue_thread (ptid);
5623
5624 ALL_NON_EXITED_THREADS (thread)
5625 resume_clear_thread_private_info (thread);
5626
5627 buf = rs->buf;
5628 if (execution_direction == EXEC_REVERSE)
5629 {
5630 /* We don't pass signals to the target in reverse exec mode. */
5631 if (info_verbose && siggnal != GDB_SIGNAL_0)
5632 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5633 siggnal);
5634
5635 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5636 error (_("Remote reverse-step not supported."));
5637 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5638 error (_("Remote reverse-continue not supported."));
5639
5640 strcpy (buf, step ? "bs" : "bc");
5641 }
5642 else if (siggnal != GDB_SIGNAL_0)
5643 {
5644 buf[0] = step ? 'S' : 'C';
5645 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5646 buf[2] = tohex (((int) siggnal) & 0xf);
5647 buf[3] = '\0';
5648 }
5649 else
5650 strcpy (buf, step ? "s" : "c");
5651
5652 putpkt (buf);
5653 }
5654
5655 /* Resume the remote inferior by using a "vCont" packet. The thread
5656 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5657 resumed thread should be single-stepped and/or signalled. If PTID
5658 equals minus_one_ptid, then all threads are resumed; the thread to
5659 be stepped and/or signalled is given in the global INFERIOR_PTID.
5660 This function returns non-zero iff it resumes the inferior.
5661
5662 This function issues a strict subset of all possible vCont commands
5663 at the moment. */
5664
5665 static int
5666 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5667 {
5668 struct remote_state *rs = get_remote_state ();
5669 char *p;
5670 char *endp;
5671
5672 /* No reverse execution actions defined for vCont. */
5673 if (execution_direction == EXEC_REVERSE)
5674 return 0;
5675
5676 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5677 remote_vcont_probe (rs);
5678
5679 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5680 return 0;
5681
5682 p = rs->buf;
5683 endp = rs->buf + get_remote_packet_size ();
5684
5685 /* If we could generate a wider range of packets, we'd have to worry
5686 about overflowing BUF. Should there be a generic
5687 "multi-part-packet" packet? */
5688
5689 p += xsnprintf (p, endp - p, "vCont");
5690
5691 if (ptid_equal (ptid, magic_null_ptid))
5692 {
5693 /* MAGIC_NULL_PTID means that we don't have any active threads,
5694 so we don't have any TID numbers the inferior will
5695 understand. Make sure to only send forms that do not specify
5696 a TID. */
5697 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5698 }
5699 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5700 {
5701 /* Resume all threads (of all processes, or of a single
5702 process), with preference for INFERIOR_PTID. This assumes
5703 inferior_ptid belongs to the set of all threads we are about
5704 to resume. */
5705 if (step || siggnal != GDB_SIGNAL_0)
5706 {
5707 /* Step inferior_ptid, with or without signal. */
5708 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5709 }
5710
5711 /* Also pass down any pending signaled resumption for other
5712 threads not the current. */
5713 p = append_pending_thread_resumptions (p, endp, ptid);
5714
5715 /* And continue others without a signal. */
5716 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5717 }
5718 else
5719 {
5720 /* Scheduler locking; resume only PTID. */
5721 append_resumption (p, endp, ptid, step, siggnal);
5722 }
5723
5724 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5725 putpkt (rs->buf);
5726
5727 if (target_is_non_stop_p ())
5728 {
5729 /* In non-stop, the stub replies to vCont with "OK". The stop
5730 reply will be reported asynchronously by means of a `%Stop'
5731 notification. */
5732 getpkt (&rs->buf, &rs->buf_size, 0);
5733 if (strcmp (rs->buf, "OK") != 0)
5734 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5735 }
5736
5737 return 1;
5738 }
5739
5740 /* Tell the remote machine to resume. */
5741
5742 static void
5743 remote_resume (struct target_ops *ops,
5744 ptid_t ptid, int step, enum gdb_signal siggnal)
5745 {
5746 struct remote_state *rs = get_remote_state ();
5747
5748 /* When connected in non-stop mode, the core resumes threads
5749 individually. Resuming remote threads directly in target_resume
5750 would thus result in sending one packet per thread. Instead, to
5751 minimize roundtrip latency, here we just store the resume
5752 request; the actual remote resumption will be done in
5753 target_commit_resume / remote_commit_resume, where we'll be able
5754 to do vCont action coalescing. */
5755 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5756 {
5757 struct private_thread_info *remote_thr;
5758
5759 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5760 remote_thr = get_private_info_ptid (inferior_ptid);
5761 else
5762 remote_thr = get_private_info_ptid (ptid);
5763 remote_thr->last_resume_step = step;
5764 remote_thr->last_resume_sig = siggnal;
5765 return;
5766 }
5767
5768 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5769 (explained in remote-notif.c:handle_notification) so
5770 remote_notif_process is not called. We need find a place where
5771 it is safe to start a 'vNotif' sequence. It is good to do it
5772 before resuming inferior, because inferior was stopped and no RSP
5773 traffic at that moment. */
5774 if (!target_is_non_stop_p ())
5775 remote_notif_process (rs->notif_state, &notif_client_stop);
5776
5777 rs->last_resume_exec_dir = execution_direction;
5778
5779 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5780 if (!remote_resume_with_vcont (ptid, step, siggnal))
5781 remote_resume_with_hc (ops, ptid, step, siggnal);
5782
5783 /* We are about to start executing the inferior, let's register it
5784 with the event loop. NOTE: this is the one place where all the
5785 execution commands end up. We could alternatively do this in each
5786 of the execution commands in infcmd.c. */
5787 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5788 into infcmd.c in order to allow inferior function calls to work
5789 NOT asynchronously. */
5790 if (target_can_async_p ())
5791 target_async (1);
5792
5793 /* We've just told the target to resume. The remote server will
5794 wait for the inferior to stop, and then send a stop reply. In
5795 the mean time, we can't start another command/query ourselves
5796 because the stub wouldn't be ready to process it. This applies
5797 only to the base all-stop protocol, however. In non-stop (which
5798 only supports vCont), the stub replies with an "OK", and is
5799 immediate able to process further serial input. */
5800 if (!target_is_non_stop_p ())
5801 rs->waiting_for_stop_reply = 1;
5802 }
5803
5804 static void check_pending_events_prevent_wildcard_vcont
5805 (int *may_global_wildcard_vcont);
5806 static int is_pending_fork_parent_thread (struct thread_info *thread);
5807
5808 /* Private per-inferior info for target remote processes. */
5809
5810 struct private_inferior
5811 {
5812 /* Whether we can send a wildcard vCont for this process. */
5813 int may_wildcard_vcont;
5814 };
5815
5816 /* Structure used to track the construction of a vCont packet in the
5817 outgoing packet buffer. This is used to send multiple vCont
5818 packets if we have more actions than would fit a single packet. */
5819
5820 struct vcont_builder
5821 {
5822 /* Pointer to the first action. P points here if no action has been
5823 appended yet. */
5824 char *first_action;
5825
5826 /* Where the next action will be appended. */
5827 char *p;
5828
5829 /* The end of the buffer. Must never write past this. */
5830 char *endp;
5831 };
5832
5833 /* Prepare the outgoing buffer for a new vCont packet. */
5834
5835 static void
5836 vcont_builder_restart (struct vcont_builder *builder)
5837 {
5838 struct remote_state *rs = get_remote_state ();
5839
5840 builder->p = rs->buf;
5841 builder->endp = rs->buf + get_remote_packet_size ();
5842 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5843 builder->first_action = builder->p;
5844 }
5845
5846 /* If the vCont packet being built has any action, send it to the
5847 remote end. */
5848
5849 static void
5850 vcont_builder_flush (struct vcont_builder *builder)
5851 {
5852 struct remote_state *rs;
5853
5854 if (builder->p == builder->first_action)
5855 return;
5856
5857 rs = get_remote_state ();
5858 putpkt (rs->buf);
5859 getpkt (&rs->buf, &rs->buf_size, 0);
5860 if (strcmp (rs->buf, "OK") != 0)
5861 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5862 }
5863
5864 /* The largest action is range-stepping, with its two addresses. This
5865 is more than sufficient. If a new, bigger action is created, it'll
5866 quickly trigger a failed assertion in append_resumption (and we'll
5867 just bump this). */
5868 #define MAX_ACTION_SIZE 200
5869
5870 /* Append a new vCont action in the outgoing packet being built. If
5871 the action doesn't fit the packet along with previous actions, push
5872 what we've got so far to the remote end and start over a new vCont
5873 packet (with the new action). */
5874
5875 static void
5876 vcont_builder_push_action (struct vcont_builder *builder,
5877 ptid_t ptid, int step, enum gdb_signal siggnal)
5878 {
5879 char buf[MAX_ACTION_SIZE + 1];
5880 char *endp;
5881 size_t rsize;
5882
5883 endp = append_resumption (buf, buf + sizeof (buf),
5884 ptid, step, siggnal);
5885
5886 /* Check whether this new action would fit in the vCont packet along
5887 with previous actions. If not, send what we've got so far and
5888 start a new vCont packet. */
5889 rsize = endp - buf;
5890 if (rsize > builder->endp - builder->p)
5891 {
5892 vcont_builder_flush (builder);
5893 vcont_builder_restart (builder);
5894
5895 /* Should now fit. */
5896 gdb_assert (rsize <= builder->endp - builder->p);
5897 }
5898
5899 memcpy (builder->p, buf, rsize);
5900 builder->p += rsize;
5901 *builder->p = '\0';
5902 }
5903
5904 /* to_commit_resume implementation. */
5905
5906 static void
5907 remote_commit_resume (struct target_ops *ops)
5908 {
5909 struct remote_state *rs = get_remote_state ();
5910 struct inferior *inf;
5911 struct thread_info *tp;
5912 int any_process_wildcard;
5913 int may_global_wildcard_vcont;
5914 struct vcont_builder vcont_builder;
5915
5916 /* If connected in all-stop mode, we'd send the remote resume
5917 request directly from remote_resume. Likewise if
5918 reverse-debugging, as there are no defined vCont actions for
5919 reverse execution. */
5920 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5921 return;
5922
5923 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5924 instead of resuming all threads of each process individually.
5925 However, if any thread of a process must remain halted, we can't
5926 send wildcard resumes and must send one action per thread.
5927
5928 Care must be taken to not resume threads/processes the server
5929 side already told us are stopped, but the core doesn't know about
5930 yet, because the events are still in the vStopped notification
5931 queue. For example:
5932
5933 #1 => vCont s:p1.1;c
5934 #2 <= OK
5935 #3 <= %Stopped T05 p1.1
5936 #4 => vStopped
5937 #5 <= T05 p1.2
5938 #6 => vStopped
5939 #7 <= OK
5940 #8 (infrun handles the stop for p1.1 and continues stepping)
5941 #9 => vCont s:p1.1;c
5942
5943 The last vCont above would resume thread p1.2 by mistake, because
5944 the server has no idea that the event for p1.2 had not been
5945 handled yet.
5946
5947 The server side must similarly ignore resume actions for the
5948 thread that has a pending %Stopped notification (and any other
5949 threads with events pending), until GDB acks the notification
5950 with vStopped. Otherwise, e.g., the following case is
5951 mishandled:
5952
5953 #1 => g (or any other packet)
5954 #2 <= [registers]
5955 #3 <= %Stopped T05 p1.2
5956 #4 => vCont s:p1.1;c
5957 #5 <= OK
5958
5959 Above, the server must not resume thread p1.2. GDB can't know
5960 that p1.2 stopped until it acks the %Stopped notification, and
5961 since from GDB's perspective all threads should be running, it
5962 sends a "c" action.
5963
5964 Finally, special care must also be given to handling fork/vfork
5965 events. A (v)fork event actually tells us that two processes
5966 stopped -- the parent and the child. Until we follow the fork,
5967 we must not resume the child. Therefore, if we have a pending
5968 fork follow, we must not send a global wildcard resume action
5969 (vCont;c). We can still send process-wide wildcards though. */
5970
5971 /* Start by assuming a global wildcard (vCont;c) is possible. */
5972 may_global_wildcard_vcont = 1;
5973
5974 /* And assume every process is individually wildcard-able too. */
5975 ALL_NON_EXITED_INFERIORS (inf)
5976 {
5977 if (inf->priv == NULL)
5978 inf->priv = XNEW (struct private_inferior);
5979 inf->priv->may_wildcard_vcont = 1;
5980 }
5981
5982 /* Check for any pending events (not reported or processed yet) and
5983 disable process and global wildcard resumes appropriately. */
5984 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5985
5986 ALL_NON_EXITED_THREADS (tp)
5987 {
5988 /* If a thread of a process is not meant to be resumed, then we
5989 can't wildcard that process. */
5990 if (!tp->executing)
5991 {
5992 tp->inf->priv->may_wildcard_vcont = 0;
5993
5994 /* And if we can't wildcard a process, we can't wildcard
5995 everything either. */
5996 may_global_wildcard_vcont = 0;
5997 continue;
5998 }
5999
6000 /* If a thread is the parent of an unfollowed fork, then we
6001 can't do a global wildcard, as that would resume the fork
6002 child. */
6003 if (is_pending_fork_parent_thread (tp))
6004 may_global_wildcard_vcont = 0;
6005 }
6006
6007 /* Now let's build the vCont packet(s). Actions must be appended
6008 from narrower to wider scopes (thread -> process -> global). If
6009 we end up with too many actions for a single packet vcont_builder
6010 flushes the current vCont packet to the remote side and starts a
6011 new one. */
6012 vcont_builder_restart (&vcont_builder);
6013
6014 /* Threads first. */
6015 ALL_NON_EXITED_THREADS (tp)
6016 {
6017 struct private_thread_info *remote_thr = tp->priv;
6018
6019 if (!tp->executing || remote_thr->vcont_resumed)
6020 continue;
6021
6022 gdb_assert (!thread_is_in_step_over_chain (tp));
6023
6024 if (!remote_thr->last_resume_step
6025 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6026 && tp->inf->priv->may_wildcard_vcont)
6027 {
6028 /* We'll send a wildcard resume instead. */
6029 remote_thr->vcont_resumed = 1;
6030 continue;
6031 }
6032
6033 vcont_builder_push_action (&vcont_builder, tp->ptid,
6034 remote_thr->last_resume_step,
6035 remote_thr->last_resume_sig);
6036 remote_thr->vcont_resumed = 1;
6037 }
6038
6039 /* Now check whether we can send any process-wide wildcard. This is
6040 to avoid sending a global wildcard in the case nothing is
6041 supposed to be resumed. */
6042 any_process_wildcard = 0;
6043
6044 ALL_NON_EXITED_INFERIORS (inf)
6045 {
6046 if (inf->priv->may_wildcard_vcont)
6047 {
6048 any_process_wildcard = 1;
6049 break;
6050 }
6051 }
6052
6053 if (any_process_wildcard)
6054 {
6055 /* If all processes are wildcard-able, then send a single "c"
6056 action, otherwise, send an "all (-1) threads of process"
6057 continue action for each running process, if any. */
6058 if (may_global_wildcard_vcont)
6059 {
6060 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6061 0, GDB_SIGNAL_0);
6062 }
6063 else
6064 {
6065 ALL_NON_EXITED_INFERIORS (inf)
6066 {
6067 if (inf->priv->may_wildcard_vcont)
6068 {
6069 vcont_builder_push_action (&vcont_builder,
6070 pid_to_ptid (inf->pid),
6071 0, GDB_SIGNAL_0);
6072 }
6073 }
6074 }
6075 }
6076
6077 vcont_builder_flush (&vcont_builder);
6078 }
6079
6080 \f
6081
6082 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6083 thread, all threads of a remote process, or all threads of all
6084 processes. */
6085
6086 static void
6087 remote_stop_ns (ptid_t ptid)
6088 {
6089 struct remote_state *rs = get_remote_state ();
6090 char *p = rs->buf;
6091 char *endp = rs->buf + get_remote_packet_size ();
6092
6093 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6094 remote_vcont_probe (rs);
6095
6096 if (!rs->supports_vCont.t)
6097 error (_("Remote server does not support stopping threads"));
6098
6099 if (ptid_equal (ptid, minus_one_ptid)
6100 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6101 p += xsnprintf (p, endp - p, "vCont;t");
6102 else
6103 {
6104 ptid_t nptid;
6105
6106 p += xsnprintf (p, endp - p, "vCont;t:");
6107
6108 if (ptid_is_pid (ptid))
6109 /* All (-1) threads of process. */
6110 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6111 else
6112 {
6113 /* Small optimization: if we already have a stop reply for
6114 this thread, no use in telling the stub we want this
6115 stopped. */
6116 if (peek_stop_reply (ptid))
6117 return;
6118
6119 nptid = ptid;
6120 }
6121
6122 write_ptid (p, endp, nptid);
6123 }
6124
6125 /* In non-stop, we get an immediate OK reply. The stop reply will
6126 come in asynchronously by notification. */
6127 putpkt (rs->buf);
6128 getpkt (&rs->buf, &rs->buf_size, 0);
6129 if (strcmp (rs->buf, "OK") != 0)
6130 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6131 }
6132
6133 /* All-stop version of target_interrupt. Sends a break or a ^C to
6134 interrupt the remote target. It is undefined which thread of which
6135 process reports the interrupt. */
6136
6137 static void
6138 remote_interrupt_as (void)
6139 {
6140 struct remote_state *rs = get_remote_state ();
6141
6142 rs->ctrlc_pending_p = 1;
6143
6144 /* If the inferior is stopped already, but the core didn't know
6145 about it yet, just ignore the request. The cached wait status
6146 will be collected in remote_wait. */
6147 if (rs->cached_wait_status)
6148 return;
6149
6150 /* Send interrupt_sequence to remote target. */
6151 send_interrupt_sequence ();
6152 }
6153
6154 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6155 the remote target. It is undefined which thread of which process
6156 reports the interrupt. Throws an error if the packet is not
6157 supported by the server. */
6158
6159 static void
6160 remote_interrupt_ns (void)
6161 {
6162 struct remote_state *rs = get_remote_state ();
6163 char *p = rs->buf;
6164 char *endp = rs->buf + get_remote_packet_size ();
6165
6166 xsnprintf (p, endp - p, "vCtrlC");
6167
6168 /* In non-stop, we get an immediate OK reply. The stop reply will
6169 come in asynchronously by notification. */
6170 putpkt (rs->buf);
6171 getpkt (&rs->buf, &rs->buf_size, 0);
6172
6173 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6174 {
6175 case PACKET_OK:
6176 break;
6177 case PACKET_UNKNOWN:
6178 error (_("No support for interrupting the remote target."));
6179 case PACKET_ERROR:
6180 error (_("Interrupting target failed: %s"), rs->buf);
6181 }
6182 }
6183
6184 /* Implement the to_stop function for the remote targets. */
6185
6186 static void
6187 remote_stop (struct target_ops *self, ptid_t ptid)
6188 {
6189 if (remote_debug)
6190 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6191
6192 if (target_is_non_stop_p ())
6193 remote_stop_ns (ptid);
6194 else
6195 {
6196 /* We don't currently have a way to transparently pause the
6197 remote target in all-stop mode. Interrupt it instead. */
6198 remote_interrupt_as ();
6199 }
6200 }
6201
6202 /* Implement the to_interrupt function for the remote targets. */
6203
6204 static void
6205 remote_interrupt (struct target_ops *self, ptid_t ptid)
6206 {
6207 struct remote_state *rs = get_remote_state ();
6208
6209 if (remote_debug)
6210 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6211
6212 if (target_is_non_stop_p ())
6213 remote_interrupt_ns ();
6214 else
6215 remote_interrupt_as ();
6216 }
6217
6218 /* Implement the to_pass_ctrlc function for the remote targets. */
6219
6220 static void
6221 remote_pass_ctrlc (struct target_ops *self)
6222 {
6223 struct remote_state *rs = get_remote_state ();
6224
6225 if (remote_debug)
6226 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6227
6228 /* If we're starting up, we're not fully synced yet. Quit
6229 immediately. */
6230 if (rs->starting_up)
6231 quit ();
6232 /* If ^C has already been sent once, offer to disconnect. */
6233 else if (rs->ctrlc_pending_p)
6234 interrupt_query ();
6235 else
6236 target_interrupt (inferior_ptid);
6237 }
6238
6239 /* Ask the user what to do when an interrupt is received. */
6240
6241 static void
6242 interrupt_query (void)
6243 {
6244 struct remote_state *rs = get_remote_state ();
6245
6246 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6247 {
6248 if (query (_("The target is not responding to interrupt requests.\n"
6249 "Stop debugging it? ")))
6250 {
6251 remote_unpush_target ();
6252 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6253 }
6254 }
6255 else
6256 {
6257 if (query (_("Interrupted while waiting for the program.\n"
6258 "Give up waiting? ")))
6259 quit ();
6260 }
6261 }
6262
6263 /* Enable/disable target terminal ownership. Most targets can use
6264 terminal groups to control terminal ownership. Remote targets are
6265 different in that explicit transfer of ownership to/from GDB/target
6266 is required. */
6267
6268 static void
6269 remote_terminal_inferior (struct target_ops *self)
6270 {
6271 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
6272 idempotent. The event-loop GDB talking to an asynchronous target
6273 with a synchronous command calls this function from both
6274 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
6275 transfer the terminal to the target when it shouldn't this guard
6276 can go away. */
6277 if (!remote_async_terminal_ours_p)
6278 return;
6279 remote_async_terminal_ours_p = 0;
6280 /* NOTE: At this point we could also register our selves as the
6281 recipient of all input. Any characters typed could then be
6282 passed on down to the target. */
6283 }
6284
6285 static void
6286 remote_terminal_ours (struct target_ops *self)
6287 {
6288 /* See FIXME in remote_terminal_inferior. */
6289 if (remote_async_terminal_ours_p)
6290 return;
6291 remote_async_terminal_ours_p = 1;
6292 }
6293
6294 static void
6295 remote_console_output (char *msg)
6296 {
6297 char *p;
6298
6299 for (p = msg; p[0] && p[1]; p += 2)
6300 {
6301 char tb[2];
6302 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6303
6304 tb[0] = c;
6305 tb[1] = 0;
6306 fputs_unfiltered (tb, gdb_stdtarg);
6307 }
6308 gdb_flush (gdb_stdtarg);
6309 }
6310
6311 typedef struct cached_reg
6312 {
6313 int num;
6314 gdb_byte *data;
6315 } cached_reg_t;
6316
6317 DEF_VEC_O(cached_reg_t);
6318
6319 typedef struct stop_reply
6320 {
6321 struct notif_event base;
6322
6323 /* The identifier of the thread about this event */
6324 ptid_t ptid;
6325
6326 /* The remote state this event is associated with. When the remote
6327 connection, represented by a remote_state object, is closed,
6328 all the associated stop_reply events should be released. */
6329 struct remote_state *rs;
6330
6331 struct target_waitstatus ws;
6332
6333 /* Expedited registers. This makes remote debugging a bit more
6334 efficient for those targets that provide critical registers as
6335 part of their normal status mechanism (as another roundtrip to
6336 fetch them is avoided). */
6337 VEC(cached_reg_t) *regcache;
6338
6339 enum target_stop_reason stop_reason;
6340
6341 CORE_ADDR watch_data_address;
6342
6343 int core;
6344 } *stop_reply_p;
6345
6346 DECLARE_QUEUE_P (stop_reply_p);
6347 DEFINE_QUEUE_P (stop_reply_p);
6348 /* The list of already fetched and acknowledged stop events. This
6349 queue is used for notification Stop, and other notifications
6350 don't need queue for their events, because the notification events
6351 of Stop can't be consumed immediately, so that events should be
6352 queued first, and be consumed by remote_wait_{ns,as} one per
6353 time. Other notifications can consume their events immediately,
6354 so queue is not needed for them. */
6355 static QUEUE (stop_reply_p) *stop_reply_queue;
6356
6357 static void
6358 stop_reply_xfree (struct stop_reply *r)
6359 {
6360 notif_event_xfree ((struct notif_event *) r);
6361 }
6362
6363 /* Return the length of the stop reply queue. */
6364
6365 static int
6366 stop_reply_queue_length (void)
6367 {
6368 return QUEUE_length (stop_reply_p, stop_reply_queue);
6369 }
6370
6371 static void
6372 remote_notif_stop_parse (struct notif_client *self, char *buf,
6373 struct notif_event *event)
6374 {
6375 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6376 }
6377
6378 static void
6379 remote_notif_stop_ack (struct notif_client *self, char *buf,
6380 struct notif_event *event)
6381 {
6382 struct stop_reply *stop_reply = (struct stop_reply *) event;
6383
6384 /* acknowledge */
6385 putpkt (self->ack_command);
6386
6387 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6388 /* We got an unknown stop reply. */
6389 error (_("Unknown stop reply"));
6390
6391 push_stop_reply (stop_reply);
6392 }
6393
6394 static int
6395 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6396 {
6397 /* We can't get pending events in remote_notif_process for
6398 notification stop, and we have to do this in remote_wait_ns
6399 instead. If we fetch all queued events from stub, remote stub
6400 may exit and we have no chance to process them back in
6401 remote_wait_ns. */
6402 mark_async_event_handler (remote_async_inferior_event_token);
6403 return 0;
6404 }
6405
6406 static void
6407 stop_reply_dtr (struct notif_event *event)
6408 {
6409 struct stop_reply *r = (struct stop_reply *) event;
6410 cached_reg_t *reg;
6411 int ix;
6412
6413 for (ix = 0;
6414 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6415 ix++)
6416 xfree (reg->data);
6417
6418 VEC_free (cached_reg_t, r->regcache);
6419 }
6420
6421 static struct notif_event *
6422 remote_notif_stop_alloc_reply (void)
6423 {
6424 /* We cast to a pointer to the "base class". */
6425 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6426
6427 r->dtr = stop_reply_dtr;
6428
6429 return r;
6430 }
6431
6432 /* A client of notification Stop. */
6433
6434 struct notif_client notif_client_stop =
6435 {
6436 "Stop",
6437 "vStopped",
6438 remote_notif_stop_parse,
6439 remote_notif_stop_ack,
6440 remote_notif_stop_can_get_pending_events,
6441 remote_notif_stop_alloc_reply,
6442 REMOTE_NOTIF_STOP,
6443 };
6444
6445 /* A parameter to pass data in and out. */
6446
6447 struct queue_iter_param
6448 {
6449 void *input;
6450 struct stop_reply *output;
6451 };
6452
6453 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6454 the pid of the process that owns the threads we want to check, or
6455 -1 if we want to check all threads. */
6456
6457 static int
6458 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6459 ptid_t thread_ptid)
6460 {
6461 if (ws->kind == TARGET_WAITKIND_FORKED
6462 || ws->kind == TARGET_WAITKIND_VFORKED)
6463 {
6464 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6465 return 1;
6466 }
6467
6468 return 0;
6469 }
6470
6471 /* Return the thread's pending status used to determine whether the
6472 thread is a fork parent stopped at a fork event. */
6473
6474 static struct target_waitstatus *
6475 thread_pending_fork_status (struct thread_info *thread)
6476 {
6477 if (thread->suspend.waitstatus_pending_p)
6478 return &thread->suspend.waitstatus;
6479 else
6480 return &thread->pending_follow;
6481 }
6482
6483 /* Determine if THREAD is a pending fork parent thread. */
6484
6485 static int
6486 is_pending_fork_parent_thread (struct thread_info *thread)
6487 {
6488 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6489 int pid = -1;
6490
6491 return is_pending_fork_parent (ws, pid, thread->ptid);
6492 }
6493
6494 /* Check whether EVENT is a fork event, and if it is, remove the
6495 fork child from the context list passed in DATA. */
6496
6497 static int
6498 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6499 QUEUE_ITER (stop_reply_p) *iter,
6500 stop_reply_p event,
6501 void *data)
6502 {
6503 struct queue_iter_param *param = (struct queue_iter_param *) data;
6504 struct threads_listing_context *context
6505 = (struct threads_listing_context *) param->input;
6506
6507 if (event->ws.kind == TARGET_WAITKIND_FORKED
6508 || event->ws.kind == TARGET_WAITKIND_VFORKED
6509 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6510 threads_listing_context_remove (&event->ws, context);
6511
6512 return 1;
6513 }
6514
6515 /* If CONTEXT contains any fork child threads that have not been
6516 reported yet, remove them from the CONTEXT list. If such a
6517 thread exists it is because we are stopped at a fork catchpoint
6518 and have not yet called follow_fork, which will set up the
6519 host-side data structures for the new process. */
6520
6521 static void
6522 remove_new_fork_children (struct threads_listing_context *context)
6523 {
6524 struct thread_info * thread;
6525 int pid = -1;
6526 struct notif_client *notif = &notif_client_stop;
6527 struct queue_iter_param param;
6528
6529 /* For any threads stopped at a fork event, remove the corresponding
6530 fork child threads from the CONTEXT list. */
6531 ALL_NON_EXITED_THREADS (thread)
6532 {
6533 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6534
6535 if (is_pending_fork_parent (ws, pid, thread->ptid))
6536 {
6537 threads_listing_context_remove (ws, context);
6538 }
6539 }
6540
6541 /* Check for any pending fork events (not reported or processed yet)
6542 in process PID and remove those fork child threads from the
6543 CONTEXT list as well. */
6544 remote_notif_get_pending_events (notif);
6545 param.input = context;
6546 param.output = NULL;
6547 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6548 remove_child_of_pending_fork, &param);
6549 }
6550
6551 /* Check whether EVENT would prevent a global or process wildcard
6552 vCont action. */
6553
6554 static int
6555 check_pending_event_prevents_wildcard_vcont_callback
6556 (QUEUE (stop_reply_p) *q,
6557 QUEUE_ITER (stop_reply_p) *iter,
6558 stop_reply_p event,
6559 void *data)
6560 {
6561 struct inferior *inf;
6562 int *may_global_wildcard_vcont = (int *) data;
6563
6564 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6565 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6566 return 1;
6567
6568 if (event->ws.kind == TARGET_WAITKIND_FORKED
6569 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6570 *may_global_wildcard_vcont = 0;
6571
6572 inf = find_inferior_ptid (event->ptid);
6573
6574 /* This may be the first time we heard about this process.
6575 Regardless, we must not do a global wildcard resume, otherwise
6576 we'd resume this process too. */
6577 *may_global_wildcard_vcont = 0;
6578 if (inf != NULL)
6579 inf->priv->may_wildcard_vcont = 0;
6580
6581 return 1;
6582 }
6583
6584 /* Check whether any event pending in the vStopped queue would prevent
6585 a global or process wildcard vCont action. Clear
6586 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6587 and clear the event inferior's may_wildcard_vcont flag if we can't
6588 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6589
6590 static void
6591 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6592 {
6593 struct notif_client *notif = &notif_client_stop;
6594
6595 remote_notif_get_pending_events (notif);
6596 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6597 check_pending_event_prevents_wildcard_vcont_callback,
6598 may_global_wildcard);
6599 }
6600
6601 /* Remove stop replies in the queue if its pid is equal to the given
6602 inferior's pid. */
6603
6604 static int
6605 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6606 QUEUE_ITER (stop_reply_p) *iter,
6607 stop_reply_p event,
6608 void *data)
6609 {
6610 struct queue_iter_param *param = (struct queue_iter_param *) data;
6611 struct inferior *inf = (struct inferior *) param->input;
6612
6613 if (ptid_get_pid (event->ptid) == inf->pid)
6614 {
6615 stop_reply_xfree (event);
6616 QUEUE_remove_elem (stop_reply_p, q, iter);
6617 }
6618
6619 return 1;
6620 }
6621
6622 /* Discard all pending stop replies of inferior INF. */
6623
6624 static void
6625 discard_pending_stop_replies (struct inferior *inf)
6626 {
6627 struct queue_iter_param param;
6628 struct stop_reply *reply;
6629 struct remote_state *rs = get_remote_state ();
6630 struct remote_notif_state *rns = rs->notif_state;
6631
6632 /* This function can be notified when an inferior exists. When the
6633 target is not remote, the notification state is NULL. */
6634 if (rs->remote_desc == NULL)
6635 return;
6636
6637 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6638
6639 /* Discard the in-flight notification. */
6640 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6641 {
6642 stop_reply_xfree (reply);
6643 rns->pending_event[notif_client_stop.id] = NULL;
6644 }
6645
6646 param.input = inf;
6647 param.output = NULL;
6648 /* Discard the stop replies we have already pulled with
6649 vStopped. */
6650 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6651 remove_stop_reply_for_inferior, &param);
6652 }
6653
6654 /* If its remote state is equal to the given remote state,
6655 remove EVENT from the stop reply queue. */
6656
6657 static int
6658 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6659 QUEUE_ITER (stop_reply_p) *iter,
6660 stop_reply_p event,
6661 void *data)
6662 {
6663 struct queue_iter_param *param = (struct queue_iter_param *) data;
6664 struct remote_state *rs = (struct remote_state *) param->input;
6665
6666 if (event->rs == rs)
6667 {
6668 stop_reply_xfree (event);
6669 QUEUE_remove_elem (stop_reply_p, q, iter);
6670 }
6671
6672 return 1;
6673 }
6674
6675 /* Discard the stop replies for RS in stop_reply_queue. */
6676
6677 static void
6678 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6679 {
6680 struct queue_iter_param param;
6681
6682 param.input = rs;
6683 param.output = NULL;
6684 /* Discard the stop replies we have already pulled with
6685 vStopped. */
6686 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6687 remove_stop_reply_of_remote_state, &param);
6688 }
6689
6690 /* A parameter to pass data in and out. */
6691
6692 static int
6693 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6694 QUEUE_ITER (stop_reply_p) *iter,
6695 stop_reply_p event,
6696 void *data)
6697 {
6698 struct queue_iter_param *param = (struct queue_iter_param *) data;
6699 ptid_t *ptid = (ptid_t *) param->input;
6700
6701 if (ptid_match (event->ptid, *ptid))
6702 {
6703 param->output = event;
6704 QUEUE_remove_elem (stop_reply_p, q, iter);
6705 return 0;
6706 }
6707
6708 return 1;
6709 }
6710
6711 /* Remove the first reply in 'stop_reply_queue' which matches
6712 PTID. */
6713
6714 static struct stop_reply *
6715 remote_notif_remove_queued_reply (ptid_t ptid)
6716 {
6717 struct queue_iter_param param;
6718
6719 param.input = &ptid;
6720 param.output = NULL;
6721
6722 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6723 remote_notif_remove_once_on_match, &param);
6724 if (notif_debug)
6725 fprintf_unfiltered (gdb_stdlog,
6726 "notif: discard queued event: 'Stop' in %s\n",
6727 target_pid_to_str (ptid));
6728
6729 return param.output;
6730 }
6731
6732 /* Look for a queued stop reply belonging to PTID. If one is found,
6733 remove it from the queue, and return it. Returns NULL if none is
6734 found. If there are still queued events left to process, tell the
6735 event loop to get back to target_wait soon. */
6736
6737 static struct stop_reply *
6738 queued_stop_reply (ptid_t ptid)
6739 {
6740 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6741
6742 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6743 /* There's still at least an event left. */
6744 mark_async_event_handler (remote_async_inferior_event_token);
6745
6746 return r;
6747 }
6748
6749 /* Push a fully parsed stop reply in the stop reply queue. Since we
6750 know that we now have at least one queued event left to pass to the
6751 core side, tell the event loop to get back to target_wait soon. */
6752
6753 static void
6754 push_stop_reply (struct stop_reply *new_event)
6755 {
6756 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6757
6758 if (notif_debug)
6759 fprintf_unfiltered (gdb_stdlog,
6760 "notif: push 'Stop' %s to queue %d\n",
6761 target_pid_to_str (new_event->ptid),
6762 QUEUE_length (stop_reply_p,
6763 stop_reply_queue));
6764
6765 mark_async_event_handler (remote_async_inferior_event_token);
6766 }
6767
6768 static int
6769 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6770 QUEUE_ITER (stop_reply_p) *iter,
6771 struct stop_reply *event,
6772 void *data)
6773 {
6774 ptid_t *ptid = (ptid_t *) data;
6775
6776 return !(ptid_equal (*ptid, event->ptid)
6777 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6778 }
6779
6780 /* Returns true if we have a stop reply for PTID. */
6781
6782 static int
6783 peek_stop_reply (ptid_t ptid)
6784 {
6785 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6786 stop_reply_match_ptid_and_ws, &ptid);
6787 }
6788
6789 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6790 starting with P and ending with PEND matches PREFIX. */
6791
6792 static int
6793 strprefix (const char *p, const char *pend, const char *prefix)
6794 {
6795 for ( ; p < pend; p++, prefix++)
6796 if (*p != *prefix)
6797 return 0;
6798 return *prefix == '\0';
6799 }
6800
6801 /* Parse the stop reply in BUF. Either the function succeeds, and the
6802 result is stored in EVENT, or throws an error. */
6803
6804 static void
6805 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6806 {
6807 struct remote_arch_state *rsa = get_remote_arch_state ();
6808 ULONGEST addr;
6809 char *p;
6810 int skipregs = 0;
6811
6812 event->ptid = null_ptid;
6813 event->rs = get_remote_state ();
6814 event->ws.kind = TARGET_WAITKIND_IGNORE;
6815 event->ws.value.integer = 0;
6816 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6817 event->regcache = NULL;
6818 event->core = -1;
6819
6820 switch (buf[0])
6821 {
6822 case 'T': /* Status with PC, SP, FP, ... */
6823 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6824 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6825 ss = signal number
6826 n... = register number
6827 r... = register contents
6828 */
6829
6830 p = &buf[3]; /* after Txx */
6831 while (*p)
6832 {
6833 char *p1;
6834 int fieldsize;
6835
6836 p1 = strchr (p, ':');
6837 if (p1 == NULL)
6838 error (_("Malformed packet(a) (missing colon): %s\n\
6839 Packet: '%s'\n"),
6840 p, buf);
6841 if (p == p1)
6842 error (_("Malformed packet(a) (missing register number): %s\n\
6843 Packet: '%s'\n"),
6844 p, buf);
6845
6846 /* Some "registers" are actually extended stop information.
6847 Note if you're adding a new entry here: GDB 7.9 and
6848 earlier assume that all register "numbers" that start
6849 with an hex digit are real register numbers. Make sure
6850 the server only sends such a packet if it knows the
6851 client understands it. */
6852
6853 if (strprefix (p, p1, "thread"))
6854 event->ptid = read_ptid (++p1, &p);
6855 else if (strprefix (p, p1, "syscall_entry"))
6856 {
6857 ULONGEST sysno;
6858
6859 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6860 p = unpack_varlen_hex (++p1, &sysno);
6861 event->ws.value.syscall_number = (int) sysno;
6862 }
6863 else if (strprefix (p, p1, "syscall_return"))
6864 {
6865 ULONGEST sysno;
6866
6867 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6868 p = unpack_varlen_hex (++p1, &sysno);
6869 event->ws.value.syscall_number = (int) sysno;
6870 }
6871 else if (strprefix (p, p1, "watch")
6872 || strprefix (p, p1, "rwatch")
6873 || strprefix (p, p1, "awatch"))
6874 {
6875 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6876 p = unpack_varlen_hex (++p1, &addr);
6877 event->watch_data_address = (CORE_ADDR) addr;
6878 }
6879 else if (strprefix (p, p1, "swbreak"))
6880 {
6881 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6882
6883 /* Make sure the stub doesn't forget to indicate support
6884 with qSupported. */
6885 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6886 error (_("Unexpected swbreak stop reason"));
6887
6888 /* The value part is documented as "must be empty",
6889 though we ignore it, in case we ever decide to make
6890 use of it in a backward compatible way. */
6891 p = strchrnul (p1 + 1, ';');
6892 }
6893 else if (strprefix (p, p1, "hwbreak"))
6894 {
6895 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6896
6897 /* Make sure the stub doesn't forget to indicate support
6898 with qSupported. */
6899 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6900 error (_("Unexpected hwbreak stop reason"));
6901
6902 /* See above. */
6903 p = strchrnul (p1 + 1, ';');
6904 }
6905 else if (strprefix (p, p1, "library"))
6906 {
6907 event->ws.kind = TARGET_WAITKIND_LOADED;
6908 p = strchrnul (p1 + 1, ';');
6909 }
6910 else if (strprefix (p, p1, "replaylog"))
6911 {
6912 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6913 /* p1 will indicate "begin" or "end", but it makes
6914 no difference for now, so ignore it. */
6915 p = strchrnul (p1 + 1, ';');
6916 }
6917 else if (strprefix (p, p1, "core"))
6918 {
6919 ULONGEST c;
6920
6921 p = unpack_varlen_hex (++p1, &c);
6922 event->core = c;
6923 }
6924 else if (strprefix (p, p1, "fork"))
6925 {
6926 event->ws.value.related_pid = read_ptid (++p1, &p);
6927 event->ws.kind = TARGET_WAITKIND_FORKED;
6928 }
6929 else if (strprefix (p, p1, "vfork"))
6930 {
6931 event->ws.value.related_pid = read_ptid (++p1, &p);
6932 event->ws.kind = TARGET_WAITKIND_VFORKED;
6933 }
6934 else if (strprefix (p, p1, "vforkdone"))
6935 {
6936 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6937 p = strchrnul (p1 + 1, ';');
6938 }
6939 else if (strprefix (p, p1, "exec"))
6940 {
6941 ULONGEST ignored;
6942 char pathname[PATH_MAX];
6943 int pathlen;
6944
6945 /* Determine the length of the execd pathname. */
6946 p = unpack_varlen_hex (++p1, &ignored);
6947 pathlen = (p - p1) / 2;
6948
6949 /* Save the pathname for event reporting and for
6950 the next run command. */
6951 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6952 pathname[pathlen] = '\0';
6953
6954 /* This is freed during event handling. */
6955 event->ws.value.execd_pathname = xstrdup (pathname);
6956 event->ws.kind = TARGET_WAITKIND_EXECD;
6957
6958 /* Skip the registers included in this packet, since
6959 they may be for an architecture different from the
6960 one used by the original program. */
6961 skipregs = 1;
6962 }
6963 else if (strprefix (p, p1, "create"))
6964 {
6965 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6966 p = strchrnul (p1 + 1, ';');
6967 }
6968 else
6969 {
6970 ULONGEST pnum;
6971 char *p_temp;
6972
6973 if (skipregs)
6974 {
6975 p = strchrnul (p1 + 1, ';');
6976 p++;
6977 continue;
6978 }
6979
6980 /* Maybe a real ``P'' register number. */
6981 p_temp = unpack_varlen_hex (p, &pnum);
6982 /* If the first invalid character is the colon, we got a
6983 register number. Otherwise, it's an unknown stop
6984 reason. */
6985 if (p_temp == p1)
6986 {
6987 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
6988 cached_reg_t cached_reg;
6989 struct gdbarch *gdbarch = target_gdbarch ();
6990
6991 if (reg == NULL)
6992 error (_("Remote sent bad register number %s: %s\n\
6993 Packet: '%s'\n"),
6994 hex_string (pnum), p, buf);
6995
6996 cached_reg.num = reg->regnum;
6997 cached_reg.data = (gdb_byte *)
6998 xmalloc (register_size (gdbarch, reg->regnum));
6999
7000 p = p1 + 1;
7001 fieldsize = hex2bin (p, cached_reg.data,
7002 register_size (gdbarch, reg->regnum));
7003 p += 2 * fieldsize;
7004 if (fieldsize < register_size (gdbarch, reg->regnum))
7005 warning (_("Remote reply is too short: %s"), buf);
7006
7007 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7008 }
7009 else
7010 {
7011 /* Not a number. Silently skip unknown optional
7012 info. */
7013 p = strchrnul (p1 + 1, ';');
7014 }
7015 }
7016
7017 if (*p != ';')
7018 error (_("Remote register badly formatted: %s\nhere: %s"),
7019 buf, p);
7020 ++p;
7021 }
7022
7023 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7024 break;
7025
7026 /* fall through */
7027 case 'S': /* Old style status, just signal only. */
7028 {
7029 int sig;
7030
7031 event->ws.kind = TARGET_WAITKIND_STOPPED;
7032 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7033 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7034 event->ws.value.sig = (enum gdb_signal) sig;
7035 else
7036 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7037 }
7038 break;
7039 case 'w': /* Thread exited. */
7040 {
7041 char *p;
7042 ULONGEST value;
7043
7044 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7045 p = unpack_varlen_hex (&buf[1], &value);
7046 event->ws.value.integer = value;
7047 if (*p != ';')
7048 error (_("stop reply packet badly formatted: %s"), buf);
7049 event->ptid = read_ptid (++p, NULL);
7050 break;
7051 }
7052 case 'W': /* Target exited. */
7053 case 'X':
7054 {
7055 char *p;
7056 int pid;
7057 ULONGEST value;
7058
7059 /* GDB used to accept only 2 hex chars here. Stubs should
7060 only send more if they detect GDB supports multi-process
7061 support. */
7062 p = unpack_varlen_hex (&buf[1], &value);
7063
7064 if (buf[0] == 'W')
7065 {
7066 /* The remote process exited. */
7067 event->ws.kind = TARGET_WAITKIND_EXITED;
7068 event->ws.value.integer = value;
7069 }
7070 else
7071 {
7072 /* The remote process exited with a signal. */
7073 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7074 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7075 event->ws.value.sig = (enum gdb_signal) value;
7076 else
7077 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7078 }
7079
7080 /* If no process is specified, assume inferior_ptid. */
7081 pid = ptid_get_pid (inferior_ptid);
7082 if (*p == '\0')
7083 ;
7084 else if (*p == ';')
7085 {
7086 p++;
7087
7088 if (*p == '\0')
7089 ;
7090 else if (startswith (p, "process:"))
7091 {
7092 ULONGEST upid;
7093
7094 p += sizeof ("process:") - 1;
7095 unpack_varlen_hex (p, &upid);
7096 pid = upid;
7097 }
7098 else
7099 error (_("unknown stop reply packet: %s"), buf);
7100 }
7101 else
7102 error (_("unknown stop reply packet: %s"), buf);
7103 event->ptid = pid_to_ptid (pid);
7104 }
7105 break;
7106 case 'N':
7107 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7108 event->ptid = minus_one_ptid;
7109 break;
7110 }
7111
7112 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7113 error (_("No process or thread specified in stop reply: %s"), buf);
7114 }
7115
7116 /* When the stub wants to tell GDB about a new notification reply, it
7117 sends a notification (%Stop, for example). Those can come it at
7118 any time, hence, we have to make sure that any pending
7119 putpkt/getpkt sequence we're making is finished, before querying
7120 the stub for more events with the corresponding ack command
7121 (vStopped, for example). E.g., if we started a vStopped sequence
7122 immediately upon receiving the notification, something like this
7123 could happen:
7124
7125 1.1) --> Hg 1
7126 1.2) <-- OK
7127 1.3) --> g
7128 1.4) <-- %Stop
7129 1.5) --> vStopped
7130 1.6) <-- (registers reply to step #1.3)
7131
7132 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7133 query.
7134
7135 To solve this, whenever we parse a %Stop notification successfully,
7136 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7137 doing whatever we were doing:
7138
7139 2.1) --> Hg 1
7140 2.2) <-- OK
7141 2.3) --> g
7142 2.4) <-- %Stop
7143 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7144 2.5) <-- (registers reply to step #2.3)
7145
7146 Eventualy after step #2.5, we return to the event loop, which
7147 notices there's an event on the
7148 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7149 associated callback --- the function below. At this point, we're
7150 always safe to start a vStopped sequence. :
7151
7152 2.6) --> vStopped
7153 2.7) <-- T05 thread:2
7154 2.8) --> vStopped
7155 2.9) --> OK
7156 */
7157
7158 void
7159 remote_notif_get_pending_events (struct notif_client *nc)
7160 {
7161 struct remote_state *rs = get_remote_state ();
7162
7163 if (rs->notif_state->pending_event[nc->id] != NULL)
7164 {
7165 if (notif_debug)
7166 fprintf_unfiltered (gdb_stdlog,
7167 "notif: process: '%s' ack pending event\n",
7168 nc->name);
7169
7170 /* acknowledge */
7171 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7172 rs->notif_state->pending_event[nc->id] = NULL;
7173
7174 while (1)
7175 {
7176 getpkt (&rs->buf, &rs->buf_size, 0);
7177 if (strcmp (rs->buf, "OK") == 0)
7178 break;
7179 else
7180 remote_notif_ack (nc, rs->buf);
7181 }
7182 }
7183 else
7184 {
7185 if (notif_debug)
7186 fprintf_unfiltered (gdb_stdlog,
7187 "notif: process: '%s' no pending reply\n",
7188 nc->name);
7189 }
7190 }
7191
7192 /* Called when it is decided that STOP_REPLY holds the info of the
7193 event that is to be returned to the core. This function always
7194 destroys STOP_REPLY. */
7195
7196 static ptid_t
7197 process_stop_reply (struct stop_reply *stop_reply,
7198 struct target_waitstatus *status)
7199 {
7200 ptid_t ptid;
7201
7202 *status = stop_reply->ws;
7203 ptid = stop_reply->ptid;
7204
7205 /* If no thread/process was reported by the stub, assume the current
7206 inferior. */
7207 if (ptid_equal (ptid, null_ptid))
7208 ptid = inferior_ptid;
7209
7210 if (status->kind != TARGET_WAITKIND_EXITED
7211 && status->kind != TARGET_WAITKIND_SIGNALLED
7212 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7213 {
7214 struct private_thread_info *remote_thr;
7215
7216 /* Expedited registers. */
7217 if (stop_reply->regcache)
7218 {
7219 struct regcache *regcache
7220 = get_thread_arch_regcache (ptid, target_gdbarch ());
7221 cached_reg_t *reg;
7222 int ix;
7223
7224 for (ix = 0;
7225 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7226 ix++)
7227 {
7228 regcache_raw_supply (regcache, reg->num, reg->data);
7229 xfree (reg->data);
7230 }
7231
7232 VEC_free (cached_reg_t, stop_reply->regcache);
7233 }
7234
7235 remote_notice_new_inferior (ptid, 0);
7236 remote_thr = get_private_info_ptid (ptid);
7237 remote_thr->core = stop_reply->core;
7238 remote_thr->stop_reason = stop_reply->stop_reason;
7239 remote_thr->watch_data_address = stop_reply->watch_data_address;
7240 remote_thr->vcont_resumed = 0;
7241 }
7242
7243 stop_reply_xfree (stop_reply);
7244 return ptid;
7245 }
7246
7247 /* The non-stop mode version of target_wait. */
7248
7249 static ptid_t
7250 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7251 {
7252 struct remote_state *rs = get_remote_state ();
7253 struct stop_reply *stop_reply;
7254 int ret;
7255 int is_notif = 0;
7256
7257 /* If in non-stop mode, get out of getpkt even if a
7258 notification is received. */
7259
7260 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7261 0 /* forever */, &is_notif);
7262 while (1)
7263 {
7264 if (ret != -1 && !is_notif)
7265 switch (rs->buf[0])
7266 {
7267 case 'E': /* Error of some sort. */
7268 /* We're out of sync with the target now. Did it continue
7269 or not? We can't tell which thread it was in non-stop,
7270 so just ignore this. */
7271 warning (_("Remote failure reply: %s"), rs->buf);
7272 break;
7273 case 'O': /* Console output. */
7274 remote_console_output (rs->buf + 1);
7275 break;
7276 default:
7277 warning (_("Invalid remote reply: %s"), rs->buf);
7278 break;
7279 }
7280
7281 /* Acknowledge a pending stop reply that may have arrived in the
7282 mean time. */
7283 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7284 remote_notif_get_pending_events (&notif_client_stop);
7285
7286 /* If indeed we noticed a stop reply, we're done. */
7287 stop_reply = queued_stop_reply (ptid);
7288 if (stop_reply != NULL)
7289 return process_stop_reply (stop_reply, status);
7290
7291 /* Still no event. If we're just polling for an event, then
7292 return to the event loop. */
7293 if (options & TARGET_WNOHANG)
7294 {
7295 status->kind = TARGET_WAITKIND_IGNORE;
7296 return minus_one_ptid;
7297 }
7298
7299 /* Otherwise do a blocking wait. */
7300 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7301 1 /* forever */, &is_notif);
7302 }
7303 }
7304
7305 /* Wait until the remote machine stops, then return, storing status in
7306 STATUS just as `wait' would. */
7307
7308 static ptid_t
7309 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7310 {
7311 struct remote_state *rs = get_remote_state ();
7312 ptid_t event_ptid = null_ptid;
7313 char *buf;
7314 struct stop_reply *stop_reply;
7315
7316 again:
7317
7318 status->kind = TARGET_WAITKIND_IGNORE;
7319 status->value.integer = 0;
7320
7321 stop_reply = queued_stop_reply (ptid);
7322 if (stop_reply != NULL)
7323 return process_stop_reply (stop_reply, status);
7324
7325 if (rs->cached_wait_status)
7326 /* Use the cached wait status, but only once. */
7327 rs->cached_wait_status = 0;
7328 else
7329 {
7330 int ret;
7331 int is_notif;
7332 int forever = ((options & TARGET_WNOHANG) == 0
7333 && wait_forever_enabled_p);
7334
7335 if (!rs->waiting_for_stop_reply)
7336 {
7337 status->kind = TARGET_WAITKIND_NO_RESUMED;
7338 return minus_one_ptid;
7339 }
7340
7341 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7342 _never_ wait for ever -> test on target_is_async_p().
7343 However, before we do that we need to ensure that the caller
7344 knows how to take the target into/out of async mode. */
7345 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7346 forever, &is_notif);
7347
7348 /* GDB gets a notification. Return to core as this event is
7349 not interesting. */
7350 if (ret != -1 && is_notif)
7351 return minus_one_ptid;
7352
7353 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7354 return minus_one_ptid;
7355 }
7356
7357 buf = rs->buf;
7358
7359 /* Assume that the target has acknowledged Ctrl-C unless we receive
7360 an 'F' or 'O' packet. */
7361 if (buf[0] != 'F' && buf[0] != 'O')
7362 rs->ctrlc_pending_p = 0;
7363
7364 switch (buf[0])
7365 {
7366 case 'E': /* Error of some sort. */
7367 /* We're out of sync with the target now. Did it continue or
7368 not? Not is more likely, so report a stop. */
7369 rs->waiting_for_stop_reply = 0;
7370
7371 warning (_("Remote failure reply: %s"), buf);
7372 status->kind = TARGET_WAITKIND_STOPPED;
7373 status->value.sig = GDB_SIGNAL_0;
7374 break;
7375 case 'F': /* File-I/O request. */
7376 /* GDB may access the inferior memory while handling the File-I/O
7377 request, but we don't want GDB accessing memory while waiting
7378 for a stop reply. See the comments in putpkt_binary. Set
7379 waiting_for_stop_reply to 0 temporarily. */
7380 rs->waiting_for_stop_reply = 0;
7381 remote_fileio_request (buf, rs->ctrlc_pending_p);
7382 rs->ctrlc_pending_p = 0;
7383 /* GDB handled the File-I/O request, and the target is running
7384 again. Keep waiting for events. */
7385 rs->waiting_for_stop_reply = 1;
7386 break;
7387 case 'N': case 'T': case 'S': case 'X': case 'W':
7388 {
7389 struct stop_reply *stop_reply;
7390
7391 /* There is a stop reply to handle. */
7392 rs->waiting_for_stop_reply = 0;
7393
7394 stop_reply
7395 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7396 rs->buf);
7397
7398 event_ptid = process_stop_reply (stop_reply, status);
7399 break;
7400 }
7401 case 'O': /* Console output. */
7402 remote_console_output (buf + 1);
7403 break;
7404 case '\0':
7405 if (rs->last_sent_signal != GDB_SIGNAL_0)
7406 {
7407 /* Zero length reply means that we tried 'S' or 'C' and the
7408 remote system doesn't support it. */
7409 target_terminal_ours_for_output ();
7410 printf_filtered
7411 ("Can't send signals to this remote system. %s not sent.\n",
7412 gdb_signal_to_name (rs->last_sent_signal));
7413 rs->last_sent_signal = GDB_SIGNAL_0;
7414 target_terminal_inferior ();
7415
7416 strcpy (buf, rs->last_sent_step ? "s" : "c");
7417 putpkt (buf);
7418 break;
7419 }
7420 /* else fallthrough */
7421 default:
7422 warning (_("Invalid remote reply: %s"), buf);
7423 break;
7424 }
7425
7426 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7427 return minus_one_ptid;
7428 else if (status->kind == TARGET_WAITKIND_IGNORE)
7429 {
7430 /* Nothing interesting happened. If we're doing a non-blocking
7431 poll, we're done. Otherwise, go back to waiting. */
7432 if (options & TARGET_WNOHANG)
7433 return minus_one_ptid;
7434 else
7435 goto again;
7436 }
7437 else if (status->kind != TARGET_WAITKIND_EXITED
7438 && status->kind != TARGET_WAITKIND_SIGNALLED)
7439 {
7440 if (!ptid_equal (event_ptid, null_ptid))
7441 record_currthread (rs, event_ptid);
7442 else
7443 event_ptid = inferior_ptid;
7444 }
7445 else
7446 /* A process exit. Invalidate our notion of current thread. */
7447 record_currthread (rs, minus_one_ptid);
7448
7449 return event_ptid;
7450 }
7451
7452 /* Wait until the remote machine stops, then return, storing status in
7453 STATUS just as `wait' would. */
7454
7455 static ptid_t
7456 remote_wait (struct target_ops *ops,
7457 ptid_t ptid, struct target_waitstatus *status, int options)
7458 {
7459 ptid_t event_ptid;
7460
7461 if (target_is_non_stop_p ())
7462 event_ptid = remote_wait_ns (ptid, status, options);
7463 else
7464 event_ptid = remote_wait_as (ptid, status, options);
7465
7466 if (target_is_async_p ())
7467 {
7468 /* If there are are events left in the queue tell the event loop
7469 to return here. */
7470 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7471 mark_async_event_handler (remote_async_inferior_event_token);
7472 }
7473
7474 return event_ptid;
7475 }
7476
7477 /* Fetch a single register using a 'p' packet. */
7478
7479 static int
7480 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7481 {
7482 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7483 struct remote_state *rs = get_remote_state ();
7484 char *buf, *p;
7485 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7486 int i;
7487
7488 if (packet_support (PACKET_p) == PACKET_DISABLE)
7489 return 0;
7490
7491 if (reg->pnum == -1)
7492 return 0;
7493
7494 p = rs->buf;
7495 *p++ = 'p';
7496 p += hexnumstr (p, reg->pnum);
7497 *p++ = '\0';
7498 putpkt (rs->buf);
7499 getpkt (&rs->buf, &rs->buf_size, 0);
7500
7501 buf = rs->buf;
7502
7503 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7504 {
7505 case PACKET_OK:
7506 break;
7507 case PACKET_UNKNOWN:
7508 return 0;
7509 case PACKET_ERROR:
7510 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7511 gdbarch_register_name (get_regcache_arch (regcache),
7512 reg->regnum),
7513 buf);
7514 }
7515
7516 /* If this register is unfetchable, tell the regcache. */
7517 if (buf[0] == 'x')
7518 {
7519 regcache_raw_supply (regcache, reg->regnum, NULL);
7520 return 1;
7521 }
7522
7523 /* Otherwise, parse and supply the value. */
7524 p = buf;
7525 i = 0;
7526 while (p[0] != 0)
7527 {
7528 if (p[1] == 0)
7529 error (_("fetch_register_using_p: early buf termination"));
7530
7531 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7532 p += 2;
7533 }
7534 regcache_raw_supply (regcache, reg->regnum, regp);
7535 return 1;
7536 }
7537
7538 /* Fetch the registers included in the target's 'g' packet. */
7539
7540 static int
7541 send_g_packet (void)
7542 {
7543 struct remote_state *rs = get_remote_state ();
7544 int buf_len;
7545
7546 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7547 remote_send (&rs->buf, &rs->buf_size);
7548
7549 /* We can get out of synch in various cases. If the first character
7550 in the buffer is not a hex character, assume that has happened
7551 and try to fetch another packet to read. */
7552 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7553 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7554 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7555 && rs->buf[0] != 'x') /* New: unavailable register value. */
7556 {
7557 if (remote_debug)
7558 fprintf_unfiltered (gdb_stdlog,
7559 "Bad register packet; fetching a new packet\n");
7560 getpkt (&rs->buf, &rs->buf_size, 0);
7561 }
7562
7563 buf_len = strlen (rs->buf);
7564
7565 /* Sanity check the received packet. */
7566 if (buf_len % 2 != 0)
7567 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7568
7569 return buf_len / 2;
7570 }
7571
7572 static void
7573 process_g_packet (struct regcache *regcache)
7574 {
7575 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7576 struct remote_state *rs = get_remote_state ();
7577 struct remote_arch_state *rsa = get_remote_arch_state ();
7578 int i, buf_len;
7579 char *p;
7580 char *regs;
7581
7582 buf_len = strlen (rs->buf);
7583
7584 /* Further sanity checks, with knowledge of the architecture. */
7585 if (buf_len > 2 * rsa->sizeof_g_packet)
7586 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
7587
7588 /* Save the size of the packet sent to us by the target. It is used
7589 as a heuristic when determining the max size of packets that the
7590 target can safely receive. */
7591 if (rsa->actual_register_packet_size == 0)
7592 rsa->actual_register_packet_size = buf_len;
7593
7594 /* If this is smaller than we guessed the 'g' packet would be,
7595 update our records. A 'g' reply that doesn't include a register's
7596 value implies either that the register is not available, or that
7597 the 'p' packet must be used. */
7598 if (buf_len < 2 * rsa->sizeof_g_packet)
7599 {
7600 long sizeof_g_packet = buf_len / 2;
7601
7602 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7603 {
7604 long offset = rsa->regs[i].offset;
7605 long reg_size = register_size (gdbarch, i);
7606
7607 if (rsa->regs[i].pnum == -1)
7608 continue;
7609
7610 if (offset >= sizeof_g_packet)
7611 rsa->regs[i].in_g_packet = 0;
7612 else if (offset + reg_size > sizeof_g_packet)
7613 error (_("Truncated register %d in remote 'g' packet"), i);
7614 else
7615 rsa->regs[i].in_g_packet = 1;
7616 }
7617
7618 /* Looks valid enough, we can assume this is the correct length
7619 for a 'g' packet. It's important not to adjust
7620 rsa->sizeof_g_packet if we have truncated registers otherwise
7621 this "if" won't be run the next time the method is called
7622 with a packet of the same size and one of the internal errors
7623 below will trigger instead. */
7624 rsa->sizeof_g_packet = sizeof_g_packet;
7625 }
7626
7627 regs = (char *) alloca (rsa->sizeof_g_packet);
7628
7629 /* Unimplemented registers read as all bits zero. */
7630 memset (regs, 0, rsa->sizeof_g_packet);
7631
7632 /* Reply describes registers byte by byte, each byte encoded as two
7633 hex characters. Suck them all up, then supply them to the
7634 register cacheing/storage mechanism. */
7635
7636 p = rs->buf;
7637 for (i = 0; i < rsa->sizeof_g_packet; i++)
7638 {
7639 if (p[0] == 0 || p[1] == 0)
7640 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7641 internal_error (__FILE__, __LINE__,
7642 _("unexpected end of 'g' packet reply"));
7643
7644 if (p[0] == 'x' && p[1] == 'x')
7645 regs[i] = 0; /* 'x' */
7646 else
7647 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7648 p += 2;
7649 }
7650
7651 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7652 {
7653 struct packet_reg *r = &rsa->regs[i];
7654 long reg_size = register_size (gdbarch, i);
7655
7656 if (r->in_g_packet)
7657 {
7658 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7659 /* This shouldn't happen - we adjusted in_g_packet above. */
7660 internal_error (__FILE__, __LINE__,
7661 _("unexpected end of 'g' packet reply"));
7662 else if (rs->buf[r->offset * 2] == 'x')
7663 {
7664 gdb_assert (r->offset * 2 < strlen (rs->buf));
7665 /* The register isn't available, mark it as such (at
7666 the same time setting the value to zero). */
7667 regcache_raw_supply (regcache, r->regnum, NULL);
7668 }
7669 else
7670 regcache_raw_supply (regcache, r->regnum,
7671 regs + r->offset);
7672 }
7673 }
7674 }
7675
7676 static void
7677 fetch_registers_using_g (struct regcache *regcache)
7678 {
7679 send_g_packet ();
7680 process_g_packet (regcache);
7681 }
7682
7683 /* Make the remote selected traceframe match GDB's selected
7684 traceframe. */
7685
7686 static void
7687 set_remote_traceframe (void)
7688 {
7689 int newnum;
7690 struct remote_state *rs = get_remote_state ();
7691
7692 if (rs->remote_traceframe_number == get_traceframe_number ())
7693 return;
7694
7695 /* Avoid recursion, remote_trace_find calls us again. */
7696 rs->remote_traceframe_number = get_traceframe_number ();
7697
7698 newnum = target_trace_find (tfind_number,
7699 get_traceframe_number (), 0, 0, NULL);
7700
7701 /* Should not happen. If it does, all bets are off. */
7702 if (newnum != get_traceframe_number ())
7703 warning (_("could not set remote traceframe"));
7704 }
7705
7706 static void
7707 remote_fetch_registers (struct target_ops *ops,
7708 struct regcache *regcache, int regnum)
7709 {
7710 struct remote_arch_state *rsa = get_remote_arch_state ();
7711 int i;
7712
7713 set_remote_traceframe ();
7714 set_general_thread (inferior_ptid);
7715
7716 if (regnum >= 0)
7717 {
7718 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7719
7720 gdb_assert (reg != NULL);
7721
7722 /* If this register might be in the 'g' packet, try that first -
7723 we are likely to read more than one register. If this is the
7724 first 'g' packet, we might be overly optimistic about its
7725 contents, so fall back to 'p'. */
7726 if (reg->in_g_packet)
7727 {
7728 fetch_registers_using_g (regcache);
7729 if (reg->in_g_packet)
7730 return;
7731 }
7732
7733 if (fetch_register_using_p (regcache, reg))
7734 return;
7735
7736 /* This register is not available. */
7737 regcache_raw_supply (regcache, reg->regnum, NULL);
7738
7739 return;
7740 }
7741
7742 fetch_registers_using_g (regcache);
7743
7744 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7745 if (!rsa->regs[i].in_g_packet)
7746 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7747 {
7748 /* This register is not available. */
7749 regcache_raw_supply (regcache, i, NULL);
7750 }
7751 }
7752
7753 /* Prepare to store registers. Since we may send them all (using a
7754 'G' request), we have to read out the ones we don't want to change
7755 first. */
7756
7757 static void
7758 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7759 {
7760 struct remote_arch_state *rsa = get_remote_arch_state ();
7761 int i;
7762 gdb_byte buf[MAX_REGISTER_SIZE];
7763
7764 /* Make sure the entire registers array is valid. */
7765 switch (packet_support (PACKET_P))
7766 {
7767 case PACKET_DISABLE:
7768 case PACKET_SUPPORT_UNKNOWN:
7769 /* Make sure all the necessary registers are cached. */
7770 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7771 if (rsa->regs[i].in_g_packet)
7772 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
7773 break;
7774 case PACKET_ENABLE:
7775 break;
7776 }
7777 }
7778
7779 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7780 packet was not recognized. */
7781
7782 static int
7783 store_register_using_P (const struct regcache *regcache,
7784 struct packet_reg *reg)
7785 {
7786 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7787 struct remote_state *rs = get_remote_state ();
7788 /* Try storing a single register. */
7789 char *buf = rs->buf;
7790 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7791 char *p;
7792
7793 if (packet_support (PACKET_P) == PACKET_DISABLE)
7794 return 0;
7795
7796 if (reg->pnum == -1)
7797 return 0;
7798
7799 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7800 p = buf + strlen (buf);
7801 regcache_raw_collect (regcache, reg->regnum, regp);
7802 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7803 putpkt (rs->buf);
7804 getpkt (&rs->buf, &rs->buf_size, 0);
7805
7806 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7807 {
7808 case PACKET_OK:
7809 return 1;
7810 case PACKET_ERROR:
7811 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7812 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7813 case PACKET_UNKNOWN:
7814 return 0;
7815 default:
7816 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7817 }
7818 }
7819
7820 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7821 contents of the register cache buffer. FIXME: ignores errors. */
7822
7823 static void
7824 store_registers_using_G (const struct regcache *regcache)
7825 {
7826 struct remote_state *rs = get_remote_state ();
7827 struct remote_arch_state *rsa = get_remote_arch_state ();
7828 gdb_byte *regs;
7829 char *p;
7830
7831 /* Extract all the registers in the regcache copying them into a
7832 local buffer. */
7833 {
7834 int i;
7835
7836 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7837 memset (regs, 0, rsa->sizeof_g_packet);
7838 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7839 {
7840 struct packet_reg *r = &rsa->regs[i];
7841
7842 if (r->in_g_packet)
7843 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7844 }
7845 }
7846
7847 /* Command describes registers byte by byte,
7848 each byte encoded as two hex characters. */
7849 p = rs->buf;
7850 *p++ = 'G';
7851 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
7852 updated. */
7853 bin2hex (regs, p, rsa->sizeof_g_packet);
7854 putpkt (rs->buf);
7855 getpkt (&rs->buf, &rs->buf_size, 0);
7856 if (packet_check_result (rs->buf) == PACKET_ERROR)
7857 error (_("Could not write registers; remote failure reply '%s'"),
7858 rs->buf);
7859 }
7860
7861 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7862 of the register cache buffer. FIXME: ignores errors. */
7863
7864 static void
7865 remote_store_registers (struct target_ops *ops,
7866 struct regcache *regcache, int regnum)
7867 {
7868 struct remote_arch_state *rsa = get_remote_arch_state ();
7869 int i;
7870
7871 set_remote_traceframe ();
7872 set_general_thread (inferior_ptid);
7873
7874 if (regnum >= 0)
7875 {
7876 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7877
7878 gdb_assert (reg != NULL);
7879
7880 /* Always prefer to store registers using the 'P' packet if
7881 possible; we often change only a small number of registers.
7882 Sometimes we change a larger number; we'd need help from a
7883 higher layer to know to use 'G'. */
7884 if (store_register_using_P (regcache, reg))
7885 return;
7886
7887 /* For now, don't complain if we have no way to write the
7888 register. GDB loses track of unavailable registers too
7889 easily. Some day, this may be an error. We don't have
7890 any way to read the register, either... */
7891 if (!reg->in_g_packet)
7892 return;
7893
7894 store_registers_using_G (regcache);
7895 return;
7896 }
7897
7898 store_registers_using_G (regcache);
7899
7900 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7901 if (!rsa->regs[i].in_g_packet)
7902 if (!store_register_using_P (regcache, &rsa->regs[i]))
7903 /* See above for why we do not issue an error here. */
7904 continue;
7905 }
7906 \f
7907
7908 /* Return the number of hex digits in num. */
7909
7910 static int
7911 hexnumlen (ULONGEST num)
7912 {
7913 int i;
7914
7915 for (i = 0; num != 0; i++)
7916 num >>= 4;
7917
7918 return std::max (i, 1);
7919 }
7920
7921 /* Set BUF to the minimum number of hex digits representing NUM. */
7922
7923 static int
7924 hexnumstr (char *buf, ULONGEST num)
7925 {
7926 int len = hexnumlen (num);
7927
7928 return hexnumnstr (buf, num, len);
7929 }
7930
7931
7932 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7933
7934 static int
7935 hexnumnstr (char *buf, ULONGEST num, int width)
7936 {
7937 int i;
7938
7939 buf[width] = '\0';
7940
7941 for (i = width - 1; i >= 0; i--)
7942 {
7943 buf[i] = "0123456789abcdef"[(num & 0xf)];
7944 num >>= 4;
7945 }
7946
7947 return width;
7948 }
7949
7950 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7951
7952 static CORE_ADDR
7953 remote_address_masked (CORE_ADDR addr)
7954 {
7955 unsigned int address_size = remote_address_size;
7956
7957 /* If "remoteaddresssize" was not set, default to target address size. */
7958 if (!address_size)
7959 address_size = gdbarch_addr_bit (target_gdbarch ());
7960
7961 if (address_size > 0
7962 && address_size < (sizeof (ULONGEST) * 8))
7963 {
7964 /* Only create a mask when that mask can safely be constructed
7965 in a ULONGEST variable. */
7966 ULONGEST mask = 1;
7967
7968 mask = (mask << address_size) - 1;
7969 addr &= mask;
7970 }
7971 return addr;
7972 }
7973
7974 /* Determine whether the remote target supports binary downloading.
7975 This is accomplished by sending a no-op memory write of zero length
7976 to the target at the specified address. It does not suffice to send
7977 the whole packet, since many stubs strip the eighth bit and
7978 subsequently compute a wrong checksum, which causes real havoc with
7979 remote_write_bytes.
7980
7981 NOTE: This can still lose if the serial line is not eight-bit
7982 clean. In cases like this, the user should clear "remote
7983 X-packet". */
7984
7985 static void
7986 check_binary_download (CORE_ADDR addr)
7987 {
7988 struct remote_state *rs = get_remote_state ();
7989
7990 switch (packet_support (PACKET_X))
7991 {
7992 case PACKET_DISABLE:
7993 break;
7994 case PACKET_ENABLE:
7995 break;
7996 case PACKET_SUPPORT_UNKNOWN:
7997 {
7998 char *p;
7999
8000 p = rs->buf;
8001 *p++ = 'X';
8002 p += hexnumstr (p, (ULONGEST) addr);
8003 *p++ = ',';
8004 p += hexnumstr (p, (ULONGEST) 0);
8005 *p++ = ':';
8006 *p = '\0';
8007
8008 putpkt_binary (rs->buf, (int) (p - rs->buf));
8009 getpkt (&rs->buf, &rs->buf_size, 0);
8010
8011 if (rs->buf[0] == '\0')
8012 {
8013 if (remote_debug)
8014 fprintf_unfiltered (gdb_stdlog,
8015 "binary downloading NOT "
8016 "supported by target\n");
8017 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8018 }
8019 else
8020 {
8021 if (remote_debug)
8022 fprintf_unfiltered (gdb_stdlog,
8023 "binary downloading supported by target\n");
8024 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8025 }
8026 break;
8027 }
8028 }
8029 }
8030
8031 /* Helper function to resize the payload in order to try to get a good
8032 alignment. We try to write an amount of data such that the next write will
8033 start on an address aligned on REMOTE_ALIGN_WRITES. */
8034
8035 static int
8036 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8037 {
8038 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8039 }
8040
8041 /* Write memory data directly to the remote machine.
8042 This does not inform the data cache; the data cache uses this.
8043 HEADER is the starting part of the packet.
8044 MEMADDR is the address in the remote memory space.
8045 MYADDR is the address of the buffer in our space.
8046 LEN_UNITS is the number of addressable units to write.
8047 UNIT_SIZE is the length in bytes of an addressable unit.
8048 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8049 should send data as binary ('X'), or hex-encoded ('M').
8050
8051 The function creates packet of the form
8052 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8053
8054 where encoding of <DATA> is terminated by PACKET_FORMAT.
8055
8056 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8057 are omitted.
8058
8059 Return the transferred status, error or OK (an
8060 'enum target_xfer_status' value). Save the number of addressable units
8061 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8062
8063 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8064 exchange between gdb and the stub could look like (?? in place of the
8065 checksum):
8066
8067 -> $m1000,4#??
8068 <- aaaabbbbccccdddd
8069
8070 -> $M1000,3:eeeeffffeeee#??
8071 <- OK
8072
8073 -> $m1000,4#??
8074 <- eeeeffffeeeedddd */
8075
8076 static enum target_xfer_status
8077 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8078 const gdb_byte *myaddr, ULONGEST len_units,
8079 int unit_size, ULONGEST *xfered_len_units,
8080 char packet_format, int use_length)
8081 {
8082 struct remote_state *rs = get_remote_state ();
8083 char *p;
8084 char *plen = NULL;
8085 int plenlen = 0;
8086 int todo_units;
8087 int units_written;
8088 int payload_capacity_bytes;
8089 int payload_length_bytes;
8090
8091 if (packet_format != 'X' && packet_format != 'M')
8092 internal_error (__FILE__, __LINE__,
8093 _("remote_write_bytes_aux: bad packet format"));
8094
8095 if (len_units == 0)
8096 return TARGET_XFER_EOF;
8097
8098 payload_capacity_bytes = get_memory_write_packet_size ();
8099
8100 /* The packet buffer will be large enough for the payload;
8101 get_memory_packet_size ensures this. */
8102 rs->buf[0] = '\0';
8103
8104 /* Compute the size of the actual payload by subtracting out the
8105 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8106
8107 payload_capacity_bytes -= strlen ("$,:#NN");
8108 if (!use_length)
8109 /* The comma won't be used. */
8110 payload_capacity_bytes += 1;
8111 payload_capacity_bytes -= strlen (header);
8112 payload_capacity_bytes -= hexnumlen (memaddr);
8113
8114 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8115
8116 strcat (rs->buf, header);
8117 p = rs->buf + strlen (header);
8118
8119 /* Compute a best guess of the number of bytes actually transfered. */
8120 if (packet_format == 'X')
8121 {
8122 /* Best guess at number of bytes that will fit. */
8123 todo_units = std::min (len_units,
8124 (ULONGEST) payload_capacity_bytes / unit_size);
8125 if (use_length)
8126 payload_capacity_bytes -= hexnumlen (todo_units);
8127 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8128 }
8129 else
8130 {
8131 /* Number of bytes that will fit. */
8132 todo_units
8133 = std::min (len_units,
8134 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8135 if (use_length)
8136 payload_capacity_bytes -= hexnumlen (todo_units);
8137 todo_units = std::min (todo_units,
8138 (payload_capacity_bytes / unit_size) / 2);
8139 }
8140
8141 if (todo_units <= 0)
8142 internal_error (__FILE__, __LINE__,
8143 _("minimum packet size too small to write data"));
8144
8145 /* If we already need another packet, then try to align the end
8146 of this packet to a useful boundary. */
8147 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8148 todo_units = align_for_efficient_write (todo_units, memaddr);
8149
8150 /* Append "<memaddr>". */
8151 memaddr = remote_address_masked (memaddr);
8152 p += hexnumstr (p, (ULONGEST) memaddr);
8153
8154 if (use_length)
8155 {
8156 /* Append ",". */
8157 *p++ = ',';
8158
8159 /* Append the length and retain its location and size. It may need to be
8160 adjusted once the packet body has been created. */
8161 plen = p;
8162 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8163 p += plenlen;
8164 }
8165
8166 /* Append ":". */
8167 *p++ = ':';
8168 *p = '\0';
8169
8170 /* Append the packet body. */
8171 if (packet_format == 'X')
8172 {
8173 /* Binary mode. Send target system values byte by byte, in
8174 increasing byte addresses. Only escape certain critical
8175 characters. */
8176 payload_length_bytes =
8177 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8178 &units_written, payload_capacity_bytes);
8179
8180 /* If not all TODO units fit, then we'll need another packet. Make
8181 a second try to keep the end of the packet aligned. Don't do
8182 this if the packet is tiny. */
8183 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8184 {
8185 int new_todo_units;
8186
8187 new_todo_units = align_for_efficient_write (units_written, memaddr);
8188
8189 if (new_todo_units != units_written)
8190 payload_length_bytes =
8191 remote_escape_output (myaddr, new_todo_units, unit_size,
8192 (gdb_byte *) p, &units_written,
8193 payload_capacity_bytes);
8194 }
8195
8196 p += payload_length_bytes;
8197 if (use_length && units_written < todo_units)
8198 {
8199 /* Escape chars have filled up the buffer prematurely,
8200 and we have actually sent fewer units than planned.
8201 Fix-up the length field of the packet. Use the same
8202 number of characters as before. */
8203 plen += hexnumnstr (plen, (ULONGEST) units_written,
8204 plenlen);
8205 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8206 }
8207 }
8208 else
8209 {
8210 /* Normal mode: Send target system values byte by byte, in
8211 increasing byte addresses. Each byte is encoded as a two hex
8212 value. */
8213 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8214 units_written = todo_units;
8215 }
8216
8217 putpkt_binary (rs->buf, (int) (p - rs->buf));
8218 getpkt (&rs->buf, &rs->buf_size, 0);
8219
8220 if (rs->buf[0] == 'E')
8221 return TARGET_XFER_E_IO;
8222
8223 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8224 send fewer units than we'd planned. */
8225 *xfered_len_units = (ULONGEST) units_written;
8226 return TARGET_XFER_OK;
8227 }
8228
8229 /* Write memory data directly to the remote machine.
8230 This does not inform the data cache; the data cache uses this.
8231 MEMADDR is the address in the remote memory space.
8232 MYADDR is the address of the buffer in our space.
8233 LEN is the number of bytes.
8234
8235 Return the transferred status, error or OK (an
8236 'enum target_xfer_status' value). Save the number of bytes
8237 transferred in *XFERED_LEN. Only transfer a single packet. */
8238
8239 static enum target_xfer_status
8240 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8241 int unit_size, ULONGEST *xfered_len)
8242 {
8243 char *packet_format = 0;
8244
8245 /* Check whether the target supports binary download. */
8246 check_binary_download (memaddr);
8247
8248 switch (packet_support (PACKET_X))
8249 {
8250 case PACKET_ENABLE:
8251 packet_format = "X";
8252 break;
8253 case PACKET_DISABLE:
8254 packet_format = "M";
8255 break;
8256 case PACKET_SUPPORT_UNKNOWN:
8257 internal_error (__FILE__, __LINE__,
8258 _("remote_write_bytes: bad internal state"));
8259 default:
8260 internal_error (__FILE__, __LINE__, _("bad switch"));
8261 }
8262
8263 return remote_write_bytes_aux (packet_format,
8264 memaddr, myaddr, len, unit_size, xfered_len,
8265 packet_format[0], 1);
8266 }
8267
8268 /* Read memory data directly from the remote machine.
8269 This does not use the data cache; the data cache uses this.
8270 MEMADDR is the address in the remote memory space.
8271 MYADDR is the address of the buffer in our space.
8272 LEN_UNITS is the number of addressable memory units to read..
8273 UNIT_SIZE is the length in bytes of an addressable unit.
8274
8275 Return the transferred status, error or OK (an
8276 'enum target_xfer_status' value). Save the number of bytes
8277 transferred in *XFERED_LEN_UNITS.
8278
8279 See the comment of remote_write_bytes_aux for an example of
8280 memory read/write exchange between gdb and the stub. */
8281
8282 static enum target_xfer_status
8283 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8284 int unit_size, ULONGEST *xfered_len_units)
8285 {
8286 struct remote_state *rs = get_remote_state ();
8287 int buf_size_bytes; /* Max size of packet output buffer. */
8288 char *p;
8289 int todo_units;
8290 int decoded_bytes;
8291
8292 buf_size_bytes = get_memory_read_packet_size ();
8293 /* The packet buffer will be large enough for the payload;
8294 get_memory_packet_size ensures this. */
8295
8296 /* Number of units that will fit. */
8297 todo_units = std::min (len_units,
8298 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8299
8300 /* Construct "m"<memaddr>","<len>". */
8301 memaddr = remote_address_masked (memaddr);
8302 p = rs->buf;
8303 *p++ = 'm';
8304 p += hexnumstr (p, (ULONGEST) memaddr);
8305 *p++ = ',';
8306 p += hexnumstr (p, (ULONGEST) todo_units);
8307 *p = '\0';
8308 putpkt (rs->buf);
8309 getpkt (&rs->buf, &rs->buf_size, 0);
8310 if (rs->buf[0] == 'E'
8311 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8312 && rs->buf[3] == '\0')
8313 return TARGET_XFER_E_IO;
8314 /* Reply describes memory byte by byte, each byte encoded as two hex
8315 characters. */
8316 p = rs->buf;
8317 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8318 /* Return what we have. Let higher layers handle partial reads. */
8319 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8320 return TARGET_XFER_OK;
8321 }
8322
8323 /* Using the set of read-only target sections of remote, read live
8324 read-only memory.
8325
8326 For interface/parameters/return description see target.h,
8327 to_xfer_partial. */
8328
8329 static enum target_xfer_status
8330 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8331 ULONGEST memaddr, ULONGEST len,
8332 int unit_size, ULONGEST *xfered_len)
8333 {
8334 struct target_section *secp;
8335 struct target_section_table *table;
8336
8337 secp = target_section_by_addr (ops, memaddr);
8338 if (secp != NULL
8339 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8340 secp->the_bfd_section)
8341 & SEC_READONLY))
8342 {
8343 struct target_section *p;
8344 ULONGEST memend = memaddr + len;
8345
8346 table = target_get_section_table (ops);
8347
8348 for (p = table->sections; p < table->sections_end; p++)
8349 {
8350 if (memaddr >= p->addr)
8351 {
8352 if (memend <= p->endaddr)
8353 {
8354 /* Entire transfer is within this section. */
8355 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8356 xfered_len);
8357 }
8358 else if (memaddr >= p->endaddr)
8359 {
8360 /* This section ends before the transfer starts. */
8361 continue;
8362 }
8363 else
8364 {
8365 /* This section overlaps the transfer. Just do half. */
8366 len = p->endaddr - memaddr;
8367 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8368 xfered_len);
8369 }
8370 }
8371 }
8372 }
8373
8374 return TARGET_XFER_EOF;
8375 }
8376
8377 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8378 first if the requested memory is unavailable in traceframe.
8379 Otherwise, fall back to remote_read_bytes_1. */
8380
8381 static enum target_xfer_status
8382 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8383 gdb_byte *myaddr, ULONGEST len, int unit_size,
8384 ULONGEST *xfered_len)
8385 {
8386 if (len == 0)
8387 return TARGET_XFER_EOF;
8388
8389 if (get_traceframe_number () != -1)
8390 {
8391 VEC(mem_range_s) *available;
8392
8393 /* If we fail to get the set of available memory, then the
8394 target does not support querying traceframe info, and so we
8395 attempt reading from the traceframe anyway (assuming the
8396 target implements the old QTro packet then). */
8397 if (traceframe_available_memory (&available, memaddr, len))
8398 {
8399 struct cleanup *old_chain;
8400
8401 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
8402
8403 if (VEC_empty (mem_range_s, available)
8404 || VEC_index (mem_range_s, available, 0)->start != memaddr)
8405 {
8406 enum target_xfer_status res;
8407
8408 /* Don't read into the traceframe's available
8409 memory. */
8410 if (!VEC_empty (mem_range_s, available))
8411 {
8412 LONGEST oldlen = len;
8413
8414 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
8415 gdb_assert (len <= oldlen);
8416 }
8417
8418 do_cleanups (old_chain);
8419
8420 /* This goes through the topmost target again. */
8421 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8422 len, unit_size, xfered_len);
8423 if (res == TARGET_XFER_OK)
8424 return TARGET_XFER_OK;
8425 else
8426 {
8427 /* No use trying further, we know some memory starting
8428 at MEMADDR isn't available. */
8429 *xfered_len = len;
8430 return TARGET_XFER_UNAVAILABLE;
8431 }
8432 }
8433
8434 /* Don't try to read more than how much is available, in
8435 case the target implements the deprecated QTro packet to
8436 cater for older GDBs (the target's knowledge of read-only
8437 sections may be outdated by now). */
8438 len = VEC_index (mem_range_s, available, 0)->length;
8439
8440 do_cleanups (old_chain);
8441 }
8442 }
8443
8444 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8445 }
8446
8447 \f
8448
8449 /* Sends a packet with content determined by the printf format string
8450 FORMAT and the remaining arguments, then gets the reply. Returns
8451 whether the packet was a success, a failure, or unknown. */
8452
8453 static enum packet_result remote_send_printf (const char *format, ...)
8454 ATTRIBUTE_PRINTF (1, 2);
8455
8456 static enum packet_result
8457 remote_send_printf (const char *format, ...)
8458 {
8459 struct remote_state *rs = get_remote_state ();
8460 int max_size = get_remote_packet_size ();
8461 va_list ap;
8462
8463 va_start (ap, format);
8464
8465 rs->buf[0] = '\0';
8466 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8467 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8468
8469 if (putpkt (rs->buf) < 0)
8470 error (_("Communication problem with target."));
8471
8472 rs->buf[0] = '\0';
8473 getpkt (&rs->buf, &rs->buf_size, 0);
8474
8475 return packet_check_result (rs->buf);
8476 }
8477
8478 static void
8479 restore_remote_timeout (void *p)
8480 {
8481 int value = *(int *)p;
8482
8483 remote_timeout = value;
8484 }
8485
8486 /* Flash writing can take quite some time. We'll set
8487 effectively infinite timeout for flash operations.
8488 In future, we'll need to decide on a better approach. */
8489 static const int remote_flash_timeout = 1000;
8490
8491 static void
8492 remote_flash_erase (struct target_ops *ops,
8493 ULONGEST address, LONGEST length)
8494 {
8495 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8496 int saved_remote_timeout = remote_timeout;
8497 enum packet_result ret;
8498 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8499 &saved_remote_timeout);
8500
8501 remote_timeout = remote_flash_timeout;
8502
8503 ret = remote_send_printf ("vFlashErase:%s,%s",
8504 phex (address, addr_size),
8505 phex (length, 4));
8506 switch (ret)
8507 {
8508 case PACKET_UNKNOWN:
8509 error (_("Remote target does not support flash erase"));
8510 case PACKET_ERROR:
8511 error (_("Error erasing flash with vFlashErase packet"));
8512 default:
8513 break;
8514 }
8515
8516 do_cleanups (back_to);
8517 }
8518
8519 static enum target_xfer_status
8520 remote_flash_write (struct target_ops *ops, ULONGEST address,
8521 ULONGEST length, ULONGEST *xfered_len,
8522 const gdb_byte *data)
8523 {
8524 int saved_remote_timeout = remote_timeout;
8525 enum target_xfer_status ret;
8526 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8527 &saved_remote_timeout);
8528
8529 remote_timeout = remote_flash_timeout;
8530 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8531 xfered_len,'X', 0);
8532 do_cleanups (back_to);
8533
8534 return ret;
8535 }
8536
8537 static void
8538 remote_flash_done (struct target_ops *ops)
8539 {
8540 int saved_remote_timeout = remote_timeout;
8541 int ret;
8542 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8543 &saved_remote_timeout);
8544
8545 remote_timeout = remote_flash_timeout;
8546 ret = remote_send_printf ("vFlashDone");
8547 do_cleanups (back_to);
8548
8549 switch (ret)
8550 {
8551 case PACKET_UNKNOWN:
8552 error (_("Remote target does not support vFlashDone"));
8553 case PACKET_ERROR:
8554 error (_("Error finishing flash operation"));
8555 default:
8556 break;
8557 }
8558 }
8559
8560 static void
8561 remote_files_info (struct target_ops *ignore)
8562 {
8563 puts_filtered ("Debugging a target over a serial line.\n");
8564 }
8565 \f
8566 /* Stuff for dealing with the packets which are part of this protocol.
8567 See comment at top of file for details. */
8568
8569 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8570 error to higher layers. Called when a serial error is detected.
8571 The exception message is STRING, followed by a colon and a blank,
8572 the system error message for errno at function entry and final dot
8573 for output compatibility with throw_perror_with_name. */
8574
8575 static void
8576 unpush_and_perror (const char *string)
8577 {
8578 int saved_errno = errno;
8579
8580 remote_unpush_target ();
8581 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8582 safe_strerror (saved_errno));
8583 }
8584
8585 /* Read a single character from the remote end. The current quit
8586 handler is overridden to avoid quitting in the middle of packet
8587 sequence, as that would break communication with the remote server.
8588 See remote_serial_quit_handler for more detail. */
8589
8590 static int
8591 readchar (int timeout)
8592 {
8593 int ch;
8594 struct remote_state *rs = get_remote_state ();
8595 struct cleanup *old_chain;
8596
8597 old_chain = make_cleanup_override_quit_handler (remote_serial_quit_handler);
8598
8599 rs->got_ctrlc_during_io = 0;
8600
8601 ch = serial_readchar (rs->remote_desc, timeout);
8602
8603 if (rs->got_ctrlc_during_io)
8604 set_quit_flag ();
8605
8606 do_cleanups (old_chain);
8607
8608 if (ch >= 0)
8609 return ch;
8610
8611 switch ((enum serial_rc) ch)
8612 {
8613 case SERIAL_EOF:
8614 remote_unpush_target ();
8615 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8616 /* no return */
8617 case SERIAL_ERROR:
8618 unpush_and_perror (_("Remote communication error. "
8619 "Target disconnected."));
8620 /* no return */
8621 case SERIAL_TIMEOUT:
8622 break;
8623 }
8624 return ch;
8625 }
8626
8627 /* Wrapper for serial_write that closes the target and throws if
8628 writing fails. The current quit handler is overridden to avoid
8629 quitting in the middle of packet sequence, as that would break
8630 communication with the remote server. See
8631 remote_serial_quit_handler for more detail. */
8632
8633 static void
8634 remote_serial_write (const char *str, int len)
8635 {
8636 struct remote_state *rs = get_remote_state ();
8637 struct cleanup *old_chain;
8638
8639 old_chain = make_cleanup_override_quit_handler (remote_serial_quit_handler);
8640
8641 rs->got_ctrlc_during_io = 0;
8642
8643 if (serial_write (rs->remote_desc, str, len))
8644 {
8645 unpush_and_perror (_("Remote communication error. "
8646 "Target disconnected."));
8647 }
8648
8649 if (rs->got_ctrlc_during_io)
8650 set_quit_flag ();
8651
8652 do_cleanups (old_chain);
8653 }
8654
8655 /* Send the command in *BUF to the remote machine, and read the reply
8656 into *BUF. Report an error if we get an error reply. Resize
8657 *BUF using xrealloc if necessary to hold the result, and update
8658 *SIZEOF_BUF. */
8659
8660 static void
8661 remote_send (char **buf,
8662 long *sizeof_buf)
8663 {
8664 putpkt (*buf);
8665 getpkt (buf, sizeof_buf, 0);
8666
8667 if ((*buf)[0] == 'E')
8668 error (_("Remote failure reply: %s"), *buf);
8669 }
8670
8671 /* Return a string representing an escaped version of BUF, of len N.
8672 E.g. \n is converted to \\n, \t to \\t, etc. */
8673
8674 static std::string
8675 escape_buffer (const char *buf, int n)
8676 {
8677 string_file stb;
8678
8679 stb.putstrn (buf, n, '\\');
8680 return std::move (stb.string ());
8681 }
8682
8683 /* Display a null-terminated packet on stdout, for debugging, using C
8684 string notation. */
8685
8686 static void
8687 print_packet (const char *buf)
8688 {
8689 puts_filtered ("\"");
8690 fputstr_filtered (buf, '"', gdb_stdout);
8691 puts_filtered ("\"");
8692 }
8693
8694 int
8695 putpkt (const char *buf)
8696 {
8697 return putpkt_binary (buf, strlen (buf));
8698 }
8699
8700 /* Send a packet to the remote machine, with error checking. The data
8701 of the packet is in BUF. The string in BUF can be at most
8702 get_remote_packet_size () - 5 to account for the $, # and checksum,
8703 and for a possible /0 if we are debugging (remote_debug) and want
8704 to print the sent packet as a string. */
8705
8706 static int
8707 putpkt_binary (const char *buf, int cnt)
8708 {
8709 struct remote_state *rs = get_remote_state ();
8710 int i;
8711 unsigned char csum = 0;
8712 char *buf2 = (char *) xmalloc (cnt + 6);
8713 struct cleanup *old_chain = make_cleanup (xfree, buf2);
8714
8715 int ch;
8716 int tcount = 0;
8717 char *p;
8718
8719 /* Catch cases like trying to read memory or listing threads while
8720 we're waiting for a stop reply. The remote server wouldn't be
8721 ready to handle this request, so we'd hang and timeout. We don't
8722 have to worry about this in synchronous mode, because in that
8723 case it's not possible to issue a command while the target is
8724 running. This is not a problem in non-stop mode, because in that
8725 case, the stub is always ready to process serial input. */
8726 if (!target_is_non_stop_p ()
8727 && target_is_async_p ()
8728 && rs->waiting_for_stop_reply)
8729 {
8730 error (_("Cannot execute this command while the target is running.\n"
8731 "Use the \"interrupt\" command to stop the target\n"
8732 "and then try again."));
8733 }
8734
8735 /* We're sending out a new packet. Make sure we don't look at a
8736 stale cached response. */
8737 rs->cached_wait_status = 0;
8738
8739 /* Copy the packet into buffer BUF2, encapsulating it
8740 and giving it a checksum. */
8741
8742 p = buf2;
8743 *p++ = '$';
8744
8745 for (i = 0; i < cnt; i++)
8746 {
8747 csum += buf[i];
8748 *p++ = buf[i];
8749 }
8750 *p++ = '#';
8751 *p++ = tohex ((csum >> 4) & 0xf);
8752 *p++ = tohex (csum & 0xf);
8753
8754 /* Send it over and over until we get a positive ack. */
8755
8756 while (1)
8757 {
8758 int started_error_output = 0;
8759
8760 if (remote_debug)
8761 {
8762 *p = '\0';
8763
8764 int len = (int) (p - buf2);
8765
8766 std::string str
8767 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8768
8769 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8770
8771 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8772 {
8773 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8774 str.length () - REMOTE_DEBUG_MAX_CHAR);
8775 }
8776
8777 fprintf_unfiltered (gdb_stdlog, "...");
8778
8779 gdb_flush (gdb_stdlog);
8780 }
8781 remote_serial_write (buf2, p - buf2);
8782
8783 /* If this is a no acks version of the remote protocol, send the
8784 packet and move on. */
8785 if (rs->noack_mode)
8786 break;
8787
8788 /* Read until either a timeout occurs (-2) or '+' is read.
8789 Handle any notification that arrives in the mean time. */
8790 while (1)
8791 {
8792 ch = readchar (remote_timeout);
8793
8794 if (remote_debug)
8795 {
8796 switch (ch)
8797 {
8798 case '+':
8799 case '-':
8800 case SERIAL_TIMEOUT:
8801 case '$':
8802 case '%':
8803 if (started_error_output)
8804 {
8805 putchar_unfiltered ('\n');
8806 started_error_output = 0;
8807 }
8808 }
8809 }
8810
8811 switch (ch)
8812 {
8813 case '+':
8814 if (remote_debug)
8815 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8816 do_cleanups (old_chain);
8817 return 1;
8818 case '-':
8819 if (remote_debug)
8820 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8821 /* FALLTHROUGH */
8822 case SERIAL_TIMEOUT:
8823 tcount++;
8824 if (tcount > 3)
8825 {
8826 do_cleanups (old_chain);
8827 return 0;
8828 }
8829 break; /* Retransmit buffer. */
8830 case '$':
8831 {
8832 if (remote_debug)
8833 fprintf_unfiltered (gdb_stdlog,
8834 "Packet instead of Ack, ignoring it\n");
8835 /* It's probably an old response sent because an ACK
8836 was lost. Gobble up the packet and ack it so it
8837 doesn't get retransmitted when we resend this
8838 packet. */
8839 skip_frame ();
8840 remote_serial_write ("+", 1);
8841 continue; /* Now, go look for +. */
8842 }
8843
8844 case '%':
8845 {
8846 int val;
8847
8848 /* If we got a notification, handle it, and go back to looking
8849 for an ack. */
8850 /* We've found the start of a notification. Now
8851 collect the data. */
8852 val = read_frame (&rs->buf, &rs->buf_size);
8853 if (val >= 0)
8854 {
8855 if (remote_debug)
8856 {
8857 std::string str = escape_buffer (rs->buf, val);
8858
8859 fprintf_unfiltered (gdb_stdlog,
8860 " Notification received: %s\n",
8861 str.c_str ());
8862 }
8863 handle_notification (rs->notif_state, rs->buf);
8864 /* We're in sync now, rewait for the ack. */
8865 tcount = 0;
8866 }
8867 else
8868 {
8869 if (remote_debug)
8870 {
8871 if (!started_error_output)
8872 {
8873 started_error_output = 1;
8874 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8875 }
8876 fputc_unfiltered (ch & 0177, gdb_stdlog);
8877 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8878 }
8879 }
8880 continue;
8881 }
8882 /* fall-through */
8883 default:
8884 if (remote_debug)
8885 {
8886 if (!started_error_output)
8887 {
8888 started_error_output = 1;
8889 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8890 }
8891 fputc_unfiltered (ch & 0177, gdb_stdlog);
8892 }
8893 continue;
8894 }
8895 break; /* Here to retransmit. */
8896 }
8897
8898 #if 0
8899 /* This is wrong. If doing a long backtrace, the user should be
8900 able to get out next time we call QUIT, without anything as
8901 violent as interrupt_query. If we want to provide a way out of
8902 here without getting to the next QUIT, it should be based on
8903 hitting ^C twice as in remote_wait. */
8904 if (quit_flag)
8905 {
8906 quit_flag = 0;
8907 interrupt_query ();
8908 }
8909 #endif
8910 }
8911
8912 do_cleanups (old_chain);
8913 return 0;
8914 }
8915
8916 /* Come here after finding the start of a frame when we expected an
8917 ack. Do our best to discard the rest of this packet. */
8918
8919 static void
8920 skip_frame (void)
8921 {
8922 int c;
8923
8924 while (1)
8925 {
8926 c = readchar (remote_timeout);
8927 switch (c)
8928 {
8929 case SERIAL_TIMEOUT:
8930 /* Nothing we can do. */
8931 return;
8932 case '#':
8933 /* Discard the two bytes of checksum and stop. */
8934 c = readchar (remote_timeout);
8935 if (c >= 0)
8936 c = readchar (remote_timeout);
8937
8938 return;
8939 case '*': /* Run length encoding. */
8940 /* Discard the repeat count. */
8941 c = readchar (remote_timeout);
8942 if (c < 0)
8943 return;
8944 break;
8945 default:
8946 /* A regular character. */
8947 break;
8948 }
8949 }
8950 }
8951
8952 /* Come here after finding the start of the frame. Collect the rest
8953 into *BUF, verifying the checksum, length, and handling run-length
8954 compression. NUL terminate the buffer. If there is not enough room,
8955 expand *BUF using xrealloc.
8956
8957 Returns -1 on error, number of characters in buffer (ignoring the
8958 trailing NULL) on success. (could be extended to return one of the
8959 SERIAL status indications). */
8960
8961 static long
8962 read_frame (char **buf_p,
8963 long *sizeof_buf)
8964 {
8965 unsigned char csum;
8966 long bc;
8967 int c;
8968 char *buf = *buf_p;
8969 struct remote_state *rs = get_remote_state ();
8970
8971 csum = 0;
8972 bc = 0;
8973
8974 while (1)
8975 {
8976 c = readchar (remote_timeout);
8977 switch (c)
8978 {
8979 case SERIAL_TIMEOUT:
8980 if (remote_debug)
8981 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8982 return -1;
8983 case '$':
8984 if (remote_debug)
8985 fputs_filtered ("Saw new packet start in middle of old one\n",
8986 gdb_stdlog);
8987 return -1; /* Start a new packet, count retries. */
8988 case '#':
8989 {
8990 unsigned char pktcsum;
8991 int check_0 = 0;
8992 int check_1 = 0;
8993
8994 buf[bc] = '\0';
8995
8996 check_0 = readchar (remote_timeout);
8997 if (check_0 >= 0)
8998 check_1 = readchar (remote_timeout);
8999
9000 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9001 {
9002 if (remote_debug)
9003 fputs_filtered ("Timeout in checksum, retrying\n",
9004 gdb_stdlog);
9005 return -1;
9006 }
9007 else if (check_0 < 0 || check_1 < 0)
9008 {
9009 if (remote_debug)
9010 fputs_filtered ("Communication error in checksum\n",
9011 gdb_stdlog);
9012 return -1;
9013 }
9014
9015 /* Don't recompute the checksum; with no ack packets we
9016 don't have any way to indicate a packet retransmission
9017 is necessary. */
9018 if (rs->noack_mode)
9019 return bc;
9020
9021 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9022 if (csum == pktcsum)
9023 return bc;
9024
9025 if (remote_debug)
9026 {
9027 std::string str = escape_buffer (buf, bc);
9028
9029 fprintf_unfiltered (gdb_stdlog,
9030 "Bad checksum, sentsum=0x%x, "
9031 "csum=0x%x, buf=%s\n",
9032 pktcsum, csum, str.c_str ());
9033 }
9034 /* Number of characters in buffer ignoring trailing
9035 NULL. */
9036 return -1;
9037 }
9038 case '*': /* Run length encoding. */
9039 {
9040 int repeat;
9041
9042 csum += c;
9043 c = readchar (remote_timeout);
9044 csum += c;
9045 repeat = c - ' ' + 3; /* Compute repeat count. */
9046
9047 /* The character before ``*'' is repeated. */
9048
9049 if (repeat > 0 && repeat <= 255 && bc > 0)
9050 {
9051 if (bc + repeat - 1 >= *sizeof_buf - 1)
9052 {
9053 /* Make some more room in the buffer. */
9054 *sizeof_buf += repeat;
9055 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9056 buf = *buf_p;
9057 }
9058
9059 memset (&buf[bc], buf[bc - 1], repeat);
9060 bc += repeat;
9061 continue;
9062 }
9063
9064 buf[bc] = '\0';
9065 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9066 return -1;
9067 }
9068 default:
9069 if (bc >= *sizeof_buf - 1)
9070 {
9071 /* Make some more room in the buffer. */
9072 *sizeof_buf *= 2;
9073 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9074 buf = *buf_p;
9075 }
9076
9077 buf[bc++] = c;
9078 csum += c;
9079 continue;
9080 }
9081 }
9082 }
9083
9084 /* Read a packet from the remote machine, with error checking, and
9085 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9086 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9087 rather than timing out; this is used (in synchronous mode) to wait
9088 for a target that is is executing user code to stop. */
9089 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9090 don't have to change all the calls to getpkt to deal with the
9091 return value, because at the moment I don't know what the right
9092 thing to do it for those. */
9093 void
9094 getpkt (char **buf,
9095 long *sizeof_buf,
9096 int forever)
9097 {
9098 getpkt_sane (buf, sizeof_buf, forever);
9099 }
9100
9101
9102 /* Read a packet from the remote machine, with error checking, and
9103 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9104 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9105 rather than timing out; this is used (in synchronous mode) to wait
9106 for a target that is is executing user code to stop. If FOREVER ==
9107 0, this function is allowed to time out gracefully and return an
9108 indication of this to the caller. Otherwise return the number of
9109 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9110 enough reason to return to the caller. *IS_NOTIF is an output
9111 boolean that indicates whether *BUF holds a notification or not
9112 (a regular packet). */
9113
9114 static int
9115 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9116 int expecting_notif, int *is_notif)
9117 {
9118 struct remote_state *rs = get_remote_state ();
9119 int c;
9120 int tries;
9121 int timeout;
9122 int val = -1;
9123
9124 /* We're reading a new response. Make sure we don't look at a
9125 previously cached response. */
9126 rs->cached_wait_status = 0;
9127
9128 strcpy (*buf, "timeout");
9129
9130 if (forever)
9131 timeout = watchdog > 0 ? watchdog : -1;
9132 else if (expecting_notif)
9133 timeout = 0; /* There should already be a char in the buffer. If
9134 not, bail out. */
9135 else
9136 timeout = remote_timeout;
9137
9138 #define MAX_TRIES 3
9139
9140 /* Process any number of notifications, and then return when
9141 we get a packet. */
9142 for (;;)
9143 {
9144 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9145 times. */
9146 for (tries = 1; tries <= MAX_TRIES; tries++)
9147 {
9148 /* This can loop forever if the remote side sends us
9149 characters continuously, but if it pauses, we'll get
9150 SERIAL_TIMEOUT from readchar because of timeout. Then
9151 we'll count that as a retry.
9152
9153 Note that even when forever is set, we will only wait
9154 forever prior to the start of a packet. After that, we
9155 expect characters to arrive at a brisk pace. They should
9156 show up within remote_timeout intervals. */
9157 do
9158 c = readchar (timeout);
9159 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9160
9161 if (c == SERIAL_TIMEOUT)
9162 {
9163 if (expecting_notif)
9164 return -1; /* Don't complain, it's normal to not get
9165 anything in this case. */
9166
9167 if (forever) /* Watchdog went off? Kill the target. */
9168 {
9169 remote_unpush_target ();
9170 throw_error (TARGET_CLOSE_ERROR,
9171 _("Watchdog timeout has expired. "
9172 "Target detached."));
9173 }
9174 if (remote_debug)
9175 fputs_filtered ("Timed out.\n", gdb_stdlog);
9176 }
9177 else
9178 {
9179 /* We've found the start of a packet or notification.
9180 Now collect the data. */
9181 val = read_frame (buf, sizeof_buf);
9182 if (val >= 0)
9183 break;
9184 }
9185
9186 remote_serial_write ("-", 1);
9187 }
9188
9189 if (tries > MAX_TRIES)
9190 {
9191 /* We have tried hard enough, and just can't receive the
9192 packet/notification. Give up. */
9193 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9194
9195 /* Skip the ack char if we're in no-ack mode. */
9196 if (!rs->noack_mode)
9197 remote_serial_write ("+", 1);
9198 return -1;
9199 }
9200
9201 /* If we got an ordinary packet, return that to our caller. */
9202 if (c == '$')
9203 {
9204 if (remote_debug)
9205 {
9206 std::string str
9207 = escape_buffer (*buf,
9208 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9209
9210 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9211 str.c_str ());
9212
9213 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9214 {
9215 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9216 str.length () - REMOTE_DEBUG_MAX_CHAR);
9217 }
9218
9219 fprintf_unfiltered (gdb_stdlog, "\n");
9220 }
9221
9222 /* Skip the ack char if we're in no-ack mode. */
9223 if (!rs->noack_mode)
9224 remote_serial_write ("+", 1);
9225 if (is_notif != NULL)
9226 *is_notif = 0;
9227 return val;
9228 }
9229
9230 /* If we got a notification, handle it, and go back to looking
9231 for a packet. */
9232 else
9233 {
9234 gdb_assert (c == '%');
9235
9236 if (remote_debug)
9237 {
9238 std::string str = escape_buffer (*buf, val);
9239
9240 fprintf_unfiltered (gdb_stdlog,
9241 " Notification received: %s\n",
9242 str.c_str ());
9243 }
9244 if (is_notif != NULL)
9245 *is_notif = 1;
9246
9247 handle_notification (rs->notif_state, *buf);
9248
9249 /* Notifications require no acknowledgement. */
9250
9251 if (expecting_notif)
9252 return val;
9253 }
9254 }
9255 }
9256
9257 static int
9258 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9259 {
9260 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9261 }
9262
9263 static int
9264 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9265 int *is_notif)
9266 {
9267 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9268 is_notif);
9269 }
9270
9271 /* Check whether EVENT is a fork event for the process specified
9272 by the pid passed in DATA, and if it is, kill the fork child. */
9273
9274 static int
9275 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9276 QUEUE_ITER (stop_reply_p) *iter,
9277 stop_reply_p event,
9278 void *data)
9279 {
9280 struct queue_iter_param *param = (struct queue_iter_param *) data;
9281 int parent_pid = *(int *) param->input;
9282
9283 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9284 {
9285 struct remote_state *rs = get_remote_state ();
9286 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9287 int res;
9288
9289 res = remote_vkill (child_pid, rs);
9290 if (res != 0)
9291 error (_("Can't kill fork child process %d"), child_pid);
9292 }
9293
9294 return 1;
9295 }
9296
9297 /* Kill any new fork children of process PID that haven't been
9298 processed by follow_fork. */
9299
9300 static void
9301 kill_new_fork_children (int pid, struct remote_state *rs)
9302 {
9303 struct thread_info *thread;
9304 struct notif_client *notif = &notif_client_stop;
9305 struct queue_iter_param param;
9306
9307 /* Kill the fork child threads of any threads in process PID
9308 that are stopped at a fork event. */
9309 ALL_NON_EXITED_THREADS (thread)
9310 {
9311 struct target_waitstatus *ws = &thread->pending_follow;
9312
9313 if (is_pending_fork_parent (ws, pid, thread->ptid))
9314 {
9315 struct remote_state *rs = get_remote_state ();
9316 int child_pid = ptid_get_pid (ws->value.related_pid);
9317 int res;
9318
9319 res = remote_vkill (child_pid, rs);
9320 if (res != 0)
9321 error (_("Can't kill fork child process %d"), child_pid);
9322 }
9323 }
9324
9325 /* Check for any pending fork events (not reported or processed yet)
9326 in process PID and kill those fork child threads as well. */
9327 remote_notif_get_pending_events (notif);
9328 param.input = &pid;
9329 param.output = NULL;
9330 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9331 kill_child_of_pending_fork, &param);
9332 }
9333
9334 \f
9335 /* Target hook to kill the current inferior. */
9336
9337 static void
9338 remote_kill (struct target_ops *ops)
9339 {
9340 int res = -1;
9341 int pid = ptid_get_pid (inferior_ptid);
9342 struct remote_state *rs = get_remote_state ();
9343
9344 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9345 {
9346 /* If we're stopped while forking and we haven't followed yet,
9347 kill the child task. We need to do this before killing the
9348 parent task because if this is a vfork then the parent will
9349 be sleeping. */
9350 kill_new_fork_children (pid, rs);
9351
9352 res = remote_vkill (pid, rs);
9353 if (res == 0)
9354 {
9355 target_mourn_inferior (inferior_ptid);
9356 return;
9357 }
9358 }
9359
9360 /* If we are in 'target remote' mode and we are killing the only
9361 inferior, then we will tell gdbserver to exit and unpush the
9362 target. */
9363 if (res == -1 && !remote_multi_process_p (rs)
9364 && number_of_live_inferiors () == 1)
9365 {
9366 remote_kill_k ();
9367
9368 /* We've killed the remote end, we get to mourn it. If we are
9369 not in extended mode, mourning the inferior also unpushes
9370 remote_ops from the target stack, which closes the remote
9371 connection. */
9372 target_mourn_inferior (inferior_ptid);
9373
9374 return;
9375 }
9376
9377 error (_("Can't kill process"));
9378 }
9379
9380 /* Send a kill request to the target using the 'vKill' packet. */
9381
9382 static int
9383 remote_vkill (int pid, struct remote_state *rs)
9384 {
9385 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9386 return -1;
9387
9388 /* Tell the remote target to detach. */
9389 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9390 putpkt (rs->buf);
9391 getpkt (&rs->buf, &rs->buf_size, 0);
9392
9393 switch (packet_ok (rs->buf,
9394 &remote_protocol_packets[PACKET_vKill]))
9395 {
9396 case PACKET_OK:
9397 return 0;
9398 case PACKET_ERROR:
9399 return 1;
9400 case PACKET_UNKNOWN:
9401 return -1;
9402 default:
9403 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9404 }
9405 }
9406
9407 /* Send a kill request to the target using the 'k' packet. */
9408
9409 static void
9410 remote_kill_k (void)
9411 {
9412 /* Catch errors so the user can quit from gdb even when we
9413 aren't on speaking terms with the remote system. */
9414 TRY
9415 {
9416 putpkt ("k");
9417 }
9418 CATCH (ex, RETURN_MASK_ERROR)
9419 {
9420 if (ex.error == TARGET_CLOSE_ERROR)
9421 {
9422 /* If we got an (EOF) error that caused the target
9423 to go away, then we're done, that's what we wanted.
9424 "k" is susceptible to cause a premature EOF, given
9425 that the remote server isn't actually required to
9426 reply to "k", and it can happen that it doesn't
9427 even get to reply ACK to the "k". */
9428 return;
9429 }
9430
9431 /* Otherwise, something went wrong. We didn't actually kill
9432 the target. Just propagate the exception, and let the
9433 user or higher layers decide what to do. */
9434 throw_exception (ex);
9435 }
9436 END_CATCH
9437 }
9438
9439 static void
9440 remote_mourn (struct target_ops *target)
9441 {
9442 struct remote_state *rs = get_remote_state ();
9443
9444 /* In 'target remote' mode with one inferior, we close the connection. */
9445 if (!rs->extended && number_of_live_inferiors () <= 1)
9446 {
9447 unpush_target (target);
9448
9449 /* remote_close takes care of doing most of the clean up. */
9450 generic_mourn_inferior ();
9451 return;
9452 }
9453
9454 /* In case we got here due to an error, but we're going to stay
9455 connected. */
9456 rs->waiting_for_stop_reply = 0;
9457
9458 /* If the current general thread belonged to the process we just
9459 detached from or has exited, the remote side current general
9460 thread becomes undefined. Considering a case like this:
9461
9462 - We just got here due to a detach.
9463 - The process that we're detaching from happens to immediately
9464 report a global breakpoint being hit in non-stop mode, in the
9465 same thread we had selected before.
9466 - GDB attaches to this process again.
9467 - This event happens to be the next event we handle.
9468
9469 GDB would consider that the current general thread didn't need to
9470 be set on the stub side (with Hg), since for all it knew,
9471 GENERAL_THREAD hadn't changed.
9472
9473 Notice that although in all-stop mode, the remote server always
9474 sets the current thread to the thread reporting the stop event,
9475 that doesn't happen in non-stop mode; in non-stop, the stub *must
9476 not* change the current thread when reporting a breakpoint hit,
9477 due to the decoupling of event reporting and event handling.
9478
9479 To keep things simple, we always invalidate our notion of the
9480 current thread. */
9481 record_currthread (rs, minus_one_ptid);
9482
9483 /* Call common code to mark the inferior as not running. */
9484 generic_mourn_inferior ();
9485
9486 if (!have_inferiors ())
9487 {
9488 if (!remote_multi_process_p (rs))
9489 {
9490 /* Check whether the target is running now - some remote stubs
9491 automatically restart after kill. */
9492 putpkt ("?");
9493 getpkt (&rs->buf, &rs->buf_size, 0);
9494
9495 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9496 {
9497 /* Assume that the target has been restarted. Set
9498 inferior_ptid so that bits of core GDB realizes
9499 there's something here, e.g., so that the user can
9500 say "kill" again. */
9501 inferior_ptid = magic_null_ptid;
9502 }
9503 }
9504 }
9505 }
9506
9507 static int
9508 extended_remote_supports_disable_randomization (struct target_ops *self)
9509 {
9510 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9511 }
9512
9513 static void
9514 extended_remote_disable_randomization (int val)
9515 {
9516 struct remote_state *rs = get_remote_state ();
9517 char *reply;
9518
9519 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9520 val);
9521 putpkt (rs->buf);
9522 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9523 if (*reply == '\0')
9524 error (_("Target does not support QDisableRandomization."));
9525 if (strcmp (reply, "OK") != 0)
9526 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9527 }
9528
9529 static int
9530 extended_remote_run (char *args)
9531 {
9532 struct remote_state *rs = get_remote_state ();
9533 int len;
9534 const char *remote_exec_file = get_remote_exec_file ();
9535
9536 /* If the user has disabled vRun support, or we have detected that
9537 support is not available, do not try it. */
9538 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9539 return -1;
9540
9541 strcpy (rs->buf, "vRun;");
9542 len = strlen (rs->buf);
9543
9544 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9545 error (_("Remote file name too long for run packet"));
9546 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9547 strlen (remote_exec_file));
9548
9549 gdb_assert (args != NULL);
9550 if (*args)
9551 {
9552 struct cleanup *back_to;
9553 int i;
9554 char **argv;
9555
9556 argv = gdb_buildargv (args);
9557 back_to = make_cleanup_freeargv (argv);
9558 for (i = 0; argv[i] != NULL; i++)
9559 {
9560 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9561 error (_("Argument list too long for run packet"));
9562 rs->buf[len++] = ';';
9563 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9564 strlen (argv[i]));
9565 }
9566 do_cleanups (back_to);
9567 }
9568
9569 rs->buf[len++] = '\0';
9570
9571 putpkt (rs->buf);
9572 getpkt (&rs->buf, &rs->buf_size, 0);
9573
9574 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9575 {
9576 case PACKET_OK:
9577 /* We have a wait response. All is well. */
9578 return 0;
9579 case PACKET_UNKNOWN:
9580 return -1;
9581 case PACKET_ERROR:
9582 if (remote_exec_file[0] == '\0')
9583 error (_("Running the default executable on the remote target failed; "
9584 "try \"set remote exec-file\"?"));
9585 else
9586 error (_("Running \"%s\" on the remote target failed"),
9587 remote_exec_file);
9588 default:
9589 gdb_assert_not_reached (_("bad switch"));
9590 }
9591 }
9592
9593 /* In the extended protocol we want to be able to do things like
9594 "run" and have them basically work as expected. So we need
9595 a special create_inferior function. We support changing the
9596 executable file and the command line arguments, but not the
9597 environment. */
9598
9599 static void
9600 extended_remote_create_inferior (struct target_ops *ops,
9601 char *exec_file, char *args,
9602 char **env, int from_tty)
9603 {
9604 int run_worked;
9605 char *stop_reply;
9606 struct remote_state *rs = get_remote_state ();
9607 const char *remote_exec_file = get_remote_exec_file ();
9608
9609 /* If running asynchronously, register the target file descriptor
9610 with the event loop. */
9611 if (target_can_async_p ())
9612 target_async (1);
9613
9614 /* Disable address space randomization if requested (and supported). */
9615 if (extended_remote_supports_disable_randomization (ops))
9616 extended_remote_disable_randomization (disable_randomization);
9617
9618 /* Now restart the remote server. */
9619 run_worked = extended_remote_run (args) != -1;
9620 if (!run_worked)
9621 {
9622 /* vRun was not supported. Fail if we need it to do what the
9623 user requested. */
9624 if (remote_exec_file[0])
9625 error (_("Remote target does not support \"set remote exec-file\""));
9626 if (args[0])
9627 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9628
9629 /* Fall back to "R". */
9630 extended_remote_restart ();
9631 }
9632
9633 if (!have_inferiors ())
9634 {
9635 /* Clean up from the last time we ran, before we mark the target
9636 running again. This will mark breakpoints uninserted, and
9637 get_offsets may insert breakpoints. */
9638 init_thread_list ();
9639 init_wait_for_inferior ();
9640 }
9641
9642 /* vRun's success return is a stop reply. */
9643 stop_reply = run_worked ? rs->buf : NULL;
9644 add_current_inferior_and_thread (stop_reply);
9645
9646 /* Get updated offsets, if the stub uses qOffsets. */
9647 get_offsets ();
9648 }
9649 \f
9650
9651 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9652 the list of conditions (in agent expression bytecode format), if any, the
9653 target needs to evaluate. The output is placed into the packet buffer
9654 started from BUF and ended at BUF_END. */
9655
9656 static int
9657 remote_add_target_side_condition (struct gdbarch *gdbarch,
9658 struct bp_target_info *bp_tgt, char *buf,
9659 char *buf_end)
9660 {
9661 if (bp_tgt->conditions.empty ())
9662 return 0;
9663
9664 buf += strlen (buf);
9665 xsnprintf (buf, buf_end - buf, "%s", ";");
9666 buf++;
9667
9668 /* Send conditions to the target and free the vector. */
9669 for (int ix = 0; ix < bp_tgt->conditions.size (); ix++)
9670 {
9671 struct agent_expr *aexpr = bp_tgt->conditions[ix];
9672
9673 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9674 buf += strlen (buf);
9675 for (int i = 0; i < aexpr->len; ++i)
9676 buf = pack_hex_byte (buf, aexpr->buf[i]);
9677 *buf = '\0';
9678 }
9679 return 0;
9680 }
9681
9682 static void
9683 remote_add_target_side_commands (struct gdbarch *gdbarch,
9684 struct bp_target_info *bp_tgt, char *buf)
9685 {
9686 if (bp_tgt->tcommands.empty ())
9687 return;
9688
9689 buf += strlen (buf);
9690
9691 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9692 buf += strlen (buf);
9693
9694 /* Concatenate all the agent expressions that are commands into the
9695 cmds parameter. */
9696 for (int ix = 0; ix < bp_tgt->tcommands.size (); ix++)
9697 {
9698 struct agent_expr *aexpr = bp_tgt->tcommands[ix];
9699
9700 sprintf (buf, "X%x,", aexpr->len);
9701 buf += strlen (buf);
9702 for (int i = 0; i < aexpr->len; ++i)
9703 buf = pack_hex_byte (buf, aexpr->buf[i]);
9704 *buf = '\0';
9705 }
9706 }
9707
9708 /* Insert a breakpoint. On targets that have software breakpoint
9709 support, we ask the remote target to do the work; on targets
9710 which don't, we insert a traditional memory breakpoint. */
9711
9712 static int
9713 remote_insert_breakpoint (struct target_ops *ops,
9714 struct gdbarch *gdbarch,
9715 struct bp_target_info *bp_tgt)
9716 {
9717 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9718 If it succeeds, then set the support to PACKET_ENABLE. If it
9719 fails, and the user has explicitly requested the Z support then
9720 report an error, otherwise, mark it disabled and go on. */
9721
9722 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9723 {
9724 CORE_ADDR addr = bp_tgt->reqstd_address;
9725 struct remote_state *rs;
9726 char *p, *endbuf;
9727 int bpsize;
9728
9729 /* Make sure the remote is pointing at the right process, if
9730 necessary. */
9731 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9732 set_general_process ();
9733
9734 rs = get_remote_state ();
9735 p = rs->buf;
9736 endbuf = rs->buf + get_remote_packet_size ();
9737
9738 *(p++) = 'Z';
9739 *(p++) = '0';
9740 *(p++) = ',';
9741 addr = (ULONGEST) remote_address_masked (addr);
9742 p += hexnumstr (p, addr);
9743 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9744
9745 if (remote_supports_cond_breakpoints (ops))
9746 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9747
9748 if (remote_can_run_breakpoint_commands (ops))
9749 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9750
9751 putpkt (rs->buf);
9752 getpkt (&rs->buf, &rs->buf_size, 0);
9753
9754 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9755 {
9756 case PACKET_ERROR:
9757 return -1;
9758 case PACKET_OK:
9759 return 0;
9760 case PACKET_UNKNOWN:
9761 break;
9762 }
9763 }
9764
9765 /* If this breakpoint has target-side commands but this stub doesn't
9766 support Z0 packets, throw error. */
9767 if (!bp_tgt->tcommands.empty ())
9768 throw_error (NOT_SUPPORTED_ERROR, _("\
9769 Target doesn't support breakpoints that have target side commands."));
9770
9771 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9772 }
9773
9774 static int
9775 remote_remove_breakpoint (struct target_ops *ops,
9776 struct gdbarch *gdbarch,
9777 struct bp_target_info *bp_tgt,
9778 enum remove_bp_reason reason)
9779 {
9780 CORE_ADDR addr = bp_tgt->placed_address;
9781 struct remote_state *rs = get_remote_state ();
9782
9783 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9784 {
9785 char *p = rs->buf;
9786 char *endbuf = rs->buf + get_remote_packet_size ();
9787
9788 /* Make sure the remote is pointing at the right process, if
9789 necessary. */
9790 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9791 set_general_process ();
9792
9793 *(p++) = 'z';
9794 *(p++) = '0';
9795 *(p++) = ',';
9796
9797 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9798 p += hexnumstr (p, addr);
9799 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9800
9801 putpkt (rs->buf);
9802 getpkt (&rs->buf, &rs->buf_size, 0);
9803
9804 return (rs->buf[0] == 'E');
9805 }
9806
9807 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9808 }
9809
9810 static enum Z_packet_type
9811 watchpoint_to_Z_packet (int type)
9812 {
9813 switch (type)
9814 {
9815 case hw_write:
9816 return Z_PACKET_WRITE_WP;
9817 break;
9818 case hw_read:
9819 return Z_PACKET_READ_WP;
9820 break;
9821 case hw_access:
9822 return Z_PACKET_ACCESS_WP;
9823 break;
9824 default:
9825 internal_error (__FILE__, __LINE__,
9826 _("hw_bp_to_z: bad watchpoint type %d"), type);
9827 }
9828 }
9829
9830 static int
9831 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9832 enum target_hw_bp_type type, struct expression *cond)
9833 {
9834 struct remote_state *rs = get_remote_state ();
9835 char *endbuf = rs->buf + get_remote_packet_size ();
9836 char *p;
9837 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9838
9839 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9840 return 1;
9841
9842 /* Make sure the remote is pointing at the right process, if
9843 necessary. */
9844 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9845 set_general_process ();
9846
9847 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9848 p = strchr (rs->buf, '\0');
9849 addr = remote_address_masked (addr);
9850 p += hexnumstr (p, (ULONGEST) addr);
9851 xsnprintf (p, endbuf - p, ",%x", len);
9852
9853 putpkt (rs->buf);
9854 getpkt (&rs->buf, &rs->buf_size, 0);
9855
9856 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9857 {
9858 case PACKET_ERROR:
9859 return -1;
9860 case PACKET_UNKNOWN:
9861 return 1;
9862 case PACKET_OK:
9863 return 0;
9864 }
9865 internal_error (__FILE__, __LINE__,
9866 _("remote_insert_watchpoint: reached end of function"));
9867 }
9868
9869 static int
9870 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9871 CORE_ADDR start, int length)
9872 {
9873 CORE_ADDR diff = remote_address_masked (addr - start);
9874
9875 return diff < length;
9876 }
9877
9878
9879 static int
9880 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9881 enum target_hw_bp_type type, struct expression *cond)
9882 {
9883 struct remote_state *rs = get_remote_state ();
9884 char *endbuf = rs->buf + get_remote_packet_size ();
9885 char *p;
9886 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9887
9888 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9889 return -1;
9890
9891 /* Make sure the remote is pointing at the right process, if
9892 necessary. */
9893 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9894 set_general_process ();
9895
9896 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9897 p = strchr (rs->buf, '\0');
9898 addr = remote_address_masked (addr);
9899 p += hexnumstr (p, (ULONGEST) addr);
9900 xsnprintf (p, endbuf - p, ",%x", len);
9901 putpkt (rs->buf);
9902 getpkt (&rs->buf, &rs->buf_size, 0);
9903
9904 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9905 {
9906 case PACKET_ERROR:
9907 case PACKET_UNKNOWN:
9908 return -1;
9909 case PACKET_OK:
9910 return 0;
9911 }
9912 internal_error (__FILE__, __LINE__,
9913 _("remote_remove_watchpoint: reached end of function"));
9914 }
9915
9916
9917 int remote_hw_watchpoint_limit = -1;
9918 int remote_hw_watchpoint_length_limit = -1;
9919 int remote_hw_breakpoint_limit = -1;
9920
9921 static int
9922 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9923 CORE_ADDR addr, int len)
9924 {
9925 if (remote_hw_watchpoint_length_limit == 0)
9926 return 0;
9927 else if (remote_hw_watchpoint_length_limit < 0)
9928 return 1;
9929 else if (len <= remote_hw_watchpoint_length_limit)
9930 return 1;
9931 else
9932 return 0;
9933 }
9934
9935 static int
9936 remote_check_watch_resources (struct target_ops *self,
9937 enum bptype type, int cnt, int ot)
9938 {
9939 if (type == bp_hardware_breakpoint)
9940 {
9941 if (remote_hw_breakpoint_limit == 0)
9942 return 0;
9943 else if (remote_hw_breakpoint_limit < 0)
9944 return 1;
9945 else if (cnt <= remote_hw_breakpoint_limit)
9946 return 1;
9947 }
9948 else
9949 {
9950 if (remote_hw_watchpoint_limit == 0)
9951 return 0;
9952 else if (remote_hw_watchpoint_limit < 0)
9953 return 1;
9954 else if (ot)
9955 return -1;
9956 else if (cnt <= remote_hw_watchpoint_limit)
9957 return 1;
9958 }
9959 return -1;
9960 }
9961
9962 /* The to_stopped_by_sw_breakpoint method of target remote. */
9963
9964 static int
9965 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
9966 {
9967 struct thread_info *thread = inferior_thread ();
9968
9969 return (thread->priv != NULL
9970 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
9971 }
9972
9973 /* The to_supports_stopped_by_sw_breakpoint method of target
9974 remote. */
9975
9976 static int
9977 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
9978 {
9979 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
9980 }
9981
9982 /* The to_stopped_by_hw_breakpoint method of target remote. */
9983
9984 static int
9985 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
9986 {
9987 struct thread_info *thread = inferior_thread ();
9988
9989 return (thread->priv != NULL
9990 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
9991 }
9992
9993 /* The to_supports_stopped_by_hw_breakpoint method of target
9994 remote. */
9995
9996 static int
9997 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
9998 {
9999 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10000 }
10001
10002 static int
10003 remote_stopped_by_watchpoint (struct target_ops *ops)
10004 {
10005 struct thread_info *thread = inferior_thread ();
10006
10007 return (thread->priv != NULL
10008 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10009 }
10010
10011 static int
10012 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10013 {
10014 struct thread_info *thread = inferior_thread ();
10015
10016 if (thread->priv != NULL
10017 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10018 {
10019 *addr_p = thread->priv->watch_data_address;
10020 return 1;
10021 }
10022
10023 return 0;
10024 }
10025
10026
10027 static int
10028 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10029 struct bp_target_info *bp_tgt)
10030 {
10031 CORE_ADDR addr = bp_tgt->reqstd_address;
10032 struct remote_state *rs;
10033 char *p, *endbuf;
10034 char *message;
10035
10036 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10037 return -1;
10038
10039 /* Make sure the remote is pointing at the right process, if
10040 necessary. */
10041 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10042 set_general_process ();
10043
10044 rs = get_remote_state ();
10045 p = rs->buf;
10046 endbuf = rs->buf + get_remote_packet_size ();
10047
10048 *(p++) = 'Z';
10049 *(p++) = '1';
10050 *(p++) = ',';
10051
10052 addr = remote_address_masked (addr);
10053 p += hexnumstr (p, (ULONGEST) addr);
10054 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10055
10056 if (remote_supports_cond_breakpoints (self))
10057 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10058
10059 if (remote_can_run_breakpoint_commands (self))
10060 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10061
10062 putpkt (rs->buf);
10063 getpkt (&rs->buf, &rs->buf_size, 0);
10064
10065 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10066 {
10067 case PACKET_ERROR:
10068 if (rs->buf[1] == '.')
10069 {
10070 message = strchr (rs->buf + 2, '.');
10071 if (message)
10072 error (_("Remote failure reply: %s"), message + 1);
10073 }
10074 return -1;
10075 case PACKET_UNKNOWN:
10076 return -1;
10077 case PACKET_OK:
10078 return 0;
10079 }
10080 internal_error (__FILE__, __LINE__,
10081 _("remote_insert_hw_breakpoint: reached end of function"));
10082 }
10083
10084
10085 static int
10086 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10087 struct bp_target_info *bp_tgt)
10088 {
10089 CORE_ADDR addr;
10090 struct remote_state *rs = get_remote_state ();
10091 char *p = rs->buf;
10092 char *endbuf = rs->buf + get_remote_packet_size ();
10093
10094 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10095 return -1;
10096
10097 /* Make sure the remote is pointing at the right process, if
10098 necessary. */
10099 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10100 set_general_process ();
10101
10102 *(p++) = 'z';
10103 *(p++) = '1';
10104 *(p++) = ',';
10105
10106 addr = remote_address_masked (bp_tgt->placed_address);
10107 p += hexnumstr (p, (ULONGEST) addr);
10108 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10109
10110 putpkt (rs->buf);
10111 getpkt (&rs->buf, &rs->buf_size, 0);
10112
10113 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10114 {
10115 case PACKET_ERROR:
10116 case PACKET_UNKNOWN:
10117 return -1;
10118 case PACKET_OK:
10119 return 0;
10120 }
10121 internal_error (__FILE__, __LINE__,
10122 _("remote_remove_hw_breakpoint: reached end of function"));
10123 }
10124
10125 /* Verify memory using the "qCRC:" request. */
10126
10127 static int
10128 remote_verify_memory (struct target_ops *ops,
10129 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10130 {
10131 struct remote_state *rs = get_remote_state ();
10132 unsigned long host_crc, target_crc;
10133 char *tmp;
10134
10135 /* It doesn't make sense to use qCRC if the remote target is
10136 connected but not running. */
10137 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10138 {
10139 enum packet_result result;
10140
10141 /* Make sure the remote is pointing at the right process. */
10142 set_general_process ();
10143
10144 /* FIXME: assumes lma can fit into long. */
10145 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10146 (long) lma, (long) size);
10147 putpkt (rs->buf);
10148
10149 /* Be clever; compute the host_crc before waiting for target
10150 reply. */
10151 host_crc = xcrc32 (data, size, 0xffffffff);
10152
10153 getpkt (&rs->buf, &rs->buf_size, 0);
10154
10155 result = packet_ok (rs->buf,
10156 &remote_protocol_packets[PACKET_qCRC]);
10157 if (result == PACKET_ERROR)
10158 return -1;
10159 else if (result == PACKET_OK)
10160 {
10161 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10162 target_crc = target_crc * 16 + fromhex (*tmp);
10163
10164 return (host_crc == target_crc);
10165 }
10166 }
10167
10168 return simple_verify_memory (ops, data, lma, size);
10169 }
10170
10171 /* compare-sections command
10172
10173 With no arguments, compares each loadable section in the exec bfd
10174 with the same memory range on the target, and reports mismatches.
10175 Useful for verifying the image on the target against the exec file. */
10176
10177 static void
10178 compare_sections_command (char *args, int from_tty)
10179 {
10180 asection *s;
10181 struct cleanup *old_chain;
10182 gdb_byte *sectdata;
10183 const char *sectname;
10184 bfd_size_type size;
10185 bfd_vma lma;
10186 int matched = 0;
10187 int mismatched = 0;
10188 int res;
10189 int read_only = 0;
10190
10191 if (!exec_bfd)
10192 error (_("command cannot be used without an exec file"));
10193
10194 /* Make sure the remote is pointing at the right process. */
10195 set_general_process ();
10196
10197 if (args != NULL && strcmp (args, "-r") == 0)
10198 {
10199 read_only = 1;
10200 args = NULL;
10201 }
10202
10203 for (s = exec_bfd->sections; s; s = s->next)
10204 {
10205 if (!(s->flags & SEC_LOAD))
10206 continue; /* Skip non-loadable section. */
10207
10208 if (read_only && (s->flags & SEC_READONLY) == 0)
10209 continue; /* Skip writeable sections */
10210
10211 size = bfd_get_section_size (s);
10212 if (size == 0)
10213 continue; /* Skip zero-length section. */
10214
10215 sectname = bfd_get_section_name (exec_bfd, s);
10216 if (args && strcmp (args, sectname) != 0)
10217 continue; /* Not the section selected by user. */
10218
10219 matched = 1; /* Do this section. */
10220 lma = s->lma;
10221
10222 sectdata = (gdb_byte *) xmalloc (size);
10223 old_chain = make_cleanup (xfree, sectdata);
10224 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
10225
10226 res = target_verify_memory (sectdata, lma, size);
10227
10228 if (res == -1)
10229 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10230 paddress (target_gdbarch (), lma),
10231 paddress (target_gdbarch (), lma + size));
10232
10233 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10234 paddress (target_gdbarch (), lma),
10235 paddress (target_gdbarch (), lma + size));
10236 if (res)
10237 printf_filtered ("matched.\n");
10238 else
10239 {
10240 printf_filtered ("MIS-MATCHED!\n");
10241 mismatched++;
10242 }
10243
10244 do_cleanups (old_chain);
10245 }
10246 if (mismatched > 0)
10247 warning (_("One or more sections of the target image does not match\n\
10248 the loaded file\n"));
10249 if (args && !matched)
10250 printf_filtered (_("No loaded section named '%s'.\n"), args);
10251 }
10252
10253 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10254 into remote target. The number of bytes written to the remote
10255 target is returned, or -1 for error. */
10256
10257 static enum target_xfer_status
10258 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10259 const char *annex, const gdb_byte *writebuf,
10260 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10261 struct packet_config *packet)
10262 {
10263 int i, buf_len;
10264 ULONGEST n;
10265 struct remote_state *rs = get_remote_state ();
10266 int max_size = get_memory_write_packet_size ();
10267
10268 if (packet->support == PACKET_DISABLE)
10269 return TARGET_XFER_E_IO;
10270
10271 /* Insert header. */
10272 i = snprintf (rs->buf, max_size,
10273 "qXfer:%s:write:%s:%s:",
10274 object_name, annex ? annex : "",
10275 phex_nz (offset, sizeof offset));
10276 max_size -= (i + 1);
10277
10278 /* Escape as much data as fits into rs->buf. */
10279 buf_len = remote_escape_output
10280 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10281
10282 if (putpkt_binary (rs->buf, i + buf_len) < 0
10283 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10284 || packet_ok (rs->buf, packet) != PACKET_OK)
10285 return TARGET_XFER_E_IO;
10286
10287 unpack_varlen_hex (rs->buf, &n);
10288
10289 *xfered_len = n;
10290 return TARGET_XFER_OK;
10291 }
10292
10293 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10294 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10295 number of bytes read is returned, or 0 for EOF, or -1 for error.
10296 The number of bytes read may be less than LEN without indicating an
10297 EOF. PACKET is checked and updated to indicate whether the remote
10298 target supports this object. */
10299
10300 static enum target_xfer_status
10301 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10302 const char *annex,
10303 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10304 ULONGEST *xfered_len,
10305 struct packet_config *packet)
10306 {
10307 struct remote_state *rs = get_remote_state ();
10308 LONGEST i, n, packet_len;
10309
10310 if (packet->support == PACKET_DISABLE)
10311 return TARGET_XFER_E_IO;
10312
10313 /* Check whether we've cached an end-of-object packet that matches
10314 this request. */
10315 if (rs->finished_object)
10316 {
10317 if (strcmp (object_name, rs->finished_object) == 0
10318 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10319 && offset == rs->finished_offset)
10320 return TARGET_XFER_EOF;
10321
10322
10323 /* Otherwise, we're now reading something different. Discard
10324 the cache. */
10325 xfree (rs->finished_object);
10326 xfree (rs->finished_annex);
10327 rs->finished_object = NULL;
10328 rs->finished_annex = NULL;
10329 }
10330
10331 /* Request only enough to fit in a single packet. The actual data
10332 may not, since we don't know how much of it will need to be escaped;
10333 the target is free to respond with slightly less data. We subtract
10334 five to account for the response type and the protocol frame. */
10335 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10336 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10337 object_name, annex ? annex : "",
10338 phex_nz (offset, sizeof offset),
10339 phex_nz (n, sizeof n));
10340 i = putpkt (rs->buf);
10341 if (i < 0)
10342 return TARGET_XFER_E_IO;
10343
10344 rs->buf[0] = '\0';
10345 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10346 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10347 return TARGET_XFER_E_IO;
10348
10349 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10350 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10351
10352 /* 'm' means there is (or at least might be) more data after this
10353 batch. That does not make sense unless there's at least one byte
10354 of data in this reply. */
10355 if (rs->buf[0] == 'm' && packet_len == 1)
10356 error (_("Remote qXfer reply contained no data."));
10357
10358 /* Got some data. */
10359 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10360 packet_len - 1, readbuf, n);
10361
10362 /* 'l' is an EOF marker, possibly including a final block of data,
10363 or possibly empty. If we have the final block of a non-empty
10364 object, record this fact to bypass a subsequent partial read. */
10365 if (rs->buf[0] == 'l' && offset + i > 0)
10366 {
10367 rs->finished_object = xstrdup (object_name);
10368 rs->finished_annex = xstrdup (annex ? annex : "");
10369 rs->finished_offset = offset + i;
10370 }
10371
10372 if (i == 0)
10373 return TARGET_XFER_EOF;
10374 else
10375 {
10376 *xfered_len = i;
10377 return TARGET_XFER_OK;
10378 }
10379 }
10380
10381 static enum target_xfer_status
10382 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10383 const char *annex, gdb_byte *readbuf,
10384 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10385 ULONGEST *xfered_len)
10386 {
10387 struct remote_state *rs;
10388 int i;
10389 char *p2;
10390 char query_type;
10391 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10392
10393 set_remote_traceframe ();
10394 set_general_thread (inferior_ptid);
10395
10396 rs = get_remote_state ();
10397
10398 /* Handle memory using the standard memory routines. */
10399 if (object == TARGET_OBJECT_MEMORY)
10400 {
10401 /* If the remote target is connected but not running, we should
10402 pass this request down to a lower stratum (e.g. the executable
10403 file). */
10404 if (!target_has_execution)
10405 return TARGET_XFER_EOF;
10406
10407 if (writebuf != NULL)
10408 return remote_write_bytes (offset, writebuf, len, unit_size,
10409 xfered_len);
10410 else
10411 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10412 xfered_len);
10413 }
10414
10415 /* Handle SPU memory using qxfer packets. */
10416 if (object == TARGET_OBJECT_SPU)
10417 {
10418 if (readbuf)
10419 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10420 xfered_len, &remote_protocol_packets
10421 [PACKET_qXfer_spu_read]);
10422 else
10423 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10424 xfered_len, &remote_protocol_packets
10425 [PACKET_qXfer_spu_write]);
10426 }
10427
10428 /* Handle extra signal info using qxfer packets. */
10429 if (object == TARGET_OBJECT_SIGNAL_INFO)
10430 {
10431 if (readbuf)
10432 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10433 xfered_len, &remote_protocol_packets
10434 [PACKET_qXfer_siginfo_read]);
10435 else
10436 return remote_write_qxfer (ops, "siginfo", annex,
10437 writebuf, offset, len, xfered_len,
10438 &remote_protocol_packets
10439 [PACKET_qXfer_siginfo_write]);
10440 }
10441
10442 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10443 {
10444 if (readbuf)
10445 return remote_read_qxfer (ops, "statictrace", annex,
10446 readbuf, offset, len, xfered_len,
10447 &remote_protocol_packets
10448 [PACKET_qXfer_statictrace_read]);
10449 else
10450 return TARGET_XFER_E_IO;
10451 }
10452
10453 /* Only handle flash writes. */
10454 if (writebuf != NULL)
10455 {
10456 switch (object)
10457 {
10458 case TARGET_OBJECT_FLASH:
10459 return remote_flash_write (ops, offset, len, xfered_len,
10460 writebuf);
10461
10462 default:
10463 return TARGET_XFER_E_IO;
10464 }
10465 }
10466
10467 /* Map pre-existing objects onto letters. DO NOT do this for new
10468 objects!!! Instead specify new query packets. */
10469 switch (object)
10470 {
10471 case TARGET_OBJECT_AVR:
10472 query_type = 'R';
10473 break;
10474
10475 case TARGET_OBJECT_AUXV:
10476 gdb_assert (annex == NULL);
10477 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10478 xfered_len,
10479 &remote_protocol_packets[PACKET_qXfer_auxv]);
10480
10481 case TARGET_OBJECT_AVAILABLE_FEATURES:
10482 return remote_read_qxfer
10483 (ops, "features", annex, readbuf, offset, len, xfered_len,
10484 &remote_protocol_packets[PACKET_qXfer_features]);
10485
10486 case TARGET_OBJECT_LIBRARIES:
10487 return remote_read_qxfer
10488 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10489 &remote_protocol_packets[PACKET_qXfer_libraries]);
10490
10491 case TARGET_OBJECT_LIBRARIES_SVR4:
10492 return remote_read_qxfer
10493 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10494 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10495
10496 case TARGET_OBJECT_MEMORY_MAP:
10497 gdb_assert (annex == NULL);
10498 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10499 xfered_len,
10500 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10501
10502 case TARGET_OBJECT_OSDATA:
10503 /* Should only get here if we're connected. */
10504 gdb_assert (rs->remote_desc);
10505 return remote_read_qxfer
10506 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10507 &remote_protocol_packets[PACKET_qXfer_osdata]);
10508
10509 case TARGET_OBJECT_THREADS:
10510 gdb_assert (annex == NULL);
10511 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10512 xfered_len,
10513 &remote_protocol_packets[PACKET_qXfer_threads]);
10514
10515 case TARGET_OBJECT_TRACEFRAME_INFO:
10516 gdb_assert (annex == NULL);
10517 return remote_read_qxfer
10518 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10519 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10520
10521 case TARGET_OBJECT_FDPIC:
10522 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10523 xfered_len,
10524 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10525
10526 case TARGET_OBJECT_OPENVMS_UIB:
10527 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10528 xfered_len,
10529 &remote_protocol_packets[PACKET_qXfer_uib]);
10530
10531 case TARGET_OBJECT_BTRACE:
10532 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10533 xfered_len,
10534 &remote_protocol_packets[PACKET_qXfer_btrace]);
10535
10536 case TARGET_OBJECT_BTRACE_CONF:
10537 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10538 len, xfered_len,
10539 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10540
10541 case TARGET_OBJECT_EXEC_FILE:
10542 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10543 len, xfered_len,
10544 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10545
10546 default:
10547 return TARGET_XFER_E_IO;
10548 }
10549
10550 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10551 large enough let the caller deal with it. */
10552 if (len < get_remote_packet_size ())
10553 return TARGET_XFER_E_IO;
10554 len = get_remote_packet_size ();
10555
10556 /* Except for querying the minimum buffer size, target must be open. */
10557 if (!rs->remote_desc)
10558 error (_("remote query is only available after target open"));
10559
10560 gdb_assert (annex != NULL);
10561 gdb_assert (readbuf != NULL);
10562
10563 p2 = rs->buf;
10564 *p2++ = 'q';
10565 *p2++ = query_type;
10566
10567 /* We used one buffer char for the remote protocol q command and
10568 another for the query type. As the remote protocol encapsulation
10569 uses 4 chars plus one extra in case we are debugging
10570 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10571 string. */
10572 i = 0;
10573 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10574 {
10575 /* Bad caller may have sent forbidden characters. */
10576 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10577 *p2++ = annex[i];
10578 i++;
10579 }
10580 *p2 = '\0';
10581 gdb_assert (annex[i] == '\0');
10582
10583 i = putpkt (rs->buf);
10584 if (i < 0)
10585 return TARGET_XFER_E_IO;
10586
10587 getpkt (&rs->buf, &rs->buf_size, 0);
10588 strcpy ((char *) readbuf, rs->buf);
10589
10590 *xfered_len = strlen ((char *) readbuf);
10591 return TARGET_XFER_OK;
10592 }
10593
10594 /* Implementation of to_get_memory_xfer_limit. */
10595
10596 static ULONGEST
10597 remote_get_memory_xfer_limit (struct target_ops *ops)
10598 {
10599 return get_memory_write_packet_size ();
10600 }
10601
10602 static int
10603 remote_search_memory (struct target_ops* ops,
10604 CORE_ADDR start_addr, ULONGEST search_space_len,
10605 const gdb_byte *pattern, ULONGEST pattern_len,
10606 CORE_ADDR *found_addrp)
10607 {
10608 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10609 struct remote_state *rs = get_remote_state ();
10610 int max_size = get_memory_write_packet_size ();
10611 struct packet_config *packet =
10612 &remote_protocol_packets[PACKET_qSearch_memory];
10613 /* Number of packet bytes used to encode the pattern;
10614 this could be more than PATTERN_LEN due to escape characters. */
10615 int escaped_pattern_len;
10616 /* Amount of pattern that was encodable in the packet. */
10617 int used_pattern_len;
10618 int i;
10619 int found;
10620 ULONGEST found_addr;
10621
10622 /* Don't go to the target if we don't have to.
10623 This is done before checking packet->support to avoid the possibility that
10624 a success for this edge case means the facility works in general. */
10625 if (pattern_len > search_space_len)
10626 return 0;
10627 if (pattern_len == 0)
10628 {
10629 *found_addrp = start_addr;
10630 return 1;
10631 }
10632
10633 /* If we already know the packet isn't supported, fall back to the simple
10634 way of searching memory. */
10635
10636 if (packet_config_support (packet) == PACKET_DISABLE)
10637 {
10638 /* Target doesn't provided special support, fall back and use the
10639 standard support (copy memory and do the search here). */
10640 return simple_search_memory (ops, start_addr, search_space_len,
10641 pattern, pattern_len, found_addrp);
10642 }
10643
10644 /* Make sure the remote is pointing at the right process. */
10645 set_general_process ();
10646
10647 /* Insert header. */
10648 i = snprintf (rs->buf, max_size,
10649 "qSearch:memory:%s;%s;",
10650 phex_nz (start_addr, addr_size),
10651 phex_nz (search_space_len, sizeof (search_space_len)));
10652 max_size -= (i + 1);
10653
10654 /* Escape as much data as fits into rs->buf. */
10655 escaped_pattern_len =
10656 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10657 &used_pattern_len, max_size);
10658
10659 /* Bail if the pattern is too large. */
10660 if (used_pattern_len != pattern_len)
10661 error (_("Pattern is too large to transmit to remote target."));
10662
10663 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10664 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10665 || packet_ok (rs->buf, packet) != PACKET_OK)
10666 {
10667 /* The request may not have worked because the command is not
10668 supported. If so, fall back to the simple way. */
10669 if (packet->support == PACKET_DISABLE)
10670 {
10671 return simple_search_memory (ops, start_addr, search_space_len,
10672 pattern, pattern_len, found_addrp);
10673 }
10674 return -1;
10675 }
10676
10677 if (rs->buf[0] == '0')
10678 found = 0;
10679 else if (rs->buf[0] == '1')
10680 {
10681 found = 1;
10682 if (rs->buf[1] != ',')
10683 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10684 unpack_varlen_hex (rs->buf + 2, &found_addr);
10685 *found_addrp = found_addr;
10686 }
10687 else
10688 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10689
10690 return found;
10691 }
10692
10693 static void
10694 remote_rcmd (struct target_ops *self, const char *command,
10695 struct ui_file *outbuf)
10696 {
10697 struct remote_state *rs = get_remote_state ();
10698 char *p = rs->buf;
10699
10700 if (!rs->remote_desc)
10701 error (_("remote rcmd is only available after target open"));
10702
10703 /* Send a NULL command across as an empty command. */
10704 if (command == NULL)
10705 command = "";
10706
10707 /* The query prefix. */
10708 strcpy (rs->buf, "qRcmd,");
10709 p = strchr (rs->buf, '\0');
10710
10711 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10712 > get_remote_packet_size ())
10713 error (_("\"monitor\" command ``%s'' is too long."), command);
10714
10715 /* Encode the actual command. */
10716 bin2hex ((const gdb_byte *) command, p, strlen (command));
10717
10718 if (putpkt (rs->buf) < 0)
10719 error (_("Communication problem with target."));
10720
10721 /* get/display the response */
10722 while (1)
10723 {
10724 char *buf;
10725
10726 /* XXX - see also remote_get_noisy_reply(). */
10727 QUIT; /* Allow user to bail out with ^C. */
10728 rs->buf[0] = '\0';
10729 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10730 {
10731 /* Timeout. Continue to (try to) read responses.
10732 This is better than stopping with an error, assuming the stub
10733 is still executing the (long) monitor command.
10734 If needed, the user can interrupt gdb using C-c, obtaining
10735 an effect similar to stop on timeout. */
10736 continue;
10737 }
10738 buf = rs->buf;
10739 if (buf[0] == '\0')
10740 error (_("Target does not support this command."));
10741 if (buf[0] == 'O' && buf[1] != 'K')
10742 {
10743 remote_console_output (buf + 1); /* 'O' message from stub. */
10744 continue;
10745 }
10746 if (strcmp (buf, "OK") == 0)
10747 break;
10748 if (strlen (buf) == 3 && buf[0] == 'E'
10749 && isdigit (buf[1]) && isdigit (buf[2]))
10750 {
10751 error (_("Protocol error with Rcmd"));
10752 }
10753 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10754 {
10755 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10756
10757 fputc_unfiltered (c, outbuf);
10758 }
10759 break;
10760 }
10761 }
10762
10763 static VEC(mem_region_s) *
10764 remote_memory_map (struct target_ops *ops)
10765 {
10766 VEC(mem_region_s) *result = NULL;
10767 char *text = target_read_stralloc (&current_target,
10768 TARGET_OBJECT_MEMORY_MAP, NULL);
10769
10770 if (text)
10771 {
10772 struct cleanup *back_to = make_cleanup (xfree, text);
10773
10774 result = parse_memory_map (text);
10775 do_cleanups (back_to);
10776 }
10777
10778 return result;
10779 }
10780
10781 static void
10782 packet_command (char *args, int from_tty)
10783 {
10784 struct remote_state *rs = get_remote_state ();
10785
10786 if (!rs->remote_desc)
10787 error (_("command can only be used with remote target"));
10788
10789 if (!args)
10790 error (_("remote-packet command requires packet text as argument"));
10791
10792 puts_filtered ("sending: ");
10793 print_packet (args);
10794 puts_filtered ("\n");
10795 putpkt (args);
10796
10797 getpkt (&rs->buf, &rs->buf_size, 0);
10798 puts_filtered ("received: ");
10799 print_packet (rs->buf);
10800 puts_filtered ("\n");
10801 }
10802
10803 #if 0
10804 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10805
10806 static void display_thread_info (struct gdb_ext_thread_info *info);
10807
10808 static void threadset_test_cmd (char *cmd, int tty);
10809
10810 static void threadalive_test (char *cmd, int tty);
10811
10812 static void threadlist_test_cmd (char *cmd, int tty);
10813
10814 int get_and_display_threadinfo (threadref *ref);
10815
10816 static void threadinfo_test_cmd (char *cmd, int tty);
10817
10818 static int thread_display_step (threadref *ref, void *context);
10819
10820 static void threadlist_update_test_cmd (char *cmd, int tty);
10821
10822 static void init_remote_threadtests (void);
10823
10824 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10825
10826 static void
10827 threadset_test_cmd (char *cmd, int tty)
10828 {
10829 int sample_thread = SAMPLE_THREAD;
10830
10831 printf_filtered (_("Remote threadset test\n"));
10832 set_general_thread (sample_thread);
10833 }
10834
10835
10836 static void
10837 threadalive_test (char *cmd, int tty)
10838 {
10839 int sample_thread = SAMPLE_THREAD;
10840 int pid = ptid_get_pid (inferior_ptid);
10841 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10842
10843 if (remote_thread_alive (ptid))
10844 printf_filtered ("PASS: Thread alive test\n");
10845 else
10846 printf_filtered ("FAIL: Thread alive test\n");
10847 }
10848
10849 void output_threadid (char *title, threadref *ref);
10850
10851 void
10852 output_threadid (char *title, threadref *ref)
10853 {
10854 char hexid[20];
10855
10856 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10857 hexid[16] = 0;
10858 printf_filtered ("%s %s\n", title, (&hexid[0]));
10859 }
10860
10861 static void
10862 threadlist_test_cmd (char *cmd, int tty)
10863 {
10864 int startflag = 1;
10865 threadref nextthread;
10866 int done, result_count;
10867 threadref threadlist[3];
10868
10869 printf_filtered ("Remote Threadlist test\n");
10870 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10871 &result_count, &threadlist[0]))
10872 printf_filtered ("FAIL: threadlist test\n");
10873 else
10874 {
10875 threadref *scan = threadlist;
10876 threadref *limit = scan + result_count;
10877
10878 while (scan < limit)
10879 output_threadid (" thread ", scan++);
10880 }
10881 }
10882
10883 void
10884 display_thread_info (struct gdb_ext_thread_info *info)
10885 {
10886 output_threadid ("Threadid: ", &info->threadid);
10887 printf_filtered ("Name: %s\n ", info->shortname);
10888 printf_filtered ("State: %s\n", info->display);
10889 printf_filtered ("other: %s\n\n", info->more_display);
10890 }
10891
10892 int
10893 get_and_display_threadinfo (threadref *ref)
10894 {
10895 int result;
10896 int set;
10897 struct gdb_ext_thread_info threadinfo;
10898
10899 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10900 | TAG_MOREDISPLAY | TAG_DISPLAY;
10901 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10902 display_thread_info (&threadinfo);
10903 return result;
10904 }
10905
10906 static void
10907 threadinfo_test_cmd (char *cmd, int tty)
10908 {
10909 int athread = SAMPLE_THREAD;
10910 threadref thread;
10911 int set;
10912
10913 int_to_threadref (&thread, athread);
10914 printf_filtered ("Remote Threadinfo test\n");
10915 if (!get_and_display_threadinfo (&thread))
10916 printf_filtered ("FAIL cannot get thread info\n");
10917 }
10918
10919 static int
10920 thread_display_step (threadref *ref, void *context)
10921 {
10922 /* output_threadid(" threadstep ",ref); *//* simple test */
10923 return get_and_display_threadinfo (ref);
10924 }
10925
10926 static void
10927 threadlist_update_test_cmd (char *cmd, int tty)
10928 {
10929 printf_filtered ("Remote Threadlist update test\n");
10930 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10931 }
10932
10933 static void
10934 init_remote_threadtests (void)
10935 {
10936 add_com ("tlist", class_obscure, threadlist_test_cmd,
10937 _("Fetch and print the remote list of "
10938 "thread identifiers, one pkt only"));
10939 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10940 _("Fetch and display info about one thread"));
10941 add_com ("tset", class_obscure, threadset_test_cmd,
10942 _("Test setting to a different thread"));
10943 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10944 _("Iterate through updating all remote thread info"));
10945 add_com ("talive", class_obscure, threadalive_test,
10946 _(" Remote thread alive test "));
10947 }
10948
10949 #endif /* 0 */
10950
10951 /* Convert a thread ID to a string. Returns the string in a static
10952 buffer. */
10953
10954 static char *
10955 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10956 {
10957 static char buf[64];
10958 struct remote_state *rs = get_remote_state ();
10959
10960 if (ptid_equal (ptid, null_ptid))
10961 return normal_pid_to_str (ptid);
10962 else if (ptid_is_pid (ptid))
10963 {
10964 /* Printing an inferior target id. */
10965
10966 /* When multi-process extensions are off, there's no way in the
10967 remote protocol to know the remote process id, if there's any
10968 at all. There's one exception --- when we're connected with
10969 target extended-remote, and we manually attached to a process
10970 with "attach PID". We don't record anywhere a flag that
10971 allows us to distinguish that case from the case of
10972 connecting with extended-remote and the stub already being
10973 attached to a process, and reporting yes to qAttached, hence
10974 no smart special casing here. */
10975 if (!remote_multi_process_p (rs))
10976 {
10977 xsnprintf (buf, sizeof buf, "Remote target");
10978 return buf;
10979 }
10980
10981 return normal_pid_to_str (ptid);
10982 }
10983 else
10984 {
10985 if (ptid_equal (magic_null_ptid, ptid))
10986 xsnprintf (buf, sizeof buf, "Thread <main>");
10987 else if (remote_multi_process_p (rs))
10988 if (ptid_get_lwp (ptid) == 0)
10989 return normal_pid_to_str (ptid);
10990 else
10991 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
10992 ptid_get_pid (ptid), ptid_get_lwp (ptid));
10993 else
10994 xsnprintf (buf, sizeof buf, "Thread %ld",
10995 ptid_get_lwp (ptid));
10996 return buf;
10997 }
10998 }
10999
11000 /* Get the address of the thread local variable in OBJFILE which is
11001 stored at OFFSET within the thread local storage for thread PTID. */
11002
11003 static CORE_ADDR
11004 remote_get_thread_local_address (struct target_ops *ops,
11005 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11006 {
11007 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11008 {
11009 struct remote_state *rs = get_remote_state ();
11010 char *p = rs->buf;
11011 char *endp = rs->buf + get_remote_packet_size ();
11012 enum packet_result result;
11013
11014 strcpy (p, "qGetTLSAddr:");
11015 p += strlen (p);
11016 p = write_ptid (p, endp, ptid);
11017 *p++ = ',';
11018 p += hexnumstr (p, offset);
11019 *p++ = ',';
11020 p += hexnumstr (p, lm);
11021 *p++ = '\0';
11022
11023 putpkt (rs->buf);
11024 getpkt (&rs->buf, &rs->buf_size, 0);
11025 result = packet_ok (rs->buf,
11026 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11027 if (result == PACKET_OK)
11028 {
11029 ULONGEST result;
11030
11031 unpack_varlen_hex (rs->buf, &result);
11032 return result;
11033 }
11034 else if (result == PACKET_UNKNOWN)
11035 throw_error (TLS_GENERIC_ERROR,
11036 _("Remote target doesn't support qGetTLSAddr packet"));
11037 else
11038 throw_error (TLS_GENERIC_ERROR,
11039 _("Remote target failed to process qGetTLSAddr request"));
11040 }
11041 else
11042 throw_error (TLS_GENERIC_ERROR,
11043 _("TLS not supported or disabled on this target"));
11044 /* Not reached. */
11045 return 0;
11046 }
11047
11048 /* Provide thread local base, i.e. Thread Information Block address.
11049 Returns 1 if ptid is found and thread_local_base is non zero. */
11050
11051 static int
11052 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11053 {
11054 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11055 {
11056 struct remote_state *rs = get_remote_state ();
11057 char *p = rs->buf;
11058 char *endp = rs->buf + get_remote_packet_size ();
11059 enum packet_result result;
11060
11061 strcpy (p, "qGetTIBAddr:");
11062 p += strlen (p);
11063 p = write_ptid (p, endp, ptid);
11064 *p++ = '\0';
11065
11066 putpkt (rs->buf);
11067 getpkt (&rs->buf, &rs->buf_size, 0);
11068 result = packet_ok (rs->buf,
11069 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11070 if (result == PACKET_OK)
11071 {
11072 ULONGEST result;
11073
11074 unpack_varlen_hex (rs->buf, &result);
11075 if (addr)
11076 *addr = (CORE_ADDR) result;
11077 return 1;
11078 }
11079 else if (result == PACKET_UNKNOWN)
11080 error (_("Remote target doesn't support qGetTIBAddr packet"));
11081 else
11082 error (_("Remote target failed to process qGetTIBAddr request"));
11083 }
11084 else
11085 error (_("qGetTIBAddr not supported or disabled on this target"));
11086 /* Not reached. */
11087 return 0;
11088 }
11089
11090 /* Support for inferring a target description based on the current
11091 architecture and the size of a 'g' packet. While the 'g' packet
11092 can have any size (since optional registers can be left off the
11093 end), some sizes are easily recognizable given knowledge of the
11094 approximate architecture. */
11095
11096 struct remote_g_packet_guess
11097 {
11098 int bytes;
11099 const struct target_desc *tdesc;
11100 };
11101 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11102 DEF_VEC_O(remote_g_packet_guess_s);
11103
11104 struct remote_g_packet_data
11105 {
11106 VEC(remote_g_packet_guess_s) *guesses;
11107 };
11108
11109 static struct gdbarch_data *remote_g_packet_data_handle;
11110
11111 static void *
11112 remote_g_packet_data_init (struct obstack *obstack)
11113 {
11114 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11115 }
11116
11117 void
11118 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11119 const struct target_desc *tdesc)
11120 {
11121 struct remote_g_packet_data *data
11122 = ((struct remote_g_packet_data *)
11123 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11124 struct remote_g_packet_guess new_guess, *guess;
11125 int ix;
11126
11127 gdb_assert (tdesc != NULL);
11128
11129 for (ix = 0;
11130 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11131 ix++)
11132 if (guess->bytes == bytes)
11133 internal_error (__FILE__, __LINE__,
11134 _("Duplicate g packet description added for size %d"),
11135 bytes);
11136
11137 new_guess.bytes = bytes;
11138 new_guess.tdesc = tdesc;
11139 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11140 }
11141
11142 /* Return 1 if remote_read_description would do anything on this target
11143 and architecture, 0 otherwise. */
11144
11145 static int
11146 remote_read_description_p (struct target_ops *target)
11147 {
11148 struct remote_g_packet_data *data
11149 = ((struct remote_g_packet_data *)
11150 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11151
11152 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11153 return 1;
11154
11155 return 0;
11156 }
11157
11158 static const struct target_desc *
11159 remote_read_description (struct target_ops *target)
11160 {
11161 struct remote_g_packet_data *data
11162 = ((struct remote_g_packet_data *)
11163 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11164
11165 /* Do not try this during initial connection, when we do not know
11166 whether there is a running but stopped thread. */
11167 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11168 return target->beneath->to_read_description (target->beneath);
11169
11170 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11171 {
11172 struct remote_g_packet_guess *guess;
11173 int ix;
11174 int bytes = send_g_packet ();
11175
11176 for (ix = 0;
11177 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11178 ix++)
11179 if (guess->bytes == bytes)
11180 return guess->tdesc;
11181
11182 /* We discard the g packet. A minor optimization would be to
11183 hold on to it, and fill the register cache once we have selected
11184 an architecture, but it's too tricky to do safely. */
11185 }
11186
11187 return target->beneath->to_read_description (target->beneath);
11188 }
11189
11190 /* Remote file transfer support. This is host-initiated I/O, not
11191 target-initiated; for target-initiated, see remote-fileio.c. */
11192
11193 /* If *LEFT is at least the length of STRING, copy STRING to
11194 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11195 decrease *LEFT. Otherwise raise an error. */
11196
11197 static void
11198 remote_buffer_add_string (char **buffer, int *left, char *string)
11199 {
11200 int len = strlen (string);
11201
11202 if (len > *left)
11203 error (_("Packet too long for target."));
11204
11205 memcpy (*buffer, string, len);
11206 *buffer += len;
11207 *left -= len;
11208
11209 /* NUL-terminate the buffer as a convenience, if there is
11210 room. */
11211 if (*left)
11212 **buffer = '\0';
11213 }
11214
11215 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11216 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11217 decrease *LEFT. Otherwise raise an error. */
11218
11219 static void
11220 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11221 int len)
11222 {
11223 if (2 * len > *left)
11224 error (_("Packet too long for target."));
11225
11226 bin2hex (bytes, *buffer, len);
11227 *buffer += 2 * len;
11228 *left -= 2 * len;
11229
11230 /* NUL-terminate the buffer as a convenience, if there is
11231 room. */
11232 if (*left)
11233 **buffer = '\0';
11234 }
11235
11236 /* If *LEFT is large enough, convert VALUE to hex and add it to
11237 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11238 decrease *LEFT. Otherwise raise an error. */
11239
11240 static void
11241 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11242 {
11243 int len = hexnumlen (value);
11244
11245 if (len > *left)
11246 error (_("Packet too long for target."));
11247
11248 hexnumstr (*buffer, value);
11249 *buffer += len;
11250 *left -= len;
11251
11252 /* NUL-terminate the buffer as a convenience, if there is
11253 room. */
11254 if (*left)
11255 **buffer = '\0';
11256 }
11257
11258 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11259 value, *REMOTE_ERRNO to the remote error number or zero if none
11260 was included, and *ATTACHMENT to point to the start of the annex
11261 if any. The length of the packet isn't needed here; there may
11262 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11263
11264 Return 0 if the packet could be parsed, -1 if it could not. If
11265 -1 is returned, the other variables may not be initialized. */
11266
11267 static int
11268 remote_hostio_parse_result (char *buffer, int *retcode,
11269 int *remote_errno, char **attachment)
11270 {
11271 char *p, *p2;
11272
11273 *remote_errno = 0;
11274 *attachment = NULL;
11275
11276 if (buffer[0] != 'F')
11277 return -1;
11278
11279 errno = 0;
11280 *retcode = strtol (&buffer[1], &p, 16);
11281 if (errno != 0 || p == &buffer[1])
11282 return -1;
11283
11284 /* Check for ",errno". */
11285 if (*p == ',')
11286 {
11287 errno = 0;
11288 *remote_errno = strtol (p + 1, &p2, 16);
11289 if (errno != 0 || p + 1 == p2)
11290 return -1;
11291 p = p2;
11292 }
11293
11294 /* Check for ";attachment". If there is no attachment, the
11295 packet should end here. */
11296 if (*p == ';')
11297 {
11298 *attachment = p + 1;
11299 return 0;
11300 }
11301 else if (*p == '\0')
11302 return 0;
11303 else
11304 return -1;
11305 }
11306
11307 /* Send a prepared I/O packet to the target and read its response.
11308 The prepared packet is in the global RS->BUF before this function
11309 is called, and the answer is there when we return.
11310
11311 COMMAND_BYTES is the length of the request to send, which may include
11312 binary data. WHICH_PACKET is the packet configuration to check
11313 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11314 is set to the error number and -1 is returned. Otherwise the value
11315 returned by the function is returned.
11316
11317 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11318 attachment is expected; an error will be reported if there's a
11319 mismatch. If one is found, *ATTACHMENT will be set to point into
11320 the packet buffer and *ATTACHMENT_LEN will be set to the
11321 attachment's length. */
11322
11323 static int
11324 remote_hostio_send_command (int command_bytes, int which_packet,
11325 int *remote_errno, char **attachment,
11326 int *attachment_len)
11327 {
11328 struct remote_state *rs = get_remote_state ();
11329 int ret, bytes_read;
11330 char *attachment_tmp;
11331
11332 if (!rs->remote_desc
11333 || packet_support (which_packet) == PACKET_DISABLE)
11334 {
11335 *remote_errno = FILEIO_ENOSYS;
11336 return -1;
11337 }
11338
11339 putpkt_binary (rs->buf, command_bytes);
11340 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11341
11342 /* If it timed out, something is wrong. Don't try to parse the
11343 buffer. */
11344 if (bytes_read < 0)
11345 {
11346 *remote_errno = FILEIO_EINVAL;
11347 return -1;
11348 }
11349
11350 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11351 {
11352 case PACKET_ERROR:
11353 *remote_errno = FILEIO_EINVAL;
11354 return -1;
11355 case PACKET_UNKNOWN:
11356 *remote_errno = FILEIO_ENOSYS;
11357 return -1;
11358 case PACKET_OK:
11359 break;
11360 }
11361
11362 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11363 &attachment_tmp))
11364 {
11365 *remote_errno = FILEIO_EINVAL;
11366 return -1;
11367 }
11368
11369 /* Make sure we saw an attachment if and only if we expected one. */
11370 if ((attachment_tmp == NULL && attachment != NULL)
11371 || (attachment_tmp != NULL && attachment == NULL))
11372 {
11373 *remote_errno = FILEIO_EINVAL;
11374 return -1;
11375 }
11376
11377 /* If an attachment was found, it must point into the packet buffer;
11378 work out how many bytes there were. */
11379 if (attachment_tmp != NULL)
11380 {
11381 *attachment = attachment_tmp;
11382 *attachment_len = bytes_read - (*attachment - rs->buf);
11383 }
11384
11385 return ret;
11386 }
11387
11388 /* Invalidate the readahead cache. */
11389
11390 static void
11391 readahead_cache_invalidate (void)
11392 {
11393 struct remote_state *rs = get_remote_state ();
11394
11395 rs->readahead_cache.fd = -1;
11396 }
11397
11398 /* Invalidate the readahead cache if it is holding data for FD. */
11399
11400 static void
11401 readahead_cache_invalidate_fd (int fd)
11402 {
11403 struct remote_state *rs = get_remote_state ();
11404
11405 if (rs->readahead_cache.fd == fd)
11406 rs->readahead_cache.fd = -1;
11407 }
11408
11409 /* Set the filesystem remote_hostio functions that take FILENAME
11410 arguments will use. Return 0 on success, or -1 if an error
11411 occurs (and set *REMOTE_ERRNO). */
11412
11413 static int
11414 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11415 {
11416 struct remote_state *rs = get_remote_state ();
11417 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11418 char *p = rs->buf;
11419 int left = get_remote_packet_size () - 1;
11420 char arg[9];
11421 int ret;
11422
11423 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11424 return 0;
11425
11426 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11427 return 0;
11428
11429 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11430
11431 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11432 remote_buffer_add_string (&p, &left, arg);
11433
11434 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11435 remote_errno, NULL, NULL);
11436
11437 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11438 return 0;
11439
11440 if (ret == 0)
11441 rs->fs_pid = required_pid;
11442
11443 return ret;
11444 }
11445
11446 /* Implementation of to_fileio_open. */
11447
11448 static int
11449 remote_hostio_open (struct target_ops *self,
11450 struct inferior *inf, const char *filename,
11451 int flags, int mode, int warn_if_slow,
11452 int *remote_errno)
11453 {
11454 struct remote_state *rs = get_remote_state ();
11455 char *p = rs->buf;
11456 int left = get_remote_packet_size () - 1;
11457
11458 if (warn_if_slow)
11459 {
11460 static int warning_issued = 0;
11461
11462 printf_unfiltered (_("Reading %s from remote target...\n"),
11463 filename);
11464
11465 if (!warning_issued)
11466 {
11467 warning (_("File transfers from remote targets can be slow."
11468 " Use \"set sysroot\" to access files locally"
11469 " instead."));
11470 warning_issued = 1;
11471 }
11472 }
11473
11474 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11475 return -1;
11476
11477 remote_buffer_add_string (&p, &left, "vFile:open:");
11478
11479 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11480 strlen (filename));
11481 remote_buffer_add_string (&p, &left, ",");
11482
11483 remote_buffer_add_int (&p, &left, flags);
11484 remote_buffer_add_string (&p, &left, ",");
11485
11486 remote_buffer_add_int (&p, &left, mode);
11487
11488 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11489 remote_errno, NULL, NULL);
11490 }
11491
11492 /* Implementation of to_fileio_pwrite. */
11493
11494 static int
11495 remote_hostio_pwrite (struct target_ops *self,
11496 int fd, const gdb_byte *write_buf, int len,
11497 ULONGEST offset, int *remote_errno)
11498 {
11499 struct remote_state *rs = get_remote_state ();
11500 char *p = rs->buf;
11501 int left = get_remote_packet_size ();
11502 int out_len;
11503
11504 readahead_cache_invalidate_fd (fd);
11505
11506 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11507
11508 remote_buffer_add_int (&p, &left, fd);
11509 remote_buffer_add_string (&p, &left, ",");
11510
11511 remote_buffer_add_int (&p, &left, offset);
11512 remote_buffer_add_string (&p, &left, ",");
11513
11514 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11515 get_remote_packet_size () - (p - rs->buf));
11516
11517 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11518 remote_errno, NULL, NULL);
11519 }
11520
11521 /* Helper for the implementation of to_fileio_pread. Read the file
11522 from the remote side with vFile:pread. */
11523
11524 static int
11525 remote_hostio_pread_vFile (struct target_ops *self,
11526 int fd, gdb_byte *read_buf, int len,
11527 ULONGEST offset, int *remote_errno)
11528 {
11529 struct remote_state *rs = get_remote_state ();
11530 char *p = rs->buf;
11531 char *attachment;
11532 int left = get_remote_packet_size ();
11533 int ret, attachment_len;
11534 int read_len;
11535
11536 remote_buffer_add_string (&p, &left, "vFile:pread:");
11537
11538 remote_buffer_add_int (&p, &left, fd);
11539 remote_buffer_add_string (&p, &left, ",");
11540
11541 remote_buffer_add_int (&p, &left, len);
11542 remote_buffer_add_string (&p, &left, ",");
11543
11544 remote_buffer_add_int (&p, &left, offset);
11545
11546 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11547 remote_errno, &attachment,
11548 &attachment_len);
11549
11550 if (ret < 0)
11551 return ret;
11552
11553 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11554 read_buf, len);
11555 if (read_len != ret)
11556 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11557
11558 return ret;
11559 }
11560
11561 /* Serve pread from the readahead cache. Returns number of bytes
11562 read, or 0 if the request can't be served from the cache. */
11563
11564 static int
11565 remote_hostio_pread_from_cache (struct remote_state *rs,
11566 int fd, gdb_byte *read_buf, size_t len,
11567 ULONGEST offset)
11568 {
11569 struct readahead_cache *cache = &rs->readahead_cache;
11570
11571 if (cache->fd == fd
11572 && cache->offset <= offset
11573 && offset < cache->offset + cache->bufsize)
11574 {
11575 ULONGEST max = cache->offset + cache->bufsize;
11576
11577 if (offset + len > max)
11578 len = max - offset;
11579
11580 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11581 return len;
11582 }
11583
11584 return 0;
11585 }
11586
11587 /* Implementation of to_fileio_pread. */
11588
11589 static int
11590 remote_hostio_pread (struct target_ops *self,
11591 int fd, gdb_byte *read_buf, int len,
11592 ULONGEST offset, int *remote_errno)
11593 {
11594 int ret;
11595 struct remote_state *rs = get_remote_state ();
11596 struct readahead_cache *cache = &rs->readahead_cache;
11597
11598 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11599 if (ret > 0)
11600 {
11601 cache->hit_count++;
11602
11603 if (remote_debug)
11604 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11605 pulongest (cache->hit_count));
11606 return ret;
11607 }
11608
11609 cache->miss_count++;
11610 if (remote_debug)
11611 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11612 pulongest (cache->miss_count));
11613
11614 cache->fd = fd;
11615 cache->offset = offset;
11616 cache->bufsize = get_remote_packet_size ();
11617 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11618
11619 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11620 cache->offset, remote_errno);
11621 if (ret <= 0)
11622 {
11623 readahead_cache_invalidate_fd (fd);
11624 return ret;
11625 }
11626
11627 cache->bufsize = ret;
11628 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11629 }
11630
11631 /* Implementation of to_fileio_close. */
11632
11633 static int
11634 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11635 {
11636 struct remote_state *rs = get_remote_state ();
11637 char *p = rs->buf;
11638 int left = get_remote_packet_size () - 1;
11639
11640 readahead_cache_invalidate_fd (fd);
11641
11642 remote_buffer_add_string (&p, &left, "vFile:close:");
11643
11644 remote_buffer_add_int (&p, &left, fd);
11645
11646 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11647 remote_errno, NULL, NULL);
11648 }
11649
11650 /* Implementation of to_fileio_unlink. */
11651
11652 static int
11653 remote_hostio_unlink (struct target_ops *self,
11654 struct inferior *inf, const char *filename,
11655 int *remote_errno)
11656 {
11657 struct remote_state *rs = get_remote_state ();
11658 char *p = rs->buf;
11659 int left = get_remote_packet_size () - 1;
11660
11661 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11662 return -1;
11663
11664 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11665
11666 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11667 strlen (filename));
11668
11669 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11670 remote_errno, NULL, NULL);
11671 }
11672
11673 /* Implementation of to_fileio_readlink. */
11674
11675 static char *
11676 remote_hostio_readlink (struct target_ops *self,
11677 struct inferior *inf, const char *filename,
11678 int *remote_errno)
11679 {
11680 struct remote_state *rs = get_remote_state ();
11681 char *p = rs->buf;
11682 char *attachment;
11683 int left = get_remote_packet_size ();
11684 int len, attachment_len;
11685 int read_len;
11686 char *ret;
11687
11688 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11689 return NULL;
11690
11691 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11692
11693 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11694 strlen (filename));
11695
11696 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11697 remote_errno, &attachment,
11698 &attachment_len);
11699
11700 if (len < 0)
11701 return NULL;
11702
11703 ret = (char *) xmalloc (len + 1);
11704
11705 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11706 (gdb_byte *) ret, len);
11707 if (read_len != len)
11708 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11709
11710 ret[len] = '\0';
11711 return ret;
11712 }
11713
11714 /* Implementation of to_fileio_fstat. */
11715
11716 static int
11717 remote_hostio_fstat (struct target_ops *self,
11718 int fd, struct stat *st,
11719 int *remote_errno)
11720 {
11721 struct remote_state *rs = get_remote_state ();
11722 char *p = rs->buf;
11723 int left = get_remote_packet_size ();
11724 int attachment_len, ret;
11725 char *attachment;
11726 struct fio_stat fst;
11727 int read_len;
11728
11729 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11730
11731 remote_buffer_add_int (&p, &left, fd);
11732
11733 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11734 remote_errno, &attachment,
11735 &attachment_len);
11736 if (ret < 0)
11737 {
11738 if (*remote_errno != FILEIO_ENOSYS)
11739 return ret;
11740
11741 /* Strictly we should return -1, ENOSYS here, but when
11742 "set sysroot remote:" was implemented in August 2008
11743 BFD's need for a stat function was sidestepped with
11744 this hack. This was not remedied until March 2015
11745 so we retain the previous behavior to avoid breaking
11746 compatibility.
11747
11748 Note that the memset is a March 2015 addition; older
11749 GDBs set st_size *and nothing else* so the structure
11750 would have garbage in all other fields. This might
11751 break something but retaining the previous behavior
11752 here would be just too wrong. */
11753
11754 memset (st, 0, sizeof (struct stat));
11755 st->st_size = INT_MAX;
11756 return 0;
11757 }
11758
11759 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11760 (gdb_byte *) &fst, sizeof (fst));
11761
11762 if (read_len != ret)
11763 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11764
11765 if (read_len != sizeof (fst))
11766 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11767 read_len, (int) sizeof (fst));
11768
11769 remote_fileio_to_host_stat (&fst, st);
11770
11771 return 0;
11772 }
11773
11774 /* Implementation of to_filesystem_is_local. */
11775
11776 static int
11777 remote_filesystem_is_local (struct target_ops *self)
11778 {
11779 /* Valgrind GDB presents itself as a remote target but works
11780 on the local filesystem: it does not implement remote get
11781 and users are not expected to set a sysroot. To handle
11782 this case we treat the remote filesystem as local if the
11783 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11784 does not support vFile:open. */
11785 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11786 {
11787 enum packet_support ps = packet_support (PACKET_vFile_open);
11788
11789 if (ps == PACKET_SUPPORT_UNKNOWN)
11790 {
11791 int fd, remote_errno;
11792
11793 /* Try opening a file to probe support. The supplied
11794 filename is irrelevant, we only care about whether
11795 the stub recognizes the packet or not. */
11796 fd = remote_hostio_open (self, NULL, "just probing",
11797 FILEIO_O_RDONLY, 0700, 0,
11798 &remote_errno);
11799
11800 if (fd >= 0)
11801 remote_hostio_close (self, fd, &remote_errno);
11802
11803 ps = packet_support (PACKET_vFile_open);
11804 }
11805
11806 if (ps == PACKET_DISABLE)
11807 {
11808 static int warning_issued = 0;
11809
11810 if (!warning_issued)
11811 {
11812 warning (_("remote target does not support file"
11813 " transfer, attempting to access files"
11814 " from local filesystem."));
11815 warning_issued = 1;
11816 }
11817
11818 return 1;
11819 }
11820 }
11821
11822 return 0;
11823 }
11824
11825 static int
11826 remote_fileio_errno_to_host (int errnum)
11827 {
11828 switch (errnum)
11829 {
11830 case FILEIO_EPERM:
11831 return EPERM;
11832 case FILEIO_ENOENT:
11833 return ENOENT;
11834 case FILEIO_EINTR:
11835 return EINTR;
11836 case FILEIO_EIO:
11837 return EIO;
11838 case FILEIO_EBADF:
11839 return EBADF;
11840 case FILEIO_EACCES:
11841 return EACCES;
11842 case FILEIO_EFAULT:
11843 return EFAULT;
11844 case FILEIO_EBUSY:
11845 return EBUSY;
11846 case FILEIO_EEXIST:
11847 return EEXIST;
11848 case FILEIO_ENODEV:
11849 return ENODEV;
11850 case FILEIO_ENOTDIR:
11851 return ENOTDIR;
11852 case FILEIO_EISDIR:
11853 return EISDIR;
11854 case FILEIO_EINVAL:
11855 return EINVAL;
11856 case FILEIO_ENFILE:
11857 return ENFILE;
11858 case FILEIO_EMFILE:
11859 return EMFILE;
11860 case FILEIO_EFBIG:
11861 return EFBIG;
11862 case FILEIO_ENOSPC:
11863 return ENOSPC;
11864 case FILEIO_ESPIPE:
11865 return ESPIPE;
11866 case FILEIO_EROFS:
11867 return EROFS;
11868 case FILEIO_ENOSYS:
11869 return ENOSYS;
11870 case FILEIO_ENAMETOOLONG:
11871 return ENAMETOOLONG;
11872 }
11873 return -1;
11874 }
11875
11876 static char *
11877 remote_hostio_error (int errnum)
11878 {
11879 int host_error = remote_fileio_errno_to_host (errnum);
11880
11881 if (host_error == -1)
11882 error (_("Unknown remote I/O error %d"), errnum);
11883 else
11884 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11885 }
11886
11887 static void
11888 remote_hostio_close_cleanup (void *opaque)
11889 {
11890 int fd = *(int *) opaque;
11891 int remote_errno;
11892
11893 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11894 }
11895
11896 void
11897 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11898 {
11899 struct cleanup *back_to, *close_cleanup;
11900 int retcode, fd, remote_errno, bytes, io_size;
11901 FILE *file;
11902 gdb_byte *buffer;
11903 int bytes_in_buffer;
11904 int saw_eof;
11905 ULONGEST offset;
11906 struct remote_state *rs = get_remote_state ();
11907
11908 if (!rs->remote_desc)
11909 error (_("command can only be used with remote target"));
11910
11911 file = gdb_fopen_cloexec (local_file, "rb");
11912 if (file == NULL)
11913 perror_with_name (local_file);
11914 back_to = make_cleanup_fclose (file);
11915
11916 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11917 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11918 | FILEIO_O_TRUNC),
11919 0700, 0, &remote_errno);
11920 if (fd == -1)
11921 remote_hostio_error (remote_errno);
11922
11923 /* Send up to this many bytes at once. They won't all fit in the
11924 remote packet limit, so we'll transfer slightly fewer. */
11925 io_size = get_remote_packet_size ();
11926 buffer = (gdb_byte *) xmalloc (io_size);
11927 make_cleanup (xfree, buffer);
11928
11929 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11930
11931 bytes_in_buffer = 0;
11932 saw_eof = 0;
11933 offset = 0;
11934 while (bytes_in_buffer || !saw_eof)
11935 {
11936 if (!saw_eof)
11937 {
11938 bytes = fread (buffer + bytes_in_buffer, 1,
11939 io_size - bytes_in_buffer,
11940 file);
11941 if (bytes == 0)
11942 {
11943 if (ferror (file))
11944 error (_("Error reading %s."), local_file);
11945 else
11946 {
11947 /* EOF. Unless there is something still in the
11948 buffer from the last iteration, we are done. */
11949 saw_eof = 1;
11950 if (bytes_in_buffer == 0)
11951 break;
11952 }
11953 }
11954 }
11955 else
11956 bytes = 0;
11957
11958 bytes += bytes_in_buffer;
11959 bytes_in_buffer = 0;
11960
11961 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11962 fd, buffer, bytes,
11963 offset, &remote_errno);
11964
11965 if (retcode < 0)
11966 remote_hostio_error (remote_errno);
11967 else if (retcode == 0)
11968 error (_("Remote write of %d bytes returned 0!"), bytes);
11969 else if (retcode < bytes)
11970 {
11971 /* Short write. Save the rest of the read data for the next
11972 write. */
11973 bytes_in_buffer = bytes - retcode;
11974 memmove (buffer, buffer + retcode, bytes_in_buffer);
11975 }
11976
11977 offset += retcode;
11978 }
11979
11980 discard_cleanups (close_cleanup);
11981 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
11982 remote_hostio_error (remote_errno);
11983
11984 if (from_tty)
11985 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
11986 do_cleanups (back_to);
11987 }
11988
11989 void
11990 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
11991 {
11992 struct cleanup *back_to, *close_cleanup;
11993 int fd, remote_errno, bytes, io_size;
11994 FILE *file;
11995 gdb_byte *buffer;
11996 ULONGEST offset;
11997 struct remote_state *rs = get_remote_state ();
11998
11999 if (!rs->remote_desc)
12000 error (_("command can only be used with remote target"));
12001
12002 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12003 remote_file, FILEIO_O_RDONLY, 0, 0,
12004 &remote_errno);
12005 if (fd == -1)
12006 remote_hostio_error (remote_errno);
12007
12008 file = gdb_fopen_cloexec (local_file, "wb");
12009 if (file == NULL)
12010 perror_with_name (local_file);
12011 back_to = make_cleanup_fclose (file);
12012
12013 /* Send up to this many bytes at once. They won't all fit in the
12014 remote packet limit, so we'll transfer slightly fewer. */
12015 io_size = get_remote_packet_size ();
12016 buffer = (gdb_byte *) xmalloc (io_size);
12017 make_cleanup (xfree, buffer);
12018
12019 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12020
12021 offset = 0;
12022 while (1)
12023 {
12024 bytes = remote_hostio_pread (find_target_at (process_stratum),
12025 fd, buffer, io_size, offset, &remote_errno);
12026 if (bytes == 0)
12027 /* Success, but no bytes, means end-of-file. */
12028 break;
12029 if (bytes == -1)
12030 remote_hostio_error (remote_errno);
12031
12032 offset += bytes;
12033
12034 bytes = fwrite (buffer, 1, bytes, file);
12035 if (bytes == 0)
12036 perror_with_name (local_file);
12037 }
12038
12039 discard_cleanups (close_cleanup);
12040 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12041 remote_hostio_error (remote_errno);
12042
12043 if (from_tty)
12044 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12045 do_cleanups (back_to);
12046 }
12047
12048 void
12049 remote_file_delete (const char *remote_file, int from_tty)
12050 {
12051 int retcode, remote_errno;
12052 struct remote_state *rs = get_remote_state ();
12053
12054 if (!rs->remote_desc)
12055 error (_("command can only be used with remote target"));
12056
12057 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12058 NULL, remote_file, &remote_errno);
12059 if (retcode == -1)
12060 remote_hostio_error (remote_errno);
12061
12062 if (from_tty)
12063 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12064 }
12065
12066 static void
12067 remote_put_command (char *args, int from_tty)
12068 {
12069 struct cleanup *back_to;
12070 char **argv;
12071
12072 if (args == NULL)
12073 error_no_arg (_("file to put"));
12074
12075 argv = gdb_buildargv (args);
12076 back_to = make_cleanup_freeargv (argv);
12077 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12078 error (_("Invalid parameters to remote put"));
12079
12080 remote_file_put (argv[0], argv[1], from_tty);
12081
12082 do_cleanups (back_to);
12083 }
12084
12085 static void
12086 remote_get_command (char *args, int from_tty)
12087 {
12088 struct cleanup *back_to;
12089 char **argv;
12090
12091 if (args == NULL)
12092 error_no_arg (_("file to get"));
12093
12094 argv = gdb_buildargv (args);
12095 back_to = make_cleanup_freeargv (argv);
12096 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12097 error (_("Invalid parameters to remote get"));
12098
12099 remote_file_get (argv[0], argv[1], from_tty);
12100
12101 do_cleanups (back_to);
12102 }
12103
12104 static void
12105 remote_delete_command (char *args, int from_tty)
12106 {
12107 struct cleanup *back_to;
12108 char **argv;
12109
12110 if (args == NULL)
12111 error_no_arg (_("file to delete"));
12112
12113 argv = gdb_buildargv (args);
12114 back_to = make_cleanup_freeargv (argv);
12115 if (argv[0] == NULL || argv[1] != NULL)
12116 error (_("Invalid parameters to remote delete"));
12117
12118 remote_file_delete (argv[0], from_tty);
12119
12120 do_cleanups (back_to);
12121 }
12122
12123 static void
12124 remote_command (char *args, int from_tty)
12125 {
12126 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12127 }
12128
12129 static int
12130 remote_can_execute_reverse (struct target_ops *self)
12131 {
12132 if (packet_support (PACKET_bs) == PACKET_ENABLE
12133 || packet_support (PACKET_bc) == PACKET_ENABLE)
12134 return 1;
12135 else
12136 return 0;
12137 }
12138
12139 static int
12140 remote_supports_non_stop (struct target_ops *self)
12141 {
12142 return 1;
12143 }
12144
12145 static int
12146 remote_supports_disable_randomization (struct target_ops *self)
12147 {
12148 /* Only supported in extended mode. */
12149 return 0;
12150 }
12151
12152 static int
12153 remote_supports_multi_process (struct target_ops *self)
12154 {
12155 struct remote_state *rs = get_remote_state ();
12156
12157 return remote_multi_process_p (rs);
12158 }
12159
12160 static int
12161 remote_supports_cond_tracepoints (void)
12162 {
12163 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12164 }
12165
12166 static int
12167 remote_supports_cond_breakpoints (struct target_ops *self)
12168 {
12169 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12170 }
12171
12172 static int
12173 remote_supports_fast_tracepoints (void)
12174 {
12175 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12176 }
12177
12178 static int
12179 remote_supports_static_tracepoints (void)
12180 {
12181 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12182 }
12183
12184 static int
12185 remote_supports_install_in_trace (void)
12186 {
12187 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12188 }
12189
12190 static int
12191 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12192 {
12193 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12194 == PACKET_ENABLE);
12195 }
12196
12197 static int
12198 remote_supports_string_tracing (struct target_ops *self)
12199 {
12200 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12201 }
12202
12203 static int
12204 remote_can_run_breakpoint_commands (struct target_ops *self)
12205 {
12206 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12207 }
12208
12209 static void
12210 remote_trace_init (struct target_ops *self)
12211 {
12212 putpkt ("QTinit");
12213 remote_get_noisy_reply (&target_buf, &target_buf_size);
12214 if (strcmp (target_buf, "OK") != 0)
12215 error (_("Target does not support this command."));
12216 }
12217
12218 static void free_actions_list (char **actions_list);
12219 static void free_actions_list_cleanup_wrapper (void *);
12220 static void
12221 free_actions_list_cleanup_wrapper (void *al)
12222 {
12223 free_actions_list ((char **) al);
12224 }
12225
12226 static void
12227 free_actions_list (char **actions_list)
12228 {
12229 int ndx;
12230
12231 if (actions_list == 0)
12232 return;
12233
12234 for (ndx = 0; actions_list[ndx]; ndx++)
12235 xfree (actions_list[ndx]);
12236
12237 xfree (actions_list);
12238 }
12239
12240 /* Recursive routine to walk through command list including loops, and
12241 download packets for each command. */
12242
12243 static void
12244 remote_download_command_source (int num, ULONGEST addr,
12245 struct command_line *cmds)
12246 {
12247 struct remote_state *rs = get_remote_state ();
12248 struct command_line *cmd;
12249
12250 for (cmd = cmds; cmd; cmd = cmd->next)
12251 {
12252 QUIT; /* Allow user to bail out with ^C. */
12253 strcpy (rs->buf, "QTDPsrc:");
12254 encode_source_string (num, addr, "cmd", cmd->line,
12255 rs->buf + strlen (rs->buf),
12256 rs->buf_size - strlen (rs->buf));
12257 putpkt (rs->buf);
12258 remote_get_noisy_reply (&target_buf, &target_buf_size);
12259 if (strcmp (target_buf, "OK"))
12260 warning (_("Target does not support source download."));
12261
12262 if (cmd->control_type == while_control
12263 || cmd->control_type == while_stepping_control)
12264 {
12265 remote_download_command_source (num, addr, *cmd->body_list);
12266
12267 QUIT; /* Allow user to bail out with ^C. */
12268 strcpy (rs->buf, "QTDPsrc:");
12269 encode_source_string (num, addr, "cmd", "end",
12270 rs->buf + strlen (rs->buf),
12271 rs->buf_size - strlen (rs->buf));
12272 putpkt (rs->buf);
12273 remote_get_noisy_reply (&target_buf, &target_buf_size);
12274 if (strcmp (target_buf, "OK"))
12275 warning (_("Target does not support source download."));
12276 }
12277 }
12278 }
12279
12280 static void
12281 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12282 {
12283 #define BUF_SIZE 2048
12284
12285 CORE_ADDR tpaddr;
12286 char addrbuf[40];
12287 char buf[BUF_SIZE];
12288 char **tdp_actions;
12289 char **stepping_actions;
12290 int ndx;
12291 struct cleanup *old_chain = NULL;
12292 char *pkt;
12293 struct breakpoint *b = loc->owner;
12294 struct tracepoint *t = (struct tracepoint *) b;
12295
12296 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12297 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
12298 tdp_actions);
12299 (void) make_cleanup (free_actions_list_cleanup_wrapper,
12300 stepping_actions);
12301
12302 tpaddr = loc->address;
12303 sprintf_vma (addrbuf, tpaddr);
12304 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12305 addrbuf, /* address */
12306 (b->enable_state == bp_enabled ? 'E' : 'D'),
12307 t->step_count, t->pass_count);
12308 /* Fast tracepoints are mostly handled by the target, but we can
12309 tell the target how big of an instruction block should be moved
12310 around. */
12311 if (b->type == bp_fast_tracepoint)
12312 {
12313 /* Only test for support at download time; we may not know
12314 target capabilities at definition time. */
12315 if (remote_supports_fast_tracepoints ())
12316 {
12317 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12318 NULL))
12319 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12320 gdb_insn_length (loc->gdbarch, tpaddr));
12321 else
12322 /* If it passed validation at definition but fails now,
12323 something is very wrong. */
12324 internal_error (__FILE__, __LINE__,
12325 _("Fast tracepoint not "
12326 "valid during download"));
12327 }
12328 else
12329 /* Fast tracepoints are functionally identical to regular
12330 tracepoints, so don't take lack of support as a reason to
12331 give up on the trace run. */
12332 warning (_("Target does not support fast tracepoints, "
12333 "downloading %d as regular tracepoint"), b->number);
12334 }
12335 else if (b->type == bp_static_tracepoint)
12336 {
12337 /* Only test for support at download time; we may not know
12338 target capabilities at definition time. */
12339 if (remote_supports_static_tracepoints ())
12340 {
12341 struct static_tracepoint_marker marker;
12342
12343 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12344 strcat (buf, ":S");
12345 else
12346 error (_("Static tracepoint not valid during download"));
12347 }
12348 else
12349 /* Fast tracepoints are functionally identical to regular
12350 tracepoints, so don't take lack of support as a reason
12351 to give up on the trace run. */
12352 error (_("Target does not support static tracepoints"));
12353 }
12354 /* If the tracepoint has a conditional, make it into an agent
12355 expression and append to the definition. */
12356 if (loc->cond)
12357 {
12358 /* Only test support at download time, we may not know target
12359 capabilities at definition time. */
12360 if (remote_supports_cond_tracepoints ())
12361 {
12362 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12363 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12364 aexpr->len);
12365 pkt = buf + strlen (buf);
12366 for (ndx = 0; ndx < aexpr->len; ++ndx)
12367 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12368 *pkt = '\0';
12369 }
12370 else
12371 warning (_("Target does not support conditional tracepoints, "
12372 "ignoring tp %d cond"), b->number);
12373 }
12374
12375 if (b->commands || *default_collect)
12376 strcat (buf, "-");
12377 putpkt (buf);
12378 remote_get_noisy_reply (&target_buf, &target_buf_size);
12379 if (strcmp (target_buf, "OK"))
12380 error (_("Target does not support tracepoints."));
12381
12382 /* do_single_steps (t); */
12383 if (tdp_actions)
12384 {
12385 for (ndx = 0; tdp_actions[ndx]; ndx++)
12386 {
12387 QUIT; /* Allow user to bail out with ^C. */
12388 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12389 b->number, addrbuf, /* address */
12390 tdp_actions[ndx],
12391 ((tdp_actions[ndx + 1] || stepping_actions)
12392 ? '-' : 0));
12393 putpkt (buf);
12394 remote_get_noisy_reply (&target_buf,
12395 &target_buf_size);
12396 if (strcmp (target_buf, "OK"))
12397 error (_("Error on target while setting tracepoints."));
12398 }
12399 }
12400 if (stepping_actions)
12401 {
12402 for (ndx = 0; stepping_actions[ndx]; ndx++)
12403 {
12404 QUIT; /* Allow user to bail out with ^C. */
12405 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12406 b->number, addrbuf, /* address */
12407 ((ndx == 0) ? "S" : ""),
12408 stepping_actions[ndx],
12409 (stepping_actions[ndx + 1] ? "-" : ""));
12410 putpkt (buf);
12411 remote_get_noisy_reply (&target_buf,
12412 &target_buf_size);
12413 if (strcmp (target_buf, "OK"))
12414 error (_("Error on target while setting tracepoints."));
12415 }
12416 }
12417
12418 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12419 {
12420 if (b->location != NULL)
12421 {
12422 strcpy (buf, "QTDPsrc:");
12423 encode_source_string (b->number, loc->address, "at",
12424 event_location_to_string (b->location),
12425 buf + strlen (buf), 2048 - strlen (buf));
12426 putpkt (buf);
12427 remote_get_noisy_reply (&target_buf, &target_buf_size);
12428 if (strcmp (target_buf, "OK"))
12429 warning (_("Target does not support source download."));
12430 }
12431 if (b->cond_string)
12432 {
12433 strcpy (buf, "QTDPsrc:");
12434 encode_source_string (b->number, loc->address,
12435 "cond", b->cond_string, buf + strlen (buf),
12436 2048 - strlen (buf));
12437 putpkt (buf);
12438 remote_get_noisy_reply (&target_buf, &target_buf_size);
12439 if (strcmp (target_buf, "OK"))
12440 warning (_("Target does not support source download."));
12441 }
12442 remote_download_command_source (b->number, loc->address,
12443 breakpoint_commands (b));
12444 }
12445
12446 do_cleanups (old_chain);
12447 }
12448
12449 static int
12450 remote_can_download_tracepoint (struct target_ops *self)
12451 {
12452 struct remote_state *rs = get_remote_state ();
12453 struct trace_status *ts;
12454 int status;
12455
12456 /* Don't try to install tracepoints until we've relocated our
12457 symbols, and fetched and merged the target's tracepoint list with
12458 ours. */
12459 if (rs->starting_up)
12460 return 0;
12461
12462 ts = current_trace_status ();
12463 status = remote_get_trace_status (self, ts);
12464
12465 if (status == -1 || !ts->running_known || !ts->running)
12466 return 0;
12467
12468 /* If we are in a tracing experiment, but remote stub doesn't support
12469 installing tracepoint in trace, we have to return. */
12470 if (!remote_supports_install_in_trace ())
12471 return 0;
12472
12473 return 1;
12474 }
12475
12476
12477 static void
12478 remote_download_trace_state_variable (struct target_ops *self,
12479 struct trace_state_variable *tsv)
12480 {
12481 struct remote_state *rs = get_remote_state ();
12482 char *p;
12483
12484 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12485 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12486 tsv->builtin);
12487 p = rs->buf + strlen (rs->buf);
12488 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12489 error (_("Trace state variable name too long for tsv definition packet"));
12490 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12491 *p++ = '\0';
12492 putpkt (rs->buf);
12493 remote_get_noisy_reply (&target_buf, &target_buf_size);
12494 if (*target_buf == '\0')
12495 error (_("Target does not support this command."));
12496 if (strcmp (target_buf, "OK") != 0)
12497 error (_("Error on target while downloading trace state variable."));
12498 }
12499
12500 static void
12501 remote_enable_tracepoint (struct target_ops *self,
12502 struct bp_location *location)
12503 {
12504 struct remote_state *rs = get_remote_state ();
12505 char addr_buf[40];
12506
12507 sprintf_vma (addr_buf, location->address);
12508 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12509 location->owner->number, addr_buf);
12510 putpkt (rs->buf);
12511 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12512 if (*rs->buf == '\0')
12513 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12514 if (strcmp (rs->buf, "OK") != 0)
12515 error (_("Error on target while enabling tracepoint."));
12516 }
12517
12518 static void
12519 remote_disable_tracepoint (struct target_ops *self,
12520 struct bp_location *location)
12521 {
12522 struct remote_state *rs = get_remote_state ();
12523 char addr_buf[40];
12524
12525 sprintf_vma (addr_buf, location->address);
12526 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12527 location->owner->number, addr_buf);
12528 putpkt (rs->buf);
12529 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12530 if (*rs->buf == '\0')
12531 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12532 if (strcmp (rs->buf, "OK") != 0)
12533 error (_("Error on target while disabling tracepoint."));
12534 }
12535
12536 static void
12537 remote_trace_set_readonly_regions (struct target_ops *self)
12538 {
12539 asection *s;
12540 bfd *abfd = NULL;
12541 bfd_size_type size;
12542 bfd_vma vma;
12543 int anysecs = 0;
12544 int offset = 0;
12545
12546 if (!exec_bfd)
12547 return; /* No information to give. */
12548
12549 strcpy (target_buf, "QTro");
12550 offset = strlen (target_buf);
12551 for (s = exec_bfd->sections; s; s = s->next)
12552 {
12553 char tmp1[40], tmp2[40];
12554 int sec_length;
12555
12556 if ((s->flags & SEC_LOAD) == 0 ||
12557 /* (s->flags & SEC_CODE) == 0 || */
12558 (s->flags & SEC_READONLY) == 0)
12559 continue;
12560
12561 anysecs = 1;
12562 vma = bfd_get_section_vma (abfd, s);
12563 size = bfd_get_section_size (s);
12564 sprintf_vma (tmp1, vma);
12565 sprintf_vma (tmp2, vma + size);
12566 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12567 if (offset + sec_length + 1 > target_buf_size)
12568 {
12569 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12570 warning (_("\
12571 Too many sections for read-only sections definition packet."));
12572 break;
12573 }
12574 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
12575 tmp1, tmp2);
12576 offset += sec_length;
12577 }
12578 if (anysecs)
12579 {
12580 putpkt (target_buf);
12581 getpkt (&target_buf, &target_buf_size, 0);
12582 }
12583 }
12584
12585 static void
12586 remote_trace_start (struct target_ops *self)
12587 {
12588 putpkt ("QTStart");
12589 remote_get_noisy_reply (&target_buf, &target_buf_size);
12590 if (*target_buf == '\0')
12591 error (_("Target does not support this command."));
12592 if (strcmp (target_buf, "OK") != 0)
12593 error (_("Bogus reply from target: %s"), target_buf);
12594 }
12595
12596 static int
12597 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12598 {
12599 /* Initialize it just to avoid a GCC false warning. */
12600 char *p = NULL;
12601 /* FIXME we need to get register block size some other way. */
12602 extern int trace_regblock_size;
12603 enum packet_result result;
12604
12605 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12606 return -1;
12607
12608 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
12609
12610 putpkt ("qTStatus");
12611
12612 TRY
12613 {
12614 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
12615 }
12616 CATCH (ex, RETURN_MASK_ERROR)
12617 {
12618 if (ex.error != TARGET_CLOSE_ERROR)
12619 {
12620 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12621 return -1;
12622 }
12623 throw_exception (ex);
12624 }
12625 END_CATCH
12626
12627 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12628
12629 /* If the remote target doesn't do tracing, flag it. */
12630 if (result == PACKET_UNKNOWN)
12631 return -1;
12632
12633 /* We're working with a live target. */
12634 ts->filename = NULL;
12635
12636 if (*p++ != 'T')
12637 error (_("Bogus trace status reply from target: %s"), target_buf);
12638
12639 /* Function 'parse_trace_status' sets default value of each field of
12640 'ts' at first, so we don't have to do it here. */
12641 parse_trace_status (p, ts);
12642
12643 return ts->running;
12644 }
12645
12646 static void
12647 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12648 struct uploaded_tp *utp)
12649 {
12650 struct remote_state *rs = get_remote_state ();
12651 char *reply;
12652 struct bp_location *loc;
12653 struct tracepoint *tp = (struct tracepoint *) bp;
12654 size_t size = get_remote_packet_size ();
12655
12656 if (tp)
12657 {
12658 tp->base.hit_count = 0;
12659 tp->traceframe_usage = 0;
12660 for (loc = tp->base.loc; loc; loc = loc->next)
12661 {
12662 /* If the tracepoint was never downloaded, don't go asking for
12663 any status. */
12664 if (tp->number_on_target == 0)
12665 continue;
12666 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12667 phex_nz (loc->address, 0));
12668 putpkt (rs->buf);
12669 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12670 if (reply && *reply)
12671 {
12672 if (*reply == 'V')
12673 parse_tracepoint_status (reply + 1, bp, utp);
12674 }
12675 }
12676 }
12677 else if (utp)
12678 {
12679 utp->hit_count = 0;
12680 utp->traceframe_usage = 0;
12681 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12682 phex_nz (utp->addr, 0));
12683 putpkt (rs->buf);
12684 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12685 if (reply && *reply)
12686 {
12687 if (*reply == 'V')
12688 parse_tracepoint_status (reply + 1, bp, utp);
12689 }
12690 }
12691 }
12692
12693 static void
12694 remote_trace_stop (struct target_ops *self)
12695 {
12696 putpkt ("QTStop");
12697 remote_get_noisy_reply (&target_buf, &target_buf_size);
12698 if (*target_buf == '\0')
12699 error (_("Target does not support this command."));
12700 if (strcmp (target_buf, "OK") != 0)
12701 error (_("Bogus reply from target: %s"), target_buf);
12702 }
12703
12704 static int
12705 remote_trace_find (struct target_ops *self,
12706 enum trace_find_type type, int num,
12707 CORE_ADDR addr1, CORE_ADDR addr2,
12708 int *tpp)
12709 {
12710 struct remote_state *rs = get_remote_state ();
12711 char *endbuf = rs->buf + get_remote_packet_size ();
12712 char *p, *reply;
12713 int target_frameno = -1, target_tracept = -1;
12714
12715 /* Lookups other than by absolute frame number depend on the current
12716 trace selected, so make sure it is correct on the remote end
12717 first. */
12718 if (type != tfind_number)
12719 set_remote_traceframe ();
12720
12721 p = rs->buf;
12722 strcpy (p, "QTFrame:");
12723 p = strchr (p, '\0');
12724 switch (type)
12725 {
12726 case tfind_number:
12727 xsnprintf (p, endbuf - p, "%x", num);
12728 break;
12729 case tfind_pc:
12730 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12731 break;
12732 case tfind_tp:
12733 xsnprintf (p, endbuf - p, "tdp:%x", num);
12734 break;
12735 case tfind_range:
12736 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12737 phex_nz (addr2, 0));
12738 break;
12739 case tfind_outside:
12740 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12741 phex_nz (addr2, 0));
12742 break;
12743 default:
12744 error (_("Unknown trace find type %d"), type);
12745 }
12746
12747 putpkt (rs->buf);
12748 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
12749 if (*reply == '\0')
12750 error (_("Target does not support this command."));
12751
12752 while (reply && *reply)
12753 switch (*reply)
12754 {
12755 case 'F':
12756 p = ++reply;
12757 target_frameno = (int) strtol (p, &reply, 16);
12758 if (reply == p)
12759 error (_("Unable to parse trace frame number"));
12760 /* Don't update our remote traceframe number cache on failure
12761 to select a remote traceframe. */
12762 if (target_frameno == -1)
12763 return -1;
12764 break;
12765 case 'T':
12766 p = ++reply;
12767 target_tracept = (int) strtol (p, &reply, 16);
12768 if (reply == p)
12769 error (_("Unable to parse tracepoint number"));
12770 break;
12771 case 'O': /* "OK"? */
12772 if (reply[1] == 'K' && reply[2] == '\0')
12773 reply += 2;
12774 else
12775 error (_("Bogus reply from target: %s"), reply);
12776 break;
12777 default:
12778 error (_("Bogus reply from target: %s"), reply);
12779 }
12780 if (tpp)
12781 *tpp = target_tracept;
12782
12783 rs->remote_traceframe_number = target_frameno;
12784 return target_frameno;
12785 }
12786
12787 static int
12788 remote_get_trace_state_variable_value (struct target_ops *self,
12789 int tsvnum, LONGEST *val)
12790 {
12791 struct remote_state *rs = get_remote_state ();
12792 char *reply;
12793 ULONGEST uval;
12794
12795 set_remote_traceframe ();
12796
12797 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12798 putpkt (rs->buf);
12799 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12800 if (reply && *reply)
12801 {
12802 if (*reply == 'V')
12803 {
12804 unpack_varlen_hex (reply + 1, &uval);
12805 *val = (LONGEST) uval;
12806 return 1;
12807 }
12808 }
12809 return 0;
12810 }
12811
12812 static int
12813 remote_save_trace_data (struct target_ops *self, const char *filename)
12814 {
12815 struct remote_state *rs = get_remote_state ();
12816 char *p, *reply;
12817
12818 p = rs->buf;
12819 strcpy (p, "QTSave:");
12820 p += strlen (p);
12821 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12822 error (_("Remote file name too long for trace save packet"));
12823 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12824 *p++ = '\0';
12825 putpkt (rs->buf);
12826 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12827 if (*reply == '\0')
12828 error (_("Target does not support this command."));
12829 if (strcmp (reply, "OK") != 0)
12830 error (_("Bogus reply from target: %s"), reply);
12831 return 0;
12832 }
12833
12834 /* This is basically a memory transfer, but needs to be its own packet
12835 because we don't know how the target actually organizes its trace
12836 memory, plus we want to be able to ask for as much as possible, but
12837 not be unhappy if we don't get as much as we ask for. */
12838
12839 static LONGEST
12840 remote_get_raw_trace_data (struct target_ops *self,
12841 gdb_byte *buf, ULONGEST offset, LONGEST len)
12842 {
12843 struct remote_state *rs = get_remote_state ();
12844 char *reply;
12845 char *p;
12846 int rslt;
12847
12848 p = rs->buf;
12849 strcpy (p, "qTBuffer:");
12850 p += strlen (p);
12851 p += hexnumstr (p, offset);
12852 *p++ = ',';
12853 p += hexnumstr (p, len);
12854 *p++ = '\0';
12855
12856 putpkt (rs->buf);
12857 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12858 if (reply && *reply)
12859 {
12860 /* 'l' by itself means we're at the end of the buffer and
12861 there is nothing more to get. */
12862 if (*reply == 'l')
12863 return 0;
12864
12865 /* Convert the reply into binary. Limit the number of bytes to
12866 convert according to our passed-in buffer size, rather than
12867 what was returned in the packet; if the target is
12868 unexpectedly generous and gives us a bigger reply than we
12869 asked for, we don't want to crash. */
12870 rslt = hex2bin (target_buf, buf, len);
12871 return rslt;
12872 }
12873
12874 /* Something went wrong, flag as an error. */
12875 return -1;
12876 }
12877
12878 static void
12879 remote_set_disconnected_tracing (struct target_ops *self, int val)
12880 {
12881 struct remote_state *rs = get_remote_state ();
12882
12883 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12884 {
12885 char *reply;
12886
12887 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12888 putpkt (rs->buf);
12889 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12890 if (*reply == '\0')
12891 error (_("Target does not support this command."));
12892 if (strcmp (reply, "OK") != 0)
12893 error (_("Bogus reply from target: %s"), reply);
12894 }
12895 else if (val)
12896 warning (_("Target does not support disconnected tracing."));
12897 }
12898
12899 static int
12900 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12901 {
12902 struct thread_info *info = find_thread_ptid (ptid);
12903
12904 if (info && info->priv)
12905 return info->priv->core;
12906 return -1;
12907 }
12908
12909 static void
12910 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12911 {
12912 struct remote_state *rs = get_remote_state ();
12913 char *reply;
12914
12915 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12916 putpkt (rs->buf);
12917 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12918 if (*reply == '\0')
12919 error (_("Target does not support this command."));
12920 if (strcmp (reply, "OK") != 0)
12921 error (_("Bogus reply from target: %s"), reply);
12922 }
12923
12924 static struct traceframe_info *
12925 remote_traceframe_info (struct target_ops *self)
12926 {
12927 char *text;
12928
12929 text = target_read_stralloc (&current_target,
12930 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
12931 if (text != NULL)
12932 {
12933 struct traceframe_info *info;
12934 struct cleanup *back_to = make_cleanup (xfree, text);
12935
12936 info = parse_traceframe_info (text);
12937 do_cleanups (back_to);
12938 return info;
12939 }
12940
12941 return NULL;
12942 }
12943
12944 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12945 instruction on which a fast tracepoint may be placed. Returns -1
12946 if the packet is not supported, and 0 if the minimum instruction
12947 length is unknown. */
12948
12949 static int
12950 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12951 {
12952 struct remote_state *rs = get_remote_state ();
12953 char *reply;
12954
12955 /* If we're not debugging a process yet, the IPA can't be
12956 loaded. */
12957 if (!target_has_execution)
12958 return 0;
12959
12960 /* Make sure the remote is pointing at the right process. */
12961 set_general_process ();
12962
12963 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12964 putpkt (rs->buf);
12965 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12966 if (*reply == '\0')
12967 return -1;
12968 else
12969 {
12970 ULONGEST min_insn_len;
12971
12972 unpack_varlen_hex (reply, &min_insn_len);
12973
12974 return (int) min_insn_len;
12975 }
12976 }
12977
12978 static void
12979 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12980 {
12981 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12982 {
12983 struct remote_state *rs = get_remote_state ();
12984 char *buf = rs->buf;
12985 char *endbuf = rs->buf + get_remote_packet_size ();
12986 enum packet_result result;
12987
12988 gdb_assert (val >= 0 || val == -1);
12989 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12990 /* Send -1 as literal "-1" to avoid host size dependency. */
12991 if (val < 0)
12992 {
12993 *buf++ = '-';
12994 buf += hexnumstr (buf, (ULONGEST) -val);
12995 }
12996 else
12997 buf += hexnumstr (buf, (ULONGEST) val);
12998
12999 putpkt (rs->buf);
13000 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
13001 result = packet_ok (rs->buf,
13002 &remote_protocol_packets[PACKET_QTBuffer_size]);
13003
13004 if (result != PACKET_OK)
13005 warning (_("Bogus reply from target: %s"), rs->buf);
13006 }
13007 }
13008
13009 static int
13010 remote_set_trace_notes (struct target_ops *self,
13011 const char *user, const char *notes,
13012 const char *stop_notes)
13013 {
13014 struct remote_state *rs = get_remote_state ();
13015 char *reply;
13016 char *buf = rs->buf;
13017 char *endbuf = rs->buf + get_remote_packet_size ();
13018 int nbytes;
13019
13020 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13021 if (user)
13022 {
13023 buf += xsnprintf (buf, endbuf - buf, "user:");
13024 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13025 buf += 2 * nbytes;
13026 *buf++ = ';';
13027 }
13028 if (notes)
13029 {
13030 buf += xsnprintf (buf, endbuf - buf, "notes:");
13031 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13032 buf += 2 * nbytes;
13033 *buf++ = ';';
13034 }
13035 if (stop_notes)
13036 {
13037 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13038 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13039 buf += 2 * nbytes;
13040 *buf++ = ';';
13041 }
13042 /* Ensure the buffer is terminated. */
13043 *buf = '\0';
13044
13045 putpkt (rs->buf);
13046 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
13047 if (*reply == '\0')
13048 return 0;
13049
13050 if (strcmp (reply, "OK") != 0)
13051 error (_("Bogus reply from target: %s"), reply);
13052
13053 return 1;
13054 }
13055
13056 static int
13057 remote_use_agent (struct target_ops *self, int use)
13058 {
13059 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13060 {
13061 struct remote_state *rs = get_remote_state ();
13062
13063 /* If the stub supports QAgent. */
13064 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13065 putpkt (rs->buf);
13066 getpkt (&rs->buf, &rs->buf_size, 0);
13067
13068 if (strcmp (rs->buf, "OK") == 0)
13069 {
13070 use_agent = use;
13071 return 1;
13072 }
13073 }
13074
13075 return 0;
13076 }
13077
13078 static int
13079 remote_can_use_agent (struct target_ops *self)
13080 {
13081 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13082 }
13083
13084 struct btrace_target_info
13085 {
13086 /* The ptid of the traced thread. */
13087 ptid_t ptid;
13088
13089 /* The obtained branch trace configuration. */
13090 struct btrace_config conf;
13091 };
13092
13093 /* Reset our idea of our target's btrace configuration. */
13094
13095 static void
13096 remote_btrace_reset (void)
13097 {
13098 struct remote_state *rs = get_remote_state ();
13099
13100 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13101 }
13102
13103 /* Check whether the target supports branch tracing. */
13104
13105 static int
13106 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13107 {
13108 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13109 return 0;
13110 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13111 return 0;
13112
13113 switch (format)
13114 {
13115 case BTRACE_FORMAT_NONE:
13116 return 0;
13117
13118 case BTRACE_FORMAT_BTS:
13119 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13120
13121 case BTRACE_FORMAT_PT:
13122 /* The trace is decoded on the host. Even if our target supports it,
13123 we still need to have libipt to decode the trace. */
13124 #if defined (HAVE_LIBIPT)
13125 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13126 #else /* !defined (HAVE_LIBIPT) */
13127 return 0;
13128 #endif /* !defined (HAVE_LIBIPT) */
13129 }
13130
13131 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13132 }
13133
13134 /* Synchronize the configuration with the target. */
13135
13136 static void
13137 btrace_sync_conf (const struct btrace_config *conf)
13138 {
13139 struct packet_config *packet;
13140 struct remote_state *rs;
13141 char *buf, *pos, *endbuf;
13142
13143 rs = get_remote_state ();
13144 buf = rs->buf;
13145 endbuf = buf + get_remote_packet_size ();
13146
13147 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13148 if (packet_config_support (packet) == PACKET_ENABLE
13149 && conf->bts.size != rs->btrace_config.bts.size)
13150 {
13151 pos = buf;
13152 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13153 conf->bts.size);
13154
13155 putpkt (buf);
13156 getpkt (&buf, &rs->buf_size, 0);
13157
13158 if (packet_ok (buf, packet) == PACKET_ERROR)
13159 {
13160 if (buf[0] == 'E' && buf[1] == '.')
13161 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13162 else
13163 error (_("Failed to configure the BTS buffer size."));
13164 }
13165
13166 rs->btrace_config.bts.size = conf->bts.size;
13167 }
13168
13169 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13170 if (packet_config_support (packet) == PACKET_ENABLE
13171 && conf->pt.size != rs->btrace_config.pt.size)
13172 {
13173 pos = buf;
13174 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13175 conf->pt.size);
13176
13177 putpkt (buf);
13178 getpkt (&buf, &rs->buf_size, 0);
13179
13180 if (packet_ok (buf, packet) == PACKET_ERROR)
13181 {
13182 if (buf[0] == 'E' && buf[1] == '.')
13183 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13184 else
13185 error (_("Failed to configure the trace buffer size."));
13186 }
13187
13188 rs->btrace_config.pt.size = conf->pt.size;
13189 }
13190 }
13191
13192 /* Read the current thread's btrace configuration from the target and
13193 store it into CONF. */
13194
13195 static void
13196 btrace_read_config (struct btrace_config *conf)
13197 {
13198 char *xml;
13199
13200 xml = target_read_stralloc (&current_target,
13201 TARGET_OBJECT_BTRACE_CONF, "");
13202 if (xml != NULL)
13203 {
13204 struct cleanup *cleanup;
13205
13206 cleanup = make_cleanup (xfree, xml);
13207 parse_xml_btrace_conf (conf, xml);
13208 do_cleanups (cleanup);
13209 }
13210 }
13211
13212 /* Maybe reopen target btrace. */
13213
13214 static void
13215 remote_btrace_maybe_reopen (void)
13216 {
13217 struct remote_state *rs = get_remote_state ();
13218 struct cleanup *cleanup;
13219 struct thread_info *tp;
13220 int btrace_target_pushed = 0;
13221 int warned = 0;
13222
13223 cleanup = make_cleanup_restore_current_thread ();
13224 ALL_NON_EXITED_THREADS (tp)
13225 {
13226 set_general_thread (tp->ptid);
13227
13228 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13229 btrace_read_config (&rs->btrace_config);
13230
13231 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13232 continue;
13233
13234 #if !defined (HAVE_LIBIPT)
13235 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13236 {
13237 if (!warned)
13238 {
13239 warned = 1;
13240 warning (_("GDB does not support Intel Processor Trace. "
13241 "\"record\" will not work in this session."));
13242 }
13243
13244 continue;
13245 }
13246 #endif /* !defined (HAVE_LIBIPT) */
13247
13248 /* Push target, once, but before anything else happens. This way our
13249 changes to the threads will be cleaned up by unpushing the target
13250 in case btrace_read_config () throws. */
13251 if (!btrace_target_pushed)
13252 {
13253 btrace_target_pushed = 1;
13254 record_btrace_push_target ();
13255 printf_filtered (_("Target is recording using %s.\n"),
13256 btrace_format_string (rs->btrace_config.format));
13257 }
13258
13259 tp->btrace.target = XCNEW (struct btrace_target_info);
13260 tp->btrace.target->ptid = tp->ptid;
13261 tp->btrace.target->conf = rs->btrace_config;
13262 }
13263 do_cleanups (cleanup);
13264 }
13265
13266 /* Enable branch tracing. */
13267
13268 static struct btrace_target_info *
13269 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13270 const struct btrace_config *conf)
13271 {
13272 struct btrace_target_info *tinfo = NULL;
13273 struct packet_config *packet = NULL;
13274 struct remote_state *rs = get_remote_state ();
13275 char *buf = rs->buf;
13276 char *endbuf = rs->buf + get_remote_packet_size ();
13277
13278 switch (conf->format)
13279 {
13280 case BTRACE_FORMAT_BTS:
13281 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13282 break;
13283
13284 case BTRACE_FORMAT_PT:
13285 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13286 break;
13287 }
13288
13289 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13290 error (_("Target does not support branch tracing."));
13291
13292 btrace_sync_conf (conf);
13293
13294 set_general_thread (ptid);
13295
13296 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13297 putpkt (rs->buf);
13298 getpkt (&rs->buf, &rs->buf_size, 0);
13299
13300 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13301 {
13302 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13303 error (_("Could not enable branch tracing for %s: %s"),
13304 target_pid_to_str (ptid), rs->buf + 2);
13305 else
13306 error (_("Could not enable branch tracing for %s."),
13307 target_pid_to_str (ptid));
13308 }
13309
13310 tinfo = XCNEW (struct btrace_target_info);
13311 tinfo->ptid = ptid;
13312
13313 /* If we fail to read the configuration, we lose some information, but the
13314 tracing itself is not impacted. */
13315 TRY
13316 {
13317 btrace_read_config (&tinfo->conf);
13318 }
13319 CATCH (err, RETURN_MASK_ERROR)
13320 {
13321 if (err.message != NULL)
13322 warning ("%s", err.message);
13323 }
13324 END_CATCH
13325
13326 return tinfo;
13327 }
13328
13329 /* Disable branch tracing. */
13330
13331 static void
13332 remote_disable_btrace (struct target_ops *self,
13333 struct btrace_target_info *tinfo)
13334 {
13335 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13336 struct remote_state *rs = get_remote_state ();
13337 char *buf = rs->buf;
13338 char *endbuf = rs->buf + get_remote_packet_size ();
13339
13340 if (packet_config_support (packet) != PACKET_ENABLE)
13341 error (_("Target does not support branch tracing."));
13342
13343 set_general_thread (tinfo->ptid);
13344
13345 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13346 putpkt (rs->buf);
13347 getpkt (&rs->buf, &rs->buf_size, 0);
13348
13349 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13350 {
13351 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13352 error (_("Could not disable branch tracing for %s: %s"),
13353 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13354 else
13355 error (_("Could not disable branch tracing for %s."),
13356 target_pid_to_str (tinfo->ptid));
13357 }
13358
13359 xfree (tinfo);
13360 }
13361
13362 /* Teardown branch tracing. */
13363
13364 static void
13365 remote_teardown_btrace (struct target_ops *self,
13366 struct btrace_target_info *tinfo)
13367 {
13368 /* We must not talk to the target during teardown. */
13369 xfree (tinfo);
13370 }
13371
13372 /* Read the branch trace. */
13373
13374 static enum btrace_error
13375 remote_read_btrace (struct target_ops *self,
13376 struct btrace_data *btrace,
13377 struct btrace_target_info *tinfo,
13378 enum btrace_read_type type)
13379 {
13380 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13381 struct cleanup *cleanup;
13382 const char *annex;
13383 char *xml;
13384
13385 if (packet_config_support (packet) != PACKET_ENABLE)
13386 error (_("Target does not support branch tracing."));
13387
13388 #if !defined(HAVE_LIBEXPAT)
13389 error (_("Cannot process branch tracing result. XML parsing not supported."));
13390 #endif
13391
13392 switch (type)
13393 {
13394 case BTRACE_READ_ALL:
13395 annex = "all";
13396 break;
13397 case BTRACE_READ_NEW:
13398 annex = "new";
13399 break;
13400 case BTRACE_READ_DELTA:
13401 annex = "delta";
13402 break;
13403 default:
13404 internal_error (__FILE__, __LINE__,
13405 _("Bad branch tracing read type: %u."),
13406 (unsigned int) type);
13407 }
13408
13409 xml = target_read_stralloc (&current_target,
13410 TARGET_OBJECT_BTRACE, annex);
13411 if (xml == NULL)
13412 return BTRACE_ERR_UNKNOWN;
13413
13414 cleanup = make_cleanup (xfree, xml);
13415 parse_xml_btrace (btrace, xml);
13416 do_cleanups (cleanup);
13417
13418 return BTRACE_ERR_NONE;
13419 }
13420
13421 static const struct btrace_config *
13422 remote_btrace_conf (struct target_ops *self,
13423 const struct btrace_target_info *tinfo)
13424 {
13425 return &tinfo->conf;
13426 }
13427
13428 static int
13429 remote_augmented_libraries_svr4_read (struct target_ops *self)
13430 {
13431 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13432 == PACKET_ENABLE);
13433 }
13434
13435 /* Implementation of to_load. */
13436
13437 static void
13438 remote_load (struct target_ops *self, const char *name, int from_tty)
13439 {
13440 generic_load (name, from_tty);
13441 }
13442
13443 /* Accepts an integer PID; returns a string representing a file that
13444 can be opened on the remote side to get the symbols for the child
13445 process. Returns NULL if the operation is not supported. */
13446
13447 static char *
13448 remote_pid_to_exec_file (struct target_ops *self, int pid)
13449 {
13450 static char *filename = NULL;
13451 struct inferior *inf;
13452 char *annex = NULL;
13453
13454 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13455 return NULL;
13456
13457 if (filename != NULL)
13458 xfree (filename);
13459
13460 inf = find_inferior_pid (pid);
13461 if (inf == NULL)
13462 internal_error (__FILE__, __LINE__,
13463 _("not currently attached to process %d"), pid);
13464
13465 if (!inf->fake_pid_p)
13466 {
13467 const int annex_size = 9;
13468
13469 annex = (char *) alloca (annex_size);
13470 xsnprintf (annex, annex_size, "%x", pid);
13471 }
13472
13473 filename = target_read_stralloc (&current_target,
13474 TARGET_OBJECT_EXEC_FILE, annex);
13475
13476 return filename;
13477 }
13478
13479 /* Implement the to_can_do_single_step target_ops method. */
13480
13481 static int
13482 remote_can_do_single_step (struct target_ops *ops)
13483 {
13484 /* We can only tell whether target supports single step or not by
13485 supported s and S vCont actions if the stub supports vContSupported
13486 feature. If the stub doesn't support vContSupported feature,
13487 we have conservatively to think target doesn't supports single
13488 step. */
13489 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13490 {
13491 struct remote_state *rs = get_remote_state ();
13492
13493 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13494 remote_vcont_probe (rs);
13495
13496 return rs->supports_vCont.s && rs->supports_vCont.S;
13497 }
13498 else
13499 return 0;
13500 }
13501
13502 /* Implementation of the to_execution_direction method for the remote
13503 target. */
13504
13505 static enum exec_direction_kind
13506 remote_execution_direction (struct target_ops *self)
13507 {
13508 struct remote_state *rs = get_remote_state ();
13509
13510 return rs->last_resume_exec_dir;
13511 }
13512
13513 static void
13514 init_remote_ops (void)
13515 {
13516 remote_ops.to_shortname = "remote";
13517 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13518 remote_ops.to_doc =
13519 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13520 Specify the serial device it is connected to\n\
13521 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13522 remote_ops.to_open = remote_open;
13523 remote_ops.to_close = remote_close;
13524 remote_ops.to_detach = remote_detach;
13525 remote_ops.to_disconnect = remote_disconnect;
13526 remote_ops.to_resume = remote_resume;
13527 remote_ops.to_commit_resume = remote_commit_resume;
13528 remote_ops.to_wait = remote_wait;
13529 remote_ops.to_fetch_registers = remote_fetch_registers;
13530 remote_ops.to_store_registers = remote_store_registers;
13531 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13532 remote_ops.to_files_info = remote_files_info;
13533 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13534 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13535 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13536 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13537 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13538 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13539 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13540 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13541 remote_ops.to_watchpoint_addr_within_range =
13542 remote_watchpoint_addr_within_range;
13543 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13544 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13545 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13546 remote_ops.to_region_ok_for_hw_watchpoint
13547 = remote_region_ok_for_hw_watchpoint;
13548 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13549 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13550 remote_ops.to_kill = remote_kill;
13551 remote_ops.to_load = remote_load;
13552 remote_ops.to_mourn_inferior = remote_mourn;
13553 remote_ops.to_pass_signals = remote_pass_signals;
13554 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13555 remote_ops.to_program_signals = remote_program_signals;
13556 remote_ops.to_thread_alive = remote_thread_alive;
13557 remote_ops.to_thread_name = remote_thread_name;
13558 remote_ops.to_update_thread_list = remote_update_thread_list;
13559 remote_ops.to_pid_to_str = remote_pid_to_str;
13560 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13561 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13562 remote_ops.to_stop = remote_stop;
13563 remote_ops.to_interrupt = remote_interrupt;
13564 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13565 remote_ops.to_xfer_partial = remote_xfer_partial;
13566 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13567 remote_ops.to_rcmd = remote_rcmd;
13568 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13569 remote_ops.to_log_command = serial_log_command;
13570 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13571 remote_ops.to_stratum = process_stratum;
13572 remote_ops.to_has_all_memory = default_child_has_all_memory;
13573 remote_ops.to_has_memory = default_child_has_memory;
13574 remote_ops.to_has_stack = default_child_has_stack;
13575 remote_ops.to_has_registers = default_child_has_registers;
13576 remote_ops.to_has_execution = default_child_has_execution;
13577 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13578 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13579 remote_ops.to_magic = OPS_MAGIC;
13580 remote_ops.to_memory_map = remote_memory_map;
13581 remote_ops.to_flash_erase = remote_flash_erase;
13582 remote_ops.to_flash_done = remote_flash_done;
13583 remote_ops.to_read_description = remote_read_description;
13584 remote_ops.to_search_memory = remote_search_memory;
13585 remote_ops.to_can_async_p = remote_can_async_p;
13586 remote_ops.to_is_async_p = remote_is_async_p;
13587 remote_ops.to_async = remote_async;
13588 remote_ops.to_thread_events = remote_thread_events;
13589 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13590 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13591 remote_ops.to_terminal_ours = remote_terminal_ours;
13592 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13593 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13594 remote_ops.to_supports_disable_randomization
13595 = remote_supports_disable_randomization;
13596 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13597 remote_ops.to_fileio_open = remote_hostio_open;
13598 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13599 remote_ops.to_fileio_pread = remote_hostio_pread;
13600 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13601 remote_ops.to_fileio_close = remote_hostio_close;
13602 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13603 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13604 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13605 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13606 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13607 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13608 remote_ops.to_trace_init = remote_trace_init;
13609 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13610 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13611 remote_ops.to_download_trace_state_variable
13612 = remote_download_trace_state_variable;
13613 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13614 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13615 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13616 remote_ops.to_trace_start = remote_trace_start;
13617 remote_ops.to_get_trace_status = remote_get_trace_status;
13618 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13619 remote_ops.to_trace_stop = remote_trace_stop;
13620 remote_ops.to_trace_find = remote_trace_find;
13621 remote_ops.to_get_trace_state_variable_value
13622 = remote_get_trace_state_variable_value;
13623 remote_ops.to_save_trace_data = remote_save_trace_data;
13624 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13625 remote_ops.to_upload_trace_state_variables
13626 = remote_upload_trace_state_variables;
13627 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13628 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13629 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13630 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13631 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13632 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13633 remote_ops.to_core_of_thread = remote_core_of_thread;
13634 remote_ops.to_verify_memory = remote_verify_memory;
13635 remote_ops.to_get_tib_address = remote_get_tib_address;
13636 remote_ops.to_set_permissions = remote_set_permissions;
13637 remote_ops.to_static_tracepoint_marker_at
13638 = remote_static_tracepoint_marker_at;
13639 remote_ops.to_static_tracepoint_markers_by_strid
13640 = remote_static_tracepoint_markers_by_strid;
13641 remote_ops.to_traceframe_info = remote_traceframe_info;
13642 remote_ops.to_use_agent = remote_use_agent;
13643 remote_ops.to_can_use_agent = remote_can_use_agent;
13644 remote_ops.to_supports_btrace = remote_supports_btrace;
13645 remote_ops.to_enable_btrace = remote_enable_btrace;
13646 remote_ops.to_disable_btrace = remote_disable_btrace;
13647 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13648 remote_ops.to_read_btrace = remote_read_btrace;
13649 remote_ops.to_btrace_conf = remote_btrace_conf;
13650 remote_ops.to_augmented_libraries_svr4_read =
13651 remote_augmented_libraries_svr4_read;
13652 remote_ops.to_follow_fork = remote_follow_fork;
13653 remote_ops.to_follow_exec = remote_follow_exec;
13654 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13655 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13656 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13657 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13658 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13659 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13660 remote_ops.to_execution_direction = remote_execution_direction;
13661 }
13662
13663 /* Set up the extended remote vector by making a copy of the standard
13664 remote vector and adding to it. */
13665
13666 static void
13667 init_extended_remote_ops (void)
13668 {
13669 extended_remote_ops = remote_ops;
13670
13671 extended_remote_ops.to_shortname = "extended-remote";
13672 extended_remote_ops.to_longname =
13673 "Extended remote serial target in gdb-specific protocol";
13674 extended_remote_ops.to_doc =
13675 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13676 Specify the serial device it is connected to (e.g. /dev/ttya).";
13677 extended_remote_ops.to_open = extended_remote_open;
13678 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13679 extended_remote_ops.to_detach = extended_remote_detach;
13680 extended_remote_ops.to_attach = extended_remote_attach;
13681 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13682 extended_remote_ops.to_supports_disable_randomization
13683 = extended_remote_supports_disable_randomization;
13684 }
13685
13686 static int
13687 remote_can_async_p (struct target_ops *ops)
13688 {
13689 struct remote_state *rs = get_remote_state ();
13690
13691 /* We don't go async if the user has explicitly prevented it with the
13692 "maint set target-async" command. */
13693 if (!target_async_permitted)
13694 return 0;
13695
13696 /* We're async whenever the serial device is. */
13697 return serial_can_async_p (rs->remote_desc);
13698 }
13699
13700 static int
13701 remote_is_async_p (struct target_ops *ops)
13702 {
13703 struct remote_state *rs = get_remote_state ();
13704
13705 if (!target_async_permitted)
13706 /* We only enable async when the user specifically asks for it. */
13707 return 0;
13708
13709 /* We're async whenever the serial device is. */
13710 return serial_is_async_p (rs->remote_desc);
13711 }
13712
13713 /* Pass the SERIAL event on and up to the client. One day this code
13714 will be able to delay notifying the client of an event until the
13715 point where an entire packet has been received. */
13716
13717 static serial_event_ftype remote_async_serial_handler;
13718
13719 static void
13720 remote_async_serial_handler (struct serial *scb, void *context)
13721 {
13722 /* Don't propogate error information up to the client. Instead let
13723 the client find out about the error by querying the target. */
13724 inferior_event_handler (INF_REG_EVENT, NULL);
13725 }
13726
13727 static void
13728 remote_async_inferior_event_handler (gdb_client_data data)
13729 {
13730 inferior_event_handler (INF_REG_EVENT, NULL);
13731 }
13732
13733 static void
13734 remote_async (struct target_ops *ops, int enable)
13735 {
13736 struct remote_state *rs = get_remote_state ();
13737
13738 if (enable)
13739 {
13740 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13741
13742 /* If there are pending events in the stop reply queue tell the
13743 event loop to process them. */
13744 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13745 mark_async_event_handler (remote_async_inferior_event_token);
13746 /* For simplicity, below we clear the pending events token
13747 without remembering whether it is marked, so here we always
13748 mark it. If there's actually no pending notification to
13749 process, this ends up being a no-op (other than a spurious
13750 event-loop wakeup). */
13751 if (target_is_non_stop_p ())
13752 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13753 }
13754 else
13755 {
13756 serial_async (rs->remote_desc, NULL, NULL);
13757 /* If the core is disabling async, it doesn't want to be
13758 disturbed with target events. Clear all async event sources
13759 too. */
13760 clear_async_event_handler (remote_async_inferior_event_token);
13761 if (target_is_non_stop_p ())
13762 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13763 }
13764 }
13765
13766 /* Implementation of the to_thread_events method. */
13767
13768 static void
13769 remote_thread_events (struct target_ops *ops, int enable)
13770 {
13771 struct remote_state *rs = get_remote_state ();
13772 size_t size = get_remote_packet_size ();
13773
13774 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13775 return;
13776
13777 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13778 putpkt (rs->buf);
13779 getpkt (&rs->buf, &rs->buf_size, 0);
13780
13781 switch (packet_ok (rs->buf,
13782 &remote_protocol_packets[PACKET_QThreadEvents]))
13783 {
13784 case PACKET_OK:
13785 if (strcmp (rs->buf, "OK") != 0)
13786 error (_("Remote refused setting thread events: %s"), rs->buf);
13787 break;
13788 case PACKET_ERROR:
13789 warning (_("Remote failure reply: %s"), rs->buf);
13790 break;
13791 case PACKET_UNKNOWN:
13792 break;
13793 }
13794 }
13795
13796 static void
13797 set_remote_cmd (char *args, int from_tty)
13798 {
13799 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13800 }
13801
13802 static void
13803 show_remote_cmd (char *args, int from_tty)
13804 {
13805 /* We can't just use cmd_show_list here, because we want to skip
13806 the redundant "show remote Z-packet" and the legacy aliases. */
13807 struct cleanup *showlist_chain;
13808 struct cmd_list_element *list = remote_show_cmdlist;
13809 struct ui_out *uiout = current_uiout;
13810
13811 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
13812 for (; list != NULL; list = list->next)
13813 if (strcmp (list->name, "Z-packet") == 0)
13814 continue;
13815 else if (list->type == not_set_cmd)
13816 /* Alias commands are exactly like the original, except they
13817 don't have the normal type. */
13818 continue;
13819 else
13820 {
13821 struct cleanup *option_chain
13822 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
13823
13824 uiout->field_string ("name", list->name);
13825 uiout->text (": ");
13826 if (list->type == show_cmd)
13827 do_show_command (NULL, from_tty, list);
13828 else
13829 cmd_func (list, NULL, from_tty);
13830 /* Close the tuple. */
13831 do_cleanups (option_chain);
13832 }
13833
13834 /* Close the tuple. */
13835 do_cleanups (showlist_chain);
13836 }
13837
13838
13839 /* Function to be called whenever a new objfile (shlib) is detected. */
13840 static void
13841 remote_new_objfile (struct objfile *objfile)
13842 {
13843 struct remote_state *rs = get_remote_state ();
13844
13845 if (rs->remote_desc != 0) /* Have a remote connection. */
13846 remote_check_symbols ();
13847 }
13848
13849 /* Pull all the tracepoints defined on the target and create local
13850 data structures representing them. We don't want to create real
13851 tracepoints yet, we don't want to mess up the user's existing
13852 collection. */
13853
13854 static int
13855 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13856 {
13857 struct remote_state *rs = get_remote_state ();
13858 char *p;
13859
13860 /* Ask for a first packet of tracepoint definition. */
13861 putpkt ("qTfP");
13862 getpkt (&rs->buf, &rs->buf_size, 0);
13863 p = rs->buf;
13864 while (*p && *p != 'l')
13865 {
13866 parse_tracepoint_definition (p, utpp);
13867 /* Ask for another packet of tracepoint definition. */
13868 putpkt ("qTsP");
13869 getpkt (&rs->buf, &rs->buf_size, 0);
13870 p = rs->buf;
13871 }
13872 return 0;
13873 }
13874
13875 static int
13876 remote_upload_trace_state_variables (struct target_ops *self,
13877 struct uploaded_tsv **utsvp)
13878 {
13879 struct remote_state *rs = get_remote_state ();
13880 char *p;
13881
13882 /* Ask for a first packet of variable definition. */
13883 putpkt ("qTfV");
13884 getpkt (&rs->buf, &rs->buf_size, 0);
13885 p = rs->buf;
13886 while (*p && *p != 'l')
13887 {
13888 parse_tsv_definition (p, utsvp);
13889 /* Ask for another packet of variable definition. */
13890 putpkt ("qTsV");
13891 getpkt (&rs->buf, &rs->buf_size, 0);
13892 p = rs->buf;
13893 }
13894 return 0;
13895 }
13896
13897 /* The "set/show range-stepping" show hook. */
13898
13899 static void
13900 show_range_stepping (struct ui_file *file, int from_tty,
13901 struct cmd_list_element *c,
13902 const char *value)
13903 {
13904 fprintf_filtered (file,
13905 _("Debugger's willingness to use range stepping "
13906 "is %s.\n"), value);
13907 }
13908
13909 /* The "set/show range-stepping" set hook. */
13910
13911 static void
13912 set_range_stepping (char *ignore_args, int from_tty,
13913 struct cmd_list_element *c)
13914 {
13915 struct remote_state *rs = get_remote_state ();
13916
13917 /* Whene enabling, check whether range stepping is actually
13918 supported by the target, and warn if not. */
13919 if (use_range_stepping)
13920 {
13921 if (rs->remote_desc != NULL)
13922 {
13923 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13924 remote_vcont_probe (rs);
13925
13926 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13927 && rs->supports_vCont.r)
13928 return;
13929 }
13930
13931 warning (_("Range stepping is not supported by the current target"));
13932 }
13933 }
13934
13935 void
13936 _initialize_remote (void)
13937 {
13938 struct cmd_list_element *cmd;
13939 const char *cmd_name;
13940
13941 /* architecture specific data */
13942 remote_gdbarch_data_handle =
13943 gdbarch_data_register_post_init (init_remote_state);
13944 remote_g_packet_data_handle =
13945 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13946
13947 remote_pspace_data
13948 = register_program_space_data_with_cleanup (NULL,
13949 remote_pspace_data_cleanup);
13950
13951 /* Initialize the per-target state. At the moment there is only one
13952 of these, not one per target. Only one target is active at a
13953 time. */
13954 remote_state = new_remote_state ();
13955
13956 init_remote_ops ();
13957 add_target (&remote_ops);
13958
13959 init_extended_remote_ops ();
13960 add_target (&extended_remote_ops);
13961
13962 /* Hook into new objfile notification. */
13963 observer_attach_new_objfile (remote_new_objfile);
13964 /* We're no longer interested in notification events of an inferior
13965 when it exits. */
13966 observer_attach_inferior_exit (discard_pending_stop_replies);
13967
13968 #if 0
13969 init_remote_threadtests ();
13970 #endif
13971
13972 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13973 /* set/show remote ... */
13974
13975 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13976 Remote protocol specific variables\n\
13977 Configure various remote-protocol specific variables such as\n\
13978 the packets being used"),
13979 &remote_set_cmdlist, "set remote ",
13980 0 /* allow-unknown */, &setlist);
13981 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13982 Remote protocol specific variables\n\
13983 Configure various remote-protocol specific variables such as\n\
13984 the packets being used"),
13985 &remote_show_cmdlist, "show remote ",
13986 0 /* allow-unknown */, &showlist);
13987
13988 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13989 Compare section data on target to the exec file.\n\
13990 Argument is a single section name (default: all loaded sections).\n\
13991 To compare only read-only loaded sections, specify the -r option."),
13992 &cmdlist);
13993
13994 add_cmd ("packet", class_maintenance, packet_command, _("\
13995 Send an arbitrary packet to a remote target.\n\
13996 maintenance packet TEXT\n\
13997 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13998 this command sends the string TEXT to the inferior, and displays the\n\
13999 response packet. GDB supplies the initial `$' character, and the\n\
14000 terminating `#' character and checksum."),
14001 &maintenancelist);
14002
14003 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14004 Set whether to send break if interrupted."), _("\
14005 Show whether to send break if interrupted."), _("\
14006 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14007 set_remotebreak, show_remotebreak,
14008 &setlist, &showlist);
14009 cmd_name = "remotebreak";
14010 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14011 deprecate_cmd (cmd, "set remote interrupt-sequence");
14012 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14013 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14014 deprecate_cmd (cmd, "show remote interrupt-sequence");
14015
14016 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14017 interrupt_sequence_modes, &interrupt_sequence_mode,
14018 _("\
14019 Set interrupt sequence to remote target."), _("\
14020 Show interrupt sequence to remote target."), _("\
14021 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14022 NULL, show_interrupt_sequence,
14023 &remote_set_cmdlist,
14024 &remote_show_cmdlist);
14025
14026 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14027 &interrupt_on_connect, _("\
14028 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14029 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14030 If set, interrupt sequence is sent to remote target."),
14031 NULL, NULL,
14032 &remote_set_cmdlist, &remote_show_cmdlist);
14033
14034 /* Install commands for configuring memory read/write packets. */
14035
14036 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14037 Set the maximum number of bytes per memory write packet (deprecated)."),
14038 &setlist);
14039 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14040 Show the maximum number of bytes per memory write packet (deprecated)."),
14041 &showlist);
14042 add_cmd ("memory-write-packet-size", no_class,
14043 set_memory_write_packet_size, _("\
14044 Set the maximum number of bytes per memory-write packet.\n\
14045 Specify the number of bytes in a packet or 0 (zero) for the\n\
14046 default packet size. The actual limit is further reduced\n\
14047 dependent on the target. Specify ``fixed'' to disable the\n\
14048 further restriction and ``limit'' to enable that restriction."),
14049 &remote_set_cmdlist);
14050 add_cmd ("memory-read-packet-size", no_class,
14051 set_memory_read_packet_size, _("\
14052 Set the maximum number of bytes per memory-read packet.\n\
14053 Specify the number of bytes in a packet or 0 (zero) for the\n\
14054 default packet size. The actual limit is further reduced\n\
14055 dependent on the target. Specify ``fixed'' to disable the\n\
14056 further restriction and ``limit'' to enable that restriction."),
14057 &remote_set_cmdlist);
14058 add_cmd ("memory-write-packet-size", no_class,
14059 show_memory_write_packet_size,
14060 _("Show the maximum number of bytes per memory-write packet."),
14061 &remote_show_cmdlist);
14062 add_cmd ("memory-read-packet-size", no_class,
14063 show_memory_read_packet_size,
14064 _("Show the maximum number of bytes per memory-read packet."),
14065 &remote_show_cmdlist);
14066
14067 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14068 &remote_hw_watchpoint_limit, _("\
14069 Set the maximum number of target hardware watchpoints."), _("\
14070 Show the maximum number of target hardware watchpoints."), _("\
14071 Specify a negative limit for unlimited."),
14072 NULL, NULL, /* FIXME: i18n: The maximum
14073 number of target hardware
14074 watchpoints is %s. */
14075 &remote_set_cmdlist, &remote_show_cmdlist);
14076 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14077 &remote_hw_watchpoint_length_limit, _("\
14078 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14079 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14080 Specify a negative limit for unlimited."),
14081 NULL, NULL, /* FIXME: i18n: The maximum
14082 length (in bytes) of a target
14083 hardware watchpoint is %s. */
14084 &remote_set_cmdlist, &remote_show_cmdlist);
14085 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14086 &remote_hw_breakpoint_limit, _("\
14087 Set the maximum number of target hardware breakpoints."), _("\
14088 Show the maximum number of target hardware breakpoints."), _("\
14089 Specify a negative limit for unlimited."),
14090 NULL, NULL, /* FIXME: i18n: The maximum
14091 number of target hardware
14092 breakpoints is %s. */
14093 &remote_set_cmdlist, &remote_show_cmdlist);
14094
14095 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14096 &remote_address_size, _("\
14097 Set the maximum size of the address (in bits) in a memory packet."), _("\
14098 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14099 NULL,
14100 NULL, /* FIXME: i18n: */
14101 &setlist, &showlist);
14102
14103 init_all_packet_configs ();
14104
14105 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14106 "X", "binary-download", 1);
14107
14108 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14109 "vCont", "verbose-resume", 0);
14110
14111 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14112 "QPassSignals", "pass-signals", 0);
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14115 "QCatchSyscalls", "catch-syscalls", 0);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14118 "QProgramSignals", "program-signals", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14121 "qSymbol", "symbol-lookup", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14124 "P", "set-register", 1);
14125
14126 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14127 "p", "fetch-register", 1);
14128
14129 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14130 "Z0", "software-breakpoint", 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14133 "Z1", "hardware-breakpoint", 0);
14134
14135 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14136 "Z2", "write-watchpoint", 0);
14137
14138 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14139 "Z3", "read-watchpoint", 0);
14140
14141 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14142 "Z4", "access-watchpoint", 0);
14143
14144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14145 "qXfer:auxv:read", "read-aux-vector", 0);
14146
14147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14148 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14149
14150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14151 "qXfer:features:read", "target-features", 0);
14152
14153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14154 "qXfer:libraries:read", "library-info", 0);
14155
14156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14157 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14158
14159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14160 "qXfer:memory-map:read", "memory-map", 0);
14161
14162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14163 "qXfer:spu:read", "read-spu-object", 0);
14164
14165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14166 "qXfer:spu:write", "write-spu-object", 0);
14167
14168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14169 "qXfer:osdata:read", "osdata", 0);
14170
14171 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14172 "qXfer:threads:read", "threads", 0);
14173
14174 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14175 "qXfer:siginfo:read", "read-siginfo-object", 0);
14176
14177 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14178 "qXfer:siginfo:write", "write-siginfo-object", 0);
14179
14180 add_packet_config_cmd
14181 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14182 "qXfer:traceframe-info:read", "traceframe-info", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14185 "qXfer:uib:read", "unwind-info-block", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14188 "qGetTLSAddr", "get-thread-local-storage-address",
14189 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14192 "qGetTIBAddr", "get-thread-information-block-address",
14193 0);
14194
14195 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14196 "bc", "reverse-continue", 0);
14197
14198 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14199 "bs", "reverse-step", 0);
14200
14201 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14202 "qSupported", "supported-packets", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14205 "qSearch:memory", "search-memory", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14208 "qTStatus", "trace-status", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14211 "vFile:setfs", "hostio-setfs", 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14214 "vFile:open", "hostio-open", 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14217 "vFile:pread", "hostio-pread", 0);
14218
14219 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14220 "vFile:pwrite", "hostio-pwrite", 0);
14221
14222 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14223 "vFile:close", "hostio-close", 0);
14224
14225 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14226 "vFile:unlink", "hostio-unlink", 0);
14227
14228 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14229 "vFile:readlink", "hostio-readlink", 0);
14230
14231 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14232 "vFile:fstat", "hostio-fstat", 0);
14233
14234 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14235 "vAttach", "attach", 0);
14236
14237 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14238 "vRun", "run", 0);
14239
14240 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14241 "QStartNoAckMode", "noack", 0);
14242
14243 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14244 "vKill", "kill", 0);
14245
14246 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14247 "qAttached", "query-attached", 0);
14248
14249 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14250 "ConditionalTracepoints",
14251 "conditional-tracepoints", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14254 "ConditionalBreakpoints",
14255 "conditional-breakpoints", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14258 "BreakpointCommands",
14259 "breakpoint-commands", 0);
14260
14261 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14262 "FastTracepoints", "fast-tracepoints", 0);
14263
14264 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14265 "TracepointSource", "TracepointSource", 0);
14266
14267 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14268 "QAllow", "allow", 0);
14269
14270 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14271 "StaticTracepoints", "static-tracepoints", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14274 "InstallInTrace", "install-in-trace", 0);
14275
14276 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14277 "qXfer:statictrace:read", "read-sdata-object", 0);
14278
14279 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14280 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14281
14282 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14283 "QDisableRandomization", "disable-randomization", 0);
14284
14285 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14286 "QAgent", "agent", 0);
14287
14288 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14289 "QTBuffer:size", "trace-buffer-size", 0);
14290
14291 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14292 "Qbtrace:off", "disable-btrace", 0);
14293
14294 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14295 "Qbtrace:bts", "enable-btrace-bts", 0);
14296
14297 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14298 "Qbtrace:pt", "enable-btrace-pt", 0);
14299
14300 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14301 "qXfer:btrace", "read-btrace", 0);
14302
14303 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14304 "qXfer:btrace-conf", "read-btrace-conf", 0);
14305
14306 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14307 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14308
14309 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14310 "multiprocess-feature", "multiprocess-feature", 0);
14311
14312 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14313 "swbreak-feature", "swbreak-feature", 0);
14314
14315 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14316 "hwbreak-feature", "hwbreak-feature", 0);
14317
14318 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14319 "fork-event-feature", "fork-event-feature", 0);
14320
14321 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14322 "vfork-event-feature", "vfork-event-feature", 0);
14323
14324 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14325 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14326
14327 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14328 "vContSupported", "verbose-resume-supported", 0);
14329
14330 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14331 "exec-event-feature", "exec-event-feature", 0);
14332
14333 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14334 "vCtrlC", "ctrl-c", 0);
14335
14336 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14337 "QThreadEvents", "thread-events", 0);
14338
14339 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14340 "N stop reply", "no-resumed-stop-reply", 0);
14341
14342 /* Assert that we've registered "set remote foo-packet" commands
14343 for all packet configs. */
14344 {
14345 int i;
14346
14347 for (i = 0; i < PACKET_MAX; i++)
14348 {
14349 /* Ideally all configs would have a command associated. Some
14350 still don't though. */
14351 int excepted;
14352
14353 switch (i)
14354 {
14355 case PACKET_QNonStop:
14356 case PACKET_EnableDisableTracepoints_feature:
14357 case PACKET_tracenz_feature:
14358 case PACKET_DisconnectedTracing_feature:
14359 case PACKET_augmented_libraries_svr4_read_feature:
14360 case PACKET_qCRC:
14361 /* Additions to this list need to be well justified:
14362 pre-existing packets are OK; new packets are not. */
14363 excepted = 1;
14364 break;
14365 default:
14366 excepted = 0;
14367 break;
14368 }
14369
14370 /* This catches both forgetting to add a config command, and
14371 forgetting to remove a packet from the exception list. */
14372 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14373 }
14374 }
14375
14376 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14377 Z sub-packet has its own set and show commands, but users may
14378 have sets to this variable in their .gdbinit files (or in their
14379 documentation). */
14380 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14381 &remote_Z_packet_detect, _("\
14382 Set use of remote protocol `Z' packets"), _("\
14383 Show use of remote protocol `Z' packets "), _("\
14384 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14385 packets."),
14386 set_remote_protocol_Z_packet_cmd,
14387 show_remote_protocol_Z_packet_cmd,
14388 /* FIXME: i18n: Use of remote protocol
14389 `Z' packets is %s. */
14390 &remote_set_cmdlist, &remote_show_cmdlist);
14391
14392 add_prefix_cmd ("remote", class_files, remote_command, _("\
14393 Manipulate files on the remote system\n\
14394 Transfer files to and from the remote target system."),
14395 &remote_cmdlist, "remote ",
14396 0 /* allow-unknown */, &cmdlist);
14397
14398 add_cmd ("put", class_files, remote_put_command,
14399 _("Copy a local file to the remote system."),
14400 &remote_cmdlist);
14401
14402 add_cmd ("get", class_files, remote_get_command,
14403 _("Copy a remote file to the local system."),
14404 &remote_cmdlist);
14405
14406 add_cmd ("delete", class_files, remote_delete_command,
14407 _("Delete a remote file."),
14408 &remote_cmdlist);
14409
14410 add_setshow_string_noescape_cmd ("exec-file", class_files,
14411 &remote_exec_file_var, _("\
14412 Set the remote pathname for \"run\""), _("\
14413 Show the remote pathname for \"run\""), NULL,
14414 set_remote_exec_file,
14415 show_remote_exec_file,
14416 &remote_set_cmdlist,
14417 &remote_show_cmdlist);
14418
14419 add_setshow_boolean_cmd ("range-stepping", class_run,
14420 &use_range_stepping, _("\
14421 Enable or disable range stepping."), _("\
14422 Show whether target-assisted range stepping is enabled."), _("\
14423 If on, and the target supports it, when stepping a source line, GDB\n\
14424 tells the target to step the corresponding range of addresses itself instead\n\
14425 of issuing multiple single-steps. This speeds up source level\n\
14426 stepping. If off, GDB always issues single-steps, even if range\n\
14427 stepping is supported by the target. The default is on."),
14428 set_range_stepping,
14429 show_range_stepping,
14430 &setlist,
14431 &showlist);
14432
14433 /* Eventually initialize fileio. See fileio.c */
14434 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14435
14436 /* Take advantage of the fact that the TID field is not used, to tag
14437 special ptids with it set to != 0. */
14438 magic_null_ptid = ptid_build (42000, -1, 1);
14439 not_sent_ptid = ptid_build (42000, -2, 1);
14440 any_thread_ptid = ptid_build (42000, 0, 1);
14441
14442 target_buf_size = 2048;
14443 target_buf = (char *) xmalloc (target_buf_size);
14444 }
14445